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Abstract

The available methods for selection of controlled variables (CVs) using the concept of self-optimizing

control (SOC) focus on finding CVs, which are held at constant setpoints using a feedback controller. In

this paper, it is shown that better self-optimizing properties can be achieved by incorporating feedfor-

ward action using measured disturbances in the SOC policies. The resulting operational policy allows

the setpoints for CVs to be varied with measured disturbances allowing for near-optimal operation in

presence of disturbances and uncertainties. The effectiveness of the proposed approach is demonstrated

through its application to an exothermic reactor and a forced-circulation evaporator.

Keywords: Controlled variable; Control structure design; Feedforward control; Self-optimizing control.

1 Introduction

The selection of controlled variables (CVs) from available measurements is an important step during the

design of control systems for industrial processes. A number of methods for CV selection have been

proposed in the past few decades. Van de Wal and de Jager [2001] provide an overview of the CV

selection approaches proposed in 1980s and 1990s. Recently, Skogestad [2000] introduced the concept of

self-optimizing control (SOC) for systematic selection of CVs. In this approach, CVs are selected such that

∗Corresponding author: E-mail: vinay.kariwala@in.abb.com

1

e101466
Text Box
The Canadian Journal of Chemical Engineering, Volume 92, Issue 1, Pages 90–96, January 2014



in presence of disturbances and uncertainties, the loss incurred in implementing the operational policy by

holding the selected CVs at constant setpoints is minimal, as compared to the use of an online optimizer.

The choice of CVs based on the general non-linear formulation of SOC requires solving large-dimensional

non-convex optimization problems [Skogestad, 2000]. To quickly pre-screen alternatives, local methods

have been proposed including the minimum singular value (MSV) rule [Skogestad and Postlethwaite,

1996] and exact local methods with worst-case [Halvorsen et al., 2003] and average loss minimization [Kari-

wala et al., 2008]. In comparison with the traditional approach of using a subset of available measure-

ments as CVs, it is possible to obtain lower losses using linear combinations of available measurements as

CVs [Halvorsen et al., 2003]. Recently, explicit solutions to the problem of finding locally optimal mea-

surement combinations have been proposed [Alstad et al., 2009; Heldt, 2010; Kariwala, 2007; Kariwala

et al., 2008]. The usefulness of these methods has been demonstrated through a number of case studies;

see e.g. Rangaiah and Kariwala [2012] for an overview. Note that although the available methods can be

used to evaluate the loss for the specified nonlinear combinations of measurements (e.g. ratios of measure-

ments), these methods cannot find the optimal nonlinear measurement combination that minimizes loss.

Jaschke and Skogestad [2012] have provided a partial solution to overcome this problem, which allows

using polynomials expressed in terms of measurements as CVs, but the effect of measurement noise is

ignored.

The past development in SOC has focussed on the selection of CVs, which are held at constant setpoints

using feedback controller to achieve near-optimal operation. In practice, measurements of some key dis-

turbances are often available. These disturbances can include the physical disturbances, which affect the

process outputs, as well as “virtual” disturbances, which do not affect the outputs, but have an effect on

economics, e.g. utility cost. Clearly, the loss incurred in implementing the SOC policy can be reduced by

adding feedforward action based on these measured disturbances to the feedback controller. This possi-

bility has been earlier mentioned by Alstad [2005], but no analysis was presented. Cao and Yang [2004]

considered the use of measured virtual disturbances to enhance the SOC policies under the restrictive

assumption that these disturbances are measured perfectly.

In this paper, we present an exact local method for SOC, which allows incorporating feedforward action in

SOC policies using noisy measurements of both physical and virtual disturbances. In particular, it is shown

that loss can be reduced by including the measured disturbances in the available measurement set (typically

consisting of outputs and inputs) and finding locally optimal measurement combinations of the extended

measurement set. The resulting control system can be viewed as one, where the feedback controller holds

the CVs at setpoints, which vary with the disturbances [Cao and Yang, 2004]. The effectiveness of the
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proposed approach is demonstrated through its application to an exothermic reactor [Economou et al.,

1986; Kariwala, 2007] and a forced-circulation evaporator [Kariwala et al., 2008; Newell and Lee, 1989].

The rest of the paper is organized as follows: the available local methods for SOC are briefly discussed in

Section 2. The proposed approach of incorporating feedforward action into SOC policies is presented in

Section 3. Case studies on the exothermic reactor and forced-circulation evaporator are given in Section

4 to illustrate the advantages of the proposed approach. Finally, Section 5 concludes the paper.

2 Local Methods for Self-Optimizing Control

Consider that the steady-state economics of the plant is characterized by the scalar objective function

J(u, d), where u ∈ Rnu and d ∈ Rnd are inputs and disturbances, respectively. Let the linearized model of

the process, obtained around the nominally optimal operating point, be

y = Gy u+GydWd d+We e (1)

where y ∈ Rny denotes the measurements of process variables (PVs) and e ∈ Rny denotes the implemen-

tation error, which results due to measurement and control errors. Here, the diagonal matrices Wd and

We contain the expected magnitudes of disturbances and implementation error, respectively. The CVs

c ∈ Rnu are given as

c = H y = Gu+GdWd d+HWe e (2)

where H is a selection or combination matrix and

G = H Gy, Gd = H Gyd (3)

It is assumed that G ∈ Rnu×nu is invertible. This assumption is necessary for integral control. When d

and e are assumed to be uniformly distributed over the set∥∥∥∥[ d′ e
′
]′∥∥∥∥

2

≤ 1 (4)

where “
′
” represent the transpose of a matrix, the local worst-case and average losses are given as [Halvorsen

et al., 2003; Kariwala et al., 2008]:

Lworst(H) = 0.5σ̄2
(
J1/2
uu (H Gy)−1H Y

)
(5)

Laverage(H) =
1

6(ny + nd)

∥∥∥J1/2
uu (H Gy)−1H Y

∥∥∥2
F

(6)
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where ny and nd represent the number of PVs and disturbances, respectively, σ̄ and ‖ · ‖F denote the

maximum singular value and Frobenius norm, respectively, and

Y =
[

(Gy J−1uu Jud −Gyd)Wd We

]
(7)

with Juu = ∂2J
∂u2

and Jud = ∂2J
∂u∂d , evaluated at the nominal operating point. In comparison with worst-case

loss, the selection of CVs is preferred through minimization of average loss, as the worst-case may not

occur frequently in practice [Kariwala et al., 2008].

When individual measurements are selected as CVs, H can be considered to be a selection matrix. The

selection of nu CVs from ny measurements is a combinatorial optimization problem. Bidirectional branch

and bound (BAB) methods have been proposed in [Kariwala and Cao, 2009, 2010] to solve this problem

efficiently.

Instead of using individual measurements, it is possible to use combinations of measurements as CVs. For

this case, Alstad et al. [2009] has recently proposed an explicit expression for H, which minimizes the

Laverage in (6) and is given as

H
′

= (Y Y
′
)−1Gy((Gy)

′
(Y Y

′
)−1Gy)−1J1/2

uu (8)

As shown by Kariwala et al. [2008], the H in (8) also minimizes Lworst in (5). The locally optimal

combinations of all the available measurements, which can be used as CVs can be found using (8). It is,

however, noted in [Alstad et al., 2009; Kariwala, 2007; Kariwala et al., 2008] that the use of combinations

of a few measurements as CVs often provide similar loss as the case where combinations of all available

measurements are used. Partially bidirectional BAB methods have been proposed for efficient selection of

measurements, whose combinations can be used as CVs, in [Kariwala and Cao, 2009, 2010].

Remark 1: For the given locally optimal combination matrix H, any combination matrix obtained as

QH, where Q is a non-singular matrix, is also locally optimal [Halvorsen et al., 2003]. Thus, by selecting

Q = ((Gy)
′
(Y Y

′
)−1Gy)J

−1/2
uu , a simplified expression for locally optimal H can be derived as [Rangaiah

and Kariwala, 2012]

H
′

= (Y Y
′
)−1Gy (9)

To find Y in (7), one needs to evaluate (Gy J−1uu Jud −Gyd), which represents the sensitivity of the optimal

values of y with respect to d and can be obtained by repeatedly solving the non-linear optimization problem

with perturbations in d [Alstad et al., 2009]. Then, (9) shows that to find locally optimal H, the knowledge

of Juu is not necessary, which can be difficult numerically, especially if the process is modelled using a
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commercial simulator; see e.g. [Yelchuru and Skogestad, 2012]. However, Juu is still required to evaluate

loss, e.g. during the application of BAB methods for measurement subset selection.

3 Incorporation of disturbance measurements into SOC

To incorporate feedforward action into SOC policies, we partition d into dm (measured disturbances) and

du (unmeasured disturbances). The disturbance gain matrix is conformably partitioned as

Gyd =
[
Gydm Gydu

]
(10)

The measured value of dm is denoted as d̂m. It is considered that the elements of the diagonal matrix Wed

contain the error associated with measurement of dm. Let us define the extended measurement set as

ỹ =
[
y
′
d̂
′
m

]′
(11)

It follows that

ỹ = Gỹ u+GỹdWd d+Wẽ ẽ (12)

where

Gỹ =

Gy
0

 (13)

Gỹd =

Gydm Gydu

I 0

 (14)

Wẽ =

We 0

0 Wed

 (15)

ẽ =
[
e
′
e
′
ed

]′
(16)

with eed satisfying Wed eed = d̂m − dm.

Based on the extended set of measurements, the CVs can be selected as

c̃ = H̃ỹ = Hyy +Hdm d̂m (17)

Similar to (8), the optimal H can be obtained using the following expression

H̃
′

= (Ỹ Ỹ
′
)−1Gỹ((Gỹ)

′
(Ỹ Ỹ

′
)−1Gỹ)−1J1/2

uu (18)
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where

Ỹ =
[

(Gỹ J−1uu Jud −Gỹd)Wd Wẽ

]
(19)

=

(Gy J−1uu Jud −Gyd)Wd We 0

−Wdm 0 Wed

 (20)

Here, the diagonal matrix Wdm contains the magnitude of dm. In the proposed approach, u is manipulated

such that c̃ = H̃ỹ = Hyy +Hdm d̂m = 0 or

Hyy = −Hdm d̂m (21)

Interpreting Hyy as the CV for feedback control and −Hdm d̂m as its setpoint, the proposed operational

policy is viewed as traditional SOC approach with varying setpoint. Note that in comparison with feedback

only, the loss seen using the feedforward action cannot be higher, as in the worst-case Hdm can always be

selected to be zero and Hy as H in (8).

4 Results and Discussion

In this section, we demonstrate the advantages of incorporating feedforward action into SOC policies using

benchmark examples.

4.1 Exothermic Reactor

We first consider the example of an exothermic reactor [Economou et al., 1986] to illustrate the benefit of

incorporating measured physical disturbances into the measurement set. For this process, the inlet to the

well-mixed reactor consists of reactant A and product B as contaminant at temperature Ti. The outlet

stream has a temperature T with the concentrations of the product B and the unused reactant A being

CB and CA, respectively. The schematic of the exothermic reactor is shown in Figure 1. The economic

objective function to be minimized is

J = −2.009CB + (0.001657Ti)
2 (22)

This process has three outputs (CA, CB, and T ), one input (Ti), and two disturbances (CAi and CBi).

The nominal values of disturbances are CAi = 1 mol/L and CBi = 0. The measurement set is given as

y = [CA CB T Ti ]
′

(23)
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Figure 1: Schematic of Exothermic reactor

The allowable ranges for disturbances are 0.7 ≤ CAi ≤ 1.3 and 0 ≤ CBi ≤ 0.3, which implies that

Wd = diag(0.3, 0.3). The implementation errors are taken as 0.01 mol/L for concentration measurements

and 0.5 K for temperature measurement. Thus, We = diag(0.01, 0.01, 0.5, 0.5). The gain and Hessian

matrices obtained around the nominally optimal operating point are available in [Kariwala, 2007]. Let

us define the extended measurement as ỹ =
[
y
′
d
′
m

]′
. We consider four different cases, where dm = ∅,

dm = CAi, dm = CBi, and dm = [CAi CBi]
′
. Measurement errors for both disturbances CAi and CBi are

taken as 0.01 mol/L.

The locally optimal measurement combination matrices for different measurement sets are computed using

(18). The resulting losses for each CV candidate obtained using the local method and the nonlinear

model are shown in Table 1. For nonlinear analysis, 100 scenarios are considered, where d and e are

generated randomly to have zero mean and uniform distribution over the range -1 to 1. In general, the

nonlinear analysis shows good agreement with the local analysis, except that the worst-case loss seen with

dm = [CAi CBi]
′

is higher than the case with dm = CBi for nonlinear analysis. This is due to the fact that

the combination matrix H̃ obtained using (18) is only locally optimal. It can be noted that as compared

to the use of feedback-based SOC policy, the inclusion of CAi and CBi individually reduces the average

loss computed using nonlinear model by approximately 51%, while inclusion of both disturbances results

in 55% reduction.

Table 1: Local and nonlinear losses for exothermic reactor

dm
Local Analysis Nonlinear Analysis

Laverage [$/min] Lworst [$/min] Average loss [$/min] Worst-case loss [$/min]

∅ 1.465× 10−5 2.637× 10−4 2.567× 10−4 2.372× 10−3

CAi 2.809× 10−6 5.899× 10−5 1.256× 10−4 9.468× 10−4

CBi 1.856× 10−6 3.898× 10−5 1.254× 10−4 6.699× 10−4

CAi, CBi 1.182× 10−6 2.837× 10−5 1.166× 10−4 9.304× 10−4
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Table 1 shows that the measurement set with dm = CBi provides similar loss as seen with both distur-

bances measured. As combining fewer measurements is desirable to obtain a simpler control structure, we

recommend the use of CBi as measured disturbance to incorporate feedforward action for this exothermic

reactor. The selected CV is given as

c̃ = 0.295CA − 0.028CB − 0.007T − 0.008Ti − 0.642CBi (24)

for which the relative average loss evaluated based on the nonlinear model is approximately 0.02% showing

that the selected CV achieves nearly perfect self-optimizing properties.

0 200 400 600 800 1000
6.2
6.3
6.4

(a)

cs

c̃
=

H
y
y

0 200 400 600 800 1000
4.7
4.8
4.9

(b)
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c
=

H
y

0 200 400 600 800 1000
400

450
(c)

← dm = CBi

← dm = ∅

T
i

0 200 400 600 800 1000
0

0.5
1

1.5
(d)

CAi
CBi

Time

d

Figure 2: Comparison of dynamic responses for exothermic reactor: (a) CV (c̃ = Hyy) for dm = CBi; (b)

CV (c = Hy) for dm = ∅; (c) input (Ti); and (d) disturbances (d)

We point out that the proposed approach of selecting CVs as combinations of measurements does not

take dynamic performance into account and the selected CVs can have poor controllability in general. To

verify the dynamic performance, the following linear model, obtained around nominal optimal point, is

derived:

c̃(s)

Ti(s)
=

0.0159(30.964s+ 1)(13.627s+ 1)

(60s+ 1)(13.353s+ 1)
(25)
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A first order approximation of the model is obtained using half-rule and the internal model control (IMC)

method [Skogestad, 2003] with desired closed-loop time constant τc = 12 min (one-fifth of dominant open-

loop time constant) is used to design a proportional-integral (PI) controller with proportional gain Kc =

77.517 and integral time τI = 29.036 min. For comparison purposes, this procedure is repeated for the case

dm = ∅. In this case, the linear model between Ti and CV c = −1.675CA+ 1.425CB + 0.0003T + 0.011Ti,

obtained around nominal optimal point, is:

c(s)

Ti(s)
=

0.0153(40.142s+ 1)(14.492s+ 1)

(60s+ 1)(13.353s+ 1)
(26)

As before, using half-rule and IMC method [Skogestad, 2003], a PI controller with proportional gain

Kc = 48.495 and integral time τI = 19.858 min is designed. The closed-loop responses for multiple step

changes in disturbances CAi (from 1 to 1.3 mol/L at t = 1 min and from 1.3 to 0.7 mol/L at t = 501

min) and CBi (from 0 to 0.3 mol/L at t = 251 min and from 0.3 to 0 mol/L at t = 751 min) are shown

in Figure 2. In these simulations, the measurement errors are considered to be uniformly distributed

random sequences with magnitudes ±∑ny

i=1 |HyWe|, ±
∑ny

i=1 |HWe| and ±∑nd
i=1 |HdmWed | for c̃. c and

d̂m, respectively. It can be seen that c̃ follows its setpoint cs, updated based on measurements of CBi,

closely with smooth changes in Ti. The average cost (J) for dm = ∅ is 0.414 [$/min], which reduces to

0.395 [$/min] for dm = CBi.

Overall, this case study clearly demonstrates that the proposed method can provide considerably lower loss

in comparison with traditional feedback-based SOC policy. We point out that the benefits of incorporating

feedforward action in SOC policies strongly depends on the accuracy of disturbance measurement. For

example, in comparison with feedback-based SOC policy (dm = ∅), the use of c̃ as CV reduces the average

loss computed using nonlinear model by only 8 %, if the measurement error of CBi is 0.1 mol/L.

4.2 Forced-Circulation Evaporator

Next, we consider the case of forced-circulation evaporator [Cao, 2005; Kariwala et al., 2008; Newell and

Lee, 1989]. The primary objective of this case study is to illustrate the use of price variation as measured

disturbance in SOC. The schematic representation for this process is shown in Figure 3 and the variables

are listed in Table 2. The operational objective of this process involves minimizing

J = αF100 + 0.6F200 + 1.009 (F2 + F3) + 0.2F1 − 4800F2 (27)

which denotes negative profit. In (27), α denotes the price of steam (virtual disturbance). This process

has a number of operational constraints on X2, P2, P100, F200, F1, and F3; see Kariwala et al. [2008] for
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details.

steam
F100

P100
T100

separator
P2, L2

product
F2, X2, T2

feed
F1, X1, T1

condensate
F5

cooling
water

F200, T200

evaporator

condensate

T201

condenser
F4, T3

F3

Figure 3: Schematic representation of the Forced Circulation Evaporator

Table 2: Variables of Forced Circulation Evaporator

Var. Description Var. Description

F1 Feed flowrate T3 Vapor temperature

F2 Product flowrate L2 Separator level

F3 Circulating flowrate P2 Operating pressure

F4 Vapor flowrate F100 Steam flowrate

F5 Condensate flowrate T100 Steam temperature

X1 Feed composition P100 Steam pressure

X2 Product composition F200 Cooling water flowrate

T1 Feed temperature T200 Inlet temperature of cooling water

T2 Product temperature T201 Outlet temperature of cooling water

This process has 5 manipulated inputs (F1, F2, P100, F3, and F200) and 3 disturbances (X1, T1 and T200).

The case, where X1 = 5%, T1 = 40◦C, T200 = 25◦C and α = 600, is taken as the nominal operating point.

At these conditions, the optimum negative profit of the process is −582.233 [$/h]. It is noted that the

constraints on X2 and P100 remain active over the entire set of allowable disturbances. In addition, the

separator level (L2) needs to be controlled, which has no steady-state effect. Amongst these 5 manipulated

inputs, P100 is kept at its upper limit, F2 is used to control X2 at the lower bound and F3 is adopted to

maintain the level, L2 at its setpoint. Thus, two inputs are available as unconstrained degrees of freedom,

for which CVs need to be selected. Without loss of generality, they are taken as F1 and F200.
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The measurement set is given as

y = [P2 T2 T3 F2 F100 T201 F5 F200 F1]
′

(28)

Note that in comparison with earlier studies [Kariwala et al., 2008], F3 is not included in y, as the linear

model for this measurement results in large plant-model mismatch due to linearization [Kariwala et al.,

2008]. The gain and Hessian matrices for this process are available in [Kariwala et al., 2008]. In addition,

for α

Juα =
[
−0.001 1.115

]′
(29)

The allowable disturbance set corresponds to ±5% variation in X1, ±20% variation in T1 and T200 and

±10% in α around their nominal values. Based on these variations, we have Wd = diag(0.25, 8, 5, 60).

The implementation errors for the pressure and flow measurements are taken to be ±2.5% and ±2%,

respectively, of the nominal operating values. For temperature measurements, implementation error is

considered to be ±1◦C. Therefore, we have We = diag(1.285, 1, 1, 0.027, 0.189, 1, 0.163, 4.355, 0.189). It

is considered that the price α is measured with an accuracy of 0.5% of its nominal value, which implies

Wẽ = diag(We, 3).

Analysis. Let us define c9 and c̃10 as the CV candidates consisting of combination of all the measurements

in y and the extended measurement set ỹ
′

=
[
y
′
α
]
, respectively. The local average losses incurred with

the use of c9 and c̃10 as CVs are 4.306 $/h and 0.224 $/h, respectively. Similarly, the local worst-case loss,

when c9 and c̃10 are used as CVs, are 167.866 $/h and 9.325 $/h, respectively. This analysis shows that

varying the setpoints based on α can significantly reduce the loss.

To obtain simpler control structure, combinations of fewer measurements, which can be used as CVs, are

identified using BAB method with local average loss minimization [Kariwala and Cao, 2010]. The BAB

method is applied by considering y (without including α in the measurement subset) and ỹ (with inclusion

of α in the measurement subset) as the measurement set. For both cases, the variations of least local

average losses with the measurement subset size, ny are shown in Figure 4. As α itself, i.e. without other

measurements, cannot be used as a CV, combinations of at least 3 measurements need to be selected as

CVs, when α is included in the measurement subset. Figure 4 shows that including α in the measurement

set reduces the loss by factors of 2-20 for different ny.

It can be observed from Figure 4 that when α is included in the measurement subset, the use of combina-

tions of 4 or 5 measurements as CVs yields similar local average loss (0.505 and 0.383 $/h, respectively)

as seen for c̃10 (0.224 $/h). These CV candidates offer a good trade off between simpler control structure
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Figure 4: Local average loss for best measurement set with size ny

and economic loss, and are given as:

c̃4 =

0.99897F2 + 0.027167F100 − 0.035538F200 + 0.0071889α

0.027401F2 − 0.9996F100 + 0.0064695F200 + 0.0018819α

 (30)

c̃5 =

 0.9991F2 − 0.022095F100 + 0.000894F5 − 0.03539F200 + 0.0073234α

−0.021832F2 − 0.99973F100 + 0.00027481F5 + 0.0081462F200 + 0.0015411α

 (31)

Similar to the CSTR case study, nonlinear analysis is conducted to verify the results of local analysis. The

resulting average and worst-case losses for the promising candidates are presented in Table 3. We note that

using c̃4 and c̃5 as CVs provides lower losses than the use of c̃10 as CVs. This observation highlights the

local optimality of H̃ and approaches to overcome this limitation will be pursued in future. In comparison

with c9, the use of c̃5 as CV reduces the average and worst-case losses obtained using nonlinear model by

factors of 18 and 8, respectively. Furthermore, the relative average loss evaluated based on the nonlinear

model is approximately 0.3% with the use of c̃5 as CV.

The performance of the proposed method is further evaluated through dynamic simulations using c9 and

c̃5 as CVs, respectively. For both cases, the first component of CVs (CV1) is cascaded with a pressure

controller through F200 to maintain P2 within its upper and lower constraints, as described in [Cao, 2005],
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Table 3: Local and nonlinear analysis for promising CV alternatives for forced-circulation evaporator

CV Measurements
Local Analysis Nonlinear Analysis

Laverage [$/h] Lworst [$/h] Average loss [$/h] Worst-case loss [$/h]

c9 y 4.306 167.866 36.229 180.925

c̃4 F2, F100, F200, α 0.505 12.032 2.267 27.349

c̃5 F2, F100, F200, F5, α 0.383 10.275 2.159 24.427

c̃10 ỹ =
[
y
′
α
]′

0.224 9.325 2.399 36.885

whilst the second component of CVs (CV2) is paired with the manipulated variable, F1. All controller

parameters, except those used in the CV2-F1 loop, are the same as those reported in [Cao, 2005]. For the

CV2-F1 loop, a simple PI controller is designed with a unit control gain and unit integral time (1 min). All

measurements are assumed to have uniformly distributed measurement noises within the variation ranges

specified by Wẽ. For simplicity, the process is considered to be operated at the nominally optimal point

initially. The following step changes are introduced in α: $600 to $660 at t = 1 hours and $660 to $540 at

t = 10 hours, which lasts until t = 20 hours, as shown in Figure 5 (a). The profit losses comparing to the

true optimal operation resulted due to the use of c̃5 or c9 as CVs are shown in 5 (b). The corresponding

transient responses of key process variables are shown in Figure 6.

�̃�5 
𝑐9 

Figure 5: (a) Step changes of α (b) Hourly profit loss comparing to true optimal operation

It can be seen that for the first hour when steam price, α is at nominal value, both c̃5 and c9 result
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in almost the same zero loss. However, when α increases or decreases from the nominal value, without

feedforward action, c9 does not change the operational conditions, as indicated by dashed lines in Figure 6,

resulting in a higher profit loss compared to that obtained by using c̃5 as CV, for which feedforward action

is incorporated to adjust operation conditions accordingly, as indicated by the solid lines in Figure 6.

From Figure 6, it can be seen that when the steam price increases, the CV with feedforward action, c̃5

reduces F1, F2, F3 and P2, which requires F200 to increase, such that the plant operates at a low production

mode to keep the operation profitable, whilst, when the steam price decreases, c̃5 is able to adjust process

variables so as the plant operates in a high production mode to take the advantage fully. In contrast,

the CV without feedforward action, c9 cannot detect the steam price changes. Hence, the plant operates

continuously in the nominal condition independent from the steam price resulting in high losses.

The total profit for 20 hours of operation is $13160.95 and $12232.23, when c̃5 and c9 are used as CVs,

respectively. Based on these results, the use of c̃5 as CV is recommended for the forced-circulation

evaporator.

�̃�5 𝑐9 

Figure 6: Transient response of major process variables using c5 as CVs.
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5 Conclusions

We proposed an approach to improve the feedback-based self optimizing control (SOC) by including infor-

mation of key disturbances into measurement set, whose combinations are used as CVs. The incorporation

of the feedforward action is useful to anticipate the effect of measured disturbances and thus lower eco-

nomic loss is obtained in comparison with the use of CVs synthesized with the feedback-based SOC policies.

This work provides broader scope in comparison with the work of Cao and Yang [2004] by extending the

notion of measured disturbances to include the physical/process disturbances in addition to the “virtual”

disturbances, which only affect the scalar objective function related to optimal operation of process. Case

studies of CSTR and forced-circulation evaporator show that incorporation of key disturbance information

in SOC policies results in significant reduction of loss. It is pointed out that this reduction in loss requires

additional sensors for measuring disturbances and thus selection of dominant disturbances, as done for

CSTR case study, is important to minimize the additional cost of instrumentation. Furthermore, unlike

individual measurements, measurement combinations lack physical interpretation, which can sometimes

limit their adoption as CVs. To overcome this issue, Heldt [2010] and Yelchuru and Skogestad [2012] have

suggested imposing structure on H such that only physically similar measurements, e.g. temperature or

flow measurements, are combined as CVs, which can be used for incorporating feedforward action in SOC

policies as well. Lastly, the available methods for selection of self-optimizing CVs are based on steady-

state economics and the selected CVs may suffer from poor dynamic controllability. A possible approach

to overcome this drawback is to select CVs based on dynamic models. Some progress to handle process

dynamics has been reported in [Dahl-Olsen et al., 2008; Hu et al., 2012], which can form the basis for

future research.
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