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Abstract 
The design of a turbine blade cooling system is a multi-objective optimisation problem involving constraints 
and complex interaction among its design variables. The aim of this paper is to develop a methodology to 
optimise this design using Evolutionary Computing techniques. This paper presents Generalised 
Regression Genetic Algorithm (GRGA) and the mathematical model of a real-life turbine blade cooling 
system. Even in the presence of variable interaction, the methodology identifies a number of good feasible 
designs from which one could be finally chosen based on designer’s preferences. The research also 
demonstrates that GRGA is capable of optimising a real-life design. 
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1 INTRODUCTION 
Real-life engineering design optimisation problems, as 
opposed to the theoretical problems (test cases), are 
those that are encountered in industry. Some examples 
of these problems are the design of aerospace 
structures for minimum weight and the surface design of 
automobiles for improved aesthetics. Along with multiple 
objectives, constraints, qualitative issues and lack of 
prior knowledge, most real-life design optimisation 
problems also involve interaction among decision 
variables. In spite of its immense potential for real-life 
problems, lack of systematic research has plagued the 
field of interaction for a long time. However, in the last 
two decades, some research has been carried out in this 
area especially in the field of statistical data analysis [1]. 
This has been further augmented in the recent past with 
the growth of computational intelligence techniques such 
as Evolutionary Computing (EC), Neural Networks (NNs) 
and Fuzzy Logic (FL). This paper focuses on designing a 
turbine blade cooling system using a state-of-the-art 
evolutionary-based optimisation algorithm, Generalised 
Regression Genetic Algorithm (GRGA). This problem 
involves three main features of real-life engineering 
design optimisation problems: multiple objectives, 
variable interaction and constraints.  
 
2 INSEPARABLE FUNCTION INTERACTION 
In an ideal situation, desired results could be obtained by 
varying the decision variables of a given problem in a 
random fashion independent of each other. However, 
due to interaction this is not possible in a number of 
cases, implying that if the value of a given variable 
changes, the values of others should be changed in a 
unique way to get the required results. The two types of 
interaction that can exist among decision variables are 
inseparable function interaction and variable 
dependence. Inseparable function interaction is the main 
focus of this paper. This interaction occurs when the 
effect that a variable has on the objective function(s) 
depends on the values of other variables in the function 
[2]. This concept of interaction can be understood from 
Figure 1. 
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Figure 1: An Example of inseparable function interaction 
(a) No interaction (b) Inseparable function interaction. 
 

2.1 Challenges posed by inseparable function 
interaction 

Classical optimisation algorithms, such as Weighted 
Sum Approach and Goal Programming, suffer from 
serious limitations in dealing with the complexities 
introduced by inseparable function interaction in multi-
objective optimisation problems. A Genetic Algorithm 
(GA) operates on the building blocks, growing them and 
mixing them with each other in an attempt to solve the 
search problem at hand. The inseparable function 
interaction also causes problems for a GA by making it 
more difficult for it to build these building blocks. 
Furthermore, in its presence, a multi-objective 
optimisation problem cannot be decomposed into 
simpler parts. Hence, a GA requires updating all decision 
variables in a unique way in order to attain the desired 
results. With a generic search operator, this becomes a 
difficult task for the GA. Furthermore, even if a set of 
optimal solutions are obtained, it is difficult to maintain 
them since any change in one variable must be 
accompanied by related changes in others [3]. 

2.2 Techniques for handling inseparable function 
interaction 

A number of research questions remain unanswered 
regarding the theory of inseparable function interaction. 
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However, from the practical point of view a number of 
Evolutionary Computing techniques have been 
developed. But these techniques can only deal with 
single-objective optimisation problems, defined in 
discrete domains. The few techniques that are available 
for dealing with real search spaces have limited 
capability in terms of handling any significant inseparable 
function interaction. Recently the authors addressed the 
above-identified research gap by presenting a technique 
called GRGA for dealing with hybrid-valued (with integer 
and real variables) multi-objective optimisation problems 
[4]. As shown in the next section, the design of a turbine 
blade cooling system has high degrees of inseparable 
function interaction among its decision variables. 
Therefore, the paper applies GRGA for dealing with this 
problem. 
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Figure 2: Design of a turbine blade cooling system [5]. 
 
3 DESIGN OF A TURBINE BLADE COOLING 

SYSTEM 
In order to maximise gas turbine engine performance 
and efficiency, turbine blades need to operate in an 
environment where the gas temperature is as high as 
possible. This temperature often exceeds the operational 
limits of the turbine blade materials. To ensure 
component integrity whilst operating at high gas 
temperatures, blade materials are cooled to safe 
operating temperature levels by passing relatively cool 
air through them and in more extreme cases, over them 
in the form of films. A small portion of the compressor 
exit airflow is utilised for this purpose (Figure 2). The 
temperature of this cooling air depends on the 
compressor pressure ratio and on the flight Mach 
number and temperature. The sacrifices for the blade 

cooling include the loss of work (and some loss of 
efficiency) due to the portion of the air taken from the 
compressor exit [5].  
 

Step Task Comments 

1 Estimate Wcr 
Based on the limiting value 
of flow off-take from the 
engine compressor. 

2 Estimate Twg 

Based on material property 
limitation, suggested  
1500 K. 

3 Calculate hcr - 

4 Calculate Acr 

If within the limiting value of 
Acr, go to Step 5. If not,  
Wcr = Wcr*0.99 and go back 
to Step 4. 

5 Calculate Wcr - 

6 Calculate hcr 

Compare hcr value from 
Step 6 with Step 3. If within 
tolerance then proceed to 
check whether hcr lies 
within the acceptable 
range. If yes, go to Step 7 
otherwise reset the Twg and 
hcr values and go to Step 4. 
If the wall temperature 
calculation reaches a 
steady state then only 
accept, if not go back to 
Step 4. 

7 Calculate Twg 

If within the acceptable limit 
then accept. If not and if 
Wcr has not been changed 
previously, change Wcr to 
Wcr = Wcr*1.01. 

8 Calculate Tc - 
9 Recalculate k - 

10 Recalculate µ 

Reset Twg and hcr values 
and go to Step 4. If the wall 
temperature calculation 
reaches a steady state 
then only accept. 

Table 1: Cooling system design procedure used in 
TBCOM [5]. 
 
The Turbine Blade COoling system Model (TBCOM) is 
presented in detail by Roy [5] considering one 
dimensional, single pass coolant flow. The objectives in 
this optimisation problem are to minimise: 
• coolant mass flow for radial passage (Wcr in Kg/s); 
• metal temperature for gas side (Twg in K). 
This problem has twelve variables as given below: 
• type of geometry (Geom); 
• coefficient of discharge (radial passage) (Cdr); 
• heat transfer coefficient factor (radial passage) (Fhc); 
• inlet temperature (Tc1); 
• wall thickness (dth); 
• thermal conductivity of the blade material (kw); 
• pressure ratio (Rp = Pc1/Pc3); 
• perimeter ratio (radial passage) (Rs = Sgr/Scr); 
• film hole diameter (df); 
• coefficient of discharge (film hole) (Cdf); 
• heat transfer coefficient factor (film hole) (Ff); 
• pressure ratio (film) (Rpf = (Pc1-Pc2)/(Pc1-Pc3)). 



In this problem, the first variable is discrete (plane, 
ribbed or pedestal) and the rest are real. Also, the values 
of Cdr and Fhc vary within a range according to the type 
of geometry. This problem also has 15 constraints that 
include limits on the above-mentioned variables, blade 
wall temperature (on the gas and film side) and flow ratio 
(Wcr/Wcf). 
This problem is non-linear and multi-dimensional in 
nature, and has a biased search space. The objective 
functions are implicit and multi-layered. Hence, the 
determination of objective values requires an iterative 
procedure in which the effect that a variable has on the 
objective functions depends on the values of other 
variable in the function. It is evident from this discussion 
that the design of a turbine blade cooling system is a 
multi-objective optimisation problem involving high 
degrees of inseparable function interaction. Since GRGA 
is capable of successfully handling complex inseparable 
function interaction [4], it is chosen for application to this 
problem. The next section briefly describes GRGA.  
The cooling system design procedure and the equations 
involved are detailed in Roy [5]. Here, the iterative 
design procedure used for the calculation of the values 
of Wcr and Twg is shown in Table 1 to give an illustration 
of the model complexity and its equations. Literature 
does not report the application of any multi-objective 
optimisation algorithm on this problem. 
 
4 GENERALISED REGRESSION GA (GRGA) 
The optimal solutions of a multi-objective optimisation 
problem lie on a front called the Pareto front. For any 
continuous portion of the Pareto front, there is a unique 
relationship involving objective functions. This 
relationship is difficult to obtain analytically, and even if it 
is found, it has limited usefulness since mapping from 
function space to variable space is very complex. 
However, the existence of a relationship among 
objective functions of Pareto solutions necessarily 
implies that corresponding relationship(s) exist among 
the decision variables of these solutions [6]. 
A simple multi-objective optimisation problem is used 
below for explaining the above concept. Consider a two-
objective optimisation problem having f1 and f2 as the 
two objective functions. For any continuous portion of the 
Pareto front, there exists a Function F involving f1 and f2. 
Suppose the problem has two decision variables x1 and 
x2 that define the functions f1 and f2 i.e. f1 and f2 can be 
expressed as f1(x1,x2) and f2(x1,x2), leading to F1. 
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This proves the statement made earlier that there is 
existence of relationship(s) among the variables of the 
solutions belonging to any continuous portion of the 
Pareto front. GRGA aims to explore this relationship 
using non-linear multi-variable regression analysis [1]. It 
uses the relationship thus obtained to (Figure 3): 
• perform periodic and final re-distribution of solutions 

for aiding their spread; 
• use history of change of regression coefficients for 

guiding the search towards the Pareto front; 
• use rate of change of regression coefficients as the 

termination condition of the algorithm. 
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Figure 3: Generalised Regression GA (GRGA) [6]. 
 
5 EXPERIMENTAL RESULTS 
In the experimental results reported in this section, two 
objectives are considered for optimisation (Wcr and Twg), 
and all the constraints in the problem are incorporated. 
Figure 4 compares the results from GRGA with those 
from NSGA-II, a high performing evolutionary-based 
multi-objective optimisation algorithm [3]. All the tests 
reported here are carried out using 100 population size, 
500 generations, 0.8 crossover probability, 0.05 mutation 
probability, and simulated binary crossover with 10 
crossover distribution index and 50 mutation distribution 
index. These results form the typical set obtained from 
10 runs with different seed values for the random 
number generator. No major variation was observed in 
the results with the change in seed values. 

 



 

 

Figure 4: Experimental results (assuming two objectives) 
(units: Wcr in Kg/s, Twg in K). 
 
6 DISCUSSION OF RESULTS 
The following observations can be made regarding the 
search space of this problem (Figure 4): 
• A Pareto front appears in the plot, implying conflict 

between Wcr and Twg. This is intuitive since any 
increase in coolant mass flow is expected to 
decrease the metal temperature and vice versa. The 
search space also has bias towards high Twg values.  

• The Wcr-Twg plot also depicts that the given model 
has a local and a global Pareto front with respect to 
Wcr and Twg. This multi-modality arises due to the 
presence of a discrete variable in the problem. This 
also causes very low density of population in the 
region between the two fronts, leading to deception in 
the search space. 

• This model has 12 variable bounds and 3 
constraints. These 3 constraints focus the plot in the 
given range of Wcr and Twg, introduce an infeasible 
region in the Wcr-Wcf space and create sparsely 
populated regions that correspond to the values of 
Wcr close to 0.002. 

The experimental results depicted in Figure 4 are 
analysed here to make the following observations: 
• NSGA-II gets trapped in the local front but GRGA is 

able to successfully converge to the global Pareto 
front. Due to this convergence, GRGA is able to 
determine the relationships involving those decision 
variables that define the Pareto front. Therefore, 
when it uses these values to redistribute the final 
solutions, the results that are attained lie on the 
Pareto front and are well distributed across it. 

• The Pareto front of this problem has fixed values for 
11 variables. Here, GRGA reveals that the Pareto 
front corresponds to Geom = pedestal, Cdr = 0.3995, 
Fhc = 3.199, Tc1 = 799.05, dth = 0.0024381, kw = 

19.19, Rp = 1.5933, df = 0.0001041, Cdf = 0.7491, Ff 
= 1.497 and Rpf = 0.397. Therefore, to attain any 
solution on the Pareto front, the designer needs to fix 
the above-mentioned variables to these values, and 
choose a suitable value for the variable Rs based on 
his/her preferences. 

Roy [5] applied Adaptive Restricted Tournament 
Selection (ARTS) to this problem, but considering only 
one objective, Wcr.  The results obtained from ARTS lie 
on the global Pareto front, but as expected, are 
concentrated at its extreme end that corresponds to low 
values of Wcr and high values of Twg. 
 
7 FUTURE RESEARCH ACTIVITIES AND 

CONCLUSIONS 
The limitations of the current methodology and the 
corresponding future research activities are as follows: 
• The performance of GRGA is dependent on how 

accurately the relationship among decision variables 
can be represented by RA. Hence, use of more 
sophisticated non-linear modelling tools have the 
potential of improving its performance. 

• GRGA needs to be further improved to make it more 
scalable with respect to the number of objectives and 
dimensions. 

• Both the TBCOM and GRGA need to be enhanced to 
incorporate qualitative issues such as 
manufacturability and designers’ preferences. 

This paper has demonstrated that the optimisation of a 
turbine blade cooling system design is a challenging 
problem due to the presence of complex inseparable 
function interaction among its decision variables. An 
evolutionary-based multi-objective optimisation 
algorithm, GRGA, has been applied to this problem. The 
paper has established that GRGA successfully handles 
complex inseparable function interaction to identify a 
range of optimum feasible designs from which one could 
be finally chosen based on designer’s preferences. 
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