
Accepted Manuscript

Higher-order CFD and Interface Tracking Methods on Highly-Parallel MPI and

GPU systems

J. Appleyard, D. Drikakis

PII: S0045-7930(10)00287-2

DOI: 10.1016/j.compfluid.2010.10.019

Reference: CAF 1430

To appear in: Computers & Fluids

Received Date: 29 April 2010

Revised Date: 15 October 2010

Accepted Date: 24 October 2010

Please cite this article as: Appleyard, J., Drikakis, D., Higher-order CFD and Interface Tracking Methods on Highly-

Parallel MPI and GPU systems, Computers & Fluids (2010), doi: 10.1016/j.compfluid.2010.10.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.compfluid.2010.10.019
http://dx.doi.org/10.1016/j.compfluid.2010.10.019
li2106
Text Box
Computers & Fluids, Volume 46, Issue 1, July 2011, Pages 101–105

Higher-order CFD and Interface Tracking Methods on Highly-Parallel MPI and GPU
systems

J. Appleyard, D. Drikakis

Fluid Mechanics and Computational Science Department

Cranfield University

United Kingdom

Abstract

A computational investigation of the effects on parallel performance of higher-order accurate schemes was carried out on two

different computational systems: a traditional CPU based MPI cluster and a system of four Graphics Processing Units (GPUs)

controlled by a single quad-core CPU. The investigation was based on the solution of the level set equations for interface tracking

using a High-Order Upstream Central (HOUC) scheme. Different variants of the HOUC scheme were employed together with a

3rd order TVD Runge-Kutta time integration. An increase in performance of two orders of magnitude was seen when comparing a

single CPU core to a single GPU with a greater increase at higher orders of accuracy and at lower precision.

Key words: Interface Tracking, High-Order Schemes, GPU

1. Introduction

Developments in Graphics Processing Units (GPUs) have

recently allowed for them to be easily used as general purpose

massively parallel (thousands of concurrently running threads)

computing devices. While these advancements were originally

intended to compute complex visual effects on large groups of

pixels for computer games, it was found that the same tech-

nology could be applied to scientific computing. Table 1 illus-

trates the superior peak theoretical computational properties of

the NVIDIA Tesla C1060 GPU compared to those of a top of

the range quad-core CPU (Intel i7-975). While the pricing of

the components can vary, at the time of writing the C1060 is

approximately 25% more expensive than the i7.

One of the first scientific applications for GPUs was pre-

sented by Lengyel et al. [4] and concerned robot motion plan-

ning. Many other applications have since followed [5–8] and

the field is continually growing.

Email addresses: j.appleyard@cranfield.ac.uk (J. Appleyard),

d.drikakis@cranfield.ac.uk (D. Drikakis)

Arithmetic Throughput
Memory

Device Single Precision Double Precision Bandwidth

C1060 933 GFLOPS 78 GFLOPS 102 GB/s

i7 55 GFLOPS 55 GFLOPS 26 GB/s

Table 1: Properties of top of the range hardware [1–3].

In this work we are interested in the application of GPUs

to CFD problems; specifically focusing on the impact of both

higher order methods and varying precision on the relative per-

formance changes between CPUs and GPUs. In the past few

years many authors [9–14] have studied performance changes

due to implementing CFD codes on GPUs and have found per-

formance improvements of one to two orders of magnitude. In-

dicatively, we report that Antoniou et al. [9] recently showed

a performance increase by a factor of 53 when comparing four

GPUs to a quad-core CPU using a finite-difference WENO scheme

in single precision. Cohen and Molemaker [10] showed a sim-

ilar per-core performance increase solving the incompressible

3D Navier-Stokes equation in double precision.

Despite the above studies, there is still little information as

to the effect of varying precision and accuracy on the perfor-

mance of these computational methods and codes, and this has

motivated the present study. In this work the performance of

high-order level set methods will be demonstrated on two dif-

ferent massively parallel architectures. The first architecture is

a set of four NVIDIA Tesla C1060 GPUs. The second architec-

ture is a HPC facility based on a 856 processor HP XC Cluster

built in 2007.

This paper is organised as follows. In the next section the

level set method is described briefly. The GPU architecture is

outlined in Section 3 and the algorithms used to solve the level

set equation are described in Section 4. Section 5 presents the

results from GPU and CPU implementations at different grid

sizes and with different orders of accuracy. The conclusions

drawn from the present study are summarised in Section 6.

2. The Level Set Method

To simulate motion of an interface the scalar function φ(x, t)

is introduced. This function is initialised as a signed distance

function representing the distance from the interface. The posi-

tion of the interface at time t is therefore defined by the isosur-

face given by φ(x, t) = 0. This function is advected by solving

the level set equation [15]:

∂φ

∂t
+ u • �φ = 0

In this work the level set equation is solved using High-Order

Upstream Central (HOUC) finite element schemes [16] (simple

upwinding expanded to higher orders) to update φ at each time

step.

These schemes have been found to be more efficient than

traditional essentially non-oscillatory WENO or ENO schemes

and, in the case of the smooth level set function, cause no detri-

ment to numerical stability [16]. A 3rd-order TVD Runge-Kutta

method was used to advance time [17].

3. GPU Architecture

A Tesla C1060 GPU comprises 30 multiprocessors each

containing eight scalar cores. Each multiprocessor is capable

of running up to 1024 threads in parallel, although only a small

proportion of these are executing instructions at any given time.

This massive level of parallelisation allows for significant hard-

ware optimisations and is the main reason that GPUs can per-

form so well compared to CPUs [18].

The GPU implementation presented in this work is based

upon NVIDIA’s CUDA (Compute Unified Device Architecture)

programming model. The CUDA environment comprises ex-

tensions to both the C and Fortran programming languages al-

lowing the CFD code to be written specifically for NVIDIA

GPUs. These extensions allow large numbers of threads to be

launched on the GPU from within a program running on the

CPU. With a few exceptions, executing the CFD code can be

very similar to executing a code written to run on a CPU.

One of the most important aspects of programming and op-

timising in CUDA is memory management. This is due to the

high arithmetic intensity (ratio of floating operations per sec-

ond to memory bandwidth) of GPUs. Given a GPU can at-

tain 933 GFLOPS in single precision with only 102 GB/s of

global memory bandwidth, we can calculate that for each four

byte floating point number loaded from global memory 37 float-

ing point operations must be completed to maximise floating

point throughput. As very few applications have such a high

arithmetic intensity most codes are strongly limited in perfor-

mance by memory access speeds making efficient use of mem-

ory highly desirable. In double precision this becomes less im-

portant (seven operations per load), however it still remains sig-

nificant.

The two main methods for maximising memory bandwidth

on a GPU are memory re-use and memory coalescing:

3.1. Memory re-use

To understand how memory can be re-used one must first

understand the different type of memory available on the GPU.

The three main memory types on the Tesla C1060 are:

2

1. Global memory: accessible to every thread on every mul-

tiprocessor. This is the main memory type and a Tesla

C1060 has 4GB.

2. Shared memory: accessible to every thread in a single

block. Each block resides on a single multi-processor

and the total shared memory for all the blocks on a single

multi-processor is limited to 16KB on the Tesla C1060.

3. Register memory: accessible to an individual thread only.

Limited to 64KB per multi-processor on the Tesla C1060.

Both shared and register memory are very high bandwidth and

very low latency whereas global memory can be orders of mag-

nitude slower. For this reason if memory that can be re-used

is stored in either register or shared memory it is possible to

greatly accelerate the application by reducing usage of the slow

global memory. This is the core idea behind the algorithm de-

scribed in Section 4.

3.2. Memory coalescing

Memory coalescing allows for the minimum instructions

necessary to be issued to access data from global memory. Given

the highly parallel nature of most GPU applications, the hard-

ware is designed to be most efficient when a small group of

consecutively assigned threads accesses consecutive memory

locations. This access pattern is known as a coalesced access

pattern. If the memory structures can be designed so that co-

alesced accesses are possible then the memory throughput of

the application can be increased by up to an order of magnitude

over an application with random memory access.

4. Algorithms

4.1. GPU

The method presented here is designed to solve the level set

equation on a uniform three dimensional grid, though it is also

applicable to many non-uniform grid problems. The method is

similar to the method used by both Brandvik and Pullan [12]

and Micikevicius [19] and is as follows:

Firstly, the solution space is subdivided into n equally sized

cuboidal domains. Each domain spans the solution space in

one dimension. The sizes of the other two dimensions are then

calculated based on four factors:

1. The size of the solution space in these directions. It is

most efficient to have its side length as a factor of the

length of the solution space. If this is not the case addi-

tional logic is required to prevent threads outside of the

domain from executing.

2. The limitations on the availability of the fast shared mem-

ory and register spaces on the GPU. Larger cuboids re-

quire more shared memory. It is also more efficient to

have a cross-section as close to square as possible so as

to minimise boundary data.

3. Memory coalescing requirements. Memory can be coa-

lesced if the length of one side is a multiple of eight in

single precision, four in double precision.

4. Number of shared memory bank conflicts. If one side

length is a multiple of 16 then shared memory is guaran-

teed to be accessed in the fastest possible way (conflict

free). Side lengths which are not multiples of 16 may

still access shared memory conflict free, however it is not

guaranteed in every case.

The optimum size of the cross section varies with problem size

and the order of accuracy required, however, is typically 8x16

or 16x16. Larger cross sections require too much memory while

smaller cross sections are inefficient.

Having subdivided the solution space a thread block is as-

signed to each of the cuboidal domains. Every time step the

thread blocks iterate in parallel through the solutions space span-

ning dimension using shared memory and registers to explicitly

cache data required for the next iterations. Each thread in the

thread block calculates the result for a single cell per iteration.

This is shown diagrammatically in Figure 1. Shared memory

is used to swap data between the threads of the thread block

so as to minimise loading from global memory. If the limi-

tations on shared/register memory availability were lifted this

method would allow for each global memory location to be read

from only once. Instead, each thread block must load data from

neighbouring domains, decreasing efficiency.

3

Figure 1: Thread blocks spanning the domain in two dimensions iterating in

parallel along the third dimension.

A more naı̈ve solution would be to simply assign each thread

to perform the calculations for one grid cell. While this is a

lot simpler (as it requires no shared memory programming) it

would result in an order of magnitude increase in global mem-

ory requirements due to the lack of memory re-use. This would

therefore be a lot slower.

After the time step is completed boundary data must be

transferred between GPUs. Due to hardware limitations there

is no way of directly transferring data between GPUs and so

the data must be copied across the PCI-E bus to the host mem-

ory before being copied onto a different GPU. The maximum

theoretical bandwidth of this transfer is 8 GB/s (an order of

magnitude slower than GPU global memory). Fortunately, it

is possible to copy data across the PCI-E bus while continu-

ing calculations on the GPU by splitting the algorithm into two

sections (one which requires the boundary information and one

which doesn’t). This effectively hides the memory transfer with

only a small cost due to the splitting.

4.2. CPU

The CPU implementation is much simpler than the GPU

implementation. Each core iterates over a small part of the do-

main before transferring data between cores. The same asyn-

chronous memory transfer masking technique as in the GPU

method is used.

5. Results

The test case used to generate these results was the motion

of a slotted sphere in a rotational velocity field. The grid was

strongly scaled across many devices, i.e., total data processed

remains constant. Extrapolation boundary conditions were used

at each of the interfaces. It should be noted that while the ve-

locity field was constant in time it was treated as a variable and

no optimisation was based upon it being constant.

5.1. Architectural comparison

Figure 2 shows arithmetic throughput of the two architec-

tures using a 3rd-order HOUC scheme in single precision. As

each architecture solves the same equations this can be used as

a direct measure of performance.

Table 2 shows the equivalent processing power of multiple

GPUs in terms of CPU cores. It is clear to see that a single GPU

is capable of performing two orders of magnitude more work

than a single CPU core when solving the level set equation. It

is also noticeable that both architectures scale in performance

in a close to linear manner.

GPUs 1 2 3 4

Equivalent Cores 92 187 280 371

Table 2: Equivalent CPU cores for up to 4 GPUs.

5.2. Order of accuracy

Figure 3 shows the arithmetic throughput of the two archi-

tectures using 3rd, 5th, 7th and 9th-order HOUC schemes in sin-

gle precision.

These results show that the higher-order schemes on the

GPU show significantly better floating point performance than

lower-order schemes. This is because the algorithm is quite ef-

ficient in terms of data re-use and hence can achieve a higher

arithmetic intensity with higher-order schemes.

4

Figure 2: GFLOPS produced from a 3rd order HOUC scheme in single precision by up to 4 GPUs (left) and by up to 256 cores (right).

Figure 3: GFLOPS produced from 3rd, 5th, 7th and 9th-order HOUC schemes in single precision by up to 4 GPUs (left) and by up to 256 cores (right).

5

The results from the CPU are less conclusive. While a sim-

ilar trend appears to be in place, the 9th-order scheme achieves

lower throughput than the 5th and 7th-order schemes. It is un-

clear as to the cause of this, however, it seems likely that it is

due to the limited CPU cache size.

5.3. Precision

The results presented thus far have been purely single preci-

sion and while this accuracy would be acceptable for some pur-

poses many applications would require double precision. Fig-

ure 4 shows the arithmetic throughput of the two architectures

using 3rd and 9th order HOUC schemes in single and double

precision. Figure 5 shows the memory bandwidth required on

the two architectures using the same configurations.

As is to be expected the double precision throughput on the

GPU is significantly lower than the single precision throughput,

however, it is a much greater proportion (30-50%) of the peak

theoretical throughput. Comparatively, the CPU shows approx-

imately half the throughput in double precision than in single

precision. This suggests that the CPU method is bound by the

memory bandwidth of the system. Comparison of the memory

bandwidth achieved to that achieved on the same system by the

STREAM [20] benchmark confirms this.

From these data we can also conclude that the GPU method

is bound by neither solely by either of the two constraints (mem-

ory bandwidth or arithmetic throughput) of the GPU. Instead, it

would appear that algorithm is bound by both at different stages

of execution. This is possible despite the massively parallel na-

ture of the GPU as each iteration requires two steps and after

each a block-wide synchronization occurs. The first step mainly

comprises memory transfer while the second mainly comprises

arithmetic operations. As a multiprocessor typically executes

only two blocks concurrently, the system is prone to bottleneck-

ing in either step.

The proportion of time that the GPU spends bound by each

limit varies with precision and order of accuracy. To illustrate

this: although in both precisions the 9th-order scheme shows

improvements over the 3rd-order scheme, in double precision

this improvement is nowhere near as significant. This is due

to the inferior double precision performance of the GPU lead-

ing to a greater proportion of the execution time spent doing

arithmetic operations. This effect is not seen so prominently

in single precision as increasing the order of accuracy does not

bring the arithmetic throughput to such a large fraction of the

peak.

6. Conclusions

GPUs have be used to greatly accelerate the computation of

the level set equation on a block-structured domain. The per-

formance increase seen was two orders of magnitude in both

single and double precision and was found to be much greater

at higher orders of accuracy due to the increased arithmetic in-

tensity of the problem. This is significant as it allows for higher-

order schemes to be implemented without as much concern re-

garding their computational expense.

While the GPU showed greater performance in single preci-

sion its double precision performance was not nearly as poor as

might be expected given the high ratio of single to double pre-

cision floating point capacity of the GPU. This is because the

performance was greatly restricted by available memory band-

width. As the arithmetic intensity was increased the difference

between single and double precision became more apparent and

it is likely that this trend would continue if greater arithmetic

intensities could be obtained.

The improvements seen here far outweigh the price differ-

ence between the two pieces of hardware in all cases, although

some time had to be spent to design and optimise an algorithm

for the GPU, the expense of which is less clear.

References

[1] NVIDIA Tesla Technical Specifications, http://www.nvidia.co.uk/

page/tesla supercomputer tech specs.html (August 2010).

[2] http://www.intel.com/support/processors/sb/cs-023143.

htm (August 2010).

[3] http://ark.intel.com/Product.aspx?id=37153&processor=

i7-975&spec-codes=SLBEQ (August 2010).

6

[4] J. Lengyel, M. Reichert, B. Donald, D. Greenberg, Real-Time Robot Mo-

tion Planning Using Rasterizing Computer Graphics Hardware, Proceed-

ings of SIGGRAPH 1990, 327-335.

[5] HH. Hsie, WK. Tai, A Simple GPU-Based Approach for 3D Voronoi Dia-

gram Construction and Visualization, Simulation Modelling Practice and

Theory, 13 (2005) 681-692.

[6] M. Schatz, C. Trapnell, A. Delcher, A. Varshney, High-Throughput Se-

quence Alignment Using Graphics Processing Units, BMC Bioinformat-

ics, 8 (2007) 474.

[7] R. Nieuwpoort, J. Romein, Using Many-Core Hardware to Correlate Ra-

dio Astronomy Signals, Proceedings of the 23rd International Conference

on Supercomputing.

[8] T. Preisa, P. Virnaua, W. Paula, J. Schneider, GPU Accelerated Monte

Carlo Simulation of the 2D and 3D Ising Model, Journal of Computa-

tional Physics, 228 (2009) 4468-4477.

[9] A. Antoniou, K. Karantasis, E. Polychronopoulos, J. Ekaterinaris, Accel-

eration of a Finite-Difference WENO Scheme for Large-Scale Simulations

on Many-Core Architectures, 48th AIAA Aerospace Sciences Meeting,

2010.

[10] J. Cohan, M. Molemaker, A Fast Double Precision CFD Code using

CUDA, Proceedings of Parallel CFD 2009.

[11] J. Thuibault, I. Senocak, CUDA Implementation of a Navier-Stokes Solver

on Multi-GPU Desktop Platforms for Incompressible Flows, Proceedings

of 47th AIAA Aerospace Sciences Meeting, 2009.

[12] T. Brandvik, G. Pullan, An Accelerated 3D Navier-Stokes Solver for

Flows in Turbomachines, ASME Turbo Expo, Orlando, FL, June 2009.

[13] E. Elsen, P. LeGresleya, E. Darve, Large Calculation of the Flow Over a

Hypersonic Vehicle Using a GPU, Journal of Computational Physics, 227

(2008) 10148-10161.

[14] A. Corrigan, F. Camelli, R. Löhner, J. Wallin, Running Unstructured Grid

Based CFD Solvers on Modern Graphics Hardware, AIAA Paper 2009-

4001, 19th AIAA Computational Fluid Dynamics, June 2009.

[15] S. Osher, J. Sethian, Fronts Propagating with Curvature-Dependent

speed: Algorithms Based on Hamilton-Jacobi Formulations, Journal of

Computational Physics, 79 (1988) 12-49.

[16] R.R. Nourgaliev, T.G. Theofanous, High-Fidelity Interface Tracking in

Compressible Flows: Unlimited Anchored Adaptive Level Set, Journal of

Computational Physics, 224 (2007) 836-866.

[17] D. Drikakis, W. Rider, High-Resolution Methods for Incompressible and

Low-Speed Flows, Springer, 2005.

[18] NVIDIA CUDA Programming Guide Version 2.3, Page 2.

[19] P. Micikevicius, 3D finite difference computation on GPUs using CUDA,

Proceedings of 2nd Workshop on General Purpose Processing on Graph-

ics Processing Units, 2009, 79-84.

[20] STREAM Benchmark, http://www.cs.virginia.edu/stream/

ref.html (August 2010)

8

Figure 4: GFLOPS produced from 3rd and 9th order HOUC schemes in single and double precision by up to 4 GPUs (left) and by up to 256 cores (right).

Figure 5: Memory bandwidth for 3rd and 9th order HOUC schemes in single and double precision by up to 4 GPUs (left) and by up to 256 cores (right).

7

