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Abstract 
 
In this paper, a novel adaptive demodulation technique including a new diagnostic feature is 

proposed for gear diagnosis in conditions of variable amplitudes of the mesh harmonics. This 

vibration technique employs the time synchronous average (TSA) of vibration signals. The 

new adaptive diagnostic feature is defined as the ratio of the sum of the sideband components 

of the envelope spectrum of a mesh harmonic to the measured power of the mesh harmonic. 

The proposed adaptation of the technique is justified theoretically and experimentally by the 

high level of the positive covariance between amplitudes of the mesh harmonics and the 

sidebands in conditions of variable amplitudes of the mesh harmonics. It is shown that the 

adaptive demodulation technique preserves effectiveness of local fault detection of gears 

operating in conditions of variable mesh amplitudes. 

 

1. Introduction 

 

Local tooth damage produces short-duration impacts that add modulation effects to the 

meshing vibration, and in turn generate a higher level of sidebands (SB) around the mesh 

harmonics [1]. The vibration demodulation analysis has been widely investigated [1-14] 

detecting local tooth damage such as cracks, pitting, etc. However, previous works have not 

considered how the technique works with the time synchronous average (TSA) [15] of 

vibration signals under conditions of variable amplitudes of the mesh harmonics and their 

surrounding sidebands [1]. The variation of mesh amplitudes deteriorates the diagnostic 

effectiveness of the method [8]. 

An original method and a new diagnostic feature were proposed [8] for conditions of variable 

mesh amplitudes. The method is based on the high level of positive covariance between 

amplitudes of the mesh harmonics and their surrounding SB: amplitudes of the SB vary in 

proportion to amplitudes of the mesh harmonics. This positive covariance for non-TSA raw 

vibrations was found [8] theoretically and experimentally for the first time.  
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The diagnostic feature proposed in ref. [8] is based on the normalized sum of SB and 

estimated on the non-TSA raw vibrations. However, in order to increase the signal/noise ratio 

and perform effectively differential gear diagnosis, it is generally preferred to perform 

demodulation on the TSA signals. 

Therefore, the problem is to improve the classical demodulation technique based on the TSA 

gear vibrations in conditions of variable mesh amplitudes. This problem is not investigated in 

the existing literature nor has the covariance between amplitudes of the sidebands and the 

mesh harmonics for the TSA gear vibrations been investigated.  

Thus, the aims of this short communication are to 

 

o investigate  theoretically and experimentally  the covariance between amplitudes of 

the mesh harmonics and the sidebands  estimated from the TSA gear signals  

 

o improve the demodulation technique in conditions of variable amplitudes of the mesh 

harmonics  

 

o compare experimentally the novel adaptive demodulation technique with the classical 

demodulation technique for local damage detection in gearboxes 

 

In section 2, the theoretical covariance between amplitudes of the mesh and the sum of the SB 

components is investigated based on a model of the TSA signal. In section 3, the experimental 

set-up is described, and the covariance between amplitudes of the mesh and the sum of the SB 

components is investigated based on experimental measurements. In section 4, a novel 

adaptive demodulation technique is proposed and investigated. Conclusions are drawn in 

section 5.  

 

2. Theoretical analysis of the covariance between the mesh and the 

sidebands 

 

The TSA signal of a gear may be modeled as [3, 4]: 
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where )(tak  and )(tkϕ are the amplitude and phase modulation functions and kX  is the 

amplitude of the mesh harmonic k.  

After band-pass filtering around the mesh harmonic k with appropriate bandwidth for 

including all modulation sidebands but excluding interferences from adjacent mesh harmonics 

[3], by using the Hilbert transform, we obtain the complex signal: 

 

( ) (1 ( ))exp( 2 ( ))k k k m kz t X a t j kf t tπ ϕ= + +     (2) 

 

The envelope (amplitude modulation) is obtained from its modulus: 

 

))(1()( taXtz kkk +=       (3) 

 

The envelope spectrum is then computed as: 

 
2))()(( fAfXPSD kke += δ ,     (4) 

 

where δ(f) is the Dirac function and )( fAk  is the Fourier transform of amplitude modulation 

function )(tak . 

The sum of the sideband components for the mesh harmonic k is estimated from the envelope 

spectrum as: 
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where SBnbr is the  number of the sidebands, corresponding to half the bandwidth of the 

bandpass filter applied to the mesh harmonic.  

The sideband power can be also extracted from the spectrum of synchronously averaged gear 

signals. 

If the number of the sidebands SBnbr is high enough to encompass all sideband components 

of the amplitude modulation function )(tak , this may also be expressed by using Parseval’s 

theorem as: 
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where T is the shaft period and akP  is the mean power of the amplitude modulation function. 

When the operating conditions (load and speed) are varying, the amplitude kX  of the mesh 

harmonic k and its surrounding sidebands are affected [1]. Therefore, the sum of the 

sidebands in equation (6) should vary in direct proportion to the mesh power, i.e., the 

covariance between the two should be positive. The cross-covariance coefficient (i.e. the 

normalized covariance) is estimated as 
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where C[X;Y] represents the un-normalised cross-covariance between the two random 

variables X and Y. 

Ideally, this normalized covariance between the mesh harmonic and sum of the SB should be 

close to unity [8]. If this is not the case, this deviation could be due to interfering components 

which are included in the demodulation bandwidth but are not related to the modulation 

process, or to the effect of the transmission path on gear vibration [16]. 

 

 3. Experimental analysis of the covariance between the mesh and the 

sidebands 

3. 1 Experimental set-up 

 

The gear system under experiment is a back-to-back system designed by Compact Orbital 

Gears (UK). The back-to-back arrangement is composed of two identical spur gearboxes, 

each one containing two gears with 60 teeth and in between a 59 tooth idle pinion. Figure 1 

shows the system under experiment and a schematic of one of the gearboxes. The loading of 

the system is created by a piston at the top of the gearbox, which is mechanically bonded to 

the rotation axis of the pinion. When the piston chamber is pressurized, the pinion is pushed 

upwards (or downwards) with a specific force F, inducing in turn a vertical force F/2 on the 

teeth of the two gears on both sides of the pinion. The effect is to create a torque which 

transmits from one gear to the other through the pinion and circulates from one gearbox to the 

other. The torque losses in the system are compensated by the driving motor.  

The experiment was conducted in two steps. Vibration measurements were first captured for 

brand new gears and then with a pitting fault which was created on one tooth of one of the 

gear wheels with 60 teeth. The pitting fault is a localized pitting with a 10% relative pitting 
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size. The relative pitting size was estimated as the pitted area divided by the tooth face area; 

tooth dimensions are 12mm in height and 110mm in width. Only the acceleration 

measurements in the vertical direction were processed here. 

From the pressure reading above the piston, the torque in the system was roughly estimated. 

The experiment was conducted at different levels of load; the full load conditions (10bar 

pressure) correspond to about 750Nm torque. 

 

 
a) The back-to-back system of two identical 

coupled gearboxes  

 
b) Schematic of one of the gearboxes  

Fig. 1 Experimental setup 

 

3. 2. Experimental results 

 

Experiments were performed for different operating conditions of the gearbox: near full load, 

500rpm, 700rpm and 1400rpm speed and near half load, 700rpm, 1050rpm and 1300rpm 

speed, in the un-pitted and pitted conditions of the gear. For each case, the measured signal 

was split into several realizations of 50s duration, and the TSA was performed on this 

duration of gear vibrations.  

For the first two mesh harmonics, their respective sums of SB (SUMSB) is estimated from the 

envelope spectrum as described in section 2 (i.e., Eq.(5)). The powers of the mesh harmonics 

are estimated from the spectrum of the TSA signal. The number of the SB is varied from 1 to 

a maximum of 29 SB corresponding to almost half the mesh frequency [2]. 

The covariance between the mesh power and the sum of the SB is investigated when 

combining together all signals corresponding to all operating conditions. Figure 2 shows the 

variations of the power of the mesh harmonics 1 and 2 and of the sum of 29 SB in the un-

pitted (top) and pitted (bottom) cases. A high positive normalised covariance (close to unity) 

is observed for the mesh harmonic 1 in both the un-pitted and pitted conditions. For the mesh 
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harmonic 2, however, the covariance is lower, mainly due to the opposite variations of the 

mesh and the SB occurring around signals 0-12 for the un-pitted conditions and signals 0-37 

for the pitted conditions 

This effect may be attributed to some interfering effects due to the transmission path (i.e., 

local resonances, etc.) affecting this mesh and its sidebands [16].  

 

 

 
Fig. 2. The covariance between the power of the mesh harmonic and the sum of 29 sidebands 

for the first (left) and the second (right) mesh harmonics for a combination of signals 

measured under different load and speed conditions; top plots are for the un-pitted conditions, 

bottom plots are for the pitted conditions. The normalised covariance is indicated in the title. 

 

Figure 3 shows dependencies of the normalized covariance between the power of the mesh 

harmonics and the sum of the sidebands for different number of the SB from 1 to 29. The 

covariance appears to be little dependent on the number of the SB here. 

 

 

 

 

 

Un-pitted 

Pitted 
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Fig. 3. Dependencies of the normalised covariance between the power of the mesh harmonic 

and the sum of the sidebands for the first (left) and the second (right) mesh harmonics and for 

different number of the sidebands, from 1 to 29; top plots are for the un-pitted conditions, 

bottom plots are for the pitted conditions.  

 

4. Adaptive demodulation technique 
 

It is known that amplitudes of the mesh harmonics and their surrounding sidebands are 

affected by the changes in operating conditions (i.e., load and speed) of a gear [1]. Therefore, 

a diagnostic feature based on the absolute amplitudes of the sidebands such as the kSUMSB  

(Eq.(5)) is not reliable [8] under varying operating conditions, i.e. of variable mesh 

amplitudes. 

Based on the high level of the covariance between the mesh power and  the sum of the SB 

amplitudes proved theoretically in section 2 and observed experimentally in section 3, one 

can conclude that the powers of mesh harmonics are nuisance parameters [17-18] for the 

classical demodulation technology. It is known [17-18] that changes of nuisance parameters 

lead to deterioration of the detection effectiveness.  

To preserve the detection effectiveness of the classical demodulation technique in conditions 

of variable mesh harmonics, an adaptation of the demodulation technique to variable mesh 

amplitudes is proposed here. The proposed generic adaptive demodulation technique is based 

on synchronous measurement of the non-adaptive diagnostic feature, the sum of the SB 

amplitudes, and the measurable nuisance parameter, the power of the mesh harmonic, and 

Un-pitted 

Pitted 
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continuous adaptation of the technique to changes of the power of the mesh harmonic. The 

proposed adaptation is performed by estimating a new adaptive diagnostic feature called the 

kSBratio  and defined by 

 

2
km

k
km

SUMSB
SBratio

X
= ,     (8) 

 

where the kmSUMSB  is the measured sum of the SB related to kth  mesh harmonic, kmX 2  is 

the measured power of the kth  mesh harmonic. 

It should be highlighted that the proposed adaptation is expedient only if amplitudes of the 

mesh harmonics are variable.  

The adaptive demodulation technique is compared with the classical demodulation technique 

for experimental detection of gear pitting. The benefit of the adaptive demodulation technique 

is evaluated by a detection effectiveness criterion. The Fisher criterion (FC) [19] is used here; 

this criterion could measure separation between diagnostic features for the un-pitted and 

pitted conditions. 

Figure 4 shows the non-adaptive (i.e. equation (5)) and the adaptive (i.e. equation (8)) 

diagnostic features for the mesh harmonics 1 and 2 obtained experimentally for 500rpm gear 

speed.  

It can be seen from Figure 4 that both techniques could perform effective early differential 

detection of local tooth fault. The adaptation dramatically improves fault detection for the 

mesh harmonic 1: the FC increases from 175 to 1098 (i.e., 6.3 times increment); however, for 

the mesh harmonic 2, the FC slightly decreases from 386 to 268 (i.e., 1.4 times decrement).  

 

 
Fig. 4. The non-adaptive (left) and the adaptive (right) diagnostic features estimated for the 

mesh harmonics 1 and 2 in the un-pitted and pitted conditions for the full load and 500rpm 

speed. 
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To explain these detection results, Figure 5 shows the distribution of the measured power of 

the mesh harmonics in the un-pitted and pitted conditions of the gear. It appears that the 

power of the mesh harmonic 1 has decreased between the experiments in the un-pitted and 

pitted conditions. This is due to 20% decrease in load for pitted conditions. The power of the 

mesh harmonic 2 depends on the power of the mesh harmonic 1 and the gearbox level of non-

linearity and has increased between the experiments in the un-pitted and pitted conditions due 

to increase of gearbox level of non-linearity. This Figure illustrates the high sensitivity of the 

powers of the mesh harmonics to changes of operating conditions,  

The difference in the powers of the mesh harmonic 1 deteriorates the detection effectiveness 

of the non-adaptive diagnostic feature. This is because the mesh powers for the un-pitted case 

are greater than the mesh powers in the pitted case. 

The difference in the powers of the mesh harmonic 2 improves the detection effectiveness of 

the non-adaptive diagnostic feature. This is because the mesh powers for the un-pitted case 

are less than the mesh powers in the pitted case. 

However, this improvement is misleading and based purely on the difference in the powers of 

the mesh harmonic 2 and high positive covariance between the mesh power and the SB 

amplitudes. 

In order to preserve the detection effectiveness in both considered cases, one needs to use the 

proposed adaptive demodulation technique which essentially eliminates influence of the 

variable mesh powers. 

Thus, the experimental results have clearly shown the necessity of technique adaptation by 

using the adaptive diagnostic feature. This adaptation eliminates the influence of variable 

mesh powers on the detection effectiveness and therefore, preserves effectiveness of local 

fault detection of gears operating in conditions of variable mesh amplitudes. 
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Fig. 5. Mesh power distributions for the un-pitted (left) and pitted (right) conditions of the 

gear for the first and the second mesh harmonics. 

5. Conclusions 
 

1. A high level of the positive covariance between amplitudes of the mesh harmonics and 

sidebands is found for the first time, theoretically and experimentally, for the time 

synchronous averaged (TSA) gear vibrations. 

2. A novel generic adaptive demodulation of the TSA gear signals is proposed and 

investigated for local damage detection in gears in conditions of variable mesh amplitudes. 

The proposed vibration technique is based on synchronous measurement of the non-adaptive 

diagnostic feature, the sum of the SB amplitudes, and the measurable nuisance parameter, the 

power of the mesh harmonic, and continuous adaptation of the technique to changes of the 

power of the mesh harmonic.  

3. A new adaptive diagnostic feature based on the amplitude demodulation of the TSA signals 

is proposed and investigated. The new diagnostic feature is defined as the ratio of the sum of 

the sidebands in the envelope spectrum of a mesh harmonic to the measured power of the 

mesh harmonic.  

4. The adaptive demodulation technique is applied to the detection of pitting fault on a back-

to-back industrial spur gearbox system and showed effective early differential detection of 

local tooth pitting. The effectiveness of this detection is evaluated by the Fisher criterion. 

5. The adaptive demodulation technique is compared with the classical demodulation 

technique for experimental pitting detection in conditions of variable mesh amplitudes. It is 

shown experimentally that the adaptive demodulation technique preserves effectiveness of 

local fault detection of gears operating in conditions of variable mesh amplitudes. 

6. Obviously, the effectiveness of the proposed adaptation depends on error in estimation of 

the power of mesh harmonic. Therefore, future efforts are needed to investigate this issue. 

7. The obtained results confirm previously written findings [8] for non-TSA gear signals. 

Thus we recommend that one consider using the adaptive demodulation technique as an 

alternative to the classical demodulation technique. 
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