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ABSTRACT 

This thesis looks into the examination of polymer composite wreckage from the 

perspective of the aircraft accident investigator. It develops an understanding of 

the process of wreckage examination as well as identifying the potential for 

visual and macroscopic interpretation of polymer composite aircraft wreckage. 

The in-field examination of aircraft wreckage, and subsequent interpretations of 

material failures, can be a significant part of an aircraft accident investigation. 

As the use of composite materials in aircraft construction increases, the 

understanding of how macroscopic failure characteristics of composite materials 

may aid the field investigator is becoming of increasing importance. 

The first phase of this research project was to explore how investigation 

practitioners conduct wreckage examinations. Four accident investigation case 

studies were examined. The analysis of the case studies provided a framework 

of the wreckage examination process. 

Subsequently, a literature survey was conducted to establish the current level of 

knowledge on the visual and macroscopic interpretation of polymer composite 

failures. Relevant literature was identified and a compendium of visual and 

macroscopic characteristics was created. 

Two full-scale polymer composite wing structures were loaded statically, in an 

upward bending direction, until each wing structure fractured and separated. 

The wing structures were subsequently examined for the existence of failure 

characteristics. The examination revealed that whilst characteristics were 

present, the fragmentation of the structure destroyed valuable evidence. 

A hypothetical accident scenario utilising the fractured wing structures was 

developed, which UK government accident investigators subsequently 

investigated. This provided refinement to the investigative framework and 

suggested further guidance on the interpretation of polymer composite failures 

by accident investigators. 
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1 INTRODUCTION 

1.1 Introduction to research 

With unstable fuel prices and an increasing awareness of broader 

environmental issues, such as noise and emissions, the offer of commercial 

aircraft which provide new levels of fuel efficiency and a reduced environmental 

impact is of increasing importance to airlines, consumers and the broader 

community (King, 2007). Whilst developments in commercial aircraft design to 

meet such requirements have encapsulated many elements of aircraft 

architecture, it is expected that “most new aircraft will feature primary structures 

of advanced materials such as composite” (Apffelstaedt, Langhans and 

Gollnick, 2009: 12). 

The commercial air transport industry has already seen the introduction of the 

Boeing 787, an aircraft that entered commercial service in 2011 and contains 

50% composite material content by structural weight (Brosius, 2007). 

Furthermore, the growth in usage of polymer composite materials for airframe 

manufacture is evident in other aircraft categories such as business jets, 

rotorcraft, military and light aircraft. It is apparent that the aerospace industry is 

undergoing a transition whereby polymer composite materials are replacing 

aluminium alloys as the material of choice for airframe construction. 

This transfer to polymer composite materials has been promoted by the offer of 

significant advantages over traditional aluminium alloy structures. Examples 

include better fatigue resistance, higher strength to weight ratio and a greater 

corrosion resistance. This transition is not without its disadvantages however. 

The aviation industry has much experience in aluminium alloy as an airframe 

material. Fatigue, a significant form of degradation in aluminium alloy structures, 

is relatively well understood with the initial recognition of the problem dating 

back to the early 1800’s (Schütz, 1996). Development of our understanding of 

fatigue has been promoted by the occurrence of catastrophic accidents 

(Schijve, 2003). A survey, albeit conducted between the years of 1934 and 
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1979, by Campbell (1981), revealed that 306 accidents had been attributed to 

metal fatigue resulting in some 1803 fatalities. 

It is reasonable to suggest that the above mentioned statistics are entirely 

dependent on the investigation identifying metal fatigue in these accident 

aircraft. In essence, the ability of aircraft accident investigators to recognise 

either the physical presence or symptoms of fatigue failure, is crucial in 

increasing our understanding of the phenomenon, and hence our ability to 

prevent future occurrence. It is recognised, however, that the established 

experience and understanding by accident investigators regarding the failure 

modes of aircraft constructed of aluminium alloy is not necessarily transferrable 

to that of polymer composite materials. 

Consider the differences in properties between the two material groups. Metallic 

materials, such as aluminium alloys, can provide a valuable source of 

information during an investigation. For ductile metals, plastic deformation of the 

material during failure creates a visual record of the events that had unfolded. 

Furthermore, metals typically allow the macroscopic differentiation between 

progressive (e.g. fatigue) and static (e.g. overload) fracture surfaces. The ability 

of an investigator to differentiate between these two failure modes can be 

critical to an investigation. 

Composite materials however, are brittle, behave differently, and contain 

complex fracture surfaces. Moreover, whilst composite materials have a higher 

level of resistance to traditional degrading factors such as fatigue, they have 

introduced new failure modes such as compression after impact, a condition 

which can significantly reduce the strength of a composite structure. This is 

unlike metals which have no similar failure mode and hence there is little 

experience within the investigation industry on recognising failures which are 

generally unique to composite materials. 

Whilst it is recognised that the investigation process is not necessarily reliant on 

a single source of evidence but is, instead, a complex process that 

encapsulates a variety of information sources. It would also be questionable to 

suggest that other sources of evidence could substitute the requirement for a 
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wreckage investigation. The investigation community is entering a period where 

composite materials are increasingly dominating aircraft construction yet the 

experience in understanding new failure modes in aircraft wreckage is still in its 

infancy. By increasing knowledge on failure mode recognition, an opportunity 

exists to increase the information that can be retrieved by the investigator from 

aircraft wreckage. In turn this increases the ability to learn from accidents and 

hence promotes flight safety through accident reduction. There is therefore an 

urgent need for research aimed at assisting aircraft accident investigator 

practitioners in the examination of composite material aircraft wreckage.  

Procedures for the examination of aircraft wreckage are relatively mature. 

According to the International Civil Aviation Organisation (ICAO) Manual of 

Aircraft Accident Investigation (ICAO, 1970: III-5-1), the detailed examination of 

the aircraft wreckage, known as the ‘Structures Investigation’, “covers the 

investigating and reporting upon the airframe of the aircraft. This includes 

primary and secondary structure, lift and control surfaces”. It includes the 

examination of the aircraft wreckage at the accident site and a subsequent 

examination in a secure environment where the investigation and reconstruction 

can occur at a controlled pace.  

Evidently, there are several procedures for aircraft wreckage examination, but 

currently a theoretical approach is somewhat anecdotal. An understanding has 

been suggested through personal experience or training literature. One such 

example was presented by Heaslip (1973) as the Planned Investigation 

Program (PIP) (figure 1-1). This sequenced the process of investigation using 

prominent activities conducted during a major investigation. Additionally, the 

process path and associated relationships were highlighted between the 

activities. It was created by the Canadian Ministry of Transport (MOT) and was 

designed with the purpose of creating a structured plan for the investigation of a 

major accident. This is in contrast to techniques involved in the examination of 

wreckage, where a rich, predominantly practitioner led, understanding exists. 

Information is widely available covering areas such as methods of evidence 
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preservation, photographic techniques, factors that influence failures, and, as 

previously mentioned, recognition of metallic failures; but not composite failures. 

It is apparent therefore that in order for this research to assist the investigation 

practitioner during the examination of composite material aircraft wreckage, an 

understanding of the context in which the wreckage examination is undertaken 

has to be made. 

In contrast to the practitioner led approach as mentioned above, academically 

derived knowledge on the understanding of polymer composite material failure 

features has received greater attention. Polymer composite fractography (the 

study of fracture surfaces), gained interest in the late 1970’s with work being 

undertaken by the UK Royal Aeronautical Establishment (RAE) and the US 

Wright Laboratory. Currently, a substantial qualitative understanding of the 

features present on polymer composite fracture surfaces has been 

characterised. This includes the identification of modes of failure, locating 

origins of fracture and identifying degradation or in-service damage. 

This is not without limitations for investigation practitioners as the 

characterisation has predominantly focused on the laboratory based controlled 

fracture of small test specimens. There is hence somewhat of a disparity 

between the conditions in which the knowledge has been produced, and the 

context and scope of the accident investigation wreckage examination. For 

example, there may be significant differences between the loading environment 

in which an aircraft wing failed in-flight compared to that of laboratory failed test 

coupons. This may be present in not only the global loading on the wing but 

also the load distribution within the structure and the change in the distribution 

as the failure progresses. Academically, there is a dearth of research focussed 

on the controlled failure and post fracture separation of a large aircraft structure, 

with the purpose of identifying the failure features present in the separated 

structure. Moreover, there is a distinct absence of scientific research in 

examining such failed specimens with a view to understanding the failures 

within the context of the accident investigation practitioner. 
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In summary, there is now a critical need for research to support the examination 

of polymer composite aircraft wreckage by investigation practitioners. It has 

been shown that whilst knowledge of polymer composite failure characteristics 

is mature, there has been a lack of research applying these within the context of 

the accident investigation practitioner. The challenge is therefore to determine 

whether current knowledge on polymer composite fractography can be 

successfully applied within the context and scope of accident investigation. 

The research aims and objectives are presented in the next section. 
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Figure 1-1 – Planned Investigation Program (PIP) (redrawn from Heaslip, 1973) 
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1.2 Research Aims & Objectives 

1.2.1 Overall aim 

To determine if known visual and macroscopic failure features of polymer 

composite materials can assist the accident investigation practitioner in 

conducting wreckage investigations and structural investigations. 

1.2.2 Objectives 
1. Explore how accident investigation practitioners conduct wreckage 

investigations and structural investigations of composite aircraft during the 

accident investigation process. 

2. Identify in literature the current understanding of visual and macroscopic 

failure recognition of polymer composites. Accumulate information on the 

individual failure recognition characteristics that show potential for use by 

the investigator practitioner. 

3. Design, conduct and evaluate a study to determine whether these failure 

characteristics exist in aircraft wreckage and determine whether they can 

assist the accident investigation process. 

4. Design, conduct and evaluate a study to determine how accident 

investigation practitioners currently use failure characteristics to assist the 

accident investigation process. 

1.3 Research programme 

1.3.1 Objective 1 

Phase 1 of the research is devoted to answering Objective 1 and is presented in 

Chapter 4. The purpose of phase 1 is to explore how accident investigators 

conduct wreckage investigations and structural investigations involving an 

aircraft of polymer composite construction. This phase utilises case study 

research methodology, focussing on four case studies of investigations 

determined to be of significance to this research. Case study evidence is 

collected via semi-structured interviews of investigators and forensic specialists, 

documentary evidence, and artefact evidence. The outcome of this phase is a 
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defined understanding of the wreckage and structures examination process in 

an investigation involving polymer composite wreckage. 

1.3.2 Objective 2 

Phase 2 of the research is devoted to answering Objective 2 and is presented in 

Chapter 5. The purpose of phase 2 is to locate and review literature that is 

focussed on the visual and macroscopic failure characteristics of polymer 

composite materials. The outcome of this phase is a set of failure features that 

show potential for use during the wreckage investigation and structural 

investigation processes, and hence are suitable for subsequent trial in Objective 

3. 

1.3.3 Objective 3 

Phases 3a and 3b of the research are devoted to answering Objective 3 and 

are presented in Chapter 6. The purpose of phase 3a is to design and conduct 

a testing programme whereby realistic simulated wreckage is created. The 

purpose of phase 3b is then to evaluate the failure features as identified in 

Objective 2 against the simulated wreckage. The outcome of this Objective is 

an understanding of the identification of failure features within the context of 

wreckage investigation and structural investigation processes. 

1.3.4 Objective 4 

Phase 4 of the research is devoted to answering Objective 4 and is presented in 

Chapter 7. The purpose of phase 4 is to design, conduct and evaluate a study 

whereby the existing capabilities of accident investigators in conducting 

wreckage investigations and structural investigations of polymer composite 

wreckage can be assessed. This phase utilises a simulated investigation 

method whereby the participants undertake a simulated investigation. The 

polymer composite wreckage is that which was created in phase 3a of the 

research programme. The outcome of this Objective is an understanding of the 

existing capabilities of accident investigators to identify failure features within 

the context of the wreckage investigation and structural investigation processes. 
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1.4 Contribution to knowledge 

This research presents three main contributions to knowledge. The first is an 

academically derived concept of the wreckage investigation and structural 

investigation in aircraft accident investigations. The literature review (Chapter 3) 

has identified that there has been significant research effort in understanding 

the theory of accident causation and models of analysis. However, there is a 

paucity of research in understanding how the inner processes of an 

investigation are conducted and how these fit into the wider accident 

investigation process. 

The second is in accumulating known visual and macroscopic failure features of 

polymer composite materials, which are oriented for application within the 

wreckage investigation and structural investigation processes of General 

Aviation (GA) aircraft accidents. Historically the visual and macroscopic failure 

features of polymer composite materials have been collated on numerous 

occasions, with a recent and significant contribution being completed by 

Greenhalgh (2009). However, these have been primarily aimed at the forensic 

or fractographic specialists’ perspective. Thus, the significant contribution 

emanates from the assembly of the information within the requirements of the 

investigation practitioner and the needs of the investigation process. 

The final contribution to knowledge is in understanding the application of failure 

characteristics from both the accident investigators perspective and the 

potential from the current understanding as identified in literature. It has been a 

unique opportunity to gain access to the investigation community and to 

conduct research directly with investigation practitioners. 

Additionally it has been a rare opportunity to conduct a large-scale fracture and 

separation of a complex aircraft structure. The generation of understanding on 

failure modes and failure characteristics of polymer composite materials has 

been built up over decades of fracturing predominantly coupon-sized pieces. 

This research has provided a unique opportunity to conduct the fracturing and 

separation of a large multifaceted aircraft structure as a means to recreate 

fracture features in a complex aerostructure.  
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This research has the benefit of offering a contribution to knowledge to both the 

accident investigation practitioners and to the academic community.  

  



 

11 

1.5 Thesis structure 

This report consists of 8 chapters (Figure 1-2). The individual chapters are 

outlined below: 

Chapter 2 reviews the context behind accident investigation and polymer 

composite materials. It identifies the interaction between both areas and the 

challenges that polymer composite materials bring to the accident investigation 

community.  

Chapter 3 provides an in-depth review into both the historic and current 

research efforts in understanding the investigation process. It highlights the 

current state of the art and the research issues associated with the wreckage 

investigation and structural investigation of polymer composite wreckage. This 

chapter provides a foundation from which primary research is conducted. 

Chapter 4 presents the first phase of the research programme. It describes the 

process of case study research and presents the four cases undertaken. The 

results are then discussed presenting key findings on the process of 

examination of the wreckage, and the effect polymer composite materials have 

on the investigation. 

Chapter 5 presents the second phase of the research programme. Findings 

from phase 1 of the research programme are discussed to generate a 

foundation on how visual interpretation of polymer composite materials can 

assist in the investigation process. A literature survey is conducted to identify 

macroscopic and visual failure characteristics of polymer composites and to 

understand the potential for assistance to the investigation. 

Chapter 6 presents the third phase of the research programme. It presents the 

process and procedures by which simulated aircraft wreckage was created. It 

discusses the selection of an appropriate specimen, the design of the fracturing 

programme, the procedures followed, and the results from the fracturing 

programme. It then presents the process whereby the failure characteristics of 

the fractured specimens were examined. Finally the results of the examination 
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of the fractured specimen are summarised with the results from the literature 

survey on visual and macroscopic failure features (chapter 5). 

Chapter 7 presents the final phase of the research programme. Firstly it 

discusses the simulated investigation methodology that was used as a basis to 

conduct a simulated investigation with experienced practitioners. Having 

completed the simulation, the results are discussed in two sections. Firstly, the 

results from how the investigators conducted the investigation are examined 

(process). Finally, results on what the investigators identified during the 

examination are discussed (failure features). 

Chapter 8 provides a conclusion to this thesis by discussing: the research 

findings against the research aim, the contributions to knowledge, and the 

limitations of the research programme and findings. It finally presents areas for 

future research that have been created specifically by this research. 
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Figure 1-2 – Thesis outline (source: author) 
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2 CONTEXT TO RESEARCH 

 

 

This chapter presents the context of the research by providing introductions into 

the fields of accident investigation and polymer composite materials. Initially, 

the discussion emphasises the importance of aircraft accident investigation as a 

means to improve flight safety (Sections 2.1 & 2.2). Subsequently, an 

introduction into composite materials is presented (Section 2.3), and an 

overview of the growth rate of composite materials in aircraft construction is 

given (Section 2.4). 
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2.1 The need to investigate accidents 

The investigation of accidents is essential to the field of safety management 

(Braithwaite and Greaves, 2009) and is essential to accident prevention 

(Lindberg, Hansson & Rollenhagen, 2010). There are many reasons why an 

aircraft accident could be investigated. These include: to apportion blame or 

liability; for purposes of research; to provide closure to the friends and families; 

and, most importantly, to prevent reoccurrence (see Ferry, 1988).  

The philosophy of accident investigation to prevent reoccurrence is enshrined 

into the standards and practices placed onto state investigation agencies 

worldwide. The International Civil Aviation Organisation (ICAO) implemented 

standards and recommended practices for aircraft accident inquiries in 1944 

during the adoption of Annex 13 of the Convention on International Civil 

Aviation (ICAO, 2010). At the time of writing there are 191 member states 

(ICAO, 2013) contracted to ICAO, all sharing the principle aim of investigating 

accidents which, as written by ICAO (2010), is: 

“The sole objective of the investigation of an accident or incident shall be 

the prevention of accidents and incidents. It is not the purpose of this 

activity to apportion blame or liability.” 

This objective is replicated in accident investigation mission statements (e.g. 

AAIB, 2013), with agency independence from regulators and political 

interference adding further prominence to the conducting of impartial 

investigations. 

Moreover, ICAO (2005), state: “Through the discipline of ‘flight safety’, the 

frequency and severity of aviation occurrence have declined significantly”. This 

is widely supported were it is acknowledged that accident rates for scheduled 

operations has stabilised to historic low levels (Matthews, 2004; Davis, Johnson 

& Stepanek, 2008; ICAO, 2008). 

Perhaps the most basic need for investigation is to reduce the ‘cost’ of 

accidents. Whilst this has been explained in terms of a monetary cost (Ferry, 

1988; Čokorilo, Gvozdenović, Vasov & Mirosavljević, 2010), the most significant 
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cost of accidents is the loss of life. The UK CAA reported that during the period 

of 1998-2007 there was a total 8,038 fatalities from accidents involving large 

passenger and cargo transport aircraft (CAA, 2008). However, this information 

excludes fatalities related to other categories of aviation, where especially in 

developed countries, fatalities relating to General Aviation (GA) may be 

substantially higher. For example, between the years of 2007-2010, fatalities 

within the US occurring within the GA sector accounted for 92% (496 fatalities), 

87% (494 fatalities), 89% (475 fatalities) & 96% (451 fatalities) respectively of all 

aviation related fatalities (table 2-1). Furthermore, this difference is reflected in 

the volume of accidents were the GA sector accounts for circa 95% of all 

accidents during this period.  

 

Sector'

2007' 2008' 2009' 2010'

Number'of'
Accidents'

Fa
ta
lit
ie
s' Number'of'

Accidents'

Fa
ta
lit
ie
s' Number'of'

Accidents'

Fa
ta
lit
ie
s' Number'of'

Accidents'

Fa
ta
lit
ie
s'

Total' Fatal' Total' Fatal' Total' Fatal' Total' Fatal'
Total'U.S.'
Civil'
Aviation' 1745' 303' 540' 1659' 297' 566' 1554' 276' 535' 1500' 275' 470'
Part'121' 28' 1' 1' 28' 2' 3' 30' 2' 52' 28' 1' 2'
Part'135' 65' 14' 43' 65' 20' 69' 49' 2' 17' 37' 6' 17'
Part'1E
General'
Aviation' 1652' 288' 496' 1567' 275' 494' 1477' 273' 475' 1435' 268' 451'

Table 2-1 – Total accidents, fatal accidents, and fatalities for major segments of 

U.S. civil aviation (adapted from NTSB, 2013; NTSB, 2013a) 

2.2 A change in technology 

There is a wealth of information available providing either statistical analysis of 

accident rates, trends, detailed categorisation of accidents, or sources for 

accident reports. For example, accident investigation agencies publish accident 

reports and national and regional aviation authorities publish accident statistics. 

Additionally, statistical data also comes from research articles, manufacturers, 

consultancy firms. Whilst there is a wealth of data available, the accuracy and 

comparability of the data and statistics are debatable. Davis et al (2008) present 
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a discussion on this debate, as well as presenting accident statistics within the 

US. 

Annex 13 to the Chicago convention requires that all accidents involving aircraft 

over 2,250kg are reported to ICAO (ICAO, 2010). Subsequently, the information 

is stored within ICAO’s ADREP database such that safety information can be 

shared amongst member states (DIT, 2013). The taxonomy of ADREP (ICAO, 

2006) separates aircraft into four categories, namely: 

• Commercial Air Transport 

• General Aviation 

• Aerial Work, and 

• State Flights 

Within each of these categories are further sub-categories, which provide 

hierarchical levels of types of operations contained within the category (see 

ICAO, 2006).  

Through the ADREP database, ICAO provides statistics on historic accident 

rates for scheduled operations (scheduled operations being a sub-category of 

the commercial transport taxonomy). The accident rate since 1945 is presented 

in figure 2-1 (ICAO, 2002). Although not illustrated in figure 2-1, ICAO statistics 

show that accidents involving fatalities are down to 0.1 fatalities per 100 million 

miles (ICAO, 2008a).  
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Figure 2-1 – Passenger fatality rate / number of accidents, scheduled ops, 

excluding USSR/CIS (redrawn from ICAO, 2002) 

Matthews (2004) and Del Gandio (2009) suggest that the overall reduction is 

linked to evolution of the industry with the implementation of new technology 

being a significant factor. Ground Proximity Warning Systems (GPWS), Traffic 

Collision Avoidance Systems (TCAS) and Flight Operations Quality Assurance 

(FOQA), and fleet turnover are a few examples quoted (Mathews, 2004; Del 

Gandio, 2009). Matthews (2004) illustrates this by incorporating the introduction 

of safety features into a timeline of accident rates, figure 2-2. He discusses, by 

quoting Boeing and Airbus data, that when reviewing accident rates per 

generation of jet, the latter generations statistically have a lower accident rate 

(figure 2-3).  
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Figure 2-2 – Selected safety innovations and major fatal accidents per million 

departures. US data. (redrawn from Matthews, 2004) 

 

Figure 2-3 – Number of accidents per generation of jet (redrawn from Matthews, 

2004) 
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A key argument for this continued reduction due to technological change is the 

ability to learn from accidents. In referring to the Comet accidents of 1954 

(HMSO, 1955), Matthews (2004) suggests: 

“These events led to what many people recognize as the birth of modern 

accident investigation. Investigators in the U.K. employed the scientific 

method in various experiments to establish that the Comets in fact had 

broken up in flight. The U.K. investigators established that, as the Comet 

operated at unprecedented altitudes, the aircraft's frame expanded and 

contracted during every pressurization cycle, which caused metal fatigue. 

Designs changed abruptly to avoid points of added stress, such as sharp 

corners or square openings, and included fewer but stronger joints. The 

next generation of commercial jets, such as the Boeing 707 and the DC-

8, were the primary beneficiaries of this knowledge” 

Whilst this is plausible, when considering the technological move from metallic 

structures to polymer composite structures, the argument becomes weaker. It is 

recognised that composite materials have a higher level of resistance to 

traditional degrading factors such as fatigue and corrosion (Armstrong, Bevan & 

Cole, 2005). However, it is also recognised that the materials are fundamentally 

different and introduce new failure modes such as compression after impact, a 

condition that can reduce the compressive strength of a composite structure by 

70% (Davies & Olsson, 2004). It is therefore acceptable to question as to 

whether the continued link between new technology and reduced accident rates 

can be sustained during periods where new technology replaces old 

technology, rather than evolving current technologies. Moreover, if the 

introduction of new materials is not supported by an ability to understand and 

recognise new failure modes then the learning curve may once again be 

dominated by learning through accident investigations. As Walker (1965) 

suggested back in 1965: 

“Research into aircraft structural fatigue in the last twenty years or so has 

not only led to the prevention of many fatigue accidents, but has also 

meant that they are more likely to be discovered and recognized when 
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they have unfortunately occurred. The result has been some misleading 

statistics, since, while the designer has been reducing the true accident 

rate from fatigue, the accident investigator has virtually been increasing 

it.”  

Moreover, numerous authors have presented reviews referring to a direct 

relationship between accident investigations of aircraft constructed from metallic 

materials and our growth in understanding of structural integrity (Wanhill, 2003: 

Schijve, 1994; Goranson, 1993). 

The investigations and the resultant understanding in structural integrity are 

illustrated in table 2-2. 

Year Aircraft Failure Influence, follow-up 

1954 DeHavilland Comet; 2 aircraft 

crashed owing to fuselage 

explosion 

General awareness of finite aircraft fatigue life as 

an important issue for passenger safety. Attention 

drawn to full-scale fatigue testing 

1969 F-111; wing failure due to 

undetected material flaw 

Aircraft should be damage-tolerant. Fatigue 

cracking due to initial damage should be 

considered 

1977 Boeing 707; tailplane lost 

owing to fatigue failure in spar 

Old aircraft become more fatigue critical, geriatric 

aircraft 

1988 Boeing 737; aircraft lost part of 

fuselage skin structure owing 

to multiple fatigue cracks in 

skin splices 

Multiple-site damage (MSD) can occur in ageing 

aircraft, especially in lap joints of the pressurised 

structure 

Table 2-2 – Milestones of structural integrity through accident investigations 

(redrawn from Schijve, 1994) 

It is also stressed by Wanhill (2003), when referring to composite materials, that 

the current development of aircraft structural integrity has been predominantly 

based on experience with metallic structures. 



 

22 

2.3 Composite materials 

The definition of a composite material is described differently between texts 

however they tend to follow a common theme. To be classified as a composite, 

the material must consist of at least two distinctly different constituent materials 

(Greenhalgh, 2009; Hull & Clyne, 1996; Matthews and Rawlings, 1994). 

Moreover, the constituents must be physically and chemically different 

(Matthews & Rawlings, 1994), and the resultant combination must have 

superior properties to the constituents alone (Greenhalgh, 2009; Matthews & 

Rawlings, 1994). As a result, the combination of materials to create a composite 

structure offers a form, which can provide greater strength for a lower 

equivalent density (figure 2-4). 

 

Figure 2-4 – Specific tensile strength vs. specific stiffness, for metallic and 

Unidirectional (UD), Quasi-isotropic (QI), and woven composite materials. 

(redrawn from Greenhalgh, 2009)  
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A composite material consists of a reinforcement phase (e.g. fibre), a matrix 

(e.g. epoxy) and an interface (i.e. the fibre matrix bond) (Greenhalgh, 2009; Hull 

& Clyne, 1996). The interface is not a physical constituent, but is a significant 

factor in the failure characteristics of a composite material. Additionally, unlike 

typical isotropic materials, the architecture of the internal reinforcing fibres plays 

a significant role in the material properties.  

Figure 2-5 illustrates the classification of conventional polymer composite 

materials based on reinforcement type. Non-conventional polymer composites 

(which are not illustrated in figure 2-5) include 3D architectures where additional 

reinforcement is placed in the z-direction, through braiding or knitting 

(Greenhalgh, 2009).  

 

Figure 2-5 – Classification of conventional composite materials (redrawn from 

Matthews & Rawlings, 1994) 

2.3.1 Reinforcements 
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Particulate reinforcement is typically used in wear applications (Immarigeon, 

Holt, Koul, Zhao, Wallace & Beddoes, 1995) with the role of the matrix simply to 

hold the particulates in solid form (Harris, 1999). Consequently, particulate 

composites are utilised to introduce unusual properties to the material as 

opposed to improving the materials strength (Askeland, Green, & Robertson 

1996).  

A fibrous composite is classified by the length of the fibre being substantially 

longer than its diameter (Matthews & Rawlings, 2004). The classification 

between discontinuous fibres and continuous fibres is a length to diameter ratio 

of thirty (Greenhalgh, 2009). Above thirty and the reinforcement is deemed as 

continuous. Unlike particulate reinforcements, most fibrous reinforcements are 

designed to apply improved strength and stiffness (Askeland et al, 1996), with 

the reinforcement architecture dictating how effectively the fibres carry the load 

(Greenhalgh, 2009). Consequently, if the orientation of the fibres is misaligned, 

the efficiency of the load carrying capability of the material may also be reduced 

(Hoskins & Baker, 1986). 

Furthermore, continuous fibres are sub-categorised into differing fabric 

configurations. Typical reinforcement types include woven, unidirectional and 

roving (figure 2-6). 

 

Figure 2-6 – Typical continuous reinforcement types (redrawn from Campbell, 

2010) 
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In high performance composite components typical for aerospace structures, 

continuous fibre fabrics are typically stacked in layers (Hull & Clyne, 1996). 

Campbell (2010) suggests that where the layers are orientated in the same 

direction, the laminae combine to form a lamina, and where the laminae are 

combined in differing predefined orientations, the form is termed a laminate 

(figure 2-7).  

 

Figure 2-7 - Lamina and laminate lay-ups (Campbell, 2010) 
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matrices applicable to these fibres being polymers (Greenhalgh, 2009). Of 

these, the most important combination to aerospace applications is Carbon / 

Epoxy (Baker, Dutton, Kelly, 2004). 

 

 

Figure 2-8 – Classification of composites according to fibre and matrix 

properties (redrawn from Baker, Dutton & Kelly, 2004) 
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thermoplastics are ductile and undergo plastic deformation during failure (Hull & 

Clyne, 1996).  

Property Thermosets Thermoplastics 

Epoxy resins Polyester resins Nylon 6.6 Polypropylene PEEK 

Melting Temperature (°C) - - 265 164 334 

Distortion Temperature (°C) 50-200 50-110 120-150 80-120 150-200 

Shrinkage on curing (%) 1-2 4-8 - - - 

Water absorption (24h @ 20°C) (%) 0.1-0.4 0.1-0.3 1.3 0.03 0.1 

Chemical resistance Good, 

attacked by 

strong acids 

Attacked by 

strong acids and 

alkalis 

Good, 

attacked by 

strong acids 

Excellent Excellent 

Table 2-3 – Environmental and dimensional properties of thermosets and 

thermoplastics (redrawn from Hull & Clyne, 1996).  

2.4 The growth in polymer composite materials in aircraft 
construction 

Composite materials are not new. Composite materials, in the form of mud and 

straw building blocks, were being used by ancient civilisations (Matthews & 

Rawlings, 2004). However, with the advent of advanced fibre types such as 

glass, Kevlar and carbon, and the corresponding development of matrices 

(Vinson & Sierakowski, 2002), polymer composites have increasingly become 

attractive to the aerospace industry as an alternative to traditional metallic 

structures (ASM, 2001). Furthermore, composite materials are relatively early 

within their maturity cycle (figure 2-9) hence are undergoing significant 

advancement and variations in designs. However, due to the high cost of 

material qualification, aircraft manufacturers tend to select early generation 

materials (Baker et al, 2004). 
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Figure 2-9 – State of materials maturity (redrawn from Vinson & Sierakowski, 

2002) 

Similarly, the use of polymer composite materials in aircraft design is not new. 

De Bruyne (1937) published a paper to the Royal Aeronautical Society 

discussing the application of plastic materials in aircraft construction. Within the 

publication, the use of reinforcement was discussed as a method to increase 

material properties. A breakthrough in the use of polymer composite materials 

for aircraft construction came in c1950 when, for the first time, a polymer 

composite primary structure outperformed a metallic equivalent (McMullen, 

1984). Furthermore, it was as early as 1957 when the FS-24 Phönix, a sailplane 

constructed almost entirely from a glass fibre reinforced polyester resin and 

balsa sandwich, first flew (Deutsches Museum, 2013). 

It is only in recent years that composite materials have taken prominence in 

new commercial aircraft designs. The Boeing 787, which first flew in December 

2009, contains approximately 50% composite material by structural weight with 

the aluminium content being 20% (figure 2-10) (Brosius, 2007). In contrast the 

Boeing 777, which first flew in June 1994, contains 12% composite materials 

and 50% aluminium. 
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Figure 2-10 - Boeing 787 composite profile (FAA, 2012b) 

Furthermore, the Airbus A380, which first flew in 2005 (Airbus, 2013) contains 

25% composite structure as a percentage of total structural weight (figure 2-11). 

And the Airbus A350 is expected to contain 53% composite material by 

structural weight (Airbus, 2013a). 

 

Figure 2-11 – Composite content of the Airbus A380 (Airbus, 2008) 
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Moreover, there are significant differences in the construction between the 

aircraft. For example, the fuselage for the Boeing 787 is manufactured from 

carbon fibre in multiple barrel sections (Marsh, 2006). The upper fuselage of the 

A380 is constructed of fibre-metal laminate panels (Marsh, 2006). The A350 is 

constructed of carbon fibre panels fixed to the airframe in a manner similar to 

the attachment of traditional metallic fuselage skins (Spirit, 2011). 

Whilst this recent milestone marks a transition from metallic materials to 

polymer composites as the material of choice (Rakow & Pettinger, 2007), 

composite materials have been used in secondary structures of large transport 

aircraft since the 1970’s (ASM, 2001) (figure 2-12). The first certification of an 

all-composite primary structure occurred in 1985, when an all-composite vertical 

stabiliser was installed on the Airbus A310-300 (ASM, 2001). 

 

Figure 2-12 – Growth in aircraft composite content (Kelly & Zweben, 2000; Deo, 

Starnes & Holzwarth, 2002) 
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For example the fuselage of the A380 contains GLARE, the Boeing 787 

fuselage is of filament wound carbon fibre and the A350 fuselage is constructed 

of carbon fibre panels. These differences in design may complicate the 

investigation of composite material accidents. 

2.5 Summary 

This chapter has shown the importance of aircraft accident investigation in 

promoting flight safety. It has also demonstrated that there is currently 

undergoing a change in the preference of polymer composite materials over 

metallic materials, for future airframe construction. Whilst the most notable 

developments are within large civil transport aircraft, the change is also 

occurring in other sectors including military and GA. It is also suggested that 

traditionally, technological advancements have generally improved flight safety. 

It has been suggested that composite materials may improve flight safety as 

they offer distinct advantages in fatigue and corrosion resistance. The do 

present issues however as they have new failure modes and they do not have 

the history of learning and development associated with metallic materials. 
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3 LITERATURE REVIEW 

 

 

The purpose of this research is to assist aircraft accident investigators in 

conducting the examination of polymer composite aircraft wreckage. The 

intention of this chapter is to: explore previous work in this area, to determine 

the underlying principles related to the conducting of a wreckage examination 

and, to identify current research issues. These intentions are achieved by 

discussing the following: 

1. The wreckage examination (section 3.2) 
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2. The investigation process (section 3.3) 

3. Research conducted to assist the field investigator in examining polymer 

composite materials (section 3.4) 

3.1 Introduction 

The literature review was conducted to identify literature that has made a 

significant contribution to knowledge in the fields of investigation and wreckage 

examination. It became apparent that there was a dearth of academic research 

located within peer-reviewed journals. Of the publications that were discovered, 

they were generally orientated to discussing experience gained from specific 

investigations (e.g. Clark, 2005; Fox, Schultheisz, Reeder, 2005). 

Furthermore, whilst there was a wealth of academic interest in understanding 

accident analysis, theory and causation, there was a dearth of research 

orientated to understand the investigation process, which would be appropriate 

to the examination of wreckage. 

Hence a significant portion of the literature reviewed focussed on material from 

within the investigation community, including accident investigation manuals, 

reports and published works by investigators. 

3.2 Investigation of wreckage 

The examination of aircraft wreckage is an important aspect of accident 

investigation. Through conducting a wreckage examination, the investigator 

may be able to differentiate between pre-impact and post-impact failures, and 

also gain an understanding of the aircraft dynamics at impact (Walker, 1965). 

Moreover, when considering premature structural failures, it is the responsibility 

of the investigator to recognise a ‘suspicious’ component and subsequently 

send for forensic analysis (Wood and Sweginnis, 2006). This identification 

however is a complex process that requires skill from the investigator.  

This complexity is sometimes exacerbated when access to or recovery of the 

wreckage is restricted. For example, the Transportation Safety Board (TSB) of 
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Canada (TSB, 1991) summarise the factors that are likely to influence wreckage 

recovery as: 

• The likelihood of finding any significant evidence 

• The benefit to the investigation 

• The potential to further advance aviation safety 

• The possibility of organising an effective search 

• The probability of a successful search 

• The feasibility of recovering the wreckage 

• The extent of public interest 

• The total cost of the search and retrieval process compared to the benefit 

to aviation safety 

• The likelihood of reliable cost–sharing between the owners, operators, 

insurance companies and the TSB.  

The TSB (1991) go one further to state: 

“You can usually adequately examine the wreckage in situ at the site, 

and need to only bring back selected components for detailed 

examination and analysis.” 

Whilst this view is not identical to all investigation agencies, it is similar to 

policies by Australian Transport Safety Bureau (ATSB) (Macaulay, 2010), and 

Accident Investigation Board of Norway (AIBN) (Nørstegård, 2010). 

The examination of aircraft wreckage primarily occurs in two phases. The first 

phase concerns the examination of the wreckage at the scene of the accident. 

Initially, this will entail a walk through the wreckage to gain an understanding 

and provide perspective of the accident (Wood & Sweginnis, 2006). This 

preliminary overview will provide information from which the investigator can 

start to develop hypothesis surrounding the accident (Carver, 1987). 

During the wreckage examination phase, the initial tasks are focused on 

recording the accident scene, collecting perishable evidence, plotting the 

wreckage, and developing a plan (Wood & Sweginnis, 2006; ICAO 1970). 
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The examination of the wreckage during this phase will provide indications of 

(ICAO, 1970): 

• The direction, angle and speed of descent 

• Whether it was a controlled or uncontrolled descent 

• Whether the engines were under power at the time of impact 

• Whether the aircraft was structurally intact at the point of first impact 

Furthermore, cursory examination of the fractures will be able to provide 

indications as to whether a component failed in overload (Heaslip, 1973) and 

hence understand the breakup of the airframe during the impact sequence.  

Structural failure is a significant factor in many aircraft accidents (Wood & 

Sweginnis, 2006). ICAO (1970) defines a structures examination as “the 

investigation and reporting upon the airframe of the aircraft. This includes 

primary and secondary structure, lift and control surfaces”. If a structural failure 

is suspected, then it is likely that a second phase of detailed wreckage 

examination will be conducted (Carver, 1987). 

Typically, the most convincing evidence of an in-flight structural failure is in the 

wreckage distribution (Wood & Sweginnis, 2006). This is not always the case 

however, as in-flight structural failures can also result in contained or non-

separating failures (ICAO, 1970), where the fractured components are ‘carried’ 

to the location of impact. ICAO (1970) describes these occurrences as “by far 

the more difficult to investigate”. 

Carver (1987) summarise the charter of an investigator when conducting a 

structural investigation as follows: 

“To do your job as an investigator it is not necessary for you to be the 

final authority on why and how aircraft parts failed in a mishap. You need 

to understand the fundamentals of failure analysis, to be able to 

recognize anomalous failures—things that just don't look right, that didn't 

fail the way you would expect them to—and to know where and how to 

go to find out what caused these failures. There are always people 

available to assist you in determining why a piece of metal failed. Your 
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job is to determine which failed pieces of metal are important; to preserve 

the evidence which these parts represent so that a true determination of 

the causes of failure can be made; to consult the failure analysis experts 

who can make that determination: and then to use the information they 

give you to determine the cause of the mishap, to prevent future 

mishaps.” 

There is, however, an important variation in the wreckage examination that is 

not investigator centred, rather, dependent on the resources deployed to the 

investigation and on the aircraft under investigation. Importantly, both of these 

factors are significantly influenced by the operating category of the aircraft.  

When considering the scope of aircraft utilisation, ranging, for example, from 

light sports aircraft to large commercial air transport aircraft, it is reasonable that 

the types of composite material may also have a wide variation. This would 

typically vary from the use of hand laid, wet resin saturated, room temperature 

cured fiberglass used in light sports aircraft and gliders, to machine laid, 

autoclave cured, pre-impregnated carbon fibre (prepreg) used in larger 

transport aircraft (Abbott, 2000). This suggests that, to a certain degree, there is 

potentially a variation in the design and manufacture of the airframe, depending 

on the type of aircraft. For example, R. Abbott (Abbott, 2000) when discussing 

Glass Fibre Reinforced Epoxy (GFRE), suggests that the use of GFRE is suited 

to primary structures in small light aircraft, but it has a use on large commercial 

aircraft limited to items such as fairings and trailing edges. 

Furthermore, there are typically differing investigation protocols depending on 

the nature of the accident. For example, according to Sarsfield, Stanley, Lebow, 

Ettedgui, and Henning (2000), the US NTSB has five different investigation 

categories.  

“Major investigation. This usually entails an accident involving a 

commercial airliner or cargo aircraft. The Washington headquarters of 

the NTSB, through the OAS dispatches a “goteam” of investigators to 

handle the investigation of such an accident. 
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Major investigation, regional office. This is a less serious air accident 

in which significant safety issues have been identified. It is handled by 

one of the NTSB’s six regional offices, at least at the outset. Some 

nonfatal airline accidents and most small commuter airline accidents fall 

into this category. 

Field investigation. This is an airline accident or incident with no 

fatalities (such as an incident involving air turbulence) or a GA accident. 

The investigation is conducted by the nearest regional office and at least 

one investigator goes to the site of the accident. A small number of field 

investigations involving GA aircraft are complex and grow to rival 

headquarters-led investigations. 

Limited investigation. A limited investigation, sometimes called a “desk 

investigation,” is conducted subsequent to an event involving GA aircraft. 

This investigation is carried out by U.S. mail or over the telephone. 

Delegated investigation. These investigations are delegated to the 

FAA. They include accidents involving rotorcraft, amateur built aircraft, 

restricted category aircraft, and all fixed wing aircraft that have a 

certificated maximum gross takeoff weight of 12,000 pounds or less, 

unless fatalities occurred, the aircraft was operated as an “air taxi,” or the 

accident involved a midair collision. The FAA is directed to report the 

facts, conditions, and circumstances of the accident to the NTSB; if 

necessary, the Safety Board may determine the probable cause. 

According to the NTSB major investigation manual (NTSB, 2002), when a major 

investigation occurs, the investigation team may contain over one hundred 

technical specialists from over a dozen parties. This party system is established 

to allow “the NTSB to leverage its limited resources and personnel by bringing 

into an investigation technical expertise from the aircraft manufacturers or 

airlines, professional organizations… During the field investigation and 

throughout the fact-finding process, party representatives play a significant role 

in evaluating physical evidence from the crash and developing a complete and 

accurate factual record of the accident.” (Sarsfield et al, 2000). When 



 

38 

commenting on the difference in the resources, and hence role, that an 

investigator would have when investigating a typical GA accident compared to 

that of a major investigation, Sarsfield et al goes on further to state: 

“In the field, the Air Safety Investigator (ASI) dispatched from a regional 

office usually works alone and investigations do not receive extensive 

support from the OAS in Washington. Field investigations are also 

usually much smaller in scope, making only occasional use of the Safety 

Board’s headquarters-based laboratories facilities.” 

This difference in deployed resources between a major investigation and one 

involving a GA type accident is not limited to the NTSB. A similar difference is 

described in the UK AAIB operations manual (AAIB, 2008). 

It is therefore evident that whilst there will be similarities in the wreckage 

examination of large commercial transport aircraft and that of GA aircraft, there 

is also the potential for some significant differences. These differences can be 

related to the typical types of construction identified on site or the expected 

support, in terms of technical expertise and resources, provided to the 

investigator during the investigation. It can therefore be expected, although this 

is not assured, that during an investigation involving a typical GA aircraft, there 

is likely to be an increased emphasis placed on the field investigator to conduct 

the wreckage examination and hence to conduct the visual examination of the 

composite structure. Moreover, there is likely to be less resource to support 

further in-depth examination unless the part in question had already been 

identified as of significance to the investigation. 

3.2.1 The knowledge and skills to conduct a wreckage examination 

As previously stated, it is not an expectation that the accident investigator 

should be a metallurgist as all formal confirmations of failures come from the 

laboratory (Wood & Sweginnis, 2006). However, a basic knowledge of 

metallurgy is of importance. For example, the accident investigator chooses the 

specimens to be sent to the laboratory and they must liaise with the failure 

analyst and interpret the information gained within the context of the whole 
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accident (Wood & Sweginnis, 2006; Kar, 1992). Moreover as Noon (2009) 

suggests: 

“Some evidence may be misinterpreted by the investigator. Perhaps its 

significance is overlooked, overvalued, or not understood properly at all. 

For example, the significance of material fatigue may not be properly 

evaluated if the investigators cannot recognize what a fatigue fracture 

looks like.”  

Packer & Morin, (1974) describe a similar instance where, without the 

understanding of the wider context of the accident, a false analysis from a 

laboratory examination occurred. Additionally, an understanding of an accident 

sequence may come from the interpretation of fracture surfaces and 

characteristics of the failed component. As Walker (1965) states,  

“The study of fractures usually has an important place in accident 

investigation. Many of these fractures have a conventional form and are 

readily recognized by engineers with a text-book knowledge of what 

might be termed metallurgical specimens.” 

ICAO circular 298 AN/172 (ICAO, 2003) “training guidelines for aircraft accident 

investigators” represents standards for the training of aircraft accident 

investigators (ICAO, 2003). Within this circular the following is given as accident 

investigation course guidelines in structural examination training (ICAO, 2003):  

“As the basis for the examination of the wreckage, the study of structures 

is an area of prime interest to the investigator. The study of structures 

should comprise metallurgy, fibre reinforced plastics and timber 

structures, stress analysis and the strength of these materials. It should 

also include the various modes of failure and the characteristics of such 

failures in the materials used in aircraft structures. The methods of failure 

analysis, reconstruction of areas of interest in the airframe, and the 

evidence of the various modes of failure are important considerations. 

The various types of flight controls and landing gear structures should 

also be studied under this heading. This section of the syllabus should 
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cover the advanced equipment used in the study of failure mechanisms, 

the preparation of samples for examination by such equipment, and the 

methods for comparative testing of similar materials. The study of 

structures also provides a platform for introducing the means of 

wreckage trajectory analysis. Every effort should be made to provide 

examples of the various failure modes in materials used in aircraft 

construction.” 

It is evident that the identification of composite material failure modes is a 

requirement of the investigator. Moreover, it is recognised that the investigators 

understanding of composite failures lags behind that of metallics (Wood and 

Sweginnis, 2006; Rakow & Pettinger, 2007; Taylor, 2007). 

3.2.2 The examination of material failures within aircraft accident 
investigation 

Whilst the accident investigation community has a long history with the 

structural failure of metallic materials, including the understanding and 

identification of failure modes, the situation with composite materials is different. 

An understanding of the challenges that composite materials present to the 

accident investigation community was described by Fox, Schultheisz and 

Reeder (2005). Fox and Schultheisz were both NTSB staff working within the 

materials laboratory and the paper published relates to the structural 

investigation of American Airlines Flight 587. Within this paper the authors state: 

“For most common airplane structural metals, visual inspection or low-

power magnification is often sufficient to determine fracture mechanism 

and direction. For metals, the fracture plane, surface roughness, radial 

marks, chevrons, shear lips, and general deformation when present all 

provide macroscopic clues to the fracture mechanisms, direction of 

fracture propagation, and relative motion of mating surfaces. Preexisting 

cracks in metals often show staining or changes in color associated with 

corrosion. Using these clues, large areas of damaged structure can be 

examined relatively quickly by an experienced investigator to identify 

fracture origins and areas requiring closer inspection.”  
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They go on to state: 

“Visual clues to preexisting fractures, such as flat fracture features with 

curving boundaries or staining from corrosion that can be readily 

observed in structural metals, generally are not readily visible in 

composites. Furthermore, the visual cues to fracture propagation 

directions that are sometimes apparent in composite structures, such as 

crack branching in translaminar fractures (fractures that break fibers) or 

banding in delaminations (fractures between layers), were not apparent 

in many of the fractures of interest.” 

It is therefore apparent that when looking for visual characteristics within a 

composite material, the investigation noted that there was a lack of known 

visual characteristics, and of those that were known, not all were visible on the 

structure. 

However, the identification and reporting on simple failure characteristics to 

support the reconstruction of the accident sequence has appeared in numerous 

accident investigation reports. 

For example, during the investigation of a Glaser Dirks DG-400 all composite 

sailplane, the field investigator reported (NTSB, 2009) 

“Examination of the wing spar carry though revealed that the left wing 

bottom spar cap fracture surface exhibited a flat face, and carbon fibers 

that were bent and buckled in a manner consistent with compression 

loading. The upper spar cap fracture surface was jagged with carbon 

fiber ends extending at different lengths, consistent with tension loading.” 

In addition, a series of Schempp-Hirth Duo Discus wing failures were 

investigated by the BFU (BFU, 2006) and BEA (BEA, 2003) (figure 3-1). The 

investigators conducted visual examination of the bonding surfaces and fracture 

surfaces to identify insufficient bonding and failure modes. 
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Figure 3-1 – Images from BEA investigation report depicting visual 

characteristics (BEA, 2003).  

In 2002 Qinetiq, who provide forensic analysis of structural failures to the UK 

AAIB, observed that the top three metallic failure mechanisms were Fatigue 

(55%), Corrosion (16%) and Overload (14%), (Findlay & Harrison, 2002). This 

result is perhaps not surprising since typically the fatigue limit of light alloys can 

be as little as 10% of the ultimate static strength (Greenhalgh, 2009). This 

experience has provided an understanding to the accident investigation 

community as to how metallic aircraft can fail prematurely. Composites, on the 

other hand, are relatively fatigue resistant, and any significant fatigue crack 

growth may not develop until 60% of static failure stress (Greenhalgh, 2009). 

Moreover, delamination is a failure mechanism that is considered a significant 

issue for laminate composite materials but one which does not affect traditional 

aluminium materials. Delamination involves the subsurface separation of plies 

of a laminate and may be initiated by relatively low energy impacts. The full 

extent of such damage may remain barely visible under visual examination. 

Thus early detection is reliant on Non-Destructive Evaluation (NDE). Ransom, 

Glaessgen, Raju, Knight and Reeder (2008), however, have recently 

questioned the effectiveness of NDE inspections claiming that “Nondestructive 

evaluation (NDE) techniques of complex structures are generally inadequate to 

detect damage during typical in-service inspections”. 

The understanding of metallic failure modes and how to make a preliminary 

visual identification has benefited from decades of failures and subsequent 
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investigations. In the case of metal fatigue, Wanhill (2003) discusses advances 

in the knowledge of fatigue linked to notable aircraft accidents such as: the 

Comet disasters of 1954, which gave a general awareness of finite aircraft 

fatigue life, the F-111 wing failure in 1969 which highlighted aircraft should be 

damage tolerant, the Dan Air 707 accident in 1977 which presented the fatigue 

of geriatric aircraft, and the Aloha Airlines 737 accident in 1988 highlighting 

multiple site fatigue damage. Unfortunately this accrued knowledge and 

understanding of metallic failures cannot necessarily be transferred to the 

understanding of composite material failures due to key differences between 

metallics and composite materials (Wanhill, 2003). In the case of metallics, a 

suspect fatigue initiated failure may be visibly identified by beach marks and the 

presence of two distinctly different fracture zones (ICAO, 1970). These visual 

clues can also provide the investigator with an indication as to the initiation site. 

In the case of composites, visual examination of most failure modes can be 

complicated through a substantial increase in the number of fracture surfaces, a 

general difficulty in visual identification, a high susceptibility to post fracture 

damage and the lack of any significant permanent deformation (Greenhalgh, 

2009). In the case of the latter, the permanent deformation of metallic structures 

can provide valuable clues as to what was occurring to the aircraft prior to or at 

the time of impact. For example Frank Taylor (1998), in his paper discussing the 

wreckage analysis of a DC-9 being operated by Itavia that crashed off Ustica, 

discusses how the permanent deformation of the aircraft structure can be used 

to determine the break up sequence and to locate the most probable position of 

an explosive device. An absence of this ‘recording’ of evidence may have major 

implications on accidents where evidence from alternative sources is limited. 

Accident investigation literature, which includes the explanation of metallic 

failure characteristics and subsequent identification features, is dominated by 

sketches produced by Thomas Gavin. These sketches have been used within 

accident investigation training media for many decades, e.g. Cranfield 

University’s Applied Aircraft Accident Investigation course, ICAO’s manual of 

accident investigation (ICAO 1970; ICAO 2008), the book titled “Aircraft 

Accident and Investigation” by Wood and Sweginnis (2006), and a publication 
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titled “Aircraft Accident Reconstruction and Litigation”, by McCormick and 

Papadakis (2003).  

3.2.3 The visual and macroscopic failure characteristics of polymer 
composite materials 

The visual examination of a failed component is usually the first step in a failure 

investigation and has been suggested as the most important step (ASM, 2001). 

In many cases the visual examination can be enough to determine the cause of 

failure (Stumpff, 2001; Kar, 1992a) and a subsequent in-depth investigation is 

conducted to confirm or contradict the initial finding (Greenhalgh, 2009). 

Moreover, a successful in-depth failure investigation has been conducted solely 

using low magnification techniques (Purslow, 1984), albeit this has relied on the 

expertise of the analyst in interpreting the findings. 

Generally a visual examination can provide a considerable amount of 

information such as identification of the sequence of failure, determination of 

crack growth directions, identification of the failure initiation site and 

identification of failure modes (ASM, 2001; Purslow, 1981). Although the visual 

examination can be fruitful, it is seldom a replacement for high magnification 

examination. In fact, the most widely used method of studying fracture surfaces 

is through the use of the Scanning Electron Microscope (SEM) (Roulin-

Moloney, 1989). 

Some of the most seminal work on identifying the visual and macroscopic 

characteristics of composite failures appeared in the 1980’s, although there 

were numerous publications before this time. During this period the 

development of a handbook began in 1984 (Stumpff & Snide, 1986) and was 

presented in numerous volumes and updates (Smith & Grove, 1987; Hua & 

Yamashita, 1989; Kar, 1992; Kar, 1992a; Kar, 1992b; Kar, 1992c; Walker, 

1997)). The purpose of the handbook was to visually record the fracture 

surfaces of composite materials that had failed under differing conditions. This 

began the compilation of an atlas of fractographs much in a similar fashion as 

had been conducted within the metals field (e.g. ASM, 1987). It was later 

realised that this would be an impractical task due to the vast variations in 
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possible fracture surfaces and thus, as Greenhalgh (2009) suggests “the 

approach pursued by most fractographers has been to understand the 

mechanisms and relate them to the fracture morphologies”. 

Whilst this argument applied to predominantly microscopic fracture 

characterisation, the same fundamental issues appear from a visual and 

macroscopic perspective. When a metallic material fails, the failure is usually 

restricted to one or a limited number of fracture planes. When a composite 

material fails, whether it a unidirectional material or a multi-directional laminate 

material, the failure is likely to result in a significant amount of energy being 

absorbed through multiple fractures (Greenhalgh, 2009). Moreover, the fracture 

characteristics are influenced by additional factors that do not occur to metallic 

materials. For example, the fracture characteristics of a composite material are 

dependent on (Modified from: Greenhalgh, 2005; Srivastava, 1989): 

• The material, including the fibre, the matrix and the interface 

• The architecture 

• The form of loading applied (e.g. compression, tension, etc.) 

• The fracture plane (e.g. translaminar, interlaminar, etc.) 

• The nature of loading (e.g. static, dynamic, or cyclic) 

• The influence of degradation mechanisms. 

It is thus likely that similar issues will appear during the visual and macroscopic 

interpretation of polymer composite materials. This would be likely to have 

ramifications on transferring knowledge to the field investigator. The argument 

previously mentioned suggests that an understanding of mechanisms and 

principles of failure will be necessary in order to confidently identify the failure 

mechanism. This is in contrast to the current transfer of understanding on 

metallic failures to accident investigators where current accident investigation 

training literature predominantly focuses on visual representations of the failure 

surfaces. For example, McCormick and Papadakis (2003), in their publication 

title “Aircraft Accident Reconstruction and Litigation”, present a chapter on 

metallic failures that is based on pictorial representations of failure modes with 

little reference to the mechanisms. 
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Whilst there has been a significant development in the understanding of visual 

and macroscopic interpretations of composite failures, there also lacks 

discussions on the current status and future requirements for identification. 

Rather, the visual and macroscopic interpretation is generally treated as a 

precursor to the higher magnification examination. One of the first publications, 

which tackled the issue of visual and macroscopic interpretation, was during the 

development of the handbook by Kar (1992). There were six major tasks in the 

construction of the handbook, with the first task being to create “procedural 

guidelines for field investigation techniques”. Whilst the procedures included 

handling, transportation and health and safety risks, the handbook also 

presented visual identification techniques (table 3-1) and a framework for field 

procedures (figure 3-2). However, in summarising the current knowledge, Kar 

(1992b) suggested: 

“The ability to define fracture types at the macroscopic level can often be 

the most valuable capability for many investigators, particularly for those 

performing field investigations. When examining a failed composite 

structure, the investigator must assess the nature and direction of the 

applied load, identify the significance and time of fracture, and select 

portions of the structure for laboratory analyses. Visual examination 

alone can often provide sufficient information to answer these questions. 

However, this extremely valuable capability is very much in its infancy 

compared to the metals field.” 
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Mode' Environment'Condition' Macroscopic'Fracture'features'

Interlaminar'
Tension'
Dominated'

Low'temperature'/'Dry'
Smooth'Glassy'fracture'surface'
Major'portion'of'fracture'between'plies'

Hot'or'Hot'/'wet'

Smooth'but'with'loose'fibres'strewn'on'surface'
A'majority'of'the'fracture'within'plies'

May'be'permanent'deformation'of'the'laminate'

Interlaminar'
Shear'
Dominated'

Low'temperature'/'Dry'

Surface'flat,'but'with'“Milky”'appearance'when'
held'at'angle'to'light'
Major'portions'of'fracture'between'plies'

Hot'or'Hot'/'wet'

Also'exhibits'“milky”'appearance'
Tends'to'fracture'within'a'ply'
Loose'fibres'on'surface'

Translaminar'
tension' E'

Rough,'jagged'fracture'surface'with'individual'
fibres'protruding'from'surface'

Translaminar'
compression' E'

Extreme'surface'damage.'Large'regions'of'fibres'
fractured'on'same'plane'

Very'few,'if'any,'fibres'protruding'from'surface'

Translaminar'
flexure' E'

Two'fairly'distinct'regions,'one'exhibiting'
translaminar'tension'and'the'other'translaminar'
compression,'the'regions'being'separated'by'a'
neutral'axis'line'

Table 3-1 – “Visual macroscopic fracture surface features” (Kar, 1992a) 



 

48 

 

Figure 3-2 – Field Handling Logic Network for composite parts (Kar, 1992b) 

It is evident however that table 3-1 was not representative of an overarching 

academic knowledge of failure characteristics at that time; rather it was based 

on “relationships that various investigators have observed” (Kar, 1992). Aside to 

the above-mentioned handbook, visual features began to be described in 

literature most noticeable by Purslow (1981; 1983; 1987; 1986; 1988). However, 

it was not until Greenhalgh (2009) published his seminal book titled “Failure 

analysis and fractography of polymer composites”, that a significant 

compendium of visual characteristics was created (although the publication was 

dominated by high magnification interpretation). Within this publication an 

alternative table of characteristics was presented (Table 3-2), along with 

detailed information on the characteristics and mechanisms of a variety of 

macroscopic features. 
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'' Feature' Implication'

Undamaged'
surfaces'

Visible'distortion'
Possible'evidence'of'subEsurface'damage'or'
delamination'

Visible'nicks,'dents,'
splits'or'gouges'

Possible'crack'initiation'site.'Possible'evidence'of'
impact,'fretting'or'wear'damage.'Direction'of'
impact'can'be'deduced'from'gouge'direction'

Surface'blistering'or'
splitting'

Internal'damage,'such'as'delamination'and'ply'
splitting'and'may'indicate'instability'such'as'
buckling'or'postEfailure'damage'

Discolouration'or'fading'
Evidence'of'exposure'to'chemicals'or'ionising'
radiation'

Translaminar'
fracture'
surfaces'

Radial'or'chevron'
features'

Emanate'from'crack'initiation'site,'and'show'
crack'propagation'direction'

Flat,'dull'surface'
Compression'failure'or'evidence'of'fretting'of'
surfaces'

Shiny,'dark'surface' Tensile'failure'

Radial'steps'
Torsion'failure;'rotation'direction'deduced'from'
the'orientation'of'steps'

Increasing'degree'of'
secondary'damage'

Growth'often'in'the'direction'of'increasing'
degree'of'secondary'damage,'but'may'be'limited'
if'the'fracture'or'loading'mode'changes'

Intralaminar'
and'
interlaminar'
fracture'
surfaces'

Ribs'or'tide'marks'

Slip/stick'fracture,'and'may'be'an'indication'of'
cyclic'loading.'Propagation'from'the'centre'of'
radius'of'curvature.'

Dull'fracture'surface'
Either'mode'II'interlaminar'shear'or'surface'
fretting'

Shiny'fracture'surface'
Mode'I'interlaminar'peel'dominated'fracture'
surface'

Fracture'surface'
discolouration'

Either'postEfailure'contamination'or'evidence'of'
corrosion'prior'to'failure'

Change'in'surface'hue'
Evidence'of'a'change'in'fracture'mode'or'crack'
growth'direction'

Table 3-2 – “Features to note during a visual examination” (Greenhalgh, 2009)  

It was apparent however that despite an increase in understanding, there still 

existed areas where failure modes could not easily be identified using visual 

interpretation (Hiley, 1999). Moreover, the interpretation is likely to be subjective 

in certain situations. Hence, due to the vast array of factors which may influence 

the fracture surface, much work still can be conducted on understanding the 

visual characteristics and their occurrence. However, a substantial amount of 

knowledge has been presented on potential characteristics that may be visually 

evident. 
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However, the application of the techniques within the real world failure 

investigation scenario is rarely discussed. It is therefore impossible to predict 

the success of visual identification within the field of accident investigation 

without taking the field into context. For example, the ‘duck test’ (van Wersch, 

Forshaw and Cartwright, 2009) is an adage of inductive reasoning which 

describes the use of multiple sources of information to assess the likely 

outcome, i.e. “if it looks like a duck, swims like a duck and quacks like a duck, 

then it is probably a duck”. External sources of evidence such as the wreckage 

distribution, aircraft accident history, witness evidence, etc. may supply the 

‘swims’ and ‘quacks’ of the examination, with the visual examination supplying 

the ‘looks like’. Therefore, it may be plausible that within the field investigation 

scenario, a probable positive determination, or conversely a probable false 

determination, may be sufficient to benefit the investigation. Especially, as in the 

eyes of the field investigator, all confirmations of material failures must come 

from the laboratory (Wood & Swegginis, 2006). 

3.3 Investigation process 

3.3.1 Data, facts, information and evidence 

Perusing within the accident investigation literature, the themes of facts, data 

and evidence appear to be used interchangeably and placed within the same 

context. They do however have one similarity in that there are no clear 

definitions within the accident investigation literature to separate each. 

Distinguishing between them may be inconsequential if it were not for the 

investigation depending heavily on these from a theoretical point of describing 

the process of investigation, and from a practical perspective as the 

investigation is centred on establishing these key aspects. For example, the 

ICAO (2005) “ICAO Accident Prevention Programme” and ICAO (2010), Annex 

13 both refer to the collection of ‘information’. Within Annex 13, ICAO (2010) 

defines an accident as (emphasis added): 

“A process conducted for the purpose of accident prevention which 

includes the gathering and analysis of information, the drawing of 
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conclusions, including the determination of causes and/or contributing 

factors and, when appropriate, the making of safety recommendations.” 

Conversely, in ICAO’s (2008) draft document “Manual of aircraft accident and 

incident investigation”, the investigation process is referred to as the collection 

and analysis of ‘data’. With the documents predecessor, titled “Manual of 

aircraft accident investigation” ICAO (1970), referred to the process as 

(emphasis added): 

“The fundamental purpose of inquiry into an aircraft accident is to 

determine the facts, conditions and circumstances pertaining to the 

accident with a view to establishing the probable cause thereof…” 

Similar themes appear in other investigation literature, e.g. Ellis (1984), Wood & 

Swegginnis (2006), and Ferry (1988) with the collection of ‘evidence’ being 

quoted. For example, the term ‘perishable evidence’ is frequently quoted. 

However, a clearer understanding of the differences has been suggested within 

the field of criminal investigation. For example, the Association of Chief Police 

Officers produced the “Core investigative doctrine”. Within this document, the 

definitions are extracted from the Criminal Procedure and Investigations Act 

(1996). Here, the definitions are split into ‘Evidence’ and ‘Material’, with Material 

including “material of any kind, including information and objects”. Both terms 

are hence drawn from the legal framework from which a criminal investigation is 

investigated. 

An alternative school of thought is presented by the “American Institute of 

Chemical Engineers” (Safety Center for Chemical Process, 2003). Here, the 

definition of evidence is given as: 

“Data on which the investigation team will rely for subsequent analysis, 

testing, reconstruction, corroboration, and conclusions”. 

Moreover, the US Department of Agriculture suggest that a fact can be defined 

as (DoA, 2003): 



 

52 

“An actual happening in time or space that is verified, preferably by two 

or more sources of evidence or proof.” 

The collection of data, and hence evidence, is directly related to the 

determination of causes (Carver, 1987). For this reason, the understanding of 

the forms of evidence available, how it can be identified by the investigator and, 

how it is gathered in a manner to avoid permanent destruction, is of critical 

importance to the investigation process.  

The potential sources of data or potential evidence are boundless. However, 

there are general categories from which evidence is generally located. ICAO 

(2005) proposes that sources of information can be located from either primary 

or secondary sources. Much like the definitions of primary and secondary 

research, the primary sources are information which is collected by the 

investigator and secondary sources are reliant on information that has already 

been gathered. Within primary and secondary information sources contain sub-

sections listing categories which the information appear (Figure 3-3). 

 

Figure 3-3 - Investigation process with sources of information (redrawn from 

ICAO, 2005) 

Data acquisition

Primary Sources

Data analysis Conclusions

Secondary Sources

Physical examination

Documentation

Occurrence databases

Technical literature

Professional expertise

Interviews

Direct observation

Simulations

Recordings

Data acquisition

Primary Sources

Data analysis Conclusions

Secondary Sources

Physical examination

Documentation

Occurrence databases

Technical literature

Professional expertise

Interviews

Direct observation

Simulations

Recordings

Investigation 
process

Sources of 
information



 

53 

Stott (2009), in training literature associated with accident investigator training 

at Cranfield University, suggests that evidence can be split into: Environment, 

Equipment, and People. 

An alternative approach, which occurs in accident investigation training 

literature, is to describe the internal investigations and to highlight possible 

forms of evidence within each category. For example the following has been 

taken from the ICAO (2008): 

• Wreckage investigation 

• Organisational investigation 

• Operations investigation 

• Aircraft operations environment 

• Aircraft performance investigation 

• Flight recorders 

• Reconstruction of wreckage 

• Structures investigation 

• Mid-air collision investigation 

• Fire investigation 

• Powerplant investigation 

• Systems investigation 

• Maintenance investigation 

• Helicopter investigation 

• Investigating human factors 

• Survival, evacuation, search, rescue and fire fighting 

• Pathology investigation 

• Investigation of explosives sabotage 

• Investigating system design issues 

This format is present in other investigation publications such as ICAO (1970), 

Wood & Swegginnis (2006), Carver (1987), McCormick & Papadakis (2003). 

Whilst this separation may suggest that sources of evidence are linked to 

individual areas of investigation, this is not necessarily the case. For example, a 
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pathological examination may be conducted to identify how the pilot died and 

whether a pathological aspect may be causal to the accident. Additionally 

however, evidence contained with the victim may provide significant information 

as to the other areas of investigation or to the reconstruction of the accident 

sequence. Mason (1968), in his book on aviation pathology, describes the 

location of shrapnel within the victims’ bodies, as providing a source of evidence 

to suggest the probable location of detonation within the aircraft. Furthermore, 

Folio, Harcke & Luzi (2009) describe the examination of hand and leg injuries to 

ascertain who was at the controls at the time of the accident. 

3.3.2 Investigation framework 

The investigation of aircraft accidents is inherently reactive by design. The 

occurrence of the accident becomes the starting point in which the investigator 

traces backwards through the sequence of events that occur. It is therefore 

advantageous to expand the scope of the review to include disciplines outside 

of aircraft accident investigation, but also where investigations will occur. 

However, methods of investigations which are conducted primarily to establish 

blame or liability, such as those in criminal investigations, have been excluded. 

3.3.2.1 ATSB Model of safety investigation activities 

In discussing analysis, proof and causality in safety investigations, Walker & 

Bills (2008) present a framework of the activities that are deemed by the 

authors to occur during the investigation process (figure 3-4). The purpose of 

the framework was to illustrate the placement of the analysis conducted by the 

investigator into the activities of the investigation. It is proposed that the 

analysis is conducted during the majority of the investigation although the 

purpose of the analysis may change. The model is used within the paper to set 

the scene for a requirement for an enhanced framework for investigation 

analysis. It proposes that the analysis conducted is varied and ultimately relies 

on the judgement of the investigators. 
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Figure 3-4 – ATSB safety investigation activities overview (redrawn from Walker 

& Bills, 2008) 

3.3.2.2 US Department of Energy 

Ferry (1988) presents a seven step process created as a refinement to a model 

proposed by Johnson (1980). The seven step process is illustrated in figure 3-5 

and involves the following steps (Ferry, 1988): 

1. Analyse all available information 

2. Isolate relevant and irrelevant facts. Develop hypotheses to resolve 

uncertainties 

3. Analyse the facts developed to date 

4. Form conclusions based on what is known and what is not known, and 

determine serious deficiencies in information. 

5. Analyse the conclusions for validity 
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6. Make recommendations based on an analysis of the conclusions 

7. Summarise the entire process 

Figure 3-5 – Seven steps of information collection (Ferry, 1988) 

3.3.2.3 Operator, Events & Activity mini-investigation model 

Richard Wood (Ferry, 1988), proposes a model whereby the investigation is 

segregated into individual small scale investigations (figure 3.6). The initial 

information gathering leads to the development of the operator, events and 

activity scenarios. These are not restricted to one event each and thus the 

second phase of the process may contain many more. Each of these stages 

undergo a mini-investigation, where facts, analysis and conclusion are drawn. 

The outcome, which may be positive or negative, is then passed to the 

conclusions summary stage. 

 

Figure 3-6 – Examination of items of consideration through a facts, analysis, 

conclusions and process (redrawn from Ferry, 1988) 

3.3.2.4 Three phase investigation 

A three phase approach to accident investigation is presented by Ferry (1988), 

DOE (1999), and Sklet (2002), and is illustrated in figure 3-7. The x-axis 

illustrates the increasing time during an investigation and the movement 
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between the three phases of fact gathering, analysis and report preparation. 

The y-axis illustrates the investigator effort within each phase. 

 

Figure 3-7 – Three phases in an accident investigation (DOE, 1999) 

3.3.2.5 ICAO investigation process 

ICAO (2008; 2005) presents a three phase approach to the investigation, split 

into the collection of data, analysis of data, and the presentation of findings 

(figure 3-8). Although the illustration suggests a stop start process, ICAO 

suggests that the analysis runs parallel with the collection of data. 

The data collection phase initiates with the defining and obtaining of data to the 

accident. The orientation of the data collection should ensure perishable 

evidence receives priority. The data collection is not a step process rather the 

data collected at different stages of the investigation may be combined to 

validate possible contributing factors. 

The data analysis is conducted on the evidence gathered, which in turn 

produces more data requirements. Following the data analysis the findings are 

presented.  

 

Figure 3-8 – ICAO Investigation process (redrawn from ICAO, 2008) 
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3.3.2.6 US Department of Environment process of investigation 

The DOE (1999), in their accident investigation workbook, present an overview 

of the investigation program (figure 3-9). It was latterly presented by Sklet 

(2002). The diagram illustrates the step-by-step process by which the 

investigation is conducted. The primary investigation phase includes data 

gathering, data analysis to determine causal factors, evaluation of causal 

factors, develop conclusions and judgements of need, and conduct verification 

analysis. The draft report is created in-parallel with the latter four steps. 

 

Figure 3-9 – DOE’s process for accident investigation (DOE, 1999) 
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3.3.2.7 Wood & Sweginnis field investigation 

Although not created in diagrammatic format, Wood & Sweginnis (2006) present 

a descriptive guide to the investigation process. They suggest that at its 

simplest level the investigation consists of data gathering, analysis and 

conclusions, much like that proposed by ICAO (section 3.3.2.5). They suggest 

however that the data gathering and analysis stage are conducted using mini-

investigations, much like the model proposed by Wood (section 3.3.2.3). They 

go on further to suggest a list of procedures which are conducted during the 

initial field investigation, namely: 

1) Preparation 

a) Initial coordination 

b) Equipment selection 

c) Technical data 

2) Initial actions 

a) Establish a base of operations 

b) Establish liaison with the local authorities 

c) Arrange for security and protection of the wreckage 

d) Determine what has happened so far 

e) Conduct an organisational meeting 

f) Establish safety rules 

g) Conduct an initial walk through of the wreckage 

h) Take initial photographs 

i) Collect perishable evidence 

j) Inventory wreckage 

k) Begin a wreckage diagram 

l) Develop a plan 

3.3.2.8 US Department of Agriculture accident investigation process 

The US Department of Agriculture (Whitlock, 2005) proposes there are four 

components which provide a framework for the investigation, namely: Accident 

sequence, Human factors, Equipment factors, and Environment factors. The 

model proposed is displayed in figure 3-10 which represents the process from 



 

60 

beginning to end of the investigation. The four framework components are 

essentially mini-processes which aim to gather and analyse the associated facts 

relevant to the framework component. 

 

 

Figure 3-10 – US Department of Agriculture accident investigation process 

(Whitlock, 2005) 

3.3.2.9 Health and Safety Executive (HSE) investigation process 

The HSE (Livingston, Jackson, & Priestley, 2001) conducted a review of 

methodologies and approaches to investigation with the aim of creating a 

generic process (figure 3-11). In summarising the methodologies review, they 

state: 



 

61 

“Differences arise however, in the particular emphasis of the techniques. 

Some focus on management and organisational oversights and 

omissions while others consider human performance/error problems in 

more depth.” 

 

Figure 3-11 – Overview of the incident investigation process (redrawn from 

Livingston, Jackson, & Priestley, 2001) 

3.3.2.10 Summary 

The above has introduced a series of models developed to present the accident 

investigation process. Whilst they have covered different fields, similarities in 

Start% Planning%

Team%
organisa0on%

Incident%
occurs%

Describe%event%
sequence%and%

ac0vi0es%

On%site%
inves0ga0on%

%
%
%

Root%cause%
determina0on% Cri0que%inves0ga0on%

process%
%

Capture%points%of%
learning%

%
Improve%process%Recommenda0on%

development%

Report%wri0ng%

Implementa0on%
&%

Follow/up%/%
Monitoring%

Finish%



 

62 

the design and approach can be identified. The following highlights the key 

differences and commonalities. 

• All of the models contain at least three levels to the investigation; the 

data gathering, the analysis and the conclusions. 

• It is accepted that the levels are non-independent; rather there is a 

degree of overlap between the stages with iterative flow between levels.  

• The description of the mechanism by which the individual levels interact 

and is undertaken by the investigator offers the most variation. Two 

themes appear. Firstly, the use of mini-investigations which may either 

be preselected prior to the investigation or selected during the 

investigation. Secondly, the iteration between facts and analysis as a 

single, but generic, process. 

• Whilst formal analysis methods were referred to and procedures for 

undertaking the investigation were outlined, the in-field processing of the 

data was not clearly defined. 

Therefore, the next section will focus on understanding methods and models as 

to how investigators conduct the simultaneous data gathering and data 

analysis. Formal analysis models were not included in the review, rather generic 

approaches to the processing of data were identified.  

3.3.2.11 The iteration between data analysis and data gathering 

American Institute of Chemical Engineers (Safety Center for Chemical Process, 

2003) presents a process by which the gathering of data is conducted (figure 3-

12). The process is iterative between the analysis and the data being gathered 

with analysis occurring as soon as the data is identified. The process also 

includes the formulation and adjustment of scenarios which is being developed 

during the iterations. Additionally, the data is judged for relevance and for its 

placement within the wider scenario. 
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Figure 3-12 – A proposed model for the iteration between data analysis and data 

gathering (redrawn from Safety Center for Chemical Process, 2003) 

3.3.2.12 Reasoning 

Although not specific to the data gathering, the Centre for Chemical Process 

Safety (1992), list three generic approaches for conducting the analysis: 

• Deduction approach 

• Induction approach 

• Morphological approach 

The individual approaches are further presented by Sklet (2002). The 

approaches are described as a means to conduct the generic analysis. For 

example, as Sklet (2002) suggests, formal analysis techniques can be 

categorised within the inductive and deductive approaches. For example, Fault 

Tree Analysis (FTA) is a deductive form of analysis, and failure mode and 

effects analysis (FMECA) is an inductive form of analysis. 
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The following definitions are extracted from the second edition of the Center for 

Chemical Process Safety manual (Safety Center for Chemical Process, 2003). 

“Deductive Approach—Reasoning from the general to the specific. By 

postulating that a system or process has failed in a certain way, an 

attempt is made to determine what modes of system, component, 

operator, or organizational behavior contributed to the failure.” 

“Inductive Approach—Reasoning from individual cases to a general 

conclusion by postulating that a system element has failed in a certain 

way. An attempt is then made to find out what happens to the whole 

system or process.” 

“Morphological Approach—A structured analysis of an incident directed 

by insights from historic case studies but not as rigorous as a formal 

hazard analysis.” 

3.3.2.13 Factual exclusion 

McCormick & Papadakis (2003) present a series of methods which are 

described as “being available to sort through the clues”. Amongst others, the 

most prominent methods for the investigator include: 

• The differential method 

• The hypothetical exclusion method, and 

• The factual exclusion method 

The differential method is akin to the method presented by Wood (1980) as 

presented in section 3.3.2.3. This method involves the separation of the 

investigation into mini-investigations and is utilised by the NTSB for conducting 

major investigations (NTSB, 2002). The factual exclusion method is described 

as the method most likely to be utilised during GA accident investigations 

(McCormick & Papadakis, 2003). The factual exclusion method involves the 

collection of data sufficient to exclude a scenario or system. The purpose of this 

method is not to analyse the data to its causal relation, rather to reduce 

investigative effort in unwarranted areas (McCormick & Papadakis, 2003). The 

hypothetical exclusion method relies on the formation of hypothetical scenarios 
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which may explain a cause for the accident. The scenarios are then eliminated 

based on facts, logic and experience. 

3.4 Research conducted to assist the field investigator in 
examining polymer composite materials 

The discussion thus far has detailed the importance of accident investigation 

and the growing challenges that polymer composite materials present to the 

accident investigator. This section explores research, publications and 

investigations that have contributed to the field of polymer composite materials 

in aircraft accident investigation. 

3.4.1 NIAR 

In 2002 the National Institute for Aviation Research (NIAR) published research 

into composite failure analysis specifically for the accident investigator (Tomblin 

& Ng, 2002). The research was conducted by the NIAR, funded by the FAA at 

the request of the NTSB (Tomblin & Ng, 2002). The research was conducted on 

the wreckage of a Nimbus 4DM glider that suffered an in-flight breakup over 

Minden, Nevada. The break-up of the airframe occurred during the recovery 

phase following a departure from controlled flight whilst manoeuvring in thermal 

lift conditions. The wings were subject to the research with the research 

objectives being: 

“to conduct a failure analysis of a composite structure and determine the 

tests that are useful for crash investigations and how to avoid pitfalls. 

The secondary objective was to determine if any anomalies found could 

have contributed to wing failure” 

The research included the examination of a wing section from a similar 

Schempp-Hirth Nimbus glider accident (4DT variant) that had occurred in Spain 

(CIAIAC, 2000), and a sample wing section supplied by Schempp-Hirth. 

The research conducted multiple aspects of examining aircraft wreckage as 

illustrated in figure 3-13. 
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Figure 3-13 – Flow chart of the NIAR investigation of Schempp-Hirth 4DM 

(registration: N807BB) accident (Tomblin & Ng, 2001) 

Whilst the research was very thorough, the majority of the failure analysis 

techniques demonstrated were orientated to laboratory investigations with 

significant use of laboratory based equipment and destructive techniques. This 

is illustrated in table 3-3. 
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Task' Method' Purpose' Destructive?' Specialist'
Equipment?'

1'

Differential'Scanning'
Calorimetry'(DSC)' Level'of'cure' Y' Y'

Dynamic'Mechanical'
Analysis'(DMA)' Determine'Tg' Y' Y'

Resin'content' '' Y' Y'
Void'content' '' Y' Y'

2' Ply'BurnEoff' Layup' Y' Y'

3'

Tension'

Confirmation'of'spar'cap'
mechanical'properties'

Y' Y'
Compression' Y' Y'

Flatwise'Tension' Y' Y'
Spar'cap'crossEsectional'area' Y' Y'

ThreeEpoint'bend'test' Y' Y'

4'
Compression' Confirmation'of'wing'skin'

mechanical'properties'
Y' Y'

FourEpoint'bend'test' Y' Y'

5'
Visual'examination' Identification'of'load'

directions'
N' N'

Microscopic'examination' Y' Y'

Table 3-3 – Methods utilised in the NIAR investigation of Schempp-Hirth 4DM 

(registration: N807BB) accident) (Source Author) 

Wood and Sweginnis (2006) stress it is the role of the laboratory to confirm 

failures and not that of the field investigator. Thus whilst techniques that are 

destructive of evidence or which require specialist equipment are of interest to 

the investigation, they offer little practical use to the field investigator. The 

research did however discuss the use of visual techniques in identifying the 

failure mode of the main spar caps. Unfortunately the details of the 

characteristics identified to determine the failure mode were not given, although 

the accident wing fractures were compared to reference failures created from 

the additional specimens. Furthermore, the purpose of identification was 

specifically to identify compression and tension failure mechanisms and thus 

was limited in scope and observation. 

Based on the released information, it is therefore reasonable to suggest that 

whilst this research utilised methods which are likely to assist the investigation, 

the scope of assistance to the field investigator was limited. 
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3.4.2 ATSB - “Fibre composite aircraft – capability and safety” 

In 2007 the Australian Transport Safety Bureau (ATSB) released a report titled 

“Fibre composite aircraft – capability and safety” (Taylor, 2007). The purpose of 

the report was primarily as a foundation to highlight: the prevalence of 

composite aircraft in Australia and projected growth, the structural areas in 

which polymer composite materials are utilised, load behaviour and reparability, 

and the health and safety aspects of responding to polymer composite aircraft 

accidents. 

Whilst the report does discuss the failure characteristics of polymer composite 

materials, the understanding is founded on the work of Rakow & Pettinger 

(2006) (discussed in 3.4.3). The report does recognise the issues that 

composite materials present to the investigator with respect to the recognition of 

failure characteristics, stating: 

“…it is inherently more difficult for Transport Safety Investigators (TSIs) 

to analyse failed composite structures and clearly determine what types 

of loads were involved” 

The report goes on further to describe failure characteristics relating to simple 

failure modes and presents an argument, stating: 

“On a macroscopic scale, fibre composite structures that have failed in 

tension show no common characteristics that indicate that a tension load 

was the cause of the failure” 

This argument is based on a paper published by Ginty & Chamis (1987), 

although the report cites Rakow and Pettinger, (2006). The experiment 

undertaken by Ginty & Chamis (1987) was the tensile loading to failure of 

numerous test coupons. The test comprised of coupons with the orientations of 

+/-15°, +/-45°, +/-30° and 0° (figure 3-14). 
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Figure 3-14 - Fractured unnotched graphite/epoxy specimens (Ginty & Chamis, 

1987)  

The perspective presented by the ATSB report was that the image shows 

“carbon fibre reinforced plastic (CFRP) samples that failed under exactly the 

same tension force, yet show a huge variety in failure patterns.” (ATSB, 2007). 

The conclusion that macroscopically, tensile failures show no common 

characteristic was not produced by Ginty & Chamis (1987). 

It appears rather, that the images demonstrate that the fracture behaviour of the 

composite is strongly influenced by the architecture of the laminate. Moreover, 

Stumpff and Snide (1986) conducted tensile failure of 0° and +/-45° specimens 

and reported macroscopic characteristics associated with the tensile failures. It 

is thus apparent that whilst the specimens may appear different, there may be 

characteristics associated with the failure to assist in the macroscopic 

identification of the failure. 
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Consequently, it appears that whilst the understanding of failure characteristics 

is recognised as an issue within the accident investigation community, there 

appears to be a disparity between the understandings of the academic 

community. 

3.4.3 Exponent: Failure analysis of composites – a manual for 
aircraft accident investigators 

In 2007, Exponent, an engineering and scientific consultancy, released a 

manual for aircraft accident investigators on failure analysis of composites 

(Rakow & Pettinger, 2007). The manual follows a well-received seminar 

presentation to the International Society of Air Safety Investigators (ISASI) 

(Rakow & Pettinger, 2006). The information contained within the manual has 

subsequently been inserted into ICAO’s draft document titled “Manual of aircraft 

accident and incident investigation” (ICAO, 2008).  

Exponent, an engineering and scientific consulting company, produced the 

manual to 

“...summarize some of the fundamental concepts related to the failure 

analysis of fiber-reinforced composites, as applicable to the investigation 

of aircraft accidents” (Rakow and Pettinger, 2007) 

Whilst it is not the purpose of the manual to present the methods available to a 

field investigator to examine fractured composite materials, this is a subject 

which appears on numerous occasions. Specifically, reference is made to: 

• Rough appearance of tensile failures 

• Apparent difference in zones within a flexural failure 

• Difference in shear and peel failure characteristics in impact 

• Global and local buckling modes of compression loaded sandwich 

structures 

• Adherend failure modes in bonded composites 

• Failure modes of mechanically fastened composites 

• Recognition of composite repairs and indications of poor repair 
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However, caution in the visual interpretation of failures is suggested to the 

reader as: 

“With variations in fiber orientation, and variations in imperfection, each 

failed specimen has a unique appearance, even though they all failed 

under tension. This is one of the challenges of analysing failed 

composites.” 

The document continues stating: 

“In many cases, this challenge can be addressed by microscopically 

analysing the failure surfaces to identify common features that indicate 

failure in tension.” 

Whilst both statements are correct, it fails to fully consider the case for visual 

interpretation of the specimens but rather suggests that the challenges 

presented by visual interpretation can be overcome by microscopic 

interpretation. For example, metallic materials have been known to fail in both a 

ductile manner and a brittle manner, with both providing different failure 

characteristics (Wood & Swegginis, 2006). Yet it is accepted within the accident 

investigation community that a tensile failure of both a ductile material and a 

brittle material can be visually identified (Wood & Swiggennis, 2006; ICAO, 

1970; ICAO, 2008; McCormick & Papadakis, 2003). Moreover, the 

understanding of the difference in brittle and ductile failure characteristics can 

assist the investigator in materials that have failed not as expected and thus 

provide a useful line of enquiry. For example, a brittle metallic material that has 

failed in a ductile manner may suggest severe temperature had been applied to 

that material. 

It is therefore apparent that the communication of knowledge on fundamental 

principles on the failure analysis of composite materials has been well received 

by the accident investigation community. Moreover, the publication has 

provided basic information on the visual recognition of some failure 

characteristics. It is apparent however that the current understanding of the 

potential for visual characteristic use in accident investigation is instead inclined 
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towards that of microscopic examination. Furthermore, additional visual 

characteristics that have been identified by the academic community (chapter 5) 

have not been discussed and thus allow potential for an expansion of the 

application. This therefore suggests that a logical next step would be to study 

whether the visual interpretation can be expanded and implemented within the 

field investigation process.  

3.4.4 American Airlines flight 587 

On the 12th Nov 2001 an Airbus Industrie A300-605R operated by American 

Airlines crashed into Belle Harbor, Queens, a residential borough of New York 

City, following the in-flight separation of the vertical stabiliser and rudder from 

the aircraft (NTSB, 2004). The separation of the vertical stabiliser occurred at 

the main attachment points to the aircraft fuselage, notably the separation 

occurred at a series of lugs manufactured from Carbon Fibre Reinforced 

Polymer (CFRP). This accident represents the first major structural failure of a 

primary aircraft component manufactured from a composite material on a 

commercial aircraft (Fox et al, 2005). All 260 persons on board the aircraft and 

5 on the ground were fatally injured. Whilst a significant proportion of the 

airframe was consumed in the ensuring fire, the fractured sections of the 

attachment lugs, which remained attached to the fuselage, survived with limited 

fire and impact damage. The vertical stabiliser, which also contained fractured 

CFRP attachment lug sections, was recovered from Jamaica Bay.  

In addition to the reports released by the NTSB, details of the investigation have 

appeared frequently within the academic literature (i.e. Greenhalgh, 2009; Raju, 

Glaessgen, Mason, Krishnamurthy, Davila, 2007; Fox et al, 2005; Winfree, 

Winfree, Madaras, Cramer, Howell, Hodges, Seebo, Grainger, 2005; Murphy, 

O’Callaghan, Fox, Ilcewicz, Starnes, 2005). 

Whilst the in-depth failure analysis of the composite materials by the NTSB, 

Airbus and NASA dominate the discussions, Fox et al (2005) discussed the 

macroscopic fracture modes and features. Specifically, delaminations, 

translaminar fracture, fracture geometry, features of bearing damage, and the 

presence of witness marks were mentioned as visible features. Furthermore, 
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the report goes on to interpret the features to suggest probable loading at failure 

(e.g. “rough fracture features consistent with overstress fracture in primarily 

tensile loading”). The identification of a loading condition at failure is also 

examined whilst considering the location of the lug on the structure. Thus, whilst 

the authors do not specifically state a probable failure scenario from the 

macroscopic evidence alone, an interpretation of the most probable failure 

scenario can be gained from the macroscopic evidence presented. For 

example, the macroscopic evidence suggested that the right side of the vertical 

stabiliser failed in primarily tensile failure, whilst the left side failed in tension 

with evidence of a bending load to the left and to the aft. 

Whilst this macroscopic interpretation is presented in this paper as a precursor 

to a detailed failure investigation, it does demonstrate the level of information on 

failure mode that can be gleaned from an initial visual / macroscopic 

examination. 

3.4.5 The failure examination of composite structures using visual 
and macroscopic examination 

In 1984, Purslow, whom had by this time published a number of papers, 

presented a paper on conducting a comprehensive failure examination using 

low magnification optical microscopy. The specimen examined was a Carbon 

fibre reinforced I-beam simulating an aerospace component (Purslow, 1984). 

Although this paper was not orientated towards the field investigation of polymer 

composites, it was to demonstrate that a failure analysis could be successfully 

conducted using relatively low magnification techniques. The component being 

examined was ‘blind’, although the visible loading points were likely to provide 

an indication as to the loading mechanism. However, the examination was 

tasked with establishing the initiating fracture through tracing the sequence of 

fracturing and the identification if individual failure modes. Therefore, whilst the 

loading points may provide an indication as to how the component would have 

been loaded, it would not provide an indication as to where the fracture initiated. 

During the examination the low magnification characteristics identified included: 

• Visual differences in the peel / shear boundary 
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• Cusp formation due to misaligned fibres between plies 

• Texture and hue differences to distinguish between failure modes 

• Post fracture abrasion, visible as featureless surfaces 

• Crack spacing to indicate fracture stress, reduced crack spacing equals 

higher stress 

• Crack sequencing 

• Translaminar compression failure 

• Translaminar flexural failure due to local buckling 

The above example suggests that a comprehensive examination of an 

aerospace structure can be undertaken using visual and low magnification 

examination. However, the examination was conducted based on the author 

having “considerable experience in composites fractography using an SEM” 

(Purlsow, 1984) and involved the dissection of the structure to access areas. It 

is reasonable to assume that both of these aspects will not be considerations 

for a field investigator. 

3.5 Summary 
This chapter has reviewed literature dealing directly with the visual examination 

of polymer composite materials, and the processes surrounding such 

examination in the context of accident investigation. It is apparent from the 

literature review that there is a substantial understanding of the visual 

interpretation of metallic failures in aircraft accident investigation. This 

knowledge, and demonstrations of its use, is ingrained into publications directly 

related to aircraft accident investigations, including training manuals aimed at 

the field investigator.  The same, however, cannot be said for polymer 

composite materials. It is apparent that the academic literature has established 

a fundamental knowledge on the visual interpretation of polymer composite 

materials. Whilst this knowledge is not complete, it provides a level of 

understanding from which, with due care and understanding, failure modes and 

sequences can be identified. However, there is a dearth of literature, both 

academic and non-academic, which discusses the examination of composite 

materials from the perspective of the field aircraft accident investigator. 
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Moreover, there is a lack of a documented understanding of the processes by 

which a field investigator would conduct the wreckage examination, whether it is 

for metallic components or those of polymer composite construction. Therefore, 

the literature has emphasised that research focussed on the application of 

visual and macroscopic polymer composite failure identification can assist the 

field practitioner and provide a valuable contribution to academic understanding. 

Furthermore, the literature has suggested that to achieve this an understanding 

of the processes and framework within which the application will be applied 

must also be understood.  

Furthermore, it is apparent that the research should be focussed on the role of 

the investigation practitioner conducting the wreckage examination in support of 

a GA type accident investigation. This focus will concentrate the research effort 

whilst making a practical contribution to the investigation practitioner. It is still 

likely however that this focus will not remove the potential for the knowledge 

transfer to examinations of structures from large commercial transport aircraft.  

This chapter has therefore provided a foundation from which the subsequent 

phases of primary research can be conducted. Specifically, it has provided a 

background to the examination techniques of polymer composite materials in 

aircraft accident investigation and on current investigative frameworks. This 

hence leads to the first phase of the research programme, which is discussed in 

the next chapter.  
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4 EXPLORATORY STUDY ON THE INVESTIGATION OF 
COMPOSITE AIRCRAFT ACCIDENTS 

 

This chapter explores how accident investigation practitioners investigate 

aircraft accidents involving aircraft of polymer composite construction. It aims to 

explore the process of wreckage examination such that a foundation for the 

research can established. The chapter commences by discussing and 

presenting the appropriate research method (section 4.1). It then presents the 

design of the study (sections 4.2 to 4.8) touching on subjects such as the data 

collection protocol, case selection and ethical considerations. The pilot study is 

then presented (section 4.9) which covers pilot case engagement, substantive 
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issues identified and methodological adaptations to the primary protocol. The 

execution of the case studies is then presented by describing the descriptions of 

the cases (section 4.10). Finally, the analysis is presented (section 4.11 to 

4.12). 

4.1 Research Design and Methodology 

It is important that the strategy and methods employed must be appropriate for 

the research questions (Robson, 2002). With many different research methods 

available, it is necessary for the researcher to understand which research 

method is most suitable for answering the research questions, and hence 

objectives posed.  

The objective of this phase is to explore how aircraft accident investigation 

practitioners conduct an investigation involving an aircraft of polymer composite 

construction, and to determine what issues polymer composite materials 

present. To meet this objective it will be necessary to examine how and why 

aircraft accident investigation practitioners examine the wreckage of the aircraft 

and how they conduct the wider structural investigation. This will include 

identifying methods or techniques that are utilised by the practitioner in 

identifying failure features. One way to select a methodology is to replicate, or 

perhaps draw on, methodologies presented in the research literature. However 

in this case, there is very little academic literature on which to draw. 

Yin (2009), in arguing against a “common misconception” amongst some 

scientists that research methods should be “arrayed hierarchically”, suggests 

that instead, three conditions form the basis for methodology selection. The 

conditions suggested are based on 1) the form of the research question, 2) the 

extent to which the investigator has control over behavioural events, and 3) the 

focus on contemporary (as opposed to historical) events. Table 4-1 presents 

Yin’s proposal.   

 

 



 

78 

 

Method 

Form of 

research 

question 

Requires control 

of behavioural 

events? 

Focuses on 

contemporary 

events? 

Experiment How, why? Yes Yes 

    Survey Who, what 

where, how 

many, how 

much? 

No Yes 

    Archival 

Analysis 

Who, what 

where, how 

many, how 

much? 

No Yes/No 

    History How, why? No No 

    Case Study How, why? No Yes 

Table 4-1 – Relevant situations for different research methods (redrawn from Yin, 

2009)  

According to table 4-1 the most suitable methodology for conducting the first 

phase of the research programme is through the use of case studies. This is 

because, 1) the research objective focusses predominantly on “how and why” 

questions, 2) the research objective is a contemporary problem, and 3) by 

removing the need for control of behavioural events, the research can be 

focussed within the real world and thus be more appropriate to the research 

objectives. Figure 4-1 presents the case study method as proposed by (Yin, 

2009). 
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Figure 4-1 – Case study Method – (redrawn from Yin 2009) 
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4.2 Data collection protocol 

The data collection protocol as developed by Yin (2009) contains the 

instruments, procedures and rules which promote high academic reliability. At 

the core of the protocol is a set of questions reflecting the study focus and lines 

of enquiry to be undertaken by the researcher. Yin (2009) in discussing data 

collection for case study research proposes that the creation of research 

questions is necessary to ensure that data collection follows the path of 

intended exploration. Furthermore, the formation of research questions also has 

the added benefit of assisting in the creation of prompts for interviews and 

subsequent lines of enquiry. 

Research questions are dependent on the requirements of the specific study 

and for this study have been split into the typologies of 1) “science” and 2) the 

“art and craft” of investigations. These typologies have been discussed in 

literature as providing a means for understanding investigative practice and are 

further discussed in the following sections.  

The formation of research questions is presented in the proceeding sections 

(4.2.1 & 4.2.2). Following which the generation of the data collection protocol is 

continued by discussing the procedures centred on case selection and 

execution. 

4.2.1 Establishing case study questions on the “science” of 
investigation 

The use of “science” as a facet within aircraft accident investigation has 

frequently been discussed within both academic and non-academic literature. 

An understanding of the term “science” is perhaps best understood through the 

amalgamation of two suggestions from prominent academic figures in the field 

of accident investigation. The first is from Braithwaite (2008) who suggests that 

the “science” of investigation includes the technical aspects. The second is from 

Roed-Larsen and Stoop (2012) who refer to scientifically based methods. 

Further clarification, identified within the field of investigation, suggests that the 

science of investigation includes “scientific approaches, social sciences, the use 
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of physical evidence, investigative interviewing, and managing the investigative 

process” (Tong, Bryant & Horvath, 2009). It should also be noted that the 

principle of “science” within an investigation can also involve the use of scientific 

principles and the scientific method, where the investigation “is posited as 

inquisitorial in nature, seeking after the truth, emphasising evidence and 

promoting hypothesis testing” (Tong, Bryant & Horvath, 2009).  

Table 4-2 was generated, by the author, as a supplement to those methods 

presented in chapter 3.3. It provides a list of scientific concepts or 

methodologies that have been identified as relevant to the investigation 

process, or to the examination of polymer composite materials. Additionally, 

tables 4-3 and 4-4 present an overview, as suggested by Kar (1992) & 

Greenhalgh (2009) respectively, of the failure characteristics to note during the 

visual examination of polymer composite material failures. These processes 

and techniques were considered as a necessary basis for the generation of 

lines of enquiry that may link the practice of the investigator to existing scientific 

principles.  

  



 

82 

Process Key steps 

Basic Failure analysis 
 
Safety Center for 
Chemical Process, 
(2003) 

1. Evaluate conditions at the failure site 
2. Perform a preliminary assessment of the component.  
3. Preserve "fragile" data 
4. If needed, perform more detailed component 
assessment. 
5. If needed, perform more detailed component analysis. 
6. If needed, test under simulated conditions. 
7. Determine failure mechanism and explore root causes. 

Field Handling Logic 
Network for Composite 
Parts 
 
Kar, (1992) 

1. On-Site Wreckage Documentation 
2. Tags/Labels on Debris 
3. Transportation of Debris  
4. Classification of Parts  
5. Selection of fractured parts for lab failure analysis, (inc. 
identification, sectioning, cleaning, protection) 
6. Failure analysis (NDE, Macro/SEM, chemical, Stress 
Analysis, Background) 
7. Report and Specimens  

Failure analysis logic 
network (FALN) for 
determining sources of 
failure in composite parts 
 
ASM, (2003) 

1. Obtain background and service history 
2. Non Destructive Examination 
3. Material configuration and verification 
4. Fractography 
5. Define (origin, mode, environment, contaminants, 
defects, damage & Stress Analysis) 

General procedure for a 
failure analysis 
 
Greenhalgh (2009) 

1. Identify aims and objectives 
2. Collate background information 
3. Label specimens and construct assembly diagram 
4. Visual inspection 
5. Non-destructive inspection 
6. Photography 

DOE process for 
investigation - board 
activities 
 
DOE (1999) 

1. Collect, preserve, and verify evidence 
2. Integrate, organise, and analyse evidence to determine                     
causal factors 
3. Develop conclusions and determine judgments of need 
4. Conduct requirements verification analysis 
5. Prepare draft report 

Three phases in an 
accident investigation 
 
DOE (1999) 

1. Collection of evidence and facts  
2. Analysis of evidence and facts; Development of 
conclusions 
3. Development of judgments of need; Writing the report 

Iteration between data 
analysis & data gathering 
 
Safety Center for 
Chemical Process (2003) 

1. Gathering and Analysing Evidence 
2. Analysing data for causal factors 
3a. Organizing & judging data relevance and  
3b. Formulating loss scene scenarios 
4. Generating new data needs  

The scientific method 
 
Wilson, Dell, & Anderson 
(1993) 

1. Define the issue 
2. Propose a hypothesis 
3. Gather data 
4. Test the hypothesis 
5. Develop conclusions 

Table 4-2 - investigative procedures, methodologies and techniques 
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  Feature Implication 

Undamaged 
surfaces 

Visible distortion Possible evidence of sub-surface damage or 
delamination 

Visible nicks, dents, 
splits or gouges 

Possible crack initiation site. Possible evidence of 
impact, fretting or wear damage. Direction of impact 
can be deduced from gouge direction 

Surface blistering or 
splitting 

Internal damage, such as delamination and ply 
splitting and may indicate instability such as buckling 
or post-failure damage 

Discolouration or 
fading 

Evidence of exposure to chemicals or ionising 
radiation 

Translaminar 
fracture surfaces 

Radial or chevron 
features 

Emanate from crack initiation site, and show crack 
propagation direction 

Flat, dull surface Compression failure or evidence of fretting of surfaces 
Shiny, dark surface Tensile failure 

Radial steps Torsion failure; rotation direction deduced from the 
orientation of steps 

Increasing degree of 
secondary damage 

Growth often in the direction of increasing degree of 
secondary damage, but may be limited if the fracture 
or loading mode changes 

Intralaminar and 
interlaminar 
fracture surfaces 

Ribs or tide marks 
Slip/stick fracture, and may be an indication of cyclic 
loading. Propagation from the centre of radius of 
curvature. 

Dull fracture surface Either mode II interlaminar shear or surface fretting 
Shiny fracture surface Mode I interlaminar peel dominated fracture surface 
Fracture surface 
discolouration 

Either post-failure contamination or evidence of 
corrosion prior to failure 

Change in surface hue Evidence of a change in fracture mode or crack 
growth direction 

Table 4-3 – “Features to note during a visual examination” (redrawn from 

Greenhalgh, 2009)  

Mode Environment Condition Macroscopic Fracture features 

Interlaminar 
Tension 
Dominated 

Low temperature / Dry Smooth Glassy fracture surface 
Major portion of fracture between plies 

Hot or Hot / wet 
Smooth but with loose fibres strewn on surface 
A majority of the fracture within plies 
May be permanent deformation of the laminate 

Interlaminar 
Shear 
Dominated 

Low temperature / Dry 
Surface flat, but with “Milky” appearance when held at 
angle to light 
Major portions of fracture between plies 

Hot or Hot / wet 
Also exhibits “milky” appearance 
Tends to fracture within a ply 
Loose fibres on surface 

Translaminar 
tension - Rough, jagged fracture surface with individual fibres 

protruding from surface 

Translaminar 
compression - 

Extreme surface damage. Large regions of fibres fractured 
on same plane 
Very few, if any, fibres protruding from surface 

Translaminar 
flexure - 

Two fairly distinct regions, one exhibiting translaminar 
tension and the other translaminar compression, the 
regions being separated by a neutral axis line 

Table 4-4 – “Visual macroscopic fracture surface features” (redrawn from Kar, 

1992) 
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4.2.2 Establishing case study questions on the “art and craft” of 
investigation 

The “art” of investigation has been described by Braithwaite (2008) as “the less 

tangible aspects” of an investigation. A further definition is suggested by Tong, 

Bryant & Horvath, (2009), where they describe “art” as “intuition, and instinctive 

feelings [of the investigator] regarding problem-solving in an investigative 

capacity”, like a craft where the “art” is developed through on the job learning 

and experience. They further describe this “art” as the investigators “ability to 

separate the false from the genuine” with creative and effective lines of enquiry 

being established through an ability to instinctively ‘read’ a situation, scenario or 

interviewee. It is interesting to note that this artistic ability to ‘read’ is frequently 

referred to in aircraft accident investigation literature when describing the 

examination of wreckage:  

“The story is written in the wreckage; you have to learn how to read the 

bent metal” – Sam Taylor USAF (From McCormick & Papadakis, 2003); 

“I am a professional tin-kicker, I go out there hunting down the clues, and 

the only way to do that is to roll the wreckage over and rummage through 

it to see what it’s going to tell us” – Gregory Feith, senior air safety 

investigator with the NTSB (From Faith, 1996) 

“Give them a piece of wreckage and they will read it like another person 

would read a book. Give them a heap of wreckage and they will be kept 

busy and contented for weeks”. – P. B. Walker CBE, Senior Consultant 

to the Director and Chief Scientific Officer, RAE Farnborough. (Walker, 

1965) 

“The summation….. The bent metal speaks” - M.P. Papadakis (From 

McCormick & Papadakis, 2003) 

Whilst it would be plausible to discuss further the psychological reasoning and 

meaning behind the investigators “art” it would also be out of the scope of this 

research. 
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A review of literature surrounding investigation in practice was thus conducted 

to identify areas which, although not highlighted in academic literature as having 

formal relationships with wreckage and structural examination, presented views 

or possibilities as having such an influence. This resulted in a framework from 

which exploration can be conducted. 

The created framework for research questions is illustrated in table 4-5. This 

highlights the regions of exploration to guide the case studies during both the 

conducting of the study and as a basis for the questioning of the participant 

during the semi-structured interviews. As the primary purpose of this phase of 

the research is exploratory, then the initial approach is expected to be highly 

flexible (Robson, 2002). Subsequently, the framework was utilised as a basis 

from which the exploratory should be conducted, and not as a binding scope to 

which the data collection should be restricted to.  
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Element Areas for exploration 

Background to accident Overview, Sequence of events, Sequence of investigation, 

resources, scale 

Evidence Availability, types, interrelationship with wreckage and 

structural examination, strengths, weaknesses 

Tools, methods, 

techniques 

Checklists, stop rules, evidence saturation, discounted 

scenarios 

Agency Background, standard practices (including methods and 

methodologies), procedures, management 

Practitioner(s) Background, preferential practices (including methods and 

methodologies), training, experience, hindsight 

Preliminary response Preparation, background information gathering 

Site evaluation Prioritisation, evolution 

Preliminary component 

assessment 

Formal Tools, methods, techniques, resources, context, 

Post wreckage 

examination 

Selection, procedures, decisions, rationale, influence on 

investigation progression 

Post recovery structural 

assessments  

Formal Tools, methods, techniques, parties, resources, 

limitations 

Post recovery structural 

testing and analysis 

Formal Tools, methods, techniques, parties, resources, 

limitations 

Conclusions Sequence and timing of conclusions / Airworthiness Directives, 

etc., overall analysis, reflection,  problems, obstacles, 

interferences, influence, pressures, challenges 

Table 4-5 – Areas of exploration as identified form chapters 4.2.1 & 4.2.2 



 

87 

4.3 Ethical considerations 

Prior to data collection the ethical impact of this research program was 

considered. The following section discusses the approach taken. It starts by 

discussing how an understanding of the potential risks to the participants was 

established, and finishes by presenting the process by which ethical approval 

was acquired.  

4.3.1 Psychological harm 

By their nature, aircraft accidents have the potential to create severe emotional 

pressure on those who are working in the proximity. It is not unusual that during 

a field investigation the investigators are exposed to scenes of severe trauma, 

devastation and periods of heightened emotional stress. Whilst this phase of the 

research project is a reflection on the investigation and thus will not occur 

during the actual field investigation phase, consideration has to be made on 

what the implications are for revisiting the ‘event’. This is especially true as it is 

acknowledged that the onset of emotional stress can occur some months after 

the investigation as a result of a triggering event (AAIB, 2008). 

The potential for accident investigators to suffer from psychological trauma from 

exposure to accident investigations has been frequently cited in literature, 

including sources such as; (Coarsey-Rader, 1995; Braithwaite, 2006), 

International Civil Aviation Organisation (ICAO) guidelines on investigator 

training (ICAO, 2003), and internal investigation manuals (AAIB, 2008). 

In discussing the psychological risk to accident investigators, the ICAO, who 

provides international standards and recommended practices for the 

investigation of aircraft accidents, states: 

“After past disasters, there have been reports of rescue workers suffering 

from Post-traumatic Stress Disorder (PTSD), causing sleep disturbance, 

intrusive thoughts and flashbacks. There is little available evidence to 

confirm such symptoms amongst accident investigators, suggesting that 

the psychological impact poses less of a risk to investigators than once 

thought. However, this more satisfactory outcome may be due to the 
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success of existing safety personnel management practices. These 

include effective selection processes, the establishment of 

professionalism at both an individual and team level (including good work 

practices) and effective peer support.” ICAO (Draft - 2008) 

Moreover, due to legislative protection (EU, 2010) particular aspects which have 

been acknowledged to heighten emotional stress for investigators are not 

covered in data collection. These included Cockpit Voice Recorder (CVR) 

readout, interviewing of bereaved relatives, interviewing of survivors and on-site 

trauma (Coarsey-Rader, 1995). As these are not identified as critical sources of 

data to this research project, no adverse effects are expected. 

Even though it is expected that the risks of inducing psychological stress to 

either the participants or the researcher are no greater than that which would be 

considered normal to day-to-day activities, it has been decided that cases will 

only be chosen from organisations that operate an internal support process that 

reduces psychological stress and provides counselling and assistance. 

4.3.2 Harm to career 

A goal of this phase in the research is to collect information on the process that 

an investigator would have undertaken during the examination of the aircraft 

wreckage. This will involve the collection of documents relating to the 

investigation and the conducting of interviews with the investigator. To achieve 

this it is anticipated that the relationship between Cranfield University and the 

investigation community will be a factor in creating trust between the participant 

and the researcher. It is therefore imperative that the integrity and 

professionalism of the researcher be maintained.  

4.3.3 Freedom of participation 

Agreement to participate was solely at the discretion of the participant and was 

entirely voluntary. A briefing prior to data collection ensured that the participant 

may decline to answer any questions that they would prefer not to answer and 

withdraw at any time of the research project without prejudice. To avoid the 

possibility of coercion from persons that may influence the participant, the 
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potential participant was contacted in the first instance where practicable, rather 

than their line manager.  

4.3.4 Confidentiality, anonymity and data security 

The Data Protection Act 1998 provides legal requirements for the handling of 

information relating to identifiable individuals. This includes the obtaining, 

holding, use of, or disclosure of such information (HMSO, 1998). It was 

determined that the collection of personal data as defined in the Act will not 

provide additional benefit to the research. Therefore, the collection of personal 

data was excluded from data collection, and hence the provisions of the Data 

Protection Act were not applicable. It was believed however that security 

measures that were presented in the Act offered best practice and thus were 

adopted as a matter of course.  

4.3.5 Ethics approval 

Application for ethics approval from Cranfield University’s Science & 

Engineering Research Ethics Committee (SEREC) was sought and approved 

under the low risk project process. 

The research was designed and conducted to ensure compliance with the 

mission statements and aims of the university and of the agencies from which 

data collection is sought. 

4.4 Ensuring academic rigour 

Like all research methods, case study research must be conducted to ensure 

the highest standards in research quality are met. Yin (2009) suggests that in 

exploratory case study research there are three tests which are commonly used 

to establish research quality. These are: construct validity, external validity and 

reliability. To counter these threats case study tactics are encouraged (Yin, 

2009; Cook, & Campbell, 1979; Stake, 1995; Stebbins, 2001) which serve to 

demonstrate credibility in the interpretation and analysis. 

Table 4-6 illustrates each of these threats to research quality and presents the 

tactics and subsequent actions taken by the researcher to lessen any threats. 
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Threat Case Study 
Tactic 

Phase of 
research Action taken 

Construct 
validity 

Data 
triangulation 

Data 
collection 

Triangulation of evidence from 
interviews, documentary evidence 
and physical artefacts 

Chain of 
evidence 

Data 
collection 

Interview data recorded and 
transcribed. Artefacts photographed. 
Sources of evidence entered into a 
database. Evidence chain recorded 
using links within the database. 

Participant 
review of 
case report 

Analysis 
write-up 

Draft of procedures and findings 
submitted to participants for review 

External 
validity 

Use of 
replication 
logic  

Research 
design 

Replication logic used such that 
ideas can be tested between cases. 

Reliability 

Use case 
study 
protocol 

Data 
collection 

Protocol developed highlighting key 
decisions and reasoning. 
Consistency in data collection 
procedures, research questions and 
initial lines of enquiry maintained 
between cases. 

Develop 
case study 
database 

Data 
collection 

Interview transcripts, documents, 
and physical artefacts recorded 
within a bespoke database, 
identifying evidence and findings. 

Table 4-6 – Tactics to respond to perceived threats to validity and reliability 

(Modified from Yin, 2009) 

4.5 Number of cases to be studied 

An important consideration in case study design is in determining whether to 

use a single case or multiple cases (Yin, 2009) (multiple case designs are also 

referred to as collective case studies, e.g. Stake,(1995)). Whilst both designs 

can be used in answering exploratory studies, there are particular situations 

where one of the designs is likely to be of greater benefit to the study. The use 
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of multiple cases has many advantages and disadvantages over a single case 

but perhaps the most prominent advantage relates to the increased strength of 

the analysis (Yin, 2009) and the ability to conduct individual case analysis as 

well as cross case analysis (Yin, 2009; Eisenhardt, 1989). As Herriott & 

Firestone (1983) observe; 

“These multisite qualitative studies address the same research question 

in a number of settings using similar data collection and analysis 

procedures in each setting. They consciously seek to permit cross-site 

comparison without necessarily sacrificing within-site understanding.”  

Having chosen a multiple case study design, the next step is to determine the 

required number of cases. When considering literal replication, Yin (2009) 

suggests the number of cases depends upon the desired certainty required 

within the results. A figure of 2 or 3 literal replications (cases) is relevant where 

the theory is relatively straightforward, and 5 or 6 replications where the theory 

is more subtle. Eisenhardt (1989) expand on this to suggest that when 

considering building theory from case study research;  

“With fewer than 4 cases, it is often difficult to generate theory with much 

complexity, and its empirical grounding is likely to be unconvincing, 

unless the case has several mini-cases within it” 

Eisenhardt (1989) however also suggests that ideally the number of cases 

should be based on “Theoretical saturation”, a process where theory 

development is minimal as new cases are added. This in turn may suggest that 

the number of cases to be studied need not be determined in advanced. On a 

more practical note, Creswell (1998) suggests, “Typically, however, the 

researcher chooses no more than four cases”. 

A multiple case study consisting of four cases was thus chosen for study. 

4.6 Case selection criteria 

As is suggested by Seawright and Gerring (2008), encompassing variation in 

case selection is likely to enhance the representativeness and thus assist in 
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generalisation. Thus to ensure the cases were focused and appropriate to the 

research aims, selection criteria were generated. Common features were 

created to ensure the cases remained focussed to the research aim and 

variations were created to ensure the generalisation of the case study results 

and to test certain propositions about the possible effect of case characteristics 

on the investigation and polymer composite examination process. 

4.6.1 Wreckage pattern as a means to suspect in-flight structural 
failure 

When considering whether a structural failure of an aircraft has occurred, the 

wreckage distribution of the aircraft can provide significant clues to the 

sequence of failure and the initiating location of the failure (ICAO, 1970; ICAO, 

2008, Carver, 1987; Wood & Sweginnis, 2006). It is almost always (ICAO, 

1970) the circumstance that during a structural failure the major component of 

the aircraft will separate from the aircraft. In this instance the component of 

initial structural failure, will be located some distance from the main wreckage 

either along the flight path in the case of a low altitude breakup or in a 

reasonably predictable location from a high altitude breakup. Furthermore, there 

is reference to (e.g. ICAO, 1970; ICAO, 2008, Carver, 1987; Wood & 

Sweginnis, 2006) and development of (e.g. Greaves, 2010) trajectory analysis 

as a means to “trace trajectories from the wreckage to the original flight path. 

The concept is to identify which part came off first, and thereby identify the 

primary failure” (Carver, 1987). Investigations of significant public interest that 

involved detailed wreckage distribution and trajectory analysis include Pan Am 

flight 103 which suffered an in-flight break up caused by the detonation of an 

explosive device (AAIB, 1990), and TWA flight 800 which suffered an in-flight 

breakup following ignition of fuel vapours in the centre wing fuel tank (NTSB, 

1996). 

Wreckage distribution can have such a key implication in the initial stages of an 

investigation involving an aircraft that has suffered an in-flight structural failure, 

it warrants being a key variable in case selection. Thus it was decided to design 
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the case selection such that varying degrees of in-flight breakup were 

considered, as follows: 

• Wreckage distribution localised to immediate impact area – i.e. wreckage 

distribution does not support an in-flight breakup scenario 

• Limited wreckage distribution with unreliable wreckage pattern – i.e. 

wreckage distribution cannot be used to determine whether an in-flight 

breakup occurred 

• In-flight breakup observable from wreckage distribution – i.e. wreckage 

distribution supports an in-flight breakup scenario 

4.6.2 Basic types of in-flight structural failure 

Whilst there are perhaps an infinite number of mechanisms by which an aircraft 

may suffer a structural failure, they can generally be characterised into a few 

fundamental categories. ASM International categorise these failures as: 1) 

design deficiencies, 2) material defects, 3) manufacturing / installation defects, 

and 4) service life anomalies (ASM, 2001). Greenhalgh (2009) further 

elaborates on the category of design deficiencies to emphasise the inclusion of 

overload failures which, although strictly not design deficiencies, are a failure of 

a system to accommodate a loading that it was not designed for. 

Within the accident investigation literature the categorisation is orientated 

differently. Emphasis is given to the context of the investigation rather than 

categorising the cause of the structural failure. ICAO (1970) suggests that 

“major component failures result from either, 1) inadequate design strength, or 

2) excessive loads imposed upon the component or 3) deterioration of static 

strength through fatigue or corrosion”. This categorisation is retained, although 

it excludes references to specific causes or mechanisms (e.g. inadequate 

design, fatigue & corrosion), in the production of the USAF investigation manual 

(Carver, 1987) with the categories being, 1) Overstressed structure, 2) 

Understrength structure, 3) Degradation of strength. Latterly, Wood and 

Sweginnis (2006) however suggest that the categories are, 1) underload, 2) 

overload and, 3) aeroelastic phenomenon, with suggestion that the usual 
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category of deterioration of strength is in fact a form of underload, however the 

classification of aeroelastic failure deserving a category in its own right. 

The literature on classifying structural failures as presented above, 

demonstrates an existence of categories or generic reasons for structural 

failure. Although there are alternate theories, it has been demonstrated that key 

characteristics exist. These are (1) overload and (2) underload with the latter 

having multiple sub categories with the most prominent being (1) Design 

inadequacy (2) Degradation of strength (3) Aerodynamic phenomenon. It was 

thus decided that during case selection these factors should become a variable 

(see table 4-7). 

4.6.3 Variation in case selection 

Lastly, case screening was set to cover, where possible, a variation of 

demographic criteria such as: 

• The selection of different investigation agencies for each case 

• The selection of cases which occurred in regions of the world that have a 

significant general aviation population, and  

• The selection of cases which involve different investigators 

4.6.4 Common features of the cases 

All cases chosen were to have four common attributes which were considered 

necessary to be considered as a potential case. These are categorised as: 

investigative requirements, airframe material, data prevalence and investigation 

status, and are discussed in more detail. 

Firstly, the investigation must have contained a structural examination of 

composite wreckage by the field investigator which made a meaningful 

contribution to the investigation, including:  

• Interpretations of composite failures considered or conducted by the field 

investigator, 

• An investigative need for wreckage examination,  
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• Examination conducted in the field and/or within a facility external to 

where specialist examination techniques would be available (brought in 

and follow-on specialist examinations are permitted). 

Secondly, cases will be restricted to include accidents that have involved 

composite structures, where either the primary failure in the accident sequence 

is related to a composite structure, or where the aircraft is predominantly 

manufactured from composite materials.  

Thirdly, cases were chosen on the basis of the anticipated prevalence of data. 

George & Bennett (2005) suggest that cases should not be selected because 

they are easily reached using readily available data, and thus an initial case 

screening was designed such that it would allow cases to be chosen that would 

be most viable at providing quality research data whilst preventing cases being 

chosen that would not provide substance in answering the research questions. 

Finally, whilst access to the early stages of current investigations would 

potentially allow a richer data set as the data can be queried and recorded in 

real time, there are significant issues that make this impractical. Some of the 

most relevant and significant issues being:  

• There would have to be the potential for an extended research period as 

the time-frame for the completion of the investigation is unknown. 

• It could not be guaranteed that the participant would be able to support 

the research through the period of investigation. Due to this additional 

case would have to be included to cover those which could not be 

completed. 

• The degree of structural examination within each case would not be 

known and thus a higher number of cases would have to be studied to 

account for those that subsequently are determined to be unsuitable for 

study. 

• There would be an unknown variation in the circumstances of the 

accident. Hence a higher number of cases would have to be selected to 

prevent limitations on the generalisation of the findings 
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• Accidents are not pre-planned events and thus access to a sufficient 

number of cases within the time frame of this research may turn out to be 

impossible. 

Thus it was decided to study past, but contemporary, events. This allows the 

researcher to quantify the most suitable cases for study and select those that 

have the greatest opportunity to add significance to the study. 

4.7 Case screening and engagement 

As there were potentially numerous qualifying cases, a case screening process 

was established to ensure appropriate cases were chosen that would likely 

provide the greatest chance of realising the research objectives. Initially an 

internet based search was undertaken to highlight potential cases using 

accident reports as a basis for determining suitability. It was felt that this initial 

step presented several weaknesses in case selection, namely; 1) there was no 

inclusion of accidents which had occurred recently and thus no reports had yet 

been released, and 2) it didn’t provide details as to the richness and scope of 

data available. For example, whilst interviews and documentary evidence were 

sources of evidence, further evidence may be available which could enhance 

the case study such as physical artefacts and documentary evidence. The 

scope of these evidence sources may not become identified until contact with 

the participant had been made. 

The second step was initiated through informal engagement with the accident 

investigation agencies and investigators that had been identified as potential 

cases. This step was facilitated by Cranfield University’s Safety and Accident 

Investigation Centre’s (CSAIC) close ties to the investigation community. 

Following the identification of possible cases, informal requests were made to 

the accident investigators for participation in the research through telephone 

calls and informal face-to-face discussion. If the investigator expressed interest 

in participating in the research then formal letters were sent to the investigator 

inviting participation in the research program. 
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Four formal acceptances to participate were received, aligning with the desired 

number of cases as discussed in chapter 4.5. Additionally, the cases were 

aligned well with the case selection criteria and offered access to rich data and 

scenario variation (See table 4-7). Three different investigation agencies were 

involved covering three countries and two continents. All three countries have a 

significant GA population that includes aircraft of polymer composite 

construction. 

 

Case%selection%criteria% Case%1% Case%2% Case%3% Case%4%

Wreckage%
distribution%

Wreckage%distribution%localised%
to%primary%impact%area% ! " " " 

Limited%wreckage%distribution%
with%unreliable%wreckage%
pattern%

" ! " " 

In>flight%breakup%observable%
from%wreckage%distribution% " " ! ! 

Categories%of%
structural%
failure%

Overload% ! ! ! ! 

Underload%>%Degradation%of%
strength% " ! ! " 

Underload%>%aeroelastic%
phenomenon% " " ! ! 

Underload%>%Design%inadequacy% " " " ! 

Table 4-7 - Comparison of case studies against case selection criteria 

4.8 The use of anonymous case identities 

It is commonly accepted that the most desirable position when conducting case 

studies is to disclose the identities of the case and of the participants within the 

boundaries of ethical considerations. Conversely, there are legitimate reasons 

concerning why case studies should be kept anonymous. Gibbert, Ruigrok and 

Wicki (2008) in their creation of a framework for an investigation into 

methodological rigor of case studies, suggest that a significant aspect of 

reliability is ensuring the availability of collected documentation, including 

interview transcripts, and the disclosure of the case identities. Through 
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presenting anonymous cases, restrictions are placed on the ability for the case 

information to be reviewed, re-gathered or retested and thus placing questions 

on the validity of the case study. 

To overcome the shortcomings of complete anonymity, Yin (2009) suggests 

three compromises between protection of the case participants and of ensuring 

information is available to support research rigour, namely;  

• anonymity of the individuals, and thus identification of the case, 

• naming cases and participants but avoiding attributing particular 

comments, and 

• presenting only the cross case analysis and thus avoiding individual case 

reports. 

After careful consideration however it was felt that due to the nature of the 

research topic, presenting anonymous cases and participants is essential for 

the success of the research programme. The resultant impact on perceived 

research reliability and the effectiveness of particular case study tactics has 

been accepted as a limitation.  

4.9 Case study pilot test 

Good preparation for conducting case study research is not confined to the 

following of established methods, techniques and procedures. It involves 

establishing the desired skill set on the part of the case study investigator (Yin, 

2003). 

The case for the pilot study was selected based on three principles as proposed 

by Yin (2009); convenience, access and geographic proximity. These principles 

are suggested as they allow a less structured, more prolonged relationship 

which might not otherwise be found in the real world (Yin, 2009). This provides 

a greater opportunity for developing the case study protocol, refining lines of 

enquiry and for the researcher to practice the skills required, repetitively if 

necessary. 
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Whilst a pilot case was chosen such that it was appropriate to the case 

selection criteria of the primary study, this was not the only area for 

consideration. Selection was based on the capacity for the researcher to 

practice data collection through interview and documentary sources. The case 

chosen was of a military helicopter accident which contained a small quantity of 

polymer composite structure. The participant of the pilot study was one of a 

team of investigators despatched to conduct the investigation. 

The pilot study provided important information from which the primary study 

would be conducted. Methodologically the pilot study provided an important 

opportunity for the researcher to trial interview techniques, the data collection 

protocol and the ordering of the procedures. One aspect that was not included 

in the pilot test was the discussion of the documentary evidence with the 

participant during the interview. This created a lost opportunity during data 

triangulation as visual evidence, such as images, was identified potentially to 

assist the participant in eliciting information during discussion. Whilst the 

documentary evidence assisted in understanding the participants’ perspective, it 

could also be used on its own as a source of evidence. The data collection 

protocol was adapted to include the use of visual cues during the semi-

structured interview and hence the documentary data collection preceded the 

interview. 

4.10 Case descriptions 

4.10.1 Case 1 – Structural damage due to flight into terrain 

During daylight hours and whilst operating during a pre-planned flight, a single 

engine light aircraft failed to recover from a pilot induced descent and impacted 

the ground. There was no evidence identified within the investigation to suggest 

that the aircraft had suffered any structural breakup or failure of any polymer 

composite structures prior to impact with the ground. 

Prior to impact the aircraft was descending, with a rolling motion, in a near 

vertical attitude. The aircraft failed to return to the horizontal and continued in a 

descending rolling motion until impacting the ground in a nose down attitude. 
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Upon impact the airframe was significantly disrupted. The all-composite wings 

from the aircraft suffered significant damage from the impact with significant 

fragmentation of the leading edge, bonding failure of the spar / skin interface 

and numerous diagonal fractures on the wing skin. The wreckage spread was 

contained within a relatively small area close to the primary impact location. 

The aircraft design incorporated a significant proportion of carbon fibre 

composite materials located throughout the wing, empennage and fuselage. 

The wing, which had suffered significant damage upon impact, included 

unidirectional carbon fibre spar caps between carbon fibre laminate shear webs, 

and a skin which consisted of both honeycomb and foam sandwich structures 

using woven carbon fibre laminates. 

The investigation concluded that there were multiple contributing factors to the 

accident, none of which included the failure of a structure manufactured from 

composite materials. 

 

Figure 4-2 – Sources of case study evidence from case study 1 (Source: Author) 

4.10.2 Case 2 – Premature in-flight failure of a flight critical 
composite structure 

During daylight hours, and whilst operating during a routine flight in weather 

conditions permitting flight to operate under Visual Meteorological Conditions 

(VMC), an aircraft experienced the in-flight failure and separation of segments 

from a flight critical component constructed of polymer composite materials. The 
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aircraft subsequently conducted an emergency descent and landing. The 

aircraft suffered additional impact damage as a result of the aircraft coming to 

rest. 

The component which failed was constructed using unidirectional glass fibre 

rovings and multi directional glass fibre laminates among other non-polymer 

composite materials. 

The investigation concluded that the polymer composite component had 

suffered a progressive premature failure which had initiated from a 

manufacturing defect in a glass fibre composite roving. 

 

Figure 4-3 – Sources of case study evidence from case study 2 (Source: Author) 

4.10.3 Case 3 – In-flight breakup initiated by a premature structural 
failure 

During daylight hours a single engine light aircraft experienced an in-flight 

structural failure of a flight critical structure being manufactured from both 

polymer composite and metallic materials. As a result of the failure the aircraft 

suffered an in-flight breakup following which the aircraft impacted the ground.  
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The accident occurred whilst the aircraft was travelling in wings level flight with 

indications of a slight descending attitude. The aircraft was seen to oscillate 

violently which coincided with the initial breakup of the airframe. Shortly 

following the initial breakup the airframe catastrophically failed, separating into 

multiple sections. The wreckage trail was spread over some distance and 

confirmed that an in-flight structural failure had occurred. 

The aircraft was manufactured predominantly from glass fibre polymer 

composite materials, utilising both unidirectional and woven laminates. The 

aircraft was a homebuilt kit aircraft designed such that the builder constructed 

the aircraft. The manufacturer of the aircraft would supply the aircraft in a kit 

form. 

The investigation concluded that the accident sequence initiated due to the 

premature failure of an incorrectly assembled load bearing structure. The load 

bearing structure was manufactured from both metallic and polymer composite 

materials. 

 

Figure 4-4 – Sources of case study evidence from case study 3 (Source: Author) 

4.10.4 Case 4 – Structural failure due to aeroelastic overload 

During daylight hours and whilst operating under Visual Meteorological 

Conditions (VMC), an aircraft experienced an in-flight failure and separation of 
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sections of the control surfaces on the horizontal stabiliser. The aircraft became 

uncontrollable and descended impacting the ground at a high speed and 

shallow angle. The airframe subsequently suffered substantial fragmentation as 

a result of the impact. A fire ensued in the primary impact area which destroyed 

a significant proportion of the polymer composite wreckage. There were two 

primary locations of wreckage, the first being the main impact site and the 

second being further back along the flight path.  This second wreckage location 

contained the flight controls from the horizontal stabiliser. The existence of the 

separate wreckage zones confirmed that an in-flight structural failure had 

occurred. 

A substantial quantity of the aircraft structure and parts of the aircraft control 

system were manufactured from carbon fibre and glass fibre composite 

materials. This included the airframe and flight controls.  

The investigation concluded that the accident aircraft had suffered an 

aeroelastic overload which resulted in the aircraft becoming uncontrollable. 

 

Figure 4-5 – Sources of case study evidence from case study 4 (Source: Author) 

4.11 Data analysis methods 

Case study analysis is flexible and occurs during data collection allowing the 

researcher to adjust and pursue new lines of enquiry as the data is collected 
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(Bickman, Rog & Hedrick, 1998; Leedy & Ormrod, 2010). Moreover, the bulk of 

the analysis occurs following completion of the data collection where examining, 

categorizing, tabulating, or otherwise recombining the evidence is used to 

address the research questions posed in the study (Yin, 2009). 

Notwithstanding, analysing case study evidence is one of the least developed 

and most difficult aspects of conducting case studies. As Yin (2009) suggests: 

“much depends on a [researchers] own style of rigorous empirical 

thinking, along with sufficient presentation of evidence and careful 

consideration of alternative interpretations” 

Therefore it is proposed by Yin (2009) that the researcher should focus on 

creating a research strategy whereby a generic approach to data analysis is 

established. Yin further suggests four general strategies, namely; relying on 

theoretical propositions, developing a case description, using both qualitative 

and quantitative data, and examining rival explanations. 

The strategy of relying on theoretical propositions places emphasis on the 

research propositions, questions or hypothesis, to guide the data analysis. 

Whilst in this exploratory study the conceptual framework is relatively poor, and 

thus generated hypotheses would be weak, the study has been created based 

on a framework from which direction and research questions were generated.  

Analysis tactics are subsequently utilised within the generic strategy to assist in 

making conclusions backed by evidence and replication. Analysis methods or 

tactics used for case study analysis, whether for qualitative or quantitative data, 

are frequently presented in literature. Analysis methods such as “description” 

(Creswell, 1998), “categorical aggregation” (Stake, 1995), “direct interpretation” 

(Stake, 1995), “patterns” (Yin, 2009; Stake, 1995), “naturalistic generalisations” 

(Stake, 1995), “explanation building” (Yin, 2009), “time-series analysis” (Yin, 

2009), “logic models” (Yin, 2009) and “cross case synthesis” (Yin, 2009) have 

been presented. Furthermore, Miles & Huberman (1998) suggest a generic 

framework for the analysis of qualitative data which is particularly valuable for 

case studies (Robson, 2002). Within this context the analysis of data consists of 
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three parallel activities, namely data reduction, data display, and conclusion 

drawing and verification. 

4.12 Analysis 

Data analysis occurred simultaneously with the data collection. For this reason 

the first forms of data obtained were documentary such as accident reports and 

operating procedures. This analysis of documentary evidence prior to the 

interview was especially critical as data extraction during the interview was 

dependent on the questioning by the researcher. 

Initially, the documentary evidence was reduced through the creation of a 

document sheet, and the formation of memos. The memos were kept separate 

from the document such that they could be cross-analysed, although traceability 

to the original source was maintained. The memos were focussed on extracting 

key data relevant to the data collection framework (tables 4.2, 4.3, 4.4 & 4.5), 

and to highlight the patterns and themes as recognised by the researcher. The 

use of theoretical propositions to guide the analysis is suggested by Yin (2009) 

as the most preferred strategy for case study analysis. 

Upon completion of the interviews, a session summary sheet was created and 

the images and artefacts summarised in narrative form. The audio-recording 

was subsequently transcribed. The audio-transcription summary sheet, image 

narratives and artefact narratives were subsequently reduced into memos in the 

same form as that of the documentary evidence.  

‘Within-case’ analysis was conducted using the reduced data and summary 

sheets to identify overarching themes and to identify the significance of single 

events through direct interpretation. Additionally, the investigative procedures, 

methodologies and techniques frameworks as detailed in table 4-2 were 

formatted into data displays. The displays were populated with supporting 

evidence from each case. As the displays were developed, they were analysed 

for themes and patterns. 

Subsequently, the individual case themes and processes were cross analysed 

to identify reoccurring patterns or trends. A cross-case summary was created 
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which displayed the findings, the chain of evidence and the sources of evidence 

for triangulation. The subsequent cross case findings were scrutinised for 

conflicting evidence. 

Whilst the cases were being conducted and analysed, consideration was also 

made for the strength of theory generation based on the number of cases 

studied and the quality of data obtained. It is currently acknowledged that four 

literal replications are suitable for the requirements of this research (Chapter 

4.5). However, it is also accepted that more cases may be required if the 

generation of theory is subtle or if theoretical saturation is not reached. Key 

considerations for approximate saturation can be split into aspects internal to 

the case, such as the data sampling within the case and the breadth and depth 

of material obtained, (Mills, 2010), and those specific to multiple cases such as 

minimal theoretical development as new cases are added (Eisendhart, 1989). 

Based on these factors it was decided that no additional cases would be 

required. Specifically the quantity and quality of data obtained within each case 

was significant as was the within case data triangulation. Additionally, the theory 

development as each new case was incorporated became minimal with the 

theory generated being strengthened by less evidence of rival explanations.   

4.12.1 Finding 1 

The investigation process of all case studies showed sequencing 

comparable to four phases; the initiation phase, the convergence phase, 

the detailed investigation phase and the concluding phase. 
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 Figure 4-6 – Investigation process model of the wreckage examination process 

(Source: Author) 

1. The initiation phase 

The initiation phase involves the period between first notification and the time at 

which the majority of the investigators effort is focussed on fact gathering. Facts 

may be gathered during this stage but the primary purpose of gathering data 
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concerns acquainting the investigator with the situation. This phase included the 

following identified steps: 

a. Receipt of initial notification 

This is a procedural step based on the agencies initial reporting procedure. 

b. Initial response 

This was both procedural and discretionary, based on investigation agency 

requirements and investigator judgment. It included stages such as; 

preparation, recording, risk assessment and kit selection. 

The degree of background preparation with regards to the aircraft type was 

dependent on the information received during the initial notification. It was 

identified within one case study that the aircraft type was not known during 

initial notification thus preventing a preliminary information search. Where the 

aircraft identity was known a brief search is likely to be conducted to gain details 

on the aircraft and perhaps the aircraft’s history.  

c. Site attendance, assessment and stabilisation 

This was a procedural step which started when the investigator arrived at the 

accident site. It included factors such as site management, liaison, 

communication, site security, contamination awareness, and prioritisation. 

2. The convergence phase 

The convergence phase involves the period when the investigator is primarily 

focussed on initial fact gathering. This phase proceeds the initiation phase and 

culminates when the investigation enters the detailed investigation. This phase 

contains two segments which are discussed in the following. 

a. Onsite fact preservation, gathering and orientation 

The initial focus on the convergence stage of the investigation is in orientating 

the investigator with the accident site and the preservation of perishable 

evidence. This phase is predominantly procedural. The preservation of 

evidence was a procedural step which was likely to have included a checklist 
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approach being conducted from the investigators memory. There was evidence 

that formal checklists being available within some of the investigation agencies 

although these served as guides rather than step-by-step instructions. During 

this phase a site appraisal was conducted to orientate the investigator with the 

accident site and to generate general hypothesis surrounding the accident. 

b. Exploration of facts 

This stage marks the point where the hypothesis generation by the investigator 

tends to move from being predominantly procedurally instigated to increasingly 

discretionary. 

The evidence at the accident site will be recorded, preserved and gathered, with 

further evidence being gathered outside of the immediate accident site (e.g. 

witness evidence). This is an analytic and fact gathering stage. As the evidence 

builds and is analysed, the picture of the accident becomes more distinct. This 

allows the investigator to focus efforts on areas of the fact gathering which are 

likely to be more relevant and more fruitful. Through prioritising particular lines 

of enquiry, more effort can be focused on the relevant areas for investigation. It 

was apparent that the analysis being conducted at this stage is predominantly 

undertaken using the investigators “art” or informal analysis techniques, such as 

informal brainstorming with colleagues.  

At the culmination of this phase the investigator will have an understanding of 

the scope of evidence and would have identified areas which are of key interest 

to the investigation. 

Typically this stage would involve the examining of the wreckage at a visual 

level to identify abnormal or unusual failures and differentiating between cause 

and effect within the failures.  

The ‘exploration of facts’ stage occurs throughout the period during which the 

investigator is conducting the on-site wreckage examination. Depending on the 

extent of the wreckage examination on-site, it may occur or continue in a secure 

environment away from the accident site and may include material expertise 

albeit the expertise will be to assist in the large scale surveying of the wreckage 
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rather than conducting in-depth examinations. It culminates when the wreckage 

has been surveyed and the key areas of interest in the structure have been 

identified. 

3. Detailed investigation phase 

The detailed investigation phase of the aircraft structure occurred during all four 

case studies with the exception that in only three of the cases studied did the 

detailed investigation involve structures constructed of polymer composite 

material. 

The detailed investigation phase commenced following the completion of the 

convergence phase and was finalised when the relevant areas of examination, 

testing or research, had reached a valid conclusion or the evidence collection 

had become saturated. This phase differed from the convergence stage as the 

predominant focus was in detailed examination of specific structural areas. In all 

cases this involved the use of material experts albeit each to a differing degree. 

External assistance is likely to be called upon to assist in this examination.  

During this stage the wider scenario from the external evidence is largely known 

and thus there may be fewer external sources of evidence outside of the area of 

investigation. The exception however is in those areas which are directly related 

to the area of investigation where further fact gathering is likely to continue, e.g. 

a flutter investigation is likely to contain a wider area of investigation than just 

the structural failure.  

To accomplish this task the examination typically involves confirmation 

(fractographic, design, construction, stress analysis, judgement based on 

location of failure etc.) testing (mechanical, construction, etc.), comparison to 

existing structures, and further research. 

4. The concluding phase 

The concluding phase occurred following the completion of the detailed 

investigation phase and following the finalisation of analysis. This phase 

primarily focused on the creation of recommendations, communication of 

findings, formal reporting and release of the investigation report.  
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4.12.2 Finding 2 

The challenges that composite materials presented to the investigation 

were varied and could not be clearly defined. 

In each of the cases there were noted issues that were presented to the 

investigator as a result of the aircraft structure being constructed of polymer 

composites. There was no evidence however to suggest that these were 

detrimental to the investigation. In fact, there was mild evidence suggesting that 

the use of polymer composites may have assisted in certain circumstances. It 

was however noted that the issues commented on by the practitioner were in 

areas perhaps not seen in the selected case studies. Notwithstanding however, 

the issues may have occurred should the circumstances behind the accident 

have been different, or the issues were known to the practitioner external to the 

case study. 

It was noted that the fragmentation of the composite reduced the ability of the 

composite material to assist in identifying the aircraft dynamics at impact. It was 

commented that in a conventional aluminium structure the permanent gross 

deformation of the structure may give indications as to the angles and 

momentum at impact. Whilst this was noted as a difference, it did not hinder the 

understanding of such conditions.  In this case sources of evidence relating to 

the structure such as ground impact marks, the global deformation of the 

structure, qualitative degree of composite damage and the deformation of 

metallic components were all able to provide sufficient evidence to understand 

the dynamics at impact. In addition, external evidence such as witness, and 

video evidence was reasonably detailed in all cases and thus assisted in 

confirmation of the findings based on analysis the wreckage.  

Furthermore, in another of the cases studied, the identification of a structural 

failure was significantly influenced by the evidence external to the examination 

of the structure. Whilst the investigation had not been hindered by the 

composite material failure, in this case it is plausible that external evidence was 

sufficient enough to reduce the need for a high level of composite material 

failure recognition.  
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Nevertheless, it could also be postulated that the evidence external to the 

investigation was ‘filling a void’ having been created by the lack of structural 

evidence. The identification of impact dynamics through the examination of 

metallic structures suggests a solution was identified to fill a void in the inability 

of the composite materials to provide such information. The use of witness 

evidence to hypothesis a structural failure was significant, but it was proposed 

by the participant that things may have been different if the witness evidence 

had not been available. 

4.12.3 Finding 3 

The wider context of evidence was of significant importance to the 

wreckage examination and structures examination. 

In all cases the wider context of evidence provided significant assistance to the 

wreckage and structures investigation. 

In one case the failure mode was not formally identified during the convergence 

phase, however the practitioner did note suspicion of the failure area in 

question. The practitioner noted that particular features provided an indication 

that was akin to those which could be expected to occur during slow crack 

propagation rather than a typical fast fracture. This understanding was used to 

postulate what damage may have occurred during flight and what may have 

occurred during the impact. There was however significant witness evidence 

which suggested structural failure in the area in question and thus through 

triangulation of evidence it was noted that this was a structural area of 

significant interest for further in-depth investigation. 

In a separate case the wreckage distribution played an equally significant role. 

In this instance the region of primary structural failure separated from the 

aircraft. Rather than resulting in the in-flight breakup of the aircraft, and hence 

presenting a continuous wreckage trail, the departure of the structure rendered 

the aircraft uncontrollable albeit still intact. The aircraft subsequently impacted 

the ground a distance from the point where the primary failure occurred. This 

presented the investigator with a significant indication of the structural failure, 
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immediately presenting suspicion to the items which were found at a distance 

from the main impact location.  

4.12.4 Finding 4 

In all cases where structural failure was a significant aspect of the 

investigation, material experts were utilised in examining the wreckage. 

In three of the four cases, expertise was sort to assist in the examination of the 

polymer composite wreckage.  

In two of the case studies, expertise was sought during the initial stages of 

wreckage examination to assist in the early examination of the wreckage. Both 

of these examinations occurred post wreckage-recovery. In one of these case 

studies the component was then sent for in-depth laboratory analysis. 

In the remaining case study, which involved composite materials examination, 

expertise was used as confirmatory to the investigator’s findings. In this case 

the advice received from the specialist confirmed that in-depth laboratory 

analysis would not be required (this was also backed by other evidence 

suggesting the mode of failure). 

4.12.5 Finding 5  

In examining composite failures, there were references to visual 

characteristics which were akin to: gross failure identification, 

comparative consideration between multiple failures, and individual local 

fracture examination. 

Gross failure identification 

The examination of global failures was used by the investigator to understand 

both the sequence of failure and the failure mechanism of the component. This 

did not involve the examination of fractures but instead involved understanding 

the gross failure pattern, or the identification of the ‘big picture’ as otherwise 

referred to. An example of this is in one of the case studies where the high 

degree and multiple regions of damage within a component suggested that a 
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prolonged oscillating failure had occurred rather than a fast single load failure. 

In all case studies the failure process of large sections of the structure was 

examined through this method. 

Comparative consideration between multiple failures 

Here the investigators compared multiple failures against each other with the 

intention of identifying a failure that is unique against the failure characteristics 

of the other failures. In one of the case studies the investigator, in visually 

examining the composite failure area, came to a suspicion that there were two 

separate zones within the failure sequence. As well as the background 

evidence gathered, this hypothesis was drawn through the differences in 

appearance, geometry and profile. In another case study a similar identification 

was made in four similar load bearing structures. In this instance it was 

identified that one of the components had failed in a different manner to the 

remainder. 

Local fracture examination 

The local fracture examination is the means by which the investigators examine 

the individual fracture area. In all cases the investigators did not have any 

procedures or training specifically into the identification of composite failure 

mechanisms and hence no formal methods were used. In three out of the four 

case studies, the examination of a fracture surface at a visual level was 

conducted with the view to making preliminary assessment of the failure mode. 

In the case where this was not conducted, it was due to the requirement of a 

polymer composite structural examination having been ruled out at an early 

stage in the investigation. 

In one of the case studies, the investigator utilised the appearance of both the 

fracture profile and the smooth nature of the fracture as a suspicion of a 

possible premature failure. This knowledge was gained through general 

experience with all forms of aircraft structures rather than specific training on 

composite material failure mode identification. It is important to note that this 
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was used to form the basis for a suspicion rather than to a conclusion of the 

mode of failure. 

In all of the cases that contained a structural examination, the in-depth 

assessment and verification of the failures was conducted by material experts. 

In two of the case studies the investigators commented that when examining 

fracture features from a polymer composite material, the features being looked 

for would be akin to those found in fractures of wooden materials. They did 

acknowledge however that they believed that this understanding was not well 

developed. 

It is worth noting however that the recollection of the failure characteristics was 

dependent on the triggering material, in most cases being photographs of the 

wreckage, and the ability of the participant to recall from memory. The 

participants’ memory may also be biased towards those features which were of 

significant interest to the investigation. For these reasons it was not possible to 

gain an in-depth understanding on the examination of composite materials as it 

was likely to have been conducted at the time of the initial examination. 

4.13 Chapter summary 

The exploratory study into the wreckage examination and structural examination 

of aircraft accidents involving polymer composite aircraft has provided a 

comprehensive and needed foundation from which further research can be 

established. The analysis has presented five findings which have been 

determined through the investigation of four practitioner centric case studies. 

The results have established an understanding of the process which in turn 

presents a theory as to ‘how’ and ‘why’ the wreckage examination and structural 

examinations are undertaken. In addition, the findings present observations 

made regarding key aspects of the investigation of accidents involving polymer 

composite aircraft. 

The understanding provided during this phase suggests that when considering 

whether known visual and macroscopic failure features of polymer composites 

can assist the accident investigation practitioner in conducting the wreckage 
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investigation and structural investigation, an understanding has been generated 

as to: 

(1) How they can fit into the investigation process 

(2) In what context they will be used, and 

(3) Requirements to ensure the selection of failure characteristics will be 

appropriate 

The investigation process as described suggest that the most fitting phase for 

research efforts aimed at assisting the practitioner is in the convergence phase. 

Here the addition of new knowledge is likely to assist the investigator in making 

this stage more effective by providing the practitioner with the additional tools to 

increase evidence collection and convergence of hypotheses. Additionally it 

would also assist in extending the capabilities of the ‘discretionary investigation’ 

during both the latter part of the convergence phase and the initial in-depth 

phase. It is thus apparent that the selection of visual and macroscopic 

examination techniques should fit within the requirements of the convergence 

stage. Finding one suggests the most prominent considerations as being:  

• field deployable, 

• assisting in the preservation of evidence, 

• methods that can assist in hypothesis generation of the wider accident 

scenario, 

• timely to apply, 

• assist in relating cause and effect between failures (i.e. identifying 

primary failure and secondary failures), 

• able to eliminate lines of enquiry as well as identify lines of enquiry, 

• identify abnormal or unusual failures, 

• consider the wider context behind the failure (e.g. stress concentrations, 

location of failure), and  

• be able to make a preliminary assessment of the failure mode 
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Additionally, finding 5 has shown that the techniques selection should include 

those that offer local examination, gross examination and include information 

regarding the ability to differentiate between failures. 

Thus the next phase of research is orientated to review knowledge on visual 

and macroscopic examination techniques that are relevant to the convergence 

stage of investigation. 
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5 SELECTION OF VISUAL AND MACROSCOPIC 
EXAMINATION OF POLYMER COMPOSITE 
MATERIALS  

 

The primary aim of this phase is to identify visual and macroscopic examination 

techniques which are appropriate for potential use by practitioners in conducting 

the examination of polymer composite aircraft wreckage. To assist in achieving 

this aim, empirical information gained from the case study phase will be used to 

establish selection criteria. This will present a scope from which a literature 

survey can be conducted to identify known visual and macroscopic failure 

characteristics of polymer composite materials. 
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This stage of the research programme should not be constrained within the 

confines of literature on accident investigation. The literature survey was hence 

expanded to include the areas of fractography and failure analysis. Within these 

fields information was sought from journal papers, research reports and 

investigation reports. 

5.1 Establishing the scope and objectives of the literature 
survey 

The objective of this phase of the research programme is to identify what visual 

and macroscopic failure characteristics are appropriate for the examination of 

polymer composite aircraft wreckage. It was identified during the literature 

review (chapter 3) that there has been substantial effort in the understanding of 

composite material failures within the field of fractography and failure analysis. 

Furthermore, this development has included identifying failure characteristics 

within the visual and macroscopic range. 

The empirical findings from the case studies have established that the visual 

interpretation of composite wreckage is conducted by the practitioner using 

predominantly ‘discretionary means’. Thus it is likely that the investigators 

experience is the primary means by which interpretation of the failures is being 

conducted. This is especially significant during the ‘convergence phase’ which 

involves discretionary actions by the practitioner and may not involve the use of 

external expertise. 

It is therefore appropriate that the research method for this phase is to conduct 

a literature survey to identify visual and macroscopic failure characteristics of 

polymer composite materials. It is important that the survey is conducted within 

the findings of the case studies and it will draw information from multiple 

disciplines. 

For the purpose of this research, a failure characteristic is defined as a feature 

or quality which serves to identify the type of failure. 

In order to select appropriate failure characteristics from literature, it is 

necessary to understand in what context the failure characteristics will be 
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identified and what they will add to the investigation. This can be approached by 

considering information gained during the case studies phase of this research 

programme. The following section therefore establishes requirements for failure 

characteristic search and selection. 

5.1.1 Requirements from the case study phase of the research 
programme 

The cases studied in phase one of the research programme provided the 

researcher with valuable experience of how practitioners conduct the 

examination of polymer composite wreckage. Moreover the results from the first 

phase can be used to create practitioner-based criteria to assist in the selection 

of the characteristics. 

Table 5-1 illustrates the findings from the case study phase of the research. The 

table displays a summary of the findings and suggests the implication that this 

has on guiding the literature survey. The findings suggest that the literature 

survey should: 

• Exclude features which are only visibly through destructive means 

• Be restricted to include only features which are visible below x25 

magnification 

• Include static overload failures and premature failures involving 

degradation, design deficiencies and aerodynamic phenomenon. 

• Include the influence a degradation mechanism will have on a pristine 

failure 

• Include characteristics which identify fracture origin and fracture 

propagation 

• Include features associated with local fracture identification, comparison 

between fracture modes and zones, and failures of complex structures 

• Consider the wider context of the investigation and evidence collection
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Finding Summary Implications 

1 

The investigation process was 

defined and included 4 phases. 

Most suitable period of the 

investigation for the 

characteristics to be applied is 

during the convergence stage 

Evidence preservation is a key component: Include only non-destructive methods 

Examination likely to occur on the accident site: restrict macroscopic characteristics to be those which 

are identifiable up to x25 magnification. This is consistent with eye loop and lower power magnifying 

glasses used in field investigation tool kits (ASM, 2001) 

Hypothesis generating stage: Factors that can confirm whether the failure was overload or underload, 

primary or secondary 

To identify abnormal or unusual failures: Identify how degradation mechanisms influence failure 

characteristics 

Differentiating between cause and effect: Characteristics which locate fracture origin and propagation. 

3 

The wider context of evidence 

was significant to the  

wreckage examination 

Consideration should be made for features which are able to assist in identifying the wider accident 

scenario, such as identifying the failure sequence. 

Accident investigation literature should assist in the selection of relevant failure mechanisms. Failure 

sequence characteristics should be selected against accident investigation literature for relevance 

5 
Practitioners use 3 references 

to visual identification 

Themes identified as local, gross and comparative: Survey should include failure characteristics from 

all of these themes. 

 Table 5-1 - Findings from phase 1 of the research programme which defines the scope of the literature search 
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5.2 Fundamentals 

The previous section has discussed the purpose and scope of the literature 

survey. The results of the survey are now presented, commencing with an 

overview of key terms and principles.  

It should be noted that a seminal text published by Greenhalgh (2009) provided 

significant direction for the literature survey. This book, titled “Failure analysis 

and fractography of polymer composites”, has hence been cited significantly in 

this chapter. Whilst this publication provided a foundation for some of the 

principles discussed in this chapter, the book was not used solely. Rather, the 

original founding articles were reviewed, additional or conflicting material was 

sought and links to the accident investigation literature was identified. 

Furthermore, this literature survey has covered areas and principles which are 

not presented by the publication.  

It is recognised that the failure of a laminate composite can be split generally 

into three different classes; translaminar, interlaminar and intralaminar (Smith & 

Grove, 1987). These terms will be utilised within this literature survey and are 

described below and in figure 5-1 which is based on the definitions presented 

by Greenhalgh & Hiley (2008). 

• Translaminar failure entails fracture of the reinforcing fibres. 

• Intralaminar fracture entails through-thickness fracture between the 

fibres.  

• Interlaminar (delamination) entails fracture between the layers. There 

are three types of interlaminar failure known as Mode I (Peel), Mode 

II (Shear) and Mode III (Tearing) (figure, 5-2). A combination of 

modes, i.e. mixed mode, is possible. 

The above definitions do not include a definition for a fracture occurring in the 

same orientation as a delamination but within the ply instead of being located 

between the plies. The definition as presented by ASM (2003) suggest that this 

could be described as an intralaminar event for they suggest intralaminar is: 
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“… an object (for example, voids), event (for example, fracture), or potential 

field (for example, temperature gradient) existing entirely within a single lamina 

without reference to any adjacent laminae.” 

However, for the purposes of this survey this event is referred to as interlaminar 

failure which is in keeping with the definition as illustrated by Czabaj & Ratcliffe, 

(2012) (figure 5.3) and described by Greenhalgh (2009) as translaminar and 

intralaminar failure occurring through the thickness and interlaminar failure 

occurring in the plane of the laminate.  

 

Figure 5-1 – Illustration of translaminar, interlaminar and intralaminar fracture 

modes. (redrawn from Greenhalgh & Hiley, 2008) 

 

 

Figure 5-2 – three modes of intralaminar failure (Grellmann & Seidler, 2007) 
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Figure 5-3 - Intralaminar fracture versus interlaminar delamination (Czabaj & 

Ratcliffe, 2012) 

In particular applications, polymer composite materials are designed such that 

the fibres are preferably orientated according to the direction of the intended 

load. Thus a unidirectional material that is designed to carry a bending load is 

likely to fail in translaminar flexural failure under normal loading conditions. An 

example of this would be the unidirectional monolithic spar caps in glider wings 

that would typically carry tension or compression loads (Mileshkin, Scott, Wood, 

Collyer, 1987). The resultant translaminar fracture is also expected to involve 

secondary damage such as intralaminar splitting. If out-of-plane loads are 

applied to the same component, then the composite material can be expected 

to behave in different ways. If for example the load is applied transverse to the 

intended load direction, then the failure can be expected to initiate due to 

intralaminar failure and the fracture will be visually different (Ginty & Chamis, 

1987). This is a characteristic which can be useful in understanding whether the 

component failed under anticipated flight loads or due to out of plane loads such 

as ground impact. Moreover, the understanding of whether a material has failed 

in a manner that can be associated with in flight loads is recognised within the 

aircraft accident investigation literature. As Wood & Sweginnis (2006) suggest 
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that in examining a failure the aircraft accident investigator should ask the 

question: 

“Was the manner of failure consistent with the way this part was stressed 

inflight?” 

Unfortunately this principle is not applicable to all components of the airframe 

as, from the designers perspective, it may not be possible to provide an 

optimised fibre alignment for a specific component due to manufacturing and 

certification costs (Baker, Dutton, and Kelly, 2004). In these instances layups of 

quasi-isotropic alignment may be utilised. 

The characteristics as identified during the survey are presented in the following 

sections. 

5.3 Locating fracture origin and fracture propagation 

This section discusses features which are associated with characteristics that 

enable the investigator to locate the fracture origin and fracture propagation 

direction. 

5.3.1 Radials 

Radials, or also referred to as ridges (Kar, 1992), are a failure feature which 

appears to be first described by Purslow (1981). Latterly the identification of 

radials was repeated in literature both directly through experimentation 

(Shikhmanter, Eldror & Cina, 1989) and in subject compendiums (Purslow, 

1983; Kar, 1992; Greenhalgh, 2009). The morphology by which the radials are 

created is known as ‘mirror, mist and hackles’ (a sequence of textures on the 

fracture surface coincident with increasing roughness as the crack propagates 

and crack speed increases) with the proportions of each mirror, mist and hackle 

region being dependent on toughness, loading conditions and environmental 

factors (Greenhalgh, 2009). This relationship was applied, albeit at a 

microscopic scale, to the failure examination of glass fibres contained within a 

main rotor blade by the NTSB (2010). In this instance it was able to provide 

evidence consistent with low stress fatigue failure.  
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Radial lines are a phenomenon which is created during fracture growth under 

brittle axial tension failure of a unidirectional polymer composite. The 

identification of the characteristic can confirm the propagation direction of the 

fracture, locate the fracture origin and provide supporting evidence of the failure 

mode (Purslow, 1981). The characteristics of radials have been described by 

Purslow (1983) as: 

“Radiating lines called "radials" can be detected originating at the 

relatively smooth area. These radials are formed as the fracture 

propagates along different radii at gradually diverging axial positions 

causing lines of hills and valleys of increasing magnitude.”  

Figure 5-4 illustrates the fracture surface of a carbon fibre epoxy composite. 

The initiation point is labelled as “O”. From this illustration the “lines of hills and 

valleys” can be seen to point towards initiation site. The area immediately 

surrounding the initiation point is relatively smooth in comparison to outer 

regions.  

 

Figure 5-4 – Radial formation during the brittle tension failure of a carbon-

fibre/epoxy composite (Shikhmanter et al, 1989) 

The illustration of this mechanism in literature is typically associated with 

macroscopic examination under higher magnification.  
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The phenomenon of ‘mirror, mist and hackles’ can be identified in training 

literature for aircraft accident investigators. In ICAO’s draft document “Manual of 

Aircraft accident and Incident Investigation” (ICAO, 2008), and in ICAO’s current 

document “Manual for aircraft accident investigation” (ICAO, 1970), the 

phenomenon of hackles is explained as a means to identify the fracture origin of 

fractures in glass and in plastics. Here ICAO suggests the identification of 

hackles as “valuable in identifying the origin of the fracture since they always 

point in the direction of the initial crack”. This is a technique replicated in failure 

analysis literature (Parrington, 2002; McCoy, 2004). 

The significance of identifying radial lines in metallic structures to locate the 

fracture origin is also expressed in accident investigation training literature. The 

US Air Force Publication US Air Force guide to mishap investigation (Carver, 

1987), and Manual for aircraft accident investigation (ICAO, 1970) both describe 

and illustrate the flow of radial lines from the origin of the failure. 

The formation of radials is limited to brittle tensile failures in unidirectional 

materials. Glass fibres generally have a poor fibre/matrix interface so have a 

tendency to have significant fibre pullout. As a result, the radial features are 

generally not visible (Greenhalgh, 2009). Similarly, in toughened matrix systems 

such as thermoplastics, the failure of the material is typically less brittle than 

that of epoxy. This leads to a failure which contains a higher degree of fibre 

pullout and as a result the appearance of macroscopic features such as radials 

may appear to a lesser degree (Purslow, 1988). The fracture origin of failures 

dominated by significant fibre pullout however, may be distinguished by an area 

of flat fracture plane at the site of fracture initiation (Greenhalgh, 2009). 

5.3.2 Chevron features 

The failure feature of Chevrons appears to be first described by Purslow (1981) 

and is an extension of the radials morphology as described above, albeit it 

occurs in cross-ply laminates (e.g. 0°/90°) under tensile failure. The mechanism 

of chevrons was repeated in literature by Purslow (1988) when reporting on the 

fractographic features of thermoplastics and by Greenhalgh (2009) in the 

author’s comprehensive subject book. Latterly, chevron formation was reported 
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by Kumar, RaghavendraI, VenkataswamyI & RamachandraII, (2012) in the 

tensile failure of unidirectional carbon fibre coupons, although it is likely that 

these features identified would be better described as radials lines. 

During loading of the cross-ply laminate, the transverse fibres (90° plies) crack 

prior to the failure of the 0° load bearing ply (Purslow, 1988). When failure finally 

occurs on the load bearing plies, the failure occurs at the 0°/90° interface and 

propagates towards the centre of the 0° load bearing ply with a component 

towards the global crack growth direction (Purslow, 1981). When the radials 

converge from the lower face and the upper face of the ply, the result is the 

formation of apparent chevrons which have been formed from the ‘hills and 

valleys’ principle which occurs during radial creation. The chevrons point in the 

direction of crack propagation (Purlsow, 1981). 

 

Figure 5-5 - Tension failure of a cross-ply CFRP laminate (x25) (Purslow, 1988)  

Chevron (also known as herringbone) features of metallic structures are 

commonly described in the accident investigation training literature (ICAO, 

2008; ICAO, 1970; Wood & Sweginnis, 2006; Carver, 1987; Sander, 2005). The 

principle of using chevron markings to distinguish the fracture propagation 
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direction and fracture origin are similar, however the chevron formation 

mechanism which applies to a metallic material is different to polymer 

composites. In the case of metallic materials the chevrons visibly point towards 

the origin of the failure. This is converse to the morphology in polymer 

composites which point in the crack growth direction. The use of metallic 

chevron patterns as a means of deducing crack growth direction is also evident 

in accident investigation reports (e.g. AAIB, 2003; AAIB, 1989; ASC, 2002) with 

perhaps the most high profile use being that of the Sequencing Group of the 

NTSB to determine the breakup sequence of TWA800 (NTSB, 2000), where the 

Sequencing Group conducted “detailed visual examinations, occasionally with 

magnifications up to 30X”. 

Similarly to radials, the presence of chevrons is largely dependent on the ply 

and the matrix to fibre interface strengths as described by Greenhalgh (2009). 

Materials which have poor fibre-matrix interface strength (e.g. glass fibres) tend 

to have a higher degree of fibre pullout and hence the chevron features tend not 

to appear. In this case the fracture origin may be identified by a flat fracture 

region relative to the surrounding fracture surface (Greenhalgh, 2009). The 

phenomenon of chevron formation has also been observed to occur, although 

to a lesser degree, in PEEK (Polyether ether ketone), a toughened 

thermoplastic matrix (Purslow, 1988). In the case of poor ply interface strength, 

the plies tends to suffer delamination prior to fracture which leads to a more 

rugged fracture surface which potentially hinders the formation of chevrons as 

the presence of delamination tends to lead to the plies fracturing independently 

(Greenhalgh, 2009). In addition to the failure of cross-ply laminates in axial 

tension, the formation of chevrons may also appear in the fracture of shear 

webs of +/-45° loaded under shear stress, where the failure results from the 

tensile component (Purslow, 1988). 

5.3.3 Continuity of fractures 

An important phenomenon when considering the sequencing of fractures in 

composite materials is that a stress concentration associated with an earlier 

fracture event will influence the crack path of a later fracturing event 
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(Greenhalgh, 2009). This phenomenon, which is not unique to composites, was 

first discussed by de Freminville (1914) whilst conducting experiments in 

metallic structures. It has an important application in composite materials 

however as the failure of a polymer composite is usually associated with a 

significant increase in the number of fracture planes and the stiff nature of 

polymer composites results in a greater range for influence of stress 

concentrations (Greenhalgh, 2009).  The concept of crack sequencing in 

polymer composites as an aid to failure investigation has been discussed most 

notably by Purslow (1981; 1984), ASM (2002), Greenhalgh (2005; 2009) and 

Kumar, et al (2012). 

The basic approach, as suggested by Greenhalgh (2009), is to “consider the 

relative influence of each crack upon the other”. Figure 5-6 (ASM, 2001) 

displays the mating fracture surfaces of an adhesively bonded wing skin and 

wing spar, showing transverse fractures on both surfaces. As the transverse 

fractures can be found on both the skin and the mating spar, it can be 

hypothesised that the transverse cracks must have occurred prior to the 

delamination. If the delamination had occurred first then it can be expected that 

the transverse cracks would be absent on one of the surfaces or at least would 

not have matched in position to the adjacent surface. 
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Figure 5-6 - mating fracture surfaces of an adhesively bonded wing skin and 

wing spar showing transverse fractures on both surfaces ~(x0.2) (ASM, 2001) 

The influence of a pre-existing crack on a subsequent crack is not limited to 

stopping crack growth across a boundary, or deviating the crack onto a different 

plane. Hull (1999) suggests that intersecting cracks can influence each other 

and thus crack growth direction can be altered such that the cracks converge 

(figure 5-7). Greenhalgh (2009) suggests that as polymer composite materials 

are relatively stiff, the distance at which the influence can occur can be 

reasonably large. 
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Figure 5-7 – the interaction between pairs of cracks a) the cracks propagate but 

are not intersecting, b) the stress fields from the crack tips interact thus 

resulting in the cracks converging (Greenhalgh, 2009). 

Whilst there is no evidence of continuity of fractures being discussed in accident 

investigation training literature, there is evidence of the phenomenon being 

used, albeit in metallic structures, in major structures investigations (e.g. NTSB, 

2000). Furthermore, it should be suggested that whilst the continuity of fractures 

principle has a strong application in polymer composites, the technique itself is 

not specific to polymer composite materials. 

5.3.4 Compression cracking 

The identification of characteristics associated with compression cracking used 

as a technique to identify the crack propagation direct of a compression-failed 

polymer composite laminate, was presented by Greenhalgh & Cox (1992). This 

paper has subsequently been cited in literature with authors (Greenhalgh, 

Singh, Hughes, Roberts, 1999; Greenhalgh, 1993) reporting the successful use 

of the technique. Other authors (Tsampas, Greenhalgh, Ankersen, Curtis, 2012; 

Sivashanker, 2001; Edgren, Asp, Joffe, 2006) have reported the mechanism 

and its occurrence. Additionally, the technique has been further described by 

Greenhalgh (2009) and Greenhalgh & Hiley (2008). 
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Compression cracking is a technique, which utilises the failure pattern of a 

polymer composite laminate, to provide an indication as to the direction of crack 

propagation. The technique, as summarised by the founding paper (Greenhalgh 

& Cox, 1992) is described as: 

“It has been found that the direction of compression crack propagation in 

multi-directional carbon-fibre laminates less than 3mm thick can 

frequently be determined by examination of surface splits around the 

main fracture. This is done by visualising the splits as 'arrowheads' which 

generally 'point' to the source of failure, the main translaminar crack 

forms the shaft of the arrow.”  

Figure 5-8. (Greenhalgh & Cox, 1992) shows the mechanism by which the 

secondary splits are formed and hence the creation of the ‘arrowheads’. Image 

(a) represents the transverse compression growth extending from a defect or 

notch. In (b) the laminate undergoes secondary splitting in the form of surface 

ply splits. Image (c) represents the extension of the transverse crack and 

subsequent increase in secondary splitting. Image (d) shows that as the crack 

propagates, the secondary splitting extends to the lower section of the 

transverse compression fracture having been influenced by the inner ply (the 

image represents a +/-45° layup). 

 

Figure 5-8 - Mechanism of compression crack formation (Greenhalgh & Cox, 

1992) 

The technique of crack propagation determination through the examination of 

secondary splits is unique to composite structures and thus has no direct 
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equivalent when considering metallic structures. There is evidence however that 

the technique has been used successfully in determining crack growth 

propagation during failure analysis investigations (Greenhalgh & Cox, 2009). 

Moreover, as highlighted in the preceding sections, there is frequent reference 

in accident investigation literature to the use of methods to determining crack 

growth direction. 

The technique as applied during the founding paper (Greenhalgh & Cox, 1992) 

was based on Carbon Fibre laminates with unidirectional ply layup. The 

technique was found to be useful in examining the compression failure with 

laminates with outer ply directions of +/-45°, +/+45°, +45°/90° but was 

hampered with outer plies of +45°/0°. Additionally, the technique can be applied 

in the examination of woven fibre laminates although the extent of the 

arrowheads is somewhat reduced (Greenhalgh, 2009). 

An important phenomenon which can be seen in images presented in the 

original paper by Greenhalgh & Cox (1992) (figure 5-9) concerns the effect of 

compression failure on a specimen that contains pre-existing impact damage. 

Although the purpose of the image in the article is to demonstrate the formation 

of compression cracking from each side of the impact area, it also appears to 

demonstrate the influence of the impact damage on the transverse fracture 

formation. In this image it can be seen that the primary transverse compression 

crack meets the lower region of the impact location but is directed around the 

delaminated area thus forming a visible deviation of the crack path as 

influenced by the formation of the impact. Potentially this can provide evidence 

to the investigator in identifying pre-existing impact damage in fractured 

components. 
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Figure 5-9 - Example of compression cracking in an impacted laminate 

(Greenhalgh & Cox, 1992) 

5.3.5 Tide marks 

For delaminated (interlaminar) fracture surfaces, a feature known as ‘tide 

marks’ can be used to determine the fracture origin and crack growth direction 

(Purslow, 1986). The phenomenon has been highlighted within the literature 

widely and has taken names such as ‘ribs’, ‘bands’ or ‘growth rings’. (e.g. ASM, 

2001, Greenhalgh, 2009, Purslow, 1986; Purslow, 1987; Greenhalgh 1993). 

When a delamination occurs through peel (mode I) or through a combination 

including peel, a series of visually distinguishable curved bands may form on 

the delaminated fracture surface as shown in Figure 5-10 (Purslow, 1986). 
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Figure 5-10 – Growth bands during an interlaminar peel failure. The local fracture 

origin is identified with “0” and the growth bands identified by the red line 

(modified from Purslow, 1986) 

Generally, these tide-mark features are created by changes in crack speed 

which results in visually apparent light and dark bands on the fracture surface 

(Greenhalgh, 2009). 

The ability to determine the crack growth direction however is not without 

potential for confusion. Whilst it is accepted that the tidemarks radiate out from 

the source of failure as demonstrated in figure 5-11, it has been reported also 

by ASM (2001) that in instances the visually evident banding may suggest crack 

propagation in the reverse direction, i.e. from the convex side to the concave 

side. Thus it is possible that depending on the circumstances of the loading, the 

crack propagation direction can be misleading, other than to state that the crack 

front travels perpendicular to the tidemarks. 
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Figure 5-11 - Crack growth direction visible on an interlaminar fracture surface 

through the formation of bands (ASM, 2001). 

Tide marks are not evident visually on all composite materials but are generally 

visible on toughened thermosets and thermoplastic composites (Greenhalgh, 

2009). 

5.3.6 Crack bifurcation 

The identification of the feature of crack bifurcation was created during research 

sponsored by the Wright Laboratory to develop the Composite Failure Analysis 

Handbook (Kar, 1992; Kar 1992a; Kar, 1992b; Kar, 1992c). The technique was 

re-iterated by ASM (2001) and by Greenhalgh (2009). 

Crack bifurcation is a feature that is created during translaminar fracture and is 

a method which, where evident, can identify the fracture origin and the direction 

of crack propagation. As a crack propagates through a composite structure, 

more strain energy becomes available to generate secondary damage and 

hence a crack is more likely to bifurcate (i.e. transition into two cracks) 

(Greenhalgh, 2009). Thus the identification of crack bifurcation can be indicative 

of increasing crack propagation direction. Figure 5-12 illustrates a V-22 Osprey 

Wing box which failed following upward and aft bending of the outboard ends of 
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the box, so as to create a maximum compressive stress at the upper skin 

surface (Kar, 1992). The upper surface which is shown in the image 

subsequently failed in compression buckling (Kar, 1992c). The image identifies 

the position of a bifurcation in crack propagation and hence suggests that the 

failure must have initiated prior to this bifurcation point, hence it was concluded 

that the crack had propagated from the right of the image to the left of the 

image. 

 

Figure 5-12 - Branched cracks on the upper surface of a graphite-epoxy wing 

box. The crack branching is indicative of crack growth in the component from 

right to left (Kar, 1992c) 

It is also interesting to note that in figure. 5-12 there are many ply splits which 

branch out of the primary crack in what appears to be +45° / -45° directions. 

Figure 5-13 illustrates the top skin of the wing box with the primary crack 
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superimposed in red and the ply splits superimposed in blue. The intersection of 

the red and blue lines also appears to create arrows. Although it cannot be 

confirmed without understanding the failure in more detail, it may suggest the 

existence of compression cracking features. 

 

Figure 5-13 – Crack branching on the upper, compressive failed spar box from a 

V-22 Osprey (modified from Kar, 1992c) 

5.3.7 A tendency to follow the 0° interface 

The principle behind the tendency for a delamination to follow the 0° interface is 

first introduced by Purslow (1981). The phenomenon is latterly discussed by 

Greenhalgh (1993), Greenhalgh & Hiley (2008) and Greenhalgh (2009), with 

Greenhalgh & Garcia (2004) recreating the phenomenon during 

experimentation creating the failure of skin-stiffener run-outs. 
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During delamination crack propagation, a delamination will want to grow parallel 

to the fibre orientation (Greenhalgh, 1993). To achieve this, the delamination 

may change from the ply interface at which it originated and move to a different 

interface before settling at the preferential layer. This mechanism occurs during 

delamination growth under mode II (shear) or mixed mode (I & II) failure and 

has the potential to allow visual interpretation of crack growth direction. 

As described by Greenhalgh & Hiley (2008), when a delamination propagates 

within a laminate, the shear forces push the crack front through laminates which 

have fibres orientated normal to or close to normal to the direction of crack 

propagation. The plane of delamination will finally settle when a layer has been 

reached where the fibre orientation is close to parallel to the crack growth 

direction. The crack front is then restrained from further through-thickness 

propagation and hence the delamination will continue to propagate on this 

plane. This shift in fracture plane can usually be identified visually and thus the 

crack can be traced back to the origin of the failure (Figure 5-14). 

 

Figure 5-14 – crack growth direction as interpreted through ply propagation of a 

skin / stiffener delamination (Greenhalgh & Hiley, 2008) 

This mechanism has been described as occurring during various situations 

such as the tensile failure of a skin / stiffener run-out (Greenhalgh & Garcia, 

2004) and impact induced delamination (Purlsow, 1981). 
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5.3.8 Serrations 

Although not readily acknowledged within the academic literature, the use of 

paint film cracking as a means to infer crack growth direction has been cited in 

two prominent accident investigation training publications (ICAO, 2008; Wood & 

Sweginnis, 2006). It is proposed by ICAO (2008) that during tearing, a saw 

toothed pattern is created into the film. The direction of tearing can be gleaned 

by examining the ‘teeth’. Although no detailed means of identifying the features, 

the use of serrated boundary to determine crack growth direction is recognised 

in fractographic literature. 

Purslow (1987) provides a macroscopic means by which the sequence of failure 

can be determined when a cross ply laminate has failed in intralaminar shear 

and peel. In this instance a serrated boundary is created due to the presence of 

ply splits parallel to the fibre direction and a 45° off-axis load. When the fracture 

is progressing at 45° to the ply splits, the crack front is separated between a 

global crack front and the local crack front which is influenced by the ply splits 

(figure 5-15). 

 

 

Figure 5-15 – Peel / shear boundary indicating crack propagation direction. Crack 

growth direction indicated by the red arrow (modified from Purslow, 1987) 

5.3.9 Influence of stress raisers 

As polymer composites are inherently brittle, failure will always initiate at a 

stress raiser. A stress raiser can take the form of geometrical features or more 
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subtle features such as damage (e.g. impact) or material defects (e.g. incorrect 

fabrication) (Greenhalgh, 2009). 

5.3.10 Differentiating between different failure zones 

In particular instances a failure can leave visually distinct regions of different 

fracture types. These can be indicative of the failure sequence with each region 

representing different failure modes during the sequence of failure. Whilst an 

apparent change in distinctive regions has been used by the investigator to 

promote suspicion of a failure from which further investigation can be conducted 

(Chapter 4), it can be used also to provide specific detail into the fracture 

sequence.  

Consider an example given by ASM (2001) as shown in Figure. 5-16. The 

image shows three different stages in the failure of a helicopter rotor blade, 

labelled as A, B & C. Each stage is indicative of a different failure mechanism 

during the failure event. The area labelled “A” depicts the first stage which is a 

fatigue initiation region. The area labelled “B” depicts a region of translaminar 

bending failure; and the area labelled “C” depicts an area of fibre crushing 

during final fracture. Through the identification of such phases in the failure 

event, a sequence can be hypothesised which may assist in the preliminary 

understanding of the ‘bigger picture’ surrounding the accident. 
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Figure 5-16 - Three different failure modes exhibited on the surface of a 

fractured, translaminar helicopter rotor blade. A, fatigue initiation; B, 

translaminar bending; C, fibre crushing during final fracture (ASM, 2001) 

This phenomenon can also be identified in localised fractures. The ‘mirror, mist, 

and hackle’ morphology is one example which can identify crack origin, crack 

propagation and final fracture zones (Kumar, et al 2012). Another example is 

‘zoning’ which was recognised during impact damage where visual examination 

identified that two types of fracture mechanism had occurred on the fracture 

surface. The first was associated with the impact damage and the second was 

due to peeling (Hull & Shi, 1993).  

5.4 Failure modes 

This section continues the survey by presenting the characteristics which are 

associated with failure mode identification and the effect from different materials 

and degradation mechanisms. 

5.4.1 Tensile Failure  

Tensile fracture surfaces of unidirectional materials which have failed in a 

translaminar plane are typically characterised by a fracture surface that is 
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perpendicular to the direction of the applied load (Stumpff & Snide, 1986; 

Saliba, 1988; Greenhalgh, 2009). The fracture surface may also appear rough 

or irregular (Kumar, et al, 2012), or shiny with evidence of fibres protruding from 

the surface (Kar, 1992; Kar 1992a; Greenhalgh, 2009; ASM, 2003a; Ginty & 

Chamis, 1985; Shikhmanter et al, 1991) (figure 5-17). In the case of woven 

composite materials, fibre pullout may otherwise be referred to as tow pull-out 

(Cox, Dadkhah, Morris & Flintoff, 1994). 

Glass-fibre has an inherently weak matrix / fibre interface and thus will have 

greater fibre pull-out. Thermoplastics and toughened matrices too will have a 

failure exhibiting increased fibre pull-out (Greenhalgh, 2009). Significant fibre 

pull-out leads to a characteristic fibrous or ‘broom-like’ fracture feature 

appearance of the fracture surface. 

It has been suggested that a ductile or brittle failure can be distinguished from 

visual interpretation of the fracture surface. Stumpff and Snide (1986) suggests 

that a brittle failure is characterised by minimal fibre pullout with fibres at 

approximately the same length whilst a ductile failure is characterised by 

significant amounts of fibre pullout with fibre lengths varying widely. 

When considering laminates, Greenhalgh (2009) suggests that if the plies have 

failed on the same plane then the failure is considered brittle with limited 

secondary damage such as ply splitting or delamination. Greenhalgh (2009) 

goes on further to state that if the failure has occurred on different planes, and 

hence undergone substantial secondary damage such as increased ply splitting 

and delamination, then this may imply a higher fracture toughness and strength. 

In some instances the tension failure of unidirectional materials has created a 

catastrophic failure whereby very little of the specimen is left intact (Ginty & 

Chamis, 1985). 
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Figure 5-17 – Tensile Fracture of a multi-directional laminate. 1 and 2 – fractures 

in +/-45° plies, parallel to and through the fibres, respectively; 3 – fracture of 

fibres in 0° ply; 4 – fracture parallel to fibres in 90° ply. (Shikhmanter et al, 1991) 

The degree of fibre pull-out is influenced by the fibre type and the matrix type 

(and hence is likely to differ between material types) and is strongly dependent 

on the strength of the fibre-matrix interface (Hull, 1999). A weakening in any 

one of these constituents, for example due to a degradation mechanism, will 

change the failure characteristics of that material. Thus, an increased or 

reduced degree of fibre pull-out relative to a pristine failure can be indicative of 

degradation within the composite material.  

An increase in temperature can decrease the modulus of the matrix and 

increased moisture has a similar effect. Additionally, moisture ingress can also 

potentially degrade the interface between the fibres and the resin (Miller & 

Wingert 1979). Both excessive temperature and high moisture absorption have 

been shown to reduce the strength of the composite material and upon failure 

have been shown to increase the degree of fibre brooming (e.g. Miller & 

Wingert, 1979; Saliba, 1988). 
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If the fibres have been degraded, as can be the case in stress corrosion 

cracking of E-glass fibres, the relative strength of the fibre compared to the 

matrix / fibre interface would reduce (Figure 5-18). Thus a material which would 

normally have a tensile failure dominated by significant fibre brooming, would 

instead have the flat fracture surface (Roulin-Moloney, 1989).  

 

Figure 5-18 – Stress corrosion cracking of E-glass fibres. Image to the left shows 

a pristine failure and the image to the right shows fracture, of the same material, 

but under stress corrosion cracking (Roulin-Moloney, 1989). 

There are numerous characteristics that can assist the investigator in identifying 

a tensile failure and the possible degradation mechanisms that have occurred. 

Whilst features such as geometry and surface appearance can provide 

information, a significant means to identify tensile failures is through identifying 

fibre pullout and fibre brooming. As the brooming characteristic is also 

associated with the bond strength between the fibre and matrix it can also be 

used to identify failures that may have suffered degradation of the fibre / matrix 

interface or through premature fibre failure. However, the ability to recognise a 

failure that has suffered degradation is likely to be subjective as the degree of 

fibre failure is dependent on the material type. A judgement however may be 

made through comparison either, to an expectation of the failure features of an 

identical material, or from a comparative failure of a pristine failure of the same 

material. 
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5.4.2 Compression failure 

Failure in compression is dependent on the way that the loading is applied and, 

in particular, on the degree of lateral constraint. It is the matrix which controls 

the lateral constraint. Hence as the matrix can fail at a load lower than that of 

the fibres, the compressive strength of the composite in these circumstances 

can be considerably lower than that of a tensile failure (Purslow, 1981). 

If the composite structure is relatively long compared to its lateral cross-section 

and insufficient lateral constraint is applied, then there will be a tendency for the 

structure to buckle. If the compression loading is sustained whilst buckling has 

initiated, then the failure is likely to be a combination of both compressive load 

and flexural load (Purslow, 1981; Greenhalgh, 2009). The following discussion 

is focused on the failure characteristics of compressive failures with limited 

buckling. However, the apparent gross buckling of a composite material can be 

a significant indication that a compression failure has occurred. 

Compression failures in unidirectional composites are typically characterised by 

fracture surfaces at an angle to the normal plane due to the shear component 

from compression loading (Purslow, 1981; Purslow, 1988; Franz, 1991; ASM, 

2003a). The resultant fracture surfaces undergo rubbing and smearing as the 

fracture surfaces move across each other (Purslow, 1981; Purslow, 1988) and 

hence the fracture surface generally has the appearance of a flat, dull/matt 

surface (Greenhalgh, 2009). Additionally, due to the nature of compression 

loading, the fracture surface is likely to have indications of secondary damage 

such as delamination and longitudinal splitting (Saliba, 1988; ASM, 2003a). 

Multiple failure modes and mechanisms have been described during 

compression failure, namely; longitudinal splitting (Saliba, 1988; Purslow, 1988; 

Nakanishi, Hana, Hamada, 1997), shear failure (Nakanishi et al, 1996), 

microbuckling (Vinod, Sunil, Nayaka, Shenoy, Murali, Nafidi, 2010; Saliba, 

1988), and delamination (Greenhalgh, 2009) (Figure 5-19).  
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Figure 5-19 – Failure modes under compression loading, a) longitudinal splitting, 

b) microbuckling, and c) shear failure. 

During compression loading, the matrix provides lateral support to the fibres to 

promote pure compression failure and hence inhibit fibre failure through fibre 

buckling (known hereafter as microbuckling). If the matrix is successful at 

inhibiting microbuckling then the expected failure mode will be through shear. In 

shear failure the fibres fracture due to the shear component of the compression 

load and hence a higher loading to failure is attained (Purslow 1981). 

Experimentation found the shear crack to be consistently 30° (Shikhmanter et 

al, 1991) and there is usually limited longitudinal splitting present. In earlier 

brittle matrix systems, the likely mode of failure would be in shear.  

In tougher resins, there is a tendency for the material to fail through 

microbuckling. The formation of a band or plane of microbuckling is termed a 

kink band. The kink band failure plane is typically at an angle of 70°-50° to the 

fibre axis (Purslow, 1988). When a kink band forms with limited delamination, 

this may promote the formation of a second kink band region which intercepts 

the existing kink band to form a wedge (Greenhalgh, 2009). A stepped fracture 

surface may also be apparent (Purslow, 1981; Vinod et al, 2010), as are the 

formation of longitudinal splits. 
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In unidirectional materials, delamination and longitudinal splitting is typically 

created by the fracture faces being forced into one another (Greenhalgh, 2009). 

In multi-directional laminates the creation of delaminations is also promoted by 

the difference in load carrying capabilities between the load bearing and off-axis 

plies. Delamination formation separates the plies and hence reduces lateral 

support promoting local buckling in the load bearing plies (Purslow, 1988). In 

either case, as the delaminated fracture faces reduce lateral constraint, a 

characteristic bulge may appear at the region of fracture (Greenhalgh, 2009).  

Splitting failure mode is formed when numerous cracks and delaminations form 

parallel to the loading direction and the material splays out into a coarse broom-

like appearance. If the loading is sustained then further delaminating and 

splitting is likely to occur as the material is forced into itself.  

Local buckling is a failure mode noted in sandwich composite skin panels during 

wreckage investigation research conducted by the NIAR (Tomblin & Ng, 2001). 

Here it was noted that upper skin panel compression buckling occurred which 

coincided with foam core failures, due to the positive bending of the wing. 

Where separation of the wing had occurred, and hence the laminate had 

suffered peel failures, the ability to identify the skin panel compression buckling 

had diminished.  

It is likely that as a compressive load is applied to a polymer composite 

laminate, global buckling of the laminate may initiate.  When this occurs, the 

flexural loading encourages delamination of the laminate. The laminate will thus 

fail under a mixture of compressive failure (such as shear) and local buckling 

(flexural failure) producing a ‘green stick fracture’ (Tsampas et al, 2012). In this 

instance the two regions are individually identifiable and suggest that a 

breakdown in the lateral constraint through delamination preceded the 

compression fracture. 

The tendency for a material to fail under a particular mode is dependent on the 

constituent properties of the composite (i.e. the properties of the fibre, the 

matrix and the interface), and is influenced by degradation within the material. 

When compared to carbon fibres, glass fibres generally have a lower stiffness 
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and a weaker interface (Greenhalgh, 2009). This tends to promote an increase 

in longitudinal splitting but both microbuckling and shear can occur. Aramid 

fibres are weak under compressive loading due to the fibrillar construction of the 

fibres and as such are likely to fail by kinking (Greenhalgh, 2009). Delamination 

will almost always precede in-plane compression failure. 

Similar to tension failures, if a composite system exhibits a failure mode 

uncharacteristic of the expected mode of failure, then this may be indicative of a 

degradation mechanism within the matrix or interface. 

 

Figure 5-20 – Compressive fracture (Shikhmanter et al, 1991) 
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Figure 5-21 – Compressive fracture, a) shear failure, b) microbuckling failure, c) 

splitting failure (Shikhmanter et al, 1991) 

5.4.3 Flexural Failures 

As a bending load is applied to a structure, a tensile strain will be applied to the 

convex side of the bending structure and a compression strain is applied to the 

concave side of the bending structure. As a result, the failure characteristics are 

those that appear under compression and tension failures (Shikhmanter et al, 

1991). 

Translaminar unidirectional flexural failure of composite laminates generally 

exhibits both tensile and compressive failure regions on the fracture surface 

separated by a neutral axis (Dillon, Buggy, 1995). The differences between the 

two regions are generally visible which in turn allows identification of the neutral 

axis (ASM, 2003a). 
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Due to the lower strength of composite materials in compression, the failure 

usually initiates in compression (Purslow, 1981; Purslow, 1988). However, as 

the compression surface is usually still capable of carrying load after the initial 

fracture, the neutral axis has a tendency to remain relatively central across the 

failure (Purslow, 1981; Purslow, 1988). The relative sizes of the tensile and 

compression zones can provide an indication as to the type of loading during 

failure. In the case of a buckling failure, which is failing under a mixture of 

compression and flexural failure, there is likely to be a larger compression zone 

to tensile zone (Purslow, 1988; Greenhalgh, 2009). Furthermore, if a stress 

concentration occurs on the tensile face of the component which initiates tensile 

failure prior to compression failure, then the fracture face is likely to contain only 

tensile failure characteristics (Purslow, 1988). 

In multi-directional laminates, the flexural loading may instigate delamination 

prior to translaminar fracture from the shear component. This creates a series of 

sub-laminates within the composite laminate which will each individually fail in 

flexure. The resultant visual appearance is a banding across the laminate of 

alternating compression and tension failure (figure 5-22) (Purslow, 1988; 

Greenhalgh, 2009). 
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Figure 5-22 – Multiple flexural failures due to delamination ~(x25) (Purslow, 

1988a) 

5.4.4 Translaminar shear 

Upon application of translaminar shear in unidirectional composite materials, 

the material tends to split longitudinally and thus form extensive splitting prior to 

translaminar separation (Greenhalgh, 2009). In multidirectional laminates failing 

under translaminar shear, the 0° ply exhibits a stepped fracture with the step 

size being approximately equal to the ply thickness (Greenhalgh, 2009).  

5.4.5 Peel – Interlaminar Mode I failure 

Visually, interlaminar peel fracture surfaces exhibit glossy reflective appearance 

(Greenhalgh, 2009; Purlsow, 1986; Purlsow, 1987; Purslow, 1984), with some 
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banding and resin covering most of the fibres on the fracture surfaces (ASM, 

2003a; Greenhalgh, 2009), and can be less planar than interlaminar shear 

failures (Purslow, 1986). It is also reported that peel failures of carbon fibre 

laminates consist of a dark fracture appearance (ASM, 2003; Purslow, 1986; 

Purslow, 1987) although the tone changes depend on the crack speed with 

paler regions representing slower crack growth and darker regions suggesting 

fast crack growth (Greenhalgh, 2009; Purslow 1987). This change in speed may 

produce visually apparent ribs or bands (Greenhalgh, 2009; ASM, 2003; 

Purslow, 1986) that can typically be used to determine the propagation direction 

and fracture origin. It has also been suggested by Greenhalgh (2009) that they 

may indicate the presence of cyclic loading. 

In experimentation using thermoplastic matric composites, Purslow (1987) 

determined that the surface appearance is influenced by fracture rate, with a 

relatively slow fracture containing a rough fracture surface and fracture surface 

becoming smoother with increased fracture rate. The difference being that 

under slow crack growth, the matrix fractures in a ductile manner with ductile 

deformation of the matrix occurring, and under fast fracture conditions, the 

matrix behaves in a brittle manner with limited plasticity occurring. 

 

Figure 5-23 - Typical mode I fracture surface from a DCB specimen (x2) 

(Greenhalgh, 2009) 

5.4.6 Shear – Interlaminar Mode II failure 

Visually, interlaminar shear fracture surfaces exhibit milky white (ASM, 2003a), 

dull matt fracture surfaces (ASM, 2003a; Greenhalgh, 2009; Purslow, 1986) that 
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are smooth and non-reflective (Greenhalgh, 2009). It has been suggested by 

Greenhalgh (2009) that crack propagation direction can be ascertained by 

identifying the degree of debris on the fracture surface. It is suggested that the 

initiation point will be the fracture surface that has undergone the most fracture 

abrasion and thus will have the greater degree of surface rubbing and hence 

debris. Greenhalgh (2009) goes on further to stress this may prove misleading if 

the failure has undergone changes in loading throughout the period of crack 

growth. 

Interlaminar shear failure tends to occur and remain in between the laminae and 

thus has a tendency to remain planar (Purslow, 1986), with the direction of 

shear strain tending to be aligned with the fibre direction (Purslow, 1981). 

 

Figure 5-24 - Typical mode II fracture surface from an ENF specimen (x2). 

(Greenhalgh, 2009) 

It has been suggested by ASM (2001) that the differences in appearance 

between mode I and mode II fractures can be used to identify pre-existing 

impact damage: 

“The internal delamination (area surrounded by arrows in the figure [5-

25]) resulting from the impact damage exhibits a whitish appearance, 

whereas the newly separated, Mode I tensile failure had a dark, reflective 

surface appearance. The differences in reflectivity are thought to be the 

result of the differences in failure modes, with the impact region in this 

specimen more representative of a combination of compression and 
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Mode II shear failure, and the separated region more indicative of Mode I 

tensile failure.” 

 

Figure 5-25 - Reflectivity differences on a delaminated fracture surface indicative 

of the impact damage. ~0.5X (ASM, 2001) 

Whilst figure 5-25 demonstrates a pre-existing delamination which is exposed 

due to subsequent failure, there may be instances where the delaminated 

surfaces remain concealed. Greenhalgh (2009) suggests that in this instance 

“lightly pressing the surface to see if it deforms can verify this”. 

5.4.7 Fatigue 

Fatigue is a mechanism which can usually be identified visually or 

macroscopically in metallic materials. However, fatigue failure in composite 

materials can appear from a visual and macroscopic perspective as a static 

failure (Franz, 1991; ASM, 2003a). This results in fatigue failures of composite 

materials being potentially more difficult to interpret. The mechanism of fatigue 

is also different between composites and metallic materials. In metallic 

materials a fatigue failure is usually associated with an initiation site (ASM, 
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2003a) from which a crack extends through dislocation migration (Greenhalgh, 

2009). The crack tip forms a stress concentration. As the crack progresses 

under different loading conditions, the visually apparent beach marks are 

formed which represent changes in crack growth. 

In the case of polymer composite materials, the above mechanism is not 

possible due to the amorphous nature of typical resins where, in pristine 

materials, significant fatigue crack growth is not expected to develop below 60% 

of static failure stress (Greenhalgh, 2009). Instead, fatigue in polymer 

composite materials is associated with a number of “sub-critical failure modes, 

all of which result in a highly diffuse damage zone” (Scheirs, 2000). 

It is reasonable to suggest that fatigue in composite structures may occur in 

regions where environmental factors, damage or pre-existing defects are 

present, hence introducing higher local stresses. 

It is accepted that the only practical means of identifying fatigue is through high 

magnification examination (Greenhalgh & Hiley, 2009). However table 5-2 

illustrates potential changes in visual characteristics that may occur in fatigued 

components, compared to that of their static failed counterpart. 
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Category) Limitations) Features) Comments) Source)
General)
features)

Opaque)materials)such)
as)Carbon)Fibre) Surface)splitting)or)delamination) Surface)splitting)or)delamination)are)

also)likely)to)occur)under)static)loading)
Greenhalgh)&)
Hiley,)2009)

General)
features)

Glass)fibre)with)a)
transparent)or)semiD
opaque)resin)

Evidence)of)internal)fracture,)both)
delamination)and)matrix)cracking,)
normally)observed)as)areas)of)
whitening/frosting)within)the)matrix)
resin)and)at)fibre/matrix)interfaces)
owing)to)light)scattering)effects.)

The)distribution)of)this)damage)will)vary)
considerably)depending)on)the)layDup)
and)architecture)of)the)fibre)
reinforcement.)

Trappe)&)
Harbich,)2006;)
Greenhalgh)&)
Hiley,)2009;)
Fujii,)Shiina,)and)
Okubo,)1994)
)

General)
features) )) Presence)of)defects,)stress)raisers)or)

preDexisting)damage) )) Greenhalgh)&)
Hiley,)2009)

General)
features) )) Flatter)fracture)surface)appearance) )) Lang,)Manson,)

Hertzberg,)1987)

Interlaminar)/)
intralaminar)
(Bulk)polymer))

Thermoplastic)polymers)) Stress)whitening)) )) Lang,)Manson,)
Hertzberg,)1987)

Interlaminar)/)
intralaminar)
(Bulk)polymer))

)) Mirror/Mist/Hackle)phenomenon)) )) Hertzberg,)
Manson,)1980)

Interlaminar) )) Beach)marks) Can)be)present)under)mode)I)tension)
and)mode)II)shear)fatigue)loading)) ASM,)2003a)

Interlaminar) Mode)I)failure) Smoother)texture)and)exhibit)
enhanced)reflectivity)

With)glass)fibre)reinforced)composites,)
the)macroscopic)differences)between)
static)and)fatigue)fracture)are)often)
even)more)subtle)

Hiley,)1999)

 

Table 5-2 – Fatigue failure characteristics 
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Category) Limitations) Features) Comments) Source)

Interlaminar) ))
Identification)of)a)static)/)fatigue)

boundary)

Often,)the)boundary)between)fatigue)

(smooth))and)static)(rough))is)quite)

clear)macroscopically)

Greenhalgh)&)

Hiley,)2009)

Intralaminar)

Glass)fibre)with)a)

transparent)or)semiD

opaque)resin)

Opaque)matrix)cracking)
Indications)of)significant)increase)in)

matrix)cracking)

Trappe)&)

Harbich,)2006)

Translaminar) TensionDTension)fatigue) Enhanced)broomDlike)features) ))

Kawai,)

Morishita,)Fuzi,)

Sakurai,)and)

Kemmochi,)

1996)

Translaminar)
TensionDCompression)

fatigue)

reduction)in)longitudinal)splitting,)

significantly)more)delaminating)

Compared)to)TensionDTension)failure.)

Will)fail)under)compressive)cycle)

Greenhalgh,)

2009)

Translaminar) Flexural)fatigue) Curved)compressive)fracture)face) ))
Dillon)&)Buggy,)

1995))

Translaminar)
Flexural)fatigue)in)multiD

direction)composites)

Enhanced)delamination)and)longitudinal)

splitting))
))

Dillon)&)Buggy,)

1995))

Translaminar)

Flexural)fatigue)in)

unidirectional)

composites)

Enhanced)fibre)brooming)on)tensile)

face,))
))

Greenhalgh,)

2009)

Lightweight)

aircraft)wing)

structure)

Flexural)fatigue)under)

spectrum)loading)and)

limit)loading)

Limited)whitening/frosting)within)the)

semiDopaque)GFRP)structure.)Primary)

failure)mode)noted)as)buckling)of)the)

wing)shell)due)to)fatigue)failure)of)the)

foam)core)in)the)sandwich.)

Wing)sections)manufactured)by)

Alexander)Schleicher)GmbH)&)Co.)

Grasse),)Trappe,)

Hickmann,)

Meister,)2010)

Table 5-2 – Fatigue failure characteristics (Continued) 
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Whilst not a fatigue mechanism, flutter is an aeroelastic cyclic loading which 

increases in amplitude until the structure fails through overload. There is a 

paucity of information on recognising flutter failure characteristics but patterns 

may be similar to those associated with fatigue. ASM (2003) provides an 

example where: 

“… numerous small cracks found in the resin of a fractured, graphite-

epoxy wing spar. These cracks were visually evident and progressed 

along the length of the delaminated spar interfaces. Further investigation 

into the cause of the spar failure revealed that it failed as a result of the 

wings going into a flutter-failure mode, which then resulted in the 

extensive, progressive cracking noted along the length of the spar. 

Further evidence of a dynamic failure such as flutter was found on the 

transverse fracture surfaces of the spar. The transverse fractures 

exhibited extensive smearing of the entire fracture surface, a feature not 

generally found in overload failures of a component.” 

5.4.8 Lightning Strike 

Damage to aircraft from lightning strikes can result from both 'direct' and 

'indirect’ (or induced) effects (Rakov & Uman, 2003; AAIB, 1999).  Direct effects 

refer to the physical damage created by the attachment and passage of 

lightning on the aircraft structure and will be discussed here.  

Rupke, (2002) has suggested that the ‘direct’ effects of lightning on aircraft 

structures can be split into the following mechanisms: 

• Melting or burn-through. 

• Resistive heating. 

• Magnetic force effects. 

• Acoustic shock effects. 

• Arcing and sparking at bonds, hinges and joints. 

• Ignition of vapours within fuel tanks. 
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Composite materials will suffer mostly from acoustic shock waves. Rupke 

(2002) goes on further to suggest: 

“It should be emphasized, however, that, carbon composites are 

conductors, albeit resistive conductors. They are therefore subject to the 

same influences as metal structures, although in different degree. They 

are, for example, subject to magnetic forces, as well as arcing and 

sparking at bonds and resistive heating. Non-conductive composites, 

such as fiberglass and aramid fiber reinforced plastics will be subject to 

dielectric breakdown and puncture”. 

Resistive heating (Fisher & Plumer, 1977; Rupke, 2002), or Joule heating 

(AAIB, 1999), concerns the increased temperature rise associated with a 

current flowing through a material of high resistance or of insufficient cross 

section to carry the current.  

Acoustic shock waves and overpressure is associated with the expansion of air 

heated by the lightning current. The damage to the aircraft results from transfer 

of the kinetic energy from the expanding air into the aircraft structure (AAIB, 

1999). This mode can be recognised by heavy sooting, internal spatter and 

explosive fragmentation. These modes are especially prominent when the 

shock wave forms inside an enclosed resistive composite structure (e.g. an 

aircraft wing) as a result of a lightning strike puncturing the skin and attaching to 

the internal metallic fittings (e.g. flight control rods) (Fisher & Plumer, 1977). 

The following will concentrate on the visual characteristics of lightning 

attachment and burn-through, highlighting some of the potential visual 

characteristics that can be seen from both resistive conductors (i.e. carbon fibre 

and Boron) and non-conductors (i.e. Aramids and Glass Fibre). 

Melting or burn-through is concerned with the effects of the lightning arc at 

locations on the aircraft structure at which the lightning attaches and departs. 

There are areas, or zones, on the aircraft where the probability and severity of 

lightning strike damage can be predicted (Robinson, Greenhalgh & Pinho, 

2012). 
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As Carbon fibre and Boron filaments are resistive conductors (Rupke, 2002), 

upon lightning attachment there is some degree of dissipation of the electrical 

current and heat along the lengths of the fibres. As the resin is usually non-

conductive, the degree of heat dissipation is reduced transverse to the fibres 

and at plies further from the surface of the laminate. This typically results in 

elliptical damage patterns with the major axis aligned in the direction of the 

fibres with the most significant damage occurring on the surface ply (Figure 5-

26 & figure 5-27) (Greenhalgh, 2009). There is however electrical arcing 

between the carbon fibres which creates intralaminar and interlaminar damage 

to the polymer resin (ASM, 2010a). 

At the direct point of lightning attachment, the heating is high enough to melt 

and vaporise the polymer resin (melting point of resin typically 315°C) scorch 

and vaporise the fibres (melting point of graphite typically 3735°C) (Fisher & 

Plumer, 1977; Greenhalgh, 2009). The immediate area around this ‘zone’ 

contains vaporised polymer resin (ASM, 2010a) and significant delaminations 

(Fisher & Plumer, 1977). Furthermore, the visual characteristics are highly 

dependent on particular factors such as the nature of constituents, the 

architecture, the existence of lightning strike protection, the characteristics of 

the paint layers and the strength of the lightning strike (ASM, 2010a). 

 

Figure 5-26 - Zone 2A strike to exterior surface of unprotected 4 ply 0.052 in. 

thick laminate of woven cloth plies (Rupke, 2002) 
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Figure 5-27 – Zone 1A strike to a painted exterior surface of unprotected 4 ply 

0.052 in. CFC laminate of woven cloth (Rupke, 2002) 

When considering bonded joints, it has been suggested by Fisher & Plumer 

(1977) that as most adhesives are highly resistive, arcing of current across 

bonded joints results in the release of sufficient gas pressure to separate the 

adhesive from the structure. This failure mode was experienced in an 

investigation of a polymer composite glider by the UK Air Accidents 

Investigation Branch (AAIB, 1999). 
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5.4.9 Manufacturing and material defects 

One of the most critical aspects of polymer composite materials is their 

sensitivity to defects (Greenhalgh & Hiley, 2008). A polymer composite material, 

which is relatively resistant to fatigue, can easily be susceptible to fatigue if a 

manufacturing defect is present which significantly reduces the structure’s load 

carrying capability. 

A manufacturing defect can be identified in a failure in a number of ways. 

Firstly, the failure may be apparent on the translaminar fracture surface 

(Greenhalgh & Hiley, 2008). Secondly, the defect may be obvious in the area 

surrounding the fracture (such as discoloration). Finally, it is possible that the 

manufacturing defect influences the failure mechanism (Greenhalgh & Hiley, 

2003). 

Whilst it is out of the scope of this survey to cover all types and degrees of 

manufacturing defect, the significant forms are identified in table 5-3. The defect 

is highlighted in the first column and an introduction to the defect and possible 

visual features are discussed in the second column. 
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Defect& &Potential&effects&and&visual&and&macroscopic&characteristics&

Interlaminar&voids&
/&inclusions&

Large&voids&can&cause&gross&deformation&of&the&structure&(bulging),&
which&may&be&identified&through&pressing&on&the&area.&(Greenhalgh,&
2009).&

Fibre&waviness&&

For&0°&ply&waviness&in&[0,&45,&90,–45]2S&laminate,&static&strength&
reduction&is&10%&for&slight&waviness&and&25%&for&extreme&waviness.&
Fatigue&life&is&reduced&at&least&by&a&factor&of&10&(ASM,&2001).&Can&be&
classified&as&inRplane&and&outRofRplane&waviness&(Joyce&&&Moon,&1999;&
Greenhalgh,&2009).&Visually,&the&fibre&waviness&may&influence&the&
buckling&resistance&of&the&composite&structure&and&hence&premature&
global&buckling&may&be&induced&(Hsaio&&&Daniels,&1996)&

Porosity& Degrades&matrixRdominated&properties.&1%&porosity&reduces&strength&by&
5%&and&fatigue&life&by&50%&(ASM,&2003).&

Surface&notches&&

Static&strength&reduction&of&up&to&50%.&Strength&reduction&is&small&for&
notch&sizes&that&are&expected&in&service.&Incorrect&drilling&speeds&can&
introduce&delaminations,&splitting&and&scorching&around&the&hole.&
(Greenhalgh,&2009)&

Thermal&
overexposure&

Embrittlement&and&reduction&of&toughness&up&to&complete&loss&of&
structural&integrity&(ASM,&2003)&

Thermal&
underexposure&

Excessive&ductility&of&the&matrix&(Astrom,&1997).&&Increased&fibre&bridging&
on&intralaminar&mode&I&surface.&Delamination&dominated&failure&on&
translaminar&tension.&Rapid&cooling&of&thermoplastics&post&cure&also&
results&in&over&ductile&matrices.&(El&Kadi&&&Denault,&2001)&

Low&fibre&volume&
fraction&

Typical&fibre&volume&fraction&is&65%&(Purslow,&1983).&In&areas&where&
there&is&low&fibre&volume&fraction&(resin&rich&areas),&the&local&stiffness&
and&strength&will&reduce&thus&creating&potential&failure&initiation&sites.&
Resin&rich&areas&can&behave&like&bulk&polymers&and&thus&can&have&visual&
failure&characteristics.&(Greenhalgh,&2009)&

High&fibre&volume&
fraction&

In&areas&where&there&is&high&fibre&volume&fraction&(resin&starved&
regions).&Translaminar&failures&will&tend&to&exhibit&an&increased&
degree&of&fibre/matrix&debonding,&such&as&brooming&(Williams&&&
Rhodes,&1982)&

Contamination&and&
inclusions&

When&they&are&large,&they&will&act&as&stress&concentrations,&promoting&
failure&under&most&loading&conditions&and&lowering&the&toughness&of&the&
material&(Greenhalgh,&2009)&

Poor&fibre&/&matrix&
bonding&

From&a&macroscopic&perspective,&poor&fibre/matrix&bond&strength&is&
often&associated&with&brushRlike&failures&(Greenhalgh,&2009).&Reduction&
in&delamination&resistance,&particularly&under&mode&II&loading&
(Greenhalgh,&2009),&increased&longitudinal&splitting&under&cyclic&loading,&
reducing&fatigue&life&(Greenhalgh,&2009)&and&fibre&splinters&in&mode&I&
peel&(ASM,&2003a).&

Table 5-3 – manufacturing defects and potential visual characteristics 
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5.4.10 Environmental effects 

The effects of environmental degradation on aircraft structures are well known 

and have been a cause of many accidents (Findlay & Harrison, 2002). 

Historically, as aircraft structures have been predominantly constructed using 

metals, the experience and knowledge on understanding and identifying 

corrosion has advanced. Composites, whilst generally having a better tolerance 

to environmental degradation, are still susceptible to degradation and the types 

of degradation mechanisms can be significantly different to those of metals.  

Environmental effects on composites have the ability to reduce the load carrying 

capacity of the structure and also to alter the fracture characteristics. The ability 

to identify the change in characteristics and link them to degradation 

mechanisms may give investigators clues as to the presence of material 

degradation in a failed composite structure. 

Whilst composite materials have a reputation as having excellent resistance to 

environmental effects (Armstrong et al, 2005), conditions of environmental 

extremes have been shown to significantly reduce their overall strength (Kar, 

1992c; Ginty & Chamis, 1985). In general, an increase in exposure time or 

increase in severity typically results in decreasing mechanical performance and 

increasing visual extent of the degrading mechanism (Greenhalgh, 2009). As a 

result of this, evidence of the degrading mechanism may only be visually or 

macroscopically evident under severe conditions. 

Significant environmental conditions that have been discussed in literature 

include: exposure to corrosive environments, submersion in water, exposure to 

moisture, change in temperature, and long-term physical and chemical stability 

(Harris, 1999). The effect that each of these mechanisms has on composite 

materials has been researched extensively as have the effects of combined 

mechanisms, e.g. hygrothermal effects.  

Historically, the understanding of the effects on composite materials following 

exposure to corrosive environments has not been of significant concern as 

epoxy composite materials have shown resistance to typical service-related 
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fluids which are basic in nature (e.g. hydraulic fluids, fuels, etc) (DoD, 2002). 

Epoxy resins do however suffer from accelerated aging under the presence of 

highly acidic fluids and as such manufacturers may restrict the use of certain 

cleaning solvents on aircraft (e.g. Schempp-Hirth, 1982). Furthermore there are 

occasions where basic service fluids may react with water to form acidic fluids 

and thus pose a risk to the epoxy material. In conducting the investigation into 

the in-flight separation of the rudder on Air Transat flight 961 (TSB, 2005), 

phosphoric acid was identified to have formed when hydraulic fluid mixed with 

atmospheric water. It was identified that the phosphoric acid had attacked the 

epoxy resin of a similar aircraft creating irreversible damage to the core/face 

sheet interface through weakening of the bond. 

Some thermoplastic resin systems, although they have excellent resistance to 

moisture and hydraulic oils, have poorer resistance to fuels. In the case of 

PEEK, fuel exposure can lower the material's glass transition temperature and 

hence reduce the capability to withstand high temperature (DoD, 2002). 

Although in general, it is the matrix properties which are degraded by such 

contaminants, environmental factors may also cause degradation of the fibres. 

Carbon, boron, and other ceramic reinforcements are highly resistant to all but 

the most highly oxidising acids and only become affected by temperatures 

elevated in excess of that which the matrix can withstand. Others, particularly 

glass and aramid fibres, can be significantly affected even at low exposure 

levels of water or acidic environments (Harris, 1999). Environmental stress 

corrosion cracking is one example of a mechanism which creates premature 

failure through degradation of glass fibres (Roulin-Moloney, 1989). 

Perhaps the most prominent visual cues of environmental degradation are 

gross changes in colour or physical appearance. Tests involving adhesive 

specimens immersed in jet fuel, anti-icing fluid and hydraulic fluid over a 

prolonged period in heightened temperatures have shown progressive changes 

in colour and visible swelling (Sugita, Winkelmann, & La Saponara, 2010). 

Swelling of the matrix was also noted during testing under immersion in various 

aqueous media (Kishore & Maiti, 2001). Furthermore, evidence of thermal 
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degradation can also be manifested as paint discolouration, blistering at the 

surface and charring (Greenhalgh, 2009). 

Ginty & Chamis, (1985) in reporting on the fracturing of over-aged carbon fibre 

specimens, reported on a black greasy residue being indicative of chemical 

degradation in the matrix system: 

“One other point worth mentioning is that the physical handling of these 

fractured [±θ2]s overaged laminates resulted in a black greasy residue on 

the skin. The authors have never observed this before even though 

hundreds of graphite/epoxy specimens have been handled. This is 

apparently indicative of a chemical breakdown of the old resin and is an 

additional characteristic of an overaged prepreg.” 

Physical change in the material may also be evident if exposure to high 

temperature is severe enough. In the case of thermoplastic resins systems, the 

matrix will become excessively soft leading to gross deformation of the structure 

and internal movement of the fibres within the matrix leading to increased 

voidage and inhomogeneous resin distribution (Greenhalgh, 2009). This in turn 

will lead to a reduction in the matrix dominated properties such as in 

compression. 

As a general rule, when attempting to identify potential environmental degrading 

mechanisms, the best approach is to compare the suspect fracture surfaces 

with those from materials which have failed in a similar manner and which are 

known not to have been subject to environmental degradation (Kar, 1992; ASM, 

2003a). Typically, the influence of gross environmental degradation may be 

identified through visual interpretation (Kar, 1992), but identifying discrete 

degradation, the type of environmental condition and the severity of the 

particular degrading factor can be difficult (Greenhalgh, 2009). Furthermore, 

environmental extremes at fracture tend to be more visually pronounced in the 

fracture features of translaminar fractures rather than interlaminar fractures 

(Kar, 1992).  
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Environmental degradation typically involves a reduction in the strength of the 

fibre / matrix bond (Greenhalgh, 2009; ASM, 2003a). This subsequently 

promotes longitudinal splitting failure under tension loading, and delamination 

failure under compression loading (Greenhalgh, 2009). Translaminar fracture 

surfaces generated under tension loading exhibit a greater degree of 

longitudinal splitting and hence may present a visually apparent increase in fibre 

brooming. This has been reported under conditions such as moisture 

(Greenhalgh, 2009), increased temperature (Stumpff and Snide, 1986) and 

under combined hot and wet conditions (Kar, 1992). The effect of temperature 

is usually only apparent when the temperature exceeds one half of the glass 

transition temperature (Kar, 1992, ASM, 2003a) or when there are high levels of 

moisture absorption (ASM, 2003a). Conversely, when tensile failure occurs at 

low temperatures, the fracture surface is typically brittle and flat in appearance 

(Greenhalgh, 2009). 

Under compression loading the effect of environmental degradation is 

particularly damaging to the material’s performance. As previously noted, under 

conditions of high temperature and high moisture absorption, the matrix suffers 

from reduced fibre / matrix strength, the matrix softens and becomes more 

ductile. This promotes failure through global instability, local instability (kinkband 

formation) or excessive degradation of the fibre/matrix interface leading to 

green stick fracture (Kar, 1992c). Which failure occurs preferentially depends on 

the relative degradation in matrix stiffness and that of the fibre / matrix interface 

(Greenhalgh, 2009). 

Under flexural loading the failure mechanism tends to change under increased 

temperature. Whist the failure at low temperatures tends to be dominated by 

translaminar fracture, failure at increased temperature tends to change through 

increased delamination. This is due to the reduced mode II shear performance 

of the laminate at elevated temperatures (Stumpff & Snide, 1986). 

In the case of glass fibre reinforced composites Environmental Stress Corrosion 

Cracking (ESCC) can manifest from exposure to a corrosive environment and 

an applied stress. The corrosive environment can be water, acidic or alkaline 
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with the effect being increased in the presence of alkaline or acidic media 

(Harris, 1999). The failure occurs from the point of a stress raiser which is 

exposed to a degrading environment (Roulin-Moloney, 1989). 

It has been highlighted by Roulin-Moloney, (1989) that the main features of this 

failure mode are: 

1. An acidic environment is present 

2. Failure occurs at low applied loads 

3. Fracture appears to propagate from a stress raiser 

4. Fracture surfaces are planar in the region of the stress raiser 

The degree of degradation is dependent on the level of applied stress and the 

time of exposure to the corrosive environment, so too are the failure 

characteristics. With low stress the fracture surface can be very planar with 

limited fibre pullout occurring. As the stress is increased, the extent of fibre / 

matrix debonding increases leading to an increasing proportion of out of plane 

failure occurring (Hull, 1999). The fracture then tends to appear visually as a 

stepped surface. Increasing the stress further, increases the degree of fibre 

matrix failure and hence the degree of fibre pullout increases substantially 

(Greenhalgh, 2009).  
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Figure 5-28 – The effect of ESCC on fracture surfaces (a) ESCC fracture surface 

of a failed beam in an FRP grating. (b) pristine grating beam that was 

mechanically overloaded (Myers, Kytömaa & Smith, 2007) 

5.4.11 Impact 

The post-impact plastic deformation of a metallic structure can be used by 

investigators to qualitatively understand the size, shape and energy of the 

impactor (Rakow & Pettinger, 2007). In contrast however, composite materials 

absorb energy either elastically or through damage accumulation with little 

energy absorbed through plastic deformation. 

When considering impact damage to composite materials it is typically 

categorised as low velocity, high velocity or hyper velocity impact (Richardson & 

Wisheart, 1996). However, other categories do exist such as medium velocity 

impact (Greenhalgh, 2009). This segregation is traditionally based on the 

different structural responses and subsequent damage states. Bibo & Hogg, 

(1996) state that under low velocity loading the contact time is relatively long 

and the response is global thus the structure’s geometry determines the energy 

absorbing failure mechanisms. Whereas, in high velocity impacts, the laminate 

is unable to respond globally but rather responds locally to the area of impact 
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and thus the local damage is likely to be more severe. An alternative definition 

however has been suggested by Davies & Olsson (2004), which concerns the 

impactor mass / plate mass ratios. In this instance the structural response of the 

laminate is differentiated between a ‘small mass impact’ and a ‘large mass 

impact’. 

The definition of a low velocity impact typically encompasses events such as 

hail strike, ground handling related damage, maintenance related damage and 

runway debris damage (ASM, 2010). As mentioned above, these impact events 

will be characterised by similar structural responses and subsequent damage 

states. However, the impact damage mechanisms are also influenced by the 

interaction between the local indentation created by the impactor, and the global 

deflection of the laminate (Robinson, Greenhalgh, and Pinho, 2012). For 

example, when the laminate back face is supported or when the effect of global 

deflection is negligible, pure indentation damage will be observed (Robinson et 

al, 2012). 

Low velocity impacts can be the most serious in nature for brittle composites as 

they have a limited means of energy absorption through permanent deformation 

or significant indentation, and hence the damage accrued may be hidden. 

Moreover, it is likely that the laminate will suffer significant internal damage in 

the form of fibre damage, matrix cracking and delamination as a result of the 

excessive laminate deflection, with the laminate returning to its original plane 

leaving limited evidence of impact (Greenhalgh, 2009). This event is known as 

BVID (Barely Visible Impact Damage) which although may visually appear 

benign, can reduce the laminate strength in compression by as much as 70% 

(Davies & Olsson, 2004). 

Although low velocity impact damage can be created by a variety of 

circumstances, the macroscopic appearance is typically unique compared to 

other defects or failure modes (Greenhalgh, 2009). 

Visually identifiable evidence of a low velocity having occurred includes ‘back 

face splitting’ occurring on the back face of the laminate, and indentation 

damage occurring at the site of impact. Back face splitting damage typically 
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involves the intralaminar splitting of the rear facing laminate, due to high 

membrane stresses during bending (Richardson & Wisheart, 1996), with the 

laminate delaminating and protruding from the face of the laminate. The 

mechanism has been mentioned as a visual identifying feature by numerous 

researchers such as: Bucinell, (1999); David-West, Nash & Banks, (2008); 

Walker, Sohn & Hu, (2002); and Schoeppner & Abrate, (2000). Indentation, or 

front face damage, typically involves a depressed region indicating matrix 

crushing and local fibre breakage (Schoeppner & Abrate, 2000). It should be 

noted, especially in the case of the back face splitting, that should the laminate 

fracture transversely and subsequently separate, the visual identifying features 

may be lessened. 

A mechanism which may assist in identifying the existence of impact damage, 

especially in the case of BVID, relates to the mechanism of compression 

cracking as discussed in section 5.4.4. In Figure 5-9, which demonstrates the 

compression failure of a laminate which has been impacted, the transverse 

fracture is seen to intercept the impact region at the lower extent of 

delamination and then circumvent the impact area to the upper most section of 

the impact area. Greenhalgh (1989), in discussing delamination growth in 

carbon fibre laminates under compression, suggests that the primary transverse 

failure occurred internal to the laminate at the maximum deflection of the 

surface plies. The visible surface translaminar cracking occurred at the 

boundary of the delamination growth and intercepted the primary fracture 

internal to the laminate. Thus following translaminar separation of the laminate, 

the impacted surface of the laminate is likely to show the fracture extending 

around the circumference of the impact site. 

Internally, the laminate is likely to have suffered significant matrix cracking, 

delamination and fibre fracture (Robinson et al, 2012). Where the laminate has 

been free to flex globally, the dominant internal stress is associated with that 

created during flexure of the laminate (Bibo & Hogg, 1996). Consequently, the 

delaminated region created by the impact, is dominated by mode II shear failure 
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and fibre fracture due to impactor contact and excessive membrane stresses 

(Davies & Olsson, 2004). 

Unlike in opaque composites such as carbon fibre, in transparent and semi-

opaque composites such as glass fibre and aramid fibre composites, the 

otherwise hidden interior damage is usually visibly evident as a whitening / 

frosting within the laminate (Greenhalgh, 2009). If the interior delaminated 

surfaces are visible then there are additional features which may suggest the 

area has been subject to an impact. Visually, the interlaminar fracture surfaces 

of the impact region will exhibit more evidence of mode II failure, whilst the 

subsequent delamination is likely to consist of primary mode I failure (ASM, 

2003a). The shape of the mode II region may also be indicative of an impact 

event. The delaminations are usually ‘peanut shaped’, extending parallel to the 

fibres of the lower ply, are typically between plies of different orientation and of 

increasing size for increasing changes in ply angle (Davies & Olsson, 2004; Hull 

& Shi, 1993). The peanut-shaped impact region may also exhibit considerably 

more matrix debris compared to the surrounding area (ASM, 2003a). 

Typically, as velocity is increased, the laminate has less ability to respond 

through global flexure and hence the impact damage becomes more localised 

(Greenhalgh, 2009). When the velocity is high enough, penetration of the 

laminate occurs with the impact area characterised by gross localised damage 

and fibre fracture, with reduced delamination and splitting occurring outside of 

the impact area (Greenhalgh, 2009). 

The damage state also increases as impact energy is increased. Under low 

energy impacts, the failure mechanism is dominated by ply splitting. 

Delaminations then form from these ply splits. As energy is increased, the 

number of splits and delaminations increases until the energy has increased to 

a level which can initiate fibre fracture. As the energy is increased further, fibre 

fracture at the point of impact dominates leading to the penetration of the 

laminate (Greenhalgh, 2009). 

The extent of damage generated on the structure can be influenced by 

numerous factors. These in turn will vary the damage characteristics and hence 
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the visual interpretation and understanding of the impact event. The most 

significant of which are the material form, the fibre and matrix types, the 

architecture of the laminate, the architecture of the structure, and the loading 

conditions at time of impact.  

So far the discussion has focussed on impact on monolithic structures, 

particularly on laminates. When considering impact to sandwich structures, the 

laminate face sheets will involve the same damage features as in plain 

monolithic laminates, although the impact damage will be more localised. 

Invariably however, core crushing is likely to be observed with the possibility of 

the face sheet being deformed into the area of core crushing, or the face sheet 

reflecting back leaving a void in the space of core crushing (Olsson, 2002). 

Woven fabric laminates have a better damage tolerance to impact than angle-

ply unidirectional tape laminates due to the higher toughness inherent with the 

woven architecture (Kim & Sham, 2000). Furthermore, the impact region of 

delamination is characterised by a star shape, rather than a peanut shape, with 

the points lying on the warp and weft strand directions (Kim & Sham, 2000). The 

increased damage tolerance to impact is also apparent in toughened matrix 

systems such as those found in thermoplastic resins.  

5.4.12 Bonded Joints        

Composite components can either be combined prior to cure to create a 

detailed monolithic structure, assembled using secondary bonding (Campbell, 

2010), mechanical fastened, or both bonding and mechanical fastening (Sugita, 

Winkelmann & La Saponara, 2010). As there is a strong reliance on adhesive 

bonding use in general aviation aircraft manufacturing (Van Rijn, 2000), it will be 

included within the scope of the survey. 

Visually apparent changes or variations from the original adhesive colour can 

be indicative of degradation. In particular it may indicate moisture absorption, 

undercure, overheating or, in the case of semi-opaque and transparent 

adhesives, extreme cases of porosity or indications as to the depth of adhesive 

(ASM, 2001). 
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The geometric failure of the adhesive bond may also provide an indication as to 

the relative strength of the bonded joint. Davis and Tomblin (2007) suggest 

three basic failure modes within adhesive bonds, namely: 

• Failure within the adherend – This involves failure of the composite 

material which is being bonded to and thus from the perspective of the 

adhesive, the bond is stronger relative to the materials being bonded 

together. 

• Cohesive failure – This involves failure within the adhesive and thus 

suggests that the strength capabilities of the adhesive have been 

exceeded. In this situation the adhesive is relatively weaker compared to 

the adherend. 

• Adhesion failure – This involves failure of the interface between the 

adhesive and the adherend. This suggests an inadequate bond has been 

achieved between the adhesive and the bond. This typically corresponds 

with failure loads substantially below the design strength. 

These three failure modes are typical to both bonded joints and bonded repairs. 

Further failure modes have been presented including oscillatory, alternating and 

mixed (figure 5-29) (da Silva, Öchsner, Adams, 2011; Chen and Dillard 2001).  

 

Figure 5-29 – Bonding failure mechanisms (Chen and Dillard, 2001) 
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Adhesion failures are characterised by the adhesive separating from the 

adherend at the interfacial bonding line. The failure occurs due to hydration of 

the chemical bonds which form the link between the adhesive and the adherend 

surface (Davis & Bond, 1999). 

It is suggested by Davis & Tomblin (2007) that adhesion failures are generated 

in three ways. 

• Contamination of the bonding surfaces which prevents the formation of a 

chemical bond  

• Insufficient surface preparation that results in an insufficient chemically 

active surface which is resistant to hydration, or 

• The adhesive had cured before the formation of the bond. 

Visually, surfaces that have separated due to adhesion failure may be 

characterised by smooth glossy surfaces which at higher magnification may 

show little evidence of deformation. This visual cue may be indicative of poor 

surface preparation prior to application of the adhesive and hence poor bonding 

between the adherend and the adhesive (ASM, 2001). The adherend may also 

show an absence of residing adhesive, confirming that an adhesion failure 

occurred with poor chemical bonding. Areas of the adherend which provide 

sudden geometrical changes in the adhesive can also be used to identify 

premature adhesion failure. Davis & Bond, (1999) provide an example where 

serial numbers have been visible in the adhesive, again suggesting that 

adhesion failure had occurred with the adhesive separating from the adherend 

at the interface. da Silva, Öchsner, Adams, (2011) presents an example where 

the adherends were cured many months prior to bonding. During this period the 

laminate had absorbed moisture. When the adhesive was applied to the pre-

cured laminates, the heat from the bonding process drove the moisture to the 

laminate surface and thus significantly degraded the bond strength. The bond 

failed (having passed quality control inspections) leaving a perfect replica of the 

original peel ply (figure 5-30). 
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Figure 5-30 – Peel-ply imprint left by the failure of an adhesive to bond to a 

composite surface, ~10x magnification (da Silva, Öchsner, Adams, 2011) 

Conversely, a lack of such detail on the adhesive surface can indicate that 

insufficient adhesive or pressure was applied during assembly and as such the 

adhesive and the adherend were not mated. This will leave a smooth surface 

with an apparent lack of a fingerprint on the adhesive of the adherend (Figure. 

5-31) (BFU, 2006). 
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Figure 5-31 - Defective Bonding between the shear web(s) and the upper spar 

cap indicated by S (BFU, 2006). 

Cohesion failures concern the fracture of the adhesive material. Typically 

cohesive failures are visually characterised by the presence of adhesive 

material on both faces of the adherends (Davis & Bond, 1999). The failure is 

typically of mode II shear but it may occur due to either mode I or mixed mode 

III failure. In cohesion failures, the adhesive surface typically appears rough and 

may have a lighter colour than the bulk adhesive material. Whilst generally 

cohesive failures suggest the adhesive has failed at a relatively high stress, this 

may suggest a premature failure if the bonding area is insufficient or the 

adhesive has visible signs of weakness such as high porosity. 

If the adhesive system is formed around a carrier cloth, then the cloth would 

provide a preferential location for the cohesive failure to occur. If a cohesion 

failure has occurred outside of the carrier cloth, then this may be indicative of a 
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degrading adhesive to adherend interface. Especially if the failure has a visible 

stepped fracture consisting of both an adhesion and cohesion failure, then this 

is likely to be indicative of adhesion failure degrading the bond strength with the 

final cohesion failure occurring, as the remaining bond is no longer capable of 

carrying the load (Davis & Bond, 1999). 

Figure 5-32 illustrates the typical failure modes of a sandwich core failure which 

may be visually evident.  

 

Figure 5-32 - Adhesive bond failure modes for honeycomb sandwich panels 

(Davis & Bond, 1999). 

It is suggested by Davis & Bond (2007) that when encountering cohesion 

failures in sandwich panels, the most likely cause will be internal pressure within 

the core due to heating cycles, especially when moisture is contained within the 

core. They go further to suggest that impact damage is likely only to cause 

cohesion failure of the adhesive if the impact energy is high enough to cause 

visible evidence of an impact occurring. This however will involve visible 

crushing of the core and fracture of the fillet bonds. Fatigue, they suggest, is not 

likely to occur as the adhesive shear strength of the adhesive is substantially 

higher than the shear strength of core. 
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Figure 5-33 - Flatwise tension failure of a sandwich panel. Internal pressure 

developed during a repair heating cycle causes cohesion failure of the fillet 

bonds and core cell wall fracture. (Davis & Bond, 1999) 

5.5 Chapter summary 

This chapter has conducted a survey of literature to identify failure 

characteristics of polymer composite materials. Empirical findings from the first 

phase of the research programme were utilised to ensure that the 

characteristics identified are appropriate to the aircraft accident investigation 

practitioner. This chapter outlined the characteristics identified, detailing the 

information they can provide and how they can support the accident 

investigation process. This leads to the next phase of the research programme 

which is to apply the identified characteristics to aircraft wreckage. 
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6 THE VISUAL AND MACROSCOPIC INTERPRETATION 
OF A FRACTURED POLYMER COMPOSITE 
STRUCTURE  

 

The previous chapter identified and presented failure characteristics appropriate 

to the interpretation of polymer composite failures from a visual and 

macroscopic perspective. This chapter presents the third phase of the research 

programme which is to apply the identified characteristics to polymer composite 

aircraft wreckage in a structured and controlled manner. 
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Firstly, this chapter presents an overview and the research objectives for this 

phase (section 6.1). Then it discusses the programme through which the 

polymer composite wreckage was created (Section 6.3 through 6.6). Finally it 

discusses the application of the characteristics identified in chapter 5 to the 

polymer composite wreckage (Section 6.7).  

6.1 Overview and objectives 

As identified in chapter 3, there is no predefined methodology which can be 

used as a basis for conducting this phase of the research programme. As a 

result, the objectives for this phase were adapted to separate the process into 

five key tasks. Each of the tasks is highlighted below and is subsequently 

discussed in further detail throughout the chapter: 

1. Specimen selection 

2. Programme design for specimen generation  

3. Specimen preparation 

4. Specimen generation 

5. Visual and macroscopic evaluation 

It is the purpose of this phase to design, conduct and evaluate a study whereby 

the failure features (as identified in chapter 5) can be tested practically for use 

within the accident investigation process. To achieve this aim it is necessary to 

identify a suitable specimen in which the characteristics can be tested. The 

sample for failure characteristic generation itself has a multitude of possibilities 

including the use of existing wreckage or the generation of artificial wreckage. 

It is necessary to understand the basis from which a failure analysis is 

conducted such that an appropriate method for specimen generation can be 

identified. 

A diagram of one such failure analysis procedure is illustrated in Figure 6-1. The 

diagram is of the Failure Analysis Logic Network as presented by ASM (2001). 

This was created from the work conducted by Boeing (i.e. Kar, 1992, Kar, 

1992b) and is representative of similar models presented by other authors 

(Greenhalgh, 2009). 



 

187 

  

Figure 6-1 – Failure Analysis Logic Network (FALN) (ASM, 2001) 

Excluding the occasional exception, the primary purpose of a failure analysis is 

to identify the root cause of a failure (Dennies, 2002). As such the input to the 

process is the specimen to undergo the analysis. The intended outcome is a 

determination of the root cause to failure. Typically this would involve 

understanding the sequence and source of failure (Greenhalgh, 2009).  
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Importantly the FALN (figure 6-1) uses the identification of visual characteristics, 

among other forms, as a source of evidence to assist in understanding the 

sequence and source of failure and hence identifying the root cause. 

Furthermore, as the root cause is not known, multiple sources of evidence are 

triangulated to point to a common root cause providing greater reassurance as 

to the validity of the conclusion. With respect to visual features, conclusions 

drawn from these can typically be verified by conducting further testing (ASM, 

2001). 

This suggests that in conducting a failure analysis, conclusions drawn from 

interpreting visual features should be verified by other means. Thus if a ‘blind’ 

(i.e. a situation when the failure root cause is not known by the investigator) 

fractured specimen is examined to determine what visual features are available 

and how they can assist in identifying the root cause, then confirmation by some 

other means must be sought. 

A study of this type would involve obtaining fractured specimens, conducting a 

visual examination, hypothesise the failure sequence and root cause, and finally 

confirm those findings utilising higher magnification analysis. 

As the specimen is selected ‘blind’, then the sampling is random. In the study 

being conducted however, it is critical that the specimens are of significance to 

the characteristics as identified in chapter 5. 

It is impractical to choose specimens that have already undergone failure 

analysis to determine the root cause, as those specimens are likely to have 

undergone some form of destructive examination and / or be part of a sensitive 

investigation where access would be unlikely. 

An alternative option to this method is to choose specimens which are blind to 

the researcher but have been fractured by others in a controlled and consistent 

manner. Unfortunately it is impractical to locate specimens in a ‘blind’ manner 

which is able to meet the requirement of providing representative examples of 

the failure of complex structures in a manner consistent with those of an aircraft 

accident. This is due to restrictions of access, limited nature of such specimens 
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being produced and the extreme difficulty in the researcher remaining blind to 

the failure scenario. 

The final option is for the researcher to create the specimens and thus have 

control in the failure modes, the root cause to failure and, to a certain degree, 

the macroscopic failure sequence. Thus, confidence can be suggested in 

interpreting the failure characteristics. In this scenario however, caution must be 

taken to minimise the biases created by the researcher having a preconceived 

notion of what characteristics should be seen and where. Triangulation of 

evidence through the fracturing of multiple specimens, or member checking 

through the use of independent observers must be used to minimise this threat. 

Moreover, this offers the advantages that the researcher has the ability to 

undertake an investigation in reverse. For example, a typical accident 

investigation is tasked with using evidence to identify the sequence of events 

leading up to the accident and to identify the primary root cause(s). In the above 

mentioned situation, the researcher is using the known root cause(s) of the 

failure and the known sequence of failure to assist in identifying the evidence 

(the visual characteristics). Following this the fractographic surfaces can be 

examined to identify the corresponding features. To achieve this however it is 

critical that formal test methods are utilised such that the fracture process can 

be understood with confidence. 

When considering the desired objectives of this phase it is thus preferable to 

utilise the latter method where specimens are created by the researcher, in a 

manner that is consistent with loading methods that have a scientific foundation. 

The identification of the visual failure characteristics are then supported by the 

planned, and observed, failure of the specimen. 

6.2 Task 1 - Specimen selection 

The objective of this task is to select specimens which are suitable for controlled 

fracture. The task was thus split into 5 sections as described in Figure 6-2. 
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Figure 6-2 – Sub tasks for specimen selection (Source: Author) 

6.2.1 Choosing the correct specimen to meet the requirements of the 
research objectives 

It has been presented in chapter 3 that the basis for understanding failure 

characteristics has been largely derived from the testing and examination of 

coupon-sized specimens. Whilst these provide controlled failure of individual 

composite structures, they are unable to offer the complexity otherwise found 

on larger structure. The use of coupons a) limits the examination of multiple 

failure modes which would otherwise interact during failure, b) restricts the 

scope for identifying new characteristics which would be associated with a 

larger structure, and c) removes the realism from the aircraft accident 

investigation scenario whereby, without a high degree of complexity to the 
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fractured specimen, it would be difficult to link the coupon-sized fracture to the 

wider investigation. The latter factor is a critical aspect of the investigation as 

highlighted in findings from the first phase of this research (chapter 4). 

It would have been ideal to have a full-scale, complete, airframe but this option 

had to be excluded and the scale of the testing would have been impractical 

within the boundaries of this research. Instead a suitable specimen would be 

that of a component or structure representative of an all composite GA aircraft. 

Moreover, the fracturing of a component or structure from a batch built aircraft 

which had accumulated a significant number of flight hours would be beneficial. 

This would offer the benefit of an example which had undergone a real world 

manufacturing process, was ‘scarred’ with the normalities of an aircraft in use 

and would represent failure characteristics of a non-pristine material. In this 

case Non Destructive Evaluation (NDE) would be utilised to identify any 

significant anomalies in the structure prior to fracture. 

6.2.2 Engagement for obtaining aircraft structure 

Cranfield University’s Safety and Accident Investigation Centre’s (CSAIC) 

operates with close ties to the investigation community and has experience in 

obtaining aircraft wreckage and components. When specimens had been 

identified which potentially suited the requirement of the study, informal 

requests to obtain the wreckage for research purposes were made. Initial 

attempts were unsuccessful, however a potential candidate was offered to 

CSAIC. Steps were subsequently taken to transfer ownership of the aircraft to 

CSAIC. As a matter of ethical consideration and professional courtesy, 

permission to use the aircraft for research purposes was requested from the 

previous owner, the accident pilot and from those persons that had assisted in 

obtaining the aircraft for use by CSAIC. All persons offered their support. 

The following describes the key features of the aircraft obtained. 

Description of the Schempp-Hirth Nimbus 3 

The following was extracted from the English edition of the Schempp-Hirth 

Nimbus 3/24.5 flight manual, July 1982 issue with amendments to March 1994. 
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The text has been amended to include only data relevant to the accident 

aircraft.  

The Nimbus-3 is a single seat high performance Open Class sailplane in 

CFP/FRP construction, flap equipped, with a T-tail (fin & rudder, 

stabilizer and elevator). It can be flown in 22.9m, 24.5m or 25.5m 

configuration. [At the time of the accident the glider was flown in the 

25.5m configuration]. 

The six-piece [… 25.5m …] wing has a multi-trapezoid planform and 

Schempp-Hirth type airbrakes on the upper surface. Flaps and ailerons 

have internal drives. Water ballast tanks are integral compartments in the 

wing nose with a total capacity of [338] litres. [The aircraft complies with 

modification Bulletin No. 286-20 to increase water ballast quantity]. 

Wing shells are of Carbon fibre/foam-sandwich with spar flanges of 

carbon fibre rovings and shear webs of FRP/foam-sandwich. 

The sailplane Nimbus-3[25.5] is not certified for aerobatics. 

Technical Data 

Wing&span& 25.5m&(83.66ft)&

Wing&area& 16.9m2&(181.91&sqft)&

Aspect&ratio& 38.4&

Fuselage&length& 7.63m&(25.03ft)&

Fuselage&width& 0.62m&(2.03ft)&

Fuselage&height& 0.81m&(2.66ft)&

Empty&weight& 408kg&(899lb)&

Max&A.U.W& 750kg&(1653lb)&

Wing&loading& 28R44&kg/m2&(5.7R9.0&lb/sqft)&

Max&permitted&speed&Vne& 146&knots&(168mph,&270km/h)&

Manoeuvring&speed&Va& 102&knots&(118mph,&190kph)&

The first flight of the Nimbus 3 occurred in January 1981 (Schempp-Hirth, 2010) 

and production continued until succeeded by the Schempp-Hirth Nimbus 4. First 

flight of the Nimbus 4 occurred in 1990 (Schempp-Hirth, 2010). 
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6.2.3 Obtain background history and service information 

According to the general procedure for failure analysis, the collation of 

background information regarding the failure should include details such as; 

background information on material, fabrication, design, loads, environment, 

and service or test history (Kar, 1992b). The following sources of information 

were investigated to obtain the required background information; maintenance 

manual, flight manual, maintenance log book, accident report, incident/accident 

report (electronic), information from the previous owner and accident pilot. A 

summary of the information obtained is provided below. 

At the time of the accident the aircraft was conducting a cross-country flight. 

Whilst returning to the departure airfield it became apparent to the pilot that 

there was insufficient height to be able to glide to return to the airfield and thus 

the pilot elected to carry out a landing into an agricultural field. Whilst on 

approach, and having shortly passed the downwind boundary of the intended 

landing field, the glider struck a power line in a 'wings level' attitude (or possibly 

very slightly left wing low) which was running at right angles to the approach 

path and at a height of 25ft. Contact with the wire rapidly decelerated the glider 

to virtually zero airspeed, after which the glider pitched nose down and struck 

the ground in a vertical attitude, coming to rest inverted and pointing back along 

the initial approach path. 

Initial examination of the wreckage was conducted by the investigators following 

the departure of the emergency services. It was reported that the cockpit area 

of the glider was destroyed as far as the seat back of the pilot's seat. 

Additionally, there was some visible damage to both wings and control surfaces, 

and the horizontal stabiliser and top of the fin had suffered severe impact 

damage due to contact with the ground. 

There was no reported indication of a structural failure which contributed to the 

accident. Nor was there any suggestion of structural damage or structural 

failure prior to the impact with the power lines. 
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The aircraft logbooks were examined to understand the history of the aircraft 

structure. At the time of the accident the aircraft had accumulated in excess of 

3,500 flight hours. According to the owner, the aircraft had previously suffered a 

ground handling accident which resulted in the repair of the rear fuselage 

section. Additionally the aircraft had undergone gel coat refinishing of the outer 

wing sections following 1143 hours flight time. 

6.2.4 Visual examination 

A visual examination was conducted to identify the type and location of visible 

damage, with a view to making an initial assessment on locating specimens for 

subsequent experimentation. The visual examination was conducted outside in 

daylight conditions and was recorded using photography (Canon 1100D with a 

Canon EF-S 18-55mm 1:3.5-5.6III zoom lens and a Canon EF 50mm 1:2.5 

Macro lens) and a photo log. The individual features were identifiable through a 

unique numbering system with a scale being used on close up photos. Tactile 

methods such as pushing on soft and rippled areas, prying and scraping were 

also used. A summary of the visual examination is given below. 

The glider was received to the facility de-rigged and stowed within the glider 

trailer. The forward section of the fuselage structure was severely disrupted with 

the first third of the nose being fragmented and detached from the main 

fuselage. The horizontal stabiliser had suffered significant arcing as a result of 

collision with the power lines with the upper and lower surfaces containing a 

large quantity of arcing spots, each surrounded by what appeared to be sooty 

deposits. The vertical stabiliser had fractured at the tip near to where the 

horizontal stabiliser connects to the vertical stabiliser resulting in the vertical 

stabiliser separating from the main structure. The empennage and the fuselage 

were thus considered as not suitable for testing due to the extent of pre-existing 

damage. 

The wing sections were assembled together and onto the glider fuselage to 

check for indications of gross damage. The wings are attached to each other 

within the fuselage recess through the insertion of the main bolt between the 

fork spar stub on the left wing and the tongue spar stub on the right wing. The 
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wings also contain a single pin located towards the leading edge and a single 

pin towards the trailing edge. These engage into bearings located in the 

fuselage. During assembly of the glider it was not possible to fully engage the 

main bolt through both the fork spar and tongue spar. It appeared that the pin 

was restricted from entering the trailing section of the fork stub spar on the left 

wing which was likely to have been as a result of deformation of the aircraft 

structure (further deformation was located on the control rod linkages located in 

the vicinity of the spar stubs). The cause as to why the pin would not fully insert 

was not determined and thus it could not be ascertained to what extent this 

damage was related to deformation of the wing structure. 

The left inner wing section had suffered significant leading edge damage which 

coincided with a probable location of impact with the power line. The area was 

severely fractured with evidence of sooty deposits around the fracture area. The 

inner wing sections were thus deemed as not suitable for testing due to the 

extent of pre-existing damage. 

The remaining outer wing sections connected together without noticeable 

difficulty and whilst damage was evident, the damage was limited and localised. 

The outer and wing tip sections were then removed from the aircraft in 

preparation for in-depth visual examination (Figure 6-3).  
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Figure 6-3 – outer wing sections removed from the aircraft (Source: Author) 

The wing sections were intact with no major pieces missing and thus were 

examined for potential use during the testing phase. The examination identified 

four predominant groups of features. 

The first being marks and deposits consistent primarily with minor damage 

occurring during handling and storage.  

The first group presented the majority of features identified and as there was no 

evidence of these presenting significant structural weaknesses, they were 

deemed as acceptable. 

The next group involved visible damage to the structure in the form of chips, 

dents, gouges and surface shape irregularities. Although visually these did not 

appear to present structural damage to the wing, they were deemed as 

requiring NDE to ascertain any significant underlying issues. These could not be 

directly associated with the accident. 

The third group consisted of visible damage that was likely to have been 

associated with the accident. The most significant damage was localised span-
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wise cracking of the skin along the spar foot, and points of visible arcing. Both 

of these damage mechanisms contained visible sooting deposits and were 

further assessed using NDE. 

The final category involved sections of the wing which were deemed as 

unacceptable for use in the testing. This included an area on the leading edge 

of the right and the root of the outer wing section. This area had suffered 

significant damage consistent with crushing damage of the leading edge root 

section following forward momentum movement of the outer wing section, 

pivoting about the main spar. 

 

Figure 6-4 – Span-wise crack showing evidence of arcing damage (Source: 

Author) 

 

Figure 6-5 – Leading edge damage of the right and the root of the outer wing 

section. Left picture = Upper surface, right picture = lower surface (Source: 

Author) 
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6.2.5 Non Destructive Evaluation of outer wing sections 

An important aspect of an analysis involving a composite component, especially 

where there is evidence of prior event such as an impact, is to identify the 

extent of subsurface damage (Armstrong et al, 2005). This is especially 

significant as composite materials are notorious for sub-surface damage which 

is visibly benign (Davies & Olsson, 2004). 

The use of non-destructive evaluations to assess internal damage, is used 

within a variety of fields, each with their own objectives and hence their own 

requirements. As such, understanding this requirement, as well as the 

capabilities of the NDE techniques, is critical to identifying the appropriate 

method (FAA, 1998). Examples include: failure analysis, where NDE is used for 

identifying the conditions of subsurface damage: documenting and planning 

subsequent destructive examination (Smith & Grove, 1987); incremental testing 

of a structure either during testing or in service (Stumpff, 2001); and in-service 

damage assessment and repair (Armstrong et al, 2005). 

The aim of the NDE test is to identify conditions of significant subsurface 

damage that may create fracture initiation sites or potentially influence the 

intended failure mode. 

Although the most frequently used NDE methods in composite fractography are 

Ultrasound and Radiography (Greenhalgh, 2009), a review was conducted to 

determine the most suitable methods. The results are shown in table 6-1. Dye 

Penetrant was excluded as this method is for surface analysis and contains 

penetrating dyes which may interfere with the visual features. Moisture meters 

were also excluded as they are unable to be used with carbon fibre composites.  
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Acoustic Emission (AE) ! ! ! " !! ! !! !! !! !! " # $ $ !! !! !! !! !! !! !!

Acoustic Impact (AI) " # 
!

# " # 
!

" 
!

# $ $ 
!

# " 
! ! ! ! ! !!

Coin Testing (CO) " # !! # " # !! " !! # $ $ !! # " !! !! !! !! !! !!

Laser Shearography (LS) ! $ ! $ # $ ! ! # ! $ # 
!

# # # # " 
!

# # 

Mechanical Impedance (MI) # # !! # " # !! # !! # $ $ !! # " !! !! !! !! !! !!

Membrane Resonance (MR) # # 
!

# " # 
!

# 
!

# $ $ 
!

# " 
! ! ! ! ! !!

Thermography (TT) ! $ # $ # ! # ! ! # $ # !! !! " $ " " !! # # 

Ultrasonic Amplitude C-Scan 
(UC) ! $ 

!
$ $ $ ! ! ! # $ ! 

! !
" ! ! ! " # # 

Ultrasonic Thickness A-Scan 
(UA) # ! !! ! # $ # ! ! " ! # !! !! !! # " !! !! !! !!

Ultrasonic 0 deg PE B-Scan (UB) ! $ 
!

$ # $ # ! $ " ! # 
! ! !

# ! " # # # 

Ultrasonic Depth Scan (UD) ! $ !! $ # $ # # $ !! ! !! !! !! !! !! !! !! # ! ! 

Visual (V) ! !
# 

! !
# 

! !
" " 

!
" " " 

!
" " " 

!
" " 

X-Radiography (XR) ! ! ! # $ # $ # # ! # # # # !! # " # !! " " 

!

!
$ High applicability  

!
! Good applicability 

!
# Some applicability 

!
" Limited applicability 

!
!! No applicability 

Table 6-1 – NDE detectability matrix (redrawn from Netcomposites, 2012)  
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Due to their generally high and good applicability and suitability to detect a wide 

array of flaws / defects, it was decided that ultrasonic phased array technique 

should be used. The NDE testing was conducted by a member of Cranfield 

University’s School of Applied Science using an Olympus Omniscan Mx. Initial 

trials however proved inadequate due to the complex shape of the wing and the 

limited information available to assist calibration. The time and resources 

required to produce adequate results was determined as too extensive to meet 

the aims of this phase. The method was thus changed to audiosonic which, 

although discussed as subjective in its interpretation and hence reliability, is 

also recognised in particular circumstances as being a competent form of NDE 

(Armstrong, et al, 2005; Cawley & Adams, 1988; Campbell, 2003). However, 

due to the limited penetration into thick laminates, a secondary NDE method 

was required. 

The author, using a stainless steel plain edge circular disc, conducted the 

audiosonic examination. The disc had an outer diameter of 25mm (see 

Armstrong et al, 2005) and a weight of approximately seven grams. The 

process was entirely manual whereby the inspector would tap the structure 

using the circular disc and interpret the audio resonance response from the 

structure through the human ear. Indications of delamination or disbonds were 

noted through changes in the frequency of the sound emitted. The accuracy of 

the tap test can be increased if a reference area, with a known defect, is used to 

identify the change in acoustic response (Phelps, 1979). To familiarise the 

inspector with the change in acoustic response, numerous reference specimens 

with defects were examined. Despite this, it was acknowledged that the 

inspector had not undergone formal training in the application of audio sonic 

measurement, and hence the results were interpreted with associated regard. 

This did not detract however from the use of audiosonic as a preliminary 

inspection technique for assessing the structure prior to further NDE 

examination. 

The results of the audiosonic NDE suggested that there were no significant 

defects detectable other than those that were already visually evident. In 
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addition, the areas which were visually damaged either did not have any 

apparent subsurface damage or the upper subsurface damage was fairly 

localised to the visually apparent damaged area. 

Although the NDE was not evidence of the structure being free from subsurface 

damage, it was sufficient to determine that the outer wing sections were suitable 

for use within the testing program. To counter the limitations in the audiosonic 

technique, Computed Tomography was undertaken to examine the areas of 

intended fracture. As this was conducted after sectioning of the wings, it is 

discussed further in 6.4.2.  

The fracture test programme was designed to create wreckage suitable to the 

objectives of the research by using the outer wing sections from a Schempp-

Hirth Nimbus 3. 

6.3 Task 2 – Programme design for specimen generation  

It was the purpose of this task to design a method which will create realistic 

aircraft wreckage from using the outer wing sections off of a Schempp-Hirth 

Nimbus 3 glider. To achieve this, methods of loading full size components and 

sub-components was investigated. Identified methods were considered against 

the requirements for the testing and a suitable method was established. The 

testing method, fixture design, instrumentation, and data reporting are 

described with each of the sub-tasks being discussed independently. 

6.3.1 Failure method design 

The first consideration in designing the method by which a large-scale 

component is to be mechanically loaded is to consider the purpose of the 

loading (ASM, 2001). It is only through understanding the purpose of the test, 

that decisions can be made as to how the loading should be applied and thus 

how the test fixture should be designed. 

The purpose of the loading is to apply a simple mechanism which can, within 

reason, create a failure similar to that which would be experienced in the failure 

of an aircraft structure. It is accepted that to recreate the dynamics in which an 
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aircraft will fail structurally in-flight would require a complexity which is beyond 

the scope of this research.  Therefore, the loading regime will be restricted to 

static simple loading. This is accepted as a limitation of this research. 

Another consideration is the manner of loading, including the loading profiles at 

particular locations of the wing structure and the spectrum of loading which 

should be applied. Both of these factors assist in ensuring that the loading 

applied to the structure is representative of loads applied during flight 

conditions. To understand these loads however requires substantial effort 

through conducting computational models or through load monitoring through 

flight testing, (See Mileshkin, Scott, & Wood, 1987; Persson, 2011). It is 

accepted that to recreate a flight spectrum or through mimicking local loading 

would require a complexity which is beyond the scope of this research. 

Therefore simple loading regimes and methods will only be considered in this 

research. This is accepted as a limitation of this research. 

Researchers have applied loading to aerofoil sections using numerous different 

methods. Cantilever loading was applied to fracture a wingbox by Greenhalgh, 

Millson, Thompson, Sayers (1999). A modified cantilever loading, with the aim 

of producing multiple failures in a single aerofoil structure, was applied to a wind 

turbine by Jørgensen, Borum, McGugan, Thomsen, Jensen, Debel and 

Sørensen (2004). Three point (e.g. Purslow, 1984) and four point (e.g. Musial, 

Bourne, Hughes & Zuteck, 2001) bend test methods have been used. Four 

point bending offers an advantage over three point bending as the loading 

points are positioned such that they minimise interference with the fracture 

process (Purslow, 1981). Bespoke test fixtures have also been created, 

designed to produce multiple loading modes to a wing section such as torsional 

moments as well as flap-wise loading (Grasse, Trappe, Hickmann & Meister, 

2010). 

Multiple methods exist for applying the load from the test fixture to the 

specimen. These include applying the load through the internal structure such 

as through the shear web or through both spar caps. Alternatively, the loads 

can be applied to the external structure, one example being through the use of 
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rollers such as those used when loading coupon sized elements under four 

point bending such as described in ASTM D6272 (ASTM, 2010). Methods of 

attachment can also vary to include fastening, bonding or free attachment 

where the fixture is not directly fixed to the specimen.  

When applying the load, considerations must be made for the effect the loading 

will have on the structure local to the loading points, otherwise local failure at 

the loading points may dominate the fracturing process. When applying the load 

through internal structures, any reduction in strength or integrity that the 

attachment may create (Gilchrist, Kinloch, Matthews & Osiyemi, 1996) must be 

countered by increasing the strength local to the loading point. Moreover, care 

must be taken to avoid out of plane loads and the inducement of stress 

concentrations to the structure which would otherwise promote premature 

failure of the composite structure (ASM, 2001). 

When applying the load to the external structure, consideration must be taken 

such that the contact area is large enough to avoid the inducement of severe 

local stresses (Gilchrist et al, 1995). Furthermore, the loading point must 

maintain consistent contact with the specimen through the testing procedure to 

avoid point loads occurring on the corners of the loading points. This is typically 

achieved either through the contact surface having a curved surface, as in the 

case of rollers, or the contact surface being fixed to the specimen but being free 

to rotate where the loading point connects to the test fixture.  The use of rollers 

however will require modification if a reciprocal loading is to be applied to the 

specimen. 

Whilst all possibilities were considered as a means to create the fractured 

specimens, the four point bending method was selected. This was due to the 

distinct advantages that four point bending offered over alternative methods. 

Moreover, the ability to conduct the loading of a specimen in a manner which is 

controlled and precise, whilst adhering to standardised test methods (e.g. 

ASTM D6272) is critical to producing fracture mechanisms of the intended 

mode. 
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Firstly, the design philosophy of the four point bend arrangement presents 

limited shear force on the specimen and a constant bending moment between 

the inner supports. This would therefore offer the ability to provide flexural 

loading onto the wing section whilst minimising the influence of the loading 

points on the fracture.  

Furthermore, the four point loading could be conducted such that reasonably 

small lengths of wing structure can be fractured at any one time. This would 

increase the opportunity for conducting multiple fractures by cutting the wing 

into multiple samples.  

Due to the wing section and the load bearing spar caps being tapered, there 

may be a preference for the wing section to fracture in the region of the central 

loading support located closest to the outer wing section. To overcome this, the 

failure location can be positioned towards the mid-point of the specimen by 

introducing a preferential site for failure initiation. This can be achieved by 

incorporating degradation at the point of preferential failure. This increases the 

reliability of a fracture occurring in the midpoint of the wing section and assists 

the research by introducing degradation mechanisms as failure modes. 

Additionally the four point test fixture can also be designed such that loading 

can be applied in tension and compression, thus allowing the potential for cyclic 

tension-compression flexural loading. This can be achieved through the use of 

formers, or yokes, which attach to the upper and lower surface of the wing 

structure. The use of formers has the disadvantage of not providing as realistic 

distribution of air loads as other methods can provide, and also they provide 

concentrating of loads at the location of the formers. The method does however 

require a less complex setup and is less costly (ASM, 2001). 

6.3.2 Testing machine and fixture design 

Typically, the application of load onto large structures is conducted by the use 

of bespoke loading equipment (e.g. Greenhalgh et al, 1999), modified 

commercial equipment (e.g. Musial, Bourne, Hughes & Zuteck, 2001), or 

through the use of large laboratory test equipment (e.g. Gilchrist et al, 1995). 
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For reasons of simplicity whilst maintaining rigour in loading and subsequent 

fracturing, a single actuator 1MN servo-hydraulic biaxial fatigue machine 

manufactured by Mayes was utilised. 

The four point test fixture (figure 6-6) was designed to accommodate a 

maximum static load of 160kN. A safety margin was incorporated in addition to 

the maximum static load. Fatigue calculations were not conducted. The joints 

for tension and compression were designed to incorporate flexibility such that 

as the specimen undergoes flexural deformation, the former attachment points 

are free to rotate to reduce accumulation of point loading. 

The formers were constructed from softwood with each softwood former being 

shaped to fit the profile of the wing. In addition, Ethylene Vinyl Acetate (EVA) 

foam was incorporated between the wooden mouldings and the wing surface to 

assist in restricting movement of the aerofoil between the mouldings and to 

reduce point loading. 
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Figure 6-6 – Test fixture fitted to 1MN Mayers servo-hydraulic machine (Hutchins, 2012) 
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6.3.3 Instrumentation and data acquisition 

The appropriate selection of strain gauges is essential to ensure accurate and 

reliable data, suitability to the environmental conditions of the test, ease of 

installation and reducing the total cost of data collection (Micro-Measurements, 

Vishay, 2011). 

During the tests the wing sections were instrumented with strain gauges 

orientated to measure strain in the span-wise direction. It has been previously 

suggested that gauges with large surface areas should be chosen when 

instrumenting large composite structures as the large surface area averages out 

the local inconsistencies (Combs, 1995) and compensates for the 

nonhomogeneous architecture of composite materials (Micro-Measurements, 

Vishay, 2011). The strain gauges selected were the general purpose single 

element Tokyo Sokki Kenkyujo type FLA-10-11, which has a backing width of 

5mm and a length of 16.7mm. The gauges have a resistance of 120 +/-0.3 

ohms and a gauge factor of 2.11 +/-1%. Whilst it is beneficial in composite 

materials to have a strain gauge of higher resistance to reduce thermal effects 

due to heat generation (Combs, 1995), any increased degradation in the 

installation resistance, such as by moisture,  will have a greater effect in higher 

resistance gauges (Gittins, 2005). Despite having a potential for greater error 

due to thermal effects, gauges of 120Ω were chosen. Gauges of such 

resistance have previously been used in conducting experiments on composite 

structures (McKelvie & Perry, 1998; Lomov, Van Den Broucke, Tümer, 

Verpoest, Dufort, de Luca, 2004). Cyanoacrylate adhesive approved for strain 

gauge use was used exclusively for bonding the strain gauges to the composite 

structure. A National Instruments SC-2345 SCC with a strain gauge module 

was attached to the strain gauges for strain monitoring throughout the testing. 

Data was recorded using a laptop. 

Strain gages were located on both the tension and compression surfaces. Two 

strain gauges were located on the surface of the spar cap in compression, 

positioned at 1/3rd in from the leading edge of the spar cap and 2/3rd in from the 

leading edge. A third strain gauge was located on the lower tensile spar cap at 
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a half distance in from the leading edge of the spar cap. A fourth strain gauge 

was located on the wing skin mid-way between the spar cap and the leading 

edge. The fifth strain gauge was located on the upper trailing edge surface, in a 

central location to the rear spar (figure 6-7). All strain gauges were located at 

the span-wise mid-section of the wing structure (e.g. 0.85m from the specimen 

root). The exception to this positioning was when the strain gauge would have 

been in direct placement of a visible impact location. In this instance the strain 

gauges were moved span-wise towards the wing tip. Whilst it was desirable to 

place strain gauges on the inner parts of the wing section (e.g. on the lower 

spar caps to detect buckling and on the shear web), the restricted access within 

the specimens prevented this. 

 

Figure 6-7 – Positioning of the strain gauges on the wing section (Source: 

Author) 

The wing deflection was obtained from recording the displacement of the servo-

hydraulic actuator. Whilst this would not directly replicate the displacement of 

the wing centre, classical beam theory can be used to relate the movement of 

the centre formers to the aerofoil centre (Gilchrist et al 1996). 

To ensure confidentiality all strain values in this report are normalized with one 

value, i.e. all strain values in this report are divided by the same number. 
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6.3.4 Test procedure 

A total of four pairs of specimens measuring 1750mm long were scheduled to 

be fractured with differing load patterns (static and cyclic) and incorporating 

different degradation mechanisms. A pair consisted of two specimens cut from 

identical locations from the left hand and right hand wing sections. The pairs 

were planned to be fractured in the same loading method and have similar 

degradation mechanisms. The fracturing in pairs was intended to provide 

multiple failures of similar structures such that triangulation can be made 

between the fractured pairs. For example, the examination of the lower spar 

may reveal the characteristic of tensile failure. By creating an additional 

specimen which, a) failed under the same loading, b) was from a near identical 

section of wing, and c) was degraded under a similar damage mechanism, the 

comparison of the lower spar from each specimen can be made. If the lower 

spars from each specimen are similar in characteristic, and represent the 

observed failure mode during the fracturing process, then through triangulation 

of evidence the failure characteristic is likely to be representative. Each pair 

would hence form the basis of literal replication. 

During the testing it became apparent that the specimen fixture had a number of 

design inadequacies which resulted in the fixture not being able to perform 

adequately. Firstly, the height of the fixture once assembled was insufficient for 

the servo-hydraulic machine to be operated in tension mode. This therefore 

removed the opportunity to conduct the planned cyclic loading and resulted in 

all static loading being conducted in compression mode.  

The fixture had insufficient lateral constraint in compression mode. When the 

compression mode was applied, the resistance created by the fixture was 

insufficient to prevent lateral movement of the specimen. Hence, the specimen 

tended to move out of the machine, pivoting about the former to beam 

attachment points. This was overcome through the use of a harness to prevent 

outward motion of the outer formers. Whilst this was adequate in preventing the 

lateral motion, it also added restriction to the pivoting of the outer formers. 
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The weight of the fixture presented significant challenges to the assembly, 

disassembly and operation of the test fixture. The safety issues were resolved 

through the use of harnesses which restricted movement in the event of 

catastrophic failure. From the perspective of the testing, the excess weight 

created point loads on the structure from the edges of the formers. This resulted 

in the premature failure in two of the specimens, in which the fracture initiated at 

the loading point. 

In total, one pair of the specimens was successfully fractured, with the fractures 

occurring in the centre of the specimen. One other pair failed prematurely at the 

loading points with the remaining two pairs being abandoned due to the 

inadequacies of the test fixture. Therefore the investigation of thermal and 

multiple site impact degradation mechanisms were not completed. Furthermore, 

the cyclic loading was not completed. The following discussion will be limited to 

the specimens which were fractured successfully. 

6.4 Task 3 - Specimen preparation 

Each of the outer wing sections from the Schempp-Hirth nimbus 3 glider were 

divided into a total of four sections, three at 1750mm long and one section at 

2000mm long (Figure 6-8). An angle grinder with a diamond coated cutting 

wheel and a reciprocating saw with an 8” carbide cutting blade were used to 

section the wing as per recommendations by Campbell (2010) and Armstrong et 

al (2005). In addition, advice was sought from professionals who had 

experience in sectioning composite structures (most notably from the health and 

safety manager of the AAIB, and from Recovair, a specialised aircraft rescue 

and recovery service), and from relevant literature (Greenhalgh, 2009; Roulin-

Moloney, 1988; Moore, 2009). The inner metallic control rods and the ailerons 

were removed following sectioning so that they would not influence the failure. 

Prior to the sectioning a risk assessment was conducted in accordance with 

Cranfield University’s General Risk Assessment Policy CU-HAS-3.01. 
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Figure 6-8 – Illustration of sectioning of the left hand outer wing section (Source: 

Author) 

6.4.1 Pre Impact condition assessment 

Subsequent to sectioning, the areas immediate to the cut surfaces were visually 

examined for significant damage created during the cutting process. Whilst 

cracking in the gel coat was identified immediate to the cut surface, there was 

no evidence of significant damage introduced to the specimen. 

In continuation to section 6.2.5, the NDE was continued using internal visual 

inspection and 3D Computed Tomography (CT) examination. The internal 

inspection involved the use of a Dewalt DCT410S1 Inspection camera with 

photo and video capture capability, and a 6ft probe. 

6.4.1.1 3D computer tomography NDE 

3D Computed Tomography of the sections was conducted using a bespoke X-

Tek Systems Ltd real-time X-ray and CT system. The wing sections were 

placed vertically into a 2.3m x 2.3m x 2.5m high X-ray room. The wing sections 

were rotated on a five axis manipulator during the X-ray imaging process. Four 

sections of the wing were examined, namely the two most outer sections from 

each wing due to the wider chord sections not being able to fit into the X-ray 
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room. To maximise the area of the wing section being imaged, each wing 

section was scanned twice with each of the imaged areas overlapping in the 

central region of the wing (Figure 6-9). 

 

Figure 6-9 – Illustration of X-ray imagery overlap (Source: Author) 

The settings for conducting the X-ray imaging is illustrated in table 6-2 and an 

example of the 3D CT image is given in figure 6-10. 
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Section(
Scan(

Number(

Scan(lower(limit(

(measured(from(

specimen(wing(tip)(

Scan(upper(limit(

(measured(from(

specimen(wing(tip)(

X9ray(

voltage(

Volume(elements(

(voxels)(
Resolution( Number(of(

projections(

Angular(

step(

cm( cm( kV( mm( µm/voxel( °(

LH(wing(tip(

1( 84( 109( 380( 1043(x(1018(x(897(( 192(x(192(x(192( 3142( 0.115(

2( 60( 90( 380( 1492(x(1498(x(778( 192(x(192(x(192( 3142( 0.115(

RH(wing(Tip(

1( 84( 108( 380( 1492(x(1498(x(654( 192(x(192(x(192( 3142( 0.115(

2( 68( 95( 380( 1492(x(1498(x(654( 192(x(192(x(192( 3142( 0.115(

LH(centre(wing(

tip(

1( 61( 92( 380( 1493(x(1486(x(796( 162(x(162(x(162( 3142( 0.115(

2( 82( 110( 380( 1494(x(1489(x(687( 162(x(162(x(162( 3142( 0.115(

RH(centre(wing(

tip(

1( 67( 90( 380( 9( 9( 300( 1.2(

2( 83( 105( 380( 9( 9( 252( 1.4(

Table 6-2 – X-ray settings (Source: Author) 
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Figure 6-10 – 3D CT image of the internal, leading edge wing structure (the 

structure on the left of the CT image is the shear web) (Source: Author) 

The CT images were stored as 2D slices of the wing section, with the slices 

being taken span-wise through the chord, from the upper surface moving to the 

lower surface, and from the leading edge moving through the wing to the trailing 

edge. The images were subsequently analysed for evidence of anomalies or 

damage which may be significant enough to either promote or influence the 

fracturing process. 
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The examination of the CT images identified indications that suggest inclusions, 

voids, and intralaminar cracking may be present. The areas of polymer 

composite which were identified as potentially containing voids and intralaminar 

cracking were found in relatively low quantities and sizes which would not be 

significant to the fracturing programme. 

There were however indications of a non-symmetric placement of the lower 

spar cap between the left and right wing sections, which can be identified by 

comparing figures 6-11 & 6-12. This was confirmed by examining the visible 

spar in the cut sections and was present primarily in the outer sections of the 

left wing, with the specimens near the root having a lesser degree of non-

symmetry. It was felt that the anomaly would not present an issue for 

conducting the fracturing programme. Moreover, the anomaly may be of value 

during the visual and macroscopic examination where the fractured surface will 

be examined to confirm if the non-symmetrical placement can be identified. 
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Figure 6-11 – CT slice through left hand wing tip section, lower spar cap anomaly 

highlighted (Source: Author) 

 

Figure 6-12 – CT slice through right hand wing tip section, lower spar cap 

highlighted for comparison to figure 6-11 (Source: Author) 
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6.4.2 Applying the degradation mechanism 

The degradation mechanisms chosen for the specimens that performed 

satisfactorily during the fracture process was impact damage, with the impact 

location undergoing compression after impact. The impacts were targeted at the 

centre of the wing section, midway between the inner yokes. This ensured the 

failure could be encouraged to initiate at a location away from the structure of 

the test fixture, hence minimising the interference with the developing fracture.  

The right hand outer root section was to undergo a blunt impact to reduce the 

visible appearance of the impact location. The left hand outer root section was 

to undergo a more localised impact in the centre of the spar cap and a blunt 

impact of the spar foot, adjacent to the sharp impact. The impact energies were 

selected to be appropriate with the expected energy limit of 50J for dropped 

tools or runway debris (Davies & Olsson, 2004), and the FAA airworthiness 

requirement of 136J (100ft.lb) (Greenhalgh et al 1999). 

A Rosand Type 5 Falling Weight Impact (FWI) tower was used to create the 

impact damage to the specimens. The right hand centre root wing section 

received a 75J impact using an 87mm diameter hemispherical impactor (Figure 

6-13). The impact location was central to the upper spar cap. The left hand 

centre root wing section received a 75J impact to the upper spar cap using a 

20mm diameter hemispherical impactor (Figure 6-14). Additionally, the spar foot 

adjacent to the initial impact received a subsequent impact of 50J using an 

87mm hemispherical impactor (figure 6-13 & 6-14). 
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Figure 6-13 – 87mm hemispherical impactor with corresponding specimen 

impact damage (Source: Author) 

 

Figure 6-14 – 20mm hemispherical impactor with corresponding specimen 

impact damage (lower impact point) (Source: Author) 

For impact testing, the specimens were supported at the wing section root and 

tip using trestles of steel construction. The supporting locations were 1500mm 

apart, being an equal distance of 750mm from the impact location. This 

arrangement allowed the structure a degree of global flexural response to the 

impact which was deemed as more appropriate to the objectives of the 

research. If the structure had been supported in an open aperture located on 

the lower spar cap then the shear web is likely to have sustained greater 

damage due to higher compression loading. 
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As a means to record the change in physical shape of the wing surface as a 

result of the impact, the area of impact was imaged using a 3D scanner. To 

enable a comparison, the scanning was conducted prior to impact and following 

the impact event. Adhesive markers were placed within the outer regions of the 

impact area such that the pre impact and post impact scans could be aligned. 

During the scanning process the need to monitor the room temperature became 

apparent as the initial scanning process experienced misalignment between 

object scans when the room temperature fluctuated heavily. This became 

apparent when the scanning was paused and restarted in significant different 

ambient conditions to the previous scan. This issue was exacerbated due to the 

scanning equipment being located in a room susceptible to variations in 

temperature due to the heating effect of direct sunlight, and due to the scanning 

being conducted in the summer months.  

Whilst the link between the temperature and the misalignment in scanning was 

conjecture, all successive scans were conducted in the early evening and 

completed in a single attempt. The issue of misalignment was subsequently not 

encountered. 

6.5 Task 4 – Specimen generation 

Prior to conducting the assembly of the test fixture and subsequent testing, a 

risk assessment of the testing was conducted in accordance with Cranfield 

University’s generic risk assessment procedure (See appendix A). As a result of 

the risk assessment, assembly instructions for the test fixture were created (See 

Appendix B & C). 

The schematic for the test rig is shown in Figure 6-16. The image illustrates the 

test fixture configured in compression mode. In addition to the fixture shown in 

the illustration, there were numerous safety harness added, with the primary 

aim of supporting the fixture in the event of catastrophic and sudden failure of 

the specimen. In addition, harnesses were added to the outer yokes to provide 

additional lateral constraint for testing.  
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Once the fixture had been assembled, the servo-hydraulic machine was 

adjusted such that the fixture was in its neutral state. The wing section was 

subsequently fed into the test fixture such that it could rest in its mounted 

position without any moment applied to the specimen (Figure 6-15). The strain 

gauges were attached, calibrated to zero and then functionally tested. The 

displacement transducers and load cell were zeroed and a video camera, which 

was pointing towards the upper surface of the wing section, was started. The 

specimen in the fixture was checked for security prior to the test commencing. 

For the two test specimens which were successfully fractured the loading was 

applied under displacement control. After each specimen, the fixture and 

apparatus hardware was inspected for damage. 

 

Figure 6-15 – Assembled test fixture (Source: Author) 

6.5.1 Results from data acquisition 

The results from the data acquisition can be found in Appendix C and Appendix 

D. Appendix C details the left hand centre root specimen, with graphs showing 

load vs. actuator displacement, measured strains vs. load, and actuator 

displacement history. During the loading the specimen is partially unloaded 
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before being reloaded to fracture. This moment is displayed as loops in the 

strain vs. load chart. Appendix D details the same information but for the right 

hand centre root specimen. 

To ensure confidentiality, all load and strain values are normalized, i.e. all strain 

values for both specimens are divided by a number, and all load values for both 

specimens are divided by a different number. 
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Figure 6-16 – Fixture design in four point flexural via compression configuration (redrawn from Hutchins, 2012) 
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6.5.2 Specimen separation 

Following the initial loading to failure on the servohydraulic test machine, the 

specimen was further loaded to complete translaminar fracture and hence 

fracture separation. As the servohydraulic machine was unable to offer the 

range of displacement necessary for complete separation, the test fixture was 

partly reassembled in an open facility with a load being applied in a manner 

consistent with the four point bend configuration, using an electric cable drum 

winch.  

As the wing section had already been fractured, this phase of specimen 

generation did not include displacement, load or strain measurements. The 

specimen separation was recorded however, using still and video photography 

to monitor the fracture progression as visible from the upper and lower sufaces. 

A schematic for the specimen fixture used for this phase of the specimen failure 

is shown in Figure 6-17. The area in the schematic identified by Z was attached 

to a solid surface. The point identified by a Y was attached to a 5,443kg rated 

max load electric drum winch. The winch was single speed with a no load line 

speed of 5.4m/min and a full load line speed of 1m/min. The loading was 

applied  discontinuously such that the separation could be controlled for 

purposes of safety.  

Upon separation the specimens were sectioned to reduce the span-wise length. 

The sectioning was conducted such that only the non damaged root and tip 

ends were removed to avoid damaging the fractured regions.  

A cut sample from the left wing tip was subsequently subjected to 450°C in a 

furnace to burn off the resin. The decomposition temperature of the glass fibres 

and carbon fibres were significantly higher and hence the process removed the 

resin and kept the fibres in their original architectural configuration. Each layer 

was subsequently removed using tweezers and recorded to identify the layup of 

the section. 
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Figure 6-17 – Loading fixture utilised for the separation of the wing structure 

(modified from Hutchins, 2012)  
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6.6 Task 5 - Visual and Macroscopic Evaluation 

In the investigation which follows, each mode of failure which occurred within 

the failed wing sections will be compared against the failure characteristics 

identified in chapter 5. The features identified in the failed wing sections will 

then be described and illustrated using macrophotographs from typical 

examples from the specimens. Where multiple accounts of the same failure 

have occurred, a typical illustrative example will be given with descriptions 

highlighting all of the areas on the wing from which the feature was identified. 

Macrophotographs will be presented for all failure modes identified to promote 

transparency during the examination. 

This evidence will then be amalgamated with the intention of understanding 

available evidence which may be used to interpret the sequence of failure and 

highlight the failure initiation site and ultimate cause of failure. It is intended that 

this process should be a non-destructive examination and thus there will be no 

dissection of the structure to gain access to internal failures such as 

delaminations. 

In addition to comparing the fractures with that of the characteristics identified in 

chapter 5, any additional characteristics identified during the examination which 

are not included in the literature survey from chapter 5 will be recorded and 

described. 

The examination was conducted using standard visual examination, 12.5X 

macroscopic examination using an Eschenbach 12.5x / 50D /40 illuminated 

hand-held magnifier, and magnifications up to 25X were conducted using an 

Olympus SZX10 Stereo Microscope. Illumination was provided via fluorescent 

lamps of 6500K Correlated Colour Temperature and portable super bright 

LEDs. Photographs were taken using a Canon 1100D with a Canon EF-S 18-

55mm 1:3.5-5.6III zoom lens and a Canon EF 50mm 1:2.5 Macro lens. 

6.6.1 General description of failure 

The broken specimen of the left wing section is shown in figure 6-18 (upper 

surface) and figure 6-19 (lower surface). The fracture is dominated by a chord-
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wise translaminar fracture with the presence of span-wise secondary damage. 

The fractured sections remained relatively intact with materials separated from 

the main fracture being limited to sections of the upper spar cap, the shear web 

and adhesive. The upper surface consists of a translaminar chord-wise fracture 

which is influenced by the impact location and the aileron fittings. The lower 

translaminar fracture is chord-wise with the exception the regions between 

trailing edge spar, spar cap and leading edge, where the fracture deflects to a 

span-wise direction. The leading edge suffered from a span-wise fracture. The 

right wing section failed in a similar manner albeit the deflection on the upper 

surface is not present and the span-wise deflection on the lower surface is more 

pronounced. 

 

Figure 6-18 - Upper surface view of the left hand wing section (Source: Author) 
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Figure 6-19 - Lower surface view of the left hand wing section (Source: Author) 

6.6.2 Evaluation of characteristics against those identified in the 
literature survey 

6.6.2.1 Flexural failure of unidirectional material (section 5.5.3) 

Figure 6-20 illustrates the lower spar cap from the left wing section. There are 

two distinct regions within the spar cap with the region closest to the lower skin 

showing a bright, fibrous fracture surface. The fracture surface is relatively flat 

with visible indications of fibre brooming across the width. The neutral axis is 

clearly visible and distinctly parallel to the lower spar surface. 

The visual features on the lower spar cap are indicative of a tensile failure. The 

degree of fibre brooming between the two specimens is similar suggesting that 

neither fracture was significantly degraded compared to the other. The volume 

of fibre brooming varied across the fracture surface with the trailing edge side of 

the left wing lower spar cap and the leading edge side of the right wing lower 

spar cap have significantly shorter fibres protruding. The degree of protruding 

fibres increases across the surface until the opposite side of the spar cap is 

reached which has a considerably greater degree of protruding fibre length and 
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longitudinal splitting. This may be indicative of the direction of crack propagation 

across the fracture surface, although this cannot be confirmed. 

   

Figure 6-20 – Lower spar cap from the left wing showing characteristics of 

flexural failure. Note the tensile fracture surface (Source: Author) 

The remaining region which represents the upper section of the spar cap shows 

a flat dull and stepped fracture face with a distinct absence of protruding fibres 

(Figure 6-21). There was evidence of longitudinal splitting occurring and the 

fracture surface being angled at between 20° and 45°. The dull fracture surface 

also appears to show evidence of debris and smearing, consistent with 

compression failure. The compression region of the fracture surface is also 

apparently larger in surface area than that of the tensile failure. This suggests 

that an element of global compression load may have been applied to the lower 

spar cap at the time of failure, although this cannot be confirmed. 
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Figure 6-21 – Lower spar cap from the left wing showing characteristics of 

flexural failure. Note the compressive fracture surface (Source: Author) 

 

Figure 6-22 – lower spar cap from the right wing (Source: Author) 

The features present on the lower spar cap are very distinct and suggest that 

the lower spar cap had failed in flexural failure during the failure sequence. The 

lower most section of the spar cap had distinct characteristics of tensile failure. 

The uppermost section of the spar cap had distinct characteristics associated 
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with compression failure. The characteristics suggest the flexural loading of the 

lower spar cap was in the positive flap-wise orientation. 

6.6.2.2 Tensile failure (section 5.5.1) 

Evidence of tensile failure was apparent on the woven laminate located on the 

inner and outer laminates of the lower sandwich structure. There was evidence 

of fibres protruding, albeit to a lesser degree than noticed on the unidirectional 

material. The protruding fibres were predominantly located on the +/-45° plane 

and the 0° plane. 

 

Figure 6-23 – Lower sandwich structure from the right wing illustrating fibre 

pullout. The orientation of the protruding fibres are +/-45° (Source: Author) 
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Figure 6-24 – Lower sandwich structure showing evidence of tensile failure. The 

orientation of the protruding fibres are 0° (Source: Author) 

6.6.2.3 Compression failure (section 5.5.2) 

The upper spar caps from both wing sections showed visible characteristics 

representing compression failure. The spar caps were manufactured from 

unidirectional carbon fibre.  

Figure 6-25 illustrates the upper wing spar from the right wing section, located 

on the fractured section nearest to the wing root. The spar has suffered from 

significant longitudinal splitting and translaminar fracturing. This has resulted in 

significant material loss. The unidirectional fibres are also splayed out, having 

resulted from the fractured ends of the spar having been forced into one 

another. The translaminar fractures which are visible also display visible 

characteristics of compression failure with flat dull fracture surfaces with a 

distinct absence of protruding fibres (Figure 6-26). There is also evidence of 

material from the shear web having been forced into the fractured upper spar. 
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Figure 6-25 - Upper wing spar from the right wing section, illustrating significant 

longitudinal splitting, translaminar fracturing, brooming and material loss 

(Source: Author) 

 

Figure 6-26 – Section of the lower spar cap illustrating significant longitudinal 

splitting and evidence of compressive translaminar fracture (Source: Author) 
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The features present on the upper spar cap are very distinct and suggest that 

the upper spar cap had failed predominantly in compression with evidence of 

significant post fracture splitting as the spar had continued under compression 

post fracture. 

The upper aerofoil section fractured and separated chord-wise extending the 

whole width of the wing section, extending through the impact site and into the 

upper spar cap. The fracture was predominantly perpendicular to the span of 

the wing section. In the left wing specimen the leading and trailing edge 

sections where the fracture was displaced towards the root. The deflection of 

the fracture at these locations was approximately 50mm in the span direction 

and for the trailing edge deflection occurred as though deflecting around the 

structural reinforcement of the aileron hinge attachment. The surfaces were flat 

with limited evidence of protruding fibres. Of the fibres which were protruding, 

most were predominantly deformed out of their original plane. 

 

Figure 6-27 - Upper sandwich structure fracture surface from the upper wing 

surface (Source: Author) 

6.6.2.4 Translaminar shear (Section 5.5.4) 

The unidirectional spar caps and the sandwich laminates were examined for 

evidence of translaminar shear. A visual examination was conducted throughout 

the specimen. Although the upper spar caps suffered from significant 

longitudinal splitting, the deformation and brooming of the fibres was 

inconsistent with shear being applied.  
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A macroscopic examination up to x25 was conducted on the +/-45° plies which 

had undergone tensile failure. No evidence of in-plane shear was identified. 

6.6.2.5 Interlaminar Shear & peel region (sections 5.5.5 & 5.5.6) 

The areas local to the impact site were examined for evidence of a peel and 

shear boundary which may suggest the presence of an impact. On both 

specimens there was evidence of smearing, material loss and sharp variations 

in the fracture plane. As a result of these it was not possible to identify 

indications of the impact from the existence of a peel and shear boundary. 

 

Figure 6-28 – Regions of impact damage. The penetrating damage on the left 

wing (left image) and the blunt impact damage to the right wing (right image) 

(Source: Author) 

The remaining structures were examined for the presence of interlaminar peel 

failure, shear failure and a peel / shear boundary. The majority of the 

intralaminar fractures appeared as glossy and dark reflective surfaces. This 

suggests that the majority of the intralaminar surfaces were peel failures. There 

was however evidence of regions within close proximity to the lower and upper 

spar caps immediate to the chord-wise fracture, as having a lighter less 
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reflective appearance. This may suggest that these regions failed in shear 

failure although a change in appearance due to abrasion cannot be ruled out. 

 

Figure 6-29 – Glossy reflective appearance of an interlaminar failure. The failure 

plane is along the 0° orientation (Source: Author) 

6.6.2.6 Fatigue (Section 5.5.7) 

The specimens were examined for evidence of fatigue failure. Whilst glass fibre 

was a constituent of the specimen, its use was predominantly restricted to 

internal plies within the laminate. Moreover, the visible interlaminar fractures 

occurred within the carbon fibre laminates leaving few translucent fracture 

surfaces visible. 

The exception was the shear web which was constructed of glass fibre woven 

laminates. The laminate also joined the lower sandwich skin and hence 

presented a translucent layer above the opaque carbon fibre skin. Upon 

examination there was evidence of the whitening or frosting appearance where 

the material had fractured (figure 6-30), including where a polymer tube had 

pulled through laminate. The area around this which had not fractured had a 
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distinct difference in visual appearance as there was an absence of the 

whitening. This absence of whitening from the internal structure suggests that 

the glass fibre structures within the laminate have not undergone widespread 

micro-cracking.  

 

 

Figure 6-30 – Internal fracture of the shear web (bottom of picture) and the upper 

laminate skin (Source: Author) 

6.6.2.7 Lightning strike (Section 5.5.8) 

The visible characteristics associated with arcing and heat effects could not be 

identified on the fracture surfaces. Visible signs of arcing (sooting and 

penetration) could be identified on the surface of the left hand specimen 

although this was located at some 18cm from the primary chord-wise fracture 

and 5cm from the nearest span-wise fracture (Fig 6.31). 
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Figure 6-31 – Left wing upper surface. The point of arcing is visible on the left 

hand side of the image (Source: Author) 

6.6.2.8 Manufacturing defects (Section 5.5.9) 

During the 3D CT examination of the specimen, the lower spar cap of the left 

wing was identified as having a non-symmetric placement. This was confirmed 

by examining the cut section of the spar cap. Upon examination of the lower 

spar it was apparent that although the spar had failed catastrophically, the non-

symmetric placement could still be identified (Figure 6-32) 

The visual examination of the translaminar fracture surfaces could not identify 

voids, areas of porosity or indications that the fracture profile had been altered 

by the existence of an anomaly. This cannot confirm that voids were not present 

as the compression fracture is plausible to obliterate their presence. 
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Figure 6-32 – Left hand wing lower spar cap (Source: Author) 

6.6.2.9 Environmental Effects (Section 5.5.10) 

The structure was examined for evidence of environmental degradation. There 

were no apparent localised changes in hue, evidence of swelling or evidence of 

thermal effects. 

6.6.2.10 Impact (Section 5.5.11) 

Both wing sections were subjected to impacts on the upper spar cap prior to 

loading. The right wing was subjected to an impact associated with a blunt 

impact and the left wing was subjected to a partially penetrating impact. In both 

instances the wing sections fractured at the location of the impacts. 

During the failure process the unidirectional upper spar caps were severely 

disrupted resulting in substantial loss of material. It is likely that a significant 

volume of the unidirectional material which had been directly in the impact zone 

had been forced into the corresponding fracture surfaces. Thus, a portion of the 

impact zone is unlikely to be identified without permanently disrupting the 

fracture.  Moreover, this could not be guaranteed as the fibres which had been 

in the impact zone may have been shed during the failure process. Figure 6-33 

illustrates sections of unidirectional upper spar cap which are known to have 

resided in the original impact zone. 



 

243 

 

Figure 6-33 – Translaminar fractures of unidirectional fibres identified as 

occurring on the primary fracture within the impact zone (Source: Author) 

From the few sections of unidirectional material located within the original 

impact zone as illustrated, there was little evidence to suggest an impact had 

occurred. This supports the known visual and macroscopic mechanisms of 

recognising impact damage which are predominantly based on the pre-

translaminar fracture inspection of impacted composite materials. 

The upper skin, which is a multidirectional laminate, is located above the 

unidirectional spar cap and thus is the first point of impact. During the failure 

process the laminate survived relatively intact and in addition the impact 

influenced the translaminar fracture crossing the impact region of the upper 

skin. 

Figure 6-34 illustrates the post fracture impact region from the semi-penetrating 

impact occurring on the right wing. The translaminar fracture intercepting the 

impact location is the primary chord-wise fracture. The chord-wise fracture was 

the point of primary translaminar separation within the specimen and thus the 

impact site was separated between the specimen root section and specimen tip 

section. The left image illustrates the separated pieces placed in close proximity 

with the leftmost piece being from the tip section and the rightmost piece being 
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from the root. The right image illustrates the two pieces placed together, 

although separated slightly in the through thickness direction. 

 

Figure 6-34 – Left wing upper laminate from the impact location (Source: Author) 

When comparing the pre-fracture and post-fracture conditions, it is noticeable 

that the post-fracture state has remained relatively well preserved compared to 

the pre-fractured characteristics (figure 6-35). 
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Figure 6-35 – Left wing upper surface impact location (Source: Author) 

The impact location is relatively easily distinguishable compared to the chord-

wise translaminar fracture. Figure 6-36 illustrates the location of impact on the 

tip section of the specimen. This illustrates the visible semi-circular pattern of 

the impact location against a relatively straight chord-wise fracture. 

 

Figure 6-36 – Left wing upper surface. The impact location can be identified as a 

semi-circular cut-out in the top centre of the image (Source: Author) 

Figure 6-37 illustrates the post fracture impact region from the blunt impact. The 

translaminar fracture intercepting the impact location is the chord-wise fracture. 

This chord-wise fracture is the point of primary translaminar separation within 

the specimen and thus the impact site was separated between the specimen 



 

246 

root section and specimen tip section. The post fracture separation has resulted 

in the translaminar fracture appearing to circumvent the blunt impact location. 

This has created a visible change in the characteristics of the otherwise 

primarily straight translaminar fracture (Figure 6-37 & 6-38).  

 

Figure 6-37 – Deflection of the translaminar fracture induced by the impact 

(Source: Author) 

 

Figure 6-38 – Right wing upper surface. The impact location can be identified as 

a semi-circular fracture deviation on the top centre of the image (Source: Author) 

6.6.2.11 Bonded joints (Section 5.5.12) 

Both specimens were examined for failures within the bonded areas. Areas 

thought not to contain structural bonding were not included in the examination. 
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Internal fracture of the sandwich areas occurred predominantly through core 

failure. The trailing edge from the right hand root section exhibited adherend 

and a mixed cohesive / adhesive failure. There was no gross evidence within 

the structure associated with the smooth glossy features associated with 

inadequate bonding. 

 

Figure 6-39 – Bonding failure of the trailing edge (Source: Author) 

6.6.2.12 Radials (Section 5.4.1) 

The translaminar unidirectional fracture surfaces that had failed in tension were 

rough and fibrous, thus radials were not visible. 

6.6.2.13 Chevron Features (Section 5.4.2) 

The multi-directional laminates located in the lower translaminar fracture 

surface were examined for evidence of chevron patterns. Upon examination it 

was evident that the woven laminates had fractured on multiple laminate layers 

and thus a clear fracture plane was not visible. The chevron patterns hence 

could not be identified. 

6.6.2.14 Continuity of fractures (Section 5.4.3) 

The fracture of the upper aerofoil section was predominantly perpendicular to 

the span of the wing section. 

In the left wing specimen, the leading and trailing edge sections where the 

fracture was displaced towards the root. 
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The deflection of the fracture at these locations was approximately 50mm in the 

span direction. The trailing edge deflection occurred as the crack propagation 

was influenced by the structural reinforcement of the aileron hinge attachment. 

6.6.2.15 Compression cracking (Section 5.4.4) 

The upper surfaces of the wing were examined for evidence of compression 

cracking. It was identified that the upper most layer of fibres were of woven 

fabric orientated 0° / 90°. Greenhalgh & Cox (1992) suggests this configuration 

is unlikely to produce meaningful information. The examination was unable to 

identify evidence supporting the appearance of compression cracking. The 

examination was conducted visually and macroscopically. 

6.6.2.16 Tide Marks (Section 5.4.5) 

The intralaminar fracture surfaces were examined for evidence of tide marks. 

The feature was not visually evident which is to be expected as the banding 

typically occurs in toughened thermosets and thermoplastics. 

6.6.2.17 Crack bifurcation (Section 5.4.6) 

The upper surfaces and shear web were examined for evidence of crack 

bifurcation. Whilst span-wise fracturing was evident around the chord-wise 

fracture, the occurrence of crack bifurcation was not identified within the 

structure. 

6.6.2.18 A tendency to follow the 0° interface (Section 5.4.7) 

The interlaminar surfaces were examined for evidence of crack propagation 

along the 0° interface and for a transition to a 0° interface. In all cases of 

interlaminar fracture, the fracture either originated within the 0° plane or 

transitioned towards the 0° plane. Moreover, the transition tended to occur from 

the +/-45° laminate into the 0° laminate with the transition occurring in line with 

the 45° fibre orientation (figure 6-40). 
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Figure 6-40 – A fracture showing the tendency to move to a 0° laminate (Source: 

Author) 

The exception to this was where the interlaminar fracture growth was influenced 

by a structural feature or pre-existing damage mechanism. For example where 

the interlaminar fracture had intercepted a loading point, it was apparent that 

the loading point had created a chord-wise fracture. Where an interlaminar 

fracture intercepted this location the fracture jumped from a 0° plane into a +/-

45° plane. The jump had occurred due to the translaminar fracture in the 0° 

plane in effect representing a 90° orientation which would promote the transfer 

of the crack growth plane. 

Where two interlaminar cracks which were transitioning parallel but through 

separate layers intercepted, there was a tendency for the region between the 

two crack fronts to contain an intralaminar fracture within the intermediate plies 

between the two cracks. Thus this represented a narrow band of interlaminar 

fracture contained within a ply of +/-45°. 

0°#
$45°#+45°#

0°#
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6.6.2.19 Serrations (Section 5.4.8) 

The structure was examined for serrations either created on the surface finish, 

or within interlaminar peel and shear boundaries. 

There was evidence of serrations created due to the fracturing of the gel coat. 

The serrations were predominantly evident on the span-wise fractures of the 

upper surface, with the configuration of the serrations suggesting fracture 

moving outwards from the primary chord-wise fracture to the root and tip 

sections. The serrations were indistinct along the entire fracture and thus it was 

necessary to consider the majority as representing the probable propagation 

direction. It should be noted however that the features were not supported with 

an academic foundation and thus were unable to suggest a failure mode or 

crack propagation direction with any degree of certainty.   

 

Figure 6-41 – Evidence of serrations on the upper gel coat (Source: Author) 

The features were also evident on the chord-wise primary fracture although the 

features were significantly fewer and hence unable to provide evidence of 

tearing or crack propagation direction. 

6.6.2.20 Effects of stress raisers (Section 5.4.9) 

The most prominent and important stress raiser which occurred on the structure 

was the impact location. It was evident in both specimens that the translaminar 

fracture had directly intercepted the locations of the impacts. It can therefore be 

postulated that the impact locations were aligned with the primary path of 

fracture, and hence likely to have initiated the fracture, rather than influenced an 
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already occurring fracture. This case is strengthened when considering the 

design of the test rig and the location of impact within the test specimen. 

In the case of a four-point bend fixture, the theoretical bending moment is 

constant between the middle yokes (Hodgkinson, 2000) (figure 6-42). However, 

whilst the test fixture was designed such that the point stresses induced by the 

yoke were minimised, it was not possible to remove this in its entirety. Thus, the 

most likely failure scenario was at the centre or outer yokes located on the outer 

wing tip, where the spar was of smaller cross-section than the root. This is 

supported by the fact that all experiments that did not fail in the centre of the 

wing section did so instead at the location of the yoke. 

 

 

Figure 6-42 – Four point test fixture with bending moment diagram (Hodgkinson, 

2000) (Source: Author) 
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Furthermore, the fracture path did not visibly intercept any prominent features 

on the wing sections that may have acted as a stress raiser. Hence, when 

considering the nature and extent of the degradation mechanisms applied, it is 

probable that this directly influenced the failure of the wing section.  

6.6.2.21 Differentiating between different failure zones (Section 5.4.10) 

The specimens were examined initially from a gross scale (visually) and then 

examined macroscopically for evidence of local failure zones. Visually, there 

was clear evidence of different modes occurring. 

The lower aerofoil section fractured and separated chord-wise extending the 

whole width of the wing section. The leading edge, trailing edge and lower spar 

cap areas had similarly failed perpendicular to the span. The sections in-

between, which represent unreinforced sandwich skin areas, have suffered 

fractures extending span-wise releasing a ‘U shaped tab’ of material. The width 

and depth of the trailing edge tab are approximately 60mm and 200mm 

respectively and the width and depth of the leading edge tab are approximately 

90mm and 150mm respectively. Within the span length sides of these tabs, the 

composite has failed at an angle with the inner face of the composite 

representing the widest part of the angle. 

 

Figure 6-43 – Lower surface of the left wing (Source: Author) 
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The review of images and video footage take during the fracture and 

subsequent separation process confirmed that these features were created late 

in the failure sequence, and thus they can be used to deduce the failure 

sequence. During flexural loading the primary load was taken by the spars 

located in the leading edge, trailing edge and central spar caps. During failure, 

the translaminar fracture propagated chord-wise from these regions. As the 

upper and lower load bearing spars lost their load carrying capability, the flexure 

of the wing became more extreme. The longitudinal tensile loading on the skin 

regions between the spars thus changed to have an increasing degree of 

through thickness tearing component. The tearing component then dominated 

the subsequent failure and thus the crack propagated with a significant span-

wise direction.  

It can be deduced from this feature that the spars failed prior to the wing skin 

which failed later in the sequence. This feature may be of benefit if the wing 

skin, or perhaps the leading edge or trailing edge spar, had failed prematurely. 

In this case the wing skin is likely to have a chord-wise fracture in the region of 

premature failure. 

6.6.3 Identification of additional features - Permanent deformation 

Composite materials are classed as brittle materials and hence during failure 

tend to undergo limited plastic deformation. To this end literature on 

macroscopic and visual interpretation of composite material failures has not 

discussed the aspects of permanent deformation or a retained change in shape 

which may occur due to fracturing or physical restriction from returning to the 

original position. It is apparent that permanent deformation occurred in the 

fractured specimens with implications which offer significant assistance in 

understanding the failure of the structure. 

The multi-directional upper skin laminate underwent significant permanent 

deformation in places without significant visible translaminar cracking occurring 

in the deformed regions. Subsequent to lightly pressing the surfaces the 

deformed sections returned to their deformed shape. The deformation was 

present on the upper surfaces of all specimens. However it was more prominent 
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on the specimens which had ‘tab’ sections of the wing skin removed. Therefore 

the deformation suggests that the upper wing skins had undergone a bending 

motion in the positive flap-wise orientation in respect to the wing layout. 

 

Figure 6-44 – Leading edge of the right wing specimen (Source: Author) 

In addition, the upper spar cap on all sections had evidence of being deformed 

in the same direction as the upper skin (Figure, 6-45). The deformation of the 

spar was different however, with indications of both curvature of the 

unidirectional material and fibres having pivoted about translaminar fractures 

located further into the spar cap. The movement of unbroken fibres back to the 

original position is apparently restricted by the fibres which had been fractured 

and forced into the new position. This indicated that the upper spar cap had 

been defected in the positive flap-wise orientation. 
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Figure 6-45 – Deformation of the upper spar cap from the right wing (Source: 

Author) 

Further evidence of fractured movement within the material creating a record of 

permanent deformation is visible in a polymer pipe which had been forced 

through the upper wing sandwich lower skin. The polymer tube had fractured 

and remained within the sandwich structure (Figure 6-46). This was consistent 

with the tube being pulled through the lower skin section of the upper sandwich.  
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Figure 6-46 – Pull through of a polymer tube inducing fracture of the upper skin 

lower laminate (Source: Author) 

6.6.4 Identification of the failure sequence 

The objective of this phase of the research is to examine a complex failure to 

identify what information may be available to assist the investigation practitioner 

in understanding composite wreckage. The identification of failure 

characteristics has been based on knowledge from a literature survey (chapter 

5). The following is a description of the failure mechanism and failure mode 

from the information identified during the examination. 

• The primary fracture occurred distinctly chord-wise suggesting limited 

torsional failure. 

• The global deformation and visual fracture features suggest the wing 

failed due to positive flexural loading. 

• The lower spar failed in positive flexure, suggesting that the upper 

surface failed first and in compression. Moreover, following the 

compression failure of the upper wing, the wing continued in positive 

flexural loading with the wing pivoting about the lower spar. 
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• The lower skin failed subsequent to the load bearing structures and failed 

late in the fracture sequence when the wing had undergone significant 

bending. 

• There were no indications of premature failure from environmental, 

bonding or fatigue mechanisms. 

• Although the upper spar cap was heavily disrupted, the upper skin 

recorded evidence of impacts occurring on the upper spar cap. The 

impact sites intersected the fracture cleanly and thus are likely to have 

been involved in the fracture, rather than influencing an already occurring 

fracture. 

• The evidence was seen on both specimens in the same context 

suggesting the specimens had both failed in the same manner. 

6.6.5 Examination summary 

It can be concluded that the examination of the structure has identified the 

presence of visual and macroscopic characteristics. From the identification of 

these individual characteristics it was possible to develop a scenario, based on 

facts, as to the failure sequence of the structure. There are however some 

significant issues which, when considered against the understanding of polymer 

composite failure characteristics as developed during the literature survey, are 

likely to present some significant challenges and issues to the accident 

investigator. These are discussed below. 

The fragmentation of the polymer composite structure is likely to present 

significant issues to the identification of the characteristics. By the nature of the 

four point bend test design the fragmentation of the composite structure was 

conservative. For example, the specimen was not subjected to airflow, nor was 

it subjected to ground impact damage. Both of these processes are likely to 

either remove material from the fracture surface or add further damage to the 

existing surface, especially as the fractured regions are already significantly 

degraded. This is likely to provide less of an issue to some of the features such 

as the gross permanent deformation, as the bulk of the characteristic may still 

be available. 
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An area which provides concern is the impacted region. The impacted regions 

were significant both by nature of the energy and of the visual characteristics 

prior to fracture. Moreover, they provided initiation sites from which the failure 

occurred. Within this region both loss of material occurred as well as substantial 

secondary damage. This reduced the volume of visual and macroscopic 

information available from which an interpretation can be made. Furthermore, if 

further loss of material had occurred due to airflow then the few pieces of 

material remaining from which to provide an indication of the impact may have 

been removed. In this instance, if a piece of the wing skin had been removed 

which identified the impact, it would be very improbable that the identification of 

an impact could be made. Moreover, if a ground impact had occurred on the 

fracture surface, further secondary damage may be introduced into the impact 

area which could further reduced the ability to identify the impact region. 

It is therefore apparent that whilst the fracture sequence can be obtained using 

evidence from multiple areas of the structure, the ability to identify a region of 

local degradation is likely to be of significant issue to the investigation. This is 

because the local degraded region is likely to be the only evidence available of 

the occurrence and it will likely be subject to significant secondary damage. If 

this area is subsequently heavily disrupted during ground impact or removed in-

flight during the breakup sequence, then the only evidence of the degradation 

may appear as a small piece within the wreckage trail, or appear 

inconspicuously within the wreckage. 

This suggests that it is imperative that understandings of the failure 

mechanisms and structure design, including those that include degradation, are 

provided to the investigator. From this, the investigator will be in a position to 

make better founded decisions earlier on in the investigation to aid in evidence 

gathering and preservation. From this perspective the investigator may be 

asking the questions as to “how much material loss has occurred in this section 

and hence do I need to locate the remainder?”. This is a time dependent 

question which the investigator needs to ask in the field, rather than after the 

wreckage has been recovered, otherwise the opportunity may have been lost.  



 

259 

6.7 Summary 

The examination has illustrated the application of visual and macroscopic 

interpretation to successfully illustrate the failure sequence of a complex 

composite structure. Whilst the fracture mode was known by the researcher the 

examination relied on the identification of specific characteristics, as detailed in 

chapter 5, to confirm the failure sequence and probable location of failure 

initiation. The interpretation of the failure was within the context of the 

investigation practitioner rather than the subject matter expert and was 

restricted to magnifications of 25X. 

The examination suggested that the specimens had failed in positive flexural 

loading with limited torsion. The fracture initiated at the upper surface with the 

flexural loading continuing but pivoting about the lower spar cap. The upper 

spar cap subsequently suffered significant disruption as the surfaces were 

forced into one another. The upper surface fracture had coincided with evidence 

of impact damage on the upper spar cap which is likely to have been the 

initiation point for the fracture. 

The examination identified limitations. Firstly the interpretation of the crack 

growth direction through the use of visual and macroscopic examination was 

limited. Secondly the failure scenario did not include all failure mechanisms 

(e.g. hygrothermal effects), and thus while the examination presented 

information suggesting that the mechanisms were absent, it was unable to be 

tested in a scenario where all of the mechanism was present. It should be 

stressed therefore that whilst the investigation in this phase illustrates the 

successful use of the characteristics within a single case of two specimens, it 

was not tested in all fracture scenarios, all materials and all architectures. To do 

this would be impractical. Moreover, the examination highlights potential issues 

that may be presented to the investigator, especially due to local degradation 

mechanisms. The results also illustrate that whilst a successful determination 

can be made, the method of visual and macroscopic examination is not able to 

provide the detail which would otherwise be determined during an in-depth 

fractographic examination by a material expert. 
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This phase of the research programme has identified failure characteristics 

apparent on simulated aircraft wreckage and has used them to determine the 

failure mode and failure sequence. It is fitting that the next phase of the 

research programme focus on the examination of the composite wreckage by 

investigation practitioners. This will assist in establishing the level of 

interpretation of a composite failure by investigation practitioners, and will 

examine the investigation of a composite structure within the context of the 

overall investigation process. 
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7 THE INVESTIGATION OF A SIMULATED ACCIDENT BY 
INVESTIGATION PRACTITIONERS 

 

The previous chapter presented an interpretation of visual and macroscopic 

failure characteristics, of the failure of a polymer composite wing section. This 

chapter presents the fourth and final phase of the research programme and 

explores the examination of a polymer composite failure undertaken by 

investigation practitioners. This phase utilises an investigation methodology to 

evaluate the process undertaken by accident investigators.  
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Firstly, this chapter gives an overview of this research phase (section 7.1). Then 

it discusses the programme through which the simulated method was created 

(Section 7.3 through 7.6) and finally, it discusses the application of the 

simulated method and the results achieved (Section 7.10).  

7.1 Overview and objective 

The case study research phase (chapter 4) has produced an understanding of, 

and a framework for, the structural investigation, including the examination of 

aircraft wreckage. Next, the polymer composite fracturing phase has 

demonstrated some of the visual and macroscopic failure characteristics which 

may be present within aircraft wreckage (chapter 6). It is therefore fitting that the 

next phase is focussed on establishing: 

• What information accident investigators currently elicit from composite 

wreckage 

• What conclusions are being made from the information elicited 

• How the examination is influenced by the wider investigation,  

• How the examination influences the wider investigation, and, if 

applicable 

• How visual characteristics can assist investigation practitioners. 

The objective of this phase is to design, conduct and evaluate a study to 

determine how accident investigation practitioners currently use failure 

characteristics to assist the accident investigation process. This will involve an 

understanding of the investigation process within the context of the 

characteristics identified by the participant. 

To meet the objectives it is necessary to conduct a longitudinal study of the 

accident investigation process. It has been suggested in chapter 4 that to 

conduct these using actual investigations will be impractical. Therefore the 

method chosen for this phase is a simulated accident investigation. 
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7.2 Research design and methodology 

A key feature of this phase is to expand on the findings from the previous 

phases of the research programme. The case study phase of the research 

programme has suggested a framework of the investigation process. The 

process is illustrated in figure 7-1 and is explained briefly. For more detailed 

information please visit chapter 4.12.1. 

 

Figure 7-1 – A framework for the examination of aircraft structures within the 

context of an accident investigation (Source: Author) 

The initiation phase involves the period between first notification and the time at 

which the majority of the investigators effort is focussed on fact gathering. 

Predominantly this phase involves predominantly procedural activities with 

discretionary judgement being made. This phase includes: 

• Receipt of initial notification, 

• The initial response, and 
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• Site attendance, assessment and stabilisation. 

The initiation phase is followed by the convergence stage. The convergence 

phase involves the period when the investigator is focussed primarily on initial 

fact gathering. This phase follows the initiation phase and culminates when the 

investigation enters the detailed investigation. This phase contains two 

segments, namely: Onsite fact preservation; gathering and orientation stage; 

and the Exploration of facts stage. 

The detailed investigation phase followed the completion of the convergence 

phase and finalised when the relevant areas of examination, testing or 

research, had reached a valid conclusion or the evidence collection had 

become saturated. This phase differed from the convergence stage as the 

predominant focus was in detailed examination of specific structural areas. To 

accomplish this task the examination typically involves formal confirmation 

(fractographic, design, construction, stress analysis, judgement based on 

location of failure etc.) testing (mechanical, construction, etc.), comparison to 

existing structures, and further research. 

Finally, the investigation proceeded to the conclusion phase. This phase 

primarily focused on the creation of recommendations, communication of 

findings, formal reporting and release of the investigation report.  

The framework suggests that as well as being a dynamic activity, the 

investigation is heavily dependent on the discretion of the investigator, 

introducing influential factors such as experience or bias. Moreover, whilst 

existing research has provided frameworks and models to assist in 

understanding accident development and causality, it is the data collection 

abilities of the investigator that determine whether the appropriate facts are 

collected and hence whether the analysis is sufficient. 

Therefore, it is not sufficient to simply use the numbers and types of facts 

requested as a means to establish how thoroughly the scenario was 

investigated. This was identified in the first phase of the research programme 

where the level of in-field composite examination was reduced when: 
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• External facts eliminated the structures investigation as a line of enquiry, 

and 

• External facts identified that a structural failure was highly probably. The 

investigator’s reaction to this was to place priority on preserving the 

evidence for recovery and further detailed investigation. Hence the 

elicitation of facts from the composite wreckage in the field was not of 

priority. 

It is accepted therefore that the study of what facts (characteristics) are 

identified by the investigator maybe insufficient to draw meaningful conclusions. 

Rather, the methodology should focus on the lines of enquiry undertaken during 

the investigation and the characteristics elicited from the composite specimens. 

These should be recorded with the practitioners reasoning, the influencing 

factors and within the context of the investigation; thereby understanding what 

was discovered, why it was discovered and how it influences the investigation. 

Due to the impracticalities of conducting this on a real-life investigation, the 

practitioners were immersed into a rich simulation that allowed them to reflect 

professional practice. 

To ensure that the research was conducted in an effective and rigorous 

manner, the following criteria must be addressed: 

• The use of simulations in accident investigation studies 

• Design of the data collection protocol, including: 

• Development of the hypothetical simulation 

• Participant selection and engagement 

• Execution of the simulation 

• Analysis and discussion 

7.3 Simulations in accident investigation studies 

The use of simulated investigations for accident research has been conducted 

by many authors and in many different forms (e.g. Rubinsky & Smith, 1973; 

Torell & Bremberg, 1995; Drury, Woodcock, Richards, Sarac & Shylla, 2002; 



 

266 

Balbahadur & Woodcock, 2012; Drury, Wenner & Kritkausky, 1999; Drury, Ma & 

Woodcock, 2002). A publication outlining a methodology for conducting 

simulated investigations for accident investigation research was published by 

Woodcock, Drury, Smiley & Ma (2005). This paper was a latter publication 

based on a methodology created by Woodcock, K. and Smiley in 1999 

(Woodcock, 2012). The method has been adapted by the primary authors for 

use in a variety of situations.  

The simulated investigation method is designed such that the researcher can 

control the investigation scenario, thus ensuring that the key components for 

investigation are included. It also allows multiple participants to conduct the 

same investigation, albeit separately. This provides an opportunity of increasing 

external validity, or in the case of qualitative research, increasing transferability. 

According to Woodcock et al (2005), the key aspects of the simulated 

investigation method are the creation of a hypothetical but complete scenario. 

To aid in realism the scenario can be developed from a factual example (Drury 

et al, 2002; Woodcock et al, 2005). 

The simulated investigation method as described by Woodcock et al (2005) 

specifically restricts the interview to verbal dialogue: 

“To make information acquisition explicit rather than tacit, all ‘‘observed’’ 

information must be obtained by requesting a description of what could 

be seen in a certain place at the time of the investigation. Gestures may 

be used to make the descriptions more three dimensional, but pictures 

and diagrams are not used.” 

This perspective biases evidence availability within the hypothetical scenario 

heavily towards that of testimonial evidence elicited from witnesses. Whilst this 

has been selected as a basis for ease of data collection for the researcher, it is 

questionable as to whether this provides a valid simulation of an investigation. 

For example, Stott (2009) suggests that there are three sources of evidence, 

People, Environment and Equipment. Furthermore, ICAO (2001) suggest that 

sources of information can be split into primary and secondary sources with 
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primary sources consisting of physical examination, documentation, recordings, 

Interviews, direct observation and simulation, with secondary sources consisting 

of subject matter experts, databases and technical literature. In fact, it was 

reported by Woodcock et al (2005) that the experienced practitioners noted 

during the post interview debriefing that the lack of visual cues was felt 

dissimilar to the real world practices: 

“The main area where the experienced investigators described the 

simulations as dissimilar is the lack of site visits. The realism of site visits 

could be simulated using pictures, diagrams, and other graphic devices, 

however this makes measurement problematic.” 

In an attempt to increase realism, the participants of a subsequent study (i.e. 

Drury et al., 2002; Ma et al., 2003) were informed that the simulation was a 

telephone investigation being conducted away from the accident site. It was 

reported by Woodcock et al (2005) that this was accepted amongst those 

participants;  

“They appeared to find this a realistic and familiar explanation of the lack 

of documents and photographs”. 

It should be noted that this study was conducted using participants with a wide 

range of investigation experience (including participants who had no 

investigation experience). Moreover, it cannot be assumed that a telephone 

interview would be accepted by experienced practitioners, for an event which 

otherwise would be a deployable investigation (AAIB, 2008). 

It is therefore necessary for the data collection protocol to include methods 

appropriate to the elicitation of information from the use of graphics, images or 

artefacts. 

7.4 Limitations of the simulated investigation method 

In examining the method it is apparent that there are certain limitations which 

present dissimilar contexts to a real world investigation. The first regards the 

time to which the simulation is conducted. Ensuring a realistic time frame for the 
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participants is essential for participant agreement. Initial estimates placed this at 

one hour for the simulation plus allowance for introduction and debrief. It is 

impractical to suggest a real world investigation can be conducted during this 

time, especially when past real world investigations have taken in excess of 5 

years to complete (NTSB, 2012). It is thus suggested that the study will reduce 

the participants’ ability to cogitate over the information during a longer period 

and thus it may not reflect the true extent of the investigators role. Furthermore, 

real world investigation is a task where it is seldom a process whereby the 

investigator is not influenced, for the better, by external resource. For example 

is was discovered in the first phase of this research programme that the 

investigator utilises informal methods of brainstorming by discussing the 

investigation with others. This may be to get a different viewpoint, to see if 

external experience can assist or even to provoke ones lines of thinking. In 

discussing the method Woodcock, et al (2005) suggest if the above scenario 

occurs where the investigator seeks to discuss the views of the role playing 

researcher, the response should be generated towards a general opinion or 

inconclusive remark. Whilst this places emphasis on the investigator to create 

the answers without external assistance, it does also remove potential fruitful 

lines of enquiry that the investigator may not have realised on their own. On the 

other side however, if the researcher plays the role of the experienced 

colleague and thus suggests to the participant potential fruitful lines of enquiry, 

then the researcher, having created the simulation, is creating unacceptable 

bias into the simulation.  

A table was created as part of the data collection protocol to assist the 

researcher in recording the progression of the simulated investigation. This was 

abandoned during the first interview as it became apparent that the completing 

of the form by the researcher was potentially distracting the participant during 

the exercise. This was due to the close proximity between the participant and 

researcher during the conducting of the interview. Instead, the tabular form was 

verified against the audio recording during data analysis and thus errors in 

recording were corrected. This did not affect the summary sheet which was 

completed after the interview. 
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7.5 Data collection protocol 

This section presents the process taken to design the data collection protocol. It 

starts by discussing the protocol applied for the inclusion of graphics, images 

and artefacts. 

7.5.1 Use of visual references in research 

Visual sociology is a collection of approaches in which researchers use visual 

materials to portray, describe, or analyse social phenomena (Harper, 2002). 

Whilst the application of visual methods in social research is diverse, including 

ethnographic description, the study of social processes in the laboratory, in 

studies of social change, and as a means through which phenomenological 

sociology may be constructed and communicated, an area of interest is the use 

of visual images in interviewing. Photo-elicitation research is based on the 

principal of inserting visual media into a research semi-structured interview as a 

means to increase the quality of empirical data obtained during the interview. 

Moreover, the addition of images to an otherwise verbal exchange introduces 

greater use of the participants visual conscious and hence more information 

and a different type of information may be elicited (Harper, 2002). 

Collier (1957) conducted an experiment aimed at determining whether the 

insertion of photographs during interviews, which had relevance to the 

participant and research subject, elicited a greater depth of information from the 

participant. The experiment was conducted using a control group (images were 

excluded) and the test group (images were included). In concluding on the 

research, Collier stated: 

“The material obtained with photographs was precise and at times even 

encyclopaedic; the control interviews were less structured, rambling, and 

freer in association. Statements in the photo-interviews were in direct 

response to the graphic probes and differed in character as the content of 

the pictures differed, whereas the character of the control interviews 

seemed rather to be governed by the mood of the informants.” 
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Subsequent coding of the data also confirmed that imagery focussed the 

content of the interview more so than the verbal dialogue alone. It is also 

interesting to note that it was felt by Collier (1957), that the use of imagery had 

a positive role in the rapport between the researcher and the participant: 

“Another point borne out by the analysis was that, while both of the second 

non-picture interviews had been less full than the first and showed a 

decline in the informants’ responsiveness, the “check” interviews reversed 

the trend and produced more material. This can be interpreted as an 

indication that photographs can be stimulating and can help to overcome 

the fatigue and repetition often encountered in verbal interviews. It is also 

safe to assume that the photographs were an aid to rapport in opening the 

field of discussion, whereas in the control interviews we sometimes had to 

press against resistance and apathy.”  

This is especially significant in situations where the interviewee feels they are 

participating in a test where photographs can provide a neutral ground between 

the researcher and participant (Banks, 2001). 

Although the use of images during interviews is deemed as a “simple idea of 

inserting a photograph into a research interview” (Harper, 2002), there are 

particular considerations which should be used on selecting images and 

understanding how the images may influence the interview. Aside from ensuring 

that the images are relevant to the nature of the research and, in most cases, 

relevant to the participant, Banks (2001) suggests that the researcher should 

distinguish between the form (external narratives) and content (internal 

narratives) of the visual image. Furthermore, Harper (2002) suggests that the 

images should not reflect the normal views of the participant as this leads to 

limitations on the participant being able to express thought on the subject, 

rather visual images should “break the frame” and offer differing views such as 

aerial images or close-up images. 

The above considerations were applied to the selecting of suitable cases and 

suitable imagery.  



 

271 

7.5.2 Think Aloud method 

A method suggested by Woodcock et al (2005) as a potential means to transfer 

otherwise tacit information into explicit information is through the use of Think 

Aloud protocol.  

The think aloud method consists of requesting participants to ‘Think Aloud’ 

whilst solving a problem with the researcher analysing the verbal responses 

(Van Someren, Barnard, Sandberg, 1994). Whilst this method is used in 

psychology as a means to understand cognitive processes, it is also used as a 

means to extract knowledge from expert practitioners. Van Someren et al 

(1994) suggest that in the case of expert practitioners, it is difficult for them to 

explain what they do, thus the think aloud method focusses on the practitioner 

verbalising what they do whilst doing it. 

This however conflicts with a finding by Woodcock et al (2005) which suggests 

the simulation should be conducted with the interviewer ‘acting’ the roles of the 

interviewees: 

“… can be made more realistic by projecting character into the ‘‘people’’ 

answering the interviewees’ questions, using vocal inflection and vernacular 

speech, adopting natural style. Trials using neutral delivery of information 

from the story reference page often evoked questions in the third person and 

shorter searches overall.” 

However, it would be inappropriate and confusing to suggest that the 

participants should step in and out of the hypothetical scenario when images 

are presented. It is therefore suggested that for the purposes of this research 

the interviewer should maintain the interviewee and interviewer relationship. 

Additionally this reduces the workload on the interviewer and hence increases 

concentration on the data elicited and conducting of the interview. 

7.5.3 Data collection framework 

The case study phase has suggested that the process by which the 

investigation is conducted includes: 
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• Initiation phase 

o Receipt of initial notification 

o Initial response 

o Site attendance assessment and stabilisation 

• Convergence phase 

o Onsite fact preservation, gathering and orientation 

o Exploration of facts 

• Detailed investigation phase 

• Conclusion 

Thus the scenario should start at the beginning of the investigation with the 

receipt of initial notification. It is necessary to record the lines of enquiry taken 

by the participant, the facts retrieved and subsequent investigative direction 

taken by the participant. It is anticipated from findings in phase one of the 

research programme that actions taken by the participant during the initiation 

phase is predominantly procedural. Thus the researcher should utilise this 

phase as a period to ensure the simulation is producing the intended data and 

importantly that the participant is comfortable rendering and sharing their 

thoughts. 

Whilst it would be possible to continue the simulation through to where the 

participant presented a conclusion to the investigation, this presented two 

problems. Firstly, by presenting irrelevant and relevant data with a causal chain 

complex enough to avoid the researcher inadvertently suggesting a particular 

path, continuing the simulation to a conclusion would require a considerable 

commitment of time from the participant. 

Secondly, as highlighted in the case study phase of the research, during the 

detailed investigation phase it is anticipated that the practitioner would follow 

particular lines of enquiry in comprehensive detail. It is perhaps unrealistic to 

expect that a simulated investigation would cover convincingly such detail, due 

to, a) the level of resource requirement would be impractical, b) the length of 

time for interview may jeopardise the willingness of participants, and c) the 

collection of data concerning the detailed investigation process may not provide 
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sufficient data concerning the investigation process from a generic perspective. 

One such example is where the practitioners may request significant input from 

material experts (e.g. the participant may request laboratory analysis on 

composite structures that are deemed to be of significance to the simulated 

investigation). 

Whilst this initial approach and dialogue with the material experts is of 

significant interest to the research objectives, it would be impractical for the 

simulation realistically to cover the detailed investigation that may ensue. For 

example, it is reasonable in the initial stages of the investigation to simulate that 

a material expert is temporarily unavailable and only non-specific information 

from the material expert is available at that moment in time. This would be 

difficult to maintain with realism during the detailed investigation phase where it 

may be likely that detailed dialogue between the practitioner and material expert 

would be necessary. 

It is appropriate that the simulation be bought to a close when either a) the 

participant, through their own investigative process, has reached a position 

where detailed consultation with a forensic laboratory for failure analysis of the 

wing sections is requested, or b) a conclusion to the investigation is provided by 

the participant to the researcher. Furthermore, when the advised time limit is 

reached, the participant will be given the option to continue or stop the 

simulation. If the simulation has been closed due to the participant requesting 

forensic examination on the composite structure, a summary of how the 

participant would conduct the detailed examination will be requested. 

7.6 Participant selection and engagement 

The participants of the study must align with the scope of the overall research 

study and thus eligible participants were limited to professional investigators 

who were not specialised to a particular type or manufacture of aircraft. 

Government investigators were approached. Due to scope limitations in the 

research, potential candidates were targeted to those located solely within the 

UK. The UK Air Accidents Investigation Branch (AAIB) and the UK Military Air 

Accident Investigation Branch (MilAAIB) were formally approached. Both 
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organisations agreed to participate with three participants from the AAIB and 

five from the MilAAIB. During the data collection phase a participant from the 

AAIB had to withdraw due to work related commitments. There was a wide 

variation of investigation, structural investigation and composite wreckage 

investigation experience amongst the participants. 

Although the professional investigators who volunteered were likely to conduct 

investigations in groups, it was elected to conduct the simulation on the basis of 

a single practitioner. Although this may diminish the realism of the simulation, it 

was considered that to include group dynamics into the research would be 

detrimental to the data collection. Therefore this is accepted as a limitation in 

the research. 

7.6.1 Ethical considerations 

Agreement to partake in the research was solely at the discretion of the 

participant. Prior to conducting the simulation each participant was advised that 

involvement in this case study was entirely voluntary and they may decide to 

withdraw from the study at any time without prejudice.  The participants were 

also informed that they may decline to answer any questions that they would 

prefer not to answer. 

7.6.2 Confidentiality, anonymity and data security 

The collection of personal data as defined in the Data Protection Act 1998 

(HMSO, 1998) will not provide additional benefit to the research. Therefore, the 

collection of personal data was excluded from data collection to maximise the 

anonymity of the data.  

Although the decision had been made to collect anonymous data and thus 

details relating to an individual were not requested, it was also decided that with 

permission from the participant, the interviews would be audio recorded. This 

was undertaken to ensure the accuracy of the data. It was stressed to the 

participant that the audio recording will be solely for use in this research project 

and will be immediately deleted following transcription. It was also highlighted 
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that the transcription will also be restricted for use within the research project, 

will be stored anonymously and will not be published or distributed.   

The decision to audio record the interview presented two issues. Firstly, 

personal data may be mentioned inadvertently during the course of the 

interview. If this occurred then software was utilised post interview to cut the 

personal data from the recording. Secondly, the audio was recorded directly 

without voice altering software being used to change the tone of the 

participants’ voice. Although this was not deemed as making the data 

identifiable, it was accepted that all of the data should be treated with security 

measures compliant to the data protection act as a precautionary measure. 

Information security was hence designed to confirm to principle seven of the 

data protection act. The audio and transcript files were encrypted using 256bit 

AES algorithm and were stored on a password protected computer and backup 

drive. The researcher had sole access to the decryption key, the computer and 

the backup drive. The computer was protected from malicious software by a 

firewall and anti-virus software.  Once completed, the data was permanently 

deleted using professional data removal software. 

7.6.3 Conducting the interview 

The simulation was conducted at the participants’ place of work and in an 

isolated meeting room that offered a comfortable environment with limited 

opportunity for noise or distraction. The researcher provided a background to 

the overall research project, discussed freedom of participation, assured the 

participant of anonymity and detailed measures taken for data protection. If the 

participant was willing to continue then the simulated method was described to 

the participant and a request to audio record the interview was made. 

The data collection was in the format of an interview. Following on from the 

researcher providing the initial notification, the participant continued by leading 

the questioning and ‘thinking aloud’ their thoughts and actions. This process 

was explained to the participant during the pre-interview briefing. The 

participant progressed through the simulation by requesting further information 
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from the researcher as they followed their individual lines of enquiry. The 

researcher had information available which could either be given to the 

participant, such as images, or verbally provided to the investigator, such as 

during an interview between an investigator and a witness. If the request had 

not been anticipated then the researcher would respond by stating that the 

information was not available. This was deemed as representative of a real-

world investigation where particular information may not be available to the 

investigator (Woodcock et al, 2005). A pen and paper were available to the 

participant for them to record information. 

The interview was continued until either the objectives of the research had been 

met, or the allotted interview time had elapsed, whichever occurred first. If the 

allotted time for the interviewed had had elapsed without the objectives being 

met then the participant was informed that the time had expired but if the 

participant was in agreement then the researcher would like to continue. All 

simulations continued until the research objectives had been met with some of 

the participants agreeing to continue past the allotted time. 

Arrangements were made for the participants to be interviewed at each 

organisation on a back-to-back basis. There was a period of five weeks from the 

end of the interviewing at the first organisation to the start of interviewing at the 

second and final organisation. 

When the simulation had finished, the participant was asked verbally for 

demographics data and was debriefed on the interview. The debriefing involved 

thanking the participant for their time, offering reassurances of confidentiality, 

asking the participant not to discuss the scenario with colleagues who may be 

latter participants, and offering answers to any questions they had.  Typically 

the participant asked how they performed and whether their summary was 

correct. In response positive feedback was given. 

7.7 Hypothetical scenario development 

The core feature of the simulated investigation method is the preparation of a 

complete accident investigation story (Woodcock et al, 2005). As suggested by 
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Woodcock et al (2005), a real accident investigation can be used as the basis of 

the scenario and as a source for material. A literature search was conducted to 

identify a suitable case. In line with the objectives of this phase of the research, 

the literature search was limited to: 

• Only cases that included, or had the potential to include, a field 

investigation 

• Involved a high performance single seat glider, such that the fractured 

wing sections from phase three of the research programme could be 

written into the scenario. 

• A scenario that would provide a rich source of material from which a 

scenario could be created 

Additionally, consideration was given to ensure that the case material once 

adapted into a hypothetical scenario should: 

• Not have an obvious single cause 

• Not be overly complex such that it cannot be reasonably investigated in a 

short period of time 

• Be located within a remote location where the use of subject matter 

experts was likely to be reduced, and means of recovery would be 

difficult 

The literature search identified a number of potential cases. NTSB investigation 

WPR09FA089 (NTSB, 2009) was selected. It met the requirements above and 

offered an interesting, rich storyline which could be realistically adapted to 

involve a composite failure scenario to match the failure of the specimens 

created in phase three. 

The information retrieved from the NTSB public docket (NTSB, 2009a) provided 

a basis from which the scenario was created. Scenario developed would thus 

involve the modification of the current scenario to fit the fracture specimens as 

created in phase three. Irrelevant data was also added to reflect real world 

investigations and, the scenario was expanded to include information that the 

participant was likely to investigate. Where available, additional information 
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added to the scenario was obtained from credible sources rather than created 

solely by the researcher. For example the following were used in the expansion 

of the adaptation of the original scenario: 

• Standard Operating Procedures (SOP’s) from current investigation 

agencies 

• Additional material sourced from other accident investigations 

• Material from academic institutions researching in support of structural 

and wreckage investigations 

• Material from simulated investigations created for the purpose of 

accident investigation training 

The information contained within the developed scenario is summarised in table 

7-1. 
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Table 7-1 – Evidence and sources used in the hypothetical accident scenario 

 

 

Information*type** Data*type* Source*of*original*material*
Initial*Notification* Text* Data*presented*based*on*AAIB*Initial*

Notification*form*F16*(AAIB,*2008)*

B
ac
kg
ro
un

d*
in
fo
rm

at
io
n*

Accident*history*of*type* Text* Contains*relevant*and*irrelevant*accident*
history.*Five*cases*were*adapted:*

• LAX99MA251*(NTSB,*2002a)*
• AQ028/2000*(CIAIAC,*2003)*
• CA18/2/3/8395*(SACAA,*2011)*
• LAX99LA215*(NTSB,*1999)*
• LAX06LA024*(NTSB,*2007)*

Location*information* Text* Accident*location*of*WPR09FA089*adapted**
and*summarised*based*on*information*
from*Stalker,*(2010)*

Air*Map* Graphic* Air*Map*adapted*from*FAA*(2012)*

PreQaccident*aircraft*
image*

Graphic* Generic*image*of*a*Nimbus*3*

Basic*Aircraft*data* Text* Created*from*Nimbus*flight*manual*
(SchemppQhirth,*1982a)*

Nimbus*plan*view* Graphic* Created*from*Nimbus*flight*manual*
(SchemppQhirth,*1982a)*

Area*forecast* Text* Modified*from*(NTSB,*2009a)*

M
et
eo

ro
lo
gy
*

Gliding*club*forecast* Text* Modified*from**(NTSB,*2009a)*

Nearest*airport* Text* Modified*from**(NTSB,*2009a)*

(Local*Analysis*and*
Prediction*system)*LAPS*

Text*&*Graphic* Modified*from**(NTSB,*2009a)*

AIRMET* Text* Modified*from**(NTSB,*2009a)*

Regional*Atmospheric*
Prediction*Model*(RASP)*

Text*&*Graphic* Modified*from**(NTSB,*2009a)*

Satellite* Text*&*Graphic* Modified*from**(NTSB,*2009a)*

Science*station* Text* Modified*from**(NTSB,*2009a)*

SIGMET* Text* Modified*from**(NTSB,*2009a)*

Surface*chart* Text*&*Graphic* Modified*from**(NTSB,*2009a)*

Terminal*Aerodrome*
Forecast*(TAF)*

Text* Modified*from**(NTSB,*2009a)*

Upper*air*chart* Text*&*Graphic* Modified*from**(NTSB,*2009a)*

Upper*air*data* Text*&*Graphic* Modified*from**(NTSB,*2009a)*

Winds*and*temp*aloft* Text*&*Graphic* Modified*from**(NTSB,*2009a)*

Pilot*reports* Text* Modified*from**(NTSB,*2009a)*
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Table 7-1 – Evidence and sources used in the hypothetical accident scenario 

(continued) 

Information*type** Data*type* Source*of*original*material*

A
ir
cr
a
ft
*

d
o
cu
m
e
n
ts
* Flight*Manual* Text*&*Graphic* From*original*aircraft*document*(SchemppQ

hirth,*1982a)*

Maintenance*Manual* Text*&*Graphic* From*original*aircraft*document*(SchemppQ

hirth,*1982)*

Maintenance*record* Text* Modified*from*accident*aircraft*manual*

Wreckage*photography* Graphic* Image*from*investigation*WPR09FA089*

(NTSB,*2009a)*

W
re
ck
a
g
e
*

e
xa
m
in
a
ti
o
n
*

Photograph*of*retrieved*

recorder*

Graphic* Modified*from**(NTSB,*2009a)*

Oxygen*system*

recovered*from*

wreckage*

Graphic* Modified*from*(NTSB,*2009a)*

Wreckage*Plot* Graphic* Modified*from*(NTSB,*2009a)*

Failed*wing*sections* Artefact* As*created*during*chapter*6*

G
P
S*

3D*flight*path*plot* Graphic* Modified*from**(NTSB,*2009a)*

Data*information* Text* Modified*from**(NTSB,*2009a)*

Visual*representation*of*

data*

Text*&*Graphic* Modified*from*(NTSB,*2009a)*

Planned*route* Text* Modified*from*(NTSB,*2009a)*and**FAA*

(2012)*

Notice*to*Airmen*(NOTAM)* Text* Modified*from*(U.S.*Department*of*the*

Navy,*2007)*and*(FAA,*2010)*

P
a
th
o
lo
g
y*

Post*mortem*

examination*

Text* Created*from*(Timmermans,*2007)*

Medical*records* Text* Created*from*(NTSB,*2009a)*&*

(Timmermans,*2007)**

Toxicology* Text* Modified*from*(NTSB,*2009a)*

A
ir
cr
a
ft
*

m
o
d
if
ic
a
ti
o
n
s*

Oxygen*system*–*AV* Text*&*Graphic* Modified*from*(NTSB,*2009a)*&*(NTSB,*

2009a)*

Oxygen*system*–*EDS* Text*&*Graphic* Modified*from*(NTSB,*2009a)*

Oxygen*system*Q*photo*

aircraft*interior*

Graphic* Modified*from*(NTSB,*2009a)*

*Pilot*records* Text* Hypothetical*based*on*scenario.*

W
it
n
e
ss
e
s*

Duty*Pilot* Text* Hypothetical*based*on*scenario.*

Glider*Pilot* Text* Hypothetical*based*on*scenario.*

Tug*Pilot* Text* Hypothetical*based*on*scenario.*

Winch*operator* Text* Hypothetical*based*on*scenario.*

Boss* Text* Hypothetical*based*on*scenario.*

Local*police* Text* Created*with*data*from*(NTSB,*2012a)*
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Upon completion, the scenario was analysed to identify the salient relevant and 

irrelevant lines of enquiry. The sources of information were arranged into a table 

of information and subsequently into a scenario time-line. The relevant and 

irrelevant lines of enquiry were then scrutinised in each of the forms for a) 

inconsistencies between facts and in sequencing, b) identification of facts and 

leads that were missing, and c) realism of the overall scenario. Where 

information was not easily identifiable, hooks were placed throughout the 

scenario as a realistic indicator to the investigator of a potential line of enquiry. 

Additionally, a date and time was attached to each source of information 

highlighting when it occurred in the timeline of the hypothetical story, and when 

the information will be available for the participant. This established a means to 

add realism to the scenario as particular sources of information can only be 

retrieved by the participant once certain conditions have been met, e.g. 

information from the data recorder can only be retrieved following collection 

from the accident site and despatched for analysis. 

The simulation commenced with the participant receiving a verbal notification of 

an accident having occurred. This notification replicated the initial information 

which would reasonably be passed onto the participant as the investigator in a 

real life scenario. The participant subsequently responded to the researcher by 

thinking aloud their immediate thoughts, next actions, and requests for further 

information. The narrative used as the initial notification was as follows where 

the words replaced by XXXX were fictitious names: 

On Jan 6th at 18:34 local (04:34 UTC), XXXX Airport reported to XXXX 

Police a missing aircraft. The aircraft was reportedly conducting a local 

wave soaring flight on an island called XXXX, located in the mid Pacific (-

10 hours UTC). The XXXX Police immediately organised a search using 

aircraft. The search resumed the next day and located what appeared to 

be wreckage of an aircraft on the side of Mount XXXX. There appeared 

to be no signs of life. The aircraft being reported missing was G-XXXX, a 

UK mainland registered aircraft. The XXXX Police are organising a party 

to ascend the mountain to determine the status of the pilot. In the 
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meantime, the UK based XXXX Consulate contacted your organisation to 

inform of the situation. It was expressed by the island nation that they 

had no means to investigate the accident. It was thus decided that your 

organisation will conduct the investigation. It is known that the pilot of the 

accident aircraft is a UK citizen who was conducting a glider altitude 

attempt. 

Predetermined responses were arranged according to the area of investigation, 

(e.g. data relating to meteorology were grouped together). The grouping of facts 

reflected the logical and sequential relationships among the areas of 

investigation. Although it is the participant who decides on the sequence of the 

investigation, the grouping was established to improve the process by which the 

interviewer could locate the relevant information and respond efficiently to the 

participant’s request. 

A table was created to assist in the recording of the progression of the 

simulated investigation. 

7.8 Pilot testing and external simulation validation 

It was deliberated by the researcher as to whether the scenario should undergo 

scrutiny from external persons prior to the data collection phase or to undergo 

pilot testing. 

Conducting a pilot study was ruled out for two reasons. It has already been 

identified that the target audience of the research was relatively small with only 

two sites within the UK. To undertake a pilot study would involve either 

departing the UK or selecting participants who are outside of the intended 

scope of data collection. The use of participants located within the sites of main 

study was rejected due to the potential reduction in participants for the primary 

study and the potential for site contamination due to the pilot stage. 

Additionally, the simulation was designed as a rich source of information 

conducted based on the preferences of the participant. Hence, it was 

impractical that every potential route or line of enquiry within the investigation 

could be tested via a pilot study. 
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The alternative was for the simulation to be scrutinised by external volunteers 

who had experience with both simulation development and accident 

investigation. This may have benefited the scenario as conflicting or false 

information may have been identified by the external reviewer. 

As the scenario was constructed from credible, realistic information and 

followed the basis of a contemporary investigation, it was considered that the 

scenario were unlikely to include significantly conflicting information. Therefore, 

the potential gains from recruiting an external reviewer to examine the complex 

scenario are unlikely to be significant. As an alternative, the participants during 

the primary study were debriefed on their perception of the realism of the 

scenario. Any issues that were highlighted would be recorded and modified for 

the next participant. In fact, only one minor issue was highlighted which did not 

affect the data collection.  

7.9 Data analysis method 

Data was collected in the form of audio-recording, notes made by the participant 

during the interview and summary sheets created by the researcher. 

The data collection was split into two phases of the simulation, with a natural 

separation occurring between the overall investigation and the wreckage 

examination. The first phase involved the investigator moving through the 

initiation and convergence stages. The second phase involved the examination 

of the wreckage whereby the investigator will have an opportunity to elicit 

characteristics from the composite components. Whilst these two processes 

were interlinked, for clarity they will be discussed separately. The first phase 

was labelled ‘process phase’ and the second phase as the ‘composite 

examination phase’. 

7.9.1 Process analysis phase 

The analytic process for this stage was driven by the framework created during 

the case study phase of this research programme (section 4.12.1 or figure 7-1). 

The framework was a means to focus data collection, provide an opportunity for 



 

284 

verification and provide a theory from which further understanding could be 

provoked. 

Data collected for this phase included the audio recording, notes made by the 

participant, and summary sheets produced by the researcher. The audio 

recording was reviewed and the order in which the lines of enquiry (hereafter 

referred to as enquiry or enquiries) were undertaken by the participant was 

documented. The order of the enquiries was recorded in numerical order, with a 

narrative supporting the line of enquiry undertaken. The enquiries were coded 

such that cross participant comparison could be undertaken. Event State 

Networks (Miles & Huberman, 1994) were then formulated from the coded 

actions of the participant to form visual representations of the process 

undertaken by the participant. From these displays multiple tactics (e.g. 

clustering, noting patterns and themes) were used to draw understanding and 

conclusions. 

In addition to the coding and Event State Networks, the audio recorders were 

reduced through the formation of memos. The memos were focussed on 

extracting key data relevant to the data collection framework (tables 4.2, 4.3, 

4.4 & 4.5), and to highlight the patterns and themes as recognised by the 

researcher. 

7.9.2 Composite examination analysis phase 

The audio recording was cut to include only the period when the participant was 

investigating the wreckage. The recording was then coded into themes 

representing the characteristics identified by the participant. The framework for 

coding was based on the themes as established during the wreckage 

examination phase of this research programme, chapter 6. These are 

summarised in figures 7.2 & 7.3. Any new characteristics identified by the 

participant were recorded. 

In addition to the audio recording, summary sheets were created by the 

researcher following the interviews. 

 



 

285 

 

Failure*sequence*referenced*in*chapter*6*
The*primary*fracture*occurred*distinctly*chordQwise*with*symmetrical*failure*pattern*
suggesting*limited*torsional*failure.*
The*global*deformation*and*visual*fracture*features*suggest*the*wing*failed*due*to*positive*
flexural*loading.*
The*lower*spar*failed*in*positive*flexural,*suggesting*that*the*upper*surface*failed*first*and*in*
compression.*Moreover,*following*the*compression*failure*of*the*upper*wing,*the*wing*
continued*in*positive*flexural*loading*with*the*wing*pivoting*about*the*lower*spar.*
The*lower*skin*failed*subsequent*to*the*load*bearing*structure*and*failed*late*in*the*fracture*
sequence*when*the*wing*had*undergone*significant*bending.*
There*were*no*indications*of*premature*failure*from*environmental,*bonding*or*fatigue*
mechanisms.*
Although*the*upper*spar*cap*was*heavily*disrupted,*the*upper*skin*recorded*evidence*of*
impacts*occurring*on*the*upper*spar*cap.*The*impact*sites*intersected*the*fracture*cleanly*and*
thus*are*likely*to*have*been*involved*in*the*fracture,*rather*than*influencing*an*already*
occurring*fracture.*
The*evidence*was*seen*on*both*specimens*in*the*same*context*suggesting*the*specimens*had*
both*failed*in*the*same*manner.*

Table 7-2 – Themes for identifying the failure sequence 
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Characteristic* Location* Evidence*
Adherend*failure* Bonded*surfaces* Preferred*bonding*failure*
Bright*fracture*surface* Lower*spar*cap* Tensile*failure*

Change*fracture*orientation* Lower*wing*skin*
Change*in*mode*from*tensile*to*
flexural*

Cohesive*failure* Bonded*surfaces* Preferred*bonding*failure*
Compression*brooming* Upper*spar*cap* Compression*failure*
Crack*coalescence* Upper*wing*skin* Failure*sequence*
Dark*and*Bright*fracture*
surface* Interlaminar*failures* Peel*failure*
Deflection*of*fracture* Upper*wing*skin* Impact*damage*
Dual*failure*zones* Lower*spar*cap* Local*flexural*failure*

Dull*and*white*fracture*surface* Interlaminar*failures* Shear*failure*

Dull*fracture*surface*
Upper*spar*cap* Compression*failure*
Lower*spar*cap* Compression*failure*

*
** Fatigue*(Or*absence)*

Fibrous*surface*
Lower*spar*cap* Tensile*failure*
Lower*wing*skin* Tensile*failure*

Foreign*material*forced*into*
fracture* Upper*spar*cap* Compression*failure*
Fracture*geometry* Sandwich*

*

Fracture*geometry*
Lower*spar*cap* Compression*failure*
Lower*spar*cap* Tensile*failure*

Flat*fracture*surface* Upper*wing*skin* Compression*failure*
Local*sooting*and*penetration* Upper*wing*skin* Arcing*damage*
Misplacement* Lower*spar*cap* Anomaly*

Permanent*deformation*
Upper*wing*skin* Positive*flexural*
Upper*spar*cap* Positive*flexural**

Preferential*interface*crack*
propagation* Interlaminar*failures* Crack*propagation*direction*

Pull*through*of*polymer*tube* Upper*wing*surface* Flexural*failure*

Serrations*
Translaminar*
fracture* Crack*propagation*direction*

Smooth*fracture*surface*
Upper*spar*cap* Compression*failure*
Upper*wing*skin* Compression*failure*

*
** Translaminar*shear*

Visible*bruising* Upper*wing*skin* Impact*damage*
Visible*penetration*damage* Upper*wing*skin* Impact*damage*

Table 7-3 – Themes for characteristic identification 
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7.10 Analysis 

In total seven participants partook in the research with all being professional 

accident investigators working for government organisations within the UK. Five 

participants were from the MilAAIB, a joint service military air accident 

investigation body operating as part of the UK Ministry of Defence (MoD). The 

remaining two participants were from the AAIB, the UK investigation body 

responsible for the investigation of civil aircraft accidents and serious incidents. 

All participants were male. Of the seven participants, six were engineering 

investigators with one being an operations investigator. The operations 

investigator was a member of the MilAAIB. 

The following presents the findings from the analysis, starting with the 

composite phase. 

7.10.1 Finding 1 – A clear understanding of failure mechanisms and 
characteristics is necessary to support the investigator  

During the wider investigation process the investigators utilised reasoning to 

guide their decision making and for weighing lines of enquiry. 

There was evidence of deductive reasoning, for example, whilst examining the 

wreckage plot the participant conducted the following: 

Participant’s 1st premise: an aircraft which was intact at impact cannot 

have a wreckage spread over 6 miles without bouncing along the ground.  

Participant’s 2nd premise: There is no evidence (i.e. ground scars) of the 

aircraft bouncing along the ground 

Conclusion: Therefore, the aircraft had broken up before it impacted the 

ground 

The premises passed the deductive reasoning and thus the participant’s 

response to the conclusion was firm, the line of enquiry for the aircraft impacting 

the ground complete was closed and the in-flight breakup scenario was 

pursued. Therefore deductive reasoning was used to eliminate lines of enquiry. 
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There was evidence of inductive reasoning, for example, whilst considering a 

plausible scenario for the breakup of the aircraft different participant conducted 

the following: 

Participant’s 1st premise: symmetrical failures on both wings are unlikely 

to be related to manufacturing faults 

Participant’s 2nd premise: the wings failed symmetrically 

Conclusion: Therefore, the wings are unlikely to have fractured due to 

manufacturing defects 

A conclusion was drawn based on inductive reasoning. The investigator was not 

certain that the outcome was true but this allowed the investigator to weigh the 

lines of enquiry. Thus in using this logic the investigation temporarily closed the 

lines of enquiry, albeit keeping an open mind, until further evidence appeared to 

contradict the original logic. This occurred when the same participant examined 

the wreckage and identified what he suspected to be a manufacturing 

irregularity. The line of enquiry was hence reopened. 

Finally, there was evidence of abductive reasoning, for example, whilst 

considering a plausible scenario for the breakup of the aircraft different 

participant conducted the following: 

Participant’s thoughts: The aircraft suffered in-flight breakup  

Participant’s conclusion: the aircraft may have failed due to a 

degradation mechanism  

A possible explanation was drawn based on knowledge and prior experience. In 

this instance the participant did not know how to recognise degradation 

mechanisms in composite materials and thus a plausible explanation was put 

forward, albeit with an ‘open mind’. This mechanism opened the line of enquiry 

albeit to the request of an external source. For example, upon concluding that it 

may have failed due to a degradation mechanism, and the practitioner had no 

means to confirm this, the assistance of the external expert was requested to 

examine the wreckage. When the forensic experts were requested following 
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abductive reasoning, the summary of requests was akin to a shot gun 

approach. The experts would be requested to tell the investigator everything 

they could about the fracture. 

The review of visual and macroscopic failure characteristics suggested that the 

evaluation of a failure can be potentially ambiguous in its identification. For 

example, in recognising environmental degradation mechanisms, the evidence 

may only be apparent under severe conditions (5.4.1). As another example, the 

identification of degradation in tensile failures may only be determined through 

comparison to pristine materials (see 5.4.10). 

It is likely that the use of failure characteristics within the accident investigation 

scenario will be dominated by inductive reasoning. Whilst this may have the 

benefit of increasing the speed at which decisions can be made, (e.g. the 

investigator may be in a better position to focus the in-depth analysis to a 

particular region of the structure) there may be the opportunity for delay should 

the line of enquiry be closed until other contrary evidence is identified. 

Firstly, this suggests that the current understanding of visual and macroscopic 

characteristics should be developed such that features and associated 

degradation mechanisms can be identified with greater confidence. This will 

encourage the lines of enquiry to be closed or opened with certainty, as the 

investigator will have a greater opportunity to use deductive reasoning. 

Furthermore, the transfer of knowledge should focus on delivering clarity on the 

interpretation of characteristics, such that confidence in the interpretation can 

be achieved by the investigator. It is relevant therefore for the knowledge 

transfer to deliver information on failure mechanisms and their influence on the 

characteristics. This will enable the investigator to make a judgement based on 

understanding, and thus cater for the wide range of possibilities in failure 

characteristics. 



 

290 

7.10.2 Finding 2 – There is scope for increasing the number of 
failure characteristics extracted from the wreckage 

During the wreckage examination, only a relatively small proportion of the 

available facts were reported by the participant. Table 7-4 illustrates the total 

number of facts reported by all of the participants. Firstly, it was discovered that 

this is not illustrative of the investigators ability to identify failure characteristics. 

Rather, it was the identification of failure characteristics within the context of the 

investigation scenario. 

Consider the characteristics associated with impact damage. None of the 

participants reported that they had identified characteristics associated with this 

failure mechanism. It was apparent that this was related to the wreckage 

examination being influenced by the picture determined from the wider 

investigation. One of the participants had theorized prior to the wreckage 

examination that the symmetrical failure may have been created by the long 

distance transportation of the aircraft (the long distance transportation was a 

component of the scenario). Therefore, the investigator approached the 

wreckage examination searching for characteristics that may confirm such 

failure. Furthermore, the investigator had suggested further sources of 

information that may confirm this occurrence. A request to see the 

transportation and storage equipment was hence requested. 

On this occasion the investigator had approached the examination with an 

induced line of enquiry. The wreckage was examined to identify characteristics 

which may confirm the occurrence of pre-existing damage. The investigator 

suggested an alternative means to confirm the plausibility of the hypothesis by 

examining the transportation rig. On this occasion, despite looking for external 

damage the investigator was unable to identify the impact characteristics. 

However, alternative sources were proposed which may either confirm the 

occurrence, or increase the weight of the original line of enquiry. 

It is therefore plausible that had the investigator identified the characteristics of 

the impact damage, then the line of enquiry being developed would have been 

reinforced earlier in the investigation. This is likely to have led to prioritisation on 
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the examination of the transportation rig and perhaps the earlier involvement of 

the composite material SME (Subject Matter Expert) by electronically 

transferring images of the suspect area for a specialist opinion. 

Furthermore, when the examination was commenced, the initial approach was 

similar across all participants. Having previously identified that an in-flight 

breakup had occurred, all of the participants approached the wreckage wanting 

to understand the very last moments of the aircraft prior to the separation. This 

line of enquiry was intended to draw information from the wreckage not 

necessarily to understand how the structure failed but to understand what was 

the aircraft doing that made the wings to fail? This understanding was 

subsequently drawn into the context of the wider scenario such that lines of 

enquiry, which may not be concerning structural failure, could be followed. For 

example: 

Participant’s 1st evidence: the wings failed symmetrically (location) 

Participant’s 2nd evidence: there was little torsional failure suggesting 

little forward speed (flat break rather than angled) 

Participant’s 3rd evidence: the wings failed upwards suggesting a high 

vertical velocity (deformation of the structure) 

Conclusion: The aircraft may have broken up with low forward speed, 

and high vertical descent and the wings failing in overload. 

Conflicting evidence: location of wing failure not consistent with the 

conclusion 

Developing lines of enquiry: What situations may have occurred to put 

the aircraft into this situation? Did the aircraft enter into a flat spin? Did 

an airbrake deploy mid-flight? 

Sources of further information: Aircraft accident history, flight controls 

The initial stages of understanding the dynamics of breakup were correctly 

identified by all participants. It was evident also that the purpose of gaining this 
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understanding was to identify the aircraft dynamics at breakup in order to 

promote further lines of enquiry. The characteristics identified during this event 

were dominated by generic features, i.e. global fracture angle, deformation, 

locations of the fracture with respect to the aircraft design. There references to 

specific fracture features, but these were not dominating the participants’ 

interpretation. 

Whilst the investigators were able to elicit information from the wreckage, the 

elicitation was predominantly conducted through generic techniques which were 

not unique to composite materials. There was subsequently less information 

extracted where characteristics were unique to composite materials, even 

though there was evidence of participants searching for such information.  

This suggests that there is a potential that the investigation can be assisted by 

promoting knowledge transfer about the recognition of failure characteristics. 

This transfer is likely to aid the investigation by strengthening lines of enquiry 

earlier in the investigation, rather than by introducing new lines of enquiry which 

otherwise would not be identified. 

  



 

293 

Characteristic* Location* Evidence* No.*
Adherend*failure* Bonded*surfaces* Preferred*bonding*failure* 1*
Bright*fracture*surface* Lower*spar*cap* Tensile*failure* 0*

Change*fracture*orientation* Lower*wing*skin*
Change*in*mode*from*tensile*
to*flexural*

1*

Cohesive*failure* Bonded*surfaces* Preferred*bonding*failure* 0*
Compression*brooming* Upper*spar*cap* Compression*failure* 4*
Crack*coalescence* Upper*wing*skin* Failure*sequence* 0*
Dark*and*Bright*fracture*surface* Interlaminar*failures* Peel*failure* 0*
Deflection*of*fracture* upper*wing*skin* Impact*damage* 0*
Dual*failure*zones* Lower*spar*cap* Local*flexural*failure* 0*
Dull*and*white*fracture*surface* interlaminar*failures* Shear*failure* 0*

Dull*fracture*surface*
Upper*spar*cap* Compression*failure* 1*
Lower*spar*cap* Compression*failure* 0*

*
** Flutter*(Or*absence)* 2*

*
** Fatigue*(Or*absence)* 1*

Fibrous*surface*
Lower*spar*cap* Tensile*failure* 5*
Lower*wing*skin* Tensile*failure* 1*

Shear*web*material*forced*into*
fracture* Upper*spar*cap* Compression*failure*

0*

Fracture*geometry* Sandwich*
*

1*

Fracture*geometry*
Lower*spar*cap* Compression*failure* 2*
Lower*spar*cap* Tensile*failure* 2*

Flat*fracture*surface* Upper*wing*skin* Compression*failure* 2*
Local*sooting*and*penetration* Upper*wing*skin* Arcing*damage* 0*
Misplacement* Lower*spar*cap* Anomaly* 0*

Permanent*deformation*
Upper*wing*skin* Positive*flexural* 7*
Upper*spar*cap* Positive*flexural** 2*

Preferential*interface*crack*
propagation* Interlaminar*failures* Crack*propagation*direction*

0*

pull*through*of*polymer*tube* Upper*wing*surface* Flexural*failure*
3*

Serrations*
Translaminar*
fracture* crack*propagation*direction*

0*

Smooth*fracture*surface*
Upper*spar*cap* Compression*failure* 1*
Upper*wing*skin* Compression*failure* 0*

*
** Translaminar*shear* 0*

Visible*bruising* Upper*wing*skin* Impact*damage* 0*
Visible*penetration*damage* Upper*wing*skin* Impact*damage* 0*

Table 7-4 – Total number of characteristics elicited from the wreckage by the 

practitioners 
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7.10.3 Finding 3 – The elicitation of specific characteristics from the 
composite wreckage, resulted in the output of focused lines of 
enquiry  

It was apparent that the investigation process is a dynamic system which 

utilises triangulation of facts rather than single pieces of evidence. This fact was 

identified within many facets of evidence collection, including the examination of 

the composite wreckage. For example, flutter was considered as a plausible line 

of enquiry as to why the structure failed. The generation of this line of enquiry 

came from sources of evidence such as: 

• The wreckage distribution suggested in-flight breakup 

• The aircraft’s [hypothetical] accident history suggested a history of 

accidents involving flutter 

• The locations of the fractures on the wing 

Potential sources of evidence to test this hypothesis came from many areas of 

investigation, for example: 

• Failure characteristics identified in the wreckage by the investigator  

• In-depth failure examination using SME’s. 

• Load characteristics during flutter – to confirm if a correlation is evident 

between the point of failure and the expected flutter failure 

• Flutter analysis using SME’s. 

• Meteorological data on weather conditions 

• The pilots history of flying the glider and, specifically, in the 

meteorological conditions 

• GPS data to confirm speed at time of breakup compared to flutter speeds 

• History of the pilots approach to flying 

Whilst some of the evidence is weighted higher than others in pointing to the 

occurrence of flutter, multiple sources of evidence were deemed as accessible, 

which could assist in understanding the line of enquiry. Therefore, had the 

“Failure characteristics identified in the wreckage by the investigator” not been 

possible, then the investigator could potentially rely on the other sources of 
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evidence to follow the lines of enquiry. This would suggest that the inability to 

identify failure characteristics is not of detriment to the investigation. 

However, what became apparent was that the investigator followed the most 

appropriate lines of enquiry for the given circumstance. Typically this would 

involve selecting appropriate sources of evidence based on the weight of the 

line of enquiry and the efficiency with which the conclusion could be drawn. For 

example, during the early hypothesising of the accident all of the investigators 

suggested that loss of consciousness (LOC) through failure of the oxygen 

system was a significant possibility. The circumstances of the accident certainly 

suggested this hypothesis was plausible. 

At this stage of the investigation there were no pieces of evidence suggesting 

the accident had occurred due to LOC, thus the hypothesis was suggested by 

abductive reasoning; the aircraft was flying at altitudes where an oxygen system 

was necessary, therefore the accident may have occurred due to LOC. Hence, 

the line of enquiry had no substantial means by which it could be weighted. 

Initial sources approached were those which were within the immediate reach of 

the investigator, for example asking if there were reports of a distress call made. 

Following this, and when on the accident site, the participant was presented 

with the remains of the oxygen system. The system was checked by the 

practitioner for oxygen left in the tank, positioning of valves and any obvious 

signs of leakage not caused by the ground impact. Whilst some of these may 

have been ruled out temporarily, others would have increased the weight of the 

line of enquiry. Subsequently, if evidence was found to have identified a 

possibility that the oxygen system had failed, a dominant line of enquiry would 

involve the oxygen system. Emphasis could thus have been placed on gaining 

evidence from pathologists and from a detailed examination of the system. 

This pattern of using evidence to weigh lines of enquiry and temporarily closed 

them, was identified to occur within those practitioners who conducted 

examination of the characteristics specific to polymer composite materials. For 

example, a number of different characteristics were used to rule out potential 

causes of failure and hence these lines of enquiry were temporarily closed. 
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Equally, the weighting of lines of enquiry and the clarity with which the 

subsequent actions were taken, were based on the recognition and confidence 

in recognising characteristics. Specifically, the recognition of failure 

characteristics associated with degradation mechanisms or defects heightened 

the weighting of the line of enquiry. 

Therefore, the practitioners who elicited more specific characteristics from the 

composite wreckage followed with more specific lines of enquiry. 

7.10.4 Review of the investigation process for field investigations 

Due to the results obtained from practitioners, the process model as described 

in the first phase of the research programme was revised. The following is 

offered as an improved framework with supporting evidence as identified during 

this part of the research programme. 

1. The initiation phase 

The first stage of the field investigation model is the initiation phase. The 

initiation phases commences when the investigator is informed of the accident 

and is appointed to respond. The initiation phase continues until the investigator 

is focused on the collection of primary evidence. The suceeding phase is 

identified as the convergence phase. Whilst this may suggest the phases are 

independent, in reality the two phases overlap with the initiation phase 

diminishing as investigator effort is focused onto the convergence stage.  

Facts are gathered during this phase, with three primary reasons for facts being 

gathered at this time: 

• To acquaint the investigator with the accident scenario 

• To prepare for the field investigation 

• For efficiency 

Detailed information on each of the steps contained within the initiation phase is 

given below. 

a. Receipt of initial notification 
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This is a procedural step based on the agencies initial reporting procedure. 

b. Initial response 

This was both procedural and discretionary, based on investigation agency 

requirements and investigator judgment. It included the following stages. 

Organizational tasks (Primarily procedural) 

• Clarification on the event 

• Clarification on the potential for criminality 

• Establishing communications with key stakeholders, including 

o Notifying accredited representatives 

• Team organisation 

• Logistic arrangements and information 

• Consideration for support from SME’s 

• Seek clarification on the fatality 

Initial facts gathered (procedural and discretionary) 

• Location details 

• Aircraft details, including 

o Aircraft registration details 

o Batch information 

o Airworthiness review information 

• Meteorological after-cast 

• Flight / maintenance manuals 

• Accident history 

In addition to the initial facts as stated above the investigator may decide to 

choose to commence additional fact gathering prior to the arrival on site. For 

example if the logistical arrangements or time limitations prevent immediate 

access on site, the investigator may utilise this time to gain additional facts 

from, for example, witnesses. This assists the field examination through the 

expansion of background information and the early development of potential 

lines of enquiry. 
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In addition, organisations may, as a matter of procedure, immediately start the 

gathering of a predetermined list of factual information once the notification is 

received. This may be conducted by an administrative staff member and 

subsequently presented to the investigator. 

Due to the restricted nature of facts gathered at this stage, hypothesis 

generation is performed by abductive reasoning based on the preliminary 

information available. For example, initial reports may suggest that two aircraft 

crashed whilst conducting a display routine at an air display. Through abductive 

reasoning the investigator may hypothesis a mid-air collision whilst conducting a 

display routine. As the investigator has applied abductive reasoning, the weight 

of the hypothesis is equally treated by the investigator with an open mind. 

c. Site attendance, assessment and stabilisation 

This was a procedural step which started when the investigator arrived at the 

accident site. It included factors such as site management, liaison, 

communication, site security, contamination awareness, and prioritisation. 

2. The convergence phase 

The convergence phase involves the period when the investigator is primarily 

focussed on the gathering of facts, establishing lines of enquiry, and the initial 

development of lines of enquiry. This phase follows the initiation phase and 

culminates when the investigation enters the detailed investigation. The 

transition from the convergence stage to the detailed investigation phase is a 

phased process and no clear boundary exists. 

a. Onsite fact preservation, gathering and orientation 

The initial focus on the convergence stage of the investigation is in orientating 

the investigator with the accident site and the preservation of perishable 

evidence. The preservation of evidence was predominantly a procedural step 

whereby perishable evidence is determined and preserved. The conducting of 

the evidence preservation may be assisted by protocols created by the 

investigation agency or through prior training. The scope of what is perishable is 
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dependent on the circumstances and hence may be at the discretion of the 

investigator. 

During this phase a site appraisal was conducted to orientate the investigator 

with the accident site and to generate high level hypothesis surrounding the 

accident. This is likely to mark the stage where inductive reasoning begins to 

replace abductive reasoning. 

b. Exploration of facts 

This stage marks the point where the hypothesis generation by the investigator 

tends to move from being predominantly procedurally instigated to increasingly 

discretionary. 

The evidence at the accident site will be recorded, preserved and gathered, with 

further evidence being gathered outside of the immediate accident site (e.g. 

witness evidence). This is an analytic and fact gathering stage, albeit the initial 

focus will be on recording, preserving and gathering of facts. 

It is at this stage that high level lines of enquiry begin to appear or start to 

develop further, due to the substantial increase in factual information absorbed 

by the investigator. Moreover, more hypotheses are generated through 

inductive reasoning which tends to add weight to particular lines of enquiry. 

Through prioritising particular lines of enquiry, more effort can be focused on 

the relevant areas for investigation. Deductive reasoning is also used during this 

phase to close general hypotheses which may have appeared earlier in the 

phase. 

The analysis being conducted at this stage is predominantly undertaken using 

discretionary means or informal analysis techniques, such as informal 

brainstorming with colleagues. 

At the culmination of this phase the investigator will have an understanding of 

the scope of evidence and would have identified areas which are of key interest 

to the investigation. 
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Typically this stage would involve the examining of the wreckage at a visual 

level to identify abnormal or unusual failures and differentiating between cause 

and effect within the failures.  

The ‘exploration of facts’ stage occurs throughout the period during which the 

investigator is conducting the on-site wreckage examination. Depending on the 

extent of the wreckage examination on-site, it may occur or continue in a secure 

environment away from the accident site and may include material expertise 

albeit the expertise will be to assist in the large scale surveying of the wreckage 

rather than conducting in-depth examinations. It culminates when the wreckage 

has been surveyed and the key areas of interest in the structure have been 

identified. 

3. Detailed investigation phase 

The detailed investigation phase commenced following the completion of the 

convergence phase and was finalised when the relevant areas of examination, 

testing or research, had reached a valid conclusion or the evidence collection 

had become saturated. This phase differed from the convergence stage as the 

predominant focus was in detailed examination of specific structural areas. 

The detailed investigation phase may contain multiple detailed investigations 

covering different areas of the investigation. For example an oxygen delivery 

system may be subject to detailed examination to confirm if the system was 

operating correctly at the time of the occurrence. Additionally, a detailed 

examination may be conducted on the aircraft structure to determine how the 

structure had failed. 

Within each of these in-depth examinations may occur sub-investigations which 

are supportive of the overall in-depth examination. For example, the detailed 

examination of the aircraft structure may entail failure analysis from a SME, an 

investigation of the flutter characteristics, and a stress / load investigation. 

During this stage the wider scenario from the external evidence is largely known 

and thus there may be fewer external sources of evidence outside of the areas 

of in-depth investigation.  
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To accomplish this task the examination typically involves confirmation 

(fractographic, design, construction, stress analysis, judgement based on 

location of failure etc.) testing (mechanical, construction, etc.), comparison to 

existing structures, and further research. 

4. The concluding phase 

The concluding phase occurred following the completion of the detailed 

investigation phase and following the finalisation of analysis. This phase 

primarily focused on the creation of recommendations, communication of 

findings, formal reporting and release of the investigation report.  
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Figure 7-2 – Revised investigation model of the wreckage examination process 

(Source: Author) 

7.11 Participant debriefing 

During participant debriefing, one participant identified one inconsistency in the 

story. The inconsistency was minor however and the participant confirmed that 

it did not affect the participant’s investigation effort. The inconsistent fact was 

not elicited by any other participant and thus the inconsistency did not influence 

the other participants. 

Generally the participants felt that the simulation allowed them to provide a 

realistic representation of how they would conduct an investigation. Moreover, 

all of the participants stated that they enjoyed the simulation. However, areas of 

dissimilarity to the real-world were mentioned and they are summarised below: 

1. The participants confirmed that they would typically conduct an 

investigation in a pair. 

2. The enclosed environment prevented them from interacting with the 

others. 

3. The investigators were undergoing a heightened state of assimilation due 

to the fast pace of simulated, when compared to a real-world 

investigation. 

It would have been desirable to increase the richness of the data however this 

would require more time and the generation of a higher fidelity investigation 

scenario. The cost of arranging this is prohibitive and the ability to gain 

participants for an extended period of time is questionable. The current 

simulation was considered to be sufficient to meet the needs of the research 

objectives in this first research project into composite failure.   

7.12 Chapter summary 

This chapter has presented the fourth and final objective of the research project, 

which was to study the examination of composite structures by aircraft accident 

investigation practitioners. The purpose of this stage was to establish how 
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investigators approached the examination of wreckage, what information they 

elicited during the examination and the influence this had on the wider 

investigation. This study is therefore aimed at determining if an increase in the 

identification of failure characteristics during the field investigation phase would 

result in an increase in the specificity of subsequent lines of enquiry. 

Seven participants took part in the study which involved the investigation, by the 

participant, of a hypothetical accident. The wreckage as created during the third 

phase of the research programme was utilised as key components of wreckage 

at the hypothetical accident site.   

The study has suggested that an increase in the identification of failure 

characteristics will increase the efficiency of the investigation. However, for this 

to occur, the characteristics need to be identified with a level of clarity. In 

addition, the benefit to the investigation is likely to involve increased efficiency 

in which the lines of enquiry can be developed, rather identifying lines of enquiry 

which would otherwise not be found. 

In addition, the simulated investigations were used to revisit the model created 

during the case study phase of the research programme. A revised model is 

hence presented (figure 7-2). 
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8 CONCLUSIONS  

 

8.1 Overview of research problem 

Anecdotal evidence suggests there is increasing concern within the accident 

investigation community regarding the continuing shift in airframe construction 

from metallic to polymer composite materials. Consequently, this project was 

created as a means to research the effect polymer composite materials has on 

the accident investigation community. Specifically, it was aimed at creating 

knowledge which could assist the accident investigator, from a practical 
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perspective, in the examination of aircraft wreckage of polymer composite 

construction. 

Laboratory research in characterising polymer composite failure features and 

practical experience from accident investigations, have generating two separate 

areas of understanding. To date, there has been no attempt to bring these two 

areas together, specifically in a way which can assist the field accident 

investigator. This research project is a first step towards filling this gap in 

knowledge. 

This thesis describes a research project which aims to respond to particular 

aspects of this problem with the intent of providing a better understanding to 

assist practitioners, to increase the boundaries of knowledge within this field, 

and to offer a base from which further research can be conducted.  The overall 

aim of the research was: 

To determine if known visual and macroscopic failure features of polymer 

composites can assist the accident investigation practitioner in 

conducting the wreckage investigation and structural investigation. 

It became apparent early in the research that it would be necessary to 

concentrate research effort into two areas. Firstly, to understand how the 

examination of aircraft wreckage relates to the overall aircraft accident 

investigation (the area of implementation). Secondly, to identify visual and 

macroscopic failure features of polymer composite materials (the area from 

which knowledge will be transferred). 

To achieve the overall research goal, four objectives were created with each 

providing a contribution to knowledge. The following discussion presents the 

overall research contribution made by this thesis and individually the research 

contributions made from each research objective. 

8.2 Overall research contribution 

The research has established that the current understanding of visual and 

macroscopic interpretation of composite material failures is well documented 
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(Chapter 5). The level of current knowledge is sufficient to provide visual and 

macroscopic indications as to the failure mode, fracture sequence and 

degradation mechanisms. However, it is recognised that the ability to identify 

failure characteristics is complicated by the diversity of physical appearance 

created by failure mechanisms in composite materials that do not occur in 

metallic materials. The research also confirms that the characteristics identified 

in literature are suitable to the needs of the investigative environment, contained 

within the process of investigation, and suitable to the practitioner (Chapter 4). 

Furthermore, the research programme recreates composite aircraft wreckage 

and successfully applies the identified characteristics onto the wreckage, 

determining the fracture sequence and identifying the failure initiation site 

(Chapter 6). This understanding is compared to that of the accident investigator 

who conclude the research by confirming that the identification of visual and 

macroscopic failure characteristics by the practitioner will benefit the 

investigation (Chapter 7). 

Therefore, this research programme has methodically identified visual and 

macroscopic failure characteristics, and has proven that they can improve the 

accident investigation process, when being applied by the aircraft accident 

investigator. 

The failure characteristics as identified in this research were seen principally 

through the research area of fractography. Within this area, the characterisation 

of visual failures was predominantly through the use of standard test coupons 

fractured under laboratory conditions. The research identified that these 

characteristics would need validating within a field investigation environment. 

This was achieved through the fracturing of large wing sections in a manner 

which replicated aircraft wreckage as near as practically possible (Chapter 6). 

The fractured specimens were examined and the results confirmed that the 

visual failure characteristics seen in test coupons were present within the 

simulated wreckage. Moreover, these characteristics provided significant 

supporting evidence of the failure mode, failure sequence and the degradation 

mechanism type within the failure initiation site. Whilst this suggested that the 
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use of visual and macroscopic examination can provide significant evidence 

within the wreckage environment, it could only suggest that the characteristics 

can assist an investigation within its limitations. It was thus necessary to 

understand the current knowledge of wreckage examination by accident 

investigation practitioners, and to further understand the real-time application of 

visual interpretation within the investigation context. This was undertaken using 

a hypothetical accident investigation. 

The simulated investigation as undertaken identified that the current level of 

understanding was sufficient to make an assessment of the failure 

characteristics within the aircraft wreckage. There were however clear 

indications that the investigation process was adjusted based on the level of 

assessment undertaken. Moreover, it also identified that the failure 

characteristics existed within the specimen to answer questions that the 

investigators posed but could not answer. Therefore the transfer of knowledge 

of visual and macroscopic characteristics may assist the practitioners ability to 

make informed decisions on the opening or closing of lines of enquiry earlier in 

the investigation process. It is therefore apparent that the use of visual 

interpretation and macroscopic techniques has a scope for assisting the 

accident investigator in the wreckage examination. Additionally however, the 

research identified that the investigation is heavily interrelated, whereby the 

investigation ‘process’ and ‘context’ has a significant influence on the visual 

examination. Additionally, the scope of application is extremely diverse with no 

two accidents likely to be the same. It was therefore apparent that to implement 

and understand the use of the visual and macroscopic characteristics would 

require significant time, effort and scope. 

This drew a natural close to this research and provided significant suggestions 

for further research. It is suggested that initially the failure characteristics should 

be communicated to the accident investigation community with a feedback 

mechanism established to monitor feasibility, usability, usefulness and success. 

Secondly, research should be conducted in longitudinal case studies to 

implement the characteristics into real-world investigations. Finally, it was 
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identified that the visual characteristics were developed during the birth of 

fractography in polymer composites. Research should be re-established to 

identify visual characteristics in new materials and should look to cover areas of 

poor knowledge on degradation mechanisms. 

In addition to the overall research contribution, each phase of the research has 

presented important contributions. These will be discussed individually below. 

8.2.1 Exploratory multiple case study of the wreckage and structures 
examination (Chapter 4) 

This phase involved the use of multiple case studies to conduct an exploratory 

study into the investigation of accidents involving polymer composite aircraft. 

Both primary and secondary data was collected with an aim to understand the 

process by which the investigation was conducted and the significant aspects 

discovered from the examination of composite wreckage. As a result of this 

phase a framework was created which described the investigation process with 

specific emphasis on the investigation involving the airframe. It may be 

postulated that whilst this framework was focused on case studies where the 

examination of the airframe was a principle factor, it may have transferability 

with modification to investigations where the focus may be on a non-structural 

aspect. This phase generated a detailed understanding of the stages within an 

investigation and provided a formalised process from which researchers and 

practitioners can understand the rationale of, and steps undertaken in, the 

examination process. 

8.2.2 The evaluation of visual and macroscopic examination 
characteristics (Chapter 5) 

This section provides a survey of the current status of the visual and 

macroscopic interpretation of polymer composite failures. This review provides 

a practical foundation to the current status of knowledge in this field. In addition 

the survey also provides a review on the recognition and understanding of 

visual and macroscopic characteristics of polymer composite materials. With 

further development this may assist the investigation practitioner in interpreting 

composite material failures.  
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8.2.3 The visual and macroscopic examination of a polymer 
composite structural failure - test case (Chapter 6) 

This section involved the test design, conducting and subsequent failure 

examination of a polymer composite component. It does this as a means to 

examine the visual and macroscopic failure characteristics within a simulated 

accident investigation. The method employed involved the up-scaling of a four-

point-bend-test to conduct a controlled failure of a polymer composite aircraft 

wing section. This task encountered significant problems and thus for 

researchers who would consider this method as a means to load a large 

structure to failure, there have been important ‘lessons learned’ which are 

described in detail in the chapter. However, the testing was successful, and a 

method is presented by which the controlled failure of a full scale aerofoil 

section can be conducted. Furthermore, the subsequent macroscopic and 

visual analysis of the aerofoil section provided a novel means by which a failure 

investigation can be conducted, in a controlled manner, to determine the 

availability of evidence in a simply failed structure where the failure process was 

controlled and documented. 

It is shown that through experimentation using structures, an understanding of 

failure features can be ascertained. Further development in this area is 

necessary to increase the understanding of composite failures in differing 

scenarios. 

8.2.4 A study into the examination of a polymer composite structural 
failure by accident investigation practitioner using the 
simulation method (Chapter 7) 

This section used the simulation method, as developed by Woodcock et al 

(1995), to study the investigation, by practitioners, of a simulated accident 

scenario involving the simulated accident of a polymer composite aircraft. A 

study of the process by which the investigators conducted the simulation 

provided further evidence to support the investigation process framework as 

developed during the first phase of the research programme. Additionally, 

although the use of simulations as a means to conduct empirical research is 
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well founded, the simulated method as proposed by Woodcock et al (1995) to 

be used in the study of accident investigations is reasonably less established. It 

was thus advantageous that this method be used not only to meet the aims of 

the research but also as a means of expanding the foundation of this method. 

The information within this chapter provides important learning in the use of the 

method within the complex environment of an aircraft accident investigation. 

Moreover, to cope with the complexities of information that an aircraft accident 

investigator is likely to discover, the method was adapted to include the use of 

artefacts and graphics within the method. This included the use of the ‘think-

aloud’ method as a means to verbalise practitioner interpretation.  

8.3 Limitations in research 

It is inevitable that any study is likely to be constrained by the scope, the scale 

and resources allowed to the researcher. Although the research has achieved 

the aim of exploring the investigation of polymer composite materials in aircraft 

accident investigations, a number of limitations have been encountered. 

It became apparent during the research programme that the preferred 

methodology would be to conduct longitudinal studies of real time accident 

investigations using participant intervention or action research. This would allow 

the researcher to become absorbed into a current investigation and to react to a 

real-world event. This was not feasible however due to restrictions in access, 

the infrequencies of suitable accidents occurring and the lack of control the 

researcher would have over the event. A multi-phase programme was therefore 

conducted whereby past events were studied (phase 1) and a hypothetical 

accident scenario was created (phase 4). 

In the case of the first phase of the research programme this had the limitation 

of studying cases following the event. In some cases this may have occurred 

years after the field examination may have occurred. Consequently, this will 

limit the depth of information elicited from the interviews as it required the 

participants to recollect the investigation. Although this was apparent, the first 

phase required an in-depth study where understanding could be drawn whilst 
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maintaining flexibility. Consequently the case study was the appropriate method 

to utilise. The limitations posed by this phase were reduced by the use of a 

rigours data collection protocol and thus the implications of this limitation were 

minimised.  

During the fourth phase of the research programme a hypothetical simulation 

was conducted. This introduced artificial constraints onto the investigators such 

as time, access and depth of information. This enclosed the investigator into an 

artificial setting which is likely to influence their behaviour such that differences 

may occur compared to their actual activities. Whilst the simulation was 

designed with rigour and the depth to replicate the information from a real 

investigation, it is accepted that it cannot be reality. A debriefing was used to 

identify the disparities between the hypothetical scenario and reality. The 

participants responded positively with few minor issues raised about the 

simulation. Importantly, the issues raised were those identified during the 

design of the hypothetical scenario and thus adjustments were made prior to 

the running of the simulations to minimise the effects. 

A further limitation encountered was by the nature of accident investigation. 

Whilst the investigation is open and transparent, there are laws governing the 

release of data relating to investigations, and there are sensitive issues which 

require restraint. Consequently this prevented the selection of some cases for 

study in the first phase of the research programme and limited the availability of 

data in others. This has the potential for restricting case selection and for 

reducing the opportunity for data triangulation. Whilst this occurred, the case 

selection criteria ensured that suitable alternative cases were selected. 

Furthermore, sufficient support and access was granted by the investigators 

such that an array of sources of information was obtained. These are illustrated 

in each case description and thus the implications of data loss were minimised. 

A further limitation is that all stages of the research programme were conducted 

with limited quantities of cases, hypothetical simulations or fractured specimens. 

Whilst it may seem reasonable to consider each of these as an equivalent to a 

sample size, the foundation of each of the research phases was on replication 
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logic, where each case studied is the equivalent to an experiment in itself rather 

than the number of participants undertaking that one experiment.  

This thus suggests that as four case studies were conducted for phase 1, then 

the generalization of this stage is high, but still obviously bound within the scope 

of the case studies selected. This is supportive evidence however that the 

results of this phase are extendable beyond the immediate scope of the case 

studies.  Firstly, the case studies selected involved three agencies across two 

continents and thus had a geographical spread. Secondly, the case studies 

covered a variation of structural failures with the variation being conceptually 

devised rather than random selection. Thirdly, the theoretical grounding to the 

case studies was based on concepts that are generalised to all types of 

investigations. Thus, whilst the case studies were specifically selected to 

involve particular investigations, the means by which these were studied were 

based on generalised models and thus it may be found that the results can be 

generalised to differing types, scales and severities of accidents. 

Perhaps the most significant limitation in generalizability occurred during the 

third phase of the research programme, namely the creation of specimens to 

explore the prevalence of failure characteristics in failed aircraft structures. 

Whilst the evaluation of material failure characteristics (chapter 5) revealed a 

wide array of characteristics that indicated potential, it was impractical, and 

outside of the resources available for this research, to further test the 

applicability and occurrence of all of these characteristics within the context to 

which they would be used. The creation of fractured specimens, with the 

intention of representing realistic aircraft wreckage (Chapter 6), was thus 

conducted but with the understanding that the testing of a limited number of the 

failure characteristics could be investigated. It should be noted however that the 

purpose of this phase was not merely to repeat the creation of known failure 

characteristics, which are in all practical sense fundamentally well founded in 

literature. Rather, it was focused on understanding the influence of failure 

characteristic recognition within the context of aircraft accident investigation 

(chapters 6 & 7), an aspect which is more fitting to the aims of this research and 
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in providing its novel approach. On this basis, and within the already noted 

resource induced restrictions, the limited replication conducted in chapters 6 

and 7 are not failings of generalizability within the individual chapters but 

perhaps more evidence to support the wider findings as discovered in chapters 

4 & 5. 

Lastly, there is likely to be bias during interpretation by the researcher. This is 

likely to be evident in all phases of the programme as the researcher became 

encapsulated in the research. This was minimised during phases 1 and 4 

however through the use of analysis techniques designed to identify rival 

explanations. This bias is perhaps most evident in the third phase during the 

examination of the created wreckage by the researcher. It was impossible for 

the researcher to disremember the method by which the specimens were 

fractured, and therefore a bias was introduced to the examination of the 

specimens. It is therefore accepted that this phase was a study to triangulate 

the known failure mode with the expected characteristic. This therefore added 

confidence that the characteristics identified were those that actually occurred. 

8.4 Suggestions for future research 

Firstly, and perhaps the most significant direction for further research, concerns 

the replication of the study with an alternative focus for the research 

programme. Whilst this study has been oriented to explore past investigations 

(chapter 4) and simulate investigations (chapters 6 & 7), the research was not 

conducted in current investigations. The use of research methods which allow 

the researcher real-time access to current investigations such as longitudinal 

studies or action research may offer significant advantages in the quality of data 

and directly increase the practitioner focussed contribution to knowledge. 

If adopted during the exploratory phase of the research project, it would refine 

the concept put forward by this study and may provide additional areas of 

interest. The expansion of the first phase is important as the knowledge forms a 

basis of understanding for the subsequent implementation. An increased 

understanding of this area will allow a better focus for research orientated 

towards assisting the practitioner as well as the creation of a refined framework. 
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During the subsequent research into the application of the characteristics, the 

ability to work closely with the practitioners will promote a greater feedback from 

the practitioner to the researcher and the close proximity to real-time 

investigations (including the wreckage) should promote findings with fewer 

limitations. 

Another area which promotes further research relates to chapter 5, the review 

and evaluation of macroscopic and visual failure characteristics. As highlighted 

in this chapter, the majority of characterisation appeared from the pioneering 

years of fractography in polymer composite materials. Although the field is fairly 

well documented, there is perhaps further scope for research concentrated in 

the recognition of degradation mechanisms and in quantitative characterisation. 

There is further scope for research in the use of simulated scenarios in aircraft 

accident investigation studies, similar to those conducted in chapter 7. The 

method, as developed by Woodcock et al (1995), has already been conducted 

in the investigation context and presents potential for further development in the 

methodology. Although the complexity of the method increased when applying 

into the aircraft accident investigation scenario, the methodology can be 

adapted for use within wider ‘table top’ investigation scenarios, or for use in 

higher fidelity accident investigation simulations as discussed by Braithwaite 

(2010). 

Finally, additional expansion is recommended on the work undertaken in 

chapter 6. Through the increased number of experimental testing in fracturing 

structural elements with the aim of understanding visual and macroscopic 

failure characteristics, not only can the proposed characteristics in chapter 6 be 

verified, but there is potential for adding to knowledge in the area of known 

failure characteristics and the interactions that may be present when failing a 

larger structure. In this case it is recommended that the development of the 

testing method for specimen creation which was used in this research be also 

consider per the limitations found in the test fixture as discussed in chapter 6.  



 

316 

 

REFERENCES 

AAIB (1989), Report on the accident to Boeing 747-136, G-AWNM on approach 

to runway 27L at London (Heathrow) Airport on 11 September 1988. Technical 

report number 5/89 (EW/C1085), Department of Transport, London, UK, 1989. 

http://www.aaib.gov.uk/cms_resources.cfm?file=/5-1989%20G-AWNM.pdf.  

AAIB (1990), Report on the accident to Boeing 747-121, N739PA at Lockerbie 

Dumfriesshire, Scotland on 21 December 1988. Technical report number 2/90 

(EW/C1094), Department of Transport, London, UK, 1990. 

www.aaib.gov.uk/cms_resources/dft_avsafety_pdf_503158.pdf 

AAIB (1999), Schleicher ASK 21 two seat glider. Technical report number 12/99 

(EW/C99/04/02), Department of Transport, London, UK, 1999 

www.aaib.gov.uk/cms_resources/dft_avsafety_pdf_500699.pdf  

AAIB (2003), Report on the accident to McDonnell-Douglas MD-83, EC-FXI at 

Liverpool Airport on 10 May 2001. Technical report number 4/2003 

(EW/C2001/5/1), Department of Transport, London, UK, 2003. 

http://www.aaib.gov.uk/cms_resources.cfm?file=/4-2003%20EC-FXI.pdf 

AAIB (2008), AAIB Operating Manual PART B1 - Accident Investigation; Part 

B1 - Accident Investigation (The Field Phase). Air Accidents Investigation 

Branch, Farnborough, UK, 2008. 

AAIB (2013), available at: http://www.aaib.gov.uk/home/index.cfm (accessed 

2013, 03/21).  

Abbott, R. (2000), "Composites in General Aviation", in Anthony Kelly and Carl 

Zweben (eds.) Comprehensive Composite Materials, Pergamon, Oxford, pp. 

165-180.  

Adams, R. D. and Cawley, P. (1988), "A review of defect types and 

nondestructive testing techniques for composites and bonded joints", NDT 

International, vol. 21, no. 4, pp. 208-222.  



 

317 

Airbus (2013), available at: 

http://www.airbus.com/aircraftfamilies/passengeraircraft/a380family/a380-

love/a380-wow/ (accessed 2013, 3/21).  

Airbus (2013a), available at: 

http://www.airbus.com/aircraftfamilies/passengeraircraft/a350xwbfamily/ 

(accessed 2013, 3/21).  

Apffelstaedt, A., Langhans, S. and Gollnick, V. (2009), "Identifying Carbon 

Dioxide Reducing Aircraft Technologies and Estimating their Impact on Global 

CO2 Emissions", Transportation, vol. 13, pp. 13.  

Armstrong, K.B., Bevan, L.G. and Cole, W.F., (2005), Care and Repair of 

Advanced Composites (2nd Edition), Society of Automotive Engineers, Inc. 

Warrendale, PA, 2006. 

ASC (2002), Aviation Occurrence Report Volume II: In-flight breakup over the 

taiwan strait northeast of makung, penghu island china airlines flight ci611 

boeing 747-200, B-18255 MAY 25, 2002. Technical report number ASC-AOR-

05-02-001, Aviation Safety Council, Taiwan, 2005. 

http://www.asc.gov.tw/author_files/CI611_EN_vol2.pdf 

Askeland, D. R., Green, P. and Robertson, H. (1996), The science and 

engineering of materials (3rd edition). Chapman & Hall, 1996.  

ASM (1987), ASM Handbook: volume 12, Fractography (12th edition). ASM 

International, Materials Park, Ohio.  

ASM (2001), ASM Handbook: volume 21, Composites. ASM International, 

Materials Park, Ohio.  

ASM (2003a), Characterization and Failure Analysis of Plastics. ASM 

International, Materials Park, Ohio.  

Åström, B. T., (1997), Manufacturing of polymer composites, Chapman & Hall, 

Cheltenham, England.  



 

318 

Athiniotis, N., Lombardo, D. and Clark, G. (2009), "On-site aspects of a major 

aircraft accident investigation", Engineering Failure Analysis, vol. 16, no. 7, pp. 

2020-2030.  

Baker, A., Dutton, S. and Kelly, D. (2004), Composite materials for aircraft 

structures (2nd edition), American Institute of Aeronautics and Astronautics, Inc., 

Reston, Virginia, USA.  

Balbahadur, A. and Woodcock, K. (2012), Development and validation of cases 

for evaluation of accident investigation performance. Ryerson University, 

THRILL Laboratory, Toronto, Ontario.  

Banks, M. (2001), Visual methods in social research. Sage Publications, 

London, Thousand Oaks, New Delhi. 

Bazhenov, S. L. (1995), "Bending failure of aramid fibre-reinforced composite", 

Composites, vol. 26, no. 11, pp. 757-765.  

BEA (2003), Rapport: Accident survenu le 29 juillet 2003 à Château-Arnoux 

Saint-Auban (04) au planeur Orlican Discus CS immatriculé D-8515 exploité par 

le Club de Kraichgau (Allemagne). Technical report number D-8515, Bureau 

d’Enquêtes et d’Analyses, Le Bourget, France. 

http://www.bea.aero/docspa/2003/d-15030729/pdf/d-15030729.pdf 

BEA (2009), Interim report no.2 on the accident on 1st June 2009 to the Airbus 

A330-203 registered F-GZCP operated by Air France, flight AF447 Rio de 

Janeiro – Paris. Technical report number f-cp090601ae2, Bureau d’Enquêtes et 

d’Analyses, Le Bourget, France. http://www.bea.aero/docspa/2009/f-

cp090601e2.en/pdf/f-cp090601e2.en.pdf 

BFU (2006), Investigation Report, Technical report number 3X164-0/03, 

Bundesstelle für Flugunfalluntersuchung, Braunschweig, Germany. 

http://www.bfu-

web.de/EN/Publications/Investigation%20Report/2003/Report_03_3X164-0-

Heppenheim-DuoDiscus.pdf?__blob=publicationFile (accessed, 2013, 9/2) 



 

319 

Bhaumik, S. K. (2008), "An Aircraft Accident Investigation: Revisited", Journal of 

Failure Analysis and Prevention, vol. 8, no. 5, pp. 399-405.  

Bickman, L., Rog, D. J. and Hedrick, T. E. (1998), "Applied research design: a 

practical approach", Handbook of applied social research methods, vol. 19, 

Thousand Oaks, London, New Dehli. 

Bossak, M. and Kaczkowski, J. (2003), "Global/local analysis of composite light 

aircraft crash landing", Computers & Structures, vol. 81, no. 8-11, pp. 503-514.  

Braithwaite, G. R. (2006) "The Challenges of Investigating Human Error.", 

Paper presented to the Inaugural Gulf Flight Safety Committee Conference, 

2006, Dubai, UAE.  

Braithwaite, G. R. (2008), "What Can We Learn?", Proceedings of the 39th 

Annual International Seminar, Sept 8-11, Halifax, Canada, ISASI, pp. 37-40.  

Braithwaite, G. and Greaves, M. J. (2009), "Training Aircraft Accident 

Investigators Through High Fidelity Simulation", JOURNAL OF AVIATION 

MANAGEMENT, pp. 1-8.  

Brosius, D. (2007), "Boeing 787 update", High Performance Composites, 

available at http://www.compositesworld.com/articles/boeing-787-update 

(accessed 2013, 3/21). 

Bucinell, R. B. (1999), Composite Materials: Fatigue and Fracture, STP1330-

EB, 7th Volume, Astm International, West Conshohocken, PA. 

CAA (2008), Aviation Safety Review 2008, Technical report number CAP 780, 

Civil Aviation Authority, Gatwick Airport South. 

Callus, P. J., Mouritz, A. P., Bannister, M. K. and Leong, K. H. (1999), "Tensile 

properties and failure mechanisms of 3D woven GRP composites", Composites 

Part A: Applied Science and Manufacturing, vol. 30, no. 11, pp. 1277-1287.  

Campbell, F. C. (2003), Manufacturing processes for advanced composites, 

Elsevier Science, Kidlington, Oxford. 



 

320 

Campbell, F. C. (2010), Structural Composite Materials, ASM International, 

Materials Park, OH.  

Campbell, G. S. (1981), "A note on fatal aircraft accidents involving metal 

fatigue", International Journal of Fatigue, vol. 3, no. 4, pp. 181-185.  

Carver, B. (1987), US Air Force guide to mishap investigation, AFP 127-1, 

Department of the Air Force. 

Cawley, P. & Adams, R.D. (1988), The mechanics of the coin- tap method of 

nondestructive testing. Journal of Sound & Vibration, Vol 22, pp. 299-303 

Chamis, C. C. and Ginty, C. A. (1985), Fracture characteristics of angleplied 

laminates fabricated from overaged graphite/epoxy prepreg. Fractography of 

modern engineering materials: composites and metals, ASTM STP 948, J. E. 

Masters and J. J. Au eds, American society for testing and materials, 

philidelphia, pp.101-130 

Chen, B. and Dillard, D. A. (2001), "Numerical analysis of directionally unstable 

crack propagation in adhesively bonded joints", International Journal of Solids 

and Structures, vol. 38, no. 38, pp. 6907-6924.  

CIAIAC (2003), Accident to the aircraft Nimbus 4DT, registration G-929, at 

Campillo de la Jara (Toledo), on 31st July 2000, Technical report number A-

028/2000, Comisión de Investigación de Accidentes e Incidentes de Aviación 

Civil, Madrid, Spain. http://www.fomento.gob.es/NR/rdonlyres/F5ECB77D-

9D11-425A-9AA9-ED7A7C68CB45/11977/2000_028_A_ENG.pdf 

Clark, G. (2005), "Failures in military aircraft", Engineering Failure Analysis, vol. 

12, no. 5, pp. 755-771.  

Coarsey-Rader, C. V. (1995), Effects of investigation of a fatal air crash on 13 

government investigators: Final report for grant from natural hazards research 

and applications information center, University of Colorado., Boulder, CO.  



 

321 

Čokorilo, O., Gvozdenović, S., Mirosavljević, P. and Vasov, L. (2010), "Multi 

Attribute decision making: Assessing the technological and operational 

parameters of an aircraft", Transport, vol. 25, no. 4, pp. 352-356.  

Collier, J. (1957), "Photography in anthropology: a report on two experiments", 

American Anthropologist, vol. 59, no. 5, pp. 843-859.  

Cook, T.D., & Campbell, D.T (1979), Quasi-experimental design: Design and 

analysis issues for field settings, Rand-McNally, Chicargo, ILL. 

Combs, D. W., (1995). Design, anaylsis and testing of a wind turbine blade 

substructure (Doctoral dissertation, MONTANA STATE UNIVERSITY 

Bozeman). 

Corrie, S. J. (1981), "Proceedings of the Twelfth International Seminar of the 

International Society of Air Safety Investigators ", Vol. 14, September 29-

October 1, Washington, D.C., 

Cox, B., Dadkhah, M., Morris, W. and Flintoff, J. (1994), "Failure mechanisms of 

3D woven composites in tension, compression, and bending", Acta Metallurgica 

et Materialia, vol. 42, no. 12, pp. 3967-3984.  

Creswell, J. W. (1998), Qualitative Inquiry and Research Design: Choosing 

among Five Traditions, 2nd edition, Sage Publications Inc, Thousand Oaks.  

Czabaj, M. W. and Ratcliffe, J. (2012), "Comparison of Intralaminar and 

Interlaminar Mode-I Fracture Toughness of Unidirectional IM7/8552 

Graphite/Epoxy Composite", in 2012 American Society for Composites; 

Arlington, 1-3 Oct 2012. 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120016494_2012016645

.pdf   

da Silva, L. F., Öchsner, A. and Adams, R. D. (2011), Handbook of adhesion 

technology, Springer-Verlag Berlin Heidelberg. 



 

322 

David-West, O., Nash, D. and Banks, W. (2008), "An experimental study of 

damage accumulation in balanced CFRP laminates due to repeated impact", 

Composite Structures, vol. 83, no. 3, pp. 247-258.  

Davies, G. and Olsson, R. (2004), "Impact on composite structures", 

Aeronautical Journal, vol. 108, no. 1089.  

Davis, J. R., Johnson, R. and Stepanek, J. (2008), Fundamentals of aerospace 

medicine 4th edition, Lippincott Williams & Wilkins, Philadelphia, PA.  

Davis, M. and Tomblin, J. (2007), Best Practice in Adhesive-Bonded Structures 

and Repairs, Technical report number DOT/FAA/AR-TN06/57, National Institute 

for Aviation Research Wichita. 

http://www.tc.faa.gov/its/worldpac/techrpt/artn0657.pdf 

Davis, M. and Bond, D. (1999), "The importance of failure mode identification in 

adhesive bonded aircraft structures and repairs", Aircraft Structural Integrity 

Section, Directorate General of Technical Airworthiness, Royal Australian Air 

Force, Amberley Detachment, vol. 501.  

de Bruyne, N. A. (1937), plastics in aircraft construction, available at: 

http://www.flightglobal.com/pdfarchive/view/1937/1937%20-%200321.html 

(accessed 2013, 3/21).  

de Freminville, C. (1914), Recherches sur la fragalite-peclatement Rev. Metall-

Paris, Vol 11, pp. 971-1056.  

Del Gandio, F. (2009), "Accident Prevention Beyond Investigation", 

Proceedings of the 40th Annual International Seminar, Sept. 14–17, Orlando 

Fla., USA, ISASI, Sterling, VA, USA.  

Deng, S. and Ye, L. (1999), "Influence of fiber-matrix adhesion on mechanical 

properties of graphite/epoxy composites: II. Interlaminar fracture and inplane 

shear behavior", Journal of Reinforced Plastics and Composites, vol. 18, no. 11, 

pp. 1041-1057.  



 

323 

Dennies, D. P. (2002), "The organization of a failure investigation", Journal of 

Failure Analysis and Prevention, vol. 2, no. 3, pp. 11-16.  

Deo, R. B., Starnes, J. H. and Holzwarth, R. C. (2001), "Low-cost composite 

materials and structures for aircraft applications", RTO AVT Specialists Meeting 

on "Low Cost Composite Structures", Loen, Norway, 7-11 May 2001, .  

Department of Energy (1997), Implementation guide for use with DoE order 

225.1A, Accident investigations, DOE G 225.1A-1, United States of America, 

Department of Energy, USA.  

Deutsches Museum (2013), available at: http://www.deutsches-

museum.de/en/collections/transport/aeronautics/sailplanes/phoenix/ (accessed 

2013, 3/21).  

Dilger, R., Hickethier, H. and Greenhalgh, M. D. (2009), "Eurofighter a safe life 

aircraft in the age of damage tolerance", International Journal of Fatigue, vol. 

31, no. 6, pp. 1017-1023.  

Dillon, G. and Buggy, M. (1995), "Damage development during flexural fatigue 

of carbon fibre-reinforced PEEK", Composites, vol. 26, no. 5, pp. 355-370.  

DiT (2013), available at: 

http://www.infrastructure.gov.au/aviation/international/icao/index.aspx 

(accessed 2013, 03/21).  

DoD (2002) MIL-HDBK-17-1F: Composite Materials Handbook, Volume 1 - 

Polymer Matrix Composites Guidelines for Characterization of Structural 

Materials. U.S. Department of Defense. Online version available at: 

http://app.knovel.com/hotlink/toc/id:kpMHMILH5M/military-handbook-mil-3 

DOE (1999), Conducting Accident Investigations DOE Workbook, Revision 2, 

US Department of Energy, Washington D.C.  

Drury, C. G., Ma, J. and Woodcock, K. (2003), Measuring the Effectiveness of 

Error Investigation and Human Factors Training (Phase III), Office of Aviation 

Medicine, FAA, Washington, DC.  



 

324 

Drury, C., Kritkausky, K. and Wenner, C. (1999), "Outsourcing aviation 

maintenance: Human factors implications", Proceedings of the Human Factors 

and Ergonomics Society Annual Meeting, Vol. 43, SAGE Publications, pp. 762.  

Drury, C., Woodcock, K., Richards, I., Sarac, A. and Shyhalla, K. (2002), "A new 

model of how people investigate incidents", Proceedings of the Human Factors 

and Ergonomics Society Annual Meeting, Vol. 46, SAGE Publications, pp. 1210.  

Edgren, F., Asp, L. E. and Joffe, R. (2006), "Failure of NCF composites 

subjected to combined compression and shear loading", Composites Science 

and Technology, vol. 66, no. 15, pp. 2865-2877.  

Eisenhardt, K. M. (1989), "Building Theories from Case Study Research", The 

Academy of Management Review, vol. 14, no. 4, pp. 532-550.  

El Kadi, H. and Denault, J. (2001), "Effects of Processing Conditions on the 

Mechanical Behavior of Carbon-Fiber-Reinforced PEEK", Journal of 

Thermoplastic Composite Materials, vol. 14, no. 1, pp. 34-53.  

Ellis, G. (1984), Air crash investigation of general aviation aircraft, 1st ed, 

Capston Publications Inc., Greybull, Wyoming, USA.  

EU (12 November 2010), "Regulation (EU) no 996/2010 of the European 

parliament and of the council", l 295 official journal of the European Union, vol. 

53.  

FAA (2008), FAA Advisory Circular 43.13-1B, “Acceptable methods, techniques, 

and practices – aircraft inspection and repair”, available at: 

http://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/docume

nt.information/documentid/99861 (accessed, 2013 3/3). 

FAA (2010), available at: 

http://www.faa.gov/documentLibrary/media/Order/7400.8SBasic.pdf (accessed 

2012, 9/2).  



 

325 

FAA (2012), available at: 

http://avn.faa.gov/content/aeronav/sectional_files/Hawaiian_Islands_87.zip 

(accessed 2012, 9/2).  

FAA (2012b), available at: http://www.airporttech.tc.faa.gov/safety/bagot2.asp 

(accessed 2013, 2/5) 

Faith, N. (2001), Black box, 2nd edition, Macmillan Publishers Ltd, London, UK.  

Ferry, T. S. (1988), Modern accident investigation and analysis, Wiley-

Interscience, US.  

Findlay, S. J. and Harrison, N. D. (2002), "Why aircraft fail", Materials Today, 

vol. 5, no. 11, pp. 18-25.  

Fisher, F. A. and Plumer, J. A. (1977), "Lightning protection of aircraft", General 

Electric company, Pittsfield, Massachusetts.   

Folio, L. R., Harcke, H. T. And Luzi, S. A. (2009), "Aircraft Mishap Investigation 

With Radiology-Assisted Autopsy : Helicopter Crash with Control Injury", 

Aviation, space, and environmental medicine, vol. 80, no. 4, pp. 400-404.  

Fox, M., Schultheisz, C. R. and Reeder, J. R. (2005), "Fractographic 

Examination of the Vertical Stabilizer and Rudder from American Airlines Flight 

587", 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & 

Materials Conference, 18 - 21 April, Austin, Texas, USA, AIAA.  

Franz, H. (1991), "Microfractography of fibre reinforced composite materials", 

Prakt. Met, vol. 28, pp. 404-419.  

Froes, F. H. (1989), "Aerospace materials for the twenty-first century", Materials 

& Design, vol. 10, no. 3, pp. 110-120.  

Frostell, C. (1998), "Current and Future Activities in Accident Investigation and 

Prevention in ICAO", Advances In Aviation Safety Conference & Exposition, 

Vol. 981226, 6 April 1998, Daytona Beach, FL, USA, SAE International.  



 

326 

Fujii, T., Shiina, T. and Okubo, K. (1994), "Fatigue notch sensitivity of glass 

woven fabric composites having a circular hole under tension/torsion biaxial 

loading", Journal of Composite Materials, vol. 28, no. 3, pp. 234-251.  

George, (2006) 

George, A. L. and Bennett, A. (2005), Case Studies and Theory Development in 

the Social Sciences MIT Press, Cambridge, Massachusetts.  

Gibbert, M., Ruigrok, W. and & Wicki, B. (2008), "What passes as a rigorous 

case study?", Strategic Management Journal, vol. 29, pp. 1465-1474.  

Gilchrist, M., Kinloch, A., Matthews, F. and Osiyemi, S. (1996), "Mechanical 

performance of carbon-fibre-and glass-fibre-reinforced epoxy I-beams: I. 

Mechanical behaviour", Composites Science and Technology, vol. 56, no. 1, pp. 

37-53.  

Ginty, C. A. and Chamis, C. C. (1987), "Fracture characteristics of angleplied 

laminates fabricated from overaged graphite/epoxy prepreg", Fractography of 

modern engineering materials: Composites and metals.Philadelphia: ASTM, , 

pp. 101-130.  

Gittins, N. (2005), Short Guide to Strain Gauging Methods, North Harrow, 

http://www.hbm.com/fileadmin/mediapool/techarticles/2005/StrainGaugingMeth

ods.pdf (accessed 2013, 2/9). 

Goranson, U. G. (1993), "Damage tolerance--facts and fiction", Engineering 

Materials Advisory Services Ltd, Durability and Structural Integrity of Airframes. 

vol. 1, pp. 3-105. 

Grasse, F., Trappe, V., Hickmann, S. and Meister, O. (2010), "Lifetime 

assessment for GFRP-gliders using a representative substructure", International 

Journal of Fatigue, vol. 32, no. 1, pp. 94-99. 

Greaves, M. J. (2010), "The Use of Commercial Satellite Imagery in Aircraft 

Accident Investigation: Results from Recent Trials", Proceedings of the 41st 

Annual International Seminar, Sep 7-10, Sapporo, Japan, ISASI, pp. 89-93.  



 

327 

Greenhalgh, E. S. (2005), Fractographic analysis of composites, Imperial 

College, London.  

Greenhalgh, E. S. (2009), Failure analysis and fractography of polymer 

composites, 1st edition, Woodhead Publishing Limited, Cambridge, UK.  

Greenhalgh, E. S. and Hiley, M. J. (2008) "Fractography of polymer composites: 

Current status and future issues", Proceedings of ECCM-13, 2008, Stockholm, 

Sweden.  

Greenhalgh, E., Millson, B., Thompson, R. and Sayers, P. (1999), "Testing and 

failure analysis of a CFRP wingbox containing a 150J impact", 12th 

International Conference on Composite Materials, Paris, France.  

Greenhalgh, E., Singh, S., Hughes, D. and Roberts, D. (1999), "Impact damage 

resistance and tolerance of stringer stiffened composite structures", Plastics, 

rubber and composites, vol. 28, no. 5, pp. 228-251.  

Greenhalgh, E. and Garcia, M. H. (2004), "Fracture mechanisms and failure 

processes at stiffener run-outs in polymer matrix composite stiffened elements", 

Composites Part A: Applied Science and Manufacturing, vol. 35, no. 12, pp. 

1447-1458.  

Greenhalgh, E. (1989), "On Defect Growth and Failure In Carbon Fibre 

Composite Structures", RAE technical report 89045, Royal Aerospace 

Establishment, Farnborough, UK.  

Greenhalgh, E. (1993), "Delamination growth in carbon-fibre composite 

structures", Composite Structures, vol. 23, no. 2, pp. 165-175.  

Greenhalgh, E. and Cox, P. (1992), "A method to determine propagation 

direction of compressive fracture in carbon-fibre composites", Composite 

structures, vol. 21, no. 1, pp. 1-7.  

Grellmann, W. and Seidler, S. (2007), Polymer testing. Hanser Gardner 

Publications, Munich, Germany, Cincinnati, US.  



 

328 

Harper, D. (2002), "Talking about pictures: a case for photo elicitation", Visual 

studies, vol. 17, no. 1, pp. 13-26.  

Harris, B. (1999), Engineering composite materials, Institute of Materials, 

http://www.cantab.net/users/bryanharris/Engineering%20Composites.pdf 

(accessed 2012, 3/21).  

Heaslip, T. W. (1973), "Investigation with an imaginative innovative open mind", 

Reid Glenn, H. (ed.), in: Proceedings of the fourth annual seminar, The Society 

of Air Safety Investigators, August 28-31, 1973, pp. 84.  

Heinrich, W. H. (1941), Industrial Accident Prevention, McGraw-Hill, New York, 

New York.  

Herriott, R. E. and Firestone, W. A. (1983), "Multisite qualitative policy research: 

Optimizing description and generalizability", Educational Researcher, vol. 12, 

pp. 14-19.  

Hertzberg, R. W. and Manson, J. A. (1980), Fatigue of engineering plastics, 

Academic Press, New York.  

Hiley, M. J. (1999), "Fractographic study of static and fatigue failures in polymer 

composites", Plastics, Rubber and Composites, vol. 28, no. 5.  

Hiley, M. J. (2001), AG-20 Fractographic Aspects of Fatigue Failure in 

Composite Materials, TP 112, Garteur.  

Hinton, M. J., Kaddour, A. S. and Soden, P. D. (2002), "Evaluation of failure 

prediction in composite laminates: background to ‘part B’ of the exercise", 

Composites Science and Technology, vol. 62, no. 12-13, pp. 1481-1488.  

Hinton, M. J., Kaddour, A. S. and Soden, P. D. (2004), "Evaluation of failure 

prediction in composite laminates: background to ‘part C’ of the exercise", 

Composites Science and Technology, vol. 64, no. 3-4, pp. 321-327.  

Hinton, M. J., Kaddour, A. S. and Soden, P. D. (2004a), "A further assessment 

of the predictive capabilities of current failure theories for composite laminates: 



 

329 

comparison with experimental evidence", Composites Science and Technology, 

vol. 64, no. 3-4, pp. 549-588.  

Hinton, M. J., Kaddour, A. S. and Soden, P. D. (2004b), "The world-wide failure 

exercise: Its origin, concept and content", in M.J. Hinton, A.S. Kaddour and P.D. 

Soden (eds.) Failure Criteria in Fibre-Reinforced-Polymer Composites, Elsevier, 

Oxford, pp. 2-28.  

HMSO (1955), Report of the Court of Inquiry into the Accidents to Comet G-

ALYP on 10 January, 1954 and Comet G-ALYY on 8 April, 1954, HMSO, 

London.  

HMSO, (1998), Data Protection Act 1998, London. 

http://www.legislation.gov.uk/ukpga/1998/29/contents  (accessed 2012, 03/09) 

Hodgkinson, J. (Ed.). (2000). Mechanical testing of advanced fibre composites. 

Woodhead Publishing, Cambridge.  

Hoskin, B. C. and Baker, A. A. (eds.) (1986), Composite materials for aircraft 

structures, American Institute of Aeronautics and Astronautics, Reston, VA.  

Hsiao, H. and Daniel, I. (1996), "Effect of fiber waviness on stiffness and 

strength reduction of unidirectional composites under compressive loading", 

Composites Science and Technology, vol. 56, no. 5, pp. 581-593.  

Hua, C. and Yamashita, M. (1989), Compendium of Fractographic Data for 

Composite Materials, ADA233400, Boeing Seattle. 

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA

233400 (accessed 2013 03/21)  

Hull, D. and Clyne, T. W. (1996), An introduction to composite materials, Press 

syndicate of the University of Cambridge, Cambridge, UK.  

Hull, D. (1999), Fractography: observing, measuring and interpreting fracture 

surface topography, Cambridge University Press, Cambridge, UK.  



 

330 

Hull, D. and Shi, Y. B. (1993), "Damage mechanism characterization in 

composite damage tolerance investigations", Composite Structures, vol. 23, no. 

2, pp. 99-120.  

Hutchins. (2012), (unpublished Design Drawing), Cranfield University, Cranfield, 

UK.  

ICAO (1970), Manual of aircraft accident investigation, Doc 6920-AN/855/4, 

International Civil Aviation Organisation, Quebec, Canada.  

ICAO (2002), available at: http://legacy.icao.int/fsix/adrep/historic_rates.htm 

(accessed 2013, 03/21).  

ICAO (2003), Training guidelines for aircraft accident investigators, Cir 298 

AN/172, International Civil Aviation Organisation, Quebec, Canada.  

ICAO (2005), ICAO Accident Prevention Programme, Doc 9422, International 

Civil Aviation Organisation, Quebec, Canada. 

ICAO (2005a), ICAO Safety Management Manual, Doc 9859 AN/460, 

International Civil Aviation Authority, Quebec, Canada. 

ICAO (2006), ADREP 2000 Taxonomy, available at: 

legacy.icao.int/anb/aig/Taxonomy/R4LDICAO.pdf (accessed 2013, 03/21).  

ICAO (2008a), Annual report of the council, Doc 9916, International Civil 

Aviation Organisation, Quebec, Canada. 

ICAO (2010), Annex 13 - Aircraft Accident and Incident Investigation, 

International Civil Aviation Authority, Quebec, Canada.   

ICAO (2013), available at: http://www.icao.int/Pages/member-states.aspx 

(accessed 2013, 03/21).  

ICAO (2008), Manual of aircraft accident and incident investigation - Part III 

Investigation - Draft, Doc 9756 AN/965, ICAO, Quebec, Canada.  



 

331 

Ilcewicz, L. B. (2000), "Composite Technology Development for Commercial 

Airframe Structures", in Anthony Kelly and Carl Zweben (eds.) Comprehensive 

Composite Materials, Pergamon, Oxford, pp. 121-163.  

Ilcewicz, L. B., Hoffman, D. J. and Fawcett, A. J. (2000), "Composite 

Applications in Commercial Airframe Structures", in Anthony Kelly and Carl 

Zweben (eds.) Comprehensive Composite Materials, Pergamon, Oxford, pp. 

87-119.  

Immarigeon, J., Holt, R., Koul, A., Zhao, L., Wallace, W. and Beddoes, J. 

(1995), "Lightweight materials for aircraft applications", Materials 

Characterization, vol. 35, no. 1, pp. 41-67.  

Johnson, W. G. (1980), "MORT Safety Assurance Systems", in National Safety 

Council (ed.) Vol 4., pp. 347-379.  

Jørgensen, E. R., Borum, K. K., McGugan, M., Thomsen, C., Jensen, F. M., 

Debel, C. and Sørensen, B. F. (2004), Full scale testing of wind turbine blade to 

failure-flapwise loading, .Technical report no Risø-R-1392(EN), Risø National 

Laboratory, Roskilde 

Joyce, P. J. and Moon, T. J. (1999), "Compression strength reduction in 

composites with in-plane fiber waviness", Composite materials: fatigue and 

fracture, ASTM STP, vol. 1330, pp. 76-96.  

Kaddour, A. S., Hinton, M. J. and Soden, P. D. (2004), "Predictive capabilities of 

nineteen failure theories and design methodologies for polymer composite 

laminates. Part B: Comparison with experiments", in M.J. Hinton, A.S. Kaddour 

and P.D. Soden (eds.) Failure Criteria in Fibre-Reinforced-Polymer Composites, 

Elsevier, Oxford, pp. 1073-1221.  

Kar, R. J. (1992), Composite Failure Analysis Handbook. Volume 1: Program 

Review, Technical report number ADA250520. http://www.dtic.mil/cgi-

bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA250520 (accessed 

2013, 03/12) 



 

332 

Kar, R. J. (1992b), Composite Failure Analysis Handbook. Volume 2. Technical 

Handbook/ Part 2. Atlas of Fractographs, Technical report number ADA249130. 

http://www.dtic.mil/cgi-

bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA249130 (accessed 

2013, 03/12) 

Kar, R. J. (1992c), Composite Failure Analysis Handbook. Volume 2. Technical 

Handbook. Part 3. Case Histories, Technical report ADA249131. 

www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA249131 (accessed 2013, 03/12)   

Kar, R. J. (1992a), Composite Failure Analysis Handbook. Volume 2: Technical 

Handbook. Part 1 - Procedures and Techniques, Technical report ADA250521. 

www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA250521 (accessed 2013, 03/12)  

Kassapoglou, C. and Townsend Jr., W. A. (2003), "Failure prediction of 

composite lugs under axial loads", AIAA Journal, vol. 41, no. 11, pp. 2239-2243.  

Kawai, M., Morishita, M., Fuzi, K., Sakurai, T. and Kemmochi, K. (1996), 

"Effects of matrix ductility and progressive damage on fatigue strengths of 

unnotched and notched carbon fibre plain woven roving fabric laminates", 

Composites Part A: Applied Science and Manufacturing, vol. 27, no. 6, pp. 493-

502.  

Kelly, A. and Zweben, C. (2000), "Comprehensive composite materials volume 

l, Fiber reinforcement and general theory of composite", Elsevier, London, UK. 

Kensche, C. (1983), "Service life of sailplanes made of CFRP", Fibre Science 

and Technology, vol. 18, no. 2, pp. 95-108.  

Khola, H. S. (1988), "Contribution of medical evidence in the investigation of 

kanishka aircraft accident.", Indian Journal of Aerospace Medicine, vol. 32, no. 

2, pp. 98-102.  

Kim, J. and Sham, M. (2000), "Impact and delamination failure of woven-fabric 

composites", Composites Science and Technology, vol. 60, no. 5, pp. 745-761.  



 

333 

King, J. M. C. (2007), "The Airbus 380 and Boeing 787: A role in the recovery of 

the airline transport market", Journal of Air Transport Management, vol. 13, no. 

1, pp. 16-22.  

Kishore and Maiti, A. (2001) “Compressive behaviour and fracture features of 

rubber bearing glass-epoxy composites exposed to aqueous media”, Journal of 

Reinforced Plastics and Composites vol. 20 no. 17, pp. 1546-1554 

Kletz, T. (2001), Learning from accidents, 3rd ed, Gulf Professional Publishing, 

Oxford, UK.  

Kumar, M. S., Raghavendra, K., Venkataswamy, M. A. and Ramachandra, H. V. 

(2012), "Fractographic analysis of tensile failures of aerospace grade 

composites", Materials Research, vol. 15, no. 6, pp. 990-997.  

Lang, R., Manson, J. and Hertzberg, R. (1987), "Mechanisms of fatigue fracture 

in short glass fibre-reinforced polymers", Journal of Materials Science, vol. 22, 

no. 11, pp. 4015-4030.  

Lee, C. S., Hwang, W., Park, H. C. and Han, K. S. (1999), "Failure of 

carbon/epoxy composite tubes under combined axial and torsional loading 1. 

Experimental results and prediction of biaxial strength by the use of neural 

networks", Composites Science and Technology, vol. 59, no. 12, pp. 1779-

1788.  

Lee, C. S., Hwang, W., Park, H. C. and Han, K. S. (1999), "Failure of 

carbon/epoxy composite tubes under combined axial and torsional loading 2. 

Fracture morphology and failure mechanism", Composites Science and 

Technology, vol. 59, no. 12, pp. 1789-1804.  

Leedy, P. D. and Ormrod, J. E. (2010), "Practical Research: Planning and 

Design" (9th edition), Pearson, Harlow, UK.  

Lindberg, A., Hansson, S. O. and Rollenhagen, C. (2010), "Learning from 

accidents – What more do we need to know?", Safety Science, vol. 48, no. 6, 

pp. 714-721.  



 

334 

Livingston, A. D., Jackson, G. and Priestley, K. (2001), Root causes analysis: 

Literature review, 325/2001, Her Majesty’s Stationery Office, Norwich.  

Lomov, S. V., Van Den Broucke, B., Tumer, F., Verpoest, I., De Luka, P. and 

Dufort, L. (2004), "Micro–macro structural analysis of textile composite parts", 

Proceedings of ECCM-11, 2004, Rhodes.  

Macaulay, K., (2010), Personal correspondence, Deputy Chief Executive 

Officer, ATSB.  

Maiti, A. (2001), "Compressive behavior and fracture features of rubber bearing 

glass-epoxy composites exposed to aqueous media", Journal of Reinforced 

Plastics and Composites, vol. 20, no. 17, pp. 1546-1554.  

Marsh, G. (2006), "Duelling with composites", Reinforced Plastics, vol. 50, no. 

6, pp. 18-23. 

Mason, J. K. (1968), "Reconstruction of a Fatal Aircraft Accident from Medical 

Findings", Proc. Roy. Soc. Med., vol. 61. Pp. 1079-84 

Mathews, R. (2004), "Past, current and future accident rates: achieving the next 

breakthrough in accident rates", 35th Annual International Seminar, August 30–

September 2, Gold Coast, Queensland, Australia, ISASI.  

Matthews, F. L. and Rawlings, R. D. (1994), Composite materials: Engineering 

and science, Woodhead Publishing Ltd., Cambridge, UK.  

Matthews, R. (2013), Past, Current and Future Accident Rates: Achieving the 

Next Breakthrough in Accident Rates, available at: 

asasi.org/papers/2004/Mathews_Zero%20Accidents_ISASI04.pdf (accessed 

2013, 03/21).  

Maughmer, M. (2003), "The Evolution of Sailplane Wing Design", AIAA/ICAS 

International Air and Space Symposium and Exposition, 14-17 July 2003, 

Dayton, Ohio, USA.  



 

335 

McCarthy, R. F. J., Haines, G. H. and Newley, R. A. (1994), "Polymer 

composite applications to aerospace equipment", Composites Manufacturing, 

vol. 5, no. 2, pp. 83-93.  

McCormick, B. W. and Papadakis, M. P. (2003), Aircraft Accident 

Reconstruction and Litigation, 3rd edition, Lawyers & Judges Publishing 

Company Inc, Tucson, AZ.  

McCoy, R. (2004), "SEM fractography and failure analysis of nonmetallic 

materials", Journal of failure analysis and prevention, vol. 4, no. 6, pp. 58-64.  

McKelvie, J. and Perry, K. (1998), "Moiré interferometry as a detailed validator 

for computational modelling of composites", Composite structures, vol. 42, no. 

4, pp. 299-305.  

McMullen, P. (1984), "Fibre/resin composites for aircraft primary structures: a 

short history, 1936–1984", Composites, vol. 15, no. 3, pp. 222-230.  

Micro-Measurements, V. (2011), "Tech Note TN-505”, Strain Gage Selection 

Criteria, Procedures, Recommendations, available at: 

http://www.vishaypg.com/docs/11055/tn505.pdf (accessed 2013, 03/12) 

Miles, M. B. and Huberman, A. M. (1994), Qualitative data analysis: An 

expanded sourcebook, Sage Publications Incorporated, Thousand Oaks.  

Mileshkin, N., Scott, M. and Wood, L. (1987), "Fatigue testing of full-scale all-

composite aircraft wings", SAE Technical Paper 872459, SAE International.  

Miller, A. and Wingert, A. (1979), "Fracture surface characterization of 

commercial graphite/epoxy systems", Nondestructive Evaluation and Flaw 

Criticality for Composite Materials, ASTM STP, vol. 696, pp. 223-273.  

Mills, A. J. (Ed.). (2010). Encyclopedia of Case Study Research: (Vol. 1). Sage 

Publications Inc, Thousand Oaks. 

Mizuno, M. and Okuda, H. (1993), VAMAS round robin on fracture toughness of 

Silicon Nitride at high temperature, 16, Japan Fine Ceramics Centre, Nagoya, 

Japan.  



 

336 

Moore, S. (2009), An assessment of the exposure to airborne hazardous 

substances during the removal of burnt aircraft wreckage, INM Report No. 

2009.006, Institute of Naval Medicine, Gosport, UK.  

Murphy, B., O’Callaghan, j., Fox, M., Ilcewicz, L. and Starnes, J. H., Jr. 

"Overview of the Structures Investigation for the American Airlines Flight 587 

Investigation", 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural 

Dynamics & Materials Conference, 18 - 21 April 2005, Austin, Texas, USA, .  

Musial, W. D., Bourne, B., Hughes, S. D. and Zuteck, M. D. (2001), "Four-Point 

Bending Strength Testing of Pultruded Fiberglass Wind Turbine Blade 

Sections", Available at: http://www.nrel.gov/docs/fy01osti/30565.pdf (accessed 

12/03)  

Myers, T. J., Kytömaa, H. K. and Smith, T. R. (2007), "Environmental stress-

corrosion cracking of fiberglass: Lessons learned from failures in the chemical 

industry", Journal of hazardous materials, vol. 142, no. 3, pp. 695-704.  

Nakanishi, Y., Hana, K. and Hamada, H. (1997), "Fractography of fracture in 

CFRP under compressive load", Composites Science and Technology, vol. 57, 

no. 8, pp. 1139-1147.  

NetComposites (2012), available at: 

http://www.netcomposites.com/ikb/browse/default.asp?ST=1&SC=1&S=1&T=73

7&P=%2E%2E%2FTopics%2FDefects%2FSummary+table+Common+NDE+te

chniques+by+defect+type%2FDefault%2Ehtml (accessed 2013, 3/21).  

Noon, R. (2009), Scientific Method: Applications in Failure Investigation and 

Forensic Science, CRC press, Boca Raton, FL 

Nørstegård. (2010). Personal correspondence, Accident Investigation Board, 

Norway (AIBN).  

Noyes, J. V. (1983), "Composites in the construction of the Lear Fan 2100 

aircraft", Composites, vol. 14, no. 2, pp. 129-139.  



 

337 

NTSB (1999), available at: 

http://www.ntsb.gov/aviationquery/brief2.aspx?ev_id=20001212X19029&ntsbno

=LAX99LA215&akey=1 (accessed 2012, 3/12).  

NTSB (2000), In-flight Breakup Over the Atlantic Ocean Trans World Airlines 

Flight 800 Boeing 747-131, N93119 Near East Moriches, New York July 17, 

1996, Technical report number AAR-00/03, National Transportation Safety 

Board, Washington, D.C.  

NTSB (2001), SECOND UPDATE ON NTSB INVESTIGATION INTO CRASH 

OF AMERICAN AIRLINES FLIGHT 587, available at: 

http://www.ntsb.gov/Pressrel/2001/011129.htm (accessed 08/02).  

NTSB (2002a), available at: 

http://www.ntsb.gov/aviationquery/brief.aspx?ev_id=20001212X19310&key=1 

(accessed 2013, 2/2).  

NTSB (2002), Aviation Investigation Manual Major Team Investigations, 

National Transportation Safety Board, Washington DC, available at: 

https://www.ntsb.gov/doclib/manuals/MajorInvestigationsManual.pdf (accessed 

02/13)  

NTSB (2004), Aircraft Accident Report, In-Flight Separation of Vertical 

Stabilizer. Technical report number NTSB/AAR-04/04, National Transportation 

Safety Board, Washington, D.C.  

NTSB (2007), available at: 

http://www.ntsb.gov/aviationquery/brief2.aspx?ev_id=20051104X01789&ntsbno

=LAX06LA024&akey=1 (accessed 2012, 2/3).  

NTSB (2009), available at: http://www.ntsb.gov/news/1999/990324.htm 

(accessed 2013, 3/12).  

NTSB (2009a), available at: 

http://www.ntsb.gov/aviationquery/brief2.aspx?ev_id=20090117X00043&ntsbno

=WPR09FA089&akey=1 (accessed 2013, 3/21).  



 

338 

NTSB (2009b), Public docket for WPR09FA089, available at: 

http://dms.ntsb.gov/pubdms/search/hitlist.cfm?docketID=47430&CFID=22019&

CFTOKEN=17709451 (accessed 2013, 3/21).  

NTSB (2010), Materials Laboratory Factual Report, 10-060, National 

Transportation Safety Board, Washington, D.C.  

NTSB (2013), available at: 

http://www.ntsb.gov/doclib/reports/2011/ARA1101.pdf (accessed 2013, 03/21).  

NTSB (2013a), available at: 

http://www.ntsb.gov/doclib/reports/2012/ARA1201.pdf (accessed 2013, 03/21).  

Olsson, R., (2002) “Engineering Method for Prediction of Impact Response and 

Damage in Sandwich Panels”, Journal of Sandwich Structures and Materials 
vol. 4 no. 1, pp. 3-29. 

Packer, K. F. and Morin, C. R. (1974), "Analysis of wreckage", Journal of air law 

and commerce, vol. 40, pp. 447-458.  

Parrington, R. J. (2002), "Fractography of Metals and Plastics", Plastics Failure 

Analysis and Prevention, Vol 2(5), pp. 16-46.  

Persson, B. (2011), Aeroelastic tailoring of a sailplane wing (MSc Thesis), KTH, 

School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, 

Flight Dynamics, Sweden. Available at: http://www.diva-

portal.org/smash/get/diva2:398320/FULLTEXT01.pdf (accessed 2012, 21/3).  

M. L. Phelps, M. L., (1979), “Assessment of State of the Art of In-Service 

Inspection Methods for Graphite-Epoxy Composite Structures on Commercial 

Transport Aircraft”, NASA Contractor Report 158969, Contract NAS-1-15304, 

Boeing Commercial Airplane Company, Seattle, WA, January. 

Potter, K., Langer, C., Hodgkiss, B. and Lamb, S. (2007), "Sources of variability 

in uncured aerospace grade unidirectional carbon fibre epoxy preimpregnate", 

Composites Part A: Applied Science and Manufacturing, vol. 38, no. 3, pp. 905-

916.  



 

339 

Potter, R. T. and Purslow, D. (1983), "The environmental degradation of 

notched CFRP in compression", Composites, vol. 14, no. 3, pp. 206-225.  

Purslow, D. (1981), "Some fundamental aspects of composites fractography", 

Composites, vol. 12, no. 4, pp. 241-247.  

Purslow, D. (1984), "Composites fractography without an SEM — the failure 

analysis of a CFRP I-beam", Composites, vol. 15, no. 1, pp. 43-48.  

Purslow, D. (1984a), "On the optical assessment of the void content in 

composite materials", Composites, vol. 15, no. 3, pp. 207-210.  

Purslow, D. (1986), "Matrix fractography of fibre-reinforced epoxy composites", 

Composites, vol. 17, no. 4, pp. 289-303.  

Purslow, D. (1987), "Further fractographic characteristics of peel failures in 

CFRP", Composites, vol. 18, no. 3, pp. 255-256.  

Purslow, D. (1987), "Matrix fractography of fibre-reinforced thermoplastics, part 

1. peel failures", Composites, vol. 18, no. 5, pp. 365-374.  

Purslow, D. (1988), "Matrix fractography of fibre-reinforced thermoplastics, part 

2. shear failures", Composites, vol. 19, no. 2, pp. 115-126.  

Purslow, D. and Childs, R. (1986), "Autoclave moulding of carbon fibre-

reinforced epoxies", Composites, vol. 17, no. 2, pp. 127-136.  

Purslow, D. and Potter, R. T. (1984), "The effect of environment on the 

compression strength of notched CFRP — a fractographic investigation", 

composites, vol. 15, no. 2, pp. 112-120.  

Rakov, V. V. A. and Uman, M. A. (2003), Lightning: physics and effects, 

Cambridge University Press, Cambridge. UK.  

Rakow, J. F. and Pettinger, A. M. (2007), Failure analysis of composites a 

manual for aircraft accident investigators, 00G61SF.000 0000 0807 JRAP, 

Exponent Failure Analysis Associates, Inc, Menlo Park, CA, USA.  



 

340 

Rakow, J. and Pettinger, A. (2006), "Failure Analysis of Composite Structures in 

Aircraft Accidents", Proceedings of the 37th Annual International Seminar, 

ISASI, 2006, 11-14 September, Cancun, Mexico, pp. 39-45. 

Ransom, J. B., Glaessgen, E. H., Raju, I. S., Knight, N. and Reeder, J. R. 

(2008), "Lessons Learned from Recent Failure and Incident Investigations of 

Composite Structures", Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics, and Materials Conference, pp. 7. 

Richardson, M. O. W., and Wisheart, M. J. (1996). Review of low-velocity 

impact properties of composite materials. Composites Part A: Applied Science 

and Manufacturing, vol. 27, No.12, pp. 1123-1131. 

Rittel, D. and Faingold, G. (1988), "On the application of Metallurgical 

techniques to forensic sciences", journal of forensic sciences, vol. 3, no. 1, pp. 

210-216.  

Robinson, P., Greenhalgh, E. S. and Pinho, S. (2012), Failure mechanisms in 

polymer matrix composites: criteria, testing and industrial applications, 

Woodhead Publishing, Cambridge, UK; Philadelphia, PA.  

Robson, C. (2002), Real world research, 2nd ed, Blackwell Publishing, Malden, 

MA, USA.  

Roed-Larsen, S. and Stoop, J. (2012), "Modern accident investigation–Four 

major challenges", Safety Science, vol. 50, no. 6, pp. 1392-1397.  

Rollenhagen, C., Westerlund, J., Lundberg, J. and Hollnagel, E. (2010), "The 

context and habits of accident investigation practices: A study of 108 Swedish 

investigators", Safety Science, vol. 48, no. 7, pp. 859-867.  

Roman, I. and Rittel, D. (1983), "Failure analysis of materials systems in aircraft 

structures", Forum, vol. 16, no. 2, pp. 4-8.  

Rose, A. (2004), ""Free lessons" in aviation safety", Aircraft Engineering and 

Aerospace Technology, vol. 76, no. 5, pp. 467-471.  



 

341 

Roulin-Moloney, A. C. (1989), Fractography and failure mechanisms of 

polymers and composites, 1st ed, Elsevier Science Publishers Ltd, Essex, 

England.  

Rubin, A. M. (1992), "Common failure modes for composite aircraft structures 

due to secondary loads", Composites Engineering, vol. 2, no. 5-7, pp. 313-317, 

319-320.  

Rubinsky, S. and Smith, N. (1973), "Safety training by accident stimulation", 

The Journal of applied psychology, vol. 57, no. 1, pp. 68-73.  

Rupke, E. (2002), "Lightning direct effects handbook", Lightning Technologies, 

Inc., available at 

http://www.niar.wichita.edu/agate/Documents/Lightning/WP3.1-031027-043.pdf 

(accessed 2013, 03/12).  

SACAA (2007), available at: 

http://www.google.co.uk/url?sa=t&rct=j&q=%E2%80%A2%09CA18%2F2%2F3

%2F8395+&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=http%3A%2F%

2Fwww.caa.co.za%2Fresource%2520center%2Faccidents%2520%26%2520in

cid%2Freports%2F2007%2F8395.pdf&ei=6axTUdDXIomB4ATUiYHgCQ&usg=

AFQjCNH5Xd_uvNGgMtKHv3p0quhEpZIK2g (accessed 2012, 3/12).  

Safety Center for Chemical Process, (2003), Guidelines for Investigating 

Chemical Process Incidents, 2nd edition, Center for Chemical Process 

Safety/AIChE, New York, US.  

Saliba, S. (1988), "Fractography of Graphite/Bismaleimide and Graphite/PEEK 

Composites", ASM International, pp. 333-342.  

Sander (2005), Occurence Investigation Techniques For The Canadian Forces, 

Technical report number A-GA-135-002/AA-001, Canadian Forces. Available at: 

http://www.rcaf-arc.forces.gc.ca/assets/AIRFORCE_Internet/docs/en/flight-

safety/aga135002aa001-en-1nov13.pdf (accessed 2010, 02/12) 



 

342 

Sapalidis, S., Hogg, P. and Youd, S. (1997), "High temperature acidic stress 

corrosion of glass fibre composites: Part I Effect of fibre type", Journal of 

Materials Science, vol. 32, no. 2, pp. 309-316.  

Sarsfield, L. m., Stanley, W. L., Lebow, C. C., Ettedgui, E. and Henning, G. 

(2000), Safety in the skies, Personnel and Parties in NTSB Aviation Accident 

Investigations: MASTER VOLUME, RAND, US.  

Scheirs, J. (2000), Compositional and failure analysis of polymers: a practical 

approach, Wiley, West Sussex, England.  

Schempp-Hirth (1982), Maintenance Manual for the sailplane model Nimbus-

3/24.5, Schempp-Hirth, Germany.  

Schempp-Hirth (1982a), Flight Manual for the sailplane model Nimbus-3/24.5 , 

Schempp-Hirth, Germany.  

Schempp-Hirth (2010), 75 years, available at: http://www.schempp-

hirth.com/fileadmin/Pdfs/intern_pdf/2010/75_Jahre_E_T1.pdf (accessed 2013, 

03/21).  

Schijve, J. (1994), “Fatigue of aircraft materials and structures”, Fatigue, vol. 16 

no.1, pp. 21-32. 

Schijve, J. (2003), "Fatigue of structures and materials in the 20th century and 

the state of the art", International Journal of Fatigue, vol. 25, no. 8, pp. 679-702.  

Schoeppner, G. and Abrate, S. (2000), "Delamination threshold loads for low 

velocity impact on composite laminates", Composites Part A: applied science 

and manufacturing, vol. 31, no. 9, pp. 903-915.  

Schütz, W. (1996), "A history of fatigue", Engineering Fracture Mechanics, vol. 

54, no. 2, pp. 263-300.  

Seawright, J. and Gerring, J. (2008), "Case Selection Techniques in Case Study 

Research: A Menu of Qualitative and Quantitative Options", POLITICAL 

RESEARCH QUARTERLY, vol. 61, no. 2, pp. 294-308.  



 

343 

Shikhmanter, L., Eldror, I. and Cina, B. (1989), "Fractography of unidirectional 

CFRP composites", Journal of Materials Science, vol. 24, no. 1, pp. 167-172.  

Sivashanker, S. (2001), "Damage propagation in multidirectional composites 

subjected to compressive loading", Metallurgical and Materials Transactions A, 

vol. 32, no. 1, pp. 171-182.  

Sjoblom, P. O., Hartness, J. T. and Cordell, T. M. (1988), "On low-velocity 

impact testing of composite materials", Journal of Composite Materials, vol. 22, 

no. 1, pp. 30-52.  

Sklet, S. (2002), Methods for accident investigation, Technical report number 

ROSS (NTNU) 200208, Norwegian University of Science and Technology, 

available at http://frigg.ivt.ntnu.no/ross/reports/accident.pdf (accessed 203, 

03/21) 

Smart, K. (2004), "Credible investigation of air accidents", Journal of hazardous 

materials, vol. 111, no. 1-3, pp. 111-114.  

Smillie, D. G. (1993), "The impact of composite technology on commercial 

transport aircraft", Aircraft Engineering and Aerospace Technology, vol. 55, no. 

5, pp. 2-10.  

Smith, B. and Grove, R. (1987), Compendium of Post-Failure Analysis 

Techniques for Composite Materials. Technical report number ADA183783, 

Boeing Military Airplane Co., Seattle, WA.  

Soden, P. D., Hinton, M. J. and Kaddour, A. S. (2002), "Biaxial test results for 

strength and deformation of a range of E-glass and carbon fibre reinforced 

composite laminates: failure exercise benchmark data", Composites Science 

and Technology, vol. 62, no. 12-13, pp. 1489-1514.  

Soden, P. D., Kaddour, A. S. and Hinton, M. J. (2004), "Recommendations for 

designers and researchers resulting from the world-wide failure exercise", in 

M.J. Hinton, A.S. Kaddour and P.D. Soden (eds.) Failure Criteria in Fibre-

Reinforced-Polymer Composites, Elsevier, Oxford, pp. 1223-1251.  



 

344 

Soutis, C. (2005), "Carbon fiber reinforced plastics in aircraft construction", 

Materials Science and Engineering: A, vol. 412, no. 1-2, pp. 171-176.  

Spirit (2011), Reinforced Plastics, vol. 55, no. 6, pp. 9. 

Srivastava, V. K. (1989), "Fractography study of fibre reinforced epoxy resin 

composites, ICF7", 20-24 March, pp. 3441-3448.  

Stake, R. E. (1995), The Art of Case Study Research, Sage Publications, Inc, 

California.  

Stalker, P. (2010), "A Guide To Countries Of The World (Oxford Guide To 

Countries Of The World), Oxford University Press, Oxford, England.  

ASTM (2010), "D6272–10,“ Standard Test Method for Flexural Properties of 

Unreinforced and Reinforced Plastics and Electrical Insulating Materials by 

Four-Point Bending,” ASTM International, West Conshohocken, PA.  

Stebbins, R. A. (2001), Exploratory Research in the Social Sciences, Sage 

University Paper Series on Qualitative Research Methods, Vol. 48, Sage, 

Thousand Oaks, CA.  

Stott. (2009), Collecting and Recording Evidence (unpublished Training 

literature), Cranfield, England.  

Stumpff, P. L. (2001), "Failure Analysis", in ASM Handbook, Volume 21 

composites, 1st ed, ASM International, OH, USA, pp. 946.  

Stumpff, P. L. and Snide, J. A. (1986), Fractography of Composites, technicl 

report number ADA175789, United States.  

Sugita, Y., Winkelmann, C. and La Saponara, V. (2010), "Environmental and 

chemical degradation of carbon/epoxy lap joints for aerospace applications, and 

effects on their mechanical performance", Composites Science and 

Technology, vol. 70, no. 5, pp. 829-839.   

Tay, T. E., Liu, G., Tan, V. B. C., Sun, X. S. and Pham, D. C. (2008), 

"Progressive failure analysis of composites", Journal of Composite Materials, 

vol. 42, no. 18, pp. 1921-1966.  



 

345 

Taylor, A. F. (1998), "The study of aircraft wreckage: the key to aircraft accident 

investigation", Technology, Law and Insurance, vol. 3, no. 2, pp. 129.  

Taylor, R. P. (2007), Fibre composite aircraft - capability and safety, AR-2007-

021, Australian Transport Safety Bureau, Canberra City, Australia.  

Tetlow, R. (1983), "Light aircraft and sailplane structures in reinforced plastics", 

Materials & Design, vol. 4, no. 1, pp. 658-663.  

Timmermans, S. (2007), Postmortem: How medical examiners explain 

suspicious deaths, University of Chicago Press, US.  

Tomblin, J. and Ng, Y. (2002), Investigation of a Schempp-hirth Nimbus 4DM 

Motor Glider "In-flight breakup", 02-01, National Institute for Aviation Research, 

Wichitas, KS, USA.  

Tong, S., Bryant, R. P. and Horvath, M. A. (2009), Understanding criminal 

investigation, Wiley, West Sussex, England.  

Torell, U. and Bremberg, S. (1995), "Unintentional injuries: Attribution, 

perceived preventability, and social norms", Journal of Safety Research, vol. 26, 

no. 2, pp. 63-73.  

Trappe, V. and Harbich, K. (2006), "Intralaminar fatigue behaviour of carbon 

fibre reinforced plastics", International Journal of Fatigue, vol. 28, no. 10, pp. 

1187-1196.  

Tsampas, S., Greenhalgh, E., Ankersen, J. and Curtis, P. (2012), "On 

compressive failure of multidirectional fibre-reinforced composites: A 

fractographic study", Composites Part A: Applied Science and Manufacturing, 

vol. 43, no. 3, pp. 454-468.  

TSB (1991), Manual of Investigation Operations, Vol. 2, Part 4: Wreckage 

Recovery, Transportation Safety Board of Canada, Gatineau, Quebec, Canada.  

TSB (2005), Aviation Investigation Report LOSS OF RUDDER IN FLIGHT  AIR 

TRANSAT, AIRBUS A310-308  C-GPAT, MIAMI, FLORIDA, 90 nm S 06 

MARCH 2005. Technical report number A05F0047, Transport Safety board. 



 

346 

Available at: http://www.tsb.gc.ca/eng/rapports-

reports/aviation/2005/a05f0047/a05f0047.pdf (accessed 2013, 03/12) 

U.S. Department of the Navy (2007), available at: 

http://www.nmfs.noaa.gov/pr/pdfs/permits/hrc_feis_vol1.pdf (accessed 2012, 

9/3).  

Van Rijn, L. P. V. M. (2000), "Design of Sailplanes Using Composite Materials", 

in Anthony Kelly and Carl Zweben (eds.) Comprehensive Composite Materials, 

Pergamon, Oxford, pp. 243-277.  

Van Someren, M. W., Barnard, Y. F. and Sandberg, J. A. (1994), The think 

aloud method: A practical guide to modelling cognitive processes, Academic 

Press London.  

Van Wersch, A., Forshaw, M. and Cartwright, T. (2009), Complementary 

medicine and health psychology, Open University Press, England.  

Vinod, Sunil, Vinay Nayaka, Raghavendra Shenoy, Murali and Nafidi, A. (2010), 

"Fractography of compression failed carbon fiber reinforced plastic composite 

laminates", Journal of Mechanical Engineering Research Vol. 2 (1), pp. 001-

009.  

Vinson, J. R. and Sierakowski, R. L. (2002), The behavior of structures 

composed of composite materials, Kluwer Academic Pub., Springer, 

Netherlands.  

Vu-Khanh, T. and Liu, B. (1999), "Failure prediction of woven fabric composites 

after deformations induced by forming", Journal of Reinforced Plastics and 

Composites, vol. 18, no. 12, pp. 1087-1102.  

Wagner, G. (2005), "AVIATION ACCIDENTS, ROLE OF PATHOLOGIST", in 

Jason Payne-James (ed.) Encyclopedia of Forensic and Legal Medicine, 

Elsevier, Oxford, pp. 243-253.  

Walker, B. M. and Bills, K. M. (2008), Analysis, Causality and Proof in Safety 

Investigations, Technical report number AR-2007-053, Australian 



 

347 

Transportation Safety Bureau, available at: 

http://www.atsb.gov.au/media/27767/ar2007053.pdfAustralia (accessed 2013, 

03/12) 

Walker, G. M. (1997), Composite Failure Analysis Handbook Update 1, 

Technical report number ADA330037, available at: 

www.dtic.mil/dtic/tr/fulltext/u2/a308885.pdf (accessed 2013, 03/12). 

Walker, L., Sohn, M. and Hu, X. (2002), "Improving impact resistance of carbon-

fibre composites through interlaminar reinforcement", Composites Part A: 

Applied Science and Manufacturing, vol. 33, no. 6, pp. 893-902.  

Walker, P. B. (1965), "The scientific investigation of aircraft accidents", Aircraft 

Engineering and Aerospace Technology, vol. 36, no. 2, pp. 38-44.  

Walsh, J. (2008), "Challenges for Safety Investigations", A/NZSASI SEMINAR 

2008, 30 May - 1 June 2008, Stamford Grand Adelaide, Australia.  

Wanhill, R. (2003), "Milestone case histories in aircraft structural integrity", 

Comprehensive structural integrity, Vols.1–10, pp.61–72, Elsevier.  

Warren Lovell, F. and B. Berry, F. B. (1961), "The Medical Profession in Air 

Safety ", Ann Surg., vol. 153, no. 5, pp. 625–637.  

Whitlock, C. (2005), Guidelines for Investigating Accidents - 7E72H46, US 

Department for Agriculture, available at: http://www.fs.fed.us/t-

d/pubs/pdfpubs/pdf05672806/pdf05672806dpi300.pdf (accessed 2012, 03/12).  

Wiegmann, D. A. and Taneja, N. (2003), "Analysis of injuries among pilots 

involved in fatal general aviation airplane accidents", Accident Analysis & 

Prevention, vol. 35, no. 4, pp. 571-577.  

Wiggenraad, J. F. M., Aoki, R., Gädke, M., Greenhalgh, E. S., Hachenberg, D., 

Wolf, K. and Bübl, R. (1996), "Damage propagation in composite structural 

elements — analysis and experiments on structures", Composite Structures, 

vol. 36, no. 3-4, pp. 173-186.  



 

348 

Wilhelm, M. (2001), "Aircraft Applications", in ASM Handbook, Volume 21 

composites, 1st ed, ASM International, OH, USA, pp. 1057.  

Williams, J. and Rhodes, M. (1982), "Effect of resin on impact damage 

tolerance of graphite/epoxy laminates", Composite Materials: Testing and 

Design (Sixth Conference), ASTM STP, Vol. 787, pp. 450.  

Wilson, P. F., Dell, L. D. and Anderson, G. F. (1993), Root cause analysis: A 

tool for total quality management, ASQC Quality Press, Milwaukee, US.  

Winfree, W. P., Madaras, E. I., Cramer, K. E., Howell, P. A., Hodges, K. L., 

Seebo, J. P. and Grainger, J. L. (2005), "NASA Langley Inspection of Rudder 

and Composite Tail of American Airlines Flight 587", 46th 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials 

Conference, 18 - 21 April, Austin, Texas, USA.  

Wood, R. H. and Sweginnis, R. W. (2006), Aircraft Accident Investigation, 2nd 

ed, Endeavour Books, Casper, WY, USA.  

Woodcock, K., (2012), personal correspondence. 

Woodcock, K., Drury, C. G., Smiley, A. and Ma, J. (2005), "Using simulated 

investigations for accident investigation studies", Applied Ergonomics, vol. 36, 

no. 1, pp. 1-12.  

Yin, R. K. (2009), Case study research design and methods, 4th ed, SAGE 

Publications, Inc, California, USA.  

 

 

 



 

349 

Appendix A – Risk Assessment of test fixture 
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Appendix B – Test fixture assembly instructions 
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Appendix C – LHCR data collection 
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Appendix D – LHCR data collection 
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