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ABSTRACT 

Many metals used in modern engineering exhibit anisotropy. A common 

assumption when modelling anisotropic metals is that the level of anisotropy is 

fixed throughout the calculation. As it is well understood that processes such as 

cold rolling, forging or shock loading change the level of anisotropy, it is clear 

that this assumption is not accurate when dealing with large deformations. 

The aim of this project was to develop a tool capable to predict large 

deformations of a single crystal or crystalline aggregate of a metal of interest 

and able to trace an evolution of anisotropy within the material. 

The outcome of this project is a verified computational tool capable of predicting 

large deformations in metals. This computational tool is built on the Crystal 

Plasticity Finite Element Method (CPFEM). The CPFEM in this project is an 

implementation of an existing constitutive model, based on the crystal plasticity 

theory (the single crystal strength model), into the framework of the FEA 

software DYNA3D®. 

Accuracy of the new tool was validated for a large deformation of a single 

crystal of an annealed OFHC copper at room temperature. The implementation 

was also tested for a large deformation of a polycrystalline aggregate comprised 

of 512 crystals of an annealed anisotropic OFHC copper in a uniaxial 

compression and tension test. Here sufficient agreement with the experimental 

data was not achieved and further investigation was proposed in order to find 

out the cause of the discrepancy. Moreover, the behaviour of anisotropic metals 

during a large deformation was modelled and it was demonstrated that this tool 

is able to trace the evolution of anisotropy. 

The main benefit of having this computational tool lies in virtual material testing. 

This testing has the advantage over experiments in time and cost expenses. 

This tool and its future improvements, which were proposed, will allow studying 

evolution of anisotropy in FCC and BCC materials during dynamic finite 

deformations, which can lead to current material models improvement. 

Keywords:  
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NOTATION 

Vectors are written as bold, italic capital symbols (    , if they are expressed in 

terms of reference configuration    and as bold, italic faced lowercase symbols 

(    , when they are defined with respect to the current configuration  . Second 

order tensors are written as bold capital symbols (    , if they are expressed in 

terms of reference configuration    and as bold faced lowercase symbols (    , 

when they are defined with respect to the current configuration  . Fourth order 

tensor are written as capital double struck letters (    ) when stated in terms of 

reference configuration    and as double struck lower case letters (     when 

termed in current configuration  . The magnitude of tensors of any order is 

denoted by italic-faced lowercase letters and symbols (    . Cartesian 

components of vectors, second order tensors and fourth order tensors are 

written as        ,           and       (     ) respectively. The dot product 

between two vectors is represent as            , between a vector and a 

second order tensor             , between two second orders        

      . The tensor product between two vectors is given as          and 

double dot product between fourth order tensor and second order tensor 

defined as             . The transpose and the inverse are denoted by 

superscript   and    respectively. 
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1 INTRODUCTION 

Plasticity in metals describes permanent deformation, which occurs when the 

level of deformation reaches a certain point (yielding point). Plasticity is in 

particular fields of engineering desirable (e.g. industrial forging), but in cases 

where metallic structures are designed to withstand a certain load before 

yielding occurs, plasticity is unacceptable. Either way, an understanding of 

plasticity nature and the ability to predict metal behaviour during elastic-plastic 

deformation is crucial in the modern world, where engineering structures are 

inseparable part of our daily life. 

Robert Hooke in the 17th century discovered that during the reversible part of 

deformation (elastic deformation) the relation between applied load and material 

elongation is linear and can be linked with a particular constant (Hooke’s law). 

For the region of the plastic deformation the mechanical response is nonlinear. 

Hence, prediction of such behaviour is not a trivial task and during its modelling, 

certain simplifications and assumptions have to be made. 

An assumption of metal isotropy in relatively small elastic-plastic deformation 

analyses is extensively used for its simplicity and accuracy. To predict yielding 

of an isotropic material subject to various combinations of stresses, the Von 

Mises criterion [1] is commonly used. But an assumption of material isotropy 

becomes less accurate when a metal undergoes a very large deformation. It is 

well known that processes such as cold rolling, forging or shock loading change 

the level of anisotropy due to microstructure distortion. R. Hill proposed in 1948 

generalized form of the Von Mises criterion which accounts for anisotropic 

(more precisely orthotropic) plasticity but it was found out, that it cannot 

accurately represents some materials [2]. Lately, many improvements and 

suggestions of the Hill criterion have been proposed (see Introduction of 

reference [2]), but typically with the assumption that the level of anisotropy in a 

metal is fixed throughout the calculation. However, this supposition in some 

particular cases can cause insufficient accuracy in predicting material response 

to mechanical loading (e.g. springback effect after the sheet metal stamping 

process [3]) and does not allow us to fully predict physical phenomena of metal 
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deformation. Therefore, new approach of analysing anisotropic metals based on 

material microstructure is needed. 

At the beginning of the 20th century a new method to obtain specimen of a 

single crystal of metal together with a new method of determining the 

crystallographic direction by using X-ray diffractometer were discovered and 

lead to the discovery that plastic deformation results from the sliding of certain 

crystallographic planes in certain directions. Lately Boas and Schmid in 1930 [4] 

observed that a single crystal during the plastic deformation rotates and the 

material anisotropy evolves. Another question arose when it was carried out 

that the energy needed to break bonds between atoms due to slip of 

crystallographic planes is much higher than the energy which was measured in 

experiments. That was lately explained by line imperfections in the crystal lattice 

called the dislocations. This theory of plastic deformation which is happening 

due to massive flow of dislocations within the material could be confirmed in the 

fifties thanks to the electronic microscope invention [4]. 

The physical nature of plastic deformation in metals can be describe in terms of 

continuum mechanics, which is a common approach used for solving 

engineering problems as working with material on the atomistic level is not in 

engineering scale applicable. In the 80s when computers became more 

available and more powerful, models of a single crystal or a crystalline 

aggregate described using continuum mechanics were implemented into 

computers as software, e.g. into FE solvers. This appeared as very successful 

approach and development of the continuum models and their implementation 

continues to this day. Their main advantage lies in the ability to describe the 

nature of metallic anisotropy and its evolution during finite deformation and in 

the possibility to deal with complex inner and outer boundary conditions due to 

FEM framework [5]. 

The Crystal Plasticity Finite Element Methods (CPFEM) developed during the 

last 25 years are now versatile tool that is able to predict mechanical 

deformations of anisotropic single crystals or crystalline aggregates by 

modelling mechanical structures at the level of individual grains [5]. They 
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employ constitutive models based on single crystal plasticity theory within the 

framework of the Finite Element Method (FEM) to run numerical analyses of 

mechanical deformations of single crystals or crystalline aggregates. Various 

CPFEM for different materials, scales and applications have been developed. 

For more information see Section 3.4. 

The range of CPFEM applications is very extensive and it starts at micro-scale 

(e.g. bending of nanowire [6]) continues through meso-scale (e.g. analysis of 

coronary stent strut [7]) and ends at macro-scale (e.g. virtual material testing in 

automobile industry [8]). 

An analysis of plasticity in metals can be a very complex task and usually it is 

needed to make simplifying assumptions. But when dealing with various 

materials and with some specific problems such as finite deformation, these 

assumptions can cause inaccuracy in the prediction of the material behaviour. 

However, better understanding of the nature of metal deformation, complex 

mathematical models and rapid growth of computational power, allow us to run 

still more accurate and sophisticated material numerical analysis. 

1.1 Aims and Objectives 

1.1.1 Motivation 

Many metallic structures exhibit direction dependent (anisotropic) response to 

mechanical loading due to their microstructure. When modelling deformation of 

such metals, a common assumption is that the level of anisotropy doesn’t 

change throughout calculation, which is not valid for large deformations. 

Evolution of anisotropy has a significant impact on material properties. The 

Crashworthiness, Impact and Structural Mechanics group (CISM) at Cranfield 

University develops metallic material models and from on-going work, 

requirement to understand anisotropy evolution in metals during dynamic large 

deformations has arisen. The overall aim of the group’s research in this field is 

to enhance understanding of anisotropy in metals towards improving material 

models, where these materials models will allow running more accurate 

simulations of engineering problems. 
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1.1.2 Project Aim 

The aim of this project is to develop a computational tool that will be able to 

predict large deformations of a single crystal or crystalline aggregate of a metal 

of interest and will be able to trace an evolution of anisotropy within the 

material. This tool will be used in the future to study the anisotropic evolution in 

particular metals during dynamic finite deformations.  

The metals of interest to the CISM group either have an FCC structures such as 

Copper (information about its material properties are broadly available [6; 9; 10] 

and that is convenient for model validation) and Aluminium, which is widely 

used in aerospace structure; or have a BCC structures, such as Tantalum. 

1.1.3 Objectives 

 Development of a computational tool (CPFEM), which will be an 

implementation of an existing constitutive model (the single crystal 

strength model) into the framework of the FEA software DYNA3D®. 

 Validation and assessment of the tool and its ability to predict finite 

deformations and anisotropy evolution in a single crystal and 

polycrystalline aggregate of FCC metals. 

1.2 Outline 

Section 2 presents the crystal plasticity theory, which includes description of 

cubic crystals, microstructure of their aggregates, deformation mechanisms and 

a method of crystallographic projection. Section 3 introduces a basic concept of 

the continuum mechanics theory needed to understand the single crystal 

strength model, which is a mathematical description of the crystal plasticity 

theory. Section 4 explains how the single crystal strength model was 

implemented into the Finite Element (FE) framework as a material model and 

section 5 shows a validation procedure of this new CPFEM based on 

comparison of simulation analyses with experimental results. Section 6 

demonstrates ability of the new method to capture an evolution of 

crystallographic orientation linked with an evolution of anisotropy in metals. 
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Section 7 provides a summary what has been done in this thesis. Section 8 

makes conclusion of this work and proposes future projects. 
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2 CRYSTAL PLASTICITY 

Crystal plasticity theory is based on the physical understanding of metals and 

their atomistic microstructure, where metals (crystalline aggregate) are 

composed of grains (single crystals), which are comprised with molecules and 

atoms. The following is sum of the current understanding of atomistic structure 

and its behaviour during deformation, where Dieter [1] and Macek [11] were 

used as the main sources of information. 

2.1 Crystal Lattice and Dislocations 

2.1.1 Crystal Lattice 

In solid crystalline materials such as metals, atoms oscillate around their stable 

positions. These are arranged in a certain 3D pattern called a crystal lattice. 

The smallest repeating geometrical element (block of atoms) is called a unit cell 

and the crystal structure is obtained by their periodical repetition [11]. 

Depending on the form of the unit cell, 7 different crystallographic systems are 

defined, but this work accounts only for cubic crystallographic system (see 

Section 1.1.2), where the angles defining shape of unit cell are       and 

the lengths characterizing the size are      , see Figure 1 [1]. Then 

according to the number and position of atoms within the cell, the face centred 

(FCC) cubic and the body centred cubic (BCC) structures are distinguished [1]. 

 

Figure 1 - Structure of crystallographic unit cells: a) Simple cubic, b) Face 

centred cubic (FCC) and c) Body centred cubic (BCC) [1]. 
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2.1.2 Miller Indices 

To identify direction dependent properties in the crystal lattice, a unified 

description of crystallographic planes and directions was established. Imagine 

three dimensional Cartesian coordinate system with the axes      , and three 

vectors       which are determined by intersection of an arbitrary plane   and 

the axes      . Then the Miller indices for a plane (     ) are the reciprocation of 

the magnitudes of each vector       converted to smallest coprime integers 

[11]. If the intersection of   is with any negative coordinate axes, then it is 

represented in the Miller indices by an accent ̅  e.g. (   ̅  ). If the Plane   is 

parallel to one of the axes       then the particular Miller index is equal to 

zero e.g. (     ). Miller index [       for a given direction   is obtained by 

converting coordinates of   to smallest coprime integers [11]. Examples are 

given in Figure 2. 

The family of planes is noted as {       }, e.g. for family of planes {     } one 

gets set of planes:           ̅          ̅          ̅    ̅  ̅  ̅    ̅  ̅      ̅    ̅      ̅  ̅ . 

Finally, the family of directions is noted as <      >, e.g. for family of directions 

        one gets set of planes:                          ̅       

    ̅          ̅  . 

 

Figure 2 – a) An example of the Miller indices         for a given plane P,  b) An 

example of the Miller indices         for a given plane P, c) Examples of the Miller 

indices         for given directions [11]. 
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2.1.3 Dislocations 

In real crystals, a lattice is never perfect in terms of its geometry. There are four 

main types of imperfections: a) Point defects, b) Line defects c) Planar defects 

and d) Bulk defects [11]. This work here is concern only with the line defects 

known as dislocations, which are usually the main transmitter of plastic 

deformation. When sufficient shear stress is applied on the crystal, a dislocation 

is able to travel through the crystal structure as shown in Figure 3 and once it 

reaches its free surface of the crystal, a step is produced. Plastic deformation is 

due to flow of many such dislocations [11]. 

 

Figure 3 – Representation of the dislocation traveling through the crystalline 

matter due to applied shear force (upper part is slip of edge dislocation and 

lower part is slip of screw dislocation) [11]. 

The shifted and un-shifted parts in the lattice are separated by the dislocation 

line and the vector describing the direction of dislocation motion is called the 

Burgers vector [11]. Based on the mutual position of the Burgers vector and 

dislocation line, the dislocations are sorted in three types, see Figure 4 [11]: 

a) Edge dislocation, where the Burgers vector is perpendicular to the 

dislocation line. 

b) Screw dislocation, where the Burgers vector is parallel to the dislocation 

line. 
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c) Mix of a) and b), mostly observed in reality. 

 

Figure 4 – The edge dislocation together with the screw dislocation described by 

their Burgers vectors and dislocation lines [11]. 

2.2 Deformation of a Single Crystal 

When external forces are applied on a crystal, stress occurs as a consequence 

of inner forces which are trying to keep atoms in stable position. This stress is 

causing change in crystal shape and size - such a phenomena is called 

deformation. Deformation can be divided in three parts: elastic deformation, 

elastic plastic deformation and fracture [11]. 

2.2.1 Elastic Deformation 

During the elastic deformation, atoms within their lattice are deflected from the 

stable position due to external forces. But when the load is reduced, the atoms 

return back as a consequence of intermolecular forces. In terms of the 

macroscopic scale, in elastic deformation metals temporarily change their 

proportions [11]. 

Elastic properties of crystals are anisotropic and are given by relating stress 

    and strain     through the generalized Hooke’s law [11]: 
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             , (2-1) 

where       is a fourth order symmetric tensor called the stiffness matrix. 

Equation (2-1) can be written in Voigt notation as: 
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Cubic crystals have only three independents components in their stiffness 

matrices because of their symmetric planes [11]: 
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(2-3) 

The explanation of why in some circumstances polycrystalline aggregates have 

isotropic behaviour lies in the superposition of large number of randomly 

orientated crystals inside the aggregate, where the fairly uniform distribution of 

the individual anisotropic crystals is averaged over the volume [11]. 

2.2.2 Plastic Deformation 

2.2.2.1 Deformation by Slip in Perfect Lattice 

Deformation of a crystal is caused by a crystal slip (the translation of one plane 

of atoms over another) which happens on the planes with highest atomic 

density (slip planes) and in the close packed atomic directions (slip directions) 

[11]. In other words, slip occurs in the directions where least energy is required 

to move. A specific slip plane with a specific slip direction is called a slip system 

[11], with the number of slip systems depending on the crystallographic 

structure. This project is interested in FCC structure with 12 slip systems (see 

Figure 5) and BCC structure with 48 slip systems (see Section 1.1.2). 
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Figure 5 – Slip in the crystal lattice can occur on a family of the slip planes 

 {1 1 1} in the slip directions <1 1 0>, together called slip systems. FCC structure 

has 4 slip planes (grey triangles in quadrants I., II., III., IV) and each is having 3 

slip direction (red arrows), that gives 12 slip systems (reduced from 24 to 12 due 

to its symmetry) [11]. 

The plastic deformation due to a single slip can be in a very simplified way 

illustrated as a distortion of a pack of playing cards when it is pushed from one 

direction [5], see Figure 6. 

 

Figure 6 – Plastic deformation of a metal due to a single slip [5]. 

2.2.2.2 Dislocation Slip 

In reality the distortion energy, which is required to plastically deform a crystal is 

much lower than the energy which would be needed to deform a crystal with a 

perfect lattice. The reason lies in lattice imperfections, namely the dislocations 

[1]. In a real crystal lattice slip does not occur through motion of an entire plane, 

but results from motion of dislocations through the lattice. The massive flow of 

dislocations in the crystal is the main plastic deformation mechanism [1]. Note, 
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that plastic deformation does not change crystal volume and that the crystal 

lattice stays undistorted after a dislocation pass through it. 

There also different mechanisms of plastic deformation, e.g. diffusionless 

deformation types as martensite deformation and mechanical twinning. For 

more details see reference [1]. 

2.2.2.3 Resolved shear stress 

When stress occurs within a crystal, it can be resolved on each slip system  . 

When the resolved shear stress in a particular slip system   reaches a critical 

value (known as the critical resolved shear stress   
 ) then the dislocations will 

start to move in the same slip system  . A slip system, which is undergoing slip, 

is called an active slip system [1]. 

Let force   be applied on a single crystal containing only one slip system 

defined by slip direction  , normal to the slip plane   and cross-sectional area 

   (see Figure 7). The cross-sectional area of slip surface   can be derived 

from   : 

   
  

    
  

(2-4) 

where   is the angle between   and the load axis. The component of force   

acting in the slip direction can be obtained as: 

           (2-5) 

where   is angle between   and load axis. Finally the resolved shear stress   is 

obtained: 

   
  

  
 

 

  
          

(2-6) 
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Figure 7 – Derivation of the resolved shear stress in a single crystal with one slip 

system [1]. 

From the relation (2-6) it is obvious that the resolved shear stress has the 

highest value when angles   and   are equal to  
 

 
 . 

2.2.2.4 Crystal Rotation 

Let us again consider a single crystal in tension with one active slip system 

described by   and   and where the tension axis is defined by the line segment 

AB, see Figure 8. Assume that the crystal is modelled as a plastic-rigid, since 

here the elasticity can be ignored. When the slip occurs, it can be seen that the 

tension axis rotates with respect to the slip system orientation which stays 

preserved. But as in most of tensile machines, the loading axis is constrained in 

horizontal direction, the crystal has to undergo rotation in the way that the line 

segment AB returns to its vertical position [11]. 
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Figure 8 – Rigid body rotation of a single crystal during plastic deformation due 

to constrains of a tensile machine. 

The conclusion is that when the crystal is constrained (e.g. in a crystalline 

aggregate), the massive flow of dislocations can cause crystal lattice rotation 

due to the plastic deformation [11]. 

2.2.2.5 Evolution of plastic deformation in a single crystal 

Slip deformation in a single crystal starts when the resolved shear stress in the 

most favourable orientated slip system reach the value of the critical resolved 

shear stress. The plastic deformation in an annealed FCC crystal can be dived 

into three stages (for a specific direction of load, when at the beginning only one 

slip system starts to slip), see Figure 9. 
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Figure 9 – Uniaxial stress strain curve for an annealed single FCC crystal [1]. 

The first stage is called easy glide (or laminar flow) [1] where only one slip 

system is active, dislocations during their slip do not cross each other’s path, 

therefore deformation grows fast even for a small increase of the resolved shear 

stress. In this stage new dislocations arise. The crystal rotates during 

deformation and as a consequence, the critical resolved shear stress is reached 

in other slip systems.  

That is when the laminar flow change to the turbulent flow (second stage) [1], 

where the dislocation slips cross each other and the density of dislocations is 

rapidly growing (new dislocations arise). As a consequence the crystal hardens 

– more energy is required to increase the level of the plastic deformation. 

The stage number three is called the dynamic recovery [1]. The stresses within 

the crystal are high enough for the dislocations to overcome different kind of 

obstacles (e.g. another active slip system, some imperfections in the lattice). In 

this stage the rate of strain hardening is decreased. 
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2.3 Deformation of a Polycrystalline Aggregate 

A polycrystalline aggregate is composed of a certain number of grains. The 

mechanical elastic-plastic properties are strongly influenced by the orientation 

of these grains [1]. Aggregates can have isotropic properties, when they 

comprise of a large number of randomly orientated crystals and their 

superposition leads to isotropic response to mechanical loading. However, 

during finite deformation, the orientation of the crystals changes and that give 

rise to a certain preferable texture (distribution of the crystallographic 

orientations) which is the cause of the anisotropy in the polycrystalline 

aggregate. 

 

Figure 10 – Uniaxial stress strain curve for polycrystalline aggregate, which 

hardens since the beginning of the plastic deformation [1]. 

During the plastic deformation, polycrystalline aggregate exhibits stress 

heterogeneity at the grain scale due to grains mechanical interaction.  

From the beginning of the plastic deformation process more slip systems are 

active and dislocations are piling-up on the grain boundaries due to their difficult 
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penetrability [1]. All that leads to the turbulent flow and to the strain hardening 

since the beginning of the plastic deformation [1], see Figure 10. 

2.4 Plasticity in Engineering 

Plasticity in metals describes permanent deformation, which occurs when the 

level of deformation crosses the yielding point. Plasticity is in particular fields of 

engineering desirable, e.g. industrial forging but in cases where metallic 

structures are designed to withstand a certain load before yielding occurs, 

plasticity is unacceptable. Either way, understanding of the plasticity nature and 

ability to predict material behaviour during elastic-plastic deformation is crucial 

in the modern world, where engineering structures are inseparable part of our 

daily life. 

2.4.1 Yielding criterions for ductile metals 

The problem with determining when material (polycrystalline aggregate) starts 

to yield upon various combination of stress can be approximate by using yield 

surface, which is in the three dimensional space of the principal stresses set of 

yield points which define the boundary between elastic and plastic deformation 

[1].  

2.4.1.1 Maximum shear stress criterion 

The first yield criteria, which can define such a surface was established by Henri 

Tresca, Saint-Venant, Otto Mohr and James Guest during the 19th century [4]. 

Maximum shear stress criterion “assumes that yielding occurs when the 

maximum shear stress reaches the value of the shear stress in the uniaxial-

tension test” [1]: 

     

 
 

  

 
 

(2-7) 

where   is the largest and   is the smallest principal stress and 
  

 
 is the shear 

stress when in the uniaxial-tension test the material starts to yield. 
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Figure 11 – The representation of the Von Mises criterion for plane stress 

deformation of an isotropic material [1]. 

2.4.1.2 Von Mises yield criterion 

In the early 20th century Von Mises suggested a new criterion based on the 

second invariant of the stress tensor    and stated that if     reaches a critical 

value, material will start to yield [1]. The Von Mises criterion is usually written in 

the following form: 

   
 

 
        

         
         

      
(2-8) 

where    is the yield stress for uniaxial tension and          are the principal 

stresses. One of the physical interpretation of the Eq (2-8) is that the yielding 

occurs once the distortion energy (energy which is causing material shearing, 

not volume change) gets at critical value [1]. Now consider a material 

undergoing plane stress deformation. Then Eq (2-8) can be rewritten in a form 

that represents an ellipse: 

  
    

    
       (2-9) 
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such an ellipse is called the yield locus [1], see Figure 11. 

The main distinction between the Von Mises and Maximum shear stress yield 

criterion is that the latter does not take into account the middle principal stress 

and it has been proven that the intermediate principal stress influences yield 

condition of e.g. copper or aluminium [4]. Therefore the Von Mises criterion 

provides in some cases better approximation for determining material yielding. 

Note that both criterions are just empirical approximations and do not take in 

consideration anisotropic materials, where their response to mechanical loading 

is dependent on the direction of the load and boundary conditions. 

2.4.1.3 Anisotropy in Yielding 

Rodney Hill in 1948 proposed new formulation of the Von Mises yield criterion 

for an orthotropic material (special case of anisotropy): 

          
          

          
  (2-10) 

where F, G and H are constants that define the level of anisotropy. Yield locus 

for anisotropic material is distorted and is not symmetric as the isotropic yield 

locus in Figure 11. 

Many improvements and suggestions of the Hill criterion have been lately 

proposed [2], but with an assumption, that the level of anisotropy in a metal is 

fixed throughout the calculation. However, this supposition in some particular 

cases can cause insufficient accuracy in predicting material (e.g. springback 

effect after the sheet metal stamping process [3]) and does not allow us to fully 

predict physical phenomena of metal deformation. That is why there is vast 

intention of development new methods such as CPFEM. 

2.5 Pole Figures 

Pole figures [1] are discussed here, because the data (precisely, crystals 

orientation) extracted from an experiment can be compared directly with a 

numerical analysis and its accuracy can be verified. 
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The information about crystals orientation can be obtained by X-ray irradiation 

of polycrystalline aggregate using a diffractometer. A beam of X-rays strikes a 

polycrystalline aggregate. After an impact, the beam of the light is spread into 

many specific directions and from the angles and intensities of these diffracted 

beams, 2D representation of crystals orientation is obtained, which is called the 

pole figure. There two main methods of obtaining the pole figure: the 

stereographic projection (used in this project to generate pole diagrams) and 

the equal-are projection [1]. In Figure 12 is illustrated how the orientation of one 

face for a single cubic crystal [1 0 0] is obtained by using stereographic 

projection. Let’s have a single cubic crystal surrounded by an imaginary sphere 

which is cut in the middle by a plane. When a vector, which is normal to the 

crystal face, meets sphere, point A is obtained. Then, the point A is connected 

to the most southerly point of the sphere S and the point X is obtained, which is 

the intersection of line AS and the middle plane. This point X is then projected in 

the 2D pole figure. Normally pole figure represents family of directions such as 

<1 0 0>, <1 1 0 >, or <1 1 1> and for all crystals within the crystal aggregate (for 

an example see Figure 25). 

 

Figure 12 – Crystallographic projection of a single face of cubic crystal  

[1 0 0]. 
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2.6 Conclusion 

This section introduces the atomistic theory of metals and their behaviour during 

the elastic-plastic deformation, where the composition and structure of a single 

crystal and a crystal aggregate are presented together with elastic plastic 

deformation mechanisms. Afterward, common assumptions and their limitations 

when modelling plasticity in metals are discussed. At the end, the 

crystallographic projection is briefly explained as a method to obtain information 

about crystal distribution within a polycrystalline aggregate.  

The theory covered in this section provides a physical explanation of 

deformation in ductile metals. The following chapter will describe this behaviour 

in terms of continuum mechanics, which is used for solving of many engineering 

problems, including large deformations of metals. 
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3 REVIEW OF CONTINUUM MECHANICS 

Continuum mechanics description is used for solving engineering problems as 

working with material on the atomistic level is not in the engineering scale 

applicable. In this approximation, the behaviour of a large number of particles is 

simplified into a continuum mass with physical quantities that characterize 

averages over a volume. This chapter introduces the basic concepts of 

continuum mechanics, which should allow the reader to understand the 

continuum theory of Crystal Plasticity covered in this work. For more details of 

continuum mechanics, please see Reference [12], where following is a 

summary from this reference. 

3.1 Kinematics 

Kinematics is in this case a part of the continuum mechanics, which is concern 

with displacement and motion of a material body regardless to its cause [12]. 

3.1.1 Continuum body and motion 

Consider the deformable body   in the three dimensional Euclidean space 

having a continuum mass over its volume and described by continuum particles 

(material points)      [12]. This body   occupies territory    called reference 

configuration at time    and region   called current configuration at time   and it 

is related to the fixed Cartesian coordinate system with its origin   and basis 

vectors         . The motion of the body   from the reference 

configuration    to the current configuration   is described by   [12]: 

         
(3-1) 

where   is the position vector of a material point   in   and   is the position 

vector of the same material point   in   . The displacement between the 

configurations is represented by   in the Langrangian form [12]: 

                
(3-2) 
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Figure 13 – Motion of the continuum body   from the reference configuration    

to the current configuration   [12]. 

3.1.2 Deformation gradient 

Let’s consider the same deformation as in Figure 13 and introduce material fibre 

   in the reference configuration as it is shown in Figure 14, which can be 

homogenously map to the current configuration as    [12]: 

   
  

  
     

(3-3) 

where the partial differentiation is called the material deformation gradient   

[12]: 

  
  

  
            

(3-4) 

This second order tensor is description of the change of shape and size of the 

neighbourhood of the material point during the motion from the reference 

configuration    to the current configuration   [12]. 
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Figure 14 - Motion of the material fibre    from the reference configuration    to 

the current configuration   [12]. 

The determinant of the deformation gradient   is known as Jacobian 

determinant and it represents volume ratio between reference and current 

configuration [12]: 

       
  

   
 

(3-5) 

3.1.3 Strain tensor 

There is a wide range of different definitions of the strain. Here is considered 

only one, namely the Green-Lagrange strain tensor [12]. By considering change 

of square of the magnitude of the material fibre    it can be written that: 

|  |  |  |                                     

                       

(3-6) 

and from here, the Green Lagrange symmetric strain tensor is defined: 

  
 

 
          

(3-7) 
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where   is identity tensor and   is defined with respect to the reference 

configuration [12]. 

3.1.4 Deformation rates 

Next is the outline of how the position, shape and size vary with time during the 

motion          [12]. 

3.1.4.1 Material velocity gradient 

The rate of the deformation gradient is called material velocity gradient [12] and 

is defined as follows: 

 ̇  
 

  

  

  
 

 

  

  

  
 

  ̇

  
            

(3-8) 

or in index notation [12]: 

 ̇   
  ̇ 

   
  

(3-9) 

The rate of the deformation gradient represents relative velocity between two 

locations in the reference configuration    [12]. 

3.1.4.2 Spatial velocity gradient 

The velocity field is given as: 

       
  

  
 

(3-10) 

and the spatial velocity gradient   [12] is derivative of a velocity field   with 

respect to the current configuration: 

       
  

  
   

(3-11) 

which represents relative velocity between two locations in the current 

configuration  . 

The relation between the velocity gradient   and the deformation gradient   is 

[12]: 
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  ̇

  
 

 

  

  

  

  

  
  ̇      

(3-12) 

3.2 The Concept of Stress 

The motion and deformation described in previous section is caused by external 

and internal forces acting on the deformable body. These forces produce within 

the body a stress, which is defined as a force per unit area [12].  

Let us use the same kinematic framework as in Section 3.1 with an arbitrary 

external forces acting on the surface of the body and internal forces acting 

within the body. Let us consider the body cut by an imaginary plane into two 

parts as can be seen in Figure 15 and consider the lower part. Infinite small 

force    acting on the surface element is the same for the current configuration 

and for the reference configuration [12]: 

             

          ,            

(3-13) 

The Cauchy stress   and the Cauchy traction vector   [12] acting on a surface 

   with its normal unit vector   are defined in the current configuration. 

 

Figure 15 – Stress occurring due to traction vectors acting on infinitesimal 

surface elements [12]. 
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In the reference configuration is defined the first Piola-Kirchhoff stress   and the 

first Piola-Kirchhoff traction vector   (has the same direction as  , but different 

magnitude [12]) acting on a surface    with its normal unit vector  . Here the 

Cauchy’s stress theorem is introduced: 

                   

                  

(3-14) 

The first Piola-Kirchhoff stress can be pushed forward to the current 

configuration: 

              (3-15) 

or the symmetric Cauchy stress pulled back [12]: 

         (3-16) 

The first Piola-Kirchhoff stress   is not a symmetric tensor, which is not 

convenient for the use in constitute models. For that reason the second Piola-

Kirchhoff stress   [12] was introduced: 

                (3-17) 

where   is fully defined in the reference configuration. Another alternative stress 

tensor widely used is the Kirchhoff stress tensor   termed in the current 

configuration and differs from Cauchy stress only by the volume ratio   [12]: 

          (3-18) 

3.3 Objective Rates 

The constitutive laws are mostly expressed in terms of increments and it is 

important to introduce objective time derivatives of stresses [12]. 

3.3.1 Jaumann rate of the Cauchy stress 

Euclidean transformation of the Cauchy stress tensor   [12] is given by 

equation (3-19) and fulfils the requirement of objectivity. 
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           (3-19) 

where   is the proper orthogonal tensor [12]: 

                (3-20) 

However the stress rate is not objective: 

 ̇     ̇      (3-21) 

and is derived by the product rule of differentiation: 

 

  
      ̇   ̇          ̇          ̇   

(3-22) 

Rigid body rotation involves the transformation of the spin tensor  , the skew-

symmetric part of the spatial velocity gradient   [12]: 

    ̇         (3-23) 

Proof of Eq (3-23): 

Euclidean transformation of the deformation gradient  : 

   
   

  
  

  

  
    

(3-24) 

and of the spatial velocity gradient   are written as follows: 

     ̇       ̇          ̇     ̇         ̇         (3-25) 

The spatial velocity gradient can be decomposed to the symmetric and skew-

symmetric part: 

                      (3-26) 

where the   is the stretch rate tensor and   is the spin tensor [12]: 

  
 

 
           

(3-27) 
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(3-28) 

Note that   is not a pure rate of plastic strain and   is not a pure rate of rotation 

[12]. 

By using Eq’s (3-25),(3-26), (3-28) the Eq (3-23) the equation can be proven: 

   [
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( ̇            )  

 

 
    ̇               

  ̇          

(3-29) 

Now from Eq (3-23) it is possible to express rate of the orthogonal tensor   and 

its transpose    [12]: 

 ̇         (3-30) 

    ̇             (3-31) 

By implementing Eq’s (3-30) and (3-31) into Eq (3-22) following expression is 

obtained: 

 ̇                   ̇                      

then the relation can be written that: 

(3-32) 

  ̇             ̇           (3-33) 

and the Jaumann rate of Cauchy stress    [12] which is the term in the brackets 

can be introduced: 

    ̇         (3-34) 

Finally, its objectivity can be proved: 

   
        (3-35) 
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3.3.2 Jaumann rate of the Kirchhoff stress 

Euclidean transformation of the Kirchhoff stress tensor   [12] is given by 

equation (3-36) and fulfils the requirement of objectivity [12]. 

           (3-36) 

where   is the proper orthogonal tensor [12]: 

                (3-37) 

However the stress rate is not objective: 

 ̇     ̇     (3-38) 

and is derived by the product rule of differentiation: 

 

  
      ̇   ̇          ̇          ̇   

(3-39) 

which can be written in terms of Cauchy stress [12]: 

 

  
       ̇            ̇           ̇   

(3-40) 

By implementing Eq’s (3-30) and (3-31) into Eq (3-40) and with defining the 

material time derivative of the volume ratio  ̇         the following can be 

written: 

 ̇     ̇                     ̇        ̇                      

and then following expression obtained: 

(3-41) 

  ̇                     ̇                   (3-42) 

Finally the Jaumann rate of Kirchhoff stress    [12] in terms of Cauchy stress 

can be introduced: 

    ̇                (3-43) 

and by using Equation (3-34) one get relation as: 
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                      (3-44) 

3.4 Single Crystal Strength Model Theory 

The atomistic nature of metals and its behaviour during mechanical deformation 

can be described by numerous crystal plasticity models which are based on 

continuum mechanics. Following gives their brief review, for broader overview 

please see reference [3]. 

The main distinctions between crystal plasticity models are in: 

1. Solving problems with different material microstructure (FCC [6; 9; 13], 

BCC [14], HCP crystal systems [15][16]). 

2. Different representation of the crystallographic texture: 

a. Discrete mapping, where each integration point in the finite 

element mesh is representing a single crystal or a grain [7; 10; 

15]. 

b. Homogenization, where averaged material properties over volume 

are used [17; 18]. 

3. Solving problems with different deformation mechanisms (crystal slip 

[10], twinning [16; 19], martensite formation or damage [3]). 

4. Using different types of constitutive models: 

a. Phenomenological - the constitutive laws are based on empirical 

observations [20; 21]. 

b. Microstructure-based approach - the constitutive laws capture 

more precisely nature of plastic deformation; an example is a 

model which is built on the dislocation density theory [22-24]. 

In this research has been chosen the Single Crystal Strength Model, because it 

is able to predict deformation of FCC and BCC structures [20] with different 

strain rate setting and its details description is available as it has been used by 

many other researchers [7; 10; 21; 25-27]. 

The bases of the Single Crystal Strength Model theory were laid by Taylor [28]. 

Later, Rice [29] and Hill and Rice [30] developed general framework for the 
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finite elastic-plastic deformations for the rate independent materials, which was 

extended by the rate dependent constitutive law by Peirce et al [31]. Many 

researches made vital contribution to the crystal plasticity theory and following 

is a summary of their work [3; 27; 32-35]. 

3.4.1 Kinematics of Plastic Deformation 

Dislocation slip is introduced in this work as the only plastic deformation 

mechanism and is presented in the context of continuum mechanics. The 

consequence is that the atomistic representation of the structure is lost, but the 

slip system geometry and stress notion are preserved. First, theoretical 

description of a single slip for kinematics with small deformations will be 

introduced and later it will be extended for finite deformation caused by the 

multislip. 

Let’s assume that a single crystal element is a deformable continuum body, 

denoted by  , which is composed of a set of material points, represented by 

     and is considered in the three-dimensional Euclidean space at a given 

time  . Further, a fixed reference frame described by Cartesian coordinate 

system in three dimension with a fixed origin   and basis vectors          

(where    is perpendicular to the paper) is introduced. Let’s presume that this 

crystal element has only one crystal slip plane (one slip system) defined by the 

crystallographic direction represented by two unit vectors:   as a normal to the 

slip plane and   as a slip direction of the dislocation flow. These vectors remain 

during plastic shearing unchanged, as well as the volume of the crystal [20], see 

Figure 16. 
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Figure 16 – Single crystal element with one slip system described in sense of 

continuum mechanics [27]. 

3.4.1.1 Small plastic deformation of a single crystal 

Now, consider a crystal element   (with the same properties as described 

above) with a material point      at time    , where its position is defined 

by a material vector    in the reference configuration   . During plastic 

shearing given by a shear   , the material point   moves to a point   that is 

termed in the current configuration   at time   . Position of   is described by a 

spatial vector   . This shearing is given by motion  : 

             (3-45) 

Finally,    represents in Figure 17 the displacement between points   and  . 

That is described as follows (in Lagrangian form): 

                     (3-46) 

 

Figure 17 – Plastic shearing on a slip system [27]. 
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When assumption of small rotations (      ) and stretching is applied, it can 

be written that: 

 

 
    

(3-47) 

        (3-48) 

         (3-49) 

It can be seen that: 

  |  |  (3-50) 

|  |        (3-51) 

Now: 

   |  |   (3-52) 

                        (3-53) 

And in index notation: 

                  (3-54) 

After differentiating both sides with respect to the time one gets following: 

 

  

   

   
 

 

  
       

(3-55) 

Expressed in Newton’s notation: 

  ̇ 

   
  ̇      

(3-56) 

Next, chain rule is applied: 

  ̇ 

   
   

   
  ̇      

(3-57) 

And finally: 
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  ̇ 

   
  ̇      

(3-58) 

where the left side of the equation is the material velocity gradient defined with 

respect to the reference configuration,     is the tensor product between the 

slip direction and normal to the slip. 

In the case of multislip, the total plastic deformation is a superposition of shear 

strains in each active slip system   and Equation (3-58) can be re-written for   

slip systems, then it stands that: 

   ∑  ̇      

 

   

  
(3-59) 

where superscript   is always since now associated with the plastic 

deformation. Note that the calculations above are summary from the reference 

[27]. 

3.4.1.2 Finite plastic deformation of a single crystal 

Rice [29] extended theoretical description of a slip for cases of finite 

deformation. Procedure from section above becomes valid for a large 

deformation (small rotations and finite stretching) if it is considered as a 

sequence of small deformations, i.e. small microstructural rearrangements 

governed by its associated forces. 

If in the same framework (Figure 17), the crystal element undergoes again 

plastic deformation, where the shear is considered small, from deformed 

configuration at time   to further deformed state at time     , the material point 

X and x are substituted by xt and xt+∆t and if the same process as for small 

deformation is followed, one can write: 

  ̇   ̇         (3-60) 

  ̇

  
  ̇     

(3-61) 
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where the left side of the Equation (3-61) is the spatial velocity gradient    (the 

incremental deformation happened this time in the current configuration) and 

where   is a slip direction of the dislocation flow and   is the normal to the slip 

plane, both defined with respect to the current configuration. For the case of 

multislip, the total plastic deformation is a superposition of shear strains in each 

active slip system   and it can be stated that [27]: 

   ∑  ̇      

 

   

  
(3-62) 

This spatial velocity gradient can be decomposed into the plastic symmetric and 

skew-symmetric part which is rate of deformation sometimes called stretch rate 

tensor or simply stretch tensor    and spin tensor    respectively: 

   
 

 
         

 

 
                

(3-63) 

As it was mentioned before    is not a pure rate of plastic strain and    is not a 

pure rate of rotation [12]. 

Considering ideal plastic deformation due to a single slip on the crystal element 

it can be showed that: 

   [
   
   
   

] ⇒    [
   
   ̇
   

] ⇒   [

   
   ̇  
  ̇   

]     [

   
   ̇  
   ̇   

] 
(3-64) 

where    is the deformation gradient. This decomposition of the plastic shearing 

can be illustrated such as in Figure 18. 

 

Figure 18 – Simple plastic shear decomposed into pure shear and rotation [27]. 
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3.4.2 Kinematics of Finite Elastic Plastic Deformation 

Now, consider a finite elastic-plastic deformation of a crystal element (as 

defined in Section 3.4.1), where the deformation gradient   can be decomposed 

into to the lattice part (superscript *) and the plastic part (superscript  ) [3]: 

        (3-65) 

This multiplicative decomposition is done in order to express the deformation in 

two steps (see Figure 19): 

After applying certain amount of external forces on the crystal element in the 

reference configuration   , plastic shearing occurs denoted by shear   and last 

until the intermediate configuration      is reached. This permanent material 

deformation leaves the crystallographic orientation and elastic properties 

unchanged and is driven by the plastic part of the deformation gradient   . This 

shearing happens on a slip system defined by a pair of unit vectors: normal to 

the slip plane   and its slip directions  . In the case of multislip, the total plastic 

shear   is a superposition of shear strains in each active slip system. 

The plastic shearing is followed by an elastic stretching and an elastic/rigid body 

rotation denoted by   , until the current configuration   is reached. The reason 

of the rigid body rotation is explained in Figure 8. Note that the slip system 

move together with the lattice and is characterized by the slip direction   and 

normal to the slip planes  , both termed in the deformed configuration and for   

number of slip systems   it can be stated that [21]: 

             (3-66) 

                 (3-67) 

In reality both deformations are happening at the same time. 
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Figure 19 – 3.2 Kinematics of finite elastic plastic deformation of the 

single crystal element [3]. 

For constitutive models it is necessary to express the crystal element 

deformation as a sequence of small deformations governed by spatial velocity 

gradient   and time increment    [27]. The relation between the velocity gradient 

  and the deformation gradient   is: 

  
       

  
 

  ̇

  
 

 

  

  

  

  

  
  ̇      

(3-68) 

and by substituting Equation (3-65) into (3-68) one gets following relation: 

 ̇       ̇           ̇              (3-69) 

In addition,   can be additively decomposed as in Equation (3-63) into the 

symmetric and anti-symmetric part: 

  
 

 
       

 

 
            

(3-70) 

Note that   is not a pure rate of plastic strain and   is not a pure rate of rotation 

[12]. 
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Furthermore the stretch rate tensor   and spin tensor   can be broke down to 

lattice part and plastic part for the same reason as it was done for the 

deformation gradient: 

         (3-71) 

         (3-72) 

where the plastic part of the stretch rate tensor    and the spin tensor    are 

the only contribution to the plastic shearing [27]. They can be related to the 

deformation tensor due to Equation (3-69) [27]: 

         ̇              (3-73) 

and are explicitly given with respect to the current configuration as it was shown 

in Equation (3-62): 

      ∑  ̇          

 

   

 
(3-74) 

or with respect to the intermediate configuration, the rate of residual 

deformation can be expressed by combining Equations (3-66), (3-67), (3-73) 

and (3-74): 

 ̇        ∑  ̇      

 

   

 
(3-75) 

Now for convenience, two second rank tensors for each slip system   are 

defined according to additive decomposition in (3-63)2 and Equation (3-62) [27]: 

     
 

 
                      

(3-76) 

     
 

 
                      

(3-77) 

where: 

   ∑      ̇ 

 

   

 
(3-78) 

and: 
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   ∑      ̇  

 

   

 
(3-79) 

3.4.3 Constitutive laws 

In Figure 7 it has been shown how stress for each slip system   in a single 

crystal can be resolved in particular slip direction   on given slip plane  . 

The Equation (2-6) represents well-known Schmid’s law [1] and can be 

represented in convenient tensorial form for each slip system   in the current 

configuration. Assuming that elastic deformation is negligible it can be written 

that [34]: 

                 (3-80) 

where  , the symmetric Kirchhoff stress tensor, which is defined with respect to 

the current configuration. 

Rate of the resolved shear stress can be obtained by using differentiation of 

(3-80): 

 ̇     ̇                 ̇               ̇     (3-81) 

employing next two rate Equations: 

 ̇                 (3-82) 

 ̇                  (3-83) 

and by definition of the Jaumann rate of Kirchhoff stress (see section 3.3.1), 

finally the rate is obtained: 

 ̇                               (3-84) 

where     is the Jaumann rate of Kirchhoff stress based on axes that rotate with 

the crystal lattice. 

When the resolved shear stress occurs on the slip system  , it still doesn’t 

mean that the shearing will follow. The stress has to reach or pass over a 
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certain level, named the slip system critical resolved shear stress   
  [3] and in 

such a case, the slip system is called active: 

         
  (3-85) 

       ̇     (3-86) 

In this work is used the rate dependent viscoplastic power law introduced by 

Hutchinson [36] which is relating the strain rate of the slip system  ̇  with the 

ratio of the resolved shear stress    and the critical resolved shear stress   : 

 ̇   ̇ |
  

  
 |

 

         
(3-87) 

where  ̇  is the reference strain rate on the slip system α and   is the rate 

sensitivity exponent. Rate dependency is useful when dealing with creep, with 

material at high temperature or with dynamic problems at high deformation rate. 

The rate independency can be set as the rate sensitivity exponent goes to 

infinity    , then the material is considered to have rate independent 

behaviour. Note, that by using this approach every slip system is considered to 

be active. But for rate independent material (   ) and for low resolved shear 

stress it is obvious that: 

         
  (3-88) 

       ̇     (3-89) 

As it was shown, plastic deformation is described in terms of the rate of shear 

strain  ̇  and the resolved shear stress   . These two variables were chosen so 

that they satisfy work conjugacy:     ̇  is equal to the rate of work as a result 

of slip on slip system   per unit of reference volume [27]. 

3.4.4 Strain Hardening 

During plastic deformation the metal is hardening. That is due to complexity of 

dislocation flow throughout the polycrystalline structure and dislocation 

generation itself [1]. Here is used phenomenological description developed by 

Hutchinson [36], which has been proven as sufficient approach by numerous 
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researchers [7; 8; 20] and it is widely used, although it lacks from some physical 

aspects (grain size dependency, dislocation interaction with grain boundary). 

The strain hardening on a given slip system   is expressed by the evolution of 

the critical resolved shear stress   
  through the incremental relation: 

 ̇ 
  ∑    | ̇ |

 

   

  
(3-90) 

where   is the number of slip systems and     is the hardening matrix [37]: 

       [  (  
  

 

  
)

 

]  
(3-91) 

In the Equation (3-91)    is the initial hardening,    is the saturation stress,   is 

slip system hardening parameters and     is for FCC metals with 12 slip 

systems a 12 by 12 matrix, where the diagonal values are equal 1 (self-

hardening) and the rest are the ratios of latent-hardening to self-hardening 

(usually between 1 and 1.4 [33]). 

The Equation (3-91) captures: 

1) self-hardening (influence of hardening of slip system   on slip in  ), 
2) latent-hardening (influence of hardening of slip system   on slip in  ). 

3.4.5 Overall Constitutive law 

Keeping in mind that the crystallographic slip does not affect elasticity and by 

following Hill and Rice [30], the Jaumann rate of Kirchhoff stress     can be 

related to the lattice part of the stretch rate tensor    as the elastic law [21]: 

          (3-92) 

or in terms of Cauchy stress (for proof see Section 3.3.2): 

                  (3-93) 
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where   is the four-rank tensor of elastic moduli in the spatial description with 

minor and major symmetries (21 independent components) and     is the stress 

rate on axes which rotate with the crystal lattice [21]: 

     ̇             (3-94) 

with  ̇ the material derivative of Kirchhoff stress. The Jaumann rate of Kirchhoff 

stress    can be based on axes which rotate with the material, then: 

    ̇           (3-95) 

where the difference is: 

                 ∑      ̇ 

 

   

  
(3-96) 

where: 

                    (3-97) 

Finally, by using Equations (3-71), (3-78), (3-92) and (3-96) one can derive 

constitutive law [21]: 

                ∑[           ]

 

   

 ̇     
(3-98) 

3.4.6 Simplification to 1D Problem 

To illustrate the multiplicative decomposition of the deformation gradient and the 

relation expressed in Equation (3-98), one can think of a crystal specimen in 

tension test which is deform up to strain   and is simplified as 1D problem (1D 

stress state together with 1D strain state – considering not real material 

properties). In Voigt notation, strain    can be decomposed into the elastic and 

plastic part: 

     
    

 
 (3-99) 

and so its rate: 
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  ̇    ̇
    ̇

   (3-100) 

It was stated that stress is determined solely from the elastic part of the 

deformation and then it can be written that: 

         
   (3-101) 

where     is a component of the stiffness matrix. Further, by substituting Eq 

(3-99) into Eq (3-101) it can be written that: 

 ̇        ̇        ̇
 
 (3-102) 

and in case of the crystal multislip: 

 ̇        ̇  ∑       ̇
    

 

 

   

 
(3-103) 

where the sum is over the   active slip systems  . The Eq (3-103) express the 

same as the Eq (3-98) but in simplified approach, that can help to understand 

and appreciate the main constitutive law in the single crystal strength model 

[27]. 

3.5 Conclusion 

In Section 3 the basic theory of continuum mechanics, which includes 

kinematics of deformation, concept of stress and time objective derivatives has 

been introduced together with the single crystal strength theory, which sits on 

these parts of the continuum mechanics. 

It has been demonstrated, how the physical understanding of elastic-plastic 

deformation can be represented as a mathematical model in terms of continuum 

mechanics theory. This mathematical description, the single crystal strength 

model, will be in following section implemented into the finite element code and 

used in computational analysis of large deformation of crystals and their 

aggregates. 
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4 MODEL IMPLEMENTATION AND PRE/POST PROCESS 

SOFTWARE DEVELOPMENT 

Continuum mechanics is a tool that allows interpreting nature of specific 

materials and their behaviour during deformation process into a simplified 

mathematical model. Then such a model can be implemented into Finite 

Element (FE) framework as a material model and used to perform 

computational analysis and solve particular engineering problems. 

Commercial FEA software products do not provide crystal plasticity (CP) 

material models. But users can write their own constitutive models and 

subroutines by using special interfaces (e.g. in Abaqus®/Standart such 

interface is called UMAT), or if the source code of a FEA software is available, 

by implementing CP material models directly into the programmes, which is the 

case of this project. 

In this work the single crystal strength model (described in Section 3.4) is 

implemented as material model directly into the explicit FE solver LLNL - 

DYNA3D® [38] by following implicit FE solver ABAQUS®/Standard User 

Material Subroutine (UMAT) developed by Huang [21] and schematic layout 

done by Harewood [39]. The reason why the model is incorporating into the 

explicit FE solver is that the future intention is to study dynamic engineering 

problems. 

Furthermore, new methodologies including new software for pre-processing and 

post-processing were developed. 

4.1 Explicit vs. Implicit FEM 

DYNA3D® is an explicit FE solver which is design to run dynamic simulations, 

while Abaqus®/Standard is an implicit solver dealing with quasi-static 

simulations. In a simplified way it means that DYNA3D® uses very small times 

steps to hold force and displacement equilibriums. The Abaqus®/Standard 

implementation allows large time steps but in order to solve for equilibrium it 
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uses an iterative method. For more information about comparison of the implicit 

and explicit FE methods see reference [25]  

4.2 Model Implementation 

For description of the DYNA3D® software architecture see Reference [40]. 

4.2.1 Incremental Formulation 

The implemented CP material model within the FEM framework DYNA3D® has 

five main functions [21]: 

1) Calculate increment of the critical resolved shear stress   
  in each slip 

system of a single crystal. 

   
  ∑    |   |

 

   

 
(4-1) 

2) Calculate increment of the resolved shear stress      in each slip system 

of a single crystal. Using Equations (3-84), (3-43), (3-93), (3-71), (3-72) 

and (3-74) following is obtained: 

     [        
   

    
   

       
   

   ]  [     ∑     
   

 

   

     ] 

(4-2) 

where      is total strain increment in the deformation,       is the tensor 

of elastic moduli,     is the current stress tensor,    
   

 and    
   

 are 

second order tensors related with the rate of stretching, respectively with 

the spin tensor (see Equations (3-76) and (3-77)). 

3) Calculate increment of the corotational stress increment      of a single 

crystal using Equation (3-98): 

                         ∑[         
   

    
   

       
   

   ]

 

   

      
(4-3) 

4) Calculate increment of shear strain       in each slip system 
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       ̇       (4-4) 

where  t is the time increment  ̇    can be carried out from Equation 

(3-87). 

5) Rotate the crystal lattice, which is deformed only due to elastic 

deformation. Equations (3-82) and (3-83) can be re-written in the 

incremental form: 

   
    {           ∑  [   

   
    

   
]

 

   

     }    
   

 

(4-5) 

       
   

{           ∑  [   
   

    
   

]

 

   

     } 

(4-6) 

where   
   

 and   
   

 are the slip direction of the slip system   and normal 

to the slip plane respectively. 

4.2.2 CP Material Model in DYNA3D® as Subroutines 

The CP material model is implemented into DYNA3D® as four subroutines: 

1) f3dm94.f is the main subroutine which is called by DYNA3D® for every 

integration point, which represents a single crystal, and for each iteration. 

At the beginning the FE solver provides the subroutine with the strain 

and time increment   t    ), the stress tensor ( ) and the material data as 

the crystallographic orientation, the elastic stiffness tensor, the critical 

resolved shear stress (  
 ) and the shear strain (  ) for each slip system. 

All these quantities are at the begging denoted at the time t (except the 

strain and time increment). Then they are updated according to the 

model and forward Euler explicit integration scheme (e.g.           ̇  

   . Then they are passed back to the FE solver. Note that all 

calculations are done in global coordinate system (CS). 

2) slipsys.f subroutine generates all slip systems in material coordinate 

system (for FCC 12 slip systems and for BCC 48 slip systems). 
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3) inse94.f is called by DYNA3D® just at the beginning of a simulation and 

for each integration point. This subroutine determines initial values of the 

material coordinate system, the critical resolved shear stress on each slip 

system and the crystal orientation matrix T (which

transform material CS to global CS). Then it calls slipsys.f and afterward 

it rotates slip systems from material CS to global CS. 

4) m2g_stif94.f is a subroutine which transform the elastic stiffness matrix 

from material CS to global CS using crystal orientation matrix T. This 

subroutine is called in each f3dm94.f. 

4.2.3 Algorithms for the single crystal strength model 

Note that an initial implementation of UMAT [21] into DYNA3D® was available 

at the beginning of this project. 

Simplified scheme of the algorithm is as follows: 

4.2.3.1 Initialization (inse94.f) 

This subroutine is called only at the beginning of each simulation for each 

integration point. 

1) Calculating crystal orientation in the global CS – these data are obtained 

from the input file in the Card 6 (Material Type 94 – Crystal Plasticity) 

which is provided by the user when running DYNA3D® simulation, see 

Appendix B. 

2) Calculating the second order transformation tensor T, this is later used 

for converting the stiffness matrix from material CS to global CS and is 

also used for tracking the evolution of crystal rotation during deformation: 

       (4-7) 

where   is a second order tensor defining global CS and   is the second 

order tensor defining material CS in global CS. Here note that this tensor 

  was implemented later, when need of trace of crystallographic 

orientation was discovered. 

3) Setting up slip systems in the material CS. 
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a. For FCC 12 slip systems. 

b. For BCC 48 slip systems. 

4) Rotating slip directions and slip planes into the global CS using 

transformation tensor T. 

5) Initializing values of the current strength of each slip system   
 , which is 

obtained from the input file in the Card 6 (Material Type 94 – Crystal 

Plasticity), see Appendix B. 

4.2.3.2 Main subroutine 

The main subroutine progress as follows: 

1) Calculating the second order tensor      from Eq (3-76), using values of 

  and   from previous increment. These values are stored in vector 

slpdef: 

            

[
 
 
 
 
 
   

   

   

    

    

    ]
 
 
 
 
 

 

(4-8) 

2) Calculating spin tensor      from Eq (3-77). 

            [
   

   

   

] 
(4-9) 

3) Calculating shear strain rate  ̇  (fslip[ ]) in each slip system according to 

Eq (3-87) by calling function strainrate. 

4) The orientation matrix T can be rotated as it was done by Raphanel et al. 

[41]. This rotation is happening only due to elastic deformation of the 

crystal. 

              (4-10) 

where “the exponential of an anti-symmetric second-order tensor is an 

orthogonal tensor that can be determined by the Rodrigues formula” [41]: 
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(4-11) 

where    √   
    

   . The details about the code of updating 

orientation matrix can be found in Appendix A.1. 

5) Rotating the fourth order elastic stiffness matrix      from the material CS 

to the global CS by using matrix T, the main subroutine is calling for this 

operation the subroutine m2g_stif94.f. 

6) Calculating ddemsd which is used in the calculation of the increment of 

the resolved shear stress 

       [        
   

    
   

       
   

   ] 
(4-12) 

7) Calculating of the hardening matrix     (in the code it is written as 

      ) for each slip system according to Eq (3-91). The main subroutine 

is calling function latentharden(). To choose hardening as in UMAT 

developed by Huang [21] choose in the material card in column 51-60 

value 1.0. (see Appendix B), other value will implement hardening as in 

Kalidindi [20], also described in Eq (3-91) which code implementation 

can be seen in Appendix A.2. 

8) Calculating the increment of the shear strain            as in Equation 

(4-4). 

9) Updating the shear strain    for each slip system. 

                                 (4-13) 

10)  Calculating the increment of the current strength of each slip system 

(            ) by according to Equation (3-90). 

11)  Updating the current strength in each slip system 

                           (4-14) 

12)  Calculating       , which is lately used to rotate the slip systems 
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            {           ∑  [   
   

    
   

]

 

   

     } 

13)  Calculating increment of the resolved shear stress in each slip system 

(         ) according to Equation (4-2). 

14)  Updating resolved shear stress    in each slip system. 

                            (4-15) 

15)  Calculating the increment of the stress tensor (             ) based on 

Equation (4-3). 

16)  Updating the stress tensor 

                                (4-16) 

17)  Calculating the increments for slip directions (              ) and the 

normal to the slip plane (              ) as in Equations (4-5) and (4-6). 

18)  Updating slip directions    and normals    for each slip system. 

                                         (4-17) 

                                         (4-18) 

The subroutine f3dm94.f is called for each integration point and for each 

iteration. 

4.3 Debugging of the new Implementation 

Testing of the initial implementation of the UMAT-Single Crystal Plasticity [21] to 

DYNA3D® during simulation of a metal deformation showed that the model 

results were unrealistic. Therefore a methodology to debug the code was 

developed. 

The debugging process of the new CPFEM was done by comparing results 

from a set of simulations obtained by using UMAT-Single Crystal Plasticity [21] 

and the new CPFEM. This was a long process where each value included in the 

code was saved for each iteration in a specific file and compared. This allowed 
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to find differences and to track a bug in the code. For an example see Appendix 

A.1. 

4.4 Generating Material Input File for DYNA3D® 

At the beginning of a simulation DYNA3D® reads the material properties of a 

model from the  material cards in the input file, see Appendix B. When a model 

is composed from many crystals with varied orientation, each crystal has to 

have its own material card. To write these cards manually would be very 

inconvenient and would not be realistic in a case of modelling initially annealed 

material represented by a large number of randomly orientated crystals. 

Therefore a new script written in Fortran 90 was developed to generate material 

cards and assign to each of them fairly random orientation. For detailed 

description of the script please see Appendix A.3. 

4.5 Plotting Stress Strain Curves 

A stress strain curve is in engineering used as a way to define material 

behaviour during a deformation (as it can be seen in Section 6) and it implicitly 

relates force which deforms material with the level of deformation. It is also one 

of the ways how to validate a computational model by making comparison with 

experimental data (etc. as it was done in this work in Section 5). 

However DYNA3D® does not provide a tool that would be able to plot stress 

strain curves. What DYNA3D® can provide are reaction forces of each node in 

the model (when in the input file for DYNA3D® seventh option in the card 3 is 

set to one, see Appendix B). Then, after a simulation, file named forrct is 

generated. A script written in Visual Basic Application (VBA) was developed to 

plot the stress strain curve by using data from a file forrct. User defines in a 

Microsoft Office - Excel interface size of a computational model, speed of the 

nodes which are constrained to a motion, time step for which DYNA3D® plots 

data to forrct and termination time of the simulation. After a single click on the 

button “Stress-Strain Curve” user will be asked to select location of a forrct file 

and then the script will plot stress strain curves. This script allowed very fast 

analysis of the material properties and their evolution during a simulation. All 
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stress strain curves plotted in this work were done by using this script. For more 

details see Appendix A.4. 

4.6 Tracing an Evolution of Crystallographic Orientation  

In order to be able to enhance understanding of anisotropy in metals by using 

CPFEM (see Section Aims and Objectives) it is very important to be able to 

investigate an evolution of crystallographic orientation in any time during a 

deformation and to determinate a level of anisotropy within a testing material. A 

method crystallographic projection, which provides the information about 

crystallographic orientation (see Section 2.5), was chosen for this work, 

because the data extracted from an experiment can be compared directly with a 

numerical analysis and accuracy of an experimental prediction can be obtained 

(etc. as it is done in Section 5.2.). However, DYNA3D® does not provide a tool 

to obtain crystallographic projection and plot pole figures. Therefore, new 

method was developed. 

4.6.1 MATLAB® Toolbox for Quantitative Texture Analysis 

MTEX [42] is a tool that is able to plot pole figures (see Section 2.5) if data 

about crystal orientation are available. This toolbox was review and considered 

as convenient for determining a level of anisotropy within a computational 

model. 

To fully define a crystal orientation in a fixed Cartesian coordinate system with 

orthonormal base vectors       and   , three vectors are required    
    

  and 

  
 , which denote an orthonormal basis of a crystal. Each vector   

    
  and   

  

has three components in the fixed Cartesian coordinate system, so if only one 

crystal is taken into consideration, MTEX require an array     to plot its pole 

figure (each column represents each vector   
 ). For   crystals, MTEX has to be 

provided by an array        . This array can be extracted from the CP model, 

see following section. 
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4.6.2 Extraction of Crystal Orientation from the CP Model 

With the initial implementation of the UMAT into DYNA3D® it was inconvenient 

to extract information about orientation of crystals. Therefore a new crystal 

rotation treatment was implemented, for more information see Section 4.2.3.2 

and Appendix A.1.  

In the CP model the information about a crystal orientation is provided by the 

orientation matrix T (     in terms of <1 0 0> directions. This matrix is updated 

in every time increment, see Equation (4-10). Each column in this matrix 

represents an orthonormal base of a crystal   
 . This matrix T and its evolution 

during deformation is passed to the d3plot file, which can be open by post-

processing software Ls-PrePost [43]. The information of the crystal orientation 

(expressed as 9 components of the matrix T) can be found under the history of 

an element as variables “history var#1 – history var#9”.  

4.6.3 Formatting Extracted Data from the CP Model 

Data about crystal orientation extracted from the CP model from LS-PrePost 

(history var#1 – history var#9) has to be saved and formatted in order to plot 

pole figures by using the toolbox MTEX. This formatting was done by 

developing an algorithm in in Matlab®, which gather data (9 components of the 

T matrix for a single crystal) and pass them to the toolbox MTEX which plots a 

pole figure (see for example Figure 25). For detailed description of the saving 

process and the algorithm see Appendix A.5. 

4.7 Conclusions 

In this section was shown how the CP material model was implemented into the 

explicit FE solver DYNA3D® based on the work of Huang [21]. This 

implementation will allow prediction of a finite metal deformation as it is shown 

in the following sections. The reason why it was decided to implement UMAT 

into an explicit FE solver is that the future intention will be to investigate material 

response to dynamic mechanical loading.  
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5 MODEL VALIDATION 

After development of the new CPFEM tool in previous section, the objective of 

this section is to show its validation in terms of: 

 Demonstrating the CPFEM ability to predict large deformation of a single 

crystal or polycrystalline aggregates of particular metals. 

 Recognizing accuracy of such prediction. 

 Identifying limits and imperfections of the CPFEM. 

 Identifying possible improvements. 

5.1 Comparison with User-material Subroutine (UMAT)-

ABAQUS® 

UMAT is a user interface in Abaqus®/Standard [44] that allows defining material 

models, which were not included in the commercial pack. In 1991 Huang [21] 

incorporated the single crystal plasticity theory into the FEA solver Abaqus® 

and this work is its implementation. Therefore, first validations of the material 

model were done by comparing results from various simulations obtained from 

UMAT-Single Crystal Plasticity [21], (which was already used by other 

researcher with reasonable results [7]) and DYNA3D®. 

5.2 Comparison with Experimental Data 

A broad survey of experiments done by other researchers [7; 10; 26; 45] was 

done in order to find suitable data to validate the CP model by re-running these 

experiments and by comparing their results. Experiments done by Kalidindi [20] 

using copper material were reviewed and chosen for our validation. Some of the 

experiments done by Kalidindi were repeated by using the CPFEM developed in 

this work and results were compared. The outcome was that the results were 

not in agreement, for an example see Figure 20. That has been assessed and it 

was discovered that the discrepancy is due to the different strain hardening 

approach which was used by Huang [21] and Kalidindi [20]. Therefore new 

hardening was implemented, for more details see Section 3.4.4 and Appendix 

A.2. These simulations were repeated with a new strain hardening, results can 

be seen in following sections. 
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Figure 20 – Comparison of stress strain curves of experiment done by Kalidindi 

[20] (compression of a single crystal, the same experiment as in Section 5.2.1) 

and the new CPFEM method with the strain hardening proposed by Huang [21]. 

5.2.1 Large Deformation of a Single Crystal 

To validate the CP material model and its integration into the FE framework, 

simulation of a large deformation of a single crystal OFHC copper at room 

temperature was performed and the results were compared with experimental 

measurements [20]. 

5.2.1.1 Material Data 

The material used in the simulation was an annealed single crystal of OFHC 

copper, where the components of its stiffness matrix are shown in Table 1 [14], 

or in terms of elastic modulus, shear modulus and Poisson’s ratio in Table 2. 

Table 1 – Components of the stiffness matrix as illustrated in Equation (2-3), for 

an annealed single crystal of OFHC copper [20]. 

            

170 GPa 124 GPa 75 GPa 
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Table 2 – The elastic modulus E for cubic symmetry is the same for the 

longitudinal direction, transverse direction and normal direction. G is the shear 

modulus and   is the poisson’s ration. 

      

67 GPa 75 GPa 0.42 

The relations between the stiffness matrix components and elastic modulus, 

shear modulus and Poisson’s ratio for a material with the cubic symmetry can 

be seen by comparing Equations (2-1) and (5-1). 
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(5-1) 

where  ̂ is elastic modulus modified by poisson’s ratio: 

 ̂  
 

           
 

(5-2) 

Hardening of the slip systems in the simulation happens according to the 

Equation (3-91), where    is the initial hardening,    is the saturation stress,   is 

slip system hardening parameters,   is the rate sensitivity parameter,  ̇  is the 

reference strain rate on the slip system α and     is for FCC metals with 12 slip 

systems a 12 by 12 matrix, where the diagonal values are equal 1 (self-

hardening) and the rest are the ratios of latent-hardening to self-hardening 

choose in this case as 1.4 [46]. The values for the slip hardening are given in 

Table 3. 

Table 3 – Slip hardening values used in the simulation are the same as used by 

Kalidindi [20]. 

        
       ̇  

250 MPa 190 MPa 16 MPa 2.5 83.33 0.001     
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5.2.1.2 Boundary Conditions and Mesh 

Let the orthonormal base vectors       and    define a fixed global Cartesian 

CS; and let   
    

  and   
  denote an orthonormal basis of a FCC crystal in terms 

of <100> directions. 

One element (solid three-dimensional hexahedral element with one integration 

point [38]) of volume 1 mm3 (grain size dependency is not taken into an account 

in our model) representing a single crystal was compressed with the 

crystallographic direction [011] align with the global CS, specifically with the 

vector   , see Figure 21. The bottom face of the crystal was restricted in the 

motion in the    direction and to the top face of the crystal was assigned 

velocity in the way that the crystal was deformed with the axial strain rate equal 

to 0.001/s up to the true strain equal 0.5, see Figure 22. 

 

Figure 21 – An FCC single crystal orientated with its crystallographic direction 

[011] align with the base vector of the global CS   . 

5.2.1.3 Results 

It can be seen from Figure 22 that the length of the model in    direction was 

during the deformation due to crystal anisotropy unchanged, which in 

agreement with the experiment [20]. The reason why the crystal underwent 

plane strain deformation can be seen once the slip rate of each slip system is 

examined closer, see Table 4. It can be observed that only four slip systems out 

of twelve are active. Using values from Table 4, the spatial velocity gradient 

according to Equation (3-62) can be calculated: 
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(5-3) 

The matrix above shows that the plastic deformation in the uniaxial 

compression of the single crystal with specific orientation is plane strain. 

Table 4 – The slip system   is defined in the crystal and global CS by its slip 

direction    and it’s normal to the slip plane   ,   and   respectively. During the 

compression the stress within the crystal is resolved on each slip system   as 

resolved shear stress  . When the resolved shear stress reach critical value 

(critical resolved shear stress) slip occurs donated by the strain rate  ̇ [20]. 
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Figure 22 – a) The mesh of the undeformed single crystal. b) The mesh of the 

single crystal after compression (true strain |ε| = 0.5). 

Experimental results for the stress strain curve and the evolution of the 

crystallographic texture were compared with the simulation, see Figure 23 and 

Figure 24. The difference in the stress strain curves does not exceed more than 

4 %. For this particular crystallographic texture, the orientation of the crystal 

lattice does not rotate during the experiment, neither during the simulation. 

5.2.1.4 Conclusion 

It can be concluded that the subroutine for a large elastic-plastic deformations 

of FCC single crystal is able to reasonable predict the stress flow, macroscopic 

change of the shape and the evolution of the crystallographic texture. 
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Figure 23 - Axial stress |σ| versus logarithmic axial strain |ε| in the simple 

compression test at room temperature on single OFHC copper crystal [20]. 

 

Figure 24 - Initial crystal orientation of a single OFHC copper crystal 

displayed by using the crystallographic projection in [110] directions: a) 

experimental specimen where the grey scale represents a number of 

crystals orientated in particular direction [20], b) a single crystal model 

used in the FE simulation. 

5.2.2 Large deformation of a polycrystalline aggregate 

To verify the subroutine reliability on a larger scale model, (1) uniaxial tensile 

test and (2) uniaxial compression test simulations of an initially isotropic OFHC 

copper were performed on a representative model (for more information about 

the representative model assumptions see section below). Results such as the 
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stress strain curves and evolution of the crystal orientation were compared with 

the experimental results, for details of the experimental procedures see [47]. 

5.2.2.1 Representative Model of annealed Polycrystalline Aggregate 

In order to be able to represent nearly annealed (isotropic) metal using CPFEM 

it is needed to make a model composed of a sufficient amount of randomly 

orientated crystals with a fairly uniform distribution. On the other hand the 

computational cost of simulation of such model has to be kept low. For this 

reason sensitive study has been performed and it was discovered that a model 

composed of 512 crystals is able to represent nearly annealed metal (see 

Section 6.1) and yet keep low computational cost. 

The assumptions for the Representative Model are: 

 The Representative Model with volume 1mm3 (grain size dependency is 

not taken into an account in our model) can represent annealed material 

(with nearly isotropic material properties). The isotropy is obtained due to 

the superposition of 512 randomly oriented crystals (see Figure 25) 

inside the model, where the fairly uniform distribution of the individual 

anisotropic crystals is averaged over the volume. 

 Each crystal is represented by a single element (solid hexahedral 

element with one integration point [38]). 

 The FCC micro-structural model with 12 slip systems is incorporated. 

 Each crystal retains of both elastic and plastic anisotropy. 

 The plastic deformation of crystalline aggregate is solely due to the 

dislocation slip mechanism. 

 The rate viscoplastic power law, slip resistance evolution and material 

properties of OFHC copper were used as in Kalidindi [20]. 

 Note that in this model, boundaries between crystals are not explicitly 

taken into consideration due to the phenomenological approach of the 

single crystal strength model (hardening of the material is given by 

equations obtained from empirical observations rather than by defining 

dislocation density and dislocations “pile-up” [1] on the crystal boundaries 

which does happen in reality). When using dislocation density 
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constitutive model, boundaries between crystals can be included, for an 

example see Reference [48]. 

5.2.2.2 Uniaxial tension and compression 

In order to simulate simple tension and compression, the bottom of the 

Representative Model was constrained to remain plane during the simulation 

and initial velocity was prescribed to the each node belonging to the top plane 

which resulted in axial strain rate of ±60 s-1
. This strain rate differs from the one 

used in the experiment (0.001 s-1). The reason for this is that the DYNA3D is an 

explicit solver and setting strain rate for such low strain rate would significantly 

increase computational cost, hence higher strain rate was used and sensitivity 

study was performed, see Figure 29.  

The Representative Model was compressed up to absolute value of the true 

strain (as it was done in experiment) |ε| = 1.5, respectively pulled |ε| = 0.37 (for 

larger strain necking has occurred which lead to inaccuracy), see Figure 26. 

 

Figure 25 - a) Initial crystals orientation in the Representative Model displayed by 

using the crystallographic projection - pole figure <1 0 0>. b) The mesh of the 

Representative Model – one element represents one crystal. 

5.2.2.3 Results 

Afterward, the stress strain curves were evaluated and compared with the 

experimental data (Figure 27 and Figure 28). In both cases can be observed 

that the levels of the stress flow in the plastic zone for the simulations are 
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slightly higher. That can be explained by the differences in the strain rate, where 

experiments were run at  ̇ = 0.001/s and the simulations were run at  ̇ = 0.60/s. 

The way how the stress flow changes at different strain rate can be seen by 

comparing stress strain curves for compression of one single element, with 

decreasing the strain rate decrease also the stress flow, see Figure 29. In 

compression test (Figure 27) can be noticed, that the yielding point is relatively 

the same as in experiment, but what differs is the slope in elastic zone (not 

accurate prediction of the elastic stiffness). For the tension test it is the 

opposite, the elastic stiffness is in agreement and yielding point is highly 

overestimated. 

Another way of evaluating the accuracy of the computational model is the 

comparison of evolution of the crystallographic texture in the experiment and in 

the simulation. The crystallographic texture was plotted after the simulation and 

matched with the experimental data. From the Figure 30 it is obvious that the 

experimental and simulation results are not in agreement.  

 

Figure 26 – a) Initial mesh of the Representative Model. b) The mesh of the model 

after compression c) The mesh of the model after tension. 
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Figure 27 – Comparison of the stress strain curves in the compression derived 

from the experiment and the simulation. 

 

Figure 28 - Comparison of the stress strain curves in the tension derived from 

the experiment and the simulation. 
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Figure 29 – Comparison of the stress strain curves for compression of single 

element of OFHC copper with different strain rate setting. 

 

Figure 30 - Experimental [13] and the numerical crystallographic texture. 

a) Simple tension of the Representative Model to ε = 0.37. b) Simple 

compression of the Representative Model to ε = - 1.5. 
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5.3 Procedure to Improve Prediction of Large Deformation of 

FCC Polycrystalline Aggregate 

1. An algorithm using MATLAB® code was developed to plot 

crystallographic texture by using equal-area crystallographic projection, 

see Section 4.6. Here could be the cause of discrepancy between 

simulation and experiment. The code and the method have to be 

investigated. 

2. Another cause which could make the simulations results inaccurate could 

be in a bug in the subroutines code, see Section 4.2.3. The whole 

subroutine has been already checked step by step by making 

comparison with Huang implementation [21], but further verification is 

needed. 

3. Origin of the model impreciseness could be in incorrect treatment of the 

crystal rotation, see Equations (4-5) and (4-6). That also has been 

already checked, but further investigation is required.  

4. Different experimental data could be used for comparison where further 

literature survey would be needed, or setting up own experiments. 

5.4 Proposals for Improvements of the New CPFEM 

First, capability of the new CPFEM has to be assessed and necessary 

improvements has to be identified in terms of ability to predict large deformation 

of FCC and BCC structures of conditions of interest (e.g. high strain rate). 

The new CPFEM is design to predict finite deformations of materials composed 

of BCC crystals (e.g. tantalum), if appropriate hardening law is implemented. 

The accuracy of the CPFEM for such prediction has to be investigated and that 

could be done by comparing data obtained from simulations with experimental 

data (these data could be acquired from different research sources experiments 

or by setting up own experiments). 

The deformation mechanism incorporated in the new CPFEM accounts only for 

dislocation slip, but it is well known that in high strain rate deformations other 

deformation mechanisms can occur, such as twinning [1]. A guide to an 
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implementation of mechanical twinning as a phenomenological constitutive 

model can be found in the reference [3]. Another need due to shock wave 

propagation caused by high strain rate deformation could be to incorporate 

equation of state of solids at high pressure. 

5.5 Conclusion 

This chapter shows validation of the CPFEM and its methodology. It also 

proposes crucial improvements of the CPFEM which can be done in the future 

projects. The following chapter demonstrates capability of the CPFEM to model 

deformation of pre-deformed metals and ability to track the anisotropic 

evolution. 

Specific achievements presented in this section are: 

 Survey of available material data was done for FCC structures, where it 

was looked into other research projects. Suitable experimental data to 

validate the CPFEM were found (Kalidindi 1992 [20]) and new strain 

hardening law was implemented. 

 Accuracy of this model was validated for large deformation of a single 

crystal of the annealed OFHC copper at room temperature. The change 

of the macroscopic shape during the deformation, the stress strain curve 

and evolution of the crystallographic texture obtained from the simple 

compression are in good agreement (discrepancy less than 5%) with the 

experiments.  

 The model was also tested for large deformation of a polycrystalline 

aggregate comprised of 512 crystals of annealed anisotropic OFHC 

copper in the uniaxial compression and tension test. Here sufficient 

agreement (discrepancy less than 12%)  with the experimental data was 

achieved, except prediction of elastic response for the compression test 

and yielding point in the tension test: 

Compression test: 

1. The yielding point is in agreement with the experiment. 
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2. The flow curve is in agreement with slight discrepancy, which 

could be caused due to different strain rate of the simulation and 

experiment. 

3. The elastic stiffness does not agree with experimental measures 

(slope of the curve in the elastic zone). 

Tension test: 

1. The yielding point is highly overestimated in the stress strain curve 

when comparing with the experimental data. 

2. The flow curve is in agreement with slight discrepancy, which 

could be caused due to different strain rate of the simulation and 

experiment. 

3. The elastic stiffness is in agreement with experimental measures 

(slope of the curve in the elastic zone). 
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6 MODELLING BEHAVIOUR OF PRE-DEFORMED 

METAL 

Mechanical properties of a crystal aggregate are significantly influenced by the 

orientation of the crystals within the aggregate. Piece of metal can have 

isotropic mechanical properties even if it is composed of anisotropic crystals, 

see Figure 31. The explanation lies in the superposition of large number of 

randomly orientated crystals inside the aggregate, where the fairly uniform 

distribution of the individual anisotropic crystals is averaged over the volume. 

This behaviour is modelled in Section 6.1. However, during a finite deformation 

(e.g. cold rolling – see Figure 32), shape and the orientation of the crystals 

within the isotropic aggregate changes and that give rise to a certain preferable 

texture (distribution of the crystallographic orientations) which is the cause of 

anisotropy evolution in a polycrystalline aggregate and change of mechanical 

material properties. 

 

Figure 31 - Metal is made up of grains, where each grain is a single crystal of the 

material with varied orientation and shape. Usually in engineering calculations 

because the grains are very small, the behaviour of the metal is homogenized 

over its volume and its isotropy is assumed (part of the figure were taken from 

Roters [3]). 

A demonstration of the ability of the new material model to predict the 

anisotropic response to mechanical loading of largely pre-deformed metal is 

shown in the Section 6.2. 
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Figure 32 – Processes such as cold rolling, forging or shock loading change the 

microstructure of the metal and that leads to evolution of the level of anisotropy. 

6.1 Isotropic Response to Mechanical Loading 

This section demonstrates that the Representative Model from Section 5.2.2.1 

has nearly isotropic material properties. To prove it, three identical 

Representative Models are pulled in three different directions in order to 

measure their mechanical properties and plot their stress strain curves. These 

three curves for an isotropic material should be nearly identical. 

6.1.1 Methodology 

Three undistinguishable Representative Models (with the same definition as in 

Section 5.2.2.1) are pulled independently in three different directions (      and 

   – see Figure 33) by 10 % of their length with the same strain rate. The 

Representative Models are deformed in the way that  

1) To the face of the first Representative Model (Figure 33a) with an arrow 

is assigned velocity in the direction    and the opposite face is 

constrained to move in the    direction. 

2) To the face of the second Representative Model (Figure 33b) with an 

arrow is assigned velocity in the direction    and the opposite face is 

constrained to move in the    direction. 

3) To the face of the third Representative Model (Figure 33c) with an arrow 

is assigned velocity in the direction    and the opposite face is 

constrained to move in the    direction. 



 

75 

Then by using script described in Section 4.5 three stress strain curves are 

plotted and compared. 

6.1.2 Results 

In Figure 34 can be seen that the material in the tensile test behaves according 

to the isotropic definition, the response to the tensile loading of Representative 

Model is nearly independent of its direction. Influence of the rotation of the 

crystals starts to be significant with much larger deformations. Here it has been 

proven that the new CPFEM does show isotropic behaviour of a metal 

Representative Model composed of a large number of randomly orientated 

anisotropic crystals. 

 

Figure 33 – Methodology of proving isotropic response of the Representative 

Model by pulling independently in       and    direction and plotting stress 

strain curves. The reason why the Representative Model is considered as an 

isotropic material lies in the superposition of large number of randomly 

orientated crystals with the fairly uniform distribution of the individual 

anisotropic crystals. 
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Figure 34 – The stress strain curves of three identical Representative Model in 

uniaxial tension test pulled independently in       and    direction. 

6.2 Anisotropic Response to Mechanical Loading 

This section shows what happened if the same Representative Model as in 

previous section is first pre-deformed and then the mechanical properties are 

measured. Anisotropy evolution should be observed and material properties 

should change during such process. 

6.2.1 Methodology 

1) An isotropic Representative Model (with the same definition as in Section 

5.2.2.1) is firstly pre-deformed by 70 % of its original length in 

compression in the    direction, such a large deformation change the 

distribution of the crystallographic orientation (see Figure 35). 

2) Approximate elastic deformation in the deformed Representative Model 

is calculated and an equivalent displacement is applied in the opposite 

direction as in previous step. If this step is not done, then the removal of 

the boundary conditions in the next step results in additional inelastic 

deformation, which influences the results. 
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3) Then the three models are restarted, with no applied constraints and 

forces and run to generate a deformed Representative Model in an 

overall stress-free condition. 

4) Afterward, these three pre-deformed Representative Models are pulled 

independently in three different directions by 10 % such as it was done in 

Section 6.1 in order to measure mechanical properties. The stress strain 

curves for each tensile test were carried out and compared. 

6.2.2 Results 

From stress strain curves (Figure 36) an anisotropic response to the tensile 

loading of the pre-deformed Representative Models can be observed. The main 

difference is in their yielding points. Discrepancy in the stress strain curves is 

caused by the significant re-orientation of the crystals during the pre-deforming 

process (Figure 35b). The reason why the flow curve in the tension in    is 

lower than in the    is not known and further investigation is needed, for some 

suggestions see Section 5.3. 

6.3 Conclusion 

One of the objectives of this project is to be able to model anisotropy evolution 

or in different words, evolution of the mechanical material properties during 

finite deformation. This section clearly shows that the new CPFEM is able to 

predict isotropic behaviour of a copper composed of a large number of 

randomly orientated anisotropic crystals and that is able to capture the change 

of its mechanical properties during large deformation. Note that the new 

CPFEM is not able to correctly predict/plot evolution of the crystallographic 

orientation which is closely related to material properties. Further investigation 

is needed, for some suggestions see Section 5.3. 
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Figure 35 – a) The mesh of the pre-deformed Representative Model after 

compression in    direction by 70% of its original length. b) Crystals orientation 

of the pre-deformed Representative Model – the crystallographic projection in 

[100] direction. 

 

Figure 36 – The stress strain curves of three identical Representative Model (pre-

deformed by 70% of their original length) in uniaxial tension test pulled 

independently in       and    directions.
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7 SUMMARY, CONCLUSION AND FUTURE WORK 

7.1 Summary 

The aim of this project was to develop a computational capable of predicting 

large deformations of a single crystal or crystalline aggregate of a metal of 

interest and ability to trace an evolution of anisotropy within the material. This 

tool will be used in the future to study the anisotropic evolution in particular 

metals during dynamic finite deformations. Another aim was validate and 

assess this tool and its ability to predict a finite deformation and an anisotropy 

evolution in a polycrystalline aggregate. 

In this project a new Crystal Plasticity Finite Element Method tool was 

developed. This new tool is able to predict large deformations of a single crystal 

or polycrystalline aggregate of FCC and BCC structures. Furthermore, an 

accuracy of this model was validated for large deformation of a single crystal of 

the annealed OFHC copper at room temperature. The change of the 

macroscopic shape during the deformation, the stress strain curve and 

evolution of the crystallographic texture obtained from the simple compression 

are in good agreement (discrepancy less than 5%) with the experiments. Also 

the model was also tested for large deformation of a polycrystalline aggregate 

comprised of 512 crystals of annealed anisotropic OFHC copper in uniaxial 

compression and tension test. Here sufficient agreement with the experimental 

data was achieved (discrepancy less than 12%), except for the prediction of 

elastic response for the compression test and yielding point in the tension test. 

The prediction of the evolution of the crystallographic texture was not accurate. 

But further investigation was proposed in order to find out the cause of the 

discrepancy. Note, that the CPFEM tool was not validated for BCC structures 

due to time constraints. Additionally, behaviour of anisotropic metals during a 

large deformation was modelled and it was demonstrated that this tool is able to 

predict and to trace an evolution of anisotropy. Moreover, procedure to improve 

prediction of a large deformation of FCC polycrystalline aggregate was 

suggested. Finally, proposals for improvements of the new tool were given and 

future projects are proposed. 
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7.2 Conclusion 

The main benefit of having this computational tool (the new CPFEM) lies in 

virtual material testing. This virtual testing has the advantage over experiments 

in time and cost expenses. This tool and its future improvements will allow 

studying evolution of anisotropy in FCC and BCC materials during dynamic 

finite deformations, which can lead to current material models improvement. 

7.3 Future Work Proposals 

7.3.1 BCC structure validation 

The CPFEM was not validated for BCC structures due to project time 

constraints. Survey of current research papers can be done in order to find 

experimental data containing information about mechanical response of BCC 

structures to mechanical loading. Then, these data could be used to re-model 

the experiment using the CPFEM and finally to perform the model validation. 

7.3.2 Evolution laws 

With the new CPFEM tool developed in this work, the evolution of anisotropy in 

particular metals due to a dynamic finite deformation can be investigated and 

evolution laws proposed. With this evolution laws it will be possible to predict 

change of elastic and plastic mechanical properties of a metal after its 

deformation.  

7.3.2.1 Evolution of elasticity 

Material elastic properties for each crystal are expressed in its stiffness matrix 

and can be extracted directly from a computational model. However, extracting 

material elastic properties from a whole aggregate model is not a trivial task. 

One option is to average individual crystal properties over the volume 

(homogenization), but there is a risk of losing information about material 

microstructure. Second option is running set of tests on an aggregate and 

measure stress strain curves, but this approach is more complex and more 

complicated than the first option. Choice based on efficiency and accuracy 

between these two methods has to be made. Then, by running set of simulation 
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where a material is highly deformed, change of the stiffness matrix can be 

tracked. The change of the material microstructure can be related with the 

change of the stiffness matrix and elastic anisotropic evolution law can be 

developed. Important to note, that such an evolution law has to be linked with 

an elastic stiffness tensor as a function of a material state parameter, which has 

to be measurable within the continuum level (could be e.g. rate of the 

deformation gradient). 

7.3.2.2 Evolution of plasticity 

Material plastic properties and its anisotropy can be described in simplified way 

by using its yield locus, which can be obtained by performing a set of virtual 

tests on a Representative Model (pure shear, uniaxial tension, plain strain, 

stack compression – see Figure 37) and by interpolating extracted data by 

using cubic Bezier-spline [8] [50]. Then the Representative Model will undergo 

prescribed deformations and the modified yield loci will be obtained. This 

procedure will allow investigating plastic anisotropy evolution in metals during 

large deformations and an evolution law could be proposed. This evolution law 

could be a function of a measurable material state parameter within the 

continuum level. 
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Figure 37 – The Vegter yield locus derived from a virtual test [8]. 

7.3.3 Elastic projection operators 

In 1995 Schreyer [2] proposed a new method where he relates the anisotropic 

plastic properties with the material elastic anisotropy. By using spectral 

decompositions of the stiffness matrix (the elasticity matrix) he obtains elastic 

projection operators which can implicitly describe preferred modes of 

deformation. Furthermore, the elastic projection operators can be used to define 

anisotropic yield surface of the material. It will be interesting to use this method 

to obtain preferred modes of deformation from a particular anisotropic metal and 

relate them to its microstructure, specifically to crystals orientation. 
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APPENDICES 

Appendix A Model Implementation and Software 

Development 

A.1 Debugging 

Results obtained from the initial implementation of the UMAT-Single Crystal 

Plasticity [21] to DYNA3D® during simulation of a metal deformation were 

unrealistic. Therefore new methodology to debug the code was developed. 

Here is presented one of the debugging simulations. 

A.1.1 Simple shear loading test 

In order to check the code concerning the elastic part of Material 94, simple 

shear loading was chosen (Figure A-1). If the displacement is relatively small, 

only elastic deformation will occur [3]. 

 

Figure A-1 Illustration of  boundary condition for simulation of simple shear 

deformation test of a single crystal composed of 16 mesh elements. 

7.3.4 Methodology 

Model of 16 elements (solid three-dimensional hexahedral element with one 

integration point [49] of volume 1 mm3) representing a single crystal was 
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created with copper material properties as in Section 5.2.1.1 and boundary 

conditions were set as in Figure A-1 (motion of each node was restricted in all 

directions except the one of velocity). In the aim to compare results: LS-DYNA 

(material 2 [49]), ABAQUS® (UMAT [21]) and DYNA3D® (material 94, material 

2) were used with the same material properties and boundary conditions. 

Nine simulations with different crystal orientation for each material model were 

run in order to see differences in the shear stress (shear strain = 1.25x10-3). 

7.3.5 Results 

As it can be seen in Table A-1 the only different shear stress was in case of 

Material 94: 

1) If the crystal was orientated as the global coordinate system (GCS) or 

was turned by 45° by keeping z axis equal to z axis in GCS the results 

were correct (simulation1, 2, 5, 7).  

2) If the crystal was turned by 45° along x axis, respectively y axis 

(simulation 3, 6 and simulation 4,8) the shear stress differed in Material 

94 from others and had value as it would be turned by 45° along y axis, 

respectively x axis. 

3) In the last simulation the result was completely different as the crystal 

was turned along two axes. 

Table A-1 Comparison of results for simple shear loading test for LS-Dyna, Umat 

and DYNA3D® 

   YZ Stress [MPa] 

Simulation Orientation1 

a 

Orientation 

d 

LS-

DYNA 

UMAT DYNA3D® 

mat 2 

DYNA3D® 

mat 94 

1 (1, 0, 0) (0, 1, 0) 94 94 94 94 

2 (1, 1, 0) (-1, 1,0) 94 94 94 94 

                                            
1
 Orientation: a and d are vectors defined in global CS, which identify orientation of the crystal 

(third vector is calculated and it is perpendicular to a and d). 
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3 (1, 0, 0) (0, 1, 1) 29 29 29 94 

4 (1, 0, 1) (1, 0,-1) 94 94 94 29 

5 (1, 1, 0) (-1, 1,0) 94 94 94 94 

6 (0, 1, 1) (0, 1,-1) 29 29 29 94 

7 (1, 1, 0) (1,-1, 0) 94 94 94 94 

8 (-1, 0,1) (-1,0,-1) 94 94 94 29 

9 (1, 1, 1) (1, 0, 1) 15 14 14 -28 

7.3.6 Debugging system and conclusion 

The bug could be in calculating local coordinate system of the model, stiffness 

matrix, in reading data from the input file, in passing data on, in storing, etc. 

Hence, debug system was created. Every variable was plotted at each step in 

the debug file and compared with UMAT.  

It was found out that the problem lies in calculating transformation matrix (from 

local to global coordinate system, see Section 4.2.3 – Main subroutine) for 

elastic stiffness matrix. After fixing this bug the simulation was re-run and the 

results were identical for all four material models. 

A.1 Implementation of New Treatment of Crystal Rotation 

A new treatment of a crystal rotation was developed in order to be able to track 

the anisotropy evolution. This code was written in the Fortran 77 as the whole 

DYNA3D® software 

 

c Update of the orientation matrix T 

c 

c Uprgade orientation matrix T to current the position (old 

orientation matrix rotated solely by lattice part (d*+w*)) of 

velocity gradient 

c (for more information see Raphnel 2004 - "Three-demensional rate-

dependent crystal plasticity based on Runge-Kutta algorithms") 

c 

      term1 = zero 
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      term2 = zero 

      term3 = zero 

      term4 = zero 

      ewedt = zero 

      T1 = zero 

c 

c     Define We+De (elastic part of velocity gradient) - rate!!!! 

not increment!!!! 

      do i=lft,llt 

       do j=1,3 

        do k=1,3 

         lat_rot(i,j,k) = zero 

        enddo 

       enddo 

      enddo 

c 

      do i=lft,llt 

       delta_s(i,1) = d1(i) 

       delta_s(i,2) = d2(i) 

       delta_s(i,3) = d3(i) 

       delta_s(i,4) = d4(i) 

       delta_s(i,5) = d5(i) 

       delta_s(i,6) = d6(i) 

      enddo 

c 

      do k=1,6 

       do j=1,tnslip 

        do i=lft,llt 

         delta_s(i,k) = delta_s(i,k) - slpdef(i,k,j)*fslip(i,j) 

        enddo 

       enddo 

      enddo 

c 

      if (dt1 == zero) then 

      else 

       do i=lft,llt 

        lat_rot(i,1,1) = delta_s(i,1) 

        lat_rot(i,2,2) = delta_s(i,2) 

        lat_rot(i,3,3) = delta_s(i,3) 

        lat_rot(i,1,2) = delta_s(i,4) - wzzdt(i)/dt1 

        lat_rot(i,2,1) = delta_s(i,4) + wzzdt(i)/dt1  

        lat_rot(i,1,3) = delta_s(i,5) + wyydt(i)/dt1 

        lat_rot(i,3,1) = delta_s(i,5) - wyydt(i)/dt1 

        lat_rot(i,2,3) = delta_s(i,6) - wxxdt(i)/dt1 

        lat_rot(i,3,2) = delta_s(i,6) + wxxdt(i)/dt1 

       enddo 

      endif  

c       

      do j=1,tnslip 

       do i=lft,llt 

        lat_rot(i,1,2) = lat_rot(i,1,2) - slpspn(i,1,j)*fslip(i,j) 

        lat_rot(i,2,1) = lat_rot(i,2,1) + slpspn(i,1,j)*fslip(i,j) 

        lat_rot(i,1,3) = lat_rot(i,1,3) - slpspn(i,3,j)*fslip(i,j) 

        lat_rot(i,3,1) = lat_rot(i,3,1) + slpspn(i,3,j)*fslip(i,j) 

        lat_rot(i,2,3) = lat_rot(i,2,3) - slpspn(i,2,j)*fslip(i,j) 

        lat_rot(i,3,2) = lat_rot(i,3,2) + slpspn(i,2,j)*fslip(i,j) 
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       enddo 

      enddo 

c 

c 

c     Calculate term1 = we = sqrt((W:W)/2) 

c     Calculate term2 = sin(we*dt)/we 

c     Calculate term3 = (1-cos(we*dt)/we**2 

      do k=1,3  

       do j=1,3 

        do i=lft,llt 

         term1(i) = term1(i) + lat_rot(i,j,k)*lat_rot(i,j,k) 

        enddo 

       enddo 

      enddo 

c 

      do i=lft,llt 

       term1(i) = sqrt(term1(i)/2) 

       if (term1(i) == zero) then 

        term2(i) = zero 

        term3(i) = zero 

       else 

        term2(i) = sin(term1(i)*dt1)/term1(i) 

        term3(i) = (one-cos(term1(i)*dt1))/term1(i)**2 

       endif  

      enddo 

c     Calculate term4 = We*We, dot product of lat_rot 

      do i=1,3  

       do j=1,3 

        do k=1,3 

         do l=lft,llt 

          term4(l,i,j) = term4(l,i,j) + 

lat_rot(l,i,k)*lat_rot(l,k,j) 

         enddo 

        enddo 

       enddo 

      enddo 

c      

c     Calculate e**(We*dt) = ewedt 

      do k=1,3  

       do j=1,3 

        do i=lft,llt 

          ewedt(i,j,k) = Id(j,k) + term2(i)*lat_rot(i,j,k) +  

     1                  term3(i)*term4(i,j,k)           

        enddo 

       enddo 

      enddo    

c 

c     Finally, calculation of the current orientation matrix T' = 

ewedt*T 

      do i=1,3  

       do j=1,3 

        do k=1,3 

         do l=lft,llt 

          T1(l,i,j) = T1(l,i,j) + ewedt(l,i,k)*T(l,k,j) 

         enddo 

        enddo 
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       enddo 

      enddo 

c 

c      Passing back current orientation to T(lnv,3,3) 

      T = zero 

      do k=1,3  

       do j=1,3 

        do i=lft,llt 

         T(i,j,k) = T1(i,j,k) 

        enddo 

       enddo 

      enddo 

c 

 

A.2 Implementation of New Strain Hardening 
c================================================================== 

c 

      subroutine latentharden(nset,nslip,tnslip,cm,gamma,g_a,h) 

c 

c     Routine to calculate strain rate in individual slip systems 

c     as in the UMAT the actual expressions are functions and can 

be replaced by alternate 

c     formulations if required. 

c 

c 

      implicit none 

c 

      FLOAT hself,hlatent 

      external hself,hlatent 

      FLOAT hselfk,hlatentk 

      external hselfk,hlatentk 

c 

      integer lnv 

      parameter(lnv=VECLEN) 

c 

      integer lft,llt 

      common/aux36/lft,llt 

c 

      integer nset, nslip(3), tnslip ! no. sets slip systems, no. 

slip systems per set, total number of slip systems     

      FLOAT gamma                    ! Total element cumulative 

shear strain  

      FLOAT a                        ! Material parametr  

      FLOAT g_a(lnv,48)              ! current slip system strength 

      FLOAT h(lnv,48,48)             ! latent and self hardening 

moduli for slip systems 

      FLOAT cm(*) 

c 

      integer i,j,latent,k 

      integer iself,point 

c  

      a = cm(41) 

      iself = 0 
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      do i=1,nset 

       point = 19 + 5*i 

       do j=1,nslip(i) 

        iself = iself + 1 

        do latent=1,tnslip 

         if(cm(40).eq.1)then      ! Hypersecant hardening law 

          if(latent.eq.iself) then 

           do k=lft,llt 

            h(k,iself,iself) = hself(cm(point),gamma,g_a) 

           enddo 

          else  

           do k=lft,llt 

            h(k,latent,iself) = hlatent(i,nslip,iself,latent, 

     1                                 cm(point),gamma,g_a)  

           enddo 

          endif 

         else                     ! Kalidindi hardening 

          if(latent.eq.iself) then 

           do k=lft,llt 

            h(k,iself,iself) = hselfk(k,latent,cm(point),g_a,a) 

           enddo 

          else  

           do k=lft,llt 

           h(k,latent,iself) = hlatentk(k,i,nslip,iself,latent, 

     1                                 cm(point),g_a,a)   

           enddo 

          endif 

         endif 

        enddo 

       enddo 

      enddo 

      end      

 

c------------------------------------------------------------------ 

c 

c     Hardening law used in Kalidindi 1992 (Crystallographic 

texture evolution in bulk deformation processing of FCC Metals) 

c 

      FLOAT function hselfk(k,latent,cm,g_a,a) 

      implicit none 

c 

      integer lnv 

      parameter(lnv=VECLEN) 

c 

      integer lft,llt 

      common/aux36/lft,llt 

c 

      integer k,latent 

      FLOAT gamma                    ! Total element cumulative 

shear strain 

      FLOAT g_a(lnv,48)              ! current slip system strength 

      FLOAT a                        ! material parametr 

      FLOAT cm(2)  

      FLOAT term1 

       

      term1 = 1.0d+00 - g_a(k, latent)/cm(2) 
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      hselfk = cm(1)*(abs(term1))**a*sign(1.0d+00,term1) 

      return 

      end       

c 

      FLOAT function hlatentk(k,i,nslip,iself,latent,cm,g_a,a) 

      implicit none 

c 

      integer lnv 

      parameter(lnv=VECLEN) 

c 

      integer lft,llt 

      common/aux36/lft,llt 

c 

      integer k,i,nslip(3),iself,latent 

      integer ilower,iupper,j 

      FLOAT gamma                    ! Total element cumulative 

shear strain 

      FLOAT g_a(lnv,48)              ! current slip system strength 

      FLOAT a                        ! material parametr 

      FLOAT cm(5)  

      FLOAT term1,q 

 

      ilower = 1 

      iupper = nslip(1) 

      if(i.gt.1) then 

       do j=2,i 

        ilower = ilower + nslip(j-1) 

        iupper = iupper + nslip(j) 

       enddo 

      endif 

      if(latent.ge.ilower.and.latent.le.iupper)then 

       q = cm(4) 

      else 

       q=cm(5) 

      endif 

      term1 = 1.0d+00 - g_a(k, latent)/cm(2) 

      hlatentk = cm(1)*q*(abs(term1))**a*sign(1.0d+00,term1) 

      return 

      end       

c================================================================== 

 

A.3 Creating Input File for DYNA3D® 

This script reads material card from already existing input material file 

DYNA3D® (has to be in the same folder) and it creates a new file with n crystals 

with the same material properties but with different “random” orientation 

 

!******************************************************************

********** 



 

97 

! 

!  PROGRAM: Material Card Generator for DYNA3D® - Mat94 

! 

!  PURPOSE:  Assigning two vectors in the material card to 

represent random crystal orientation rotation 

! 

!******************************************************************

********** 

 

    PROGRAM input_generator 

 

    IMPLICIT NONE 

 

    ! Variables: 

    CHARACTER (300) :: charFileInput, charFileOutput = 

'mat_crystals'                        ! Name of DYNA3D®file input, 

output 

    INTEGER :: iError                                                                       

! I/O status for opening the file 

    INTEGER :: i, ii, n, j, k 

    REAL, DIMENSION (6) :: rnd                                                       

! 6 random numbers for two vectors 

    INTEGER, DIMENSION (6) :: rnd_int 

    INTEGER, DIMENSION (:), ALLOCATABLE :: seed 

    INTEGER :: clock,z                                                                        

! time in seconds 

     

     

    INTEGER :: card1_1, card1_2, card1_4, card1_5, card1_7, 

card1_10, card1_11, card1_12    ! Material properties card1 

    REAL :: card1_3, card1_6, card1_8, card1_9                                              

! Material properties card1 

    CHARACTER (73) :: head1                                                                 

! Head of the material file 

    CHARACTER (1) :: head2    

    CHARACTER (100) :: card2                                                                 

! Name of the material 

     

    REAL :: card31, card32, card33, card34, card35, card36, card37, 

card38                  ! Mat prop card3 

    REAL :: card41, card42, card43, card44, card45, card46, card47, 

card48                  ! Mat prop card4 

    REAL :: card51, card52, card53, card54, card55, card56, card57, 

card58                  ! Mat prop card5 

    REAL :: card61, card62, card63, card64, card65, card66, card67, 

card68                  ! Mat prop card6 

    REAL :: card74, card75, card76, card77, card78                                          

! Mat prop card7 

    REAL :: card84, card85, card86, card87, card88                                          

! Mat prop card8 

    REAL :: card71, card72, card73, card81, card82, card83                               

! 6 coordinates for defining lattice orientation 

    

   !real, dimension (:), allocatable :: x 

   !integer, dimension(2) :: seed, seed_old 

   !integer :: L,i2,n_min,n_max,ran_int,sizer,clock 
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    ! Body of Console1 

     

    ! Declaration of characters seed 

    head1 = '*--------------------------- MATERIAL CARDS ----------

-----------------*' 

    head2 = '*' 

     

    !Declare name of the input file 

    WRITE (*,*) 'Insert a name of DYNA3D® input file' 

    READ (*,*) charFileInput 

    WRITE (*,1000) charFileInput 

    1000 Format (' ', 'Name of your input file is: ', A) 

     

    ! Opening a DYNA3D® file and error checking 

    OPEN (UNIT=10, FILE=charFileInput, STATUS='OLD', ACTION='READ', 

IOSTAT=ierror) 

     

    openif: If ( iError > 0) THEN 

            WRITE (*,1010) charFileInput 

            1010 FORMAT (' ','ERROR: File:' ,A, 'does not exist!')     

    END IF openif 

     

    ! Opening an output file for writing material properties down 

    OPEN (UNIT=20, FILE=charFileOutput, STATUS='REPLACE', 

ACTION='WRITE', IOSTAT=ierror) 

     

    !! Read the material properties CARD 1 from line 89 

    READ (10,1020) card1_1, card1_2, card1_3, card1_4, card1_5, 

card1_6, card1_7, card1_8, card1_9, card1_10, card1_11, card1_12 

    1020 FORMAT (88/, 2I5, E10.0, I5,2(I5,E10.0), E10.0, 3I5) 

    !WRITE (*,*) 'card1 test', card1_1 

          

    ! Read CARD2  

    READ (10, 1040) card2 

    1040 FORMAT (A100) 

    !WRITE (*,*) 'card2 test', card2 

          

    ! Read CARD3 

    READ (10, 1060) card31, card32, card33, card34, card35, card36, 

card37, card38   

    1060 FORMAT (8ES10.4) 

    !WRITE (*,*) 'card3 test', card31 

     

    ! Read CARD4 

    READ (10, 1080) card41, card42, card43, card44, card45, card46, 

card47, card48   

    1080 FORMAT (8ES10.4) 

          

    ! Read CARD5 

    READ (10, 1100) card51, card52, card53, card54, card55, card56, 

card57, card58   

    1100 FORMAT (8ES10.4) 

    !WRITE (*,*) 'card3 test', card31 
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    ! Read CARD6 

    READ (10, 1120) card61, card62, card63, card64, card65, card66, 

card67, card68   

    1120 FORMAT (8ES10.4) 

          

    ! Read CARD7 

    READ (10, 1140) card71, card72, card73, card74, card75, card76, 

card77, card78   

    1140 FORMAT (8ES10.4) 

    !WRITE (*,*) 'card3 test', card31 

     

    ! Read CARD8 

    READ (10, 1160) card81, card82, card83, card84, card85, card86, 

card87, card88   

    1160 FORMAT (8ES10.4) 

          

    ! Generating random seed used later for random vectors      

    CALL RANDOM_SEED (SIZE = n)             ! setting up the size 

of the seed 

    ALLOCATE (seed(n)) 

         

    CALL SYSTEM_CLOCK (COUNT = clock)       ! getting 'random' 

number from the current time 

    !WRITE (*,*) 'clock', clock 

     

    seed=clock + 37* (/ (ii-1, ii=1, n) /) 

    CALL RANDOM_SEED (PUT = seed) 

    !WRITE (*,*) 'seed', seed 

         

    DEALLOCATE (seed) 

          

    ! Loop, write down n materials with random orientation 

    DO i = 0, 4095 

        CALL RANDOM_NUMBER (rnd) 

         

        card71 = rnd(1)*2-1                          

        card72 = rnd(2)*2-1 

        card73 = rnd(3)*2-1 

        card81 = rnd(4)*2-1 

        card82 = rnd(5)*2-1 

        card83 = rnd(6)*2-1 

         

        ! Write  the material properties CARD1 to the output file 

        card1_1 = 1+i 

        WRITE (20,1030) card1_1, card1_2, card1_3, card1_4, 

card1_5, card1_6, card1_7, card1_8, card1_9, card1_10, card1_11, 

card1_12 

        1030 FORMAT (2I5, ES10.4, I5,2(I5,ES10.4), ES10.4, 3I5) 

     

        ! Write card2 to the output file 

        WRITE (20,1050) card2 

        1050 FORMAT (A) 

              

        ! Write card3 to the output file 
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        WRITE (20,1070) card31, card32, card33, card34, card35, 

card36, card37, card38 

        1070 FORMAT (3ES10.3, 5ES10.3) 

              

        ! Write card4 to the output file 

        WRITE (20,1090) card41, card42, card43, card44, card45, 

card46, card47, card48 

        1090 FORMAT (3E10.3, 5ES10.3) 

              

        ! Write card5 to the output file 

        WRITE (20,1110) card51, card52, card53, card54, card55, 

card56, card57, card58 

        1110 FORMAT (3E10.3, 5ES10.3) 

              

        ! Write card6 to the output file 

        WRITE (20,1130) card61, card62, card63, card64, card65, 

card66, card67, card68 

        1130 FORMAT (8ES10.3) 

              

        ! Write card7 to the output file 

        WRITE (20,1150) card71, card72, card73, card74, card75, 

card76, card77, card78 

        1150 FORMAT (8ES10.3) 

              

        ! Write card8 to the output file 

        WRITE (20,1150) card81, card82, card83, card84, card85, 

card86, card87, card88 

 

        !WRITE (20,*) head2 

         

    END DO 

    WRITE (*,*) 'Material cards where succesfully writen in the 

file', charfileoutput 

     

    ! Close input file 

    CLOSE ( UNIT=10 ) 

     

    ! Close output file 

    CLOSE ( UNIT=20 ) 

     

    end program input_generator 

A.4 Extraction of Material Data Information 

This script written in VBA uses data from a forrct file generated by DYNA3D®. 

The script loads data from forrct file and then generates stress strain curves.  

 

Option Explicit 

 

Sub Open_File() 

 

    Dim FolderOut As String 

    Dim FileName As String, ArchiveName As String 
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    Dim wbMaster As Workbook, wbTemp As Workbook 

    Dim wsFORRCT As Worksheet 

    Dim fileToOpen As String 

    Dim strNombre As String, msg As String, strPriklad As String 

    Dim rgAdress As Range 

     

     

    Set wbMaster = ThisWorkbook 

    Set wsFORRCT = wbMaster.Sheets("FORRCT") 

    fileToOpen = Application.GetOpenFilename("Text Files (*), *", , 

"Open FORRCT") 

    If fileToOpen = "Falso" Then 

        Sheets("Main").Select 

        Exit Sub 

    End If 

         

        Workbooks.OpenText FileName:=fileToOpen, Origin _ 

        :=xlMSDOS, StartRow:=1, DataType:=xlFixedWidth, 

FieldInfo:=Array(Array(0 _ 

        , 1), Array(10, 1), Array(25, 1), Array(40, 1), Array(53, 

1)), TrailingMinusNumbers:= _ 

        True 

        Set wbTemp = ActiveWorkbook 

 

        Cells.Copy 

        wsFORRCT.Cells.PasteSpecial 

        Application.DisplayAlerts = False 

        wbTemp.Close False 

        Application.DisplayAlerts = True 

 

End Sub 

 

Sub SumOfForrces() 

 

Dim wbMaster As Workbook 

Dim wsFORRCT As Worksheet, wsRESULTS As Worksheet 

Dim rgData As Range, rgNode As Range, rgObsah As Range 

Dim cl As Range 

Dim strNode As String, strForce2 As String 

Dim rgForceX As Range, rgForceY As Range, rgForceZ As Range, rgTime 

As Range 

Dim rgDataX As Range, rgDataY As Range, rgDataZ As Range, 

rgDataTime As Range 

Dim lParametr As Long, strTime As String, lTime As Long 

 

 

Set wbMaster = ThisWorkbook 

Set wsFORRCT = wbMaster.Sheets("FORRCT") 

Set wsRESULTS = wbMaster.Sheets("RESULTS") 

 

With wsFORRCT 

    Set rgData = .Range("A1", .Cells(.Rows.Count, "A").End(3)) 

End With 

 

For Each cl In rgData 

    strNode = cl.Value 
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    If strNode = "node" Then 

        Set rgNode = cl 

        Set rgNode = rgNode.Offset(2) 

         

        With wsFORRCT 

            Set rgObsah = .Range(rgNode, rgNode.End(xlDown)) 

        End With 

         

'Setting regions for each forces for each time 

        Set rgDataX = rgObsah.Offset(, 1) 

        Set rgDataY = rgObsah.Offset(, 2) 

        Set rgDataZ = rgObsah.Offset(, 3) 

        Set rgDataTime = rgNode.Offset(-4, 4) 

         

'Summ of forces for each time for each direction 

        With wsRESULTS 

            Set rgForceX = .Cells(.Rows.Count, "B").End(3) 

            Set rgForceX = rgForceX.Offset(1) 

            rgForceX.Value = "=Sum(FORRCT!" & rgDataX.AddressLocal 

& ")" 

 

            Set rgForceY = .Cells(.Rows.Count, "C").End(3) 

            Set rgForceY = rgForceY.Offset(1) 

            rgForceY.Value = "=Sum(FORRCT!" & rgDataY.AddressLocal 

& ")" 

 

            Set rgForceZ = .Cells(.Rows.Count, "D").End(3) 

            Set rgForceZ = rgForceZ.Offset(1) 

            rgForceZ.Value = "=Sum(FORRCT!" & rgDataZ.AddressLocal 

& ")" 

             

            Set rgTime = .Cells(.Rows.Count, "A").End(3) 

            Set rgTime = rgTime.Offset(1) 

'            strTime = rgDataTime 

'            lParametr = "11" 

'            strTime = Right(strTime, lParametr) 

'            rgTime.NumberFormat = "@" 

             rgTime = rgDataTime 

        End With 

    End If 

Next 

End Sub 

 

Sub FillingXYZ() 

 

Dim wbMaster As Workbook 

Dim wsFORRCT As Worksheet, wsRESULTS As Worksheet, wsMain As 

Worksheet 

Dim rgData As Range, rgNode As Range, rgObsah As Range 

Dim cl As Range, cl2 As Range, cl3 As Range, cl4 As Range, cl5 As 

Range 

Dim strNode As String, strForce2 As String 

Dim rgForceX As Range, rgForceY As Range, rgForceZ As Range, rgTime 

As Range 

Dim rgDataX As Range, rgDataY As Range, rgDataZ As Range, 

rgDataTime As Range 
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Dim lParametr As Long, strTime As String, lTime As Long 

Dim Counter As Long, Steps As Long 

Dim wsX As Worksheet, wsY As Worksheet, wsZ As Worksheet 

Dim X As String, Y As String, Z As String, SpeedX As String, SpeedY 

As String, SpeedZ As String 

Dim strStrain As String, strStress As String 

 

Set wbMaster = ThisWorkbook 

Set wsMain = wbMaster.Sheets("Main") 

Set wsFORRCT = wbMaster.Sheets("FORRCT") 

Set wsRESULTS = wbMaster.Sheets("RESULTS") 

Set wsX = wbMaster.Sheets("X") 

Set wsY = wbMaster.Sheets("Y") 

Set wsZ = wbMaster.Sheets("Z") 

Counter = "0" 

Steps = wsMain.Range("A25") 

X = wsMain.Range("B4") 

X = Replace(X, ",", ".") 

Y = wsMain.Range("B5") 

Y = Replace(Y, ",", ".") 

Z = wsMain.Range("B6") 

Z = Replace(Z, ",", ".") 

Set rgForceX = wsRESULTS.Range("B3") 

Set rgForceY = wsRESULTS.Range("C3") 

Set rgForceZ = wsRESULTS.Range("D3") 

Set rgTime = wsRESULTS.Range("A3") 

SpeedX = wsMain.Range("B9") 

SpeedY = wsMain.Range("B10") 

SpeedZ = wsMain.Range("B11") 

 

Do While Counter < Steps 

    Set cl = wsX.Range("A3").Offset(Counter) 'Displacement For X 

        cl.Value = rgTime.Offset(Counter).Value * SpeedX 

'    cl.Value = "=Main!A14*Main!B9*" & Counter 

    Set cl2 = wsX.Range("A3").Offset(Counter, 1) 'Strain For X 

    strStrain = "=" & cl.Address & "/" & X 

    cl2.Value = strStrain 

    Set cl3 = wsX.Range("A3").Offset(Counter, 2) 'Stress For X 

    strStress = "=RESULTS!" & rgForceX.Offset(Counter).Address & 

"/" & "(" & Y & "*" & Z & ")" 

    cl3.Value = strStress 

    Set cl4 = wsX.Range("A3").Offset(Counter, 4) 'Strain true For X 

    cl4.FormulaR1C1 = "=LN(1+RC[-3])" 

    Set cl5 = wsX.Range("A3").Offset(Counter, 5) 'Stress true For X 

    cl5.FormulaR1C1 = "=RC[-3]*(1+RC[-4])" 

     

    Set cl = wsY.Range("A3").Offset(Counter) 'Displacement For Y 

    cl.Value = rgTime.Offset(Counter).Value * SpeedY 

'    cl.Value = "=Main!A14*Main!B10*" & Counter 

    Set cl2 = wsY.Range("A3").Offset(Counter, 1) 

    strStrain = "=" & cl.Address & "/" & Y 

    cl2.Value = strStrain 

    Set cl3 = wsY.Range("A3").Offset(Counter, 2) 'Stress For Y 

    strStress = "=RESULTS!" & rgForceY.Offset(Counter).Address & 

"/" & "(" & X & "*" & Z & ")" 
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    cl3.Value = strStress 

    Set cl4 = wsY.Range("A3").Offset(Counter, 4) 'Strain true For X 

    cl4.FormulaR1C1 = "=LN(1+RC[-3])" 

    Set cl5 = wsY.Range("A3").Offset(Counter, 5) 'Stress true For X 

    cl5.FormulaR1C1 = "=RC[-3]*(1+RC[-4])" 

     

    Set cl = wsZ.Range("A3").Offset(Counter) 'Displacement For Z 

    cl.Value = rgTime.Offset(Counter).Value * SpeedZ 

'    cl.Value = "=Main!A14*Main!B11*" & Counter 

    Set cl2 = wsZ.Range("A3").Offset(Counter, 1) 

    strStrain = "=" & cl.Address & "/" & Z 

    cl2.Value = strStrain 

    Set cl3 = wsZ.Range("A3").Offset(Counter, 2) 'Stress For Z 

    strStress = "=RESULTS!" & rgForceZ.Offset(Counter).Address & 

"/" & "(" & X & "*" & Y & ")" 

    cl3.Value = strStress 

    Set cl4 = wsZ.Range("A3").Offset(Counter, 4) 'Strain true For X 

    cl4.FormulaR1C1 = "=LN(1+RC[-3])" 

    Set cl5 = wsZ.Range("A3").Offset(Counter, 5) 'Stress true For X 

    cl5.FormulaR1C1 = "=RC[-3]*(1+RC[-4])" 

     

    Counter = Counter + 1 

Loop 

End Sub 

 

Sub GrafikaX() 

 

Dim wbMaster As Workbook 

Dim wsFORRCT As Worksheet, wsRESULTS As Worksheet, wsMain As 

Worksheet 

Dim rgData As Range, rgNode As Range, rgObsah As Range 

Dim cl As Range, cl2 As Range, cl3 As Range, cl4 As Range, cl5 As 

Range 

Dim strNode As String, strForce2 As String 

Dim rgForceX As Range, rgForceY As Range, rgForceZ As Range, rgTime 

As Range 

Dim rgDataX As Range, rgDataY As Range, rgDataZ As Range, 

rgDataTime As Range 

Dim lParametr As Long, strTime As String, lTime As Long 

Dim Counter As Long, Steps As Long 

Dim wsX As Worksheet, wsY As Worksheet, wsZ As Worksheet 

Dim X As String, Y As String, Z As String 

Dim strStrain As String, strStress As String 

 

Set wbMaster = ThisWorkbook 

Set wsMain = wbMaster.Sheets("Main") 

Set wsFORRCT = wbMaster.Sheets("FORRCT") 

Set wsRESULTS = wbMaster.Sheets("RESULTS") 

Set wsX = wbMaster.Sheets("X") 

Set wsY = wbMaster.Sheets("Y") 

Set wsZ = wbMaster.Sheets("Z") 

 

With wsX 

    Set rgDataX = .Range("E3", .Cells(.Rows.Count, "E").End(3)) 

    Set rgDataY = .Range("F3", .Cells(.Rows.Count, "F").End(3)) 

End With 
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Sheets("GraphX").Select 

 

    ActiveChart.ChartArea.Select 

    ActiveChart.SeriesCollection.NewSeries 

    ActiveChart.SeriesCollection(1).Values = rgDataY 

    ActiveChart.SeriesCollection(1).XValues = rgDataX 

     

End Sub 

 

Sub GrafikaY() 

 

Dim wbMaster As Workbook 

Dim wsFORRCT As Worksheet, wsRESULTS As Worksheet, wsMain As 

Worksheet 

Dim rgData As Range, rgNode As Range, rgObsah As Range 

Dim cl As Range, cl2 As Range, cl3 As Range, cl4 As Range, cl5 As 

Range 

Dim strNode As String, strForce2 As String 

Dim rgForceX As Range, rgForceY As Range, rgForceZ As Range, rgTime 

As Range 

Dim rgDataX As Range, rgDataY As Range, rgDataZ As Range, 

rgDataTime As Range 

Dim lParametr As Long, strTime As String, lTime As Long 

Dim Counter As Long, Steps As Long 

Dim wsX As Worksheet, wsY As Worksheet, wsZ As Worksheet 

Dim X As String, Y As String, Z As String 

Dim strStrain As String, strStress As String 

 

Set wbMaster = ThisWorkbook 

Set wsMain = wbMaster.Sheets("Main") 

Set wsFORRCT = wbMaster.Sheets("FORRCT") 

Set wsRESULTS = wbMaster.Sheets("RESULTS") 

Set wsX = wbMaster.Sheets("X") 

Set wsY = wbMaster.Sheets("Y") 

Set wsZ = wbMaster.Sheets("Z") 

 

With wsY 

    Set rgDataX = .Range("E3", .Cells(.Rows.Count, "E").End(3)) 

    Set rgDataY = .Range("F3", .Cells(.Rows.Count, "F").End(3)) 

End With 

 

    Sheets("GraphY").Select 

 

    ActiveChart.ChartArea.Select 

    ActiveChart.SeriesCollection.NewSeries 

    ActiveChart.SeriesCollection(1).Values = rgDataY 

    ActiveChart.SeriesCollection(1).XValues = rgDataX 

     

End Sub 

 

Sub GrafikaZ() 

 

Dim wbMaster As Workbook 

Dim wsFORRCT As Worksheet, wsRESULTS As Worksheet, wsMain As 

Worksheet 
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Dim rgData As Range, rgNode As Range, rgObsah As Range 

Dim cl As Range, cl2 As Range, cl3 As Range, cl4 As Range, cl5 As 

Range 

Dim strNode As String, strForce2 As String 

Dim rgForceX As Range, rgForceY As Range, rgForceZ As Range, rgTime 

As Range 

Dim rgDataX As Range, rgDataY As Range, rgDataZ As Range, 

rgDataTime As Range 

Dim lParametr As Long, strTime As String, lTime As Long 

Dim Counter As Long, Steps As Long 

Dim wsX As Worksheet, wsY As Worksheet, wsZ As Worksheet 

Dim X As String, Y As String, Z As String 

Dim strStrain As String, strStress As String 

 

Set wbMaster = ThisWorkbook 

Set wsMain = wbMaster.Sheets("Main") 

Set wsFORRCT = wbMaster.Sheets("FORRCT") 

Set wsRESULTS = wbMaster.Sheets("RESULTS") 

Set wsX = wbMaster.Sheets("X") 

Set wsY = wbMaster.Sheets("Y") 

Set wsZ = wbMaster.Sheets("Z") 

 

With wsZ 

    Set rgDataX = .Range("E3", .Cells(.Rows.Count, "E").End(3)) 

    Set rgDataY = .Range("F3", .Cells(.Rows.Count, "F").End(3)) 

End With 

 

    Sheets("GraphZ").Select 

 

    ActiveChart.ChartArea.Select 

    ActiveChart.SeriesCollection.NewSeries 

    ActiveChart.SeriesCollection(1).Values = rgDataY 

    ActiveChart.SeriesCollection(1).XValues = rgDataX 

     

End Sub 

 

Sub ChangeSign() 

 

Dim wbMaster As Workbook 

Dim wsFORRCT As Worksheet, wsRESULTS As Worksheet, wsMain As 

Worksheet 

Dim rgData As Range, rgNode As Range, rgObsah As Range 

Dim cl As Range, cl2 As Range, cl3 As Range, cl4 As Range, cl5 As 

Range 

Dim strNode As String, strForce2 As String 

Dim rgForceX As Range, rgForceY As Range, rgForceZ As Range, rgTime 

As Range 

Dim rgDataX As Range, rgDataY As Range, rgDataZ As Range, 

rgDataTime As Range 

Dim lParametr As Long, strTime As String, lTime As Long 

Dim Counter As Long, Steps As Long 

Dim wsX As Worksheet, wsY As Worksheet, wsZ As Worksheet 

Dim X As String, Y As String, Z As String 

Dim strStrain As String, strStress As String 

 

Set wbMaster = ThisWorkbook 
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Set wsMain = wbMaster.Sheets("Main") 

Set wsFORRCT = wbMaster.Sheets("FORRCT") 

Set wsRESULTS = wbMaster.Sheets("RESULTS") 

Set wsX = wbMaster.Sheets("X") 

Set wsY = wbMaster.Sheets("Y") 

Set wsZ = wbMaster.Sheets("Z") 

 

With wsX 

    Set rgData = .Range("C3", .Cells(.Rows.Count, "C").End(3)) 

End With 

 

rgData.Value = rgData.Value 

 

For Each cl In rgData 

    If cl.Value < 0 Then 

        cl.Value = cl.Value * -1 

    End If 

Next 

 

With wsY 

    Set rgData = .Range("C3", .Cells(.Rows.Count, "C").End(3)) 

End With 

 

rgData.Value = rgData.Value 

 

For Each cl In rgData 

    If cl.Value < 0 Then 

        cl.Value = cl.Value * -1 

    End If 

Next 

 

With wsZ 

    Set rgData = .Range("C3", .Cells(.Rows.Count, "C").End(3)) 

End With 

 

rgData.Value = rgData.Value 

 

For Each cl In rgData 

    If cl.Value < 0 Then 

        cl.Value = cl.Value * -1 

    End If 

Next 

 

 

End Sub 

A.5 Tracing an Evolution of Crystallographic Orientation  

In our CP model the information about a crystal orientation is given in the 

orientation matrix T (     in terms of <1 0 0> directions. This matrix is updated 

in every time increment, see Equation (4-10). Each column in this matrix 

represents an orthonormal base of a crystal   
 . This matrix T and its evolution 



 

108 

during deformation is passed to the d3plot file, which can be open by post-

processing software Ls-PrePost [43]. The information of the crystal orientation 

(expressed as 9 components of the matrix T) can be found under the history of 

an element as variables “history var#1 – history var#9”.  

Then each variable history var#1 – history var#9 has to be plotted within LS-

PrePost and saved as MSoft CSV (Single X-Axis) within the desired time so 9 

files (1.csv to 9.csv) are obtained. These files are then copy to the same file 

where is this script written in the Matlab code. 

The main script is: 

%This soft loads csv data (crystal orientation) and plots pole 

figure 

 

%Read x coordinate part of vector a 

file_name = '1.csv'; 

% This comand csvread reads csv file, it skips first line and first 

%column: 

[A] = csvread(file_name, 1, 1); 

 

%Read y coordinate part of vector a 

file_name = '2.csv'; 

[B] = csvread(file_name, 1, 1); 

 

%Read z coordinate part of vector a 

file_name = '3.csv'; 

[C] = csvread(file_name, 1, 1); 

 

%Read x coordinate part of vector b 

file_name = '4.csv'; 

[D] = csvread(file_name, 1, 1); 

 

%Read y coordinate part of vector b 

file_name = '5.csv'; 

[E] = csvread(file_name, 1, 1); 

 

%Read z coordinate part of vector b 

file_name = '6.csv'; 

[F] = csvread(file_name, 1, 1); 

 

%Read x coordinate part of vector c 

file_name = '7.csv'; 

[G] = csvread(file_name, 1, 1); 

 

%Read y coordinate part of vector c 

file_name = '8.csv'; 

[H] = csvread(file_name, 1, 1); 

 

%Read z coordinate part of vector c 

file_name = '9.csv'; 
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[I] = csvread(file_name, 1, 1); 

 

%It is needed compile three coordinates to a vector for all 

crystals 

V(:,1) = [A(1,:) D(1,:) G(1,:)]; 

V(:,2) = [B(1,:) E(1,:) H(1,:)]; 

V(:,3) = [C(1,:) F(1,:) I(1,:)]; 

 

 

%Make 3d vectors, X (i=1:X,) which is below has to be changed 

X=3xnumber of 

%elements 

for i=1:1536, 

    vector(i) = vector3d(V(i,1),V(i,2),V(i,3)); 

end 

 

%Plot crystal orientation in iqual-area projection 

close all; figure('position',[50 50 500 500]) 

% 

plot(vector,'Marker','l','MarkerSize',10,'MarkerFaceColor','Black',

'MarkerEdgeColor','Black','grid','antipodal') 

plot(vector,'Marker','o','MarkerSize',2,'MarkerFaceColor','Black','

MarkerEdgeColor','Black','grid','antipodal') 

After running this script desired pole figure is obtained. 
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Appendix B Material Input File for DYNA3D®
®
 

Material Type 94 (Crystal plasticity) 

Material model added by Cranfield University. This material is implemented for 

hexahedral elements only. 

Columns  Quantity Format 

1-10  Card 3  Elastic modulus in longitudinal direction, Ea E10.0 

11-20   Elastic modulus in transverse direction, Eb E10.0 

21-30  Elastic modulus in normal direction, Ec E10.0 

31-40  Rate sensitivity exponent for slip system 1, n. E10.0 

41-50  Reference strain rate for slip system 1, a . E10.0 

51-60  Hardening option E10.0 

 

EQ.1.0: Hypersecant hardening law (Umat Documentation) 

else: Hardening law used in Kalidindi 1992 

(Crystallographic Texture evolution in bulk 

deformation processing of FCC Metals) motivated 

by the work of Brown et al. (An internal variable 

constitutive model for hot-working of metals 1989) 

61-70  Slip hardening parameter, a E10.0 

  

1-10  Card 4  Poisson’s ratio, ba E10.0 

11-20   Poisson’s ratio, ca E10.0 

21-30   Poisson’s ratio, cb E10.0 

Columns  Quantity Format 
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31-40  Rate sensitivity exponent for slip system 2, n. E10.0 

41-50  Reference strain rate for slip system 2, a . E10.0 

1-10  Card 5  Shear modulus, Gab E10.0 

11-20   Shear modulus, Gbc E10.0 

21-30   Shear modulus, Gca E10.0 

31-40  Rate sensitivity exponent for slip system 3, n. E10.0 

41-50  Reference strain rate for slip system 3, a . E10.0 

1-10  Card 6  Material axes definition option, AOPT  E10.0 

 

EQ.0.0: locally orthotropic with material axes determined by 

element nodes n1, n2, n4 and as shown in Figure 2. 

Cards 7 and 8 are blank with this option. 

EQ.1.0: locally orthotropic with material axes determined by 

a point in space P and the global location of the 

element center, as shown in Figure 2. Card 8 below 

is blank. 

EQ.2.0: globally orthotropic with material axes determined by 

vectors defined on Cards 7 and 8. (See Figure 3). 

EQ.3.0: Applicable to shell element only – will result in an 

error termination if used with this model 

EQ.4.0: locally orthotropic with cylindrical material axes 

determined by point P, located on the axis of 

revolution, and the vector d, which parallels axis of 

revolution. (See Figure 3) 

 

Columns  Quantity Format 
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11-20   Unused at this time. E10.0 

  Reserved for: Material axes change flag for brick 

elements 

21-30  Crystal structure flag E10.0 

EQ.1.0: FCC  (1 slip system) 

EQ.2.0: BCC (3 slip systems) 

31-40 Initial hardening modulus for slip system 1, h0 E10.0 

41-50 Stage I stress for slip system 1, s  E10.0 

51-60 Initial yield stress for slip system 1, c  E10.0 

61-70 Latent hardening parameter q for slip system 1 E10.0 

71-80 Latent hardening parameter q1 for slip system 1 E10.0 

1-10  Card 7  xp, define only if AOPT = 1.0 or 4.0 E10.0 

11-20   yp, define only if AOPT = 1.0 or 4.0 E10.0 

21-30   zp, define only if AOPT = 1.0 or 4.0 E10.0 

1-10  Card 7  ax, define only if AOPT = 2.0  E10.0 

11-20   ay, define only if AOPT = 2.0  E10.0 

21-30  az, define only if AOPT = 2.0  E10.0 

31-40 Initial hardening modulus for slip system 2, h0 E10.0 

41-50 Stage I stress for slip system 2, s  E10.0 

51-60 Initial yield stress for slip system 2, 0  E10.0 

 

Columns  Quantity Format 
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61-70 Latent hardening parameter q for slip system 2 E10.0 

71-80 Latent hardening parameter q1 for slip system 2 E10.0 

1-10  Card 8  dx, define only if AOPT = 2.0 or 4.0 E10.0 

11-20   dy, define only if AOPT = 2.0 or 4.0 E10.0 

21-30 dz, define only if AOPT = 2.0 or 4.0 E10.0 

31-40 Initial hardening modulus for slip system 3, h0 E10.0 

41-50 Stage I stress for slip system 3, s  E10.0 

51-60 Initial yield stress for slip system 3, 0  E10.0 

61-70 Latent hardening parameter q for slip system 3. E10.0 

71-80 Latent hardening parameter q1 for slip system 3. E10.0 

An FCC material contains one set of slip systems, the {111} planes with the 

<110> directions. If an FCC material is defined then the parameters for slip 

systems 2 and 3 on cards 4,5,7 and 8 are ignored. Additionally the q1 on card 6 

will be ignored. 

A BCC material contains three sets of slip systems: 

Slip system Normal to slip 

plane 

Slip 

direction 

1 {110} <111> 

2 {112} <111> 

3 {123} <111> 

All parameters must be defined. 
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Example of Input File DYNA3D® - MAT94  

The following is an input file for a single crystal compression used in Section 

5.2. 

                                                                         

* 

* This file was created using TrueGrid by XYZ Scientific 

Applications, Inc. 

* For further information, call (925) 373-0628 or write to: 

* 

*      XYZ Scientific Applications, Inc. 

*      1324 Concannon Blvd. 

*      Livermore, Ca. 94550 

* 

* 

*------------------- ANALYSIS INPUT DATA FOR DYNA3D® --------------

-----* 

* TrueGrid version  2.3.4   dated 01/05/11 

*    generated on Mar 29 2012 at 22:29:56 

* 

*-------------------------- CONTROL CARD #2 -----------------------

----* 

* 

* number of materials[1] nodal points[2] solid hexahedron 

elements[3] beam 

* elements[4] 4-node shell elements[5] 8-node solid shell 

elements[6] 

* interface segments[7] interface interval[8] min. shell time 

step[9] 

    1         8         1         0         0         0         0 

0.000E+00  0.0 

* 

*-------------------------- CONTROL CARD #3 -----------------------

----* 

* 

* number of time history blocks for nodes[1] hexahedron elements[2] 

beam 

* elements[3] shell elements[4] thick shell elements[5] and report 

interval[6] 

* reaction forces print flag[7] discrete element forces print 

flag[8] 

* element deletion/SAND database flag[9] 

    0    0    0    0    0    0    1    0    1 

* 

*-------------------------- CONTROL CARD #4 -----------------------

----* 

* 

* number of sliding boundary planes[1] 

* sliding boundary planes w/ failure[2] points in density vs depth 

* curve[3] brode function flag[4] number of rigid body merge 

cards[5]  

* nodal coordinate format[6] force cross sections[7]  

* cross section forces interval[8] 

         0    0    0    0    0e20.0    0 0.000E+00 
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* 

*-------------------------- CONTROL CARD #5 -----------------------

----* 

* 

* number of load curves[1] concentrated nodal loads[2] element 

sides having 

* pressure loads applied[3] velocity/acceleration boundary 

condition cards[4] 

* rigid walls (stonewalls)[5] nodal constraint cards[6] initial 

condition 

* parameter[7] sliding interfaces[8] base acceleration in x[9] 

y[10] and 

* z-direction[11] angular velocity about x[12] y[13] and z-axis[14] 

number of  

* solid hexahedron elements for momentum deposit[15] detonation 

points[16] 

    1    0    0    4    0    0    0    0    0    0    0    0    0    

0    0    0 

* 

*-------------------------- CONTROL CARD #6 -----------------------

----* 

* 

* termination time[1] time history dump interval[2] complete dump 

interval[3] 

* time steps between restart dumps[4] time steps between running 

restart 

* dumps[5] initial time step[6] sliding interface penalty factor[7] 

thermal 

* effects option[8] default viscosity flag[9] computed time step 

factor[10] 

 4.000E-02 0.000E+00 4.000E-04    0    0 0.000E+00 0.000E+00    0    

0 0.400E+00 

* 

*-------------------------- CONTROL CARD #7 -----------------------

----* 

* 

* number of joint definitions[1] rigid bodies with extra nodes[2] 

shell- 

* solid interfaces[3] tie-breaking shell slidelines[4] tied node 

sets with 

* failure[5] limiting time step load curve number[6] springs-

dampers-masses 

* flag[7] rigid bodies with inertial properties[8] dump shell 

strain flag[9] 

* number of material groups for deformable-rigid switching[10] 

number of 

* mass proportional damping sets[11] Hughes-Liu shell update[12] 

shell 

* thickness change[13] shell formulation[14] number of 

nonreflecting boundary 

* segments[15] 

    0    0    0    0    0    0    0    0    0    0    0    0    0    

0    0 

* 

*-------------------------- CONTROL CARD #8 -----------------------

----* 
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* 

* number of point constraint nodes[1] coordinate systems for 

constraint 

* nodes[2] minimum step factor[3] number of beam integration 

rules[4] 

* maximum integration points for beams[5] number of shell 

integration rules[6] 

* maximum integration points for shells[7] relaxation iterations 

between 

* checks[8] relaxation tolerance[9] dynamic relaxation factor[10] 

dynamic 

* relaxation time step factor[11] 4-node shell time step option[12] 

    0    0 0.000E+00    0    0    0    0  250 1.000E-03 9.950E-01 

0.000E+00    0 

* 

*-------------------------- CONTROL CARD #9 -----------------------

----* 

* 

* plane stress plasticity[1] printout flag[2] number of 1D 

slidelines[3] 

* relaxation database[4] Rayleigh coefficient[5] 

* materials w/Rayleigh damping[6] materials for initial rotation[7] 

* materials w/ body force loads[8] 

    0    0    0    0 0.000E+00    0    0    0 

* 

*--------------------------- MATERIAL CARDS -----------------------

----* 

* 

    1   948.9300E-09    0    00.0000E+00    00.0000E+000.0000E+00    

0    0    0 

Copper properties from Kalidindi_92 and Li_08                                                        

 6.700E+04 6.700E+04 6.700E+04 8.333E+01 1.000E-03 0.000E+00 

2.500E+00 0.000E+00 

 4.200E-01 4.200E-01 4.200E-01 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 0.000E+00 

 75000.000 75000.000 75000.000 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 0.000E+00 

 2.000E+00 0.000E+00 1.000E+00 2.500E+02 1.900E+02 1.600E+01 

1.400E+00 1.400E+00 

 1.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 0.000E+00 

 0.000E+00 1.000E+00 1.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 0.000E+00 

* 

*-------------------------- NODE DEFINITIONS ----------------------

----* 

* 

       1    3 0.0000000000000E+00 0.0000000000000E+00 

0.0000000000000E+00    0 

       2    0 0.0000000000000E+00 0.0000000000000E+00 

1.0000000000000E+00    0 

       3    3 0.0000000000000E+00 1.0000000000000E+00 

0.0000000000000E+00    0 

       4    0 0.0000000000000E+00 1.0000000000000E+00 

1.0000000000000E+00    0 
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       5    3 1.0000000000000E+00 0.0000000000000E+00 

0.0000000000000E+00    0 

       6    0 1.0000000000000E+00 0.0000000000000E+00 

1.0000000000000E+00    0 

       7    3 1.0000000000000E+00 1.0000000000000E+00 

0.0000000000000E+00    0 

       8    0 1.0000000000000E+00 1.0000000000000E+00 

1.0000000000000E+00    0 

* 

*------------------ ELEMENT CARDS FOR SOLID ELEMENTS --------------

----* 

* 

       1    1       1       5       7       3       2       6       

8       4 

* 

*----------------------------- LOAD CURVES ------------------------

----* 

* 

    1    2    0 

 0.000E+00 1.000E+00 

 1.000E+00 1.000E+00 

* 

*-------------- PRESCRIBED VELOCITIES AND ACCELERATIONS -----------

----* 

* 

       2    1    3-1.000E+01 0.000E+00 0.000E+00-1.000E+00    0 

       4    1    3-1.000E+01 0.000E+00 0.000E+00-1.000E+00    0 

       6    1    3-1.000E+01 0.000E+00 0.000E+00-1.000E+00    0 

       8    1    3-1.000E+01 0.000E+00 0.000E+00-1.000E+00    0 

 


