
Fractional Power NARX Model Identification Using 

A Harmony Search Algorithm 

Hua-Liang Wei, Yifan Zhao, Stephen A. Billings, Jia Zhao 

Department of Automatic Control and Systems Engineering 

The University of Sheffield 

Sheffield, S3 JD, UK 

w.hualiang@sheffield.ac.uk,  y.zhao@sheffield.ac.uk,  s.billings@sheffield.ac.uk   

 

 
Abstract—A novel type of discrete-time fractional-power 

nonlinear autoregressive with exogenous input (FPNARX) model 

is introduced for system identification, modeling and prediction.  

Parameter estimation of such a model is a nonlinear optimization 

problem. A harmony search algorithm is then applied to solve 

such fractional models. Examples of both simulated and real data 

are provided.        

Keywords–fractional-power AR/ARX/NARX; harmony search; 
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I.  INTRODUCTION 

System identification, as a data based modeling approach, 
has been widely applied in every single area of engineering and 
science. Traditionally, the target model type to be induced and 
built from available experimental data for a given dynamic 
system is commonly chosen to be one form or another of 
discrete-time representations. For linear dynamic systems, the 
commonly used model is the well known autoregressive (AR) 
and autoregressive with exogenous input (ARX) models [1], 
[2]. For nonlinear dynamic systems, there is a large variety of 
model representation including neural networks [3],[4], radial 
basis function networks [5]-[7], fuzzy reasoning and 
approximation [8],[9], kernels models [10], multiresolution 
wavelet models [11]-[13], and the well known nonlinear 
autoregressive moving average with exogenous inputs 
(NARMAX) model [14],[15] which accommodates many 
traditional autoregressive types of models such as AR/ARX, 
ARMA/ARMAX, Voterra, Hammerstein, Wiener and bilinear 
models as special cases [16].   

The autoregressive types of parametric representation such 
as ARX and NARX models have several advantages, for 
example such models are transparent and the role of each 
individual variable (or model term) can clearly be assessed [17] 
in terms of the contribution they make to the system output, 
and the interactions with other model variables or terms. 
Conventionally, the power of each of the individual variables 
in the models is an integer, like y(k-1), u

3
(k-1), y

2
(k-2)u(k-2), 

where the power of the four variables is 1, 3, 2 and 1, 
respectively. Using variables with integer powers to form 
model terms and then constructing a system model is a natural 
way in that most existing mature theoretic results can directly 
be applied to the model, for example for stability analysis, 
frequency domain analysis and so on. There are many real-
world scenarios, however, where the physical behavior can 

compactly and efficiently be characterized by a fractional-
power  model where some system variables take an effect in a 
form of fractional power [18]-[21].  

Whilst there is a growing number of articles on theoretical 
analysis of continuous-time fractional-order systems and the 
solution of the forward problem in the literature, the inverse 
problem, that is, the investigation of methods and algorithms 
that can be used to reconstruct the original fractional equations 
or to establish compact equivalent representations for the 
original dynamic systems, merely from available experimental 
data, has received little attention and to the best of the authors’ 
knowledge few results have been achieved in this area.  

Motivated by these observations, this study aims to 
investigate and develop a novel fractional-power NARX 
(FPNARX) modeling approach. Estimation of the FPNARX 
model can be viewed as a kind of nonlinear optimization 
problem which can be solved by means of either classical 
gradient based algorithms or modern meta-heuristic search 
algorithms. This study, however, introduces a harmony search 
algorithm [22],[23] to solve the FPNARX model estimation 
problem. Examples of both simulated and real data are 
presented to illustrate the efficiency, effectiveness and 
applicability of newly developed fractional-power NARX 
modeling approach.        

II. PROBLEM FORMULATION 

A. The Polynomial NARX Model 

It has been shown that under some mild conditions single-

input and single-output (SISO) discrete-time or discretized 

continuous-time dynamical systems can be described by the 

difference equation model [14],[15] 

( ) ( ( 1), , ( ), ( 1), , ( )) ( )y k f y k y k p u k u k q e k          
(1) 

where u(k), y(k) and e(k) are the system input, output and 

noise variables, respectively; p and q are the maximum lags in 

the input and output; f is some unknown linear or nonlinear 

mapping. It is generally assumed that e(k) is an independent 

identical distributed noise sequence. A commonly employed 

form of model (1) is the well-known nonlinear autoregressive 

with exogenous inputs (NARX) model [14]-[15], which can 

describe a wide range of nonlinear dynamic systems. In cases 

where the noise e(k) is coloured, noise modeling should then 
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be considered to form a NARMAX model [14]-[16].   

 A generic polynomial representation of the NARX model, 

with a nonlinear degree of order  , is 
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where n = p+q and  

( ),                1
( )

( ( )),       1
j

y k j j p
x k

u k j p p j n

  
 

    
                 (3) 

Practical applications have shown that NARX models, with a 

nonlinear degree of order 3 , can often provide satisfactory 

approximations for most dynamical systems. The widely used 

autoregressive with exogenous input (ARX) model [1],[2], as 

a special case of the NARX model (2) where  =1 and 

0 0c  , is explicitly given by 

1 1

( ) ( ) ( ) ( )
p q

i j

i j

y k a y k i b u k j e k
 

                     (4) 

  

B. The Fractional Power NARX Model 

In parallel to the polynomial NARX model (2), the 
fractional power NARX (FPNARX) model is of the form 
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(5) 

where α1, α2, …, αn are real numbers with either integer or 

fractional values, the model variables xi(k) are defined by (2).  

The FPNARX model can be implemented through three 
different approaches, namely,  

 Fixed fractional powers. Powers are predetermined to 
be some fixed values, for example, each of the power 

parameters αi (i = 1,2, n) in (5) is restricted to a set P = 

{p1, p2, …, pm} where pj is real. A simple example of 

such a FPNARX model of two variables y(k-1) and 

u(k-1), with P = {0.5, 1} and with the inclusion of all  

possible cross-product terms, could be of the form: 
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(6) 

 Fixed model structure and variable fractional-power 
parameters. Below gives a simple example of such a 
case: 

 
1 2 3( ) ( 1) ( 2) ( 1) ( )y k a y k a y k a u k e k       (7) 

where α is a fractional number. 

 Both the model structure and the fractional-power 
parameters are unknown and need to be identified from 
given experimental data.   

The first case above can easily be converted to a linear-in-
the-parameters form which can then be solved with a nonlinear 
model structure detection and parameter estimation method, for 
example the well-known orthogonal least squares (OLS) and 
error reduction ratio (ERR) algorithm [24]-[26].  The second 
case is a nonlinear-in-the-parameters problem and an 
optimization method should be employed to solve such a 
problem. The third case is quite complicated because of the 
uncertainty of the model structure, which in turn causes the 
operation on the unknown fractional-power parameters to be 
quite difficult. It is thus not advocated to employ the FPNARX 
model of the last case, unless some a priori information is 
available and the problem can be converted to the first two 
cases. In fact several effective alternatives to the last case are 
available and these include neural networks, radial basis 
function networks, fuzzy reasoning and approximation, kernels 
models, and multiresolution wavelet models and wavelet 
networks. 

III. HARMONY SEARCH 

Harmony search (HS) [22],[23] is a new meta-heuristic 
method for nonlinear function optimization by imitating the 
musical instrument improvisation process where musicians 
always try and improvise their instruments performance so as 
to achieve a preferable state of harmony. Inspired by the 
mechanism of swarm intelligence and particle swarm 
optimization (PSO) [27], Omran and Mahdavi [28] proposed 
an improved version of the simple HS algorithm, called the 
global-best harmony search (GHS). Following [27] and [28], 
the GHS algorithm can be outlined as below: 

Step 1:  Problem presentation. Formulate the optimization 
problem, for example, min f(x), with L ≤ x  ≤ U, where x is a 
n-D vector, f(x) is an objective function, and L and U are the 
lower and upper boundaries (both L and U are vectors);  
specify relevant parameters (e.g. harmony memory size, 
harmony memory consideration rate, pitching adjusting rate). 

Step 2:  Initial condition setting. The initial harmony memory 
can be generated from a uniform distribution over the interval 
[Li, Ui] (i =1,2, …, n). More specifically, this can be achieved 

by setting ( ) ( )m

i i i ix L r U L   for m = 1,2…,M where M is 

harmony memory size and r is a random number between 0 
and 1. 

Step 3:  Improvisation and new harmony search. Generate new 

harmony vector
1 2[ , , , ]new new new new

nx x x x  by utilizing 

memory consideration, pitch adjusting and random selection as 
below (in Matlab format) 



 for i  = 1: n   % for each index i in {1,2, …, n}  
      if r ≤ HMCR   %  harmony memory consideration rate 

               ( )new m

i ix x ; %  m belongs to {1,2, …, M} 

                if r ≤ PAR   %  pitch adjusting rate 

                       ( )m best

i kx x ;   

                       %  the best harmony in the harmony memory 
                       %  with k belonging to {1,2, …, n} 

          endif 
else            

               ( )new

i i i ix L r U L   ;  % random selection 

endif 
end 

 

Step 4: Harmony memory update. The newly generated 

harmony vector 
1 2[ , , , ]new new new new

nx x x x  can be used to 

replace the old harmony if it can produce a better performance 
in decreasing the objective function.  

Step 5:  Termination. The search process can be terminated 
either if the search iteration number exceeds the prespecified 
maximum number of improvisations or the value of the 
objective function drops to a given threshold.  

IV. CASE STUDIES 

      This section provides three examples:  the first for static 
function approximation, the second for fractional-power 
NARX model identification from simulated data, and the last 
one for fractional-power AR model identification from a real 
data set (the annual sunspot numbers).    

A. Static Function Approximation  

The function is defined by 

1 ,        0 1/ 4

4 1,      1/4 1/ 2
( )

sin( ),    1/2 1

0,              elsewhere

x x

x x
y f x

x x

  


  
  

 


                         (8) 

The values of y for  x = 0, 0.05, 0.1, …, 1 were recorded, and 
the 21 data points in total were then used to fit two curves by 
using two groups of polynomial bases:  

 Integer-power polynomial: {1, x, x
2
, …, x

10
} 

 Fractional-power polynomial:{1, x
0.5

, x, x
1.5, 

,x
2
,…, x

5
} 

The polynomial models, corresponding to the above two 
groups of bases are:     

2 10

0 1 2 10( )y g x a a x a x a x                                     (9) 

0.5 1.5 2 5

0 1 2 3 4 10( )y h x a a x a x a x a x a x            (10) 

To mimic a realistic scenario, a noise of mean zero and 
standard deviation of σ = 0.1 was added to the measured values 
for y. The ordinary least squares algorithm was then used to 
calculate the polynomial parameters for both the noise-free and 
noisy cases.  

 

Fig. 1 shows the results produced by the two types of 
polynomials fitted from the noise-free data, where the values of 
the mean squared errors (MSE) for the integer-power and 
fractional-power polynomials are 6.8307×10

-4
 and 5.7199×10

-4
, 

respectively.  Similarly, Fig. 2 shows the results of the two 
types of polynomials fitted from the noisy data, and the values 
of the MSE values are 0.3439 and 0.3418 respectively. Clearly, 
the fractional-power polynomial fitting provides a slightly 
better performance for both the noise-free and noisy data cases.       

B. Nonlinear Input-Output Model Identification 

      A nonlinear Hammerstein system is described by a model 
structure of (7), where the model parameters a1 = 1.8, a2 = -
0.825, a3 = 0.1, and the fractional-power parameter α = 0.4. By 
choosing the noise signal e(k) as a Gaussian random sequence 
of zero mean and a standard deviation of σ = 0.1, and the input 
signal as a stochastic sequence that is evenly distributed in the 
interval [0,2], this system was simulated and a total of N = 200 
input-output data points were recorded and were used for 
model parameter estimation.  

 
 

Figure 1.  A comparison between the integer-power and fractional-
power polynomial fitting for the noise free data. 
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Figure 2.  A comparison between the integer-power and fractional-
power polynomial fitting for the noisy data. 
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The harmony search algorithm described in Section III was 
applied to the estimation data set of 200 points. The harmony 
memory size, the harmony memory consideration rate, and the 
pitch adjusting rate, the maximum number of improvisations 
were respectively chosen to be 50, 0.8, 0.1, and 1000. The 

parameter estimates were 1â = 1.8243, 2â = -0.8450, 3â = 

0.0827,  α = 0.5027.
 
 To test the efficiency of the estimated 

model parameters, both the identified model and the original 
true system model were simulated by choosing the input signal 
as a random sequence of a normal distribution over [0,2] (this 
input signal is different from that used for model parameter 
estimation). A comparison between the two output signals, 
generated by the estimated model (model predicted output or 
shortly MPO) and by the true model, respectively, is shown in 
Fig. 3, which clearly indicates that the model fit is excellent. 
Note that for dynamical modelling problems, the resultant 
models should possess a satisfactory predicative ability in 
terms of MPO performance, which is an extreme case of long-
term prediction and which is the most stringent test for 
dynamical models [29]-[33].  

 

C. Application to Real Data 

The data set used in this example contains 301 observations 
of the annual sunspot numbers from 1700 to 2000. Denote this 
time series by {y(k)} for k =1,2, …, 301. The first 280 samples 
for years 1700 to 1979 were used for model identification and 
the remaining 22 data were used for model performance 
testing. From our previous studies [17], [29], a total of three 
most significant model variables, namely, y(k-1), y(t-2), y(t-9), 
along with the const term, were used for the data modeling 
task. Unlike in conventional modeling practice, the example 
aims to find a fractional-power AR (FPAR) model of the form 

31 2

0 1 2 3( ) ( 1) ( 2) ( 9) ( )y k a a y k a y k a y k e k
        

 
(11) 

where a0, a1, a2, a3 are model parameters, and β1, β2, β3 are 
fractional-power parameters.  

The harmony search algorithm was applied to the 280 
estimation data points. The harmony memory size, the 
harmony memory consideration rate, and the pitch adjusting 
rate, the maximum number of improvisation   were respectively 
chosen to be 100, 0.8, 0.2, and 5000. The parameter estimates 
were a0=2.0132, a1=3.808, a2=-3.7935, a3=1.1030, and 
β1=0.7852,  β2=0.6355,  β3=0.6472.

  
A comparison of one-step-ahead predictions and the 

observations, over the range from year 1900 to 2000 is shown 
in Fig. 4. The MSE values calculated from the identified 
fractional-power model, over the estimation data and the test 
data were calculated to be 190.4193 and 300.3084, 
respectively, and the overall MSE value over the all 301 data 
points is 192.7566. To inspect the performance and efficiency 
of the identified fractional-power model, a traditional AR 
model involving exactly the same model variables was also 
identified by means of  the ordinary least squares method. The 
AR model is given as  

( ) 5.7080 1.2211 ( 1) 0.5252 ( 2)

        0.1935 ( 9) ( )

y k y k y k

y k e k

    

              
(10)    

The value of MSE calculated from the AR model, over the 

estimation data and the test data is 218.5723 and 343.207, 

respectively, and the overall MSE value over all the 301 data 

points is 220.792. Clearly, the fractional-power AR (FPAR) 

model is more efficient and can generate a better performance 

than the traditional AR model in terms of short-term predictive 

capability. Note the better performance of the FPAR model is 

achieved by scarifying more time on the nonlinear model 

parameter estimation. For example, the that the computation 

time for the FPAR model was 0.58 second, while the time for 

the normal AR model was only 0.003 second. This implies 

that the computation load required by a fractional-power 

model identification could be much more in comparison to 

that required by a traditional integer-power model 

identification, simply because the involvement of nonlinear 

optimization in the FP type model parameter estimation.  

 

 

 
 
Figure 4.  One-step-ahead model predictions and the observations. 
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Figure 3.  The model predicted output and the ‘true’ values. 
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V. CONCLUSION 

The totally new discrete-time dynamical fractional-power 
autoregressive type of models has been introduced. The 
efficiency and performance of the newly developed model was 
investigated through numerical examples in relation to both 
simulated and real data sets. It has been shown that in cases 
where a priori information about the model structure is known, 
the fractional-power model is advantageous over its traditional 
counterparts in terms of model simplicity, that is, the 
fractional-power model is relatively compact to describe linear 
or nonlinear dynamic systems which would otherwise require a 
relatively larger number of model terms if conventional  
integer-power models are employed.  The main disadvantage 
of the FPNARX model is that this type of model is relatively 
more complicated and difficult to operate and implement. 
While the first two types of FPNARX models (discussed in 
Section II B) can be solved by means of a model structure 
detection algorithm or nonlinear optimization methods, the 
third type of FPNARX model is quite intractable. 

Future study in FPNARX modeling would include:  

 A systematic and automatic process to carry out the 
identification of the first type of FPNARX model 
(Section II B). This type of FPNARX model can be 
treated as a natural extension of the traditional integer-
power NARX model, and existing nonlinear model 
structure detection methods can be adapted and 
developed for FPNARX model structure identification 
and model parameter estimation. 

 An investigation of methods to detect the varying 
range of the relevant fractional-power parameters, this 
would help reduce the reliance on nonlinear 
optimization methods. 

 Model variable selection. The inclusion of redundant 
variables would significantly increase the 
computational load relevant to nonlinear optimization, 
which in turn would affect the performance of the 
identified model.  
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