
Constrained LQR for Low-Precision Data Representation ?

Stefano Longo a, Eric C. Kerrigan b,c, George A. Constantinides b

aDepartment of Automotive Engineering, Cranfield University, Cranfield, MK43 0AL, UK

bDepartment of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, UK

cDepartment of Aeronautics, Imperial College London, London, SW7 2AZ, UK

Abstract

Performing computations with a low-bit number representation results in a faster implementation that uses less silicon, and hence allows
an algorithm to be implemented in smaller and cheaper processors without loss of performance. We propose a novel formulation to
efficiently exploit the low (or non-standard) precision number representation of some computer architectures when computing the solution
to constrained LQR problems, such as those that arise in predictive control. The main idea is to include suitably-defined decision variables
in the quadratic program, in addition to the states and the inputs, to allow for smaller roundoff errors in the solver. This enables one to
trade off the number of bits used for data representation against speed and/or hardware resources, so that smaller numerical errors can be
achieved for the same number of bits (same silicon area). Because of data dependencies, the algorithm complexity, in terms of computation
time and hardware resources, does not necessarily increase despite the larger number of decision variables. Examples show that a 10-fold
reduction in hardware resources is possible compared to using double precision floating point, without loss of closed-loop performance.

Key words: Embedded systems, Control of constrained systems, Predictive control, Optimization, Number representation

1 Introduction

It is common practice to optimize the performance of so-
phisticated algorithms, like online model-based optimiza-
tion methods, only at a high level of abstraction, viewing the
implementation as a different, decoupled problem [5]. This
practice might no longer be reasonable due to the fact that
the high degree of flexibility of new computer architectures
remains largely underexploited [2]. The standard double-
or single-precision floating-point representation may be un-
necessarily precise for an application where such precision
would be better traded for more important aspects. For a con-
trol algorithm, these aspects could be computational speed,
processor cost and reduced power consumption. To motivate
this point further, we have plotted in Fig. 1 the resources
needed on a Virtex-6 FPGA for an implementation of the
predictive control algorithm of [10]. Working in single pre-
cision (23 bits), rather than double (52 bits), already gives a
substantial improvement, but reducing the number of man-
tissa bits even further allows one to reduce the total hard-
ware resources by one order of magnitude and do the com-
putations almost twice as fast. The ability to reliably run an
optimization algorithm in a low precision platform is also

? This research has been supported by the EPSRC
(EP/G031576/1, EP/F041004/1) and FP7/2007-2013 (FP7-ICT-
2009-4 248940). Part of this work has been presented at the IFAC
NMPC’12 conference, the Netherlands, and ECC’13, Switzerland.
Corresponding author: S. Longo, tel.: +44 (0)1234 758581.

Email addresses: s.longo@cranfield.ac.uk
(Stefano Longo), e.kerrigan@imperial.ac.uk
(Eric C. Kerrigan), g.constantinides@imperial.ac.uk
(George A. Constantinides).

5 23 52
0

5

x 10
5

no. of b i ts

n
o
.
o
f
F
F
s

re
q
u
ir
e
d

5 23 52
0

5

x 10
5

no. of b i ts

n
o
.
o
f
L
U
T
s

re
q
u
ir
e
d

5 23 52
0

2000

4000

no. of b i ts

n
o
.
o
f
D
S
P
s

re
q
u
ir
e
d

5 23 52
0

5

x 10
−6

no. of b i ts

c
o
m
p
u
ta

t
io
n

d
e
la
y

[s
]

Fig. 1. FPGA resources required for double (52 bits), single (23
bits) and custom (5 bits) precision for data representation of a
model predictive control algorithm (6 states, 2 inputs and horizon
length of 200 steps). Reducing the number of bits (only the man-
tissa bits are considered here) used for data representation signif-
icantly reduces the hardware resources (Flip-Flops, Look-Up-Ta-
bles, Digital-Signal-Processing units) required and the algorithm
computational delay (calculated at a clock frequency of 200 MHz
and assuming 10 interior-point iterations and a fully parallel im-
plementation).

motivated by the fact that most microprocessors in embed-
ded systems do not offer any support for double precision
floating-point or for floating-point at all [5].

In view of the above, we propose a new formulation for the
Quadratic Programming (QP) problem (resulting from the
constrained LQR problem) that allows one to exploit low
precision number representations efficiently [7]. This for-
mulation is mathematically equivalent to the non-condensed
formulation where inputs and states appear as decision vari-
ables [10]. The difference here is that we represent the
continuous-time plant model (used for the prediction) in the

Preprint submitted to Automatica 10 October 2013

e101466
Text Box
Automatica, Volume 50, Issue 1, January 2014, Pages 162–168

so-called delta (or incremental) form [3,4,8,9], and include
additional decision variables. The delta form has the virtue
of separating the important information stored in the sys-
tem’s transition matrix from quantities of non-comparable
size. By doing so, the truncation due to finite precision arith-
metic becomes less detrimental than for the more commonly
used shift form; hence, the algorithm will be numerically
more stable. The modern need for the implementation of fast
constrained LQ solvers in inexpensive hardware [11] justi-
fies this hardware-algorithm co-design approach and makes
it necessary to revive the use of discretization methods that
are numerically more stable.

It will be shown that, for some examples, it is possible to
achieve good closed-loop performance with only 5 bits for
the mantissa, which translates into fewer hardware resources
needed, faster computation and less power consumption.
More interestingly, it will be shown that, even with the same
number of bits for data representation and despite the num-
ber of decision variables in the QP becoming larger, i) the
computational cost of solving this problem still scales lin-
early with the horizon length, ii) the data dependencies of
the algorithm are such that it can be implemented at essen-
tially no extra hardware costs (hardware adders and mul-
tipliers are reused efficiently) and iii) the algorithm is at
least as fast as its shift equivalent. In fact, the algorithm in
delta domain is normally faster because the better numeri-
cal stability leads to fewer interior-point iterations when an
interior-point method is used, i.e. one has faster convergence
to the solution.

2 Constrained LQR problem formulation in delta do-
main

Consider the continuous-time LTI plant model
ẋ(t) = Acx(t) +Bcu(t), (1)

where x(t) ∈ Rnx , u(t) ∈ Rnu and (Ac, Bc) is a stabilizable
pair. The control input u(·) is a signal created by a sample-
and-hold element for a sampling period h such that u(t) =
u(ih) for all t ∈ [ih, ih + h) and i ∈ N0 is the sampling
instant. The solution of the sampled-data model is given by

x(ih+ h)=eAch︸︷︷︸
,As

x(ih)+

[∫ h

0

eAc(h−τ)Bcdτ

]
︸ ︷︷ ︸

,Bs

u(ih), (2)

where i denotes the sampling instant and the matrix expo-
nential eAch is defined by the matrix series

eAch , I +Ach+
(Ach)2

2!
+

(Ach)3

3!
+ (3)

If the productAch in (3) results in a matrix with entries much
smaller than one, the transition matrixAs in (2) will be a ma-
trix where the elements on the diagonal are the summation
of 1 with a much smaller number. These coefficients have
to be stored in a computer with finite word length. In finite
arithmetic, the coefficients will be truncated, hence some of
the information contained in Ach + (Ach)

2

2! + (Ach)
3

3! + . . .

– which is where the plant dynamics are represented – will
be lost. This numerical problem can be ameliorated by sub-
stituting (3) into (2) and rewriting it as

x(ih+ h) = x(ih) + h

[
Ac +

A2
ch

2!
+
A3
ch

2

3!
+ . . .

]
︸ ︷︷ ︸

,Aδ

x(ih)

+ h

[
Bc +

AchBc
2!

+
A2
ch

2Bc
3!

+ . . .

]
︸ ︷︷ ︸

,Bδ

u(ih), (4)

which is mathematically equivalent to (2). However, sepa-
rating the identity matrix from the summation tail — defined
as Aδ in (4) — has the effect of reducing the numerical er-
rors in a finite precision floating-point representation. These
matrices can be computed as Aδ = ΩAc and Bδ = ΩBc,
where

Ω ,
1

h

∫ h

0

eAcτdτ =
1

h

[
I 0
]

exp

[
hAc hI

0 0

][
0

I

]
. (5)

By adopting the more convenient notation x(ih) , xi (and
similarly for other vectors) and introducing a new vector δi ∈
Rnx , we can rewrite (4) as

δi = Aδxi +Bδui, (6a)
xi+1 = xi + hδi, (6b)

which is in fact the delta (or incremental) form of (1) [3, 4,
8,9], an alternative to the commonly used shift form of (2).
Associated with the system in (6), consider the discrete-time
finite-horizon LQ problem defined by the cost function

V (θ) , x′NQfxN +

N−1∑
k=0

[
xk

uk

]′ [
Q M

M ′ R

][
xk

uk

]
, (7)

whereN is the number of samples for the prediction horizon,[
Q M

M ′ R

]
≥ 0, Q = Q′ ≥ 0, R = R′ > 0, Qf = Q′f > 0

and θ is defined below. These matrices are given to de-
fine a controller for an ideal closed-loop performance of the
sample-data system. Alternatively, they can be computed via
discretization of a continuous-time LQ problem [6], [1, pp.
411–412]. For the constrained LQR problem we assume full
state feedback and we suppose that constraints exist on the
input moves and on the states; in order to solve the QP prob-
lem, we assume that the constraints lie in a polyhedral set,
i.e. we can write them as Jxk+Euk ≤ d. Given a measure-
ment or estimate of the current state x̂ , x0 and an input
sequence (u0, u1, . . . , uN−1), let xk, k ∈ N0, be the pre-
dicted state after k samples. The optimal control problem to
solve is

2

min
θ

1

2
V (θ) (8a)

s.t. δk = Aδxk +Bδuk, x0 = x̂ (8b)
xk+1 = xk + hδk (8c)
Jxk + Euk ≤ d (8d)
∀k ∈ {0, 1, . . . , N − 1}. (8e)

Problem (8) can be written as a QP problem of the form

min
θ

1

2
θ′Hθ + θ′c s.t. Fθ = f, Gθ ≤ g, (9)

where matrices and vectors depend on the choice of the vec-
tor of decision variables θ. Although we generally only wish
to find the sequence of control inputs (u0, u1, . . . , uN−1),
it has been shown [10, 12] that including the states
(x1, x2, . . . , xN) in θ results in the QP matrices having
a particular structure, which is desirable for fast online
optimization. In our formulation, we not only include the
states as decision variables, but also the auxiliary vari-
ables (δ0, δ1, . . . , δN−1). Thus, we let

θ,
[
u′0 δ

′
0 x
′
1 u
′
1 δ
′
1 x
′
2 . . . x

′
N

]′
, θ ∈ RN(nu+2nx) (10)

which results in the following matrices for the QP in (9):

H ,

R

0
Q M
M ′ R

. . .
Qf

 , c =

0

0
...

0

 , (11a)

F ,

Bδ −I

hI −I
Aδ Bδ −I
I hI −I

. . .
−I

, g ,

d

d
...

d

, (11b)

G ,

E 0

J E 0
J E 0

. . .
J

, f ,

−Aδx̂
−x̂
0
...
0

 . (11c)

Note that the QP (9) can be solved in low precision using
solvers other than the one we will present in Section 3;
however, if δk is not included in θ, then no solver will be
able to recover the ‘lost’ information contained in Aδ .

3 Solution of the QP by an interior-point method with
block elimination

Since the QP in (9) has to be solved in an embedded platform
with limited computational power, it might be preferable to
compute the solution using an interior-point method so that
the algorithm works with matrices with a fixed structure
(unlike active-set methods). In particular, we will consider
a well-established primal-dual interior-point method with
infeasible start [10]. The equations derived in this section are

analogous to the ones presented in [10], which were derived
for a vector of decision variables containing the sequence of
future inputs and states only, using the shift form. Here, by
also including the δk as decision variables, one can formulate
an equivalent algorithm in delta domain. Because of space
consideration, we skip all the details and point out that the
most computationally expensive part of the algorithm is the
solution of the linear systems for the calculation of the search
direction. By exploiting the banded structure of the Hessian
and the constraint matrix, we can construct a system of linear
equations, equivalent to the one in [10, eq. 38]:

Aξ = β, (12)

where

A ,

R0 B
′
δ

Bδ −I
−I hI

hI −I
−I Q1 M1 A′δ I

M ′1 R1 B′δ
Aδ Bδ −I

−I hI
I hI

. . .
QN

,

ξ ,
[
∆u′0 ∆γ′0 ∆δ′0 ∆λ′1 ∆x′1 ∆u′1 · · · ∆x′N

]′
,

β ,
[
(ru0)′ (rγ0)′ (rδ0)′ (rλ1)′ (rx1)′ (ru1)′ · · · (rxN)′

]′
,

and Rk, Qk, Mk, ruk , rγk , rδk, rλk , rxk , for all k, can be derived
following the same procedure as in [10]. If we let Pk , Qk
and pk , rxk and perform a series of block eliminations
in (12), we get

∆u0 = (R0 + h2B′δP1Bδ)
−1(h2B′δP1r

γ
0 + hB′δP1r

λ
1

+ hB′δp1 +B′δr
δ
0 + ru0), (13a)

∆γ0 = h2P1Bδ∆u0 − h2Prγ0 − hP1r
λ
1 − hp1 − rδ0,

(13b)
∆δ0 = Bδ∆u0 − rγ0 , (13c)

∆λ1 = hP∆δ0 − P1r
λ
1 − p1, (13d)

∆x1 = h∆δ0 − rλ1 , (13e)

and

∆uk−1= (Rk−1 + h2B′δPkBδ)
−1((ruk−1 + h2B′δPkr

γ
k−1

+B′δr
δ
k−1 + hB′δPkr

λ
k + hB′δpk)

− (M ′k−1 + h2B′δPkAδ + hB′δPk)∆xk−1), (14a)
∆γk−1 = h2Pk(Bδ∆uk−1 +Aδ∆xk−1 − rγk−1)

− hPk(∆xk−1 − rλk)− hpk − rδk−1, (14b)
∆δk−1 = Aδ∆xk−1 +Bδ∆uk−1 − rγk−1, (14c)

∆λk = pk−1 − Pk−1∆xk−1, (14d)

∆xk = ∆xk−1 + h∆δk−1 − rλk , (14e)

where

3

Pk−1 , Qk−1 + Pk + h2A′δPkAδ + hA′δPk + hPkAδ

− (Mk−1 + h2A′δPkBδ + hPkBδ)(Rk−1

+ h2B′δPkBδ)
−1(M ′k−1 + h2B′δPkAδ + hB′δPk),

(15a)

pk−1 , r
x
k−1 + Pkr

λ
k + pk + h2A′δPkr

γ
k−1 +A′δr

δ
k−1

+ hA′δPkr
λ
k + hA′δpk + hPkr

γ
k−1 − (Mk−1

+ h2A′δPkBδ + hPkBδ)(Rk−1 + h2B′δPkBδ)
−1

× (ruk−1 + h2B′δr
γ
k +B′δr

δ
k−1 + hB′δPkr

λ
k + hB′δpk).

(15b)

Hence, the search direction is calculated as follows: i)
set PN ← Qf and pN ← rxN ; ii) compute Pk and pk
for k = N,N − 1, . . . , 2 using the two backward recursions
in (15); iii) compute ∆u0, ∆γ0, ∆δ0, ∆λ1 and ∆x1 us-
ing (13); iv) compute, recursively, ∆uk, ∆γk, ∆δk for k =
2, 3, . . . , N − 1 and ∆λk and ∆xk for k = 1, 2, . . . , N
using (14).

While the block reduction manipulations of [10] yielded the
famous Discrete Riccati Difference Equation (DRDE) for
time-varying weighting matrices [10, Eq. 51a], we obtained
in (15a), analogously, a DRDE for time-varying weighting
matrices in the delta domain. The reader familiar with the
work of [10] will also appreciate more subtle similarities
between the recursive equations of both formulations, real-
izing that the two methods are entirely equivalent in an infi-
nite precision arithmetic system. It is evident, however, that
the solution in delta domain requires more operations (ma-
trix additions and multiplications) to be performed at each
iteration when compared to the equivalent solution in shift
domain.

4 Algorithm properties
Although computing the interior-point search direction re-
quires more operations for the delta formulation, neither the
computational time nor the hardware resources utilized sig-
nificantly increase if care is taken in the implementation.
The reason is twofold and lies in the dependencies of the
operations.

Proposition 1 Let the computation of the search direc-
tion (12) be implemented in a parallel hardware architec-
ture. Then, when compared to the shift formulation of [10]:

(i) the critical path (the longest non-parallelizable sequence
of operations) remains unchanged, hence the time re-
quired to calculate the search direction (latency) is the
same for both formulations;

(ii) both formulations require the same number of computa-
tional hardware resources (adders, multipliers, etc.) for
implementation.

Proof. The most computationally expensive operation of the
algorithm is the calculation of matrices P1, P2, . . . , PN−1
and vectors p1, p2, . . . , pN−1 using the backward recursions

in (15). These have to be obtained before (13) and the for-
ward recursions in (14) can be calculated. For the sake of
simplicity, we will only consider the DRDE of (15a) and
point out that the same reasoning and procedures can be ap-
plied to the whole algorithm by noticing that many interme-
diate results can be stored in memory and reused.

(i) Let us compare the DRDE in (15a) with the equivalent
shift-domain DRDE [10]
Pk−1 = Qk−1 +A′sPkAs + (Mk−1 +A′sPkBs)

× (Rk−1 +BsPkAs)
−1(M ′k−1 +B′sPkAs)

(16)

and define matrices Ā and B̄ to be Ā , hAδ and B̄ , hBδ
for the delta case and Ā , As and B̄ , Bs for the shift case.
The data dependencies of the calculations to compute Pk−1
for both the delta and the shift formulation are shown as a
graph in Fig. 2. At a matrix level, Fig. 2 is an implementa-
tion with minimal latency, signifying that all the operations
are performed as soon as the data are available (exploiting
the parallelism). The seven stages required to compute the
solution are determined by the sequence of operations in the
critical path, which is the path on the right of both graphs
indicated by thicker arrows. The critical paths for both the
delta and the shift case are the same, hence the time required
by both algorithms to complete is the same (although ma-
trices Ā and B̄ are different for the two cases, what matters
here is their dimensions, which do not change). The search
direction is computed recursively in N steps in both formu-
lations.

(ii) For the delta case, there are four extra matrix additions
to be performed, shown in Fig. 2 by the boxes with dot-
ted edges. At each stage of the algorithm, a maximum of
three matrix adders and three matrix multipliers are used si-
multaneously. This is true for both the delta and the shift
cases, implying that the same number of hardware blocks
is needed for both implementations (of course, in the delta
case, the adders will be used more often). If both the recur-
sions in (15) are considered, it can be easily shown that five
adders and five multipliers are needed. This is the same as
for the analogous shift-domain recursions [10, Eq. 51]. Fur-
thermore, the same adder and multiplier blocks (as well as
many intermediate results) can be re-utilized efficiently for
the calculation of (14). �

Proposition 1 shows that the extra operations required for
the delta case do not increase the algorithm latency nor the
computational hardware resources utilized. Hence, the nu-
merical advantages given by the delta implementation are
obtained at no extra cost from the point of view of resource
utilization and computational time. It should also be noted
that for multi-input plant models (nu > 1) the bottleneck of
the algorithm is the nu-by-nu matrix factorization needed
in Stage 4 of Fig. 2, which is performed on matrices of the
same size in both formulations. If such a factorization is ob-
tained via a Cholesky decomposition, a number of division
and square roots must be computed (much more expensive
to perform than simple additions and multiplications). This
motivates even further the use of a reduced number of bits

4

Delta Shift

Addition/Subtraction

Multiplication

Solve linear system

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Fig. 2. Data dependencies of the delta- and shift-domain Riccati recursions. For delta, Ā , hAδ and B̄ , hBδ . For shift, Ā , As
and B̄ , Bs. Both algorithms have the same latency because they have the same critical path (thicker arrows). At each stage, no more
than three matrix additions and three matrix multiplications are performed simultaneously. Hence, although four extra additions are needed
for the delta case (dotted boxes), the number of computational resources needed for minimal latency is the same in both cases.

for data representation in order to speed up the execution
of division and square roots, and therefore the whole algo-
rithm. As a consequence, an implementation of the algo-
rithm in a sequential (rather than parallel) architecture can
also have an equal latency and resource utilization if a low
enough number of bits is used.

5 Illustrative example
In this section we show, with simulation examples, that the
solution from the delta formulation is indeed more numer-
ically accurate than the equivalent shift one; therefore, the
same closed-loop performance can be achieved with our for-
mulation using fewer bits in the number representation. Us-
ing fewer bits implies increased computational speed and re-
duced hardware usage. An indication of the improvement in
hardware resources utilized will be given for an FPGA from
the Xilinx Virtex-6 family [13]. Furthermore, simulations
have shown that the increased numerical accuracy also im-
proves the interior-point algorithm convergence speed, thus
reducing the number of interior-point iterations required to
completion. We use as a benchmark a spring–mass system
with six unitary masses linearly connected by five springs
with unitary coefficients with input forces applied to the first
and last masses. The input constraints are ||uk||∞ ≤ 0.5
and the state constraints are ||xk||∞ ≤ 3.5. The associated
performance measure is given by the LQ cost in (7) with
matrices Q, R, M and Qf coming from the discretization,
with sampling period h = 0.01s, of a continuous-time LQ
cost

∫ hN
0

x(t)′x(t) + u(t)′u(t)dt. The prediction horizon
was selected as N = 200.

First, we compare the variation of closed-loop performance
when the QP solver is implemented (in floating-point) using
the proposed formulation (Section 3) and the formulation
of [10] (shift). As a performance metric we use

Γ ,
Nsim−1∑
k=0

[
xk

uk

]′ [
Q M

M ′ R

][
xk

uk

]
, (17)

where the system is left to evolve from initial con-

ditions x0 =
[
0 0 3.5 3.5 0 0

]′
, u0 =

[
0 0
]
’ and

4 5 6 7 8 9 10 11 12 13

10
−4

10
−2

no. of m anti ssa b i ts

c
lo
s
e
d
-
lo

o
p

c
o
s
t
e
r
r
o
r

 de l ta

sh i f t

4 5 6 7 8 9 10 11 12 13

10

20

30

no. of m anti ssa b i ts

m
in

,
m
a
x

&

a
v
e
r
a
g
e
n
o
.
o
f

in
t
e
r
io
r
-
p
o
in

t

it
e
r
a
t
io
n
s

Fig. 3. For the same number of bits, the closed-loop cost error for
the delta implementation is lower (top plot) as well as the number
of interior-point iterations (bottom plot).

with Nsim = 20/h (selected to be long enough to allow
the system to reach steady-state). A cost, Γ52, has been
evaluated as in (17) for a shift implementation in double
precision and for an implementation with reduced pre-
cision for data representation, which we call Γlow. An
error, called closed-loop cost error has been defined as
||Γlow − Γ52‖/‖Γ52‖. The top plot of Fig. 3 shows how
the closed-loop cost error varies for a range of mantissa
bits for the two Riccati recursion-based implementations.
This error, for the delta implementation, is always lower
than for the shift implementation, especially for a small
number of bits. As the number of bits grows, the difference
between the two formulations becomes negligible (hence
results are shown only up to 13 bits). The bottom plot of
Fig. 3 shows the minimum, maximum and average number
of interior-point iterations required for the duality gap to be
less than 10−5 (set as a tolerance to stop the interior-point
iterations). The delta formulation requires on average fewer
iterations to reach the predefined threshold, implying that
faster convergence can be achieved.

Fig. 4 shows some closed-loop trajectories where only a
5-bit mantissa was used for the number representation for
the numerical solution of the QP. Even for such a low pre-
cision, the trajectories of the delta implementation almost
completely overlap with the shift double-precision (52 bits)
one. However, a traditional (shift) 5-bit implementation re-
sponse becomes practically unacceptable. This is caused by
numerical errors, which are primarily due to the errors in the

5

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

t im e [s]

s
t
a
te

5

 5 b i ts , sh i f t

5 b i ts , d e l ta

52 b i ts , sh i f t

0 2 4 6 8 10 12 14 16 18 20

−0.5

0

0.5

t im e [s]

in
p
u
t
1

Fig. 4. While the performance of a 5-bit shift implementation is
very poor, a 5-bit delta implementation produces trajectories that
almost perfectly overlap the ones from a 52-bit shift implementa-
tion.

0 10 20
5

10

15

20

25

t im e [s]n
o
.
o
f

in
te

ri
o
r-
p
o
in

t
it
e
ra

ti
o
n
s

5 b i ts, sh i f t

0 10 20
5

10

15

20

25
5 b its, d e l ta

0 10 20
5

10

15

20

25
52 b its, sh i f t

Fig. 5. Because the numerical errors in the delta formulation are
lower, the number of iterations required is also lower when com-
pared to the shift implementation.

4 5 6 7 8 9 10 11 12 13

2000

2500

3000

no. of m anti ssa b i ts

n
o
.
o
f
L
U
T
s

u
s
e
d

f
o
r

m
e
m

o
r
y

de l ta

sh i f t

Fig. 6. The delta implementation always requires slightly more
memory. However, it is sufficient to reduce the number of mantissa
bits by at most two to bring the number of LUTs required by the
delta implementation below the number of LUTs required by the
shift implementation.

evaluation of the Riccati equation, as has also been observed
in [3]. Consequently, the number of interior-point iterations
is also much lower for the delta formulation, as shown in
Fig. 5.

Finally, we comment on the memory resources required by
each implementation. We consider an FPGA from the Virtex-
6 family and assume that the data words are stored in look-
up tables (LUTs). We also assume that 8 bits are used for the
exponent part of the floating-point numbers. Fig. 6 shows
the number of LUTs required by both algorithms for dif-
ferent numbers of mantissa bits. The numbers of LUTs for
a shift implementation in single and double precision are
shown in Fig. 1. As expected, the delta implementation al-
ways requires slightly more LUTs, and hence slightly more
resources. However, it is sufficient to reduce the number of
mantissa bits by at most two to allow the delta implementa-
tion to utilize fewer resources than the shift one. Reducing
the mantissa bits affects the closed-loop performance, but
the top plot of Fig. 4 shows that a reduction of two bits still
leaves the delta implementation with a better performance
than the shift one.

6 Conclusions
We have shown that the superior numerical properties of a
delta-domain formulation of a constrained LQR problem can
be enjoyed without sacrificing solver complexity in terms of
its execution time or computational hardware resources re-
quired. For the Riccati recursion approach to solving the lin-
ear equations in (12), the number of decision variables in the
resulting QP problem is indeed larger when compared to its
equivalent shift formulation. However, because of the par-
ticular data dependencies in the algorithm, the latency and
arithmetic units required for the operations will not increase
when care is taken in the implementation. The proposed de-
sign procedure gives the designer the flexibility to reduce
the number of bits used for data representation in order to
increase the computational speed and/or reduce the circuit
size. This paper is a contribution toward a larger research
goal to develop model predictive control algorithms with a
guarantee that the loss of accuracy due to finite precision
effects is minimized or bounded a priori. Future research
could investigate the appropriateness of other sampled-data
models and/or number representations and an extension of
these ideas to the nonlinear case.

References

[1] K. Åström and B. Wittenmark. Computer-Controlled Systems.
Prentice-Hall, 3rd edition, 1997.

[2] G. A. Constantinides. Tutorial paper: Parallel architectures for model
predictive control. In Proc. European Control Conference 2009,
pages 138–143, Budapest, HU, 2009.

[3] G. C. Goodwin, R. H. Middleton, and H. V. Poor. High-speed digital
signal processing and control. Proc. IEEE, 80(2):240–259, 1992.

[4] G. C. Goodwin, J. I. Yuz, J. C. Agüero, and M. Cea. Sampling and
sampled-data models. In Proc. American Control Conference, pages
1–20, Baltimore, USA, 2010.

[5] E. C. Kerrigan, J. L. Jerez, S. Longo, and G. A. Constantinides.
Number representation in predictive control. In Proc. IFAC Conf.
on Nonlinear Model Predictive Control, volume 4, pages 60–67,
Noordwijkerhout, the Netherlands, 2012.

[6] A. H. Levis, R. S. Schlueter, and M. Athans. On the behaviour of
optimal linear sampled-data regulators. Int. J. Control, 13(2):343–
361, 1971.

[7] S. Longo, E. C. Kerrigan, and G. A. Constantinides. A predictive
control solver for low-precision data representation. In Proc.
European Control Conference, Zürich, Switzerland, 2013.

[8] R. H. Middleton and G. C. Goodwin. Improved finite word length
characteristics in digital control using delta operators. IEEE Trans.
Automatic Control, AC-31(11):1015–1021, 1986.

[9] R. H. Middleton and G. C. Goodwin. Digital Control and Estimation:
A Unified Approach. Prentice-Hall, 1990.

[10] C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior-
point methods to model predictive control. J. Optimization Theory
and Applications, 99(3):723–757, 1998.

[11] A.G. Wills, D. Bates, A.J. Fleming, B. Ninness, and S.O.R.
Moheimani. Model predictive control applied to constraint handling
in active noise and vibration control. IEEE Trans. Control Systems
Technology, 16(1):3–12, 2008.

[12] S. J. Wright. Interior point methods for optimal control of discrete
time systems. J. Optimization Theory and Applications, 77(1):161–
187, 1993.

[13] Xilinx. www.xilinx.com, April 2013.

6

