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Abstract i

Abstract

This report quantifies the motion of wheat subject to wind and assesses the effect of
this motion on the coherence obtained from Synthetic Aperture Radar (SAR) inter-
ferometry. Over vegetation, the loss of coherence due to the change in backscatter
between two SAR images taken at a different time (temporal decorrelation) is re-
lated to the wind induced motion of vegetation elements. The research aims to
provide simultaneous in situ measurements of crop motion and wind velocity at
canopy height and to use these measurements in a coherence model to determine
the quantitatively the parameters which infer temporal decorrelation. The potential
of coherence for agricultural applications is assessed.

The three-dimensional motion of wheat is measured by a photogrammetry method
using two commercially available video cameras. Simultaneously, wind velocity at
canopy height is measured by anemometers at a high sampling frequency. Wheat
motion and wind velocity data were collected in a field local to Cranfield University
in summer 2000. The CD attached to this report contains the wheat motion and
wind velocity data. They show that the motion of wheat is correlated with the wind
speed, and that wheat plants adjacent to each other move coherently.

The coherence model is based on a statistical approach, which represents the
total backscatter from vegetation as the phasor addition of a fixed component and
one or more components which are weather dependent. The relative contributions of
the total backscatter are estimated with the RT2 backscatter intensity model. The
motion measurements are used to define the variability of the phase of the weather
dependent components in the model.

Outputs of the model show that a C-band SAR with an incidence angle of 23°
(typical configuration of the ERS satellites) yields coherence values highly variable
with the wind conditions at the time of the radar passes. The potential use of
coherence for agricultural applications is limited by this variability, which infers the
need for an accurate coherent backscatter model.



ii Acknowledgements

Acknowledgements

Je tiens & ce que les seuls mots en francais de cette these soient les premiers, afin
d’exprimer ma gratitude a mes parents, Jocelyne et Jean-Paul, pour leur soutien
pendant mes longues années d’études de Saintes a Cranfield.

I wish to thank my supervisor, Dr Hobbs, for his help during the production
of this thesis, for sharing his experience with me during a number of interesting
discussions, and for the very valuable learning experience I gained from him. I also
appreciate the cooperation of the College of Aeronautics staff who provided me with
the equipment and advice I requested from them, Dr Oswald and Ramesh Wadher
in particular. Thanks are also due to Mr Hobbs for letting me invade his wheat field
on several occasions. GEC-Marconi has provided a copy of the RT2 model used in
this research, and the ERS SAR data was given by the European Space Agency.

Three years of research would not be possible without the moral support of
friends. I cannot name them all here, but I gratefully thank them for making of this
experience in the UK an episode of my life which I will remember for many years to
come.

I wish to direct the final thoughts of these acknowledgements to Ilse, for the
moral support she constantly provided, even with the long distance which separated
us.



CONTENTS iii

Contents

Abstract i
Acknowledgements ii
Contents iii
List of figures xiii
List of Acronyms xiv
1 Introduction 1
2 Background and objectives 4
2.1 Background and rationale of the research . . . . . ... .. ... ... 4
2.1.1 A brief history of radar systems and spaceborne SAR missions 5
2.1.2 Applications of SAR and InSAR for Earth observation .. .. 6
2.1.3 Complementarity SAR/Optical for vegetation monitoring . . . 8
2.1.4 Rationale for the thesis . . . . . . .. ... ... ... ..... 8
2.2 Introduction to SAR theoretical principles . . . . ... .. ... ... 9
2.2.1 Radar backscatter: definition of relevant parameters . . . . . . 9
2.2.2 Principles of SAR image formation . . .. ... ... .. ... 11
2.2.3 Basic properties of SAR images . . . . .. ... ... ... .. 15
2.2.4 SAR interferometry and the complex degree of coherence . . . 18
2.2.5 Decorrelation factors . . . . .. ... oo oo 23
2.3 Use and limitations of InSAR. coherence for vegetation remote sensing 25
2.3.1 Current applications of the coherence . . . . .. .. ... ... 26
2.3.2 Coherence modelling . . . . .. ... ... ... ........ 27

2.3.3 Conclusion of the use of coherence for vegetated areas: current
limits. . . . . . .. 28
2.4 Measurement of wind-induced vegetation swaying: state of the art . . 29
2.4.1 Wind-induced tree swaying . . . . . . . .. .. ... ... ... 29
2.4.2 Wind-induced crop swaying . . . . . . . . ... ... 30
2.4.3 Conclusion on the vegetation swaying studies . . . .. .. .. 30
2.5 Objectives of the research and methodology . . . ... .. ... ... 31
2.5.1 Summary of the important issues raised in the previous sections 31
2.5.2 Objectives of the thesis . . . . . . ... ... ... ....... 32

2.5.3 Available data, software, and hardware . . . .. .. ... ... 32



v

CONTENTS

2.5.4 Content of the remainder of the report . . . . . .. ... ...

3 Radar backscatter and coherence modelling over agricultural crops 34

3.1 Introduction to radar backscatter modelling over crops . . ... ...
3.1.1 Overview of modelling approaches . . . . . . .. .. ... ...
3.1.2 The RT?2 backscatter modelling software . . . .. ... .. ..

3.2 Radar backscatter sensitivity to crop geometry . . . . . .. ... ...
3.2.1 Influence of the stalksize. . . . . . . . ... ... .......
3.2.2 Influence of stalk inclination . . . . .. .. ... ........
3.2.3 Conclusions on the analysis . . . .. ... ... ........

3.3 RT2 simulations for a wheat field: comparison with observations . . .
3.3.1 RT2 input parameters . .. .. .. .. .. ... ........
3.3.2 Total backscatter . . . . .. ... ... oL
3.3.3 Contributions from the different backscatter processes . . . . .
3.3.4 Conclusion on the modelled backscatter intensity from wheat .

3.4 Statistical modelling of the coherence . . . . . . . ... .. ... ...
3.4.1 Theoretical foundation of the model . . . . . . . .. ... ...
3.4.2 Practical implementation . . . . . .. ... ..o
3.4.3 Discussion of the model . . . . ... ... ... ... .....

3.5 Preliminary tests of the coherence model . . . . . ... ... ... ..
3.5.1 Phase spread dependence . . . . . ... .. ... .. ......
3.5.2 Wheat simulation . . . ... ... ... .. ...........
3.5.3 Conclusions on the preliminary tests of the model . . . . . . .

3.6 Definition of measurement requirements . . . . . ... .. ... ...
3.6.1 Meteorologicaldata . . . . . ... .. ... ... ... ..
3.6.2 Cropmotiondata . . . .. ... ... ... ... ........
3.6.3 Data synchronisation . . . ... ... ... ... ........
3.6.4 Crop phenotypical state . . .. ... ... ... ........

3.7 Conclusion . . . . . . . . ... e e e

Measurement of the three-dimensional locus of moving targets
4.1 Design philosophy and process . . . . . . . .. .. ... ... ...
4.2 System geometry and basic model formulation . . . . .. ... .. ..
421 Basicmodel . . .. .. ... ... o
4.2.2 Linearised model . . . .. .. .. ... ... ...
423 Modeluses . . .. .. .. . ...
4.3 System calibration . . . . .. .. ... .o oL oL
4.3.1 The Levenburg-Marquadt (LM) method for non-linear model
INVErSION . . . . . . o o v e e e e e
4.3.2 Determination of a first guess for the camera parameters . . .
4.3.3 Accuracy of the calibration. . . . . .. .. .. ... ......
4.3.4 Practical implementation of the calibration . . . . . . ... ..
4.4 Target position measurement . . . . ... .. .. .. ... .. ...
4.4.1 Equation system tosolve forp’ . . .. ... ... ... ....
4.4.2 Numerical solutionforp’ . . . . . ... .. ... ... .....
4.5 Video data management . . . .. .. ... ... ...
4.5.1 System overview . . . . . . .. ..o e

34



CONTENTS v

4.5.2 System hardware . . . ... ... ... ... ... ... ... 72
4.5.3 Systemsoftware . . . . ... .. ... ... ... ... ... 73
4.5.4 Video data acquisition procedure . .. .. ... ... ... .. 73
455 Conclusion. . . . . .. .. L 74

4.6 Video data processing . . . . . ... ..o 74
4.6.1 The AVIformat . . .. ... .. .. ... ... ......... 75
4.6.2 Background on object recognition and design rationale . . .. 75
4.6.3 Quantitative analysis on the choice of the colour of the discs . 76
4.6.4 Methods for object matching. . . . .. ... ... ... ... 78
4.6.5 The target selector . . . . . . ... ... oL 79
4.6.6 The target tracking algorithms . . .. ... .. ... ... .. 81
4.6.7 Performance of the algorithms . . . . . .. ... ... ... .. 84
4.6.8 Conclusion: potential improvements of the tracking algorithms 88

4.7 Video image calibration . .. . ... ... ... o L 0oL L 90
4.7.1 Methodology and experimental setup . . . .. .. ... .. .. 90
4.7.2 Determination of the coefficients of the calibration function . . 91
473 Angleretrieval . . .. .. ... Lo 93
4.74 Accuracy analysis . . . . . . .. .. Lo 94
475 Conclusion . . . . . . . .. L 95

4.8 Practical implementation . . . . . .. ... oL L 96
4.8.1 Positioning of the camera and of the red labels . . . . . . . .. 96
4.8.2 System calibration . . ... .. ... ... ... ........ 98
4.8.3 Time synchronisation . . . . . . .. .. ... ... ... .. .. 98
4.84 Recording phase. . . . .. ... ... ... .. ... ... 98
4.8.5 Post-recording processing . . . .. .. ... L. 99
4.8.6 Total time of the experiment . . . . . . .. .. ... ... ... 100
4.8.7 Building the wheat motion database . .. ... ... ... .. 100

4.9 Conclusion . . . . . . . L 101
4.9.1 System summary . . . . . . . ... 101
4.9.2 System accuracy . . . . . ... ..l e e 101
4.9.3 Critical discussion of the system’s capabilities . . . . . .. .. 103
4.9.4 Potential applications . . . . . ... ... Lo 103

5 Anemometry package: description and test 105
5.1 Description of the hardware . . . . .. ... .. ... ... ...... 105
5.1.1 Overview of thesystem . . . . . . .. ... ... ... ..... 105
5.1.2 The Digital Vane Anemometers . . . . . ... ... .. .... 107
5.1.3 Cabling and DVA-PC interface . ... ... ... ... .... 108
5.1.4 The PC-30D analog-digital I/O board . . ... .. ...... 109
5.1.5 Theclockboard. . . . ... ... .. ... ... ........ 110
5.1.6 Thewindvane . ... ... .. ... ... ... ... ..... 111
5.1.7 Power supply . . . . . . . . . . 112

5.2 Software description . . . . . ... ... .. .. . o 112
5.2.1 Requirements and specifications . . . . . . ... ... ... .. 112
5.2.2 Implementation . . . . . .. ... ... ..o 113

5.3 Hardware testing . . . . . . . . . ... . 116



vi CONTENTS
53.1 DVAsandcabling. ... ... ... .. ... .. ........ 116
5.3.2 DVA-PCinterface board . . . .. .. ... ... .. ...... 116
53.3 PC30Dboard. ... ... ... .. ... ... ... ... 119
534 Clockboard . . .. .. ... ... . ... ... ... . ... 119
535 Windvane. . . .. .. .. . ... ... 119

5.4 Software testing . . . . . . . ..o 120
5.4.1 Test requirements . . . . . . . . .. ... oL 120
5.4.2  Electronic simulation of steady wind conditions . . . . . . . . 120
5.4.3 Conclusion on the software tests . . . . . . ... .. ... ... 124

5.5 Conversion from the DVA wind speed readings into a wind velocity
VECEOT . . . L e e e e e 125

5.6 Conclusion . . . . . . . . ... e e 125
5.6.1 Practical use of thesystem . . . . . . ... ... ... ..... 125
5.6.2 Building the wind database . . ... ... ... ........ 125
5.6.3 System real-time capabilities and sampling frequency . . . . . 126

6 Data acquisition and analysis 127

6.1 Presentation of thedataset . . .. .. ... ... ... .. ...... 127
6.1.1 Data acquisition and recording . . . .. ... ... .. .... 127
6.1.2 Overview of thedataset . . .. .. .. ... ... ....... 130
6.1.3 Datastorage. . . . . . ... . ... ... 132

6.2 Methodsof analysis . . . . . .. ... ... ... ... 132
6.2.1 The coordinate systems . . . . ... ... ... ... ... .. 132
6.2.2 Parameters derived from mean values . . . . .. .. ... ... 134
6.2.3 Timeanalysis . . . . . . .. .. .. .. ... 134
6.2.4 Frequency analysis . . . .. .. ... ... ... 135

6.3 Description of the wheat phenotype . . . . . . . . ... .. ... ... 135

6.4 Wind data analysis . . . . . . ... ... L oo 138
6.4.1 Analysis of averages . . .. .. .. .. .. ... ... 138
6.4.2 Analysis in the time domain . . . . . . . ... ... ... ... 141
6.4.3 Analysis in the frequency domain . . . . . .. ... .. .. .. 148
6.4.4 Wind data from the weather station . .. ... .. ... ... 150

6.5 Motion data analysis . . . . . . .. .. ... L Lo 152
6.5.1 Three-dimensional locus of the targets . . .. ... .. .. .. 153
6.5.2 Timeanalysis . . . . . . .. . ... .. ... 157
6.5.3 Frequency analysis . . . .. ... ... ... ... ...... 165

6.6 Relation between the wind velocity vector and the motion of wheat . 167
6.6.1 Wheat motion locus and mean wind conditions . . . ... .. 167
6.6.2 Simultaneous time variations . . . . . . .. ... .. ... ... 173
6.6.3 Relation between the wind statistics from the weather station

and the wheat motion . . . . ... .. .. ... ... ... 174
6.6.4 Calculation of the wheat deflection under a static load . . . . 176

6.7 Conclusion . . . . . . . . ... e e e 178

6.7.1 Summary of the data analysis . . . . ... ... ... ..... 178

6.7.2 Potential developments of the data acquisition and analysis . . 179

7 Discussion 181



CONTENTS vii

7.1 Lessons learned from the measurements: improvements on the initial
coherence model . . . . . . . . ... . 181
7.1.1 Inclusion of several equivalent scatterers representing the cells

of coherent motion . . . ... ... .. .. ... ... ..., 182
7.1.2 Distribution of the slant range displacement . . . . .. .. .. 183
7.1.3 Inputs to the coherence models used in the remainder of the

chapter . . .. .. .. L 186

7.2 Influence of the radar resolution on the coherence . . . .. ... ... 190
7.2.1 Inputs of the coherence model . . . . . .. ... ... ..... 190
7.2.2 Coherence model outputs . . . . .. ... ... ... .. 190

7.3 Influence of the radar wavelength on the coherence . . .. ... ... 193
7.3.1 RT2 outputs used in the coherence model . .. .. ... ... 193
7.3.2 Coherence model inputs and outputs . . . . .. .. ... ... 194

7.4 Influence of the radar look direction on the coherence . . . . . . . .. 196
7.4.1 Coherence and incidence angle . . . . . . ... ... .. .... 197
7.4.2 Coherence and azimuth angle . . . ... ... ... ...... 199

7.5 Influence of the repeat time on the coherence . . . . . . ... ... .. 202

7.6 Variability of the coherence due to wind conditions . . .. . ... .. 205
7.6.1 Statistics of the slant range standard deviationo, . . . . . . . 206
7.6.2 Simulation of the coherence in the growth season . . . .. .. 209

7.7 Variation of the coherence in the wheat growth season based on ERS
data and model estimates . . . . .. ... .o oL 214
7.7.1 Extraction of coherence and backscatter intensity images from

the ERS-1/2 Tandem data . . . . . . ... ... ........ 214
7.7.2 Comparison between the ERS-1/2 Tandem coherence and the

model estimates . . . . .. ..o o Lo 218
7.7.3 Suggestions for a complete validation of the model . . . . . . . 223

7.8 Conclusion on the use of coherence for wheat monitoring . . . . . . . 224
7.8.1 Summary of the key parameters affecting the coherence . . . . 224
7.8.2 Coherence and crop monitoring: potential uses and limitations 227

7.9 Suggestions for follow-onwork . . . . . .. ... oL 000 228

8 Conclusion 231

8.1 Summary of thereport . . . . . .. ... ... Lo 231

8.2 Relation to the initial objectives of the research and further work . . 235

83 Conclusion . . . . . . . . ... e e 237

Bibliography 238
A RT2: Input parameters and file formats 244

A.1 Input parameters . . . . . . . . . . .. ... 244
A.1.1 Radar and surface parameters . . . . . ... .. ... ... .. 244
A.1.2 Scatterer parameters . . . . .. .. .. ... ... ... .. .. 246

A.2 RT2 output file format . . . . ... ... ... .. ... ... ..., 248

A.3 read-and-write output file format . . ... ... ... ... .. .... 248

A.4 RT2 summary file for the wheat simulation of Section 3.3 . . . . . .. 249



viii Contents

B Singular Value Decomposition of a matrix and application to the

solution of linear equations 252
C Correlation coefficient in the 3D colour space 254
D Clock board connections and layout 256
Conversion from the DVA wind speed readings into a wind velocity
vector 258
F Wind and video data storage 260
F.1 Camera parameters . . . . . . . . . . . . . e 260
F.2 Wind data parameters . . . . . .. .. ... ... ... .. ... 260
F.3 Datafiles . .. . ... . . . . . .. . . e 261
G Calculation of the wheat static deflection 264
G.1 Theoretical modelling . . . . . . ... .. ... .. ... ... .... 264
G.2 Numerical application for a mature wheat plant . . . . ... ... .. 266
G.3 Conclusion on the wheat model . . . . . ... ... .......... 268
H The ERS Tandem data 270
H.1 Available Tandem pairs . . . . . . . . . . . .. .. . ... ... .... 270
H.2 Extracts from the full size data files . . . . . . . ... ... .. .... 271

I Inputs to the ISAR interferogram generator 273



LIST OF FIGURES ix

List of Figures

21
2.2
2.3
24
2.5
2.6

2.7
2.8

2.9

3.1
3.2
3.3

3.4

3.5

3.6

3.7

3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Percentage of papers by theme at two recent SAR/InSAR conferences 7

The microwave spectrum . . . . . . . . . . .. .. ... .. 10
SAR geometry and system parameters . . . .. ... ......... 12
SAR geometry for azimuth processing . . . . . . ... ... ... ... 13
SAR image from ERS-1 of Cranfield University and its surroundings . 16

Intensity correlation coefficient on a SAR image over a wheat field,
in range (red) and azimuth (blue) . . . . . ... ... ... ... 18
Geometry and parameters for SAR interferometry (‘flat Earth’ case) . 19
Probability density function of v for 7;.,.=0.5 and L=3, 10, and 20

(red, green, and blue respectively) . . . . . . ... ... 22
Expected value E(v) as a function of the true coherence value for

L=5, 10, and 50 (red, green, and blue respectively) . . .. .. .. .. 23
Variation of ¢° with the stalk radius 7. . . . . .. . ... ... .... 38
Variation of ¢® with the stalk inclination angle v . . . . . .. . ... 39

Total backscatter at C-band from a wheat field: RT2 estimates as a
function of the radar incidence angle, and radar backscatter measure-
ments obtained in [1] . . . . . .. ... L 41
Contributions to the total backscatter from the different backscatter
processes as a function of the radar incidence angle, for a wheat field 42
Phasor diagram representing the total electric field V; and its static

and weather dependent component (V; and V, respectively) . . . . . . 44
Geometry and variables for the calculation of the slant range displace-
ment of a scatterer . . . . .. ... Lo 47
Coherence variation with the phase spread of the dynamic component,
plotted for different values of the static contributiona . . . . . . . .. 52

Variation of the estimated coherence with the radar incidence an-
gle, plotted for 5 different slant range spreads dr, and from the RT2

outputs obtained in section 3.3 for VV and HH polarisations . . . . . 54
Video system: geometry and notation . . . . . .. .. .. ... .. .. 63
Geometry for the determination of the radial accuracy . . ... ... 67
Geometry for the determination of the longitudinal accuracy . . . . . 68
The SONY DCR-TR7000E digital video camera . . . . . ... .. .. 72
Contrast analysis on the coloured labels against the background wheat 77
Mask used in the correlation method . . . . . . . ... ... 79

Schematics of the target selector program . . . . . . .. .. ... ... 80



LIST OF FIGURES

4.8

4.9
4.10

4.11
4.12

4.13
4.14

5.1
5.2
9.3
5.4
9.5
2.6
5.7
2.8

9.9
5.10

6.1
6.2

6.3

6.4

6.5

6.6

6.7

The target selector window used for the definition of the correlation

mask . ... e e 81
Effect of un-interleaving of video frames on fast moving objects . . . 88
Contrast enhancement by appropriate linear combination of the red
and green band . . . ... .. 89
Grid used for the video image calibration . . . . . .. ... .. .. .. 91
Difference between the actual and estimated tangent of the inclination
and azimuth angles, plotted for all points of the calibration grid . . . 95
Camera positioning for wheat motion measurements. . . . . ... .. 97
Reference frame used for system calibration . .. ... .. ... ... 99
Schematics of the anemometry equipment. Solid line boxes denotes
hardware, and the dotted line box denotes the software . . . . . . .. 106
Axis convention for the DVA triad . . . . . .. .. .. ... ...... 108
DVA triad in operation in the wheat field . . . . . ... .. ... ... 109
Connection lines of the interface box . . . . ... ... .. ... ... 109
Wind vane connections . . . . . . . .. ... oo 111
Computer, 15-pin connector interface box, cables and power generator
used for the wind data measurements . . . . . .. ... ... ... .. 112
Difference between the time given by the software and a regular time
calculated from the sampling frequency . . . . . . .. .. ... .. .. 118
Wind speed measured by a DVA and processed only through the
DVA-PC interface board and associated software . . . . . . .. .. .. 118
Electronic circuit for simulation of steady wind conditions . . . . . . 121
Variation of the number of pulses counted by the program as a func-
tion of the input frequency f; of the simulated steady wind . . . . . . 123
Schematics of the experimental setup . . . . . . . ... .. ... ... 129
Variation of the wheat height with the day of year, in 2 fields in 1997
and one field in 2000 . . . . ... ... .. L o 137
Normalised mean wind speed vs. height above ground, obtained from
wind data measured on June 6 and June 21%¢ 2000 . . . . .. .. .. 141

Time variation of the wind velocity components and total speed ob-
tained from one minute of data collected on July 19" 2000 just above
the wheat canopy (time origin is at the start of the measurements) . . 142
Time variation of the longitudinal and vertical wind components at
two different heights, obtained from one minute of data collected by
triads 3 and 1T on June 6% 2000 (time origin is at the start of the
MEASUTEIMENTS) . . . . o v v v e e e e e e e e 143
Time variation of the wind longitudinal component obtained from one
minute of data collected just above the wheat canopy by triad 3 on
July 25" and June 21°¢ 2000, illustrating the difference in the gust
frequency in low and high wind conditions (time origin is at the start
of the measurements for each date) . . . ... .. ... ........ 144
Autocorrelation functions (ACF) of the wind velocity components
and of the total wind speed obtained at wheat canopy height by triad
3onJune 6™ 2000 . . ... ... ... ... .. 145



LIST OF FIGURES xi

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

Correlation time ¢, of the wind longitudinal component vs. mean
wind speed w, obtained from wind data collected in summer 2000 at
wheat canopy height by triad 3 . . . . . . .. .. ... ... 146

Cross correlation functions (CCF) between the longitudinal compo-
nents of the wind recorded by the four DVA triads on June 6 2000 . 147

Power spectrum of the longitudinal component of the wind veloc-
ity, measured at wheat canopy level by triad 3 on August 15 2000
(corresponding measured mean wind speed: 2 m.s™') . . ... .. .. 148

Power spectra from triads 2 (wheat canopy height) and 1T (0.6 m
above the canopy) obtained on June 6% 2000, Cranfield. Data recorded
over a period of 30 mn, average wind speed is 1.9 m.s~! at wheat
canopy height and 3.8 m.s~! 0.6 m above the canopy . ... ... .. 149

Wind cumulative probability based on wind data collected by the
Cranfield Automatic Weather Station in 1996 and 1997 . . . . . . .. 152

Cumulative probability of the wind speed, based on data collected
by the Cranfield Automatic Weather Station and separated into 4
categories depending on the time of day (night, morning, afternoon,
EVENING . . . o v vt ot e e e e e e e e 153

Locus of wheat heads in the horizontal (z,y) plane and in the vertical
(z,z) plane, obtained from one minute of video data collected on June
21t August 15 and July 25 2000 in a wheat field at Cranfield.
Coordinates of the wheat heads are given relative to a fixed position
Py of coordinates (Zo,40,20) « « « « « « e e e e e 154
Probability distribution of the displacement in slant range of target
1 (wheat head) on June 21°* 2000: p(sg;sp) is the probability that the
target displacement in slant range is between sg4;5, and sg;sp+0s. Here,
d0s = 2 mm. Radar parameters used for the calculation: incidence

angle=25°, azimuth angle=0° . . . .. ... ... ... ... .... 157
Time variation of the coordinates of target 1 (wheat head) on June
21%t, Wheat height is0.8 m . . .. .. .. ... ... ... ...... 158
Autocorrelation function of the 3 coordinates of target 1 (wheat head)
onJune 21582000 . . . . . ... .. 159
Autocorrelation function of the x coordinate obtained from motion
data on May 1°* (wheat leaf) and August 15°¢ (wheat heads in physical
contact with neighbouring plants) . . . . . .. ... ... ... .... 160
Mean position of the tracked targets on August 2"¢ 2000 and cross-

correlation functions (CCF) between the x coordinates of targets 2,
4,5, and 8 (all wheat heads) . . . . ... ... ... ... .. .... 161

Maximum cross-correlation of the x coordinate for each target pair
vs. distance between the targets tracked on August 2"¢. See Figure
6.19(a) for mean positions of the targets in the measurement volume. 162

Power spectra of the 3 coordinates of target 5 (wheat head) obtained
from data collected on August 2™ 2000, based on 1 minute of video



xi1i

LIST OF FIGURES

6.22

6.23

6.24

6.25

6.26

6.27

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Average wheat amplitude in the x and y directions from all targets
at a recording date vs. mean wind speed at the corresponding date,
with regression line (solid line) and 80% confidence interval (dotted
lines) on the linear estimates . . . . . . .. .. ... ... ... 168

Standard deviation on the estimated wheat amplitude in the x and y
directions from all target at each recording date vs. mean wind speed
at the corresponding date. The regression line is based on mean wind
speeds inferior to 3 m.s~™t. . . . ... ... . 170

Difference 7gisp — Nwing vS. mean wind speed, obtained from all record-
ing dates in summer 2000. . . . . .. ..o L. 171
Time variation of the wind longitudinal and transversal components
and of the wind speed obtained from triad 3 at wheat canopy height on
July 19%" 2000. Simultaneous time variation of the x and y coordinates
and of the total displacement relative to the mean of target 1 (wheat
head) at the same date and time. . . . . . .. .. .. ... .. .... 173
Cumulative probability functions of the wheat amplitude in the x
and y directions, calculated from the summer 1996 and 1997 weather
station data, and divided into night, morning, afternoon, evening
categories . . . . . .. L L e 175
Modelled deflection of the wheat stalk subject to a wind speed of 2
m.s! at the wheat height (0.8 m). . . . ... .. ... ........ 177

Probability distribution of the displacement in slant range direction
of the wheat head, calculated from 4 targets with data collected on
August 2™ (solid line), and Gaussian distribution (dotted line) pro-
viding best fit. . . . . . ... 184
Variation of the coherence with radar resolution for 3 backscatter
conditions . . . . . . ... 191
Variation of the scattering contributions from a wheat field, estimated
with RT2 and based on the wheat parameters given in Appendix A.4 194
Variation of the coherence with wavelength, for 4 different instances
of wheat motion derived from measurement data collected on June 6% 195
Variation of the coherence with the incidence angle for VV and HH
polarisations . . . . . . ... 198
Variation of the coherence with azimuth angle and locus of the targets
used to generate the phase distributions . . . .. .. .. ... .. .. 201
Variation of the coherence difference ¥z — a7 with the repeat time
between the two radar passes . . . .. .. .. .. ... ... ... .. 203
Variation of the coherence difference yz(t) — var(t) with the day of
year for 6 instances of the repeat time AT . . . . .. .. ... .... 204
Average standard deviation of the wheat head slant range displace-
ments vs. mean wind speed with regression line (solid line) and 80%
confidence interval (dotted lines) . . . . ... ............. 207
Probability density functions of o, for the 4 daily categories, based
on the wind data collected in 1996 and 1997 . . . . . .. ... .. .. 208



List of figures xiii

7.11 Variation of the average coherence with day of year, obtained from
50 simulations . . . . . . . . ... e 211

7.12 Available track/frame combinations of the ERS satellites which con-

tain the Cranfield area, represented by the small square area at the

centre of the 6 track/frame footprints. This map is obtained with the
Descw software. . . . . . . . . . ... 215

7.13 Backscatter intensity and coherence image of the Cranfield area, ob-

tained from averages of the 13 pairs of images available, from June
1995 to May 1996 . . . . . . . . . . ... 218

7.14 Temporal variation of the coherence for a wheat field and grass ob-
tained from ERS-1/2 Tandem data . . . . . ... .. ......... 219

7.15 Temporal variation of the coherence for a wheat field: estimates from

the coherence model and from the ERS-1/2 Tandem data for the
Cranfield test site in 1995-96 . . . . . . . . . . ... ... 221

A.1 Validity of the RT2 surface scattering models (plotted with the ERS
value for k=~ 111m™Y) . . . . .. L 246
A2 Scatterersangles . . . . . .. ... 248
D.1 Connections on the clock board . . . . .. ... ... ... ...... 257
G.1 Vertical beam subject to external wind loading . . . . . .. ... ... 264
G.2 Free body diagram for the wheat stalk . . . . ... ... ... .... 265

G.3 Modelled shape of the wheat stalk under a wind speed of 2 m.s™!

at a height above ground of 0.7 m, and using the numerical values
detailed in section G.2 . . . . .. ... Lo Lo



Xiv

List of Acronyms

List of Acronyms

ACF
ADC
AOI
AVI
AWS
CCF
DAC
DEM
DV
DVA
FFT
GMT
IDL
InSAR
LAI
LED
LM
MIMICS
PRI
PRF
RMS
SAR
SIR
SLC
SNR
SVD

Autocorrelation Function
Analogue to Digital Converter
Area Of Interest

Audio Video Interleave
Automatic Weather Station
Cross-correlation Function
Digital to Analogue Converter
Digital Elevation Model
Digital Video

Digital Vane Anemometer
Fast Fourier Transform
Greenwich Mean Time
Interactive Data Language
SAR Interferometry

Leaf Area Index

Light Emitting Diode
Levenburg-Marquadt
Michigan Microwave Canopy Scattering
Precision Image

Pulse Repetition Frequency
Root Mean Square

Synthetic Aperture Radar
Shuttle Imaging Radar

Single Look Complex
Signal-to-Noise Ratio
Singular Value Decomposition



Introduction 1

Chapter 1

Introduction

This report presents research undertaken at Cranfield University from October 1997
to October 2000. The origins of the study lie in the remote sensing of crops for
agricultural applications. Airborne or spaceborne sensors can provide information
about a wide range of properties of the Earth’s surface and can serve a variety of
purposes, from the determination of the geographical extent of man-made features
to the retrieval of geophysical or biophysical parameters. Agriculture is an appli-
cation where these two purposes are well illustrated: remote sensing can provide
geographical information about agricultural fields on a global scale, and can also
be used to retrieve quantitative information about relevant parameters such as crop
yield.

Traditionally, the remote sensing of agricultural fields is performed mainly in
the optical domain, and commercial applications nowadays use data collected in
the visible and near infrared parts of the electromagnetic spectrum. Optical data
sources are used to give crop statistics and make yield forecasts on a global scale, and
contribute to define policies for agricultural planning and monitoring at a national
or European level. Health indexes can also be derived from optical data.

With the advent of radar remote sensing satellites, a new source of potential
information arose, opening the possibility to access novel or more accurate knowl-
edge about the properties of the Earth’s surface. In addition to this, microwaves
have the capability to penetrate clouds and to be used regardless of the sun’s illu-
mination, including at night. Therefore, radar remote sensing is in principle more
adapted to provide a continuous coverage of the globe. For these reasons, the use
of Synthetic Aperture Radar (SAR) and of SAR interferometry (InSAR) for agri-
cultural applications has received increasing attention in the past decade. In SAR
interferometry, the complex degree of coherence is a quantitative indicator of the
correlation between two SAR images of the same area. Among other effects, the
coherence is influenced by the temporal changes which affect the Earth’s surface
between the time of the two images. On short time scales, the main time dependent
source of reduction of the coherence magnitude (“decorrelation”) from SAR data
above vegetated areas is related to the motion of the plants or trees subject to wind.
Behind this relation between the coherence and vegetation lies a potential source of
information about crops, and the justification for the work presented in this report.

Only very recent published studies have tried to relate the coherence from SAR
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data to parameters representative of the properties of crops or forest. They have
in common that they identify as a key missing element the observations of plant
response to wind, from which models could be used to quantify decorrelation mech-
anisms and consequently determine the amount of information carried by the co-
herence about crops. Making an accurate quantitative estimate of the way crops
move in the wind is a prior: rather difficult because of the random nature of the
motion. Other difficulties include the variability of this motion under different wind
conditions and the fact that a measurement system should be entirely non-invasive
so it does not impinge on the natural movements of the crops.

Aim and objectives of the research

It is the aim of the project to make a useful contribution concerning the issues
raised above. Cranfield University had built valuable experience in the fields of
radar remote sensing and micrometeorological research, and the two aspects can be
combined for the purpose of the study presented here. The first objective of the
project is to develop a methodology to measure the motion of crops in different
wind conditions. The second objective is to use the measurement system to provide
a database of motion observations, in parallel with wind velocity measurements at
canopy level, and to analyse the relation between the two. The third objective is
then to show how the knowledge acquired from the measurements can be used to
estimate the coherence to expect from agricultural fields, and to state on its potential
use for operational applications.

Methodology

The project uses digital photogrammetry to retrieve the position of crop elements
in three dimensions. Consumer digital video cameras are used in a wheat field for
in situ measurements, together with anemometers suitable for micrometeorological
applications. Since the objective of the research is to demonstrate the methodology
to make accurate measurements, the study focuses on wheat, which is a geometri-
cally simple plant. However, the methodology can be applied to other crops. The
measurement system is used in a wheat field local to Cranfield University, in the
summer 2000. The output of the measurement campaign is a series of wind veloc-
ity and wheat motion data files. From them, a simplified (statistical) estimator of
the coherence is developed and used to provide information about the parameters
affecting the coherence and to evaluate its potential for agricultural applications.

Structure of the report

The introductory lines above outline the project as a whole, but it is clear that it
requires a more precise justification and definition of its objectives and expected
outputs. Chapter 2 provides a background to radar remote sensing, SAR interfer-
ometry and the use of coherence for vegetated areas, which can be used to clarify
the scope of this research. Once the project is placed in its context, its objectives
and outputs are detailed. Chapter 3 uses a radar backscatter model to present the
parameters affecting primarily the backscatter intensity from crops. It then moves
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on to show the basis of the coherence estimator which will use the measurements of
wheat motion. The output of Chapter 3 is a list of specifications which drive the
design of the crop motion measurement system. The three-dimensional motion mea-
surement system and the anemometry package are described in Chapters 4 and 5
respectively. The use of digital video cameras widely available constitutes an original
part of the research, in that it shows how scientific use can be made of commercially
available technology, therefore combining accuracy and reduced development cost.
Chapter 6 describes the wheat motion and wind velocity data sets collected during
summer 2000, and presents an analysis of the relation between the two. From this
analysis, Chapter 7 uses the coherence model introduced in Chapter 3 to show the
influence of the radar configuration and of the wind conditions on the coherence.
The analysis highlights some of the potential uses and limitations of the coherence
for crop monitoring.

The wheat motion and wind velocity measurement method, the creation of a
database of measurements in the summer 2000, and insights into the capacity of the
coherence to be used for crop monitoring, are the key issues this report addresses, in
the hope that readers will find them useful for their personal research and interests.
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Chapter 2

Background and objectives

Before presenting the objectives of the research it is important to be aware of some
of the major milestones which have led to the current state of the art in the field
of radar remote sensing. For this reason a historical perspective is required and will
be briefly presented in the next section. It includes a brief history of radar systems
and of Synthetic Aperture Radars (SAR), before moving on to describe the past
and current uses of SAR platforms for Earth Observation, with a final emphasis on
agricultural monitoring. Through this description of the past and current techniques
of SAR remote sensing, including the more recent use of interferometry, the issues
this thesis deals with will become more clear. The concluding lines of Section 2.1
identify a more precise area for the research.

Clear objectives and outputs of the thesis cannot be defined without discussing
some necessary theoretical principles. These are the subject of Section 2.2, which
presents the principles of SAR image formation and their associated properties, of
SAR interferometry and of the complex degree of coherence. Then the current use
and the limitations of SAR interferometric (InSAR) coherence in vegetation remote
sensing applications are presented (Section 2.3). For reasons detailed in Section
2.3, one of the limiting factors in our understanding and use of the coherence for
vegetation monitoring is linked to the current lack of measurements of the motion
of this vegetation. Section 2.4 presents the state of the art for the measurement of
wind-induced vegetation swaying. In response to the limitations put forward both
in Sections 2.3 and 2.4, the objectives of the thesis and the methodology used to
meet these objectives are finally presented in Section 2.5. The expected outputs of
the research are also stated.

2.1 Background and rationale of the research

The roots of this research lie in satellite radar remote sensing, and it is important
here to give a general background on this technique, in particular for vegetation
monitoring purposes. The aim of this section is to provide an overview on the past,
current, and future developments of SAR remote sensing. Details relating more
precisely to the remote sensing of vegetation with SAR interferometry will be given
in Section 2.3.
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2.1.1 A brief history of radar systems and spaceborne SAR
missions

A chronological overview of the evolution of radar systems used for imaging purposes
is presented in [2]. Basically, a radar is sends pulses of electromagnetic energy in the
microwave region of the electromagnetic spectrum, and receiving part of this energy
after reflection by any physical object subjected to the radiation. The first steps
towards the practical use of radar systems were made between the initial works of
the German scientist Hertz at the end of the 19% century and the beginning of the
Second World War. In that period, ground-based radars were used for the detection
and tracking of ships and aircraft. The first airborne radars were developed during
the Second World War for military purposes.

The first operational Synthetic Aperture Radar systems were developed at the
beginning of the 1950’s, but it is only in the 1960’s, with the declassification of the
SAR technique, that civilian applications were started, for geology, land-use, and
vegetation studies. A wealth of independent developments kicked off in the 1970’s,
with the use of digital image processing techniques.

The first spaceborne SAR system was on the Apollo-17 spacecraft in 1972 for
geological and topographic mapping [3]. The radar interferometry technique for
surface mapping of Venus was used in 1978 on board Pioneer-12. The first Earth
imaging civilian SAR antenna was on NASA’s SEASAT in 1978, and is a milestone
in spaceborne radar remote sensing. Not only was the SEASAT SAR an excellent
technology demonstrator, but it is also the source of many publications for a wide
variety of applications. In the 1980’s, the Shuttle Imaging Radar (SIR) series started
and still carries on nowadays on Space Shuttle missions. The SIR missions often
broke new ground in SAR. technology, from the first mechanically steerable antennas
for use at a variety of incidence angles, to the current use of SIR-C/X which offers
a variety of wavelengths, incidence angles, polarisations, and resolutions.

The 1990’s mark the arrival of newcomers on the spaceborne SAR market. In
1991, the European Space Agency launched ERS-1, carrying a SAR antenna among
other scientific payloads. It was followed by ERS-2 in 1995, a copy of ERS-1. The
Japanese JERS-1 was launched in 1992, and the Canadian RADARSAT in 1995,
both with a SAR system on board.

The radar interferometry technique was tested on Venus and on the Moon from
Earth-based antennas for topographic purposes in 1971-1974. SAR interferometry
was demonstrated from an airborne platform in 1974 [4] and from space at the end
of the 1980’s [5]. But the major advances in SAR interferometry originate from the
data collected by the ERS-1/2 satellites after 1995, and is still a vivid source for
today’s research. The Shuttle Radar Topographic Mission (SRTM) is currently the
most recent database of interferometric data. The data were collected in February
2000 and is being processed.

Future SAR missions are currently under development or are now approaching
their launch date. Among these, some of the most awaited for are the ENVISAT Ad-
vanced SAR (ASAR), which will provide high resolution SAR data in a wide range
of operating modes, incidence angles and polarisations. The RADARSAT-2 satel-
lite, to be launched in 2003, will provide SAR data of a similar standard to that of
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ENVISAT. Other interesting developments include the LightSAR concept, a space-
borne platform of reduced size and mass, opening the potential use of constellations
of SAR satellites for near-continuous Earth observation [6].

2.1.2 Applications of SAR and InSAR for Earth observation

The previous section focused on the past and current SAR missions, and this section
now presents the applications of SAR data for Earth observation. In parallel with
the radar observations, there has been and there still is a continuous effort to provide
the fundamental link between the physical properties of the elements which scatter
the incoming radar waves and the radar backscatter signal received by the antenna.
This is the modelling approach, which aims to predict the radar backscatter from
a given surface (the “direct” problem). From these models, and also from purely
empirical observations, the end goal of radar remote sensing can be sought for, i.e.
the prediction of the geophysical and biophysical properties of a terrain from radar
observations (the “inverse” problem).

Although the direct problem is the subject of constant efforts in the past 15
years in terms of publications [7], the inverse problem is still a fairly new area. The
reason for that lies in the fact that most remote sensing missions are now driven by
commercial objectives. It is likely that national and international organisations will
not fund remote sensing satellites in the future for the unique use of the research
community. These organisations now seek to see a return of their investments of
the past decades through the development of commercially viable Earth observation
applications which can be managed by private funding. Such a situation could be
met in the coming years, with the most recent advances in space technology and with
the current efforts to improve our understanding of SAR backscattering mechanisms
for use in operational applications.

In this commercial context, the current operational applications of SAR data
are still limited. Applications such as high resolution, high precision Digital Eleva-
tion Models (DEM), disaster monitoring (earthquake, landslides, floods), polar ice
motion monitoring, are presently the most advanced. Other potential applications
include the monitoring of forests, agriculture, coastal areas, deserts, volcanoes, and
land-use classification. Rather than quoting here a series of examples, and in order
to get a more clear picture of the current state of SAR research and applications,
Figure 2.1 shows the percentage of papers, classified by theme, presented at two
recent SAR conferences. These are the Second International Workshop on Retrieval
of Bio- and Geo-Physical parameters from SAR data for land applications, held at
ESA-ESTEC in October 1998, and the Fringe’99 workshop on SAR interferometry,
held in Liege, Belgium, in October 1999.

Although they are based in Europe, these two conferences are international
events and are supposed to be a good representation of the current state of the
SAR/InSAR research. The first element to note is that SAR interferometry repre-
sent approximately 20 % of the current applications. Figure 2.1 shows that agricul-
ture and forestry are applications based on the SAR backscatter intensity, whereas
SAR interferometry shows its value mainly in DEM generation, land motion, ice
monitoring and volcanology. The two fields, SAR and SAR interferometry, seem to
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Figure 2.1: Percentage of papers by theme at two recent SAR/InSAR conferences

be fairly well delimited in terms of these applications and are complementary rather
than competing against each other.

The two major types of vegetation on land are forest and agricultural crops.
The assessment of vegetation characteristics aims to get quantitative estimates of
variables such as productivity, crop yield, or mass and energy budgets of soil and
vegetation. These parameters are important for two major reasons. First they
will enhance our current understanding of the processes underlying environmental
change. Global hydrological models and carbon cycle models heavily depend on an
estimate of some key vegetation parameters which can in principle be accessed on
a global scale by spaceborne remote sensing techniques. The second aspect, more
focused on the commercial side, is that assessing agricultural crop characteristics
can help agricultural planning and policy at a national or European level. SAR
and InSAR data currently find more uses in forestry applications [8, 9, 10] than for
agriculture, although the potential of the latter is acknowledged [11]. Agriculture
monitoring from SAR data is therefore still at the research level. It is stated in [12]
that a wide range of agricultural crops (wheat, barley, rice, etc...) have been the
subject of recent research with the use of SAR data. One particularly important
aspect of these studies is that they use multi-temporal data for improved accuracy,
in particular to discriminate between different crop types. New techniques are de-
veloped to classify crops from SAR data, a number of which make use of optical
data as a valuable complement.

The use of SAR interferometry and in particular of the coherence for agriculture
monitoring is still very marginal, although it is pointed out in [12] as an area to
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investigate in the future. Most studies focus on the retrieval of crop height from
InSAR data [13, 14, 15], based on empirical relations derived from field observations.
Details on these techniques will be given in section 2.3.

2.1.3 Complementarity SAR/Optical for vegetation moni-
toring

A wide range of sensors can be used in space, covering different windows in the
electromagnetic spectrum. Each spectral domain is sensitive to one or more charac-
teristics of a particular canopy and soil. The optical domain will provide estimates
of canopy variables such as the leaf area index and of the biochemical composition.
The thermal infrared domain and passive microwave will show some sensitivity to
surface temperature and canopy structure. The active microwave domain is used to
obtain information on soil roughness, moisture, canopy structure. The use of com-
bined data from different sources is potentially very valuable to get a wide range of
information on the canopy.

Complementarity between ERS SAR interferometry data and optical data from
the SPOT satellite is demonstrated in [16] and marketed by the company SPOT-
Image: the mapping of deforestation in the rainforest is possible with a combined
SAR/Optical data set. In the more specific case of agriculture, the use of optical
data for crop classification has been demonstrated, and some health indexes can also
be derived from it. However, optical data can only be used in good weather (cloud-
free) conditions, which is one of its major limitations. In particular, for countries
almost always covered by clouds at least partially, getting consistent time series for
multi-temporal analysis is virtually impossible.

It is mainly for this reason that the use of SAR data for agriculture applications is
being investigated. Its potential should at least be assessed before it can be rejected.
The current opinion in the remote sensing community is that SAR interferometry
does not have the potential to provide on its own better results than optical data,
but there is certainly the possibility that it can provide some information about
the vegetation cover, which is more than optical satellites can give on cloud-covered
surfaces. In addition to this, since optical data and SAR data show sensitivities to
different vegetation parameters, there is a potential complementarity between the
two.

2.1.4 Rationale for the thesis

Based on the very general introductory overview of the previous sections, it is im-
portant to make some preliminary points which have driven the research presented
here. Because of his imaging capabilities in all weather conditions, day and night, it
was first thought that SAR data would be the panacea for most remote sensing is-
sues. Today, views on this point have changed in the SAR community. There is very
little doubt that SAR data provides information about a wide range of properties
of the Earth cover, but the extent and the quantitative usefulness of this informa-
tion was probably misjudged. Fifty years after the creation of the first operational
SAR, and despite the impressive improvement in SAR technology, scientists are still
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struggling to find commercially viable applications worthy of the initial interest SAR
had generated. The need to find these applications is the major concern of today’s
remote sensing conferences. Operational readiness and marketing of SAR. products
are at the centre of attention more than ever before, mostly because international
and national organisations will not indefinitely fund a research area which cannot
prove its commercial viability.

For this reason, the current trend in SAR remote sensing is to push towards
the development of these commercial applications, but this is sometimes done at
the expense of our understanding of the underlying physics which govern the SAR
backscattering mechanisms. There is now a lot of work being put into the develop-
ment of commercial SAR applications based on physical properties which are still
difficult to model and to understand. Fortunately scientists have not forgotten that
the need to understand what sensors truly measure is the key to the development
of a future market [7].

The work presented here is written with these two aspects constantly in mind.
This research is driven by the need to understand the physical mechanisms affecting
SAR and InSAR data, not for a simple intellectual satisfaction, but to provide useful
information about the potential of SAR interferometry for agricultural applications.

It was shown in the previous sections that very little work has been published to
relate INSAR data and crop parameters. This is probably due to the fact that optical
data and SAR intensity data are already well established sources of information
that can be used for crop monitoring. The use of InNSAR coherence for agricultural
applications is therefore a rather novel area of research and is interesting at least
in that respect. But the relation between coherence and crop parameters should
be studied mainly because it would otherwise be neglecting a potential source of
valuable information. The following sections will highlight this potential, which is
the basis of the research objectives stated in section 2.5.

2.2 Introduction to SAR theoretical principles

It is not possible to define precise objectives for the research without giving some
background theory on radar backscatter, SAR, and SAR interferometry. The fol-
lowing sections fill this gap. The issues of radar backscatter and SAR interferometry
have been the subject of far too much research to be reproduced here in their en-
tirety. However, it is relevant to introduce the concepts which will be used in the
remainder of this report, in particular those relevant to the remote sensing of crops.

2.2.1 Radar backscatter: definition of relevant parameters

The microwave spectrum is the part of the radio spectrum which extends through-
out the Ultra, Super and Extremely High Frequency bands (UHF, SHF, EHF, re-
spectively), from about 0.3 GHz to about 300 GHz in frequency (1m to lmm in
wavelength). The microwave spectrum is divided into several bands designated by
the letters summarised in Figure 2.2 [17].

All radar remote sensing studies deal with the parameter ¢°, originally defined
as the differential (back)scattering coefficient, but mostly referred to simply as the
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Figure 2.2: The microwave spectrum

(back)scattering coefficient. The prefix “back” is used in the monostatic case, i.e.
when there is only one radar antenna used as a transmitter and receiver of the radar
signal, which is the case of active microwave remote sensing . A brief definition of
0¥ is required here, and it originates in the radar equation [18]. An antenna of area
A (m?) transmits an electromagnetic wave of wavelength A (m), radiating a total
transmitted power P, (W) in a pattern mainly dependent on the antenna geometry.
A target at a distance R (m) is hit by this incoming wave and reflects a part of it
back to the antenna. The part of the incoming signal which is reflected back to the
antenna depends on the size of the target, its absorbing and reflective properties in
the direction of the antenna. These properties are regrouped in a single parameter,
o, the scattering cross-section. It is shown for example in [18] that the power P,
(W) received back at the antenna can be written:

_ PA%

" 47 \2R?

In reality, there is not a single scatterer in the scene observed but several targets,

each of which can have a different scattering cross-section ;. For this reason, it is

necessary to introduce an average scattering cross-section. The differential scattering
coeflicient is introduced for this purpose, and is defined as:

(2.1)

g;

0" = () (2.2)

Here AA; represents an area on the ground over which the parameters of Equa-
tion (2.1) remain nearly constant. In remote sensing applications the differential
backscattering coefficient is called the backscattering coefficient. It is a dimension-
less number, usually expressed in Decibels (dB):

0°(dB) = 101In¢” (2.3)

The polarisation [17] of the incoming wave also influences the values of oY.
Most remote sensing applications only deal with vertically and horizontally po-
larised waves, so that it is common to define four different backscattering coefficients
0V 0%, 0% 1, 0%, where the first letter represents the polarisation of the incom-
ing wave and the second letter that of the outgoing wave. Polarisation can be an
important aspect when considering the backscattering from a vegetation medium.

The parameters of the scattering medium which influence the value of ¢° are
numerous and the subject of modelling studies for the past 30 years. In the case of
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surface scattering, the two main parameters to affect o° are the surface roughness
(root mean square height relative to a smooth surface) and the dielectric constant &.
If the surface roughness is small compared to the radar wavelength, the scattering
mechanism is near specular and ¢° takes low values. It should also be noted that
a portion of the incoming energy will also be refracted at an angle function of e,
itself dependent on soil moisture. Other scattering mechanisms will occur as the
surface roughness increases with respect to the wavelength. A thorough description
of surface scattering modelling can be found in [18].

Most natural surfaces are penetrated by the incoming radar wave, at least par-
tially and for certain wavelengths. Consequently the scattering occurs mostly within
a volume rather than on a surface. The properties of the scattering volume determine
the backscatter coeflicient, and the modelling of the volume scattering mechanisms
is usually specific to the type of volume considered. The two main approaches to
model volume scattering are based on wave theory and radiative transfer theory.
Wave theory is based on Maxwell’s equations of electromagnetism and accounts for
the coherent addition of waves travelling in different directions in the scattering
volume. Radiative transfer theory considers the transport of energy in the volume.
The wave theory is usually more difficult to use as it needs a very precise defini-
tion of the configuration of the scattering volume but the radiative transfer theory
cannot account for wave effects and can therefore lead to erroneous estimates of the
backscatter in some cases.

2.2.2 Principles of SAR image formation
SAR geometry and system parameters

The creation of SAR images requires complex signal processing which is described
in detail in many textbooks [19]. Only the relevant principles are given here. The
typical geometry for SAR measurements is presented in Figure 2.3. A radar antenna
of length [ and width w is carried on a platform (airborne or spaceborne) at a veloc-
ity V' and altitude h. The antenna is looking sideways at an angle #, and repeatedly
radiates radio pulses of duration 7, at a rate defined by the Pulse Repetition Fre-
quency (PRF). The transmitted pulse has a carrier frequency fy, corresponding to a
wavelength A = ¢/ fy, where c is the speed of light. Antenna theory shows that the
radiation transmitted by an antenna of length 1 spans over an angle \/l. 6, = \/I
on Figure 2.3 is the angle over which each pulse is radiated in the azimuth direction
(denoted by the x coordinate). R being called the range, i.e. the distance from the
radar to the surface, the similar angle in the range direction is 0 = A /w.

The geometry presented here is simplified, as it does not take into account addi-
tional parameters related to the Earth’s curvature. The "flat Earth” case is sufficient
to understand the principles of SAR image formation.

Processing a single pulse - The range dimension

The transmitted pulse of duration 7, extends spatially over a distance c7,. The pro-
jection of this spatial extent on the surface defines the achievable ground resolution
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Figure 2.3: SAR geometry and system parameters

4 for the radar system:
CTp

"= oging

where the factor 2 accounts for the two-way propagation of the pulse.

With the ERS parameters, where 7,=37.1 s and 6 ~ 23°, the ground resolution
would be of the order of kilometers (r,=14.2 km), which is far from the announced
resolution of the order of tens of metres and impractical for most applications. High
spatial resolution is achieved by a pulse compression technique. The pulse received
at the radar is correlated to a copy of the transmitted signal. This is known in
communication theory as matched filtering.

Assuming that the transmitted signal is s(t), an isolated point target produces
a response proportional to s(t-7), where 7 = 2R/c is the delay since transmission.
Ignoring for the moment issues related to the amplitude of the signals, the output
of the matched filter is:

(2.4)

0= e — t)s(t — )t (2.5)

—Co0
where the superscript * denotes the complex conjugate. If the transmitted pulse
s(t) is chosen to have a constant spectrum magnitude over a bandwidth B (i.e.
|f — fO| < B/2), the integration defined in Equation (2.5) shows that the output of
the matched filter has a power function |f(¢)|? of the form:

sin[rB (t — 2R/¢)][*
7B (t—2R/c)

[f@)F =B (2.6)

|f(t)|? peaks at t=2R/c, which gives the range of the target. The width of the
main lobe is §t &~ 1/B and defines the time resolution of the system. The associated
ground resolution is r, = ¢dt/2sinf. For ERS, the range bandwidth is B=15.55
MHz, which corresponds to r, &~ 25m (and a compressed pulse length t=64 ns).

Without pulse compression, the pulse duration required to obtain a high reso-
lution would be very short and the resulting energy per pulse would be too low for
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reliable detection. The pulse compression technique therefore allows to have a high
resolution and a high signal-to-noise ratio (with a longer transmitted pulse).

Some aspects of the single pulse processing have not been mentioned in the above
description. First, the correlation operation is not performed with an exact replica
of the transmitted pulse but a weighting function is also present, which results in
a reduction of the unwanted secondary sidelobes in f(t), made at the expense of
range resolution. The second important aspect not mentioned previously is that the
processing is digital, i.e. the compressed signal is sampled. A description of digital
SAR processing can be found in [20].

Azimuth processing

The azimuth processing in a SAR system makes use of the phase information con-
tained in the returned signal. More precisely, it uses the variation of the phase of
the returned pulses from a single target while this target remains in the ground
footprint of the beam.

In order to understand how azimuth processing is achieved, it is useful to intro-
duce some simple notation as shown in Figure 2.4, which is a top view of Figure
2.3. The letter s denotes the time at which a particular target T is viewed by the
beam. A convention would for example be to set s = 0 when the target T enters the
footprint defined by the radar beam, and s = .S when the target leaves the footprint.
The time here is noted s to refer to ‘slow’ time, as opposed to the travelling time
t of the pulses introduced previously. C is the centre point of the beam. R(s) is
the range of the target at time s, and R, the range of point C. The corresponding
azimuths are X(s) and X,.

X

Xg

C]

(Sd

Figure 2.4: SAR geometry for azimuth processing

It can be shown by calculating the integral of Equation (2.5) that the output of
the matched filter after demodulation (i.e. removal of the carrier frequency fy) is of

the form: Ar B s
JATR\ sinz

t)=exp|— 2.7
£t) = eap (155) 2 (27)
This equation shows the phase term which did not appear in Equation (2.6),
where only |f(t)|?> was considered. The term 7Bt is replaced here by the generic
variable x (dependent on the fast time t) to account for the possibility of other
treatments on the signal, such as the inclusion of a weighting function mentioned
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in the previous section. The actual expression for x is not relevant here anyway, as
the azimuth processing uses the phase term exp(—jdnR/}).

The value of f(t) kept for azimuth processing is the peak value with respect to
t, i.e. the complex value exp(—jdrR/\). For a given target, this value varies with
varying range as the radar platform moves. It is therefore a function g of slow time

9(s) = exp (—@) (2.8)

Using the geometry of Figure (2.4), the range R(s) can be approximated by:

(s — s.)?

R,

Equation (2.9) shows that the phase ¢ = —47R(s)/A of g(s) is a function of
time, and therefore yields a Doppler effect. The Doppler frequency is defined as
o = (1/27)d¢/ds and the Doppler frequency rate is fr = (1/2¢).d’¢/ds*. By
differentiating ¢ with respect to s, the following expression is found for the Doppler
frequency rate fr:

1
R(s) ~ R, + §Vs2 + V,(s — s.) sinf, (2.9)

2 V2
fr=-3p (2.10)

Similarly to range compression, the signal g(s) is correlated to a correlator func-
tion. Details on how the correlator function is chosen is not be presented here (see
[19] for details), but the output h(s) of the azimuth correlation operation can be
shown to be of the form:

sin [7frS (s — s¢)]
[ﬂ-fRS (3 - Sc)]

h(s) peaks for s=s., which gives the target azimuth location. As for range com-
pression, |A(s)|? has a main lobe of width §s = 1/Bp, where Bp = frS is called the
Doppler bandwidth. The time S is the time during which the target is in view of
the beam. It is sometimes referred to as the SAR integration time, as the azimuth
correlation operation is an integral operation performed over the duration S. It can
be expressed as a function of the size of the footprint in the azimuth direction R0,
and the platform velocity Vs:

h(s) =S (2.11)

o Rcb,  Rc)
Vs Vsl

(2.12)

The azimuth time resolution is given by the width of the main lobe: §s = 1/fgS.
It corresponds to the azimuth resolution dz = Vg.0s. Combining this expression
and Equations (2.10) and (2.12) yields the following expression for the azimuth

resolution: ARV l
bp = Vg o5 _ 2 2.13
T VS9V2RAN T 2 (2.13)

The azimuth resolution for a SAR is in theory equal to half the length of the
radar antenna. This is the originality of the processing, which actually synthesises
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an aperture the size of the beam footprint in azimuth. For ERS, the SAR antenna is
10 m long, giving a theoretical azimuth resolution of 5 m. In practice, the resolution
is further degraded by imperfections in the processing.

In this chapter, many aspects of the SAR processing have been ignored, such
as the range migration effect and all the additional features linked to the digital
processing of the signal. However, the idea here was to give indications on how very
high resolution can be achieved with SARs, and therefore why it is now so widely
used in the remote sensing community.

2.2.3 Basic properties of SAR images
Geometric properties

It was shown in the previous section that the resolutions of a SAR system differ in
range and in azimuth. The first implication of this is that the features displayed
on a SAR image will not directly map onto surface features, but will appear to be
stretched in the azimuth direction. It is not in itself a major problem but can cause
difficulties in the visual interpretation of the images. A common technique to remove
this distortion is to average pixels along the azimuth direction. For example in the
ERS case, with a resolution of about 5x25 m, averaging 5 pixels along azimuth will
leave an image with “square” pixels of 25x25 m. However, averaging is done at the
expense of resolution, so it should be confined to visual interpretation of the images
only, and not used for data processing.

SAR images are affected by a number of other defects. Unpredicted changes
in the amplitude and/or phase of the returned echo occur due to uncompensated
antenna motion or unpredicted changes in the measured range. The latter can be due
for example to variations of the atmospheric refractive index. The resulting effects
on the image are radiometric distortions, geometrical distortions, image defocus. A
detailed description of these defects and their correction can be found in [21]. Target
ranging errors occur in high relief areas. The range being determined by the two-way
propagation time between the antenna and the target, a variation in height between
two points will result in the SAR image in a range estimation error. A point at a
higher elevation will be seen by the radar at a closer distance to a neighbouring pixel
of lower altitude than it actually is. This effect is called foreshortening when the
slope between the two points is less than the radar look angle. When the slope is so
important that it is greater than the radar look angle, there is an inversion of the
two points in the radar image, and this effect is referred to as layover. The inverse
problem to layover is shadowing, where a whole portion on the ground surface is
not visible from the radar. Layover and foreshortening are visually obvious in SAR
images of mountainous areas, where the mountains seem to lean towards the sensor.

Statistical properties

Figure 2.5 is an example of a SAR image obtained from ERS-1. The noise-like as-
pect of the image is due to the phenomenon of speckle. It was stated in section
2.2.1 that the total backscatter signal received by the radar antenna is the result
of the summation of multiple individual scattering elements in the scattering vol-
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Figure 2.5: SAR image from ERS-1 of Cranfield University and its surroundings

ume. FEach ground resolution cell can be viewed as containing a high number of
discrete scatterers, each of them contributing to the total backscattered wave. In a
mathematical form, this total backscatter signal V' can be expressed as:

N
V= [V]e? =3 Vil (2.14)
k=1

where |V| and ¢ are respectively the total backscatter signal amplitude and
phase, and |Vj| and ¢ are the individual amplitude and phase contributions from
each scatterer in the ground resolution cell. This summation is therefore comparable
to an interference phenomenon between the individual contributions.

It can be assumed that the individual scatterers are in very high number in the
scattering volume, so it is not physically possible to account for their individual
contributions. Therefore statistics must be introduced at this stage to derive prob-
ability density functions for |V| and ¢. If the individual scatterers are considered
to be uniformly spatially distributed in the ground resolution cell, then the phase ¢
is uniformly distributed over [-m,7], as the size of the resolution cell (of the order of
metres) in much larger than the wavelength (of the order of centimetres). With such
a phase distribution, the summation of Equation (2.14) is equivalent to a random
walk in 2 dimensions, and the real and imaginary components |V| cos ¢ and |V|sin ¢
have a Gaussian distribution. The resulting backscatter amplitude therefore has a
Rayleigh distribution Py [22]:

Py |(v) = 20—Uexp (—g) (2.15)

The corresponding intensity distribution (intensity I = |V|?) is a negative expo-
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nential:
Pi) = Se ( Z) (2.16)
=—exp|—— :
it ag p ag

The mean value and standard deviation for the distribution P;(7) are both equal
to o, whose value depends on the individual scattering amplitudes |V;|.

Comparisons between the statistical distributions predicted by this speckle model
and observed data over homogeneous targets show a good agreement [21]. It is clear
that adjacent pixels of a SAR image of an homogeneous region can give different
values of the backscatter intensity as I follows the distribution of Equation (2.16).
Speckle gives to the SAR images this noise-like aspect observable on Figure 2.5. It
can be reduced by averaging several images of the same scene. The variance of the
intensity obtained after averaging N images follows a 1/N decrease. This means
that there is not much improvement in image quality after averaging the first few
images.

Another important point to make here concerns the spatial correlation between
pixels. It is necessary to introduce it here as it will be shown later that it has direct
implications on the coherence statistics. Re-sampling of SAR data is necessary to
translate the slant range to ground range, but it introduces some correlation between
adjacent pixels [21], which means they do not provide independent information about
the scene. The intensity correlation coefficient for a pixel lag £ in the azimuth
direction is [21]:

N

1
N ZI(IEi)I(%Ha)

pralk] = i:1wr( 7 (2.17)

The summation is made over a certain area of interest containing N pixels, and
var(I) is the variance of the intensity over that area. z; is the azimuth of the 7™
pixel. A similar definition holds for the correlation coefficient in the range direction,
prr k). With SAR data, pre[k] # 0 for k£ # 0. An example is shown on Figure 2.6,
where the variation of the correlation coefficient in azimuth and range is plotted
against the pixel lag k. The curves have been calculated from ERS SAR data over
an homogeneous area, a wheat field in te image of Figure 2.5.

The presence of pixel correlation means that, for a rectangular block of M pixels
in range and N pixels in azimuth, the number of independent pixels is inferior to
MxN. It is shown in [21] that the number of independent “looks”, L, can be defined
as:

(I)2 MN

wr(l) 5 - (1 _ L\Z_|> (1 _ %) oralklorell

|k|<M |l|<N

L=

(2.18)

(I) denotes the average intensity over the MxN block. As an example, the value
of L calculated from the intensity correlation coefficients displayed in Figure 2.6, for
a 3x15 block, is about 28. The value of L calculated here is important as it is used
later to express statistics on the InSAR coherence.
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Figure 2.6: Intensity correlation coefficient on a SAR image over a wheat field, in
range (red) and azimuth (blue)

ERS SAR data formats

The two main data formats available for the ERS SAR in the image mode are called
PRI (Precision Image) and SLC (Single Look Complex).

The precision image is formed with three sub-images (three looks). The combi-
nation of three images is made at the expense of resolution, but the speckle effect
(discussed later in this chapter) is reduced. The SAR data in PRI format is resam-
pled to obtain a pixel size of 12.5 x 12.5 m.

Single Look Complex (SLC) format The SLC format keeps both the intensity and
the phase information contained in the backscattered pulses. SLC data is necessary
for interferometry applications as it retains the phase for each pixel. It is the data
format used in the research.

2.2.4 SAR interferometry and the complex degree of coher-
ence

The principles of SAR interferometry are detailed in this section, together with the
parameter which is one of the main concerns of this thesis: the complex degree of
coherence, commonly referred to as the coherence.

Principles of SAR interferometry

The speckle model presented in the previous section pointed out that the phase
of a single pixel is uniformly distributed and therefore the phase information in
individual SAR images is of no practical use. However, the phase difference between
correspondent complex pixels from two SAR images of the same scene carries useful
information on the relative height between two adjacent pixels.

SAR interferometry requires two views of the same scene taken from a slightly
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different angle. The two ways to achieve this are (1) to carry two SAR antennas on
the same platform or (2) to view the same scene with the same SAR antenna at two
different times. The first solution is used with airborne SAR antennas being placed
on each wing of an aircraft. With spaceborne SAR however, the second option is
mostly used (at the very recent exception of the Shuttle Radar Topographic Mission),
and leads to repeat-pass interferometry. For example, while in their Tandem mission
phase, the ERS satellites took images of the same scene with a 24 hour time interval.
The geometry for SAR interferometry is presented in Figure 2.7 in the simplified case
where the Earth’s sphericity is not accounted for. This simplified case is presented
here because it is sufficient to introduce the issues which are the subject of later
sections. A complete treatment of the problem would need to include the sphericity
of the Earth and some satellite orbit errors [23].

Figure 2.7: Geometry and parameters for SAR interferometry (‘flat Earth’ case)

The two satellites S| and S, are separated by a distance B called the baseline.
B,, is the baseline normal to the direction of the radar beam. S; sees the pixel centre
P, at a range r, and S, sees the same pixel centre at a range r + dr.

The interferometric phase ¢ is the difference between the phases recorded from
P, by the two satellites:

6= (2.19)
A
The knowledge of the interferometric phase for a single pixel is of no use because,
as dr > A, there is an ambiguity in ¢ of many cycles. However, the variation of
interferometric phase between two adjacent pixel centres, A¢, can be related to the
surface topography:

4rB,n
Ar

In this equation, n represents the displacement between P; and P, normal to
the slant range direction. n depends on the distance in the y direction and on the
relative elevation dz. The term related to the y direction can be subtracted from
the interferometric phase variation, as it is a linear variation corresponding to a flat
Earth case. The resulting phase difference A¢, due to the elevation difference dz
has the following expression:

Ag = %A(dr) _ (2.20)
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47 B, dz
Ap, = —*~
2 Asiné

This shows that, for a given configuration of the satellites, the interferometric
phase variation between two adjacent pixel centres is proportional to the height
difference between these two centres. SAR interferometry can therefore be used to
generate topographic maps (DEMs). The phase values being retrieved from complex
numbers, they can only be determined modulo 27. The interferogram, which is an
image of the interferometric phase across the scene of interest, therefore shows inter-
ferometric fringes. Note that, in the case where no relief is present, the slant range
difference dr increases continuously (but not linearly) with increasing slant range. So
an interferogram generated from a flat surface will also show interferometric fringes,
parallel to the azimuth direction.

DEM generation is not as simple as it may seem from the simple theory presented
here. It requires robust phase unwrapping algorithms, atmospheric effects are not
negligible and high accuracy DEMs require the combination of data from ascending
and descending passes or even combination between radar and optical DEMs (gen-
erated by stereoscopy). In addition to these problems, several factors will contribute
to modify the measured phase, which are not directly related to terrain height and
consequently decrease the accuracy of the DEM. The quality of an interferogram
can be estimated and is quantified by a parameter called the degree of coherence.

(2.21)

Definition of the complex degree of coherence

The issues introduced above have been studied in the optical domain long before
the radar interferometry did even exist as a discipline. It is therefore not surprising
to find the roots of the concept of coherence in the studies of light interference. It
was introduced to account for the fact that the phase and amplitude of real light
sources undergo irregular fluctuations such that there is no correlation between the
signals taken at a time ¢ and £+ At. The time At after which no correlation is found
is introduced as the coherence time [24]. Obviously, between the cases when light
sources are fully coherent and when they are totally incoherent, there is a whole
range of partially coherent cases. The amount of coherence between light sources is
directly related to the contrast of their interference pattern, and from here it was
necessary to introduce a variable which would represent this amount of coherence.
The degree of coherence was defined for that purpose.

For SAR interferometry, the coherence is also of interest as it quantifies the fea-
sibility to make interferometric measurements from an interferogram. The complex
degree of coherence defines the capacity of two wave fronts to stay correlated. It is
defined as:

.= <V1—V2*> (2.22)
(Vi) {V2/?

where V; and V;, are two wave fronts received by the satellites at their two
different positions S; and S, respectively. The degree of coherence v = |v.| is a
number between 0 and 1 directly linked to the visibility of the fringes. If y=1, the
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2 signals are perfectly coherent and the fringe visibility is maximum. If y=0, the 2
signals are incoherent and there is no interference between them.

Qualitative understanding of the coherence

Going back to the notation introduced in Equation (2.14), the signals V; and V5
received from the same area by the radar at its two different positions can be written:

V= [Vlel = [VileXmieit
Vo= |Vale?®2 = |Vyle X m2e¥2 (2.23)

Here the phase ¢; (i=1,2) is decomposed into:

e a “travel” phase 47r;/\ corresponding to the optical path of the radar wave
travelling a distance equal to the range r;,

e a “random” phase 1; which, with the speckle model introduced above, is uni-
formly distributed in the interval [0,27].

If the phases 14, and 1, are too different from each other, they corrupt the useful
phase signal 47 (ro — 71)/) (=¢ as defined in Equation (2.19)), and the interfero-
metric phase does not provide useful information. The interferogram does provide
information about the topography if the phases ¥; and 9 do not differ significantly.

The coherence defined in Equation (2.22) quantifies this amount of difference,
and can therefore be viewed as a quantitative indicator of the change which has
occurred in the scene between the two passes of the radar antenna.

Estimation of the coherence from SAR data

Coherence is not as such measured from SAR data, but estimated. Given that the
azimuth and range coordinates correspond to temporal coordinates of the sampled

radar signal (see section 2.2.2), the most frequently used coherence estimator is
[10, 25]:

M N
ZZ (6, 5)5(é, 7))
=1j=1

v = (2.24)

(ZZ|31@J ) (ZZ|S2H )

i=1j5=1 i=1j=1

with s, (%, j) defined as the complex pixel values of the first image in a MxN pixel
calculation window, and sa(%, j) the corresponding values in the second image. Note
that there are other coherence estimators which have been reviewed and compared
in [26].
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Coherence statistics

Equations (2.15) showed that the amplitude of a complex pixel in a SAR image is
a statistical quantity following a Rayleigh distribution, while the phase of the pixel
is uniformly distributed. Since, by definition, the coherence is a function of these
complex pixels on a given area, it can be expected that the coherence estimator of
Equation (2.24) is also a statistical quantity. The probability density function of the
coherence estimator «y is derived in [27], and from it, the expected value of v, E(y),
can be expressed as a function of the true value of the coherence magnitude iye
and of the number L of independent samples in the coherence calculation window.
The mathematical formalism is not reproduced here to avoid adding unnecessary
complexity but a full derivation can be found in [27]. Figure 2.8 shows the probability
density function of « for a true coherence magnitude ;e = 0.5, and for 3 values of
L (3, 10, and 20).

pdf
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Figure 2.8: Probability density function of «y for 4,.=0.5 and L=3, 10, and 20 (red,
green, and blue respectively)

It is clear from the shapes of Figure 2.8 that the expected value of v calculated
from the probability density functions will be higher than ~.,.. It is also clear
that, in order to obtain a good estimation of the true coherence, a larger calculation
window should be chosen. This, however, is made at the expense of spatial resolution
on the coherence image and also requires that the calculation window covers an
homogeneous area on the ground. In practice, a compromise is made between good
spatial resolution and reliable estimation of the coherence. Another way to view this
result is shown in Figure 2.9, where E() is plotted against -y for 3 values of L
(5, 10, and 50). E(v) is higher than v;.., and especially so at low coherence values.
This phenomenon is known as coherence bias. As it will be shown later, coherence
above vegetated surface is by nature fairly low, so it is important to remove the bias
in the coherence estimates calculated from Equation (2.24).

A reliable method for bias removal was proposed in [28]. It consists of calculating
the coherence estimator from Equation (2.24), and averaging the values obtained
over an area of interest:
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Figure 2.9: Expected value E(y) as a function of the true coherence value for L=5,
10, and 50 (red, green, and blue respectively)

1 nNAOI
naor ;o5

The area of interest (AOI) can be for example a field, and in general any ho-
mogeneous area on the surface. The average coherence is taken over its nso; pixels
and, in Equation (2.25), the subscript L denotes that the coherence was calculated
from L independent samples. It is shown in [28] that the spatial average -y, provides
an unbiased estimate of the expected value E(v) over the AOI. The mathematical
relation between E(7) and 7y;ye, which was used to make the plots of Figure 2.9, can
then be inverted numerically to provide an unbiased estimate 4 of ;... Obviously ¥
is not strictly equal to 4. since the spatial averaging was performed with a limited
number of pixels. In theory, with an infinite number of pixels, ¥ would tend towards
Yirue- With the unbiased estimate 4 comes a certain number of statistics, includ-
ing the definition of confidence intervals. To conclude on this point it should be
noted that further coherence statistics and bias removal techniques can be obtained
under other assumptions. In particular, techniques have been developed [28] when
the scatterers are assumed to be unevenly distributed in the ground resolution cell
(non-stationary processes).

2.2.5 Decorrelation factors

The loss of coherence is referred to as decorrelation, as the coherence magnitude is
effectively a correlation coefficient between the two complex SAR signals. It is com-
monly decomposed into 3 components, namely the thermal, spatial, and temporal
decorrelation [29]:

Y = Yihermal-"spatial-Vtemporal (226)

Decorrelation could a priori be considered as an unwanted effect which infers
information loss on an interferogram. Although this is true for DEM generation,
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it will be shown in this section that decorrelation is also at the basis of additional
information about the surface.

Thermal decorrelation

Thermal decorrelation is associated with the noise introduced in the SAR processing,.
The coefficient Vipermar is related to the signal-to-noise ratio (SNR) by [29]:

1

1+ SNR! (2.27)

VYthermal =

Spatial decorrelation

The spatial decorrelation is also known as baseline decorrelation. It was first in-
troduced in [30], and a more complete description can be found in [31]. Baseline
decorrelation is a geometric effect due to the fact that there is a change of viewing
angle on a fixed surface point, due to the distance (the baseline) separating the radar
antennas. This difference in the viewing angles is small but it infers a change of the
relative positions of the scatterers in the ground resolution cell. Consequently the
two radar antennas measure different values for the range (and associated phase) of
these scatterers, and the complex addition of all the individual contributions in a
resolution cell will lead to a different resulting amplitude and phase measured by the
two satellites. Expressed in other words, changing the viewing angle is equivalent to
changing the interference pattern in the pixel. If the difference in viewing angle be-
comes too important, all coherence is lost and 7,pqtiqr=0. This last point introduces
the idea of a maximum distance between the two satellites for SAR interferometry
to be possible. This distance is named the critical baseline. The variation of vypatial
as a function of the baseline has been calculated in [31]. With the ERS parameters,
the critical baseline is approximately 1100 m.

When the baseline is inferior to the critical baseline, the decorrelation effect
can be removed from the coherence images using a technique known as common
band filtering, which relies on the concept of wavenumber shift [32]. Because of
the difference in viewing angle between the two satellites, the projection of the
wavenumber k (k = 47 /) on the ground surface, k, (k, = 4sin0/)) takes different
values. The ground range wavenumbers are therefore slightly shifted. Consequently,
the backscattered signals are different because the incoming signal does not exactly
excite the same spectral components of the ground reflectivity spectrum. The band-
widths of the two backscattered signal are shifted, and the idea of the common band
filtering technique is to keep only the part of the spectra which is common to both
signals.

It should be noted that additional spatial decorrelation should exist due to ro-
tation of the look directions between the two radar passes [29]. With spaceborne
SARs, this effect is negligible as the spacecraft orbits are precisely controlled and
kept parallel to a very good accuracy.
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Temporal decorrelation

Temporal decorrelation is specific to repeat-pass interferometry, and occurs because
of a change of the scattering properties of individual scatterers on the surface.
Change in these properties can have different sources, depending on the time in-
terval between the two radar passes. Different time scales can be considered to
account for the change of scattering properties in a vegetation medium:

e at short time scales (seconds), the wind can move the scatterers (leaves, stalks,
etc...) in a random manner. This results in a different scattering configuration
between the two satellite passes of the interferometric pair.

e At medium time scales (hours, days), the dielectric properties of the scatterers
can be affected by rain and temperature transitions (ice/ liquid water).

e At long time scales (weeks, months), the scattering properties change due
to crop growth, man-made changes (harvest, ploughing, sowing, etc...), and
possibly exceptional events (floods, fires, etc...)

It can be expected that temporal decorrelation will be higher in forested and
agricultural areas, and virtually non-existent in built-up areas. This is the very
important property that is going to be exploited in this report.

In the case of the ERS-1/2 tandem mission, where the time difference between the
two images is only 24 hours, it is expected that temporal decorrelation is mainly due
to a change of the position of the scatterers in the ground resolution cell. Changes in
moisture can also occur in case of rain events between the two satellite passes. At C-
Band (f=5.3 GHz, A=>5.67 cm), a motion of the scatterer of a few centimeters results
in the phase change of one cycle or more. Therefore, one-day coherence calculated
from the tandem mission data is expected to be sensitive to vegetation structure.
As the plant grows over the season, its structure changes and so does its random
motion between the two satellite passes. The temporal variation of the coherence
over the growth season for a given crop should reflect this structural change. It is
in this respect that the temporal decorrelation can be viewed as a useful source of
information about the surface and volume processes which affect the stability of the
observed scene.

2.3 Use and limitations of InSAR coherence for
vegetation remote sensing

From the properties shown in the previous section, it is clear that the coherence
presents an interest for the remote sensing of vegetated areas. This section reviews
the research done to this date in this direction. From the review, a certain number
of limitations will be identified, and some of them will be used to drive the definition
of the objectives of this research.
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2.3.1 Current applications of the coherence

The information contained in the temporal decorrelation was first acknowledged
qualitatively in [29], where the coherence over forested areas was found to be inferior
to a reference bare surface. In [31], the effect of rain, freezing, and wind is also
acknowledged to have an impact on the coherence. These two studies simply stated
the expected causes of temporal decorrelation without making a quantitative use
of it. It is interesting to note that [29] and [31] were published in 1992 and 1995
respectively, which shows that the quantitative study of coherence is a young area
of research.

A more quantitative step was then taken, especially in forestry applications. In
[33] the coherence derived from ERS-1 InSAR observations is plotted against the
forest stem volume. A modelling approach is proposed, making use of a simple
backscatter model and assumptions about the amount of temporal decorrelation
from trees. The two important points made in [33] are:

e “of the various decorrelation phenomena, [...[Jthe wind decorrelation is most
important, acting on time scales of minutes and shorter”

e “the model assumptions are suffering from lack of observation or accurate ob-
servations of some parameter values”

The same research group shows in [34] that some good correlation is found be-
tween coherence and forest biomass. However, there is a high variability in the
correlations made at different dates, and the weather conditions again are put for-
ward to justify this variability. Again, the need for additional research on how these
weather conditions affect the coherence is acknowledged. The temporal variation
of coherence over forested areas in presented in [35]. Discrimination of tree type
using the temporal trace is shown to have some potential, but more interesting in
the paper is the first graph showing the variation of coherence over a forested area
against measured wind speed at different. The observed decrease of coherence with
increasing wind speed is the first experimental proof of the dependence of the two
parameters. However, in [36], the coherence calculated over forest is reported to be
independent of wind speed. The explanation given is that even low wind speeds
are enough to make the trees move significantly and destroy totally the coherence
between the two SAR signals.

Another application is presented in [10, 11]: the coherence is one input parameter
in the generation of land-use classification maps, alongside the backscatter intensity
and the backscatter difference. 8 classes are derived on the map and the overall
accuracy of the classification is about 80%. The sensitivity of coherence to man-
made changes such as field harvesting and ploughing is stated, and the first published
plot of coherence against soil cover fraction for a crop field shows an almost linear
decrease between the two parameters. Finally, [11] recognises the potential use of the
temporal variation of the coherence throughout the growth season to differentiate
crop types.

Moving on specifically to agricultural applications, [13] is the first attempt to
relate the coherence to crop height, using a time-series of ERS-1/2 Tandem data,
for which the time difference between the two satellite passes is one day. To this



Background and objectives 27

day, [13] uses the most complete data set of crop data and SAR data with a view to
study the potential use of coherence as a useful parameter for agricultural studies.
The decrease of coherence with increasing crop height is observed, and modelled by
a simple decreasing linear relationship. However, the standard deviations on the
coefficients is far too high to use reliably these linear relations to retrieve the crop
height. The poor accuracy of the modelling is mainly due to the high variability of
the coherence measurement, related once more to the changing weather conditions.
An interesting study presented in [13] shows the temporal variation of the coherence
throughout the growth season for different types of crops. The variations, specific
to each individual type confirms the conclusion of [11] that crop differentiation is
potentially achievable from coherence measurements.

A similar study using a different data set is presented in [14, 15]. The decreasing
linear relation between coherence and crop height for different types seems to yield
better results than in [13], with a maximum difference between the modelled and
the true wheat height of 22% . Classification of crop types with several methods,
including the use of the temporal variation of coherence, did not yield satisfactory
results in [15].

All the studies quoted above have in common that they use the qualitative
understanding that the coherence is related to vegetation parameters such as forest
biomass, crop height, wind speed. Indeed it can be expected that a crop field or a
forest stand higher than its neighbours will have a higher sway amplitude in the wind
and therefore should contribute more significantly to the temporal decorrelation.
However, none of these studies accounts for the amount of decorrelation because
they are not based on a quantitative understanding of the physical mechanisms
relating the temporal decorrelation to some vegetation parameters and the wind.

2.3.2 Coherence modelling

In [8] the coherence is modelled as the complex sum of a ground component and a
vegetation component. The complex vegetation component of the coherence has an
amplitude which is a function of the contribution to the total backscatter intensity
from the vegetation layer. The phase of the vegetation component of the coherence
is an empirical function of the wind speed and the forest type. The vegetation
component is added to a ground component whose phase is set to 0 and amplitude
is determined by the ground contribution to the total backscatter intensity. The
different parameters of this model are chosen so they fit the coherence obtained
from ERS SAR data. The conclusion of the study presented in [8] is that the forest
coherence model is qualitatively in agreement with the measured coherence. This
is a positive point as it shows that the modelling approach is capable of yielding
sensible results. However, the calibration of the model requires simultaneous SAR
data and ground data about the surface. In addition to this, the influence of wind
speed and forest type is represented in the model by a single coefficient which can
be viewed as a “black box” accounting for phenomena which are not physically
understood between wind and tree swaying.

The works developed in [8] have been used recently in [9] to attempt to retrieve
forest biomass. The result of this study is that forest biomass retrieval via the
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modelling approach, combined with InSAR data, can compete in accuracy with
the traditional techniques. However, the accuracy is not constantly competitive,
especially with coherence observations in winter and in certain weather conditions.
A step further in the modelling of coherence was taken in [37], where the scat-
tering volume is modelled as a cloud of small particles. The temporal decorrelation
is simulated by giving to each particle in the volume a statistical position defined
by a Gaussian distribution. The coherence is calculated by coherent addition of
the contributions from all particles. Here, the modelling includes some description
of the motion of the scatterers through the introduction of statistical distribution
of the scatterers position. The model is used in [38] to retrieve tree height from
observations. Overall, the results are accurate but large differences are found in the
most windy days. The author recognises in [38] that his model is inaccurate in high
wind speed conditions, from which it can be inferred that the use of a Gaussian
distribution may be inappropriate to describe the motion of scatterers subject to
wind forcing. However, the methodology developed is valuable. The same method-
ology was also developed in [39] but is more general in that the scatterers can have
different shapes and therefore be more representative of a real vegetation medium.
In addition to this, other motions can be included, such as leaf rotation. The model
simulations presented in [39] are preliminary, so their analysis is not debated here.

2.3.3 Conclusion of the use of coherence for vegetated areas:
current limits

Sections 2.3.1 and 2.3.2 have shown the current state of development of the co-
herence over vegetated areas, both at the application and modelling levels. From
the applications side, the coherence has been successfully used in different ways,
and certainly proved its potential for forestry applications. The general conclusion,
however, is that there are many unknowns in the way coherence can fluctuate to
make it an accurate reliable tool for vegetation monitoring. The modelling side
can be viewed as an attempt to understand these unknowns. Most of the difficulty
to grasp the significance of temporal decorrelation originates in the lack of knowl-
edge concerning the motion of the scatterers. Some modelling approaches avoid this
problem by hiding the motion behind empirical coefficients, and some other models
do take into account the random nature of this motion by introducing probability
distributions. When applying their modelling approach to the forestry problems, all
studies point out that the knowledge of the weather conditions is required to make
their approach more valid and relevant to vegetation monitoring.

It appears from the review presented in the last sections that the use of coherence
for vegetation monitoring is limited by the lack of detailed knowledge of the motion
of scatterers in the scattering volume, and by how this motion relates to the weather
conditions, in particular wind. Not only this lack has limited the accuracy of the
potential applications in agriculture and forestry, but more importantly it has not
been possible to state on the usefulness of coherence for quantitative use in these
two applications.

The modelling approach to account for the coherence levels obtained from SAR
data seems to provide valuable insights into the key parameters to consider. An
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important aspect of these models is that they include some description of the motion
of the vegetation. Indeed, since the random displacement of the scatterers in a
vegetation medium is the cause of the temporal decorrelation, it is a necessary
requirement to include them in coherent models. Since the motion of trees and
crops seems to be of prime interest here, the next section reviews work done in this
area.

2.4 Measurement of wind-induced vegetation sway-
ing: state of the art

To the knowledge of the author there are no studies showing measurements of the
motion of trees and crops with the specific aim to relate them to the coherence.
However there have been some motion measurements made on trees and crops for
other purposes. Investigations on wind-induced tree sways are important in forestry
because they lead to storm damage in forests, which are an important source of
economic loss. The problem of lodging for crops, particularly corn and wheat, has
motivated similar studies in the agricultural research community. In addition to
these economic motivations, the interactions of trees and crops with wind are the
subject of studies in micrometeorology in the atmospheric boundary layer.

2.4.1 Wind-induced tree swaying

The measurement of the interactions between trees and the wind dates back to about
40 to 50 years. It is not the purpose of this section to present a historical perspective
on this subject, but rather to summarise recent works in the area, and assess their
advantages and disadvantages.

A very complete study of wind-induced tree sways is presented in [40]. First,
the response of a tree to a dynamic wind load is modelled on a theoretical basis,
taking into account the elastic properties of the trunk and the drag induced by the
wind blowing on the branches and leaves. Another interesting point of [40] is the
modelling of a tree as a mechanical system defined by its transfer function. The
input to the tree transfer function is the wind speed and the output is the motion
of the tree. From this approach, the resonant oscillating frequencies can be found.
[40] also presents some simultaneous measurements of wind speed and tree motion.
The motion and acceleration of the trunk only is measured at different heights. The
measurement system uses sensors placed on the trunk itself.

The methodology developed in [40] is not directly transferable to crops since it
uses invasive sensors which would affect significantly the motion of a crop plant. In
addition to this, and bearing in mind that the knowledge of motion is to relate to
the coherence, a more precise way of measuring motions is required.

The more recent study presented in [41] for identical purposes uses a similar
approach. The tree is modelled by a mass-spring-damper rotary system, and its
theoretical transfer function is calculated and compared to the transfer functions
derived from measurements of wind and motion. The motion of stems is measured
by tilt sensors placed on the tree itself. Again, the methodology is not directly trans-
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ferable to crops because it is invasive and would change the mechanical properties
of the plant.

Other studies have been made, including some analysis in a wind tunnel, and
detailed analysis of the turbulence with the tree canopy [42]. They are not detailed
here because the two analyses quoted above represent a good summary of the state
of the art in terms of wind-induced tree-swaying. The methodology is interesting,
but does not directly apply to crops.

2.4.2 Wind-induced crop swaying

The motion of corn is analysed in [43]. The wind speed is measured simultaneously
with the corn motion. The displacement is measured with a joystick, which is
actually a robotic arm in contact with the corn stalk. The spectral method is
used again to describe the corn motion and gives good insights into the physical
mechanisms inducing the motion. It shows a peak oscillating frequency of about
1 Hz, and some other features related to the growth stage of the corn. The study
also points out the complexity of the motion: for example, its main direction does
simply relate to the wind main direction because of the turbulence effects at the crop
canopy level. The drawback of the study presented in [43] is that the displacement
measurement is made with a sensor requiring contact with the crop, which therefore
may modify significantly its movement.

An earlier study published in 1978 [44] did overcome that difficulty by mea-
suring the motion of plants with an 8 mm cine-camera, in conjunction with wind
measurements from anemometers. The measurement technique was therefore better
in principle because non-invasive. However, the analogue outputs of the recording
system made the data processing long and tedious. But the methodology of [44] is
nevertheless very sound.

Other studies like [45] have presented wind measurements in a wheat field, to-
gether with some motion measurement data. However these studies were motivated
by the investigations on wind turbulence on its own, rather than for dedicated anal-
ysis of wind-crop interactions. For that reason, they are not detailed here. However
they provide useful sources of wind data, and crop motion data.

2.4.3 Conclusion on the vegetation swaying studies

The several techniques used in the studies presented above are very valuable be-
cause they have shown the available measurement techniques. The potential of the
methodologies developed is expressed in terms of accuracy of the wind and motion
measurements, and more importantly of the relationships that can be derived be-
tween the two. The main conclusions to draw from the publications listed in the
previous sections are:

e The simultaneous measurements of wind speed and tree or crop motion do
provide insights about the detailed interactions between the two, with a good
accuracy in terms of short time scale mechanisms and measured displacement.

e Using contact sensors to measure displacements is applicable to trees but not
to light crops.
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e The complexity of the crop motion in the wind is well acknowledged. This
is to balance against the rather simplistic motions assumed in the coherent
models (see Section 2.3.2).

e Most of the crop displacement measurement techniques require specialised
(and therefore expensive) equipment which is not always easily transportable
and therefore not well adapted to field measurements.

2.5 Objectives of the research and methodology

Several points have been made in Sections 2.1 to 2.4 which have a direct impact on
the definition of the objectives of the research. They need to be recapitulated briefly
so the objectives and the methodology described later in this section make sense. It
is the purpose of the following section to make this recapitulation, after which the
research objectives are stated, the tools to achieve these objectives are presented,
the methods to use these tools are reported, and finally the expected outputs of the
research are described.

2.5.1 Summary of the important issues raised in the previ-
ous sections

The previous sections have introduced the general issues of prime interest for the
remote sensing of vegetation from SAR data. The physical understanding of SAR
data and of coherence is directly related to the configuration of the scattering ele-
ments within the canopy. This configuration is usually modelled by some statistical
properties, either to describe the random orientation and position that these scat-
terers can take, or to account for the variability of their scattering properties which
is linked to the meteorological conditions (wind and rain mainly, but also temper-
ature). Any statistical description of a complex medium will necessarily introduce
some simplifications which drive the accuracy of the models. Past studies have
shown that a simplistic statistical description of the motion of scatterers lead to
inaccurate coherence prediction from the models. Similarly, overly simplistic statis-
tical descriptions of a vegetation medium will lead to inaccurate predictions of the
backscatter intensity.

The need to have measurements of crop motion in parallel with some wind mea-
surements arises from this necessity to understand the physical mechanisms leading
to decorrelation, but also influencing the backscatter intensity. Providing these mea-
surements is in itself valuable for a range of other users. The measurements can be
used by developers of radar backscatter intensity models and coherent backscatter
models, but also to assess the potential of coherence for agricultural and forestry
applications.

A review of the current techniques used to make measurements of tree or crop
motion has shown that most of them are either demanding in terms of equipment, or
too invasive to account for the motion of plants in their true natural environment.
Some means to make these measurements at low-cost, with accuracy, and with
an easily transportable system, are required. Only with such a system can the
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measurements be easily repeated and therefore made in a wide range of weather
conditions, for different vegetation types.

Finally, one of the first points made in section 2.1 should be repeated here. Wind
and motion measurements should benefit to the current understanding of coherence,
but it should be kept in mind that this understanding is for the end purpose to use
coherence in operational applications. For that reason it is important to illustrate,
at least in a limited number of cases, how an improved physical understanding of
the coherence links to real applications.

2.5.2 Objectives of the thesis

The objectives of the research are formulated as follows:

1. Objective 1: a database of three-dimensional crop motion throughout the
growth season should be created, together with simultaneous measurements of
wind velocity. The aim of this database is to be used for SAR applications, but
can in principle be used for other studies such as the problem of crop lodging
or the analysis of crop-wind interactions for micrometeorology. The research
will be limited mainly to the study of wheat.

2. Objective 2: in order to provide the database, a measurement system will be
designed, with a particular emphasis on its low cost, portability, and short
data processing time.

3. Objective 3: the measurements will provide relationships between wheat mo-
tion and wind velocity.

4. Objective 4: It will be shown how these relationships can be used to relate to
the study and understanding of the temporal decorrelation. The potential of
coherence to monitor wheat will be assessed from this new understanding. In
particular, the operational impact of the radar wavelength, resolution, repeat-
pass time will be linked to the coherence expected from wheat fields.

To the knowledge of the author, there is no currently available data set of wheat
motion and wind velocity collected throughout an entire growth season. For that
reason the first objective of the research presents some novelty. And so does the
second objective stated above, as a measurement system of three-dimensional dis-
placements is not readily available from the market, especially for a reduced cost.
The third and fourth objectives of the thesis can be viewed as a logical product of
the first two. They are important because it is necessary to show that the measure-
ments made have a real value for model application development. But it is mainly
expected that the measurements produced during the research will provide an un-
equalled data source for full-time SAR model makers and applications developers.

2.5.3 Available data, software, and hardware

The following list is a very brief overview of the tools used in the research to meet the
objectives described above. They will be the object of a more detailed description
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in subsequent chapters of this report. It is however necessary to give here an idea of
the resources available for the project and how they relate to the research objectives.
The tools used during the research are:

e Cranfield Automatic Weather Station (AWS) data: the AWS continuously
takes records of wind speed, wind direction, temperature, rainfall at Cranfield
University since 1996. It is a valuable source of information to derive statistics
about wind conditions, rain conditions on a yearly basis for an area which is
assumed to be typical of South-East England.

e ERS-1/2 Tandem mission data: there are 15 pairs of SAR SLC data available
for the area surrounding Cranfield. The data were acquired between June 1995
and May 1996. They are used to generate time-series of coherence data over
specific regions.

e ISAR software: ISAR is a software which generates the coherence image from
two SLC images. It was developed by Politecnico di Milano, Italy, for ESA-
ESRIN [46].

e Erdas Imagine is used for visualisation and SAR. image processing.

e Digital Vane Anemometers (DVA): these anemometers are used to make the
wind measurements at the wheat canopy level. The associated circuitry and
connecting cables are also available. The entire equipment is described in
Chapter 5.

e Digital video cameras and associated hardware for data acquisition (described
in Chapter 4). The video cameras are used to measure the motion of wheat.

e Software associated with the video equipment for data processing.

2.5.4 Content of the remainder of the report

Since the justification of the research finds its roots in the modelling of coherent
backscatter, it is also the starting point of the research. A coherence model is neces-
sary to meet objective 4 described above. Its basis was already available at Cranfield
University [47], and is described in Chapter 3, together with the RT2 backscatter
intensity model [48]. It is shown in Chapter 3 how RT2 and the coherence model
are used in conjunction with each other for agricultural applications. The use of
the models will help to define some system specifications, in particular in terms
of the accuracy of the necessary wheat motion measurements. Then the experi-
mental setup can be described. Chapter 4 describes the equipment used for the
retrieval of the position in three dimensions of moving targets. Chapter 5 describes
the anemometry package. The simultaneous use of the two measurement systems
is explained in Chapter 6, and the results of the measurements are presented. In
Chapter 7, the measurements are used to modify the initial coherence model pre-
sented in Chapter 3 and to support the discussion about the potential use of the
wheat motion information for modelling purposes and the potential operational use
of coherence for agricultural applications.



34 Radar backscatter and coherence modelling over agricultural crops

Chapter 3

Radar backscatter and coherence
modelling over agricultural crops

The purpose of this chapter is to present the outputs of a backscatter intensity
model, RT2, and of a coherence model over agricultural surfaces. The modelling of
backscatter intensity from crops is not the prime concern of the research, but it is
necessary to introduce it here in order to have an insight into the backscattering
mechanisms as they directly relate to the levels of coherence observed. For that
purpose, section 3.1 presents a brief introduction to radar backscatter modelling
over vegetation and to the RT2 model. Outputs related to vegetation modelling
are given in sections 3.2 and 3.3. The objective of these two sections is not to
provide a detailed analysis of the backscatter intensity from crops, but to introduce
the parameters which have an effect on it. The interpretation of the outputs of
the RT2 model are used to state on the most adapted SAR configuration for the
operational use of crop monitoring, from the backscatter intensity point of view.
The main reason to present the RT2 backscatter intensity model is that it also
models the separate contributions to the total backscatter from the different parts
of the vegetation layer. This feature is of prime importance in the modelling and
understanding of temporal decorrelation and is for that reason very relevant here.
Section 3.4 presents a coherence model and discusses its assumptions, strengths and
weaknesses. Some sample outputs are given in section 3.5. They are interpreted
and show the need to have some real in situ measurements of crop motion. Some
measurement specifications derived from the model outputs are given in section
3.6. They will be used to drive the design of the measurement system described in
Chapters 4 and 5.

3.1 Introduction to radar backscatter modelling
over Crops

3.1.1 Overview of modelling approaches

The most straightforward step towards the modelling of radar backscatter intensity
over agricultural fields is to derive empirical relationships from SAR. observations.
There is a very high number of publications following this approach and their de-
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scription is beyond the scope of this report. Papers like [49] (spaceborne SAR) or
[50] (airborne SAR) are two examples using this approach. In [49] the backscat-
ter coefficient o is correlated to the Leaf Area Index (LAI) and it is pointed out
that empirical relations are subject to variations of other parameters such as soil
moisture. For that reason [49] states that some modelling is required in order to
understand the full extent of the information contained in the empirical relation-
ships. In [50], the author uses airborne SAR data and field measurements from a
variety of crop types to assess which crop characteristics can be derived from SAR
imagery after image processing techniques. The conclusion of this study is that,
although some valuable relations were found in certain cases, it is difficult to make
generalisations as the field measurements and SAR observations concern only a sin-
gle regional area and a single growth season. In addition to this, the author points
out that some of the observations give results which are contradictory with some
theoretical backscatter models.

The studies of [49] and [50] are a good representation of the advantages and
disadvantages of the empirical approach. On the one hand, SAR observations and
ground measurements are an unequalled source of information to assess the use
of SAR data for crop monitoring, and to tune the parameters of the theoretical
models. On the other hand, the interpretation of the observations depends on a
wide range of variables whose relative importance is difficult to assess. In addition
to this, observations always concern a limited region in time and space and are
therefore fairly difficult to generalise. Long term observation campaigns such as the
one recently presented in [51] can overcome this difficulty, in that they provide data
which can be used to assess the consistency of the SAR observations from one year
to the other. But even studies such as [51] do use a modelling approach to fully
understand the parameters influencing the observations.

Effective use of the data therefore requires a proper understanding of the physics
driving the interactions between radar waves and crops. However, backscatter mod-
els are not the unequivocal answer to the limits of the empirical approach. Models
involve a large amount of generalisations and simplifications in the description of
crop canopies. Reproducible SAR observations in laboratory conditions, such as
those presented in [52], provide very valuable insights into the scattering volume
mechanisms.

The formulation of radar backscattering models, either from the wave theory or
the radiative transfer approach, is based on a series of approximations. For sur-
face scattering, the models usually use different approximations related to the soil
roughness compared to the radar wavelength [18]. For volume scattering, the models
usually define the vegetation medium with a series of simple geometrical shapes (el-
lipses, cylinders, etc...) representing elements of the crop or the tree (leaves, stalks,
etc...). The orientation, density, size, and moisture content of these elements depend
on the vegetation type. From the definition of these geometrical objects, the prin-
ciples of wave theory or radiative transfer are applied from approximated solutions
which depend on the relative size of the objects with respect to the wavelength. A
description of volume scattering modelling is given in [53].

One of the first reported vegetation backscatter model [18] describes the vegeta-
tion as a layer containing uniformly distributed water droplets whose water content



36 Radar backscatter and coherence modelling over agricultural crops

represents the water content of the vegetation (the water cloud model). The simplic-
ity of this model makes it useful for qualitative studies. The Michigan Microwave
Canopy Scattering (MIMICS) model [54] is based on radiative transfer and originally
designed to model backscatter from trees. It includes more sophisticated scattering
mechanisms such as the “double-bounce” of the radar wave (from the radar to the
tree trunk, to the ground, and back to the radar). The model has been widely used
and adapted to backscatter modelling from crops [1]. The RT2 model is based on
the same principles as MIMICS (radiative transfer) but includes more versatility in
the description of the vegetation layer.

3.1.2 The RT2 backscatter modelling software

RT2 is described in detail in [48]. RT2 predicts the backscatter coefficient from a
vegetation medium above a rough or specular surface. The required input parame-
ters describe the constituents of the vegetation, the geometry of the surface, and the
radar configuration. RT2 can run in two modes, namely single or multi-parameter.
In the latter, one of the input parameters can be varied over a user defined range,
whereas the outputs of RT2 are given for a single set of input parameters in the
single parameter mode. The software is composed of three independent modules
named rtsetup, RT2, and read-and-write.

rtsetup

This module is used to create a model input file to be used by the RT2 module. When
started, rtsetup displays a window where all input parameters are entered. It allows
the definition of 3 above ground layers, each with a maximum of 5 different types of
scatterers. The input parameters are described in detail in Appendix A.1. rtsetup
creates a model file (extension .rtm) used by the RT2 module for the calculation. A
summary file (extension .sum) containing a list of all input parameters can also be
created, in a simple text format.

RT2

The RT2 module uses the input parameter file created with rtsetup and calculates
the backscatter coefficients for the four polarisation combinations (HH, VV, HV,
VH) and the vertical penetration depths for V and H polarisations in each three
layers. The output is given in a data file containing as many lines as the number
of values of the varied parameter. The format of the RT2 output file is shown in
Appendix A.2. In the single parameter mode, the one line output is displayed on
the screen as well as written in the output file. RT2 also outputs a second file which
summarises the first one in a Matrix form, named the Mueller matrix. This Mueller
matrix file is needed by the third module of RT2, read-and-write.

read-and-write

This module uses the Mueller matrix given by RT2 to calculate the contributions to
the total backscatter from the different layers of vegetation. Several files are created,
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for each polarisation combination. The output files are composed of as many lines
as the required number of values of the varied input parameter (similarly to the RT2
output file). It is composed of 14 columns, each of them giving the contribution from
one of the following scattering mechanisms: direct scattering from each layer, surface
scattering, double scattering between each layer and the surface, inter-layer double
scattering, intra-layer double scattering. Appendix A.3 gives a detailed description
of the output file format from the read-and-write module.

3.2 Radar backscatter sensitivity to crop geome-
try

Before modelling crops with RT2 and analyse their expected backscatter, it is first
interesting to determine the important radar parameters which should be considered
for the remote sensing of crops. For that purpose this section analyses the backscat-
ter intensity predicted by RT2 for a series of radar wavelengths, incidence angles,
polarisation combinations, and for different configurations of the scattering volume.
The influence of stalk size and orientation is analysed. From this study, some of the
key issues concerning the specific backscatter mechanisms from crops will arise. It
is the aim of the analysis to retain some generality, so the scattering volumes which
are to be presented in this section do not represent a particular crop, but consist of
simplified geometrical shapes, where a single parameter can be varied at a time.

3.2.1 Influence of the stalk size

The radar configuration and the scattering volume specified in RT2 have the follow-
ing characteristics:

e A single type of scatterer is present in the vegetation layer. It is a cylinder of
radius 7. and length [, = 100r,.

e The stalk radius r, is varied, from 0.1 to 1.5 cm, therefore covering most crop
stalk sizes.

e The number density of the cylinders is such that it represents a constant
biomass of 50 m3/ha, in a vegetation layer of height A~=1 m. The choice
of a constant biomass neutralises the reported sensitivity of the backscatter
intensity to this parameter, so the effect of the cylinder radius can be studied
independently.

e The cylinder orientation is set to be uniformly distributed in a 27 range.

e Four radar frequency bands are covered: X-Band (A = 3em), C-Band (A =
5.6cm), L-band (A = 25¢m), P-band (A = 66¢m). The radar incidence angle
is set to 45°

e The surface is defined here with the parameters given in one of the examples
of the RT2 manual [48]: its roughness is 0.001 m and its correlation length
0.15 m.
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The variation of ¢° with r, for the 4 bands, and the VV, HH, and HV polarisa-
tions is given in Figure 3.1.
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Figure 3.1: Variation of ¢° with the stalk radius 7,

The variation of ¢° for the VV and HH polarisations (Figures 3.1(a) and 3.1(b))
is similar and is jointly commented here. At P-band, ¢° becomes significant only
for larger branches (r, > 1 cm). The variation of ¢ at L-band shows that the
backscatter is significant for r. > 0.4 cm, but it decreases for stalk radii superior
to 1 cm. At C-band the backscatter remains significant for the entire range of
stalk radii represented on the graph. The variation of ¢ at X band shows more
irregularities. The highest backscatter is found for the smallest radius represented
(r.=0.1 cm) and shows a sharp drop from r.=0.1 cm to r.=0.4 cm. For r. > 0.4
cm, the backscatter at X-band is comparable to C-band. The important feature of
the variation of ¢% at C-band is that it is the most significant of the 4 bands for
radii ranging for 0.1 to 0.4 cm. Most crops like wheat are composed of stalks whose
radius is contained in this range. From this point of view, C-band is the frequency
range for which the radar is sensitive to a significant fraction of the total biomass
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of the crop. L and P bands are more suited for forestry applications, as these last
two frequency ranges are sensitive to cylinder radii corresponding to tree branches.
This result is confirmed by a similar independent study [55], using another radiative
transfer model. The conclusion here is that C band SARs are adapted to the study
of agricultural crops.

The variation of 0®(HV) (Figure 3.1(c)) shows again the different radius ranges
at which the backscatter for each band is most significant, but the backscatter
intensities are much smaller. For that reason, the use of cross-polarisation for radar
observations of crops is not particularly adapted.

3.2.2 Influence of stalk inclination

In order to study the influence of the orientation of the stalks as an independent
parameter, the scattering volume is defined in RT2 to consist of cylinders of 5
different types (the maximum authorised by RT2). The radius of the 5 cylinders
ranges from 0.1 cm to 0.5 cm, in increments of 0.1 cm. As shown above, it is the
range of interest for the X and C bands so the analysis will focus on them. The
number density of each of the 5 cylinder types is such that each type represents the
same biomass. In other words, the number density is inversely proportional to the
volume of each cylinder type. The incidence angle of the radar is set to 45° and the
inclination angle « of the cylinders is the same for all 5 cylinder types and varied
from 15° to 75°. Appendix A.1 gives the definition of a: it is the angle between the
principal axis of the cylinders and the vertical.
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Figure 3.2: Variation of ¢° with the stalk inclination angle «

Figure 3.2(a) shows that there is a strong dependence of the backscatter on the
stalk inclination both at X and C bands. For o < 30°, ¢ is low because the radar
wave is scattered mostly in the lower half space below the radar antenna. The
peak backscatter intensity is clearly marked at o = 45°, which corresponds to the
radar incidence angle. ¢ decreases for a > 45° as the specular reflection direction
is above the radar antenna. Both the X and C bands show this behaviour, with a
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higher backscatter intensity at C-band, due to the fact that ¢2_,,,,, is more sensitive
to the range of cylinder radii used for the simulation, as explained in the previous
section. The dependence of ¢° with « is also a feature specific to VV polarisation,
as it can be seen in Figure 3.2(b): 0% does not show the significant peak of o¥, at
o = 45°. This is related to the fact that, for an horizontally polarised incoming wave,
the electric field is orthogonal to the stalks whereas, for vertical polarisation, there
is always a component of the electric field aligned with the stalks. This vertical
component provides some coupling with the cylinders [18], which infers a higher
sensitivity to the inclination of the scatterers.

From the results above, the importance of the structure of the plant and the radar
polarisation is highlighted. Crops with a pronounced vertical structure like wheat or
corn are expected to return a backscatter intensity higher at VV polarisation than
at HH as there is a stronger interaction with a vertically polarised radar wave. The
comparison of the VV and HH returns could in principle be used to differentiate
crops with different structures. In addition to this, and relating these conclusions to
the main concern of the research, the coherence should also be affected differently
depending if it is derived from HH or VV SAR data.

3.2.3 Conclusions on the analysis

The two sets of results presented above indicate that a C-Band SAR with multiple
polarisations is most suited to the remote sensing of crops. The C-band frequencies
provide the highest backscatter return for stalk sizes typical of agricultural plants,
and the horizontal and vertical polarisations govern different scattering mechanisms
in vertically structured crops.

The vegetation orientation having a direct impact on the backscatter intensity,
some information about how this orientation is affected by the wind seems relevant
to the development of accurate backscattering models. Although it is beyond the
scope of this research to use the measured crop motion information for that purpose,
the relevance and potential use of the motion data is acknowledged here.

3.3 RT2simulations for a wheat field: comparison
with observations

In this section RT2 is used to model the backscatter intensity from a wheat field,
at C-band (A = 5.66¢m), for incidence angles ranging from 6 = 10° to § = 70°. The
wheat field and the surface are modelled using the data published in [1], which is
doubly interesting because it also gives radar observations from the wheat field, so
the backscatter coefficient modelled here is compared to these radar data.

3.3.1 RT2 input parameters

A complete list of the parameters used for the RT2 simulation is given in Appendix
A 4. The wheat is modelled as a single vegetation layer containing stalks and leaves.
There are no wheat heads at the time of observation. The stalks are vertically
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oriented, with a Gaussian distribution of mean 0° and standard deviation 10°. The
leaves are set to be uniformly distributed in a [0°,90°] range. The size of the stalks
and leaves and the leaf number density are obtained from [1]. In addition to the
backscatter intensity, RT2 outputs the Mueller matrix from which the contributions
to the total backscatter from the different scattering mechanisms is calculated.

3.3.2 Total backscatter

Figure 3.3 shows the expected total backscatter intensity from the modelled wheat,
for HH and VV polarisations. The measured values of ¢¥ given in [1] are plotted on
the same graph for comparison.
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Figure 3.3: Total backscatter at C-band from a wheat field: RT2 estimates as a

function of the radar incidence angle, and radar backscatter measurements obtained
in [1]

Good agreement is obtained for the HH polarisation, with a root mean square
error of about 2 dB. ¢° decreases as the radar incidence angle # increases due to the
fact that, for 6 close to 0°, the radar antenna is closer to the direction of specular
reflection. The possible causes of difference between the model and the true data
are either measurement errors in the radar data, or a wrong representation of the
vegetation layer in RT2.

The model output for VV polarisation does not follow the measurements as
closely, especially for § > 50°. A possible explanation for the high error in the model
prediction may be that RT2 takes into account the Brewster effect which is not found
in the backscatter measurements. From the theory of plane-wave transmission it can
be shown that, for a vertically polarised wave incident from a medium 1 to a medium
2, there is an angle p at which total transmission (i.e. no reflection) occurs. g
is called the Brewster angle. The total transmission emerging from the theory of
plane wave transmission concerns only the vertically polarised waves [17], and its
consequence is to reduce the radar backscatter. In the case of Figure 3.3(a), it is
assumed that o, is attenuated by the Brewster effect in the RT2 model, but this
effect is not physically present in the radar observations.
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3.3.3 Contributions from the different backscatter processes

Figure 3.4 shows the estimated contributions to ¢ from the surface, the direct scat-
tering from the vegetation, and the double bounce surface-vegetation backscatter.
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Figure 3.4: Contributions to the total backscatter from the different backscatter
processes as a function of the radar incidence angle, for a wheat field

At low incidence angles (6 < 25°), the main backscattering contribution is that
of the surface. It should be noted in passing that the radar incidence angle for
ERS is about 23°. Consequently it should be expected that an ERS image of the
wheat field dealt with here would yield ¢° values of about -6, -7 dB with a dominant
backscattering contribution from the surface. As 6 increases, the contributions of the
vegetation layer becomes more significant. For VV polarisation, the contribution of
the double bounce vegetation-surface peaks at about 45°. This specific interaction of
the vertically polarised incoming wave with the wheat stalk was already mentioned
in section 3.2. # = 45° is the incidence angle required for the double bounce between
a vertical structure (the stalk) and a horizontal surface (the ground) to be received
back at the radar antenna. The peak is broad in Figure 3.4(a) because the inclination
of the stalks was set in RT2 to have a Gaussian distribution with a 10° standard
deviation.

The contribution of the direct scattering from the vegetation layer shows little
variation, both for VV and HH polarisations. This contribution is that of the wheat
leaves which are uniformly oriented in the scattering volume in all inclination angles,
and therefore do not show any dependence to the radar incidence angle. The increase
of ¥, for § > 65° is probably due to direct scattering from the wheat stalks.

3.3.4 Conclusion on the modelled backscatter intensity from
wheat

In the previous example the RT2 model has shown some of its strengths and weak-
nesses. The strength of the model certainly lies in its capacity to estimate the
contributions to the total ¢ from the different scattering mechanisms. The fact
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that the model predicts a different variation of these contributions for VV and HH
polarisation and that these differences can be explained physically is a good indi-
cator that the model outputs can be trusted in that respect, at least qualitatively.
However RT2 has also shown that it predicts phenomena such as the Brewster effect
which are not found in real data. This is difficult to avoid since all models imply
simplifications of the reality, but it certainly means that the RT2 outputs should be
treated with care at high incidence angles.

Bearing in mind the different conclusions and limitations about RT2 stated in
the analyses above, the model can be used for the modelling of the coherence, as
explained in the next section.

3.4 Statistical modelling of the coherence

The coherence model was originally presented in [47]. This section describes its
basis and discusses its assumptions. Further sections in this chapter will then move
on to present some outputs of the model, and will show how it is used to derive
some requirements on the motion measurements.

3.4.1 Theoretical foundation of the model

The model assumes that the scattering volume describing the vegetation is composed
of scatterers with different responses to the weather. While the soil can be expected
to have constant properties with respect to wind (but not rain), the leaves, stalks,
etc, of a crop usually have a specific response to weather conditions. The idea behind
the coherence model is to separate the several scattering contributions, estimate
their dependence to weather, and add them coherently to simulate the electric field
received at the radar antenna.

The model assumes that the electric field returned from the target can be divided
into a component which comprises the static part of the scene (V) and a compo-
nent which is weather dependent (dynamic component V;). In fact there can be as
many weather dependent components as required, if more than one dependence is
to be accounted for. Figure 3.5 is a phasor diagram representing the electric field
components and introducing the variables.

Static component V;

V, = aexp (jps) is the static component of the electric field. It is assumed that it
contains all the speckle properties of the resulting electric field, so its amplitude and
phase have the following properties (see section 2.2.3):

e ¢, is uniformly distributed in the range [0,27]

e a follows a Rayleigh probability distribution:
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Figure 3.5: Phasor diagram representing the total electric field V; and its static and
weather dependent component (V; and Vj; respectively)

Dynamic component Vj;

The dynamic component Vg = bexp [j (¢s + @q)] is specified by a probability dis-
tribution for the amplitude b and the added phase ¢4. The position of a scatterer
in the scattering volume determines the phase of the signal backscattered from this
scatterer. As it moves in the wind, the signal received at the radar antenna has a dif-
ferent phase for each of the scatterer’s positions along the radar look direction. The
phase of the dynamic component is therefore related to the motion of the scatterers
subject to wind forcing.

The position of a moving scatterer in the vegetation volume being unknown
at the time of the radar passes, the model assumes that the phase ¢, is a random
variable whose distribution is related to the displacement of the scatterer in the look
direction of the radar. This is where it is necessary to use motion measurements from
crops. As a first approximation, the probability distribution of ¢4 can be assumed
to be Gaussian. The standard deviation of the distribution is directly related to the
amplitude of the motion and therefore to the wind conditions.

The amplitude of the dynamic component is to be determined relatively to the
amplitude of the static component. For that purpose it is necessary to estimate
the contributions to the total backscatter from the different scattering mechanisms.
The surface scattering contribution will feed into the static component of the model,
whereas the contribution from the vegetation layer will be related to the dynamic
part of the total electric field.

Computation of the resultant total electric field

The resultant electric field is computed as a phasor addition of the static and dy-
namic components. The model here is described with a single weather dependence,
but another one or more can be added through successive phasor additions.

The model simulates two sets of N values for the total electric field, each set
representing N independent pixels from a homogeneous target as they would be
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recorded in one pass of the SAR antenna. Each of these NV values is the complex
addition of a fixed static component with a variable dynamic component having a
random phase ¢4. Each value of ¢, is a random variable but the NV values generated
are such that they follow the statistical distribution defined for ¢, With the two sets
of N pixels, the resulting coherence can be calculated, according to the definition of
Equation (2.24).

3.4.2 Practical implementation
Amplitude of the complex components

Section 3.3 showed how RT2 can be used to estimate the relative contributions to the
total ¢°. The scattering contributions are surface scattering, direct scattering from
the vegetation layer, the double scattering between the surface and the vegetation.

To illustrate how the dynamic components are specified, it is useful to take the
example of the wheat field described in section 3.3. The double scattering was
related to a double bounce of the radar wave on the stalks and the ground. For
that reason the double scattering contribution is used here to model a first dynamic
component corresponding to the motion of stalks. The direct backscatter from
the vegetation layer is attributed to the leaves mainly, and consequently a second
dynamic component is introduced to account for their specific motion.

The choice of the number of dynamic components therefore depends on the veg-
etation layer described and on the scattering mechanisms identified. Each dynamic
component is related to a particular scattering mechanism, and RT2 provides an
estimate of their amplitude, relative to each other and to the amplitude of the static
component. In the case of a short time between the two radar passes (e.g. up to a
few days), the same RT2 estimates can be used to determine the amplitude of the
components for the two sets of simulated pixels. If significant changes have occurred
during the two passes (e.g. phenological change due to growth, man-made changes),
then separate RT2 simulations are required for the two crop states, and the two
sets of N pixels are generated with different relative amplitude for the components
of the total electric field. It should also be noted that RT2 is used here not so
much for its capability to estimate the absolute values of the different contributions
but rather values relative to each other. The relative amplitude of the static and
dynamic components is of importance in the coherence model.

More flexibility is added to the coherence model by allowing the possibility for the
amplitude of the dynamic components to be specified as a random variable defined
by a probability function. By default, the probability function is assumed to be
Gaussian. The mean of the probability function is the estimate provided by RT2,
and its standard deviation is chosen to represent the variability of the backscatter
intensity related to weather conditions. Several cases can be considered here:

e In the case of a short time between the 2 radar passes, and in the absence
of rain between these passes, the dielectric properties of leaves and stalks
are assumed to be constant and consequently the standard deviation on the
amplitude of the dynamic components is set to 0.

e If rain occurred before one of the passes or even the 2 passes, then the stan-
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dard deviation on the dynamic components can be set to a non-zero value to
account for the possible uneven drying of the crop, which can result in dif-
ferent backscattering behaviour between adjacent pixels. This effect has not
been studied in the research, but it is worth noting that the coherence model
can include it.

e Any effect which can result in a variability of the backscatter from the vegeta-
tion can be accounted for as a resulting standard deviation on the amplitude
of the dynamic components (man-made changes, uneven crop health due to
micrometeorological conditions or local disease, etc. ..).

In the remainder of this report, the amplitude of the component is set to a
constant value, so only the first case of the list above is considered. However,
weather effects on the backscatter intensity can in principle be included for the
simulation of coherence values.

The static component of the total electric field, a, is assumed to originate only
from the surface scattering contribution. This assumption is discussed later in the
chapter. The amplitude of the static component requires the definition of the stan-
dard deviation g,, which defines the Rayleigh distribution. For such distributions
the standard deviation and the mean are related by [21]:

v 7;0“ (3.2)

The mean pu, is taken here as the surface scattering contribution provided by
RT2. So g, is calculated from Equation (3.2), and a value of a is generated from
the Rayleigh distribution of Equation (3.1).

Ha =

Generation of the phase probability distribution of the dynamic compo-
nents

It is assumed here that the displacements of a particular scatterer in its natural
environment have been measured, and are in the form of coordinates (z,y, 2) in a
fixed reference system. In the absence of data from field measurements, the model
can also be run with a priori phase distributions such as a Gaussian.

An important assumption made at this stage is that each weather dependent
component of the electric field is represented by a single scatterer whose motion
characterises the motion of all scatterers of the same type in the radar ground
resolution cell. This assumption is discussed later, in section 3.4.3. The problem
to solve here is, given a radar look direction and the position of this equivalent
scatterer in a coordinate system, to determine its displacement along the radar look
direction. From a time series of its positions, the corresponding displacements in
slant range can then be calculated and translated into a phase shift. The phase
values obtained from all slant range displacements are used to generate a histogram
which, after normalisation, is the probability function defining the random phase ¢4
of the dynamic component of the electric field.

Figure 3.6 shows the geometry and introduces the necessary variables. The origin
of the reference system is taken at the mean position of the scatterer. The system
of axes is defined so that (X,Y) is a horizontal plane and the Z axis points to the
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vertical upwards. The direction of the X axis is chosen so it can be conveniently
related to any physical feature. The three-dimensional position of the scatterer at
a given time, relative to its mean position, is defined by its coordinates (z,y, 2).
The radar look direction is defined by its azimuth « and its view angle 8 (8 is
complementary to the radar incidence angle). The look direction of the radar is
defined by a straight line (D). up is a unit vector of (D). P’ is the projection of P on
(D). In the following equations, vectors are noted in bold and scalars in plain text.
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Figure 3.6: Geometry and variables for the calculation of the slant range displace-
ment of a scatterer

Since P’ € (D), OP’ = kup, and k is the scalar value defining the slant range
displacement of P along the radar look direction. The coordinates (), Yup, 2up) Of
the unit vector up are:

Ty, = cosacosf
Yup = sSinacosp (3.3)
Zup, = sinf

P’ being the projection of P on (D), the scalar product of OP’ and PP’ is zero:
OP'.PP' =0 (3.4)

Using the notation introduced above, Equation (3.4) can be written:

kuD (kuD - OP) =0 (35)

After development it becomes:

k[k — (zcosacosf+ysinacos f+ zsin §)] =0 (3.6)

So the slant range displacement of P is:

k(z,y,z) = xcosacos S+ ysinacos S + zsin (3.7)



48 Radar backscatter and coherence modelling over agricultural crops

k(x,y, =) is calculated for every position of P, and the slant range probability
distribution is the normalised histogram of the values of k. With a randomly selected
slant range value r from the probability distribution, the associated phase is:

47
Pa= T (3.8)
where )\ is the radar wavelength. The values of r therefore define values of @y
whose normalised distribution defines the probability density function of the phase
of the electric field dynamic component. The probability density function of ¢4 is
used in the model to generate the complex pixel values from which the coherence is

calculated.

Computation of the coherence

There are N pixels simulated for each of the two radar passes. NN is set to a high
value (e.g. 1000) so the coherence bias at low values is negligible (see the discussion
on coherence statistics in section 2.2.4). For each pixel, the electric field V;, (i=1,2:
index of the radar pass) is computed by following the steps below:

e The RT2 estimates of the scattering contributions are used to calculate the
amplitudes of the static (a;) and dynamic components (b;;, j: index of the
dynamic component). The RT2 outputs are proportional to the power received
at the antenna from the several scattering mechanisms, and are expressed in
dB. Therefore, for a scattering contribution estimated by a value o7(dB), the
amplitude b;; of the dynamic component associated to it is:

by = Jexp (%ag(df;)) (3.9)

e The phase of the static component g;, is taken from a random number gener-
ator following a uniform distribution. All pixels of one set use the same value

of ;.

e The phase of the dynamic components ¢y, is calculated from the random
selection of a slant range value following the distributions derived from the
motion observations (see explanations above). The random selection of a slant
range 7 from the probability distribution is performed numerically, using an
algorithm based on the rejection method presented in [56].

e From these numerical inputs, the total electric field for a single pixel is:
Vie = Vi, + Vi, (3.10)
with:

Vi, = @icosg, + > bjjcos (gosi + godij) (3.11)
J

Vi, = aising, + > by sin (gosi + godij) (3.12)
J
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Each pixel from the same set, representing a data point from a single radar pass,
is generated with a common value of the static component. After the generation of
the two sets of N complex values, the coherence is calculated from Equation (2.24).

Since the computation requires the generation of random numbers from different
probability distributions, it is worth making here a few comments on how these
numbers are generated. IDL is the language used for the computation described
above. It has a random number generator based on the definition of an initial seed
whose value is determined by the system clock. In most applications this is sufficient
but in the case presented here, the random numbers are needed at a rate faster than
the refresh rate of the seed. In other words, some random numbers, which are
required to be independent for the calculation, originate from the same initial seed,
before it has been changed by the system clock (the initial seed in IDL is refreshed
every second). To overcome this problem, the initial seeds are not chosen from the
system clock but from an initial seed list, itself generated at the beginning of the
program by the IDL random number generator. The seed list is updated when all its
values have been used in the computation. Operating in this way allows to have a
set of numbers whose random nature is limited only by the IDL random generation
algorithm.

3.4.3 Discussion of the model

It is important at this stage to comment on the coherence model presented above,
and on its relation to the true backscatter mechanisms in a vegetation layer. The
static component of the model contains all the speckle properties of the pixel, i.e.
the speckle introduced by the soil and also by the vegetation. The dynamic compo-
nents do not account for the speckle but are described as extra terms in the total
backscatter electric field. In real backscatter mechanisms, these extra terms are not
physically added to a static component because the contributions of the vegetation
also generate speckle in the resultant image. However, artificially separating the
total electric field into a static part which accounts for the speckle, and a dynamic
part which does not, allows to isolate the dependence to weather conditions which
are of prime interest here.

Contribution to the static component from the vegetation

The limitation with the model approach is that it is not physically possible to know
exactly which part of the signal is viewed as static (i.e. unchanged between the two
passes) by the radar, and which part is viewed as dynamic, i.e. changed between
the two passes of the SAR. So these parts have to be estimated. A starting point
consists of using what is known about the backscatter estimated from RT2. The
contribution of the soil is assumed to be always 100% static. The contributions of
the crop elements is (1-x)*100% static, where & is an unknown factor between 0 and
1. The parameter x is dependent on the wavelength. Part of the crop will be viewed
as static by the radar if:

e a corresponding scattering element does not move between the two radar
passes,
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e a scattering element in the first pass is replaced in the same geometric config-
uration by another one in the second pass,

e a scattering element moves in the slant range direction by an amount corre-
sponding to a multiple of the phase cycle (i.e. by a multiple of the wavelength).

Intuitively, these cases have a small probability to be found: there will always be
a difference in position/geometry of the scatterers and replacement of one element by
another in the same configuration, at the time of the second radar pass, is virtually
impossible. So in practice, the value of k is probably very small. It will be taken as
0, which means that the vegetation medium will be considered as a totally dynamic
medium. In fact, if the scatterers in the vegetation do not move, it will be reflected
in the slant range distribution derived from the observations: the distribution will
show a very narrow peak corresponding to a single position of the scatterer. The
case of a static vegetation is therefore also included as a possibility in the model.
The dynamic parts of the backscatter being taken as the entire contribution from
the vegetation, their intensity is given by RT2 and fixed (except for possible changes
in moisture or growth).

Concept of equivalent scatterer

Another central point in the coherence model is that is assumes that all scatterers
which are grouped in a single weather dependence move as a single equivalent scat-
terer. The validity of this assumption depends on the scale at which the problem is
considered. Obviously, at a field scale, scatterers of the same type do not all move in
phase and the concept of equivalent scatterer does not hold for them. At the other
extreme, at a reduced scale (typically, tens of centimeters), the crop plants have a
motion which is much more correlated, sometimes even exactly in phase because of
the mechanical interactions between plants though direct contact. In this case the
concept of an equivalent scatterer is valid.

Consequently the validity of the equivalent scatterer assumption depends on
the resolution of the SAR. For very fine resolutions, a single dynamic component
accounts for the motion of all scatterers in the ground resolution cell. A fine reso-
lution for this assumption to hold is less than a metre, and is currently potentially
achievable only from airborne SARs. For lower resolutions (spaceborne SARs), all
scatterers in the ground resolution cell cannot be represented by a single synchro-
nised motion. However, it is possible to introduce in the model as many dynamic
components as there are “packets” of coherent motion of the crop in the ground
resolution cell.

So it is a requirement of the crop motion measurements to be made to provide
some quantitative information about the spatial correlation of the motion. For that
purpose the motion of the crop should be measured on different plants and the cross-
correlation between the individual displacement of the plants can give a quantitative
idea of the spatial correlation of the motion, which in turn can help to define the
scale at which the scatterers can be said to move coherently.

The concept of an equivalent scatterer is central to the model. It means that the
scattering from a ground resolution cell is summarised by a single scatterer whose
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properties are such that it includes the standard speckle properties of a radar image
and nevertheless takes into account the motion of crops as a phenomenon separate
from the speckle effect. In reality the complex backscatter from the two radar
passes is obtained from two different speckle patterns but cannot be artificially
divided into a purely speckle part which is static and a purely non-speckle part
which is dynamic. What the model says is that these patterns are generated with
two surface configurations nearly identical except for a change in the position of the
crop elements due to wind-induced sway. So it is a translation of the true physical
mechanisms into workable terms which can take into account the effect of weather
dependences such as wind.

It is clear that such a modelling approach does not relate directly to the true
backscatter mechanisms which occur in a vegetation volume. Only a rigorous co-
herent backscatter model does account for these true scattering processes. However,
the development of such a model requires a dedicated research, and solid experience
in the domain of backscatter modelling. The statistical estimator described here is a
simplification of the backscatter processes, but it will allow to show how the wheat
motion measurements can be integrated into it. The preliminary tests of the model
presented in the next section show that its outputs are useful to identify the key
elements influencing the coherence.

3.5 Preliminary tests of the coherence model

This section shows some outputs of the coherence model. First, it is interesting
to test the model in an artificial case not related to crops in order to check that
it outputs expected results. Then the model is tested on wheat. The idea behind
these preliminary tests is the same as in section 3.1.2, when the backscatter intensity
was the main focus of attention. The aim is to determine the important parameters
which influence the coherence.

3.5.1 Phase spread dependence

The coherence model is used here with a single dynamic component. The amplitude
a of the static component is varied from 0 to 1 and the amplitude of the dynamic
component is 1 —a. The phase of the dynamic component is set to follow a Gaussian
distribution, with a mean equal to its standard deviation o, (also called ‘phase
spread’ in the following discussion) and varied from 0° to 180°. Figure 3.7 shows
the results of the simulation.

For a given value of a, there is a decrease of the coherence (referred to as =y
in the discussion below) with the phase spread, from 1 (0,,=0: no motion of the
scatterers) to an asymptotic value which depends on the value of a. The asymptotic
value is reached for o,, ~ 110° and its value decreases with decreasing contribution
from the static component of the model. For a = 1, the scene is entirely static and
consequently the coherence remains equal to 1. When the scene is totally dynamic
(a = 0), v decreases to a non-zero asymptotic value. This is due to the fact that the
calculation of the coherence from Equation (2.24), in the case of a totally dynamic
scene, is equivalent to a random walk is the complex plane, and the magnitude of
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Figure 3.7: Coherence variation with the phase spread of the dynamic component,
plotted for different values of the static contribution a

v in this case tends to 1/v/N [22], where N is the number of pixels used in the
simulation. For the simulation here, N=1000, so the expected asymptotic value is
about 0.03, which is the value observed in Figure 3.7 for a = 0.

For the intermediate cases (0 < a < 1), the variation of v calls for a few com-
ments, since it represents more closely the case of real vegetation. If the scatterers
in the vegetation volume move by an amount superior to what is required to induce
a phase spread of about 110°, then the coherence reaches an asymptotic value which
is an indicator of the ratio between the static and dynamic components. A given
motion amplitude in slant range translates into a higher phase spread at shorter
wavelengths, and therefore the asymptotic value will be reached for smaller dis-
placements at shorter wavelengths. In addition to this, the coherence decreases
rapidly for intermediate phase spreads (20° < o,, < 80°). At these intermediate
values, an uncertainty on the determination of the value of o,, from the motion
measurement translates into an uncertainty of the coherence estimates from the
model. Therefore, the accuracy required on the coherence estimates from the model
will drive the accuracy in the determination of o,,, which in turn will impose a
precision requirement on the motion measurements. This aspect will be detailed in
the next section, but it is mentioned here to emphasise the fact that the preliminary
test presented here is directly relevant to the objectives of the research.

In practice, the coherence derived from SAR data above vegetation is typically
in the range [0.3,0.7], depending on the type of vegetation. The model shows that
these values can be reached in two ways: either by a scene where the vegetation is
responsible for most of the backscatter and has a moderate movement which induces
a phase spread inferior to about 110°, or by a scene where the surface scattering
plays a major role, with a vegetation motion high enough to reach the asymptotic
value for 7.

To illustrate this point, it is interesting to take a numerical example. In the
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case of ERS-1/2, the wavelength A is 5.66 cm and the incidence angle is § = 23°.
A variation dpg = 110° is induced by a scatterer motion in the slant range direc-
tion ér = (A\/4m)dpy = 0.86cm. This corresponds to an horizontal displacement
dh = ér/sinf = 2.21ecm. The simulation above has assumed a Gaussian distri-
bution, which is symmetrical about its mean value, so the total amplitude of the
horizontal motion above which the asymptotic value of « is reached is 26r = 4.42¢cm.
Intuitively, it is likely that crops move by a greater amount in windy conditions and
the coherence values observed with ERS data represent the asymptotic value of ~.
The coherence observed from ERS SAR data from crops being in the intermediate
region [0.3,0.7], the natural conclusion here is to assume that the contribution to
the total backscatter from the surface is fairly high. Indeed this result was noted
in section 3.3, Figure 3.4, where the RT2 simulation of a wheat field showed that a
significant part of the backscatter originates from the surface at incidence angle of
about 20°.

The example above is interesting in two respects. First it shows that the outputs
of the coherence model make good sense when compared qualitatively with the SAR
coherence data. For that reason it can be used with confidence to interpret some of
the features related to the coherence behaviour above crops. Secondly, the example
above showed how issues concerning the radar specifications (wavelength, incidence
angle) relate to the coherence. The model provides a link for the quantitative anal-
ysis of the interactions between the two.

3.5.2 Wheat simulation

The coherence model is run here with the outputs of RT2 presented in section
3.3. The analysis shows the variation of coherence with the incidence angle # for a
constant radar wavelength A = 5.66 cm.

Input parameters

The contributions showed in Figure 3.4 are used in the model to define the relative
amplitude of the static and dynamic components of the total electric field. Two
dynamic components are introduced. The first dynamic component is related to
the motion of the wheat stalks. The amplitude of the component is taken as the
vegetation-surface (double-bounce) contribution given by RT2 (referring to the dis-
cussion given in section 3.3 on that point). The phase distribution function is taken
as Gaussian, since no other motion information is available at this stage. The stan-
dard deviation of the distribution (the phase spread o,,, ) varies with slant range
spread dr: o,, = (4m/A)dr. Slant range spreads dr ranging from 0 to 1 cm were
tested in order to assess the influence of the motion amplitude on the coherence.
The second dynamic component of the model reflects the motion of the leaves, which
are assumed to contribute to the direct scattering from the vegetation layer (see sec-
tion 3.3). The phase @4 has a Gaussian distribution whose standard deviation is
set to be identical to the standard deviation of the first dynamic component. This
assumption means that the motion of the leaves is set to have the same amplitude
as that of the stalks. It is very difficult to verify this assumption without field ob-
servations. Since the leaves are physically connected to the stalks, this assumption
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is reasonable, although it does not take into account the relative motion between
these two components of a wheat plant.

Model outputs
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Figure 3.8: Variation of the estimated coherence with the radar incidence angle,
plotted for 5 different slant range spreads dr, and from the RT2 outputs obtained
in section 3.3 for VV and HH polarisations

Figure 3.8 shows the outputs of the model for HH and VV polarisations. The
estimated coherence is plotted against the radar incidence angle for different values
of the slant range spread characterising the motion of the wheat stalks and leaves.
For a given slant range dr spread, the coherence decreases rapidly with the incidence
angle for § € [10°,30°]. This feature is to link with the rapid decrease of the surface
scattering contribution shown in Figure 3.4 for the same incidence angle range. For
6 > 30° the surface contribution becomes negligible, so the static component of the
coherence model also becomes negligible, and the total electric field is resulting from
the addition of the two dynamic components. In this case the coherence remains
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approximately constant at a level related to the amount of motion assumed in the
vegetation.

The coherence given by the model for the ERS incidence angle (0 =~ 23°) is in
the range [0.5-0.7], which corresponds to the values obtained from ERS data above
agricultural surface. Even with crude approximations about the vegetation motion,
it seems that the model is able to predict the observed coherence level. Another point
to note is the sensitivity of the coherence to the incidence angle around 6 = 25°.
Radar incidence angles of about 25° seem appropriate to crop monitoring since
different crops would in principle show a significantly different coherence sensitivity
around this value. For higher incidence angles, the coherence levels observed from
different crops would yield consistently low coherence values which would be of no
use for classification or other monitoring purposes.

Figure 3.8(c) shows the difference between the coherence obtained from VV and
HH polarisations. It was shown is section 3.3, Figure 3.4, that a vertically polarised
incident wave is more coupled to vertically structured crops like wheat, so there
should be a visible difference on the coherence from this physical effect. Figure
3.8(c) shows that there is a maximum positive difference between the VV and HH
coherence at 6 ~ 23°. The rapid decrease of the coherence at such incidence angles
explains that larger differences are found between the VV and HH polarisations.
For 30° < 6 < 55°, the difference between the VV and HH coherence is negative.
This is to relate to the specific variation of the stalk-ground contribution at VV
polarisation (see Figure 3.4(a)). At HH polarisation, the contributions from direct
scattering and double scattering remains roughly constant and, more importantly,
in the same ratio. At VV polarisation the double scattering contribution peaks at
about 45°, so the dynamic component related to the stalk motion has a peaking
contribution at this angle. At this peak contribution, there is additional decorre-
lation introduced in comparison to the HH polarisation, and consequently the VV
coherence is lower. This explains the negative difference for 8¢[30°, 50°] between the
VV and HH coherence.

3.5.3 Conclusions on the preliminary tests of the model

The outputs of the coherence model have shown some of the key features which
relate the crop parameters, the radar configuration, and the expected coherence.
The sensitivity to the amplitude of the crop motion was highlighted, as well as
the sensitivity to the radar wavelength and the incidence angle. At near vertical
incidence angles, the contribution of surface scattering is dominant and there is
little loss of coherence due to the motion of the scatterers. The very sensitive range
of incidence angles, at which the coherence decreases rapidly, is situated around 25°,
near the ERS value.

The examples above give a good overview of how the coherence model can be
used to estimate the potential use of coherence as a parameter for crop monitoring.
The study was focused on the C-Band since the study of section 3.2 has shown it is
the most relevant frequency range for crop monitoring. At shorter wavelengths, it
can be expected that the contribution to the total backscatter from the vegetation
will be higher, inferring a higher loss of coherence for an equivalent crop motion.
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In addition to this effect, the same motion amplitude translates into a higher phase
spread at shorter wavelengths, adding to the decorrelation. The opposite conclusion
applies to longer wavelengths.

The possible sources of inaccuracies in the model are:

e a wrong estimate of the phase standard deviations of the different dynamic
components, and especially relative to each other,

e an inaccurate representation of the phase distribution by a Gaussian function,

e a possible error added by assuming a single “equivalent scatterer” in the ground
resolution cell,

e inaccurate contribution estimates from RT?2.

The next section will describe in more detail how the requirements to evaluate
the first 3 points above translate into crop motion measurement requirements. The
last point of the list is important since it was shown in the examples above that the
estimation of the contributions from the different scattering processes is the major
driver of the coherence levels given by the model. Accurate RT2 estimates require
an accurate description of the crop phenotype, which can be difficult to obtain from
the simple geometrical shapes available in RT2 and because of the lack of accurate
data on crop characteristics.

3.6 Definition of measurement requirements

This section uses the description and preliminary tests of RT2 and the coherence
model to define measurement requirements.

3.6.1 Meteorological data

Since the motion of the vegetation is directly responsible for the temporal decorre-
lation, it is important to have meteorological data. Two types of data are useful
here. First it is necessary to know the wind velocity at the crop level in order to
have a precise idea of the relation between crop motion and wind forcing. The wind
at crop level is likely to be turbulent, so data should be recorded at a high sampling
rate. The wind data sampling rate will be given and justified in Chapter 5. It is
imposed by the accuracy limits of the equipment used.

In addition to wind data at canopy height, it is interesting to have some more
general weather data, in order to make a quantitative estimate of the probability of
certain weather conditions to be found at a given period in the growth season.

3.6.2 Crop motion data

The motion of crops under wind forcing is used to derive the probability distribution
for the phase of the dynamic components of the coherence model. The distribution
being derived from three-dimensional positions of the scatterers, the crop motion is
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required in three dimensions too. There are two accuracy requirements on the mo-
tion measurements: requirement on a single plant, and requirement on neighbouring
plants.

Measurement accuracy on a single plant

The standard deviation on the coherence estimates calculated from SAR data with
Equation (2.24) is defined in [31] by:

1|y
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where N is the number of pixels in the calculation window. Existing data from
SAR observations shows that the coherence from agricultural crops is about 0.4 or
higher. With a coherence calculation window containing 45 pixels (typically, a 3x15
window is used with ERS data), Equation (3.13) shows that o, is inferior to about
0.1. This value is the accuracy requirement set for the coherence model. It needs to
be translated into a position measurement accuracy.

Figure 3.7 shows that the most rapid decrease of the coherence with the phase
spread d¢g occurs at around dpg = 40° and the rate of the decrease (slope of the
curve) is about s = —0.12/10°. Taking this worst case, if an accuracy of 0.1 is
required for the coherence estimate, the phase spread should be retrieved from the
measurements with an accuracy of 0.1/s = 8°. A phase accuracy of 8° corresponds to
(1/45)A. Therefore the measurement accuracy of the system is related to the radar
wavelength. Focusing on C-Band, a value of A of 6 cm translates into a measurement
accuracy of 1.3 mm in slant range. For crops having a motion mainly in a horizontal
plane, it translate into an accuracy of 1.3/ sin, where 6 is the radar incidence angle.
At the ERS value of 23°, the measurement accuracy in a horizontal plane is about
3.3 mm. This is quite a stringent accuracy requirement, but it was derived from the
highest variability of the coherence from Figure 3.7. It can be expected that, if an
accuracy of 3.3 mm is achieved by the measurement system, the uncertainty on the
coherence estimate from the model will be about 0.1.

(3.13)

Measurement on several plants

The requirement to check the “equivalent scatterer” assumption imposes require-
ments on the measurements of several plants. Ideally, motion measurements widely
spaced (several metres) would be most suited to derive the number of packets of
coherent motion within the ground resolution cell. However this is not practically
achievable as it would require several measurement systems placed at different po-
sitions in the field, all synchronised with each other and with the wind data mea-
surement system.

Alternatively, the motion of several plants can be measured in a smaller mea-
surement volume, and cross-correlation functions between the measured motions
will give information about the extent of the synchronised motion. The correlation
functions will give a quantitative idea about the correlation distance, i.e the dis-
tance after which the motion of two plants is not correlated. For this correlation
distance to be calculated accurately the motion of plants should be measured across
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the whole space covered by the measurement volume. The size of this measurement
volume is determined by the measurement system itself, and will be given in the
next chapter.

3.6.3 Data synchronisation

The wind data at canopy level and the crop motion data need to be synchronised so
they can be used in conjunction with each other. A precise synchronisation scheme
is needed for that purpose. In addition to the time synchronisation of the data sets,
there is a requirement to align the wind data reference system with the crop motion
reference system.

3.6.4 Crop phenotypical state

The definition of the vegetation layer in RT2 requires a good knowledge of the crop
phenotype. In fact, it is of prime importance since the previous sections have shown
the importance of having an accurate estimate of the relative contributions to the
total backscatter from the different scattering mechanisms. The parameters of im-
portance include the density of the different scatterers, their gravimetric moisture,
geometry, orientation, the surface roughness and correlation length. These parame-
ters are needed at different stages of the crop growth. Even with a good knowledge
of the crop phenotype, it was shown in [57] that making a good modelling with RT2
can be difficult.

Two aspects contribute to the decision that was made in the research to not
measure the crop parameters in situ. First, the measurement of data of good qual-
ity is difficult and requires experience which was not available during the time of
the research. It was decided not to collect data whose quality would have been
questionable because of lack of experience and proper equipment. As RT2 requires
a good definition of the crop phenotype, it is felt that the data which would have
been collected locally would not have met the required standards of quality. The
second reason which justifies the decision is that good crop data collection usually
requires dedicated measurement campaigns which are time consuming. The research
presented here covers a range of different topics and the time constraints imposed
on the project did not allow the collection of crop phenotypic data, in addition to
the time required to cover these other topics.

The need for accurate phenotypical data is nevertheless identified here as a re-
quirement for the research. It is left as potential on-going work for future develop-
ments of the project. As an alternative solution to compensate for the lack of crop
data, existing data sets can be used for RT2 simulations.

3.7 Conclusion

This chapter has presented some of the issues related to the relationship between the
radar backscatter intensity, the coherence, and the vegetation. The few examples
presented in the previous sections have shown the sensitive variables in this context.
From the point of view of the backscatter intensity only, the RT2 outputs have
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shown that a C-Band SAR is most suited for vegetation monitoring. In addition
to this, it was shown how RT2 is a necessary tool for the coherence model since
it estimates the independent contributions to the total backscatter. The coherence
model uses a statistical approach which does not assume complete random motion
of crop elements. It still relies on a simplification of the apparent complexity of crop
motion, but it is a first step towards quantifying its effects.

The RT2 runs showed the influence of the size and orientation of the scattering
elements. This influence suggests that the motion of these elements is a parameter
to take into account, not only in the estimation of the coherence, but also in the
modelling of the backscatter intensity. This is especially true if the motion is coher-
ent in the ground resolution cell, and not totally decorrelated. Full decorrelation is
commonly assumed to describe motion in a vegetation medium, which may not be
the case. In fact the preliminary outputs of the coherence model tend to show that
complete decorrelation of the scatterers motion would not explain the intermediate
coherence levels observed from SAR data.

Backscatter models could benefit from more detailed crop motion information,
and so could the coherence model. The main aim of this chapter is fulfilled: it was
possible from the presentation of the two types of models to justify the need for in
situ measurements. Not only the models could justify a need for these measurements,
but they were also used to identify some more precise requirements. They concern
the accuracy of the motion retrieval, the need for meteorological data and for several
measurement points in the crop field.

The next chapters describe the measurements made for the research, and further
use of the coherence model will be made in Chapter 7.





