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Abstract 

Poly-di-methyl-siloxane (PDMS) hollow fibre membrane modules were 

designed and built for the specific de-gassing of real and synthetic process 

liquids to understand: (i) the feasibility of operation; and (ii) classify the mass 

transfer characteristics to aid design at full scale. Liquid saturated with pure 

methane or a binary methane and carbon dioxide mixture was introduced into 

the shell side of the extraction unit, whilst sweep gas or vacuum was employed 

counter-currently as a stripping medium. From data analysis of operation in both 

anaerobic effluents obtained from Expanded Granular Sludge Blanket (EGSB) 

reactor and synthetic liquids, when operating under optimum conditions 93% of 

methane and 88% of carbon dioxide was recovered. The obtained data indicate 

that the extraction process is controlled by diffusivity of gases through the 

PDMS membrane and is proportional to the thickness of membrane wall. When 

applying vacuum to promote methane mass transfer, the process was highly 

sensitive to vacuum pressure; the highest de-gassing efficiency was recorded 

under the lowest absolute vacuum pressure. However, when vacuum was 

replaced by sweep gas, the process was insensitive to changes in gas velocity. 

When utilising PDMS membrane contactor for de-gassing of EGSB effluent, the 

net electrical output achieved by the EGSB increased by c. 24% and indicates 

that by integrating methane recovery, treatment of domestic wastewater using 

low temperature EGSB processes can become carbon positive. The potential of 

directing recovered methane to porous hollow fibre membrane absorbers and 

upgrading to national gas (NG) standards to use in national gas grid or as a 

vehicle fuel has been demonstrated. 
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1 Introduction 

1.1 General 

Conventional wastewater treatment consists of preliminary removal of 

large objects and grit followed by sedimentation and biological treatment in the 

form of either suspended growth (activated sludge) or biofilm (trickling filters) 

processes (Figure 1). Captured solids are then further processed anaerobically 

to reduce solids volumes prior to final disposal including the production of 

biogas as a by product of the anaerobic reaction. 

 

 

Figure 1. Conventional wastewater treatment plant. 

To date, the activated sludge process has remained a core technology 

for the effective treatment of low temperature domestic wastewater in the UK, 

however, the energy demanded for aeration within the ASP comprises c. 55% 

of the electrical demand for wastewater treatment (Tchobanoglous et al., 2003). 

Therefore, several research groups have proposed anaerobic treatment as a 

substitute technology for ASP (Figure 2) as these conditions facilitate the 

reduction of organic carbon in the absence of air (McAdam et al., 2010; Uemura 

and Harada, 2000) and have the potential to reduce the energy demand of the 

total wastewater flowsheet by up to 62.5% (McAdam et al., 2010). 
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Figure 2. Wastewater treatment plant with integrated anaerobic digester 

. 

The composition of generated biogas depends on the source of the 

digested substrate, and typically consist 50-70 vol.% of methane (CH4) and 20-

50 vol.% of carbon dioxide (CO2).  In addition, nitrogen (N2), hydrogen sulphide 

(H2S), oxygen (O2), ammonia (NH3) and water vapour are present in small 

amounts (Table 1). However, when treating low-strength domestic wastewater, 

methane content in the off-gas rises to 70-80 vol.% in balance with 5-10 vol.% 

of CO2 and 10-25 vol.% of N2 (Noyola et al., 1988). 

Table 1. Typical biogas composition from different sources of biodegradable matter. 

Component Unit Household 

waste 

Wastewater 

treatment 

Agricultural 

waste 

Food 

industry 

CH4 vol.% 50-60 60-75 60-75 68 

CO2 vol.% 34-38 
      19-33 

19-33 26 

N2 vol.% 0-5 0-1 0-1 - 

O2 vol.% 0-1 < 0.5 < 0.5 - 

H2O vol.% 5-6 5-6 5-6 5-6 

H2S mg.m
-3

 100-900 1000-4000 3000-10000 400 

NH3 mg.m
-3

 - - 50-100 - 

Other trace gases mg.m
-3

 100-1000 - - - 

Adapted from: http://www.biogas-renewable-energy.info/biogas_composition.html 
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Under standard operation, the produced biogas is used to generate: (i) 

heat at small de-centralised anaerobic plants and; (ii) both heat and electricity 

through injection into a combined heat and power facility (CHP) at larger plants. 

This requires selective extraction of both hydrogen sulphide and siloxanes pre-

ignition to reduce the impact of internal gas corrosion. However, in response to 

the instability of the current energy market, both political and economic interest 

is being shown in understanding the potential of upgrading biogas to natural gas 

(NG) standards for injection into the national grid and use as a vehicle fuel. This 

can be achieved by removal of CO2 from the gas stream and consequently 

increasing the relative methane content above 90 vol.% (Table 2). 

Table 2. Calorific values of methane, biogas and natural gas. 

Gas CH4 content Energy density Energy value Volumetric 

equivalence to CH4 

 (vol.%) (MJ.Nm
-3

) (kWh.m
-3

) (-) 

Raw 

biogas 

60 - 75 21.5 - 27
 a
 5.97 – 7.5 0.6 - 0.75 

Upgraded 

biogas 

+90 32.3
 a
 8.97 +0.9 

Natural 

gas 

+95 37.5 - 40
 b
 

   10.42 – 11.11 
+0.95 

Methane 100 35.9
 a
 9.97 1 

Source: 
a
 Constant et al. (1989); 

b
 National Grid. 

The required purity of upgraded biogas (biomethane) depends on the 

end use with European standards typically ranging between 95-99 vol.% of 

methane content. National requirements remain below 6 vol.% and 30 mg.m-3 

for CO2 and H2S, respectively (Table 3). 
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Table 3. National gas standards for biogas utilisation. 

Application Country CO2 O2 H2 H2S 

  (vol.%) (vol.%) (vol.%) (mg.Nm
-3

) 

Boiler - - - - < 1000ppm 

CHP - - - - < 1000ppm 

Gas grid Germany < 6 < 3 - < 30ppm 

 Switzerland < 6 < 0.5 < 5 < 5ppm 

Vehicle fuel Sweden  < 5
 a

 - - < 23ppm 

Source: IEA Bioenergy. 
a
 Total CO2+O2+N2. 

Recent studies on anaerobic wastewater treatment under low 

temperature conditions have indicated that up to 85% of the generated methane 

can be lost in the liquid effluent due to increased methane solubility (Barbosa 

and Sant’Anna, 1989; Kobayashi et al., 1983; Lettinga et al., 1983; Nicholas 

and Harris, 1997; Noyola et al, 1988; Singh et al., 1996). For instance, methane 

concentration at equilibrium with 30 C water is 16.56   mg.L-1, whilst at 14 C 

CH4 content in the liquid phase significantly increases by 70% to 23.56 mg.L-1 

(Figure 3). 

10
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Figure 3. Methane solubility in water as a function of temperature (Yamamoto et al. 1976). 



5 

New biogas upgrading technologies, such as membrane contactors, have 

been successfully developed over last two decades, enabling simultaneous 

removal of CO2 and H2S (Keshavarz et al., 2008). However, to maximise the 

amount of generated energy, recovery of dissolved methane from low 

temperature anaerobic effluent is essential. A few research groups have 

suggested hollow fibre membrane contactors as a feasible technology (Bandara 

et al. 2010; Bujalance et al., 2008). 

1.2 Aims and Objectives 

The aim of this work was to assess the potential of using membranes to 

manage methane in wastewater treatment flowsheets with a major emphasis on 

methane recovery from low temperature anaerobic liquids using hollow fibre 

membrane contactors (Figure 4). 

 

Figure 4. Wastewater treatment flowsheet with incorporated porous membrane contactors for 

biogas upgrading and dense contactors for dissolved methane recovery. 

The specific objectives were to: 

(i) Determine the potential for using membrane systems for the de-

gassing of methane from wastewater flows. 

(ii) Identify optimum operating regimes and process limitations. 

(iii) Classify mass transfer characteristics to aid design at full scale. 
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(iv) Demonstrate the feasibility of the extraction and purification of 

methane from high rate anaerobic process effluents to use 

recovered methane as an energy source. 
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2 Literature Review 

2.1 Biogas Upgrading 

2.1.1 Upgrading Technologies 

Considering the rising price of fossil fuels and pipeline gas, biomethane has 

been recognised as a potential energy source. To realise European end-product 

qualities, the purity with respect to upgraded biogas has to reach +96 vol.% of 

methane content in balance with other trace gases. To achieve this, biogas has 

to be pre-treated (i.e. water vapour and/or sulphur compounds removal) prior to 

carbon dioxide removal. Current upgrading technologies include pressure swing 

adsorption (PSA), chemical absorption, physical absorption, membrane 

permeation and cryogenic separation (Table 4). 

Table 4. Comparison of biogas upgrading technologies. 

Technology Status Pre-treatment Product purity 

(vol.%) 

CH4 loss 

(%) 

PSA Mature Water vapour, H2S > 96 3-10 

Water scrubbing Mature None > 97 1-2 

Chemical absorption Mature Water vapour, H2S > 99 0.1 

Cryogenic separation Mature None > 99 - 

Membrane permeation Semi-mature None - - 

Source: IEA Bioenergy and Smith and Klosek (2001). 

Biogas upgrading technologies have been considered over the past 

twenty years with plants run successfully worldwide (Table 5). Existing 

technologies are continually developing due to higher demands put onto 

product quality, environmental legalisations and cost reduction. Whole life 

costing incorporating size, energy demand and methane losses indicates that 

economically viable solutions are only possible at larger scales. New developing 
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technologies such as membrane contactors (MCs) address these limitations. In 

particular, the possibility to control the gas and the liquid flow independently 

enables a constant contact area to be maintained, in contrast to conventional 

absorption towers, where the mass transfer area varies with liquid loading. 

Membrane contactors can supply twenty to one hundred times larger surface 

area per unit volume than packed towers (Al-Saffar et al., 1997). Furthermore, 

membrane contactors reduce practical considerations associated with 

conventional absorbers such as liquid and gas entrainment, and flooding (Hoff 

and Svendsen, 2013). In addition, MCs were reported to be ca. 30 times more 

efficient in the gas absorption process than their large scale analogues with 

potential of 65% reduction in the size of the upgrading plant (Herzog, 2001). 

The feasibility studies have demonstrated that the CO2 can be produced 

economically from flue gas at small and large scale plants (CCP; Feron and 

Jansen, 1999). 
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Table 5. List of biogas upgrading plants in selected countries. 

Country Substrate Biogas utilisation End-product purity Upgrading technology Plant capacity 

   (%)  (Nm
3
.h

-1
raw gas) 

Austria (Bruck) Biowaste Gas grid 97 Membrane permeation 180 

Austria (Linz) Sewage Gas grid 97 Water scrubber 800 

Austria (Pucking) Manure Gas grid 97 PSA 10 

France (Lille) Biowaste Vehicle fuel 97 Water scrubber 2*600 

Germany (Utzensdorf) Biowaste Gas grid 96 PSA 100 

Japan (Kobe) Sewage sludge Vehicle fuel 97 Water scrubber 100 

Norway (Oslo) Sewage sludge Vehicle fuel - Chemical scrubber 
            750 

Netherlands (Beverwijk) Landfill gas Gas grid 88 Membrane - 

Netherlands (Nuemen) Landfill gas Gas grid 88 PSA 1500 

Spain (Madrid) Biowaste Vehicle fuel 98.5 Water scrubber 4000 
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Table 5. Cont’d. 

Country Substrate Biogas utilisation End-product purity Upgrading technology Plant capacity 

   (%)  (Nm
3
.h

-1
 raw gas) 

Sweden (Boden) Sewage sludge, biowaste Vehicle fuel 97 Water scrubber 360 

Sweden (Falkengerg) Sewage sludge, biowaste Gas grid 97 Chemical scrubber 750 

Sweden (Stockholm) Sewage sludge Vehicle fuel 97 Chemical scrubber 800 

Sweden (Katrineholm) Sewage sludge Vehicle fuel 97 Water scrubber 80 

Sweden (Malmo) Sewage sludge Gas grid 97 PSA 500 

Sweden (Uppsala) Sewage sludge, biowaste Vehicle fuel 97 Water scrubber 400 

Switzerland (Obermeilen) Sewage sludge Gas grid 96 Chemical scrubber 
100 

Switzerland (Samstagen) Biowaste Gas grid 96 PSA 50 

USA (Renton) Sewage sludge Gas grid 96 Water scrubber 4000 

United Kingdom (Albury) Landfill gas Vehicle gas - PSA/Membrane - 

Adapted from IEA Bioenergy.     
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2.1.2 Membrane Contactors for Biogas Upgrading 

2.1.2.1 Principle, Applications and Advantages 

A membrane contactor device separates liquid and gas flows providing 

contact at the membrane wall. In porous devices such contact occurs at the 

pore mouth and negates the need for dispersion, which limits loading rates in 

the conventional systems. Membrane contactors are typically microporous 

hollow fibre based membrane systems, in which fluids flow on the opposite 

sides of the membrane: the fibre (lumen) and the shell side (Figure 5). 

 

Figure 5. The principle of membrane contactor technology. 

To date, membrane contactor technology has principally been applied to 

high value and low flow rate applications such as blood deoxygenating or 

industrial scale carbonation of beverages (Table 6). 
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Table 6. Example applications of porous membrane contactors. 

Contacting system 
Example applications 

Gas / Liquid Blood deoxygenating; water and beer deoxygenating; ozonation of 

water; removal of acid gases from digester gas (i.e. biogas upgrading); 

nitrogenation of beer. 

Gas / Gas Dehumidification; volatile organic compounds-air separation. 

Liquid / Liquid Extraction of organic and chlorinated compounds from wastewaters; 

extraction of fatty acids from oil; extraction of flavours from fruits and 

vegetables; protein extraction; volatile compounds removal. 

 

Recently there has been some successful development of porous hollow 

fibre membrane contactors (HFMC) at pilot scale for carbon dioxide extraction 

from flue gases (Chen et al., 2001; Kumar et al., 2002; Lu et al., 2007; 

Rangwala et al., 1996; Sea et al., 2002). Additionally a few studies have 

reported CO2 removal from CH4/CO2 mixtures (Husain and Koros, 2007; Ismail 

and Yaacob, 2006; Simons et al.; 2009). In this specific application, membrane 

contactors are an analogous technology to the absorption performed in the 

packed towers (i.e. water and chemical scrubbers). Typically, the absorption 

liquid comprises an organic amine solution, the purpose of which is to increase 

the solubility of CO2 into the liquid and thereby enhance the selection of CO2 

from the gas stream. 

The main advantages of membrane contactors over conventional large-

scale absorption technologies are: (i) high interfacial contact area provided by 

the pores and; (ii) a modular design that provides flexibility into application 

across a wide range of scales. Interfacial areas for membrane contactors were 

reported by Matson et al. (1983) to be up to 10000 m2.m-3, which compares to 

conventional absorption columns that reach a maximum value of 1000 m2.m-3 

(van Landeghem, 1980). Direct comparison between the two revealed CO2 

absorption rates of 1.4 mol.m-3s-1 in a membrane contactor with an interfacial 

area of 1542 m2.m-3 compared to 0.55 mol.m-3s-1 in an absorption column with 
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an interfacial area of 372 m2.m-3 (Yeon et al., 2005). These advantages make 

membrane absorption a promising future technology for biogas upgrading 

(Table 7). 

Table 7. Advantages of membrane contactors for gas absorption. 

Advantage Comments 

Modular design Module compactness results in high contact area, low footprint, low 

absorbent requirements and a potential of module applicability in small 

and large plants. 

Contact area Porous material provides high contact area between two phases; surface 

contact area is constant and known. To compare, in absorption columns 

random packing results in unknown contact area. 

Footprint Can be applied for de-centralised applications, especially when there is no 

land available or when absorber requires fitting in confined spaces. 

Scaling-up Due to modular design, membrane contactors scale-up linearly, i.e. by 

employing additional modules in series; as a consequence the scale-up 

process is simplified. 

Absorbent usage Low absorbent requirements due to small volume of the shell side in 

comparison with absorption columns; consequently, lower investment and 

absorbent regeneration cost. 

No phase 

dispersion 

By adjusting gas and liquid pressure no dispersion of one phase into 

another occurs. 

No flooding and 

unloading 

No flooding or unloading occurs due to the independency of liquid and gas 

flow rates, unlike in absorption columns. 

No moving parts Low maintenance and operating cost; safer from health and safety point of 

view. 
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The main disadvantages of membrane contactors are: 

(i) The membrane introduces an additional resistance to the diffusing 

compounds, not found in conventional absorption. 

(ii) Membranes get partially wetted when exposed to the absorbents over 

a period of time, as a consequence degradation of the membrane 

surface, which lowers process efficiencies, occurs. 

(iii) Due to partial wetting, the initial performance is unsteady. 

(iv) Module potting is exposed to the attack of the organic solvents 

leading to a failure in performance. 

(v) Finite lifetime of the membrane requires periodic replacement, 

resulting in increased investment cost. 

The advantages of contactor technology outweigh the process limitations 

and new, better performing membranes are being developed. Several research 

groups concentrate on the improvement of the module design and long-term 

membrane performance (Atchariyawut et al., 2006; Gugliuzza and Drioli, 2007; 

Klaassen and Jansen, 2001; Kosaraju et al., 2005; Yang et al, 2005). 

2.1.2.2 Operational Modes 

There are two operational modes membrane gas absorption can be 

performed in: (i) non-wetted mode employing hydrophobic membranes and; (ii) 

wetted mode employing hydrophilic membranes. In the non-wetted mode 

membrane pores should remain completely gas-filled; this can be achieved by 

maintaining slightly higher pressure on the liquid side to prevent gas dispersion 

into the liquid phase (Figure 6a). In the wetted mode, membrane pores are 

liquid-filled and gas pressure is kept slightly higher than liquid pressure to 

prevent formation of liquid droplets in the gas phase (Figure 6b).  
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Figure 6. Porous membranes in: (a) non-wetted operational mode; (b) wetted operational mode. 

 The mass transfer mechanism in both modes consists of three steps: (i) 

diffusion of gas from the bulk phase into the membrane surface; (ii) gas 

diffusion through liquid or gas filled membrane pores and; (iii) gas dissolution 

into the liquid phase boundary layer, where reaction occurs. Several research 

groups have now demonstrated that the non-wetted mode favours gas mass 

transfer and consequently results in greater CO2 fluxes (Lu et al., 2008; Wang 

et al., 2005; Yan et al. 2008; Zhang et al., 2008). In this mode the overall mass 

transfer resistance (1/KOV) is described by resistances-in-series model: 

                                             
LMGOV HkkkK

1111
                                      (Eq.1) 

where KOV is the overall mass transfer coefficient (m.s-1); kG, kM, kL are 

individual mass transfer coefficients for gas, liquid and membrane respectively 

(m.s-1); H is distribution coefficient of the compound between gas and liquid 

phase (dimensionless). When a chemical reaction occurs (e.g. when amine 

solutions are employed as absorbents) the liquid phase mass transfer 

coefficient is expressed as kL = Ek 0

L , where E is the enhancement factor for 

chemical reaction; k 0

L  is physical mass transfer coefficient (s-1). 

CO2 flux (JCO2) is concentration-driven and usually expressed as follows 

(Boucif et al, 2001): 

(a) (b) 
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                                                  lmOVCO CAKJ 
2

                                        (Eq.2) 

where A is membrane contact area (m2); JCO2 is gas flux across the membrane 

(mol.s-1); Clm is logarithmic mean concentration difference (mol.m-3). 

In the liquid limited mass transfer the concentration gradient C lm  is 

expressed as (Das et al., 1998): 
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                                 (Eq.3) 

where inC  is gas concentration in the feed mixture (mol.m-3); P

inC  is gas 

concentration in the permeate stream at the feed inlet location in equilibrium 

with gas phase (mol.m-3); outC  is gas outlet concentration (mol.m-3); P

outC  is gas 

outlet concentration in the permeate stream at the feed outlet location in 

equilibrium with gas phase (mol.m-3). 

By maintaining gas-filled pores, CO2 diffusivity through the membrane is 

increased, e.g. the diffusion coefficient of CO2 in water is 1.92 E-09 m2.s-1 whilst 

in air it increases to 14 E-06 m2.s-1.  Consequently, additional mass transfer 

resistance introduced by the membrane can be neglected (Lu et al., 2008) and 

for that reason the majority of the membrane gas absorption processes is 

performed in the non-wetted modes by utilising polymeric hydrophobic 

membranes. 

2.1.2.3 The Impact of Pore Wetting on Mass Transfer 

In practical applications of porous membrane contactors, a decrease in 

mass transfer is often observed over a prolonged period of time. This 

phenomenon has been widely reported in the literature and explained by partial 

wetting of the membrane caused by liquid intrusion into the pores (Dindore et al. 

2004; Franco et al., 2009; Wang et al., 2005). In general, wetting occurs when 

the contact angle, , between the solid surface and the liquid is less than 90˚, in 
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which case liquid droplet will spread over a large part of the surface area 

(Figure 7). 

 

 

Figure 7. Liquid droplet on porous surface: (a) non-wetted surface,   > 90 ˚; (b) wetted surface, 

  < 90 ˚; (c) completely wetted surface,   = 0 ˚. 

However, in case of microporous structures the intrusion of the liquid into 

the pores is also dependent on the surface tension and the characteristics of 

the pores, as stated by Laplace-Young equation: 

                                                   
pd

CEP
 cos4

                                         (Eq.4) 

where CEP is the critical entry pressure (kPa); is the surface tension (mN.m-

1);  is the contact angle between the solid surface and the liquid (˚); dp is the 

pore diameter (m). 

The most common and commercially available porous membranes 

utilised in gas absorption are polypropylene (PP), polytetrafluoroethylene 

(PTFE) and polyvinyldiene fluoride (PVDF), all characterised by high resistance 

to wetting (i.e. hydrophobicity). To maintain membrane hydrophobicity the 

critical entry pressure, defined as the pressure at which liquid will enter the 

membrane pores, should not exceed a certain value. This value depends on the 

membrane surface energy and liquid surface tension reflected in the contact 

angle, as previously reported in the literature (Table 8). 

(a) (b) (c) 
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Table 8. Critical entry pressure, contact angle and surface tension for PP, PTFE and PVDF 

membranes and various liquids at 20 ˚C. Average pore size: 0.2-0.5 μm. 

Membrane Liquid Surface 

tension 

Contact 

angle 

CEP Reference 

  (mN.m
-1

) (˚) (kPa)  

PP Water 72.30 117.70  90 Dindore et al. (2004) 

 2 vol.% ethanol 64.18 106.88 - Dindore et al. (2004) 

 n-Formyl morpholine 48.14 94.56 > 90 Dindore et al. (2004) 

 PC 42.00 90.83 78 Dindore et al. (2004) 

PTFE Water 72.30 127.42 310 Dindore et al. (2004) 

 2 vol.% ethanol 64.18 122.10 - Dindore et al. (2004) 

 n-Formyl morpholine 48.14 110.80 130 Dindore et al. (2004) 

 PC 42.00 106.40 110 Dindore et al. (2004) 

 Water 72.3 - 25.4 Kumar et al. (2002) 

 MEA 68.2 - 18.2 Kumar et al. (2002) 

 DEA 64.8 - 14.4 Kumar et al. (2002) 

 MDEA 57.2 - 13.1 Kumar et al. (2002) 

 DMEA 49.3 - 12.4 Kumar et al. (2002) 

PVDF AMP - 90.4 - Lin et al. (2008) 

 MDEA - 96.3 - Lin et al. (2008 

 PZ - 76.5 - Lin et al. (2008) 

AMP is 2-amino-2-methyl-1-propanol; DEA is dieathanolamine; DMEA is dimethylethanolamine; MDEA is 

methyldiethanolamine; PC is polycarbonate; PZ is piperazine. 
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From the above table the following conclusions emerge: (i) membrane 

hydrophobicity decreases in the following order PTFE < PP < PVDF; (ii) 

membrane resistance to wetting depends on the type of the liquid that is in the 

direct contact with membrane surface. Hence, non-wetted operation mode can 

be maintained by employing compatible absorbents and the adjustment of the 

trans-membrane pressure (i.e. the pressure between gas and liquid phase). 

However, complexity emerges when taking pore diameter and pore size 

distribution into consideration. Modelling of membrane gas absorption often 

assumes regular pore shapes, sizes and pore distribution. In practice, 

membrane pores are of irregular shape and varying diameters. To demonstrate, 

up to c. 11 times greater maximum pore diameters (dp) than that of the average 

have been reported in the literature (Table 9). 

Table 9. Average and maximum pore diameter in microporous hydrophobic membranes. 

Average pore diameter Maximum pore diameter Reference 

(m) (m)  

0.31 0.88 Chittrakarn et al. (2002) 

0.03 0.24 Lu et al. (2008) 

0.05 0.58 Lu et al. (2008) 

0.02 0.2 Yan et al. (2008) 

 

The significance of this fact is that the predicted value of the critical entry 

pressure will drop considerably for larger pores; for instance by c. 91% for 

model PP-water system of average dp 0.05 m and maximum dp 0.58 m. As a 

result, a significant fraction of the membrane will initially get wetted due to 

enhanced liquid penetration into the larger pores. Consequently, the gas-liquid 

interface (i.e. liquid boundary layer when reaction occurs) is shifted to some 

unknown location inside of the membrane pores, resulting in unknown contact 

area (Lu et al., 2008). Moreover, this leads to liquid stagnation inside the pores 
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and, subsequently absorbent saturation with carbon dioxide may occur. As a 

result, dissolved CO2 cannot be as efficiently extracted from the gas bulk. This 

phenomenon was confirmed by model analysis of CO2 concentration 

distribution in the gas and liquid filled pores (i.e. partially wetted membrane) in 

the work conducted by Keshavarz et al. (2008). They observed that CO2 

concentration builds up in the gas phase near the gas-liquid interface (i.e. inside 

the wetted pores). In addition, the developed model enabled the estimation of 

flux reduction with time. Membrane wetting significantly reduced CO2 flux, 

however the flux reduction was much more intensive at the initial stages of the 

process; i.e. c. 48% of flux reduction occurred when 1% of the pores got wetted. 

Further wetting, equivalent to the 85% of the liquid intrusion into the pores, 

resulted in additional 52% flux reduction. However, steady-state (i.e. the time at 

which flux across the membrane stabilises) was reached after 4 days of 

operation. Similarly, Mavroudi et al. (2006) reported a 44% decrease in flux 

leading to a 55% increase in membrane resistance due to partial membrane 

wetting. The developed model enabled the estimation of liquid penetration 

length in relation to the overall pore length as a function of time and therefore 

the prediction of steady-state. The resistance of the non-wetted part of the 

membrane (i.e. gas-filled pores) was estimated to be 0.3% of the overall mass 

transfer resistance. The wetted fraction of the membrane contributed to +22% 

of the overall mass transfer resistance; this effect was further exacerbated at 

higher liquid velocities (VL) when resistance of the wetted membrane 

contributed to 53% of the total resistances. This observation was explained by 

increased liquid pressure at higher VL, which led to further liquid intrusion into 

the pores. 

Decreases in the mass transfer coefficient of up to 80% have also been 

reported in a range of previous investigations (Table 10). 
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Table 10. Overall mass transfer coefficients and carbon dioxide fluxes for various membranes and absorbents for membrane gas absorption. 

  KOV  CO2 flux  

Membrane Absorbent Initial Steady-state  Initial Steady-state Time to reach steady-state Reference 

  E-04 (m.s
-1
) E-04 (m.s

-1
)  E-04 (mol.m

-2
s

-1
) E-04 (mol.m

-2
s

-1
) (days, hours or minutes)  

PVDF Water - 0.3  10 10 minutes Atchariyawut et al. (2006) 

PVDF 2 M NaOH - -  32 27 4 days Atchariyawut et al. (2006) 

PVDF 2 M MEA - -  24 14 11 days Atchariyawut et al. (2006) 

PP PC 0.2 0.07 - - - Dindore et al. (2004) 

- DEA - - 7.8 5.9  4 days Keshavarz et al. (2008) 

PP 1 M MEA - - 12.8 6.9 - Khaisri et al. (2009) 

PTFE 1 M MEA - - 12.9 11 - Khaisri et al. (2009) 

PVDF 1 M MEA - - 12.9 7.6 - Khaisri et al. (2009) 

PP MDEA 0.6 0.068 - - - Lu et al. (2008) 

PP 2 M DEA 2.6 0.54 - - - Lu et al. (2008) 

PP Water 95 47 25 13.5 13 hours Mavroudi et al. (2006) 
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Table 10. Cont’d. 

  KOV  CO2 flux  

Membrane Absorbent Initial Steady-state  Initial Steady-state Time to reach steady-state Reference 

  E-04 (m.s
-1
) E-04 (m.s

-1
)  E-04 (mol.m

-2
s

-1
) E-04 (mol.m

-2
s

-1
) (days, hours or minutes)  

PP Water 87 47  14 11 4 hours Mavroudi et al. (2006) 

PVDF Water 0.0012 -  0.75 0.75 1 day Rongwong et al. (2009) 

PVDF 1 M AMP 0.0039 -  2.95 1.85 - Rongwong et al. (2009) 

PVDF 1 M DEA 0.0035 -  3.0 2.0 9 days Rongwong et al. (2009) 

PVDF 1 M MEA 0.0084 -  4.0 3.05 9 days Rongwong et al. (2009) 

PTFE MEA - -  c.10 c.3 20 hours Seekkuarachchi et al. (2008) 

PP 2 M DEA 2.6 1.55  6.8 5.5 4 days Wang et al. (2005) 

PP 2 M DEA - -  c.5 c.4 - Zhang et al. (2008) 

PVDF 2 M DEA - -  c.16 c.0.8 - Zhang et al. (2008) 

AMP is 2-amino-2-methyl-1-propanol; MDEA is methyl-diethanolamine; MEA is monoethanolamine; NaOH is sodium hydroxide; PC is polycarbonate; PZ is piperazine. 
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Process stabilisation with time was also reported by Wang et al. (2005) in 

a study involving polypropylene membranes exposed to 2 M diethanolamine 

(DEA) solution over a time period of 3 months. Overall mass transfer 

coefficients and CO2 fluxes were recorded at different days of operation. The 

initial values of mass transfer coefficient decreased by 15-32% and 23-37% 

after two and four days, respectively. After this time, the mass transfer 

coefficient stabilised and constant CO2 fluxes were observed. At the same time, 

scanning electron microscopy (SEM) analysis was performed. SEM of the 

membrane surfaces demonstrated that the DEA solution had partially degraded 

the PP membrane during the initial four days of exposure beyond which no 

further morphological changes was observed. 

Similar observations were reported by Dindore et al. (2004) for 

polypropylene-polycarbonate system. The exposure of PP membrane to the 

liquid changed the surface morphology of the membrane. SEM images showed 

that the number of the smaller pores in polypropylene membrane decreased 

whilst the larger pores increased in size. This phenomenon was explained by 

initial wetting of the large pores by the solvent. Absorbent intrusion into the 

pores exerted lateral force on the pore walls causing the displacement of these 

walls. The wall displacement resulted in the decreased number of the smaller 

pores including possible pore blocking. 

Irreversible morphological changes of the membrane surface were also 

observed by Barbe et al. (2000) and Wang et al. (2004) for polypropylene-water 

and polypropylene-DEA systems, respectively. Surface degradation greatly 

increased the possibility of liquid intrusion into the enlarged pores and 

significantly affected membrane hydrophobicity as reflected in the contact 

angle. To illustrate, up to c. 19% decrease in the contact angle was reported in 

the literature after membrane exposure to the liquid (Table 11). 
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Table 11. Contact angle for fresh and degraded polypropylene membranes. 

  Contact angle  

  Fresh  Exposed  

Membrane Absorbent Water Absorbent  Absorbent Reference 

  (˚) (˚)  (˚)  

PP 20 wt.% MEA 128 120  111.2 Franco et al. 

(2009) 

PP 20 wt.% MEA + 

1000ppm oxalic acid 

128 117  103.6 Franco et al. 

(2009) 

PP 20 wt.% MEA + 

100ppm acetic acid 

128 120  104.2 Franco et al. 

(2009) 

PP 20 wt.% MEA + 

1000ppm formic acid 

128 115  109.7 Franco et al. 

(2009) 

PP Water 104.5 N/a  86 Porcheron et al. 

(2009) 

PP 20 wt.% DEA 108 103.7  94.5 Wang et al. 

(2004) 

MEA is monoethanolamine; DEA is diethanolamine. 

  Overall, comparison across the reported studies reveals that significant 

reduction in process efficiencies at the early stages of the operation must be 

taken into consideration when designing membrane contactors for gas 

absorption. Even a small amount of liquid intrusion into the membrane pores 

considerably affects the absorption process, resulting in significantly lower 

fluxes and mass transfer characteristics. 
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2.1.2.4 Maintaining Efficient Performance 

2.1.2.4.1 Enhancing Reaction Kinetics 

In conventional CO2 absorption mass transfer is enhanced by employing 

chemical absorbents such as aqueous solutions of AMP (2-amino-2-methyl-1-

propanol), NaOH (sodium hydroxide), PC (polycarbonate), PZ (piperazine) and 

amines: MEA (monoethanolamine), DEA (diethanolamine), MDEA 

(methyldiethanolamine). The same applies when utilising membrane contactors 

for carbon dioxide absorption. By introducing chemical reaction higher mass 

transfers can be achieved in comparison with physical absorption (i.e. when 

employing water as an absorbent). For example, Lu et al. (2008) observed an 

increase in overall mass transfer coefficient from 0.51 E-04 m.s-1 to 53.5 E-04 

m.s-1 when employing 1 M MDEA solution for CO2 absorption using 

polypropylene membrane contactor, compared to water. Similarly, Mavroudi et 

al. (2003) obtained c. 7 times higher KOV values for 0.5 M DEA in comparison 

with water. 

Higher overall mass transfer rates indicate that the chemical reaction 

reduces the resistance of the liquid phase boundary layer (1/kL) in comparison 

with physical absorption. As CO2 absorption is liquid phase controlled (Lu et al., 

2008; Yeon at al., 2005), the reduction of liquid phase resistance plays an 

essential role in enhancing performance. However, when employing chemical 

absorbents, high decrease of KOV values is often observed over a prolonged 

period of time. For example, Lu et al. (2008) reported up to a 12.5% decrease in 

KOV when performing CO2 absorption using PP hollow fibre membrane contactor 

with MDEA as the absorbent. The same phenomenon was also reported by 

Atchariyawut et al. (2007) for PVDF membrane. 

The decrease in mass transfer values when employing chemical 

absorbents can be explained by wetting tendency of porous surfaces by organic 

solutions. If liquid comprises organic compounds, even at low concentrations, 

its surface tension drops rapidly and therefore, as a result of reduced critical 

entry pressure, partial wetting of membrane is observed (Dindore et al., 2004; 
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Kumar et al., 2002). This results in lower CO2 fluxes in comparison with the 

initial values obtained for fresh membranes (Figure 8). 

0.0

0.3

0.6

0.9

1.2

0 0.5 1 1.5 2

MEA conc. (M)

C
O

2
 f
lu

x
 w

e
tt

e
d 
/ 
C

O
2
 f
lu

x
 n

o
n

-w
e

tt
e

d

 

Figure 8. Wetting of porous PVDF and PP membranes as a function of increased MEA 

concentration. Data collected from: Atchariyawut et al. (2007); Franco et al. (2009); Rongwong 

et al. (2009). Solid line represents trendline.  PVDF;  PP. 

There is a strong relationship between the ratio of membrane wetting and 

the absorbent concentration. To illustrate, Lin et al. (2008) reported c. 43% 

greater liquid intrusion into the PVDF membrane pores when 1 M AMP or 1 M 

MDEA solution was blended with piperazine. The addition of 0.1 M PZ activator 

increased liquid viscosity and lowered the value of the contact angle. This 

enhanced wetting of the membrane pores resulted in a decrease in Kov by 36% 

and 39% for AMP and MDEA, respectively. Conversely, PZ addition resulted in 

up to 93% greater values of CO2-amine reaction enhancement factor, E. Due to 

the enhanced reaction in the liquid phase boundary layer (inside of partially-

wetted membrane pores) up to 34% lower fractional liquid phase resistances 

were reported. 

Other studies also emphasised the fact that enhancement of the 

chemical reaction, either by increasing molar concentration of absorbents or by 

the addition of activators, greatly increases process efficiencies (Table 12).
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Table 12. The effect of increased absorbent concentration on membrane performance. 

   Absorbent concentration   

Membrane Absorbent  Lowest Increased Increase in selected parameter Reference 

   (M) (M)   

PP NaOH  0.0005 0.01 6% increase in CO2 removal efficiency Al-Marzouqi et al. (2008) 

PVDF NaOH  0.1 1.0 9% increase in CO2 flux Atchariyawut et al. (2007) 

PVDF NaOH  1.0 2.0 3% increase in CO2 flux Atchariyawut et al. (2008) 

PTFE MEA  1.0 3.0 42% increase in CO2 flux Khaisri et al. (2009) 

PVDF 1M AMP + PZ  0.1 0.4 24% increase in kM Lin et al. (2008) 

PP DEA  0.5 1.0 20% increase in KOV Mavroudi et al. (2003) 

PP DEA  0.5 2.0 28% increase in KOV Mavroudi et al. (2003) 

PP DEA  0.5 2.0 51% increase in CO2 recovery Rangwala (1996) 

PVDF MEA  0.25 0.5 36% increase in CO2 flux Rongwong et al. (2009) 

PVDF MEA  0.25 1.0 50% increase in CO2 flux Rongwong et al. (2009) 
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It is often observed that blended amine solutions appear to be the most-

compatible absorbents when taking process efficiencies into consideration. For 

instance, Yeon et al. (2005) demonstrated that by employing a MEA/TEA hybrid 

solution, 90-95% process efficiencies could be achieved over a period of 3 

days. In contrast, c. 23% lower efficiencies were achieved when pure MEA 

absorbent was employed. Lu et al. (2007) reported up to 22% greater CO2 

fluxes for hybrid MDEA/PZ and MDEA/AMP absorbents in comparison with 

values obtained for pure MDEA. The greater performance of blended amine 

absorbents can be explained by the increased reaction rate constants (kR). To 

illustrate, kR for PZ is as high as 15336 (Sun et al., 2005), AMP kR is 955 (Xu et 

al., 2007), whilst MDEA kR is only 3.91 (Ko and Li., 2000). 

Whilst highly concentrated absorbents enhance most reaction kinetics, 

the unsteady performance at the initial stages of operation can be a limiting 

factor that prevents membrane contactors from large-scale, long-term industrial 

applications. One pragmatic solution is to significantly increase gas side 

pressure when the process reaches steady-state. To illustrate, Wang et al. 

(2005) increased gas pressure from 0 to 8.3 kPa, consequently CO2 flux was 

maintained at 90% of the initial flux value. On the other hand, over-pressure on 

the gas side may result in the bubble formation (Dindore et al., 2004). 

Another suggestion is to design larger contactor units aimed to treat gas 

streams under steady-state conditions. This solution, however, increases 

investment and operational costs due to increased amount of membrane 

material and absorbent required. Therefore, the studies undertaken by 

researchers focus on: (i) the identification of compatible absorbents; and (ii) the 

development of novel membranes. 

2.1.2.4.2 Long-term Absorbent Performance 

In order to maintain long-term steady performance, absorbent loading 

capacities and possible interactions between the membrane and absorbent 

solution must be taken into consideration. In general, CO2 loading capacities of 

the commercially available amine absorbents increase in the following order: 
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MEA > DEA > MDEA (Barzagli et al., 2010; Rongwong et al., 2009). The 

tendency of porous membranes being wetted by these solvents decreases in 

the same order, as reflected in liquid surface tension (refer to Table 8, section 

2.1.2.3). On the other hand, amine solutions of high CO2 loading capacity are 

more corrosive (Wang et al., 2004). Consequently, membrane potting and the 

membrane itself are exposed to the attack of chemical absorbent. 

Work conducted by Franco et al. (2009) outlined the fact that amine 

degradation is one of the main problems in amine-based membrane gas 

absorption. Due to amine reaction with CO2, absorbents undergo irreversible 

degradation (Kohl and Nielsen, 1997; Strazisar et al., 2003). The products of 

amine degradation (polymerised carbamates) have high molecular weight and 

subsequently affect liquid viscosity, which may lead to high pressure drop inside 

the module (Franco et al., 2009). Moreover, the exposure of membrane to the 

degraded solvent reduces membrane hydrophobicity. To illustrate, Franco et al. 

(2009) reported a c. 13% lower contact angles for PP membrane exposed to a 

degraded MEA solution (containing oxalic, acetic and formic acids) in 

comparison with fresh MEA. 

Another problem associated with long-term absorption performance is 

the loss of volatile amines from the aqueous solutions, due to gradual 

permeation of volatile compounds through the porous membrane. The 

occurrence of this phenomenon led to a search for alternative non-volatile 

absorbents. For example, Kosaraju et al. (2005) employed a novel absorbent 

polyamidoamine (PAMAM) dendrimer for CO2 scrubbing using PP hollow fibre 

membrane. The employment of highly hydrophobic liquid resulted in consistent 

mass transfers over a period of 55 days. In contrast, mass transfer coefficient 

obtained for MEA solution decreased by c. 40% over a period of 65 days; 

however the addition of fresh MEA to the absorbent solution retrieved the value 

of initial KOV. 
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2.1.2.4.3 Wetting Prevention 

Attempts to eliminate wetting has led to research on ideal interfaces in 

membrane gas-liquid contacting systems. Efforts have been put into fabrication 

of asymmetric membranes that can maintain long-term steady performance. 

New methods of membrane preparation, such as non-solvent induced phase 

inversion separation (NIPS) or coating porous membranes with ultra-thin dense 

layer, have been proposed. For instance, in the work conducted by 

Atchariyawut et al. (2006) PVDF membranes were produced by adding pore 

forming additives to the casting solution. Depending on the additive, the 

membranes contained an outer or inner dense skin layer. It was found that the 

membrane of long “finger-like” shaped pores with ultra-thin outer dense skin 

layer is the most resistant to wetting. Consequently, this membrane was 

characterised by highest overall mass transfer coefficient (3.5 E-05 m.s-1) and 

CO2 flux (c. 1.35 E-03 mol.m-2s-1). To compare, KOV of commercially available 

PVDF membrane, with irregular pore shapes and double dense skin layers, was 

reduced by c. 40%; CO2 flux was reduced by c. 30%. 

In the work conducted by Gugliuzza and Drioli (2007) HYFLON AD 

solution was used to produce highly hydrophobic PVDF membranes with 

contact angles as high as 141°. One of the biggest membrane manufacturers, 

Milipore, provides plasma treated PVDF membranes with super-hydrophobic 

properties, i.e. membrane surface is characterised by the contact angle higher 

than 150°. These modifications result in reliable long-term performance of gas-

liquid contacting systems (Table 13). 
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Table 13. The performance of treated porous membranes in gas-liquid contacting process. 

Membrane Manufacturer Absorbent Contact 

angle 

Selected Parameter 

Reduction 

Run 

time 

Time to reach 

steady-state 

Reference 

   (˚)     

PP Membrana GmbH modified Water 123 Max. 1% reduction in 

contact angle value 

2 min - Yang et al. (2005) 

PP Membrana GmbH modified Water 149 No reduction 2 min - Yang et al. (2005) 

PTFE Milipore, plasma treated 1 M AMP 135* 3% reduction of the 

initial recovery 

30 days 5 days Lin et al. (2009) 

PVDF Home made by NIPS Water - Up to 1% reduction in 

initial flux 

15 days - Atchariyawut et al. (2006) 

PVDF Milipore 1 M AMP 133* 1% reduction of initial 

recovery value 

10 days 10 days Lin et al. (2009) 

PVDF Milipore, plasma treated 1 M AMP 155* No reduction 30 days - Lin et al. (2009) 

*Contact angle for water 
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A few studies emphasised the fact that additional dense skin layer 

increase membrane mass transfer resistance and hence overall mass transfer 

resistance (Li and Teo, 1998; Poddar et al., 1996). However, providing that the 

thickness of membrane coating is less than 10 E-06 m, it doesn’t significantly 

influence the overall mass transfer coefficient (Kreulen et al., 1993). For 

instance, less than 5% increase in membrane mass transfer resistance was 

reported by Xu et al. (2004) when PTFE membranes were coated with thin layer 

of sodium alginate hydrogel. 

The performance of the porous membranes, however, is also determined 

by the symmetry of the porous support and the pore size distribution. The 

former relates to the presence of inner dense skin layers, inside of porous 

polymer matrix, which when present increases membrane mass transfer 

resistance (Gugliuzza and Drioli, 2007). As for the latter, the presence of large 

pores increases the possibility of liquid intrusion into the pores. New techniques 

enabling the formation of membranes with regular shaped and sized pores are 

being developed; e.g. bombarding of polymers with neutrons (Chittrakarn et al., 

2002). 

2.2 Methane Recovery from Liquids 

2.2.1  Principles of Membrane De-gassing 

De-gassing of liquids is a mature technology proven at industrial scale in 

a wide range of applications such as water deoxygenating or removal of 

nitrogen from water used in fish hatcheries. In conventional de-gassing towers, 

trays or random packing provides a contact area between liquid containing 

dissolved gases with a vacuum employed to drive gas release. Porous 

membrane contactors have been used for the same purpose; however, 

membrane technology outweighs the limitations of conventional de-gassing. 

The advantages of membrane de-gassing devices (desorbers) over a 

conventional vacuum towers are analogous to advantages of membrane 

contactors utilised as gas absorbers (see section 2.1.2.1); however, the 

fundamentals of the process differ. In membrane de-gassing, vacuum or sweep 
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gas flows on one side of the membrane wall enabling extraction of dissolved 

gases from the liquid bulk; purified liquid flows on the other side of the 

membrane and is constantly removed in order to enhance concentration-driven 

mass transfer. 

 Porous membrane contactors have been successfully applied for de-

gassing applications at industrial scale, e.g. blood and water deoxygenating. 

Recent pilot-scale studies showed the potential of membrane degassers when 

employed as carbon dioxide desorbers in hybrid absorption-desorption 

installations (Bhide et al, 1998; Simons et al., 2009). This suggests that 

membrane desorbers could be a potential engineering solution for the recovery 

of dissolved methane from anaerobic effluent. However, due to the nature of 

anaerobic liquids, the surface of porous membrane could be strongly affected 

by the presence of solid particles (i.e. membrane fouling) and wetting 

phenomenon. Hence, for this specific application non-porous membranes seem 

to be an optimal solution. 

2.2.2 Selection of Compatible Membranes 

The principle of the de-gassing process using porous and non-porous 

membranes remains the same; the difference lies in the transport of gaseous 

compounds through the membrane. The mass transport across non-porous 

membranes is described by the solution-diffusion model consisting of three 

steps: (i) the dissolution of gas into the non-porous membrane; (ii) the diffusion 

of gaseous compound through the membrane; and finally (iii) re-dissolution of 

gas penetrant into the gaseous phase (Figure 9). 
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Figure 9. Mass transport through non-porous membrane. 

The permeability of gas molecules, P, through the membrane is a 

function of: (i) the solubility of gas in the membrane material, S, and; (ii) gas 

diffusivity through the membrane, D; and can be expressed by the following 

approach: 

                                                        P = SD                                                  (Eq.5) 

The former, S, depends on penetrant affinity to the membrane material. 

The latter, D, depends on the physical properties of the membrane and the 

penetrating molecule. In general, rubbery polymers are much more permeable 

to gases than glassy polymers (Table 14). 
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Table 14. Permeability of gases through rubbery and glassy polymeric membranes. 

 Gas permeability  

Polymer CO2 CH4 O2 N2 Reference 

 (Barrer)  

Silicone rubber 
a
 3200 940 600 280 Bodzek (2000) 

Silicone rubber 
a
 3800 1200 800 400 Merkel et al. (2000) 

Silicone rubber 
a
 4550 1430 781 351 Stern (1994) 

Silicone rubber 
a
 1330 85 - - Tremblay et al. (2006) 

Silicone rubber 
a
 3230 950 620 280 Robb (1986) 

Natural rubber 
a
 130 28 - - Bodzek (2000) 

Natural rubber 
a
 - - 24 - Robb (1986) 

Polypropylene
 b

 - - 1.6 0.3 Bodzek (2000) 

High-density polyethylene
 b

 - - 1.0 - Robb (1986) 

Cellulose acetate
 b

 6.0 0.19 - - Bodzek (2000) 

Cellulose acetate
 b

 4.75 0.15 0.82 0.15 Stern (1994) 

Polysulfone
 b

 4.4 0.16 - - Bodzek (2000) 

Polyimide
 b

 0.2 0.003 - - Bodzek (2000) 

Polyamide
 b

 0.16 0.014 - - Bodzek (2000) 

a
 - rubbery polymer; 

b
 - glassy polymer. 1 Barrer = 10E

-10
 cm

3
STPcm.cm

-2
s

-1
cmHg

-1
. 

The difference in permeability between the two groups of polymers can 

be explained by rigidity of the polymers as reflected in glass-transition 

temperature, Tg, (Table 15). 



36 

Table 15. The glass-transition temperature of rubbery and glassy polymers. 

Polymer Symbol Tg Reference 

  (˚C)  

Poly-di-methyl-siloxane
 a

 PDMS -123 Charati and Stern (1998) 

Poly-propyl-methyl-siloxane 
a
 PPMS -120 Charati and Stern (1998) 

Poly-tri-fluoro-propyl-methyl-siloxane
 a
 PTFPMS -70 Charati and Stern (1998) 

Poly-phenyl-methyl-siloxane
 a
 PPhMS -28 Charati and Stern (1998) 

High-density polyethylelene
 b

 PE-HD -23 Bodzek (2000) 

Polypropylene
 b

 PP -10 Bodzek (2000) 

Polyisopropene
 b

 IR 205.15 Tremblay et al. (2006) 

Matrimix polyimide
 b

 PI 313 Bos et al. (1998) 

a
 - rubbery polymer; 

b
 - glassy polymer. 

With a decrease in Tg, rotational (intrasegmental) mobility of the 

polymeric chains increases, enhancing gas diffusion through the polymeric 

membrane (Charati and Stern, 1998). This phenomenon can be explained by 

the structure of polymers, i.e. the size of surrounding chains attached to the 

main polymer chain. For instance, poly-di-methyl-siloxane (PDMS) has two 

methyl groups attached to the silicone atom. In contrast, in poly-propyl-methyl-

siloxane (PPMS) one of the methyl groups is replaced by bulkier propyl group 

(Figure 10). As a result, the mobility of the bulkier side chain is reduced and 

consequently lower gas diffusivities are observed. 
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Figure 10. Structure of selected polymeric membranes. 

Out of all commercially available rubbery polymers, poly-di-methyl-

siloxane is characterised by the highest chain mobility. This suggests that 

PDMS membranes are the most-suitable materials in terms of achieving highest 

gas permeabilities. 

2.2.3 Diffusion of Methane through PDMS Membranes 

The diffusion mechanism through silicone membranes is usually 

described by “free-volume” theory (Stern, 1994). The “free-volume” 

(microactivity) is an empty space of the polymer matrix surrounded by the side 

chains (Figure 11). The movements of the side chains enable penetration of the 

gas molecules into the polymer. The oscillating gas molecule resides inside of 

the microactivity for a period of time, until the cooperative motions of the 

surrounding side chains open a “pathway” to the next microactivity; in which 

case the molecule “jumps” into the neighbourhood microactivity, providing it is 

not occupied by other gas molecules. 
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Figure 11. Poly-di-methyl-siloxane chain. 

The dynamics of the microactivities depend on the length of the side 

chains, however, the amount and the distribution of fractional “free-volume” also 

plays an essential role in the process of gas diffusion. Work conducted by 

Charati and Stern (1998) enabled the estimation of “free-volume in silicone 

polymers. It was found that the amount of fractional “free-volume” increases 

with chain mobility, and that the distribution of microactivities changes more 

frequently with the decrease in length of side chains, as follows: PDMS ≥ PPMS 

> PTFPMS > PPhMS. In addition, the diffusion coefficient of methane increased 

in the same order, underlining the potential applicability of PDMS membranes 

for dissolved methane recovery (Table 16). Moreover, the diffusivity of carbon 

dioxide through PDMS, another principal compound present in the anaerobic 

effluent, is relatively high, suggesting that simultaneous recovery of both gases 

could be conducted. 
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Table 16. Diffusion coefficients of methane and carbon dioxide through silicone membranes. 

Gas 
Diffusion coefficient Reference 

 E-06 (cm
2
.s

-1
)  

 PDMS PPMS PTFPMS PPhMS  

CH4 24 8.1 5.6 1.2 Charati and Stern (1998) 

CH4 18 - - - Raharjo et al. (2007) 

CH4 12.7 - - - Robb (1986) 

CH4 20.6 - - - Tamai (1994) 

CO2 26 11 5.3 2.0 Charati and Stern (1998) 

CO2 11.0 - - - Robb (1986) 

The variations in the values of diffusivity coefficient through PDMS are due to different process conditions. 

 

2.2.4 Mass Transfer in Non-porous Membranes 

The overall resistance to mass transfer is described by resistances-in-

series model, and for non-porous membranes is expressed by the following 

approach (Aptel and Semmens, 1996): 

                                       
OVK

1
=

Lk

1
+

mkM

1
+

HkG

1
                                      (Eq.6) 

where KOV is overall mass transfer coefficient; (m.s-1); kL, kM, kG are individual 

mass transfer coefficients for liquid, membrane and gas phase, respectively 

(m.s-1); m is the partitioning coefficient of the compound between membrane 

and the liquid phase; H is a distribution coefficient of the compound between 

gas and liquid phase (dimensionless). 

Mass transfer resistance in non-porous membranes depends on 

membrane-permeant compatibility (i.e. the solubility of the compound in the 

membrane material) and the diffusivity of the compound through the membrane. 
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For non-porous hollow fibre membranes, the membrane mass transfer 

resistance is also dependent on the geometry of the module, and can be 

expressed as follows (Cocchini et al., 2002): 

RM =
MM

ioi

M mD

rrr

k

)/ln(1
                                          (Eq.7) 

where RM  is membrane mass transfer resistance (s.m-1); ri is the inner radius of 

the hollow fibre; ro is the outer radius of the hollow fibre (m); DM is the diffusivity 

coefficient of the permeant through the membrane (m2.s-1); mM is partitioning 

coefficient of the compound between the membrane and liquid solution 

(dimensionless). 

Experimental measurement of membrane resistance can be determined 

by plotting overall mass transfer resistance (1/Kov) against VL
-α (Wilson, 1915): 

 

                                             
mk

cV
K M

L

ov

11



                                        (Eq. 8) 

 
 
where c represents a constant; α is an empirical constant that provides the best 

straight line; intercept represents membrane resistance. 

The mass flux across the membrane is expressed by the following 

approach (Cussler, 1984): 

                                                J = KOV (C-C*)                                              (Eq.9) 

where J is the mass flux (mg.m-2.s-1); C is the concentration of the compound in 

the bulk liquid (mg.L-1); C* is the equilibrium concentration of the compound in 

the gas phase (mg.L-1). 

2.2.4.1 Mass Transfer Correlations 

Mass transfer correlations enable the prediction of membrane 

performance under various hydrodynamic conditions and aid engineering 
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design of the membrane modules in order to achieve highest process 

efficiencies. In general, and for membrane systems in particular, mass transfer 

correlations are expressed by the following approach: 

                                             Sh = a Re b Sc c                                               (Eq.10) 

where a, b, c are the values dependent on the operating conditions and the 

geometry of the membrane module. 

 Sherwood number (Sh) is a function of mass diffusivity (KOV.dh) and 

molecular diffusivity (D), and is expressed by the following equation: 

                                                    Sh = 
D

dK hOV                                            (Eq.11) 

where dh is the hydraulic diameter of the shell or the lumen side, dependent on 

the module characteristics and operational mode. 

 Reynold’s number enables the comparison of dynamic similarity of 

different membrane systems, and is expressed as follows: 

                                                    Re = 


hVd
                                             (Eq.12) 

where V is the fluid velocity (m.s-1);   is the density of the fluid (kg.m-3);  is the  

viscosity of the fluid (Pa.s). 

 Schmidt number is a function of kinetic viscosity of the fluid and 

molecular diffusivity, represented by the following equation: 

                                                      Sc = 
D


                                              (Eq.13) 

A number of mass transfer correlations, strongly dependent on the 

operation regime (i.e. lumen or shell feed mode), hydrodynamics of the system, 

geometry of the module and properties of the employed fluids have been 

developed (Table 17). However, whilst these correlations can predict the mass 
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transfer, the models are inappropriate for the prediction of membrane 

performance under unsteady conditions (e.g. different temperatures and inlet 

concentrations).
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Table 17. Mass transfer correlations for transfer of volatile compounds through polymeric membranes. 

Process Membrane Mode Correlation Model validity Reference 

Organic/aqueous 

extraction 

Non-porous Lumen feed Sh = 0.0225 Re
0.8

Sc
0.33

 500 < Re < 5000 Doig et al. (1999) 

Organic/aqueous 

extraction 

Non-porous Shell feed Sh = 0.0408 Re
0.8

Sc
0.33

 500 < Re < 5000 Doig et al. (1999) 

Water deoxygenating Non-porous Lumen feed Sh = 1.615 ((dh/L)ReSc)
 0.33*

 Re < 2000 Tan et al. (2005) 

Water deoxygenating Non-porous Shell feed Sh =3.228 Re
0.5632

Sc
0.33

 Re < 10 Tan et al. (2005) 

Water deoxygenating Porous Shell feed Sh = 0.53 Re
0.53

Sc
0.33

 21 < Re < 324 Costello et al. (1993) 

CO2 absorption Porous Shell feed Sh = 0.39 Re
0.59

Sc
0.33

 1.4 < Re < 5.3 Ferreira et al. (1998) 

Water deoxygenating Porous Shell feed Sh = 1.25 Re
0.93 

(dh/L)
 0.93

Sc
0.33

 Re (de/L) < 1000 Yang and Cussler (1986) 

Pervaporation of 

chloroform/water 

solutions 

Porous with 

dense skin layer 

Shell feed Sh = 0.89 Re
0.48

Sc
0.33

 1 < Re < 100 Crowdwer and Cussler (1998) 

 is hollow fibre module packing density; * Levaque solution (Levaque, 1928). 
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3 Methodology 

3.1 Headspace Gas Chromatography Analysis 

3.1.1 Headspace Gas Chromatography 

In the present study, concentration measurements were conducted by 

headspace gas chromatography (HS-GC) was applied. The method enables the 

identification and quantitation of light volatiles and semi-volatiles (e.g. methane, 

carbon dioxide) dissolved in the liquid. Chemical compounds partitioned from 

liquid into the headspace are injected into a previously calibrated gas 

chromatograph. The concentration of the solutes is determined from the 

chromatogram peak. 

3.1.2 Materials 

Methane and carbon dioxide at 5, 24.97, 49.97 and 74.99 vol.% in 

balance with nitrogen (Scientific Technical Gases Ltd, UK) were utilised as 

standards. Helium of 99.996 vol.% purity (BOC, UK) was used as the GC carrier 

gas. 

3.1.3 Standard Preparation 

Methane and carbon dioxide liquid standards were prepared by filling a 

22.7 mL (±0.02 mL) glass vial with de-ionised water such that no bubbles were 

present. The samples were sealed with chlorobutyl/PTFE caps (Chromacol, UK) 

and left overnight to reach laboratory temperature (19.5 0.5 C). The 

headspace was created by replacing 5 mL of water with 5 mL of calibration gas 

of known concentration, using simultaneously two 10 mL glass tight syringes 

(SGE, Australia). The samples were shaken on a centrifuge at 2060 rpm for 7 

minutes and left overnight for 13-16 hours enabling gas equilibration. Extracted 

gas was manually injected into the gas chromatograph using 1 mL gas tight 

syringe (SGE, Australia). Both the gas and liquid standards were analysed 5 
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times. CH4 and CO2 recovery was determined from previous calibration of the 

chromatograph. 

3.1.4 Method Development and Validation 

The bubble extraction method was adapted from Walsh and McLaughlan 

(1999) with optimisation of the bubble equilibrium time and agitation technique. 

Five sample replicates (n = 5) were prepared with a model gas containing 24.97 

vol.% methane in balance with nitrogen. 

To estimate equilibrium time, samples were generated according to the 

procedure described in section 3.1.3 and analysed within the range of time from 

0 to 25 hours. Methane saturation occurred and remained stable after 13.5 

hours (Figure 12). Under the experimental conditions, i.e. T=19 C, p=1.013 

Bar, dissolved methane concentrations were 20.88 mg.L-1 (0.22). To compare, 

Yamamoto et al. (1976) obtained the value of 20.8 mg.L-1. To ensure 

equilibrium has been reached, standards and real samples have been left for 

14+ hours. 
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Figure 12. Methane concentration as a function of bubble equilibrium time. 

The degree of agitation required to maximise recovery from the liquid 

phase standards was evaluated by variations in shaking time and shaking 

speed. Once    shaking     time     exceeded    3.5 minutes, recovery remained    

stable (Figure 13a). To ensure consistency in recovery, a time of 7 minutes 

(double that of the initial identified point of optimum recovery) was adopted. 
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Figure 13. Methane concentration as a function of: (a) agitation time; (b) agitation speed. 

The effect of agitation speed was established by increasing centrifuge 

shaking speed. Once shaking speed exceeded 500 rpm, recovery remained 

stable enabling 80 5% methane recovery (Figure 13b). Maximum speed of 

2060 rpm, resulting in the lowest standard deviation of 1.7%, was chosen to 

ensure consistency in recovery. 

The method was validated by evaluating linearity, accuracy and 

repeatability of the results according to the procedure described by Kim et al. 

(2006). The extraction efficiency was estimated within the range of 5 - 74.99 

CH4 vol.% (Table 18). 

Table 18. The linearity and accuracy of the developed method (n = 5). 

Solute Solute 

concentration 

(vol.%) 

Correlation 

coefficient 

Intercept Average 

recovery 

(%) 

Average 

SD 

(%) 

Detection 

limits 

(vol.%) 

CH4 5.0 – 74.99 0.9997 0.1144 80 0.79 1.2 

 

The intercept of 0.9997 validated the precision of the method. The 

standard deviations (SD) were greater at higher gas concentrations; for 
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instance SD at 5% injected gas volume was 0.96% whilst for 75% injected 

volume exceeded the value of 2.2%. 

3.1.5 Calibrations 

Gas and liquid CH4 and CO2 calibration curves were obtained with an 

average of peak area ratios from replicates. The linearity was determined in the 

range 0.99 - 74.99 vol.% and 5 - 74.99 vol.% for CH4 and CO2, respectively 

(Figure 14a and b). 
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Figure 14. Calibration curves determined from standard gases for: (a) methane (b) carbon 

dioxide. 

 For standard gases, correlation coefficients (R2) were higher than 0.997; 

relative standard deviations varied between 0.5-2%.  
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Figure 15. Calibration curves determined from 5 mL of standard injected into the water: (a) 

methane liquid phase; (b) carbon dioxide liquid phase. 

(b) (a) 

(b) (a) 



48 

 Standard solutions of dissolved methane and carbon dioxide were 

prepared according to the procedure described in section 3.1.3. Obtained 

calibration curves (Figure 15a and b) were used to quantify concentrations of 

gases in real samples. The curves were linear with correlation coefficients 

higher than 0.99 and relative standard deviations up to 2.6% for methane and 

7.5% for carbon dioxide. 

3.1.6 Instrumentation 

Sample analysis was conducted on 200i Series GC (Cambridge 

Scientific Instruments, UK) fitted with a thermal conductivity detector (Figure 

16a) and CTR I Concentric Packed Column (Alltech, UK). A CTR is a column 

within a column enabling separation of the volatile chemical compounds (Figure 

16b). The outer column (6ft x 1/4”), packed with activated molecular sieve, 

allowed separation of oxygen, nitrogen and methane; inner column (6ft x 1/8”), 

packed with porous polymer mixture allowed separation of methane and carbon 

dioxide. 

 

 

Figure 16. Head-space gas chromatography: (a) gas chromatograph; (b) CTR I concentric 

column enabling separation of the mixture of the extracted solutes. 

 The retention times for carbon dioxide, oxygen, nitrogen and methane 

were 0.82, 1.7, 2.18 and 3.52 minutes, respectively. Helium gas at 5.0 psi was 

used as a carrier gas; oven temperature was held isothermal at 100 C; 

detector and injector temperature were set up at 120 C. 

Activated Molecular Sieve 

Porous Polymer Mixture 

(a) (b) 
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3.1.7 Quantitation of Dissolved Gases by Gas Chromatography 

 Dissolved gases concentration was calculated using a mass balance 

approach (Hartley and Lant, 2006): 

                                L

GGLGG

L
Vol

VolXVolVolX
X 12

1

)( 




                               (Eq.14) 

where XL1 the concentration of dissolved gas in solution (mg.mL
1
); XG1 is the 

concentration of gas in headspace before shaking (mg.mL
1
); XG2 is the 

concentration of gas in headspace after shaking and at equilibrium (mg.mL
1
); 

VolG is the volume of headspace (mL); VolL is the volume of liquid in the vial 

(mL);  is Bunsen solubility coefficient for each specific gas, depended on the 

temperature. 

 The volume of the vial was determined by mass difference before and 

after filling the vial with the sample: 

                                               VolV =
L

EF MM



)( 
                                       (Eq.15) 

where VolV is the volume of vial (mL); MF  is the mass of liquid filled vial, and 

cap (mg); ME is mass of an empty vial and cap (mg); L is the solution density at 

experimental temperature (mg.mL-1). 

Volume of headspace gas was determined as follows: 

                                        Vol G =Vol V -Vol L                                         (Eq.16) 

                                             Vol L =
L

EL MM




                                   (Eq.17) 

where ML is the mass of the capped vial filled with liquid, with headspace 

created above the liquid solution (mg). 
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3.2 PDMS De-gassing Module 

3.2.1 Module Fabrication 

Poly-di-methyl-siloxane (PDMS) pre-oxide tubes (Sterilin, UK) were 

utilised as hollow fibre membranes and housed inside of the poly-vinyl-chloride 

(PVC) clear tube (International Plastic Systems Ltd, UK). As the module 

performance relies on the bonding forces between potting material and: (i) 

PDMS hollow fibres; (ii) PVC shell; it was crucial to identify temperature and 

pressure resistant adhesives. Prior to module construction several resins have 

been tested to ensure strong bonding characteristics as any leak could lead to 

the intrusion of one phase into another, resulting in false experimental data. 

PDMS fibres were fixed inside a PVC module shell using rubber sealant 

(Dow Corning S.A., Belgium) and epoxy resin (Crystal Resin, Gedeo, UK) 

mixed with polyolefin primer (Loctite 770, Henkel, Germany). A 3 mm thick layer 

of Blu Tack (Bostik, UK) was utilised to separate silicone rubber from the resin 

at the potting end. Araldite (Huntsman Advanced Materials, USA) was used to 

seal the T-piece and socket connectors (Pipeline Centre Plastics, UK) to PVC 

module shell (Figure 17). Prior to use the developed module was tested for gas 

and liquid leaks. 

 

 

Figure 17. Poly-di-methyl-siloxane membrane module. 

PDMS fibres Blu Tack 
Crystal Resin and 

polyolefin primer 
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3.2.2 Module Characteristics and Post-treatment 

Once the optimal potting method was chosen, membrane modules were 

built for specific synthetic and anaerobic application. Three different membrane 

modules were tested in order to identify the impact of membrane wall thickness 

and module packing density on methane recovery (Table 19). 

Table 19. PDMS module characteristics used for extraction of methane from synthetic and 

anaerobic liquors. 

Experiments Module Wall 

thickness 

Outside 

diameter 

Inside 

diameter 

Number 

of fibres 

Module 

length 

Contact 

area 

  (mm) (mm) (mm) (-) (m) (m
2
) 

Synthetic 1 0.25 3.7 3.2 13 0.62 0.094 

Synthetic 2 1.0 5.2 3.2 7 0.81 0.093 

Anaerobic 3 1.0 5.2 3.2 10 0.85 0.139 

 

To avoid membrane clogging de-ionised water at 720-780 mL.min-1 flow 

rate was pumped through the module for 3 minutes before and after each set of 

experiments. 

3.3 Synthetic Experiments 

3.3.1 Water Saturation 

To produce a synthetic anaerobic solution the method from Walsh and 

McLaughlan (1999) was adapted. De-ionised water (ELGA, UK) in equilibrium 

with air was used, and 99.995% pure CH4 and 99.8% pure CO2 (BOC, UK), 

passed through the liquid at various CH4/CO2 compositions to saturate prior to 

use (Figure 18). The aspirator tank (Fisher Scientific, UK) was filled with 22 L of 

de-ionised water, leaving 2 L of headspace above and rubber stopper was used 

to seal the system (Figure 19a). Methane and carbon dioxide gases were 
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introduced through tube 1 and 2, respectively. Tube 3 connected the saturator 

with a glass jar enabling gas withdrawn to avoid over-saturation of the liquid as 

pressure increased in the system. During all experimentation tube 3 was kept 

below the water level in the glass jar to ensure no air entered the system. 

 

Figure 18. Water saturation experimental set-up. 

To enhance mass transfer of gaseous solute into the water, a magnetic 

stirrer (Model SB161, Stuart, UK) was placed at the bottom of the saturator. 

Positive gas flow was kept through all the experimentation to ensure gases 

equilibration in liquid. 

 

 

 

 

Figure 19. Equipment used for water saturation with methane and/or carbon dioxide: (a) water 

saturator; (b) sparging head. 

MFC 

MFC 

Saturated liquor 
CH4 CO2 

Tube 3 

Tube 2 

Tube 1 
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Saturator 

Gas out 

(a) (b) 
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Pure gases or a binary mixture of CH4/CO2 was introduced into the liquid 

at total flow of 0.6 L.min-1. Water saturation at 19 C occurred after c. two hours 

when present in isolation, resulting in concentrations of 21 mg.L-1 for CH4 

(Figure 20a) and 1642 mg.L-1 for CO2 (Figure 20b). The obtained results are in 

agreement with data reported by Yamamoto et al. (1976) and Weiss (1974) for 

CH4 and CO2, respectively. 
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Figure 20. Methane and carbon dioxide saturation in water: (a) 100 vol.% methane and 50:50 

vol.% methane in balance with carbon dioxide; (b) 100 vol.% carbon dioxide and 50:50 vol.% 

carbon dioxide in balance with methane. 

3.3.2 Experimental Rig Set-up 

3.3.2.1 Sweep Gas De-gassing 

Water containing various concentrations of the solutes, was introduced 

into the shell side of the PDMS membrane module via a peristaltic pump (624s, 

Watson Marlow, UK) at flow rates varying from 4 mL.min-1 to 780 mL.min-1. 

Nitrogen gas with a purity > 99%, generated from compressed air using a dense 

gas separation membrane (McAdam and Judd, 2008), was applied as a 

stripping medium enabling extraction of dissolved gases (Figure 21). The gas 

flow rate was controlled in the range of 0.2 L.min-1 to 21 L.min-1 using a needle 

valve flow gauge (RS Components, UK); the gas pressure was measured with 

pressure transducers (Sensit, Roxspur Measurement and Control Ltd, UK). 

 100 vol.% CH4 

50:50 vol.% CH4:CO2 
 

 

 100 vol.% CO2 

50:50 vol.% CO2:CH4 
 

 

(a) (b) 
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Figure 21. Experimental set-up for synthetic sweep gas de-gassing; gas was introduced into the 

lumen side while liquid was introduced counter-currently into the shell side. 

The outlet gas flow was measured using a 50 mL soap film bubble flow 

meter (Restek, UK). Liquid and gas samples were collected in pre-evacuated 

sealed vials after three retention times. Based on the hydraulic conditions 

tested, steady-state was reached between 1-120 minutes, dependent upon 

liquid velocity. Collected samples were analysed by gas chromatography via 

manual injection of 1 mL volume of the sample headspace into the 

chromatograph sampling port. 

3.3.2.2 Vacuum De-gassing 

Vacuum conditions were generated by connecting a vacuum pump 

(Model no: 420-1902, Thermo Scientific, UK) onto one side of the membrane 

module and creating a dead end on the other side (Figure 22). A needle valve 

(Swagelok, UK) enabled regulation of the vacuum pressure within a range 0 to 

308 mBars. Water containing dissolved gases was introduced into the shell side 

counter-currently to the vacuum. Liquid flows varied from 6 mL.min-1 to 780 

mL.min-1. 
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Figure 22. Experimental set-up for synthetic vacuum de-gassing; gas was introduced into the 

lumen side while liquid was introduced counter-currently into the shell side. 

One of two variables, i.e. liquid flow rate or vacuum pressure, was kept 

constant, enabling identification of the optimum mass transfer characteristics 

under vacuum operational mode. Samples were collected according to the 

procedure described in the section 3.3.2.1. 

3.4 Anaerobic Experiments 

3.4.1 Expanded Granular Sludge Blanket (EGSB) Reactor 

Effluent was taken from a parallel experiment on anaerobic sewage 

treatment conducted at Cranfield University’s sewage treatment works. Over the 

period of operation, the wastewater feed comprised an average of 360 

mgtCOD.L-1, 161 mgsCOD.L-1, 210 mgBOD.L-1 and 123 mgTSS.L-1 (n = 15). 

The EGSB reactor (Figure 23) comprised a cylindrical vessel with a 42.5 L 

working volume, 1.5 m hydraulic depth and 0.19 m diameter (Paques, The 

Netherlands). A three-phase separator was integrated for retention of 

particulates and comprised a two-stage lamella clarifier and subsequent 

overflow weir. The hydraulic retention time (HRT) was maintained at 9.4 hours 

resulting in a total chemical oxygen demand (tCOD) loading of 0.9 kgCOD m-
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3.d-1. In addition, the EGSB design incorporated an external recirculation pump 

(620s, Watson Marlow, UK) to maintain upflow velocity independent of HRT at 

1.2 m.h-1. The EGSB reactor was seeded with 25 L of granular sludge from a 

paper mill. 

 

Figure 23. Expanded Granular Sludge Blanket reactor. 

The EGSB was operated for 248 days in total. The data reported within 

this study represents a cumulative experimental period of 57 days. During the 

experimental period, temperature averaged 16 °C (±1 °C). Gas flow rate was 

consistently recorded using a micro wet-test gas volume meter (TG01, Ritter, 

Bochum, Germany) and gas composition monitored using a portable infra-red 

analyser (LMS Xi G2, Gas Data Limited, Coventry, UK). 

3.4.2 General Analytical Parameters 

Total and soluble COD were analysed using Merck Spectroquant cell 

tests with subsequent detection by spectrophotometry. Reactor temperature 

was monitored using an on-line sensor (Endress and Hauser, Germany) and 

manual temperature readings of the effluent recorded daily. 
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3.4.3 Experimental Rig Set-up 

Anaerobic effluent comprising dissolved methane and carbon dioxide 

was pumped into the shell side of the membrane module (Module 3; Table 19, 

section 3.2.2) using a peristaltic pump (624s, Watson Marlow, UK). Liquid flow 

rate was controlled in the range of 40 mL.min-1 to 780 mL.min-1 (liquid velocity, 

VL, 0.0033 m.s-1 to 0.064 m.s-1). Nitrogen sweep gas was introduced counter-

currently into the membrane lumen. Gas flow rate was controlled in the range of 

0.6 L.min-1 to 15 L.min-1 (gas velocity, VG, 0.125 m.s-1 to 3.11 m.s-1) using a 

needle valve flow gauge (RS Components, UK). Three retention times passed 

prior to sampling to ensure steady-state had been reached. Based on the 

hydraulic conditions tested, steady-state was reached between 0.3 minutes and 

5.7 minutes, dependent upon VL.  

 Under vacuum operational conditions, liquid flow rates were kept in the 

range 0.6 L.min-1 to 15 L.min-1. Vacuum pressure was generated using vacuum 

pump (Model no: 420-1902, Thermo Scientific) and varied from 0.0 kPa to 30.8 

kPa. Prior to sampling steady-state conditions has been reached. 

 For the experimental set-up, please refer to the section 3.3.2. 

3.4.4 Developing the Sampling Technique 

Prior to real sample collection, two sampling methods were considered: 

(Method 1) slow vial filling with the liquid so no bubbles occur, followed by 

sample sealing and laboratory based headspace generation (Walsh and 

McLaughlan, 1999); (Method 2) capping the glass vial and evacuating the 

sealed system prior to sample collection (Alberto et al., 2000). The accuracy of 

the sampling technique (Table 20) was determined through the on-site sample 

collection, followed by analytical analysis described in section 3.1.3.  



58 

Table 20. Precision of the sampling method in real sample for lowest and highest liquid flow 

rate. 

 Method 1 Method 2 

QL CH4 conc. SD (n=10) CH4 conc. SD (n=10) 

(mL.min
-1

) (mg.L
-1

) (mg.L
-1

) (mg.L
-1

) (mg.L
-1

) 

6 12.2 0.3 12.3 0.2 

780 6.7 1.4 12.3 0.3 

 

The estimated methane content at low liquid flow rates (6 – 80 mL.min-1) 

was equivalent for either Method 1 or Method 2. For higher liquid flow rates 

(100 – 780 ml.min-1), the value obtained via Method 1 dropped by c. 55% 

compared to Method 2. In addition, when sampling by Method 1, standard 

deviations were magnified by c. 21% at high liquid flow rates. This can be 

explained by equilibrium disruption while filling the vial with liquid at high flows. 

As the Method 2 enabled more precise sampling, it was chosen as an 

on-site sampling technique. Capped vials were pre-evacuated using a vacuum 

pump (Capex L2C, Charles Austin Pumps, UK) allowing vacuum generation up 

to 280 mBar. Vacuum conditions enabling 5 mL headspace creation were 

established at maximum pump flow rate QL 8.0 L.min-1, and occurred after 15 

seconds (Figure 24a and b). 
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Figure 24. Gas headspace obtained by Method 2: (a) headspace as a function of evacuation 

time; (b) liquid and gas phase in sealed vials as a result of evacuation time. 

The samples were collected in triplicate via in-situ needle injection through 

the septum; the created suction pressure enabled liquid intake into the vial and 

further chromatography analysis. Prior to real sample analysis, gas and liquid 

standards were injected into GC in triplicate. 
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4 Results and Discussion 

4.1 Methane Recovery from Synthetic Liquids 

4.1.1 The Effect of Liquid Hydrodynamic Conditions on Pure 

Methane Recovery 

In order to estimate mass transfer characteristics, a series of 

experiments were performed. Firstly, the significance of liquid hydrodynamic 

conditions on pure methane recovery was investigated. Water saturated with 

methane passed through the shell side of the membrane module at velocities 

varying from 0.00017 to 0.0472 m.s-1 (Re 1.3 - 344); sweeping gas or vacuum 

was applied counter-currently as a stripping medium. In sweep gas operation 

the highest process efficiency of 93% was recorded under the lowest VL tested 

at 0.00036 m.s-1 (Figure 25a), equivalent to 2.1 (SD ±0.6) mg.L-1 CH4 as an 

outlet concentration (Figure 25b). Analogous results were obtained under 

vacuum conditions, i.e. the highest extraction efficiency of c. 78 % was recorded 

under lowest VL of 0.0017 m.s-1, equivalent to 4.0 (SD ±1.3) mg.L-1 CH4 as an 

outlet concentration. In both operational modes, process efficiency decreased 

by c. 88% and c. 46% (sweep gas and vacuum mode, respectively) at the 

highest liquid velocity tested. This indicates that recovery efficiency is 

proportional to the liquid retention time in the module shell side. At low liquid 

velocities the developed liquid phase boundary layer facilitates gas build up 

near the membrane surface; this develops a concentration gradient across the 

PDMS membrane and consequently enhances methane diffusivity through the 

membrane. At higher VL, methane dissolution into the membrane decreases 

due to reduced liquid retention time, subsequently resulting in lower gas 

diffusivity. Ito et al. (1998) and Tan et al. (2005) similarly observed higher 

removal efficiencies at lower liquid velocities when using PDMS hollow fibre 

membrane contactors for de-oxygenation of water. 

In terms of methane molar fluxes, no significant differences between 

sweep gas and vacuum de-gassing were recorded under liquid velocities below 
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0.0061 m.s-1 (Re 44). For intermediate VL of 0.024 m.s-1 (Re 175) the recorded 

CH4 molar fluxes in sweep gas operation increased by c. 80% to the value of 

0.031 mol.m-2.s-1; vacuum operation resulted in c. 95% greater CH4 molar flux, 

equivalent to 0.037 mol.m-2.s-1. When employing the highest VL of 0.0472 m.s-1, 

the vacuum operation resulted in 81% higher CH4 molar fluxes, in contrast with 

values of 0.09 mol.m-2.s-1 obtained in sweep gas operation (Figure 25c). 
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Figure 25. Pure methane recovery from water as function of liquid velocity: (a) methane removal 

efficiency; (b) methane outlet concentrations; (c) methane molar flux.  Sweep gas, VG = 0.033 

m.s
-1

;  Vacuum, Pvac = 24 mBar. 

(a) 

(b) 

(c) 
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Significant differences in CH4 fluxes and recoveries obtained under 

highest VL for the two operational modes can be explained by the sensitivity of 

the process to the concentration of dissolved gas in the liquid feed. To 

demonstrate, when employing water containing 36.2 (SD ±3.9) mg.L-1 of 

dissolved methane, the obtained methane fluxes reached 0.48 mol.m-2.s-1 

(vacuum mode at highest VL). The inlet methane concentration in sweep gas 

operation at the highest VL was 26.7 (SD ±0.8) mg.L-1; hence the obtained CH4 

fluxes considerably dropped to the value of 0.09 mol.m-2.s-1. However, it is 

worth noting that employing highest VL in sweep gas operation resulted in c. 

13% greater CH4 outlet concentration in comparison with the vacuum mode. 

This unexpected change in the trend is a result of data normalisation, i.e. 

methane outlet concentration is not normalised by the inlet gas concentration as 

in case of removal efficiency and molar flux. 

Whilst concentration gradient strongly influences methane permeability 

through the PDMS membrane, liquid ambient temperatures are likely to affect 

the response of the PDMS material with respect to methane fluxes and 

recoveries. In this study, the recorded process temperatures at the lowest VL in 

vacuum operation were up to 8 C lower than the temperatures observed in 

sweep gas mode (Table 21). Such high temperature gradient has a significant 

impact on gas permeability through the PDMS membrane. For instance, 

Raharjo et al. (2007) reported methane permeability of 1200 Barrers at 25 C; 

10 C rise in the temperature increased methane permeability through PDMS by 

c. 8%. Similar methane behaviour in PDMS films was reported by Pinnau and 

He (2004). 
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Table 21. Example process temperatures on the inlet and outlet of the PDMS membrane 

module in sweep gas and vacuum operation. 

Stripping 

medium 

VL TIN TOUT Season 

 (m.s
-1

) (C) (C)  

Sweep gas 0.00036 19 17 Autumn 

 0.0242 19 18 Autumn 

 0.0472 19 19 Autumn 

Vacuum 0.00017 19 9 Winter 

 0.0242 19 13 Winter 

 0.0472 19 19 Winter 

 

Based on the hydrodynamic conditions tested, steady-state was reached 

between 1 minute (lowest VL) and 86 minutes (highest VL), equivalent to Re 1.3 

and 344, respectively. In the winter season, an increase in hydraulic retention 

time (i.e. at the lowest VL) resulted in a significant liquid temperature drop of 10 

C at the outlet of the membrane module. In contrast, in warmer seasons liquid 

outlet temperatures differed by max. 2 C between the lowest and highest VL. 

High liquid outlet temperatures positively affected process efficiency, 

consequently greater methane recoveries at the highest liquid velocities were 

observed. To demonstrate, at constant CH4 inlet concentrations of 28.33 mg.L-1 

(SD ±1.16) and average outlet temperatures of 18 C (±1) in sweep gas 

operation CH4 recoveries were proportional to the decrease in liquid velocity. 

When employing vacuum, liquid ambient temperatures at the highest VL were 6 

C greater than the temperatures at the intermediate VL of 0.0242 m.s-1; 

consequently c. 66% increase in CH4 removal efficiency in comparison with 

moderate liquid velocity was observed. 
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Overall, the observed trends indicate that methane recovery increases 

with decreasing liquid hydrodynamics and strongly depends on methane 

concentrations in the inlet stream and liquid ambient temperatures. 

It is worth noting that in the liquid de-gassing processes the lumen feed 

operation mode is often preferred over the shell feed (Tan et al., 2005). In the 

shell side feed, distribution of fluid along the fibres broadens the residence time 

of the fluid particles, enhanced at low liquid velocities. At high liquid velocities, 

mass transfer is enhanced due to the shorter residence time of the fluid 

particles at the boundary layer (i.e. increase in concentration driving force). This 

effect is even more noticeable for low fibre packing densities ɸ (ɸ 3-40%). The 

mass transfer coefficients increase with greater packing densities until the 

values of ɸ 65-70% are obtained. Further increase in ɸ results in the formation 

of ‘dead zones’ between the closely packed fibres and consequently lower 

mass transfer coefficients are obtained. By introducing the liquid into the lumen 

these undesired phenomena are diminished (Stanojevic et al., 2003). In this 

study, however, the shell-feed was employed due to the possibility of lumen 

blockage by suspended solids. 

4.1.2 The Effect of Gas Hydrodynamic Conditions on Pure Methane 

Recovery 

In a second step, a series of experiments enabling the estimation of the 

stripping medium effect (i.e. nitrogen sweep gas or vacuum) on methane 

recovery was undertaken. The effect of sweep gas velocity was evaluated over 

the range 0.033 - 2.39 m.s-1 (Re 7.3 - 529) at a constant liquid velocity of 

0.0061 m.s-1 (Re 44). Methane recovery remained unchanged at a relatively 

consistent 36% methane removal, equivalent to 18.5 mg.L-1 (SD 0.9) CH4 

outlet concentrations (Figure 26a and b). The observed methane fluxes through 

the PDMS membrane also remained independent of sweep gas velocity (Figure 

26c). The independence of transfer as a function of gas velocity indicates that 

mass transfer is not governed by the gaseous phase boundary layer, which has 

been reported previously for other partially soluble gases (Tan et al., 2005). 
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This observation can be explained by the low partial pressure of methane in the 

nitrogen sweep gas; the highly dilute permeate stream maintains the 

concentration gradient such that gas mass transfer resistance is negligible. 

Alternatively, sweep gas operation may be replaced by vacuum 

operation (Figure 26d, e, f). In this study, a low applied vacuum pressure, PVAC, 

< 15 mBar has been demonstrated to achieve > 76% methane recovery under 

an intermediate liquid velocity of c. 0.0061 m.s-1 (Re 44). At the lowest (most 

efficient) liquid velocity of 0.00036 m.s-1 (Re 2.6) and PVAC < 15 mBar, the 

recorded methane extraction efficiencies exceeded 88%. The application of the 

lowest VL positively affected dissolved methane recovery and indicates that 

soluble gas permeation through PDMS membrane is controlled by both 

dynamics: vacuum pressure and liquid velocity. 
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Figure 26. Effect of gas hydrodynamic conditions on pure methane recovery in a shell-feed 

operational mode. Sweep gas, VG = 0.033 m.s
-1

: (a) CH4 removal efficiency; (b) CH4 outlet 

concentration; (c) CH4 molar flux. Vacuum, Pvac = 24 mBar: (d) CH4 removal efficiency; (e) CH4 

outlet concentration; (f) CH4 molar flux.   VL = 0.0061 m.s
-1

;  VL = 0.00036 m.s
-1

. Removal 

efficiency is defined as follows: (((cIN-cOUT)/cIN)*100%); where cIN is the gas inlet concentration 

(mg.L
-1

); cOUT is the gas outlet concentration (mg.L
-1

). 

(a) (d) 

(b) (e) 

(c) (f) 
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4.1.3 Dissolved Gases Recovery from Binary CH4/CO2 Mixtures 

Whilst this study introduces the concept of dissolved methane recovery 

from liquids, carbon dioxide is also present as a principal component of the 

headspace gas. Due to high CO2 solubility in liquids (i.e. CO2 is c. 75 times 

more soluble in water than CH4), CO2 losses in the liquid phase are significant. 

To evaluate the impact of carbon dioxide presence on methane recovery, water 

saturated with a binary CH4/CO2 mixture within the concentration range from 25 

to 75 vol.% CH4 in balance with CO2 was employed as a synthetic solution. 

Liquid containing dissolved gases passed through the shell side of the 

membrane module at velocities ranging from 0.00036 to 0.0472 m.s-1 (Re 2.6 - 

344), whilst sweep gas (Figure 27a, b, c) or vacuum (Figure 27d, e, f) 

introduced counter-currently enabled dissolved gases recovery. In both 

operational modes an increase in CO2 concentration in the feed mixture 

generally resulted in greater CH4 recoveries. To illustrate, when employing 

75:25 vol.% CH4:CO2 binary mixture under vacuum operation at the lowest VL, 

the recorded CH4 removal efficiency reached the value of 72.2% and increased 

to 81.2% and 84.9% when 50:50 vol.% and 25:75 vol.% CH4:CO2 mixture was 

employed, respectively (Figure 27d). The effect was further intensified at 

intermediate and high liquid velocities, i.e. VL > 0.0242 m.s-1 (Re > 176). For 

instance, CH4 removal efficiency significantly increased by 64% when 

employing 25:75 vol.% CH4:CO2 mixture in comparison with removal efficiency 

obtained for pure CH4 (equivalent to 91% decrease of CH4 concentration in the 

retentate stream). However, in terms of CH4 molar fluxes, an increase in CO2 

concentration in the feed solution resulted in considerably lower methane 

fluxes. To demonstrate, the obtained molar flux values for pure CH4 solution at 

highest VL reached 0.48 mol.m-2.s-1; when employing 25:75 CH4:CO2 mixture 

CH4 molar flux decreased by 99% (Figure 27f). This indicates that methane 

permeability through the PDMS is governed by concentration gradient across 

the membrane. 
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Figure 27. Effect of liquid velocity on methane recovery in pure and binary systems. Sweep gas, 

VG = 0.033 m.s
-1

: (a) CH4 removal efficiencies; (b) CH4 outlet concentrations; (c) CH4 molar 

fluxes. Vacuum, Pvac = 24 mBar: (d) CH4 removal efficiencies; (e) CH4 outlet concentrations; (f) 

CH4 molar fluxes.100 vol.% CH4; 75:25 vol.% CH4:CO2; 50:50 vol.% CH4:CO2; 25:75 

vol.% CH4:CO2. Removal efficiency is defined as before. 

(e) (b) 

(f) (c) 

(d) (a) 
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Employing 25 - 100 vol.% CO2 mixtures in balance with methane 

enabled the estimation of CO2 permeation behaviour when present in binary 

CO2/CH4 mixtures. The operational conditions (i.e. VL, VG, Pvac) were the same 

as reported above for CH4/CO2 binary systems. As expected, maximum CO2 

recoveries in pure systems were recorded at lowest liquid velocities and 

reached the value of c. 64% and 31% for sweep gas and vacuum operation, 

respectively (Figure 28a and d); equivalent to 0.7 (SD ±0.17) g.L-1 and 1.0 (SD 

±0.04) g.L-1 CO2 as the outlet concentrations. The same effect was observed 

when introducing binary mixtures, i.e. CO2 recoveries were found to decrease 

up to 98% of the initial value with an increase in liquid velocity. When increasing 

the amount of dissolved methane in the feed stream, CO2 outlet concentrations 

were found to decrease (Figure 28b and e). To illustrate, when present as 75:25 

vol.% CO2:CH4 mixture under sweep gas operation, CO2 outlet concentration 

reached 0.77 (SD ±0.31) g.L-1. In contrast, when 25:75 CO2:CH4 vol.% solution 

was employed, the recorded CO2 outlet concentration was 0.45 (SD ±0.04) gL-1. 

It is worth noting that at high VL > 0.045 m.s-1 (Re > 328) in vacuum 

mode, pure CO2 molar flux was up to 56% lower in comparison with CO2 molar 

fluxes obtained for model binary CO2:CH4 mixtures (Figure 28f). This 

observation can be explained by previously discussed process dependency on 

liquid ambient temperatures and inlet gas concentrations. The obtained results 

indicate that the CO2 recovery process is a function of developed CO2 gradient 

concentration across the membrane wall and dissolved methane do not 

influence CO2 permeability through PDMS membrane. 
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Figure 28. Effect of liquid velocity on carbon dioxide recovery in pure and binary systems. 

Sweep gas, VG = 0.033 m.s
-1

: (a) CO2 removal efficiencies; (b) CO2 outlet concentrations; (c) 

CO2 molar fluxes. Vacuum, Pvac = 24 mBar: (d) CO2 removal efficiencies; (e) CO2 outlet 

concentrations; (f) CO2 molar fluxes.100 vol.% CO2; 75:25 vol.% CO2:CH4; 50:50 vol.% 

CO2:CH4; 25:75 vol.% CO2:CH4. Removal efficiency is defined as before. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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4.1.4 The Effect of Membrane Wall Thickness on Dissolved Methane 

Recovery 

To determine the impact of PDMS membrane wall thickness (tm) on 

dissolved methane recovery, two synthetic modules of comparable contact area 

of 0.094 m2 (SD ±0.0007) were employed: Module 1 with tm of 0.25 mm and 

Module 2 with tm of 1.0 mm. Since sweep gas hydrodynamics do not affect 

methane extraction efficiency, nitrogen sweep velocities were kept constant at 

VG of 0.033 m.s-1 (Re 53), whilst liquid velocities ranged from 0.00036 m.s-1 to 

0.0472 m.s-1 (Re 2.6 to 439). When utilising Module 1, recorded process 

efficiencies under the lowest (most efficient) VL reached 93%, equivalent to 2.1 

(SD ±0.06) mg.L-1 as an outlet CH4 concentration. In contrast, employing 

Module 2 the obtained CH4 removal efficiency decreased to 87%, equivalent to 

2.9 (SD ±0.07) mg.L-1 of CH4 in the retentate stream (Figure 29a and b). The 

effect was further increased at liquid velocities exceeding 0.0024 m.s-1 (Re 20), 

i.e. when employing Module 2 methane recoveries decreased by c. 79% in 

comparison with the recoveries obtained for Module 1.  In terms of CH4 molar 

fluxes, significantly higher values were recorded for Module 1. For instance, at 

intermediate and high VL (Re 176 - 439), CH4 molar fluxes were 0.12 mol.m-2.s-1 

and 0.02 mol.m-2.s-1 for module Module 1 and Module 2, respectively (Figure 

29c). 
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Figure 29. Pure methane recovery from water as function of liquid velocity for thin and thick wall 

de-gassing membrane modules: (a) methane removal efficiency; (b) methane outlet 

concentrations; (c) methane molar flux.  tm = 0.25 mm;  tm = 1.0 mm; VG = 0.033 m.s
-1

. 

Removal efficiency is defined as before.. 

The effect of membrane wall thickness on the overall mass transfer was 

determined using the Wilson plot approach (Eq. 8). The overall mass transfer 

(a) 

(c) 

(b) 
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resistance (1/Kov) was experimentally obtained from CH4 mass flux (Eq. 9) and 

plotted against VL
-0.33 (Figure 30a and b). 
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Figure 30. Wilson   plot  for  pure  methane  -  nitrogen  sweep  system:  (a)  tm = 0.25 mm;  

(b)  tm = 1.0 mm. VG = 0.033 m.s
-1

. 

Membrane resistance obtained for Module 2 with tm of 1.0 mm was 18% 

greater in comparison with the resistance obtained for Module 1 with tm of 0.25 

mm. Doig et al. (1999) similarly observed up to 70% decline in 1/Kov when 

membrane thickness increased from 0.25 mm to 1.0 mm, whilst extracting 

solutes from organic solvents using silicone rubber. This indicates that the 

thickness of the membrane wall limits methane diffusion through the PDMS 

material. Because of increased membrane resistance (proportional to an 

increase in membrane thickness), diffusivity of methane through the PDMS 

membrane decreases due to increased distance the diffusing methane 

molecule has to pass through. The overall mass transfer coefficients at the 

lowest VL (Re 2.6) were 1.03 E-05 m.s-1 for tm of 0.25 mm and 7.29 E-06 m.s-1 

for tm of 1.0 mm. In contrast, Kov values at highest VL (Re 344 and 439 for 

Module 1 and Module 2, respectively) increased by c. 63% and c. 70%. 

Significantly greater Kov values at higher Reynold’s numbers were also reported 

by Cocchini et al. (2002); to illustrate, increasing Re from 565 to 3565 

corresponded to c. 60% increase in Kov (equivalent to 3.35 E-05 m.s-1). Critical 

liquid velocity, above which mass transfer across the membrane had no 

significant effect on the overall mass transfer coefficient, was estimated at 

0.0061 m.s-1, equivalent to Re 44 (Figure 31). 

(a) (b) 
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Figure 31. Relative mass transfer coefficient in pure methane – nitrogen sweep system as a 

function of Reynold’s number.   tm = 0.25 mm; (b)  tm = 1.0 mm. VG = 0.033 m.s
-1

. 

4.1.4.1 Determination of Liquid Phase Mass Transfer Resistance 

The effect of sweep gas phase on the overall mass transfer is negligible; 

thus the impact of VL on liquid phase mass transfer resistance (1/kL) can be 

estimated from 1/Kov and previously determined membrane resistance; 

therefore overall mass transfer resistance is given by: 

                                                 
mkkK MLov

111
                                         (Eq.18) 

 In both modules liquid phase resistance decreased with increasing liquid 

hydrodynamics (Figure 32). To demonstrate, the obtained 1/kL at VL of  0.00036 

m.s-1 was 48200 s.m-1, contributing to 50% of the overall mass transfer 

resistance; increasing VL to 0.0472 m.s-1 reduced 1/kL to 9940 s.m-1 and 

contributed to 17% of the overall resistance (tm of 0.25 mm). For module with tm 

of 1.0 mm and VL < 0.0061 m.s-1 liquid phase mass transfer resistance 

significantly increased by up to 62% in comparison with tm of 0.25 mm; 

consequently contributing to 57% of the 1/Kov. Cocchini et al. (2002) similarly 

observed greater 1/kL at lowest liquid velocities as a result of increased 

thickness of liquid phase boundary layer. 
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Figure 32.  Liquid   phase   mass   transfer   resistance  as  a  function  of   Reynold’s  number. 

 tm = 0.25 mm; (b)  tm = 1.0 mm. VG = 0.033 m.s
-1

. 

4.1.5 Sherwood Number Correlations 

To evaluate the impact of liquid hydrodynamics on Sherwood number 

(expressing overall mass transfer coefficient) liquid saturated with CH4 was 

introduced into the shell of the Module 1; vacuum was employed counter-

currently at Pvac of 24 mBar. At the lowest liquid Re of 1.3 experimentally 

obtained Kov was 1.82 E-06 m.s-1 (equivalent to Sh of 7.4); in contrast, at the 

highest Re of 344 Kov values of 102 E-06 m.s-1 were achieved (Sh 335). 

Experimental data were compared with the correlations obtained from the 

literature (see Table 17; section 2.2.4.1). The results obtained in this study fit 

between models developed by Crowder and Cussler (1998) and Tan et al. 

(2005); (Figure 33). The non-linearity of the experimentally obtained data is a 

result of the strong influence of the liquid ambient temperatures on Schmidt 

number. Sc number is a function of physical properties of the liquid and the 

diffusivity of the gas in the liquid that strongly depends on the temperature. To 

demonstrate, Sc at 9 °C was 556; 8 °C increase in the water temperature 

resulted in 22% decrease in Sc number. Based on this conclusion, it can be 

assumed that the correlation developed by Crowder and Cussler (1998) 

enables the closest prediction of the experimental data. 
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Figure 33. Sherwood number as a function of Reynold’s number on a log-log scale for shell feed 

operation; Pvac = 24 mBar.           Costello et al. (1993);          Crowder and Cussler (1998);                                                                                                       

Ferreira et al. (1998);         Tan et al. (2005). 

4.2 Methane Recovery from Low Temperature Anaerobic 

Effluent 

4.2.1 Methane Loss in Anaerobic Effluent 

Removal of COD within the Expanded Granular Sludge Blanket (EGSB) 

reactor averaged 64 9% (n = 15) for the period studied. A methane gas flow 

rate of c. 4.6 L.d-1 was recorded which resulted in a methane yield of c. 0.21 

L.gCOD-1. This result is in agreement with the low temperature study of Uemura 

and Harada (2000) that reported a yield of 0.23 L.gCOD-1. The yields reported 

are below the theoretical ratio of 0.35 L.gCOD-1 (Tchobanoglous et al., 2003) 

and can be directly attributed to the raised solubility state of methane gas at low 

operating temperatures. 

 An average dissolved methane concentration of 25.4 mg.L-1 was 

recorded in the effluent. For comparison, according to Henry’s law, the 

predicted dissolved methane concentration at the effluent temperature of 16 C 

is 21.9 mg.L-1. This disparity between measured and predicted results indicates 

methane supersaturation of the anaerobic effluent by a factor of 1.57. Hartley 

and Lant (2006) recently summarised data from a number of anaerobic studies 

(Table 22) and established supersaturation factors of between 3.8 and 6.9. The 
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significance of this result is that on average, c. 45% of the produced methane 

exits the reactors in the effluent. 

Based on the biogas methane fraction, a potential net electrical 

production of +0.14 kWhe.m
-3 treated effluent is achievable (after accounting for 

the parasitic electrical demand based on 32% electrical efficiency), 

demonstrating that the EGSB is energy positive. The resultant carbon reduction 

is therefore estimated as +0.06 kg.m-3 based on a release of 0.43 kg.kWh-1 of 

grid electricity (DEFRA, 2007). However, using the global warming potential 

(GWP) factor for methane (IPCC, 2007), the fugitive methane emission 

accounts for a carbon equivalent emission of -0.53 kg.m-3 indicating that at this 

operating temperature, without recovery of the dissolved methane, the EGSB is 

currently carbon negative. 
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Table 22. Methane mass balances from several low temperature anaerobic pilot studies. 

 Total CH4 production    

Average 

temperature 

Biogas Effluent Average CH4 loss in 

the effluent 

Degree of 

supersaturation 

Reference 

(C) (g.d
-1

) (g.d
-1

) (%) (-)  

29 0.3 1.6
a,b

 85 3.8
a
 Noyola et al. (1988) 

18 16.7 62.3
a,b

 79 5.0
a
 Barbosa and Sant’ Anna (1989) 

28 12.9 72.0
a,b

 85 6.9
a
 Singh et al. (1996) 

16 0.34-2.1 0.27-1.36
a,b

 39 - Uemura and Harada (2000) 

16 (1) 3.1 2.8 (0.9) 45 (8.5) 1.57 This study 

a
Data collated from Hartley and Lant, 2006. 

b
Losses calculated theoretically using COD mass balance. 
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4.2.2 Dissolved Methane Recovery 

The EGSB effluent passed from the reactor separator into a buffering 

storage tank prior to discharge to drain. During this brief transition, the dissolved 

methane concentration reduced from 25.4 mg.L-1 to 12.2 (7) mg.L-1. Effluent 

from the buffering tank was pumped into the shell side of the Module 3. During 

the first set of experiments, gas velocity was maintained constant at 0.175 m.s-1 

(Re 37) and liquid velocity varied between 0.0033 m.s-1 (Re 47) to 0.064 m.s-1 

(Re 886). The highest efficiency of 72% was recorded at the lowest liquid 

velocity (Figure 34a). With increasing liquid velocity, methane recovery 

efficiency decreased to 9.5% (c. 87% of the initial value). 
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Figure 34. Methane removal efficiency as a function of: (a) liquid velocity, VG = 0.175 m.s
-1

; (b) 

sweep gas velocity, VL = 0.0125 m.s
-1

. Effluent containing 95:5 vol. % CH4:CO2. run 1; 

run 2; run 3. 

The effect of sweep gas velocity was evaluated using gas velocities 

ranging from 0.125 m.s-1 (Re 26) to 3.11 m.s-1 (Re 651) at a constant liquid 

velocity of 0.0125 m.s-1 (Re 173). Methane recovery remained practically 

unchanged at a relatively consistent c. 20% methane removal (Figure 34b). The 

observed trends are consistent with the results obtained for the synthetic 

experiments: (i) mass transfer is controlled by liquid hydrodynamics; (ii) 

independence of methane transport from gas velocity indicates that mass 

transfer is not governed by gas phase boundary layer. 

(a) (b) 
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Based on the optimum conditions determined in this study (influent 12.2 

mg.L-1 of CH4, 72% recovery), the net electrical output achieved by the EGSB 

could increase from +0.14 kWhe.m
-3 to +0.183 kWhe.m

-3. In addition, the 

resultant carbon balance for electrical production (CO2e) and fugitive emissions 

are +0.08 kg.m-3 and -0.07 kg.m-3 respectively and indicate that by integrating 

methane recovery, treatment of domestic wastewater using low temperature 

EGSB processes can become carbon positive. In practice, an increase in the 

proportion of electrical energy produced from recovered methane is anticipated, 

since the losses in this study between the separator and the buffer tank of c. 

52% were not accounted for. Using these data and the same recovery factor, 

electrical output will increase to +0.229 kWhe.m
-3, yielding a further positive 

carbon return of +0.1 kg.m-3 (net +0.03 kg.m-3). 

4.2.3 Downstream Gas Quality and Re-use 

At the lowest liquid velocity of 0.0033 m.s-1 (highest process efficiency), 

CH4 mass flux of 0.35 mg.min-1 was observed. At the applied nitrogen sweep 

gas flow rate (QG) of 0.85 L.min-1, the purity of the recovered methane in the 

gas phase was c. 0.06 vol.% (Figure 35). At the highest liquid velocity, whilst 

lower methane recovery was achieved, a higher CH4 flux of 2.34 mg.min-1 was 

observed; equivalent to 0.41 vol.% of methane in the permeate stream (Figure 

36). 

 

Figure 35. Methane mass balance across PDMS membrane for the lowest VL of 0.0033 m.s
-1

 

(QL= 0.04 L.min
-1

); VG = 0.175 m.s
-1

 (QG= 0.85 L.min
-1

). 
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Figure 36. Methane mass balance across PDMS membrane for the highest VL of 0.064 m.s
-1

 

(QL= 0.78 L.min
-1

); VG = 0.175 m.s
-1

 (QG= 0.85 L.min
-1

). 

Alternatively, sweep gas operation may be replaced by vacuum 

operation (Figure 37). In this study, low applied vacuum pressure, PVAC, < 20 

mBar have been demonstrated to achieve reasonable methane recovery of 

55% at an intermediate liquid velocity of c. 0.0056 m.s-1 (Re 91). In contrast, 

maintaining the identical liquid hydrodynamics and temperatures, sweep gas 

operation resulted in c. 25% lower methane removal efficiency. Tan et al. (2005) 

similarly reported c. 33% lower oxygen removal in sweep gas mode when 

utilising silicone membranes. 
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Figure 37. Methane removal efficiency as a function of vacuum pressure; VL = 0.0056 m.s
-1

. 

Effluent containing 95:5 vol.% CH4:CO2. 

Whilst the comparative parasitic energy demand of the two operational 

modes requires further investigation, vacuum mode offers the potential to 

deliver much higher recovered gas purities (Vallieres and Favre, 2004). 

However, in this study, CH4 content in the permeate stream was only 0.004 



83 

vol.%; equivalent to 0.46 mg.min-1 CH4 mass flux (Figure 38). Highly diluted 

permeate stream, when operating in the vacuum mode, is a result of: (i) low 

applied liquid velocities and; (ii) relatively high vacuum flow rate. 

 

Figure 38. Methane mass balance across PDMS membrane for the most-efficient vacuum 

pressure of Pvac = 14 mBar (Qvac= 0.2 L.min
-1

); VL = 0.0056 m.s
-1

 (QL= 0.068 L.min
-1

). 

To increase the suitability of the gas phase for re-use, the methane 

permeate stream must be highly concentrated. Rate limiting conditions need to 

be established to further maximise gas quality and minimise the impact of gas 

mass transfer; this may be achieved by: (i) recirculation of the sweep 

gas/vacuum or; (ii) reducing gas flow rate to increase gas purity. In the first 

case, the installation would require re-design and an additional pump would add 

to the overall operational cost. In the latter case, when lowering gas flow rate to 

QG of 0.01 L.min-1 at liquid flow rate of 0.78 L.min-1, methane content in the 

permeate stream would increase to 26 vol.%. To compare, when operating at 

QG of 0.85 L.min-1, the recorded methane content was 0.41 vol.%. However, it 

would be necessary to determine the impact of gas phase mass transfer 

resistance on the process efficiency when operating at very low QG. 

4.3 Maximising Methane Recovery 

Highest methane efficiency recoveries were obtained at the lowest liquid 

velocities < 0.00036 m.s-1 (Re < 2.6). A critical liquid velocity, above which 

process efficiencies decreased significantly, was established at VL of 0.0024 

m.s-1 (Re 18). Although low liquid velocities favour dissolved methane recovery, 

high liquid velocities offer a potential to deliver much higher methane fluxes per 

minute of operation. However, to maintain efficient performance at high VL, 
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significant amounts of methane exiting the system have to be reduced. One 

pragmatic solution may be to configure PDMS contactors in series; this would 

permit high methane fluxes and similar overall recoveries, provided the number 

of contactors required could be optimised. Assuming consistent recovery, the 

additional number of membrane contactors minimises the amount of dissolved 

methane exiting the system in the retentate stream. To illustrate, when 

theoretically employing three contactors in series, at the lowest VL of 0.00036 

m.s-1, the achieved overall CH4 recovery could be as high as 99.97%; 

equivalent to 0.01 mg.L-1 of CH4 in the retentate stream (Figure 39). 

 

Figure 39. Methane outlet concentrations for PDMS modules in series assuming c. 93% 

removal efficiency for every contactor; VL of 0.00036 m.s
-1

. 

For intermediate liquid velocities of 0.0061 m.s-1, reasonable overall 

methane recovery of 76% was possible, equivalent to 6.7 mg.L-1 of CH4 in the 

exiting liquid stream. To achieve the same recoveries at highest VL, (i.e. highest 

methane fluxes) the number of the employed contactors would have to be 

significantly increased to +10. Another suggestion is to significantly increase 

membrane contact area and module packing density. This can be done by 

employing greater number of PDMS hollow fibres of thinner inner diameter and 

membrane wall. This would provide much larger membrane surface for 

methane to dissolve in and diffuse through PDMS fibres. 

Based on the maximum recovery achieved in this study (93%) and 

assuming no methane losses during the transition from reactor separator to the 

storage tank, recovery of 3.5 L.day-1 of CH4 from anaerobic liquid is possible. 

Recovered CH4 can be then directed to the biogas stream and upgraded to 

natural gas standards via porous hollow fibre membrane contactors. Assuming 

+95% absorption efficiency (Bottino et al., 2006; Mavroudi et al., 2003; Yeon et 

al., 2005), flow rate of 7.7 L.day-1 of CH4 is possible, increasing the amount of 
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upgraded CH4 by c. 44% in comparison with values obtained without CH4 

recovery. In this particular case, the incorporation of desorption and absorption 

membrane units into the UASB plant can be achieved relatively easily, in 

contrast to conventional desorption and absorption columns. Due to the limited 

space available and highest removal efficiencies obtained under low liquid flow 

rates, conventional equipment is not feasible.  
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5 Conclusions 

5.1 Synthetic Mixtures 

A poly-di-methyl-siloxane hollow fibre membrane contactor was applied for 

de-gassing of water saturated with pure CH4 and binary CH4:CO2 mixture. The 

obtained results demonstrate that: 

(i) Methane recovery is controlled by gas diffusivity within the membrane 

material; maximum methane recovery was recorded at lowest liquid 

velocity when utilising contactor with the thinnest wall. 

(ii) Under optimum liquid hydrodynamic conditions a maximum de-

gassing efficiency of 93% was achieved. 

(iii) Methane recovery is dependent on the applied vacuum pressure; 

highest efficiencies were observed under the lowest vacuum 

pressure. 

(iv) De-gassing of liquids is not governed by sweep gas velocity. 

(v) Simultaneous recovery of carbon dioxide was possible; recovery of 

88% was recorded under lowest liquid velocities. The presence of 

dissolved carbon dioxide has no effect on methane diffusion through 

the PDMS membrane. 

5.2 Anaerobic Liquids 

The potential for de-gassing low temperature anaerobic wastewater effluent 

has been demonstrated. 

(i) On average, c. 45% of the produced methane is released in the 

dissolved form in the EGSB process effluent.  

(ii) A maximum de-gassing efficiency of 72% with respect to dissolved 

methane was achieved. 
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(iii) On the gas side, low methane purity was observed and indicates that 

further work is required to facilitate efficient re-use. 

(iv) Dissolved methane recovery could increase net energy production 

from low temperature anaerobic processes by c. +0.13 kWh m-3 and 

shift the net carbon footprint to net positive. 

(v) The potential of integrating de-gassing contactor and membrane 

absorber into wastewater treatment flowsheet has been 

demonstrated; c. 44% greater methane flow rate in the upgraded 

biogas stream is possible with dissolved methane recovery. 

(vi) Further experimental work is required to validate the long-term impact 

of biofouling on the process performance. In a future study, the 

employment of lumen feed mode could result in enhanced mass 

transfer. This option, however, will require the utilisation of a filter 

prior to liquid introduction into the fibre lumen in order to remove the 

larger suspended solids.  

(vii) The subsequent economic analysis should encompass the following 

aspects: methane loss in the anaerobic effluent, downstream gas 

purity and its potential re-use, energy loss by the incorporation of a 

pump into the process, cost and lifetime of the PDMS module.  
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