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Abstract

An aerodynamic shape optimisation capability based on a discrete adjoint solver for Navier-
Stokes flows is developed and applied to a Blended Wing-Body future transport aircraft.
The optimisation is gradient-based and employs either directly a Sequential Quadratic Pro-
gramming optimiser or a variable-fidelity optimisation method that combines low- and
high-fidelity models. The shape deformations are parameterised using a Bézier-Bernstein
formulation and the structured grid is automatically deformed to represent the design chan-
ges. The flow solver at the heart of this optimisation chain is a Reynolds averaged Navier-
Stokes code for multiblock structured grids. It uses Osher’s approximate Riemann solver
for accurate shock and boundary layer capturing, an implicit temporal discretisation and
the algebraic turbulence model of Baldwin-Lomax. The discrete Navier-Stokes adjoint
solver based on this CFD code shares the same implicit formulation but has to calculate
accurately the flow Jacobian. This implies a linearisation of the Baldwin-Lomax model.
The accuracy of the resulting adjoint solver is verified through comparison with finite-
difference.

The aerodynamic shape optimisation chain is applied to an aerofoil drag minimisation prob-
lem. This serves as a test case to try and reduce computing time by simplifying the fidelity
of the model. The simplifications investigated include changing the convergence level of
the adjoint solver, reducing the grid size and modifying the physical model of the adjoint
solver independently or in the entire optimisation process. A feasible optimiser and the use
of a penalty function are also tested. The variable-fidelity method proves to be the most ef-
ficient formulation so it is employed for the three-dimensional optimisations in addition to
parallelisation of the flow and adjoint solvers with OpenMP. A three-dimensional Navier-
Stokes optimisation of the ONERA M6 wing is presented. After describing the concept
of Blended Wing-Body and the studies carried out on this aircraft, several aerodynamic
optimisations are performed on this geometry with the capability developed in this thesis.
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Chapter 1

Introduction

1.1 Background on aerodynamic optimisation

The aerospace industry has integrated Computational Fluid Dynamics (CFD) within the
design process of aircraft and wings for about three decades. Within the past decade or
so CFD has become an indispensable tool that is taking increasing importance alongside
costly wind tunnel experiments. The advantage of CFD is that it offers several levels of
approximation of the equations of fluid motion that are suited for different stages of the
design process:[1,2] fast and simple tools such as the panel method are used for the con-
ceptual design; medium fidelity codes, solving the full potential or the Euler equations for
example, can be employed in the preliminary design phase; while high-fidelity and com-
putationally expensive codes such as Reynolds Averaged Navier-Stokes solvers are kept
for the detailed design and analysis.

Aerodynamic optimisation concerns automating parts of this well-established aerodynamic
design process. Its aim is to help the aerodynamicist who, up to now, was doing repeti-
tive tasks such as calculating the flow around a geometry to assess its performance, mod-
ifying this geometry to get improved performance, assessing the new geometry by an-
other flow solution to see if the design has been improved and so on until the best possible
shape within the available resources (man power, computing time, flow solver accuracy) is
found. This can be called an iterative analysis design process. Aerodynamic optimisation
is the automation of such a task by coupling the CFD solver to an optimiser that seeks the
best possible shape using the information it receives from the flow solver.

Aerodynamic optimisation can be performed at several stages of the design process. Cheap
aerodynamic optimisation methods involving panel codes for example are used in the con-
ceptual phase, generally associated to other disciplines to form a Multidisciplinary Design
and Optimisation (MDO) capability.[3] More expensive higher-fidelity aerodynamic opti-
misation methods are employed for the detailed design, generally on their own as part of a
pure aerodynamic exercise. One of the aims of this thesis is to develop such a high-fidelity
method.

1
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Aerodynamic optimisation started more or less at the same time as CFD but, at that time in
the late 1970s - early 1980s, the methodology employed and the computing power avail-
able made it impossible to use in practice. At the end of the 1980s Jameson[4] developed
a new methodology i.e. the adjoint method, that greatly reduced the computing time re-
quired. This started a growing interest that is culminating today with the introduction of
aerodynamic optimisation based on the adjoint method into the industrial environment. In
References [5,6], aerodynamic optimisation is employed in the design of a racing aircraft.
It is used for the design of a regional jet aircraft in Reference [7] and of several transonic
wings in Reference [6]. Finally supersonic transport aircraft are also designed with such
methods.[8,9]

At the beginning of this work, every aerospace company in Europe had its own adjoint
method for aerodynamic optimisation or was in the process of developing it: in no par-
ticular order, Rolls-Royce, QinetiQ and BAE Systems were supporting some work done
at Oxford University on a three-dimensional optimisation method for Navier-Stokes flows
based on a discrete adjoint method;[10,11] BAE Airbus UK[12,13] and Dassault Aviation[14,15]

both had a three-dimensional continuous adjoint solver for a viscous/inviscid interaction
method; Airbus France was developing a three dimensional Euler discrete adjoint capabil-
ity;[16] NLR had a continuous adjoint method for two-dimensional Navier-Stokes optimi-
sation;[17] Saab Aerospace had a three-dimensional inviscid continuous adjoint solver.[18]

This proves the industrial relevance of such shape optimisation methods as well as the rel-
ative novelty of the present work aimed at developing a three-dimensional adjoint capa-
bility for Navier-Stokes flows that few possess. The next section gives more details about
the goals of the present work.

1.2 Objectives and novelty of the thesis

This thesis has two objectives: to develop an aerodynamic optimisation method based on
a discrete adjoint solver for three-dimensional Navier-Stokes flows and to apply this ca-
pability to the optimisation of a Blended Wing-Body (BWB) aircraft.

Within the first objective, the main task is the development of the discrete adjoint solver
based on an existing three-dimensional Reynolds averaged Navier-Stokes flow solver. The
novelty in this work is coming from the use of Osher’s numerical scheme in the flow solver
that will be employed in the adjoint code. In the flow solver this is used for accurate shock
and boundary layer capturing and it is believed that employing the same technique in the
adjoint solver will produce gradients that are very accurate for industrial problems involv-
ing shock waves and boundary layers. The other aspect of novelty is coming from the
turbulence model employed in both the flow and adjoint solvers i.e. the algebraic model
of Baldwin-Lomax. The author only knows one other reference[19] using this model for an
adjoint solver. The main problem to overcome is that differentiation of such a model has to
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Figure 1.1: Schematic diagram of the optimisation process developed in this work.

be accurate. Its main advantage is that this algebraic turbulence model is cheap to calculate
while relatively accurate for attached wing flows and enables viscous turbulent flows to be
addressed at a reduced cost compared to other turbulence models. This is very important
since three-dimensional geometries in turbulent flows will be optimised and computing
time is a big issue in such cases.

The other objective of this thesis is to optimise the three-dimensional shape of a BWB
with this adjoint-based optimisation method. This in itself is novel: little work has been
reported so far on the aerodynamic design of a BWB[20,21] and the author has no knowledge
of any reference about a high-fidelity shape optimisation of such a novel aircraft.

1.3 Outline of the thesis

The optimisation process developed in this work is presented schematically in Figure 1.1.
The process is iterative and is governed by the gradient-based optimiser that sits at the bot-
tom of this diagram. The optimiser determines the design changes to make. These are fed
into a grid updating program that modifies the grid around the baseline geometry accord-
ing to these design changes. The new CFD grid is used by the flow solver to calculate the
flow solution sent to the adjoint code and also to output the aerodynamic coefficients used
by the optimiser. On the other branch, the adjoint solver calculates the gradient of these
aerodynamic coefficients from the CFD grid and the flow solution and sends them to the
optimiser. From this information this latter determines the new design changes to make
and the loop is started again until the optimum is found. Each of the boxes in this diagram
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will be described in detail in one of the chapters of this thesis. It thus serves as a backbone
for what is presented in Chapter 3 to Chapter 6.

The outline of the thesis is as follows: Chapter 2 presents the existing aerodynamic optimi-
sation methods through a literature survey. This essentially describes gradient-based meth-
ods and ways to calculate the gradient. This will explain why the adjoint approach is more
efficient than other non-adjoint methods and thus why it is chosen for this work. Chap-
ter 3 gives some information about optimisation in general and then details the two SQP
algorithms used as optimisers in this work. It also describes the variable-fidelity optimisa-
tion method employed for all the three-dimensional optimisations of this thesis. Chapter 4
presents the existing parameterisation techniques before concentrating on the one used
here i.e. the Bézier-Bernstein parameterisation. It then explains how this is used in three
dimensions. The grid deforming algorithm is then described after reviewing existing tech-
niques. A differentiation of this algorithm leads to the calculation of the grid sensitivities
needed by the adjoint solver. Chapter 5 describes the flow solver MERLIN employed in
this thesis. This is a thorough description since the differentiation of this code leads to the
adjoint solver presented in the next chapter, Chapter 6. This latter comes back to the de-
scription of the adjoint method by detailing the two possible approaches: the discrete or
the continuous methods. It is useful to explain why the discrete approach is chosen in this
work. A description of the derivation of the adjoint solver follows. Now that all the pieces
of the optimisation chain have been presented, they are put together and optimisation can
begin. Results for a two-dimensional aerofoil optimisation are shown in Chapter 7. This
serves as a test case for the method: several parameters such as convergence levels, grid
size, physical models or optimiser are changed to try and make the optimisation method as
efficient as possible. Chapter 8 then presents optimisation results in three dimensions. It
starts by explaining how the flow and adjoint solvers are parallelised to reduce perceived
computing time. The Navier-Stokes optimisation of the ONERA M6 wing is then detailed.
After giving some background information on the BWB, several optimisations on this ge-
ometry are described. Finally Chapter 9 concludes this thesis by summarising the main
achievements and gives some indications for future work.



Chapter 2

Literature review

The aim of this chapter is to present the diverse methods currently used to perform aerody-
namic optimisation, and to give the preliminary reasons for choosing the particular method
employed in this work. The methods of aerodynamic optimisation can be globally classi-
fied depending on the type of optimisation method they are using. Be it for aerodynamic
optimisation, structural optimisation or even financial optimisation, the optimiser requires
some information on the objective function and its relationship with the design space in
order to find the optimum design point. These requirements dictate what the rest of the
optimisation process will be.

The most widely used, certainly for historical reasons because when computing perfor-
mances were very limited they were the only possible choice, are gradient-based optimi-
sation methods. These methods require, as their name indicates, the evaluation of the gra-
dient of the objective function. This class of aerodynamic optimisation method will be
described in the first part of this chapter and can also be divided into finite-difference meth-
ods, complex variable methods, Automatic Differentiation methods and quasi-analytical
methods.

The aerodynamic optimisation methods that are not gradient-based include the response
surface technique and genetic algorithms. These methods which will be described in the
second part of this chapter, gained some popularity over the last decade because they can
take full advantage of developments in computing sciences especially parallel computing.

Before starting the description of each method, it is necessary to point out that each of them
will not be presented in detail, the aim of this chapter being to show that techniques other
than the adjoint method exist. Likewise, the references cited in this chapter do not consti-
tute an extensive literature review of each method, they are only references encountered
by the author during this study. This is particularly true for the response surface and the
genetic algorithms methods that constitute on their own a very extensive field.

5
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2.1 Gradient evaluation for aerodynamic optimisation
methods

Chapter 3 will describe in detail the mathematical formulation of a gradient-based opti-
miser for which the gradient or vector of sensitivity derivatives of the objective function

is required i.e. the vector composed of
� �
����� where

�
is the aerodynamic objective func-

tion and
���

one of the design variables. Depending on the way this term
� �
��� � is computed,

four classes of methods can be distinguished: the finite-difference method, the complex
variable method, the Automatic Differentiation method and the quasi-analytical methods.
Among this latter class, two categories exist: the direct differentiation method and the ad-
joint method. All of these methods are described independently below.

2.1.1 Finite-difference methods

The calculation of sensitivity derivatives by a finite-difference method, also called divided
differences, is the simplest and most obvious method. It comes from the definition of a
derivative. Two main methods are normally used: one-sided (forward or backward) dif-
ferencing where the sensitivity derivative is approximated by

� �
��� ���

� � ��� ��� � ��� � � � �� �
and central differencing where

� �
��� ���

� � � � ��� � ��� � � � � ��� � �� �
Here � is a small incremental step and � � is the

�
th unit vector of the design space

base. It has to be noticed that the central-difference method (2nd order) should be more
accurate than the one-sided difference method (1st order) but it is also more expensive, at
least when the gradient in several directions at the same point is desired, because in the
one-sided method the value

� � � � is common to all derivatives and has to be calculated
only once.

Finite-difference methods are simple because they only require the calculation of the
objective function at different design points and any analysis code can do that. Hence
one can perform some design optimisation with existing CFD codes without modifying
them. This is the main advantage of the method. Because of its simplicity, this technique
was the first to be used historically in aerodynamic optimisation[22–24] and was inherited
from structural optimisation. However two major drawbacks quickly appear when using
finite-difference methods for aerodynamic optimisation, that might be alleviated when
considering structural optimisation due to the different nature of the equations to be solved.
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The first drawback is that finite-difference methods are very time-consuming. Indeed, cal-
culating the complete gradient of the objective function

�
requires NDV+1 flow calcula-

tions for the forward-difference method, where NDV is the number of design variables,
and 2

�
NDV when using central-differencing. It might not be a problem when using low-

fidelity analysis codes such as panel method codes because flow solutions can be run in a
few seconds but when using high-fidelity codes such as Reynolds averaged Navier-Stokes
codes or even Euler codes, it becomes prohibitive. Indeed a complete optimisation pro-
cess will require at least 20 cycles with, each time, one gradient calculation and about 5
additional flow solutions for the line search, and NDV is usually taken between 20 and
100. Hence a minimum of 520 flow solutions are needed for a forward-difference method
and, when each flow solution requires an hour or more CPU time to be run, the procedure
is clearly not viable.

This problem is further amplified by the fact that the flow solutions need to be well
converged. Indeed as we will see shortly, the step size � is often very small and hence,
in order that the difference

� � � � ��� � � � � � � � is of significance, both solutions at
�

and at
� � ��� � must be well converged. However the computing time problem is slightly

reduced by the fact that already computed solutions can be used to restart each calculation
taking advantage this time of the fact that the solutions at

�
and at

� � ��� � will be very
close.

The second main drawback of finite-difference methods is the choice of the incremental
step � which influences the result of the sensitivity derivative. A very small incremen-
tal step faces the problem of computer round-off errors and a large step will give an
erroneous value of the derivative. This problem is illustrated in References [25, 26]. It
also appears that the problem of the choice of the perturbation size is linked with the
choice of the convergence criterion for the residual of the flow solutions.[27–29] Of course
grid refinement also has some influence on the accuracy of the finite-difference method.[27]

Despite all of these problems, references using the finite-difference method to calculate
sensitivity derivatives for optimisation can be found. The following is not an exhaustive
list but References [30, 31] employ the finite-difference method for low-fidelity aerody-
namics with full potential and panel codes. Since these codes have a fast turnaround,
the finite-difference method is appropriate. It is less so for Navier-Stokes CFD codes
but References [32–37] prove that it is possible, though very expensive. An Euler
optimisation using finite-differenced gradients can be found in Reference [38].

However the main use of the finite-difference method in aerodynamic optimisation is to
check the accuracy of sensitivity derivatives calculated by a different method. Indeed
since exact analytical values of sensitivity derivatives can only be computed for very
simple cases[39] and since there is no experimental data available for sensitivity, it is
the only way of checking the value of a sensitivity derivative calculated by another
method. This is what is done in Chapter 6 to assess the accuracy of the adjoint solver
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developed in this work. There is a large number of references which compare their
sensitivity derivatives with finite-difference. Some examples are given next. For quasi-
analytical methods, the finite-difference method is used to assess the accuracy of the
direct differentiation[40–43] solver or of the adjoint solver, be it continuous[27,44–46] or
discrete.[44,47–49] The finite-difference method is also employed to assess the accuracy
of codes based on Automatic Differentiation[26,29,50,51] or the complex variable method.[52]

Finite-differencing is also used to assess the computing time[50,53–55] of other methods be-
cause every other method invented to calculate sensitivity derivatives however simple or
complex it is, must be able to compute the gradient of the objective function much faster
than the finite-difference method. Otherwise it is of no interest because as mentioned
earlier, without changing anything to already existing CFD codes, the finite-difference
method could do better.

2.1.2 Complex variable method

A method that is gaining popularity to calculate sensitivity derivatives for aerodynamic op-
timisation is the complex variable method. It is very similar to the finite-difference method
but without some of its disadvantages. The complex variable method approximates the
sensitivity derivative according to

� �
��� ���

� ��� � � � � � ��� � ���
�

where
�

is now a complex analytic function and
� ��� � denotes the imaginary part of this

function. Like the finite-difference method this is derived from a Taylor series expansion
of

�
. The advantage of this formulation is that there is no longer any subtraction� � � � ��� � � � � � � � in the numerator, which is one of the problems of the finite-difference

method. Hence with the complex variable method, the evaluation of the derivative does
not require extremely well converged flow solutions and a very small step size � can be
chosen without losing accuracy. It was actually found that the accuracy is increasing with
decreasing step size.[56]

All that is needed to use the complex variable method is to change the variables inside
an existing flow solver from REAL to COMPLEX and make sure that all the functions
employed work for complex variables. This should be fine for most of the code except
for the minimum or maximum functions and the absolute value function that will have
to be recoded. Overall this does not require major development work unlike the quasi-
analytical methods.

However the complex variable method has also some disadvantages. Like the finite-
difference method, it has to be repeated for every design variable to get the complete
gradient. Also since the variables are now complex variables, the complex variable flow
solver will require at least twice the memory and computing time as the original flow
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solver that worked with real variables. This makes the calculation of the gradient as
(in)efficient as a central finite-difference method and two to three times slower than a
one-sided finite-difference computation. Hence it is not very efficient but it should be
more accurate than the finite-difference method and one does not have to worry too much
about the choice of the step size. A very interesting study comparing the efficiency of
the complex variable, the finite-difference and the adjoint methods against the number of
design variables, can be found in Reference [57].

References [11, 58] use the complex variable method only to calculate some terms in an
adjoint solver or to check the consistency of some terms during code development. Ref-
erences [56, 57] employ it to check the accuracy of sensitivity derivatives calculated by
other methods while References [52, 59, 60] calculate sensitivity derivatives with it that
are then used for optimisation.

2.1.3 Methods using Automatic Differentiation

Automatic Differentiation is another way to calculate sensitivity derivatives. We saw
that the finite-difference and complex variable methods are very time-consuming and the
choice of the perturbation step for the finite-difference method is not easy and can lead
to poor accuracy in the calculation of sensitivity derivatives. Automatic Differentiation
offers a way to obtain accurate sensitivity derivatives relatively easily although it might
be at the cost of computational efficiency.

Automatic Differentiation[61,62] calculates derivatives of the outputs of a computer pro-
gram with respect to its inputs. In practice an Automatic Differentiation program is ap-
plied to another program, the result being a third program that calculates the outputs like
the initial program but also the derivatives of these outputs with respect to defined inputs.
This requires some modifications to the initial program prior to automatic differentiation
by inserting specialised instructions to identify independent and dependent variables. Au-
tomatic Differentiation is the automatic implementation of the chain rule of differentiation
which for example calculates the derivative of

���
� � � �� � � � � �� ��� as

� ���
� � � �� ��� � � �� ���

�  �
� �
�
�

�
�� �
� �
�  

� � �
� �

� �
�  

There exist two modes of Automatic Differentiation. The forward mode computes
the differentiation starting from the input (  ) to the output (

�
) while the reverse mode

computes from the output to the input. The reverse mode is faster for a small number of
outputs compared to inputs, but requires larger computing storage.

In aerodynamic optimisation, an Automatic Differentiation program widely used is
ADIFOR.[63,64] Its method of differentiation is hybrid between the forward and reverse
modes and it may be applied to programs written in FORTRAN. ADIFOR calculates
the product of the Jacobian that contains the derivatives, by a seed matrix instead of the
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Jacobian alone. Some improvement in efficiency can be obtained since the entire Jacobian
is often not required because it is multiplied in the calculations though it is possible to get
it by taking the seed matrix as the identity matrix. ADJIFOR is an extension of ADIFOR
that works exclusively in reverse mode and is much more efficient for a small number of
outputs.[55]

The easiest way to use ADIFOR is to employ it as a black-box to differentiate existing
CFD analysis codes. With little user intervention, it will provide a code that calculates
accurate sensitivity derivatives. Unfortunately the differentiated code will require a lot of
memory and will be very slow. In Reference [26], ADIFOR is applied to a 3D unsteady
potential code and its associated grid generator while in Reference [65] it is used in the
multidisciplinary optimisation of a High Speed Civil Transport aircraft. In Reference [29,
66], ADIFOR is applied as a black-box to a 3-D thin layer Navier-Stokes code plus its
grid generator and although the sensitivity derivatives are as accurate as those obtained
by finite-difference, their computation requires 3 times the memory needed by the finite-
difference method and 2.5 times more CPU time. Reasons for the inefficiency of such a
code appear, for example, when you consider a quantity � calculated with a preconditioner	

as[50,51,63,66]

� -
� �

��� -
� 	 - � -

The application of ADIFOR to such a formula will give

��� -
� �

����� -
� 	 � - � - � 	 - � � -

If it were differentiated by hand, the term
	 � - � - would be discarded and although in

this formulation it is eliminated at convergence when
� -�� � , it has nevertheless to be

calculated, which may require a lot of additional memory and CPU time. This shows that
a simple application of ADIFOR as a black-box is not viable and some user intervention
is needed, in this case to set

	 � - � � . Other intervention might be needed to restore code
vectorisation as in the initial program[67] because the “DO loops” introduced by ADIFOR
do not generally vectorise well.

Another way of using Automatic Differentiation is to employ it as a tool to calculate
derivatives needed in the quasi-analytical methods presented in the next subsection, but
the main sensitivity derivatives are calculated by a quasi-analytical method. This keeps
the efficiency of quasi-analytical methods while relieving the burden of calculating by
hand complicated derivatives. This is for example used in a direct differentiation formu-

lation to calculate the terms

���
� � ,

� �
� � and

���
� � � that appear in equation (2.5).[28,51,68,69]

Automatic Differentiation is also employed in the direct differentiation method of the
SAADO (Simultaneous Aerodynamic Analysis and Design Optimization)[70–72] or the
similar SASDO (Simultaneous Aerodynamic and Structural Design Optimization)[73]

suites of codes. This technique is much more efficient than the application of Automatic
Differentiation as a black-box[74] and generally the computing time and memory required
are situated between hand-differentiated quasi-analytical methods and finite-difference
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methods.[51] However it requires that a subroutine calculating the residual is clearly
defined in the computer program, which might not always be the case.

Odyssée[75] is another Automatic Differentiation software tool similar to ADIFOR but en-
abling reverse mode. It is employed in Reference [76] to calculate some derivatives used
in an adjoint code. This reference shows how much human intervention, almost at the level
of each line of code of the original program, is needed if the application of an Automatic
Differentiation tool is to be efficient. This also shows that Automatic Differentiation can
be used to build an adjoint solver, Reference [77] being another example.

2.1.4 Quasi-analytical methods

Sobieszczanski-Sobieski[78] was the first, in 1986, to launch the interest in aerodynamic
sensitivity derivatives for multidisciplinary design optimisation at a time when little
was done on this subject. But even at that time he had noticed that finite-difference
methods already used in structural optimisation were not viable to calculate aerodynamic
sensitivity derivatives and proposed to use quasi-analytical methods i.e. methods based
on the differentiation of the governing equations of the flow field.

There exist two methods within the quasi-analytical methods to compute sensitivity
derivatives. These are the direct differentiation formulation and the adjoint variable for-
mulation. They will be described in the next two subsections.

2.1.4.1 Direct differentiation method

The direct differentiation formulation is one of the two quasi-analytical methods that exist
to compute sensitivity derivatives. To this end the objective function is written

� � � � � � � � � � � � � � � � � (2.1)

where � is the vector of fluid variables and the subscript � indicates that this vector is the
converged value of the flow solution.

�
is the vector of grid variables and

�
the vector

of design variables.
�

, � and
�

may depend explicitly on
�

as it is written.

The differentiation of equation (2.1) provides an expression for the sensitivity derivatives:

� �
��� � �

� � �
� ��� � � � ���� � � � � �� � � � � ���� � � � �

� � � (2.2)

In this equation,

� � �
� � � � , � � �� � � � and

� �
� � � should be relatively easy to obtain depending

on the nature of the objective function
�

. The term
� �
����� is the vector of grid sensitivities

and the way to calculate it will be discussed in Chapter 4. The only term difficult to
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compute is
� ���
��� � . It is calculated as follows.

The governing equations of the flow field are written in a residual form
� � � � � � � � � � � � � � � ��� (2.3)

Note that this can represent any kind of approximation of the equations of fluid motion
from full potential equations to Reynolds averaged Navier-Stokes equations. This residual
is then differentiated with respect to the design variables:

� �
��� � �

���
� �

� � �
��� � � ���

� �
� �
��� � � � �

� � � ��� (2.4)

which is rearranged as
���
� �

� � �
��� � �

� ���� �
� �
��� � �

� �
� � � (2.5)

to provide an equation that is solved for
� � �
��� � . This is the main equation of the direct

differentiation method. Depending on the nature of the design variable
�	�

, either shape

variable or flow field parameter such as Mach number and angle of attack, the term

� �
� � �

or

� �
� � � respectively is zero and the RHS of equation (2.5) can be simplified.

The matrix

���
� � is the Jacobian matrix of the flow field and is theoretically the same as

the one used in an implicit flow solver. This is true in theory but in practice, as we will
see later, the Jacobian in a flow solver is often approximated while here for the direct
differentiation method, an exact Jacobian is needed. However most of the Jacobian
employed for the flow analysis can be used for the sensitivity analysis. A point to notice
is that this matrix has to be calculated only once. Equation (2.5) is solved for each design
variable but only its RHS has to be recalculated each time before being solved. This
implies NDV solutions of equation (2.5).

Another point to notice is that equation (2.5) is a linear system of equations despite the
usual non-linearity of the flow equation. If a direct inversion of the Jacobian is possible,
this means that equation (2.5) can be solved very quickly. However this will only happen
for simple two-dimensional Euler problems. For problems involving the Navier-Stokes
equations, either for laminar or turbulent flows, or for three-dimensional problems, the
LHS Jacobian is likely to be too complicated and require too much memory to be inverted
directly and an iterative solution process has to be adopted. In this case the solution
of equation (2.5) requires the same effort as the solution of the flow equations. Finally
equation (2.5) must treat consistently the boundary conditions if accurate sensitivity
derivatives are to be calculated.
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If the flow field residual in equation (2.3) is differentiated before it is discretised, the
direct differentiation method is called a continuous approach. If on the contrary it is
differentiated after discretisation, the method is called a discrete formulation. In practice
the discrete direct differentiation method is preferred.

Historically the direct differentiation method started at the beginning of the 90’s following
Sobieszczanski-Sobieski’s appeal[78] and provided a counterpart to Jameson’s continuous
adjoint method. It then evolved towards the discrete adjoint method that is based on the
same principles but that is much more efficient for aerodynamic shape optimisation. It is
nowadays less employed for optimisation except maybe for optimisations combining the
aerodynamic and structural disciplines where the number of constraints is important.

On unstructured grids, its use is limited to the Euler equations[79–83] while on structured
grids, it is employed more widely. It starts with its application to simple transonic small
perturbation[84] or full potential[85] codes. Numerous references use the direct differentia-
tion method for the Euler equations on structured grids either by hand-differentiating the
method[40,42,54,74,86–90] or by using Automatic Differentiation for some of the terms[68–73]

as mentioned in the previous section. References [53,91–95] provides some examples of
its use for viscous laminar flows while References [41,49,96] employ it for turbulent flows
but neglect the linearisation of the turbulent viscosity. An accurate treatment of the turbu-
lent viscosity is only provided in References [19, 43, 47] and with the help of Automatic
Differentiation in Reference [28].

2.1.4.2 Adjoint method

The adjoint method, which is the technique employed in this study, will be described in
full detail in Chapter 6. This method is very similar to the direct differentiation method
presented in the previous subsection: a linear system of equations equivalent in complex-
ity to equation (2.5) has to be solved as well. The main difference is that this system has to
be solved only NCON+1 times where NCON is the number of aerodynamics constraints.
Hence if NDV � NCON+1, the adjoint variable method is more efficient than the direct
differentiation method. In aerodynamic optimisation there is at most a handful of aerody-
namic constraints i.e. constraints involving aerodynamic quantities that are output from a
CFD calculation such as lift and drag coefficients, while a few dozens of design variables
is usually the norm. This is the reason why the adjoint formulation is employed in this
work rather than any other gradient-based method.

Again if the residual in equation (2.3) is differentiated before discretisation, the adjoint
method is called continuous while it is called a discrete method if the residual is discretised
first and then differentiated. However unlike for the direct differentiation method, both
types of adjoint methods can be found in the literature. Theoretically they should give the
same results in the limit of increasing grid resolution and reasons why the discrete method
has been chosen in this study will be described in Chapter 6.
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2.1.5 Use of the Hessian matrix

This subsection very briefly details optimisation methods that employ the Hessian matrix

of the objective function i.e. the matrix composed of the second derivatives
�
� �

��� � ��� "
of the objective function with respect to the design variables (these are not properly
gradient-based optimisation methods but rather second-order methods). Compared
to gradient-based methods, the use of the Hessian matrix offers more information to
the optimiser hence the optimisation process will converge using fewer iterations.[97]

However this section has shown, up to this point, that the evaluation of the gradient of the
objective function is already quite difficult, hence the calculation of the Hessian matrix is
even more difficult. References [51, 77] propose some techniques to calculate accurately
this matrix by using combinations of finite-difference, Automatic Differentiation and
quasi-analytical methods. In Reference [98] second order derivatives are also calculated
using a combination of adjoint and direct differentiation methods for a heat transfer
problem.

In most of the applications however, the Hessian matrix is approximated. In Refer-
ence [99] this is done for a full potential program coupled to a boundary layer code. In
traditional quasi-Newton methods, the approximate Hessian matrix is built up during
optimisation from an initial guess, usually the identity matrix. Anderson et al[52] use
an initial guess closer to the real Hessian by computing accurately its diagonal with
the complex variable method but this does not speed up the optimisation process as it
would be expected. In fact Arian et al[97,100] show that a traditional quasi-Newton method
is not very efficient for aerodynamic optimisation. They derive a preconditioner that
approximates the inverse of the Hessian and apply it to the gradient at the continuous
level. Their method seems efficient for two-dimensional inviscid inverse design problems.

This concludes this part detailing the calculation of sensitivity derivatives for gradient-
based optimisation methods in aerodynamic optimisation. It quickly presented the sim-
ple but quite costly finite-difference method as well as the similar complex variable
method. One promising field is Automatic Differentiation but at the present moment
quasi-analytical methods based on hand-differentiated codes appear to be the most effi-
cient methods. This includes the direct differentiation method and the discrete and con-
tinuous adjoint formulations that will be presented later in this work. The final part of this
chapter is dedicated to other optimisation methods that do not need gradient information.

2.2 Other methods of optimisation

The principal source of problems encountered with classical optimisation techniques
used in aerodynamic optimisation is the calculation of sensitivity derivatives. We saw
that it is not an easy task since it requires either a lot of computing time and memory
or a long effort in development before an efficient method is implemented. The second



2.2 Other methods of optimisation 15

problem encountered with gradient-based optimisation methods is that the optimiser
is not guaranteed to find the global minimum inside the design space but only a local
minimum. Either the designer acknowledges this and is satisfied with the fact that the
local minimum will be a better design than the initial design point or he really wants to
find the global optimum. With a classical gradient-based method he has no choice but to
restart the optimisation process from different design points inside the design space and
see if the process converges towards the same optimum. This will be time consuming and
all the advantages of quick convergence of a gradient-based method are lost. However
other optimisation methods exist to overcome these problems.

The two optimisation methods presented in this section try to avoid using aerodynamic
sensitivity derivatives and are hence relatively easy to implement. Moreover they are more
likely to find the global optimum and not a local optimum. The drawback is that they
might require more computing time than efficient gradient-based optimisation using quasi-
analytical methods. These two techniques are response surfaces and genetic algorithms.

2.2.1 Response surfaces

The idea behind response surface techniques is to model the objective function by a
smooth analytical surface over the entire design space. Once the analytical expression
for the surface has been found, it is easy to use classical optimisation methods to find its
minimum. If the representation of the objective function is good, the minimum of the
response surface should lie close to the true minimum. To construct a response surface
that captures the global features of the objective function on the design space, many
evaluations of the objective function are needed at different points in the domain.

The first step in creating a response surface is to sample the design space, this is called
the Design of Experiment. Techniques such as the full factorial or the Latin Hypercube
determine the number of sampling points and their location in the design space. The
evaluation of the objective function at these points is then performed and we will return
later to this point. The next step is to select the surface type. References [101–103] use a
quadratic surface while References [104, 105] employ a sum of 4

���

order polynomials in
each design direction with no cross-terms. The last step is to build the response surface
which is reduced to the determination of the coefficients of the analytic expression. This
can be performed by solving a least-squares problem.[102,106]

Once the response surface has been created, standard optimisation techniques are used
to find its global minimum. Since an analytic expression is known it is easy to use
gradient-based optimisation even of second order. Since the optimisation should not be
time consuming, several optimisations starting from different points in the design space
can be performed to have confidence that the minimum found is the global minimum
and not a local one. A true evaluation of the objective function is then calculated at this
minimum and is compared with the value given by the response surface. Depending on



16 2. Literature review

the deviation between these two values, the process is either stopped or continues with
the creation of another response surface around that minimum with a reduction of the
design space. Hopefully, the new response surface will be more accurate and the process
should converge after several cycles. Because the convergence can be slow, once the
region of the global minimum has been found, standard optimisation techniques using
sensitivity derivatives can be employed on a small part of the design space to find the
minimum. In this case, the interest in using a response surface will have been to seek the
global minimum and not a local one.

To evaluate the objective function at selected points to construct the response surface,
the most obvious technique is to perform complete CFD calculations at these points.[102]

This can be time-consuming and therefore the choice of the calculation points should be
optimised. The natural development in this case is to use parallel computing[101,102] to
perform these calculations since they are totally independent.

When using a response surface technique, the aim is always to reduce the number of CFD
calculations without degrading the accuracy of the surface, even if parallel computing
is employed. In Reference [101], the number of CFD calculations is further reduced by
combining low-fidelity (linear theory) and high-fidelity aerodynamics (Euler equations).
In Reference [106] this is done by combining neural network and response surface
methods. Chung and Alonso[103] use both the value of the objective function and its
gradient at several design points to build the surface. This greatly reduces the number of
sampling points but it is at the expense of calculating a gradient with an adjoint method at
each of these points. Hence the only advantage of the response surface here is in seeking
the global minimum but this method requires the availability of an adjoint solver.

Another technique to evaluate the objective function is to approximate the flow solution.
In References [104, 105] this is done with a method called Projected Implicit Recon-
struction (PIR). The starting point is to calculate a flow solution using a CFD code at the
centre of the design space. Then the direct differentiation sensitivity equation (2.5) is
solved at this point to find the increment in � given an increment in

�
. This enables the

flow solution to be approximated at a new point. Another sensitivity equation is solved
at this point to enable a new displacement in the design space and so on. In this way
the objective function is evaluated at selected points in the design space using only one
initial CFD calculation. Of course this reduction in computing cost is accompanied by a
reduction in the accuracy of the response surface and also by the cost involved in solving
the sensitivity equations.

This terminates this brief presentation of response surface techniques to perform aerody-
namic optimisation. They seem relatively easy to implement although they might require
a large number of flow analyses before converging. The next subsection details the use of
genetic algorithms.
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2.2.2 Genetic algorithms

Genetic algorithm techniques[8,107–111] offer an approach to optimisation totally different
from what has been presented so far. These techniques apply the principles of natural
selection and genetics to optimisation. Each design is represented as an individual with
its own chromosome that identifies it. Hence the first task in design optimisation using
genetic algorithms is to convert each shape or design into a chromosome. The design
variables previously used can be assembled as a chain to construct a chromosome. A
binary coding is usually performed to obtain better results.

An initial population of say 100 individuals is created at random and each individual is
assigned with a value of fitness. This requires obtaining a CFD solution for each individ-
ual to calculate the objective function and from it, the fitness value of each individual,
following the principle that the designs with a low objective function (if the optimisation
requires minimising the objective function) get a high fitness value while those with a
large objective function get a low fitness value. From this initial population the process
of reproduction begins with a selection of the parents according to their level of fitness to
create another population of 100 individuals. A method called roulette wheel can be used
and it ensures that individuals with a high fitness are selected with a higher probability
than those with a low fitness.

In this new population, the process of crossover is carried out: first, pairs of parents are
formed at random, then the parents exchange parts of their chromosome to create two new
individuals. In the exchange, the chain of the chromosome is cut at a random location,
identical for the same pair of parents, and both parts of the chromosome are reconnected
to the other part coming from the other parent. A new population of 100 children is thus
created. To ensure that characters not present in the parents appear in the new population,
a process of mutation is carried out. It consists in modifying at random the chromosome
of the children but with a low probability of occurrence. This population replaces the
initial one and its fitness has to be evaluated before the whole process is started again.
After a large number of cycles or generations, the process should converge towards an
individual with very high fitness that is the optimum design. This description is however
only the basis of the method. In practice, advanced selection processes, crossover and
mutation operators are used to try and reduce the population size and the number of
generations needed, to reduce the overall computing time of the optimisation.

The use of genetic algorithms makes it possible to find the global optimum of the objec-
tive function over the entire design space. This is attractive when there are several local
optima and classical gradient-based optimisation techniques would fail.[8,111] However,
genetic algorithm methods usually necessitate a large number of CFD calculations to
evaluate the fitness of the population at each generation, which might restrict their use to
2-D optimisation. However parallel computing[8,110] may offer a solution to this problem.
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This concludes this brief presentation of the use of genetic algorithms in optimisation. It is
also the end of this section that described response surface and genetic algorithm principle
as alternatives to gradient-based optimisation methods. This also terminates this chapter
on the literature review about optimisations methods. The next chapter starts the detailed
description of the optimisation chain set up in this work by looking at the optimiser.



Chapter 3

Constrained optimisation

The aim of this chapter is to present numerical optimisation and how to solve an optimisa-
tion problem. Optimisation is a very wide domain and this chapter will only concentrate
on non-linear gradient-based and constrained optimisation since it is the area of interest for
aerodynamic optimisation. The first part of this chapter will present optimisation in gen-
eral and define some basic concepts. The second part will detail the Sequential Quadratic
Programming algorithm which is the basis of the two optimisation algorithms used in this
work. Finally an optimisation technique called variable-fidelity method will be presented.

3.1 Basic concepts in optimisation

The aim of this section is to present some basics concerning optimisation as it is used in
multidisciplinary optimisation and aerodynamic optimisation. These are needed because
they show where sensitivity derivatives, which are at the centre of this thesis, are used in
optimisation and thus highlight the interest of this thesis.

A general problem of optimisation can be presented mathematically as:[112,113]

Minimise� � � � � objective function

Subject to: �
� � � ��� � � � ��� � inequality constraints� 
 � � � � � � � � � � equality constraints
� "� � � � � ���� � � ��� � � �

side constraints

(3.1)

where
� �

����� ����
� �
� �
...

� � ��	


�����
���


is the vector of design variables.

The objective function
� � � � in the case of aerodynamic shape optimisation can be the

drag coefficient of a wing, its lift/drag ratio (note that minimising
� � � � � is equivalent to

maximising
� � � � ) or its gross weight in the case of multidisciplinary optimisation. The

19
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inequality constraints can represent for example the wing section area which must remain
greater than a certain value to accommodate wing structure and fuel or the maximum
value of the drag coefficient while the lift coefficient is optimised. The lift coefficient can
be an equality constraint when you want to minimise drag at constant lift. Finally the side
constraints impose direct constraints on the design variables and provide some limits to
the design space.

The design variables themselves can be of different nature. In conceptual design i.e. the
first stage of the design of an aircraft, they might be parameters defining the geometry of
the wing planform such as root chord, tip chord, sweep angle, spanwise crank location,
etc.. In aerodynamic shape optimisation, the planform geometry is generally fixed and
the design variables usually are parameters used to define the shape of the wing section
at different spanwise stations.

The optimisation problem defined in this way is a constrained problem since in addition
to minimising

� � � � , the vector of design variables must satisfy some constraints. To ease
the optimisation process, it can be advantageous to transform the problem into an uncon-
strained one by defining a pseudo-objective function. By adding a penalty function to the
objective function, the pseudo-objective function that has then to be minimised, can be
defined for example by


 � � � � � � � � � � ��� "�
�
'
� ������� � � � � � � � ��� � � � ��



'
� �
� 
 � � � � �
	 (3.2)

where � � � � is a penalty parameter of usually “large” magnitude. If
�

is in the feasible
region of the design space (i.e. the region where the constraints are not violated) then

 � �

and minimising 
 is minimising
�

. Otherwise
�

is greatly penalised and the
minimisation of 
 should drive

�
towards the feasible domain.

There exist different methods to solve an optimisation problem but most use an iterative
procedure. Starting from an initial value of the vector of design variables

�
which in the

case of aerodynamic optimisation is usually called the baseline configuration, the design is
updated iteratively until a minimum of

�
is encountered.

�
is usually updated as follows:

� � � � � 	
� � 	

� � �
(3.3)

where 
 is the iteration number,
� �

is the vector of search direction in the design space
and 	

�
is a scalar which defines the length of the step taken in this direction. This poses

two problems: determining 	
�

and determining
� �

.

Assuming that the search direction
� �

is known, determining 	
�

becomes a simple
one-dimensional search, also called a line search. Indeed 	

�
must be found so as to suffi-

ciently reduce
�

following a line defined by the search direction. For a one-dimensional
search, two well-known methods are polynomial approximation and the golden section
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method.[112,113]

For the determination of the search direction
� �

, a number of methods are possible. Zero-
order methods, based only on the evaluation of

�
, are simple but are not really efficient

and a large number of evaluations of
�

may be necessary before reaching a minimum. In
multidisciplinary optimisation and aerodynamic optimisation, first-order methods, based
on the value of

�
and of its gradient � �

, are usually preferred because they converge
faster. The simplest is the method of steepest descent where

� �
is taken as the opposite of

the gradient of the objective function so that� � � � � � � ��� �
A more efficient method is the conjugate direction method of Fletcher and Reeves[114]

which takes into account the history of the optimisation process.
� �

is defined as� � � � � � � � � � � � � � � � � � � �
� � � � � ����� � � � � � 	 �

Still more efficient methods are the variable metric methods[115] also called quasi-Newton
methods where � � � � � ��� � � � � �
where

�
is a matrix. Its initial value is the identity matrix and as the optimisation process

goes on, it approaches the inverse of the Hessian matrix, giving to the method super-
linear convergence characteristics. Popular methods are the Davidson-Fletcher-Powell
(DFP)[115,116] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)[117–120] methods.

Indeed there exists higher order methods such as second-order Newton’s methods but
these require the knowledge of the Hessian matrix of

�
. As it has already been pointed

out, the gradient of
�

is already difficult to obtain computationally so its Hessian matrix
is even more involved and time-consuming to calculate. In practice for aerodynamic
optimisation, very few people try to use a second-order method as indicated in Chapter 2
and first-order optimisation methods are usually preferred.

Let us now consider the problem of optimisation specifically in the context of aerodynamic
optimisation where the design variables are shape parameters and the objective function
is the drag coefficient of a wing for example. Each new value of the objective function

�

can only be determined after a complete calculation of the flow field around the wing has
been performed by a CFD code. Hence the optimisation process can be summarised as:

1. Initialisation

2. Calculation of the flow field at a given design point
�

to calculate
�

(
� � � � in

this case)

3. Calculation of the gradient of the objective function
� � �

�
��� �

in order to find the
search direction for the one-dimensional search
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4. One-dimensional search with as little flow field calculations as possible to find an
approximate minimum of � � in that direction

5. If the process is not converged, return to 2. with calculation of the flow field at the
line search minimum and repeat the loop until convergence

As we can see, the optimisation process can be computationally intensive and really
efficient methods to perform both the flow field analysis (i.e. calculation of the flow field
by a CFD code) and the determination of the sensitivity derivatives (i.e. calculation of
the gradient of the objective function) are needed. This brief presentation explains why
there is an interest in calculating efficiently the sensitivity derivatives

� � �
���	�

, which is
part of the subject of this thesis.

Note that the optimisation procedure described in this section does not guarantee that we
will find the global minimum of the objective function

�
on the entire feasible space.

The process may converge only towards a local minimum. Two possibilities exist then:
restarting the whole optimisation from different initial design points and see if the method
converges towards the same optimum; or as is the case in aerodynamic optimisation,
accepting the optimum found knowing that the baseline configuration is often not too far
from the optimum design and that changes in the design are expected to be small and the
optimum found will be better than the baseline configuration, which is what is expected
after all.

First order methods to find the search direction as presented above are quite simple and
easy to implement. The use of a penalty function is also an easy way to get around
the problem of constraints in optimisation. However the combination of these simple
methods, even if it gives the correct answer, is unlikely to be very efficient and might
require a lot of evaluations of the objective function and its gradient. We have just
pointed out that having a very efficient flow solver and a very efficient way of calculating
the sensitivity derivatives are necessary in aerodynamic optimisation but having a very
efficient optimiser that will call these programs as little as possible is also of major
importance to save some computing time. Hence the author of this thesis chose to use
more advanced optimisation algorithms that are supposed to be more efficient. Since
these algorithms can be quite complex and difficult both to understand and implement,
already available optimisation routines were used in this work.

The constraints to choose one of these algorithms are as follows:

� Non-linear objective function

� Equality and inequality constraints

� Non-linear constraints
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Two algorithms satisfying these requirements were used in this work i.e. the NAG Fortran
subroutine E04UCF[121,122] and the subroutine called FFSQP kindly provided by AEMDe-
sign[123] and originally developed at the University of Maryland.[124] These two algorithms
will be presented in the following sections. They are both based on a Sequential Quadratic
Programming (SQP) method which is described in the next section.

3.2 Sequential Quadratic Programming

Sequential Quadratic Programming[112,113,125] is an optimisation technique where the
search direction

� �
is found by solving an optimisation subproblem with a quadratic ap-

proximation of the original objective function and a linear approximation of the con-
straints. The subproblem that needs to be solved is

Minimise�

�� � � � � � � � � � � � � � � � � � � � � �� � � � � �
Subject to: ���

� � � � � � � � � 
 �
�
� � � � � � � � � ��� �

� � 
 � � � � � � � � 	
 � 
 � � � � ��� � � ��� �
(3.4)

with reference to the original problem (3.1). Here the design variables are the components
of
�

and the optimum is the search direction
� �

. The matrix
� �

is a positive definite
matrix which is initially the identity matrix and is updated during the optimisation
to approximate the Hessian matrix of the Lagrangian function of problem (3.1). The
parameters


 �
and

	

, both in the interval [0,1], are used to prevent the linearisation of the

constraints from creating an inconsistent problem.

Contrary to problem (3.1), problem (3.4) is a well-posed problem with a quadratic
objective function and linear constraints, known as a quadratic programming problem
and very efficient methods exist to solve it.[112,125]

Once the search direction has been found, a line search is still needed since problem (3.4) is
only an approximation of the real problem (3.1). However 	

�
� �

is a very good first esti-
mate for this line search and a simple quadratic polynomial interpolation is usually used to
find a better 	

�
. For this one-dimensional search, a merit function incorporating a penalty

term, very similar to equation (3.2), is employed to ensure the satisfaction of the constraints


 � � � � � � � � � � � "�
�
'
� �
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'
� � "

� 
 � � 
 � � � � �
where the � � are based on the value of the Lagrange multipliers obtained during the
resolution of the approximate quadratic problem giving the search direction.

Once 	
�

has been found, the design is updated with equation (3.3). Before starting a new
iteration, the approximation of the Hessian matrix

� �
also needs to be updated. One of
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the formulae widely employed in this case is the BFGS update formula with Powell’s
modification,[126] that maintains the positive definiteness of

� �
.

The optimisation algorithm provided here is a very powerful tool and that is why it is at
the basis of the two optimisation subroutines that are used in this work.

3.3 The optimisation subroutines used in this work

3.3.1 The NAG subroutine E04UCF

The subroutine E04UCF[121,122] is designed to solve the non-linear programming problem
of minimising a smooth non-linear objective function of � variables subject to some
constraints. These constraints are lower and upper bounds on the variables, linear and
non-linear inequality constraints. Equality constraints can be dealt with by setting the
same lower and upper bound to inequality constraints.

This subroutine is a first-order optimisation method based on an SQP technique and
hence requires the evaluation of the gradient of the objective function and of the con-
straints. If a subroutine calculating these gradients is not provided by the user, E04UCF
will calculate them by finite-difference. Hence to save computing time, it is highly
recommended to provide these gradients even if the user has no control on when they are
used. For example during a line search, only evaluations of the objective function are tra-
ditionally used while in E04UCF the gradient is also employed and this cannot be changed.

The methodology behind this subroutine is very similar to what has been presented above
for an SQP method. This is how E04UCF works:

1. The subroutine first determines a design point that satisfies the bounds and the linear
constraints if any. During the remaining of the optimisation the design point will
satisfy these bounds and linear constraints

2. It then solves a quadratic programming subproblem to find the search direction by
using another NAG subroutine called E04NCF. This subroutine is based on a two-
phase quadratic programming method where the first phase finds an initial feasible
point by minimising the sum of infeasibilities while the second phase minimises the
quadratic objective function within the feasible region.

3. A line search is carried out with an augmented Lagrangian objective function to pro-
vide a step length. The penalty part of this augmented function only involves the
non-linear constraints since the linear constraints are already satisfied. The mini-
mum found by the line search is the new design point.

4. A quasi-Newton update of the approximate Hessian matrix of the Lagrangian func-
tion is performed.
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5. If the process has not converged, a new iteration is started with a return to 2.

An important point that results from this description is that the non-linear constraints
are not generally satisfied during the optimisation process until an optimal design
point is finally reached, unlike for the bounds and linear constraints. This is the major
drawback of this subroutine because in aerodynamic optimisation, the satisfaction of
the constraints is a major issue. For example geometric constraints can enforce that the
upper and lower surface of an aerofoil do not cross and if this is not satisfied, this can
pose a serious grid generation problem and a potential failure of the flow solver. Less
critically, if the optimisation is very time consuming, which is generally the case in
aerodynamic optimisation, the designer might want to stop it before an optimal design
point is reached, provided that the objective function has been sufficiently reduced.
In this case it is also interesting to have a feasible design at each iteration because
whenever you stop the process, you can use the partially optimised design. With this
subroutine this is not guaranteed but what is seen here as a major drawback could also be
the strength of this subroutine. Indeed by not satisfying all the constraints, the process
could converge more quickly to the optimum. Hence a compromise might have to be
found and provided that the constraints are not too critical, this algorithm can be employed.

To overcome this problem of not satisfying the non-linear constraints at each iteration, the
subroutine FFSQP is also employed in this work and is described in the next subsection.

3.3.2 The subroutine FFSQP

The optimisation subroutine FFSQP[124] was kindly provided by AEMDesign[123] which
distributes this subroutine developed at the University of Maryland. FFSQP stands for
FORTRAN Feasible Sequential Quadratic Programming hence this subroutine is based
on SQP like the NAG subroutine, but also generates feasible design points at each iteration.

FFSQP is designed to minimise the maximum of a set of smooth objective functions but
in this work only one objective function will be used at a time. This objective function can
be subject to linear and non-linear equality constraints, to linear and non-linear inequality
constraints and to upper and lower bounds on the variables. The first thing FFSQP does
is to find a feasible point. The non-linear equality constraints

� 

nonlinear � � � � � are then

turned into inequality constraints
� 


nonlinear � � � � � and the objective function is modified
to reflect this transformation by

�
modified � � ��� � � � � � ��� �



nonlinear

� 
 � 
 � � �
where the � 
 are positive penalty parameters that are iteratively adjusted. After this trans-
formation that still forces

� 

nonlinear to be zero, the optimisation problem only involves

non-linear inequality and linear equality and inequality constraints. At each iteration,
FFSQP will generate design points that satisfy these constraints.
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FFSQP requires the gradient of the objective function and of the constraints and, like the
subroutine E04UCF, if the user does not provide explicit subroutines to compute these
gradients, they will be calculated by finite-difference. Here again no control is allowed
on when to use the gradients or just function evaluations.

A brief description of how FFSQP works follows:

1. The search direction is resulting from the successive computations of 3 search di-
rections, each being the solution of a quadratic programming subproblem. The re-
sulting direction is a feasible direction. FFSQP uses the subroutine QLD devel-
oped at the University of Bayreuth, Germany and provided with FFSQP, to solve
this quadratic programming problem.

2. Two strategies are possible for the one-dimensional search: a line search that obliges
the objective function to be reduced after each iteration called FFSQP-AL or a line
search that requires a decrease within at most 4 iterations called FFSQP-NL. The
minimum found by the line search is the new design point.

3. The Hessian of the Lagrangian is updated using the BFGS formula with Powell’s
modifications[126]

4. The � � are updated

5. If the process has not converged, a new iteration is started with a return to 1.

This terminates the presentation of the two SQP subroutines employed in this work. To
make sure they were working correctly, they were tested on an analytical optimisation
problem known as Rosen-Suzuki’s problem found in Reference [125]. Of course both sub-
routines found the correct optimum. These two optimisers are the main optimisation rou-
tines used in this study. When applied directly to an aerodynamic optimisation problem,
it was found however, as we will see in Chapter 7, that the optimisation still requires a
lot of computing time despite the performance of these optimisers. Hence another way
of performing optimisation was investigated. This led to what is called in this work, the
variable-fidelity method that is described in the next section.

3.4 Variable-fidelity method

The variable-fidelity method has been developed by Alexandrov et al[127–132] from NASA
Langley Research Center with an engineering approach rather than from a mathematical
point of view. They start from the observation that the direct application of optimisation
algorithms to high-fidelity expensive models is almost impossible due to the high cost
involved in repeatedly calculating the value of the objective function and its gradient.
For high-fidelity models, they have in mind a CFD calculation on a fine mesh involving
the resolution of the Navier-Stokes equations, which perfectly suits the context of this
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thesis. Their idea is to do most of the optimisation on a low-fidelity cheap model that
globally represents the behaviour of the high-fidelity model and to correct from time to
time the low-fidelity model so that it better represents the high-fidelity one. In Refer-
ences [130, 132], they tested their method using the Euler equations on a coarse grid for
the low-fidelity model and still the Euler equations but on a fine grid for the high-fidelity
model. In Reference [131], they changed both the physics and the grid refinement with
the Euler equations on a reasonably coarse Euler mesh for the low-fidelity model and the
turbulent Navier-Stokes equations on a Navier-Stokes mesh for the high-fidelity model.
They obtain up to a fivefold improvement in efficiency compared to traditional direct
high-fidelity optimisation methods although this is only for a very low number of design
variables.

Their approach is based on two concepts: the trust-region and the corrected low-fidelity
model. The trust-region concept is similar to move limits in conventional optimisation.
This means that the real high-fidelity model is successively approximated by a surrogate
model and that this approximation is valid inside successive delimited regions of the
design space, generally spheres. If during the previous iteration the surrogate model
approximated very well the high-fidelity model, this trust-region is extended for the new
iteration whereas if it performed badly, it is restricted. If the agreement between the
surrogate and the real model was good but not exceptional, the radius of the trust-region
is left unchanged.

The other component of the method is the corrected low-fidelity model. Let us assume that
we have a high-fidelity model

� �
�
that is to be minimised and a low-fidelity model

� " + . At
each iteration 
 , the corrected low-fidelity model

�� " + that is used in the optimisation is
required to satisfy first-order consistency with the high-fidelity model i.e.

�� " + � � � � � � �
� � � � �

�
�� " + � � � � � � � �

� � � � � (3.5)

This ensures that the corrected low-fidelity model
�� " + behaves like

� �
�

in the neighbour-
hood of

� �
. Alexandrov used a beta-correction technique to construct

�� " + with
�� " + � � � � � � � � � � " + � � �

where
���

is the linear approximation
��� � � � � � � � � � � � � � � � � � � � � � � �

of
�

defined as � � � � � � �
� � � �

� " + � � �
around the point

� �
. It is easy to check that such a corrected model satisfies the require-

ments (3.5).
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Let us now describe the algorithm of the method. The algorithm chosen is the one corre-
sponding to an SQP method in the work of Alexandrov et al.[132] It supposes that a cor-
rected low-fidelity model exists for the high-fidelity objective function

�
�
�

but also for
the constraints �

�
�
�

and
� 

�
�

of the optimisation problem (3.1). These are denoted
�� " + ,�

�
� " + and

� � 
 " + respectively. It also assumes that a global merit function for the high-fidelity
constrained optimisation problem exists. Typically this is a function composed of the high-
fidelity objective function associated to a penalty term for the constraints in a similar way
to equation (3.2). Let us denote this merit function by


 �
� � � � � � � � � � � � � � 
 � � �

A merit function for the corrected low-fidelity model is constructed in the same way
�

 " + � � � �� " + � �

�
� " + �

� � 
 " +
�

Note that
�

 " + is not a low-fidelity corrected version of 
 �

�
despite the notation.

Starting from an initial design point
� 


, the iteration 
 of the variable-fidelity method is as
follows:

1. Calculate
� �
� � � � � , � � � � � � � � � � ��� � , � 
 � � � � � � � � ��� � and

� " + � � � � , � � " + � � � � � ���� � , � 
 " + � � � � � � ��� � .

2. Build the corrected low-fidelity model
�� " + for the objective function around point� �

. If they have not been already calculated, this requires the computation of

� � �
� � � � � and of � � " + � � � � .

3. Calculate � �
�
�
� � � � � � � ��� � , � � 


�
� � � � � � � ��� � and � �

� " + � � � � � � � � � ,
� � 
 " + � � � � � � � � � , if they do not already exist.

4. Solve the following simplified low-fidelity optimisation problem for � using an SQP
algorithm

Minimise�
�� " + � � � � � �

Subject to:
�
�
� " + � � � � � � �

�
� " + � � � � � � � � � � � ��� �� � 
 " + � � � � � �

� � 
 " + � � � � � � � ��� � � ��� �
� "� � �

�� � � � � � �� � � ��� � � �
� � � � � �

(3.6)

It is a simplified problem since the constraints have been linearised. Note that due
to the first-order consistency requirements, the linearised constraints are equivalent
to

�
�
�
� � � � � � � �

�
�
� � � � � � � � � �

� 

�
� � � � � � � � 


�
� � � � � � � � ���
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A constraint is added on the norm of � . This is the result of the trust-region method
that limits the application of the corrected low-fidelity models to the neighbourhood
of
� �

. Alexandrov et al used the
�
� norm for the norm of � . We prefer to use the

Euclidian
� �

norm that is differentiable and is hence easy to incorporate as a con-
straint in an SQP method.

5. When the optimum for � is found, assess the new design point at
� � � � and the

performance of the corrected low-fidelity model by computing

� � 
 �
� � � � ��� 
 �

� � � � � � �

 �
� � � � ��� �


 " + � � � � � �
This requires the calculation of

� �
� � � � � � � , � � � � � � � � � � � � ��� � , � 
 � � � � � � � �� � ��� � and

� " + � � � � � � , � � " + � � � � � � � � � � � , � 
 " + � � � � � � � � ��� � .

6. Update
� �

and
���

. This is the critical part of the method and our choice slightly
differs from the work of Alexandrov et al. The update of the new design point is as
follows:

if 
 �
� � � � � � � � 
 �

� � � � � then
� � � � � � �

else
� � � � � � � � �

i.e. that if there is no improvement in the global merit function, the new design is
discarded and the process has to start again from the same initial point, otherwise
the new design point is kept. The update for the trust-region radius is as follows:

if 
 �
� � � � � � � � 
 �

� � � � � then
��� � � � � � � �

else

if ��� � � then
� � � � � � � ���

else if � � � � then
� � � � � ����� ��� � � � � � � � 0 �

�
else

��� � � � ���

with the following values for the constants: � � � � � � , � � � � � � � , � � � ��� � and
� � � ���
� . This necessitates some explanations. It means that if the low-fidelity
optimisation has not improved the global high-fidelity problem, then the radius
of the trust-region is reduced by half and since the new design point has not been
accepted, the low-fidelity optimisation has to start again from the same point with a
smaller trust-region. If the initial radius of the trust-region was much too large, this
process might be repeated several times but the first-order consistency requirements
ensure that the corrected low-fidelity model behaves like the high-fidelity model
hence very close to the initial design point, the low-fidelity optimisation is bound
to find a better design point otherwise this means that the optimum has been reached.
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If the low-fidelity optimisation has found a better point than the initial design then
the radius of the trust-region is updated depending on the performance of the cor-
rected low-fidelity model measured by the ratio � . If it did not approximate very
well the high-fidelity model, then � is likely to be small or even negative ( � � � ) and
the radius of the trust-region is decreased for the next iteration. If it performed very
well in representing the high-fidelity model, then � is likely to be high ( � � � ) and
the trust-region is expanded for the next iteration. Note that this expansion might in
fact be a reduction of the trust-region. This is coming from the experience of the au-
thor and differs from the work of Alexandrov et al as is explained next. Typically at
the beginning of the optimisation with the variable-fidelity method, the low-fidelity
optimum will be found at the boundary of the trust region for

� � � � � �
hence in

this case the update
� � � � � � � � � �

is equivalent to
� ��� � � � � ��� (what Alexandrov

et al used) and the trust-region is expanded. When the optimisation carries on and
especially when it is close to the optimum, it often happens that the low-fidelity op-
timum is suddenly found well inside the trust region. If this happens several times
and you keep expanding the trust-region, you end up after a few iterations with a
very large trust-region compared to where the optimum is found and the low-fidelity
optimisation might suddenly be tempted to find an optimum close to the boundary
of the trust-region where the corrected low-fidelity model no longer represents at
all the behaviour of the high-fidelity model. Of course the variable-fidelity method
will discard this new point but the trust-region will only be reduced by half at each
iteration and it will take some time to come back close to the optimum where you
already were. To avoid this behaviour, the trust region here is expanded only with
respect to the norm of � and thus is always kept within reasonable limits without re-
stricting too much the search domain of the low-fidelity optimisation. Note that the
size of the trust-region is also limited by

� � 0 � but this is a single constant for the
whole optimisation and thus cannot evolve with the position of the optimum inside
the trust-region. Finally if the corrected low-fidelity model found an improvement
but did not represent particularly well the high-fidelity model ( � � � � � � � ), the
radius of the trust-region is left unchanged for the next iteration.

7. If the process has not converged, then start a new iteration ( 
 � �
) by coming back to

step 2. The information calculated in step 1. should already exist for the new point
from the calculation of � .

After this presentation of the variable-fidelity method, a few comments are needed. First,
this method is in fact very similar to an SQP method but instead of approximating the
high-fidelity model by a quadratic function, the variable-fidelity method approximates it
by a corrected low-fidelity model. The quadratic approximation is only a mathematical
model while the corrected low-fidelity model is supposed to contain some physical
knowledge that makes it behave like the high-fidelity model and hence the variable-
fidelity method should be better than an SQP method.

The other comment concerns the low-fidelity optimisation (3.6). To have a fast overall
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optimisation method, this low-fidelity optimisation does not need to be very accurate
since it is done on an approximated model. Its aim is only to give an improvement in the
high-fidelity objective function, the repetition of the iterations making this improvement
grow. For this low-fidelity optimisation, both E04UCF and FFSQP were tested. It was
found that the low-fidelity optimisation could fail when using either of these subroutines
but this was more a problem with E04UCF. Indeed E04UCF only satisfies its non-linear
constraints (here the constraint on the norm of � ) close to the optimum and if it fails before
being close to it, the constraint on the norm of � is not satisfied. This constraint is really
the core of the variable-fidelity method since when things are not going well, the only
thing that the method does between iterations is to decrease the size of the trust-region
until an improvement is found. If this constraint is not satisfied, the optimisation keeps
looping and looping all over again without being able to go out of this bad situation and
thus fails. Since FFSQP is a feasible algorithm, even when it fails, it always satisfies this
contraint on the norm of � and thus the global optimisation can recover. Hence FFSQP
was always chosen to perform the low-fidelity optimisation of the variable-fidelity results
that will be presented later in this thesis.

Another point is about the update in step 6 of the algorithm. This is really the crucial part
of the method. A very fine tuning of this update can really speed up the optimisation. If
the update is not appropriate, the variable-fidelity method should still work but will be
very slow because it will have to do a lot of iterations either because the improvement at
each iteration is too small or because it will keep going back and forth if the trust-region is
expanded or contracted too much at each iteration. As already explained, this update has
been modified compared to the work of Alexandrov et al. The update relies heavily on the
ratio � and the present author is not convinced that it is a very good choice. The method
works as it is but some improvement in finding other performance functions might be
possible. It would be better also if the update was not relying on a single function to
accomodate different possible cases. The present author did not spend much time on this
point but felt that since the method relies on very good ideas, it should converge much
faster than it does now and this is the likely place for improvement in the method.

The final comment concerns the robustness of the method. The fact that the trust-region
is updated and that the optimisation is done on the corrected low-fidelity model make
the method very robust. As already explained, if the low-fidelity optimisation fails, it is
highly likely that the method will recover on its own even if this takes some time. If the
calculation of the high-fidelity merit function fails, the situation is awkward but since the
merit function is mainly used to check the performance of a new design point, the overall
optimisation might be able to accomodate and recover. The main problem is only when
the calculation of the high-fidelity gradients goes wrong since it guides the low-fidelity
optimisation. This can lead to the failure of the method. However this has to be contrasted
with a high-fidelity SQP optimisation where every single function or gradient evaluation
has to be accurate otherwise the optimiser cannot accurately compute a feasible descent
direction and fails.
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Recently Marduel et al[133] published some results of aerofoil optimisations using the
variable-fidelity method of Alexandrov et al. They even went further by trying to improve
the method and for example built higher-order correction models and a delta-correction
that is no longer a multiplicative correction like the beta-correction but an additive correc-
tion. They confirm the significant computational savings brought by the variable-fidelity
method compared to a standard direct optimisation method. However only the initial
variable-fidelity method of Alexandrov et al will be used in this work.

This concludes this section presenting the variable-fidelity optimisation used in this study.
It also ends this chapter where numerical optimisation in general and how it is employed
in this thesis are presented. The chapter focussed on the method of Sequential Quadratic
Programming and on the two algorithms based on this method that are used in this work.
The next chapter details another component of the optimisation chain developed here i.e.
the geometry modeler.



Chapter 4

Surface parameterisation and grid
update

This chapter presents one of the key aspects of aerodynamic shape optimisation i.e. how
to represent the shape to be optimised and how to link this shape to the design variables.
Since the shape is evolving during the optimisation process, the CFD grid which is used to
calculate the objective function and its gradient and which is based on this evolving shape,
must undergo some modifications in order to follow this evolution. This process called
grid update in this thesis, also depends on the way the surface has been parameterised. It
is important to note that only structured grids are used in this work.

The first part of this chapter will deal with the chosen parameterisation for two-
dimensional shapes after having surveyed existing possibilities. The second part will de-
scribe how the general geometry of the wing has been parameterised in the present study.
The grid update will then be examined. Finally the calculation of the grid sensitivities
which are needed for the adjoint method used in this thesis, will be detailed.

4.1 Shape representation

4.1.1 Existing methods

This sub-section surveys briefly the different methods that have been used in the literature
for shape optimisation. We restrict ourselves here to parameters that control the shape of
a 2D aerofoil section or of a wing surface in 3D. Samareh provides a very good survey
of shape parameterisation techniques used in Multidisciplinary Design and Optimisation
in Reference [134], part of it being also included in References [135, 136]. He identifies
8 categories: basis vector, domain element, partial differential equation, discrete (grid
points), polynomial and spline, CAD-based, analytical (shape functions) and finally
free-form deformation. In this section we will complement Samareh’s survey by methods
and references encountered by the author of this thesis. Hence not all of his 8 categories
will be described and the reader is referred to his work for more details. The different

33
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methods are more or less presented here in increasing order of complexity.

The most obvious and simple choice is to consider the grid points that define the surface
as design variables. More precisely the component in the � -direction of each grid point
can be free to move and constitute a design variable. This immediately implies a very high
number of design variables for general wing shapes but Jameson and his colleagues[137–141]

as well as others employing Jameson’s method[12,142] use this technique. In addition,
some smoothing[137,140] is needed at each optimisation iteration to avoid getting irregular
and oscillating curves or surfaces. Even if it is a possibility, techniques that can represent
the geometry using much fewer parameters might nevertheless be preferred.

A simple technique is to use analytical shape functions like the NACA 4-digit series.[49,96]

Extended to a three-dimensional wing, the surface can be expressed as[79]

� ��� � � � � � � - � � ��� � � � � �
�
�



� �
��� 
 � ��� 
 ��� � � �

with
� ��� 
 ��� � � � � � � ��� � � � � 
 � � �

where
� �

is a NACA 4-series function and �



a hat function for example. The design
variables in this case are the

� �
��� 
 . The problem with these functions is that only a certain

family of aerofoils can be employed for the design.

A very similar method consists in using Hicks-Henne[143] func-
tions[19,34,36,43,45,57,79,83,144–150] or Wagner functions[34,36,144] to modify the initial or
baseline shape. In two dimensions it is defined as

� ��� � � � � � � - � � � � � �
� ��	�
�
'
�
� � ��� � � �

where
� �

is a Hicks-Henne function or a Wagner function and
� �

a design variable. This
concept of adding shape functions to an initial geometry can be extended to any type of
shape functions. Destarac et al[30] and Reneaux[31] propose to employ either analytical
shape functions or a library of basic aerofoils or “aerofunctions” that are defined from an
inverse design calculation and have a physical meaning for the aerodynamicist: for exam-
ple, functions can be devised to move forward or backward the position of a shock wave
or to move up or down the level of the pressure rooftop. Cubic patched polynomials[36]

are also a possibility. If the shape is directly parameterised without adding a perturbation
to the initial geometry, orthonormalised polynomials[28,151] can be used with

�
�
� �

� ��	�
�
'
�
	 � � � � � � � �
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The problem is that if the polynomials do not define a basis, some designs will not be
possible which might pose problems for an inverse design optimisation.

The method used in this work is the Bézier-Bernstein parameterisation which will
be described in detail in the next sub-section and is also employed in References
[16,80,82,86,109, 152–155].

Another similar method to the Bézier-Bernstein parameterisation and also inherited from
Computer Aided Design (CAD) is a B-spline representation used in References [111,125,
156–158]. In two dimensions the surface is represented by

� � � � � ��
�
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	 � � ��� " � � � and � � � � � ��

�
'


� � � ��� " � � �

where
� ��� " are the B-spline basis functions of order � and

� 	 �
� ��� are the control points.

An extensive detail of the properties of the B-spline functions and the interest of this
method of representation is given by Lambert.[125] A special form of B-spline is the non-
uniform rational B-spline or NURBS. Its formulation is as follows[134]
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where
� ��� " are still the B-spline basis functions of order � ,

� 	 �
� ��� the control points and� �

are some weight coefficients.

Samareh’s survey[134] contains a category that he calls free-form deformation and that is a
morphing technique inherited from computer imaging methods. This is a complicated but
also very powerful technique that he applies to shape optimisation in Reference [136].

4.1.2 The Bézier-Bernstein parameterisation

The Bézier-Bernstein parameterisation is the technique which is chosen in this work. The
reasons for this choice are the following:

� The Bézier-Bernstein parameterisation enables the use of a limited number of design
variables to represent a geometry in a satisfactory manner

� The shape created is always regular and does not need any smoothing

� There is a wide number of obtainable shapes, so this choice does not limit the opti-
misation

� The mathematical representation is a little simpler than for the B-spline
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The traditional Bézier-Bernstein parameterisation for a 2D curve is as fol-
lows:[16,80,82,86,109,152–155] � � � � � � ��

�
'


� ��� � � � � � �

where
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� � � � � , the Bézier control points are
� � �

� 	
�	 � � � and the Bernstein

polynomials
� ��� � � � � � ���
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�

�
is a normalised computational arclength along the curve. In the case that only the �

coordinates of the surface are free to move, the design variables are the
	 � .

This formulation poses two problems that are common to either Bézier-Bernstein or B-
spline parameterisations. The first one is that some initial control points are needed to start
the optimisation and have a baseline geometry. There are three solutions to this problem
but none of them is ideal:

� The baseline geometry has been generated by a CAD program that handles Bézier or
B-spline curves. In this case it is possible to get the control points directly from the
CAD software. This is the ideal case, emphasised in Reference [125], because at the
end of the aerodynamic optimisation, the shape can be used again by the CAD pro-
gram without making any approximation. Hence there can be a lot of interactions be-
tween CAD (and other disciplines using CAD) and aerodynamic optimisation. The
only problem is that a CAD definition of the geometry is not always available. An
interesting discussion about the relationship between CAD and surface parameteri-
sation is given in Reference [135].

� An inverse Bézier problem[156] has to be solved to find the initial Bézier control
points knowing the baseline geometry. This usually involves the inversion of an
overdetermined linear system and in any case the obtained Bézier parameterised ge-
ometry will only be an approximation of the initial geometry.

� The last solution which can handle any initial shape without any additional calcu-
lation, is to consider the Bézier-Bernstein parameterisation as a variation around
this initial shape. This is not often employed with Bézier curves while it is much
more common with shape functions, as described in the previous subsection. The
only reference among these provided for the Bézier-Bernstein parameterisation in
the previous subsection that adds a perturbation modelled by a Bézier curve, is Ref-
erence [16]. This is also the method employed in this work. The � coordinate is
written:

� ) � ���  - � � � � - � � � 0#" � 
 �
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where


 � �

��
�
'


� ��� � � � � 	 � �

In this case when the
	 � are zero the shape obtained is exactly the initial shape so

at the start of the optimisation, all the shape design variables should be zero. This
also gives some meaning to these control parameters since a negative parameter will
result in a lower � than the initial geometry and vice versa for a positive parameter.
However grasping the meaning of the magnitude of the parameter is more difficult
since it depends on the magnitude of the original � coordinate. The optimal shape
which is a composite between the initial shape and a Bézier-Bernstein curve might
also be difficult to handle for further work.

The second problem raised by a Bézier-Bernstein or a B-spline parameterisation is the
choice of the arclength

�
especially when the method of variation around an initial shape

is chosen. The author of this thesis chose the same function as in Reference [16] i.e.�
��� � where � is the non-dimensionalised chordwise position of the point of ordinate

� � - � � � 0#" for an aerofoil section. This choice for
�

concentrates design changes to the
leading edge region of the aerofoil or wing where � is small.

The Bézier-Bernstein parameterisation was used in this work as a 2D parameterisation for
wing sections situated in an � � plane. This means that for a 3D geometry like a wing, a
series of wing sections are considered as master sections and their shape is free to evolve
during the optimisation. These wing sections are then linearly connected to form a 3D
surface. Another approach could have been to use directly a 3D Bézier-Bernstein param-
eterisation of the surface.[86,109,153,154] However the approach taken here is considered
more appropriate to the geometric representation of the wing as is explained in the next
section.

Each aerofoil section is composed of two curves, one for the lower and one for the
upper surface, each with its own set of Bézier parameters. The control parameters at
both ends of each curve are kept constant at zero so that the trailing and leading edge
points are kept fixed on each section. Hence the Bézier-Bernstein parameterisation
is only managing the real shape of the section since twist and dihedral that could have
been controlled if these points were free to move, are dealt with by the wing representation.

The aerofoil camber alone was also parameterised as an alternative to free shape de-
formation for the upper and lower surfaces. This is useful if you want to make minor
changes to aerofoil shapes and if you want to keep the same chordwise thickness distri-
bution. The camber line was modelled like the exterior surfaces using a Bézier-Bernstein
parameterised perturbation added to the initial camber line. A closer look at this camber
line deformation shows that it is exactly like that of the shape deformation of the upper
or lower surface except that now only one set of Bézier parameters is needed and the
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deformation is applied to both the upper and lower surfaces. Hence once the free shape de-
formation has been implemented, it is very easy to implement a camber-only deformation.

Now that the shape of an aerofoil can be deformed in two dimensions, the next section
looks at how this is incorporated in the wing parameterisation and what other degrees of
freedom are added to get a deformable three-dimensional wing.

4.2 Wing representation

A complete wing parameterisation has been developed for this work. Everything that
defines a wing can be modified even if all the possibilities will not be employed in
this study. The method is inspired from References [153, 154]. Unlike the parameters
in these references that represent true dimensions of twist angle, chord, etc., the wing
parameterisation used in this work is again inspired by Reference [16] and is a variation
around the original wing geometry.

As explained in the previous section, the wing is divided into master sections situated in
an � � plane and these are the sections that command the geometry of the wing. For each
master section, 4 parameters are defined that are:

� An increment in displacement (
� � � � � 

� � � �/�  )

� The non-dimensionalised chordwise position of a reference point ( � � � � � � �# with �
�

� � � � � � �# � �
)

� An increment in scaling ( �	��

��� )
� An increment in twist (  

� � �/ in � )

A description of how the wing geometry modeler uses these parameters follows:

1. The initial twist around the leading edge (LE) point of each master section is re-
moved so that all the shape modifications occurr on the true aerofoil shape.

� � � ��� � - � � � � ��� ������� �� � � �! ��� � � � � � - � � � � ��� ��� ��� �� � � �! ��� � � � ���
� � � � ��� � - � � � � ��� ��� ��� �� � � �! ��� � � ��� � - � � � � ��� �	���
� �� � � �! ��� � � � ���
�
� � �

�
-
� �

2. The shape of each master section � � � � � � � � is updated as explained in section 4.1.2
to obtain new coordinates � � � � � � � � .

3. Retwist all the master sections with their initial twist value.

� � � ��� � � � ��� ������� �� � � �! ��� ��� ��� � � � ��� �	� ��� �� � � �! ��� � � � ���
� � � ��� � � � ��� ��� ��� �  � � �/ ��� � � ��� � � � ��� �����
� �� � � �/ ��� � � � ���
�
� � �

�
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4. The increment in displacement is applied to each master section
�

:

� � � � � � � � � � � 
 � � � �&�# � � � �
and similarly for � � � � � . This displacement in the three coordinates controls the lead-
ing edge sweep angle, the span and the dihedral of the wing.

5. Each master section is then scaled by the increment �	��

��� . This is in fact a similarity
transformation in the plane � � : the centre of this similarity transformation is the
reference point of the section ��� ��� � � ����� � � and its ratio is

� � �	� 
 ��� . The coordinates
of the reference point are calculated for each section from � � � � � � �# .

� � � ��� � � � ��� � � � � � � � � � ��
 � ��� � � � � � � � � � � �
and similarly for � � while � � is unchanged and � � � �

�
. This transformation con-

trols the taper ratio of the wing and with the previous displacement, the trailing edge
sweep angle.

6. A rotation of increment  
� � �/ and of centre the reference point of each section is

then applied in the plane � �
� � � ��� � � � � � � � � � � � ��� �� � � �/ � � � � � ��� � � � ��� � � � � �	� ��� �� � � �/ � � � � � � � � � � � �
� � �

� ��� � � � � � � � � � � � ��� �� � � �/ �� � � � � � � � � � ��� � � � � �	� ��� �� � � �/ � � � � � � ��� � � � �
(4.1)

and � � is unchanged and � � � � � . This obviously controls the twist of each master
section.

Since the master sections are linearly connected, all these transformations from 1. to
6. are enough to define a new wing geometry. Like for the shape representation, if all
the parameters are set to zero, the initial wing is recovered provided it is also linearly
connected. All the parameters, except � � � � � � �# � � � , can be used as design variables for an
optimisation. Alternatively only a few of them or none of them may be used as design
variables depending on what type of optimisation is carried out. In this work � � � � � � �# � � �
is always set to zero so all the twist changes are performed around the leading edge of the
section.

If all the parameters are considered as design variables and if the number of master sec-
tions is important, this will give a lot of freedom in the optimisation but at the cost of a high
number of design variables. Problems of spanwise smoothness of the geometry can also
occur. A way to avoid this is to use spanwise distribution functions as proposed in Refer-
ences [153,154]. The design variables in this case are parameters defining these spanwise
functions and to each master section depending on its spanwise position corresponds
a value of these functions that can be used to perform the transformations described above.
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Problems of smoothness were encountered in this work when using twist design variables
for sections very close to each other in the spanwise direction. Hence a spanwise twist
distribution function was implemented. A 6th order polynomial was chosen. Hence the
parameters  

� � �/ � � � are calculated depending on the spanwise position � � � � of the master
section

�
according to

 
� � �/ � � � � ��

�
'

  
� � �/ ���� � �
� � � � � � �

To have some smoothness in the twist distribution at the root of a full span wing, the
first derivative of the polynomial at the root is forced to be zero. This implies that
 
� � �/ ������ �
� � ��� . Hence only 6 coefficients  

� � �/ ���� � �
��� are needed to define the spanwise
twist distribution and can be used as design variables. The spanwise twist distribution
was also extended to either represent a twist increment as presented so far or the real
value of twist at each master section. All that is needed in this latter case is to change the
value of  

� � �/ � � � in equation (4.1) by  
� � �! � � � �  

� � �/ � - � � � � � where  
� � �/ � - � � � � � is the

value of twist for the initial geometry.

An important point to realise is that a geometry modeler that updates the wing geometry
and shape as described in this and the previous sections is not needed on its own. Since to
perform an aerodynamic optimisation, the geometry is taken into account only through a
CFD grid, the geometry modeler can directly be applied to the grid to obtain an updated
grid. This is described in the next section.

4.3 Grid update

Since the aim of aerodynamic shape optimisation is to modify the geometry of a wing or
an aerofoil, this geometry will evolve during the optimisation process and new CFD calcu-
lations will be required for this new shape. Hence it is necessary to change the grid each
time the geometry is modified. Different ways of performing this grid perturbation are
presented next before giving more details about the actual technique used in this thesis.

4.3.1 Existing methods

Samareh also surveys grid regeneration or deformation techniques in Reference [134].
As in Section 4.1, the author of this thesis presents here references that he encountered
during this study to complement Samareh’s survey.

The simplest method is to regenerate the whole grid[28,42] with a grid generator. In this
case care should be taken that the new grid has the same resolution as the initial one in
order not to change the accuracy of the flow and adjoint solvers between optimisation
iterations. This method also suffers from the fact that totally automatic grid generation
for structured grids is only possible on simple geometries because for complex ones,



4.3 Grid update 41

human intervention is often necessary.

For unstructured grids, a popular mesh deformation technique is the tension-spring anal-
ogy method.[48,79,80,82,152,157,159,160] It consists in considering the grid as a system of in-
terconnecting springs in equilibrium with a spring stiffness

� �)

equal to the inverse of the

length of the side that links node
�

to node
�
. The equations of equilibrium for each node

form a system �


� �)
 � � � � � � � 
 � � �

that is solved with a Jacobi iteration strategy.
� � � and

� � 
 are the displacements from
the initial position at node

�
and

�
. In Reference [157], this technique is applied only for

grid points far from the boundary surface because high-aspect ratio cells are used near the
surface to solve the Navier-Stokes equations and this technique does not guarantee the
conservation of aspect-ratio. Hence another technique, more geometrical, is employed
near the surface and it allows large-scale changes in the geometry without any difficulty.
Another amendment to the tension-spring analogy technique is made in Reference [161]
where torsional springs are added to the tension springs to improve the capabilities of the
method and allow large grid changes.

Nielsen and Anderson[162] show some limitation of the tension-spring analogy for un-
structured grids and propose a better method based on linear elasticity. Other techniques
for unstructured grid deformation are based on the solution of an elliptic equation for the
mesh displacements[83] or consider mesh velocities.[163]

For structured grids, the technique widely employed is the flexible grid approach where
the grid points are updated along grid lines starting from the deformed geometry and
going to the outer farfield boundary. This supposes that an initial grid is created using any
grid generator for the baseline configuration. The grid displacement is transmitted from
the surface to the outer boundary with an attenuation depending on the arc-length position
of the grid points along each grid line. The attenuation is introduced to keep the outer
boundary fixed. The methods differ in the way the arc-length is calculated. It is based
on coordinate positions in References [154, 155] but this is very limited. A much better
way of calculating the arc-length is to use geometrical distances measured either from the
deformed surface[16,47,88,125,145,147,153,154] (this is the technique employed in this study that
will be described in the next two sub-sections) or from the outer boundary.[138,148] The
flexible grid technique used in Reference [142] is slightly different and only allows grid
movement in a radial direction. An innovative feature is introduced in Reference [164]
i.e. the use of the cosine of the arc-length in the grid deformation algorithm.

The flexible grid approach is further developed in References [139, 150, 165] where
multiblock meshes can be used and the grid perturbation is transmitted between different
blocks. Furthermore the method enables orthogonal (at least in the computational domain,
i.e. for example a boundary surface at j=1 and an adjacent one at i=1 that are orthogonal in
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the computational domain but not necessarily in the physical domain) boundary surfaces /
block faces to be modified like at the junction between the wing surface and the fuselage,
while the method of flexible grid used in this work would only allow one surface to be
modified. An advanced technique for multiblock structured grid deformation is also
provided in Reference [166].

The grid update in this work is done in two stages: the first stage is to create a surface
grid, the second stage produces the volume grid around this surface grid. Each stage is
now described in a separate sub-section.

4.3.2 Surface grid update

The surface grid on a wing is viewed as a spanwise succession of wing sections. The
initial wing surface grid is then divided into master sections and normal sections, knowing
that after the grid update the master sections will be connected linearly. Hence this implies
that the root and tip sections be master sections as well as any section situated at a crank
location.

The master sections of the initial surface grid then undergo the transformations described
in Sections 4.1.2 and 4.2 of this chapter. Once their shape has been modified and they
have been repositioned, the normal sections that existed originally between two master
sections are recreated. This is done by a linear interpolation between two consecutive
master sections depending on the original position of the normal section between these
two master sections. In addition a special treatment is applied to the wing tip to obtain
the new surface grid of the wing.

At this point it must be noted that to simplify the grid update process, the last master
section at the wing tip is supposed to undergo only translation, rotation or scaling
transformations. This last master section should be situated inboard of the actual wing tip
to leave some grid sections to define a rounded tip for example. By limiting the possible
transformations of the last master section to those cited, it is possible to apply these same
transformations to the grid sections further outboard to create a tip geometry similar in
shape and grid quality to the initial grid. If the last master section was also allowed to
be deformed, this deformation would have to be applied somehow to the tip sections to
get a continuous shape. This is not a trivial task and it was avoided for simplicity. This
treatment at the wing tip is also applied in the same way at the wing-winglet junction
when a winglet is connected to the wing. The winglet is considered here as an almost
non-deformable piece of wing stuck at the tip of a normal wing. Hence the same simple
transformations applied to a tip can be applied to the winglet but shape deformations that
would imply a modification of the wing-winglet junction are avoided for simplicity. This
would require some major work to implement and to make sure it works in any situation.

Another potential problem is that almost all the transformations applied to the grid
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wing sections are carried out in the � � plane. This supposes that the grid wing sections
are perfectly planar and situated in this � � plane. Yet this is hardly ever the case for
an habitual CFD grid since if the grid sections are usually aligned with a streamwise
direction, they are not necessarily planar, let alone in the � � plane. However this does
not constitute too much of a problem, the transformations can still be applied, they will
generate a geometry that would have been different if the wing section had been in the � �
plane but the geometry changes will be reflected in the grid sensitivities and that is all that
matters to the optimisation. The only inconvenience is that the parameters that control
the wing geometry lose their physical meaning: if for example, a wing section is planar
but tilted with respect to the � � plane, the scaling parameter �	� 
 � � will not represent the
ratio of a similarity transformation of the wing profile since the � coordinate is unchanged.

To end this description of the surface grid update for a wing, it is necessary to mention
the multiblock capability included in this study. This is quite limited compared to the
references cited in the previous subsection but works well for a grid around a conventional
wing or a BWB with winglet. Multiblock decomposition of a wing is allowed here only
in the spanwise

�
direction. Hence there must be only one block in the chordwise

�
direction from leading edge to trailing edge and only one block in the normal direction�

from wing surface to outer farfield boundary. In the spanwise direction, grid sections
situated at the interface between two adjacent blocks, have to be master sections in order
to make possible the linear connection between master sections.

When the grid on the surface of the wing has been regenerated, the next part of the surface
grid that needs to be created, is the wake surface grid for a C-type of grid around a wing
or an aerofoil. The technique used is the same as the one used for the volume grid which
will be described in the next sub-section. In this case it is used in a streamwise direction
instead of a normal direction and the points on the surface that are moving, are the trailing
edge points.

Once the surface grid on the wing and in the wake has been created, the volume grid can
be regenerated as explained next.

4.3.3 Volume grid update

The technique employed to modify the volume grid is taken from References [16,88,125,
153,154]. The deformation of the volume grid is considering individually every grid line
originating from the internal surface grid already updated and linking the outer farfield
boundary. If along one of these lines the grid points are ��� 
 � � 
 � � 
 � ��� � � � � � � � � � then the
update is done according to

� -  $
 � � + "
�
 � � � � 
 �	��� � ��� ��� -  $. � � � 0 )  � � + "

�
. � � � 0 )  �
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where


��	� � � � �

�
" ' �
� "



-�

" ' �
� "

� " � � � � " � � " 	
� � � � � � " � � " 	

� � � � � � " � � " 	
� � �

and � . � � � 0 )  � � � and the point at the farfield boundary is � 
 - . A similar transformation
is done for the � and � coordinates. It can be seen clearly that the outer boundary is kept
fixed by this transformation. This also shows why, in the multiblock case, it is not easy
to have more than one block in the normal direction from the wing surface to the outer
boundary.

Figure 4.1 to Figure 4.3 give some examples of grid update and summarise what has
been presented in this chapter so far. In Figure 4.1, only design variables that are Bézier
parameters are used to modify the upper and lower surface of the RAE2822 aerofoil. 10
parameters are used on each surface. Figure 4.1 shows the kind of shape that could be
obtained with the technique of Bézier-Bernstein parameterisation chosen in this work. It
also demonstrates that the grid deformation technique is working well since the modified
grid is still of good quality.

Figure 4.2 and Figure 4.3 give an example of the level of freedom in geometry that can be
achieved with the wing geometry representation. Both figures represent the same wing
that has been obtained by modifying the ONERA M6 wing.[167] No Bézier parameters
were used so the aerofoil shape is the same as for the M6 wing. Only the parameters
� � � � � 
 � � - � �&�  , �	� 
 � � and  

� � �/ were employed on 10 wing sections to obtain the
deformed wing. In Figure 4.2, the background grid is shown in the plane of symmetry
and in a cut through the volume grid in the wake of the wing while in Figure 4.3, only
the symmetry plane is shown. Despite important deformations, the updated grid is still
of acceptable quality. Finally it should be noted that the two examples presented from
Figure 4.1 to Figure 4.3 are 4-block grids demonstrating the use of the grid update
technique on multiblock grids.

This technique of grid update might be a bit limited in the case of large geometrical changes
since the outer boundary is kept fixed and the general behaviour of the grid is conserved
(for example if the concavity of a surface changes during the optimisation, some problems
can occur). However it should be very efficient for “small” geometric changes, which is
usually the case in aerodynamic optimisation. Its main advantage is certainly that it is a
simple analytical transformation, hence it is fast and can be easily differentiated to obtain
the grid sensitivities as is described in the next section.
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(a) Original RAE2822 aerofoil grid.

(b) Modified shape obtained from the same grid.

Figure 4.1: Example of grid update with 20 Bézier parameters as design variables. (Shape
modified manually, not the result of an optimisation)
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(a) Original ONERA M6 wing grid.

(b) Modified wing obtained from the same grid viewed from the same angle.

Figure 4.2: Example of grid update for parameters controlling the wing geometry. (Shape
modified manually, not the result of an optimisation)
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(a) Original ONERA M6 wing grid.

(b) Modified wing obtained from the same grid viewed from the same angle.

Figure 4.3: Same wings as in Figure 4.2 but viewed from a different angle. (Shape modi-
fied manually, not the result of an optimisation)
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4.4 Grid sensitivities

The grid sensitivities are the vector of derivatives

� �
� � � where

� � � � ��� 
�� � � � ��� 
�� � � � ��� 
�� � � is

the vector of grid variables and
�

the vector of design variables for the optimisation. In
short, the grid sensitivities represent the movement of each grid point due to a change in
design variable. We have seen in Chapter 2 that it was needed for the direct differentiation
method. Likewise we will see in Chapter 6 that these quantities are needed by the adjoint
solver and hence have to be calculated.

It is often possible, knowing the process of grid perturbation, to calculate the grid
sensitivities. When a new grid is regenerated each time with a grid generation package or
when a fast grid perturbation method is used, a method of finite-difference can be used to
compute the grid sensitivities.[9,43,46,53,89,139,145–147,150,165] This does not avoid however
the usual problems associated with finite-differencing i.e. choice of the step length and
an inevitable large number of grid generations.

It is also possible to apply Automatic Differentiation to a grid generation code or a grid
perturbation code to obtain the grid sensititivities.[28,42,46,70–73,80–82,166] An Automatic
Differentiation program applied to a grid generator will provide a code that generates
both the grid and the grid sensitivities.

When the algorithm behind a grid generator is known, analytical methods[89] are also pos-
sible where the grid sensitivities are written

� �
� � � �

� �
� � *

� � *� ���

where
� * is the vector of grid points situated on the wing or aerofoil surface. This

separates the term

� �
� � * that is specific to the grid generator, the calculation of which can

be incorporated into the grid generation code, from the term

� � *� � � that is different for

each configuration and also depends on the choice of shape parameterisation and design

variables. A way of calculating the term

� �
� � * is provided in Reference [168] where

the differentiation of the equations of a hyperbolic grid generator and an elliptic grid
generator is performed. This differentiation enables the grid sensitivities to be calculated
much faster than using a finite-difference method.

When an analytical method is used to update the grid, it is often quite easy to differentiate
directly this algorithm to obtain the grid sensitivities either for structured[138,153,155]

or unstructured grids.[48,83] This is what is done in this work. It is an application of
the chain rule of differentiation throughout the grid perturbation code. To accelerate
the computation of these analytical grid sensitivities, Kim et al[83] neglect sensitivities
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for the interior grid points and only take into account grid sensitivities on the deformed
surfaces. They show that it is a valid approximation but this is not considered in this work.

Examples of grid sensitivity calculations made with the hand-differentiated grid pertur-
bation code of this study, are given in Figure 4.4 for a 2D case and in Figure 4.5 for a 3D

case. Figure 4.4 shows the grid sensitivity

� �� � of the � coordinate of all the grid points

around the RAE2822 aerofoil. Here
�

is the 6th Bézier parameter out of 10 that are used to
parameterise the upper surface of the aerofoil. Comparison is made between the analytical
computation of the grid sensitivities and a finite-difference computation where the step
size was taken as

� � 	 � . Both results are identical, this very good agreement certainly
resulting from the fact that only expressions using linear combinations are employed in
this case. Figure 4.4 shows that the 6th Bézier parameter controls the shape of the upper
surface of the aerofoil at one third of the chord since the grid sensitivities are high in this
region. However the Bézier parameterisation is a global parameterisation in the sense
that the variation of one parameter implies changes along the whole parameterised curve
and not just local changes That is why grid sensitivities are non-zero on the rest of the
upper surface. The � direction is the vertical direction in these pictures oriented positively
from bottom to top. Since all the sensitivities are positive, this means that a positive
increment in

�
will displace the grid points towards the top of the pictures as is expected

and vice-versa for a negative increment. The effect of the volume grid update can also be
seen in Figure 4.4: since there is an attenuation of the grid displacement in the volume
grid as you move away from the aerofoil surface, the influence of

�
vanishes and the grid

sensitivities become smaller. Finally 4 blocks are employed for this grid and it is clear
that the 6th Bézier parameter only influences the block situated above the upper surface
of the aerofoil and not the three blocks situated in the wake of the aerofoil and below it,
where the grid sensitivities are zero.

Figure 4.5 represents the grid sensitivity

� �� � of the � coordinate of all the grid points

around the ONERA M6 wing. Here
�

is the parameter �	��

��� associated to the 15th out of
33 spanwise grid sections of the wing. This 15th spanwise grid section is represented in
white in the pictures. The grid sensitivities are shown on the upper surface of the wing
and on the horizontal planes starting from the leading edge and from the trailing edge.
Here again the agreement between the analytical computation and the finite-difference
calculation is excellent but here again only linear combinations are differentiated. The �
direction is the horizontal direction in these pictures oriented positively from right to left.
Hence positive grid sensitivities mean that a positive increment in �	� 
 ��� (i.e. an increase
in the chord of the 15th wing section) displaces the grid points towards the left hand side
of the pictures whereas grid points with negative grid sensitivities are displaced towards
the right hand side. It can hence be seen that in this example the scaling of the 15th wing
section is done around the quarter chord point since grid points situated at the righ hand
side of 25 � chord have negative grid sensitivities and grid points situated at the left hand
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(a) Analytical computation.

(b) Finite-difference computation.

Figure 4.4: Grid sensitivity � �� � of the � coordinate with respect to the 6th Bézier parameter
out of 10 that parameterise the upper surface of the RAE2822 aerofoil.
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(a) Analytical computation.

(b) Finite-difference computation.

Figure 4.5: Grid sensitivity ���� � of the � coordinate with respect to the parameter �	��

��� as-
sociated with the 15th spanwise grid section (shown in white) on the upper surface of the
ONERA M6 wing.
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side of this location have positive grid sensitivities. In the spanwise direction, it can
be seen that only 3 master sections were used to parameterise the wing in this case, i.e.
the root section, the 15th grid section and the tip section since the whole wing surface is
affected by changes in the 15th grid section. Indeed since the geometry modeler assumes
a linear connection between the master sections, changes in one master section affect only
the spanwise region situated between the previous and the next master section. Since

�

here only affects the 15th grid section and not the root or the tip, its influence vanishes as
you move away from this 15th section in the spanwise direction and the grid sensitivities
tend to zero. Finally the volume grid update propagates the changes on the wing to the
rest of the grid around the wing. This is shown in the horizontal planes ahead of the wing
and in its wake.

This concludes this chapter on the surface parameterisation and grid update. It started by
looking at existing shape parameterisation and then by detailing the one chosen in this
work i.e. the Bézier-Bernstein parameterisation. The way the wing geometry can be mod-
ified, was then examined. The process of grid deformation employed in this thesis was
also described. It is an analytical method that can be easily differentiated to provide the
grid sensitivities needed by the adjoint solver and that were considered in this last section.
The next chapter details an essential component of the optimisation chain developed in
this work, i.e. the CFD flow solver MERLIN.



Chapter 5

Fundamental equations and
discretisation

The aim of this chapter is to describe the equations that are used in the flow solver and to
present the methodology employed to solve them. The first part of this chapter describes
the governing equations, the way they are nondimensionalised, their discretisation in space
and time. Two formulations are shown: an explicit and an implicit formulation. The ex-
plicit approach is described first with the evaluation of the convective terms and then the
diffusive terms, followed by the application of the boundary conditions. The implicit for-
mulation is then explained: the general solution methodology is first presented and then
the calculation of Jacobians for the convective and diffusive terms, and finally the treat-
ment of the boundary conditions in the Jacobian. The rest of the chapter presents a case
of validation, the ONERA M6 wing.

5.1 Introduction

The CFD code employed in this work to perform flow field analyses is called MERLIN
and is an in-house code developed at the Centre for Computational Aerodynamics of
Cranfield College of Aeronautics. It has been used in References [169–172]. MERLIN is
a 3D Reynolds averaged Navier-Stokes flow solver that works on structured multiblock
grids. The equations are cast in a cell-centred finite-volume form and the convective
flux calculation follows Osher’s approximate Riemann solver[173,174] with a MUSCL
scheme[175,176] for higher order accuracy. For the time discretisation, either an explicit
or a more efficient implicit method can be used. The turbulence model employed in this
work for viscous turbulent flows is the algebraic turbulence model of Baldwin-Lomax.[177]

After the summary of the key elements of the flow solver, each of them will be described
separately afterwards, starting with a presentation of the governing equations.

53
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5.2 The governing equations

The governing equations are the three-dimensional Navier-Stokes equations which, writ-
ten in integral form for a bounded domain

�
with surface boundary

� �
, are

�
�  

�������
� � � � ���

�

� �
� 	 � � ��� (5.1)

where the vector of conserved variables � is given by

� �
� � � � � � � � � � � �

in which
�

is the fluid density,
�

,
�

and
�

are the Cartesian velocity components in the
respective � , � and � directions and

�
is the total energy

� � � �
�� � � � � � � � � � �

with the internal energy � .
The flux vector

�
is composed of an inviscid and a viscous contribution in the three direc-

tions:
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These convective and diffusive contributions are:
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Here
�

is the static pressure, � the stress tensor and 
 the heat flux vector. The stress tensor
is given by

� �)
 �
� � � �)
 � � � � �� � �

 �)


(5.3)

with the strain-rate � � 
 �
�� � � � �� � 


� � � 

� � � � �

the molecular viscosity � , the second coefficient of viscosity
�

and the Kronecker symbol
 �)

.

The molecular viscosity is calculated using Sutherland’s law, which written in a non-
dimensional form is

�
� � �

� �
� � ����

��� � ���� �
� �

��� ��� �� �
� �
� �

where
�

is the temperature, while the second coefficient of viscosity is given by
�
�
� ��#�

The heat flux vector is given by


 � � � �
� �
� � �

where � is the thermal conductivity coefficient.

In order to close this mathematical system and be able to solve equation (5.1) for the com-
ponents of vector � , two further relationships are needed. The first one relates pressure,
density and temperature through the equation of state for a perfect gas

�
�
� � �

The second one relates internal energy, pressure and density with

� �
�

� � �
�
�

where � is the ratio of specific heats and is taken as � � � ��� throughout this work.

5.3 Primitive variables and non-dimensionalisation

Before going any further into the discretisation of the Navier-Stokes equations (5.1), it is
necessary to point out that MERLIN solves for the vector of primitive variables

�
instead

of the vector of conservative variables � presented in the last section.
�

is defined as
� �

� � � � � � � �
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Although
�

and � can often be easily interchanged to mean the flow variables, the author
of this thesis will try to be consistent in the utilisation of the notations to match what is ac-
tually done in the CFD code. The Jacobians of the transformation from one set of variables
to the other are[178]
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The other point that is worth mentioning is that MERLIN is not actually solving for the
physical value of the variables but for non-dimensional variables. In the version of MER-
LIN employed in this work, all the variables are non-dimensionalised by the freestream
conditions. This is summarised in Table 5.1. In the rest of the thesis, all the variables are
non-dimensionalised and for ease of reading, the superscript � is dropped out.

5.4 Finite volume formulation

In order to solve the Navier-Stokes equations (5.1), they are spatially discretised using a
finite volume formulation. This means that the whole domain is divided into a large num-
ber of small volumes and the integral form of the Navier-Stokes equations is applied to
each of these volumes. These small volumes are in fact the cells defined by the computa-
tional grid. Since the conservation of mass, momentum and energy is satisfied through the
Navier-Stokes equations at the level of each cell, it is also satisfied for the entire domain as
would happen if the equations were directly applied to this entire domain. The advantage
of working at the cell level is that the Navier-Stokes equations can now be simplified and
for a cell

�
of volume

� �
, equation (5.1) becomes� � � � ��  �

� � �
(5.4)

where � � is the cell-averaged state variables for cell
�

and the residual vector
� �

is the sum
of all the fluxes passing through each of the cell faces

� � � �
��0 )  .

� � � � � � 	 � (5.5)
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Physical variable Non-dimensionalisation
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Table 5.1: Non-dimensionalisation applied in MERLIN.

	 is the vector normal to the face pointing outwards and
�

is the area of this face.

A cell-centred approach is also taken which means that the cell-averaged vector
�

is
stored at the centre of the cell. A typical three-dimensional cell is shown in Figure 5.1:
the primitive variables

�
are stored at the cell centre; the relationship between this centre

and the actual grid point coordinates is indicated; also shown are the metric vectors / cell
face normal vectors used in the code:

�
in the

�
direction, � in the

�
direction and

�
in the�

direction.

In addition to being discretised in space, the Navier-Stokes equations also need to be dis-
cretised in time to be solved.

5.5 Time discretisation

All the problems treated in this work are not time dependent hence only the steady state
Navier-Stokes equations could be considered. However it is a common practice to use
the time dependency as an efficient way to drive the resolution process towards a steady-
state converged solution. This is what is done in MERLIN. The semi-discrete form of the
Navier-Stokes equations (5.1) has already been presented in equation (5.4) after spatial
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Figure 5.1: A typical cell with its centre, its grid points and its metric vectors.
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discretisation. This can be rewritten� � ��  �
� � � � � (5.6)

Since the problem is time independent, a converged steady-state solution is characterised
by � � � � ���
This serves, within numerical errors, as convergence criterion to check if the steady-state
is reached or not.

A possible temporal discretisation of equation (5.6) is

� -
� � � � -
�  �

� � � � - � (5.7)

where the cell volume is incorporated in the time step
�  . This constitutes the explicit

method available in MERLIN and is rather simple since the residual vector only depends
on the current value of the vector � . Hence the update for the next time step is straight-
forward:

� -
� �

� � - � �  � � � - � (5.8)

A method of local time-stepping is employed in MERLIN which means that the time step
is not uniform across the domain at the same time iteration but depends on the size of the
cell and the flow characteristics at the cell considered. Indeed since the time dependency
is only used to reach a steady state, the time step should not have an effect on the final
steady state solution and can be chosen more or less arbitrarily from one cell to the other.
Since different regions of the flow field are marched in time at different speeds, the whole
process will reach a steady state much quicker, in terms of iteration number and hence
computing time, than if the same time step was used for the entire domain at each iteration.

In MERLIN, the time step is calculated according to

�  � CFL

� � �
� � � � � � � � � � � �

� � � 
 � � � � � � � � � � � � � � � � �� � � 	 � � � � � � � � � � � � � � � � � �
(5.9)

where
� � � � � � � � � is the velocity vector in three dimensions. The last term in the

denominator involving the Reynolds
� � and Prandtl

	 � numbers relates to the viscous
terms and thus is not employed for inviscid computations. All the quantities in equa-
tion (5.9) are local quantities relating to the cell where the time step is computed, except
the Courant-Friedrichs-Lewy (CFL) number (and of course � ,

� � and
	 � ) that has the

same value for the whole domain. In the explicit method, the CFL number is kept constant
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during all the solution process.

However for numerical stability reasons, the time step
�  cannot be chosen arbitrarily.

The stability analysis[179] imposes that the CFL number be smaller than unity for the
one-dimensional convection equation. For viscous problems in three dimensions, the
CFL number has to be even smaller, leading to small values for the time step. Even by
using local time-stepping, this limitation in the time step value makes the whole process
very slow to converge towards a steady-state solution. Hence the explicit method is
simple to implement but not very efficient and an implicit method will be preferred.

In an implicit method, the residual vector is evaluated at the future time level and hence
the discretisation of equation (5.6) becomes

� -
� � � � -
�  �

� � � � -
� � �

(5.10)

This discretisation is much more complicated than the explicit method since a simple up-
date like equation (5.8) is no longer possible. The method chosen consists in linearising
the residual vector around its value at the time level �

� � � -
� � �

� � � � - � � ��� � � - �
� �

- � � �
higher order terms (5.11)

where - � � � � -
� � � � -

The introduction of this linearisation (5.11) into equation (5.10) gives� �
�  

� ��� � � - �
� � � - � � �

� � � � - � (5.12)

Equation (5.12) is now a linear system that has to be solved for - � � . The way of solving
this linear system will be presented in a latter subsection. To be precise, equation (5.12)
is further modified in MERLIN to be solved for primitive variables:� �

�  
� ���� � ��� � � - �

� � � - � � �
� � � � - � (5.13)

Once this is solved for - � � , the update formula is simply
� - � � � � - � - � � (5.14)

The implicit method enables the use of much larger time steps than the explicit method
or, equivalently, much larger CFL numbers. In the implicit version of MERLIN, the CFL
number is increased logarithmically with respect to the total residual at each iteration by
the formula

CFL - � CFL

 �

	�� ��� � 

� � � + �10#" � � - �� � + �10#" � � 
 � �
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The total residual
� � + �10�" is the square root of the sum of the square of all the components

of the residual vector for each computational cell. Hence as the residual tends to zero
i.e. the more the solution is converged, the higher the CFL number is and the larger the
time step is. Even if a maximum value for the CFL number is set inside the code, this
method is very efficient and converges quickly. Its only drawback is that it is much more
complicated to implement than the explicit method.

Now that the explicit and the implicit methods available in MERLIN have been introduced,
each of them is described in more detail in the next two sections.

5.6 Explicit formulation

This section presents first the calculation of the convective fluxes in the explicit method-
ology. This is followed by the description of the diffusive fluxes and the application of the
boundary conditions in this methodology.

5.6.1 Convective terms

The calculation of the convective part of the flux
� � � � � in equation (5.5) could be a simple

application of the formulae (5.2) at the face between two adjacent cells. However such a
simple numerical scheme would be unstable in an explicit method and would fail to cap-
ture flow discontinuities like shock waves and shear layers. Some flow physics has to be
incorporated into the calculation of the flux. This is done by using Osher’s approximate
Riemann solver presented in the next subsection.

5.6.1.1 Osher’s approximate Riemann solver

An approximate Riemann solver calculates a flux at an interface by incorporating local
information on the flow characteristics at this interface. This is done by solving ap-
proximately a one-dimensional Riemann problem also called shock-tube problem at this
interface. The interface represents the membrane of the problem with two different flow
conditions � � and ��
 on each side of this membrane. This is represented in Figure 5.2.
Depending on the state of the flow on each side of the interface, different expressions are
provided to calculate the flux and hence be able to capture any flow discontinuity.

Osher’s scheme[173,174] is a flux splitting method. It has the nice property of being contin-
uously differentiable and can thus be used in an implicit solution methodology. The com-
plete derivation of Osher’s approximate Riemann solver is given in References [180,181],
summaries of this derivation being found in References [182, 183] for example. During
this derivation an integral involving the Jacobian has to be evaluated across the interface
from � � � � 
 to ��
 � � � . The value of this integral depends on the integration
path followed. We follow the P-variant of Osher’s scheme that integrates in the physi-
cal space. This integration introduces the intermediate intersection points

� � �
and � � � and
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Figure 5.2: Flux at the interface between two cells.
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sonic points
�
� and

� �
. The flow variables at these intermediate points are calculated from

� 
 and � � using Riemann invariants. Here it is sufficient to know that � ��� � and � � � � de-
pend on both � 
 and � � whereas ��� 
 only depends on � 
 and ��� � only depends on � � .
The integration leads to 16 possible combinations depending on the value of � 
 and � �
and the value of � at the intersection points. These are given in Table 5.2 where

�
repre-

sents the velocity normal to the interface, 
 is the speed of sound and
� � � � ��� � � � � � �

.
Table 5.2 is to be read in the following way:

if, for example,
� 
 � 
 
�� � ,

� � � 
 ��� � and
� � � � ,

� � � 
 � � � � �

then
� ��� ��� � � � � � 
 ��� � � ��� 
 � � � � � ��� � � .

where the flux
� � � � is given by

� � � � � �



�
� �

� � � � � �
�

� � � � � � �� � � � � 
 �� � � � � � �
������	

and the unit vector normal to the interface is 	 � ��� � � � � � � 
 � .
5.6.1.2 Higher-order spatial accuracy

If to calculate the flux at the interface between cell
�

and cell
� � �

, the value of � � and
� 
 are taken as � � and � ��� � respectively in Osher’s scheme, then the discretisation is
only first order accurate in space. This will lead to poor accuracy in smooth regions of the
flow field. To increase this accuracy a MUSCL scheme[175,176] is used and is basically a
linear extrapolation to the flux interface of the flow properties in the two cells adjacent to
the interface on each side of this interface. Considering the interface between cell

�
and

cell
� � �

, it is written as
�
� � � � � �� � � � � � � � � � � � � 	 � � � � � � � � � � ��� � � � � � �� 
 � � ��� � � �� � � � � � � � � ��� � � � � � � � � � � � � � ��� � � � ��� � ��� (5.15)

where � is chosen as � � � � �
in this work. With this value of � the discretisation is

third order accurate in space. Note that the MUSCL scheme is applied to the primitive
variables in MERLIN, while Osher’s Riemann solver is applied to the conservative
variables.

Though this version of the MUSCL scheme gives very good accuracy in smooth regions
of the flow field, it will generate spurious oscillations and even prevent convergence of the
solution in the neighbourhood of flow discontinuities like shock waves or shear layers. In
these regions of large flow gradients, it is necessary to revert to a first order approximate
Riemann solver designed to tackle flow discontinuities. Hence the idea is to keep a third
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order scheme in the smooth regions of the flow field and to change to a first order scheme
in the neighbourhood of discontinuities. This is achieved by introducing a slope limiter.
The slope limiter chosen in this study is

� � � � � 	 ��� � � 	 � � � 	 � � 	 � 	 � � � �� 	 ��� � � 	 � � � � � 	 � � 	 � 	 � � � � �
and is applied component by component. � is a small number preventing the denominator
from becoming zero in smooth flow regions. The advantage of this limiter is that it is
differentiable.

The MUSCL scheme of equation (5.15) is modified to introduce this limiter
�
� � � � � �� � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � ��� � � � � � �� 
 � � ��� � � �� � ��� � � � � � � ��� � � � � � ��� � � � � � � � � � � ��� � � � � � ��� � � � ��� � ��� (5.16)

In regions of zero flow curvature (
	 ��� � � 	 � � 	 � � 	 � 	 � � � 	

), � � is close to 1 and the
MUSCL scheme is the one in equation (5.15) whereas in regions of large flow curvature
(for example when

	 ��� � � 	 ��� 	 � � 	 �
	
�
), � � is close to 0 and the MUSCL scheme

reverts to a simple first order scheme. In addition, whenever the application of the MUSCL
scheme and its limiter produces non physical values (negative density and/or pressure), a
first order method is employed.

5.6.2 Diffusive terms

This subsection details the calculation of the diffusive terms
� & , � & and

� & in equa-
tion (5.2). It starts with the laminar viscous part and then examines the turbulence mod-
elling.

5.6.2.1 Laminar viscous fluxes

The viscous fluxes are calculated using a central discretisation which means that the for-
mulae (5.2) for

� & , � & and
� & are applied at the centre of the face where we want to cal-

culate the flux. However velocity and temperature gradients need to be evaluated at this
centre point in order to calculate the stress tensor � . They are approximated using Gauss’
theorem.[184] For the component

�
of the velocity in the � direction this is written for a

bounded domain
�

with surface boundary
� �

:� �
� � � � �

�
�

� � 	 � �
which, once discretised on an hexahedral volume, becomes

� � �
�� ��

" ' �
� " 	 " � " (5.17)
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Figure 5.3: The dual volume used to calculate the viscous flux at the face between cell���������
and cell

� � � �������
.

where
�

is the volume of this domain,
� " the averaged value of

�
on the six faces of this

domain, 	 " the unit normal pointing outwards on these faces and
� " the area of these faces.

Let’s assume we want to calculate the viscous flux through the face between cell
� � �����

and cell
� � ��� �����

represented as the shaded area in Figure 5.3. Gauss’ theorem (5.17) is
applied to a dual volume that encloses this face and the edges of which are represented by
a dashed line in Figure 5.3. The diagonal crosses show the location of the face centres.
With the notation of that figure, this gives

� � � 
 �
�� � � � � 	 � � � � � � � � � 	 � � � � � � � 
 � 	 
 � � 
 � � � 
 � 	 
 � � 
 � � � � � 	 � � � � � � � � � 	 � � � � � �

�
�� � � � � � � � � � � � � � � � � 
 � � 
 � � � 
 � � 
 � � � � � � � � � � � � � � � �

(5.18)

with the introduction of the metric vectors
�

, � and
�

already presented in Figure 5.1. The
values needed at the centre of the faces of the dual volume are evaluated by making an
average of known quantities. For example,

� � � �
�
� � � ��� 
�� � � � ��� � � 
�� � � � ��� 
�� � � � � � ��� � � 
 � � � � �

� � � �
�� � � ��� 
�� � � � ��� � � 
 � � �
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A projection of equation (5.18) on the three Cartesian directions gives the value of the three
components of the gradient. For example,

� �
� ������


 �
�� � � � ��� � � � � � � ��� � � � � � 
 � � � 
 � � � 
 � � � 
 � � � � ��� � � � � � � ��� � � � �

The same methodology is employed to evaluate the gradients of the velocity components�
and

�
as well as temperature gradients needed to calculate

� & , � & and
� & . The laminar

viscous contributions are then easy to calculate. This however only concerns the laminar
part of the viscous fluxes. How MERLIN deals with turbulent flows is described in the
next subsection.

5.6.2.2 Turbulence modelling

The use of the Navier-Stokes equations (5.1) for turbulent flows requires some further de-
velopment. Turbulence is a physical phenomenon which is essentially three-dimensional,
unsteady and involves a wide range of time and space scales. The complete resolution
of the Navier-Stokes equations for such a phenomenon would necessitate extraordinarily
fine grid resolution and the use of very small time steps. Direct Numerical Simulation
(DNS) can address this nowadays but only on very small domains and at the cost of
very high computing efforts. For engineering problems, even Large Eddy Simulation
(LES) is very demanding and the use of Reynolds averaged Navier-Stokes equations is
the only possibility. This involves a time averaging of the Navier-Stokes equations: each
flow variable is decomposed into the sum of an averaged component and a fluctuating
component and the governing equations are then time averaged. The averaging does
not change the structure of the Navier-Stokes equations (5.1) for which the variables are
now the averaged components, except that additional terms, called the Reynolds stresses,
which involve an averaging of the product of two fluctuating velocity components, are
generated. These Reynolds stresses which are unknown, need to be approximated through
the use of a turbulence model.

There exists a wide variety of turbulence models[185] ranging, in order of complexity, from
simple algebraic models to models solving the Reynolds stress equations. The turbulence
models situated in the lower part of this scale rely on the Boussinesq assumption that the
Reynolds stresses act as the laminar viscous stresses and are the product of an eddy vis-
cosity and the mean strain-rate tensor. In this way equation (5.3) is changed to

� �)
 �
� � � �)
 � � � � �� � �

 �)
 � �� � � 
 � 


where
�

is the kinetic energy and � is now the sum of the molecular viscosity and the
eddy viscosity � � . The problem of modelling the Reynolds stresses is then reduced to
finding an expression for � � .
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In this work the algebraic Baldwin-Lomax model[177] is used. It divides the turbulent
boundary layer into an inner and outer region with a different expression for the eddy vis-
cosity in each region

� ���
� ��� � � � -�-  
� � � - � � -�)��� � � + � �� 
� � � - � � -�)

where � - is the normal distance from the body surface and � -�) is the distance for which
the inner and outer eddy viscosities are equal.

In the inner region, the mixing-length hypothesis is applied and��� � � � -�-  
� �
� �
�
� � �

where � � � is the magnitude of the vorticity

� � � �
� � �
� �
� � �� � �

�
� � � ��

�
� � �� � �

�
� � � �� � � � �� � �

�

and the mixing length � is calculated with Van Driest function by

� � � � -
��
� � � 	

�
�

� �
��

where � is the von Kármán constant � � � ��� � , �
�

is the Van Driest constant
� � � ���

and �
�

is the non-dimensional normal distance

�
�
�
� $ ��� � -

��$ � � - �
� $ � $
� $

Here
� �

is the friction velocity, � is the shear stress and the subscript
�

refers to quantities
evaluated at the wall.

In the outer region, the eddy viscosity is defined by��� � � + � �� � �
�
	 � � �

� $*0 �  � ( "  �* � � - �
where 	 is the Clauser constant 	 � � �
� � � � , � � � is another constant � � � � � ��� . The
function

� $*0 �  is defined as

� $ 0 �  � ����� � � � 0 � � � 0 � � � $ 0 �  � � 0 � � � � � �
�

� � 0 � � (5.19)

where the wake constant � $*0 �  �� � � � � , � � � � � is the maximum difference in velocity am-
plitude across the boundary layer��� � � � � ��������

�
� �
� � � � � � ��� � � ������ �

� �
� � � � � � ��� �
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� � 0 � is the maximum value across the boundary layer of the function

� � � - � � � - � � �
��
� � � 	

�
�

� �
��

and � � 0 � is the value of � - for which
� ��� - � � � � 0 � . This definition of

� $*0 �  in equa-
tion (5.19) is the standard definition but, as we will see in Section 6.6.4, we had to sim-
plify it to

� $*0 �  � � � 0 �
� � 0 � in both the flow and adjoint solvers. Finally the Klebanoff

function is defined as

� ( "  +* ��� - � � � � � � � �
� � ( ") +* � -

� � 0 � �
� 	 	 �

where the Klebanoff constant � ( ") +* � ��� � .
Practically, the eddy viscosity is calculated along rays that start from the wall and expand
up to the farfield boundary. These rays are based on the computational grid which in
practice limits the possibilities of grid topology. For each cell along these rays, the inner
eddy viscosity is calculated as well as the value of the function

�
. For each ray

� � 0 � is
then determined which makes it possible to calculate the outer eddy viscosity for each
cell. A comparison of the values of the inner and outer eddy viscosities gives the actual
value of the eddy viscosity. This is the way the Baldwin-Lomax is implemented above
and in front of the surfaces for a C type of grid. In the wake though, the eddy viscosity
is not actually calculated but the value along the last upstream ray situated above the
surface is copied. This is done to simplify the calculation of the eddy viscosity in the wake.

The Baldwin-Lomax model is reasonably simple and gives very good results for attached
boundary layers. For boundary layers under strong adverse pressure gradient and for
separated boundary layers, it performs relatively poorly. Its main advantage compared
to other turbulence models is that it is robust and is an algebraic model and therefore is
less computationally demanding than one- or two-equation models. This is important for
three-dimensional optimisations where a large number of calls to the flow solver are made
on geometries that are changing: the flow solver needs to be as fast as possible and if you
use a two-equation model, you must add 2 equations to the laminar viscous code hence
possibly increase the computational cost by 40 � . The turbulence model also has to be
robust since the optimisation process is automated: different shapes have to be handled
without difficulties by the flow solver without any user intervention. The popularity of
the Baldwin-Lomax model for aeronautical flows, at least among algebraic models, has
to be added to this list of reasons for chosing this turbulence model in this study.

This ends this subsection on the evaluation of the diffusive terms with the description of the
viscous laminar contribution followed by the turbulence modelling. The next subsection
details the application of the boundary conditions.
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Figure 5.4: Schematic diagram of halo cells (in shaded area). Left: cell numbering starting
at the boundary. Right: cell numbering finishing at the boundary.

5.6.3 Boundary conditions

A special treatment has to be applied to the boundaries of the domain in order to introduce
the physics of the problem we are trying to model. This is known as the boundary condi-
tions. They are applied in MERLIN through the use of halo cells. These are two layers of
fictitious computational cells that are added to the exterior of the domain. This enables
the fluxes in cells close to a boundary to be calculated as if they were inside the domain,
without having to modify the flux calculation. Figure 5.4 represents schematically these
two computational fictitious cells, whether the cell numbering starts at the considered
boundary or ends at this boundary. The notation of the former case (cell 1 for the first halo
cell directly adjacent to the boundary and cell 0 for the second halo cell away from the
boundary) will be kept afterwards for the description of the boundary condition formulae
but it is trivial to apply them to the latter case.

For turbulent computations, it is also needed to have a value for the turbulent viscosity
inside the halo cells, hence in addition to boundary conditions for the 5 primitive variables� � � � � � � � �

, another one is needed for ��� . However the calculation of the diffusive fluxes
only requires one layer of halo cells hence the boundary condition for � � is only applied
to cell 1 compared to cells 1 and 0 for the primitive variables.

Seven types of boundary conditions are used in this work namely the inviscid wall, vis-
cous wall, symmetry, supersonic inflow, supersonic outflow, farfield and interface bound-
ary conditions. Each of them is briefly introduced next. This is followed by a description
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of our treatment of the corner points.

5.6.3.1 Inviscid wall boundary condition

The inviscid wall boundary condition is applied at a surface only when the inviscid Euler
equations are solved. This is a slip boundary condition that requires that the component of
the velocity normal to the wall at the surface be zero. Let us denote

�
the component of

the velocity normal to the wall and
�

and
�

the two velocity components parallel to the
wall. These are hence the components of the velocity in a reference frame attached to the
wall and should not be confused with

�
,
�

and
�

which are the components of the velocity
in the general Cartesian reference frame � � � � � � � and are part of the vector of variables

�
.

A suitable transformation makes it possible to pass from one reference frame to the other
and vice versa. The inviscid wall boundary condition, applied using halo cells, is hence

� � � � �� � � � � �� � � � �� � � � �
� � � � �

�

� 
 � � �� 
 � � � �� 
 � � �� 
 � � �
� 
 � � �

(5.20)

This is because the flow properties are stored at the cell centres but globally this ensures
that the normal component of the velocity at the wall is zero. The turbulent viscosity at
the wall has also to be zero hence to cancel out the turbulent viscosity in the cell number
2, the following is applied ��� � � � � � ��� � � �
However this introduces a non-physical value in the halo cells since the turbulent viscosity
will be negative there. This should not matter since only the eddy viscosity at the face
(which will be zero) is used.

5.6.3.2 Viscous wall boundary condition

The viscous wall boundary condition is applied to the halo cells next to a surface when
the Navier-Stokes equations are solved. This is a no-slip boundary condition and hence
the velocity at the wall is required to be zero. It is also an adiabatic boundary condition so
pressure and density are transferred unchanged to the halo cells. This translates as

� � � � �� � � � � �� � � � � �� � � � � �� � � � �

�

� 
 � � �� 
 � � � �� 
 � � � �� 
 � � � �� 
 � � �
(5.21)

Here the boundary conditions have been applied directly to
�

,
�

and
�

in order to avoid
any change of reference frame but can be equally applied to

�
,
�

and
�

. The boundary
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condition for the turbulent viscosity is the same as for an inviscid wall because ��� also has
to be zero at the wall so ��� � � � � � ��� � � �
To be precise it is necessary to add that although the boundary conditions for an invis-
cid and a viscous wall are applied in MERLIN as described above, the convective fluxes
through the wall are specified explicitly and do not rely on the values inside the halo cells.
This is done in order to get an accurate flux value that does not depend on the accuracy of
the application of the boundary conditions in the halo cells and also because it is possible
to get an explicit formulation for the wall flux.

5.6.3.3 Symmetry boundary condition

The symmetry boundary condition is applied when the symmetry of a problem is ex-
ploited so that only half of the domain needs to be solved. In this case the boundary
condition is applied in the plane of symmetry of the problem which should be one side of
the computational domain. Physically, there is a condition of symmetry for the velocity
components parallel to this plane of symmetry and the velocity component normal to
this plane should be set to zero. The application of this to the halo cells leads to the
same formulae (5.20) as for the inviscid wall boundary condition although the physics is
slightly different.

For the turbulent viscosity however, the boundary condition is different. The physics here
is that there should be a continuity of � � across the boundary in the same way as there is a
continuity of density and pressure. Hence��� � � � � ��� � � �
5.6.3.4 Supersonic inflow boundary condition

The inflow and outflow boundary conditions are all based on one-dimensional wave prop-
agation theory. In the case of a supersonic inflow boundary, all the information are coming
from the exterior of the domain and entering it. Outside the domain, the flow properties
are supposed to be the freestream conditions and hence the flow in the halo cells is set to
a freestream value: � � � � �� � � � �� � � � �� � � � �� � � � �

�

� 
 � � �� 
 � � �� 
 � � �� 
 � � �� 
 � � �

(5.22)

The freestream flow is assumed to be turbulence free hence��� � � � ���
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5.6.3.5 Supersonic outflow boundary condition

In the case of a supersonic outflow boundary all the information are coming from the in-
terior of the domain and leaving it. Hence extrapolated boundary conditions are needed

� � � � �� � � � �� � � � �� � � � �� � � � �

�

� 
 � � �� 
 � � �� 
 � � �� 
 � � �� 
 � � �
(5.23)

Note that only cell 2 is involved in this case. A more sophisticated extrapolation using cell
3 could equally be applied. The extrapolation is also applied for the same reasons to the
turbulent viscosity hence ��� � � � � ��� � � �
5.6.3.6 Farfield boundary condition

The boundary condition called here farfield boundary condition is applied to an exterior
face when it is not known in advance if this boundary will be an inflow or an outflow
and if the flow at this boundary will be subsonic or supersonic. This is typically the case
when the freestream Mach number is subsonic.

The boundary condition implemented here makes use of Riemann invariants.[184,186] These
are defined as � � �

� � ��
� � �
�
	 �

� � ��
� � �
where 
 is the speed of sound.

� �
is associated with one-dimensional waves of speed� � 
 going out of the domain and is constant along � � characteristics. On the contrary�

	 is associated with waves of speed
� � 
 entering the domain and is constant along

� 	 characteristics. It is important to notice that here the vector normal to the boundary
used to calculate the normal velocity

�
, is pointing towards the exterior of the domain.

In the opposite case, the minus and plus sign have to be inverted in
� �

and
�
	 .

Let us denote by the subscript � quantities that are extrapolated from the inside of the do-
main to the boundary

�
on one side of this boundary, while on the other side, at the exterior

of the domain, freestream conditions � exist. Along a � � characteristic, the following can
be written �  ��

�  � ��
� � � � �
� * � ��
�*� � � (5.24)
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while along a � 	 characteristic,�
� �

�
�
� � 
��� � � �

� * � ��
�*� � � (5.25)

Combining equations (5.24) and (5.25) leads to� * �
�� � �  � � � �

and


�* �
� � �
� � �  � � � �

Depending on the value of
� * with respect to 
 * , the boundary is either an inflow or an

outflow and is either supersonic or subsonic.

If � � * � � 
�* , the boundary is subsonic and if:

�
� * � � , it is an outflow boundary and the other boundary properties are determined
by � * � �  � * � �  

� * ���  
where � is the entropy defined by

� �
�
�

�

�
� * ��� , it is an inflow boundary and the other boundary properties are determined
by � * � �

�� * � �
�

� * � � �
Knowing entropy and speed of sound at the boundary it is easy to determine density and
pressure by

� * �
� 
 * �� � * �

�

��� �

and � * �
� * 
�*

�
�
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This subsonic boundary condition is applied in MERLIN to the halo cells according to� � � � *� � � � *� � � � *� � � � *� � � � *

�

� 
 �
� � � � � �� 
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 �
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 �
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 �
� � � � � �
(5.26)

i.e. the first halo cell takes the boundary values while a linear extrapolation is carried out
for the second halo cell.

If � � * � � 
�* , the boundary is supersonic and if:
�
� * � � , it is an outflow boundary and conditions (5.23) are directly applied

�
� * � � , it is an inflow boundary and conditions (5.22) are directly applied

For the turbulent viscosity an approximation is made that will simplify the linearisation of
the turbulence model in the adjoint solver. The approximation is that whatever the charac-
teristic of the boundary i.e. subsonic or supersonic, inflow or outflow, an extrapolation is
carried out for the value of � � in the halo cell that only relies on one cell inside the domain,
hence ��� � � � � ��� � � �
Since at the farfield boundary the viscosity calculated with the Baldwin-Lomax model
should be very small, the boundary condition applied is not too important and not very
different from the inflow condition that would be ����� � � � � or a proper linear extrapola-
tion based on two cells inside the domain.

5.6.3.7 Interface boundary condition

Since MERLIN works with multiblock grids, an additional boundary condition is the one
that treats the interface between two adjacent blocks. Since at each iteration, each block is
dealt with separately as if it was a single block domain, MERLIN considers what is hap-
pening in an adjacent block as being exterior to its domain and hence a boundary condition
is needed to ensure continuity between blocks from the point of view of the entire domain.
The operation is mathematically simple since the values in the halo cells of one block are
just set equal to the corresponding values in the cells adjacent to the interface of the next
block. The schematic diagram in Figure 5.5 illustrates this principle for a particular choice
of cell numbering. For this same numbering, the interface boundary condition applied to
the halo cells of block 2 is � � � � �
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-� � � � �
��
-� �� � �
��
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Figure 5.5: Schematic diagram for the interface boundary condition between two adjacent
blocks for a particular choice of cell numbering.

where the superscript refers to the block number while the subscript refers to the cell num-
ber. For the turbulent viscosity the same treatment is applied and��� � � � � � ��� � � �� -
5.6.3.8 Corner points

What is termed corner point here is a halo cell that is situated at the intersection of two
boundaries as depicted in Figure 5.6. Physically in a three-dimensional block, these kinds
of cells are situated at the edges of the block. These cells are only used for the calculation
of the diffusive terms. Clearly some kind of boundary conditions has to be applied to
attribute them a value but since they are situated at the intersection of two boundaries, it
is not obvious which of the two boundary conditions has to be applied or if an average
of some sort has to be made. The type of treatment chosen should have little influence
on the accuracy of the flow solver since it affects only a small number of cells and then
only the diffusive terms of those cells. Nevertheless a choice has to be made and this will
have some impact on the adjoint solver as we will see in the next chapter. However the
choices detailed are very case-dependent, are limited to what is encountered in this thesis
and cannot be generalised.

When one of the boundaries is an interface boundary, there is no choice, it has to be
the boundary condition of the other boundary that needs to be applied. For this work, it
has been decided that whenever one of the two boundaries is a symmetry boundary, it
wins over the other and a symmetry boundary condition is applied. The grid topology
and the cases used in this study ensure that a situation where two symmetry boundaries
intersect at a corner point never happens. The other case encountered in this thesis is the
intersection of two farfield boundary conditions. This happens at the intersection of the
downstream plane boundary with the outer boundary in the case of a wing or an aircraft in
a C-O type of grid. In this case the choice made is to do an interpolation in the streamwise
direction (

�
direction in this case) from the two upstream halo cells to the corner point.
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Figure 5.6: Corner point at the intersection of two boundaries: cell 1,1.

These are the only cases that will be found in this work.

The turbulent viscosity in a corner point is never actually used hence no boundary
condition is applied, � � is left to the default value zero.

This concludes this subsection dedicated to the implementation of the boundary condi-
tions. It also ends this long section describing the explicit methodology with first the cal-
culation of the convective fluxes through the use of Osher’s approximate Riemann solver.
This was followed by the evaluation of the viscous fluxes with the laminar contributions
and the description of the Baldwin-Lomax algebraic turbulence model. The next section
details the other methodology issued from the temporal discretisation of the Navier-Stokes
equations, i.e. the implicit formulation.

5.7 Implicit formulation

This section describes the implicit approach[187] already introduced in Section 5.5. It first
presents the methodology used to solve the implicit equations, then examines the con-
struction of the Jacobian with the contribution of the convective terms and of the diffusive
terms. The contribution of the boundary conditions to the Jacobian is described at the end
of this section.
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5.7.1 Solution methodology

The use of an implicit method for the time discretisation requires solving the large linear
system of equation (5.13) which can be put in the form

� � � �
(5.27)

In equation (5.13), the RHS
� � � - � is actually calculated in the same way as in the explicit

method. It is only the LHS that is now needed and its calculation is detailed in this section.

Since the Navier-Stokes equations (5.1) are solved iteratively by the means of equations
(5.13) and (5.14), equation (5.13) does not need to be solved exactly at each iteration.
Hence approximations are allowed in the LHS of equation (5.13).

The first approximation concerns the Jacobian

���
� � and this is described in the next two

subsections. This is allowed since in such a linear system, it is only the RHS that carries
the physics of the problem and will ensure that once the solution has converged, it has
converged to the correct value. The LHS just serves to drive the solution towards zero in
this case since for a converged steady-state

- � � ���

and
�

no longer evolves. To denote that the Jacobian is approximate, the symbol
�

is
added and equation (5.13) is rewritten as

� �
�  
� ���� � � �� � � - �

� �
	

- � � �
� � � � - � (5.28)

The second approximation is that the linear system (5.28) does not need to be solved ex-
actly for - � � . In this work it is solved using an approximate direct inversion method,
the Block Incomplete Lower-Upper decomposition with no fill-in or BILU(0). The block
diagonal LHS matrix is approximated by

� � � �

where
�

is a lower triangular matrix and
�

is an upper triangular matrix. It is an approxi-
mation since the matrices

�
and

�
keep the same diagonal structure as the original matrix�

(no fill-in) i.e. 7 diagonals. The original system (5.27) is then inverted and

� � � 	
� � 	

� �

Since
�

and
�

are triangular, their inversion is much simpler than the inversion of the
original matrix

�
.
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5.7.2 Contribution from the convective terms to the Jacobian

As was seen in equation (5.28), when using the implicit method for the time discretisation,

the Jacobian matrix

� ��
� � is needed. This subsection explains how the convective terms

are linearised analytically to form this Jacobian matrix.

The residual vector at a cell
�

is the sum of the 6 fluxes through each of the 6 faces of a 3D
computational cell as was explained in equation (5.5). Hence

��� �
��� 
��

�
��0 )  .

� � � � � � � � 	 � ���� 


and the calculation of the derivative of the residual comes down to the calculation of
the derivative of the fluxes. Since the convective fluxes themselves are the result of the
application of Osher’s approximate Riemann solver presented in subsection 5.6.1.1, their
linearisation comes down to the linearisation of Osher’s solver.

This is done by applying the chain rule of differentiation:[181,183,188]

� �
��� 
 �

� �
� � �

� � �� �
�

���
�� � 
 � � �

� ��

� ��
��� 


��� 
��� 
 (5.29)

where � � and ��
 are the left and right states used in the approximate Riemann solver.
Note that the Riemann solver is applied to conservative variables, hence the need for the

matrices
� � ����

�
and

� ��
��� 
 .

The terms

� �
� � � and

� �
� ��
 involve the differentiation of Osher’s scheme i.e the differ-

entiation of the terms in Table 5.2. The resulting terms for all the cases are presented

in Table 5.3 for
� �
� � � and in Table 5.4 for

� �
� ��
 . This is a straight differentiation of

Table 5.2. The fact that the sonic point
�
� only depends on � 
 and that

� �
only depends

on � � , reduces the number of possible combinations to 8 for both Jacobians. Spekreijse

in Reference [181] provides all the matrix terms

� � � � �� � as well as

� ��� 
� � 
 ,

� � ��� �� � 
 , etc.

that appear in these tables. They are given for a two-dimensional problem in Cartesian
coordinates but it is not difficult to derive the additional terms corresponding to a three-
dimensional problem in a body-fitted reference frame.

The terms

���
���� 
 and

��� 
��� 
 involve the differentiation of the MUSCL scheme presented in

subsection 5.6.1.2. It has been seen in the previous subsection 5.7.1 that approximations
to the LHS Jacobian were allowed. The first one is that only a first order Jacobian is
employed in MERLIN. This saves a lot of computational effort and memory, especially
for 3D problems like in this work. Indeed the MUSCL scheme makes the value of

�
�
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� � � 
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� � � � � � � � �� � � � �
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� � � � � � � �� � � � �

� � � � �� � 
� � � �� � � 
 � � � � �

� � � � 
 �� � 

� � � � ��� 
 �� ��� 


� ��� 
� � 
 �

Table 5.3: Calculation of

� ����� ��� �
� � � . ( � � � � 
 and � 
 � � � )

� � � 
 ��� �
� � � 
 � � �� � � �� � � 
 ��� � � �

�
� � � � ��� � �� ��� �

� ��� �� � �
� � � � � � �� � �� � � �� � � 
 ��� � � �

� � � � ��� � �� � � � �
� � ��� �� � �

� � � � � �� � �
� � � � � ��� � �� � � � �

� � ��� �� � �
� � � � ��� � �� � � �

� � � �� � �� � � �� � � 
 � � � � �

� � � � � � � �� � � � �
� � � � �� � �

� � � � � � � �� � � � �
� � � � �� � �

� � � � ��� � �� � � �
� ��� �� � �

� � � � � � �� � �� � � �� � � 
 � � � � �

� � � � � � �� ��� �
� ��� �� � �

� � � � � �� � �

Table 5.4: Calculation of

� ����� ��� �
� ��
 . ( � � � � 
 and � 
 � � � )
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Figure 5.7: Computational stencil for a first-order inviscid Jacobian.

and
� 
 depend on the value of

�
inside 4 cells: 2 on one side of the face where the flux

is calculated, 2 on the other side. Hence for a given flux
�

, 4 contributions

� �
� � 
 are

non zero when using the MUSCL scheme and need to be stored in the Jacobian. When
a first-order method is used, the flux only depends on the value of

�
in the two cells

situated on each side of the face where the flux is calculated and hence the Jacobian is
more sparse and requires less storage. Since only a first order Jacobian is employed in

MERLIN, the terms

� �
���� 
 and

��� 
��� 
 are straightforward to calculate.

The above presented the calculation of the flux Jacobian

� �
��� 
 as a one-dimensional prob-

lem. As explained previously, the residual vector at a given computational cell is the sum
of 6 fluxes, each of which depends on the flow value in two distinct cells for a first-order
spatial accuracy. Hence the residual vector

� ��� 
 � �
at the cell

� � �����
of a 3D problem depends

on the flow value in the 7 cells shown in the stencil of Figure 5.7. Hence the Jacobian ma-

trix
���
��� is a block-banded matrix of 7 bands of blocks called in MERLIN

�
,



,
�

,
�

,

,
�

and
�

with, according to the notation of Figure 5.7,

� ��� 
�� � �
��� ��� 
 � �
��� ��� 
 � � � 
 ��� 
�� � �

� � ��� 
�� �
��� ��� 


	
� � � � � ��� 
 � � �

��� ��� 
�� �
��� ��� 
 � � � � � � � �

Each matrix
� ��� 
�� �

,

 ��� 
�� �

, etc. is a
�
� �

matrix.

This is only for the linearisation of the convective fluxes, the next subsection presents the
treatment of the diffusive fluxes inside the Jacobian.
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Figure 5.8: Computational stencil for the laminar part of the Jacobian.

5.7.3 Contribution from the diffusive terms to the Jacobian

The contribution from the diffusive terms is further divided into the contribution associated
with the laminar viscous terms and the contribution of the turbulent part.

5.7.3.1 Laminar contributions

The calculation of the laminar viscous flux presented in subsection 5.6.2 has to be
linearised and included in the Jacobian. This requires the linearisation of the application
of Gauss’ theorem but does not present any difficulty.

From subsection 5.6.2 and Figure 5.3, it is clear however that the laminar flux through one
face depends on the value of

�
in 10 cells. Hence when adding them up in three dimensions

to constitute the residual
�

for one cell
���������

, you end up with the viscous laminar stencil

shown in Figure 5.8 which contains 19 cells. This means that 19 terms
� � ��� 
 � �
��� " are non-zero

for each
� � �����

. If this was to be stored in a Jacobian matrix, the resulting matrix would be
huge. In MERLIN, we take into account the viscous laminar contributions that correspond
to the inviscid first-order stencil of Figure 5.7 and to discard the other terms. This is the
second approximation made to the Jacobian and is quite crude, but it maintains the sparsity
of the Jacobian matrix with its 7 bands of blocks that is very convenient when doing the
Lower-Upper decomposition and inversion presented in subsection 5.7.1. With a 19-band
matrix, this would be much more difficult.
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5.7.3.2 Turbulent contributions

The third approximation made to the LHS Jacobian of equation (5.28) is that the turbulent
viscosity � � is frozen i.e. the contribution from the turbulence model is not linearised
but whenever the fluid viscosity is needed, it is still composed of the molecular and
turbulent viscosities. Indeed the turbulence model of Baldwin-Lomax presented in
subsection 5.6.2.2 is quite difficult to linearise due to the fact that the eddy viscosity ���
is calculated along rays that are normal to the wall. The value of a particular ��� in one
of these rays depends potentially on the value of the flow variables in all the cells along
this ray. Indeed for the outer layer a search is made for

� � 0 � along the whole ray and the
location of the cell where

� � 0 � is found cannot be known in advance. For the inner layer,
the location of the change from inner to outer layer is not known a priori either, causing
the same problem. This makes the eventual storage of a turbulent Jacobian into a banded
matrix impossible. For these reasons, the linearisation of the eddy viscosity is not taken
into account in the Jacobian in MERLIN, i.e. ��� in the Baldwin-Lomax model has not
been treated implicitly.

Now that the contributions to the Jacobian from the convective and the viscous terms have
been presented, the next section details the implicit treatment of the boundary conditions
presented in subsection 5.6.3.

5.7.4 Implicit boundary conditions

Close to a domain boundary the application of equation (5.29) involves the linearisation of
the boundary conditions.[188] Indeed, with the cell numbering of Figure 5.4 Left, the flux
across the boundary between cells 1 and 2 is

� � � � � � � � � � � � � �
and the application of equation (5.29) gives

� �
��� � �

� �
� � �

� � ���� �
�����
��� � �

� �
� � �

� � �� � � (5.30)

for a first order flux Jacobian. This implicit treatment of the boundary conditions is
often neglected in CFD codes since, like a higher order Jacobian, it is not necessary
to obtain a converged solution and this facilitates the implementation of an implicit
method. However a consistent treatment of the boundary conditions should accelerate
the rate of convergence of a solution and it will be seen later on, that it is needed in the
adjoint solver. In addition it is possible to incorporate this linearisation of the boundary
conditions without having to change the structure of the Jacobian. For these reasons, the
implicit treatment of the boundary conditions is implemented consistently in MERLIN.

The details of the matrices

�����
���	� are given in Appendix A.
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The only problem when looking at the different linearisations in Appendix A concerns the
interface boundary condition. At a first glance it is right to say that the values in the halo
cells for this boundary condition do not depend on what is happening inside the current
block, since they have been copied from the neighbouring block. Hence a null matrix is
acceptable. However when looking at equation (5.30), this implies that the flux at this
boundary is only one-sided and this is clearly wrong since this type of boundary occurs
usually in the middle of the domain where nothing special is happening to the flow. The
flow solver should not be able to “see” this boundary since there is a continuity between
the blocks but this is not happening with the chosen linearisation. We will see later for
the adjoint solver that this boundary is in fact very difficult to implement accurately even
if the theory behind it is easy to understand. Hence the present simplification for the LHS
Jacobian is perfectly acceptable considering all the other approximations already made.

This treatment of the boundary conditions has to be applied not only to the convective
fluxes but also to the laminar fluxes and here another approximation is made. This could
seem a detail after having discarded more than half of the viscous contributions but has
to be mentioned because it will also require a lot of work to be done correctly inside the
adjoint solver. The implicit treatment of the boundary conditions for the viscous fluxes is
only implemented in MERLIN in the direction of the flux and not in the other directions.
For example if the flux is calculated in the

�
direction, the term


 ��� � � � �
� � ��� � � �
� � ��� � � �

is calculated as if inside the domain and then is discarded whereas a consistent treatment
would account for the influence of

� ��� � � �
on to

� ��� � � �
and include that into the Jacobian.

This however necessitates taking into account a lot of different cases so it is perfectly
legitimate for the LHS Jacobian in MERLIN to neglect these implicit boundary conditions.

This concludes this subsection on the contributions from the diffusive fluxes to the Jaco-
bian. It also terminates this long section describing the implicit method available in MER-
LIN that showed that the implicit approach is much more complicated mathematically than
the explicit approach presented before that. This has to be traded with the computational
time saving that the implicit method enables. Before ending this chapter on the flow solver
MERLIN, the next section presents a test case of validation for this code i.e. the ONERA
M6 wing.

5.8 Validation

The ONERA M6 wing is a classical test case for CFD flow solvers because of the
extensive experimental data[167] available. A shape optimisation of the ONERA M6 wing
will be presented in a later chapter but here only the flow solution around this geometry
serves as a validation test case of the CFD code MERLIN.
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Figure 5.9: M6 wing computational grid.

The test case selected is the classical
� �
��� � of incidence, Mach number ��� � � �
� �

and Reynolds number
� � � ���

�
� � �

� � based on the mean aerodynamic chord. At
these transonic conditions a lambda shock wave develops on the upper surface of the
wing but the flow remains attached thus providing a good test case for the Baldwin-
Lomax turbulence model. The grid employed for this validation test case is shown in
Figure 5.9. It is a

��� � � � � � ��� C-O type grid that was downloaded from Reference [189].

The contours of pressure coefficient � � on the upper surface of the wing, obtained for
this geometry, are shown in Figure 5.10. The characteristic lambda shock wave is clearly
visible and the overall contours compare well with contour plots available in other
studies[145,162,184,190–192] that also solve the Navier-Stokes equations on this geometry and
at these conditions.

Chordwise ��� distributions at stations where experimental data are available, are pre-
sented in Figure 5.11. Results obtained with MERLIN are compared to the experimental
points that are plotted with errorbars. In the inner part of the wing (section � � � � � � and
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Figure 5.10: Contours of pressure coefficient on the upper surface of the ONERA M6
wing.
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0.44), the first shock wave is correctly predicted in magnitude and position. The following
plateau of � � is overestimated and the second shock wave is not too well predicted. A
fairly good agreement is obtained at the section � � ����� � with a second shock wave
very well predicted. The merging of the shock waves appears slightly too soon when
looking at the station � � � �
� � . In the remaining sections, the position and strength of
the shock wave is very well predicted even though the trailing edge tip distribution is
not captured (station � � ���

� �
). Overall the prediction is quite good when comparing to

others’ computations.[48,184,189,192–199] Like the present results, none of the other studies
manage to match the experimental data for all the spanwise stations.

A more challenging issue than the surface pressure distribution, is the calculation of
overall aerodynamic coefficients. This is what the optimisation relies on so it has to
be as accurate as possible in order to have some confidence in the optimum found by
the optimisation process. Aerodynamic coefficients for the ONERA M6 wing are rare:
they are not provided with the experimental data[167] and only a small number of studies
mention them. The aerodynamic coefficients of the present study and these found in the
literature by the author are presented in Table 5.5. The oldest values available are found
in Reference [200] but the grid is very coarse and the contour plot and chordwise � �
distributions show that the computation did not capture the features of the flow solution,
hence the overall aerodynamic coefficients might be questionable. The geometry of
Reference [184] is slightly different from the one used for the MERLIN computation
since the wing tip is straight and not rounded. This might have some influence on the
resulting aerodynamic coefficients. In Reference [162] the Reynolds number reported
is different from the one used in the experiment so the results might not be comparable.
Since there is quite a disparity in the aerodynamic coefficients available in the literature,
it is difficult to make a conclusion. The only possible comment is that MERLIN is within
the range one would expect when comparing with the available data but this is still
inconclusive regarding the accuracy of the force calculations.

This concludes this part presenting some computational results on the ONERA M6 wing
for validation purpose of the CFD code MERLIN employed in this study. This showed
that MERLIN is accurate when looking at surface pressure distributions. However when
considering overall aerodynamic coefficients, no definitive conclusion can be drawn due
to the scarcity of comparison data although MERLIN gives reasonable answers. This also
concludes the chapter that presented the fundamental equations used in the CFD code and
how MERLIN solves them. It detailed the explicit method available as well as the more
efficient yet more complicated implicit method. This implicit method is quite important
since it will be the basis of the solution of the adjoint equations that are described in the
next chapter.
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Figure 5.11: Chordwise ��� distributions for the ONERA M6 wing.
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Figure 5.11: Chordwise ��� distributions for the ONERA M6 wing. (Concluded)

Origin of data � � ��� � + �10#" ��� ���! .�. ������� � )
MERLIN 0.2697 0.01736 0.01241 0.00495

Müller and Rizzi[200] 0.2728 0.0157 N/A N/A
Radespiel et al[197] 0.2677 0.01782 0.01261 0.00521

Vatsa et al[191] � 0.252 N/A N/A N/A
McNeil:[184] Central scheme 0.2764 0.01671 0.01400 0.00272
McNeil:[184] Upwind scheme 0.3113 0.02141 0.01596 0.00545

Nielsen and Anderson[162] 0.253 0.0168 N/A N/A
Lee et al[190] 0.2622 0.01751 N/A N/A

Table 5.5: Comparison of aerodynamic coefficients obtained with MERLIN and those
available in the literature.



Chapter 6

Discrete adjoint solver

The aim of this chapter is to describe the discrete adjoint solver employed in the optimisa-
tion chain. The equations it solves are derived and the solution methodology is detailed.
The first section of this chapter presents the discrete approach and its equations. Then the
continuous approach is introduced before explaining the reasons for choosing the discrete
rather than the continuous formulation in this work. Once the formulation of the equations
has been chosen, the methodology used to solve them is presented and the innovative con-
tent of the present adjoint solver is described. This will introduce the next part dedicated
to the calculation of the RHS Jacobian, starting from a simple first order inviscid flow to a
fully turbulent flow. The last part of this chapter presents verification test cases to assess
the accuracy of this adjoint solver.

6.1 Discrete adjoint method

The discrete adjoint method is very similar to the direct differentiation method presented
in subsection 2.1.4.1 and started at approximately the same time. When people realised
that it was much more efficient than the direct differentiation method for problems with
a lot of design variables and few constraints, it became more popular. It is now widely
employed. For unstructured grids, References [15,79,81–83] give some examples of dis-
crete adjoint solvers for the Euler equations while solvers for the Navier-Stokes equations
can be found in References [10, 11, 43, 48, 156, 162]. On structured grids, Euler discrete
adjoint solvers are used in References [16, 74, 88–90, 125, 153, 154, 201, 202]. Turbulent
Navier-Stokes discrete adjoint solvers are presented in References [19, 47, 164, 190] for
structured grids, while in between, adjoint solvers for just the laminar viscous equations
can be found in References [93, 95] and a turbulent adjoint solver with frozen turbulent
viscosity in Reference [49].

The derivation of the discrete adjoint method starts like the direct differentiation method
presented in subsection 2.1.4.1, except that now the derivative of the residual vector (equa-
tion (2.4)) is added to the derivative of the objective function (equation (2.2)) with the help

89
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of an adjoint vector
�

to give
� �
��� � �

� � �
� ��� � � � ���� � � � � �� � � � � ���� � � � �

� � � � � � � ���� � � � �
��� � � ���

� �
� �
��� � � ���

� � � �
which is rearranged as

� �
��� � � � � � �� � � � � � � ���� � 	 � � �

��� � � � � � �� � � � � � � ���� � 	 � �
��� � � � �

� � � � � � ���� � �
The adjoint vector at this point is an undefined vector. To avoid having to calculate

� ���
��� �

for each design variable as in the direct differentiation method, the term multiplying this
quantity is set to zero to give the adjoint equation� � �

� � � � � �
� � �� � (6.1)

Once this adjoint equation has been solved for
�

, the sensitivity derivative is calculated
by

� �
��� � � � � � �� � � � � � � ���� � 	 � �

��� � � � �
� � � �

� � � �� � � (6.2)

As was already explained, the adjoint equation (6.1) needs to be solved only once for
each of the aerodynamic functions for which the sensitivity derivatives are needed. This
usually refers to the aerodynamic objective function and any aerodynamic constraint
function but not to geometric constraint functions that have nothing to do with the
aerodynamic flow vector � and for which analytical expressions (for the functions and
their gradients) have to be found. Hence for a problem where the number of design
variables is greater than the number of objective functions and aerodynamic constraints,
which is the case in most aerodynamic shape optimisation problems, the adjoint method
is more efficient than the direct differentiation method as was stated in Chapter 2.

Presented in the form of equation (6.1), the adjoint equation is shown in the discrete formu-
lation since the residual vector

�
has been discretised as in equation (5.5) and the Jacobian� �

� � is of the same form as in equation (5.12). The continuous formulation presented in the

next section differentiates the objective function and the Navier-Stokes equations before
discretising them as is explained next.

6.2 Continuous adjoint method

The continuous adjoint method for aerodynamic optimisation was pioneered by Piron-
neau[203,204] in the 1970’s but due to limitation in numerical methods, his work was only
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theoretical. The continuous adjoint method is based on the calculus of variation which
was later used in simple problems such as heat transfer optimisation problems[205,206] or
problems of pollutant diffusion in the atmosphere.[207] Koda also applied a variational
method to an aerodynamic problem[208,209] but still without numerical implementation.

Jameson was the first to apply this technique successfully to an aerodynamic optimisation
problem. This technique has gained a lot of popularity since then thanks to his contri-
bution. His early work[4] was limited to the optimisation of 2D aerofoils using potential
flow and conformal mapping. It then evolved to conventional computational grids,[149]

Euler equations[140,148] and 3D optimisation.[138] Further improvements included the use
of multiblock grids,[137,150,165] parallel computing[27,139,165,210] and multipoint optimi-
sation.[139] More recently, Jameson and his colleagues applied the continuous adjoint
equation to the Navier-Stokes equations.[45,137,211,212] They freeze the turbulent viscosity
in the adjoint solver and use this latter with a turbulent Navier-Stokes flow solution.

The continuous adjoint method is now widely employed: Euler continuous adjoint solvers
for unstructured grids can be found in References [25,152] and viscous laminar solvers in
References [157,159,160]. On structured grids, References [18,46,145,146,158,213–218]
give some examples of the continuous adjoint method for the Euler equations. Going a
little further into the complexity of the physics, Cross[12] and Szmelter[13] use an Euler
adjoint with the Euler equations with viscous/inviscid interaction for the flow solution.
A continuous laminar adjoint solver is described in Reference [219] for a laminar flow
solver. An continuous adjoint solver with frozen turbulence is used, as Jameson does,
with a turbulent CFD code in Reference [147]. A truly turbulent continuous adjoint
solver with linearisation of the turbulent viscosity can be found in References [17, 220].
Continuous adjoint solvers are not limited to aerodynamics and can be employed in
hydrodynamics[142] and ship hull shape optimisation.[221]

To describe the derivation of the continuous method, we follow the work of Iollo et
al.[222–225] This derivation is based on the two-dimensional steady-state Euler equations
applied to an aerofoil to keep things as simple as possible. Soemarwoto gives a very
detailed derivation of this method for the 2D Navier-Stokes equations in Reference [220].

The 2D Euler equations are written in the form� � � � �� �
� � � � � �� � � � � � � � � � � � � � ���

in the flow domain
�

where
� �

� � �
� � and

� �
� � �
� � are the Jacobian matrices, with the

corresponding boundary conditions � � � 	 ���
on the surface

�
of the aerofoil. � � � � � � � � �
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A particular objective function
�

is chosen for this optimisation problem

� �
�� � � � � � � � � � � � � � �

and corresponds to an inverse design problem where the pressure
�

on the aerofoil surface
has to match a target pressure

� �
.

A Lagrangian functional is created to augment this objective function:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�
�
� � � 	 � �

� � �
�
�

� � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

�
�
� � � 	 � �

after integration by parts of the middle term. The vector
�

(
�

� � � � � � � � � � � ��� � � in 2D)
in

�
and the scalar � on

�
are the equivalent of Lagrange multipliers. The minimisation

of
�

is equivalent to the minimisation of
�
.

Applying the method of calculus of variation to
�

gives:


 � � 
 ��� � 
 � � � 
 ��� � 
 � $
with
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�
�
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This corresponds to a displacement � �	 of each point on the aerofoil surface in the normal
direction 	 which generates an increase � �� in � , �

��
in
�

and � �� in � .

 ���

is the
variation of

�
due to the variation of � when all the other variables are kept fixed and

similarly for the other components of

 �

.

Two equivalent approaches are then possible. The first one consists in saying that at the
optimal design point,


 �
must be equal to zero whatever

�	 ,
�� ,

��
and

�� , hence

 � � �
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 � � � 
 ��� � 
 � $ � � . The condition

 ��� � � leads to the satisfaction of the Euler

equations � � � � � � � � � � � � � in
�

. The condition

 � $ � � gives the boundary condi-

tions
� �

� 	 ��� on
�

. The condition

 ��� � � gives the continuous adjoint equation

� � �
�
� � � � � ��� (6.3)

in
�

followed by the boundary conditions for the adjoint vector on
�

:
� �
� �

� � � � � � � � � � � � � � � �
� � � � � � � 	

� � �
� � � � (6.4)

The remaining condition

 � � � � is the condition of optimality. In gradient-based

optimisation, it is not used directly but rather serves to compute the sensitivity derivatives� �
� � � once � ,

�
and � have been calculated.

The other equivalent approach consists in saying that since the Euler equations and
boundary conditions are satisfied then


 � � � � and

 � $ � � . Hence


 � � 
 � � � 
 � � .
To further simplify this, the adjoint vector

�
and the scalar � are required to satisfy the

adjoint equation and boundary conditions leaving

 � � 
 � � which contains the desired

sensitivity derivatives.

The resulting adjoint equation (6.3) is the continuous version corresponding to the
discrete one in equation (6.1). This continuous equation is very similar to the flow
equation and hence can be discretised in the same way making use of the same nu-
merical routines developed for the flow solver. This is not however an obligation and
any method of discretisation is valid. It should be noted that boundary conditions for
the adjoint vector are explicitly appearing in the continuous method while they are
hidden in the discrete method. Hence it is in fact an entirely new code similar to the
flow solver that has to be written to solve the adjoint equation and its boundary conditions.

Furthermore not any objective function can be considered and it was thought for a long
time that only “admissible” cost functions i.e. functions that behave “well” in the method
of calculus of variation, could be used. For the Euler equations, this meant only functions
depending directly on pressure. However Arian and Salas[226,227] found that by adding ex-
tra terms to the Lagrangian function, this problem can be avoided and that any objective
function might be used.

6.3 Choice between the continuous and discrete formula-
tions

The continuous and discrete adjoint methods are in fact very close to each other and for
example, Reference [157] mixes both methods and it is not easy to recognise which is
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which. It is hence very difficult to choose which one to implement.

The literature does not help a lot in this matter either. Indeed numerical comparisons made
by Nadarajah and Jameson[44,56] found that the continuous and discrete methods give
very similar results in terms of performance and accuracy of the sensitivity derivatives.
The discrete method is supposed to give the exact numerical gradient of the objective
function i.e. the gradient that would be obtained by finite difference whatever the grid
refinement and hence is more consistent with the flow solution than the continuous
method.[44,56,58,125,157] Although the continuous adjoint method is less consistent, as the
mesh size is increased, its agreement with the finite-difference method increases.[44]As
pointed out by Anderson and Venkatakrishnan,[157] the fact that the objective function
explicitly appears in the boundary conditions of the continuous method can be a problem:
the derivation of these boundary conditions is mathematically demanding and has to
be done over again for any new objective function while it is much simpler to change

a subroutine that adds

� �
� � to the RHS of the adjoint equations in the discrete method.

There is furthermore an issue with shock waves for the continuous method: Giles and
Pierce[228] showed that in theory an adjoint boundary condition has to be applied along
the shock wave. This would be very complicated to implement since the location of
the shock wave would have to be determined inside the flow field. In practice, none
of this is done and results by Jameson and others using the continuous method do not
seem to suffer from this inconsistency. Giles and Pierce[228] have indeed checked that
the continuous method behaved numerically well at the shock for the quasi-1D Euler
equations and that there is no need in practice to enforce an internal boundary condition.
There is still however some uncertainty about this mathematical problem and it favours
the discrete method that does not appear to have such problem.

The discrete adjoint method is however supposed to require more computing memory
than the continuous one.[44,56,58,157] Giles and Pierce[58] nevertheless point out that the
discrete adjoint method is almost straightforward to implement since a lot of its routines
are taken from the flow solver. They conclude their comparison by saying that in fact
none of the two methods has a true advantage compared to the other and that the choice
between them is a “matter of personal taste” 1.

Hence the choice of the discrete adjoint method made in this study relies on personal rea-
sons. The first one was that the CFD code MERLIN was available and with it all the im-
plicit method detailed in section 5.7. In particular, the calculation of the LHS Jacobian
was already existing with a consistent treatment of the boundary conditions. However it
is noted that Hiernaux and Essers[159,160,229] have an implicit flow solver with a LHS Ja-
cobian and nevertheless chose to develop a continuous adjoint method. The second rea-
son was that the discrete method as it is pointed out by Giles and Pierce,[58] seemed rather
straightforward to understand and implement to the author, while the continuous method

1Reference [58], p. 409
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is mathematically a lot more complicated especially when dealing with viscous flows.

6.4 Solution methodology

This section explains how equation (6.1) is solved. The first element is that equation (6.1)
has been derived in section 6.1 considering the vector of conservative variables � as it is
usually presented. It can be transformed to use primitive variables

�
without changing the

nature of the adjoint vector. This is what is chosen for the remainder of the thesis and the
discrete adjoint equation (6.1) becomes� ���

��� � ��� �
� � �� � (6.5)

As it has just been explained, the advantage of the discrete adjoint method is that the same
solution methodology as for the flow analysis can be applied to the adjoint equation. How-
ever written in the form of equation (6.5), the adjoint equation is a linear equation that

needs to be solved exactly. The Jacobian

���
��� for example needs to be the exact higher-

order Jacobian that takes into account the boundary conditions and all the laminar and tur-
bulent contributions in order to find the correct value of the adjoint vector. It was explained
in subsection 5.7 that this would require a lot of computing memory and was one of the
reasons why a simplified Jacobian was employed for the flow solver. To be able to use the
same Jacobian as in the flow solver, the adjoint equation is written in the incremental form

� � �� � ��� ����
	 �

- � � �
�
� � �
� � � � ��� � � � �� � � ��� -�� (6.6)

with �
-
� �

�
�
- � - � �

and is solved iteratively. The incremental iterative form is found in the literature, primarily
applied to the direct differentiation method detailed in Chapter 2[28,41,49,51,69,70,74,81,82,88]

but also used in the discrete adjoint method.[16,48,49,51,70,74,77,88,162]

In equation (6.6), it is the RHS that carries the physics of the equation and ensures that the
solution is correct while the LHS is only here to drive - �

�
to zero. Hence as for the flow

equation (5.12), some approximations are allowed for the Jacobian of this LHS. That is
why the symbol

�
is used. In the present work even a fictitious time term, the same as in

the flow solver, is added to the LHS to improve diagonal dominance, if necessary, at the
beginning of the iterations. Equation (6.6) becomes then

� �
�  
� ���� � � �� � � � ����

	 �
- � � �

�
� � �
��� � � ��� � � � ���� � � � - � (6.7)
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With this modification, the LHS matrix has the same form as in equation (5.28) for the flow
solver and in this study, the LHS matrix of the adjoint equation is exactly the same as in
the flow solver before applying the transpose operation. The original first-order Jacobian
in MERLIN is a matrix of 7 diagonals of blocks called

�
,



,
�

,
�

,



,
�

and
�

as was
explained in section 5.7. Each matrix

� ��� 
�� �
,

 ��� 
�� �

, etc. is a
� � �

matrix. The operation
of transposing this matrix does not change its structure, only the ordering of the matrices
is changed as follows:

� ��� 
 � � � � ���� 
�� �

 ��� 
�� � � � ���� 


	
� � �

� ��� 
 � � � 
 ���� 
 � � � �
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 ��
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 � �

� ��� 
 � � � � ���� 
�� � � �
� ��� 
 � � � � ���� 
�� �

	
�

where the “ � ” has to be read by “is replaced by”. Hence when the original Jacobian has
been calculated, it is relatively easy to transpose it and keep the same structure and name
for the variables in the computer program.

For the RHS Jacobian of equation (6.7) however no approximation is allowed since the
RHS of this equation has to be exact. Hence the full higher order Jacobian has still to
be calculated for this RHS. However it does not need to be stored since it is multiplied
by the adjoint vector. In this work this multiplication is done term by term to constitute
the RHS vector, saving some computing memory and some unnecessary computing time
spent on very large matrix multiplications. All of this is detailed later in this chapter.

Equation (6.7) has exactly the same structure as equation (5.28) i.e. the form
� � � �

of
equation (5.27) with the same banded matrix

�
. Hence the same solution methodology

is employed to solve the adjoint equations i.e. an approximate direct inversion method
with a BILU(0) technique. To save some computing time, the terms of equation (6.7) that
do not change at each iteration, are calculated once at the beginning of the computation

and are then stored for the rest of the iterations. This concerns the LHS

� �� � � � �� � and� �
� � . In the LHS Jacobian, the time-term depends on

�  that changes at each iteration

depending on the value of the total residual as in the flow solver. For the RHS term, as
said above a term by term multiplication is performed and since the adjoint vector

�
-

changes at each iteration, nothing can be stored. Besides this was the advantage of the
incremental iterative method of not having to store an exact Jacobian. If this solves an
eventual problem of storage and memory, this is at the cost of computing time since the
components of the RHS Jacobian have to be recalculated at each iteration. Nevertheless
the resulting adjoint solver is quite efficient with a turbulent two-dimensional test showing
a cost per iteration equal to 2.7 times that of the flow solver. The same test performed
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with a LHS Jacobian and

� �
��� not stored but recalculated at each iteration, gave a ratio of

4.6. This clearly shows the interest of storing these terms.

The sensitivity equation (6.2) is rewritten in the form
� �
��� � �

� � �
� � � � � ���� � � � � ���� � � �

��� � (6.8)

because for a pure aerodynamic shape optimisation, the design variables
� �

only influence
the flow field solution and objective function through the computational grid variations.

Hence there is no

� �
� � � or

���
� � � term.

Furthermore equation (6.8) better represents what the computer code does. Instead of hav-
ing a first differentiation with respect to the coordinates of the grid points and then a mul-

tiplication between the resulting matrix and the grid sensitivity matrix
� �
��� � as would be

suggested by equation (6.2), the differentiation is done directly in the code by the use

of the chain rule. For example the term

���
� �

� �
��� � is calculated directly in the form of

���
� � � � � � � � � � � � � � � �

� �
� �
��� � where � � � � � � � are the metric terms involved in the calculation

of the residual vector. This analytical differentiation does not involve any multiplication
and is quite straightforward since all the terms that have to be differentiated are already
present in the flow solver and can be differentiated one by one as they appear inside the
code. It is similar to applying Automatic Differentiation in forward mode, but by hand,
and does not present any difficulty. This linearisation is done consistently each time the
metric terms or a unit normal vector are used. To be more specific, this includes the nor-
mal vector in Osher’s scheme, the use of Gauss’ theorem for the diffusive terms including
in the Baldwin-Lomax model and any other time when a transformation from a Cartesian
to a body-fitted reference frame is needed.

6.5 Innovative content in this adjoint solver

Now that the adjoint solver used in this work has been presented in its globality (more
details about the RHS Jacobian are to be explained in the next section), it is time to explain
what makes this adjoint solver special and different from any other existing adjoint solvers.

The first point to mention is that this adjoint solver has been entirely differentiated by
hand: no use of Automatic Differentiation, finite difference or complex variable method
has been made to calculate the components of the Jacobians or the grid sensitivities.

Secondly, when people think about the adjoint method for aerodynamic optimisation,
they always think about Jameson’s work so the first obvious difference between this
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adjoint solver and Jameson’s work that can be included into a wider continous adjoint
community, is that it employs the discrete method as was already explained.

Among the existing discrete adjoint solvers, this one is, to the author’s knowledge, the
only one that uses Osher’s approximate Riemann solver to calculate the inviscid fluxes.
This scheme has been designed to calculate accurately flow discontinuities such as shock
waves and shear layers.[230] Since shock waves are a characteristic and important feature
of the transonic flow around the wings or aircraft we are interested in optimising, it is
considered to be an advantage to have Osher’s scheme in the adjoint solver rather than a
more diffusive scheme that might miscalculate the shock wave, the strength of which you
are trying to minimise through the optimisation process to reduce the wave drag.

The other important aspect is that this discrete adjoint solver has been derived for the fully
turbulent Navier-Stokes equations. Thus compared to the ten simpler inviscid adjoint
solvers mentioned in section 6.1, the physical phenomena of viscosity and turbulence are
added. Since this flow physics is again important for the kind of problems we are inter-
ested in, this is an advantage. Incorporating accurately the turbulent part in the adjoint
solver is also considered to be better than just using a frozen turbulence adjoint with a
turbulent flow solver as it is sometimes done, probably more in the continuous adjoint
community[45,137,147,211,212] than in the discrete adjoint community.[49] The difference is
the linearisation of the eddy viscosity and hence of the turbulence model and this is quite
complex as will be shown in the next section.

However other fully turbulent discrete adjoint solvers exist and have already been men-
tioned: the one-equation turbulence model of Spalart-Allmaras[231] is frequently used in
this case[10,11,47,48,156,162,164] although two-equation models can also be employed.[43,190]

To the author’s knowledge, the only other existing adjoint solver based on the algebraic
model of Baldwin-Lomax like in this work can be found in Reference [19]. No details
are given however on the way in which the turbulence model is actually differentiated.
The author of this thesis believes that one- or two-equations models are simpler to
incorporate into an adjoint solver than the Baldwin-Lomax model, which might explain
the rarity of adjoint solvers based on this algebraic model. Indeed with a field turbulence
model, the eddy viscosity is calculated using quantities that are situated in a defined
neighbourhood around the point of calculation, hence as for the rest of the flow equations,
a well-structured Jacobian can be devised. This Jacobian might however be quite difficult
to calculate but should already exist in an implicit flow solver employing this type of
turbulence model, although possibly with some approximations that an accurate adjoint
solver will have to eliminate. However this is already a good start for the adjoint solver
and might explain why such models are popular for turbulent solvers although the over-
head of having one or two additional equations in the flow and adjoint solvers is certainly
high especially in optimisation. On the other hand, with the Baldwin-Lomax model, the
eddy viscosity is calculated along rays from quantitites that could be situated anywhere
along these rays. It is thus a full stencil model. Hence, as was already mentioned in
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section 5.7, it is quite difficult to linearise this algebraic model and this linearisation is
not usually done in implicit flow solvers. The technique developed in the solution of
the adjoint equation (6.7) with a term by term multiplication between the RHS Jacobian
and the adjoint vector makes it possible to treat the Baldwin-Lomax model accurately
without the worry of storing the full Jacobian matrices. The other problem posed by the
Baldwin-Lomax model is that it uses the maximum function that is not differentiable.
Details of how this is overcome will be presented in the next section.

A summary of this section would be that the present adjoint solver is different from any
other because it has been entirely hand-differentiated, it is a discrete adjoint solver, it uses
Osher’s approximate Riemann solver and has been derived for turbulent flows with an ac-
curate linearisation of the Baldwin-Lomax model. All of these points put together make
this adjoint unique.

6.6 Calculation of the exact RHS Jacobian

This section details the calculation of the components of the RHS Jacobian of equa-
tion (6.7). It is divided into four parts that correspond to the way in which the adjoint
solver has been built: an inviscid first-order adjoint solver was first coded and tested. Then
upon this basis, a higher-order inviscid adjoint solver was implemented before being up-
graded to a viscous laminar solver. The last stage was to incorporate the linearisation of
the turbulence model to obtain a fully turbulent adjoint solver. This way of presenting the
calculation of the RHS Jacobian is not only a chronological account of how the code was
built but it is also very relevant to the final product since, for example, what was done for
the convective terms of the inviscid adjoint solver is also employed unchanged in the tur-
bulent adjoint solver. Hence each component is as useful as any other in the final code.
Each part will be further divided into what is happening inside the domain, far from the
boundaries and then how the boundaries are treated. The behaviour of the interface bound-
aries between adjacent blocks will be dealt with separately from the rest of the boundaries
because of the very different nature and treatment of this type of boundary condition.

6.6.1 First-order inviscid components

6.6.1.1 Inside the domain

The LHS Jacobian of the flow solver MERLIN presented in section 5.7 is already first-
order accurate for the convective terms so what is done in MERLIN is used unchanged to
create a first-order inviscid adjoint solver. The aim of building this adjoint solver was to
create the structure of the code and to be sure that the discrete adjoint method had been
well understood but once this is done, the development itself should be very quick.

The basics are however presented since they will be reused for the other parts of the solver.
This is explained by an example. Let us consider the one-dimensional problem of Fig-
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Figure 6.1: First-order inviscid fluxes.
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since the fluxes are only first-order accurate. The terms of the form

� � ��� ��� �
� � � are coming

from the linearisation of Osher’s scheme presented in section 5.7. The terms
� �

,
� �

and
 �
form the RHS Jacobian of equation 6.7. As already explained a term by term matrix-

vector product is performed for this RHS instead of assembling the whole Jacobian and
then doing a global matrix-vector product with the whole adjoint vector. Let us detail this
considering the three-dimensional problem: if for each computational cell

� �������
, the term� ��� � � � �� � � � � - is called ��� � ��� 
�� � then it is calculated according to:
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Figure 6.2: First-order inviscid fluxes at the boundaries.
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Each term of this sum involves a

� � �
matrix-vector multiplication. The terms

� �
,
� �

and
 �
, calculated as shown in equations (6.9) to (6.11), are then transposed and multiplied

by the appropriate adjoint vectors to form the RHS vector. This has to be done in the
three directions to obtain equation (6.12).

As in MERLIN, the adjoint solver works face by face rather than cell by cell as presented

above. Hence a term like

� � ��� ��� �
��� � is calculated only once and its contribution is added to

the relevant RHS vectors ��� � ��� 
 � � .
6.6.1.2 At the boundaries

The problem is depicted in Figure 6.2.
�
�
� �

is inside the domain so its treatment has been
reviewed in the previous subsection, it is only

� � � �
that matters here and it is present in

the calculation of
� �

. Indeed the treatment of the boundary conditions is governed by the
application of equation (6.12) (considered only in one dimension here) to the boundary.
When

� �
� it is written ����� � � � � � �
� � ��
 � � �

� � � � �� � � � (6.13)

but since
� �

is outside the domain, the term

 � � �

� �
has to be discarded and ��� � � becomes����� � � � � � �

� � � � �� � � �
Hence


 �
and

� �
do not need to be evaluated.

The fact that the value of
� �

depends on
� �

from the application of the boundary condi-
tions detailed in section 5.6.3 implies that

� � �
� � �
���	� �

� � � � ����	� �
� � � � �
���	� �

� � � � �
� ���

� � �
� � �



102 6. Discrete adjoint solver

i+2i i+1i-1i-2

PSfrag replacements ���������
	 � ���
���
	

Figure 6.3: Higher-order inviscid fluxes.

This is exactly what also happens in MERLIN and this was presented in section 5.7.4.

Besides the matrices
�����
���	� are taken from Appendix A except for the interface boundaries,

the treatment of which is explained next. This also has to be applied at the other end of
the

�
direction when

� � � � and of course in the other two directions.

6.6.1.3 Interface boundary

The philosophy that is constantly behind the treatment of the interface boundaries is that
the adjoint solver should not be able to see that there is a boundary there and should
behave the same as inside the domain. Hence equation (6.13) has to be applied as written,
this time

� �
is taken from the adjacent block. The use of halo cells that are filled with

values of the adjoint vector coming from the adjacent block is made to ease this process.

Since everything is as in the interior of the domain,
� �

and

 �

are calculated with
equations (6.9) and (6.11) respectively.

Now that the calculation of the RHS Jacobian for a first-order inviscid adjoint solver has
been presented, the complexity is slightly increased with the introduction of the MUSCL
scheme to obtain a higher-order inviscid adjoint solver.

6.6.2 Higher-order inviscid components

6.6.2.1 Inside the domain

The use of the MUSCL scheme extends the dependency of the convective fluxes to 4 cells
and the dependency of the cell residual to 5 cells. Considering the example of Figure 6.3,� �

now depends on
� �

	
�
,
� �

	
�
,
� �

,
� ��� �

and
� ��� �

hence for this one-dimensional ex-
ample two additional non zero terms have to be introduced in the Jacobian. The terms
become:

� � �
��� �
��� � �

� ����� � � �
��� � � � ��� 	

��� �
��� � (6.14)� � � � � �

��� �
	
� �

� ����� � � �
� � �

	
� �

� ���
	
��� �

��� �
	
� (6.15)
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Figure 6.4: Computational stencil for a higher-order inviscid Jacobian.
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� (6.16)
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� ����� ��� �
��� ��� � �

� ���
	
��� �

� � ��� � (6.17)


�
 � �
��� �
��� ��� � �

� � ��� ��� �
��� ��� � (6.18)

A term like

� ����� ��� �
� � � involves the linearisation of Osher’s Riemann solver and of the

MUSCL scheme in addition to the transformation between conservative and primitive
variables. Hence � ����� � � �

� � � �
� ����� ��� �
� ��


� � 
� � 

� � 
� � � �

� ����� ��� �
� � �

� � ����
�

���
���� �

The linearisation of Osher’s Riemann solver has already been presented in the implicit
part of MERLIN (see section 5.7.2). The linearisation of the MUSCL scheme has not
been detailed but is quite straightforward when considering equation (5.16). Since the
slope limiter is differentiable, its linearisation inside the MUSCL scheme, does not pose
any problem either. To be noticed in equation (5.16) is that

�
� depends on

� �
	
�
,
� �

and� ��� �
and

� 
 on
� �

,
� ��� �

and
� ��� �

.
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Figure 6.5: Higher-order inviscid fluxes at the boundaries.

This has to be performed in the three directions hence the stencil for this inviscid higher-
order Jacobian involves the 13 cells shown in Figure 6.4. Considering this, the component
of the RHS vector of the adjoint equation that involves the matrix-vector product between
the Jacobian and the adjoint vector, becomes
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(6.19)

6.6.2.2 At the boundaries

Since the fluxes are higher-order accurate, two fluxes are now involved in the boundary
conditions i.e.

�
�
� �

and
� � � �

as shown in Figure 6.5. This potentially implies some modifi-
cations in a large number of Jacobian components but writing equation (6.19) at the bound-
ary eliminates a number of terms due to their multiplication to an adjoint vector that is
outside the domain. A careful check shows that in the end, the boundary conditions only
affects

� �
,
� �

and

 �

in ��� � � � � � � �
� � � � �� � � � ����� �� � � �

and ��� � � � � �� �
� � � 
 � � �

� � � � �� � � � ����� � � � � �
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Figure 6.6: Higher-order inviscid fluxes at an interface boundary with the additional halo
cell.

These matrices become
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The matrices

�����
���	� have already been presented in Appendix A since they are used in the

implicit part of MERLIN, the matrices

��� 

���	� and

� � 

� � � did not appear so far. They result

from the application of the boundary conditions as detailed in section 5.6.3. They are easily
calculated and their value is also provided in Appendix A. A similar treatment has to be
applied at the other end of the

�
direction and of course in the other two directions.

6.6.2.3 Interface boundary

The philosophy that everything should be as if inside the domain for this kind of boundary
condition, is still the same so equation (6.19) is applied as� ��� � � � � � �

� � ��
 � � �
� � ��
�
 �
 �

� 
 � � �� � � � � � � �� � � �
and similarly for ����� � . The terms in this equation are calculated like in the interior of
the domain with equations (6.14) to (6.18), which implies the calculation of the flux

� � � �
inside the halo cells. As shown in Figure 6.6, this necessitates the value of

�
	
�

that is
outside the normal halo cells. Hence a third layer of halo cells has to be implemented in
the adjoint solver for this type of boundary conditions. Once again this has to be done for
the three directions.

6.6.3 Viscous laminar components

6.6.3.1 Inside the domain

This part relies on what was presented for the flow solver MERLIN in sections 5.6.2.1 and
5.7.3.1. As explained there, the residual at one cell depends on the value of the variables
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Figure 6.7: Viscous laminar fluxes.

in 19 surrounding cells that are depicted in the stencil of Figure 5.8.

This paragraph will only look at the fluxes in the
�

direction. The situation is depicted
in two dimensions in Figure 6.7. This is a simplification of Figure 5.3 for ease of under-
standing but this should however be viewed in three dimensions even if only fluxes in the�

direction are considered here. The residual at cell
�

is still
� � � ����� ��� � � ���

	
��� �

but this time,
����� ��� �

and
���

	
��� �

are the diffusive fluxes
� & from equation (5.2). The resid-

ual depends on 15 cells, 9 which are shown in Figure 6.7, 6 further being in a perpendicular

plane. This makes 15 non-null contributions

� � �
��� " � � � - to the Jacobian. Instead of detailing

all of these terms, only a sample of what is involved is given here. This is the calcula-

tion of

� � ��� � � �
��� ��� 
�� � with, according to the notation of Figure 6.7 and remembering from sec-

tion 5.6.2.1 that
� 
 �

�� � � ��� 
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 � � �
,
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This is also what is done in MERLIN or in the LHS Jacobian of the adjoint solver except
that only the 7 Jacobians corresponding to the first-order inviscid stencil are kept (hence
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computed). This derivation is coming from the evaluation of the variables at the face
centres of the dual volume used in the calculation of the viscous fluxes. This is just a
straightforward linearisation of what was presented in section 5.6.2.1. The calculation

of terms like

� ����� ��� �
� � 
 � is not presented either because again it is only a differentiation of

the way the viscous fluxes are calculated from these face centre values and this does not
present any difficulty.

Let us go back to three dimensions with the calculation of the viscous fluxes in the three
directions and write the equation forming the RHS vector of the adjoint equation. This is
written once for completeness and reference but it is not very helpful for understanding
and a one-dimensional version, looking at each direction separately, would be preferred.
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(6.20)

6.6.3.2 At the boundaries

What happens at the boundaries for the linearisation of the viscous fluxes is quite com-
plicated and a lot of cases have to be considered. Only examples will be given in this
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Figure 6.8: Viscous fluxes at the boundaries: first case.

subsection that treat only the viscous fluxes in one direction, the
�

direction.

The most simple case is when the boundary is in the same direction as the flux studied as
in Figure 6.8 where the boundary is at

� � � � � . It is obvious that because the value of
� � � 


depends on
� � � 


, there is a contribution of cell
�����

that needs to be added to cell � ��� hence
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where again
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���	� � 
 results from the linearisation of the boundary condition and can be

found in Appendix A. A bit more difficult is the contribution from cell
� ��� � �

via cell� ��� � �
to cell � ���
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and similarly between cell
��� � � �

via cell � ��� � �
to cell � ��� .

Now that this has been presented, a few words are needed to come back to the flow solver
MERLIN and explain what is done about the boundary conditions of the viscous fluxes
in the LHS Jacobian. As already mentioned in section 5.7.4 a lot of simplifying approxi-
mations are made. The contribution from cell

�����
to cell � ��� in

� � � 

is nevertheless taken

into account properly. This is however relatively easy to take into account because it only
depends on the value of

�
and occurs when

� �
� and
� � � � . The other contribution from

cell
��� � � �

via cell � ��� � �
is not accounted for in MERLIN because it depends not

only on the value of
�

but also on
�

as we will see next. As mentioned in section 5.7.4,
whatever the situation


 � � 

is calculated as if inside the domain without worrying about
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Figure 6.9: Viscous fluxes at the boundaries: second case.

the boundaries. All the cases presented next are not accounted for in the LHS Jacobian of
MERLIN or in the LHS of the adjoint solver. Only the RHS of the adjoint solver accounts
for them.

Another possible case is when the boundary is not in the direction of the flux as depicted
in Figure 6.9 where the boundary is at

� � � � � . Like in the previous case, there is a con-
tribution from cell

� � �
to cell

� � � as well as from cell
� � ��� �

to cell
� � ��� � to give

� ��� � �
��� ��� �
� � ��� � �

� ����� � � �
��� ��� � � � ����� ��� �

� � ��� �
��� ��� �
��� ��� � �

� ���
	
��� �

� � ��� � � � ��� 	
� � �

��� ��� �
��� ��� �
��� ��� �� ��� � � ��� ��� �

��� �
	
� � � �

� � ��� 	
��� �

� � �
	
� � � �

� ���
	
��� �

��� �
	
� � �
� � �

	
� � �

� � �
	
� � �

The final case happens at a corner point as shown in Figure 6.10. This is the superposi-
tion of the two previous cases and starts to become complicated. As previously, there is a
contribution from cell

� � �
to cell � � � and of cell

�
� �
to cell

� � � . Cell � � � now receives a
contribution from cell

��� � , from cell � � � and from the corner point
��� �

. This gives

� � � � �
��� � � �
���	� � � �

� �
�
� �

���	� � � �
� �

�
� �

���	� � �
� � � � �
� � � � � �

� � � � �
���	� � � �

� � � � �
� �	� � �

���	� � �
���	� � � �

� � � � �
����� � �

� � � � �
� � � � � �

� � � � �
����� � �

����� � �
���	� � �

The term

����� � �
���	� � � depends on the way the boundary condition is applied in the corner point.

Either � � � � �
� � � � � �

����� � �
����� � �

����� � �
���	� � �
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Figure 6.10: Viscous fluxes at a corner point: third case.

or � � � � �
� � � � � �

��� � � �
���	� � �

��� � � �
���	� � �

The 3 cases presented above were for boundaries situated at
� � � but of course similar

cases occur when
� � � � . In the same way, the boundary at

� � � � has to be considered
without forgetting that the third dimension

�
plays a similar role to

�
when looking at the

fluxes in the
�

direction and has also to be accounted for. To summarise, all the following
cases have to be considered:

�
� �
� that is further divided into

–
� �
�

– � � � � � �
–
� � � �

and

–
� �
� � � �

– � � � � � �
–

� � � � � �
–

� �
� � � �
� � � � � � � that is further divided into

–
� �
�
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– � � �
�
� �

–
� � � �

and

–
� �
� � � �

– � � �
�
� �

–
� � � � � �

–
� �
� � � �

�
� � � � that is further divided into

–
� �
�

– � � � � � �
–
� � � �

and

–
� �
� � � �

– � � � � � �
–

� � � � � �
–

� �
� � � �

Notice the case where
� � � � � � that is needed when doing (quasi-)two-dimensional

calculations around aerofoils that will be presented at the end of this chapter. This case is
well distinct from the cases

� �
� and
� � � � and has to be treated separately.

All the material presented in this subsection refers only to the viscous fluxes in the
�

di-
rection but of course a similar methodology must be applied for the viscous fluxes in the�

and
�

directions. The application of the boundary conditions for the viscous fluxes be-
comes very complicated so a careful and systematic process is needed to code this into the
adjoint solver. The last thing to mention is of course that once the Jacobian contributions
have been calculated, they are employed in equation (6.20) written for the relevant val-
ues of

�
,
�

and
�

. Close to a boundary this implies that the terms multiplied by an adjoint
vector that is outside the domain, are discarded as it was in subsections 6.6.1.2 and 6.6.2.2
for the convective fluxes. Whenever this happens, it means that a contribution from a halo
cell has to be incorporated in a cell inside the domain.
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6.6.3.3 Interface boundary

There is not much to say about the interface boundary for the viscous fluxes. Once again,
the philosophy that the adjoint solver should not be able to see these boundaries, is applied
and so equation (6.20) is employed as it is written with all its terms. This is relatively
easy to do and note that the terms that have to be coded in addition to the normal terms
used inside the domain, are precisely the same terms that are discarded at a boundary
other than an interface. Things are slightly more complicated when dealing with corner
points, especially when one of the two boundaries is not an interface. In this case, what
has been said for normal boundaries in the previous subsection is applied but without
forgetting that there is an interface boundary and that terms associated with it have to be
accounted for as well.

This concludes this section on the calculation of the contributions to the exact RHS Jaco-
bian coming from the laminar viscous fluxes. The linearisation of the turbulence model to
obtain a fully turbulent adjoint solver is described next.

6.6.4 Turbulent components

6.6.4.1 Inside the domain

This subsection presents first the linearisation of the turbulent viscosity � � and then how
this is used in the adjoint solver.

The description of the linearisation of � � relies heavily on the description of the al-
gebraic turbulence model of Baldwin-Lomax made in section 5.6.2.2. This showed
that the turbulent viscosity is calculated along rays and that its value depends on all
the cells along these rays since the boundary between the inner and outer eddy vis-
cosity regions is not known in advance and neither is the location of

� � 0 � for the
outer turbulent viscosity. As an approximation when these positions are known for a
particular ray, the next paragraph shows that ��� depends numerically on a fixed number
of cells, the position of which varies from ray to ray. This makes it possible to linearise ��� .

The turbulent viscosity is either equal to the inner eddy viscosity or to the outer eddy vis-
cosity of the model. These two cases can be treated separately. It is assumed that the rays
along which � � is calculated are

�
rays of cells of constant

� ���
. When ��� � ��� � � � -�-  
� ,

its value depends on the 8 cells shown in Figure 6.11(a). These are the actual cell
���������

where � � is calculated, 6 cells around it that are used to calculate the magnitude of vor-
ticity and all its velocity gradients and the cell at

� � � that represents values at the wall
needed to calculate �

�
. When � ��� ��� � � + � �� 
� , its value depends on the 10 cells shown in

Figure 6.11(b). These 10 cells are the cell
���������

for the density; 7 cells around
� � � � 0 � �

that is the
�

position where the function
�

is equal to
� � 0 � , to calculate the magnitude of

vorticity � � � 
�� ����� ; the cell at
� � � to calculate �

�
��
����� ; 2 cells at

� � � � 0 � � and
� � � � � - �

that represent respectively the position of maximum velocity amplitude and the position
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Figure 6.11: Domain of dependency of ��� .
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of minimum velocity amplitude that are used to calculate
� � � � � . When these two cases are

combined, the turbulent viscosity potentially depends on 17 cells. No assumption is made
about the position of these cells along the ray although it is possible that two cells from
the dependency study are the same.

Hence 17 terms
� ��� � � ��� 
 � ���� " have to be calculated for each

� �������
. This is a straight differen-

tiation of the way the eddy viscosity is calculated and is not presented in detail. The only
problem encountered concerns the maximum and minimum functions used for the outer
eddy viscosity that are non-differentiable. As it has been hinted earlier with the depen-
dency drawings, the approximation made is that the derivative of the maximum is equal
to the derivative of the function at the point where it is maximum hence for example

� � � 0 ���� " �
� �
��� " ����



'

 �

�����

This is true only if the maximum function is smooth. This process was also applied to the
minimum function in the calculation of

� $ 0 �  
� $ 0 �  � � ��� � � � 0 � � � 0 � � ��$ 0 �  � � 0 � ��� � � �

�
� � 0 � �

However this did not work well at all. A thorough investigation would be needed to under-
stand what is happening exactly in this case but it was found, rather crudely, that if

� $*0 �  
was always calculated as

� $ 0 �  � � � 0 �
� � 0 �

this avoided any problem and the overall sensitivity derivatives calculated by the ad-
joint solver agreed quite well with derivatives calculated by finite difference. With
the minimum function, the agreement was not as good. Physically the term � � 0 �

� � 0 �
comes[185] from Cebeci-Smith’s model for wall-bounded boundary layers whereas the

term
� $ 0 �  � � 0 �

� � � � � �
� � 0 �

comes from Prandtl’s model for free shear flows and should be

used in the aerofoil wake. Since in our case, ��� is always calculated above the surface
of an aerofoil or wing, the modification of the definition of

� $ 0 �  is valid and should not
change the accuracy of the model. It was adopted for all the turbulent computations. To
be consistent, this modification was also included in the flow solver MERLIN.

Once the terms

� ��� � � ��� 
�� ���� " have been calculated, they are used in the RHS Jacobian as fol-

lows. Since for a turbulent calculation, the viscosity � is the sum of the laminar viscosity
and the turbulent viscosity, the derivative of the viscous flux

� & can be written

� � &
��� " �

� � &
� � " ����

$ % ' ),+�-&. �(0 - �
� � � &
� � " ����

0#" " + � �� 
� �� 
� � .  � )  ��� $ % ' ),+�-&. �10 - �
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In the previous section on the calculation of the viscous laminar contributions to the Jaco-
bian, the assumption that the turbulent viscosity was constant 2 was made hence it is the

term

� � &
� � " ����

$ % ' ),+�-/. �10 - �
that was actually calculated there. This section is concerned with

� � &
��� " ����

0#" " + � �� � �� 
� � .  � )  ��� $ % ' ),+�-/. �10 - �
. Since only the turbulent viscosity has to be differenti-

ated, this derivative is not difficult to calculate from the definition of
� & and is not detailed

here. Note however that the viscous flux
� & is calculated at the face between two cells at

the position 0 of Figure 5.3 hence the turbulent viscosity that has to be considered is

��� � � 
 � �� � ��� � � ��� 
�� � � ��� � � ��� � � 
�� � �
with the notations of that Figure.

In one dimension, the residual at one cell
�

is still
� � � ����� ��� � � ���

	
��� �

and it has to be differentiated with respect to all the cells that contribute to the turbulent
viscosities used in

����� ��� �
and

���
	
��� �

. Clearly this makes a lot of contributions to calcu-
late, that are then used into an equation equivalent to equation (6.20) to compute the RHS
vector ��� � ��� 
 � � . This equation is too complicated to be written and in fact is not needed to
implement the linearisation of the turbulent viscosity into the adjoint solver. Indeed as al-
ready mentioned, the adjoint solver works face by face and hence flux by flux rather than

cell by cell. For each flux
�

, the relevant derivatives
� �
��� " are calculated. It is then possible

to identify the terms
���
��� " and then the RHS vectors ����� ��� 
�� � to which they contribute and

to add these contributions to these RHS vectors. To do this it is necessary to notice that a

RHS vector � ��� ��� 
�� � is composed of terms of the form

� � " � � � -� � ��� 
�� �
�
�
�
" � � � - where � � � � � vary.

Once again this has to be repeated for the fluxes in the three directions.

6.6.4.2 At the boundaries

Two different problems have to be distinguished and are detailed next: the first one is
when the turbulent viscosity is calculated inside the domain and the second one, when it
is taken from halo cells.

When the turbulent viscosity is calculated inside the domain, this means that the whole
ray along which it is computed is inside the domain as well. However cells at

� � ���������

2Constant here means independent of � in the sens that

� �
	�
�

��� but of course � 	 is not a constant in

the flow solver since it is calculated using the Baldwin-Lomax model and hence depends on the local flow
properties. A synonym is � 	 is frozen.
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or
� ��� � 0 � �

� �����
for example might be outside the domain. As usual for these types

of cells, their direct contributions to the RHS vectors ��� � ��� 
�� � are discarded but they are
added indirectly to cells that are inside the domain. This is not detailed but is very similar
to what is happening to the first-order inviscid fluxes in section 6.6.1.2.

When the value of the turbulent viscosity is taken from halo cells, it results from the ap-
plication of the boundary conditions described in section 5.6.3 and is not calculated along
rays inside the halo cells. This in fact simplifies the problem. Let us consider the flux

� � � �
of Figure 6.8. Its turbulent viscosity is

��� � � � � � � �� � ��� � � � � ��� � � � � (6.21)

Depending on the boundary type, this is either��� � � � � � � �

or ��� � � � � � � ��� � � �
or ��� � � � � � � �� ��� � � ���� � � � is now inside the domain so the computation of

� � � � �
��� " comes back to the previ-

ous case where the turbulent viscosity is calculated inside the domain but has dependency
cells outside the domain. In this particular case, the dependency cells

� �������
or

� ��� � 0 � �
���

are in the halo cells and their contribution would have to be reflected in cells � ������� and� ��� � 0 � � ��� respectively. Again this is only a one-dimensional example while in three di-
mensions, the fluxes in all three directions have to be accounted for.

6.6.4.3 Interface boundary

The interface boundary condition ensures that the value of � � in the halo cells is taken
from the neighbouring block where it was calculated. Hence everything is as if the
turbulent viscosity was calculated along

�
rays inside the halo cells. Note that this

assumes that the interface boundary is an
�

or
�

boundary aligned with the
�

direction.
Since it is assumed that the turbulent viscosity is calculated along

�
rays starting from the

surface at
� ��� and going to the farfield boundary at

� � � � , this is not restrictive since
a
�

boundary is never an interface boundary for these blocks. What happens in the wake
is described in the next subsection.

Let us consider again the case of Figure 6.8 where this time the interface at
� � � � � is

an interface boundary. Equation (6.21) is still valid but this time there is not any connec-

tion between ��� � � � and ��� � � � hence the calculation of

� � � � �
��� " involves the calculation of
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� ��� � � ���� " and
� ��� � � �� � " . However this linearisation is meant to be used in the computation of

the RHS vector ��� � ��� 
�� � and this RHS is only needed inside the domain. Hence only � ��� � � 
�� �
is affected by ��� � � � . Since ��� � � � 
�� � is only composed of terms of the form

��� " � � � -� �	� � 
 � �
�
�
�
" � � � - ,

only terms involving

� ��� � � �� �	� � 
 � � need to be calculated. This is convenient since it means that

only two terms have to be calculated involving ��� � � � , i.e.

� ��� � � �� �	� � 
 � � and/or

� ��� � � ����	� � 
 �
�����

� � . No

such simplification occurs for
� ��� � � ���� " that is computed as a turbulent viscosity inside the

domain.

6.6.4.4 In the wake

What has been presented so far in this section on the linearisation of the turbulence model
and its incorporation into the calculation of the RHS vector of the adjoint equation, is
only valid for blocks where the turbulent viscosity is calculated along rays with the
Baldwin-Lomax model. As mentioned in section 5.6.2.2, in the wake behind an aerofoil
or a wing, the turbulent viscosity is not actually computed but is copied from the last ray
at the trailing edge of the aerofoil or wing. This necessitates a different treatment of the
linearisation of � � from what has been described so far.

The problem is similar to what happens at the interface boundary because there needs to be
an interface boundary between the block where � � is calculated and the block in the wake
where it is copied. Let us take the example of Figure 6.8 again where the block considered
is in the wake and the boundary at

� � � � � is the interface with the block where ��� is
calculated. Hence cells with

� � �
are situated above the aerofoil or wing and cells with� � � are in the wake. Since the turbulent viscosity is copied,��� � � � � � � ��� � � � � � � ��� � � ��� ��� � � ��� � � �

Hence the derivative

� ����� ��� �
��� " involves only the calculation of

� ��� � � ���� " . Like in the case of

the interface, only values of ��� � ��� 
�� � with
� �������

inside the domain need to be calculated.
Since everywhere inside the domain, ��� only depends on what happens at the interface

boundary, the only terms that remain are
� ��� � � ����	� � 
�� � . More specifically, only two terms remain

as in the case of the interface boundary i.e.

� ��� � � ���� � � 
�� � and/or

� ��� � � �� � � � 
��
�����

� � . This means that

for the whole wake block, only RHS vectors of the form ����� � � 
 � � where
�

and
�

vary and����� � � 
 � � ���
� �

where
�

varies, need to be calculated. The formula to calculate them is simple
with for example ����� � � 
�� � �

�
-�
�
'
�
� � ��� 
 � �
���	� � 
�� �

�
�
� ��� 
 � �
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Note that in the sum, the term at
� � � � will have to take into account a boundary

condition, likewise for the whole equation when
�

or
�

are close to a boundary. Another
aspect not to forget is that this treatment has only been presented when the interface
between the block where � � is calculated and the wake block is at

� � � � � but of course
this could happen at

� � � � � � � � . Finally this was only for the fluxes in the
�

direction
but a similar methodology has to be applied for the fluxes in the other two directions.

This concludes this long section that detailed the calculation of the RHS vector of the ad-
joint equation with the term by term matrix-vector product involving contributions to an
exact Jacobian and the adjoint vector. This showed first how the contribution from the
convective fluxes is incorporated in this equation before presenting what happens to the
diffusive fluxes with first the viscous laminar part and then the linearisation of the Baldwin-
Lomax turbulence model. In each case, details were given for the general treatment inside
the domain and then it was shown what happens close to a boundary, the interface bound-
ary being very different from the other boundaries. To end this chapter on the discrete
adjoint solver, now that it has been presented in detail, results that assess the accuracy of
the adjoint code are shown.

6.7 Verification

One of the problems encountered when trying to implement an adjoint solver is its valida-
tion. The only possibility is to compute a sensitivity derivative both with equation (6.8)
and the adjoint vector, and by finite-differences. It is the only way to check the correctness
of the method.

This subsection presents examples of calculation of the adjoint vector and of sensitivity
derivatives that are compared with finite-difference calculations. All these calculations
are quasi-two-dimensional i.e. the flow and adjoint solvers are three-dimensional but
the computational grid has only one cell in the

�
direction with a symmetry boundary

condition in the two
�

planes. To be able to compute the flow on such a grid, the
convective fluxes in the

�
direction are limited to first-order. The choice of doing only

two-dimensional accurracy studies is dictated by computing reasons. Indeed to perform
finite-difference sensitivity calculations, the flow solution has to be very well-converged
in order to obtain a difference in the computed objective functions that is due to design
variable changes and not to poor convergence. This implies two things: first that it is
CPU time consuming to do such calculations hence the smaller the grid, the better and
secondly that you need a problem that is able to converge to the level you require. From
the experience of the author, three-dimensional problems rarely converge to machine zero
while two-dimensional problems are more likely to do it. For these two reasons, only
two-dimensional problems were used to assess the accuracy of the adjoint solver.
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Central finite difference
Adjoint

Percentage
difference� � �

� 	
� � � �

� 	 � � � �
� 	 �

� � �
��� �

3rd Bézier
parameter

0.5273168 0.5273169 0.5273169 0.5273075 0.002 %

6th Bézier
parameter

-0.1796504 -0.1796505 -0.1796505 -0.1795517 0.055 %

� ���
��� �

3rd Bézier
parameter

0.09127480 0.09127479 0.09127475 0.09128026 0.006 %

6th Bézier
parameter

0.13399757 0.13399757 0.1339976 0.13401192 0.011 %

Table 6.1: Comparison of sensitivity derivatives calculated by finite difference and by the
adjoint method for the NACA0012 aerofoil for a laminar flow.

Two tests are presented here. The first one involves only laminar viscous flow computa-
tions. They are performed on a NACA0012 aerofoil on a 4-block coarse

� � � � ��� � �
grid. The flow conditions are: Mach number � � ��� �
� � , incidence 	 � � ��� � , Reynolds
number

� � � � � � based on chord and freestream temperature
� � � � ����� � . The

second test is made on the RAE2822 aerofoil for a fully turbulent flow. The grid has
the same characteristics: 4 blocks for a total of

� � � � � � � � points. It is shown in
Figure 4.1(a). The flow conditions for this test case are: Mach number � � � � � � � � ,
incidence 	 � � � � � � , Reynolds number

� ��� � � � � � � � based on chord and freestream
temperature

� � �
� � � ��� � . At these conditions a shock wave forms on the upper surface
of the RAE2822 aerofoil at 60 � of the chord. The upper surface of both aerofoils was
parameterised using 10 Bézier design variables and sensitivities to the 3rd and 6th are
investigated. For the RAE2822 aerofoil sensitivities to the angle of incidence 	 are also
considered. The objective functions are lift and drag coefficients in addition to pitching
moment coefficient for the RAE2822 aerofoil.

The results for the NACA0012 aerofoil for a viscous laminar flow are presented in
Table 6.1. The flow solver and the adjoint solver are always converged to a total residual
of

� � 	
� �

for this case. This accuracy study also investigated the accuracy of the finite
difference method. Three step sizes � were chosen i.e.

� � 	
�
,
� � 	 � and

� � 	 �

. Table 6.1
shows that the finite difference method is not very sensitive to the step size with a
very good agreement between the three results. For a step size of

� � 	 �

, there were not

enough available significative digits to be able to distinguish the three results for
� ���
��� � .

The agreement between finite difference and the adjoint solver is excellent with 3 to 4
significative digits in common and obviously the correct sign each time (so the right
direction in optimisation).
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Central finite
difference� � � �

� 	 �
� Adjoint

Percentage
difference

� � �
��� �

3rd Bézier parameter 1.29579 1.29312 0.21 %
6th Bézier parameter -0.440811 -0.439373 0.33 %

Incidence 	 0.141057 0.140811 0.17 %
� � �
��� �

3rd Bézier parameter -0.00825440 -0.00824008 0.17 %
6th Bézier parameter 0.206073 0.205986 0.04 %

Incidence 	 0.00817769 0.00817888 0.01 %
� � �
��� �

3rd Bézier parameter -0.126766 -0.128028 1.00 %
6th Bézier parameter 0.130785 0.131409 0.48 %

Incidence 	 0.0342890 0.0343446 0.16 %

Table 6.2: Comparison of sensitivity derivatives calculated by finite difference and by the
adjoint method for the RAE2822 aerofoil for a fully turbulent flow.

The results for the RAE2822 aerofoil for a fully turbulent flow are presented in Table 6.2.
For this test case the flow solver is converged to ��� � � � � 	

� �
because the convergence

stalled around this value and did not go beyond. This is however already a very good
convergence level. There was no problem for the adjoint solver so each time it is
converged to

� � 	
� �

. Since the previous study did not show a significant sensitivity of the
finite difference method to the step size, a value of

� � 	 � that seemed reasonable is chosen
here. The agreement between finite difference and adjoint method is not as good as for
the previous case, but it is nevertheless still very good. The difference is supposed to
come from the slight approximations made when differentiating the maximum function
in the linearisation of the Baldwin-Lomax turbulence model. Notice however that for
this case the order of magnitude of the sensitivity derivatives is quite different from
one objective function to another or from one design variable to another, yet the adjoint
method is accurate each time and of course finds the correct sign even for very low values.

As explained previously, the adjoint vector does not have any obvious physical meaning
so very few people[19,43,157,232] show a representation of it. Since it has the same number
of components as the flow variable vector, it can be depicted as a flow field. This is what
is done in Figure 6.12 and Figure 6.13. Figure 6.12 represents the first component of the
adjoint vector when the objective function is the drag coefficient, for the previous laminar
viscous flow around the NACA0012 aerofoil. Figure 6.13 shows the same component of
the adjoint vector for the same objective function but this time for the RAE2822 aerofoil
in the fully turbulent flow mentioned above. In these two Figures, the outline of the
4 blocks is also represented showing the reasonable continuity of the adjoint vector at
the interface boundaries. Similar features to these Figures 6.12 and 6.13 can be found
in References [19, 232] i.e. that the contours look like the flow contours that could be
obtained if the flow was coming from the opposite direction, with a sort of stagnation
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Figure 6.12: First component of the adjoint vector when the objective function is the drag
coefficient for a laminar viscous flow around the NACA0012 aerofoil.

point at the trailing edge and a wake ahead of the leading edge. This is particularly true
for the laminar flow of Figure 6.12.

The conclusion of this section on the validation of the discrete adjoint solver, is that it is
very accurate when comparing to finite difference sensitivity derivatives. Hence it can
be incorporated without any problem into an optimisation chain to provide the gradients
needed by the optimiser.

This is the end of the chapter describing the discrete adjoint solver that was coded for this
study. This chapter first presented the discrete and continous adjoint methods before giving
some reasons for chosing the discrete method in this work. The adjoint equations were cast
in a form very similar to that of the flow solver MERLIN, enabling the use of the same
numerical methodology to solve them. Then the innovative content of this adjoint solver
was highlighted, most of it coming from the accurate treatment of the RHS Jacobian that
was then described. That lengthy part detailed the derivation of all the contributions to
this RHS Jacobian starting with the first-order accurate convective fluxes, then the higher-
order accurate convective fluxes and finally the viscous laminar fluxes and the linearisation
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Figure 6.13: First component of the adjoint vector when the objective function is the drag
coefficient for a fully turbulent flow around the RAE2822 aerofoil.
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of the Baldwin-Lomax turbulence model. For all these contributions, their matrix-vector
product with the adjoint vector and their incorporation into the RHS vector of the adjoint
equation was presented. The last part demonstrated the accuracy of this adjoint solver that
is now ready to be introduced into an optimisation chain to perform some optimisation as
the next chapter shows.
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