Cranfield University

Alan Le Moigne

A discrete Navier-Stokes adjoint
method for aerodynamic optimisation of
Blended Wing-Body configur ations

College of Aeronautics

PhD Thesis

Cranfield University

College of Aeronautics

PhD Thesis

Academic Year 2002-2003

Alan Le Moigne

A discrete Navier-Stokes adjoint method for aerodynamic optimisation of
Blended Wing-Body configurations

Supervisor: Prof. N.Qin

December 2002

© Cranfield University 2002. All rightsreserved. No part of this publication may be
reproduced without the written permission of the copyright owner

Abstract

An aerodynamic shape opti misation capability based on adiscrete adjoint solver for Navier-
Stokes flows is developed and applied to a Blended Wing-Body future transport aircraft.

The optimisationisgradient-based and employseither directly a Sequential Quadratic Pro-

gramming optimiser or a variable-fidelity optimisation method that combines low- and

high-fidelity models. The shape deformations are parameterised using a Bézier-Bernstein

formul ation and the structured grid isautomatically deformed to represent thedesign chan-

ges. Theflow solver at the heart of thisoptimisation chainisaReynolds averaged Navier-

Stokes code for multiblock structured grids. It uses Osher’s approximate Riemann solver

for accurate shock and boundary layer capturing, an implicit temporal discretisation and

the algebraic turbulence model of Baldwin-Lomax. The discrete Navier-Stokes adjoint

solver based on this CFD code shares the same implicit formulation but has to calculate
accurately the flow Jacobian. This implies alinearisation of the Baldwin-Lomax model.

The accuracy of the resulting adjoint solver is verified through comparison with finite-

difference.

The aerodynami c shape optimisation chainisapplied to an aerof oil drag minimisation prob-
lem. Thisservesasatest caseto try and reduce computing time by simplifying thefidelity
of the model. The simplificationsinvestigated include changing the convergence level of
the adjoint solver, reducing the grid size and modifying the physical model of the adjoint
solver independently or in the entire optimisation process. A feasibleoptimiser and theuse
of apenalty function area so tested. The variable-fidelity method provesto be the most ef-
ficient formulation so it isemployed for the three-dimensional optimisationsin additionto
parallelisation of the flow and adjoint solverswith OpenMP. A three-dimensional Navier-
Stokes optimisation of the ONERA M6 wing is presented. After describing the concept
of Blended Wing-Body and the studies carried out on this aircraft, several aerodynamic
optimisations are performed on this geometry with the capability developed in thisthesis.

This page has been |eft intentional ly blank.

Vi

To my mother and my late father (R.I.P.)
for supporting me for many years.

Vii

This page has been |eft intentional ly blank.

viii

Acknowledgements

| sincerely appreciated the guidance and helpful advice of my supervisor Prof. Ning Qin
and would like to thank him for making this work possible and for introducing me to the
very interesting world of aerodynamic optimisation. | am aso indebted to Dr. Scott Shaw
for hisavailability and all the help and explanations he gave me onthe MERLIN code and
CFD ingeneral. | also thank the past and present members of the CFD group, in particular
Dr. David Perigo and Armando Vavalle.

Thiswork was funded by a Scholarship from Cranfield College of Aeronauticsand the EU
under the “Growth” Programme Contract No GARD-CT1999-0172 as part of the MOB
project. All the partnersin the MOB project are thanked, especially Prof. Alan Morris
for his advice on optimisation and the whole Cranfield team. A specia thank must go
to Dr. Paul Smith from the High Performance Computing Facility of the University of
Cambridge for helping me port my codes onto the IBM parallel machine. AEMDesign is
also acknowledged for kindly providing the optimisation routine FFSQP employed in the
present work.

Finally I would like to thank my mother for always supporting me through the difficult
moments despite the distance. Thisgoesalso to my brother who had the additional quality
of being able to understand CFD- and PhD-related problems, being in this position too.

This page has been |eft intentional ly blank.

Table of contents

Abstract A
Acknowledgements IX
Table of contents Xi
List of Figures XV
List of Tables XXi
Nomenclature XXl
1 Introduction 1
1.1 Background on aerodynamic optimisation 1

1.2 Objectivesand novelty of thethesis 2

1.3 Outlineofthethesis. 3

2 Literaturereview 5
2.1 Gradient evaluation for aerodynamic optimisation methods 6
211 Finite-differencemethods 6

212 Complexvariablemethod 8

213 Methodsusing Automatic Differentiation 9

214 Quasi-anayticd methods. 11

2141 Directdifferentiationmethod 11

2142 Adjointmethod 13

215 UseoftheHessanmatrix 14

2.2 Other methodsof optimisation 14
221 Responsesurfaces o 15

222 Geneticadgorithms oo oo 17

3 Constrained optimisation 19
3.1 Basicconceptsinoptimisation, 19

3.2 Seguentia Quadratic Programming. 23
3.3 Theoptimisation subroutinesused inthiswork 24

Xi

Xii Table of contents
331 TheNAGsubroutineEO4UCF 24

332 ThesubroutineFFSQP 25

34 Vaiablefidditymethod 26
4 Surface parameterisation and grid update 33
4.1 Shaperepresentation 33
411 Exisingmethods oL 33

412 TheBézier-Bernstein parameterisation. 35

42 Wingrepresentation 38
43 Gridupdate 40
431 Exisingmethods, 40

432 Surfacegridupdate 42

433 Volumegridupdate 43

44 Gridsengitivities 48
5 Fundamental equationsand discretisation 53
51 Introduction e 53
52 Thegoverningequations v o v v v it e 54
5.3 Primitivevariablesand non-dimensionalisation 55
54 Finitevolumeformulation 56
55 Timediscretisation 57
56 Explicitformulation. 61
56.1 Convectiveterms 61
56.1.1 Osher'sapproximateRiemannsolver 61

5.6.1.2 Higher-order spatial accuracy 63

56.2 Diffusveterms 64
56.21 Laminarviscousfluxes 64

56.22 Turbulencemodeling 66

5.6.3 Boundary conditions 69
5.6.3.1 Inviscidwall boundary condition 70

5.6.3.2 Viscouswal boundary condition 70

5.6.3.3 Symmetry boundary condition 71

5.6.3.4 Supersonicinflow boundary condition 71

5.6.3.5 Supersonic outflow boundary condition 72

5.6.3.6 Farfield boundary condition 72

5.6.3.7 Interface boundary condition 74

56.38 Cornerpoints, 75

57 Implicitformulation. 76
57.1 Solutionmethodology 77

5.7.2 Contribution from the convective termsto the Jacobian 78

5.7.3 Contribution from the diffusivetermsto the Jacobian 81
5731 Laminarcontributions 81

5.7.3.2 Turbulent contributions 82

Table of contents Xiii

5.7.4 Implicitboundary conditions 82

58 Vdidation 83
6 Discrete adjoint solver 89
6.1 Discreteadjointmethod 89
6.2 Continuousadjointmethod 90
6.3 Choice between the continuous and discrete formulations 93
6.4 Solutionmethodology 95
6.5 Innovativecontentinthisadjointsolver 97
6.6 Caculationof theexact RHSJacobian 99
6.6.1 First-orderinviscidcomponents 99
6.6.1.1 Insdethedoman 99

6.6.1.2 Attheboundaries 101

6.6.1.3 Interfaceboundary 102

6.6.2 Higher-orderinviscidcomponents 102
6.6.2.1 Insdethedoman 102

6.6.2.2 Attheboundaries 104

6.6.2.3 Interfaceboundary 105

6.6.3 Viscouslaminarcomponents 105
6.6.3.1 Insdethedoman 105

6.6.3.2 Attheboundaries 107

6.6.3.3 Interfaceboundary 112

6.6.4 Turbulentcomponents 112
6.6.4.1 Insdethedoman 112

6.6.4.2 Attheboundaries 115

6.6.4.3 Interfaceboundary 116

6.6.44 Inthewake, 117

6.7 Verification e 118
7 Optimisation testsand resultsin two dimensions 125
7.1 Influence of approximation on the accuracy of thegradient 125
7.1.1 Influenceof thelevelsof convergence 126
7111 Flow solver on objectivefunction 126

7112 Flowsolverongradient 127

7113 Adjointsolverongradient. 130

7.1.2 Influenceof thegridsize 131

7.1.3 Influenceof thephysica model 132

7.2 Two-dimensional optimisation using adirect SQP method 134
7.21 Theoptimisationproblem 135

7.2.2 Scdingandreferenceoptimisation. 138

7.2.3 Influence of approximation on optimisation 144

7.2.3.1 Influence of thelevel of convergence of the adjoint solver144
7.2.32 Influenceof thegridsize 148

Xiv Table of contents

7.2.3.3 Influence of the physica model of the adjoint solver . .

7.2.34 Comparison of Euler vs Navier-Stokes optimisation . .

7.24 Handlingtheconstraints
7241 FFSQPVSEO4UCF

7.24.2 Pendty functionvshard constraints.

7.3 Two-dimensiona optimisation using the variable-fidelity method
7.3.1 Alternativemethods

7.3.2 Vaiablefiddityresults

8 Three-dimensional optimisations
81 Padldcomputing
8.2 Optimisationof the ONERA M6wing
83 Optimisationof aBWB
8.3.1 Background about the BWB and about the present work
832 Prdiminarywork
8.3.3 Basdine geometry and optimisation problem
8.34 Euler optimisations of the BWB without constraint on ', .
8.3.5 Euler optimisation of the BWB with constraintonC,,,
8.3.6 Navier-Stokes optimisations of the BWB on a coarse grid :
84 DISCUSSION v ot e e e

9 Conclusions
9.1 Summary of achievementsand findings
9.2 Futurework e
93 PeErgpectives

References

A Linearisation of theboundary conditions

. oP,
A.1 Cadculation of BB, Tttt

A.11 Inviscid WQaII boundary condition.
A.1.2 Viscouswall boundary condition.
A.1.3 Symmetry boundary condition
A.1.4 Supersonicinflow boundary condition
A.15 Supersonic outflow boundary condition
A.1.6 Farfieddboundary condition

A.17 Interfaceboundary condition
. 0P,

A2 Cdculationof ——
JP,
0Py

A3 Cdculationof —
culation o P

3

153
157
161
161
163
172
172
175

183
183
185
192
192
195
197

. 201

211

. 222

232

239
239
240
241

243

List of Figures

1.1 Schematic diagram of the optimisation process developed inthiswork. . . 3
4.1 Example of grid update with 20 Bézier parameters as design variables.
(Shape modified manually, not the result of an optimisation) 45
4.2 Exampleof gridupdatefor parameterscontrolling thewing geometry. (Shape
modified manually, not the result of an optimisation) 46
4.3 Same wings as in Figure 4.2 but viewed from a different angle. (Shape
modified manually, not the result of an optimisation) 47

4.4 Gridsengitivity 2—% of they coordinatewith respect to the 6™ Bézier param-
eter out of 10 that parameterise the upper surface of the RAE2822 aerofoil. 50
45 Grid sengitivity g—g of the = coordinate with respect to the parameter scale

associated with the 15" spanwise grid section (shown in white) on the up-

per surface of the ONERA M6wing.o 51
51 Atypicd cdl withitscentre, itsgrid pointsand its metric vectors. 58
5.2 Flux at theinterface betweentwocdls. 62
5.3 Thedua volumeused to cal cul ate the viscous flux at the face between cell

i kandedl i+ 1,5,k L 65

5.4 Schematic diagram of halo cells (in shaded area). Left: cell numbering
starting at the boundary. Right: cell numbering finishing at the boundary. 69
5.5 Schematic diagram for the interface boundary condition between two ad-

jacent blocks for a particular choice of cell numbering. 75
5.6 Corner point at the intersection of two boundaries: cell 1,1. 76
5.7 Computational stencil for afirst-order inviscid Jacobian. 80
5.8 Computational stencil for the laminar part of the Jacobian. 81
59 M6wingcomputational grid. 84
5.10 Contours of pressure coefficient on the upper surface of the ONERA M6

WING. . . e 85
5.11 Chordwise C, distributions for the ONERA M6wing. 87
5.11 Chordwise C,, distributions for the ONERA M6 wing. (Concluded) . .. 88
6.1 First-orderinviscidfluxes., ..., 100
6.2 First-orderinviscid fluxes at theboundaries. 101
6.3 Higher-orderinviscidfluxes. 102

XV

XVi List of Figures

6.4 Computationa stencil for a higher-order inviscid Jacobian. 103
6.5 Higher-order inviscid fluxes at the boundaries. 104
6.6 Higher-order inviscid fluxes at an interface boundary with the additional
halocel.. e 105
6.7 Viscouslaminarfluxes. 106
6.8 Viscous fluxesat the boundaries:. firstcase. 108
6.9 Viscous fluxesat the boundaries: secondcase. 109
6.10 Viscousfluxesat acorner point: thirdcase. 110
6.11 Domainof dependency of prs. . . . o v o o oo 113

6.12 First component of the adjoint vector when the objective function is the

drag coefficient for alaminar viscous flow around the NACA0012 aerofoil. 121
6.13 First component of the adjoint vector when the objective function is the

drag coefficient for afully turbulent flow around the RAE2822 aerofoil. . 122

7.1 Influence of thelevel of convergence of the flow solver onthevalue of lift

-Cp

C
E 12 orders [, J orders

and drag coefficients. Accuracy of CZL) a j orders = . 126

Cp 12 orders
L
7.2 Influenceof thelevel of convergence of the flow solver on the value of the
sensitivity derivativesof drag coefficient. Accuracy of k™ gradient at ;™ order =

dcp dcp

aBy, 12 orders dBy, J orders 128
| dCp '
4Bk 12 orders

7.3 Influenceof thelevel of convergence of the flow solver on the value of the
sensitivity derivativesof lift coefficient. Accuracy of k" gradient at ;™ order =

dcp, dcp,

4By 1odes Pk g orders 129
Fe) T TR IS
4Bk 12 orders

7.4 Influence of the level of convergence of the adjoint solver on the value of
thesensitivity derivativesof drag coefficient. Accuracy of k" gradient at ;™ order =

dcp _dcp

"By 12 orders "By 7 orders 129
| acp .
4B 12 orders

7.5 Influence of the level of convergence of the adjoint solver on the value of
the sensitivity derivativesof lift coefficient. Accuracy of £ gradient at ;™ order =

daC'p, dC[
4B 12 orders dﬁk J orders
‘ dac’y,

4B 12 orders

7.6 Influenceof the grid size on thevalue of the sensitivity derivativesof drag,

: . ; L + _ sensitivity obtained on 65x 17 grid
lift and pitching moment coefficients. Ratio = senStvity obta@nedon 120x 33 grid* © 191

7.7 Influenceof the physical model (hereturbulent adjoint but with i; = constant)

onthevalueof the sensitivity derivativesof drag, lift and pitching moment

sensitivity obtained with aturbulent adjoint with 1.; =constant
coefficients. Ratio = sensitivity obtained with aturbulent adjoint . 133

7.8 Influenceof the physical model (hereviscouslaminar adjoint) on theval ue

of the sengitivity derivativesof drag, lift and pitching moment coefficients.
Ratio — sensitivity obtained with a viscous laminar adjoint 133
- sensitivity obtained with aturbulent adjoint = * * * * * * * f o0t oron ot

List of Figures XVii

7.9

7.10

711

7.12

7.13

7.14

7.15

7.15

7.16
7.17

7.17

7.18

7.19

7.20

721

1.22

7.23

7.23

1.24

1.24

71.25

Baseline geometry and the CFD gridaroundit. 137
Evolution of different parameters during the aerofoil optimisations com-
paring the method with scaling that servesasreferenceto the method with-

outscaling. 140
Result of the aerofoil optimisations comparing the method with scaling
that serves as reference to the method without scaling. 142
Contours of pressure coefficient on the initial shape and on the optimised
shape obtained by using the scaled optimisation method. 143
Evolution of different parameters during the aerofoil optimisations com-
paring the influence of the level of convergence of the adjoint solver. . . . 145
Result of the aerofoil optimisations comparing the influence of the level
of convergence of theadjointsolver. 147
Evolution of different parameters during the aerofoil optimisations com-
paring the influence of thegridsize. 149
Evolution of different parameters during the aerofoil optimisations com-
paring the influence of thegridsize. (Concluded) 150

Result of the aerofoil optimisations comparing the influence of the grid size.152
Evolution of different parameters during the aerofoil optimisations com-
paring the influence of the physical model of the adjoint solver. 154
Evolution of different parameters during the aerofoil optimisations com-
paring the influence of the physical model of the adjoint solver. (Concluded) 155
Result of the aerofoil optimisations comparing the influence of the physi-

cal mode of theadjointsolver. 156
Evolution of different parameters during the aerofoil optimisations com-
paring an Euler to a Navier-Stokesoptimisation. 158
Result of the aerofoil optimisationscomparing an Euler to aNavier-Stokes
optimisation. 159

Evolution of different parameters during the aerofoil optimisations com-
paring the optimisation routine FFSQP (feasible SQP) to the NAG routine
EO4UCF (standard SQP). o o o oo e e 162
Result of the aerofoil optimisations comparing the optimisation routine
FFSQP (feasible SQP) to the NAG routine EO4UCF (standard SQP). . . . 164
Evolution of different parameters during the aerofoil optimisations using
apenalty term approach withscaling. 166
Evolution of different parameters during the aerofoil optimisations using
apenalty term approach with scaling. (Concluded) 167
Evolution of different parameters during the aerofoil optimisations using
apenalty term approach without scaling. 169
Evolution of different parameters during the aerofoil optimisations using
apenalty term approach without scaling. (Concluded) 170
Result of the aerof oil optimisationsusing a penalty term approach without
scaling. . .. 171

XViil List of Figures

7.26 Coarse Euler grid used for the low-fidelity model in the variable-fidelity
method. (to becomparedto Figure7.9) 177

7.27 Evolution of different parameters during the aerofoil optimisations com-
paring the variable-fidelity method to the standard SQP method. 178

7.27 Evolution of different parameters during the aerofoil optimisations com-

paring the variable-fidelity method to the standard SQP method. (Con-
cluded) 179

7.28 Result of theaerofoil optimisationscomparing the variabl e-fidelity method
tothestandard SQPmethod. 181

8.1 Thetwo grid levels used for the optimisation of the ONERA M6 wing.

The red sections of the high-fidelity grid are the master sections that are
optimised and correspond to the sections of the low-fidelity grid. 186

8.2 Evolution of different parameters during the variable-fidelity optimisation
of the ONERAM6wWINg. i 188

8.3 Contoursof pressure coefficient on the upper surface of the optimised ON-
ERA M6 wing. (to becomparedto Figure5.10). 190
8.4 Chordwise C, distributions for the optimised ONERA M6 wing. 191

8.4 Chordwise C), distributions for the optimised ONERA M6 wing. (Con-
cluded) 192
8.5 Shape modification of the master sections of the ONERA M6 wing. . . . 193
86 BasalineBWB geometry. 197
8.7 Fine Navier-Stokesgrid around the baselinegeometry. 198

8.8 Contoursof pressure coefficient onthe upper surface of the baseline BWB
geometry atthedesign Cr. 199

8.9 Thetwo grid levels used for the Euler optimisations of the BWB. Thered

sections of the high-fidelity grid are the master sectionsthat are optimised
and correspond to the sections of the low-fidelity grid. 202

8.10 Evolution of different parameters during the Euler variable-fidelity opti-
misations of the BWB without any constraintonC',,. 204

8.11 Comparison of the contours of pressure coefficient on the upper surface of

theinitial BWB and of the Euler optimised BWB without any constraint
onC,,. Eulercaculations., 206

8.12 Chordwise C, distributions for the Euler optimised BWBs without any
constrainton C,,,. Euler calculations. 207

8.13 Shapemodification of some master sectionsfor the Euler optimised BWBs
without any constrainton C,,,. o 208

8.14 Spanwisetwist distributionindegreesfor the Euler optimised BWBswith-
outany constraintonC',. 209

8.15 Contours of pressure coefficient on the upper surface of the Euler opti-

mised BWB without any constraint on C,,,. Navier-Stokes calculation on
the fine Navier-Stokes grid (to be compared to Figure8.8). 210

List of Figures XiX

8.16

8.17

8.18

8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

8.29

8.30

831

8.32

Chordwise C', distributions for the Euler optimised BWBs without any
constraint on C',,,. Navier-Stokes calculations on the fine Navier-Stokes

Spanwiselift distribution and loading for the Euler optimised BWBswith-
out any constraint on ,,. Navier-Stokes calculations on the fine Navier-

Stokesgrid. 213
Evolution of different parameters during the Euler variable-fidelity opti-
misation of the BWB with constraintonC',. 214

Comparison of the contours of pressure coefficient on the upper surface of
theinitial BWB and of the Euler optimised BWB with constraint on C,,, .

Eulercalculations. 215
Chordwise C), distributions for the Euler optimised BWB with constraint
onC,,. Bulercalculations. 216
Shape modification of some master sectionsfor the Euler optimised BWB
withconstrainton C,,,. o o i e e e 217
Spanwise twist distribution in degrees for the Euler optimised BWB with
constraint on C'ry. . . o e e e e e e e e e 218

Contours of pressure coefficient on the upper surface of the Euler opti-
mised BWB with constraint on C,,,. Navier-Stokes calculation on the fine

Navier-Stokes grid (to be compared to Figure88). 220
Chordwise C, distributions for the Euler optimised BWB with constraint
on C,,. Navier-Stokes calculations on the fine Navier-Stokesgrid. 221

Spanwise lift distribution and loading for the Euler optimised BWB with
congtraint on C',,. Navier-Stokes cal culationson the fine Navier-Stokes grid.222
The coarse Navier-Stokes grid used by the high-fidelity model. The red
sectionsarethemaster sections. L L 223
Evolution of different parametersduringthe Navier-Stokesvariable-fidelity
optimisations of the BWB on a coarse grid with and without constraint on

O o e e e e e e e e e 225
Comparison of the contours of pressure coefficient on the upper surface

of theinitial BWB and of the Navier-Stokes optimised BWB without any

congtraint on C,,,. Coarse grid Navier-Stokescalculations. 226
Chordwise C', distributions obtained on the coarse grid for the Navier-
StokesoptimisedBWBS. 227
Shape modification of some master sections for the Navier-Stokes opti-
MisedBWBS. e 229

Contoursof pressure coefficient on the upper surface of the Navier-Stokes
optimised BWB without any constraint on C',,,. Navier-Stokescalculation

on the fine Navier-Stokes grid (to be compared to Figure8.8). 230
ChordwiseC), distributionsfor the Navier-Stokesoptimised BWBs. Navier-
Stokes calculations on the fine Navier-Stokesgrid. 231

This page has been |eft intentional ly blank.

XX

List of Tables

5.1
5.2

5.3

54
5.5

6.1

6.2

7.1
7.2

7.3

14

7.5

7.6

7.7

7.8

Non-dimensionalisation appliedinMERLIN. 57
Osher’sflux formulaefor F;,/; (P-variant). (Qr, = Qe and Qr =Q:) . 62
JOF;
Calculation of ag”? (Q:=QoandQr=Q1) . ..o 79
L
OF;
Calculation of Q“/?. (Qr=QoandQr=Q1) . ..o 79
R
Comparison of aerodynamic coefficientsobtained with MERLIN and those
availableintheliterature., 88

Comparison of sensitivity derivatives calculated by finite difference and
by the adjoint method for the NACAQ012 aerofoil for alaminar flow. . . 119
Comparison of sensitivity derivatives calculated by finite difference and
by the adjoint method for the RAE2822 aerofoil for afully turbulent flow. 120

Aerodynamic coefficients of the optimised aerofoilsat thetarget C';,. . . . 139
Aerodynamic coefficients of the optimised aerofoilsfor the optimisations
comparing the influence of the level of convergence of the adjoint solver,
atthetarget Cr. e 146
Aerodynamic coefficients of the optimised aerofoils on the 137 x 35 grid
for the optimisations comparing the influence of the grid size, at thetarget
O o e e e 151
Aerodynamic coefficients of the optimised aerofoilsfor the optimisations
comparing theinfluence of the physical model of the adjoint solver, at the
target Cr. . . . o 153
Aerodynamic coefficients of the Euler and Navier-Stokes optimised aero-
foils calculated from a Navier-Stokes solution on the reference grid at the
target C'r. . . o o e 160
Aerodynamic coefficients of the optimised aerofoilsfor the optimisations
comparing the optimisation routine FFSQP (feasible SQP) to the NAG
routine EO4UCF (standard SQP), at thetarget C,. 163
Aerodynamic coefficients of the optimised aerofoilsfor the optimisations
using a penalty term approach with scaling, at thetarget C',. 167
Aerodynamic coefficients of the optimised aerofoilsfor the optimisations
using a penalty term approach without scaling, at thetarget Cr,.. 168

XXi

XXil List of Tables
7.9 Aerodynamic coefficients of the optimised aerofoilsfor the optimisations
comparing the variable-fidelity method to the standard SQP method, at the
target C'r. . . o e 179
8.1 Aerodynamic coefficients of the optimised ONERA M6wing. 189
8.2 Comparison of aerodynamic coefficients obtained for optimised ONERA
MBWINGS. . . . o o o e e e e e e 189
8.3 Grid sengitivity study for the baseline BWB. M., = 0.85, « = 3.0°. . . . 195
8.4 Comparison of the performance of the three redesigned BWB geometries. 196
8.5 Aerodynamic coefficients for the baseline BWB geometry at the design C'7,.199
8.6 Value of the coefficients used in the evaluation of ®,; in Equation (8.3). . 203
8.7 Inviscid aerodynamic coefficients of the Euler optimised BWBs without
any constraint on Cl. o v v v o o e e e e e e e 205
8.8 Navier-Stokescheck onthefine Navier-Stokesgrid of the Euler optimised
BWBswithout any constrainton C',,. 209
8.9 Inviscid aerodynamic coefficients of the Euler optimised BWB with con-
SrantonC,,. o e e e e e 215
8.10 Navier-Stokescheck onthefine Navier-Stokesgrid of the Euler optimised
BWB withconstrainton C,,,. o i 219

8.11 Vaueof thecoefficientsused intheevaluation of ®,; for the Navier-Stokes

optimisationsof theBWB. 223

8.12 Aerodynamic coefficientsobtained on the coarse grid for the Navier-Stokes

8.13

optimisedBWBS. e 225
Navier-Stokescheck on thefine Navier-Stokesgrid of the optimised BWBs
obtained by a Navier-Stokes optimisationon acoarsegrid. 228

Nomenclature

Roman symbols

A generic LHS matrix in alinear system

A Jacobian = 0F'/0Q

a speed of sound

AT Van Driest constant in the Baldwin-Lomax model
arc non-dimensional arc length in the volume grid update
b generic RHS vector in alinear system

B Jacobian = 0G*/9Q

B, component of the Jacobian = dR,; ; /0P, j x—1
Bin Bernstein polynomial

BB, component of the Jacobian = dR.; ; 1/ OP; j k2
Cik component of the Jacobian = dR.; ; 1/ 0P, ; 1

c aerofoil or wing section chord

e constant in the variable-fidelity method

¢y constant in the variable-fidelity method

Ceop constant in the Baldwin-Lomax model

Ch drag coefficient

CD fric friction drag coefficient

CD press pressure drag coefficient

Cp total total drag coefficient

CD wave wave drag coefficient

CFL CFL number

CKlep Klebanoff constant in the Baldwin-Lomax model
Cr, lift coefficient

XXiii

XXiV Nomenclature

Cm pitching moment coefficient

) pressure coefficient

Cloake wake constant in the Baldwin-Lomax model

displacement increment in displacement of a master section

ey unit vector in the k" direction of the design space

E, ;. component of the Jacobian = dR,; ; /0P, j41 %

E total energy

e internal energy

EB; component of the Jacobian = dR.; ; x/OP; j+1.k-1

EE; ;« component of the Jacobian = 0R,; ; x/OP; j12.x

EF, ;, component of the Jacobian = OR,; ; x/OP; j+1 k+1

F flux vector

F flux vector in the = direction

| component of the Jacobian = JR,; ; 1/ 0P, j k+1

F function in the Baldwin-Lomax model

F objective function

f generic function

FF, . component of the Jacobian = R, ; /0P, j k12

fi NACA 4-seriesfunction

fr Hicks-Henne function or Wagner function

Friep Klebanoff function in the Baldwin-Lomax model

flag parameter used in the linearisation of the farfield boundary condition

Frax maximum valueof thefunction /" acrossthe boundary layer inthe Baldwin-
Lomax model

Foake function in the Baldwin-Lomax model

G flux vector in the y direction

g generic function

Gi inequality constraint

gj hat function

H Hessian matrix or itsinverse

H flux vector in the z direction

h generic function

Nomenclature XXV

h; equality constraint

I indentity matrix

I objective function in the continuous adjoint method

in maximum number of grid pointsin the: direction

JmazkF j position where the function F' is equal to F,,,,. in the Baldwin-Lomax
model

JmazU 7 position where the magnitude of velocity is maximum in the Baldwin-
Lomax model

Jminl j position where the magnitude of velocity is minimum in the Baldwin-
Lomax model

Jn maximum number of grid pointsin the ; direction

k Kinetic energy

Ki; spring stiffness in the tension-spring analogy method

kn maximum number of grid pointsin the & direction

L lower triangular matrix in a BILU decomposition

L Lagrangian function

[mixing length in the Baldwin-Lomax model

L/D lift to drag ratio

L distance between two successive grid pointsin the volume grid update

M, freestream Mach number

n normal unit vector

Nk component of the Jacobian = dR,; ; 1/0P ;41 1

Ny B-spline basis function of order /

NB; ;« component of the Jacobian = 0R,; ; +/OP 41 k-1

NCON number of aerodynamic constraints

NDV number of design variables

NE, ;. component of the Jacobian = OR,; ; x/OP 11 j41.%

NF, ;. component of the Jacobian = JR.; ; 1/ OP 11, k+1

NN« component of the Jacobian = JR,; ; 1/0P ;42 j &

NW, x component of the Jacobian = OR,; ; x/OP 1 j—1 %
P vector of primitivevariables= (p u v w p)’

P vector of Bézier control points

XXVi Nomenclature

P vector of primitive variables with the velocity calculated in the body fitted
transformed coordinates=(p U V W p)’

P static pressure

p* target pressure in the continuous adjoint method

P orthonormalised polynomial

Pr Prandtl number, taken equal to 0.7

Q vector of conservativevariables= (p pu pv pw pE)t

q heat flux vector

R residual vector

R perfect gas constant, for air = 287 Jkg K

T parameter measuring the performanceof thelow-fidelity model inthevariable-
fidelity method

R,R,,R_ Riemanninvariants

r constant in the variable-fidelity method

Ty constant in the variable-fidelity method

Re Reynolds number

refpoint non-dimensionalised chordwise position of a reference point for a master
section

rhs; ; x vector containing the contribution of the RHS product {%} t A" at
the cell 7, 5, k£ in the discrete adjoint method

p penalty coefficient

Riotal total residual

S vector of search direction

s vector of variablesin the low-fidelity optimisation of the variable-fidelity
method

S, vector of coordinatesfor a2-D curve

Siik component of the Jacobian = dR,; ; ,/0P;_1 ; «

S area

s entropy

Si dope limiter in the MUSCL scheme

Sij strain-rate

SB, ; x component of the Jacobian = JR,; ; 1/ OP_1 jr—1

Nomenclature

XXVii

scale

ik
SF,
SSi ik
SWi
T
i
twist
twistcoeff;
U
U
u
u

Ur

Udifs

w

WBi; ;
WEF,
Wy
WW.ix
X

X

Ty, 2

X
xref,yref

increment in scaling of amaster section

component of the Jacobian = 0R,; ; /0P ;_1 j41 4
component of the Jacobian = 0R,; ; /0P, _1 j k41
component of the Jacobian = dR.; ;1 /OP;—2 jx
component of the Jacobian = OR,; j /0P ;1 j_1 %
temperature

time

increment in twist of amaster section

coefficients in the spanwise twist distribution function
upper triangular matrix in a BILU decomposition
component of the velocity normal to the boundary or interface
component of velocity in the = direction

normalised computational arclength along acurve
friction velocity

maximum differencein velocity amplitude acrossthe boundary layer inthe
Baldwin-Lomax model

velocity vector = (u,v)in 2-D, = (u, v, w) in 3-D
component of the velocity parallel to the boundary
volume

component of velocity in the i direction
component of the Jacobian = dR,; ; /0P, j_1 »
component of the velocity parallel to the boundary
component of velocity in the z direction
component of the Jacobian = R, ; /0P, j_1 41
component of the Jacobian = R, ; x/OP; j_1 s41
weight coefficient in the definition of aNURBS
component of the Jacobian = dR.; ;1 /OP; j_a
vector of grid points

generic LHS vector of unknown in alinear system
Cartesian coordinates

x coordinate of a control point

coordinates of the reference point of a master section

XXVili Nomenclature

yT non-dimensional normal distance

Y y coordinate of a control point

Ymaz value of y,, for which F'(y,,) = F,.,. inthe Baldwin-Lomax model

Yn normal distance from the body surface in the Baldwin-Lomax model

Greek symbols

! length of the step taken in the search direction

a Clauser constant in the Baldwin-Lomax model

o) angle of incidence

8 vector of design variables

B coefficient in the beta-correction technique of the variable-fidelity method

B, linear approximation of B

I surface

~y ratio of specific heats, for air = 1.4

5 coefficient in the Sequential Quadratic Programming method

A increment

0; coefficients in the Sequential Quadratic Programming method

i Kronecker symbol

JANSp. upper bound on theradius of thetrust-regionin the variabl e-fidelity method

A, bound on the radius of the trust-region at iteration ¢ in the variable-fidelity
method

Ax; node displacement in the tension-spring analogy method

oy shape increment in the y direction

€ small incremental step or small number

¢ metric vector / cell face normal vector in the & direction

n metric vector / cell face normal vector inthe j direction

n non-dimensional spanwise position

K parameter in the MUSCL scheme

K thermal conductivity coefficient

K von Karman constant in the Baldwin-Lomax model
adjointvector=(Ay A, s A Xy) in3-D

A second coefficient of viscosity

Nomenclature XXiX

Lagrange multiplier on the surface boundary in the continuous adj oint method

molecular viscosity

i coefficients in the Sequential Quadratic Programming method
i penalty parameter used in FFSQP
[t eddy or turbulent viscosity
& metric vector / cell face normal vector inthe: direction
) fluid density
T stress tensor
T shear stress
o merit function composed of the objectivefunction augmented with apenalty
term
Q0 bounded domain
w vorticity in the Baldwin-Lomax model
o0 surface boundary of domain 2
Subscripts
b on the boundary
e extrapolated from inside the domain
hi high-fidelity model
o0 freestream
i index
index
k index
L relative to the left hand side of the interface in the Riemann solver
LE leading edge
lo low-fidelity model
R relative to the right hand side of the interface in the Riemann solver
surface on the surface of the aerofoil or wing
w at thewall
T = 0/0x

y = d/0dy

XXX Nomenclature

Superscripts
* converged flow solution
* non-dimensiona flow variable

approximate Jacobian
- indicates a corrected model in the variable-fidelity method
small increment in the continuous adjoint method

2 convective or inviscid

[lower bound

n iteration number (relative to time) for the flow and adjoint solvers

q optimisation iteration number
transpose operator

u upper bound

v diffusive or viscous

Acronyms

BFGS Broyden-Fletcher-Gol df arb-Shanno

BILU Block Incomplete Lower-Upper

BWB Blended Wing-Body

CAD Computer Aided Design

CDE Computational Design Engine

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

CPU Central Processing Unit

DNS Direct Numerical Simulation

LES Large Eddy Simulation

LHS Left Hand Side

MDO Multidisciplinary Design and Optimisation

MOB Multidisciplinary design and Optimisation for Blended wing-body config-
uration

MPI Message Passing Interface

NURBS Non-Uniform Rational B-Spline
PVM Parallel Virtual Machine

Nomenclature XXXI

RHS Right Hand Side
SQP Sequential Quadratic Programming

This page has been |eft intentional ly blank.

XXXii

Chapter 1

| ntroduction

1.1 Background on aerodynamic optimisation

The aerospace industry has integrated Computational Fluid Dynamics (CFD) within the
design process of aircraft and wings for about three decades. Within the past decade or
so CFD has become an indispensable tool that is taking increasing importance alongside
costly wind tunnel experiments. The advantage of CFD isthat it offers several levels of
approximation of the equations of fluid motion that are suited for different stages of the
design process.*? fast and simple tools such as the panel method are used for the con-
ceptual design; medium fidelity codes, solving thefull potential or the Euler equationsfor
example, can be employed in the preliminary design phase; while high-fidelity and com-
putationally expensive codes such as Reynolds Averaged Navier-Stokes solvers are kept
for the detailed design and analysis.

Aerodynamic optimisation concerns automating parts of thiswell-established aerodynamic
design process. Itsaim is to help the aerodynamicist who, up to now, was doing repeti-
tive tasks such as cal culating the flow around a geometry to assess its performance, mod-
ifying this geometry to get improved performance, assessing the new geometry by an-
other flow solution to seeif the design has been improved and so on until the best possible
shape within the avail abl e resources (man power, computing time, flow solver accuracy) is
found. Thiscan be called an iterative analysis design process. Aerodynamic optimisation
is the automation of such atask by coupling the CFD solver to an optimiser that seeksthe
best possible shape using the information it receives from the flow solver.

Aerodynamic optimisation can be performed at several stagesof thedesign process. Cheap
aerodynami c optimisation methods involving panel codes for example are used in the con-
ceptual phase, generally associated to other disciplinesto formaMultidisciplinary Design
and Optimisation (MDO) capability.l¥! More expensive higher-fidelity aerodynamic opti-
mi sation methods are employed for the detailed design, generally on their own as part of a
pure aerodynamic exercise. One of theaimsof thisthesisisto develop such ahigh-fidelity
method.

2 1. Introduction

Aerodynamic optimisation started more or less at the same timeas CFD but, at that timein
the late 1970s - early 1980s, the methodology employed and the computing power avail-
able made it impossible to use in practice. At the end of the 1980s Jameson[* devel oped
anew methodology i.e. the adjoint method, that greatly reduced the computing time re-
quired. This started a growing interest that is culminating today with the introduction of
aerodynamic optimisation based on the adjoint method into the industrial environment. In
References[5,6], aerodynamic optimisation isemployed in the design of aracing aircraft.
It isused for the design of aregional jet aircraft in Reference [7] and of several transonic
wings in Reference [6]. Finally supersonic transport aircraft are also designed with such
methods.[®9

At the beginning of this work, every aerospace company in Europe had its own adjoint
method for aerodynamic optimisation or was in the process of developing it: in no par-
ticular order, Rolls-Royce, QinetiQ and BAE Systems were supporting some work done
at Oxford University on athree-dimensional optimisation method for Navier-Stokesflows
based on adiscrete adjoint method; 1% BAE Airbus UK 1213 and Dassault Aviation!41%]
both had a three-dimensional continuous adjoint solver for a viscousg/inviscid interaction
method; Airbus France was devel oping athree dimensiona Euler discrete adjoint capabil-
ity;[*6] NLR had a continuous adjoint method for two-dimensional Navier-Stokes optimi-
sation;[*"1 Saab Aerospace had a three-dimensional inviscid continuous adjoint solver.[*l
Thisprovestheindustrial relevance of such shape optimisation methodsaswell astherel-
ative novelty of the present work aimed at developing a three-dimensional adjoint capa-
bility for Navier-Stokes flowsthat few possess. The next section gives more details about
the goals of the present work.

1.2 Objectivesand novelty of thethesis

This thesis has two objectives. to develop an aerodynamic optimisation method based on
a discrete adjoint solver for three-dimensional Navier-Stokes flows and to apply this ca-
pability to the optimisation of a Blended Wing-Body (BWB) aircraft.

Within the first objective, the main task is the development of the discrete adjoint solver
based on an existing three-dimensional Reynoldsaveraged Navier-Stokesflow solver. The
novelty inthiswork iscoming from the use of Osher’snumerical schemeintheflow solver
that will be employed in the adjoint code. Intheflow solver thisisused for accurate shock
and boundary layer capturing and it is believed that employing the same technique in the
adjoint solver will produce gradientsthat are very accurate for industrial problemsinvolv-
ing shock waves and boundary layers. The other aspect of novelty is coming from the
turbulence model employed in both the flow and adjoint solversi.e. the algebraic model
of Baldwin-Lomax. The author only knows one other referencel*® using thismodel for an
adjoint solver. The main problemto overcomeisthat differentiation of such amodel hasto

1.3 Outline of thethesis 3

Initial geometry and grid

\

*| Grid update
new Flow solver ﬂOYV | Adjoint solver
design solution
objective P——
function and gradients:
constraints: dCr, dCp dC,,
CL, CD, Cm d/Bk7 d/Bk 9 d/Bk
Optimiser

Figure 1.1: Schematic diagram of the optimisation process devel oped in this work.

beaccurate. Itsmain advantageisthat thisal gebraic turbulence model ischeap to calculate
whilerelatively accurate for attached wing flows and enabl es viscous turbulent flowsto be
addressed at a reduced cost compared to other turbulence models. Thisis very important
since three-dimensional geometries in turbulent flows will be optimised and computing
timeisabigissuein such cases.

The other objective of this thesis is to optimise the three-dimensional shape of a BWB
with this adjoint-based optimisation method. Thisin itself is novel: little work has been
reported so far on the aerodynamic design of aBWB!?%2! and the author has no knowledge
of any reference about a high-fidelity shape optimisation of such anovel aircraft.

1.3 Outlineof thethesis

The optimisation process devel oped in thiswork is presented schematically in Figure 1.1.
The processisiterative and isgoverned by the gradient-based optimiser that sits at the bot-
tom of thisdiagram. The optimiser determines the design changesto make. These are fed
into a grid updating program that modifies the grid around the baseline geometry accord-
ing to these design changes. The new CFD grid is used by the flow solver to calculate the
flow solution sent to the adjoint code and al so to output the aerodynamic coefficients used
by the optimiser. On the other branch, the adjoint solver calculates the gradient of these
aerodynamic coefficients from the CFD grid and the flow solution and sends them to the
optimiser. From this information this latter determines the new design changes to make
and the loop is started again until the optimum isfound. Each of the boxesin thisdiagram

4 1. Introduction

will be described in detail in one of the chapters of thisthesis. It thus serves as a backbone
for what is presented in Chapter 3 to Chapter 6.

Theoutlineof thethesisisasfollows: Chapter 2 presentsthe existing aerodynamic optimi-
sation methodsthrough aliteraturesurvey. Thisessentially describes gradient-based meth-
ods and waysto calculate the gradient. Thiswill explain why the adjoint approach ismore
efficient than other non-adjoint methods and thus why it is chosen for this work. Chap-
ter 3 gives some information about optimisation in general and then details the two SQP
algorithmsused as optimisersin thiswork. It also describesthe variable-fidelity optimisa-
tion method employed for al the three-dimensional optimisations of thisthesis. Chapter 4
presents the existing parameterisation techniques before concentrating on the one used
herei.e. the Bézier-Bernstein parameterisation. It then explains how thisis used in three
dimensions. The grid deforming algorithmisthen described after reviewing existing tech-
nigues. A differentiation of this algorithm leadsto the calculation of the grid sensitivities
needed by the adjoint solver. Chapter 5 describes the flow solver MERLIN employed in
thisthesis. Thisisathorough description since the differentiation of this code leadsto the
adjoint solver presented in the next chapter, Chapter 6. This latter comes back to the de-
scription of the adjoint method by detailing the two possible approaches. the discrete or
the continuous methods. It isuseful to explain why the discrete approach is chosen in this
work. A description of the derivation of the adjoint solver follows. Now that al the pieces
of the optimisation chain have been presented, they are put together and optimisation can
begin. Results for a two-dimensional aerofoil optimisation are shown in Chapter 7. This
serves as a test case for the method: severa parameters such as convergence levels, grid
size, physical models or optimiser are changed to try and make the optimisation method as
efficient as possible. Chapter 8 then presents optimisation results in three dimensions. It
starts by explaining how the flow and adjoint solvers are parallelised to reduce perceived
computing time. The Navier-Stokesoptimisation of the ONERA M6 wingisthen detailed.
After giving some background information on the BWB, several optimisations on thisge-
ometry are described. Finally Chapter 9 concludes this thesis by summarising the main
achievements and gives some indications for future work.

Chapter 2

Literaturereview

The aim of thischapter isto present the diverse methods currently used to perform aerody-
namic optimisation, and to givethe preliminary reasonsfor choosing the particular method
employed in thiswork. The methods of aerodynamic optimisation can be globally classi-
fied depending on the type of optimisation method they are using. Be it for aerodynamic
optimisation, structural optimisation or even financial optimisation, the optimiser requires
some information on the objective function and its relationship with the design space in
order to find the optimum design point. These requirements dictate what the rest of the
optimisation process will be.

The most widely used, certainly for historical reasons because when computing perfor-
mances were very limited they were the only possible choice, are gradient-based optimi-
sation methods. These methods require, as their name indicates, the evaluation of the gra-
dient of the objective function. This class of aerodynamic optimisation method will be
describedinthefirst part of thischapter and can also bedivided into finite-differencemeth-
ods, complex variable methods, Automatic Differentiation methods and quasi-analytical
methods.

The aerodynamic optimisation methods that are not gradient-based include the response
surface technique and genetic algorithms. These methods which will be described in the
second part of this chapter, gained some popularity over the last decade because they can
take full advantage of developmentsin computing sciences especially parallel computing.

Before starting the description of each method, it isnecessary to point out that each of them
will not be presented in detail, the aim of this chapter being to show that techniques other
than the adjoint method exist. Likewise, the references cited in this chapter do not consti-
tute an extensive literature review of each method, they are only references encountered
by the author during this study. Thisis particularly true for the response surface and the
genetic agorithms methods that constitute on their own a very extensivefield.

5

6 2. Literaturereview

2.1 Gradient evaluation for aerodynamic optimisation
methods

Chapter 3 will describe in detail the mathematical formulation of a gradient-based opti-
miser for which the gradient or vector of sengitivity derivatives of the objective function

isrequired i.e. the vector composed of ar where F' is the aerodynamic objective func-

Bk
tion and 3, one of the design variables. Depending on theway thisterm j—F is computed,
four classes of methods can be distinguished: the finite-difference method the complex
variable method, the Automatic Differentiation method and the quasi-analytical methods.

Among thislatter class, two categoriesexist: the direct differentiation method and the ad-
joint method. All of these methods are described independently bel ow.

2.1.1 Finite-differencemethods

The calculation of sensitivity derivatives by afinite-differencemethod, also called divided
differences, is the simplest and most obvious method. It comes from the definition of a
derivative. Two main methods are normally used: one-sided (forward or backward) dif-
ferencing where the sensitivity derivativeis approximated by

dF _ F(B+eey) — F(B3)
dBr +e

and central differencing where

dF _ F(B+cer) — F(B —cey)
dBr 2e

Here ¢ is a small incremental step and e;, is the kth unit vector of the design space
base. It has to be noticed that the central-difference method (2" order) should be more
accurate than the one-sided difference method (1% order) but it is also more expensive, at
least when the gradient in several directions at the same point is desired, because in the
one-sided method the value F'(3) is common to all derivatives and has to be calculated
only once.

Finite-difference methods are ssmple because they only require the calculation of the
objective function at different design points and any analysis code can do that. Hence
one can perform some design optimisation with existing CFD codes without modifying
them. Thisisthe main advantage of the method. Because of its ssimplicity, this technique
was the first to be used historically in aerodynamic optimisation??24 and was inherited
from structural optimisation. However two major drawbacks quickly appear when using
finite-difference methods for aerodynamic optimisation, that might be aleviated when
considering structural optimisation dueto the different nature of the equationsto be solved.

2.1 Gradient evaluation for aerodynamic optimisation methods 7

Thefirst drawback isthat finite-differencemethods are very time-consuming. Indeed, cal-
culating the compl ete gradient of the objective function /' requiresNDV +1 flow calcula-
tions for the forward-difference method, where NDV is the number of design variables,
and 2xNDV when using central-differencing. It might not be a problem when using low-
fidelity analysis codes such as panel method codes because flow solutions can berunin a
few seconds but when using high-fidelity codes such as Reynolds averaged Navier-Stokes
codes or even Euler codes, it becomes prohibitive. Indeed a complete optimisation pro-
cess will require at least 20 cycles with, each time, one gradient calculation and about 5
additional flow solutions for the line search, and NDV is usually taken between 20 and
100. Hence aminimum of 520 flow solutions are needed for aforward-difference method
and, when each flow solution requires an hour or more CPU time to be run, the procedure
isclearly not viable.

This problem is further amplified by the fact that the flow solutions need to be well
converged. Indeed as we will see shortly, the step size ¢ is often very small and hence,
in order that the difference F(3 + ce,) — F/(8) is of significance, both solutions at 3
and at 3 + ce;, must be well converged. However the computing time problemis slightly
reduced by the fact that already computed solutions can be used to restart each calcul ation
taking advantage this time of the fact that the solutionsat 3 and at 3 + ce; will be very
close.

The second main drawback of finite-difference methods is the choice of the incremental
step ¢ which influences the result of the sensitivity derivative. A very small incremen-
tal step faces the problem of computer round-off errors and a large step will give an
erroneous value of the derivative. This problem isillustrated in References [25, 26]. It
also appears that the problem of the choice of the perturbation size is linked with the
choice of the convergence criterion for the residual of the flow solutions.[?2% Of course
grid refinement al so has someinfluence on the accuracy of thefinite-difference method.?”]

Despite all of these problems, references using the finite-difference method to calculate
sensitivity derivatives for optimisation can be found. The following is not an exhaustive
list but References [30, 31] employ the finite-difference method for low-fidelity aerody-
namics with full potential and panel codes. Since these codes have a fast turnaround,
the finite-difference method is appropriate. It is less so for Navier-Stokes CFD codes
but References [32—37] prove that it is possible, though very expensive. An Euler
optimisation using finite-differenced gradients can be found in Reference [38].

However the main use of the finite-difference method in aerodynamic optimisation is to
check the accuracy of senstivity derivatives calculated by a different method. Indeed
since exact analytical values of sensitivity derivatives can only be computed for very
simple cases® and since there is no experimental data available for sensitivity, it is
the only way of checking the value of a sengtivity derivative calculated by another
method. This iswhat is done in Chapter 6 to assess the accuracy of the adjoint solver

8 2. Literaturereview

developed in this work. There is a large number of references which compare their
sengitivity derivatives with finite-difference. Some examples are given next. For quasi-
analytical methods, the finite-difference method is used to assess the accuracy of the
direct differentiation!*“*3 solver or of the adjoint solver, be it continuous?”-4-46l or
discrete.[*+4749 The finite-difference method is also employed to assess the accuracy
of codes based on Automatic Differentiationl26:2%:50.51 or the complex variable method.[54

Finite-differencingis also used to assess the computing timel>%53551 of other methods be-
cause every other method invented to calculate sensitivity derivatives however smple or
complex it is, must be able to compute the gradient of the objective function much faster
than the finite-difference method. Otherwise it is of no interest because as mentioned
earlier, without changing anything to aready existing CFD codes, the finite-difference
method could do better.

2.1.2 Complex variable method

A method that isgaining popularity to cal culate sensitivity derivativesfor aerodynamic op-
timisation isthe complex variablemethod. Itisvery similar to thefinite-difference method
but without some of its disadvantages. The complex variable method approximates the
sensitivity derivative according to

dFr - Im[F(B+1cey)]
dBr £

where F' is now acomplex analytic function and /[| denotes theimaginary part of this
function. Like the finite-difference method thisis derived from a Taylor series expansion
of F'. The advantage of this formulation is that there is no longer any subtraction
F(B +ce) — F(B) inthe numerator, which is one of the problems of thefinite-difference
method. Hence with the complex variable method, the evaluation of the derivative does
not require extremely well converged flow solutions and a very small step size ¢ can be
chosen without losing accuracy. It was actually found that the accuracy isincreasing with
decreasing step size.[%%l

All that is needed to use the complex variable method is to change the variables inside
an existing flow solver from REAL to COMPLEX and make sure that all the functions
employed work for complex variables. This should be fine for most of the code except
for the minimum or maximum functions and the absolute value function that will have
to be recoded. Overall this does not require major development work unlike the quasi-
anaytical methods.

However the complex variable method has aso some disadvantages. Like the finite-
difference method, it has to be repeated for every design variable to get the complete
gradient. Also since the variables are now complex variables, the complex variable flow
solver will require at least twice the memory and computing time as the original flow

2.1 Gradient evaluation for aerodynamic optimisation methods 9

solver that worked with real variables. This makes the calculation of the gradient as
(in)efficient as a central finite-difference method and two to three times sower than a
one-sided finite-difference computation. Hence it is not very efficient but it should be
more accurate than the finite-difference method and one does not have to worry too much
about the choice of the step size. A very interesting study comparing the efficiency of
the complex variable, the finite-difference and the adjoint methods against the number of
design variables, can be found in Reference [57].

References [11, 58] use the complex variable method only to calculate some termsin an
adjoint solver or to check the consistency of some terms during code devel opment. Ref-
erences [56, 57] employ it to check the accuracy of sensitivity derivatives calculated by
other methods while References [52, 59, 60] calculate sensitivity derivatives with it that
are then used for optimisation.

2.1.3 Methodsusing Automatic Differentiation

Automatic Differentiation is another way to calculate sensitivity derivatives. We saw
that the finite-difference and complex variable methods are very time-consuming and the
choice of the perturbation step for the finite-difference method is not easy and can lead
to poor accuracy in the calculation of sensitivity derivatives. Automatic Differentiation
offers a way to obtain accurate sensitivity derivatives relatively easily athough it might
be at the cost of computational efficiency.

Automatic Differentiationl®62 calculates derivatives of the outputs of a computer pro-
gram with respect to itsinputs. In practice an Automatic Differentiation program is ap-
plied to another program, the result being a third program that calcul ates the outputs like
theinitial program but also the derivatives of these outputs with respect to defined inputs.
This requires some modifications to the initial program prior to automatic differentiation
by inserting specialised instructions to identify independent and dependent variables. Au-
tomatic Differentiationisthe automatic implementation of the chain rule of differentiation
which for example calcul ates the derivative of f{g[h(t)],h(t)} as

d HglhO}, ()} _ 0f 09 dh | OF dh

dt T g Ohdl ' Oh dl

There exist two modes of Automatic Differentiation. The forward mode computes
the differentiation starting from the input (¢) to the output (f) while the reverse mode
computes from the output to the input. The reverse mode is faster for a small number of
outputs compared to inputs, but requires larger computing storage.

In aerodynamic optimisation, an Automatic Differentiation program widely used is
ADIFOR.16364 |ts method of differentiation is hybrid between the forward and reverse
modes and it may be applied to programs written in FORTRAN. ADIFOR calculates
the product of the Jacobian that contains the derivatives, by a seed matrix instead of the

10 2. Literaturereview

Jacobian alone. Someimprovement in efficiency can be obtained since the entire Jacobian
is often not required because it ismultiplied in the cal culations though it is possible to get
it by taking the seed matrix as the identity matrix. ADJIFOR is an extension of ADIFOR
that works exclusively in reverse mode and is much more efficient for a small number of
outputs.!°!

The easiest way to use ADIFOR isto employ it as a black-box to differentiate existing
CFD analysis codes. With little user intervention, it will provide a code that calculates
accurate sengitivity derivatives. Unfortunately the differentiated code will requirealot of
memory and will be very dow. In Reference [26], ADIFOR is applied to a 3D unsteady
potential code and its associated grid generator while in Reference [65] it is used in the
multidisciplinary optimisation of aHigh Speed Civil Transport aircraft. In Reference [29,
66], ADIFOR is applied as a black-box to a 3-D thin layer Navier-Stokes code plus its
grid generator and athough the sensitivity derivatives are as accurate as those obtained
by finite-difference, their computation requires 3 times the memory needed by the finite-
difference method and 2.5 times more CPU time. Reasons for the inefficiency of such a
code appear, for example, when you consider aquantity () cal culated with apreconditioner
P a§50,51,63,66]
Q"' =Q" - P'R"
The application of ADIFOR to such aformulawill give
an-}-] — an o Plan o Pann

If it were differentiated by hand, the term P’” R™ would be discarded and although in
this formulation it is eliminated at convergence when R* — 0, it has nevertheless to be
calculated, which may requirealot of additional memory and CPU time. This shows that
a simple application of ADIFOR as a black-box is not viable and some user intervention
isneeded, inthiscaseto set P’™ = (. Other intervention might be needed to restore code
vectorisation as in theinitial programl®” because the “ DOloops’ introduced by ADIFOR
do not generally vectorise well.

Another way of using Automatic Differentiation is to employ it as a tool to calculate
derivatives needed in the quasi-analytical methods presented in the next subsection, but
the main sengitivity derivatives are calculated by a quasi-analytical method. This keeps
the efficiency of quasi-analytical methods while relieving the burden of calculating by

hand complicated derivatives. Thisisfor example used in adirect differentiation formu-

R OR R
lation to calculate the terms g—Q g—X and g—ﬁk that appear in equation (2.5).[28.51.68.69

Automatic Differentiation is also employed in the direct differentiation method of the
SAADO (Simultaneous Aerodynamic Anaysis and Design Optimization)["®72 or the
similar SASDO (Simultaneous Aerodynamic and Structural Design Optimization)[™
suites of codes. This technique is much more efficient than the application of Automatic
Differentiation as a black-box[™ and generally the computing time and memory required
are situated between hand-differentiated quasi-analytical methods and finite-difference

2.1 Gradient evaluation for aerodynamic optimisation methods 11

methods.® However it requires that a subroutine calculating the residua is clearly
defined in the computer program, which might not always be the case.

Odyssée ™ is another Automatic Differentiation software tool similar to ADIFOR but en-
abling reverse mode. It is employed in Reference [76] to calcul ate some derivatives used
inan adjoint code. Thisreferenceshowshow much humanintervention, almost at thelevel
of each line of code of the original program, is needed if the application of an Automatic
Differentiation tool isto be efficient. Thisalso shows that Automatic Differentiation can
be used to build an adjoint solver, Reference [77] being another example.

2.1.4 Quas-analytical methods

Sobieszczanski-Sobieskil™® was the first, in 1986, to launch the interest in aerodynamic
sengitivity derivatives for multidisciplinary design optimisation at a time when little
was done on this subject. But even at that time he had noticed that finite-difference
methods already used in structural optimisation were not viable to calculate aerodynamic
sensitivity derivatives and proposed to use quasi-analytical methods i.e. methods based
on the differentiation of the governing equations of the flow field.

There exist two methods within the quasi-analytical methods to compute sensitivity
derivatives. These are the direct differentiation formulation and the adjoint variable for-
mulation. They will be described in the next two subsections.

2.1.4.1 Direct differentiation method

The direct differentiation formulation isone of the two quasi-analytical methods that exist
to compute sensitivity derivatives. To this end the objective function is written

F= F(Q*(ﬁ)ax(ﬁ)’ﬁ) (2.1

where Q isthe vector of fluid variables and the subscript * indicates that this vector isthe
converged value of the flow solution. X is the vector of grid variables and 3 the vector
of design variables. F', Q and X may depend explicitly on 3 asit iswritten.

The differentiation of equation (2.1) providesan expression for the sensitivity derivatives:

dF _ (OF\'dQ* (9F\'dX oF
i =(0a) B+ (%) B* o 22

: . OF\' (OF\' __, OF . . :
In thisequation, <%> : <8—X) and FIn should berelatively easy to obtain depending

on the nature of the objective function /. The term A is the vector of grid sensitivities
k

and the way to calculate it will be discussed in Chapier 4. The only term difficult to

12 2. Literaturereview

dr

The governing equations of the flow field are written in aresidual form

R(Q*(8),X(8),8) = 0 (2.3)

Note that this can represent any kind of approximation of the equations of fluid motion
from full potential equationsto Reynolds averaged Navier-Stokesequations. Thisresidual
is then differentiated with respect to the design variables:

AR _RAQ" JRAX OR _
dB, ~ 0QdB, 9XdB, IB:

computeis . Itiscalculated as follows.

0 (2.4)

which isrearranged as
IRdQ* ORdIX IR
0Q ds, 0XdBr OB

dQ*

(2.5)

to provide an equation that is solved for

. Thisis the main equation of the direct
k
differentiation method. Depending on the nature of the design variable 3;, either shape

R
variable or flow field parameter such as Mach number and angle of attack, the term 27
k

or STX respectively is zero and the RHS of equation (2.5) can be ssimplified.
k

The matrix g—R is the Jacobian matrix of the flow field and is theoretically the same as

the one used in an implicit flow solver. Thisistruein theory but in practice, as we will
see later, the Jacobian in a flow solver is often approximated while here for the direct
differentiation method, an exact Jacobian is needed. However most of the Jacobian
employed for the flow analysis can be used for the sensitivity analysis. A point to notice
isthat this matrix has to be calculated only once. Equation (2.5) is solved for each design
variable but only its RHS has to be recalculated each time before being solved. This
impliesNDV solutions of equation (2.5).

Another point to notice is that equation (2.5) is alinear system of equations despite the
usual non-linearity of the flow equation. If adirect inversion of the Jacobian is possible,
this means that equation (2.5) can be solved very quickly. However thiswill only happen
for smple two-dimensional Euler problems. For problems involving the Navier-Stokes
equations, either for laminar or turbulent flows, or for three-dimensional problems, the
LHS Jacobian islikely to be too complicated and require too much memory to be inverted
directly and an iterative solution process has to be adopted. In this case the solution
of equation (2.5) requires the same effort as the solution of the flow equations. Finally
equation (2.5) must treat consistently the boundary conditions if accurate sensitivity
derivatives are to be calcul ated.

2.1 Gradient evaluation for aerodynamic optimisation methods 13

If the flow field residual in equation (2.3) is differentiated before it is discretised, the
direct differentiation method is called a continuous approach. If on the contrary it is
differentiated after discretisation, the method is called a discrete formulation. In practice
the discrete direct differentiation method is preferred.

Historically the direct differentiation method started at the beginning of the 90’sfollowing
Sobieszczanski-Sobieski’s appeal 8 and provided a counterpart to Jameson’s continuous
adjoint method. It then evolved towards the discrete adjoint method that is based on the
same principles but that is much more efficient for aerodynamic shape optimisation. It is
nowadays less employed for optimisation except maybe for optimisations combining the
aerodynamic and structural disciplines where the number of constraintsis important.

On unstructured grids, its use is limited to the Euler equations*23 while on structured
grids, it is employed more widely. It starts with its application to ssimple transonic small
perturbationt® or full potential® codes. Numerous references use the direct differentia-
tion method for the Euler equations on structured grids either by hand-differentiating the
method!“0:42.54.74.86-90] or by using Automatic Differentiation for some of the terms/68-73]
as mentioned in the previous section. References [53,91-95] provides some examples of
itsusefor viscous laminar flowswhile References[41,49,96] employ it for turbulent flows
but neglect the linearisation of the turbulent viscosity. An accurate treatment of the turbu-
lent viscosity is only provided in References [19, 43, 47] and with the help of Automatic
Differentiation in Reference [28].

2142 Adjoint method

The adjoint method, which is the technique employed in this study, will be described in
full detail in Chapter 6. This method is very similar to the direct differentiation method
presented in the previous subsection: alinear system of equations equivalent in complex-
ity to equation (2.5) hasto be solved aswell. Themain differenceisthat thissystem hasto
be solved only NCON+1 timeswhere NCON is the number of aerodynamics constraints.
Hence if NDV>NCON+1, the adjoint variable method is more efficient than the direct
differentiation method. In aerodynamic optimisation thereis at most a handful of aerody-
namic constraintsi.e. constraintsinvolving aerodynamic quantitiesthat are output from a
CFD calculation such aslift and drag coefficients, while afew dozens of design variables
is usually the norm. This is the reason why the adjoint formulation is employed in this
work rather than any other gradient-based method.

Again if the residual in equation (2.3) is differentiated before discretisation, the adjoint
method iscalled continuouswhileit iscalled adiscrete method if theresidual isdiscretised
first and then differentiated. However unlike for the direct differentiation method, both
types of adjoint methods can be found in the literature. Theoretically they should givethe
same resultsin thelimit of increasing grid resolution and reasons why the discrete method
has been chosen in this study will be described in Chapter 6.

14 2. Literaturereview

2.1.5 Useof the Hessian matrix

This subsection very briefly details optimisation methods that employ the Hessian matrix
2

of the objective function i.e. the matrix composed of the second derivatives T
kWL

of the objective function with respect to the design variables (these are not properly
gradient-based optimisation methods but rather second-order methods). Compared
to gradient-based methods, the use of the Hessian matrix offers more information to
the optimiser hence the optimisation process will converge using fewer iterations.°”]
However this section has shown, up to this point, that the evaluation of the gradient of the
objective function is already quite difficult, hence the calculation of the Hessian matrix is
even more difficult. References [51, 77] propose some techniques to calcul ate accurately
this matrix by using combinations of finite-difference, Automatic Differentiation and
guasi-analytical methods. In Reference [98] second order derivatives are also calculated
using a combination of adjoint and direct differentiation methods for a heat transfer
problem.

In most of the applications however, the Hessian matrix is approximated. In Refer-
ence [99] thisis done for a full potential program coupled to a boundary layer code. In
traditional quasi-Newton methods, the approximate Hessian matrix is built up during
optimisation from an initial guess, usually the identity matrix. Anderson et al’®? use
an initial guess closer to the real Hessian by computing accurately its diagonal with
the complex variable method but this does not speed up the optimisation process as it
would be expected. Infact Arian et al’®”1%% show that atraditional quasi-Newton method
is not very efficient for aerodynamic optimisation. They derive a preconditioner that
approximates the inverse of the Hessian and apply it to the gradient at the continuous
level. Their method seems efficient for two-dimensional inviscid inverse design problems.

This concludes this part detailing the calculation of sensitivity derivatives for gradient-
based optimisation methods in aerodynamic optimisation. It quickly presented the sm-
ple but quite costly finite-difference method as well as the similar complex variable
method. One promising field is Automatic Differentiation but at the present moment
guasi-analytical methods based on hand-differentiated codes appear to be the most effi-
cient methods. This includes the direct differentiation method and the discrete and con-
tinuous adjoint formulationsthat will be presented later in thiswork. Thefinal part of this
chapter is dedicated to other optimisation methods that do not need gradient information.

2.2 Other methods of optimisation

The principal source of problems encountered with classical optimisation techniques
used in aerodynamic optimisation is the calculation of sensitivity derivatives. We saw
that it is not an easy task since it requires either a lot of computing time and memory
or along effort in development before an efficient method is implemented. The second

2.2 Other methods of optimisation 15

problem encountered with gradient-based optimisation methods is that the optimiser
is not guaranteed to find the global minimum inside the design space but only a local
minimum. Either the designer acknowledges this and is satisfied with the fact that the
local minimum will be a better design than the initial design point or he really wants to
find the global optimum. With a classica gradient-based method he has no choice but to
restart the optimisation process from different design points inside the design space and
see if the process converges towards the same optimum. Thiswill be time consuming and
all the advantages of quick convergence of a gradient-based method are lost. However
other optimisation methods exist to overcome these problems.

The two optimisation methods presented in this section try to avoid using aerodynamic
sengitivity derivativesand are hencerelatively easy toimplement. Moreover they aremore
likely to find the global optimum and not a local optimum. The drawback is that they
might require more computing time than efficient gradi ent-based optimisation using quasi-
analytical methods. These two techniques are response surfaces and genetic algorithms.

2.2.1 Response surfaces

The idea behind response surface techniques is to model the objective function by a
smooth analytical surface over the entire design space. Once the analytical expression
for the surface has been found, it is easy to use classical optimisation methods to find its
minimum. If the representation of the objective function is good, the minimum of the
response surface should lie close to the true minimum. To construct a response surface
that captures the global features of the objective function on the design space, many
evaluations of the objective function are needed at different pointsin the domain.

The first step in creating a response surface is to sample the design space, thisis caled
the Design of Experiment. Techniques such as the full factorial or the Latin Hypercube
determine the number of sampling points and their location in the design space. The
evauation of the objective function at these pointsis then performed and we will return
later to this point. The next step isto select the surface type. References [101-103] use a
quadratic surface while References [104, 105] employ a sum of 4" order polynomialsin
each design direction with no cross-terms. The last step is to build the response surface
which is reduced to the determination of the coefficients of the analytic expression. This
can be performed by solving a | east-squares problem. 1021061

Once the response surface has been created, standard optimisation techniques are used
to find its global minimum. Since an analytic expression is known it is easy to use
gradient-based optimisation even of second order. Since the optimisation should not be
time consuming, several optimisations starting from different points in the design space
can be performed to have confidence that the minimum found is the global minimum
and not alocal one. A true evaluation of the objective function is then calculated at this
minimum and is compared with the value given by the response surface. Depending on

16 2. Literaturereview

the deviation between these two values, the process is either stopped or continues with
the creation of another response surface around that minimum with a reduction of the
design space. Hopefully, the new response surface will be more accurate and the process
should converge after several cycles. Because the convergence can be slow, once the
region of the global minimum has been found, standard optimisation techniques using
sengitivity derivatives can be employed on a small part of the design space to find the
minimum. In this case, theinterest in using a response surface will have been to seek the
global minimum and not alocal one.

To evaluate the objective function at selected points to construct the response surface,
the most obvious technique is to perform complete CFD calculations at these points.[1%
This can be time-consuming and therefore the choice of the calculation points should be
optimised. The natural development in this case is to use parallel computing!01%2 to
perform these calculations since they are totally independent.

When using aresponse surface technique, the aim isaways to reduce the number of CFD
calculations without degrading the accuracy of the surface, even if paralel computing
isemployed. In Reference [101], the number of CFD calculations is further reduced by
combining low-fidelity (linear theory) and high-fidelity aerodynamics (Euler equations).
In Reference [106] this is done by combining neural network and response surface
methods. Chung and Alonsol'®! use both the value of the objective function and its
gradient at several design pointsto build the surface. This greatly reduces the number of
sampling pointsbut it is at the expense of calculating a gradient with an adjoint method at
each of these points. Hence the only advantage of the response surface hereisin seeking
the global minimum but this method requires the availability of an adjoint solver.

Another technique to evaluate the objective function is to approximate the flow solution.
In References [104, 105] this is done with a method called Projected Implicit Recon-
struction (PIR). The starting point isto calculate a flow solution using a CFD code at the
centre of the design space. Then the direct differentiation sensitivity equation (2.5) is
solved at this point to find the increment in Q given an increment in 3. This enables the
flow solution to be approximated at a new point. Another sensitivity equation is solved
at this point to enable a new displacement in the design space and so on. In this way
the objective function is evaluated at selected points in the design space using only one
initial CFD calculation. Of course this reduction in computing cost is accompanied by a
reduction in the accuracy of the response surface and also by the cost involved in solving
the sensitivity equations.

This terminates this brief presentation of response surface techniques to perform aerody-
namic optimisation. They seem relatively easy to implement although they might require
alarge number of flow analyses before converging. The next subsection details the use of
genetic algorithms.

2.2 Other methods of optimisation 17

2.2.2 Geneticalgorithms

Genetic algorithm techniques® 17111 offer an approach to optimisation totally different
from what has been presented so far. These techniques apply the principles of natura
selection and genetics to optimisation. Each design is represented as an individual with
its own chromosome that identifies it. Hence the first task in design optimisation using
genetic algorithmsis to convert each shape or design into a chromosome. The design
variables previously used can be assembled as a chain to construct a chromosome. A
binary coding is usually performed to obtain better results.

Aninitial population of say 100 individualsis created at random and each individual is
assigned with avalue of fitness. This requires obtaining a CFD solution for each individ-
ua to calculate the objective function and from it, the fitness value of each individual,
following the principle that the designs with alow objective function (if the optimisation
reguires minimising the objective function) get a high fitness value while those with a
large objective function get a low fitness value. From thisinitial population the process
of reproduction begins with a selection of the parents according to their level of fitnessto
create another population of 100 individuas. A method called roul ette wheel can be used
and it ensures that individuals with a high fitness are selected with a higher probability
than those with alow fitness.

In this new population, the process of crossover is carried out: first, pairs of parents are
formed at random, then the parents exchange parts of their chromosometo create two new
individuals. In the exchange, the chain of the chromosome is cut at a random location,
identical for the same pair of parents, and both parts of the chromosome are reconnected
to the other part coming from the other parent. A new population of 100 children is thus
created. To ensure that characters not present in the parents appear in the new population,
a process of mutation is carried out. It consists in modifying at random the chromosome
of the children but with a low probability of occurrence. This population replaces the
initial one and its fitness has to be evaluated before the whole process is started again.
After alarge number of cycles or generations, the process should converge towards an
individual with very high fitness that is the optimum design. This description is however
only the basis of the method. In practice, advanced selection processes, crossover and
mutation operators are used to try and reduce the population size and the number of
generations needed, to reduce the overall computing time of the optimisation.

The use of genetic algorithms makes it possible to find the global optimum of the objec-
tive function over the entire design space. This is attractive when there are several local
optima and classical gradient-based optimisation techniques would fail.[B1 However,
genetic algorithm methods usually necessitate a large number of CFD calculations to
eval uate the fitness of the population at each generation, which might restrict their use to
2-D optimisation. However parallel computing!® % may offer a solution to this problem.

18 2. Literaturereview

This concludesthisbrief presentation of the use of genetic algorithmsin optimisation. Itis
also the end of this section that described response surface and genetic algorithm principle
as alternatives to gradient-based optimisation methods. This also terminates this chapter
on the literature review about optimisations methods. The next chapter starts the detailed
description of the optimisation chain set up in thiswork by looking at the optimiser.

Chapter 3

Constrained optimisation

The aim of thischapter isto present numerical optimisation and how to solve an optimisa-
tion problem. Optimisation is a very wide domain and this chapter will only concentrate
on non-linear gradient-based and constrained optimisation sinceit isthe area of interest for
aerodynamic optimisation. Thefirst part of this chapter will present optimisation in gen-
eral and define some basic concepts. The second part will detail the Sequential Quadratic
Programming a gorithm which isthe basis of the two optimisation agorithmsused in this
work. Finally an optimisation technique called variable-fidelity method will be presented.

3.1 Basic conceptsin optimisation

The aim of this section is to present some basics concerning optimisation asit isused in
multidisciplinary optimisation and aerodynamic optimisation. These are needed because
they show where sengitivity derivatives, which are at the centre of thisthesis, are used in
optimisation and thus highlight the interest of thisthesis.

A genera problem of optimisation can be presented mathematically as:[*12113]

Mingmise F(B) objective function
Subjectto: ¢;(3) <0 i =1,1 inequality constraints (3.1)
h;(B)=0 j=1m equality constraints
BL<BL< B¢ k=1,NDV sidecongtrants
b
where 3 = %3_2 isthe vector of design variables.
ﬁNDV

The objective function F'(3) in the case of aerodynamic shape optimisation can be the
drag coefficient of awing, itslift/drag ratio (note that minimising — '(3) isequivalent to
maximising F'(3)) or its gross weight in the case of multidisciplinary optimisation. The

19

20 3. Constrained optimisation

inequality constraints can represent for example the wing section areawhich must remain
greater than a certain value to accommodate wing structure and fuel or the maximum
value of the drag coefficient while the lift coefficient is optimised. The lift coefficient can
be an equality constraint when you want to minimise drag at constant lift. Finally the side
constraints impose direct constraints on the design variables and provide some limits to
the design space.

The design variables themselves can be of different nature. In conceptua designi.e. the
first stage of the design of an aircraft, they might be parameters defining the geometry of
the wing planform such as root chord, tip chord, sweep angle, spanwise crank location,
etc.. In aerodynamic shape optimisation, the planform geometry is generally fixed and
the design variables usually are parameters used to define the shape of the wing section
at different spanwise stations.

The optimisation problem defined in thisway is a constrained problem since in addition
to minimising '(3), the vector of design variables must satisfy some constraints. To ease
the optimisation process, it can be advantageous to transform the problem into an uncon-
strained one by defining a pseudo-objective function. By adding a penalty function to the
objective function, the pseudo-objective function that has then to be minimised, can be
defined for example by

{ m

®(8) = F(B) +r, | > _(max[0,0:(8)])* + > [hi(B)]* (3.2)

=1 7=1

wherer, > 0 isapenalty parameter of usualy “large” magnitude. If 3 isin the feasible
region of the design space (i.e. the region where the constraints are not violated) then
® = F and minimising ® is minimising /. Otherwise F' is greatly penalised and the
minimisation of ® should drive 3 towards the feasible domain.

There exist different methods to solve an optimisation problem but most use an iterative
procedure. Starting from an initial value of the vector of design variables 3 which in the
case of aerodynamic optimisationisusually called the baseline configuration, thedesignis
updated iteratively until aminimum of ' isencountered. 3 isusually updated asfollows:

B = 3771 4 o18¢ (33)

where ¢ is the iteration number, S? is the vector of search direction in the design space
and o? is a scalar which defines the length of the step taken in this direction. This poses
two problems; determining o and determining S¢.

Assuming that the search direction S? is known, determining «? becomes a simple
one-dimensional search, also called aline search. Indeed a? must be found so as to suffi-
ciently reduce F following a line defined by the search direction. For a one-dimensional
search, two well-known methods are polynomial approximation and the golden section

3.1 Basic concepts in optimisation 21

method_[llz, 113]

For the determination of the search direction S?, anumber of methods are possible. Zero-
order methods, based only on the evaluation of F', are smple but are not really efficient
and alarge number of evaluations of /' may be necessary before reaching aminimum. In
multidisciplinary optimisation and aerodynamic optimisation, first-order methods, based
on the value of I and of its gradient V F', are usually preferred because they converge
faster. The ssimplest isthe method of steepest descent where S? istaken as the opposite of
the gradient of the objective function so that

S = _VF(89)

A more efficient method is the conjugate direction method of Fletcher and Reeves''4l
which takes into account the history of the optimisation process. S¢? isdefined as

|VF(ﬁq)|2 Sq—l
IVE(@B*)?

Still more efficient methods are the variable metric methods™*'® also called quasi-Newton
methods where

' = —VF(B9) +

S’ = ~H.VF(B9)

where H isamatrix. Itsinitial valueistheidentity matrix and as the optimisation process
goes on, it approaches the inverse of the Hessian matrix, giving to the method super-
linear convergence characteristics. Popular methods are the Davidson-Fletcher-Powell
(DFP)I115118] gand the Broyden-Fletcher-Gol dfarb-Shanno (BFGS)*** 2% methods.

Indeed there exists higher order methods such as second-order Newton's methods but
these require the knowledge of the Hessian matrix of F. Asit has aready been pointed
out, the gradient of F' is already difficult to obtain computationally so its Hessian matrix
is even more involved and time-consuming to calculate. In practice for aerodynamic
optimisation, very few peopletry to use a second-order method as indicated in Chapter 2
and first-order optimisation methods are usually preferred.

L et usnow consider the problem of optimisation specifically in the context of aerodynamic
optimisation where the design variables are shape parameters and the objective function
isthe drag coefficient of awing for example. Each new value of the objective function ¥’
can only be determined after a compl ete calculation of the flow field around the wing has
been performed by a CFD code. Hence the optimisation process can be summarised as:

1. Initialisation

2. Calculation of the flow field at a given design point 3 to calculate F (F = Cp in
this case)

3. Calculation of the gradient of the objective function dC'p /d3; in order to find the
search direction for the one-dimensional search

22 3. Constrained optimisation

4. One-dimensiona search with as little flow field calculations as possible to find an
approximate minimum of C'p, in that direction

5. If the processis not converged, return to 2. with calculation of the flow field at the
line search minimum and repeat the loop until convergence

As we can see, the optimisation process can be computationally intensive and really
efficient methods to perform both the flow field analysis (i.e. calculation of the flow field
by a CFD code) and the determination of the sensitivity derivatives (i.e. calculation of
the gradient of the objective function) are needed. This brief presentation explains why
thereis an interest in calculating efficiently the sensitivity derivatives dF'/d3,, which is
part of the subject of thisthesis.

Note that the optimisation procedure described in this section does not guarantee that we
will find the global minimum of the objective function F' on the entire feasible space.
The process may converge only towards a local minimum. Two possibilities exist then:
restarting the whol e optimisation from different initial design points and see if the method
converges towards the same optimum; or as is the case in aerodynamic optimisation,
accepting the optimum found knowing that the baseline configuration is often not too far
from the optimum design and that changes in the design are expected to be small and the
optimum found will be better than the baseline configuration, which is what is expected
after al.

First order methods to find the search direction as presented above are quite simple and
easy to implement. The use of a penalty function is also an easy way to get around
the problem of constraints in optimisation. However the combination of these smple
methods, even if it gives the correct answer, is unlikely to be very efficient and might
require a lot of evaluations of the objective function and its gradient. We have just
pointed out that having a very efficient flow solver and a very efficient way of calculating
the sengitivity derivatives are necessary in aerodynamic optimisation but having a very
efficient optimiser that will call these programs as little as possible is also of major
importance to save some computing time. Hence the author of this thesis chose to use
more advanced optimisation algorithms that are supposed to be more efficient. Since
these algorithms can be quite complex and difficult both to understand and implement,
already available optimisation routines were used in this work.

The constraints to choose one of these algorithms are as follows:
¢ Non-linear objective function
¢ Equality and inequality constraints

¢ Non-linear constraints

3.2 Sequential Quadratic Programming 23

Two algorithms satisfying these requirementswere used in thiswork i.e. the NAG Fortran
subroutine E04UCFI*21:122 and the subroutine called FFSQP kindly provided by AEMDe-
sign®?® and originally devel oped at the University of Maryland.!*?4l Thesetwo algorithms
will be presented in thefollowing sections. They are both based on a Sequential Quadratic
Programming (SQP) method which is described in the next section.

3.2 Sequential Quadratic Programming

Sequential Quadratic Programmingt2113.1%5 js gn optimisation technique where the
search direction S? is found by solving an optimisation subproblem with a quadratic ap-
proximation of the original objective function and a linear approximation of the con-
straints. The subproblem that needsto be solved is

Minimise F(S) = F(B") + VF(8")".S + 1S'HS
Subject to: ng-(ﬂq)t.s +4,9:(B") <0 1=1,1 (3.4
Vh;(BY).S + 6h;(B7) = 0 j=1,m

with referenceto the original problem (3.1). Herethe design variables are the components
of S and the optimum is the search direction S?. The matrix H? is a positive definite
matrix which is initialy the identity matrix and is updated during the optimisation
to approximate the Hessian matrix of the Lagrangian function of problem (3.1). The
parameters §; and &, both in the interval [0,1], are used to prevent the linearisation of the
constraints from creating an inconsistent problem.

Contrary to problem (3.1), problem (3.4) is a well-posed problem with a quadratic
objective function and linear constraints, known as a quadratic programming problem
and very efficient methods exist to solve it.[**212]

Oncethe search direction hasbeen found, aline searchisstill needed since problem(3.4) is
only an approximation of thereal problem (3.1). However a? = 1 isavery good first esti-
matefor thisline search and asimple quadratic polynomial interpolationisusually used to
find abetter o?. For thisone-dimensional search, amerit function incorporating a penalty
term, very similar to equation (3.2), isemployed to ensure the satisfaction of the constraints

®(BY) = F(B") + Z# max[0, :(8)] + Z/uﬂ'lhj(ﬁq)l

where the y,; are based on the value of the Lagrange multipliers obtained during the
resolution of the approximate quadratic problem giving the search direction.

Once o has been found, the design is updated with equation (3.3). Before starting a new
iteration, the approximation of the Hessian matrix H? also needs to be updated. One of

24 3. Constrained optimisation

the formulae widely employed in this case is the BFGS update formula with Powell’s
modification,[*?] that maintains the positive definiteness of H?.

The optimisation algorithm provided here is a very powerful tool and that iswhy it is at
the basis of the two optimisation subroutines that are used in this work.

3.3 Theoptimisation subroutinesused in thiswork

3.3.1 TheNAG subroutine EO4UCF

The subroutine EO4UCF*?1:122 s designed to solve the non-linear programming problem
of minimising a smooth non-linear objective function of »n variables subject to some
constraints. These congtraints are lower and upper bounds on the variables, linear and
non-linear inequality constraints. Equality constraints can be dealt with by setting the
same lower and upper bound to inequality constraints.

This subroutine is a first-order optimisation method based on an SQP technique and
hence requires the evauation of the gradient of the objective function and of the con-
straints. If a subroutine calculating these gradients is not provided by the user, EO4UCF
will calculate them by finite-difference. Hence to save computing time, it is highly
recommended to provide these gradients even if the user has no control on when they are
used. For example during aline search, only evaluations of the objective function are tra-
ditionally used whilein EO4UCF the gradient isal so employed and this cannot be changed.

The methodology behind this subroutineis very similar to what has been presented above
for an SQP method. Thisishow EO4UCF works:

1. The subroutinefirst determinesadesign point that sati sfies the bounds and the linear
congtraints if any. During the remaining of the optimisation the design point will
satisfy these bounds and linear constraints

2. It then solves a quadratic programming subproblem to find the search direction by
using another NAG subroutine called EOANCEF. This subroutine is based on atwo-
phase quadratic programming method where the first phase finds an initial feasible
point by minimising the sum of infeasibilitieswhile the second phase minimisesthe
guadratic objective function within the feasible region.

3. Alinesearchiscarried out with an augmented L agrangian objectivefunction to pro-
vide a step length. The penalty part of this augmented function only involves the
non-linear constraints since the linear constraints are aready satisfied. The mini-
mum found by the line search is the new design point.

4. A quasi-Newton update of the approximate Hessian matrix of the Lagrangian func-
tionis performed.

3.3 The optimisation subroutines used in thiswork 25

5. If the process has not converged, anew iteration is started with areturn to 2.

An important point that results from this description is that the non-linear constraints
are not generaly satisfied during the optimisation process until an optima design
point is finally reached, unlike for the bounds and linear constraints. This is the major
drawback of this subroutine because in aerodynamic optimisation, the satisfaction of
the constraints is amajor issue. For example geometric constraints can enforce that the
upper and lower surface of an aerofoil do not cross and if this is not satisfied, this can
pose a serious grid generation problem and a potential failure of the flow solver. Less
critically, if the optimisation is very time consuming, which is generally the case in
aerodynamic optimisation, the designer might want to stop it before an optimal design
point is reached, provided that the objective function has been sufficiently reduced.
In this case it is aso interesting to have a feasible design at each iteration because
whenever you stop the process, you can use the partially optimised design. With this
subroutine thisis not guaranteed but what is seen here as a major drawback could also be
the strength of this subroutine. Indeed by not satisfying all the constraints, the process
could converge more quickly to the optimum. Hence a compromise might have to be
found and provided that the constraintsare not too critical, thisalgorithm can be employed.

To overcome this problem of not satisfying the non-linear constraints at each iteration, the
subroutine FFSQP is also employed in thiswork and is described in the next subsection.

3.3.2 Thesubroutine FFSQP

The optimisation subroutine FFSQP?4l was kindly provided by AEMDesign!*?3l which
distributes this subroutine developed at the University of Maryland. FFSQP stands for
FORTRAN Feasible Sequential Quadratic Programming hence this subroutine is based
on SQPlikethe NAG subroutine, but al so generatesfeasibledesign pointsat each iteration.

FFSQP is designed to minimise the maximum of a set of smooth objective functions but
inthiswork only one objectivefunction will be used at atime. This objective function can
be subject to linear and non-linear equality constraints, to linear and non-linear inequality
constraints and to upper and lower bounds on the variables. The first thing FFSQP does
isto find afeasible point. The non-linear equality constraints % ; noniinear(3) = 0 are then
turned into inequality constraints £ ; noniinear(3) < 0 and the objective function is modified
to reflect this transformation by

Frogfied(B, 1) = F(B) — Y pih;(B)
J nonlinear
wherethe ;1; are positive penalty parametersthat areiteratively adjusted. After thistrans-
formation that still forces £ noniinear t0 be zero, the optimisation problem only involves
non-linear inequality and linear equality and inequality constraints. At each iteration,
FFSQP will generate design pointsthat satisfy these constraints.

26 3. Constrained optimisation

FFSQP requires the gradient of the objective function and of the constraints and, like the
subroutine EO4UCEF, if the user does not provide explicit subroutines to compute these
gradients, they will be calculated by finite-difference. Here again no control is allowed
on when to use the gradients or just function evaluations.

A brief description of how FFSQP works follows:

1. The search direction is resulting from the successive computations of 3 search di-
rections, each being the solution of a quadratic programming subproblem. The re-
sulting direction is a feasible direction. FFSQP uses the subroutine QLD devel-
oped at the University of Bayreuth, Germany and provided with FFSQP, to solve
this quadratic programming problem.

2. Two strategiesare possiblefor the one-dimensional search: aline search that obliges
the objective function to be reduced after each iteration called FFSQP-AL or aline
search that requires a decrease within at most 4 iterations called FFSQP-NL. The
minimum found by the line search is the new design point.

3. The Hessian of the Lagrangian is updated using the BFGS formula with Powell’s
modifi cationg 12!

4. The u,;, are updated
5. If the process has not converged, anew iteration is started with areturnto 1.

This terminates the presentation of the two SQP subroutines employed in this work. To
make sure they were working correctly, they were tested on an analytical optimisation
problem known as Rosen-Suzuki’ s problem found in Reference [125]. Of course both sub-
routines found the correct optimum. These two optimisers are the main optimisation rou-
tines used in this study. When applied directly to an aerodynamic optimisation problem,
it was found however, as we will see in Chapter 7, that the optimisation still requires a
lot of computing time despite the performance of these optimisers. Hence another way
of performing optimisation was investigated. Thisled to what is called in this work, the
variable-fidelity method that is described in the next section.

3.4 Variablefidelity method

The variable-fidelity method has been devel oped by Alexandrov et al(*27232 from NASA
Langley Research Center with an engineering approach rather than from a mathematical
point of view. They start from the observation that the direct application of optimisation
algorithms to high-fidelity expensive models is almost impossible due to the high cost
involved in repeatedly calculating the value of the objective function and its gradient.
For high-fidelity models, they have in mind a CFD calculation on a fine mesh involving
the resolution of the Navier-Stokes equations, which perfectly suits the context of this

3.4 Variable-fidelity method 27

thesis. Their ideaisto do most of the optimisation on a low-fidelity cheap model that
globally represents the behaviour of the high-fidelity model and to correct from time to
time the low-fidelity model so that it better represents the high-fidelity one. In Refer-
ences [130, 132], they tested their method using the Euler equations on a coarse grid for
the low-fidelity model and still the Euler equations but on afine grid for the high-fidelity
model. In Reference [131], they changed both the physics and the grid refinement with
the Euler equations on a reasonably coarse Euler mesh for the low-fidelity model and the
turbulent Navier-Stokes equations on a Navier-Stokes mesh for the high-fidelity model.
They obtain up to a fivefold improvement in efficiency compared to traditional direct
high-fidelity optimisation methods although thisis only for avery low number of design
variables.

Their approach is based on two concepts: the trust-region and the corrected low-fidelity
model. The trust-region concept is similar to move limits in conventional optimisation.
This means that the real high-fidelity model is successively approximated by a surrogate
model and that this approximation is valid inside successive delimited regions of the
design space, generaly spheres. If during the previous iteration the surrogate model
approximated very well the high-fidelity model, this trust-region is extended for the new
iteration whereas if it performed badly, it is restricted. If the agreement between the
surrogate and the real model was good but not exceptional, the radius of the trust-region
is left unchanged.

The other component of the method isthe corrected low-fidelity model. Let usassumethat
we have ahigh-fidelity model F},; that isto be minimised and alow-fidelity model F;,. At
each iteration ¢, the corrected low-fidelity model F}, that is used in the optimisation is
required to satisfy first-order consistency with the high-fidelity model i.e.

F,(8%) = Fri(87) (35)
VF.(8") = VFu(B")

This ensures that the corrected low-fidelity model 7}, behaves like F},; in the neighbour-
hood of 3?. Alexandrov used a beta-correction technique to construct F;, with

Fo(B) = B,(8)F1.(8)

where B, isthe linear approximation

B,(8) = B(B") + VB(B')'(B - p’)
of B defined as Fou(8)
B — hi
B)= & 3
around the point 3. It is easy to check that such a corrected model satisfies the require-
ments (3.5).

28 3. Constrained optimisation

Let us now describe the agorithm of the method. The algorithm chosen is the one corre-
sponding to an SQP method in the work of Alexandrov et al.l*®3 |t supposes that a cor-
rected low-fidelity model exists for the high-fidelity objective function F3; but also for
the constraints g; »; and h; »; of the optimisation problem (3.1). These are denoted £},

i 1o and %j 1, respectively. It also assumes that aglobal merit function for the high-fidelity
constrained optimisation problem exists. Typically thisisafunction composed of the high-
fidelity objective function associated to a penalty term for the constraintsin asimilar way
to equation (3.2). Let us denote this merit function by

Sri = f(Fhiy Gi vir b hi)

A merit function for the corrected low-fidelity model is constructed in the same way
Bto = f(Flos Gi 1os 1 10)

Note that ®,, is not alow-fidelity corrected version of ®,; despite the notation.

Starting from an initial design point 3°, theiteration ¢ of the variable-fidelity method isas
follows:

1. Cdculate Fhi<ﬁq>, g; M(ﬁg) 1= 1,I, hj M(ﬁQ)j = 17m and Flo(ﬁq>! i lo(ﬁq> L=
1,[, hj lo<ﬁq>j = l,m.

2. Build the corrected low-fidelity model F,, for the objective function around point
37. If they have not been aready calculated, this requires the computation of

VF}“;(ﬁq) and of VFZ(,(ﬁq).

3. Calculate ng- hi(/@q) 1 =],l, Vh] hi(ﬂq>] = 1,m and V_qz- lo(ﬂq> T],l,
Vh;,(B%) 7 =1,m,if they do not aready exist.

4. Solvethefollowing simplified low-fidelity optimisation problemfor s using an SQP

algorithm
Minimise Fio(8* +5)
SUbJeCt to: gz lo(ﬁq) + vﬁz lo(ﬁq)t-s S 0 = 17l
hji,(B%) + Vh; lo(ﬁq)t-s =0 53=1,m (3.6)
BL < B+ s < By k=1,NDV

Isll < A,

It isasimplified problem since the constraints have been linearised. Note that due
to the first-order consistency requirements, the linearised constraints are equivalent
to

giwi(B?) + Vgini(B") s <0
hini(B?) + Vhjni(B8%)'.s =0

3.4 Variable-fidelity method 29

A constraint is added on the norm of s. Thisisthe result of the trust-region method
that limitsthe application of the corrected |ow-fidelity modelsto the neighbourhood
of 3. Alexandrov et al used the I.., norm for the norm of s. We prefer to use the
Euclidian ., norm that is differentiable and is hence easy to incorporate as a con-
straint in an SQP method.

5. When the optimum for s is found, assess the new design point at 3¢ + s and the
performance of the corrected low-fidelity model by computing

. — ®,i(B) — @1 (B +8)
Bri(B') — Bis(B7 +)

This requn'esthe caculation of Fhi<ﬁq + S), g; h,j(ﬁq + S) T 1,[, h]' h,j(ﬁq + S)
j = 17m and Flo(ﬁq + S)agilo(ﬁq + S) @ = 1711 hj lo(ﬁq + S)j = 1,7’)’L.

6. Update B and A,. Thisisthe critical part of the method and our choice slightly
differsfrom the work of Alexandrov et al. The update of the new design point isas
follows:

if ©,:(87 +s) > ®,,:(87) then g**! = 3¢
dse B =B +s

i.e. that if there is no improvement in the global merit function, the new design is
discarded and the process has to start again from the same initial point, otherwise
the new design point is kept. The update for the trust-region radiusis as follows:

if @5,(87+s) > 04,(87) then A 4y = 14,

else
if r <rthenA,p =4,
eseif r > ry then A4y = min(ez||s||, Apax)
ese Ay = A,

with the following values for the constants. »;, = 0.1, r, = 0.75, ¢; = 0.5 and
¢y = 2.0. This necessitates some explanations. It means that if the low-fidelity
optimisation has not improved the global high-fidelity problem, then the radius
of the trust-region is reduced by half and since the new design point has not been
accepted, the low-fidelity optimisation has to start again from the same point with a
smaller trust-region. If theinitia radius of the trust-region was much too large, this
process might be repeated several times but the first-order consistency requirements
ensure that the corrected low-fidelity model behaves like the high-fidelity model
hence very close to the initial design point, the low-fidelity optimisation is bound
to find abetter design point otherwise thismeans that the optimum has been reached.

30

3. Constrained optimisation

If the low-fidelity optimisation has found a better point than theinitial design then
the radius of the trust-region is updated depending on the performance of the cor-
rected low-fidelity model measured by the ratio . If it did not approximate very
well the high-fidelity model, then r islikely to be small or even negative (< r,) and
theradius of the trust-region is decreased for the next iteration. If it performed very
well in representing the high-fidelity model, then r islikely to be high (> r,) and
the trust-region is expanded for the next iteration. Note that this expansion mightin
fact be areduction of thetrust-region. Thisiscoming from the experience of the au-
thor and differsfrom thework of Alexandrov et al asisexplained next. Typically at
the beginning of the optimisation with the variable-fidelity method, the low-fidelity
optimum will be found at the boundary of the trust region for ||s|| ~ A, hencein
thiscasetheupdate A, = ¢;|s|| isequivalentto A, = ¢, A, (what Alexandrov
et al used) and the trust-region is expanded. When the optimisation carries on and
especially when it is close to the optimum, it often happensthat the low-fidelity op-
timum is suddenly found well inside the trust region. If this happens severa times
and you keep expanding the trust-region, you end up after a few iterations with a
very largetrust-region compared to where the optimum isfound and the low-fidelity
optimisation might suddenly be tempted to find an optimum close to the boundary
of the trust-region where the corrected low-fidelity model no longer represents at
all the behaviour of the high-fidelity model. Of course the variable-fidelity method
will discard this new point but the trust-region will only be reduced by half at each
iteration and it will take some time to come back close to the optimum where you
already were. To avoid this behaviour, the trust region here is expanded only with
respect to the norm of s and thus is always kept within reasonabl e limitswithout re-
stricting too much the search domain of the low-fidelity optimisation. Note that the
size of the trust-region isalso limited by A, but thisis a single constant for the
whol e optimisation and thus cannot evolve with the position of the optimum inside
the trust-region. Finally if the corrected low-fidelity model found an improvement
but did not represent particularly well the high-fidelity model (r; < r <), the
radius of the trust-region isleft unchanged for the next iteration.

. If the process has not converged, then start anew iteration (¢ + 1) by coming back to

step 2. Theinformation calculated in step 1. should already exist for the new point
from the calculation of r.

After this presentation of the variable-fidelity method, a few comments are needed. First,
this method is in fact very similar to an SQP method but instead of approximating the
high-fidelity model by a quadratic function, the variable-fidelity method approximates it
by a corrected low-fidelity model. The quadratic approximation is only a mathematical
model while the corrected low-fidelity model is supposed to contain some physical
knowledge that makes it behave like the high-fidelity model and hence the variable-
fidelity method should be better than an SQP method.

The other comment concerns the low-fidelity optimisation (3.6). To have a fast overall

3.4 Variable-fidelity method 31

optimisation method, this low-fidelity optimisation does not need to be very accurate
sinceit is done on an approximated model. Itsaim isonly to give an improvement in the
high-fidelity objective function, the repetition of the iterations making this improvement
grow. For this low-fidelity optimisation, both EO4UCF and FFSQP were tested. It was
found that the low-fidelity optimisation could fail when using either of these subroutines
but this was more a problem with EO4UCF. Indeed EO4UCF only satisfies its non-linear
constraints (here the constraint on the norm of s) closeto the optimum and if it failsbefore
being close to it, the constraint on the norm of s is not satisfied. This constraint isreally
the core of the variable-fidelity method since when things are not going well, the only
thing that the method does between iterations is to decrease the size of the trust-region
until an improvement is found. If this constraint is not satisfied, the optimisation keeps
looping and looping all over again without being able to go out of this bad situation and
thusfails. Since FFSQP isafeasible algorithm, even when it fails, it always satisfies this
contraint on the norm of s and thus the global optimisation can recover. Hence FFSQP
was always chosen to perform the low-fidelity optimisation of the variable-fidelity results
that will be presented later in this thess.

Another point is about the update in step 6 of the algorithm. Thisisreally the crucia part
of the method. A very fine tuning of this update can really speed up the optimisation. 1f
the update is not appropriate, the variable-fidelity method should still work but will be
very slow because it will have to do alot of iterations either because the improvement at
each iteration istoo small or because it will keep going back and forth if thetrust-regionis
expanded or contracted too much at each iteration. As already explained, this update has
been modified compared to thework of Alexandrov et al. The updatereliesheavily on the
ratio r and the present author is not convinced that it is a very good choice. The method
works as it is but some improvement in finding other performance functions might be
possible. It would be better also if the update was not relying on a single function to
accomodate different possible cases. The present author did not spend much time on this
point but felt that since the method relies on very good idesas, it should converge much
faster than it does now and thisisthe likely place for improvement in the method.

The final comment concerns the robustness of the method. The fact that the trust-region
is updated and that the optimisation is done on the corrected low-fidelity model make
the method very robust. As aready explained, if the low-fidelity optimisation fails, it is
highly likely that the method will recover on its own even if this takes some time. If the
calculation of the high-fidelity merit function fails, the situation is awkward but since the
merit function is mainly used to check the performance of a new design point, the overall
optimisation might be able to accomodate and recover. The main problem is only when
the calculation of the high-fidelity gradients goes wrong since it guides the low-fidelity
optimisation. Thiscan lead to thefailure of the method. However thishasto be contrasted
with a high-fidelity SQP optimisation where every single function or gradient evaluation
has to be accurate otherwise the optimiser cannot accurately compute a feasible descent
direction and fails.

32 3. Constrained optimisation

Recently Marduel et all**3 published some results of aerofoil optimisations using the
variable-fidelity method of Alexandrov et al. They even went further by tryingto improve
the method and for example built higher-order correction models and a delta-correction
that isno longer amultiplicative correction like the beta-correction but an additive correc-
tion. They confirm the significant computational savings brought by the variable-fidelity
method compared to a standard direct optimisation method. However only the initial
variable-fidelity method of Alexandrov et al will be used in this work.

This concludes this section presenting the variabl e-fidelity optimisation used in this study.
It also ends this chapter where numerical optimisation in general and how it is employed
in thisthesis are presented. The chapter focussed on the method of Sequential Quadratic
Programming and on the two a gorithms based on this method that are used in thiswork.
The next chapter details another component of the optimisation chain developed herei.e.
the geometry modeler.

Chapter 4

Surface parameterisation and grid
update

This chapter presents one of the key aspects of aerodynamic shape optimisationi.e. how
to represent the shape to be optimised and how to link this shape to the design variables.
Sincethe shapeis evolving during the optimisation process, the CFD grid whichisusedto
calculate the objective function and its gradient and which is based on this evolving shape,
must undergo some modifications in order to follow this evolution. This process called
grid update in thisthesis, also depends on the way the surface has been parameterised. It
isimportant to note that only structured grids are used in thiswork.

The first part of this chapter will deal with the chosen parameterisation for two-
dimensional shapes after having surveyed existing possibilities. The second part will de-
scribe how the general geometry of the wing has been parameterised in the present study.
The grid update will then be examined. Finally the calculation of the grid sensitivities
which are needed for the adjoint method used in thisthesis, will be detailed.

4.1 Shaperepresentation

4.1.1 Existing methods

This sub-section surveys briefly the different methods that have been used in theliterature
for shape optimisation. We restrict ourselves here to parameters that control the shape of
a 2D aerofoil section or of awing surface in 3D. Samareh provides a very good survey
of shape parameterisation techniques used in Multidisciplinary Design and Optimisation
in Reference [134], part of it being also included in References [135, 136]. He identifies
8 categories: basis vector, domain element, partial differentia equation, discrete (grid
points), polynomia and spline, CAD-based, analytical (shape functions) and finaly
free-form deformation. Inthis section we will complement Samareh’s survey by methods
and references encountered by the author of thisthesis. Hence not all of his 8 categories
will be described and the reader is referred to his work for more details. The different

33

34 4. Surface parameterisation and grid update

methods are more or |ess presented herein increasing order of complexity.

The most obvious and simple choice is to consider the grid points that define the surface
as design variables. More precisely the component in the y-direction of each grid point
can befreeto move and constituteadesign variable. Thisimmediately impliesavery high
number of design variablesfor general wing shapes but Jameson and his colleaguesi*37-141]
as well as others employing Jameson’s method(*2142 use this technique. In addition,
some smoothing!*3":14% js needed at each optimisation iteration to avoid getting irregular
and oscillating curves or surfaces. Evenif it isapossibility, techniques that can represent
the geometry using much fewer parameters might nevertheless be preferred.

A simpletechniqueisto use analytical shape functionslike the NACA 4-digit series.[4% %]
Extended to a three-dimensional wing, the surface can be expressed as' ™!

Y(2.2) = Yinie(2,2) + DY Bro hij(2, 2)
i

with
hij(x,2) = fi(x/c)gi(z)

where f; is a NACA 4-series function and ¢g; a hat function for example. The design
variablesin this case are the 3y, ;. The problem with these functionsis that only acertain
family of aerofoils can be employed for the design.

A very smilar method consists in using Hicks-Henne** func-
tiong19.3436,43,45,57,79,83,1441501 or \Wagner functiong3*36:144 to modify the initial or
baseline shape. Intwo dimensionsit is defined as

NDV

y(z,B) = Yinit(z) + Z Ju() Bk

k=1

where f; isaHicks-Henne function or a Wagner function and 3, a design variable. This
concept of adding shape functions to an initial geometry can be extended to any type of
shape functions. Destarac et all*® and Reneaux!®Y propose to employ either analytical
shape functions or alibrary of basic aerofoils or “aerofunctions’ that are defined from an
inverse design cal culation and have a physical meaning for the aerodynamicist: for exam-
ple, functions can be devised to move forward or backward the position of a shock wave
or to move up or down the level of the pressure rooftop. Cubic patched polynomialsi®®!
are also apossihility. If the shape is directly parameterised without adding a perturbation
to the initial geometry, orthonormalised polynomials28151 can be used with

NDV

yle = Z Py(x/c)pBy

4.1 Shape representation 35

The problem is that if the polynomials do not define a basis, some designs will not be
possible which might pose problemsfor an inverse design optimisation.

The method used in this work is the Bézier-Bernstein parameterisation which will
be described in detail in the next sub-section and is also employed in References
[16,80,82,86,109, 152—-155].

Another smilar method to the Bézier-Bernstein parameterisation and also inherited from
Computer Aided Design (CAD) isaB-spline representation used in References[111, 125,
156-158]. In two dimensions the surface is represented by

N N
z(u) = Z XiNgg(u) and y(u) = Z Vi N (u)
k=0 k=0

d

X5
Y.
An extensive detail of the properties of the B-spline functions and the interest of this
method of representation is given by Lambert.[!? A special form of B-splineis the non-
uniform rational B-spline or NURBS. Itsformulation is as follows/*34

where N}, ; are the B-spline basis functions of order / and } arethe control points.

o XeWi Nea(u)

S0 YiWi Ny (u)
w(u) = == =
Dm0 Wi Npa(u)

and y(u) = EN Wi Nes(u)

d

Xk

where Ny, ; are still the B-spline basis functions of order /, { V.
k

} the control pointsand
W, are some weight coefficients.

Samareh’s survey!'® contains a category that he calls free-form deformation and that is a
morphing technique inherited from computer imaging methods. Thisisacomplicated but
also very powerful technique that he applies to shape optimisation in Reference [136].

4.1.2 TheBézier-Bernstein parameterisation

The Bézier-Bernstein parameterisation is the technique which is chosen in thiswork. The
reasons for this choice are the following:

¢ TheBézier-Bernstein parameterisation enablesthe use of alimited number of design
variables to represent a geometry in a satisfactory manner

e The shape created is aways regular and does not need any smoothing

e Thereisawide number of obtainable shapes, so this choice does not limit the opti-
misation

e The mathematical representation is alittle smpler than for the B-spline

36 4. Surface parameterisation and grid update

The traditional Bézier-Bernstein parameterisation for a 2D curve is as fol-
lows: [16,80,82,86,109, 152-155]

Sy(u) =Y Bin(u)Py

whereS,(u) = z(u) },theB'eziercontroI pointsare P, :{ F } and theBernstein
. y(u) P@/ k
polynomials
_ N! k \N-—k
Bex(w) = g =)

v is anormalised computationa arclength along the curve. In the case that only the y
coordinates of the surface are free to move, the design variables are the P,

This formulation poses two problems that are common to either Bézier-Bernstein or B-
spline parameterisations. Thefirst oneisthat someinitial control pointsare needed to start
the optimisation and have a baseline geometry. There are three solutions to this problem
but none of them isideal:

¢ Thebaseline geometry has been generated by a CAD program that handles Bézier or
B-spline curves. Inthiscaseit is possible to get the control pointsdirectly from the
CAD software. Thisistheideal case, emphasised in Reference[125], because at the
end of the aerodynamic optimisation, the shape can be used again by the CAD pro-
gram without making any approximation. Hencethere can bealot of interactionsbe-
tween CAD (and other disciplines using CAD) and aerodynamic optimisation. The
only problem isthat a CAD definition of the geometry is not always available. An
interesting discussion about the relationship between CAD and surface parameteri-
sation isgiven in Reference [135].

e An inverse Bézier problem!** has to be solved to find the initial Bézier control
points knowing the baseline geometry. This usualy involves the inversion of an
overdetermined linear system and in any case the obtained Bézier parameterised ge-
ometry will only be an approximation of the initial geometry.

e The last solution which can handle any initial shape without any additional calcu-
lation, is to consider the Bézier-Bernstein parameterisation as a variation around
thisinitial shape. Thisis not often employed with Bézier curves while it is much
more common with shape functions, as described in the previous subsection. The
only reference among these provided for the Bézier-Bernstein parameterisation in
the previous subsection that adds a perturbation modelled by aBézier curve, is Ref-
erence [16]. This is also the method employed in this work. The y coordinate is
written:

Yeurrent = Yinitial + 5y

4.1 Shape representation 37

where
N
5y = Z R]“N(U,)Pyk
k=0

In this case when the P, are zero the shape obtained is exactly the initial shape so
at the start of the optimisation, al the shape design variables should be zero. This
also gives some meaning to these control parameters since anegative parameter will
result in alower y than the initial geometry and vice versafor a positive parameter.
However grasping the meaning of the magnitude of the parameter is more difficult
since it depends on the magnitude of the original y coordinate. The optimal shape
which is a composite between the initial shape and a Bézier-Bernstein curve might
also be difficult to handle for further work.

The second problem raised by a Bézier-Bernstein or a B-spline parameterisation is the
choice of the arclength « especialy when the method of variation around an initial shape
is chosen. The author of this thesis chose the same function as in Reference [16] i.e.
u = /7 where z is the non-dimensionalised chordwise position of the point of ordinate
Yinitia: TOr an aerofoil section. This choice for u concentrates design changes to the
leading edge region of the aerofoil or wing where = is small.

The Bézier-Bernstein parameterisation was used in thiswork as a2D parameterisation for
wing sections situated in an zy plane. This means that for a 3D geometry like awing, a
series of wing sections are considered as master sections and their shape isfreeto evolve
during the optimisation. These wing sections are then linearly connected to form a 3D
surface. Another approach could have been to use directly a 3D Bézier-Bernstein param-
eterisation of the surface.[86:109.153.1541 However the approach taken here is considered
more appropriate to the geometric representation of the wing as is explained in the next
section.

Each aerofoil section is composed of two curves, one for the lower and one for the
upper surface, each with its own set of Bézier parameters. The control parameters at
both ends of each curve are kept constant at zero so that the trailing and leading edge
points are kept fixed on each section. Hence the Bézier-Bernstein parameterisation
is only managing the real shape of the section since twist and dihedral that could have
been controlled if these pointswerefreeto move, aredealt with by the wing representation.

The aerofoil camber aone was aso parameterised as an aternative to free shape de-
formation for the upper and lower surfaces. Thisis useful if you want to make minor
changes to aerofoil shapes and if you want to keep the same chordwise thickness distri-
bution. The camber line was modelled like the exterior surfaces using a Bézier-Bernstein
parameterised perturbation added to the initial camber line. A closer look at this camber
line deformation shows that it is exactly like that of the shape deformation of the upper
or lower surface except that now only one set of Bézier parameters is needed and the

38 4. Surface parameterisation and grid update

deformationisapplied to both the upper and lower surfaces. Hence once the free shape de-
formation has been implemented, it isvery easy to implement acamber-only deformation.

Now that the shape of an aerofoil can be deformed in two dimensions, the next section
looks at how thisis incorporated in the wing parameterisation and what other degrees of
freedom are added to get a deformabl e three-dimensional wing.

4.2 Wing representation

A complete wing parameterisation has been developed for this work. Everything that
defines a wing can be modified even if all the possibilities will not be employed in
this study. The method is inspired from References [153, 154]. Unlike the parameters
in these references that represent true dimensions of twist angle, chord, etc., the wing
parameterisation used in thiswork is again inspired by Reference [16] and is a variation
around the origina wing geometry.

As explained in the previous section, the wing is divided into master sections situated in
an zy plane and these are the sections that command the geometry of the wing. For each
master section, 4 parameters are defined that are:

¢ Anincrement in displacement (displacement)

¢ Thenon-dimensionalised chordwise position of areference point (refpoint with0 <
refpoint < 1)

e Anincrement in scaling (scale)
e Anincrement intwist (twist in°)
A description of how the wing geometry modeler uses these parameters follows:

1. Theinitial twist around the leading edge (LE) point of each master section is re-
moved so that all the shape modifications occurr on the true aerof oil shape.

1= (@ipy — 2pE) cos(twistyr) + (Yinie — yop) sin(twistyg) + 21
Y1 = —(Tinit — zpg) sin(twistpy) + (Yinie — yog) cos(twistiy) + yop
21 = Zingt

2. The shape of each master section 1, y;, z; IS updated as explained in section 4.1.2
to obtain new coordinates x4, s, 2.

3. Retwist all the master sections with their initial twist value.
w3 = (v3 — xpp) cos(twistyg) — (y2 — yrg) sin(twistpg) + 2L
ys = (2 — zrp) sin(twistrg) + (y2 — yrr) cos(twistyg) + yre

Z3 = Z9

4.2 Wing representation 39

4. Theincrement in displacement is applied to each master section &:
x4 = x3 + displacement (k)

and similarly for y,4, z4. Thisdisplacement in thethree coordinates controlsthe lead-
ing edge sweep angle, the span and the dihedral of the wing.

5. Each master section isthen scaled by theincrement scale. Thisisinfact asimilarity
transformation in the plane zy: the centre of this similarity transformation is the
reference point of the section (zref, yref) anditsratiois 1 + scale. The coordinates
of the reference point are calculated for each section from refpoint.

r5 = (x4 — zref(k)) (1 + scale(k)) + zref(k)

and similarly for ys while z5 isunchanged and =5 = z4. This transformation con-
trolsthe taper ratio of the wing and with the previousdisplacement, thetrailing edge
sweep angle.

6. A rotation of increment {wist and of centre the reference point of each section is
then applied in the plane zy

e = (x5 —aref(k)) cos(twist(k)) + (ys — yref(k)) sin(twist(k)) + zref (k)
ye = — (x5 — xref(k)) sin(twist(k)) + (ys — yref(k)) cos(twist(k)) + yref (k)
(4.2

and zg isunchanged and z¢ = z5. This obvioudly controls the twist of each master
section.

Since the master sections are linearly connected, all these transformations from 1. to
6. are enough to define a new wing geometry. Like for the shape representation, if all
the parameters are set to zero, the initial wing is recovered provided it is also linearly
connected. All the parameters, except refpoint(k), can be used as design variablesfor an
optimisation. Alternatively only a few of them or none of them may be used as design
variables depending on what type of optimisation is carried out. In thiswork refpoint (k)
isaways set to zero so al the twist changes are performed around the leading edge of the
section.

If al the parameters are considered as design variables and if the number of master sec-
tionsisimportant, thiswill givealot of freedomin the optimisation but at the cost of ahigh
number of design variables. Problems of spanwise smoothness of the geometry can also
occur. A way to avoid thisisto use spanwise distribution functions as proposed in Refer-
ences [153,154]. The design variablesin this case are parameters defining these spanwise
functions and to each master section depending on its spanwise position corresponds
avalue of these functionsthat can be used to perform the transformati onsdescribed above.

40 4. Surface parameterisation and grid update

Problems of smoothness were encountered in thiswork when using twist design variables
for sections very close to each other in the spanwise direction. Hence a spanwise twist
distribution function was implemented. A 6" order polynomial was chosen. Hence the
parametersitwist(k) are calcul ated depending on the spanwise position n(k) of the master
section £ according to

6
twist(k) = thistcoeffi n(k)Z
=0
To have some smoothness in the twist distribution at the root of a full span wing, the
first derivative of the polynomia at the root is forced to be zero. This implies that
twistcoeff; = 0. Hence only 6 coefficients twistcoeff; are needed to define the spanwise
twist distribution and can be used as design variables. The spanwise twist distribution
was also extended to either represent a twist increment as presented so far or the red
value of twist at each master section. All that is needed in thislatter case isto change the
value of twist(k) in equation (4.1) by twist(k) — twist;,i(k) where twist;,; (k) isthe
value of twist for the initial geometry.

An important point to realise isthat a geometry modeler that updates the wing geometry
and shape as described in thisand the previous sectionsis not needed on itsown. Sinceto
perform an aerodynamic optimisation, the geometry is taken into account only through a
CFD grid, the geometry modeler can directly be applied to the grid to obtain an updated
grid. Thisisdescribed in the next section.

4.3 Grid update

Since the aim of aerodynamic shape optimisation is to modify the geometry of awing or
an aerofoil, this geometry will evolve during the optimisation process and new CFD cal cu-
lations will be required for this new shape. Hence it is necessary to change the grid each
time the geometry is modified. Different ways of performing this grid perturbation are
presented next before giving more details about the actual technique used in thisthesis.

4.3.1 Existing methods

Samareh also surveys grid regeneration or deformation techniques in Reference [134].
Asin Section 4.1, the author of this thesis presents here references that he encountered
during this study to complement Samareh’s survey.

The simplest method is to regenerate the whole gridi?®42 with a grid generator. In this
case care should be taken that the new grid has the same resolution as the initial onein
order not to change the accuracy of the flow and adjoint solvers between optimisation
iterations. This method also suffers from the fact that totally automatic grid generation
for structured grids is only possible on simple geometries because for complex ones,

4.3 Grid update 41

human intervention is often necessary.

For unstructured grids, a popular mesh deformation technique is the tension-spring anal-
ogy method.[48.79.80,82,152,157,159,160] |t congists in considering the grid as a system of in-
terconnecting springsin equilibrium with a spring stiffness &’;; equal to the inverse of the
length of the side that links node 7 to node ;. The equations of equilibrium for each node
form asystem
Z [X’ij(Axi — At]) =0
J

that is solved with a Jacobi iteration strategy. Az; and Az; are the displacements from
the initial position at node : and ;. In Reference [157], this techniqueis applied only for
grid pointsfar from the boundary surface because high-aspect ratio cells are used near the
surface to solve the Navier-Stokes equations and this technique does not guarantee the
conservation of aspect-ratio. Hence another technique, more geometrical, is employed
near the surface and it allows large-scale changes in the geometry without any difficulty.
Another amendment to the tension-spring analogy technique is made in Reference [161]
where torsional springs are added to the tension springs to improve the capabilities of the
method and allow large grid changes.

Nielsen and Anderson'®d show some limitation of the tension-spring analogy for un-
structured grids and propose a better method based on linear elagticity. Other techniques
for unstructured grid deformation are based on the solution of an elliptic equation for the
mesh displacements® or consider mesh velocities.[1%!

For structured grids, the technique widely employed is the flexible grid approach where
the grid points are updated along grid lines starting from the deformed geometry and
going to the outer farfield boundary. This supposesthat aninitial grid iscreated using any
grid generator for the baseline configuration. The grid displacement is transmitted from
the surfaceto the outer boundary with an attenuation depending on the arc-length position
of the grid points along each grid line. The attenuation is introduced to keep the outer
boundary fixed. The methods differ in the way the arc-length is calculated. It is based
on coordinate positions in References [154, 155] but this is very limited. A much better
way of calculating the arc-length is to use geometrical distances measured either from the
deformed surfacel16:47:88,125,145,147,153,14] (thjs js the technique employed in this study that
will be described in the next two sub-sections) or from the outer boundary.[*31481 The
flexible grid technique used in Reference [142] is dightly different and only allows grid
movement in aradial direction. An innovative feature is introduced in Reference [164]
i.e. the use of the cosine of the arc-length in the grid deformation algorithm.

The flexible grid approach is further developed in References [139, 150, 165] where
multiblock meshes can be used and the grid perturbation is transmitted between different
blocks. Furthermorethe method enables orthogonal (at |east in the computational domain,
i.e. for example aboundary surface at j=1 and an adjacent one at i=1 that are orthogonal in

42 4. Surface parameterisation and grid update

the computational domain but not necessarily in the physical domain) boundary surfaces/
block faces to be modified like at the junction between the wing surface and the fusel age,
while the method of flexible grid used in this work would only allow one surface to be
modified. An advanced technique for multiblock structured grid deformation is also
provided in Reference [166].

The grid update in this work is done in two stages. the first stage is to create a surface
grid, the second stage produces the volume grid around this surface grid. Each stage is
now described in a separate sub-section.

4.3.2 Surfacegrid update

The surface grid on awing is viewed as a spanwise succession of wing sections. The
initial wing surface grid isthen divided into master sections and normal sections, knowing
that after the grid update the master sectionswill be connected linearly. Hencethisimplies
that the root and tip sections be master sections as well as any section situated at a crank
location.

The master sections of theinitial surface grid then undergo the transformations described
in Sections 4.1.2 and 4.2 of this chapter. Once their shape has been modified and they
have been repositioned, the normal sections that existed originally between two master
sections are recreated. This is done by a linear interpolation between two consecutive
master sections depending on the original position of the normal section between these
two master sections. In addition a special treatment is applied to the wing tip to obtain
the new surface grid of the wing.

At this point it must be noted that to smplify the grid update process, the last master
section at the wing tip is supposed to undergo only trandation, rotation or scaling
transformations. Thislast master section should be situated inboard of the actual wing tip
to leave some grid sections to define a rounded tip for example. By limiting the possible
transformations of the last master section to those cited, it is possible to apply these same
transformations to the grid sections further outboard to create a tip geometry similar in
shape and grid quality to the initial grid. If the last master section was also alowed to
be deformed, this deformation would have to be applied somehow to the tip sections to
get a continuous shape. Thisisnot atrivial task and it was avoided for smplicity. This
treatment at the wing tip is also applied in the same way at the wing-winglet junction
when a winglet is connected to the wing. The winglet is considered here as an amost
non-deformable piece of wing stuck at the tip of a normal wing. Hence the same simple
transformations applied to atip can be applied to the winglet but shape deformations that
would imply a modification of the wing-winglet junction are avoided for smplicity. This
would require some major work to implement and to make sure it worksin any situation.

Another potential problem is that amost all the transformations applied to the grid

4.3 Grid update 43

wing sections are carried out in the zy plane. This supposes that the grid wing sections
are perfectly planar and situated in this zy plane. Yet this is hardly ever the case for
an habitua CFD grid since if the grid sections are usually aligned with a streamwise
direction, they are not necessarily planar, let alone in the zy plane. However this does
not constitute too much of a problem, the transformations can still be applied, they will
generate ageometry that would have been different if the wing section had been in the zy
plane but the geometry changeswill bereflected in the grid sensitivitiesand that is al that
matters to the optimisation. The only inconvenience is that the parameters that control
the wing geometry lose their physical meaning: if for example, a wing section is planar
but tilted with respect to the zy plane, the scaling parameter scale will not represent the
ratio of asimilarity transformation of the wing profile since the = coordinate is unchanged.

To end this description of the surface grid update for a wing, it is necessary to mention
the multiblock capability included in this study. This is quite limited compared to the
references cited in the previous subsection but workswell for agrid around a conventional
wing or a BWB with winglet. Multiblock decomposition of awing is alowed here only
in the spanwise £ direction. Hence there must be only one block in the chordwise :
direction from leading edge to trailing edge and only one block in the normal direction
7 from wing surface to outer farfield boundary. In the spanwise direction, grid sections
situated at the interface between two adjacent blocks, have to be master sectionsin order
to make possible the linear connection between master sections.

When the grid on the surface of the wing has been regenerated, the next part of the surface
grid that needs to be created, is the wake surface grid for a C-type of grid around awing
or an aerofoil. The technique used is the same as the one used for the volume grid which
will be described in the next sub-section. In thiscase it is used in a streamwise direction
instead of anormal direction and the points on the surface that are moving, arethetrailing
edge points.

Once the surface grid on the wing and in the wake has been created, the volume grid can
be regenerated as explained next.

4.3.3 Volumegrid update

The technique employed to modify the volume grid is taken from References[16,88, 125,
153,154]. The deformation of the volumegrid is considering individually every grid line
originating from the internal surface grid already updated and linking the outer farfield
boundary. If along one of these linesthe grid pointsare (z;, y;, 2;),7 = 1, ..., jn thenthe
update is done according to

new new old

Z; = x;?ld + [1 - CLTC(j)] (‘fsurface - xsurface)

44 4. Surface parameterisation and grid update

where

L = \/(tl - $l—1)2 + (yl - y1_1)2 + (Zz - 21_1)2

and e = 21 and the point at the farfield boundary is «;,. A similar transformation
is done for the y and ~ coordinates. It can be seen clearly that the outer boundary is kept
fixed by this transformation. This also shows why, in the multiblock case, it is not easy
to have more than one block in the normal direction from the wing surface to the outer
boundary.

Figure 4.1 to Figure 4.3 give some examples of grid update and summarise what has
been presented in this chapter so far. In Figure 4.1, only design variables that are Bézier
parameters are used to modify the upper and lower surface of the RAE2822 aerofoil. 10
parameters are used on each surface. Figure 4.1 shows the kind of shape that could be
obtained with the technique of Bézier-Bernstein parameterisation chosen in thiswork. It
also demonstrates that the grid deformation technique is working well since the modified
grid is till of good quality.

Figure 4.2 and Figure 4.3 give an example of thelevel of freedom in geometry that can be
achieved with the wing geometry representation. Both figures represent the same wing
that has been obtained by modifying the ONERA M6 wing.[**1 No Bézier parameters
were used so the aerofoil shape is the same as for the M6 wing. Only the parameters
displace-ment, scale and twist were employed on 10 wing sections to obtain the
deformed wing. In Figure 4.2, the background grid is shown in the plane of symmetry
and in a cut through the volume grid in the wake of the wing while in Figure 4.3, only
the symmetry plane is shown. Despite important deformations, the updated grid is still
of acceptable quality. Finally it should be noted that the two examples presented from
Figure 4.1 to Figure 4.3 are 4-block grids demonstrating the use of the grid update
technique on multiblock grids.

Thistechnique of grid update might beabit limitedin the case of |arge geometrical changes
since the outer boundary is kept fixed and the general behaviour of the grid is conserved
(for exampleif the concavity of asurface changes during the optimisation, some problems
can occur). However it should be very efficient for “small” geometric changes, which is
usually the case in aerodynamic optimisation. Its main advantage is certainly that it is a
smple analytical transformation, henceit isfast and can be easily differentiated to obtain
the grid sengitivities as is described in the next section.

45

4.3 Grid update

\\\\\\\\\\\\\\\\\\unllllllllllgllﬂ%

L

?'ﬁ'i G
G isaiaes

LA

A T

7 j YA
i i i

_ A

)

o

iy

\l

N I III

58

= Vit nnananuanENNRNRY)
¢///"Il} ""llllllllllIllllllllllllllll

——
.
G/

(b) Modified shape obtained from the same grid.

Figure4.1: Example of grid update with 20 Bézier parametersas design variables. (Shape

modified manually, not the result of an optimisation)

46 4. Surface parameterisation and grid update

/
/%%

\
i

—

\

—

—

///
— ——=
=—— ——

I,
s

S

H
7~

O

N

0

uu |I||“\\‘\‘\‘\\\;\\\§
| (ERNAANAN
T

.hw Il
W M\u \\\‘l
(a) Origind ONERA M6 wing grid.

SN

S

==

\““

'/'//
/;//;/////)/

U

=
=

‘ “‘u uw\

i
i

—

—

—
—

//
———
%//

—
—
—
—
=

==
S——

—

——————>
s——-=
—

—
—

—=
—

—
=—=

=
—
—

=

——

=————

S——
————

—

—_————

—_——

—

————

i
Wl
I

—

I

(b) Modified wing obtained from the same grid viewed from the same angle.

i

Figure4.2: Example of grid update for parameters controlling the wing geometry. (Shape
modified manually, not the result of an optimisation)

4.3 Grid update 47

/

.

N\]
N\

%
.
%%

)
7

)
/

/
l

I
i

fl
““‘tl

i

\\§\\\\\\\\\\\\\\\\\\\\\\

MM
7, \\IN
2277, \\\WWWW
// ‘:"c
/N \W\\\\\\\\\\

i
i

<

)
\
\

4
\
\

\

[
B Y
N

i

T

\ \\
-

(a) Origind ONERA M6 wing grid.

N\

\\\\\\\\\\\\N\\\\\\\\\\\\\&\\\\\&&&\%\‘\‘“‘==—

AN
\\\\\\\‘““ JUUARALARERA N W
\\\\\%}\\}\‘\\\\\\\\\\\‘\‘\‘\\‘“\“\“\\\\\\\\\\\\\\\\\\\ \‘ -

AN e
NS S

N\
MHIIEERER Y
\\\\%\%\‘\&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Y
" N\
‘;\\llll

i,
//////////////////////‘ S
___ A

i L

n

(b) Modified wing obtained from the same grid viewed from the same angle.

i

Figure4.3: Samewingsasin Figure 4.2 but viewed from a different angle. (Shape modi-
fied manually, not the result of an optimisation)

48 4. Surface parameterisation and grid update

4.4 Grid sengtivities

The grid sengitivities are the vector of derivatives EYN where X = {z; jx, Yijks Zijk } IS
k

the vector of grid variables and 3 the vector of desi/gn variables for the optimisation. In
short, the grid sensitivities represent the movement of each grid point due to a changein
design variable. We have seen in Chapter 2 that it was needed for the direct differentiation
method. Likewise we will seein Chapter 6 that these quantities are needed by the adjoint
solver and hence have to be calcul ated.

It is often possible, knowing the process of grid perturbation, to calculate the grid
sengitivities. When anew gridis regenerated each time with a grid generation package or
when afast grid perturbation method is used, a method of finite-difference can be used to
compute the grid sensitivities,[43.46,53,89,139,145-147,150,165] Thjs does not avoid however
the usual problems associated with finite-differencing i.e. choice of the step length and
an inevitable large number of grid generations.

It is also possible to apply Automatic Differentiation to a grid generation code or a grid

Differentiation program applied to a grid generator will provide a code that generates
both the grid and the grid sensitivities.

When the algorithm behind agrid generator is known, analytical methods'®! are also pos-
sible where the grid sengitivities are written

gX 09X X,
9B, 0X, OBy

where X, is the vector of grid points situated on the wing or aerofoil surface. This

separates the term g% that is specific to the grid generator, the calculation of which can
b

X

be incorporated into the grid generation code, from the term % that is different for
k

each configuration and also depends on the choice of shape parameterisation and design

X
variables. A way of calculating the term 88? is provided in Reference [168] where
b

the differentiation of the equations of a hyperbolic grid generator and an €lliptic grid
generator is performed. This differentiation enables the grid sensitivities to be calculated
much faster than using a finite-difference method.

When an analytical method is used to update the grid, it is often quite easy to differentiate
directly this algorithm to obtain the grid sensitivities either for structuredl(*38153.15%]
or unstructured grids.!*®8 This is what is done in this work. It is an application of
the chain rule of differentiation throughout the grid perturbation code. To accelerate
the computation of these analytical grid sensitivities, Kim et all®! neglect sensitivities

4.4 Grid sengitivities 49

for the interior grid points and only take into account grid sensitivities on the deformed
surfaces. They show that it isavalid approximation but thisis not considered in thiswork.

Examples of grid sensitivity calculations made with the hand-differentiated grid pertur-
bation code of this study, are given in Figure 4.4 for a2D case and in Figure 4.5 for a3D

case. Figure 4.4 shows the grid sensitivity g—; of the y coordinate of al the grid points

around the RAE2822 aerofoil. Here 3 isthe 6™ Bézier parameter out of 10 that are used to
parameterise the upper surface of theaerofoil. Comparison is made between the analytical
computation of the grid sensitivities and a finite-difference computation where the step
size was taken as 10~°. Both results are identical, this very good agreement certainly
resulting from the fact that only expressions using linear combinations are employed in
this case. Figure 4.4 shows that the 6" Bézier parameter controls the shape of the upper
surface of the aerofoil a one third of the chord since the grid sensitivities are high in this
region. However the Bézier parameterisation is a global parameterisation in the sense
that the variation of one parameter implies changes along the whole parameterised curve
and not just local changes That is why grid sengitivities are non-zero on the rest of the
upper surface. The y directionisthe vertical directionin these pictures oriented positively
from bottom to top. Since all the sensitivities are positive, this means that a positive
increment in 3 will displace the grid points towards the top of the pictures asis expected
and vice-versafor a negativeincrement. The effect of the volume grid update can also be
seen in Figure 4.4: since there is an attenuation of the grid displacement in the volume
grid as you move away from the aerofoil surface, the influence of 3 vanishes and the grid
sensitivities become smaller. Finally 4 blocks are employed for this grid and it is clear
that the 6" Bézier parameter only influences the block situated above the upper surface
of the aerofoil and not the three blocks situated in the wake of the aerofoil and below it,
where the grid sengitivities are zero.

Figure 4.5 represents the grid sensitivity g—; of the = coordinate of all the grid points

around the ONERA M6 wing. Here 3 is the parameter scale associated to the 15 out of
33 spanwise grid sections of the wing. This 15" spanwise grid section is represented in
white in the pictures. The grid sensitivities are shown on the upper surface of the wing
and on the horizontal planes starting from the leading edge and from the trailing edge.
Here again the agreement between the analytica computation and the finite-difference
calculation is excellent but here again only linear combinations are differentiated. The
directionisthe horizontal direction in these pictures oriented positively from right to left.
Hence positive grid sensitivities mean that a positive increment in scale (i.e. an increase
in the chord of the 15" wing section) displaces the grid points towards the left hand side
of the pictures whereas grid points with negative grid sengitivities are displaced towards
the right hand side. It can hence be seen that in this example the scaling of the 15" wing
section is done around the quarter chord point since grid points situated at the righ hand
side of 25% chord have negative grid sensitivities and grid points situated at the left hand

50 4. Surface parameterisation and grid update

|
lH
=
=
—]}
=
BE=
—]}
—}
B
=
—]}
|
=

|

(a) Andytical computation.

I

(b) Finite-difference computation.

Figure4.4: Grid sensitivity g—% of they coordinate with respect to the 6" Bézier parameter
out of 10 that parameterise the upper surface of the RAE2822 aerofail.

4.4 Grid sensitivities 51

(a) Analytica computation.

R

(b) Finite-difference computation.

Figure4.5: Grid sensitivity g—g‘, of the = coordinate with respect to the parameter scale as-

sociated with the 15" spanwise grid section (shown in white) on the upper surface of the
ONERA M6 wing.

52 4. Surface parameterisation and grid update

side of this location have positive grid sengitivities. In the spanwise direction, it can
be seen that only 3 master sections were used to parameterise the wing in this case, i.e.
the root section, the 15" grid section and the tip section since the whole wing surface is
affected by changes in the 15™ grid section. Indeed since the geometry modeler assumes
alinear connection between the master sections, changesin one master section affect only
the spanwise region situated between the previous and the next master section. Since 3
here only affects the 15" grid section and not the root or the tip, its influence vanishes as
you move away from this 15" section in the spanwise direction and the grid sensitivities
tend to zero. Finally the volume grid update propagates the changes on the wing to the
rest of the grid around the wing. Thisis shown in the horizontal planes ahead of thewing
and in itswake.

This concludes this chapter on the surface parameterisation and grid update. It started by
looking at existing shape parameterisation and then by detailing the one chosen in this
work i.e. the Bézier-Bernstein parameterisation. Theway the wing geometry can be mod-
ified, was then examined. The process of grid deformation employed in this thesis was
also described. It is an analytical method that can be easily differentiated to provide the
grid sensitivities needed by the adjoint solver and that were considered in thislast section.
The next chapter details an essential component of the optimisation chain developed in
thiswork, i.e. the CFD flow solver MERLIN.

Chapter 5

Fundamental equations and
discretisation

The aim of this chapter is to describe the equations that are used in the flow solver and to
present the methodology employed to solve them. The first part of this chapter describes
the governing equations, theway they are nondimensionalised, their discretisation in space
and time. Two formulations are shown: an explicit and an implicit formulation. The ex-
plicit approach is described first with the evaluation of the convective terms and then the
diffusive terms, followed by the application of the boundary conditions. The implicit for-
mulation is then explained: the general solution methodology is first presented and then
the calculation of Jacobians for the convective and diffusive terms, and finally the treat-
ment of the boundary conditions in the Jacobian. The rest of the chapter presents a case
of validation, the ONERA M6 wing.

5.1 Introduction

The CFD code employed in this work to perform flow field analyses is called MERLIN
and is an in-house code developed at the Centre for Computational Aerodynamics of
Cranfield College of Aeronautics. It has been used in References [169-172]. MERLIN is
a 3D Reynolds averaged Navier-Stokes flow solver that works on structured multiblock
grids. The equations are cast in a cell-centred finite-volume form and the convective
flux calculation follows Osher’s approximate Riemann solverl314 with a MUSCL
schemel'”> 178l for higher order accuracy. For the time discretisation, either an explicit
or amore efficient implicit method can be used. The turbulence model employed in this
work for viscous turbulent flowsisthe algebraic turbulence model of Baldwin-Lomax.["]

After the summary of the key elements of the flow solver, each of them will be described
separately afterwards, starting with a presentation of the governing equations.

53

54 5. Fundamental equations and discretisation

5.2 Thegoverning equations

The governing equations are the three-dimensional Navier-Stokes equations which, writ-
ten inintegral form for a bounded domain € with surface boundary 012, are

%///QdeJr//mF.ndS:O (5.1)

where the vector of conserved variables Q is given by

Q=(p pu pv pw pE)

in which p is the fluid density, «, v and w are the Cartesian velocity components in the
respective =, y and z directionsand F isthetotal energy

FE = e—l—%(uz—l—flj?—l—'w?)
with the internal energy e.

The flux vector F iscomposed of an inviscid and aviscous contributionin thethree direc-
tions:

Fz’ —_ Fv
F=| G -G"
H' — HY
These convective and diffusive contributions are:
_ o
0
_ pu® +p -
F' = puv ,FV = 7_”
I{)U’UJ T.”Ey
| u(pE +p) p—
_ o . .
' poU
G=| pP+p |,G'= T (5.2)
p'uw Tyy
; , yz
- U<pE + p) - | UTye + 0Ty + WTy, — Gy |
pUJ T
_ pwu 7_0
H' = puwo ,HY = sz
pw? + p =
U)(IOE + p) - L UT + VTy + WTyy — (2 |

5.3 Primitive variables and non-dimensionalisation 55

Herep isthestatic pressure, T the stress tensor and ¢ the heat flux vector. The stresstensor
isgiven by
8uk
Tij = ZIUS,] + A—0;; (53)

(3
a.fk J

1 8u,; 8u]-
SZ“§<3%7+am>’

the molecular viscosity 1, the second coefficient of viscosity A and the Kronecker symbol
5

with the strain-rate

ije

The molecular viscosity is calculated using Sutherland’'s law, which written in a non-

dimensiona formis
110.4 L1
T

M_<T)
-~ \7.) Tio4
a +

W

T
Teo T
where T' is the temperature, while the second coefficient of viscosity is given by
2
A= —=
3 2

The heat flux vector is given by
oT

qi = _’ia
Z;
where isthe thermal conductivity coefficient.

In order to close thismathematical system and be able to solve equation (5.1) for the com-
ponents of vector Q, two further relationships are needed. The first one relates pressure,
density and temperature through the equation of state for a perfect gas
p=pRT

The second one relates internal energy, pressure and density with

L p
y—1p
where ~ istheratio of specific heats and istaken asy = 1.4 throughout thiswork.

e =

5.3 Primitivevariablesand non-dimensionalisation

Before going any further into the discretisation of the Navier-Stokes equations (5.1), it is
necessary to point out that MERLIN solves for the vector of primitivevariables P instead
of the vector of conservative variables Q presented in the last section. P is defined as

P:(p u v ow p)t

56 5. Fundamental equations and discretisation

Although P and Q can often be easily interchanged to mean the flow variables, the author
of thisthesiswill try to be consistent in the utilisation of the notationsto match what is ac-
tually doneinthe CFD code. The Jacobians of the transformationfrom one set of variables
to the other arel'"

1 0 0 0 0

u p 0 0 0

QoL w0, 00

opP w 0 0 p 0

% pu pv pw ’v+1
and

1 0 0 0 0
-2 -1 0 0 0

oP _ 9Q~! 0 ’ 1
7 - = - 0 - 0 0
- 0 0 —% 0

Tttt —(y=Du —(y=Tp —(y=Tw y-1

The other point that is worth mentioning is that MERLIN is not actually solving for the
physical value of the variables but for non-dimensional variables. In the version of MER-
LIN employed in this work, al the variables are non-dimensionalised by the freestream
conditions. Thisis summarised in Table 5.1. In therest of the thesis, all the variables are
non-dimensionalised and for ease of reading, the superscript * is dropped out.

5.4 Finitevolume formulation

In order to solve the Navier-Stokes equations (5.1), they are spatially discretised using a
finite volume formulation. This meansthat the whole domain is divided into alarge num-
ber of small volumes and the integral form of the Navier-Stokes equations is applied to
each of these volumes. These small volumes arein fact the cells defined by the computa-
tional grid. Sincethe conservation of mass, momentum and energy is satisfied through the
Navier-Stokesequations at thelevel of each cell, it isalso satisfied for the entiredomain as
would happen if the equations were directly applied to this entire domain. The advantage
of working at the cell level isthat the Navier-Stokes equations can now be simplified and
for acell 7 of volume V;, equation (5.1) becomes
0Q;

‘/;W = —R, (54

where Q; isthe cell-averaged state variablesfor cell : and theresidual vector R ; isthe sum
of all the fluxes passing through each of the cell faces

R.= Y F(Qi)nS (5.5)

faces

5.5 Time discretisation 57

Physical variable Non-dimensionalisation
«_ P
p pr =
,{)oo
% U
U U

\/uoo2 + 'Uco2 + 'wooz

v

*

v v =
Vto? + 0502 + w2
. w
w w =
Vit + 0502 + w2
p pr= P S
poo(uoo2 + Uoo2 + UJOO2) POO’YA/IOOQ
* I
H poo=—
fhoo
T
T T = —
To

Table 5.1: Non-dimensionalisation applied in MERLIN.

n isthe vector normal to the face pointing outwards and S isthe area of thisface.

A cell-centred approach is also taken which means that the cell-averaged vector P is
stored at the centre of the cell. A typica three-dimensional cell is shown in Figure 5.1:
the primitive variables P are stored at the cell centre; the relationship between this centre
and the actual grid point coordinatesis indicated; also shown are the metric vectors/ cell
face normal vectors used in the code: € inthe: direction, i inthe 5 direction and ¢ in the
k direction.

In addition to being discretised in space, the Navier-Stokes equations also need to be dis-
cretised in timeto be solved.

55 Timediscretisation

All the problems treated in this work are not time dependent hence only the steady state
Navier-Stokes equations could be considered. However it is a common practice to use
the time dependency as an efficient way to drive the resolution process towards a steady-
state converged solution. Thisiswhat is donein MERLIN. The semi-discrete form of the
Navier-Stokes equations (5.1) has already been presented in equation (5.4) after spatial

58 5. Fundamental equations and discretisation

xiajvk_l
Yi,5,k—1
Z’L,],k—l

T 5k

Ti—1,5,k=1 Yi,gk
Yi-1,5,k—1 Zigk

D
Zi_lvjv

€i,j,k

’ivj_L
Yij—1,k=1

Li 51,k
y27.7_17k
Zij—1,k

Zij—1,k—1

in_lvj_l’
Yi—1,j—1,k=1

Zi—1,j—1,k—1

Ti—1,j—1,k
Yi—1,j-1,k
Zi—1,j—1,k

Figure5.1: A typica cell withits centre, its grid points and its metric vectors.

5.5 Time discretisation 59

discretisation. This can be rewritten

9Q
5 = -RQ) (5.6)

Since the problem is time independent, a converged steady-state solution is characterised
by
R(Q)=0

This serves, within numerical errors, as convergence criterion to check if the steady-state
is reached or not.

A possible temporal discretisation of equation (5.6) is

Qn+1 _ Qn _

A= R@) (5.7

where the cell volume is incorporated in the time step A¢. This constitutes the explicit
method availablein MERLIN and is rather smple since the residual vector only depends
on the current value of the vector Q. Hence the update for the next time step is straight-
forward:

Q"' =Q" - AtR(Q") (5.8)

A method of local time-stepping isemployed in MERLIN which means that the time step
is not uniform across the domain at the same time iteration but depends on the size of the
cell and the flow characteristics at the cell considered. Indeed since the time dependency
is only used to reach a steady state, the time step should not have an effect on the final
steady state solution and can be chosen more or less arbitrarily from one cell to the other.
Since different regions of the flow field are marched in time at different speeds, the whole
process will reach a steady state much quicker, in terms of iteration number and hence
computing time, than if the same time step was used for the entire domain at each iteration.

In MERLIN, the time step is calculated according to
CFL

At =

Dy
V-l [Vl + V€L €l + Il + 161+ 25l + il +11¢]1)
(5.9)

where V. = (u,v,w) isthe velocity vector in three dimensions. The last term in the
denominator involving the Reynolds Re and Prandtl Pr numbers relates to the viscous
terms and thus is not employed for inviscid computations. All the quantities in equa-
tion (5.9) areloca quantities relating to the cell where the time step is computed, except
the Courant-Friedrichs-Lewy (CFL) number (and of course v, Re and Pr) that has the
same valuefor thewhole domain. Inthe explicit method, the CFL number iskept constant

60 5. Fundamental equations and discretisation

during all the solution process.

However for numerical stability reasons, the time step A¢ cannot be chosen arbitrarily.
The stability analysig*™ imposes that the CFL number be smaller than unity for the
one-dimensiona convection equation. For viscous problems in three dimensions, the
CFL number has to be even smaller, leading to small values for the time step. Even by
using local time-stepping, this limitation in the time step value makes the whole process
very dow to converge towards a steady-state solution. Hence the explicit method is
simple to implement but not very efficient and an implicit method will be preferred.

In an implicit method, the residual vector is evaluated at the future time level and hence
the discretisation of equation (5.6) becomes
Qn-l—l _ Qn
= * — _R(Q""! 5.10
N Q) (5.10)
This discretisation is much more complicated than the explicit method since a ssmple up-

date like equation (5.8) is no longer possible. The method chosen consists in linearising
the residual vector around its value at thetime level r.

R(Q"") =R(Q") + % "AQ + higher order terms (5.12)
where
nAQ — Qn-l—] o Qn
The introduction of thislinearisation (5.11) into equation (5.10) gives
I 9R(Q)
- n/ = — n 12
S+ B e R (512)

Equation (5.12) isnow alinear system that has to be solved for "AQ. Theway of solving
this linear system will be presented in alatter subsection. To be precise, equation (5.12)
is further modified in MERLIN to be solved for primitive variables:

1 9Q IR(QY)
[Ea_P+ P

] "AP = ~R(Q") (5.13)

Once thisis solved for " AP, the update formulais smply

P™t' = P" + "AP (5.14)

The implicit method enables the use of much larger time steps than the explicit method
or, equivalently, much larger CFL numbers. In the implicit version of MERLIN, the CFL
number is increased logarithmically with respect to the total residua at each iteration by

the formula Re(Q")
CFL™ = CFL® — alo <L>
810 Rtotal(QO)

5.6 Explicit formulation 61

The total resdua R;.:,; isthe square root of the sum of the square of all the components
of the residual vector for each computational cell. Hence as the residua tends to zero
i.e. the more the solution is converged, the higher the CFL number is and the larger the
time step is. Even if a maximum value for the CFL number is set inside the code, this
method is very efficient and converges quickly. Itsonly drawback isthat it is much more
complicated to implement than the explicit method.

Now that theexplicit and theimplicit methodsavailablein MERLIN have beenintroduced,
each of them is described in more detail in the next two sections.

5.6 Explicit formulation

This section presentsfirst the calculation of the convective fluxes in the explicit method-
ology. Thisisfollowed by the description of the diffusive fluxes and the application of the
boundary conditionsin this methodol ogy.

5.6.1 Convectiveterms

The calculation of the convective part of theflux F(Q;) in equation (5.5) could beasimple
application of the formulae (5.2) at the face between two adjacent cells. However such a
simple numerical scheme would be unstable in an explicit method and would fail to cap-
ture flow discontinuities like shock waves and shear layers. Some flow physics hasto be
incorporated into the calculation of the flux. Thisis done by using Osher’s approximate
Riemann solver presented in the next subsection.

5.6.1.1 Osher’sapproximate Riemann solver

An approximate Riemann solver calculates a flux at an interface by incorporating local
information on the flow characteristics at this interface. This is done by solving ap-
proximately a one-dimensional Riemann problem also called shock-tube problem at this
interface. The interface represents the membrane of the problem with two different flow
conditions Q;, and Qr on each side of thismembrane. Thisisrepresented in Figure 5.2.
Depending on the state of the flow on each side of the interface, different expressions are
provided to calculate the flux and hence be able to capture any flow discontinuity.

Osher’s schemel*”®17 jsa flux splitting method. It has the nice property of being contin-
uoudly differentiable and can thus be used in an implicit solution methodology. The com-
plete derivation of Osher’s approximate Riemann solver isgivenin References[180,181],
summaries of this derivation being found in References [182, 183] for example. During
this derivation an integral involving the Jacobian has to be evaluated across the interface
fromQr, = Qo to Qr = Q,. The value of this integral depends on the integration
path followed. We follow the P-variant of Osher’s scheme that integrates in the physi-
ca space. Thisintegrationintroducestheintermediateintersection points1/3 and2/3 and

62 5. Fundamental equations and discretisation
Fiil/e
o o
[; ; i+1
Qr Qr
Figure5.2: Flux at the interface between two cells.
Uo—aozo Uo—aozo Uo—aofo Uo—aogo
Ui+ar >0 Ui +a1 <0 Ui +ar >0 Ui+ar1 <0
U >0 F(Qo) + F(Q1) F(Qso) — F(Qs1)
F : F
U — a3 >0 (Qo) ~F(Qs1) S
« F(Qo) — F(Qs0)
U >0 F(Qo) — F(Qs0) ' F(Q1) +F(Qq3)
+F(Qq3) — F F(Qi/s)
U —ai3<0 | +F(Qu}s) +F581C) (Qs1) 13 _F(Qs1)
— F(Qo) — F(Qs0)
U <0 F(Qo) — F(Qs0) ' F(Qa/3) — F(Qs1)
. +F —F F(Qs/3)
U +ass >0 | +F(Qys) +Fggj§3) (Qs1) (Quys, LF(Q))
U <0 F(Qo) — F(Qs0) F(Qo) — F(Qso) F F
U+ as/3 <0 | +F(Qs1) +F(Q1) (Qs1) (@)

Table 5.2: Osher’sflux formulaefor F; ., /, (P-variant). (Qr, = Qo and Qr = Q)

5.6 Explicit formulation 63

sonic points S0 and S1. Theflow variablesat theseintermediate pointsare cal culated from
Qo and Q, using Riemann invariants. Hereit is sufficient to know that Q, /3 and Q5 de-
pend on both Q, and Q, whereas Q s, only dependson Q, and Qs; only dependson Q.
The integration leads to 16 possible combinations depending on the value of Q, and Q;
and the value of Q at the intersection points. These are given in Table 5.2 where U/ repre-
sents the velocity normal to the interface, « isthe speed of sound and U™ = T, 3= Uy
Table 5.2 isto be read in the following way:

if, for example, Uy — ao > 0, Uy +a; > 0and U >0,U — a3 <0

then FH_]/Q = F(QO) - F(QSO) + F(Q1/3>

wherethe flux F(Q) is given by
T
Pgu + Ngp
F(Q)=| pUv+nyp
pUw + n.p

U(pE +p)

and the unit vector normal to theinterfaceisn = (n,, ny, n.).

5.6.1.2 Higher-order spatial accuracy

If to calculate the flux at the interface between cell - and cell 7 + 1, the value of Q, and
Qr aretaken as Q; and Q,, respectively in Osher’s scheme, then the discretisation is
only first order accurate in space. Thiswill lead to poor accuracy in smooth regions of the
flow field. To increase this accuracy a MUSCL schemel'™ 1781 is used and is basically a
linear extrapolation to the flux interface of the flow propertiesin the two cells adjacent to
the interface on each side of thisinterface. Considering the interface between cell and
cell 7 + 1, itiswrittenas

P, =P, +3[(1—r)(P;=Piy)+ (1 +r)(Pys —P,)]

5.15
Pr= Pi— H(1 4 #)(Pips — Po) + (1 — 1) (Piys — Prpr)] 0

where x ischosen as « = 1/3 in thiswork. With this value of « the discretisation is
third order accurate in space. Note that the MUSCL scheme is applied to the primitive
variables in MERLIN, while Osher’s Riemann solver is applied to the conservative
variables.

Though this version of the MUSCL scheme gives very good accuracy in smooth regions
of theflow field, it will generate spurious oscillations and even prevent convergence of the
solution in the neighbourhood of flow discontinuitieslike shock waves or shear layers. In
these regions of large flow gradients, it is necessary to revert to afirst order approximate
Riemann solver designed to tackle flow discontinuities. Hence the ideaisto keep athird

64 5. Fundamental equations and discretisation

order scheme in the smooth regions of the flow field and to change to afirst order scheme
in the neighbourhood of discontinuities. Thisis achieved by introducing a slope limiter.
The dope limiter chosen in thisstudy is

2P = P)(P—P) +e
S; =
(Pigr = P)? + (P = Pioa)? + ¢
and is applied component by component. ¢ isasmall number preventing the denominator

from becoming zero in smooth flow regions. The advantage of this limiter is that it is
differentiable.

The MUSCL scheme of equation (5.15) is modified to introduce this limiter

P, =P, +isi [(1—=s)(P;=Pir) + (1 +5i6)(Piga — P;)]

5.16
Pr=P;1, — isi+1[(1 + 85416)(Piy1 = Pi) + (1 — 5i416) (Pigo — Pig1)] ()

In regions of zero flow curvature (P, — P, =~ P, — P,_; = AP), s;iscloseto 1 and the
MUSCL scheme is the one in equation (5.15) whereasin regions of large flow curvature
(for examplewhen P, — P, > P, — P,_4), s; isclose to 0 and the MUSCL scheme
revertstoasimplefirst order scheme. Inaddition, whenever the application of theMUSCL
scheme and its limiter produces non physical values (negative density and/or pressure), a
first order method is employed.

5.6.2 Diffusveterms

This subsection details the calculation of the diffusive terms F¥, G¥ and H" in equa
tion (5.2). It starts with the laminar viscous part and then examines the turbulence mod-
elling.

5.6.2.1 Laminar viscousfluxes

The viscous fluxes are calculated using a central discretisation which means that the for-
mulae (5.2) for F¥, G¥ and H" are applied at the centre of the face where we want to cal-
culate the flux. However velocity and temperature gradients need to be evaluated at this
centre point in order to calculate the stress tensor ~. They are approximated using Gauss

theorem.!*® For the component « of the velocity in the = direction thisis written for a
bounded domain €2 with surface boundary 02:

/VudV:f un dS
Q 30

which, once discretised on an hexahedral volume, becomes

1 6
Vu= ; um,S, (5.17)

5.6 Explicit formulation 65

k

Figure 5.3: The dua volume used to calculate the viscous flux at the face between cell
i, 5, kandcdl i+ 1,7, k.

where V' is the volume of this domain, «, the averaged value of « on the six faces of this
domain, n; the unit normal pointing outwards on these faces and S, the area of these faces.

Let’s assume we want to calculate the viscous flux through the face between cell ¢, 5, &
and cell = + 1, 7, k represented as the shaded areain Figure 5.3. Gauss theorem (5.17) is
applied to adua volume that encloses thisface and the edges of which are represented by
adashed line in Figure 5.3. The diagonal crosses show the location of the face centres.
With the notation of that figure, thisgives

1
Vulp = V[Uiznizsl'z + witni Sin + ujaneSio + wjin 1S 4 kN Sky + Uk N1 Sk

1
= V[uﬂfn —un&;y + UjoT g — Ui Tl + Uk — k1 |
(5.18)

with the introduction of the metric vectors &, and ¢ aready presented in Figure5.1. The
values needed at the centre of the faces of the dua volume are evaluated by making an
average of known quantities. For example,

Upy = Z(umyk + Uig1 ik F Wik + Wi k)

1
Cra = §<Ci,j,k + Civi k)

66 5. Fundamental equations and discretisation

A projection of equation (5.18) onthethree Cartesian directionsgivesthevalue of thethree
components of the gradient. For example,

Jdu 1

= —[uizky o — winy i + wjony j2 — UjiNy 1+ UreCy k2 — Uk Gy k1)

ayl, V

The same methodology is employed to evaluate the gradients of the velocity components
v and w aswell astemperature gradients needed to calculate F¥, G* and H". The laminar
viscous contributions are then easy to calculate. This however only concerns the laminar
part of the viscous fluxes. How MERLIN deals with turbulent flows is described in the
next subsection.

5.6.2.2 Turbulence modelling

The use of the Navier-Stokes equations (5.1) for turbulent flows requires some further de-
velopment. Turbulenceisaphysical phenomenon which isessentially three-dimensional,
unsteady and involves a wide range of time and space scales. The complete resolution
of the Navier-Stokes equations for such a phenomenon would necessitate extraordinarily
fine grid resolution and the use of very small time steps. Direct Numerical Simulation
(DNS) can address this nowadays but only on very small domains and at the cost of
very high computing efforts. For engineering problems, even Large Eddy Simulation
(LES) is very demanding and the use of Reynolds averaged Navier-Stokes equations is
the only possibility. Thisinvolves atime averaging of the Navier-Stokes equations: each
flow variable is decomposed into the sum of an averaged component and a fluctuating
component and the governing equations are then time averaged. The averaging does
not change the structure of the Navier-Stokes equations (5.1) for which the variables are
now the averaged components, except that additional terms, called the Reynolds stresses,
which involve an averaging of the product of two fluctuating velocity components, are
generated. These Reynolds stresses which are unknown, need to be approximated through
the use of a turbulence mode.

There existsawide variety of turbulence models*® ranging, in order of complexity, from
simple agebraic modelsto model s solving the Reynolds stress equations. The turbulence
models situated in the lower part of this scale rely on the Boussinesq assumption that the
Reynolds stresses act as the laminar viscous stresses and are the product of an eddy vis-
cosity and the mean strain-rate tensor. In this way equation (5.3) is changed to

. Jduy, 2
mig = 25 + A0y — 3ok
where k is the kinetic energy and 1 is now the sum of the molecular viscosity and the
eddy viscosity p;. The problem of modelling the Reynolds stresses is then reduced to
finding an expression for ;.

5.6 Explicit formulation 67

In this work the algebraic Baldwin-Lomax model[*”" is used. It divides the turbulent
boundary layer into an inner and outer region with a different expression for the eddy vis-
cosity in each region
[y = { (,U't)mner s Yn S Yne
(it)outer s Yn > Yne

where y, isthe normal distance from the body surface and v, . is the distance for which
the inner and outer eddy viscosities are equal .

In the inner region, the mixing-length hypothesisis applied and

(t1)inmer = pl°|w]

where |w| isthe magnitude of the vorticity

(Y (e ey ey’
“i= dy Oz dz Oy Jdv 0z

and the mixing length / is calculated with Van Driest function by

y+

[= ky, 1—e A*

where « isthe von Karman constant « = 0.41, AT isthe Van Driest constant AT = 26
and y* isthe non-dimensional normal distance

U+ _ [)wufyn . yTL vV prw

o o

Hereu, isthefrictionvelocity, T is the shear stress and the subscript w refersto quantities
evaluated at the wall.

In the outer region, the eddy viscosity is defined by

(Nt)outer - PQCOP Fwake FKleb(yn)

where o is the Clauser constant o = 0.0168, Cp is another constant Cop = 1.6. The
function F.,,x. isdefined as

(5.19)

Owakeymaz‘Udifo)

Fwake = min ymameaxa I3
max

where the wake constant .. = 0.25, Uy sy 1S the maximum difference in velocity am-
plitude across the boundary layer

Ugigs = max (\/ u? + v? 4+ 71;2> — min (\/ u? + v? 4 71)2> ,
Yn

Yn

68 5. Fundamental equations and discretisation

Fnqx 1S the maximum value across the boundary layer of the function

y-l-
F(yn) = yn|w| (1 - e_f‘“)

and y,,... isthe value of y,, for which F(y,) = F,..,. This definition of F,,.x. in equa-
tion (5.19) is the standard definition but, as we will see in Section 6.6.4, we had to sim-
plify it t0 Fuuke = Ymar Fmae 1IN both the flow and adjoint solvers. Finally the Klebanoff

function is defined as
-1
C\" ebYn ¥
1_{_5.5(KleblY)]
ymax

where the Klebanoff constant C'x;., = 0.3.

Frien(yn) =

Practically, the eddy viscosity is calculated along rays that start from the wall and expand
up to the farfield boundary. These rays are based on the computational grid which in
practice limits the possibilities of grid topology. For each cell along these rays, the inner
eddy viscosity is calculated as well as the value of the function F'. For eachray F,,.. IS
then determined which makes it possible to calculate the outer eddy viscosity for each
cell. A comparison of the values of the inner and outer eddy viscosities gives the actual
value of the eddy viscosity. Thisis the way the Baldwin-Lomax is implemented above
and in front of the surfaces for a C type of grid. In the wake though, the eddy viscosity
is not actually calculated but the value along the last upstream ray situated above the
surfaceiscopied. Thisisdonetosimplify the calculation of the eddy viscosity inthewake.

The Baldwin-Lomax model is reasonably ssmple and gives very good results for attached
boundary layers. For boundary layers under strong adverse pressure gradient and for
separated boundary layers, it performs relatively poorly. Its main advantage compared
to other turbulence models is that it is robust and is an algebraic model and therefore is
less computationally demanding than one- or two-equation models. Thisisimportant for
three-dimensional optimisationswhere alarge number of callsto theflow solver are made
on geometriesthat are changing: the flow solver needsto be asfast as possible and if you
use a two-equation model, you must add 2 equations to the laminar viscous code hence
possibly increase the computational cost by 40%. The turbulence model also has to be
robust since the optimisation process is automated: different shapes have to be handled
without difficulties by the flow solver without any user intervention. The popularity of
the Baldwin-Lomax model for aeronautical flows, at least among agebraic models, has
to be added to thislist of reasons for chosing this turbulence mode! in this study.

Thisendsthis subsection on the evaluation of the diffusivetermswith the description of the
viscous laminar contribution followed by the turbulence modelling. The next subsection
details the application of the boundary conditions.

5.6 Explicit formulation 69

in+2
[]
3 in+1
[] []
2 in
[] []
1 in-1
[] []
0
[]

Figure5.4: Schematicdiagram of halo cells(in shaded area). Left: cell numbering starting
at the boundary. Right: cell numbering finishing at the boundary.

5.6.3 Boundary conditions

A special treatment has to be applied to the boundaries of the domain in order to introduce
the physics of the problem we are trying to model. Thisis known as the boundary condi-
tions. They are applied in MERLIN through the use of halo cells. These are two layers of
fictitious computational cells that are added to the exterior of the domain. This enables
the fluxesin cells close to a boundary to be calculated as if they were inside the domain,
without having to modify the flux calculation. Figure 5.4 represents schematically these
two computationa fictitious cells, whether the cell numbering starts at the considered
boundary or ends at thisboundary. The notation of the former case (cell 1 for thefirst halo
cell directly adjacent to the boundary and cell O for the second halo cell away from the
boundary) will be kept afterwardsfor the description of the boundary condition formulae
but it istrivial to apply them to the latter case.

For turbulent computations, it is a'so needed to have a value for the turbulent viscosity
inside the halo cells, hence in addition to boundary conditionsfor the 5 primitive variables
p,u,v,w,p, another oneis needed for ;. However the calculation of the diffusive fluxes
only requires one layer of halo cells hence the boundary condition for 1, is only applied
to cell 1 compared to cells 1 and O for the primitive variables.

Seven types of boundary conditions are used in this work namely the inviscid wall, vis-
couswall, symmetry, supersonic inflow, supersonic outflow, farfield and interface bound-
ary conditions. Each of them is briefly introduced next. Thisis followed by a description

70 5. Fundamental equations and discretisation

of our treatment of the corner points.

5.6.3.1 Inviscid wall boundary condition

Theinviscid wall boundary conditionis applied at a surface only when the inviscid Euler
equations are solved. Thisisadip boundary condition that requiresthat the component of
the velocity normal to the wall at the surface be zero. Let us denote U/ the component of
the velocity normal to the wall and V' and W the two velocity components parallel to the
wall. These are hence the components of the velocity in areference frame attached to the
wall and should not be confused with «, v and w which are the components of the velocity
inthe general Cartesian referenceframe (z, y, z) and are part of the vector of variablesP.
A suitable transformation makesit possible to pass from one reference frame to the other
and vice versa. The inviscid wall boundary condition, applied using halo cells, is hence

P1 = P2 Po = p3

Ul = _UQ UO - _US

Vl == VQ) Vo == V'g, (520)
Wi=W, Wo=W,

P1 = P2 Po = P3

This is because the flow properties are stored at the cell centres but globally this ensures
that the normal component of the velocity at the wall is zero. The turbulent viscosity at
the wall has also to be zero hence to cancel out the turbulent viscosity in the cell number
2, thefollowing is applied

(Mt)l = —(Mt)2

However thisintroducesanon-physical valueinthehalo cells since theturbulent viscosity
will be negative there. This should not matter since only the eddy viscosity at the face
(which will be zero) is used.

5.6.3.2 Viscouswall boundary condition

The viscous wall boundary condition is applied to the halo cells next to a surface when
the Navier-Stokes equations are solved. Thisis a no-dip boundary condition and hence
the velocity at thewall isrequired to be zero. It isalso an adiabatic boundary condition so
pressure and density are transferred unchanged to the halo cells. Thistrandates as

P1 = P2 Po = pP3

U1 = — U9 Ug = —U3

V1 = —U2 , Vg = —U3 (521)
w, = —Wsy Wy = —ws

P1 = P2 Po = P3

Here the boundary conditions have been applied directly to u, v and w in order to avoid
any change of reference frame but can be equally applied to I/, V and 1¥. The boundary

5.6 Explicit formulation 71

condition for the turbulent viscosity isthe same asfor an inviscid wall because 1, also has
to be zero at thewall so

(,ut)l = —(,th)‘z

To be precise it is necessary to add that although the boundary conditions for an invis-
cid and aviscous wall are applied in MERLIN as described above, the convective fluxes
through the wall are specified explicitly and do not rely on the valuesinside the halo cells.
Thisisdonein order to get an accurate flux value that does not depend on the accuracy of
the application of the boundary conditionsin the halo cells and also because it is possible
to get an explicit formulation for the wall flux.

5.6.3.3 Symmetry boundary condition

The symmetry boundary condition is applied when the symmetry of a problem is ex-
ploited so that only half of the domain needs to be solved. In this case the boundary
condition isapplied in the plane of symmetry of the problem which should be one side of
the computational domain. Physically, there is a condition of symmetry for the velocity
components paralel to this plane of symmetry and the velocity component normal to
this plane should be set to zero. The application of this to the halo cells leads to the
same formulae (5.20) as for the inviscid wall boundary condition athough the physicsis
dightly different.

For the turbulent viscosity however, the boundary condition isdifferent. The physics here
isthat there should be a continuity of ;:; across the boundary in the same way asthereisa
continuity of density and pressure. Hence

(Mt)1 = (Mt)?

5.6.3.4 Supersonicinflow boundary condition

Theinflow and outflow boundary conditionsare al based on one-dimensional wave prop-
agation theory. Inthe case of a supersonic inflow boundary, all theinformation are coming
from the exterior of the domain and entering it. Outside the domain, the flow properties
are supposed to be the freestream conditions and hence the flow in the halo cellsis set to
afreestream value:

P1 = Poo PO = Poo

Ul = Uy Upg = Up

V] = Vgo , Vg = Usy (5.22)

W] = Wee Wo = Weo

P1 = P Po = P
The freestream flow is assumed to be turbulence free hence

(pe) =

72 5. Fundamental equations and discretisation

5.6.3.5 Supersonic outflow boundary condition

In the case of a supersonic outflow boundary all the information are coming from the in-
terior of the domain and leaving it. Hence extrapolated boundary conditions are needed

P1 = P2 Po = pP2
U1 = Uy Ug = Uy
U1 = Uy , Uy = Uy (523)
wp = Wy W = Wo
Po=p2 Po = P2

Notethat only cell 2isinvolvedinthiscase. A more sophisticated extrapolation using cell
3 could equally be applied. The extrapolation is also applied for the same reasons to the
turbulent viscosity hence

(Mt)l = ()2

5.6.3.6 Farfield boundary condition

The boundary condition called here farfield boundary condition is applied to an exterior
face when it is not known in advance if this boundary will be an inflow or an outflow
and if the flow at this boundary will be subsonic or supersonic. Thisistypically the case
when the freestream Mach number is subsonic.

The boundary condition implemented here makes use of Riemann invariants.[84186 These
are defined as

2a

~v—1

R T 2a
~v—1

where « is the speed of sound. R, is associated with one-dimensional waves of speed
U + a going out of the domain and is constant along C',. characteristics. On the contrary
R_ is associated with waves of speed U — « entering the domain and is constant along
C_ characteristics. It isimportant to notice that here the vector normal to the boundary
used to calculate the normal velocity U, is pointing towards the exterior of the domain.
In the opposite case, the minus and plus sign have to beinvertedin R, and R_.

R+ :U—l—

Let us denote by the subscript e quantities that are extrapolated from the inside of the do-
main to the boundary b on one side of thisboundary, while on the other side, at the exterior
of thedomain, freestream conditionscc exist. Alonga (', characteristic, thefollowingcan
be written

2a, — 2ay

Re:Ue'l' :Ub+

5.24
po— po— (5.24)

5.6 Explicit formulation 73

whilealong a C'_ characteristic,

_ 2. — 2a
Ro =T — 22 7, — 20 (5.25)
y—1 y—1

Combining equations (5.24) and (5.25) leads to

1
Ub = §(R6+ROO)

and

=1
ab:74 (RG—ROO)

Depending on the value of [/, with respect to a;, the boundary is either an inflow or an
outflow and is either supersonic or subsonic.

If |U| < a3, the boundary is subsonic and if:

e U; > 0, itisan outflow boundary and the other boundary properties are determined

by
Vi=V.
W, =W.
Sp = Se
where s is the entropy defined by
p
s =
p'y

o U, < 0,itisaninflow boundary and the other boundary properties are determined
by

§| <i|

V
Wy =
Sp = Seo

Knowing entropy and speed of sound at the boundary it is easy to determine density and
pressure by
(52)"
=\
7 Sb

pyay’
g

and

Py =

74 5. Fundamental equations and discretisation

This subsonic boundary conditionis applied in MERLIN to the halo cells according to

P1=Pb po = 2p1 — p2
U, =U, ug = 2u; — Uy
Vi=Vy , vo=2v; — vy (5.26)
Wi=W, wy= 2w —wy
P1 = Pp Po = 2p1 — p2
i.e. thefirst halo cell takes the boundary values while a linear extrapolation is carried out
for the second halo cell.

If |73 > a3, the boundary is supersonic and if:
e U, >0, itisan outflow boundary and conditions (5.23) are directly applied

e U, < 0, itisaninflow boundary and conditions (5.22) are directly applied

For the turbulent viscosity an approximation is made that will smplify the linearisation of
the turbulence model in the adjoint solver. The approximationisthat whatever the charac-
teristic of the boundary i.e. subsonic or supersonic, inflow or outflow, an extrapolation is
carried out for thevalue of y; inthehalo cell that only relieson one cell inside the domain,
hence

(e = ()2
Since at the farfield boundary the viscosity calculated with the Baldwin-Lomax model
should be very small, the boundary condition applied is not too important and not very
different from the inflow condition that would be (1¢); = 0 or a proper linear extrapola-
tion based on two cellsinside the domain.

5.6.3.7 Interfaceboundary condition

Since MERLIN workswith multiblock grids, an additional boundary condition isthe one
that treatsthe interface between two adjacent blocks. Since at each iteration, each block is
dealt with separately asif it was asingle block domain, MERLIN considers what is hap-
pening in an adjacent block as being exterior to its domain and hence aboundary condition
is needed to ensure continuity between blocks from the point of view of the entire domain.
The operation is mathematically simple since the values in the halo cells of one block are
just set equal to the corresponding values in the cells adjacent to the interface of the next
block. The schematic diagramin Figure 5.5 illustratesthis principlefor aparticular choice
of cell numbering. For this same numbering, the interface boundary condition applied to
the halo cells of block 2is
PL=Pin Po= Pine

2 1 2 1

Uy = Uy, Uy = Ujp—q
2 _ .1 2 _ .1

Ui =V 5 Vg = Uy
2 _ .1 2 _ .1

Wy = Wy, Wy = Wy, 4

Pi =D Py = Pins

5.6 Explicit formulation 75

LY LY
in-1 in in+1 in+2 0 1 2 3
block1 | e . | . . ORI block 2

Figure5.5: Schematic diagram for the interface boundary condition between two adjacent
blocks for a particular choice of cell numbering.

wherethe superscript refersto the block number while the subscript refersto the cell num-
ber. For the turbulent viscosity the same treatment is applied and

(ﬂ't)f = (lu't)zln

5.6.3.8 Corner points

What is termed corner point hereis a halo cell that is situated at the intersection of two
boundaries as depicted in Figure 5.6. Physically inathree-dimensional block, these kinds
of cellsare situated at the edges of the block. These cells are only used for the calculation
of the diffusive terms. Clearly some kind of boundary conditions has to be applied to
attribute them a value but since they are situated at the intersection of two boundaries, it
is not obvious which of the two boundary conditions has to be applied or if an average
of some sort has to be made. The type of treatment chosen should have little influence
on the accuracy of the flow solver since it affects only a small number of cells and then
only the diffusive terms of those cells. Nevertheless a choice has to be made and thiswill
have some impact on the adjoint solver as we will see in the next chapter. However the
choices detailed are very case-dependent, are limited to what is encountered in thisthesis
and cannot be generalised.

When one of the boundaries is an interface boundary, there is no choice, it has to be
the boundary condition of the other boundary that needs to be applied. For this work, it
has been decided that whenever one of the two boundaries is a symmetry boundary, it
wins over the other and a symmetry boundary condition is applied. The grid topology
and the cases used in this study ensure that a situation where two symmetry boundaries
intersect at a corner point never happens. The other case encountered in thisthesisisthe
intersection of two farfield boundary conditions. This happens at the intersection of the
downstream plane boundary with the outer boundary in the case of awing or an aircraftin
aC-Otypeof grid. Inthis case the choice madeisto do an interpolation in the streamwise
direction (z direction in this case) from the two upstream halo cells to the corner point.

76 5. Fundamental equations and discretisation

0,2 12 2,2
° ° °
1 11 21
° °
|
L
2,0

Figure5.6: Corner point at the intersection of two boundaries: cell 1,1.

These are the only cases that will be found in this work.

The turbulent viscosity in a corner point is never actually used hence no boundary
condition is applied, y, isleft to the default value zero.

This concludes this subsection dedicated to the implementation of the boundary condi-
tions. It also ends this long section describing the explicit methodol ogy with first the cal-
culation of the convective fluxes through the use of Osher’s approximate Riemann solver.
This was followed by the evaluation of the viscous fluxes with the laminar contributions
and the description of the Baldwin-Lomax algebraic turbulence model. The next section
detailsthe other methodol ogy issued from thetemporal discretisation of the Navier-Stokes
equations, i.e. theimplicit formulation.

5.7 Implicit formulation

This section describes the implicit approach(*®” already introduced in Section 5.5. It first
presents the methodology used to solve the implicit equations, then examines the con-
struction of the Jacobian with the contribution of the convectiveterms and of the diffusive
terms. The contribution of the boundary conditionsto the Jacobian is described at the end
of this section.

5.7 Implicit formulation 77

5.7.1 Solution methodology

The use of an implicit method for the time discretisation requires solving the large linear
system of equation (5.13) which can be put in the form

Ax=b (5.27)

Inequation (5.13), theRHSR (Q") isactually calculated in the sameway asin the explicit
method. Itisonly the LHSthat isnow needed and itscalculation isdetailed in this section.

Since the Navier-Stokes equations (5.1) are solved iteratively by the means of equations
(5.13) and (5.14), equation (5.13) does not need to be solved exactly at each iteration.
Hence approximations are allowed in the LHS of equation (5.13).

The first approximation concerns the Jacobian oR and thisis described in the next two

subsections. Thisisalowed since in such alinear system, it is only the RHS that carries
the physics of the problem and will ensure that once the solution has converged, it has
converged to the correct value. The LHS just servesto drive the solution towards zero in
this case since for a converged steady-state

"AP =0

and P no longer evolves. To denote that the Jacobian is approximate, the symbol ™ is
added and equation (5.13) is rewritten as

199 9R(Q)
At 0P JoP

"AP = —R(Q") (5.28)

The second approximation is that the linear system (5.28) does not need to be solved ex-
actly for "AP. Inthiswork it is solved using an approximate direct inversion method,
the Block Incomplete Lower-Upper decomposition with no fill-in or BILU(O). The block
diagonal LHS matrix is approximated by

A~LU

where L isalower triangular matrix and U is an upper triangular matrix. It isan approxi-
mation since the matrices . and U keep the same diagonal structure asthe original matrix
A (nofill-in) i.e. 7 diagonals. The original system (5.27) isthen inverted and

x=U"'L™'b

Since L and U are triangular, their inversion is much smpler than the inversion of the
origina matrix A.

78 5. Fundamental equations and discretisation

5.7.2 Contribution from the convectivetermsto the Jacobian
Aswas seen inequation (5.28), when using theimplicit method for the time discretisation,
the Jacobian matrix 8_R is needed. This subsection explains how the convective terms

are linearised analytically to form this Jacobian matrix.

The residual vector at acell . isthe sum of the 6 fluxes through each of the 6 faces of a3D
computational cell aswas explained in equation (5.5). Hence

IR; < O[F(Q;).nS]
oP; 2. IP;

faces

and the calculation of the derivative of the residual comes down to the calculation of
the derivative of the fluxes. Since the convective fluxes themselves are the result of the
application of Osher’s approximate Riemann solver presented in subsection 5.6.1.1, their
linearisation comes down to the linearisation of Osher’s solver.

Thisis done by applying the chain rule of differentiation: 181183188

OF OF 0Q,0P, OF 0QnoPx
9P, 9Q,, 0P, P, ' 0Qn PR OP;

where Qy, and Qp are the left and right states used in the approximate Riemann solver.
Note that the Riemann solver is applied to conservative variables, hence the need for the
Q. and JQr

0Py, OPr’

The terms 88(5 and aaQF involve the differentiation of Osher’s scheme i.e the differ-
L

R
entiation of the termsin Table 5.2. The resulting terms for all the cases are presented

in Table 5.3 for ;—F and in Table 5.4 for % This is a straight differentiation of
L R

Table 5.2. The fact that the sonic point S0 only depends on Q, and that S1 only depends
on Q, reduces the number of possible combinationsto 8 for both Jacobians. Spekreijse
IF(Q) 0Qso Qi3

as well as : , etc.
. , Q 0Qo ' 0Qo
that appear in these tables. They are given for a two-dimensional problem in Cartesian
coordinates but it is not difficult to derive the additional terms corresponding to a three-

dimensional problem in a body-fitted reference frame.

(5.29)

matrices

in Reference [181] provides al the matrix terms

The terms g% and % involvethe differentiation of the MUSCL scheme presented in
subsection 5.6.1.2. It has been seen in the previous subsection 5.7.1 that approximations
to the LHS Jacobian were allowed. The first one is that only a first order Jacobian is
employed in MERLIN. This saves alot of computational effort and memory, especialy

for 3D problems like in this work. Indeed the MUSCL scheme makes the value of P,

5.7 Implicit formulation 79
UU—GOZO UO—GUSO

U >0 IF (Qo) OF (Qs0) 9Qs0
U* — a1/3 2 0 aQO a(QSO a(QO

U >0 | JF(Qy) 0IF(Qs)3Qso , IF(Qusz) 9Quyss | IF(Quys) 9Quys
[ayjz3 <0 Qo dQso 9Qo dQuz 0Qo 0Quz 0Qo

U'<0 | JF(Qo) IF(Qso) 9Qso | IF(Quys) 9Quss | IF(Quys) IQuys
U + azs > 0 9Qo 9Qso 9Qo Qo 0Qo dQqs 9Qo

U <0 JF(Qo) B JF(Qs0) 0Qso 0
U* + 02/3 S 0 aQO a(QSO a(QO

_ . OF;11/2 _ _
Table 5.3: Calculation of 3Q, (Qr=Qoand Qr = Q)
L
Uy+a; >0 Uy+a; <0

U >0 0 _aF(Q51) dQs1 OF(Qy)
U - aysz > 0 0Qs1 0Qq 0Q;

U >0 0F(Qi/3) 0Qus | OF(Q) OF(Qq/3) 0Qq/s _ 0F(Qs1) 0Qs1
[a3 <0 an/S oQu oQu 8Q1/3 Q. 0Qs1 0Qq

U <0 aF(QQ/B) 8Q2/3 aF(QQ/B) aQ2/3 _ 0F(Qs1) 0Qs1 . OF(Qq)
U+ azs > 0 0Qz/3 0Qu 0Qqs 0Qu dQs1 0Qu oQu

U <0 J0F(Qs1) 0Qs: IF(Q:)
U+ azys <0 Qs 0Q, 0Q,

OF;,

Table 5.4: Calculation of

9Qr

2 (Qr=QoandQr = Qi)

80 5. Fundamental equations and discretisation

Figure 5.7: Computationa stencil for afirst-order inviscid Jacobian.

and P depend on the value of P inside 4 cells. 2 on one side of the face where the flux
F

is calculated, 2 on the other side. Hence for a given flux F, 4 contributions 88? are

non zero when using the MUSCL scheme and need to be stored in the Jacobian. When

a first-order method is used, the flux only depends on the value of P in the two cells

situated on each side of the face where the flux is calculated and hence the Jacobian is

more sparse and requires less storage. Since only a first order Jacobian is employed in

P Pr
MERLIN, theterms and
JP; JP;

are straightforward to calcul ate.

F .
The above presented the cal culation of the flux Jacobian 88? as aone-dimensional prob-
lem. Asexplained previously, the residual vector at a given éomputational cell isthe sum
of 6 fluxes, each of which depends on the flow value in two distinct cells for afirst-order
spatial accuracy. Hencetheresidual vector R, ; ;. at thecell 7, 5, k£ of a3D problem depends

on the flow valuein the 7 cells shown in the stencil of Figure5.7. Hence the Jacobian ma-

trix 8_R is a block-banded matrix of 7 bands of blocks called in MERLIN C, W, E, S,
N, B and F with, according to the notation of Figure5.7,

_ ORy o IR, j i
- ? 5k T Y
OP; ;i OP; ;1

OR; j i
9
OP; i1k

Cijk Eijx=

Each matrix Cfgﬂ"k, Wi,j,k, etc. isab x 5 matrix.

Thisisonly for the linearisation of the convective fluxes, the next subsection presentsthe
treatment of the diffusive fluxesinside the Jacobian.

5.7 Implicit formulation 81

Figure 5.8: Computational stencil for the laminar part of the Jacobian.

5.7.3 Contribution from the diffusivetermsto the Jacobian

The contributionfromthe diffusivetermsisfurther divided into the contribution associated
with the laminar viscous terms and the contribution of the turbulent part.

5.7.3.1 Laminar contributions

The calculation of the laminar viscous flux presented in subsection 5.6.2 has to be
linearised and included in the Jacobian. This requires the linearisation of the application
of Gauss' theorem but does not present any difficulty.

From subsection 5.6.2 and Figure 5.3, it is clear however that the laminar flux through one
face dependsonthevalueof P in 10 cells. Hencewhen adding them upinthreedimensions
to constitute theresidual R for onecell ¢, 7, &£, you end up with the ViSCC%l{JS laminar stencil
1,0,k

0P,

for eachs, 7, k. If thiswasto be stored in a Jacobian matrix, the resulting matrix would be
huge. In MERLIN, wetakeinto account the viscous laminar contributionsthat correspond
to the inviscid first-order stencil of Figure 5.7 and to discard the other terms. Thisisthe
second approximation made to the Jacobian and isquite crude, but it maintainsthe sparsity
of the Jacobian matrix with its 7 bands of blocksthat is very convenient when doing the
Lower-Upper decomposition and inversion presented in subsection 5.7.1. With a19-band
matrix, this would be much more difficult.

showninFigure5.8 which contains 19 cells. Thismeansthat 19terms 0

arenon-zero

82 5. Fundamental equations and discretisation

5.7.3.2 Turbulent contributions

The third approximation made to the LHS Jacobian of equation (5.28) isthat the turbulent
viscosity y. is frozen i.e. the contribution from the turbulence model is not linearised
but whenever the fluid viscosity is needed, it is still composed of the molecular and
turbulent viscosities. Indeed the turbulence model of Baldwin-Lomax presented in
subsection 5.6.2.2 is quite difficult to linearise due to the fact that the eddy viscosity 1,
is calculated aong rays that are normal to the wall. The value of a particular i, in one
of these rays depends potentially on the value of the flow variablesin al the cells along
thisray. Indeed for the outer layer a search is made for F,,,, aong the whole ray and the
location of the cell where F),,.. isfound cannot be known in advance. For theinner layer,
the location of the change from inner to outer layer is not known a priori either, causing
the same problem. This makes the eventual storage of aturbulent Jacobian into a banded
matrix impossible. For these reasons, the linearisation of the eddy viscosity is not taken
into account in the Jacobian in MERLIN, i.e. y; in the Baldwin-Lomax model has not
been treated implicitly.

Now that the contributionsto the Jacobian from the convective and the viscousterms have
been presented, the next section details the implicit treatment of the boundary conditions
presented in subsection 5.6.3.

5.7.4 Implicit boundary conditions

Close to adomain boundary the application of equation (5.29) involvesthelinearisation of
the boundary conditions.# Indeed, with the cell numbering of Figure 5.4 Left, the flux
across the boundary between cells1 and 2 is

F= F[Ql(QQ); Q2]
and the application of eguation (5.29) gives

OF _ OF 0Q,0P, OF 0Q,
9P, _ 9Q, 0P, 0P, ' 9Q, 0P,

(5.30)

for a first order flux Jacobian. This implicit treatment of the boundary conditions is
often neglected in CFD codes since, like a higher order Jacobian, it is not necessary
to obtain a converged solution and this facilitates the implementation of an implicit
method. However a consistent treatment of the boundary conditions should accelerate
the rate of convergence of a solution and it will be seen later on, that it is needed in the
adjoint solver. In addition it is possible to incorporate this linearisation of the boundary
conditions without having to change the structure of the Jacobian. For these reasons, the
implicit treatment of the boundary conditions is implemented consistently in MERLIN.

The details of the matrices 0P,
0P,

aregiven in Appendix A.

5.8 Validation 83

The only problem when looking at the different linearisationsin Appendix A concernsthe
interface boundary condition. At afirst glanceit isright to say that the valuesin the halo
cells for this boundary condition do not depend on what is happening inside the current
block, since they have been copied from the neighbouring block. Hence a null matrix is
acceptable. However when looking at equation (5.30), this implies that the flux at this
boundary is only one-sided and this is clearly wrong since this type of boundary occurs
usually in the middle of the domain where nothing special is happening to the flow. The
flow solver should not be able to “see” this boundary since there is a continuity between
the blocks but this is not happening with the chosen linearisation. We will see later for
the adjoint solver that thisboundary isin fact very difficult to implement accurately even
if the theory behind it is easy to understand. Hence the present simplification for the LHS
Jacobian is perfectly acceptable considering al the other approximations already made.

This treatment of the boundary conditions has to be applied not only to the convective
fluxes but also to the laminar fluxes and here another approximation is made. This could
seem a detail after having discarded more than half of the viscous contributions but has
to be mentioned because it will also requirealot of work to be done correctly inside the
adjoint solver. Theimplicit treatment of the boundary conditions for the viscous fluxesis
only implemented in MERLIN in the direction of the flux and not in the other directions.
For exampleif the flux is calculated in the: direction, the term

OR; 21
ik = o
’ 0Pk

iscaculated as if insde the domain and then is discarded whereas a consistent treatment
would account for the influence of P, ; ; on to P, ,; and include that into the Jacobian.
This however necessitates taking into account a lot of different cases so it is perfectly
legitimatefor the LHS Jacobian inMERLIN to neglect theseimplicit boundary conditions.

This concludes this subsection on the contributions from the diffusive fluxes to the Jaco-
bian. It also terminates thislong section describing the implicit method availablein MER-
LIN that showed that theimplicit approachismuch more complicated mathematically than
the explicit approach presented before that. This has to be traded with the computational
time saving that the implicit method enables. Before ending this chapter on the flow solver
MERLIN, the next section presents atest case of validation for thiscodei.e. the ONERA
M6 wing.

5.8 Validation

The ONERA M6 wing is a classical test case for CFD flow solvers because of the
extensive experimental datal'®” available. A shape optimisation of the ONERA M6 wing
will be presented in alater chapter but here only the flow solution around this geometry
serves as a validation test case of the CFD code MERLIN.

84 5. Fundamental equations and discretisation

A

\
N

TH] HIT =
I

i il I ”’
it lﬁll III

% iyl

/

I
I
/////77777%?/’7777///////’7/’/9”/

i

/
-\

Figure 5.9: M6 wing computational grid.

The test case selected is the classical 3.06 ° of incidence, Mach number M, = 0.84
and Reynolds number Re = 11.7 x 10° based on the mean aerodynamic chord. At
these transonic conditions a lambda shock wave develops on the upper surface of the
wing but the flow remains attached thus providing a good test case for the Baldwin-
Lomax turbulence model. The grid employed for this validation test case is shown in
Figure5.9. Itisal193 x 49 x 33 C-Otypegrid that was downloaded from Reference [189].

The contours of pressure coefficient ', on the upper surface of the wing, obtained for
this geometry, are shown in Figure 5.10. The characteristic |lambda shock waveis clearly
visible and the overall contours compare well with contour plots available in other
studieg145:162,184,190192] that glsp solve the Navier-Stokes equations on this geometry and
at these conditions.

Chordwise), distributions at stations where experimental data are available, are pre-
sented in Figure 5.11. Results obtained with MERLIN are compared to the experimental
points that are plotted with errorbars. In the inner part of the wing (section » = 0.20 and

5.8 Vdidation 85

1.01

0.25

-0.52

Figure 5.10: Contours of pressure coefficient on the upper surface of the ONERA M6
wing.

86 5. Fundamental equations and discretisation

0.44), thefirst shock waveis correctly predicted in magnitude and position. Thefollowing
plateau of C), is overestimated and the second shock wave is not too well predicted. A
fairly good agreement is obtained at the section » = 0.65 with a second shock wave
very well predicted. The merging of the shock waves appears dightly too soon when
looking at the station = 0.80. In the remaining sections, the position and strength of
the shock wave is very well predicted even though the trailing edge tip distribution is
not captured (station n = 0.99). Overall the prediction is quite good when comparing to
others computations,[#:184.189.192-199] | jke the present results, none of the other studies
manage to match the experimental datafor all the spanwise stations.

A more challenging issue than the surface pressure distribution, is the calculation of
overall aerodynamic coefficients. This is what the optimisation relies on so it has to
be as accurate as possible in order to have some confidence in the optimum found by
the optimisation process. Aerodynamic coefficients for the ONERA M6 wing are rare:
they are not provided with the experimental datal*®”! and only a small number of studies
mention them. The aerodynamic coefficients of the present study and these found in the
literature by the author are presented in Table 5.5. The oldest values available are found
in Reference [200] but the grid is very coarse and the contour plot and chordwise C,
distributions show that the computation did not capture the features of the flow solution,
hence the overall aerodynamic coefficients might be questionable. The geometry of
Reference [184] is dightly different from the one used for the MERLIN computation
since the wing tip is straight and not rounded. This might have some influence on the
resulting aerodynamic coefficients. In Reference [162] the Reynolds number reported
is different from the one used in the experiment so the results might not be comparable.
Since there is quite a disparity in the aerodynamic coefficients available in the literature,
it isdifficult to make a conclusion. The only possible comment isthat MERLIN iswithin
the range one would expect when comparing with the available data but this is still
inconclusive regarding the accuracy of the force calculations.

This concludes this part presenting some computational results on the ONERA M6 wing
for validation purpose of the CFD code MERLIN employed in this study. This showed
that MERLIN is accurate when looking at surface pressure distributions. However when
considering overal aerodynamic coefficients, no definitive conclusion can be drawn due
to the scarcity of comparison data although MERLIN gives reasonable answers. Thisaso
concludes the chapter that presented the fundamental equations used in the CFD code and
how MERLIN solves them. It detailed the explicit method available as well as the more
efficient yet more complicated implicit method. Thisimplicit method is quite important
since it will be the basis of the solution of the adjoint equations that are described in the
next chapter.

5.8 vdidation

12

Experifnent -
MERLIN — 1

o
o
0 0.2 0.4 0.6 0.8 1
x/c
@ n=0.20
Experifnent -
12 ¢ MERLIN — 1
o
o
0 0.2 0.4 0.6 0.8 1
x/c
(©)n=0.65
Experifnent -
12 ¢ MERLIN — 1
o
o

(& n=10.90

_Cp

_Cp

12

12

12

0.8 r

0.4

-0.4

-0.8

Experifnent -
MERLIN — 1

(b) n = 0.4

Experifnent -
MERLIN — 1

0 0.2 0.4 0.6 0.8 1
x/c
(d) n = 0.80
Experifnent -
MERLIN — 1

(f) n = 0.95

Figure5.11: Chordwise C, distributions for the ONERA M6 wing.

5. Fundamental equations and discretisation

1.2 X

-Cp

Experifnent -
MERLIN — 1

-0.8

0.4
x/c

0.6 0.8

Figure5.11: Chordwise C, distributionsfor the ONERA M6 wing. (Concluded)

Origin of data Cr, | Coiotat | Copress | Cogric
MERLIN 0.2697 | 0.01736 | 0.01241 | 0.00495
Miller and Rizzi?% 0.2728 | 0.0157 N/A N/A
Radespiel et a9 0.2677 | 0.01782 | 0.01261 | 0.00521
Vatsa et all'® ~ 0252 N/A N/A N/A
McNeil:I18 Central scheme | 0.2764 | 0.01671 | 0.01400 | 0.00272
McNeil ;1184 Upwind scheme | 0.3113 | 0.02141 | 0.01596 | 0.00545
Nielsen and Anderson!®? 0.253 | 0.0168 N/A N/A
Lee et allT% 0.2622 | 0.01751 N/A N/A

Table 5.5: Comparison of aerodynamic coefficients obtained with MERLIN and those
available in the literature.

Chapter 6

Discrete adjoint solver

The aim of this chapter isto describe the discrete adjoint solver employed in the optimisa-
tion chain. The equationsit solves are derived and the solution methodology is detailed.
Thefirst section of this chapter presents the discrete approach and its equations. Then the
continuous approach isintroduced before explaining the reasons for choosing the discrete
rather than the continuous formulationin thiswork. Once the formul ation of the equations
has been chosen, the methodol ogy used to solve them is presented and the innovative con-
tent of the present adjoint solver is described. Thiswill introduce the next part dedicated
to the calculation of the RHS Jacobian, starting from asimplefirst order inviscid flow to a
fully turbulent flow. The last part of this chapter presents verification test cases to assess
the accuracy of this adjoint solver.

6.1 Discrete adjoint method

The discrete adjoint method is very similar to the direct differentiation method presented
in subsection 2.1.4.1 and started at approximately the same time. When people realised
that it was much more efficient than the direct differentiation method for problems with
alot of design variables and few constraints, it became more popular. It is now widely
employed. For unstructured grids, References[15, 79,81-83] give some examples of dis-
crete adjoint solversfor the Euler equations while solversfor the Navier-Stokes equations
can be found in References [10, 11, 43,48, 156, 162]. On structured grids, Euler discrete
adjoint solvers are used in References [16, 74, 88-90, 125, 153, 154, 201, 202]. Turbulent
Navier-Stokes discrete adjoint solvers are presented in References [19, 47, 164, 190] for
structured grids, while in between, adjoint solvers for just the laminar viscous equations
can be found in References [93, 95] and a turbulent adjoint solver with frozen turbulent
viscosity in Reference [49].

The derivation of the discrete adjoint method starts like the direct differentiation method

presented in subsection 2.1.4.1, except that now the derivative of theresidual vector (equa
tion (2.4)) isadded to the derivative of the objectivefunction (equation (2.2)) with the help

89

90 6. Discrete adjoint solver

of an adjoint vector A to give
dF <aF)"‘dQ* (aF)f dX OF t(aRdQ* OR dX aR)
— =55 tlow) 7+t + A | 5= e
d B 0Q /) dps dB, — 0bk 0Q dBr 00X dB, 006k

0X
which isrearranged as

dF | [(OF ’f+/\taR dQ . OF\' y IR | dX N OF +/\t8R

s, ~ |\oQ Q| s, " |\axX oX | dB. " 0B, ' OB
. L , : : dQ*
The adjoint vector at this point is an undefined vector. To avoid having to calculate e
k.

for each design variable as in the direct differentiation method, the term multiplying this
quantity is set to zero to give the adjoint equation

OR\' OF
(ﬁ) r=-28 (6.1)

Once this adjoint equation has been solved for A, the sensitivity derivative is calculated
by

dF
by

As was aready explained, the adjoint equation (6.1) needs to be solved only once for
each of the aerodynamic functions for which the sensitivity derivatives are needed. This
usually refers to the aerodynamic objective function and any aerodynamic constraint
function but not to geometric constraint functions that have nothing to do with the
aerodynamic flow vector Q and for which analytical expressions (for the functions and
their gradients) have to be found. Hence for a problem where the number of design
variables is greater than the number of objective functions and aerodynamic constraints,
which is the case in most aerodynamic shape optimisation problems, the adjoint method
is more efficient than the direct differentiation method as was stated in Chapter 2.

(6.2)

aFy' IR dx+aF+xaR
X IX | dBy ' s dB

Presented intheform of equation (6.1), the adjoint equation isshown inthe discrete formu-
lation sincetheresidual vector R has been discretised asin equation (5.5) and the Jacobian

R . : : . , .
g—Q isof thesameformasin equation (5.12). The continuousformulation presented in the

next section differentiates the objective function and the Navier-Stokes equations before
discretising them asis explained next.

6.2 Continuousadjoint method

The continuous adjoint method for aerodynamic optimisation was pioneered by Piron-
neaul?%®204 in the 1970's but due to limitation in numerical methods, his work was only

6.2 Continuous adjoint method 91

theoretical. The continuous adjoint method is based on the calculus of variation which
was later used in simple problems such as heat transfer optimisation problems2%%:2%61 or
problems of pollutant diffusion in the atmosphere.[?*l Koda also applied a variational
method to an aerodynamic probleml?%8.29% pyt still without numerical implementation.

Jameson was thefirst to apply this technique successfully to an aerodynamic optimisation
problem. This technique has gained a lot of popularity since then thanks to his contri-
bution. His early work[® was limited to the optimisation of 2D aerofoils using potential
flow and conformal mapping. It then evolved to conventional computational grids,!*4%
Euler equationg*%148 and 3D optimisation.l'*¥ Further improvementsincluded the use
of multiblock grids,[*37:150.165 parallel computing?”:13%.165.2101 gnd multipoint optimi-
sation.[*3® More recently, Jameson and his colleagues applied the continuous adjoint
equation to the Navier-Stokes equations.[*>137:211.212] They freeze the turbulent viscosity
in the adjoint solver and use this latter with a turbulent Navier-Stokes flow solution.

The continuous adjoint method is now widely employed: Euler continuousadjoint solvers
for unstructured grids can be found in References[25, 152] and viscous laminar solversin
References[157,159,160]. Onstructured grids, References[18,46,145,146,158,213-218]
give some examples of the continuous adjoint method for the Euler equations. Going a
little further into the complexity of the physics, Cross*¥ and Szmelter*®! use an Euler
adjoint with the Euler equations with viscous/inviscid interaction for the flow solution.
A continuous laminar adjoint solver is described in Reference [219] for a laminar flow
solver. An continuous adjoint solver with frozen turbulence is used, as Jameson does,
with a turbulent CFD code in Reference [147]. A truly turbulent continuous adjoint
solver with linearisation of the turbulent viscosity can be found in References [17,220].
Continuous adjoint solvers are not limited to aerodynamics and can be employed in
hydrodynamics™*? and ship hull shape optimisation.[??4

To describe the derivation of the continuous method, we follow the work of lollo et
al.[222225 This derivation is based on the two-dimensional steady-state Euler equations
applied to an aerofoil to keep things as smple as possible. Soemarwoto gives a very
detailed derivation of this method for the 2D Navier-Stokes equationsin Reference [220].

The 2D Euler equations are written in the form

J(AQ) A I(BQ)

Oz + ay = (AQ), + (BQ), =0
in the flow domain 2 where A = ng and B = 88(}2 are the Jacobian matrices, with the
corresponding boundary conditions @ @
pV.n=10

on thesurface I of the aerofail. (V = (u,v))

92 6. Discrete adjoint solver

A particular objective function 7 is chosen for this optimisation problem

= %jé[p(r) —p] ds

and corresponds to an inverse design problem where the pressure p on the aerofoil surface
has to match atarget pressure p*.

A Lagrangian functional is created to augment this objective function:
HQEA W = T+ [N(AQ) +(BQ)I+ [ppV.nds
Q r
=1+ /)\t(Aan + BQny)ds — /
T

()\xtAQ + /\thQ)dQ + / ppV.nds
Q T

after integration by parts of the middle term. The vector A (A = (A1, X2, A3, A4)" in 2D)
in Q and the scalar » on T" are the equivalent of Lagrange multipliers. The minimisation
of I isequivalent to the minimisation of /.

Applying the method of calculus of variation to L gives:
§L=0Lqg+d0Lr+dLx+6L,

with

§Lq = @ G IP(M) = Qds + / X(An, + Bn,)Qds — / (A'A + A,/B)QdO
F r

. Q
SLp = j[" Vids + / N[(AQ), + (BQ),Jids — /r LoV ids

/ . .nnds

0L\ = /Q/\ [(AQ). + (BQ),]d
oL, = j[ﬁpv.nds
r

This corresponds to a displacement cn of each point on the aerofoil surface in the normal
direction n which generates an increase cQ in Q, e in XA and e in pu. 6Lq isthe
variation of 7. due to the variation of Q when al the other variables are kept fixed and
similarly for the other components of § L.

Two equivalent approaches are then possible. The first one consists in saying that at the
optimal design point, § . must be equal to zero whatever n, Q, A and 1, hence 6 Lq =

6.3 Choice between the continuous and discrete formul ations 93

0Ly = 6Ly = 0L, = 0. Thecondition L = 0 leads to the satisfaction of the Euler
equations (AQ), + (BQ), = 0in Q. The condition L, = 0 gives the boundary condi-
tionspV.n = 0 onI'. The condition é Lq = 0 gives the continuous adjoint equation

A'X, +BX, =0 (6.3)
in © followed by the boundary conditions for the adjoint vector on T':

dp X dpV
Q [p(T) = p"] + X' (An, 4+ Bny) + ,unW =0 (6.4)
The remaining condition 6. = 0 is the condition of optimality. In gradient-based

optimisation, it isnot used directly but rather servesto compute the sensitivity derivatives

aaTL once Q, A and ;. have been calcul ated.
k

The other equivalent approach consists in saying that since the Euler equations and
boundary conditions are satisfied then § Ly = 0 and §L, = 0. Hence 6L = §Lq + 0 Lr.
To further smplify this, the adjoint vector A and the scalar . are required to satisfy the
adjoint equation and boundary conditions leaving § L. = § Lr which contains the desired
sensitivity derivatives.

The resulting adjoint equation (6.3) is the continuous version corresponding to the
discrete one in equation (6.1). This continuous equation is very similar to the flow
equation and hence can be discretised in the same way making use of the same nu-
merical routines developed for the flow solver. This is not however an obligation and
any method of discretisation is valid. It should be noted that boundary conditions for
the adjoint vector are explicitly appearing in the continuous method while they are
hidden in the discrete method. Hence it is in fact an entirely new code similar to the
flow solver that hasto be written to solve the adjoint equation and its boundary conditions.

Furthermore not any objective function can be considered and it was thought for a long
time that only “admissible” cost functionsi.e. functionsthat behave “well” in the method
of calculus of variation, could be used. For the Euler equations, this meant only functions
depending directly on pressure. However Arian and Salasi??%2?7] found that by adding ex-
traterms to the Lagrangian function, this problem can be avoided and that any objective
function might be used.

6.3 Choicebhetween thecontinuousand discretefor mula-
tions

The continuous and discrete adjoint methods are in fact very close to each other and for
example, Reference [157] mixes both methods and it is not easy to recognise which is

94 6. Discrete adjoint solver

which. It is hence very difficult to choose which one to implement.

Theliteraturedoes not help alot in thismatter either. Indeed numerical comparisons made
by Nadargjah and Jamesonl*+5¢ found that the continuous and discrete methods give
very similar results in terms of performance and accuracy of the sensitivity derivatives.
The discrete method is supposed to give the exact numerical gradient of the objective
function i.e. the gradient that would be obtained by finite difference whatever the grid
refinement and hence is more consistent with the flow solution than the continuous
method.[#:56.58.125,1571 A\ |though the continuous adjoint method is less consistent, as the
mesh size is increased, its agreement with the finite-difference method increases.[*1 As
pointed out by Anderson and Venkatakrishnan,[*>" the fact that the objective function
explicitly appearsin the boundary conditions of the continuous method can be a problem:
the derivation of these boundary conditions is mathematically demanding and has to
be done over again for any new objective function while it is much smpler to change

a subroutine that adds g—g to the RHS of the adjoint equations in the discrete method.

There is furthermore an issue with shock waves for the continuous method: Giles and
Piercel??l showed that in theory an adjoint boundary condition has to be applied along
the shock wave. This would be very complicated to implement since the location of
the shock wave would have to be determined inside the flow field. In practice, none
of this is done and results by Jameson and others using the continuous method do not
seem to suffer from this inconsistency. Giles and Piercel??® have indeed checked that
the continuous method behaved numerically well at the shock for the quasi-1D Euler
equations and that there is no need in practice to enforce an internal boundary condition.
There is still however some uncertainty about this mathematical problem and it favours
the discrete method that does not appear to have such problem.

The discrete adjoint method is however supposed to require more computing memory
than the continuous one.[*+%6.58.1571 Giles and Pierce®! nevertheless point out that the
discrete adjoint method is amost straightforward to implement since alot of its routines
are taken from the flow solver. They conclude their comparison by saying that in fact
none of the two methods has a true advantage compared to the other and that the choice
between them is a“matter of personal taste” .

Hence the choice of the discrete adjoint method made in this study relies on personal rea-
sons. Thefirst one was that the CFD code MERLIN was available and with it all theim-
plicit method detailed in section 5.7. In particular, the calculation of the LHS Jacobian
was already existing with a consistent treastment of the boundary conditions. However it
is noted that Hiernaux and Esserd5%160.229 haye an implicit flow solver with aLHS Ja-
cobian and nevertheless chose to develop a continuous adjoint method. The second rea-
son was that the discrete method asit is pointed out by Giles and Pierce,%® seemed rather
straightforward to understand and implement to the author, while the continuous method

IReference [58], p. 409

6.4 Solution methodol ogy 95

is mathematically alot more complicated especially when dealing with viscous flows.

6.4 Solution methodology

This section explains how equation (6.1) issolved. Thefirst element isthat equation (6.1)
has been derived in section 6.1 considering the vector of conservative variables Q asitis
usually presented. It can be transformed to use primitivevariables P without changing the
nature of the adjoint vector. Thisiswhat is chosen for the remainder of the thesis and the
discrete adjoint equation (6.1) becomes

R\’ oF

Asit hasjust been explained, the advantage of the discrete adjoint method is that the same
solution methodol ogy asfor the flow analysis can be applied to the adjoint equation. How-
ever written in the form of equation (6.5), the adjoint equation is a linear equation that

needs to be solved exactly. The Jacobian 8—§ for example needs to be the exact higher-

order Jacobian that takes into account the boundary conditionsand all the laminar and tur-
bulent contributionsin order to find the correct value of the adjoint vector. It wasexplained
in subsection 5.7 that this would require a lot of computing memory and was one of the
reasons why a simplified Jacobian was employed for the flow solver. To be ableto usethe
same Jacobian asin the flow solver, the adjoint equation iswritten in the incremental form

IR(Q") tnA/\ _ {aF N {8R(Q*)}t)‘n} (66)

oP P OP

with
An+1 — An + nAA
andissolved iteratively. Theincremental iterativeformisfound intheliterature, primarily

applied to the direct differentiation method detailed in Chapter 2[28.41,49,51,69,70,74,81,82,88]
but also used in the discrete adjoint method.[16:48:49,51,70,74,77,88,162]

In equation (6.6), it isthe RHS that carriesthe physics of the equation and ensures that the
solution is correct whilethe LHS is only hereto drive ™ AX to zero. Hence asfor the flow
equation (5.12), some approximations are allowed for the Jacobian of this LHS. That is
why the symbol ~ isused. Inthe present work even afictitioustime term, the same asin
the flow solver, is added to the LHS to improve diagonal dominance, if necessary, at the
beginning of theiterations. Equation (6.6) becomes then

10Q [ORQ))|y {8F N [aR(Q*)} ’,\n} (6.7)

AtoP 9P P OP

96 6. Discrete adjoint solver

With thismodification, the LHS matrix hasthe sameform asin equation (5.28) for theflow
solver and in this study, the LHS matrix of the adjoint equation is exactly the same asin
the flow solver before applying the transpose operation. The original first-order Jacobian
in MERLIN isamatrix of 7 diagonals of blocks called C, W, E, S, N, B and F aswas
explained in section 5.7. Each matrix C; ; », W, ; 1, €tC. isab x 5 matrix. The operation
of transposing this matrix does not change its structure, only the ordering of the matrices
is changed as follows:

Cijr — Ci,tj,k
Wiin = E5 4
. t
Eijv — Wik

. 1
Nije — Sz'+t1,j,k
Sije — NIy

o t
Fije — Bl

. 1
Bijw — F i

where the —" hasto be read by “is replaced by”. Hence when the original Jacobian has
been calculated, it isrelatively easy to transpose it and keep the same structure and name
for the variablesin the computer program.

For the RHS Jacobian of equation (6.7) however no approximation is allowed since the
RHS of this equation has to be exact. Hence the full higher order Jacobian has till to
be calculated for this RHS. However it does not need to be stored since it is multiplied
by the adjoint vector. In thiswork this multiplication is done term by term to constitute
the RHS vector, saving some computing memory and some unnecessary computing time
spent on very large matrix multiplications. All of thisis detailed later in this chapter.

Equation (6.7) has exactly the same structure as equation (5.28) i.e. theform Ax = b of
equation (5.27) with the same banded matrix A. Hence the same solution methodol ogy
is employed to solve the adjoint equations i.e. an approximate direct inversion method
with a BILU(0) technique. To save some computing time, the terms of equation (6.7) that
do not change at each iteration, are calculated once at the beginning of the computation

and are then stored for the rest of the iterations. This concerns the LHS c’)IB(S)
oF

P In the LHS Jacobian, the time-term depends on At that changes at each iteration

epending on the value of the total residual as in the flow solver. For the RHS term, as
said above a term by term multiplication is performed and since the adjoint vector A"
changes at each iteration, nothing can be stored. Besides this was the advantage of the
incremental iterative method of not having to store an exact Jacobian. If this solves an
eventual problem of storage and memory, thisis at the cost of computing time since the
components of the RHS Jacobian have to be recalculated at each iteration. Nevertheless
the resulting adjoint solver is quite efficient with aturbul ent two-dimensional test showing
a cost per iteration equal to 2.7 times that of the flow solver. The same test performed

and

6.5 Innovative content in this adjoint solver 97

with a LHS Jacobian and or not stored but recalculated at each iteration, gave aratio of
4.6. This clearly showsthe interest of storing these terms.

The sengitivity equation (6.2) is rewrittenin the form

dF F\' dX R dX
= <a > xa (6.8)

- \ox) a5 T oX s

because for a pure aerodynamic shape optimisation, the design variables 3. only influence
the flow field solution and objective function through the computational grid variations.
oF
Hence thereisno —— or —— term.
B~ I
Furthermoreequation (6.8) better representswhat the computer code does. Instead of hav-
ing afirst differentiation with respect to the coordinates of the grid points and then amul-

tiplication between the resulting matrix and the grid sensitivity matrix % as would be

suggested by eguation (6.2), the differentiation is done directly in the co]ae by the use
of the chain rule. For example the term R dX is calculated directly in the form of

0X dy,

9(22{, 3 8(5{5}12, <) ;l;i .Where (g, n, C') are thé marictams i.nvolved inthe Cé|Cl'J|aI?0n
of the residual vector. This analytical differentiation does not involve any multiplication
and is quite straightforward since al the terms that have to be differentiated are already
present in the flow solver and can be differentiated one by one as they appear inside the
code. Itissmilar to applying Automatic Differentiation in forward mode, but by hand,
and does not present any difficulty. This linearisation is done consistently each time the
metric terms or aunit normal vector are used. To be more specific, thisincludes the nor-
mal vector in Osher’s scheme, the use of Gauss' theorem for the diffusive termsincluding
in the Baldwin-Lomax model and any other time when a transformation from a Cartesian
to abody-fitted reference frame is needed.

6.5 Innovative content in thisadjoint solver

Now that the adjoint solver used in this work has been presented in its globality (more
details about the RHS Jacobian are to be explained in the next section), itistimeto explain
what makesthisadjoint solver special and different from any other existing adjoint solvers.

The first point to mention is that this adjoint solver has been entirely differentiated by
hand: no use of Automatic Differentiation, finite difference or complex variable method
has been made to cal culate the components of the Jacobians or the grid sensitivities.

Secondly, when people think about the adjoint method for aerodynamic optimisation,
they always think about Jameson’s work so the first obvious difference between this

98 6. Discrete adjoint solver

adjoint solver and Jameson’s work that can be included into a wider continous adjoint
community, is that it employs the discrete method as was aready explained.

Among the existing discrete adjoint solvers, this one is, to the author’s knowledge, the
only one that uses Osher’s approximate Riemann solver to calculate the inviscid fluxes.
This scheme has been designed to calcul ate accurately flow discontinuities such as shock
waves and shear layers.!?® Since shock waves are a characteristic and important feature
of the transonic flow around the wings or aircraft we are interested in optimising, it is
considered to be an advantage to have Osher’s scheme in the adjoint solver rather than a
more diffusive scheme that might miscal cul ate the shock wave, the strength of which you
are trying to minimise through the optimisation process to reduce the wave drag.

The other important aspect isthat thisdiscrete adjoint solver has been derived for thefully
turbulent Navier-Stokes equations. Thus compared to the ten simpler inviscid adjoint
solvers mentioned in section 6.1, the physical phenomena of viscosity and turbulence are
added. Since this flow physics is again important for the kind of problems we are inter-
ested in, thisis an advantage. Incorporating accurately the turbulent part in the adjoint
solver is also considered to be better than just using a frozen turbulence adjoint with a
turbulent flow solver as it is sometimes done, probably more in the continuous adjoint
community!#>137:147.211.212] than jn the discrete adjoint community.[*¥ The difference is
the linearisation of the eddy viscosity and hence of the turbulence model and thisis quite
complex as will be shown in the next section.

However other fully turbulent discrete adjoint solvers exist and have aready been men-
tioned: the one-equation turbulence model of Spalart-Allmaras®®! is frequently used in
this casgl10.11:47:48,156,162,164] gjthough two-equation models can also be employed.[31%
To the author’s knowledge, the only other existing adjoint solver based on the algebraic
model of Baldwin-Lomax like in this work can be found in Reference [19]. No details
are given however on the way in which the turbulence model is actually differentiated.
The author of this thesis believes that one- or two-equations models are smpler to
incorporate into an adjoint solver than the Baldwin-Lomax model, which might explain
the rarity of adjoint solvers based on this algebraic model. Indeed with afield turbulence
model, the eddy viscosity is calculated using quantities that are situated in a defined
nei ghbourhood around the point of calculation, hence asfor the rest of the flow equations,
awell-structured Jacobian can be devised. This Jacobian might however be quite difficult
to calculate but should already exist in an implicit flow solver employing this type of
turbulence model, although possibly with some approximations that an accurate adjoint
solver will have to eliminate. However thisis aready a good start for the adjoint solver
and might explain why such models are popular for turbulent solvers although the over-
head of having one or two additional equationsin the flow and adjoint solversis certainly
high especialy in optimisation. On the other hand, with the Baldwin-Lomax model, the
eddy viscosity is calculated along rays from quantitites that could be situated anywhere
along these rays. It is thus a full stencil model. Hence, as was already mentioned in

6.6 Calculation of the exact RHS Jacobian 99

section 5.7, it is quite difficult to linearise this algebraic model and this linearisation is
not usually done in implicit flow solvers. The technique developed in the solution of
the adjoint equation (6.7) with a term by term multiplication between the RHS Jacobian
and the adjoint vector makes it possible to treat the Baldwin-Lomax model accurately
without the worry of storing the full Jacobian matrices. The other problem posed by the
Baldwin-Lomax model is that it uses the maximum function that is not differentiable.
Details of how thisis overcome will be presented in the next section.

A summary of this section would be that the present adjoint solver is different from any
other because it has been entirely hand-differentiated, it isadiscrete adjoint solver, it uses
Osher’s approximate Riemann solver and has been derived for turbulent flowswith an ac-
curate linearisation of the Baldwin-Lomax model. All of these points put together make
this adjoint unique.

6.6 Calculation of the exact RHS Jacobian

This section details the calculation of the components of the RHS Jacobian of equa-
tion (6.7). Itisdivided into four parts that correspond to the way in which the adjoint
solver has been built: aninviscidfirst-order adjoint solver wasfirst coded and tested. Then
upon this basis, a higher-order inviscid adjoint solver was implemented before being up-
graded to a viscous laminar solver. The last stage was to incorporate the linearisation of
the turbulence model to obtain afully turbulent adjoint solver. Thisway of presenting the
calculation of the RHS Jacobian is not only a chronological account of how the code was
built but it isalso very relevant to the final product since, for example, what was done for
the convective terms of the inviscid adjoint solver isaso employed unchanged in the tur-
bulent adjoint solver. Hence each component is as useful as any other in the fina code.
Each part will be further divided into what is happening inside the domain, far from the
boundariesand then how the boundariesaretreated. The behaviour of theinterface bound-
aries between adjacent blockswill be dealt with separately from the rest of the boundaries
because of the very different nature and treatment of thistype of boundary condition.

6.6.1 First-order inviscid components
6.6.1.1 Insdethedomain

The LHS Jacobian of the flow solver MERLIN presented in section 5.7 is aready first-
order accurate for the convective terms so what isdonein MERLIN is used unchanged to
create afirst-order inviscid adjoint solver. The aim of building this adjoint solver was to
create the structure of the code and to be sure that the discrete adjoint method had been
well understood but once thisis done, the development itself should be very quick.

The basics are however presented since they will bereused for the other parts of the solver.
This is explained by an example. Let us consider the one-dimensional problem of Fig-

100 6. Discrete adjoint solver

Fi_li/2 Fiii/o
o > O > O
i-1 [i+1

Figure6.1: First-order inviscid fluxes.

ure6.1. Theresidual at cdll 7 is
R, =F; 10 —Fi_1)2

where F;,,/, and F;_, ,, are the convective fluxes F* from equation (5.2). Hence the Ja-
cobians based on the residual are

OR; OFipp OF,_ip

Ci=%p, T ap, ~ op (69)
61
N; = aaple - a;},:x & (6.11)
since the fluxes are only first-order accurate. The terms of the form i1z are coming

from the linearisation of Osher’s scheme presented in section 5.7. The terms C;, S; and
N; form the RHS Jacobian of equation 6.7. As aready explained aterm by term matrix-
vector product is performed for this RHS instead of assembling the whole Jacobian and
then doing a global matrix-vector product with the whole adjoint vector. Let us detail this
considering the three-dimensional problem: if for each computational cell 7, j, &, the term

R) t 1 . . .
{%} A" iscaledrhs; ;; thenit is calculated according to:
OR; ;1!
rhs; ;. = aPi;,k ik

8RZ-_ - aRz ot

+ 71“ -Ai—'l,j,k + #LM 'Ai-}-],j,k

OP; ;x OP; ;1 612)

OR; ;1 k! OR; 14! :
—_— .A,’ c_ 1 L Y et -Ai . X

+ P, ., =1k T TP NESW:
aRz I k— ! 8RZ i !
et N VNI e LAY

AV N BN |
OP; ik OPijp

6.6 Calculation of the exact RHS Jacobian 101

F3/, F5/,
[> O > O
1

Figure 6.2: First-order inviscid fluxes at the boundaries.

rhs; ;, = Cz’fy‘,k-Ai,j,k
+ Niil’j’k-Ai—l,j,k + Siil’j’k-Az’+1,j,k
+E e Ao+ Wi e
FF e A B A
Each term of thissum involvesab x 5 matrix-vector multiplication. ThetermsC;, S; and
N;, calculated as shown in equations (6.9) to (6.11), are then transposed and multiplied

by the appropriate adjoint vectors to form the RHS vector. This has to be done in the
three directions to obtain equation (6.12).

Asin MERLIN, the adjoint solver works face by face rather than cell by cell as presented
Fii1):

above. Hence aterm like is calculated only once and its contribution is added to

the relevant RHS vectorsrhs;, ;k

6.6.1.2 Attheboundaries

The problemisdepictedin Figure 6.2. F'5, isinsidethe domain so itstreatment has been
reviewed in the previous subsection, it is only F/, that matters here and it is present in
the calculation of C,. Indeed the treatment of the boundary conditionsis governed by the
application of equation (6.12) (considered only in one dimension here) to the boundary.
When i = 2 itiswritten

rhs, = C,. A, + Ni + SLA; (6.13)
but since A is outside the domain, theterm IN%. A, hasto be discarded and rhs, becomes
rhs, = CL. A, + SLA

Hence N, and S, do not need to be evaluated.

The fact that the value of P, depends on P, from the application of the boundary condi-
tions detailed in section 5.6.3 implies that

aRQ o 8F5/2 8F3/2 8F3/2 aPl

C:=3p, =~ 9P, P, 0P, 9P,

102 6. Discrete adjoint solver

Fili/2 Fiili)o
> O > O o
i i+1 i+2

Figure 6.3: Higher-order inviscid fluxes,

This is exactly what also happens in MERLIN and this was presented in section 5.7.4.

P,
the treatment of which is explained next. This aso has to be applied at the other end of
the ; direction when : = «n and of course in the other two directions.

Besides the matrices aretaken from Appendix A except for theinterface boundaries,

6.6.1.3 Interfaceboundary

The philosophy that is constantly behind the treatment of the interface boundariesis that
the adjoint solver should not be able to see that there is a boundary there and should
behave the same asinside the domain. Hence equation (6.13) hasto be applied aswritten,
thistime A, is taken from the adjacent block. The use of halo cells that are filled with
values of the adjoint vector coming from the adjacent block is made to ease this process.

Since everything is as in the interior of the domain, C, and N, are calculated with
equations (6.9) and (6.11) respectively.

Now that the calculation of the RHS Jacobian for afirst-order inviscid adjoint solver has
been presented, the complexity is dightly increased with the introduction of the MUSCL
scheme to obtain a higher-order inviscid adjoint solver.

6.6.2 Higher-order inviscid components
6.6.2.1 Insidethedomain

The use of the MUSCL scheme extends the dependency of the convective fluxesto 4 cells
and the dependency of the cell residual to 5 cells. Considering the example of Figure 6.3,
R; now dependson P,_,, P,_;, P;, P;.; and P, ., hence for this one-dimensiona ex-
ample two additional non zero terms have to be introduced in the Jacobian. The terms
become:

IR; _ OFipp OFiqp
aP,; N 8P, an
OR; OF;11 OFi_ip

o - A1
aPi—l aPi_l (r‘)PZ-_1 (6 5)

C;

(6.14)

S;

6.6 Calculation of the exact RHS Jacobian 103

Figure 6.4: Computational stencil for a higher-order inviscid Jacobian.

OR; OFi_ip

SS, = = — 6.16
OP;_, 0P,y (6.16)
R; aF, 8F7-_

N, = R _ Py OFicyy (6.17)

0Py OPipy 0Py

OR; OF;)
NN; = = Ni

0Py OPipy (6.18)

. OF,; .) . .
A term like ——FY2 involves the linearisation of Osher’s Riemann solver and of the

MUSCL scheme in addition to the transformation between conservative and primitive
variables. Hence

an‘+1/2 . an‘+1/2 aQR aPR an‘+1/2 aQL aPL

oP, — 0Qgr OPp OP; 0Q; 0Py 0P;
The linearisation of Osher’s Riemann solver has aready been presented in the implicit
part of MERLIN (see section 5.7.2). The linearisation of the MUSCL scheme has not
been detailed but is quite straightforward when considering equation (5.16). Since the
dope limiter is differentiable, its linearisation inside the MUSCL scheme, does not pose

any problem either. To be noticed in equation (5.16) isthat P, dependson P;_,, P; and
Pi+1 and PronP,, Pi+1 and PZ'+2.

104 6. Discrete adjoint solver

Fi/: Fs/.
[[> O > 0]
0 1 2 3 4

Figure 6.5: Higher-order inviscid fluxes at the boundaries.

This has to be performed in the three directions hence the stencil for thisinviscid higher-
order Jacobian involvesthe 13 cellsshown in Figure 6.4. Considering this, the component
of the RHS vector of the adjoint equation that invol ves the matrix-vector product between
the Jacobian and the adjoint vector, becomes

OR; '

2,7,k
rhsz,y,k - 8Pm-,k -Az,y,k
8R¢_1,j,k* N ‘ 8R¢_2,j,k* A ' aI{i+1,j7 Y 8R2+27] k by ‘
+ ka Aio1k T 8P7”L Ai—24k T TZM i+1,5,k T W 2.k
R 14’ - OR; o' N OR; 415! N ORijsor! N
+ 8P7m N g—1k + apim NG =2,k + m NG LK + m A +2k
R jrr' A IR jj—2" A OR;jry1’ A OR; jria’ X
+ m A k=1 + m GG k=2 + m A k41 + m i k2
rhs; ;. = Ci?k Aijk

+ Nz 1,5,k A Ljk T NNz 2,5,k" A 2,5,k T Sz-l—l ikt A2+17]7k + Ssz+2 ok)‘i+2,j7k
+E e Ao FEE L p Ao Wi A+ WW L X a

+ Fz iy k—1" A k=11 FFz hk—2")‘w}k—Z + Bi,?,k-l—l A; ijk+1 T BBZ i kF2r A 1,5,k+2
(6.19)

6.6.2.2 At theboundaries

Since the fluxes are higher-order accurate, two fluxes are now involved in the boundary
conditionsi.e. F,, andF;,, asshownin Figure6.5. Thispotentially impliessome modifi-
cationsin alarge number of Jacobian components but writing equation (6.19) at the bound-
ary eliminates a number of terms due to their multiplication to an adjoint vector that is
outside the domain. A careful check shows that in the end, the boundary conditions only
affects C,, S; and N, in

I'hSQ C AQ + St A3 + SS A4

and
I'h53 = CéAg + NEAQ + SZA4 + SS;A5

6.6 Calculation of the exact RHS Jacobian 105

| P Fi/,
o [> O > O]
0 1 2 3

Figure 6.6: Higher-order inviscid fluxes at an interface boundary with the additional halo
cell.

These matrices become
0R2 . 8F5/2 0F5/2 0P1 6F3/2 8F3/2 0P1 6F3/2 aPO

2=9p, 0P, ' 0P, oP, 0P, 0P, 0P, 0P, 0P,
aRg aFT/Z 8F5/2 8F5/2 aPl

C

% =9p, = 9P, 0P, 0P, 0P,
N, = 8R2 o aF5/2 _ aF3/2 . aF3/2 a]-:)0
‘T 9Py 0Py 9Py 0P, 0P
. 0Py : : . ,
The matrices 7P have already been presented in Appendix A since they are used in the
2
implicit part of MERLIN, the matrices % and % did not appear so far. They result
2 3

from the application of the boundary conditionsasdetailedin section 5.6.3. They areeasily
calculated and their value is also provided in Appendix A. A similar treatment has to be
applied at the other end of the : direction and of course in the other two directions.

6.6.2.3 Interfaceboundary

The philosophy that everything should be asif inside the domain for thiskind of boundary
condition, is still the same so equation (6.19) is applied as

and similarly for rhs;. The terms in this equation are calculated like in the interior of
the domain with equations (6.14) to (6.18), which implies the calculation of the flux F; /,
inside the halo cells. As shown in Figure 6.6, this necessitates the value of P_, that is
outside the normal halo cells. Hence athird layer of halo cells has to be implemented in
the adjoint solver for thistype of boundary conditions. Once again this has to be done for
the three directions.

6.6.3 Viscouslaminar components
6.6.3.1 Insdethedomain

Thispart relies on what was presented for the flow solver MERLIN in sections 5.6.2.1 and
5.7.3.1. Asexplained there, the residual a one cell depends on the value of the variables

106 6. Discrete adjoint solver

] [J [
. j2
J | |
Fidiz i1 Figiyo i
La o1+ e —L1 0
' i-1 i 0 ir1
jiL
o [[

Figure 6.7: Viscous laminar fluxes.

in 19 surrounding cells that are depicted in the stencil of Figure 5.8.

This paragraph will only look at the fluxesin the ; direction. The situation is depicted
in two dimensionsin Figure 6.7. Thisis asmplification of Figure 5.3 for ease of under-
standing but this should however be viewed in three dimensions even if only fluxesin the
i direction are considered here. The residua at cell ¢ is still

R, =Fi i —Fi_ip

but thistime, ;. , and F;_, , arethe diffusivefluxes F* from equation (5.2). Theresid-
ual dependson 15 cells, 9which are shown in Figure 6.7, 6 further being in aperpendicular

I R; . -
plane. This makes 15 non-null contributions ag to the Jacobian. Instead of detailing
lym,n

all of these terms, only a sample of what is involved is given here. This s the calcula-

Fii1):
8P27]7k
tion5.6.2.1 that Py = %(Pm}k + Piy1jn) P = Pijp, Pjy = %(Pi,j,k + Pipijr +
P;iy1% + Pit1j+1,6) €tC,

OFiy12 OFip12 0Py OFiy172 0P OFip1y 0Py OFiy1/0 0Py
OFit1/2 0Py OFiy1/0 0Py
0Py, 0P, ;4 oP;; 0P, 4
B laFi+1/2 1 <aFi+1/2 OF ;112 + OF ;112 + aFi+1/2> + OF ;112
5 9P, 4\ @P, ' 9P, ' oPw | 0Pu P,

tion of with, according to the notation of Figure 6.7 and remembering from sec-

Thisisaso what isdonein MERLIN or in the LHS Jacobian of the adjoint solver except
that only the 7 Jacobians corresponding to the first-order inviscid stencil are kept (hence

6.6 Calculation of the exact RHS Jacobian 107

computed). This derivation is coming from the evaluation of the variables at the face
centres of the dual volume used in the calculation of the viscous fluxes. Thisis just a
straightforward];[i nearisation of what was presented in section 5.6.2.1. The calculation

i+1/2
JdP
the way the viscous fluxes are calculated from these face centre values and this does not
present any difficulty.

d
of termslike is not presented either because again it is only a differentiation of

Let us go back to three dimensions with the calculation of the viscous fluxesin the three
directions and write the equation forming the RHS vector of the adjoint equation. Thisis
written once for completeness and reference but it is not very helpful for understanding
and a one-dimensional version, looking at each direction separately, would be preferred.

t t t
rhs OR; jx N ORG_1,jk A N ORGt1,k A
ivjvk = * ivjvk * i_lvjvk . i+17j7k
OP; jk OP; ik OP; ik
t t t
n ORijrie N ORi-rjpin N ORitrjrrk
o Ak T g cAin ik T g s A4k
op,,, 9P, P,
2Jk 4,5,k 4,5,k
t t t
+ OR; j_1 s A + OR;_1 -1k A + ORG 4151,k A
= Akt e Aotk T e A -1k
OP; ; " oP; . OP. .,
2Jk 4,7,k 1,0,k
1 t t
i ORijkn’ N ORi1 e’ N ORiv1jkdr’
—— = Akt e Akt e A k1
OP; 1 ol JdP; oP; .
2Jok 4,7,k 4,7,k
1 t t
IR, jr OR;_1 j k=1 OR 41 ,j5—1
t—op. - Aijk-1 T+ TP, Aict k-1t P, it k-1
27-77 < 27-77 27-77
t t
ORijor i PRALNEIIITINN
A Viyi—1k+1 oo Vi +lk+d
OP; ik OP; ik
t t
ORijor -1 4 ORijsrp-1’
—y A= 1k—1 T Ty A1k
OP; ;1 v OP; ;1 it

rhs;jr = CJ - Aijr + NIy X + Sty e Ai i
+ Wz NES Y A i1k T+ NW —1,54+1,k" i Lj+1,k + SW2+1 J+1,ke ’\z+1 J+1,k
—I—E,] lkAJ 1k+NEz 1,j— 1k>‘2 15— 1k+SEz+1] 1kA1+17]—17k
+ Bi,j,k+1 ’\uk+1 + NB2 1,7,k+1" Ais k41 + SB2+1 k1 }‘i+1,j,k+1
+ Fzék 1 A ijk=1 T NFZ 1,j,k—1" A 1,jk=1 T SFZ-I-l]k 1 ’\i+1,j7k—1
+ EBZ J=1,k+1" A 4,j—1,k+1 + WBZ NESWENE Ai,j+1,k+1
—I—EFZ] 1,k—1" ’\,J 1,k=1 —I_WFZ]-I-lk' 1 A,j+1,k—1

(6.20)
6.6.3.2 Attheboundaries

What happens at the boundaries for the linearisation of the viscous fluxes is quite com-
plicated and a lot of cases have to be considered. Only examples will be given in this

108 6. Discrete adjoint solver

SE E NE
o o o
1,)+1 2,j+1 3j+1
]
S F;), C Fs) N
. O ——> 06— O
! 1) 2 3
SW W NW
o o o
1j-1 2,j-1 3j-1

Figure 6.8: Viscous fluxes at the boundaries: first case.

subsection that treat only the viscous fluxes in one direction, the : direction.

The most smple case is when the boundary isin the same direction as the flux studied as
in Figure 6.8 wherethe boundary isat : = 3/2. Itisobviousthat becausethe valueof P ;
dependson P, ;, thereisacontribution of cell 1, 5 that needsto be added to cell 2, j hence

ORy; OFs;y; OF3, 0F5, 0P

T 0Py, 0P, OP,; 0P, 0Py,

where again % results from the linearisation of the boundary condition and can be
S

2J
found in Appendix A. A bit more difficult is the contribution from cell 1, 7 — 1 viacell
2,7 —1tocel 2,

8R27J- . 6F5/2 B 8F3/2 . 8F3/2 8P1’j_1
aPZvj_] aPij_l 8P27‘7'_‘| aP]vj_] aPij_1

W, ;

and smilarly between cell 1,5 + 1 viacell 2,57 + 1 tocell 2, 5.

Now that this has been presented, afew words are needed to come back to the flow solver
MERLIN and explain what is done about the boundary conditions of the viscous fluxes
in the LHS Jacobian. Asalready mentioned in section 5.7.4 alot of smplifying approxi-
mations are made. The contribution fromcell 1, j tocell 2, 5 in C, ; isneverthelesstaken
into account properly. Thisis however relatively easy to take into account because it only
depends on the value of » and occurswhen: = 2 and: = in. The other contribution from
cell 1,7 — 1 viacdl 2,7 — 1 isnot accounted for in MERLIN because it depends not
only on the value of 7 but also on j as we will see next. As mentioned in section 5.7.4,
whatever the situation W, ; is calculated as if inside the domain without worrying about

6.6 Calculation of the exact RHS Jacobian 109

SE E NE
[L L
i-1,3 3 i+1,3
]

S Fiiyz CFiis N

. o — @ —m> O

' i-1,2 i,2 i+1,2
SW W NW
[L L
i-1,1 i1 i+1,1

Figure 6.9: Viscous fluxes at the boundaries: second case.

the boundaries. All the cases presented next are not accounted for in the LHS Jacobian of
MERLIN or inthe LHS of the adjoint solver. Only the RHS of the adjoint solver accounts
for them.

Another possible case is when the boundary is not in the direction of the flux as depicted
in Figure 6.9 where the boundary isat j = 3/2. Likein the previous case, there is a con-
tribution from cell 7,1 to cell 7,2 aswell asfromcell : =1, 1tocell 7 + 1,2 togive

o OR;o OFiy1y2 OFip1)2 0P, _ OF;_1)2 _ OF;_1/2 0P,
TP, 0Py, oP;1 0P,y OPiy OP;1 OP;,
S = OR;2 OFi_1j2 OF;_12 0Py,

YT OPi1, OPi1s OPi11 OPi_i4

C

The final case happens at a corner point as shown in Figure 6.10. This is the superposi-
tion of the two previous cases and starts to become complicated. As previoudly, thereisa
contribution fromcell 1, 3 to cell 2,3 and of cell 3, 1 to cell 3,2. Cell 2,2 now receives a
contribution from cell 1, 2, from cell 2, 1 and from the corner point 1, 1. This gives

C _ aRZQ . an/Q +8F5/2 8P271 aFg/Q aFg/Q (‘3P271 8Fg/2 8P172 aFg/Q aPLl
2,2

T 0Py, 0Py 0Py, 0Py, 0Py, 0Py 0Py, 0Py, 0Py, 0Py, 0Py,

Theterm % depends on the way the boundary condition is applied in the corner point.

2,2
Either
8P171 . 8P1,1 8P1’2

aPQ’Q N 8P1,2 aPQ’Q

110 6. Discrete adjoint solver

SE E NE
([] [] []
13 2,3 3,3
j
S F;), C Fs) N
. o ——s @ —— @
I 1,2 2,2 3,2
SW W NW
([] ([] ([]
1,1 2,1 3,1

Figure 6.10: Viscous fluxes at a corner point: third case.

or
8P1,1 8P171 8P271

8P272 N 8P2,1 8P272

The 3 cases presented above were for boundaries situated at « = 2 but of course smilar
cases occur when : = in. In the same way, the boundary at ; = jn» hasto be considered
without forgetting that the third dimension & playsa similar roleto ;5 when looking at the
fluxesin the direction and has also to be accounted for. To summarise, all the following
cases have to be considered:

e ; = 2 that isfurther divided into

—j=2
—-2<3<gn
—J=n

and
—k=2<kn
- 2<k<kn
—k=kn>2
—k=2=kn

e 2 <1 < inthatisfurther dividedinto

6.6 Calculation of the exact RHS Jacobian 111

—2<3<Jn
—J=Jn
and
—k=2<kn
- 2<k<kn
—k=kn>2
—k=2=Fkn

e ; = in that isfurther divided into

—j=2
—-2<j3<gn
- j=jn
and

—k=2<kn
- 2<k<kn
—k=kn>2
—k=2=Fkn

Notice the case where £ = 2 = kn that is needed when doing (quasi-)two-dimensional
calculations around aerofoilsthat will be presented at the end of this chapter. Thiscaseis
well distinct fromthe cases k = 2 and & = kn and has to be treated separately.

All the materia presented in this subsection refers only to the viscous fluxesin the . di-
rection but of course a similar methodol ogy must be applied for the viscous fluxesin the
7 and k directions. The application of the boundary conditions for the viscous fluxes be-
comes very complicated so a careful and systematic processis needed to codethisinto the
adjoint solver. The last thing to mention is of course that once the Jacobian contributions
have been calculated, they are employed in equation (6.20) written for the relevant val-
uesof ¢, y and k. Close to a boundary thisimplies that the terms multiplied by an adjoint
vector that isoutside the domain, are discarded asit wasin subsections 6.6.1.2 and 6.6.2.2
for the convective fluxes. Whenever this happens, it meansthat acontribution from ahalo
cell hasto beincorporated in acell inside the domain.

112 6. Discrete adjoint solver

6.6.3.3 Interfaceboundary

There is not much to say about the interface boundary for the viscous fluxes. Once again,
the philosophy that the adjoint solver should not be able to see these boundaries, isapplied
and so equation (6.20) is employed as it is written with all itsterms. Thisis relatively
easy to do and note that the terms that have to be coded in addition to the normal terms
used inside the domain, are precisely the same terms that are discarded at a boundary
other than an interface. Things are dightly more complicated when dealing with corner
points, especially when one of the two boundaries is not an interface. In this case, what
has been said for normal boundaries in the previous subsection is applied but without
forgetting that there is an interface boundary and that terms associated with it have to be
accounted for aswell.

This concludes this section on the calculation of the contributionsto the exact RHS Jaco-
bian coming from the laminar viscous fluxes. The linearisation of the turbulence model to
obtain afully turbulent adjoint solver is described next.

6.6.4 Turbulent components
6.6.4.1 Insdethedomain

This subsection presents first the linearisation of the turbulent viscosity y; and then how
thisisused in the adjoint solver.

The description of the linearisation of p, relies heavily on the description of the al-
gebraic turbulence model of Baldwin-Lomax made in section 5.6.2.2. This showed
that the turbulent viscosity is calculated aong rays and that its value depends on all
the cells aong these rays since the boundary between the inner and outer eddy vis-
cosity regions is not known in advance and neither is the location of F,,,, for the
outer turbulent viscosity. As an approximation when these positions are known for a
particular ray, the next paragraph shows that ; depends numerically on a fixed number
of cells, the position of which variesfromray toray. Thismakesit possibleto linearise ;.

The turbulent viscosity is either equal to the inner eddy viscosity or to the outer eddy vis-
cosity of the model. These two cases can be treated separately. It is assumed that the rays
along which i, is calculated are j rays of cells of constant ¢, k. When u; = (p¢)inner
its value depends on the 8 cells shown in Figure 6.11(a). These are the actual cell 7, 7, k
where p, is calculated, 6 cells around it that are used to calculate the magnitude of vor-
ticity and all its velocity gradients and the cell at j = 2 that represents values at the wall
needed to calculate y*. When p; = (1) outer, its value depends on the 10 cells shown in
Figure 6.11(b). These 10 cellsarethecell 7, j, k£ for thedensity; 7 cellsaround j = 7,027
that isthe ; position where the function F' isequal to F,,.., to calcul ate the magnitude of
vorticity |wl;,...; thecell at j = 2 tocaculatey; ;2celsatj = junaor @A J = jminv
that represent respectively the position of maximum velocity amplitude and the position

6.6 Calculation of the exact RHS Jacobian 113

- p¢ is calculated here
. is calculated here)
. | e jmaz‘F
[

(a) Ht = (Ht)inner (b) Ht = (/'Lt)outer

Figure 6.11: Domain of dependency of ;.

114 6. Discrete adjoint solver

of minimum velocity amplitudethat are used to calculate U ,; ;. When these two cases are
combined, the turbulent viscosity potentially dependson 17 cells. No assumption is made
about the position of these cells aong the ray although it is possible that two cells from
the dependency study are the same.

Hence 17 terms M have to be calculated for each 7, 7, k. Thisisastraight differen-

JOP
tiation of the way the éddy viscosity is calculated and is not presented in detail. The only

problem encountered concerns the maximum and minimum functions used for the outer
eddy viscosity that are non-differentiable. As it has been hinted earlier with the depen-
dency drawings, the approximation made is that the derivative of the maximum is equal
to the derivative of the function at the point where it is maximum hence for example

OFpiw _ OF
P, " 0P,

]:]Tn(z’t F

Thisistrue only if the maximum function is smooth. This process was also applied to the
minimum function in the calculation of F,,z.

1 C kel Ud' 2
Euake = mimn (ymarF'mara o €Fmaz‘ ff
maxr

However thisdid not work well at all. A thoroughinvestigation would be needed to under-
stand what is happening exactly in this case but it was found, rather crudely, that if F,,x.
was always calculated as

Fwake = ymamear

this avoided any problem and the overall sensitivity derivatives calculated by the ad-
joint solver agreed quite well with derivatives calculated by finite difference. With
the minimum function, the agreement was not as good. Physically the term v,,,00 Frnax
comes*® from Cebeci-Smith’s model for wall-bounded boundary layers whereas the

Cu}ake Ymazx Udiff2

term comes from Prandtl’s model for free shear flows and should be

Fmax
used in the aerofoil wake. Since in our case, u is aways calculated above the surface
of an aerofoil or wing, the modification of the definition of F,,. isvalid and should not
change the accuracy of the model. It was adopted for all the turbulent computations. To
be consistent, this modification was also included in the flow solver MERLIN.

Once theterms % have been calculated, they are used in the RHS Jacobian as fol-

l
lows. Sincefor aturbulent calculation, the viscosity y isthe sum of the laminar viscosity
and the turbulent viscosity, the derivative of the viscous flux F¥ can be written

)) L OF
P, IP|,

= constant aPl all other terms except py = constant

6.6 Calculation of the exact RHS Jacobian 115

In the previous section on the cal culation of the viscous laminar contributionsto the Jaco-
bian, the assumption that the turbulent viscosity was constant 2 was made hence it is the

OF" . L .
term that was actually calculated there. This section is concerned with
aPl ut = constant
JOF"
. Since only the turbulent viscosity has to be differenti-
aPl all other terms except py = constant

ated, thisderivativeis not difficult to cal cul ate from the definition of F¥ and isnot detailed
here. Note however that the viscous flux F? is calcul ated at the face between two cells at
the position 0 of Figure 5.3 hence the turbulent viscosity that has to be considered is

(10 = 1m0 + ()i i

with the notations of that Figure.

In one dimension, theresidua at onecdll : is still
R, =Fi i —Fi_ip

and it has to be differentiated with respect to all the cells that contribute to the turbulent
viscostiesused in F;/, and F;_, /,. Clearly this makes alot of contributions to calcu-
late, that are then used into an equation equivalent to equation (6.20) to compute the RHS
vector rhs; ; ;. This equation istoo complicated to be written and in fact is not needed to
implement the linearisation of the turbulent viscosity into the adjoint solver. Indeed as al-
ready mentioned, the adjoint solver works face by face and hence flux by flux rather than

cell by cell. For each flux F, therelevant derivativesaa—g arecaculated. Itisthen possible
l

to identify the terms gTF and then the RHS vectors rhs; ; ;. to which they contribute and

{
to add these contributionsto these RHS vectors. To do thisit is necessary to notice that a
1

Alm,n Wherel, m, n vary.

{,m,n

RHS vector rhs; ; , is composed of terms of the form

ik
Once again this has to be repeated for the fluxes in the threé directions.

6.6.4.2 Attheboundaries

Two different problems have to be distinguished and are detailed next: the first oneis
when the turbulent viscosity is calculated inside the domain and the second one, when it
is taken from halo cells.

When the turbulent viscosity is calculated inside the domain, this means that the whole
ray along which it is computed isinside the domain as well. However cellsat i + 1, 7, k

2Congtant here means independent of P in the sens that e = 0 but of course y; isnot aconstant in
the flow solver sinceit is calculated using the Baldwin-Lomax model and hence depends on the local flow

properties. A synonymis u; isfrozen.

116 6. Discrete adjoint solver

or i, jmazr + 1,k for example might be outside the domain. As usua for these types
of cells, their direct contributions to the RHS vectors rhs; ; ., are discarded but they are
added indirectly to cells that are inside the domain. Thisis not detailed but isvery smilar
to what is happening to the first-order inviscid fluxesin section 6.6.1.2.

When the value of the turbulent viscosity is taken from halo cells, it results from the ap-
plication of the boundary conditionsdescribed in section 5.6.3 and is not cal cul ated along
raysinsidethehalo cells. Thisinfact smplifiesthe problem. Let us consider theflux F;;
of Figure 6.8. Itsturbulent viscosity is

(1) = 5l0e)s + ()] (62

Depending on the boundary type, thisis either

(#4)3/2 =0

or
(Mt)3/2 = (pe)2
or
1
(Mt)f%/? = §(Mt)2

aFg/Q

(p¢)2 is now inside the domain so the computation of comes back to the previ-

ous case where the turbulent viscosity is calculated inside theldomai n but has dependency
cells outside the domain. Inthis particular case, the dependency cells1, j, k or 1, jaer, k
are in the halo cells and their contribution would have to be reflected in cells 2, 5, k£ and
2, ImacF, k respectively. Again thisisonly a one-dimensional example while in three di-
mensions, the fluxesin all three directions have to be accounted for.

6.6.4.3 Interfaceboundary

The interface boundary condition ensures that the value of ., in the halo cellsis taken
from the neighbouring block where it was calculated. Hence everything is as if the
turbulent viscosity was calculated along ; rays inside the halo cells. Note that this
assumes that the interface boundary is an ¢ or £ boundary aligned with the 5 direction.
Sinceit is assumed that the turbulent viscosity is calculated along 5 rays starting from the
surface at 5 = 2 and going to the farfield boundary at j = jn, thisisnot restrictive since
a j boundary is never an interface boundary for these blocks. What happens in the wake
is described in the next subsection.

Let us consider again the case of Figure 6.8 where thistime the interfaceat j = 3/2 is
an interface boundary. Equation (6.21) is still valid but this time there is not any connec-
8F3/2

JP,

tion between (.); and (), hence the calculation of involves the calculation of

6.6 Calculation of the exact RHS Jacobian 117

I I(p1)q
and

6Pl 8Pl)

the RHSvector rhs; ; , and thisRHSisonly needed insidethedomain. Henceonly rhss ; x

. However thislinearisation is meant to be used in the computation of

. . . R m,n !
isaffected by (y.);. Sincerhs, ; , isonly composed of terms of the form ORimn Al
2,5,k

only termsinvolving (p1a) need to be calculated. Thisis convenient sinceit meansthat
2,5,k
. . . 0(p 0
only two terms have to be calculated involving (u,);, i .. (j10)s and/or & No
8P27j7k 6P27jmazF7k

such simplification occurs for that is computed as a turbulent viscosity inside the

O(pe)2
_ 0P,
domain.

6.6.44 Inthewake

What has been presented so far in this section on the linearisation of the turbulence model
and its incorporation into the calculation of the RHS vector of the adjoint equation, is
only valid for blocks where the turbulent viscosity is calculated along rays with the
Baldwin-Lomax model. As mentioned in section 5.6.2.2, in the wake behind an aerofoil
or awing, the turbulent viscosity is not actually computed but is copied from the last ray
at the trailing edge of the aerofoil or wing. This necessitates a different treatment of the
linearisation of 1; from what has been described so far.

The problemissimilar to what happens at theinterface boundary because there needsto be
an interface boundary between the block where 1, is calculated and the block in the wake
whereitiscopied. Let ustakethe example of Figure 6.8 again where the block considered
isin the wake and the boundary at i = 3/2 is the interface with the block where p; is
caculated. Hence cellswith: < 1 are situated above the aerofoil or wing and cells with
1 > 2 areinthewake. Since the turbulent viscosity is copied,

(Mt)f%/? = (Mt)m = (Mt)at+1/2 = (e

A)1

{ {

the interface, only values of rhs, ; , with z, j, £ inside the domain need to be calcul ated.
Since everywhere inside the domain, p; only depends on what happens at the interface
o) More specifically, only twotermsremain
2,7,k

a(/it)1 8(#7&)1

and/or ———.

aPQJ’k aPQ’]’maIFJC
for the whole wake block, only RHS vectors of the form rhs, ; , where j and £ vary and
rhs, ; » Where k varies, need to be calculated. Theformulato calculatethemissimple

sJmazFs
rhs ORij
2,5,k a . 7] k
2,5,k

F7:+1/2

0 .
Hence the derivative . Likein the case of

involves only the calculation of

boundary, theonly termsthat remainare

asin the case of the interface boundary i.e. This means that

with for example

118 6. Discrete adjoint solver

Note that in the sum, theteem at : = n will have to take into account a boundary
condition, likewise for the whole equation when 5 or k& are close to a boundary. Another
aspect not to forget is that this treatment has only been presented when the interface
between the block where 1, is calculated and the wake block isat + = 3/2 but of course
this could happen at « = n + 1/2. Finaly thiswas only for the fluxesin the : direction
but a similar methodology has to be applied for the fluxesin the other two directions.

This concludes this long section that detailed the calculation of the RHS vector of the ad-
joint equation with the term by term matrix-vector product involving contributions to an
exact Jacobian and the adjoint vector. This showed first how the contribution from the
convective fluxes is incorporated in this equation before presenting what happens to the
diffusivefluxeswithfirst the viscouslaminar part and then thelinearisation of the Baldwin-
Lomax turbulence model. In each case, details were given for the general treatment inside
the domain and then it was shown what happens close to a boundary, the interface bound-
ary being very different from the other boundaries. To end this chapter on the discrete
adjoint solver, now that it has been presented in detail, results that assess the accuracy of
the adjoint code are shown.

6.7 Verification

One of the problems encountered when trying to implement an adjoint solver isitsvalida
tion. The only possibility is to compute a sensitivity derivative both with equation (6.8)
and the adjoint vector, and by finite-differences. It isthe only way to check the correctness
of the method.

This subsection presents examples of calculation of the adjoint vector and of sensitivity
derivatives that are compared with finite-difference calculations. All these calculations
are quasi-two-dimensional i.e. the flow and adjoint solvers are three-dimensional but
the computational grid has only one cell in the £ direction with a symmetry boundary
condition in the two % planes. To be able to compute the flow on such a grid, the
convective fluxes in the £ direction are limited to first-order. The choice of doing only
two-dimensional accurracy studies is dictated by computing reasons. Indeed to perform
finite-difference sensitivity calculations, the flow solution has to be very well-converged
in order to obtain a difference in the computed objective functions that is due to design
variable changes and not to poor convergence. This implies two things: first that it is
CPU time consuming to do such calculations hence the smaller the grid, the better and
secondly that you need a problem that is able to converge to the level you require. From
the experience of the author, three-dimensional problemsrarely convergeto machine zero
while two-dimensional problems are more likely to do it. For these two reasons, only
two-dimensional problemswere used to assess the accuracy of the adjoint solver.

6.7 Verification 119

Central finite difference Adioint Percentage
c=10""* e=10""° e=10"8% J difference
37 Bézier
05273168 | 05273169 | 05273169 | 05273075 | 0.002 %
dCy, | parameter
2 [6M B&s
dp, | 6" BE2E | 1 1296504 | -0.1796505 | -0.1796505 | -0.1795517 | 0.055 %
parameter
39 Bézier
0.09127480 | 0.09127479 | 0.09127475 | 0.09128026 | 0.006 %
dCp| parameter
— | 60 Bayi
dpy | 67" BEIE | 1 13309757 | 0.13309757 | 0.1330976 | 0.13401192 | 0.011 %
parameter

Table 6.1: Comparison of sensitivity derivatives calculated by finite difference and by the
adjoint method for the NACA0012 aerofoil for alaminar flow.

Two tests are presented here. The first one involves only laminar viscous flow computa-
tions. They are performed on a NACA0012 aerofoil on a 4-block coarse 129 x 33 x 2
grid. The flow conditions are: Mach number M., = 0.80, incidence« = 1.0°, Reynolds
number Re = 500 based on chord and freestream temperature 7., = 16.0 K. The
second test is made on the RAE2822 aerofoil for a fully turbulent flow. The grid has
the same characteristics: 4 blocks for a total of 129 x 33 x 2 points. It is shown in
Figure 4.1(a). The flow conditions for this test case are: Mach number M., = 0.725,
incidence o = 2.54°, Reynolds number Re = 6.5 x 10° based on chord and freestream
temperature 7, = 283.0 K. At these conditions a shock wave formson the upper surface
of the RAE2822 aerofoil at 60% of the chord. The upper surface of both aerofoils was
parameterised using 10 Bézier design variables and sensitivities to the 3" and 6™ are
investigated. For the RAE2822 aerofoil sengitivities to the angle of incidence o are also
considered. The objective functions are lift and drag coefficients in addition to pitching
moment coefficient for the RAE2822 aerofoil.

The results for the NACAO0012 aerofoil for a viscous laminar flow are presented in
Table 6.1. The flow solver and the adjoint solver are always converged to atotal residual
of 10~"* for this case. This accuracy study also investigated the accuracy of the finite
difference method. Three step sizes = were choseni.e. 107, 107% and 10~%. Table 6.1
shows that the finite difference method is not very sensitive to the step size with a

very good agreement between the three results. For a step size of 10~*, there were not

enough available significative digits to be able to distinguish the three results for i@.

k
The agreement between finite difference and the adjoint solver is excellent with 3 to 4
significative digits in common and obvioudy the correct sign each time (so the right
direction in optimisation).

120 6. Discrete adjoint solver
Central finite Percentage
difference Adjoint)

(c = 10-%) difference
dC; 39 Bézier parameter 1.29579 1.29312 0.21 %
L " Bezier parameter | 0440811 | -0.439373 033%
B Incidence o 0.141057 0.140811 017 %
1C,, | 37 Bézier parameter | -0.00825440 | -0.00824008 | 017%
%D g Bezier parameter | 0.206073 0.205986 0.04%
Ay Incidence o 0.00817769 | 0.00817888 | 0.01%
C. | 37 Bézier parameter | 0126766 | -0.128028 1,00 %
®m & Bezier parameter | 0.130785 0.131400 048 %
A0 Incidence a 00342800 | 0.0343446 0.16 %

Table 6.2: Comparison of sensitivity derivatives calculated by finite difference and by the
adjoint method for the RAE2822 aerofoil for afully turbulent flow.

The results for the RAE2822 aerofoil for afully turbulent flow are presented in Table 6.2.
For this test case the flow solver is converged to 2.7 x 10~'? because the convergence
stalled around this value and did not go beyond. This is however aready a very good
convergence level. There was no problem for the adjoint solver so each time it is
converged to 10~'2. Since the previous study did not show a significant sensitivity of the
finite difference method to the step size, avalue of 10~° that seemed reasonableis chosen
here. The agreement between finite difference and adjoint method is not as good as for
the previous case, but it is nevertheless still very good. The difference is supposed to
come from the dight approximations made when differentiating the maximum function
in the linearisation of the Baldwin-Lomax turbulence model. Notice however that for
this case the order of magnitude of the sensitivity derivatives is quite different from
one objective function to another or from one design variable to another, yet the adjoint
method is accurate each time and of course findsthe correct sign even for very low values.

As explained previoudy, the adjoint vector does not have any obvious physical meaning
so very few peoplel%:43:157.2321 ghow a representation of it. Since it has the same number
of components as the flow variable vector, it can be depicted as aflow field. Thisiswhat
isdonein Figure 6.12 and Figure 6.13. Figure 6.12 represents the first component of the
adjoint vector when the objective function is the drag coefficient, for the previous laminar
viscous flow around the NACAO0012 aerofoil. Figure 6.13 shows the same component of
the adjoint vector for the same objective function but thistime for the RAE2822 aerofail
in the fully turbulent flow mentioned above. In these two Figures, the outline of the
4 blocks is aso represented showing the reasonable continuity of the adjoint vector at
the interface boundaries. Similar features to these Figures 6.12 and 6.13 can be found
in References [19, 232] i.e. that the contours look like the flow contours that could be
obtained if the flow was coming from the opposite direction, with a sort of stagnation

6.7 Verification 121

Figure 6.12: First component of the adjoint vector when the objective function isthe drag
coefficient for alaminar viscous flow around the NACA0012 aerofoil .

point at the trailing edge and a wake ahead of the leading edge. Thisis particularly true
for the laminar flow of Figure 6.12.

The conclusion of this section on the validation of the discrete adjoint solver, isthat it is
very accurate when comparing to finite difference sengitivity derivatives. Hence it can
be incorporated without any problem into an optimisation chain to provide the gradients
needed by the optimiser.

Thisisthe end of the chapter describing the discrete adjoint solver that was coded for this
study. Thischapter first presented the discrete and continous adjoint methodsbeforegiving
somereasonsfor chosing the discrete method in thiswork. The adjoint equationswere cast
in aform very similar to that of the flow solver MERLIN, enabling the use of the same
numerical methodology to solve them. Then the innovative content of this adjoint solver
was highlighted, most of it coming from the accurate treatment of the RHS Jacobian that
was then described. That lengthy part detailed the derivation of al the contributions to
this RHS Jacobian starting with thefirst-order accurate convective fluxes, then the higher-
order accurate convectivefluxesand finally the viscouslaminar fluxesand thelinearisation

122 6. Discrete adjoint solver

Figure 6.13: First component of the adjoint vector when the objective function isthe drag
coefficient for afully turbulent flow around the RAE2822 aerofail .

6.7 Verification 123

of the Baldwin-Lomax turbulence model. For al these contributions, their matrix-vector
product with the adjoint vector and their incorporation into the RHS vector of the adjoint
equation was presented. The last part demonstrated the accuracy of thisadjoint solver that
isnow ready to be introduced into an optimisation chain to perform some optimisation as
the next chapter shows.

This page has been |eft intentional ly blank.

124

