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Abstract 

 

Tapered optical fibres with nano-assembled coatings of thicknesses of order tens of nanometres 

were used for the detection of ammonia gas. The film coating was composed of alternate layers 

of tetrakis-(4-sulfophenyl) porphine (TSPP) and poly(allylamine hydrochloride) (PAH), which 

were deposited using the electrostatic self-assembly process (ESA). Exposure of a PAH/TSPP 

nano-assembled non-adiabatic tapered optical fibre with a waist diameter of 10 m to ammonia 

induced significant optical changes in the transmission spectrum of the optical fibre. The fibre 

optic sensor showed a linear sensitivity to the concentration of ammonia in the range of 10–100 

ppm, with response and recovery times less than 100 and 240 sec, respectively. The 3 limit of 

detection (LOD) was estimated to be ca. 2 ppm. 

 

Keywords: tapered optical fibre gas sensors; electrostatic self-assembly process; 
porphyrin; ammonia gas 
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Introduction 

 

Optical techniques offer a powerful tool for the characterization of chemical and biological 

systems (Rees 2002, Del Villar 2005, Grattan 1999). In particular, the coating of optical 

waveguides with nanomaterials that exhibit changes in optical properties upon exposure to 

targeted chemical species offers a prospect for the development of sensitive optical devices 

based upon the interaction of the evanescent field of the optical waveguide with the coating 

layer (Cusano 2005, James 2006, Gu 2007). For instance, different sensitive materials, such as 

bromocresol purple (Cao 2005), oxazine 170 perchlorate (Tao 2007) and fluorescence agents 

(Kara 1993) have been used for the development of fibre-optic ammonia gas sensors. Among 

the optical waveguide devices that have been investigated, tapered optical fibre sensors are able 

to measure environmental parameters (refractive index, chemical concentration, etc.) with high 

sensitivity owing to the large proportion of the energy of the propagating mode extending into 

the surrounding environment in the form of an evanescent field (Corres 2007, Leung 2007, 

James 2006). 

A tapered optical fibre may be fabricated by simultaneously heating and stretching a short 

section of a single mode optical fibre. This creates a region of fibre with reduced and uniform 

diameter (the waist) that is bounded by conical sections where the diameter of the fibre changes 

to merge the tapered section with the unperturbed surrounding single mode fibre. The optical 

properties of the tapered fibre waveguide are influenced by the profile of the conical tapering 

sections, by the diameter of the taper waist and by the optical thickness of the surrounding 

medium. The proportion of the power in the evanescent field, and thus the interaction with the 

surrounding medium, increases with decreasing the diameter of the taper waist (Jarzebinska 

2009). In the tapering section, the guided mode of the single mode fibre is converted into a 

mode of the waist. In adiabatic tapers this is achieved without coupling to higher order modes. 

In non-adiabatic tapers the taper profile is such that a proportion of the light is coupled into 
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higher order modes of the tapered section, which interfere to produce the channeled spectra 

reported for tapers of diameter of order 5 m (Jarzebinska 2009, Corres 2008).  

The tapered area of the optical fibre facilitates evanescent wave spectroscopy, in which the 

absorption spectrum of the surrounding medium is measured. Alternatively, the influence of the 

surrounding medium on the properties of the optical modes of the tapered waveguide can be 

explained as a change in the refractive index, i.e. it will operate as a refractometer.  

Different immobilization procedures based on covalent and noncovalent bonds have been used 

to facilitate the deposition of functional films onto optical fibres (James 2006). The electrostatic 

self-assembly (ESA) method is a useful candidate for the preparation of nano-assembled films 

of molecular levels on a variety of surfaces. This deposition technique is still expanding its 

potential because of its versatility in the fabrication of ordered multilayer films and the ability to 

deposit both inorganic and organic materials (Ariga 1997, Lee 1998). 

In previous work it was demonstrated that porphyrin compounds can be used as functional 

coating materials for optical sensors because their optical properties (absorbance and 

fluorescence features) are influenced by chemicals to which they are exposed (Korposh 2006, 

Korposh 2009, Leung 2007). In general, changes of the optical properties of porphyrin are 

induced by (i) solvent effects, (ii) redox reactions, (iii) protonation or metallation of core 

nitrogen atoms, (iv) electron-electron interaction, (v) electronic changes due to structural 

changes such as flattening and distortion, and (vi) interactions between porphyrins (aggregation) 

(Takagi 2006). In particular, tetrakis-(4-sulfophenyl) porphine (TSPP) can form aggregates with 

distinctive optical features that correspond to certain type of aggregation (Korposh 2006). These 

aggregated structures can be altered by the presence of the particular gas that induces 

protonation/deprotonation of the pyrolle ring with concomitant changes in optical spectrum. 

This can be employed for the gas sensor development (Korposh 2006, Korposh 2009). 

In this study, the previous findings were extended further and the ESA method have been used 

to deposit a multilayer porphyrin film over the tapered region of a single mode optical fibre with 
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the aim of demonstrating a gas sensor. The effect of the polycation on the optical properties and 

structure of the multilayer porphyrin film was thoroughly studied. It is suggested that by using 

poly(allylamine hydrochloride), PAH, for the porphyrin film preparation instead of 

poly(diallyldimethylammonium chloride), PDDA, the form of the aggregation of the TSPP are 

modified and provide improved optical properties that facilitate the detection of wider class of 

chemicals. Moreover, for the first time, to the best of our knowledge, the analyte-induced 

refractive index change of the prepared multilayer porphyrin film was monitored using tapered 

optical fibres. In addition, the effect of the taper waist diameter on the sensor performance was 

studied by fabrication of tapers with waist diameters of 9, 10 and 12 m. 

 

Experimental 

 

Reagents and chemicals 

Porhyrin tetrakis-(4-sulfophenyl)porphine (TSPP, Mw=934.99), sodium hydroxide (NaOH) and 

potassium hydroxide (KOH) were purchased from Tokyo Kasei, Japan. Poly(allylamine 

hydrochloride) (PAH, Mr: 56000) was obtained from Sigma-Aldrich. All of these chemicals 

were guaranteed reagents, and used without further purification. Standard ammonia gas of 100 

ppm in dry air was purchased in cylinder from Japan Air Gases Corp. Deionized pure water 

(18.3 MΩ·cm) was obtained by reverse osmosis followed by ion exchange and filtration 

(Millipore, Direct-QTM). A single mode silica optical fibre (Fibercore SM750 with cut-off 

wavelength 635 nm, core diameter of 8 m and cladding diameter of 125 m) was used in these 

experiments. 

 

Preparation of films 

The detailed description of the fibre tapering procedure can be found elsewhere (Jarzebinska 

2009). Briefly, a single mode silica optical fibre was tapered using the heat and pull technique. 
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Firstly, the polymer buffer coating was removed from a 50 mm long section in the middle of a 

~1 m length of the optical fibre using a mechanical stripper. The stripped section of the optical 

fibre was then fixed on a 3-axis flexure stage (NanoMaxTM, Thorlabs) and exposed to the flame 

produced by a gas burner (max temperature 1800oC) for approximately 60 sec while the ends of 

the fibre were pulled in opposite directions using translation stages. Nonadiabatic optical fibre 

tapers of diameters 9, 10 and 12 m, all having a taper waist of 20 mm, were fabricated. The 

dimensions of the tapers were determined using a digital optical microscope, DZ3 Union 

Optical Co., Ltd., Japan.  

An electrostatic layer-by-layer (LbL) method was employed for the deposition of multilayer 

porphyrin sensor films onto the tapered optical fibres, as described elsewhere (Korposh 2009). 

Briefly, the tapered region of the optical fibre was fixed in a hand-made Teflon holder, rinsed 

with deionised water and exposed to 1 wt% ethanolic KOH for 20 min, leading to a negatively 

charged surface. The optical fibre was then exposed to a solution containing a positively 

charged polymer poly(allylamine hydrochloride) (PAH) for 20 min, so that a monolayer of PAH 

was deposited onto the surface of the fibre. The pH of the PAH solution was adjusted to 10.5-11 

using NaOH. Subsequently, the tapered optical fibre was rinsed with distilled water and dried 

by flushing with nitrogen gas. The fibre was then exposed to a solution of a functional 

porphyrin dye, tetrakis-(4-sulfophenyl) porphine (TSPP) for 20 min, which provides the sensing 

capability. The fibre was again rinsed with distilled water and dried. The multilayer film was 

built up by alternating exposure to the PAH and TSPP solutions and stopped when a five bilayer 

PAH/TSPP film was prepared, giving a thickness of ca. 10 nm (Korposh 2006). This procedure 

was applied to the optical fibres with different tapered diameters of 9, 10 and 12 μm. 

Additionally, in order to check the film properties, the PAH/TSPP film was also assembled onto 

a quartz substrate using the same deposition procedure. 

 

Optical measurements 
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Absorption spectra of the PAH/TSPP film deposited on quartz substrates were measured using a 

double beam Jasco V-550 UV-vis spectrophotometer. The transmission spectra of the optical 

fibre tapers were characterized by coupling the output from a tungsten-halogen light source 

(HL-2000, Ocean Optics) into the proximal end of the optical fibre, and coupling the output 

from the distal end into a spectrometer (HR2000, Ocean Optics). This system was used to 

record transmission spectra of the tapered fibre during film deposition and during its subsequent 

exposure to ammonia.  

For ammonia gas measurements the desired concentration was produced using a two-arm flow 

system, as described elsewhere (Korposh 2006, Korposh 2009). 

For humidity measurements, a humidity logger (Hygrochron, KN Laboratories: relative 

humidity range of 0–95%; accuracy 5% at 25 oC in the range of 20–80% RH and reading 

resolution 0.1%) was used to measure humidity inside the measurement chamber. 

 

Results and Discussion 

 

Optical spectra of the PAH/TSPP film 

Figs. 1a and 1b show the evolution of the absorption spectra measured during the deposition of 

a 5-bilayer PAH/TSPP film, (PAH/TSPP)5, onto a quartz substrate with PAH (Fig. 1a) and 

TSPP (Fig. 1b) outermost layers, respectively. The largest change in absorbance due to 

deposition of the (PAH/TSPP) bilayers was observed at 420 nm, which corresponds to the Soret 

band of TSPP. In accord with our previous reports of the deposition of 

poly(diallyldimethylammonium chloride)/TSPP (PDDA/TSPP) alternate layers (Korposh 2006, 

Korposh 2009), the UV-vis absorbance increases with the number of the TSPP deposition 

cycles (inset in Fig. 1b), indicating a uniform film growth on the quartz substrate. In contrast to 

the PDDA/TSPP film, however, the 1st Soret-band (420 nm) is more pronounced in the 

PAH/TSPP film and is accompanied by the weakly developed 2nd Soret-band (490 nm) and 
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Q-bands (500–700 nm), suggesting that monomeric structures of TSPP can be preferably 

formed (Korposh 2006, Korposh 2009). It is possible that the amine groups of PAH induce the 

partial deprotonation of TSPP and reduce the amount of J-aggregates of TSPP. With a PAH 

outer layer, a strong absorbance peak at 420 nm (protonated TSPP) along with the weak band at 

410 nm (non-protonated TSPP) and a number of small Q-bands (500–700 nm) were observed, 

indicating the desorption of the TSPP J–aggregates. However, the absolute amount of the 

adsorbed TSPP molecules is lower than that observed in the PDDA/TSPP film because of weak 

cationic property of PAH. Consequently, films with a TSPP outermost layer will be more 

sensitive to exposure to analytes such as ammonia than those with a PAH outermost layer. On 

the other hand, the configurations of TSPP inside the film are more diverse in the PAH/TSPP 

film (Selyanchyn 2011) as compared to those in the PDDA/TSPP film, in which TSPP exists as 

a zwitterionic form and the J-aggregation arrangement is predominant (Korposh 2006, Korposh 

2009). In particular, as inferred from absorption spectra, in the PAH/TSPP film TSPP exists in 

monomeric protonated (peaks at 420 and 658 nm) and non-protonated (410 nm) states and the 

protonated zwitterionic form is required for creation of the J-aggregates (peaks at 490 and 

706nm). The presence of TSPP in different states provides unique optical properties and rich 

absorption spectra that can be utilised for the detection of different chemical compounds. 

 

Properties of the tapered fibres 

Figs. 2a-2c compare the transmission spectra of the tapered fibres with 9, 10 and 12 m waist 

diameters, respectively, measured in air and water. In general, the transmission spectrum of a 

tapered optical fibre depends strongly on the geometry of the taper; i.e. waist diameter, length of 

the taper region and taper angle. If the taper angle is small enough to ensure negligible transfer 

of power from the fundamental core mode to higher order modes of the taper waist, then the 

taper is termed adiabatic. In non-adiabatic tapers, the fundamental mode couples to higher order 
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modes of the taper waist. Interference, or beating, between the mode results in oscillations in the 

transmission spectrum. For smaller taper diameters it is possible to observe the excitation of two 

hybrid modes, HE11 and HE12, of the tapered waist. These two modes propagate, with different 

effective refractive indices, to the end of the tapered waist, and then will couple back to the LP01 

mode of the fibre through the second conical region. Interference between these modes produces 

a sinusoidal channelled spectrum (Black 1991, Kieu 2006). This effect has been used previously 

to demonstrate sensors for temperature and surrounding refractive index, based upon the 

differential response of the two modes of the tapered region (Kieu 2006).  As the taper 

diameter increases the number of excited modes increase, resulting in more complex spectra.  

The form of the spectra shown here indicates clearly that the tapers are non-adiabatic.  

 

When the tapered fibre is immersed into water, the wavelength of the channelled spectra 

undergoes a red shift along with a change in the amplitude of the optical spectrum due to 

increase of the refractive index (RI) of the surrounding medium from 1.00 (air) to 1.33 (water). 

The wavelength shift of the channeled spectrum is a result of a differential change in the 

propagation constants of the modes within the tapered region (Corres 2007, Jarzebinska 2009), 

while the reduction in amplitude is a result of the reduced confinement of the modes that 

accompanies immersion in water, which has a higher refractive index than that of air. 

Interestingly, the wavelength shifts (determined as an average value across the spectrum) of the 

spectral features are 28, 16 and 15 nm for the 9, 10 and 12 m tapered optical fibres, 

respectively, suggesting that fibre with thinner waist diameter possesses higher sensitivity to RI 

change. 

 

Film assembly onto the tapered fibres 

In this study, the changes in the transmission spectrum during the film deposition is influenced 

by two effects; the absorption spectrum of TSPP and differential changes in the propagation 
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constants of the modes of the tapered fibre section. The response of the transmission spectrum 

to increasing numbers of deposited layers is shown in Fig. 3. The channeled spectra undergo a 

red-shift due to the differential changes in the effective refractive index of the HE11 and HE12 

modes of the tapered waist in response to the increasing optical thickness of the coating, for all 

tapered fibres. There is also a strong decrease in the measured power at 700 nm when the 

tapered optical fibre is immersed into the TSPP solution (Fig. 3d) (Takagi 2006). 

The transmission of the tapered fibre measured near 700 nm decreases with increasing number 

of deposited bilayer. It is interesting to note that, at stages during the coating deposition when 

the structure of the coating is such that TSPP outermost layer, the transmission of the tapered 

fibre at 700 nm measured in solution and in air (Figs. 3a and 3b, respectively) is lower than 

when PAH is the outer layer (Figs. 3c and 3d). At the same time the wavelength shift of the 

channeled spectra was largely independent of which material formed the outer layer (Figs. 3b 

and 3c). These results indicate that tapered fibres respond not only to the film thickness and RI 

change, but are also sensitive to the absorbance of the deposited TSPP sensing layer. Moreover, 

the red shift of the transmission peaks correlates with the number of deposited layers, indicating 

the uniform deposition of the TSPP and PAH layers on the tapered optical fibres. When the 

PAH is deposited as an outermost layer, the wavelength shifts are approximately 1.0, 1.2 and 

1.3 nm per bilayer for the 9, 10, and 12 m diameter tapered fibres modified with (PAH/TSPP)5 

film, respectively (data for 9 and 12 um diameters not shown in figures). On the other hand, 

when TSPP formed the top layer, the wavelength shifts are 4.2, 1.1 and 1.4 nm per bilayer for 

the 9, 10, and 12 m diameter tapered fibres (Fig. 4), respectively, indicating that tapered fibre 

with the 9 m waist diameter is more sensitive to changes in RI of the coating than are the fibres 

with 10 and 12 m waist diameters. It should be noted that these results are in accord with data 

obtained when fibre was immersed into water. Moreover, these data correlate well with the 

linear dependence of the absorbance on the number of the cycles of the PAH/TSPP film that 

were deposited onto a quartz substrate (Fig. 1b). 
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Most plausibly, the RI of the film is higher when TSPP is deposited as an outer layer due to 

J-aggregates, which is destroyed when PAH is an outer layer. In addition, TSPP is partly 

removed from the PAH/TSPP film when exposed to PAH solution as inferred from absorption 

spectra (Figs. 1a and 1b). In other words the PAH/TSPP film is denser when TSPP is an outer 

layer leading to higher RI value of the film as compared with PAH.  

The dynamic response of the transmission of the tapered fibre measured at 700 nm (inset of Fig. 

3a) for the deposition of each TSPP layer saturated within 100 sec, indicating that the deposition 

of the TSPP layer is complete within 100 sec. A reliable deposition time for the PAH layer, 

however, could not be obtained due to limitations of the measurement system. Consequently, to 

ensure the complete layer formation for both TSPP and PAH, a 20 min deposition time was 

employed, which was previously found to be optimal (Ariga 1997) for uniform film deposition. 

 

Response to ammonia 

A purpose designed measurement chamber was used in order to characterise the sensor 

performance. The tapered section of the optical fibre coated with the functional film was 

inserted into the chamber. The desired gas concentrations were produced using a two-arm flow 

system described elsewhere (Korposh 2009). The dry compressed air that was used as the 

carrier gas and ammonia gas of 100 ppm concentration were passed separately through two 

flowmeters; the two flows were then combined to produce the desired ammonia concentration in 

the measurement chamber. The concentration could be controlled by adjusting the flow rates of 

the ammonia and the air. 

The transmission spectrum was recorded with a 1 Hz update rate (measurement time equivalent 

to 1 sec), as the device was exposed to a given ammonia concentration and subsequently flushed 

with dry air. The difference spectrum was plotted by subtracting a spectrum measured at a given 

ammonia concentration from the spectrum recorded in the presence of dry air. The baseline 

spectrum and sensor response of each experiment were recorded by passing dry air through the 
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measurement chamber until the signal measured at 700 nm reached equilibrium. 

The results are shown in Fig. 5a–5d). As the ammonia concentration increased from 10 ppm up 

to 100 ppm, the intensity measured at 700 nm increased for the 10 m and 12 m diameter 

optical fibre tapers (Figs. 5b). Interaction of the ammonia molecule with TSPP leads to the 

deprotonation of the pyrolle ring of TSPP and hence influences the electrostatic interaction 

between the TSPP moieties in the PAH/TSPP film (Korposh 2006, Korposh 2009). 

Consequently, the biggest change in absorbance is observed at 700 nm (Q band), which may be 

closely related to the aggregation state of the TSPP molecules (Takagi 2006).  

Interestingly, when measurements were conducted using the tapered fibres with 10 and 12 m 

waist diameters, the channeled spectra did not exhibit a wavelength shift in response to 

exposure to ammonia suggesting that ammonia–induced RI change can not be measured with 

tapers of these diameters, possibly because the modes are tightly bound and the influence of the 

modes’ evanescent field interaction with the coatings do not induce significant differential 

changes in the propagation constants (Fig. 5b). When the 9 m diameter tapered fibre coated 

with the (PAH/TSPP)5 film was exposed to ammonia, a red–shift of the spectral features at 1000 

and 1040 nm was observed that saturates with the increase of the concentration (Fig. 5c). We 

can assume that the wavelength red–shift of the spectral features is caused by the 

ammonia–induced change in the RI of the PAH/TSPP film. It should be noted that this change is 

not continuous and saturation occurs between 0 and 50 ppm (Fig. 5c). As was revealed from 

results shown in Fig. 2, 9 m tapered fibre possesses higher sensitivity to RI change as 

compared to 10 and 12 m tapered fibres. The absence of the intensity change at 700 nm can be 

explained by the transmission spectrum of the 9 m tapered fibre obtained after deposition of 

the 5th bilayer of the PAH/TSPP film (data not shown); the optical power at 700 nm transmitted 

to spectrometer is very low and therefore it is virtually impossible to measure the small 

ammonia–induced intensity change. We can conclude from these results that the wavelength 

shift near 1000 m of the 9 m tapered fibre is sensitive to ammonia-induced RI changes of the 
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coating and the change is transmitted power near 700 nm of the 10 and 12 m tapered fibres can 

be used to monitor ammonia gas concentration. 

Dynamic ammonia–induced changes of the tapered fibres with 10 and 12 m waist diameters 

coated with the (PAH/TSPP)5 film were monitored at 700 nm, as shown in Fig. 5d. The 

measurement principle for these waist diameters is based on the evanescent wave spectroscopy. 

The response time and recovery time (t90) of the sensor to increasing ammonia concentration 

were within 100 sec and 240 sec, respectively. The sensitivity of the device derived from the 

slope of the calibration curve is 0.440±0.002 mV/ppm and estimated limit of detection (LOD) 

calculated using the 3 method is 2±0.3 ppm (inset of Fig. 5d). It should be noted that 

sensitivity of the proposed sensor is ca. 3 times higher as compared to the PDDA/TSPP film 

assembled onto the quartz substrate (Korposh 2006). This most plausibly is owing to the higher 

localized energy at the taper of the optical fibre and increased interaction efficiency between the 

probe light and the functional film. On the other hand, the sensitivity of the fabricated device 

was ca. 6 times lower as compared to multimode optical fibre modified with the PDDA/TSPP 

film (Korposh 2009). This can be attributed to the presence of TSPP in J-aggregated form in 

higher concentration in the PDDA/TSPP film as compared to the PAH/TSPP film used in this 

study. However, the presence of TSPP in different forms inside the PAH film may allow to the 

coating to exhibit sensitivity to different chemical compounds, thus increasing the application 

range of the proposed sensor. This hypothesis will be thoroughly explored in the future work. In 

addition, the taper fibre may operate as both an evanescent wave spectroscope and as a 

refractometer. Thus, in contrast to solely evanescent wave spectroscopy, materials without 

absorbance features in the Uv-Vis range may be employed as sensitive layers, extending the 

utility of the chemical fibre optic sensors and class of the detectable analytes. 

The fabricated device was exposed to varying relative humidity to study its effect on the sensor 

response. When rH was reduced from 70 % to 10% and increased back to 70%, no significant 

change in the transmission spectra was observed (Figs. 6a and 6b) revealing selectivity of the 
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sensor to ammonia over rH. The immunity of the sensor to rH change is very important for 

real-world practical applications where humidity is one of the major interfering parameters. For 

example, ammonia detection in breath is highly important non-invasive diagnostic tool in 

medicine (Turner 2006), but highly challenging due to high humidity present in breath. Up-to 

date, to the best of our knowledge, there is no sensor with satisfactory sensitivity and selectivity 

for the detection of ammonia in breath. In our future study of the use of this sensor application 

for ammonia breath measurement, the cross-sensitivity to other gases will be undertaken. 

 

Conclusions 

 

In summary, tapered optical fibres coated with nano-scale alternating layers of PAH/TSPP 

deposited using an electrostatic self-assembly approach were tested as ammonia gas sensors. 

The response of the transmission spectrum to the deposition of the PAH/TSPP alternate film 

was studied. A wavelength shift of the channelled spectra features and a decrease in transmitted 

optical power was observed in response to the film thickness increase and to the absorbance 

changes, respectively. In the case of a 9 m tapered fibres waist diameter, the red shift of the 

transmission peaks near 1000 nm is sensitive to ammonia-induced RI changes of the coating. 

Tapered fibres with waist diameter of 10-12 m showed reversible and linear response to the 

ammonia gas with short response time and recovery time (100 and 240 sec, respectively) and 

limit of detection ca. 2 ppm. The sensing mechanism is based on the interaction between the 

ammonia and the porphyrin compound that leads to the deprotonation of the TSPP pyrolle ring 

and the formation of ammonium ions and is mainly accompanied by changed in transmitted 

power occurring at around 700 nm (Korposh 2009). The future challenge is to test the 

selectivity of the device by exposing it to different gas species. When comparing the sensing 

performance of the tapered optical fibres used in this study we can conclude that fibre with the 

smaller diameter (9 m) will be suitable for measurement of the RI change of the coating. The 
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fibres with larger diameters (10 and 12 m) can be employed for evanescent wave spectroscopy. 
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Figure Captions 

 

Fig. 1. Evolution of the absorption spectra during deposition of a 5-cycle PAH/TSPP alternate 

film onto a quartz substrate measured with an outermost layer of (a) PAH and (b) TSPP. Arrows 

indicate the number of bilayers deposited and the inset of Fig. 1b shows peak absorbance vs. the 

number of deposited layers measured near 410 nm (squares) and 706 nm (circles). 

 

Fig. 2. Comparison of the transmission spectra measured in air and water using tapered optical 

fibres with a taper diameter of (a) 9 m, (b) 10 m, and (c) 12 m. (d) optical images of the 

tapered region of the optical fibres with different waist diameter. 

 

Fig. 3. Evolution of the transmission spectra of the 10 m tapered optical fibre during 

deposition of a five-cycle PAH/TSPP alternate film (a) Measured in TSPP solution and 

measured after drying the optical fibre with an outermost layer of (b) TSPP and (c) PAH. (d) 

Peak intensity measured near 700 nm plotted vs. the number of PAH/TSPP deposition cycles for 

TSPP and PAH outermost layers in water and air. Horizontal arrows indicate the number of 

layers deposited and the direction in which the transmission peaks are shifted. The downward 

arrows indicate the decreasing intensity of the transmission peak near 700 nm. Cycle 0 shows 

the spectrum measured prior to film deposition. Inset in Figure 3a shows dynamic response 

measured near 700 nm during deposition of TSPP layer. 

 

Fig. 4. peak wavelength shift near 700 nm vs. the number of PAH/TSPP deposition cycles for 

TSPP outermost layers in air measured using tapered fibres with waist diameter of: squares, 9 

m; circles, 10 m; and triangles, 12 m. 

 

Fig. 5. (a) Transmission difference spectra obtained by subtracting a spectrum measured in the 
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100 ppm ammonia atmosphere from the spectrum measured in air with the tapered fibres of 9, 

10, and 12 m modified with a (PAH/TSPP)5 film, (b) transmission difference spectra of the 10 

m tapered fibre measured at given ammonia concentrations from 10 ppm to 100 ppm, (c) 

transmission spectra of the 9 m tapered fibre measured before and after 50 and 100 ppm 

ammonia exposures, and (d) dynamic responses of the 10 and 12 m tapered fibres to the 

varying ammonia concentration (from 100 ppm to 10 ppm) recorded at 706 nm, where arrows 

indicate the admission time of ammonia and air into the measurement chamber. The inset of Fig. 

5(d) shows a calibration curve plotted from the difference spectra data taken at 706 nm: squares 

and circles show the data of the 10 and 12 m tapered fibres, respectively. 

 

Fig. 6. (a) Transmission spectra of the 10 m tapered fibre modified with PAH/TSPP film 

measured before and after change of the relative humidity ; (b) dynamic responses of the 10  

m tapered fibre to the varying rH from 70 to 10 % and back recorded at 706 nm, where lines 

indicate the admission time of dry air into the measurement chamber. 
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Fig. 1 

 

(a)                                (b) 

 

 

 

 

 

 

Fig. 1. Evolution of the absorption spectra during deposition of a 5-cycle PAH/TSPP alternate 
film onto a quartz substrate measured with an outermost layer of (a) PAH and (b) TSPP, 
respectively. Arrows indicate the number of bilayers deposited and the inset of Fig. 1b shows 
peak absorbance vs. the number of deposited layers measured near 420 nm (squares) and 706 
nm (circles). 
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Fig. 2 

 

(a)                       (b)                      (c) 

 

 

 

 

 

 

 

Fig. 2. Comparison of the transmission spectra measured in air and water using tapered optical 
fibres with a taper diameter of (a) 9 m, (b) 10 m, and (c) 12 m. Optical images show the 
tapered region of the optical fibres with different waist diameters. 
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Fig. 3 

 

(a)                                           (b) 

 

 

 

 

 

 

(c)                                    (d) 

 

 

 

 

 

Fig. 3. Evolution of the transmission spectra of the 10 m tapered optical fibre during 
deposition of a five-cycle PAH/TSPP alternate film (a) Measured in TSPP solution and 
measured after drying the optical fibre with an outermost layer of (b) TSPP and (c) PAH. (d) 
Peak intensity measured near 700 nm plotted vs. the number of PAH/TSPP deposition cycles for 
TSPP and PAH outermost layers in water and air; Horizontal arrows indicate the number of 
layers deposited and the direction in which the transmission peaks are shifted. The downward 
arrows indicate the decreasing intensity of the transmission peak near 700 nm. Cycle 0 shows 
the spectrum measured prior to film deposition. Inset in Figure 3a shows dynamic response 
measured near 700 nm during deposition of TSPP layer. 
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Fig. 4 

 

 

 

 

 

 

 

 
 
 
Fig. 4. Peak wavelength shift near 700 nm vs. the number of PAH/TSPP deposition cycles for 
TSPP outermost layers in air measured using tapered fibres with waist diameter of: squares, 9 
m; circles, 10 m; and triangles, 12 m. 
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Fig. 5 

 

                         (a)                                 (b) 

 

 

 

 

 

 

(c)                                  (d) 

 

 

 

 

 

 

Fig. 5. (a) Transmission difference spectra obtained by subtracting a spectrum measured in the 
100 ppm ammonia atmosphere from the spectrum measured in air with the tapered fibres of 9, 
10, and 12 m modified with a (PAH/TSPP)5 film, (b) transmission difference spectra of the 10 
m tapered fibre measured at given ammonia concentrations from 10 ppm to 100 ppm, (c) 
transmission spectra of the 9 m tapered fibre measured before and after 50 and 100 ppm 
ammonia exposures, and (d) dynamic responses of the 10 and 12 m tapered fibres to the 
varying ammonia concentration (from 100 ppm to 10 ppm) recorded at 706 nm, where arrows 
indicate the admission time of ammonia and air into the measurement chamber. The inset of Fig. 
5(d) shows a calibration curve plotted from the difference spectra data taken at 706 nm: squares 
and circles show the data of the 10 and 12 m tapered fibres, respectively. 
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Fig. 6 

 

(a)                                     (b) 

 

 

 

 

 

 

Fig. 6. (a) Transmission spectra of the 10 m tapered fibre modified with a 5-cycle PAH/TSPP 
film measured before and after change of the relative humidity and (b) dynamic responses of the 
10 m tapered fibre to the varying RH from 70 to 10 % and backwards recorded at 706 nm, 
where lines indicate the admission time of dry air into the measurement chamber; line 1, sensor 
response; and line 2, RH change measured using humidity logger. 
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