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Introduction 

Anglian Water plc. have recorded a recent rise in the number of bursts to water 

mains, impacting on the reportable serviceability of the network to the regulator. 

Cranfield University National Soil Resources Institute were asked to investigate and 

advise on potential environmental causes for this. This report ‘Soil and Climatic 

causes of water mains infrastructure bursts’ forms a part of the contractual 

obligations entered into by Cranfield University with Anglian Water plc. and is 

provided for Anglian Water plc., submitted as a deliverable for Cranfield University 

project ‘WU33701V ‘ as part of the wider Anglian Water plc. ‘Burst mains and climate 

factors project’. 

Details of the Task Descriptions as set out in the Contract are included at Appendix 

A. The Deliverables from this work are summarised in Table 1. The work undertaken 

comprised data analysis and interpretation of the results in the context of know soil 

mechanical models and the methods and results are presented in this report.  

 
Table 1 Key project Deliverables and Activities 

Deliverables Key Activities 

Deliverable 1  Assessment of burst records against soils criteria 
  
Deliverable 2 Assessment of burst records against meteorological criteria 
  
Deliverable 3 Literature review of academic publications 

 

This report is structured into five parts which, together with the Appendices, fulfil the 

requirements of the contract. 

Part 1 provides a summary literature review of key documents discovered pertaining 

to soil and climate-related causes of water infrastructure bursts. 

Part 2 provides contextual information on the datasets, materials and methods 

employed in the analyses undertaken. 

Part 3 investigates chronic pipe degradation by non-seasonal effects, such as 

corrosion 

Part 4 investigates the effect of cold winters on burst rates 

Part 5 investigates the effect of hot and dry summers, and the subsequent re-wetting 

in autumn, on burst rates 

Part 6 considers a spring baseline status of burst level 

Part 7 provides conclusions to the report and Part 8 makes suggestions for further 

research. 
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1 Literature Review 

 

A review of the academic literature addressing the causes of mains water failures 

relating to soil, meteorology, or other environmental phenomena is presented below. 

This helps to identify themes and combinations of causal factors that have not been 

fully explored to date, as well as to guide and set the context for the factor analysis 

undertaken by Cranfield. 

1.1 Types of pipe failure mechanism 

Pipes fail for a variety of reasons, physical and bio-chemical. Physical mechanisms 

result in loading forces being brought to bear on the pipe wall materials (Pers. 

Comm., 2012, Dr M.Hann, CEng. EnvEng. FIAgEng. MICE), including (Table 2): 

Table 2 Principle types of pipe failure mechanisms 

Principle types of pipe failure mechanism 

Shear force 
Compression force (pushing) 
Tensile force (pulling) 
Bending (combing compression and tensile forces) 
Collapse (compression force) 
‘Hoop’ force (a commonly used engineering term) 
Corrosion 
Embrittlement 
Leverage from plant root encroachment 

 

Such loading forces can play on the mains water pipes in a number of ways: 

1.1.1 Internal forces 

Internal forces occur due to the pressure of the pumped water playing upon the 

internal wall of the pipe itself, producing: 

1. Tensile failures – usually manifesting as joint pulling (where the ferrule joint ‘pops’) 

so leading to circumferential failure. Sudden variations in water pressure can also 

lead to a ‘hammer’ effect that can exacerbate such failures. 

2. Hoop failure – forming longitudinal splits in pipe walls forming at localised 

imperfections in pipe wall material due to the outward forces of pressurised water, 

the unequal response of the pipe wall leading to this preferential failure. 

This section provides a review of the potential environmental causes of water 

mains failures from the academic literature. Further to this an overview is 

provided of the types of failure mechanisms pipe assets are subject to. 
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1.1.2 External forces 

External forces occur due to external factors playing on the laid pipe material: 

1. Building weight load 

Shearing – due to differential loading from adjacent built structures etc. 
Compression – due to crushing loads (having a direct bearing loading on the pipe). 
Bending (combines compressing and tensile) – produces bending and torsion of the 

pipe in the trench, produces tensile (lower side) and compressive (upper side) 
forces. Both compression and more particularly tensile forces will produce 
both longitudinal and/or circumferential failures. 

Collapse (compressible) – where the weight of a building load collapses trench 
materials which then come to bear on the pipe wall. 

 

2. Traffic load 

Shear – due to differential loading from vehicles passing on roads above etc. 
Compression – due to crushing loads of traffic (direct loading on pipe), for example, 

bursts may be more likely to occur under bus stops than on open roads. 
Bending (combines compressing and tensile) – produces bending and torsion of the 

pipe in the trench. This produces tensile (lower side) and compressive (upper 
side) forces. Both compression and more particularly tensile forces will 
produce both longitudinal and/or circumferential failures. 

Collapse (compressible) – where the weight of passing traffic collapses trench 
materials which then come to bear on the pipe wall. 

 

3. Soil trench load 
 
Differential trench loads can form where weight of the backfill in trench, plus the 

bedding and packing around pipe can come to bear on the pipe. The likelihood of 

failure here will depend upon the pipe instatement.  

Shear forces in the trench may also result from ‘bridging’ (which is a span of 

unsupported pipe, resulting from failure in the ‘trench bedding’ beneath). This 

produces tensile (lower side) and compressive (upper side) forces. Both compression 

and more particularly tensile forces will produce both longitudinal and/or 

circumferential failures. 

1.2 Ground conditions 

The ground in which utility service pipelines are buried inevitably controls, to a large 

degree, the structural performance and progressive deterioration of the pipelines 

themselves (Royal et al., 2011), highlighting impacts from ground features such as 

voids, ground wettening and softening due to leakage, as well as ground weakening 

due to progressive subsurface erosion. Consideration of impacts on community 

services such as pipes and conduits carrying fresh water, storm water, sewage, gas 

and electric cables requires knowledge of soil conditions to a depth of 1.5 to 3m or 

more (Brink et al.,1982). Ground condition geohazards can cause a range of issues 

to manifest in buried assets such as water mains. Conditions that affect such 
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services adversely include high water tables, soft soils, soils of low shear strength 

and compressible soils subject to differential movements on changes in moisture 

content (op cit., 1982). Reported impacts to buried infrastructure from other sectors 

can also be relevant where materials concerned are the same. Leigh et al (2010) and 

Oliveira (2009) identify how linear works, such as highways, power lines, gas and oil 

pipelines can all be threatened by a range of geohazards, including landslides, floods 

and erosion. Also highlighted are the importance of appropriate installation methods 

in the project design phase and the utility of a ‘pipeline integrity management plan’, 

as commonly used in Brazil, Italy and Canada (Leigh et al., 2010). 

Once in digital GIS format, definitive soils information for England and Wales can be 

used effectively to underpin a range of modelling applications such as geohazard 

assessments for buried assets and structures (Keay et al., 2009; Hallett et al., 1996). 

From the literature, the following environmental themes have emerged (Table 3). 

Table 3 Summary of the soil-related causal themes relating to main failures 

Causal themes relating to main failures identified in the literature 

Clay-related subsidence 
Effects of vegetation 
Sand washout and cavitation 
Compressible soft soils 
Silt soils and freeze effects 
Wetness and drainage 
Soil temperature flux 
Changing climatic conditions 
Soil corrosivity 
Solution pits and cavitation 
Soil liquefaction and solifluction 
Electromagnetic induction effects 

1.3 Clay-related subsidence 

Soil-related subsidence originates from a number of causes, the most significant of 

which is shrinking and swelling clays as they impact on buried assets (Jones et al., 

1995; Hallett et al., 1994; Reeve and Hall, 1978). Many geohazard impacts arise 

from siting structures in expansive clays (Doorkamp, 1994). Such clays impact on 

building foundations (Boden and Driscoll, 1987), as well as affecting buried linear 

assets such as water supply pipelines. The effects of clay shrinkage beneath the 

ground are hidden, however surface effects from clay movement can be striking.  

Figure 1 highlights the impact of lateral ground movements. 
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Figure 1 The effects of severe clay-related movement on brickwork.(Wimpole, Cambs. S. Hallett) 

The degree of shrinkage and swelling of silicate clays is related to their mineralogy, 

and it is important to note that not all clays exhibit the same swelling characteristics. 

Clays are comprised of arrangements of silicate (tetrahedral) and aluminium, 

magnesium and iron (octahedral) sheets contained in crystal units or layers, each 

being only some 0.1 to 1.0 μm in size (Brink et al.1982). There are two such main 

clay groups: 1:1 silicate clays, having one tetrahedral and one octahedral sheet, and 

2:1 silicate clays, having one tetrahedral layer sandwiched between two octahedral 

sheets (Brady and Weil, 2002). The 1:1 silicate clays include kaolinite, halloysite, 

nacrite and dickite. These clays are not prone to great shrinkage and swelling. 

Conversely, 2:1 silicate clays (also known as ‘2:1 lattice clays’) include smectites and 

vermiculites which are capable of significant expansion. Other 2:1 clay minerals such 

as illite (mica) and chrlorite do not expand, changing little in volume when wetting 

and drying. Smectitic soils, previously termed ‘montmorillonites’, are common across 

the Anglian Water region. Smectitic clays expand when water molecules enter the 

inter-layer spaces, forcing the layers apart. Due to the plate-like layers comprising 

these clays, there is a surprisingly large surface area onto which water can bond – 

smectites have some 550-650m2/g internal surface area (op cit., 1982). 

Soils that possess vertic properties, being high in swelling type clays, develop 

wedge-like structures in subsoil horizons (Brady and Weil, 2002). This occurs when, 

during the dry season, deep cracks (or gilgai) appear in the soil to more than 1m in 

depth (Figure 2). Some surface soil crumbs fall into these cracks (causing partial soil 

mixing, or churning). During subsequent wet seasons, rainwater pours down the 

cracks, wetting the soil near the bottom of the cracks first, extending subsequently to 

the whole soil column, or profile. As smectitic clays absorb water they expand, 

entrapping the collected granular soil. The increased soil volume causes first lateral, 

then upwards soil movement after the cracks close. If the heave continues the soil 

mass shears, due to the strain, and features termed ‘slickensides’ appear (being 

sliding plates in the clay), see Figure 3. These features are characteristic of the 

heaving in the soil that can damage lain infrastructure such as pipes. This movement 



 

  17 

can affect not only inflexible pipe materials such as cast and ductile iron (Clayton et 

al, 2010), but the soil movement also affects more contemporary materials such as 

polyethylene or PVC pipes (Gallage et al, 2012). Experimental research has 

identified causes of such leakage to be the net result of a range of factors, including 

leakage flow, water pressure, freeze/thaw events, pressure surges as well as poor 

installation and maintenance (Noack and Ulanicki, 2007). 

Water-logged soils that contain a high proportion of swelling clays are prone to swell 

and subsequently shrink more than do drier (e.g. better-drained) soils in the same 

type of clay material. A characteristic of soils that are subject to fluctuating water 

table levels is ‘mottling’. This is where ferrous iron in the soil is oxidized to a 

characteristic brown or ochre colour, contrasting with the ‘anaerobic’ grey and olive 

coloured clay (Figure 4) (FitzPatrick, 1974). Waterlogging of such soils leads to the 

reduction, mobilization and removal and redeposition of any iron compounds present. 

Such soils have grey layers and distinctive orange mottles where poorly and better 

aerated parts of a soil layer show the differential effects of gleying (Reeve, 1989). 

 

Figure 2 Exposed vertic (swelling clay) soils exhibiting surface cracking. (S. Hallett) 

 

Figure 3 Slickensides, or clay shear plates. (S. Hallett) 
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Figure 4 Characteristic mottling in seasonally-waterlogged gley soils. (Northamptonshire. S. Hallett) 

The presence of expansive and shrinking clay soils requires special construction 

techniques (Godfrey, 1978) due to the impact this can exert on the buried structures 

(Jahangir et al, 2012; Li, 2008; Kitchen, 1994). 

1.4 Vegetation Effects 

Vegetation can significantly exacerbate soil-related geohazards under certain 

conditions. Most ‘soil moisture deficit’ modeling is based upon a ‘short grass sward’ 

(mown or closely cropped grass). This is the case with datasets such as MORECS 

(Thompson et al., 1981; Gardner, 1983). However, larger plants, such as trees and 

shrubs, are capable of transpiring more water than short green grass because of 

deeper rooting and their larger leaf indices. This in turn can exhibit considerable 

effects on the soil (White, 1975). Corrections can also be applied to accommodate 

differing aspects of the growth cycle where, for example, transpiration may cease 

from bare soil. Jones and Thomasson (1985) describe corrections applied for various 

agricultural crop types to provide crop-adjusted soil moisture deficits. 

By contrast, Biddle (1998a-c) identifies the impact of a range of tree species and 

other large vegetation across a range of soil types on underground structures. Roots 

of trees and large shrubs can cause damage to drains where root growth seeks 

moisture and can gain entry to pipework (NHBC, 1985). 

1.5 Sand Washout 

In sandy soils there is a greater danger posed by excess water moving through the 

subsoil, resulting in ‘running sand’ conditions (Brink et al.,1982), where a cavity can 

develop under a structure, for example a leaking pipe, resulting in collapse of the 

pipe structure due to ‘bridging’. 
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Modelling tools can be employed to investigate the variation in pipe leakage 

characteristics from such phenomena to mitigate their effects (Noack and Ulanicki, 

2007), but such impacts still present a real threat to infrastructure serviceability. 

1.6 Compressible Soils 

Subsidence may also occur in soft compressible soils. If pipes are laid in 

compressible soils that are affected by nearby foundations there may be differential 

movements leading to structural damage (Brink et al.,1982). 

1.7 Silt Freeze 

Moisture fluxes in soil, combined with freezing conditions can cause soil-related 

problems in soft silty soils. On freezing, ice expands by some 9% of the volume of 

water (ISPWS, 2012). Where water has permeated through loosely-consolidated soil 

and freezes, such ‘ice lens’ expansion can lead to significant damage to buried 

assets. 

Studies report frost-related damage to sanitary engineering plants and water-pipe 

networks (Bittner and Heine, 1998; Hotloś, 2009; Royal et al, 2011). Instatement 

procedures and condition assessment are suggested as being crucial measures in 

protecting infrastructure exposed to sustained cold temperatures. 

1.8 Wetness and Drainage 

Large seasonal fluxes in soil water content represent key causal factors in pipe 

damage and affect engineering parameters (Richards, 1968). The more contrasting 

the soil water regime is in the surrounding soil mass, the greater the amount of pipe 

damage is likely to be caused from factors such as soil water corrosivity 

(Karpachevskii et al., 2011). 

For inter-seasonal modeling, the regional MORECS system (Thompson et al., 1981) 

can be used usefully to investigate effects of climate on foundations of low-rise 

structures (OCA, 2007). MORECS is a system that provides estimates of 

evaporation, soil moisture deficit and effective precipitation under British climatic 

conditions (Hough and Jones, 1997). MORECS provides a 40km x 40km gridded 

interpolated dataset providing regional climatic summaries based on linked 

meteorological station data. Temperature values reported by MORECS are extracted 

from station data and reduced to mean sea level, using a lapse rate of -0.6oC/100m, 

before being interpolated to the gridded surface. The water balance (soil moisture 

deficit, SMD) is calculated daily, where the difference between actual evaporation 

and rainfall, when added to the previous day’s SMD, gives the current timeperiod 

SMD. The soil available water data used in MORECS calculations are extracted from 

Cranfield University’s Land Information System (Keay et al., 2009). 
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1.9 Soil Temperature Flux 

In general, soil is a poor conductor of heat and so soil temperatures at depth tend to 

exhibit a lagged, buffered pattern, as compared to surface air temperatures (Hall, 

1945). Soil heat conductivity (denoted ‘K’) is a calculated number, derived from data 

on the soil’s effective heat capacity (denoted ‘c’), this being the rate of change of the 

temperature gradient and the change in temperature over a given period of time. Soil 

temperature ‘diffusity’ (being ‘K/c’), denotes the temperature change that takes place 

in any portion of the soil as heat flows into it from an adjacent layer (Baver, 1956). 

The important factors affecting soil heat conductance are soil composition, moisture 

and porosity. In a seminal experiment, Von Schwarz (1879) showed the heat 

conductivity of different soils followed the order of sand (quartz) > loam > clay > peat, 

with water content increasing conductivity. Later investigations by Smith and Byers 

(1938) confirm these findings, but also highlight the significance of soil porosity 

(being the degree of packing, or bulk density, of soil particles) on heat conductivity. 

The rate of increase in thermal conductivity and density is approximately the same at 

any moisture content for a given soil. 

The magnitude of temperature variations decreases with depth; temperature effects 

on soil being more pronounced in the topsoil region. Smith (1932) showed that at 

about 3.5m soil temperature variation remained fairly constant annually. After 

November, heat was shown to continue to move upwards from depth through the soil 

column; after March the direction of heat transfer was reversed downwards. Snow 

layers act as an efficient insulator of soil against rapid and extensive temperature 

changes, unless air temperatures sink very low for prolonged periods (Baver, 1956). 

Alternate winter freezing and thawing cause a granulating, or disintegrating, action on 

soil clods. This process is usually more effective (pronounced) than drying and 

wetting processes and leads to ‘aggregated’ soil structures in spring (Baver, 1956). 

Certain soil conditions seem to be essential for realising the maximum effects of 

freezing. Thus, where soils dry during the winter there is little subsequent soil 

disintegration; where soils are wet and thawing is accompanied by rain, any 

aggregated materials can become dispersed. 

1.10 Long-term Climate Change 

Blenkinsop et al (2010) chose a London study area to identify how the probabilistic 

UKCP09 weather generator can be employed to derive predictions of future climatic 

scenarios and how this data could then be used to model temperature and 

evapotranspiration data, applied in turn to clay soil datasets to identify potential 

geohazard impacts. If future climate conditions lead to a greater frequency of 

extreme weather events, then lessons should be learned from environments today 

where buried pipe networks are maintained in, or subject to, extreme weather 

conditions such as prolonged cold (Bittner and Heine, 1998; He and Jin, 2010). 

1.11 Soil Corrosivity 
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Soil water can be strongly corrosive to buried assets, particularly those constructed 

from ferrous iron. The presence of soluble salts or aggressive, acidic groundwater 

can lead to corrosion problems in laid pipes (Brink et al.,1982). Other factors such as 

presence of sulfate ion content, chloride ion content, soil resistivity, water content, 

temperature, and soil oxidation-reduction (redox) potential are contributory causes 

(Jiang et al., 2011; Kleiner et al., 2012; Md.Noor et al., 2012). Pipe corrosion leads to 

characteristic pitting of the pipe and ultimately localized failure (Figure 5). 

Both cast iron and ductile iron pipes can be particularly susceptible to soil-related 

corrosion (Gummow, 1984), although certain practices such as cathodic protection 

can be useful in mitigating such conditions. Mild steel is also susceptible to corrosive 

attack (Ismail and El-Shamy, 2009). This is important because as well as the cost of 

reinstatement and repair, water supplies can also become contaminated as a result 

of corrosion to metallic pipes – an additional cost to a water utility (Hussain et al., 

2010). Predictions can be undertaken to identify the levels of spatial vulnerability to 

such corrosion based upon localized soils and climatic information (Corcoran et al., 

1977; Smith, 1968). 

 

Figure 5 Characteristic pitting in water mains pipe due to soil -water corrosion. (S. Hallett) 

Such approaches can be extended to permit water companies and other utilities to 

choose the tools required to plan for mains replacement with less vulnerable 

materials (Jarvis and Hodges, 1994). Predictions of the causes of corrosion from 

analysis of corrosion pits compared with surrounding soil conditions have been 

undertaken (Kleiner et al., 2012) and multi-sensor locational devices used to map 

pipe condition with surrounding environmental conditions (Royal et al., 2011). 

1.12 Solution Pits and Cavitation 

In karstic environments, acidic rainwaters, charged with CO2, are able to etch out 

cavities in underlying strata (for example chalk and limestone). This can lead to 

‘solution pits’ and ultimately sinkholes (Brink et al., 1982). Over a period of many 

years, these sinkholes can reach great size. Figure 6 shows an advanced sinkhole, 

or ‘doline’. However, even at a small size, such cavitation can lead to structural 

instability in the ground, potentially affecting buried pipes. 



 

  22 

 

Figure 6 An exposed karstic sinkhole on open ground – an extreme case of solution (S. Hallett) 

1.13 Soil Liquefaction and Solifluction 

Soil properties behave very differently from what can be considered normal in 

conditions of earthquakes. A number of studies (Li et al, 2004; Hwang et al, 1998; 

Koseki et al, 1998; Huat et al., 2012) document the process of soil liquefaction in 

earthquake and mudslide/landslide conditions as well as measures for protecting 

against such seismic conditions. Such conditions are not anticipated in the Anglian 

Water region. 

Conversely, although major mudslides are not common in the UK, mass soil creep 

conditions, or ‘Solifluction’ is observable. Here over a period of time a mass of soil 

moves under gravity downslope, with conditions often hastened by climatic 

conditions and soil wetting (Figure 7). 

 

Figure 7 Solifluction in the Undercliff area of the Isle of Wight (S. Hallett) 

1.14 Electromagnetic Induction 

Although not a common cause of bursts in water mains, lightning has been recorded 

as affecting buried assets. Eberle et al (1995) document how tracer wires can 
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increase the incidence of lightning impacts on buried gas lines, recording the 

associated damage to polyethylene pipe material. Another study identifies how 

buried electric supply cable can affect the thermal characteristics of different soil 

types, also affecting soil moisture conditions (De Lieto Vollaro, 2011). Water pipes 

are also often used to earth domestic and commercial electricity supplies. 

1.15 Cross-Sectoral experience 

The issues of soil and weather-related impacts on critical infrastructure extend well 

beyond the water industry. For example, the Transport and Road Research 

Laboratory identify geotechnical measures needed to ensure stability of transport 

infrastructure against adverse ground conditions (TRRL, 1973). 

The finance and insurance sector are also affected greatly by soil-related 

geohazards, particularly clay-related subsidence, which can pose a significant issue 

to domestic insured residences (Figure 8). The insurer ‘Direct Line’ note that there 

are several factors contributing to subsidence (Direct Line, 2012), thus: 

1. Soil type – clay soil is particularly susceptible when it shrinks and swells 

according to its moisture content and this can be troublesome in periods of 

exceptionally dry weather. (Around 75% of subsidence claims are for properties built 

on clay soil). 

2. Vegetation – trees and shrubs can extract moisture from deep within the soil, 

causing shrinkage, especially during long periods of dry weather, as roots extend in 

search of water, but removal of mature trees can cause previously dry soil to swell up 

and ‘heave’, resulting in damage to building foundations. 

3. Leaking drains – can also contribute towards subsidence damage. Around 

one in five subsidence claims are a direct result of drains leaking into sandy soil 

material causing subsurface soil erosion beneath a building’s foundations. 
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Figure 8 House underpinning necessitated by soil -related subsidence. (S. Hallett) 

Buried natural gas pipelines are also subject to the types of corrosive attack outlined 

for water pipes. Soil-water regimes in the soil body adjacent to the pipe installation 

trench have been observed to lead to the proliferation of sulphate-reducing bacteria – 

a principle cause of pipe destruction (Karpachevskii et al., 2011). Leakage from gas 

mains, where soil factors are involved, can also lead to fatal consequences (Ogle et 

al., 2011). Leakage of water pipes in sandy soils has also been reported as affecting 

adversely adjacent gas lines due to the formation of acidic sand/water slurries (Majid 

and Mohsin, 2012). 

Soil movement and shrinkage may also become an issue on engineered slopes and 

embankments (Anderson et al., 1982; Bertrand and Papanicolaou, 2009; Alex Baylot 

et al., 2012) as well as in ‘naturalised’ soil bodies. 

As with any civil engineering project, methodologies employed at the time of 

instatement of pipework are important to the future serviceable lifespan. Contractors 

must take into account known information about site conditions as well as identifying 

what is not known and what needs to be known (ICE, 1991). Such measures can aid 

the appraisal of impacts of potential environmental changes at a location and reduce 

the potential consequences of problems that might occur. 
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2 Materials and Methods 

 

This research examined datasets from Anglian Water, the Meteorological (‘Met’) 

Office and the National Soil Resources Institute (‘NSRI’) of Cranfield University. 

Analysis was undertaken by visual inspection, burst frequency by day, week, month 

and season examining the relationship between potential causal factors and water 

mains bursts.  

2.1 Anglian Water Datasets 

2.1.1 Pipe Network and management areas 

Data for the pipe network and management areas was provided by Anglian Water. 

Each record was simplified in terms of pipe diameter (Figure 12) and material types 

(Figure 13), which are mapped. The simplified classes are provided in Table 5 and 

Table 6.  

2.1.2 Bursts database 

A bursts database, containing approximately 34,000 recorded burst events was 

provided, as shown in Figure 9, which identifies their locations as recorded in the 

region, overlain on an altitude map. The data used ranges from 2005 to 2012 It is 

noted that there are a number of geographical placement anomalies, inevitable in a 

dataset of this magnitude. 

This section outlines the datasets and techniques used in this research. 

These data include  

Anglian Water datasets of pipe networks and burst records 

Met Office MORECS meterological data 

NSRI Soil and environmental vulnerability datasets 

Techniques include GIS manipulation, normalisation and analyses. 
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Figure 9 The water mains burst location. Bursts outside the Anglian Water region have been excluded. 

Bursts are recorded with date and Table 4 identifies the bursts, as recorded, broken 

down by month and year. 

Table 4 Total bursts by year and month. Total Bursts by year, by closed date.  

  

Data was extracted from Anglian Water’s SAP system. Additional data was provided 

from older databases at Anglian Water. We were informed by Anglian Water’s Tim 

Acland that the older database was less reliable and did not report the same number 

of bursts as were reported to OFWAT for the relevant return periods. Attention was 

therefore focused on the data extending from April 2005. 
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2.1.2.1 Errors of burst location 

In the course of this project, numerous errors have been identified with the burst 

data. Many of these have been corrected.  

The bursts were initially intersected within a buffered distance of the pipe network to 

ensure bursts were within a reasonable distance of the pipe network. This excluded a 

large number of bursts and Anglian Water requested that all bursts within the Anglian 

Water area have been included in the analyses, irrespective of their distance to the 

nearest pipe. Bursts which lie outside the Anglian Water area have been removed 

(Figure 9). 
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Figure 10 Burst diameter class 
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Figure 11 Burst material class 
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Figure 12 Pipe diameter class 
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Figure 13 Pipe material class 
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2.2 Met Office Datasets 

It is apparent that there is a strong seasonal bias to the bursts occurrence. It is 

considered that winter temperature extremes can play a formative part in causing 

bursts. Statistical analyses were therefore conducted to try to establish any evidential 

relationship between burst date, burst location and patterns of climatological data. 

Met Office Rainfall and Evaporation Calculation System (MORECS) data have been 

provided for the Anglian Water region. In its operational form MORECS uses daily 

meteorological data to produce weekly estimates of evapotranspiration, soil moisture 

deficit (SMD) and hydrologically effective rainfall for each square of a 40 x 40 km grid 

superimposed upon Great Britain (Gardner, 1983). Grid square estimates of 

meteorological data are found using interpolation methods. A modified version of the 

Penman-Monteith equation is used to calculate evapotranspiration; a ‘two-reservoir’ 

model is used to simulate the extraction of water in the SMD calculations. 

2.2.1 MORECS (The Met Office Rainfall and Evaporation Calculation 

System) 

Anglian Water provided Cranfield with MORECS data for the Anglian Water region. 

This data presents temperature, rainfall, evapotranspiration and soil moisture deficit 

data.  

The MORECS data provided for this analysis holds values from the year 2000 

(4/1/2000) to 2012 (3/7/2012) and for 33 grids used in the analysis (grids 80 and 102 

were excluded from the analysis). Figure 14 shows the locations of the numbered 

MORECS grids, overlain on the AW management areas. 

2.3 Summary temperature analysis 

The MORECS datasets were used to conduct a summary analysis. First a summer 

period of July to September was selected and used to filter the bursts. These were 

then plotted again against a range of soil characteristics and also plotted bursts 

across the whole year. 

 



 

  38 

 

Figure 14 Location of the MORECS 40km x 40km gridcells  

Grids ‘110’ and ‘80’ were excluded from the analysis 

2.3.1 Meteorological Station Data 

Data for meteorological stations was also provided (Figure 15). This data is more 

sparsely and inconsistently populated than MORECS, but it has daily recording. 

MORECS data provides weekly levels. Because of the sparse and inconsistent 

nature, most of our meteorological analyses have focused on the MORECS data. 
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Figure 15 - locations of available met station data 

Due to time constraints and the disparate nature of these locations, we have 

focussed our meteorological analyses on the MORECS data. We have not conducted 

detailed analyses with these meteorological station data. 
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2.4 Cranfield University Soil Datasets 

Cranfield University’s ‘National Soil Resources Institute’ (NSRI), , is the primary UK 

centre for research, development, and consultancy concerning soils and their 

interaction with the atmosphere, land, and water resources of the earth.  NSRI is 

officially recognised as the source of soils information for England and Wales.  

NSRI and its forebears have had a national responsibility for researching and 

documenting the soils of England and Wales over the last 60 years, incorporating 

exhaustive soils information which has been gathered systematically, starting in the 

early 1930s, and transformed into computer-compatible format and is today collated 

into the ‘Land Information System ‘LandIS’ (www.landis.org.uk), one of the largest 

natural land information systems of its kind in Europe (Keay et al 2010; Hallett et al. 

1996).  

LandIS holds information predominantly concerning soil, but includes also associated 

climatic, topographic and land use data. Analytical tools and techniques are also 

embedded within LandIS, alongside the geospatial data, and these have been 

utilised to aid the analysis of burst records on behalf of Anglian Water plc. 

Key data holdings in LandIS include the national soil map and associated legend. 

This geospatial data is held along with a substantial body of soil property datasets 

used to characterise and determine soil behaviours.  

2.4.1 Soil types and mapping units 

There are 720 individual soil types called, soil series, present in England and Wales. 

Groups of soil series are represented as map units on the National Soil Map. Soil, 

and its properties are variable within even a small distance. Within each map unit 

there are multiple soil series and so a range of properties may apply to one 

demarked area of soil. Thus the classifications used in this report are the predicted 

dominant property of the soil. 

2.4.2 Soil properties 

Numerous soil properties have been assessed in the course of this research. These 

have included, amongst others, pH, ground movement potential, corrosivity to iron, 

drainage properties and textural characteristics. The effect of soils on different pipe 

materials has been investigated. 

2.5 Techniques 

A variety of technical methodologies were employed to undertake the analyses 

provided, notable using the software tools ArcGIS from ESRI, Microsoft Excel and 

the open source statistical package ‘R’ (http://www.r-project.org/). 

 

  

http://www.landis.org.uk/
http://www.r-project.org/
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2.1 Use of Google ‘Street View’ to aid analysis 

The literature review has determined a number of potential environmental causes of 

water mains bursts. One of these is the potential exacerbation of clay subsidence 

effects from large vegetation such as trees. It is important to have a perspective as to 

where the burst locations are and what, if any, local conditions might be seen to 

prevail at the point of the burst. 

Burst locations were supplied in a spatially-referenced GIS file format. This permitted 

the conversion of the data to the OGC implementation standard ‘Keyhole Markup 

Language’ (KML) data format (http://www.opengeospatial.org/standards/kml/), which 

in turn enables the interaction of the locations with the Google ‘Street View’ product, 

embedded in Google Earth (http://www.google.com/earth/). 

The KML file as attached as a digital Appendix to the report for a selection of the 

MORECS 40km x 40km squares that seemed to be subject to a high burst rate 

(MORECS grids ‘151’ and ‘138’). These squares also captured a spread of urban, 

peri-urban and rural environments. 

2.2 Results 

A summary review was taken to identify locations of bursts, noting potential relevant 

local conditions. 

 

 

Figure 16 Example burst location proximal to a tree and subject to potential vehicle loading. (Clay soil 

location in Wellingborough, Google Street View) 

 

http://www.opengeospatial.org/standards/kml/
http://www.google.com/earth/
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 (a) 

 (b) 

Figure 17a & b Example burst locations proximal to a road junction and subject to potential vehicle 

loading from waiting traffic.(Northampton, Google Street View) 
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Figure 18 Example burst location proximal to road speed bumps, subject to potential vehicle loading 

from passing traffic.(Northampton, Google Street View) 

This exercise has highlighted that in addition to rather blunt statistical analysis of the 

whole dataset, it is important to be able to capture localized conditions as part of 

understanding the potential causes of burst events. 
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Chronic pipe degradation 
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3 Chronic pipe degradation 

 

3.1 Pipe materials and diameter 

The pipes in the Anglian Water region fall predominantly in the diameter range of 

56mm to 320mm (Table 5). Cast Iron makes up approximately 1/3rd of the pipes in 

the Anglian Water region (Table 6) yet accounts for 45% of the bursts. Polyethylene 

makes up 25% of the pipes, yet has a much lower fracture rate per 1000 km than 

Cast Iron (Figure 20) and only accounts for 2% of the bursts. Steel pipes are 

relatively inextensive (1%) yet fracture frequently.  

There are seasonal trends in the burst rates of these pipes and materials (Figure 21), 

which will be dealt with in subsequent sections.  

 

Table 5 -  Breakdown of diameter of pipes in Anglian Water Region  

Note: Diameter classes 11, 12,13,14 are subdivisions of class 1 (1-165 mm). 

Diam_Class_v2 Diameter (mm) Length pipe(km) % bursts / 1000 km 

0 0 375.81 0.99 

 11   (1) 0-55 1449.83 3.83 168.63 
12   (1) 56-85 10514.69 27.81 46.6 
13   (1) 86-130 10123.83 26.78 46.31 
14   (1) 131-165 6641.84 17.57 65.46 
2 166-320 5953.17 15.75 83.66 
3 321-625 2043.61 5.41 185.8 
4 >625 706.44 1.87 1198.49 

     
 

Total 37809.23 100   
 

This section outlines some of the chronic, ongoing processes and soil effects 

which can degrade pipe networks. Seasonal effects such as winter temperature 

and summer / autumn shrinkage and swelling of soils are dealt with in later 

chapters.  

Issues identified as effecting pipe longevity include pipe material and diameter, 

soil corrosivity, depth to fluctuating water table. 

There is noted a dominant effect of peat on pipe degradation. However, pipes in 

peat soils only make up 0.6% of the pipe network of Anglian Water.  
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Table 6 – Breakdown of pipe material in the Anglian Water Region  

Matt_Class Material Length pipe(km) % 

CI Cast Iron 10941.05 29.03 

PE Polyethylene 9744.15 25.85 

AC Asbestos Cement 7168.37 19.02 

uPVC uPVC 6027.41 15.99 

DI Ductile Iron 2833.56 7.52 

ST Steel 462.00 1.23 

UNK Unknown 388.06 1.03 

PRC Polyester re-inforced concrete 110.24 0.29 

CO Concrete 11.21 0.03 

GRP Glass re-inforced plastic 2.43 0.01 

PB Lead 2.13 0.01 

    

 
Total 37690.60 100.00 

 

 

 

Figure 19 - length of pipes and bursts per 1000 km by material and diameter class.  

Note: For description of the classes, please refer to Table 5 and Table 6. e.g. 2AC = diameter class 166-320mm, 

Material: Asbestos Cement. 
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Figure 20 - length of pipes and bursts per 1000 km by materia l and diameter class. (reduced) 

Note: For description of the classes, please refer to Table 5 and Table 6. e.g. 2AC = diameter class 166-320mm, 

Material: Asbestos Cement. 

 

 

Figure 21 - average monthly bursts per 1000 km (2004-2012) by pipe material 

Note: Cast Iron tend to burst more in the winter months. UPVC and Asbestos Cement tend to burst more often in 

summer and Autumn months. 
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Figure 22 Burst type by month. Circumferential fractures are typical failure mode for Cast Iron pipes  

 

Figure 23 Burst type by month. Circumferential fractures removed. Long fractures are typical of uPVC 

and Asbestos Cement pipes. 
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3.2 Soil corrosivity and pH  

3.2.1 The NSRI Soil Corrosivity Model  

The classification system used by NSRI is believed to be the most appropriate 

system currently available for this country in the absence of more extensive results 

from direct measurements.  This system linked to the soil series concept allows a 

rapid appraisal of any locality or extensive area in England and Wales, such as the 

Anglian Water region, where NSRI soil maps exist.  It also ensures that there is a 

consistent national approach to the assessment of soil aggressivity classes. 

The corrosion of metal in soil is a complex electrochemical process and it is difficult 

to identify all the contributing factors.  There is no national standard for assessing the 

corrosivity of soil, although there are standards for some individual tests, and 

standards produced by interested organisations. However, the following soil 

properties are considered to be the most important in having a significant effect on 

the corrosion of buried metal pipes (Figure 28). 

3.2.2 Soil Acidity 

Metal pipes can suffer chemical attack. Metals usually dissolve more rapidly in acidic 

conditions, particularly where the soil is strongly acid with a pH less than 4.5. 

With leaching, soils gradually become more acid with time.  This is especially so 

where there was little or no free lime in the original soil parent material.  Agricultural 

land is usually limed to a pH of 6.5 for arable use and 6.0 for grassland, and with time 

some of the applied lime reaches the subsoil in non-calcareous materials to raise the 

pH to between 5.0 and 7.0; moderately acid to neutral.  Old woodlands and heaths 

are likely to remain strongly acid in the subsoil.  However, with rainfall exceeding 

evaporation, leading to an excess of water in most years in Britain, the general 

tendency is for acidification through leaching of bases in the soil. 

Figure 24 - length of pipe in soils of different pH 

Dominant pH Length pipe (km) % 

NULL 18.88 0.05 

4 283.17 0.75 

5 14785.24 39.23 

6 9036.63 23.98 

7 13290.22 35.26 

8 276.45 0.73 

   

    Total 37690.60 100.00 
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Figure 25 - Dominant pH mapping across the Anglian Water Region  

 



 

  51 

 

Figure 26 - NSRI's Soil Corrosivity Model  
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Figure 27 - pH and burst rate (2004- 2012) 

3.2.3 Soil Moisture Content 

Water is essential for the corrosion process to take place and moisture contents 

above 20% (on a weight basis) can be particularly corrosive.  Where a water-table is 

present in the subsoil, its level in relation to pipe depth will affect soil water content.  

In the absence of a water-table, soil water contents at pipe depth are fairly constant 

throughout the year and will only vary between sites according to clay content and 

permeability.  Thus the principal soil factors are water-table levels, expressed as Soil 

Wetness Class, and the clay content. 

Variations in the colour of soil (mottling) are to a large extent determined by the 

degree and duration of waterlogging, in the soil's natural state.  Field drains reduce 

the wetness of the subsoil where installed on agricultural land, so that the colours 

may represent a relict wetness feature. In this study the natural wetness state is used 

to determine the corrosion class as this state may have prevailed in the past when 

pipes were first installed, prior to modern drainage measures.  Furthermore, it is 

unlikely that all land has been drained to the same standard and the corrosion class 

thus represents a worst-case scenario as far as wetness is concerned. 
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3.2.4 Soil Corrosivity Class 

The Soil Corrosivity model, results in a classification system that can be used to 

identify risk.  Various properties have been incorporated into a potential soil 

corrosivity model which defines a number of corrosivity 'risk' classes.  These 

categories are presented in Table 7 with an assessment of the % water mains in 

each class in the Anglian Water region. 

Table 7 Soil Corrosivity Classes 

COR_FE Soil Corrosivity Class Length pipe(km) % 

1 non-aggressive 14182.73 37.63 

2 slightly aggressive 7344.58 19.49 

3 moderately aggressive 5980.40 15.87 

4 highly aggressive 947.56 2.51 

5 very highly aggressive 13.78 0.04 

3* moderately aggressive (sulphates) 2384.12 6.33 

4* highly aggressive (sulphates) 4400.22 11.67 

5* very highly aggressive (sulphates) 2418.34 6.42 

(blank)   18.88 0.05 

    

 
Total 37690.60 100.00 

 

Figure 28 shows a summary of the various soil and soil-related factors incorporated 

in the NSRI soil corrosivity model. 

 

Figure 28 Corrosivity Factors Modelled 
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3.2.5 Soil Aeration 

In a well aerated soil there can be an initial phase of corrosion when the pipe is laid 

but the dense corrosion product does tend to quickly form a protective coat.  Poorly 

aerated (anaerobic) soils promote corrosion.  The corrosion under anaerobic 

conditions proceeds at a slow but steady rate and does not form a protective coating 

around the pipe so leading to early failure.  Anaerobic environments in soils are 

usually associated with dense clay-rich layers that are slowly permeable to water, 

e.g. in most clayey soil parent materials. 

3.2.6 Soluble Salt Concentration 

Soils containing chlorides or sulphates, the latter commonly as gypsum, are 

potentially highly aggressive to buried ferrous iron pipes. The risk can be estimated 

by measurement of the sulphate and chloride ion concentration. Bacteria thrive in 

some of these environments and create conditions conducive to corrosion, for 

example, by reducing sulphate to sulphide in anaerobic conditions, or in assisting in 

the oxidation of sulphides to form sulphuric acid. 

3.2.7 Electrical Resistivity 

The resistivity of the soil gives a measure of the concentration of soil electrolyte, 

essential in the corrosion process.  Soils with low resistivity will encourage corrosion, 

whereas soils with high resistivity are likely to inhibit corrosion.  Some researchers 

suggest that soils with resistivities less than 2,000 ohm cm should be regarded as 

aggressive, with fairly severe conditions indicated by values less than 1,000 ohm cm.  

Electrical conductivity (the reciprocal of resistivity) is commonly used to measure salt 

concentrations in the soil solution, and thus the aggressiveness of the soil to buried 

metals. 

3.2.8 Other Influencing Factors 

A number of other factors may impact on pipe corrosion; these include: 

 Pipe depth and preparation 

 Topographical influences 

 Localised soil variability 

3.2.8.1 Pipe Depth and Preparation 

For consistency, this study has taken a soil depth of 1 metre throughout the area as a 

basis for the interpretation.  Where pipes are buried at shallow depths, the risk of 

corrosion is likely to be slightly reduced, and conversely slightly increased where 

pipes are buried deeper than 1 metre.  Different preparations of the pipe trench and 

the nature of the refill material can, if different from the surrounding soil, affect 

corrosivity. 

3.2.8.2 Topographical Influences 

Local variability in corrosion risk may be influenced by topographical features, such 

as dips and valleys, where salt applied to roads is concentrated as run-off.  This salt 

is especially effective in corroding metal pipes where the run-off has rapid access to 
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the lower subsoil by a ditch along the grass verge.  Such localised influences can not 

be taken into account in this generalised study. 

3.2.8.3 Localised Soil Variability 

In some map units the soil in its natural state can vary sufficiently in texture, wetness 

and pH over a matter of a few metres to affect the corrosion classification.  In such 

cases, a median corrosion class is given for the range of soils. 

Soils with a marked change in texture in the subsoil offer a higher corrosion risk than 

uniformly textured soil.  Subsurface-water flow, for example, is concentrated at the 

base of loamy soil material overlying slowly permeable clay, promoting increased 

corrosion of any ferrous pipe laid there. 
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Figure 29 - Dominant pH in soils across the Anglian Water Region  
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Figure 30 - Dominant corrosivity to Iron 
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3.3 Soil depth to rock  

The majority of pipes in the Anglian Water area are found within deep soils, with a 

depth of greater than 80 cm.  

Table 8 Soil depth to Rock 

Depth to Rock Length pipe(km) % 

Deep (>80cm) 31945.41 84.76 

Medium (40-80cm) 5623.49 14.92 

Shallow (<40cm) 121.70 0.32 

   Total 37690.60 100.00 

 

 

Figure 31 - Comparison of burst rates in soils of different depths.  

 

 

Figure 32 - Burst rate by soil depth 
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Figure 33 - Dominant depth to rock 
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3.4 Soil depth to fluctuating water tables 

Soil moisture levels and the transition from reducing and oxidising conditions develop 

aggressive conditions for metal pipes.  

Over 60% of the Anglian Water area has signs of gleying near the surface. These 

surface gley soils have more bursts per 1000km than the deeper soils (Table 9). 

 

 

Table 9 Soil depth to gley layer - indicative of fluctuating water table 

Depth to Gley Length pipe(km) % Bursts/1000km 

Shallow < 40 cm 13739.60 36.45 983 

Medium 40-80 cm 9767.79 25.92 900 

Deep >80 cm 14164.34 37.58 827 

0 10.13 0.03  

No Data 8.75 0.02  

   

 

 Total 37690.60 100.00  
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Figure 34 - Map of Depth to Gley layer (indicative of fluctuating water table)  
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3.5 Peat soils 

While many soils in the Anglian Water region are rich in organic carbon, true peat 

soils only make up a small fraction of the Anglian Water region, and only 226 km 

(0.6%) of Anglian Water’s pipes are laid in peat soils. Nevertheless, where these 

soils occur, the pipe network is heavily affected by such soils, with the highest burst 

rates approaching 200 bursts per 1000 km at many months of the year (Figure 35).   

 

Figure 35 average monthly burst rate (2004-2012) by simple subsoil texture class. 

 

Table 10 Topsoil texture (simple) and length of pipe  

Topsoil texture group Length pipe(km) % 

clay 21268.69 56.43 

sand 11404.75 30.26 

silt 4771.92 12.66 

peat 226.36 0.60 

#N/A 18.88 0.05 

   Total 37690.60 100.00 
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Figure 36 - Dominant Topsoil Texture Class (Simple) 
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Figure 37 - Dominant Subsoil Texture Class (Simple) 
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Figure 38 - Dominant Subsoil Texture 
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Table 11 Subsoil texture (simple) and length of pipe 

Subsoil texture group Length pipe(km) % 

clay 20886.16 55.41 

sand 9731.49 25.82 

silt 4924.82 13.07 

rock 1764.86 4.68 

peat 223.48 0.59 

#N/A 159.79 0.42 

   Total  37690.60 100.00 
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3.6 Sand washout 

While sand washout has been identified as a causal factor in fractures and 

subsidence, there have not been any unique trends identified with such soils in the 

Anglian Water region in this research. 

 

Figure 39 - average monthly burst rate (2004-2012) by simple subsoil texture class (peat removed).  
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Winter Bursts 
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4 Winter Bursts 

 

4.1 Background 

A plot of the number of bursts by month through from 2005 to 2012 shows clear 

visual patterns of burst peaks in the cold winters of 2008-9, 2009-10, 20010-11 and 

2011-12 (Figure 40). 

 

Figure 40 - Cold winters and the increase in winter bursts 

Looking at the number of bursts through the year expressed side-by-side also 

highlights this pattern visually (Figure 41). 

This section outlines the effects of successive cold winters on the Anglian Water 

pipe network.  

It is shown that the last four winters have had more sustained colder periods 

than the previous eight years. These last four years have also had more bursts 

during the winter time. These bursts have occurred across all soil types.  
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Figure 41 - Monthly burst rates by year.  

Soil subsoil texture was considered for the period before these four cold years 

(Figure 42) and during the cold years (Figure 43). This shows an increase in bursts 

(average/1,000km pipe) across all subsoil texture types, with perhaps a slight lag on 

clayey soils into the Spring period – but overall a consistent response by soil type. 

4.2 Accumulated Temperature analysis 

If soil types are not highlighting strong differentiation, other measures can be 
employed to investigating climatic effects. For investigating temperature extremes, a 
useful and commonly used index is Accumulated Temperature (AT) (Shellard, 1959).  
 
Accumulated Temperature (AT) has been defined as the "integrated excess or 
deficiency of temperature with reference to a fixed datum, usually called the basal 
temperature, over an extended period of time" (Shellard, 1959). AT is derived as a 
scalar integration of day-degrees below (and above where required) a chosen 
threshold (or ‘basal’) temperature, this being selected relative to the investigation’s 
purpose. The parameter AT is obtained from temperature data. This can be used 
subsequently in a variety of climatic modeling applications (Hallett, 1993). AT has 
been used widely as an index in models of crop growth and also in models of thermal 
efficiency in construction.  
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Figure 42 – Average monthly burst rate by subsoil texture in clay sandy and silty soils  April 2006- 

October 2008) 

 

 

Figure 43 – Average monthly burst rate by subsoil texture in clay sandy and silty soils (November 2008 

– April 2012) 

  

In this study, AT values are utilized to provide a single index value concerning the 

impact of temperature on buried pipe assets and thus an index of winter burst 

likelihood. In this context, AT provides a single ‘index of severity’ whereby the AT 
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values used represent the sum of ‘week degrees’ below a given threshold selected to 

reflect potential pipe damage in the Anglian Water region. 

Accumulated temperature for the MORECS data is calculated according to the 
formula approach below. 

 

 

 

 

4.3  

Where: 
T χ = Mean fortnightly MORECS temperature 
Tb = Basal threshold (Centigrade) 
WDB = Week Degrees Below Basal Threshold 
 

A computer programme ‘CreATe.pl’ was written in the programming language PERL 

(Appendix B – Computer Software) to process the MORECS data provided. This 

allows the operator to select an in-year period of interest, as well as a Basal 

Threshold, which is used in the calculation. Values are output for Day Degrees below 

the threshold for each MORECS grid at Ordnance Datum. It was necessary to 

determine an ‘altitude-normalised’ dataset to allow post-correction of the burst 

location altitude values. Therefore, additionally the geometric centre-point of each 

MORECS grid was also determined allowing the Adiabatic Lapse Rate of 0.0064 (or 

6.4 oC per 1000 metres) to be applied, permitting the normalisation of the result to 

Mean Sea Level (MSL). 

The MORECS weekly data was manipulated such that each run of AT was 

conducted from the month of June to May, thereby ensuring that the pre-Christmas 

and post-Christmas months were considered together and the years were not split at 

January. This was considered a pragmatic approach and supported advice from 

Anglian Water that burst episodes would typically build up over this period. 

The determination of the basal threshold was made by analysing a frequency 

distribution of burst temperature (Figure 50). A threshold of 1oC was then selected for 

the analysis of AT. 

Due to its crystal lattice, freezing water expands by some 9% in volume compared 

with water and this can cause considerable shear stress on buried infrastructure 

(ISPWS, 2012). The volume expansion of ice is calculated thus (Figure 44): 

  

T χ ≤ Tb y 

n 

WDB ± (T χ - Tb) 

WDB ± (0) 

For each fortnight in period of interest 
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Density = Mass / Volume   (g/ml-1) 

  Water  Ice 
Density 1g/ml-1  0.92g/ml-1 

 

Thus, 100g water x  1ml / 0.92g = 108.7 ml  ice    (8.7% increase in volume) 

Figure 44 Calculating volume increase from water to ice.  

 

 

4.4 Accumulated Temperature Results 

The Accumulated Temperature calculations were undertaken using the MORECS 

weekly mean temperature values for each of the 40km x 40km grid squares across 

the Anglian Water region. 

 

 

The accumulated week degrees below the threshold were graphed for each 

MORECS square. The differences are presented cartographically (Figure 45) and 

graphically (Figure 47) showing a striking pattern becoming apparent. The winter 

periods of 2008-2009, 2009-2010 and 2010-2011 highlight considerable divergence 

from the adjacent earlier years – especially in 2010-2011. This corresponds well with 

the recorded incidences of burst events. 

WDB += Absolute value of (Tb - (T χ + (Altitude x 6.4/1000))) 
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Figure 45 - Maps of accumulated temperature for the period 2004- 2012 

The two spans of years before and during the cold spell are integrated and also 

shown cartographically for the two periods (Figure 46). 

 

Figure 46 - Four year summary of accumulated temperature - pre and post November 2008 
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Figure 47 - Accumulated Week Degrees below 1
o
C by winter period, 2000 - 2012 
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4.5 Analysis of cold temperatures preceding bursts 

In addition to the AT analysis, further analysis was conducted on the bursts to 

establish, for each burst event, the coldest temperatures over the three week period 

preceding the date of the burst. The programme ‘MorecsValues.pl’ (Appendix B – 

Computer Software) was used to derive this. To undertake this, temperatures were 

taken from the corresponding MORECS square that each burst fell in. These 

temperatures were then corrected to Mean Sea Level (using the MORECS square 

centrepoint altitude and the Adiabatic Lapse Rate of 0.0064, or 6.4 degrees every 

1,000m) and then re-corrected back to the Ordnance Datum altitude for the Digital 

Terrain Model 50m pixel in which the burst was located. The same Adiabatic Lapse 

Rate of 0.0064 was used for these latter corrections. This analysis allows the plotting 

of burst date (throughout the year) against the minimum, as well as maximum, 

temperature in the three weeks leading to the burst event (Figure 48). The graph also 

presents the difference between maximum and minimum temperatures. The following 

graph, Figure 49, presents the same maximum and minimum data, but in a ‘stacked 

graph’ format, such that the corresponding data series values for maximum and 

minimum are shown stacked as a percentage of the total sum of their values. Thus, 

instead of comparing total temperatures, it is possible to observe what percentage 

that value in each data series contributed. 

In interpreting these graphs, it is important to note how the maximum and minimum 

stacked temperatures show coincidence in the winters of 2009, 2010 and 2011 

respectively, whereas in the winters of 2006, 2007 and 2008, there is quite a marked 

gap between the maximum and minimum stacked temperatures, e.g. the ‘. This 

suggests the winters of 2009, 2010 and 2011 suffered prolonged bouts of cold as 

opposed to swings from cold to hot. This pattern is borne out in the bursts data where 

the latter three years experienced higher burst rates than in previous periods. 
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Figure 48 - 

Temperature range in 

the three weeks 

preceding a burst, for 

each burst expressed 

throughout the year 
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Figure 49 - Stacked 

temperature range in 

the three weeks 

preceding a burst, for 

each burst expressed 

throughout the year 
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4.5.1 Burst temperature frequency analysis 

The data used to create the graphs Figure 49 and Figure 50 was further analysed 
and a frequency table extracted of number of bursts by the temperature in the week 
of the burst at the location of the burst, across all years and across the whole Anglian 
Water Region. The resulting frequency distribution graph (Figure 50) identifies two 
peaks associated with bursts (the colder centered on c. 1oC), as well as a warmer 
peak (c. 15oC). For the analysis of cold weather bursts, this provides a justification for 
adopting 1oC for the basal threshold of the Accumulated temperature modeling 
above. 
 

 
Figure 50 - Burst frequency by temperature for all years across Anglian W ater region 

Lastly a graph was produced showing a summary correlation of the minimum 

MORECS weekly temperature against the total number of bursts. The resultant value 

confirms the relationship between cold temperatures and the winter burst episodes 

recorded over the period of interest (2005 to 2012). 
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Figure 51 - Winter bursts compared to minimum temperature 

 

4.6 Conclusions 

The Anglian Water was manifestly struck by a series of severe weather conditions in 

the winters 2008-2009, 2009-2010 and 2010-2011 which exhibited a considerable 

divergence from temperatures in the earlier adjacent years – especially the cold 

winter of 2010-2011. This study has not sought to determine the conditions in 

adjacent water company regions over this period, however, extreme conditions at this 

time were well reported in the news affecting other parts of the country (e.g. 

Heathrow). There is a discernible relationship that can be expressed between the 

temperature and the number of bursts. Accumulated temperature is a powerful 

mechanism to represent the integration of temperatures falling at or below a chosen 

threshold. The 1oC threshold selected reflected the patterns of bursts/temperature 

observed in the data provided. 

Further work would usefully highlight and explore intra-regional temperature 

comparisons through the time periods in question. 
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Summer and Autumn Bursts 
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5 Summer and Autumn Bursts 

 

5.1 Background 

Soils rich in shrinkable clays change volume with fluctuating moisture levels. In the 

summer the soil progressively dries out and deep cracks can form as the soil volume 

shrinks. In autumn, rapid swelling of these soils accompanies re-wetting with 

precipitation (Figure 61). This soil movement can cause buried assets, such as water 

mains, to fail as the forces build up on them. In order for these processes to occur, 

two environmental factors are required. Firstly, shrinkable soils need to be present 

(about 30% of Anglian Water’s pipes are in shrinkable soils) and secondly, the 

summers need to be hot and dry enough to desiccate the soil down to or near to pipe 

depth. Our analyses consider these aspects of the process. 

5.2 Fracture potential (ground movement) class 

Among the inorganic particles that constitute the solid component of any soil, clay 

particles are the smallest, generally defined as being <0.002 mm in size. Clay 

particles occur in most kinds of soil but they only begin to exert a strong influence on 

the behaviour of the whole soil where there is in excess of 35% clay-sized material 

present. Since clay particles are very small and commonly platy in shape, there is an 

immense surface area to which water can be attracted relative to the total volume of 

the soil material. For example, a gramme of smectitic clay soil, common in the 

Anglian Water region, can have some 650m2 surface area (Brady and Weil, 2002). 

In their natural undisturbed condition, the moisture content of clays does not change 

greatly, and consequently there are no changes in volume leading to soil fracture. 

However, the situation is very different when clays are exposed at or near the ground 

surface, especially if vegetation is rooting in them. This is due to the fact that the 

roots of plants extract moisture from the soil to support their growth and transfer 

necessary nutrients into their structures. 

This section outlines the effects of summer and autumn shrinkage and swelling 

on the soils proximal to the Anglian Water pipe network. 

It is shown that there is a relationship between soil moisture deficit and bursts in 

shrinkable soils, and that those soils that are highly shrinkable are more 

susceptible to bursts in the late summer and winter months. 
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Figure 52 - NSRI Shrink swell (fracture potential) classes  

Whilst soil moisture is continuously being replenished by rainfall, the soil itself will be 

unaffected by this removal of moisture, but in many parts of Britain, particularly in the 

south and east, summer rainfall is small and is exceeded by evapotranspiration. At 

this time of year water reserves are not replenished by rainfall so soil moisture 

deficits occur. Water being removed from the soil by the plants leads to a reduction in 
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soil volume and the consequent shrinkage causes stress in the soil materials leading 

in turn to stress on structures that are resting in the soil. These structures may move, 

thus causing damage. 

NSRI have categorized the soils of England and Wales into their propensity to Shrink 

and Swell (Figure 52). Soils are classified from ‘Very Low’ to ‘Very High’. Plotting the 

soils proximal to the burst locations, classified in this manner reveals a bi-annual 

pattern of shrinking and swelling (Figure 53). 

 

 

Figure 53 – Average monthly burst rate by shrinkability class (2005- 2012) 

This data may also be tabulated (Table 12). 
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Table 12 Percentage of pipes in soils of different shrinkability  

SSWELL 
Shrink-swell 
Class 

Length 
pipe(km) % 

1 Very Low 16935.17 44.93 

2 Low 5264.89 13.97 

3 Moderate 7532.40 19.98 

4 High 4355.37 11.56 

5 Very High 80.20 0.21 

6 High* 3503.69 9.30 

0 No Data 18.88 0.05 

  
    

 

Total 37690.60 99.95 
 

The effects of natural shrinkage on the soils of the Anglian Water region can be quite 

pronounced (Figure 54). 

 

Figure 54 - Soil cracking in shrinkable soil in Cheddington (in the Anglian Water Region) Photo: I 

Truckell 

5.3 Soil Moisture Deficit Modelling 

Analysis of temporal patterns of bursts indicate clear summer and winter episodes 

(Figure 53). Therefore, following an analysis of the meteorological data to establish 

potential linkages between cold weather and bursts, further analysis was required to 

investigate the relationship between hotter drier conditions, soil types and bursts. 

Cranfield operate the Natural Perils Directory (NPD) dataset, a ground geohazard 

assessment model. This incorporates locations of soils prone to shrinkage and 

swelling, together with historical patterns of ‘potential soil moisture deficit’ (PSMD). 

Soil moisture deficit represents the difference between precipitation at a point and the 

seasonal integrated levels of both evaporation and plant transpiration (together 

termed ‘evapotranspiration’), thus PSMD = SUM(R - PT) where R=Rain (mm) and 

PT=Evapotranspiration (mm) (Jones and Thommasson, 1985). PSMD and the 

MORECS SMD values are dissimilar in scale (PSMD attaining typically a higher 



 

  86 

value), but exhibit similar relative patterns. As Anglian Water have provided SMD 

values, these have been used widely throughout this research. 

 

Figure 55 - Natural Perils Directory Climate Adjusted Clay shrink -swell model with Summer and 

Autumn Bursts 

The subject of evapotranspiration (PT) was introduced by Penman (1948) who 

defined it as the water transpired by a short green crop such as a grass sward, 
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completely covering the ground and which is amply supplied with water around the 

roots. Given these conditions, PT varies with meteorological conditions. PT is 

computed from the Penman Monteith equation, of which there are a number of forms. 

Used as a component here in modelling soil moisture deficit (SMD) is seen as an 

important component in seeking to explain summer water main bursts in the Anglian 

Water region. 

SMD data are provided by the MORECS 40km x 40km square datasets from the 

Meteorological Office. The calculations of the SMD data here use a slightly different 

form of the Penman Monteith equation to that used in the existing NPD datasets from 

NSRI. However, the spatial relativities of the data hold the same. An adaptation of 

the NPD models was therefore selected that utilised the MORECS SMD data in place 

of Cranfield’s historic PSMD data. 

The MORECS data extended over a considerable time period, however the most 

reliable bursts data commenced in 2005. Therefore pre-2005 MORECS SMD data 

was discarded for the analysis, leaving some 392 weeks’ worth of data across the 

Anglian Water region, from 04/1/2005 to 3/7/2012. Furthermore, only data pertaining 

to the MORECS squares containing bursts records were retained. Further rows of 

data were discarded to commence SMD accumulation analysis on February 1st, 

which in agro-climatological modelling represents the traditional start of the SMD 

year. 

Soil Moisture Deficits build up throughout the year as the soil dries out. A deficit 

usually develops in April or May, reaching a maximum in July, August or September 

Figure 63. Thereafter the SMD declines during Autumn as the soil wets up. The 

situation is cyclical and indeed reversible; in May 2012, after a dry winter, the rains of 

spring 2012 removed much of the soil moisture deficit which had by then accrued. 

Mechanically in the soil, at first swelling clays expand with the rains to fill the cracks 

and voids left after the earlier drier conditions (Figure 61). Once these are filled, 

further expansion can lead to vertical shearing and the phenomena of ‘slickensides’ – 

very characteristic in heavy clay, where the vertical shear surfaces appear. In some 

drier districts deficits can persist into January or even February. 

Figure 62 presents a graph of the values of accumulated SMD from the MORECS 

data ranging from 2005 to 2012. One can see the typical patterns outlined above are 

exhibited in this data. Figure 63 shows the mean aggregated temperature and SMD 

values for all MORECS squares across the Anglian Region together with total burst 

count. 

The existing Cranfield NPD data (e.g. Figure 55) utilises historical soil moisture deficit 

data representing the mean average annual deficit over the period 1961 to 91. From 

this data are drawn the standard deviations for each meteorological station – allowing 

for data trends to be superimposed. Using the MORECS data however requires a 

different approach, partly as it represents already an interpolated data surface, but 

also as one seeks to identify the seasonal concurrence of bursts with the build up of 

SMD. 
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Under ‘average’ summer conditions, soil can be said to lose some 6mm of water to 

evaporation per day. The drying effect on soil is therefore a gradual one through 

periods of sustained high temperature and reduced precipitation. Conversely, local 

rainfall events can easily average some 20mm in a day. It can therefore be seen that 

soil wetting can occur more quickly than drying, with a correspondingly higher soil 

stress from the wetting rather than the drying phase on soils that are susceptible to 

ground movement. In the Anglian Water region, about 30% of the soils have 

moderate to highly shrinkable soils (Table 12). In the case of buried water mains, this 

could then be supposed to lead to a greater incidence of bursts in the wetting phase 

than the corresponding drying phase. 

There is a variation in the SMD expressed spatially, cartographically across the 

Anglian Water region and also through time. In some years the soils dry more deeply 

than other years (Figure 56). A simple correlation, by year, between the maximum 

recorded SMD across the Anglian water region and the total number of bursts for the 

summer show a an r2 of 0.76 (Figure 57). This increases to r2 = 0.79 if the pipes/ 

bursts in soils having a volumetric shrinkage of less than 5% (Very Low) are removed 

(Figure 58). 

 

 

Figure 56 - Maximum SMD across the Anglian Water region, by MORECS square 2004 - 2012 

 

A comparison of the years 2006, 2009, 2010, 2011which all have SMD in one square 

above 165 (Figure 56), with total bursts (Figure 57) show a clear pattern of hotter 

summers, more burst. 
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Figure 57 - Correlation between maximum SMD recorded across the Anglian Water Region and total 

summer bursts in all soils. 

 

 

Figure 58 - Correlation between maximum SMD recorded across the Anglian Water Region and total 

summer bursts in all soils, except those with Very Low (Class 1) shrinkability. 

Charting the conditions of the subsoil texture of soils adjacent to burst locations in the 

period 2005-2008 (Figure 59), and then from 2008-2012 (Figure 60) reveals an 

elevated summer and autumn burst rate in the latter period. Also in the latter period, 
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the early summer (drying) phase burst rate presents more gradually than the autumn 

(wetting) phase – matching the mechanical expectations of soil behaviour as noted. 

 

Figure 59 – Average monthly burst rate by subsoil texture in clay sandy and silty soils  April 2006- 

October 2008) 

 

Figure 60 – Average monthly burst rate by subsoil texture in clay sandy and silty soils (November 2008 

– April 2012) 
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Figure 61 - The seasonal processes effecting soil movement and pipe failure  
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Figure 62 Soil 

Moisture Deficit 

values from 

2005-2012 
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Figure 63 Aggregated 

mean SMD and 

Temperature values with 

bursts, weekly from 

2005-2012 
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5.4 Conclusion 

Anglian Water has approximately 30% of its pipes founded in soils which are at least 

moderately shrinking and swelling (Table 12). An additional 13% of its pipes are in 

soils which may swell by up to 4%. Even these soils show a seasonal relationship 

with summer / autumn fractures, but to a lesser degree than those in more swelling 

soils (Figure 53). 

The summers in 2006, 2009, 2010, and 2011 were warmer and dryer than those in 

2004, 2005, 2007, 2008. Summer bursts have increased, accordingly in the summer 

period in 2009-2012 compared to summers of 2005-2008 (Compare Figure 59 and 

Figure 60). This relationship is also borne out in a general comparison of total bursts 

vs the highest SMD recorded for the year, with correlations greater than 0.75. 

An overall conclusion is that there is a relationship between the number of bursts and  

hotter, drier summers shrinking certain soils, and the subsequent re-wetting and 

swelling of the soil in the autumn. 
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6 Spring Baseline 

 

 

 

 

 

 

6.1 Spring as a baseline index 

The effect on burst rate of water mains of winter, summer and autumn seasonal 

patterns has been shown and discussed in previous sections. During spring (April, 

May, June), soils are typically wet, so less prone to shrinkage and swelling (Figure 

61), and the temperature is less extreme, so less susceptible to temperature related 

failures. Figure 64 highlights the variation in burst rates across the year in time. 

 

Figure 64 - The variation in burst rates in May, in comparison with September and December  

 

  

The effect on burst rate of water mains of winter, summer and autumn seasonal 

patterns has been shown. During spring, soils are typically wet, so less prone to 

shrinkage and swelling, and the temperature is less extreme, so less susceptible 

to temperature related failures. Spring provides an ideal season to assess the 

baseline status of Anglian Water’s pipe network. 

It is shown that variation in spring burst rate is low, compared with summer, 

autumn and winter months. 
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6.2 Spring’s low number of bursts, low variation in bursts numbers 

Table 13 shows that the variation in spring burst rate is low (Standard Deviations 37 

to 43), compared with summer, autumn and winter months (Standard Deviations up 

to 296) (Figure 64). As can been seen, December bursts are variable, dependent on 

the temperature (e.g. 2006 was a warm winter with very few bursts (Figure 45). 

Table 13 – Variation in bursts by calendar months. 

 

 

While the month of May is typically a low-burst rate month, 2012 and 2011 saw 

higher than normal bursts (An increase of approximately 60 over the average of 

2005-2010). While there may be an issue of increased reporting of bursts due to 

Anglian Water’s proactive reporting scheme, we have not investigated this. 

We focused our investigation on the relationship of soil moisture deficit (SMD) and 

spring bursts. This showed that, normally, SMD in May was rising as the soil was 

drying. 2012, however, was an unusual winter and spring, with the drought conditions 

witnessed across the Anglian Water regions meaning that SMD was high and falling 

(soils were dry, but wetting up) coming into the spring (Figure 65). There was a 

subsequent fall in SMD in May. With this largely different pattern in SMD it is logical 

that the burst rate for this May is not typical. 

2011 also saw SMD reaching a peak shortly after May, indicating deep drying of the 

soils. June 2012 was a relatively benign month, with only 292 bursts – down from an 

average of over 360 from the previous 3 years. More research is required into the 

variation in weather in spring and the effect of this on buried assets. 
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Figure 65 - Soil moisture deficit and the position of May.  

6.3 Conclusions 

Burst rates are at their lowest in spring months, and show the least variation in burst 

rate compared to winter, summer and autumn. The springs 2010-2012 have shown 

higher levels of bursts than in previous springs. Whether this is due to procedural 

changes at Anglian Water or the more variable, unseasonal climate requires further 

research. 

Compared to the weather-related large increases in burst rates in the summer, 

autumn and winter, burst rates in the spring have been relatively stable. 
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7 Conclusions  

Despite falling leakage rates, there has been an increase in the number of bursts 

which Anglian Water have reported over the period 2008-2012, potentially affecting 

the serviceability rates as reported to the regulator. This one-month research project 

undertaken by Cranfield University has examined the environmental effects of 

weather and soils upon the water main network of Anglian Water. Company policy 

effects and localised factors have not been considered. The most reliable and 

detailed burst data analysed was for the period April 2005 to July 2012. Bursts were 

compared against a range of soil and environmental vulnerability dataset, as well as 

values from or derived from the MORECS climatic data from the Met Office. 

7.1 Chronic Pipe Degradation 

Pipes in acidic, peaty soils were more to be susceptible to failure than pipes in other 

soil. A relationship was also observed between corrosive soils, those with shallow 

gley layers, and increased pipe burst rates. 

These chronic effects do not change considerably before and after November 

2008 and so are not considered to be a cause of the observed increased burst 

rates. 

7.2 Winter 

The greatest increase in bursts relates to the colder winters of 2008-2012 when 

compared to the previous eight years. A correlation of greater than 0.85 is found 

when comparing total winter bursts with the minimum recorded temperature for the 

winter. 

Accumulated temperature was shown to be a useful metric to identify prolonged and 

sustained harsh winters. A basal threshold of week degrees below 1 was identified 

for the analysis. The study did not consider inter-regional comparisons with the 

territories of other water companies, but focused solely on the Anglian Water Region. 

The colder, harsher winters of 2008-2012 have led to an increase in winter 

bursts, across all soil types, relative to the 2005-2007 baseline. 
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7.3 Summer and Autumn 

 

It has been shown that late summer soil shrinkage and early autumn swelling of 

certain soils also has an effect on burst rates. This effect is more pronounced in 

highly shrinkable soils in the wetting phase than the earlier equivalent drying phase. 

There is a correlation of greater than 0.75 between the maximum recorded soil 

moisture deficit (SMD) and the total number of summer and autumn bursts. 

The hotter and drier summers of 2009-2012 have led to an increase in bursts in 

these periods relative to the 2005-2008 baseline. 

7.4 Spring 

During spring the soils are wet, so ground movement due to shrinkage and swelling 

is typically not an issue. Temperatures are less extreme in spring, so this is an ideal 

season to assess the baseline status of a pipe network. Some increase in burst has 

been seen in May 2012 and 2011 over the baseline 2005-2010.This small increase of 

approximately 60 bursts per month may be due to unseasonally dry winters and 

uncharacteristic soil moisture deficits that have been recorded. Additionally, proactive 

burst reporting by Anglian Water. 

Overall, compared with winter, summer and autumn fluctuations, spring bursts 

were found to have remained relatively stable over the period 2005 -2012. 
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8 Recommendations 

A series of recommendations follow from this study. 

8.1 Recommendations for future research 

This report has identified some clear environmental relationships with water mains 

bursts and environmental conditions pertaining to the locations of the Anglian Water 

water mains. These conditions vary in time, and it is suggested that a more thorough 

investigation be conducted as to the build up of the contributory conditions affecting 

this critical infrastructure. This rapid research project has identified some likely 

causes of the increased burst rate in the Anglian Water region. It is noted that there 

remain many questions deserving a more detailed and thorough analysis. Following 

discussion with Anglian Water staff, a number of research topics are suggested as 

being of merit. In brief, these potential development suggestions could include 

specific developments by Cranfield on behalf of Anglian Water plc. as follows: 

 

Reporting 

 

1. An annual assessment and environmental audit of the previous annual burst 

records and the effect of soils and climate, commenting on changes and 

variations to baseline conditions. It is suggested this be conducted in the 

springtime. This approach can help Anglian Water prepare in a timely manner 

for future serviceability reporting to the regulator. 

 

Further Scientific Investigations 

2. An investigation in to the installation age of PVC pipes and AC pipes – 

Longevity of these pipes may depend strongly on the quality of the 

installation. We would seek to identify pipes most likely to fail in the summer / 

autumn months to enable targeted replacement. 

3. Investigation of THRUST potential (forces) for the variety of soils in the 

Anglian Water region and how these are affected by climatic controls. 

4. A more substantive investigation of the causes of the winter bursts. Possible 

causes include: soil movement, water temperature flux, transmission of cold 

through soil water. This to be backed with experimental data for the range of 

soil types in the Anglian Water region. 
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5. An investigation of the fluctuation of soil determinants such as pH throughout 

the year and across longer periods of time – as well as an assessment as to 

how this may affect pipe degradation. 

6. The development of a series of robust computational decision support tools 

for Anglian Water, comprising: water mains bursts; sewer failure; and sludge 

to land. 

 

Data refresh and upgrade 

7. Digital Soil Mapping / upgrade datasets 

To achieve the greatest accuracy of soil-related causes of bursts, 

interpretation is more successful using soil data at a scale of 1:50,000 or 

larger (Jarvis and Hodges 1994). At these scales individual soil series can be 

identified opposed to 1:250,000 scales used in this present study, where each 

soil map unit may comprise of a number of soil series which are found 

associated together in a particular type of landscape. 

 

We would model the soils of the Anglian Water region at a more detailed 

scale of 1:50,000 enabling more accurate assessments of the soil hazards to 

pipes. 

8. Enhanced visualisation techniques to enable better decision making – 

including DMA focused reporting and integration with web-visualisation tools. 

 

Failure and Criticality modelling 

9. Combining likelihood / criticality of failure to create models identifying the 

failure footprint of different assets. This would enable the visualisation of 

threats at the DMA level. DMAs and pipes within them could be ranked to 

enable informed decision making in the area of asset management. 

10. Development of a near-real time summer / autumn model of movement 

potential and likely bursts incorporating higher resolution soils and 

meteorological data. 

11. Development of a winter model of burst rates based on recorded 

meteorological conditions. 
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Training and Communication 

12. Seasonal replacement - How to prioritise replacement schemes by season 

and soil conditions, to dig safely and effectively at different times of the year 

to minimise personal injury and mitigate collateral damage to other buried 

assets. 

13. Soil / ground condition training for field staff, including soil identification and 

the development of good practices in reinstatement of trench excavation, 

maintaining ordering, even packing density and porosity. 

14. Enhance Anglian Water’s soil maps by improving communication with field 

staff to educate and engage them in taking better, more accurate notes on the 

soil condition / pipe failure mechanism etc. Field guidance notes for 

maintenance operators on soil management issues relating to future asset 

performance. 

 

8.2 Working with Cranfield 

Cranfield University work with Anglian Water in many ways. Our research staff can 

undertake research and consultancy project, such as in this case. Alternatively 

Cranfield often embeds research students in utility companies to focus on specific 

research questions. 

An effective means for Anglian Water to address many of these research questions 

would be to have Cranfield undertake a PhD (3 years) or an MSc by research (1 

year) whereby aspects of the analysis and contributory data would be assembled and 

exposed to discriminatory statistical techniques to allow levels of confidence to be 

placed on the findings. 

8.3 Facilities - soil physics and field laboratories 

The National Soil Resources Institute (NSRI) operate a range of world-class facilities 

used to underpin and support the research programmes underway at the University. 

We can make these large scale facilities available to Anglian Water for specific 

research projects, for example, examining the effect of climate or swelling on soil 

volume or pipe networks.  
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Appendix A – Project Task Descriptions 

The following appendix lists the task descriptions comprising this work programme 

and constituting the contractual obligations of Cranfield University, NSRI to Anglian 

Water plc. 

 

Project: WU33701V 

Key Task descriptions 

Deliverable 1 
Assessment of burst records against soils criteria 
 

Deliverable 2 
Assessment of burst records against meteorological criteria 
 

Deliverable 3 
Literature review of academic publications. 
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10 Appendix B – Computer Software 

This appendix presents a range of computer software written in the computer 

programming language PERL which were created to help with the analysis. Each 

programme is documented and listed below. 

10.1 CreATe.pl 

CreATe.pl is a perl script that takes MORECS data held in a CSV file and calculates, 

for each MORECS grid, the accumulated day degrees below a set threshold over the 

year (running July to June to ensure the full winter period is accumulated together. 

# CreATe.pl [PERL] v2 

# Purpose: Create Accumulated Degree Days below basal threshold for MORECS grid data 

# AT is the integrated excess or deficiency of temperature around a threshold 

# S Hallett, NSRI 14/8/12 

# Run on cmd line as: perl CreATe.pl 

#!/usr/bin/perl 

 

############################### 

# EDIT VALUES BELOW           # 

my $basalThreshold  = 1;      # threshold in degrees centigrade 

############################### 

 

#initialise 

my $lapseRate = 0.0064; 

my $counter = 1; 

my $periodIndex=-1; 

open(INFILE,"MORECSSquaresData_JULY12_SHH_Summer_Split.csv") || die "Could not open 

'MORECSSquaresData_JULY12_SHH_Summer_Split.csv' file"; 

open(OUTFILE,">MORECS_DD.txt") || die "Could not create 'MORECS_DD.txt' file"; 

print "Starting ...\n"; 

 

# Process file 

while (<INFILE>) { 

  chop; 

  @_ = split /,/; 

  if ($counter == 1) { @Header = @_;} 

  if ($counter == 2) { @East = @_;} #don't need 

  if ($counter == 3) { @North = @_;} #don't need 

  if ($counter == 4) { @Altitude = @_;} 

  if ($counter >= 5) { # morecs data 

    $currentPeriod = @_[1]; 

    for ($index=2; $index<=@_-1; $index++) { # process Morecs squares, skipping date and 

processing period col 

      if (@_[$index] <= $basalThreshold) { # acumulate deficit 

        if (!grep( /^$currentPeriod$/, @period_labels)) {push(@period_index, ++$periodIndex); 

push(@period_labels, $currentPeriod);} # store each processing period 

#print OUTFILE $periodIndex; 

     $tmpOD = abs($basalThreshold - (@_[$index]+0)); 

     $tmpMSL = abs($basalThreshold - (@_[$index]+($lapseRate*@Altitude[$index]))); 

     $Years_OD[$periodIndex][$index] += $tmpOD; 

     $Years_MSL[$periodIndex][$index] += $tmpMSL; 

     @Total_OD[$index] += $tmpOD; 

     @Total_MSL[$index] += $tmpMSL; 

   } 

    } 

  } 

  $counter++; 

} 

 

# Output results 

#header 

print OUTFILE "Morecs_Id,Total_ATOD_$basalThreshold,Total_ATMSL_$basalThreshold"; 

for( $period = 0; $period<= @period_labels-1; $period++) { # each separate period 

  printf(OUTFILE ",%s_ATOD_$basalThreshold,%s_ATMSL_$basalThreshold", @period_labels[$period], 

@period_labels[$period]); 

} 

print(OUTFILE "\n"); 
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#data 

for($i=2; $i<=@Header-1; $i++) { # skipping first element 

  printf(OUTFILE "%s,%.02f,%.02f", @Header[$i], @Total_OD[$i], @Total_MSL[$i]); 

  for($period=0; $period<=@period_index-1; $period++) { # each separate period 

    printf(OUTFILE ",%.02f,%.02f", $Years_OD[@period_index[$period]][$i], 

$Years_MSL[@period_index[$period]][$i]); 

  } 

  print(OUTFILE "\n"); 

} 

 

# Close files 

close(INFILE); 

close(OUTFILE); 

print "... Finished\n"; 

#################### 

 

# eof: CreATe.pl 

 

10.2 MorecsValues.pl 

MorecsValues.pl is a perl script that identifies, for each recorded burst, the 

meteorological values for the week of the burst as well as the two preceding weeks, 

for the MORECS gridsquare that the burst is located in. Additionally the programme 

identified the coldest temperature in that period as well as the burst date. 

# MorecsValues.pl [PERL] v2 

# Purpose: Extract the Morecs values for various meteorological data for the week of the  

# burst and the two preceding weeks, plus the minimum of those temperatures and the burst date. 

# S Hallett, NSRI 15/8/12 

# Run on cmd line as: perl MorecsValues.pl 

#!/usr/bin/perl 

 

#initialise 

use List::Util qw[min max]; 

my $missingData = -999; 

my $lapseRate = 0.0064; 

my $week = 0; 

my $weekEnd = 0; 

my $weekEndMinus1 = 0; 

my $weekEndMinus2 = 0; 

my @weekResult = 0; 

my @timeTemporary = 0; 

my $burstWorkOrder = 0; 

my $burstMorecsId = 0; 

my $burstAlt = 0; 

my $burstWeek = 0; 

my $burstWeek_MinusOne = 0; 

my $burstWeek_MinusTwo = 0; 

my $morecsWeekTempMSL = 0; 

my $morecsWeekTempMSL_MinusOne = 0; 

my $morecsWeekTempMSL_MinusTwo = 0; 

my $burstTempOD = 0; 

my $burstTempOD_MinusOne = 0; 

my $burstTempOD_MinusTwo = 0; 

 

open(INFILE_BURSTS,"bursts_v6_in_DMA_Morecs_Date_DTM_Only.csv") || die "Could not open 

'bursts_v6_in_DMA_Morecs_Date_DTM_Only.csv' file";   

open(OUTFILE,">BURSTS_Meteo.txt") || die "Could not create 'BURSTS_Meteo.txt' file"; 

print "Starting ...\n"; 

 

#header 

print OUTFILE "WorkOrder,Week_end_date,Temp_OD,Temp-1_OD,Temp-2_OD,MinTemp_OD\n"; 

 

# Process file 

while (defined($eachBurstLine = <INFILE_BURSTS>)) { 

  next unless ($. > 1); # skip header lines 

  chop; 

  @eachBurst = split (/,/, $eachBurstLine); 

  $burstWorkOrder = @eachBurst[3]; 

  $burstMorecsId = @eachBurst[11]; 

  $burstAlt = @eachBurst[12]; 

  # 

  @timeTemporary = split(' ', @eachBurst[5]); #week of burst 

  $burstWeek = @timeTemporary[0]; 
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  $morecsWeekTempMSL = getMorecsValues($burstMorecsId, $burstWeek); 

  $burstTempOD = ($morecsWeekTempMSL != $missingData) ? ($morecsWeekTempMSL - ($lapseRate * 

$burstAlt)) : ($morecsWeekTempMSL); # trap missing data 

  #   

  @timeTemporary = split(' ', @eachBurst[6]); # week before burst 

  $burstWeek_MinusOne = @timeTemporary[0]; 

  $morecsWeekTempMSL_MinusOne = getMorecsValues($burstMorecsId, $burstWeek_MinusOne); 

  $burstTempOD_MinusOne = ($morecsWeekTempMSL_MinusOne != $missingData) ? 

($morecsWeekTempMSL_MinusOne - ($lapseRate * $burstAlt)) : ($morecsWeekTempMSL_MinusOne); # trap 

missing data 

  # 

  @timeTemporary = split(' ', @eachBurst[7]); # two weeks before burst 

  $burstWeek_MinusTwo = @timeTemporary[0]; 

  $morecsWeekTempMSL_MinusTwo = getMorecsValues($burstMorecsId, $burstWeek_MinusTwo); 

  $burstTempOD_MinusTwo = ($morecsWeekTempMSL_MinusTwo != $missingData) ? 

($morecsWeekTempMSL_MinusTwo - ($lapseRate * $burstAlt)) : ($morecsWeekTempMSL_MinusTwo); # trap 

missing data 

  printf(OUTFILE "%s,%s,%.02f,%.02f,%.02f,%.02f\n", $burstWorkOrder, $burstWeek, $burstTempOD, 

$burstTempOD_MinusOne, $burstTempOD_MinusTwo, min($burstTempOD, $burstTempOD_MinusOne, 

$burstTempOD_MinusTwo)); 

} 

 

# Close files 

close(INFILE_BURSTS); 

close(OUTFILE); 

print "... Finished\n"; 

#################### 

 

#################### 

sub getMorecsValues { 

  # Passed: morecs id and week number 

  # Returns: Temperature and Morecs grid centre Altitude 

  ($_morecsId, $_week) = @_; # name parameters 

  my $_lapseRate = 0.0064; 

  my $_morecsCounter = 1; 

  open(INFILE_MORECS,"MORECSSquaresData_JULY12_SHH_Summer_Split.csv") || die "Could not open 

'MORECSSquaresData_JULY12_SHH_Summer_Split.csv' file"; 

  while (defined($eachMorecsLine = <INFILE_MORECS>)) { 

    chop; 

    @eachMorecs = split (/,/, $eachMorecsLine); 

    if ($_morecsCounter == 1) { @Header = @eachMorecs;} 

    if ($_morecsCounter == 4) { @Altitude = @eachMorecs;} 

    if ($_morecsCounter >= 5) { # morecs data 

      if(@eachMorecs[0] eq $_week) { # match on date 

        for( $i = 2; $i <= @Header-1; $i++) { # skipping first two elements 

          if(@Header[$i] == $_morecsId) { # match on Morecs square 

   close (INFILE_MORECS); 

   return @eachMorecs[$i] + ($_lapseRate * $Altitude[$i]) # return MSL 

corrected temperature 

    } 

  }   

      } 

    } 

   $_morecsCounter++; 

  } 

  close (INFILE_MORECS); 

  return -999; 

} 

#################### 

 

# eof: MorecsValues 

 

 


