
DFRWS

An automated timeline reconstruction approach for digital forensic
investigations

Christopher Hargreavesa* and Jonathan Pattersona
aCentre for Forensic Computing, Cranfield University, SN6 8LA, UK

Abstract

Existing work on digital forensics timeline generation focuses on extracting times from a disk image into a timeline.
Such an approach can produce several million ‘low-level’ events (e.g. a file modification or a Registry key update)
for a single disk. This paper proposes a technique that can automatically reconstruct high-level events (e.g.
connection of a USB stick) from this set of low-level events. The paper describes a framework that extracts low-
level events to a SQLite backing store which is automatically analysed for patterns. The provenance of any high-
level events is also preserved, meaning that from a high-level event it is possible to determine the low-level events
that caused its inference, and from those, the raw data that caused the low-level event to be initially created can also
be viewed. The paper also shows how such high-level events can be visualised using existing tools.

Keywords: digital forensics; automation; timelines; event reconstruction;

* Corresponding author. Tel.: +44 (0)1793 785993.
E-mail address: c.j.hargreaves@cranfield.ac.uk.

1. Introduction

This paper presents an automated approach to
assist analysts during a digital investigation by
automatically reconstructing high-level events that
have occurred, for example, the connection of a USB
stick. The paper makes the following contributions: a
Python based prototype that extracts dates and times
from various files on a mounted disk image; a
framework that allows ‘analysers’ to be written that
can produce a high-level event based on the presence
of one or more low-level events. This combined
approach also allows detailed provenance of any
automatic inferences to be preserved, from a high-
level event, through the low-level events that were
(and were not) present, all the way down to the raw
data that caused a low-level event to be extracted in
the first place.

The remainder of this paper is structured as
follows: Section 2 provides background information
and justifies a timeline-based approach in a digital
investigation. Section 3 considers related work, and
Section 4 discusses the methodology for this
research. Section 5 presents the design and
implementation. Section 6 provides sample results
from the use of the developed tool and Sections 7 and
8 evaluate the research and discuss conclusions and
further work.

2. Background

One of the challenges to digital forensics is the
volume of data that needs to be analysed. This has
arisen as a result of a number of factors, including the
importance of digital evidence in a broader range of
investigations, increasing storage capacities, and the
increasing number of digital devices owned by an
individual [1]. As a result, automation is an
increasingly important part of digital forensics. Many
existing automated tools have focused on the
extraction stage of a digital investigation, i.e. making
more information accessible from the raw data, and
are very effective at this. For example, Internet
Evidence Finder automates the recovery of artefacts
on a disk image that relate to certain Internet use, e.g.
Facebook chat artefacts.

Automated extraction approaches do help with
digital investigations, but only in that they make
more data available to an analyst in a form that can
be understood. Since it is usually necessary to answer
questions about previous digital events [2], one
approach that can help is the use of timelines.
Existing work on timelines in digital investigations is
discussed in the following section and the timeline
generation techniques are divided into ‘file system
only’ and ‘enhanced’.

3. Related work

3.1. Timelines based on file system times
The majority of commercially available forensic

software packages reconstruct the file system of a
disk image and make the contents of files and their
metadata accessible. Depending on the file system in
use, this metadata usually includes at least Modified,
Accessed and Created (MAC) times. Some forensic
tools are capable of turning the multiple times
associated with a file into a timeline. For example
Carrier describes how to generate a file activity
timeline using The Sleuth Kit [3], and Bunting
describes the graphical ‘Timeline View’ of EnCase
[4]. The limitation of file system metadata based
timelines is that they do not consider times that are
available by examining the contents of files.
3.2. Timelines including times from inside files

Olsson and Boldt improved upon file metadata
based timelines with the Cyber Forensic Time Lab
(CFTL) [5]. This tool not only recovers file system
times from FAT and NTFS volumes, but also extracts
times from a variety of files, for example EXIF data,
Link files, MBOX Archives and Windows Registry
files. Interestingly, CFTL also maintains some
information about the source of extracted events. It is
also suggested that an extension of the work could be
to automatically search for “certain predefined
patterns of suspicious activity, helping the
investigator to spot interesting parts of the timeline
more efficiently”.

Also, log2timeline [6], with the timescanner
enhancement can automatically and recursively
examine files and directories. If an appropriate ‘input
module’ is available for a file, times are extracted and
added to a timeline. Reference [6] also hints at the
possibility of grouping events that are part of the
same activity when describing the potential future use
of the ‘super event’ table in the SQLite output format.

A more detailed review of available timeline
software is available in [7], but the examples in this
sub-section demonstrate that there are a number of
benefits to using an ‘enhanced’ timeline in addition
to improving the richness of the timeline, i.e.
increasing the number of events. As discussed in [5],
a tool such as Timestomp could be used to clear file
system times, but this would not affect times within
files. Even if not overwritten maliciously, file access
times can be updated in bulk by anti-virus products
[6] or the updating of them disabled by default in
modern operating systems or by altering a Registry
key.

3.3. Visualisations
There is also some work that discusses the

visualisation of digital forensic timelines. For
example, EnCase’s visualisation is mentioned in
Section 3.1 [4].

Buchholz and Falk [8] developed Zeitline, which
is a GUI based tool that allows file system times to be
imported from The Sleuth Kit and other sources
(using Import Filters). This tool provides searching
and filtering of events. It also introduces the concepts
of atomic events and complex events, where the
former are “events that are directly imported from the
system” and the latter are “comprised of atomic
events or other complex events”. Zeitline allows an
investigator to manually combine atomic events into
complex events.

Aftertime [9] is a Java based application that not
only performs enhanced timeline generation (as
described in Section 3.2) from a disk image, but also
visualises the results as a histogram, with time on the
x-axis against numbers of different events on the y-
axis.

Lowman discusses several visualisations of web
history data, including heat maps, bar charts of
activity, word clouds and a timeline view [10]. The
results presented suggest the visualisations are
effective. However, it is difficult to know how they
would scale if they included all events from a disk, as
described in the previous section.

One of the problems that all visualisations will
face is that when all the times are extracted from file
system metadata and from within files, hundreds of
thousands of events can be produced. Finding ways
to display this number of events in a way that is
useful to an investigator is extremely challenging; as
[6] states, “a super timeline often contains too many
events for the investigator to fully analyze, making
data reduction or an easier method of examining the
timeline essential”.
3.4. Summary

This section has shown the importance of
recovering times from inside files in addition to using
file system metadata. However, this causes new
problems, as the large number of events produced are
difficult to analyse and extremely problematic to
visualise in a manner that is useful. It has been
suggested that highlighting certain patterns of activity
to indicate areas of interest in the timeline may be an
effective approach, and that it is important to
maintain records of the source of extracted data.

4. Methodology

Many of the problems highlighted in the related
work section stem from the volume of data created
when all times are extracted from a disk image,
particularly with the ‘super-timeline’ approach. This
volume of data, or in particular, the number of events
that are generated, makes analysis difficult and limits
the way in which data can be visualised.

This research aims to determine the extent to
which it is possible to automate the manual process
that an investigator can undertake to combine
multiple ‘low-level’ events, (i.e. data extracted from
file systems and compound files) into ‘high-level’,
human-understandable events, e.g. connection of a
USB stick. Such an approach would produce a
summary of activity that would assist in focusing an
investigation on particular areas of interest or perhaps
prioritising the investigation of one machine over
another.

The chosen research method in this case is the
development of a software prototype. This is chosen
over a design-based approach, as it means it is also
necessary to overcome any practical issues that are
difficult to identify at the design stage.

Another methodological question that arises is
whether to build on top of existing frameworks, e.g.
log2timeline. In the literature review there are several
identified properties that are desirable in a timeline
reconstruction system. One of which is traceability of
any results back to the original low-level data [5]. If
log2timeline were to be used, the input modules
would need to be enhanced to accommodate this. To
allow for such updating, the data structures that they
process would need to be understood to such an
extent that code could be implemented entirely
anyway. As a result, this work implements a
complete framework for low-level event extraction
that does replicate much of the log2timeline
capability, but with some enhancements. Since this is
a fresh implementation then it is not necessary to
implement in any particular language based on legacy
requirements. The implementation language in this
case is Python 3, which can be considered to be very
suited to digital forensics as a result of its emphasis
on readability of code, which means that inspection
of methods used can be more easily achieved by a
third-party.

5. Design

This section discusses the design of the timeline
reconstruction framework. It provides an overview,
followed by details of the low-level event generation
and the high-level event reconstruction.

5.1. Overall design
The developed software (Python Digital Forensic

Timeline (PyDFT)) functions in two main stages:
low-level event extraction and high-level event
reconstruction. There are many other supporting
components that allow this to occur, including case
management, conversion of different formats for
storing date-times, and some basic GUIs. However,
due to space constraints these will not be discussed in
detail and the focus will be on the generation of low-
level events and the analysis of these low-level
events to produce high-level events. The sections
that follow will discuss the design and
implementation of these two stages.

5.2. Generation of low-level events

5.2.1. Overview
The generation of low-level events includes both

file system times, and times extracted from inside
files. Like log2timeline, this is achieved by the
analysis of a mounted file system, rather than the disk
image based approach of Aftertime. While most
forensic investigations will be working from a full
disk image, an equivalent mounted file system can be
easily obtained by mounting the disk image in read-
only mode using both Mac OS X and Linux.

5.2.2. Extraction of file system times

Since a mounted file system is being examined, it
is possible to obtain file system times using OS level
commands. However, this provides a limited set of
times, e.g. file creation times are not available on all
systems. Therefore, for NTFS file systems, the times
are not obtained by querying the file system, but
instead a check is performed for the presence of the
$MFT file, that for NTFS, contains all the data
necessary to extract low-level events about the file
system. This can be accessed directly on Linux, and
on Mac OS X using an NTFS driver from Tuxera. If
the $MFT file is found, it is processed and the
modified, accessed, created and entry modified times
from the Standard Information Attribute are used to
build four events for each file on the file system.

5.2.3. Times from inside files

After the generation of the low-level events using
the MFT, as discussed in the related work section,
there are a significant number of dates and times that
can be extracted from inside complex files such as
Windows Registry hives. This is handled by an
‘Extractor Manager’. For each file in the mounted file
system, the function GetTimesFromInsideFiles() is

called and the file is checked to see if any of the time
extractors available can be used for that file. In order
to determine which (if any) event extractor can be
used for a particular file, the file name, file path and a
file pointer (which can be use to read bytes in order
to perform signature based matching) are available.
Upon identifying a file that can be processed further,
the appropriate time extractor is called, events are
generated from the times within the file, and these are
added to the low-level timeline. Time extractors that
have currently been implemented include: Chrome,
Firefox and Internet Explorer history, Skype,
Windows Live Mail, XP Event Logs, Link Files,
Registry, and Setup API.

5.2.4. Parsers and bridges

Each extractor is made up of two parts: parsers,
which process the raw data structures and recover
data in a usable form; and bridges, which take the
information that a parser provides and maps the
values to a low-level event object. This design makes
it easier to accommodate new parsers when they are
developed for data structures (as part of other
research). It also makes the code in the parsers
reusable for other research, since they are not
dependant on components and data structures of the
Python Digital Forensic Timeline.

5.2.5. Traceability

Since these time extractors have been re-
implemented specifically for the purpose of timeline
generation and analysis, this has allowed the concept
of traceability to be built in at every layer. Practically
this means that when a low-level event is returned
from a file by an extractor, it also returns a value that
allows easy access to the raw data from which this
event was produced. However, not all data is
retrieved in exactly the same way and there are
currently several types of provenance that can be
returned with the low-level event.

offset: A byte offset within a file, e.g. Windows
Registry, index.dats.
line number: A line number within a text based file
e.g. Setupapi.log.
SQL Query and record ID: Used when the source
file is a database and the row number of the results
of a specific query can be used, e.g. Firefox history.
third party: In addition to the extractors developed as
part of this research, it may be desirable to use third-
party code, and while that code may not be designed
to preserve provenance to the level of file offsets, this
at least allows the third-party plugin to be recorded.

Whichever type of provenance is used, the file
from which the data was extracted is always captured
within the low-level event.

5.2.6. Low-level event format

As discussed in the previous sub-section, one of
the details preserved in the low-level event format is
the provenance, i.e. the data that is the source of the
low-level event. However, there are a number of
other fields that make up a low-level event. These are
discussed below.

id: A unique identifier for each event.
date_time_min: The earliest time that the event could
have occurred.
date_time_max: The latest time that the event could
have occurred.
evidence: The evidence item that the event came
from. Since the case being processed may contain
multiple sources of evidence, this allows these
multiple sources to be incorporated into a single
timeline. This can be useful in cases where multiple
computers or devices are involved, or even the
analysis of a computer system with multiple hard
disks.
plugin: The time extractor that was used to recover
the event, e.g. ‘Registry’.
type: The type of the event, e.g. File Created, Key
Last Updated, URL Last Visited. This is currently
determined by the author of an extractor.
path: The object that the event relates to, e.g. a file or
URL.
provenance: The data that was used to produce the
event. As previously discussed this includes the file
that the event came from, and any further details that
assist in directly accessing the relevant raw data, e.g.
the offset within the file.
keys: Optional, additional details about an event.

The fields stored are similar to those used in
existing tools such as Zeitline, log2timeline and
Aftertime. The specific details of what is stored and
the reasoning for some of the differences from
existing formats are discussed in the following
paragraphs.

Event ID: The event ID uniquely identifies each
low-level event. This is necessary for the later high-
level event reconstruction as will be discussed in
Section 5.3.

Maximum and Minimum date/times: This allows
times that are stored on disk imprecisely to still be
used to generate low-level events, for example file
access times on FAT file systems record only the date
of the access not the precise time. Storing a

maximum and minimum is more technically accurate
than simply rounding the access time to midnight,
since in reality there is a 24-hour period in which that
access could have taken place. Dates and times are
stored in UTC as Unix Time (seconds since 1st
January 1970). However, fractional numbers are
permitted, meaning that precision is not lost when
times are recovered from files that record times with
more detail than Unix Times, e.g. Windows
FILETIME (100-nanosecond intervals since 1st
January 1601).

Keys: The keys field is implemented as a Python
dictionary. It is used to store any further relevant
information that does not fall under the fields
outlined previously. The data stored will depend on
the type of the event. File related events may capture
the file size and user ID, whereas URL accesses may
contain page title and visit type. This is similar to the
log2timeline concept of ‘extras’.

As discussed above, many of these fields can be
mapped directly to other low-level timeline
generators such as those detailed in Section 3. This is
a useful property as it should be relatively simple to
allow low-level events to be imported from other
tools. However, such imported events would have the
limitation of not preserving as much provenance
information, therefore not allowing full traceability
back to the raw data.

5.2.7. Backing store for the low-level timeline

While internally in PyDFT, low-level events are
implemented as a Python class, it is also necessary to
have a backing store for the low-level timeline. It is
worth noting that early versions of the low-level
timeline generation tool kept the data in memory
only, but the timeline quickly became too large,
causing disk paging and resulting in the associated
performance problems. Existing low-level timeline
tools have implemented a variety of different means
of storing timelines. It is common to export the
generated timelines to disk in CSV form. This has the
advantage of allowing commands such as grep to be
used to query for specific events [6].

However, this tool uses SQLite as a backing store
since it is necessary to conduct multiple advanced
queries on the data set and it has been found to offer
performance benefits to using a flat file structure
(although PyDFT can also export low-level timelines
to several other formats). SQLite is discussed as a
backing store option in [7], but is described as having
the limitation of requiring an investigator to have
knowledge of SQL in order to search for particular
events. As will be seen in Section 5.3, in this

implementation, this is not the case, and therefore not
a limitation.

The SQLite database in this implementation
comprises three tables; info, events and keydata. The
info table contains metadata such as the version of the
timeline tool that produced that database and the time
of its creation. The majority of data is stored in the
events table, with data from the keys field being
stored in the separate keydata table. This structure
results in some duplication of data, but as the
database is not subject to updates, this is not
problematic.

5.2.8. Summary

The low-level events are extracted from inside
files using an ‘extractor manager’. Events are
converted into a standard format for a low-level event
and added to a timeline. This timeline is stored as a
SQLite database which can be used for further
queries. In addition to fields such as dates and times
of the event, the event type, and path to which the
event relates, the provenance of the data is also
stored, which can contain details such as the offset of
the raw data from which the event was generated.

5.3. Reconstruction of high-level events
5.3.1. Overview

The previous section described how a low-level
timeline is generated and events added to a SQLite
database. This section discusses how this timeline is
automatically processed to produce high-level,
human-understandable events.

Some previous work has proposed neural
networks for automated event reconstruction [11].
However, the approach in this paper searches for
patterns of events in the low-level timeline based on
pre-determined rules. The approach is based on a
plugin framework where each plugin is a script that
detects a particular type of high-level event. Each
‘analyser’ script contains criteria that specify the low-
level events that should be present if that high-level
event occurred, and searches the entire timeline for
low-level events that match within a specified period
of time. An analyser is made up of a number of
components, which are discussed in the following
sub-sections.

5.3.2. Basic event matching using test events

One of the limitations of using a SQLite database
to store low-level events discussed in [7] was that
knowledge of SQL is necessary to query the
database. It is not certain that this is a limitation, but
in any case, SQL knowledge is not necessary in this

implementation due to the use of ‘Test Events’. This
means that in order to find a low-level event in the
timeline it is simply necessary to construct a low-
level event that has the properties of the one that
needs to be matched. A method can then be called on
an event in the low-level timeline to determine if it
matches the ‘test event’ that has been constructed.
During execution of the matching method, each of
the fields of a low-level event are compared, but
exact matching is not necessary. The matching is
implemented in such a way that regular expressions
can be specified in any of the fields in a test event. If
a field is not specified then it is not evaluated as part
of the match. This allows test events to be
constructed as shown below, which matches any file
creation on the file system that has the extension .doc
or .docx. Dates and times are not compared during
matching since it is desirable to match events
anywhere in the timeline.

test_event = PyDFT.Core.LowLevelEvent.LowLevelEvent()
test_event.provenance_source = “File System”
test_event.type = “Created”
test_event.path = “\.docx?$”

The remainder of this simple analyser searches the

entire timeline for events that match, builds
appropriate high-level events, and adds them to the
high-level timeline.

for each_event in timeline:
 if each_event.Match(test_event):
 # Create high-level event
 # Add high-level event to high-level timeline

5.3.3. Matching multiple artefacts
In addition to building a high-level event from a

single low-level event, it is possible, and often
preferable to use multiple low-level events. This
approach means that one or more ‘test events’ are
constructed and these act as triggers. The timeline is
searched as before and if any of the test events are
matched then a working hypothesis that a particular
high-level event occurred is created. At this point a
new low-level timeline is created in memory by sub-
sampling the timeline within a period defined in the
analyser, for example 10 seconds either side of the
trigger event. This timeline is then searched for all of
the low-level events that would expect to be seen for
this high-level event. Events that are matched within
this period are added to a list of supporting artefacts
(similar to complex events consisting of atomic
events in [8]). If they are not found then they are
added to a list of contradictory artefacts. This
approach can be thought of as ‘temporal proximity
pattern matching’ for low-level digital events.

Whether a high-level event is created or not based
on a trigger alone depends on the specific analyser.

Some may create a high-level event with only one
low-level event matched, whereas others may require
several low-level events to be present.

This ‘reasoning’ is stored within the high-level
event and there are three additional fields, (trigger,
supporting and contradictory). Each of the three
fields store: ‘Reasoning Artefacts’ which contain: the
ID of the low-level event that matched, a description
of the reason, and the test event that caused the
match.

There are different ways in which analysers that
use multiple artefacts may be constructed. Some
specify a static set of test events at the start of the
analyser. For example, a ‘Firefox Installation’
analyser creates two test events, one for creation of a
Firefox executable and another for the creation of a
Mozilla Firefox folder in Program Files. Other, more
complex analysers dynamically create new test
events based on data extracted from the trigger event.
For example, a ‘USB Connection’ analyser first
searches for an entry in the setupapi.log, then builds
an additional test event using the serial number of the
USB device extracted from the trigger event. This
means that only low-level events related to the trigger
are matched. This is shown in Section 6.2.

Currently, there are 22 analysers implemented.
Some examples of which include: ‘User Creation’,
‘Windows Installation’, ‘Google Search’, ‘YouTube
Video Access’, ‘Skype Call’ and ‘USB Connected’.

5.3.4. High-level event format

The structure of a high-level event is similar to
that of a low-level event and some fields are inherited
from the same superclass.

id: A unique identifier for each high-level event.
date_time_min: The earliest time that the event could
have occurred.
date_time_max: The latest time that the event could
have occurred.
evidence_source: The evidence item from which the
event came.
type: The type of the event, e.g. ‘USB Connected’ or
‘Program Installed’.
description: A human readable description of the
event.
category: Since many analysers may be run, a
category can be applied to each event for easy
filtering.
device: The device that the event occurred on. For
example, a photograph may be stored on a computer
and contains EXIF data indicating it was taken with
an iPhone. If the event being reconstructed was
‘Photograph Taken’, then the ‘device’ would be the

iPhone, but the ‘evidence_source’ would be the
computer. This is interesting as it can produce
timelines for devices that are not necessarily in the
possession of the investigator.
summary: This is not yet implemented but allows for
short summaries of documents, websites etc. to be
included in the event. This may assist in future
searching and filtering of events.
files: When the high-level timeline is generated, files
that are associated with an event are copied to a
folder within the case path for previewing or further
analysis. This field contains multiple entries and
maintains an index of copied files.
keys: This field allows additional details about an
event to be captured, e.g. USB Connection events
store VIDs, PIDs and Serials.
trigger_evidence_artefact: This stores the reasoning
artefact for the low-level event that triggered the
search for additional low-level events.
supporting_evidence_artefacts: This is a list and
stores all the additional reasoning artefacts that were
found.
contradictory_evidence_artefacts: This is also a list
and stores all the additional reasoning artefacts that
were searched for but not found within the
timeframe.

5.3.5. High-timeline output
The main output from the tool is currently XML,

since it has not yet been necessary to move the high-
level timeline into SQLite. Example XML output for
an event is shown later. However, in addition to the
XML, other formats are also exported in order to take
advantage of some existing visualisation software.
Examples are shown later in Section 6.

In addition to the representations of the entire
high-level timeline that are saved, optionally,
individual HTML reports are also created for each
high-level event. This allows more detail to be
displayed since the references to low-level events
stored in high-level events are simply IDs. In the
HTML reports of individual high-level events, the
low-level event ID is accessed and the event’s full
details displayed. This is shown in Figure 1. Also,
optionally included in the HTML report are any other
low-level events that occur within a set time period
around the high-level event, which may assist with
‘temporal proximity’ analysis as described in [6].

Figure 1: HTML event report of a Bing search showing trigger and
supporting artefacts.

Other output includes a full log of all actions
performed during the timeline generation and
analysis, including any errors or warnings.

5.3.6. Summary

High-level events can be created by scanning the
complete timeline for low-level events that match
specific criteria. This is achieved by creating test
events that are low-level events with the properties
that it is desirable to match. The ‘reasoning’ of the
high-level event is preserved since the low-level
events that were matched, and any test events that did
not match are recorded within the high-level event.
Since the IDs of the low-level events are captured, it
is then possible to use this to obtain the low-level
event provenance, which ultimately links back to the
original data in the disk image, e.g. a file and an
offset within it.

6. Results

This section demonstrates a small sample of the
high-level events that can be reconstructed using the
developed system.
6.1. Google searches
This simple example illustrates the detection of
Google searches. Several searches were conducted on
a test system and the times noted. The notes recorded
were:
- 11:28:30 Google search for ‘how to hack wifi’,
- 13:48:15 Google search for ‘hack wifi password’

The corresponding HTML reports from PyDFT are
shown in Figure 2.

Figure 2. The HTML reports for the two Google searches

In this case a specific low-level event is directly
mapped to a high-level one, but this still succeeds in
filtering the data to that which you are interested in.

6.2. USB device connection
This example shows that the connection of a USB

device that occurred at 13:52:45 is automatically
detected and there are several supporting artefacts.
Figure 3 shows an extract of the high-level event as
XML. The time 1329313992 converts to 13:53:12,
which is shortly after the actual connection.

The supporting artefacts that were identified for

this event are described below but not shown as XML
due to space constraints. The first is the trigger event,
and those that follow were matched from test events
dynamically generated to contain the serial number
extracted from the setupapi log.

• “Setup API entry for USB found (VID:07AB
PID:FCF6 Serial:07A80207B128BE08)”

• “Setup API USBSTOR entry found”
• “USBStor details found in Registry”
• “Windows Portable Device entry found in

Registry”

6.3. Visualisation
Since the number of high-level events is

significantly smaller than the number of low-level
events, it is possible to use existing visualisation tools
to effectively visualise the history of a computer
system. Figure 4 shows the visualisation software
TimeFlow being used to visualise the automatically
reconstructed high-level events.

In the time period of the sequence of high-level
events shown in Figure 4 (which takes place over
approximately 5 minutes), in the equivalent low-level
timeline, there are 2,894 low-level events during this
time. This would be difficult to visualise in a useful
manner, particularly when this is scaled up to the
entire history of a disk.

!

Figure 3. The XML representation of a ‘USB Connection’ high-level
event

Figure 4. Timeflow visualisation of three events: creation of hack-wifi.docx on local drive, connection of USB, and creation of hack-wifi.docx on E: drive

6.4. Performance
While many factors can affect the time taken for

timeline generation and analysis, some example
figures are provided in Table 1 to show that the time
taken is in the region of what is acceptable for digital
forensic tools, which are often left to run overnight
for keyword indexing, searching or hashing. All of
these numbers are produced on between 2.2 and
2.8GHz Core 2 Duo machines, with 4-8GB of RAM.
It should be noted that at this stage no attempts have
been made to optimise code for performance, or take
advantage of multiple CPUs.

Table 1. Example times for timeline generation and analysis. The
first is from a small, test VM, others are from ‘real world’ systems.

Volume size Approx. time
system in use

Low-events
produced

Time for low
generation
(hh:mm)

20GB 2 months 0.6 million 0:15

100GB 2 years 1.2 million 0:42

250GB 5 years 1.6 million 1:05

Volume size Number of
analysers

High-events
produced

Time for
analysis

20GB 19 666 0:28

100GB 19 2704 1:10

250GB 17 3902 1:14

Based on all performance data collected so far, the
timeline analysis takes approximately 2 minutes per
analyser, per 1 million events.

7. Evaluation

The results section has shown that a ‘temporal
proximity pattern matching’ approach is feasible as
an automated event reconstruction technique. Whilst
results have shown it may be feasible, many more
‘analysers’ need to be written to further test this
hypothesis. Development of more ‘analysers’ and
‘time extractors’ will also further test the
appropriateness of the low-level and high-level event
formats that are currently in use. However, the
flexible ‘keys’ field has accommodated all new low
and high-level events so far. In addition, while not
presented in full here, use of the maximum and
minimum times for high-level events are extremely
useful and will be discussed in detail in a future
paper. They may also provide flexibility for more
advanced event reconstruction, such as techniques
that use restore points to determine that an event
occurred between two dates [12].

Regarding low-level time extractors, it should be
noted that there are currently some gaps in the scope
of extraction of dates and times from a disk. For
example, Windows Vista/7 Event Logs, Recycle Bin

and Prefetch time-extractors have not yet been
implemented. However, since the developed system
is plugin based, this is simply due to time restrictions,
rather than any technical barrier.

It has also been shown that preserving the
provenance of inferred high-level events is possible,
including the low-level events that support the
inference, as well as the location of the raw data that
was initially used to create the low-level event.
However, it is difficult to evidence the assertion that
this is a desirable property without studies of analysts
investigating scenarios using multiple methods.

The performance of the prototype has also been
demonstrated, and this is considered to be within
acceptable timeframes for forensic analysis tools.
However, there is currently a possible performance
bottleneck since each additional analyser searches the
entire timeline linearly looking for patterns. Adding
new analysers therefore increases the time taken.
However, there are many opportunities for
optimisation, e.g. the prototype has not yet been
adapted for multi-core systems. Work is also
underway investigating whether further secondary
indexing of the SQLite database can improve
performance of searching the timeline, therefore
reducing this impact.

A fundamental assumption is that the clock on the
system being investigated is correct. This assumption
has two main problems: one is that it is not currently
possible to apply a generic clock offset (i.e. after
checking the BIOS time of the machine) which
would be applied to all times in the timeline.
However, this is a fairly minor update to the
LowLevelTimeline class that will soon be
implemented. Secondly, there is no mechanism for
detecting deliberate manipulation of the clock.
However, whilst this is a related topic, it is believed
to be a separate research area, and there are several
examples of previous work on the subject.

An area that requires significant development is
testing of this prototype. While many individual time
extractors have been developed using Test Driven
Development and are quite robust, holistic validation
of the accuracy of the low-level timeline is still in
progress, as is validation of the accuracy of the high-
level timeline output. The former can be partially
addressed by comparing existing timeline generation
tools with the low-level output, assuming similar time
extractors/input modules are selected. This may be an
interesting area to explore for both tools, since they
have been developed independently and may offer
real dual-tool verification. The latter (high-timeline
output) can be tested either through comparison with

reality (thorough documentation of actions performed
to a test system), or by comparing the automatically
inferred results to those from a traditional, full
forensic examination. It is deemed likely that a
combination of these approaches will offer the most
thorough testing strategy.

8. Future work

Initial future work involves increasing the number
of analysers in order to further test the hypothesis that
such ‘temporal proximity pattern matching’ is
effective. This may also require additional low-level
event extractors to be developed, as there are some
notable exceptions. This development may also
include formalising the types of low-level event that
can be used. It may also be interesting to explore
inputting data from other tools into the timeline,
although as explained earlier, this introduces
limitations to the full provenance of reconstructed
events.

It is also necessary to continue testing the
framework against ‘real world’ data (some examples
of which were included in Section 6.4), since these
more extensively test the robustness and scalability of
the framework than small data sets developed for
testing individual extractors and analysers.

The complexity of the analysis scripts can also be
explored further. With a framework in place that
allows low-level events to be easily queried simply
by building a low-level event with the required
properties, it may be possible to investigate more
advanced inference methods. For example, using
Bayesian networks to attribute probabilities to
different low-level events that need to be present in
order to infer that a high-level event occurred, or
considering how the order in which low-level events
occur affects high-level event reconstruction [13].

Perhaps most interestingly, moving from hundreds
of thousands of low-level events to a few hundred,
human understandable, high-level events may open
up new possibilities for visualisation of data from
digital forensic investigations and enable the
development of tools with much greater analysis
capabilities.

9. Conclusions

This paper has shown that it is possible to use
pattern matching to automatically reconstruct high-
level, human-understandable events. It has also
shown that using such high-level events makes useful
visualisations much more feasible. However, the
importance of maintaining details of how any
inference is performed should be re-iterated,

preferably with provenance that links back to the raw
data from which low-level events were obtained.

It must also be stressed that this sort of automated
approach is not intended as a replacement for a full
forensic analysis by an experienced, trained analyst.
It is hoped that with further development, such a
technique could be integrated into the digital
investigation process and help speed up analysis by
performing pre-processing of disks while they are
waiting to be analysed. Using such pre-processing,
when an analyst receives a disk image for
examination, it could be accompanied by a summary
of the automated analysis, with areas of potential
interest already highlighted, along with sufficient
information such that all the results could be quickly
verified against the raw data. This would allow more
time for advanced analysis of areas of the disk that
are non-trivial to examine. Such an approach may
also be of particular use in cases where a large
number of machines have been seized and it is
necessary to identify disks that need to be prioritised
for examination over others.

References

1. Turner, P., 2005. Unification of digital evidence from disparate
sources. Digital Investigation, 2(3), pp.223–228.
2. Carrier, B., 2006. Risks of Live Digital Forensic Analysis.
Communications of the ACM, 49(2), pp.56–61.
3. Carrier, B., 2003. File Activity Timelines.
http://bandwidthco.com/whitepapers/compforensics/fsanalysis/File
%20Activity%20Timelines.pdf.
4. Bunting, 2008, EnCE Study Guide, p.235-237
5. Olsson, J. & Boldt, M., 2009. Computer forensic timeline
visualization tool. Digital Investigation, 6(S1), pp.S78–S87.
6. Guðjónsson, K., 2010. Mastering the Super Timeline with
log2timeline. SANS Reading Room.
7. Carbone, R. & Bean, C., 2011. Generating computer forensic
super-timelines under Linux.
8. Buchholz, F. & Falk, C., 2005. Design and Implementation of
Zeitline: a Forensic Timeline Editor. DFRWS.
9. Netherlands Forensic Institute (NFI Labs), 2010. Aftertime.
http://www.holmes.nl/NFIlabs/Aftertime/index.html.
10. Lowman, S., 2010. Web History Visualisation for Forensic
Investigations. MSc Thesis, Strathclyde University.
11. Khan, M., Chatwin, C. & Young, R., 2007. A framework for
post-event timeline reconstruction using neural networks. Digital
Investigation, 4, pp.146–157.
12. Zhu, Y., James, J. & Gladyshev, P., 2009. A comparative
methodology for the reconstruction of digital events using
Windows restore points. Digital Investigation, 6(1-2), pp.8–15.
13. Gladyshev, P. & Patel, A., 2005. Formalising Event Time
Bounding in Digital Investigations, IJDE, 4(2), pp.1–14.

