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Nomenclature

Latin Alphabet

a location of pitch axis w.r.t. mid-chord

Ai quasi-steady components of circulation (i = 1 . . . 11), m2/s

c wing section chord length, m

D horizontal drag force orthogonal to gravity, N

F complex force, N

F force vector, N

h heave displacement, m

ḣ heave velocity, m/s

I complex impulse, Ns

Im moment of impulse, Nms

= imaginary part of

I impulse vector, Ns

I m moment of impulse vector, Nms

l lunge displacement, m
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l̇ lunge velocity, m/s

L vertically upwards lift force parallel to gravity, N

M moment about wing pitch axis, Nm

M moment vector, Nm

p pressure, Pa

q complex velocity, m/s

q velocity vector, m/s

r radial distance from centre, m

R radius of circle inZ-plane, m

< real part of

t time, s

u x-component of velocity, m/s

U∞ freestream velocity, m/s

v y-component of velocity, m/s

vr radial component of velocity, m/s

vθ circumferential component of velocity, m/s

x real-axis coordinate in circle (Z) plane, m

y imaginary-axis coordinate in circle (Z) plane, m

Z complex coordinates in circle plane (= x + ıy), m

Greek Symbols

α angle of attack, rad

α̇ pitch rate, rad/s

β stroke-plane angle, rad

γ vorticity, m/s

Γ circulation, m2/s
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ε (complex) shape parameter

ζ complex coordinates in physical plane (= ξ + ıη), m

η imaginary-axis coordinate in physical (ζ) plane, m

θ angle along circle inZ-plane

ı complexı (=
√−1)

ξ real-axis coordinate in physical (ζ) plane, m

π circle constant

ρ fluid density, kg/m3

σ aerofoil camber parameter, m

ς dummy variable

τ aerofoil thickness parameter, m

ϕ velocity potential, m2/s

ψ stream function, m2/s

Ω complex potential, m2/s

Subscripts/Superscripts/Notation

A0 quasi-steady component

A1 apparent-mass component (for forces and moments)

or, wake-induced component (for vorticity and circulation)

A2 wake-induced (and LEV-induced) component

A3 wake (and LEV) component

Alv leading-edge vortex

Awk trailing-edge wake

Ǎ rotating coordinate system

Â translating coordinate system

Ã inertial coordinate system
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A complex conjugate of

A vector

Ȧ first derivative w.r.t. time, s−1

Abbreviations/Acronyms

2-D two-dimensional, planar

3-D three-dimensional, spatial

FMAV flapping-wing micro air vehicle

CFD computational fluid dynamics

LEV leading-edge vortex

MAV micro air vehicle

w.r.t. with respect to

1 Introduction

The need for small, intelligent, reconnaissance robots that are capable of discreetly penetrating into confined spaces

such as shafts and tunnels, and manoeuvring in them, is the motivation behind this work. Agile flight inside buildings,

stairwells, shafts and tunnels is also of significant military and civilian value. Suchmicro air vehicles(MAVs) show

particular promise in so-calledD3—dull, dirty and dangerous—environments.

Current unmanned aerial vehicles are too large to achieve this and research has concluded that insect-like flapping

flight is the optimum way to fulfil this capability [1–3]—fixed wing aircraft do not have the required low speed agility and

miniature helicopters are noisy and inefficient. The unique flight envelope dictated by MAV requirements strongly favours

insect-like flapping-wing propulsion [ibid.]; hence our interest in modelling this flight regime.

Hover is considered here mainly because of its simplicity; the complication of including a freestream flow (as in

forward or climbing flight) is avoided. Further, as noted by [4], hover is also the most costly in terms of power requirement.

A vehicle designed to hover is, therefore, likely to have sufficient power for forward flight. Flight control during the

transition from hover to forward flight, however, is always a challenge for hovering vehicles so adequate power is not a

sufficient guarantee of forward-flight capability.

The overall aim is to develop a model for determining performance (lift, thrust and aerodynamic moment) characteris-
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tics for an insect-like flapping wing in the hover. With this information, wing-design guidelines for a flapping wing MAV

(or FMAV) may be proposed.

This paper is organised as follows. In§ 1, the flapping-wing problem is introduced by considering the wing kinematics

of insects and the associated aerodynamic phenomena. This is followed by a brief review of current analytical work on

insect flight aerodynamics. The methodology behind the aerodynamic modelling of insect-like flapping wings used in

this paper is discussed in§ 2. The details of the model are explained together with the underlying assumptions. The main

analysis is presented in§ 3 where the problem is divided into two—the 2-D modelling framework and its extension to 3-D.

The calculation of forces and moments on the flapping wing is also included in this section. Finally, the paper concludes

with § 4 where a summary of the main findings from this work are presented.

This is the first of a two-part paper [5,6]. The theory behind the aerodynamic model being proposed is developed here

and its implementation is discussed in the second part of the paper (referred to as Part II in the text that follows). Together,

these two papers describe a suitable aerodynamic model for insect-like hovering flapping flight.

1.1 Flapping-Wing Problem

Before the problem of insect-like flapping can be analysed, an understanding of the wing kinematics and the associated

aerodynamic phenomena are essential.

1.1.1 Wing Kinematics

The availability of high-speed photography has enabled reasonably good descriptions of the kinematics of insect wings

[7–9]. There exist in nature a vast variety of insects, each with either one or two pairs of wings. We restrict ourselves to

one pair of wings and, in particular, to Diptera which are two-winged flies, e.g. the fruit flyDrosophila, and are excellent

flyers. The description below is for such an insect. The overall flapping motion is similar to the sculling motion of the oars

on a rowboat, consisting essentially of three component motions—sweeping (fore and aft), heaving (or plunging, up and

down) and pitching (changing incidence). Flapping frequency is typically in the 5–200 Hz range.

The wing motion can be divided broadly into two phases—translationalandrotational. The translational phase con-

sists of two halfstrokes—thedownstrokeand theupstroke(see Figure 1). The downstroke refers to the motion of the wing

from its rearmost position to its foremost position, relative to the body. The upstroke describes the return cycle. At either

end of the halfstrokes, the rotational phases come into play—stroke reversaloccurs, whereby the wing rotates rapidly and

reverses direction for the subsequent halfstroke. During this process, the morphological lower surface becomes the upper
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surface and the leading-edge always leads (Figure 1).

The path traced out by the wing tip (relative to the body) during the wing stroke is similar to a figure-of-eight on a

spherical surface (see Figure 2) as the wing semi-span is constant. The wing flaps back and forth about a roughly constant

plane called thestroke plane(analogous to the tip-path-plane for rotorcraft). The stroke plane is inclined to the horizontal

at thestroke-plane angleβ (Figure 2).

During a halfstroke, the wing accelerates to a roughly constant speed around the middle of the halfstroke, before

slowing down to rest at the end of it. The velocity during the wingbeat cycle is, therefore, non-uniform and for hover, in

particular, the motion of the wing tip does not vary dramatically from a pure sinusoid [7]. Wing pitch also changes during

the halfstroke, increasing gradually as the halfstroke proceeds. On average, the angle of attack during a halfstroke is about

35◦ at the 70%-span position [ibid.] and typical stroke lengths are of the order of 3–5 wing chords [10].

1.1.2 Aerodynamic Phenomena

The flow associated with insect flapping flight is incompressible, laminar, unsteady and occurs at low Reynolds numbers.

Despite their short stroke lengths and small Reynolds numbers, insect wings generate forces much higher than their

quasi-steady equivalents due to the presence of a number of unsteady aerodynamic effects. Under steady-state conditions,

the high angles of attack used by flapping insect wings would normally stall a wing and give deteriorated aerodynamic

characteristics. By contrast, insect wings continue to produce favourable forces even in these extreme conditions.

In 1996, Ellingtonet al made the remarkable discovery of theleading-edge vortex(LEV) on the wings of a scaled-

up model of the hawkmothManduca sexta[11]. More experiments further verified their discovery [12–14]. Although

the leading-edge vortex had been observed in earlier experiments [15–19] it was not until then that it received proper

recognition for insect flight.

Ellingtonet al reported that the leading-edge vortex, which persisted through each halfstroke, existed on the wings and

proposed that it was responsible for the augmented lift forces. The overall structure of the leading-edge vortex has been

likened to that observed on low-aspect-ratio delta wings [13,15]; it is produced and fed by a leading-edge separation.The

augmented lift is similarly analogous to the vortex lift on delta wings. The leading-edge vortex starts close to the wing

root and spirals towards the tip where it coalesces with the tip vortex and convects into the trailing wake [11]. Although

dynamic stall has been suggested as a possible mechanism for the origin of the leading-edge vortex [e.g. 20, 21] , this

is unlikely [22] since a dynamic-stall vortex breaks away almost immediately and rapidly convects as soon as the wing

translates [23].
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The leading-edge vortex has been seen on the wings of both large insects [11] and small ones [24]. Liuet al found that

due to the presence of the leading-edge vortex, the wings of a hovering hawkmoth were able to generate vertical forces

up to about 40% greater than required to support its weight [25]. The leading-edge vortex is, therefore, fundamental in

explaining the large forces generated by flapping wings.

Recent experiments by Dickinsonet al [26, 27] on a dynamically-scaled mechanical model of the tiny fruit fly

Drosophila melanogasterhave also revealed the presence of a strong bound leading-edge vortex. However, only weak

spanwise spiralling was observed (unlike for the hawkmoth above), prompting them to conclude that the precise flow

structure of the leading-edge vortex depends critically on Reynolds number.

As flapping wings move through the air, they encounterapparent massforces arising from the mass of surrounding

air also set in motion due to the wing movement. The high accelerations and rapid stroke reversals make these forces

significant and they have to be accounted for.

Due to the repeated accelerations of the wing and the brevity of the half-strokes, starting vortices are created and

remain in the vicinity of flapping wings and have a hindering effect on the growth of lift on the wings—the so-called

Wagner effect [21].

In hover and slow forward flight, the flapping wings are likely to be affected by thereturning wakefrom previous

wingbeats. Depending on the particular flight conditions, this wake interaction may be either beneficial or detrimental.

Dickinson detected large forces that could not be explained by either the translational or the rotational motions of the wing

and attributed them to wake capture [9,28].

All of the above effects need to be incorporated into any model aimed at representing the flapping-wing problem.

1.2 Analytical Work on Insect Flight Aerodynamics

Whereas insects and their flight have been widely discussed, aerodynamic analysis of their flapping-wing flight has re-

ceived relatively little attention until recently [29–31]. After earlier work in this area by Osborne [32], the first major

contribution is usually attributed to Pringle [33]. Both of these works were based on quasi-steady models — the instan-

taneous forces on the flapping wing were assumed to be equivalent to those for steady flight at the same instantaneous

velocity and angle of attack.

Following on from the elucidative work of Weis-Fogh [4, 34] on insect flight mechanisms and a basic quasi-steady

treatment (actuator-disk momentum theory and blade-element analysis) of some aspects of their flight, research into the

aerodynamics of insect flapping flight was rejuvenated by Ellington’s seminal work in the 1980s [7,10,35–38]. Although

7



his work still did not step out very far from quasi-steady models (momentum and blade-element methods), Ellington

strongly speculated about the presence of unsteady mechanisms and his work led to further study in this area. The nature

of the ‘unsteadiness’ was yet unclear.

Confirmation of the key r̂ole of the leading-edge vortex by Ellingtonet al led to the most complete description of

insect-wing flapping flow yet [11]. The flow is now understood to comprise two components—attachedflow due to

freestream flow over the wing and that due to the unsteady motion of the wing (sweeping, heaving and pitching), and

separatedflow in the form of wakes shed from both leading and trailing edges.

Until recently, the closest case to flapping wings considered for aerodynamic analysis was the problem of wings in

severe unsteady manoeuvres [e.g. 39, 40] . Benson [41] and Lam [42] presented a particularly comprehensive technique

based on the classical circulation approach of von Kármán & Sears [43] but by dropping a number of linearising assump-

tions in their analyses. They considered the case of 2-D flat plate wing executing severe unsteady motion.

Żbikowski [22] proposed two different approaches to analytical modelling of the insect-like flapping-wing problem—

the velocity-potential and circulation approaches. Pedersen [44] used the velocity-potential approach to devise a method

for predicting the forces on a flapping wing for given kinematics and found good agreement for lift forces. His model

used a combination of the approaches of Wagner [45], Theodorsen [46] and Loewy [47] for attached flow together with

a form of the leading-edge-suction analogy of Polhamus [48] for vortex lift. Whereas the model predicted lift forces with

reasonable accuracy, drag (or thrust) data yielded unsatisfactory comparison.

Minotti [49] produced a circulation-based analysis for insect-like flapping wings. He divided the problem into the

trailing-edge wake and the leading-edge vortex, and summed their respective influences. The change in bound circulation

with time was computed using the method of Graham [50] whereby the starting vortex was modelled as a point vortex

connected to the trailing edge via a branch cut. The leading-edge vortex was represented by a single ‘fixed’ point vortex at

a position that gave best agreement with the experimental data of Sane & Dickinson [27]. The placement of the leading-

edge vortex was somewhat arbitrary in that, in certain instances (around stroke reversals), it was placed much closer to

the trailing edge than the leading edge, depending on a specially-defined incidence velocity.

Jones, Platzeret al have investigated the propulsive properties of aerofoils flapping in heaving oscillation—the so-

called Knoller-Betz effect— both theoretically and experimentally [51–55]. The wing flapping motion in their investiga-

tions was, however, not insect-like.

In 1994, Dickinson carried out 2-D experiments on insect-like flapping-wing motion and investigated the effects on

lift of several kinematics parameters [28]. Later 3-D experiments by Sane & Dickinson using aDrosophila-type wing
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revealed similar findings [56]. This similarity between their 2-D and 3-D results forced speculation that results for a 3-D

flow regime could indeed be derived from an extension of 2-D results (using, for example, blade-element theory) at least

for the order of Reynolds number in question (Re≈ 200− 300 based on mean chord and tip velocity).

Wang has also been tackling the problem of insect-flight aerodynamics but from a CFD point of view [57,58]. Using

Navier-Stokes calculations, she has studied the flow associated with accelerating flat plates with application to flapping-

wing flight [59,60]. Similarly, using both an inviscid model and CFD methods, [61] analysed the flow past an accelerating

flat plate at fixed incidence angles.

More recently, Jones [62] considered the unsteady separated flow of an inviscid fluid around a moving flat plate.

By assuming the premise that the flow consisted of a sheet of bound vorticity and two free vortex sheets (one each

emanating from the leading and trailing edges), he used a boundary-integral method to represent and solve for the velocity

field. His numerical method, however, could not handle the wing interacting with its own wake, which is a fundamental

drawback in terms of insect-like flapping-wing applications where such interactions are ubiquitous. Further, the occurence

of a ‘numerical event’ prevented the time-integration of the evolution equations beyond a certain finite time [62,§ 7.1],

presenting another limitation. Zdunich [63] arrived at similar results for the unsteady separated flow around a thin aerofoil

but without recourse to complex algebra.

The poor quality of drag prediction from the model of Pedersen [44] (see above) identified the need for an improved

method that would still incorporate the unsteady aerodynamic effects identified above (as did Pedersen) but give better

prediction of forces. The circulation approach proposed byŻbikowski [22] was chosen for this purpose and has been

developed here with significant modifications and improvements. An added advantage of this approach is the automatic

generation of flow visualisation. The resulting modelling approach forms the basis of this two-part paper.

The core of the present work, therefore, is the theoretical development of an analytical, inviscid and nonlinear un-

steady aerodynamic model of insect-like flapping wings in the hover. The method is circulation-based and quasi-three-

dimensional in nature. Insect-like kinematics and wing geometry are used to generate force (and moment) data and flow

visualisation. As will be shown in Part II, this approach shows remarkable agreement with existing experimental data both

in terms of flowfield representation and force prediction; see [6].
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2 Methodology

The aerodynamic modelling of flapping wings poses its own unique set of problems. The extreme manoeuvres of the wings

expose a whole new flow regime, very different from that observed in conventional aircraft flight. Reynolds numbers for

insect flight are also low, typically of the order of a few thousand. Viscosity becomes more important and drives some

salient flow features not expected from conventional aerodynamics.

As noted by Thwaites, any new theory must take into account as far as possible what appear to be the most important

physical characteristics [64, p. 512]. Thwaites further noted that for wing aerodynamics the positions of the separation

lines, in particular, must be taken into account. Therefore, those properties and flow features that need to be represented

in a model for insect-like flapping wings must first be identified.

From the review presented in§ 1 above, the following conclusions can be drawn. The flow associated with insect-like

flapping comprises two components—attachedandseparatedflow. The attached flow on the aerofoil refers to all flow

characteristics associated with thefreestreamflow on the aerofoil as well as the effects ofunsteady motions(sweeping,

heaving and pitching). In insect-like flapping wings, flow separation is usually observed at both leading and trailing edges

due to the high angles of attack and the severity1 of the kinematics. These ‘wakes’ affect the forces (and moments)

generated by the wing due to their interaction with the wing. The back and forth motion of the wings also gives rise

to effects associated with wake re-entry. Theleading-edge vortexis bound to the wing for most of the duration of each

halfstroke and flow remains more or less attached in all other regions of the wing. Thetrailing-edge wakeleaves smoothly

from the trailing edge (except perhaps during stroke reversals when the smooth-flow condition may not hold). All of the

above features must be included in any representative model.

With this flow ‘picture’ in mind, Żbikowski proposed a circulation-based approach for solving the flapping-wing

problem [22]. The problem may be decomposed into attached and separated flow, and the overall effect obtained by

summing the individual contributions. It is based on the original approach of von Kármán & Sears [43] together with the

nonlinear extensions proposed by McCuneet al [65–67]. This is broadly the approach used in the current work albeit with

further significant extensions.

1Severity implies rapidity and complexity in this case.
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2.1 Model

2.1.1 Physical Aspects

A blade-element-type method is used whereby flow is analysed in chord-wise 2-D cross-planes and the combined effect

obtained by integrating for all wing sections. Because the wing motion is rotary, the velocities and distances travelled

increase radially from root to tip. This approach is described here as quasi-3-D. Two physical properties that are a conse-

quence of this rotary motion are taken into account and are described below.

Radial Chord An insect-like flapping wing bears resemblance to a rotorcraft wing in that velocities increase radially

from root to tip. For wings of high aspect ratio, such as helicopter rotors, the ratio of blade area to disk area (the so-called

solidity) is very small (about 7.5% for a rotor with blades of aspect ratio 17) and it is reasonable to assume that the blade

elements are straight (i.e. normal to the rotor spar). In the case of flapping wings such as those of insects, solidity is much

higher (about 39% for the hawkmoth used by Wakeling & Ellington [68] and 55% for the fruit fly scaled wing used by

Birch & Dickinson [26]) and the straight-chord assumption is less tenable. Instead, the concept of aradial chord is more

suitable where each section of the wing chord still ‘sees’ a normal incident velocity (Figure 3).

In the analysis that follows, all radial chords are computed with the wing lying flat as if at zero angle of attackα in a

stroke plane at zero stroke-plane angleβ. In reality, radial chords can be very complex, depending on instantaneous angle

of attack and local incident velocity (which includes a spherical component due to the nature of the wing motion). For

reasons of simplicity, however, the latter have been ignored so only one set of radial chords is used for a given problem.

Radial and Flat Cross-Planes A consequence of combining a blade-element method with the concept of radial chords

discussed above is that consecutive wing sections lie in cylindrical cross-planes (see Figure 4(a)). In the approach used

here, each cylindrical cross-plane is then ‘unwrapped’ into an equivalent flat cross-plane (Figure 4(b)) where the flow is

then solved as a 2-D problem. This concept is met in differential geometry problems where the radial cross-plane would

be referred to as a developable surface2.

2A developable (or ruled) surface is one formed by motion of a straight line. Therefore, a cylindrical surface (as used here) is developable but a

spherical one is not [69].
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2.1.2 Aerodynamic Aspects

There exist a large number of fluid flows that are affected by viscosity to the first order and yet their motions do not show

signs of restrictive amounts of viscous dissipation. Such flows may be treated as special cases of potential or irrotational

flows [70], allowing them to be solved by well-known analytical methods.

In each 2-D section, the aerofoil is represented by a continuous distribution of bound vorticity3and the zero-through-

flow condition is enforced, i.e. the local flow velocity always remains tangential to the aerofoil surface. Two wakes are shed

in the form of free vortex sheets—one each emanating from the leading and trailing edges—which are also continuous

distributions of vorticity. The flow is assumed to be entirely inviscid but the effects of viscosity are introduced indirectly

in the form of flow separation and the Kutta-Joukowski condition at the points of inception of the wakes. Bound vorticity

at the aerofoil surface arises from the shear flow there and, hence, is also a consequence of viscosity. As a result, the flow

is irrotational everywhere except at the solid boundaries and in the free vortex sheets.

The flow is solved for using potential methods by satisfying the kinematic boundary conditions, the Kutta-Joukowski

conditions at the wake-inception points and by requiring that the total circulation in a control volume enclosing the system

must remain constant (Kelvin’s law; see [72,§ 33, p. 36]). More is said about these in the detailed analysis later (see§ 3).

The exact nature of the leading-edge vortex found on insect flapping wings remains elusive. Whereas Ellingtonet al

reported spanwise velocity in the leading-edge vortex [11], Dickinsonet al observed no such entrainment [26, 27]. The

current modelling framework cannot treat spanwise flow but this does not pose a problem because the only validation data

available were provided by Dickinson [priv. comm.] who observed no such flow. Therefore, no interaction is assumed

to exist between adjacent wing sections. Glauert [73, pp. 211–212] supported this view in his blade-element theory for

propellers, although he did not completely discount the possibility of radial phenomena in the tip regions.

An extension of the previous assumption (no interference between adjacent sections) is that tip vortex effects are also

ignored. The performance of the entire wing is obtained simply by summing the individual contributions of the constituent

2-D wing sections. The validity of this assumption was establisheda posteriorias the results were found to compare well

with experimental data (see Part II). It would appear that the loss of lift (and thrust) due to 2-D vortex breakdown in the

outboard sections of the wing is equivalent to the drop in lift (and thrust) that would be experienced in those regions due

to tip-vortex effects.

3This property differentiates the method from panel methods where the aerofoil is divided into panels each with twodistinctpoints— one for vortex

position and one for collocation point [see Ref. 71, ch. 9].
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2.1.3 Assumptions

While care has been taken to maintain generality and to keep simplifications to a minimum, a number of simplifying

assumptions had to be made. These are summarised below.

• The wing is a thin, flat plate (zero thickness and camber).

• The wing is rigid (there is no flexion irrespective of the severity of the kinematics).

• The flow is entirely inviscid although viscosity is indirectly introduced in the form of the Kutta-Joukowski condition

and flow separation at the sharp leading- and trailing-edges.

• The flow is irrotational (zero vorticity and incompressible) everywhere except at solid boundaries and in the distri-

bution of wake vorticity.

• Radial chords are used to describe each wing section because, as a result of the rotary motion of the wing, each

wing section sees a ‘curved’ oncoming velocity.

• Each radial chord is computed with the wing lying flat (in reality, radial chords are spherical in nature and vary with

incidence and incident velocity).

• As a result of the radial chords, the wake is enclosed within cylindrical surfaces (whereas the wing motion is actually

spherical and the wake is likely to have a much more complex form).

• No interaction is assumed between adjacent wing sections so that the combined effect is obtained simply by in-

tegrating along the span (the underlying assumption here is that spanwise variation in wing cross-section must be

minimal).

• As a consequence of the previous assumption, any spanwise flow (as in, for example, the leading-edge vortex) is

not modelled.

• Tip-vortex effects are ignored.

• No interference effects between two wings are considered so that the combined effect is obtained simply by doubling

the results for one wing.

• Only the hover mode of flight is considered.

• Wing twist is ignored and the wing is assumed to have a common pitch axis for all wing sections.
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• Laminar flow is assumed throughout on account of the low Reynolds numbers encountered in insect (and likely

FMAV) flows.

• The effects of attached, separated and shed flows are linearly superposable (on the basis of the linearity of the

Laplace equation).

2.1.4 Conformal Transformation

The crux of the current approach is the conformal mapping of a circle into a Joukowski-type aerofoil. In this way, a

complicated problem in physical space is transformed into a simpler problem in transformed space. An important feature

of such a transformation is that angles are preserved—the angle between a pair of lines remains unchanged through the

transformation process. This property is essential so that the zero-through-flow condition, which requires that fluid flow

be tangential to the aerofoil surface at all times, can be enforced correctly in the circle plane where it is being computed.

The simple case of flow around a 2-D circular cylinder (or circle, in theZ-plane) is mapped into that around a

Joukowski-type aerofoil (in theζ-plane) using the following transformation

ζ = Z +
(1− ε) R2

Z +
εR3

2Z2
(1)

where

ε =
τ − ıσ

R

and whereR is the radius of the circle, andτ andσ are thickness and camber parameters respectively. This form of

conformal transformation was developed by McCune (see [41,42]) based on the rules presented by Karamcheti [74, ch. 14]

whereby a whole range of Joukowski-type aerofoils could be defined while still maintaining the same corresponding circle

in theZ-plane.

The advantage of using this transformation is that the trailing edge is always at the pointZ = R and that the circle is

always centred at the origin. The latter enables use ofconjugate function theory(see [75], Appendix A; see also [74] for

full details) to calculate tangential or radial velocity components from each other (which will be essential as we will see

later)4. Another advantage of this transformation is that a horizontal freestream velocity remains horizontal throughout—a

rotation through the angle of attack is not required.

4For a conventional Joukowski transformation of the formζ = Z +
R2

Z , the centre of the circle is not necessarily at the origin in theZ-plane and,

hence, conjugate function theory cannot always be applied.
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The usual laws of conformal transformation are observed so that the following relationships, in particular, hold for an

aerofoil in the physical (ζ) plane transformed into a circle in the transformed (Z) plane.

q (ζ) =
q (Z)

dζ
dZ

(q : complex velocity) (2a)

γ (ζ) =
γ (Z)

dζ
dZ

(γ : vorticity) (2b)

Γ (ζ) = Γ (Z) (Γ : circulation) (2c)

In the case whereτ = σ = 0, the aerofoil shape parameterε = 0 and Equation 1 takes the more conventional form of

the Joukowski transformation given in Footnote 4. In such a case, the aerofoil reduces to a flat plate with chordc = 4R. It

may also be noted thatτ andσ only control thickness and camber respectively; they are not the maximum thickness and

maximum camber of the aerofoilper se.

In the subsequent analysis, extensive use is made of the complex variable and its properties [a detailed account can be

found in Ref. 74, ch. 15]. Two-dimensional potential flow can be described conveniently by means of the Cauchy-Riemann

equations which state the equivalence of velocity potentialϕ and stream functionψ in describing potential flows. For flows

around a circle, polar velocity components are more useful and can easily be obtained using the conversion

u− ıv = (vr − ıvθ) eıθ (3)

where (u, v) describe the Cartesian velocity components at the point (x, y), vr andvθ are the radial and circumferential

velocity components at the same point respectively, andθ is the angular displacement measured at the origin. This rela-

tionship is employed later.

3 Analysis

In the analysis that follows, the aerofoil is represented by a continuous distribution of bound vortices that move with

the aerofoil. The wakes that emanate at both leading and trailing edges are similarly continuous distributions of vortices

but are free and move with the fluid. The advantage of conformal transformation is exploited so that all calculations are

performed in the circle plane for simplicity. As necessary, the relevant elements are then converted into the physical plane

where they have more meaning.

15



3.1 Two-dimensional Unsteady Analysis

Analysis of the flow around a flapping-wing aerofoil is described by means of a potential-flow method, incorporating

observations from insect flight and relying heavily on the complex variable and conformal transformations discussed

above5. Smith et al have noted that even flows with Reynolds numbers as low asRe ≈ 10000 are inertia-dominated

so that viscous effects should not be directly important in most of the flow field and, hence, potential methods can be

employed [76]. Reynolds numbers for FMAV flows are likely to be in this region so potential methods are used here.

The flow around a 3-D flapping wing is treated in a quasi-3-D manner by adopting a blade-element-type approach.

By assuming that the flow is inviscid and incompressible, the Navier-Stokes equations reduce to the Euler equation and

potential-flow methods can be used. Further, the flow is assumed to be irrotational everywhere (except at solid boundaries

and discontinuities in the wake). So in essence, the flow is solved for using Laplace’s equation, which in complex-number

notation requires that

∇2(ϕ + ıψ) = 0

whereϕ is velocity potential andψ is stream function. The nature of Laplace’s equation means that the principle of

superposition can be applied. This implies that the effects of various components contributing to the fluid motion may be

computed separately and the overall effect obtained by taking their sum. This is the cornerstone of the current approach.

Nonlinearity in the model arises from the nature of the kernels of the integral equations developed (see Equations 22

and 25 later) and the fact that the shed wakes are not flat (unlike in small-perturbation theory). The overall formulation

of the problem is still linear, thereby allowing superposition. Alternatively, because vorticity is no longer confined to

bound vorticity on the wing but also appears in the surrounding flowfield (due to the two shed wakes), this approach also

appeals to the Helmholtz decomposition [77] where the flowfield can be modelled as the superposition of a potential and

a rotational field.

Although viscosity is generally ignored, its effects are included indirectly in the form of the Kutta-Joukowski condi-

tion, separation at the leading and trailing edges, and in the formation and shedding of vortices.

In our approach, the linearity of Laplace’s equation is exploited to describe the flow associated with an insect-like

flapping wing. The problem is subdivided into wake-free and wake-induced components (see Figure 5). The former

subdivides further into effects due tofreestreamvelocity and those due to theunsteady motionof the flapping wing itself.

5The analysis presented in this section is based on an approach similar to that used by Benson [41] and Lam [42] albeit with several extensions and

modifications. All calculations presented were made from first principles and errors in the works of Benson and Lam have also been corrected.
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Since these effects exclude any wake contribution, they are collectively termed thequasi-steadycomponents.

The wake-induced components also further subdivide into the contributions of theleading-edge vortexand thetrailing-

edge wake. These components induce the remaining forces and moments on the wing and are henceforth referred to as the

unsteadycomponents. The unsteady nature of the whole problem makes each of the component contributions functions

of time.

Each of these components is considered below. The vorticity and circulation developed by the aerofoil (and in the

wake, where applicable) as a result of each of the components is calculated. These are later used to compute forces

and moments. Dependence on timet is assumed throughout although it has been omitted from the notation on several

occasions for reasons of clarity. As noted earlier, all analysis is performed in the circle (Z) plane for simplicity.

Conventions and Coordinate Systems Before proceeding, a quick note on some of the conventions and coordinate

systems used is appropriate. In the analysis that follows, circulation (and vorticity) is taken positive counterclockwise

(	). Moments are also taken positive counterclockwise.

Conventional rectangular coordinates are used so that the abscissa and ordinate point left to right and bottom to top

respectively, and are orthogonal with respect to each other (see Figure 6). By default, the onset flow velocity is taken

from left to right. Consequently, positive angle of attack and pitch rate are taken positive clockwise. Due to the unsteady

flapping motion, the aerofoil may either point leftwards or rightwards depending on the instantaneous kinematics. When

the aerofoil points rightwards, angle of attack exceeds 90◦. The aerofoil has three degrees of freedom — lunge (horizontal

perturbations), heave (vertical perturbations) and pitch (angular perturbations). Positive lunge is in the direction of the

freestream flow (i.e. from left to right in Figure 6) and positive heave is upwards.

Four different Lagrangian coordinate systems are defined—aerofoil, rotating, translatingandinertial (see Figure 6).

The aerofoil coordinate system (ζ) is fixed at the centre6 of the aerofoil and moves with it. The rotating coordinate system

(ζ̌) also moves with the aerofoil but is centred at the pitch axis of the aerofoil and is oriented with the aerofoil. When the

pitch axis is at the centre of the aerofoil, the aerofoil and rotating axes coincide exactly.

The translating coordinate system (ζ̂) shares its origin with the rotating axes system but differs in that it remains

horizontal (w.r.t. gravity) at all times. When the aerofoil is horizontal and the pitch axis is at its centre, the translating and

aerofoil axes coincide. The inertial coordinate system (ζ̃) remains fixed with respect to the Earth. For the wing sections,

the origins of their respective inertial systems lie along the same radial line from root to tip, coinciding with theφ = 0 line

6This is the geometric centre of the aerofoil and can be found by mapping the centre of the circle in theZ-plane into theζ-plane.
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(φ being sweep angle; see Figure 4(a)).

The rotating coordinate system is used to describe the rotational motion of the aerofoil whereas the translating coordi-

nate system describes its translational motion. Both these coordinate systems move with the aerofoil and are hence termed

aerofoil-inertiasystems.

3.1.1 Quasi-Steady Component

If an aerofoil with complex coordinatesζ = ξ + ıη corresponds to the circleZ = Reıθ (whereR is radius andθ is angular

displacement about its centre), then by Equation 1 the aerofoil coordinates are

ξ = 2Rcosθ + σ
(
sinθ − 1

2 sin 2θ
)
− τ

(
cosθ − 1

2 cos 2θ
)

(4a)

η = τ
(
sinθ − 1

2 sin 2θ
)

+ σ
(
cosθ − 1

2 cos 2θ
)

(4b)

These relations are employed later.

Freestream Component

The case for an aerofoil at an angle of attackα in a freestream flow is considered (Figure 7)7. Using the circle theorem [78,

§ 5.2], the complex potential of freestream flow of velocityU∞ around the corresponding circle is

Ω(Z) = U∞

(
Ze−ıα +

R2eıα

Z
)

which differentiates to give the complex velocity, thus

q(Z) =
dΩ

dZ = U∞

(
e−ıα − R2eıα

Z2

)

By using the substitutionZ = Reıθ on the circle and converting to polar coordinates using Equation 3, the circumferential

(tangential) velocity can be obtained. For smooth flow at the trailing edge (i.e. atθ = 0), the Kutta-Joukowski condition

must be enforced there by adding a circulationΓk at the origin so that the circumferential velocityvθ becomes

vθ(θ)| f s = −2U∞ sin (θ − α) +
Γk

2πR

where the subscriptf s refers to the freestream component,Γk = −4πRU∞ sinα and whereα and, hence,Γk can be time-

varying. The value ofΓk is fixed in accordance with the Kutta-Joukowski condition by requiringvθ = 0 atθ = 0. Assuming

that no flow exists within the circle, the circumferential velocity at any point on the circle is equivalent to the vorticity

7Although there is no freestream velocity in hover, it has been included in the analysis for completeness.
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there, thus

γ0(θ, t)| f s = −2U∞
[
sinθ − α(t) + sinα(t)

]
(5)

from which the circulation is obtained by integration as

Γ0(t)| f s = −4πRU∞ sinα(t) (6)

As discussed previously (Equation 2c), circulation is preserved through a conformal transformation so that the expression

above also gives the circulation around the aerofoil. The negative sign is a consequence of the convention used— positive

circulation is taken counterclockwise (in the sense of increasingθ).

Unsteady Motion Component

The unsteady motion of the flapping-wing aerofoil disturbs the fluid around it. Because the wing is represented by a

series of vortices, their strengths have to be adjusted so that the solid boundary condition is upheld. Therefore, in order

to determine the bound vorticity (and circulation) due to this unsteady motion, the kinematic boundary condition must

first be derived. This yields velocity components at the aerofoil surface which can then be used to derive expressions for

vorticity (and circulation) as was done for the freestream component above.

The zero-through-flow condition requires that fluid does not penetrate the aerofoil surface and so the normal velocity

at the surface must be zero, i.e.vn = 0. Before such a condition can be derived, however, the instantaneous position of the

aerofoil must be determined. The 2-D aerofoil has three degrees of freedom (see Figure 6)—pitch (α, α̇), lunge (l, l̇) and

heave (h, ḣ) where the dot (˙) means differentiation w.r.t. time. To enforce the zero-through-flow boundary condition at the

surface of the aerofoil, the fluid velocity (˜u, ṽ) and aerofoil kinematic velocity (˜ua, ṽa) must be equal there. This condition

is satisfied when

u = l̇ cosα − ḣsinα + η α̇ (7a)

v = l̇ sinα + ḣcosα − (ξ + a) α̇ (7b)

Equations 7 are the required zero-through-flow boundary conditions and must not be confused as conversions between

coordinate systems8. The no-slip boundary condition on the solid-fluid interface cannot be enforced because viscosity has

been neglected.

8This boundary condition can also be derived in an alternative way by defining the aerofoil surface asℵ(ξ, η, t) = 0, equating the substantial derivative

at the aerofoil surface to zero, thus Dℵ/Dt|us = 0, and then solving foru andv [see Ref. 75, Appendix C].
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Now that the kinematic boundary condition for the unsteady motion of the aerofoil has been found (Equations 7),

the circumferential (tangential) velocity on the corresponding circle needs to be derived. This in turn will yield vorticity

which will then be used to compute the bound circulation around the aerofoil due to its unsteady motion.

The complex velocity at a point in the aerofoil (ζ) plane is given by

q(Z) = u− ıv (8)

By combining Equations 2a and 3 with Equation 8, the velocity in the circle plane can be written in terms of that in the

aerofoil plane thus

vr − ıvθ = (u− ıv) eıθ
dζ
dZ (9)

Using the substitution eıθ dζ
dZ = A + ıB , Equation 9 becomes

vr − ıvθ = (u− ıv) (A + ıB)

= (Au+ Bv) + ı (Bu− Av) (10a)

where

A =
1
R

[τ (cosθ − cos 2θ) − σ (sinθ − sin 2θ)] (10b)

B =
1
R

[
2Rsinθ − τ (sinθ − sin 2θ) − σ (cosθ − cos 2θ)

]
(10c)

The zero-through-flow boundary condition stated earlier (Equations 7) applies only to the component of velocity

normal to the aerofoil surface—it makes no attempt to describe the tangential component. The values foru andv deduced

above (Equations 7a and 7b respectively), therefore, only correspond to the component of velocitynormal to the surface

of the circle, i.e.vr in Equation 10. Sinceu andv do not carry information about the component of velocity tangential to

the surface, only the real parts of Equation 10a can be used, thus

vr = Au+ Bv (11)

It is important to make the above distinction. Substituting from Equations 4, 7 and 10 into Equation 11 and rearranging

gives

vr (θ, t)|us =
1
R

(
A1 sinθ + A2 sin 2θ + A3 cosθ + A4 cos 2θ + A5 sin2 θ + A6 cos2 θ + A7 sinθ cosθ

+ A8 sinθ sin 2θ + A9 sinθ cos 2θ + A10 cosθ sin 2θ + A11 cosθ cos 2θ
)

(12)

20



where

A1 = −σ(l̇ cosα − ḣsinα) + (2R− τ)(l̇ sinα + ḣcosα) + a(τ − 2R)α̇

A2 = σ(l̇ cosα − ḣsinα) + τ(l̇ sinα + ḣcosα) − aτα̇

A3 = τ(l̇ cosα − ḣsinα) − σ(l̇ sinα + ḣcosα) + aσα̇

A4 = −τ(l̇ cosα − ḣsinα) + σ(l̇ sinα + ḣcosα) − aσα̇

A5 = −2Rσα̇

A6 = 2Rσα̇

A7 = 4R(τ − R)α̇

A8 = Rσα̇

A9 = − 1
2(τ2 + σ2 + 2Rτ)α̇

A10 = 1
2(τ2 + σ2 − 4Rτ)α̇

A11 = −2Rσα̇ (13)

and the subscriptus indicates contribution due to the unsteady aerofoil motion. To calculate vorticity (and hence, circu-

lation) on the surface of the circle, the circumferential velocityvθ must be known. This can be evaluated using the radial

velocity (Equation 12) and applying conjugate function theory [see Ref. 75, Appendix A]. The transformation equation is

vθ(θ, t)|us = − 1
2π

∮ 2π

0
vr (ς, t)|us cot

(
ς − θ

2

)
dς (14)

The right-hand side of Equation 14 features a principal value integral9 which is solved by judicious use of the Glauert

integrals to give

∮ 2π

0
vr (ς, t)|us

(
sinθ + sinς
cosθ − cosς

)
dς

=
2π
R

(
A1 cosθ + A2 cos 2θ − A3 sinθ − A4 sin 2θ + A5 sinθ cosθ − A6 sinθ cosθ + A7 sinθ cosθ

+ A8 sinθ cos 2θ − A9 sinθ cos 2θ + A10 cosθ cos 2θ − A11 cosθ sinθ
)

The circumferential velocity can then be readily calculated as

vθ(θ, t) |us =
1
R

[
− A1 cosθ −

(
A2 + 1

2A7

)
cos 2θ + A3 sinθ +

(
A4 − 1

2A5 + 1
2A6

)
sin 2θ

− A8 sinθ cos 2θ + A9 sinθ sin 2θ − A10 cosθ cos 2θ + A11 cosθ sin 2θ
]

9The kernel expands as cot
(
ς − θ

2

)
=

sinθ + sinς
cosθ − cosς

.
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where the symbolsAi , i = 1 . . . 11 are as in Equations 13 earlier. Again, assuming no flow within the aerofoil, the

circumferential velocity is equivalent to the local vorticity.

γ0(θ)|us =
1
R

[
− A1 cosθ −

(
A2 + 1

2A7

)
cos 2θ + A3 sinθ +

(
A4 − 1

2A5 + 1
2A6

)
sin 2θ

− A8 sinθ cos 2θ + A9 sinθ sin 2θ − A10 cosθ cos 2θ + A11 cosθ sin 2θ +
Γ0|us

2π

]
(15)

In order to have a finite velocity at the trailing edge, the Kutta-Joukowski condition needs to be enforced there. By setting

vorticity γ0 = 0 at the trailing edge (θ = 0), the circulation due to the unsteady motion of the aerofoil is found to be

Γ0|us = 2π

[
2R

(
l̇ sinα + ḣcosα

)
+ α̇

(
1
2
τ2 +

1
2
σ2 − 2R(R+ a)

)]
(16)

Combined Quasi-Steady Component

The total effect of the quasi-steady components can be found simply by summing the individual contributions. The total

wake-free vorticity distribution is given by the sum of Equations 5 and 15, thus

γ0(θ, t) =
1
R

[
− A1 cosθ −

(
A2 + 1

2A7

)
cos 2θ + A3 sinθ +

(
A4 − 1

2A5 + 1
2A6

)
sin 2θ − A8 sinθ cos 2θ

+ A9 sinθ sin 2θ − A10 cosθ cos 2θ + A11 cosθ sin 2θ +
Γ0(t)
2π

]
− 2U∞ sin

(
θ − α(t)

)
(17)

where the symbolsAi , i = 1 . . . 11 are as in Equation 13 above and where time-dependence has been shown for accuracy.

Similarly, by summing Equations 6 and 16, the total quasi-steady wake-free bound circulation is found to be

Γ0(t) = 2π
[
2R

((
l̇(t) − U∞

)
sinα(t) + ḣ(t) cosα(t)

)
+ α̇(t)

(
1
2τ

2 + 1
2σ

2 − 2R(R+ a)
)]

(18)

Equations 17 and 18, therefore, give the total bound vorticity and circulation, respectively, developed by the aerofoil in

the absence of a wake.

3.1.2 Unsteady Component

The unsteady component in the flapping-wing model (see Figure 5) arises from effects induced by the two wakes — the

leading-edge vortex (denoted by subscriptlv) and the trailing-edge wake (denoted by subscriptwk).

Due to the high angles of attack and the severity of the wing motion during flapping, flow is likely to separate from

both the leading and trailing edges of the aerofoil. Therefore, in addition to the conventional wake shed from the trailing

edge, a wake is also shed from the leading edge in the form of the leading-edge vortex. The fact that vortex sheets emerge

from these points on the aerofoil means that the loading there must be zero, there being none across the vortex sheets.

Therefore, the Kutta-Joukowski condition must be satisfied at these points.
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The method of images [see e.g. Ref. 78,§ 5.1] forms the basis for the analysis in this section. For simplicity, all

calculations are performed again in the circle plane. The wakes emanating from the leading and trailing edges of the

aerofoil are, therefore, mapped into the circle (Z) plane and may be represented by the schematic in Figure 8. The

leading-edge vortices enter the fluid at the leading edge (θ = π on the equivalent circle in theZ-plane) and the trailing-

edge vortices make their entry atθ = 0, whereθ is measured in the conventional sense. The circle corresponding to the

aerofoil has radiusR.

For a vortex of strength dΓwk (≡ γwkdZ) at a pointZwk in the wake, there must exist an (imaginary) image vortex of

strength dΓimwk at the inverse square point10 in the circle to satisfy the zero-through-flow boundary condition at the surface.

The strength and position respectively of this image vortex are given by

dΓimwk = −dΓwk and Zimwk =
R2

Zwk

whereZwk refers to the complex conjugate ofZwk. By writing the complex potentialΩ(Z) of the system, the velocity at

an arbitrary point on the circleZ (= Reıθ) can be calculated by differentiation w.r.t.Z, to give

q(Z) = ı
δΓwk

2π

 1

Reıθ − Zwk

− Zwk

R2 − ReıθZwk



Again using Equation 3, the circumferential velocity is calculated to be

vθ = − δΓwk

2πR
<

(Zwk + Reıθ

Zwk − Reıθ

)

from which the circumferential velocity induced by the entire wake can be obtained by integration, thus

vθ(θ, t)|wk = − 1
2πR

∮

wk
<

(Zwk + Reıθ

Zwk − Reıθ

)
γwk dZwk

A similar expression results for the leading-edge vortex so that the combined effect of the two wakes is

vθ(θ, t)|wk+lv = − 1
2πR

∮

wk
<

(Zwk + Reıθ

Zwk − Reıθ

)
γwk dZwk − 1

2πR

∮

lv
<

(Zlv + Reıθ

Zlv − Reıθ

)
γlv dZlv (19)

To solve for the two unknown vorticities in the above equation (γwk andγlv), two simultaneous ‘constraint’ equations

are required. The equations are provided by satisfying the Kutta-Joukowski condition at the trailing edge of the aerofoil

by the addition of circulation and by similarly requiring stagnation at the leading edge. These are derived in turn below.

10If two points lie along the same line eıθ, one point outside the circle of radiusR at rout eıθ and the other inside it atr in eıθ, then the two points lie at

inverse square points ifr in · rout = R2 [see also Ref. 78,§ 5.1].
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First Constraint Equation—Kutta-Joukowski Condition at Trailing Edge

In order to enforce the Kutta-Joukowski condition, a circulationΓk must be added (as was done previously for the quasi-

steady components) so that the circumferential velocity from Equation 19 becomes

vθ = − 1
2πR

∮

wk
<

(Zwk + Reıθ

Zwk − Reıθ

)
γwk dZwk − 1

2πR

∮

lv
<

(Zlv + Reıθ

Zlv − Reıθ

)
γlv dZlv +

Γk

2πR
(20)

To ensure smooth flow at the trailing edge (θ = 0), the Kutta-Joukowski condition (vθ = 0) is enforced there giving

Γk =

∮

wk
<

(Zwk + R
Zwk − R

)
γwk dZwk +

∮

lv
<

(Zlv + R
Zlv − R

)
γlv dZlv (21)

Remembering from the method of images that for each vortex outside the circle there exists a vortex of equal but opposite

strength inside, Kelvin’s law can be applied. Assuming that the initial circulation of the aerofoil-wake-LEV system was

zero, we have

Γ0(t) + Γwk(t) + Γimwk(t) + Γlv(t) + Γimlv + Γk(t) = 0

from which the following simple result is obtained

Γk(t) = −Γ0(t)

Substituting the above into Equation 21 gives the first constraint, thus

Γ0(t) = −
[ ∮

wk
<

(Zwk + R
Zwk − R

)
γwk dZwk +

∮

lv
<

(Zlv + R
Zlv − R

)
γlv dZlv

]
(22)

This is the general wake-integral equation for the flapping-wing problem and is also the circle-plane rendering of a

generalised,nonlinearform of the original Wagner equation. In his work, Wagner presented a simple, linear form of this

equation [45]. Later, von Ḱarmán & Sears obtained the same linear form but using the circulation approach [43, Eqn. 38]).

More recently, McCuneet al generalised the form of the equation derived by von Kármán & Sears to include the effect of

a nonlinear deforming wake [42,65; see also 67].

The equation presented here (Equation 22) is a further generalisation that is still nonlinear but now includes the effect

of a second wake—the leading-edge vortex. This form of the equation has never been presented before and is one of the

key novel equations derived in this work.

Second Constraint Equation—Stagnation at Leading Edge

Having enforced the Kutta-Joukowski condition at the trailing edge, the velocity distribution on the circle can be found

by summing the wake-free (Equation 17, remembering that velocity and vorticity are interchangeable, i.e.vθ ≡ γθ) and
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wake-induced contributions (Equation 20) thus

vθ =

wake-free
︷    ︸︸    ︷
A +

Γ0

2πR
+

(
− Γ0

2πR

)
+ B

︸         ︷︷         ︸
= A + B

wake-induced

(23)

where

A =
1
R

[
− A1 cosθ −

(
A2 + 1

2A7

)
cos 2θ + A3 sinθ +

(
A4 − 1

2A5 + 1
2A6

)
sin 2θ − A8 sinθ cos 2θ

+ A9 sinθ sin 2θ − A10 cosθ cos 2θ + A11 cosθ sin 2θ
]
− 2U∞ sin (θ − α)

and

B = − 1
2πR

[∮

wk
<

(Zwk + Reiθ

Zwk − Reiθ

)
γwk dZwk +

∮

lv
<

(Zlv + Reiθ

Zlv − Reiθ

)
γlv dZlv

]

and whereU∞ is freestream velocity,α is angle of attack and the symbolsAi , i = 1 . . . 11 are as defined in Equation 13.

The leading-edge vortex sheet emanates from the leading edge so that a streamline originating there encloses the

leading-edge vortex and reattaches (on most occasions) on the aerofoil further downstream. This implies that there is no

load on the wing itself along the leading edge (there being none across the vortex sheet) and, hence, it must be a stagnation

point (vθ = 0). In the circle plane, the leading edge occurs atθ = π so that we have

A|θ=π =
1
R

[
A1 −

(
A2 + 1

2A7

)
+ A10

]
− 2U∞ sinα(t) (24a)

and

B|θ=π = − 1
2πR

[∮

wk
<

(Zwk − R
Zwk + R

)
γwk dZwk +

∮

lv
<

(Zlv − R
Zlv + R

)
γlv dZlv

]
(24b)

Substituting Equations 24 into Equation 23, equating to zero and rearranging gives

1
R

[
A1 −

(
A2 + 1

2A7

)
+ A10

]
− 2U∞ sinα(t) =

1
2πR

[ ∮

wk
<

(Zwk − R
Zwk + R

)
γwk dZwk +

∮

lv
<

(Zlv − R
Zlv + R

)
γlv dZlv

]
(25)

This is the second constraint equation. It expresses the condition for stagnation at the leading edge and is based on the

nonlinear wake integral (derived earlier; see Equation 22). This is the second key novel equation derived in the current

form for the first time.

Together, Equations 22 and 25 form the cornerstone of the current nonlinear, unsteady, inviscid approach. They are

two simultaneous equations that are used to solve forγwk andγlv at any point in timet.
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In integrating Equations 22 and 25 numerically, the values of previously shed vorticity (γwk andγlv) and their respective

locations must be known. As will be elaborated in Part II [6], a discrete vortex method is used to implement a solution

to these equations and the locations of the vortices serve as the Lagrangian markersZwk andZlv in the above integral

equations. It is, therefore, also necessary to calculate the paths described by these discrete vortices. This is done by

implementing vortex convection according to the Rott-Birkhoff equation (see Part II,§ 1.1).

Combined Effect of Leading-Edge Vortex and Trailing-Edge Wake

By assuming that there is no flow inside the circle (or aerofoil, for that matter), the surface velocity directly gives the

vorticity distribution. By substitutingΓk(t) = −Γ0(t) into Equation 20, the vorticity distribution induced by the leading-

edge vortex and the trailing-edge wake vortices on the circle becomes

γ1 (θ, t)
∣∣∣
wk+lv

= −Γ0(t)
2πR

− 1
2πR

[ ∮

wk
<

(Zwk + Reıθ

Zwk − Reıθ

)
γwk dZwk +

∮

lv
<

(Zlv + Reıθ

Zlv − Reıθ

)
γlv dZlv

]
(26)

This expression gives the additional bound vorticity induced by the effects of the two shed wakes around the circle.

It may be noted that the above integral equations have all been derived in the circle plane. The form in the aerofoil

plane can be obtained by invertingZ from the mapping in Equation 1 intoζ. This is nontrivial and unnecessary11.

Equations 18, 22 and 25 together completely define the flapping-wing problem (within the limits of the assumptions

made; recall§ 2.1.3). For a given set of wing shape and kinematics, the quasi-steady bound circulationΓ0(t) can be

computed for all timet using Equation 18. Equations 22 and 25 are then solved simultaneously to compute the circulation

shed into the wake. By suitably convecting the shed wake, the solution is updated at each time-step and can also be solved

for all time. This process is considered in greater detail in Part II [6].

3.2 Forces and Moments

For a body moving in an incompressible and irrotational flow, two classical methods for calculating the forces and mo-

ments on it are found in the literature. The more common approach is to use the unsteady form of the Bernoulli equation

∂ϕ

∂t
+

q2

2
+

p
ρ

+ Π = f (t) (a function of time)

whereϕ is velocity potential,q is velocity, p is pressure,ρ is density andΠ is the potential due to extraneous forces on

the body (= gz along a streamline, g andz being acceleration due to gravity and height, respectively). This equation is

11This is because vorticity (in the circle plane) can be converted easily to circulation (which is the same in both circle and aerofoil planes) using

Γ =
∮
γ dZ. See also Equation 2c.
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a direct result of the Euler equation. The computation of the∂ϕ/∂t term makes the approach cumbersome especially for

the flapping wing where perturbations are large and a freestream velocity does not necessarily exist12. This approach has,

therefore, not been adopted here.

The second method for computing forces and moments is the momentum-based method of vortex pairs used by von

Kármán & Sears [43]. The idea is that for every shed vortex, there exists an equal and opposite vortex on the wing and

the two constitute a vortex-pair (see Figure 9). The momentum per unit span of the system can be expressed by the sum

of the momentum of the vortex-pairs that constitute the system from which force and moment data can then be extracted.

The method was first suggested by Lord Kelvin [81] and has since been discussed by many authors [e.g. 72, 74, 82].

Kelvin showed that for a system of vortices, it is possible to relate the impulse and moment of impulse to the force and

moment respectively—so-calledKelvin’s Impulse Theorem. It may be noted that although the formulation of the above

two approaches are quite different, they are both derived from the same Euler equations.

The second method, of vortex pairs, is the approach that has been adopted here. The main advantage is the relative

simplicity with which the forces and moments can be computed. The disadvantage, however, is that pressure distributions

on the aerofoil surface cannot be computed directly. For the purposes of this study, however, the method is sufficient. The

calculation of the forces and moments presented below is in terms of vectors. This is followed by a section dedicated

to conversion to complex number notation to tie up with the preceding complex-variable-based unsteady aerodynamic

analysis.

3.2.1 Vector Form of Force and Moment Equations

Kelvin’s theorem showed that, in the inertial reference frame, the force on the bodyF̃ is equal to the time rate-of-change

of the impulsẽI of the vortex system, i.e.

F̃ =
dĨ
dt

where Ĩ = ρ

	

S
ϕ ndS (27)

whereρ is the fluid density,S is the boundary surface enclosing the body andn is the unit normal vector on the boundary

[for detailed derivation, see Ref. 75]. Similarly, the moment of the system about the origin is given by the time rate-of-

change of the moment of impulse of the systemĨ m, i.e.

M̃ =
dĨ m

dt
where Ĩ m = ρ

	

S
ϕ ( r̃ ∧∧∧ n) dS (28)

12For steady flows, Blasius’s theorem can also be used to determine the forces (and moments) on a body in a fluid [79, p. 10]. In unsteady flows,

however, due to the presence of discontinuities in the wake (from shed vortices) the approach cannot be applied [80, p. 498].
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where r is the vector distance from the origin of the coordinate system with respect to which the flow is stationary

at infinity. Because this approach is momentum-based, all derivations are made in an inertial coordinate system where

Newton’s 2nd law of motion is valid. It is, however, more useful to have forces and moments in body-fixed coordinates,

and all the more so for a flapping wing. Converting from the inertial (˜) to the body (ˆ) coordinate system (see Figure 6)

gives for force [74]

F̂ =
dÎ
dt

(29)

and for moment

M̂ =
dÎ m

dt
+ Ũ ∧∧∧ Î (30)

whereŨ is the translational velocity of the body-fixed system relative to the inertial reference system.

3.2.2 Conversion to Complex Number Form

Due to extensive use of the complex variable in the preceding analysis, it is appropriate to convert the force and mo-

ment formulae presented above to complex plane coordinate systems. In this way, force and moment information can be

extracted immediately from the calculations without major modifications.

In complex coordinate system notation (ζ-plane), impulse is given by

I = Iξ + ıIη

and force is

F = Fξ + ıFη (31)

where the orthogonal axes are defined by theξ-η Cartesian system13. Moment is a scalar quantity and is given simply by

the real numberM. It is taken positive counterclockwise (same sense as positive circulation).

Consider two vortices of strengthsΓ1 and Γ2 at positionsζ̃1 and ζ̃2 respectively, that constitute a vortex pair14 in

complex space . The impulse of the vortex pair acts perpendicularly and halfway between the two vortices [84, p. 325] so

that the complex impulse of the vortex pair is

Ĩ = ı ρ
(
Γ1ζ̃1 + Γ2ζ̃2

)

13Alternative notations suggestF = Fξ − ıFη where clockwise circulation is taken as positive [83,§ 2.3, p. 86]. In our case, positive circulation is

counterclockwise.
14In the sense described by [43, p. 380]. See also Figure 9.
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remembering thatΓ1 = −Γ2. Calculation of the moment of impulse follows similarly, thus

Ĩm =
ρ

2

(
Γ1

∣∣∣ζ̃1

∣∣∣2 + Γ2

∣∣∣ζ̃2

∣∣∣2
)

so that the total impulse and moment of impulse respectively of the entire system are given by

Ĩ = ı ρ

∞∑

j=1

Γ j ζ̃ j (32)

Ĩm =
ρ

2

∞∑

j=1

Γ j

∣∣∣ζ̃ j

∣∣∣2 (33)

If all shed vortices were to lie on the real axis and there were no leading-edge vortices, Equations 32 and 33 would reduce

to the form given in the treatment of [43] for a flat (linear) wake.

The force and moment about the origin are found by taking the derivatives w.r.t. time of Equations 32 and 33 (recall

Equations 27 and 28), thus

F̃ = ı ρ
d
dt

∞∑

j=1

Γ j ζ̃ j = ı ρ
d
dt

∫
ζ̃ γ(ζ̃) dζ̃

M̃ =
ρ

2
d
dt

∞∑

j=1

Γ j

∣∣∣ζ̃ j

∣∣∣2 =
ρ

2
d
dt

∫ ∣∣∣ζ̃
∣∣∣2 γ(ζ̃) dζ̃

Since the wakes are free vortex sheets, they are incapable of supporting Kutta-Joukowski forces. Any forces on the system

are, therefore, sustained only by the bound vortices, i.e. the aerofoil surface. Therefore, computing the forces and moments

on the entire system of vortices is equivalent to evaluating forces and moments respectively on the wing.

As mentioned already, it is more useful to have forces and moments in a coordinate system that moves with the

aerofoil, in this case the aerofoil-inertia system (ξ̂-η̂ system in Figure 6). Using Equations 29 and 30 then gives

F̂ =
dÎ
dt

(34)

and

M̂ =
dÎm

dt
− =

(
U0Î

)
(35)

where

Î = ı ρ

∞∑

j=1

Γ j ζ̂ j

Îm =
ρ

2

∞∑

j=1

Γ j

∣∣∣ζ̂ j

∣∣∣2

U0 =
(
−U∞ + l̇

)
+ ıḣ

andU0 is the translational velocity of the moving system and= refers to the ‘imaginary part of’.
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3.2.3 Components of Forces and Moments

A better understanding of the origin of the forces and moments in the current unsteady aerodynamic model for flapping

flight can be achieved by decoupling them into their constituent components. This idea of decomposing the forces and

moments goes back to the original work of von Kármán & Sears [43]. Later, McCuneet al extended the approach to incor-

porate the effects of the nonlinear extensions into the forces and moments [65], thereby introducing a further constituent—

the deficit due to the deformation of the wake. In the present work, the constituent elements have been further modified

from the form given by McCuneet al to include the effects of the leading-edge vortices. Such a decomposition is again a

novel aspect of this work.

The vorticity in the aerofoil-wake systemγ can be decoupled into the aerofoil-bound componentγa and the shed

componentγs. The bound vorticity term can further be divided into a wake-free componentγ0 and a wake-induced

componentγ1. The shed wake can also be divided into a trailing-edge-wake componentγwk and a leading-edge-vortex

componentγlv, thus

γ = γa + γs = γ0 + γ1 + γwk + γlv

Therefore, from Equation 34 force can be decoupled as

F̂ = ıρ

[
d
dt

∫

a
ζ̂ γ0(ζ̂) dζ̂ +

d
dt

∫

a
ζ̂ γ1(ζ̂) dζ̂ +

d
dt

∫

wk
ζ̂ γwk (ζ̂) dζ̂ +

d
dt

∫

lv
ζ̂ γlv (ζ̂) dζ̂

]
(37)

where the subscripta means the integral is taken around the aerofoil, and similarly the subscriptswk and lv mean the

integral is taken over the respective shed wakes.

For steady motion (aerofoil at a small constant angle of attack in a uniform freestream), the first term above vanishes

because the wake-free bound vorticity does not change with time, i.e. dγ0/dt = 0. The second term also vanishes because

the starting vortex is so far away as to have no significant effect on the bound vorticity, i.e.γ1 ≈ 0. In the absence of a

leading-edge vortex (which is reasonable for steady flow at small angle of attack), the only term remaining in Equation 37

is the trailing-edge-wake term. For steady flow, this refers to the starting vortex (of circulationΓwk). Since this is the only

wake vortex, Kelvin’s law requires that the bound circulationΓ0 be equal in strength but of opposite sense. At any timet,

the starting vortex is located atζ̂wk = (U∞t − l) − ıh so that

ı ρ
d
dt

∫

wk
γwk(ζ̂) ζ̂ dζ̂ = ı ρ Γwk

d
dt

[(U∞t − l) − ıh]

= ı ρU0 Γwk
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whereU0 refers to the complex conjugate of the incident velocityU0. This equation yields the classical quasi-steady

Kutta-Joukowski lift per unit span because of the equivalence of the bound and starting vortices, i.e.ıρU0 Γwk = −ıρU0 Γ0.

Forces

Force may, therefore, be decoupled as

F̂ (t) = F̂0(t) + F̂1(t) + F̂2(t) + F̂3(t) (38)

where

F̂0(t) = −ıρU0Γ0

F̂1(t) = ıρ
d
dt

∫

a
ζ̂ γ0(ζ̂) dζ̂

F̂2(t) = ıρ
d
dt

∫

a
ζ̂ γ1(ζ̂) dζ̂

F̂3(t) = ıρU0Γ0 + ıρ
d
dt

∫

wk
ζ̂ γwk(ζ̂) dζ̂ + ıρ

d
dt

∫

lv
ζ̂ γlv(ζ̂) dζ̂

ForceF̂ is complex-valued and may be written asF̂ = F̂H + ıF̂V whereF̂H andF̂V refer to the horizontal and vertical

components respectively. For flapping-wing dynamics, the severity of the wing motion makes it difficult to define a mean

direction for lift and drag. Therefore, the aerofoil-inertia (ξ̂-η̂) system is used to define liftL and dragD as the vertical

and horizontal forces15 (with respect to gravity) respectively, i.e.

F̂ = D + ıL (40)

From Equation 38, lift and drag may then be written respectively as

L(t) = L0(t) + L1(t) + L2(t) + L3(t) (41)

D(t) = D0(t) + D1(t) + D2(t) + D3(t) (42)

In Equation 41,L0 refers to the quasi-steady contribution to lift—the so-called Kutta-Joukowski lift—that would be

achieved in the absence of any wake.

TheL1-term refers to the lift contribution due to apparent-mass effects. In order to allow the wing to pass, fluid must

move aside ahead of it and close up after it. This requires kinetic energy which is constant for a wing in uniform flow at

constant angle of attack and, hence, there is no net force. However, during wing accelerations there are changes in kinetic

15In Part II, reference is also made to thrustT . This is defined as the force parallel to drag but always acting in the direction of wing motion.
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energy imparted to the fluid and this manifests in the form of extra or ‘added’ forces that are termed added or apparent

mass. A similar effect would be observed when a wing enters a region of nonuniform flow, e.g. during wake re-entry.

Depending on the exact nature of the disturbance, apparent mass could produce either beneficial or detrimental effects.

TheL2-term in Equation 41 represents the lift induced by the presence of the leading-edge vortex and the trailing-

edge wake. It is responsible for the Wagner function due to its resistance to any change in flow conditions. In its classical

form, it inhibits the growth of bound circulation, and is hence referred to as the lift-deficiency term. The third term (L3)

is of a similar form to that given by Lam [42] but with an additional component due to the leading-edge vortex added. It

represents the lift deficit experienced in the presence of the two wakes.

Apparent-mass forces (L1) arise from impulsive pressures and are, therefore, referred to asnon-circulatory—they can

exist in the absence of circulation (e.g. symmetric flow about a flat plate executing heave oscillations in stationary flow

without separation). The rest of the components in Equation 41 (L0,L2,L3) are described ascirculatory since they rely

on influencing the bound circulation to affect lift.

The first three terms in Equation 41 have analogues in the classical work of von Kármán & Sears albeit without any

nonlinear terms. The fourth term has an analogue in the nonlinear extension described by McCuneet al but still without

the effect of the leading-edge vortex incorporated. The latter is included in the current work along the lines of the approach

for delta wings developed in [67], albeit with appropriate modifications.

Generally, for small-angle perturbations with only trailing-edge separation, the drag component of force is small and

usually ignored (except probably in Knoller-Betz investigations, where the propulsive effects of aerofoils oscillating in

heave and pitch in freestream flow is exploited). However, in flapping-wing applications with leading-edge separation,

this component of force is as significant as lift [26, 60]. The current approach, therefore, provides new insight into the

drag analogues of the circulatory and non-circulatory lift components described above (Equation 42).

Although the analysis is inviscid, drag is non-zero. The separated flow on the flapping wing gives rise to a normal

force. Since drag is defined here as the horizontal force, a component of the normal force acts in this direction. The

method does not, however, account for viscous drag, which might be expected to be a small additional component.
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Moments

In a manner similar to that used for forces above, the aerodynamic pitching moment may also be decoupled as

M̂ =
ρ

2

[
d
dt

∫

a

∣∣∣ζ̂
∣∣∣2 γ0(ζ̂) dζ̂ +

d
dt

∫

a

∣∣∣ζ̂
∣∣∣2 γ1(ζ̂) dζ̂ +

d
dt

∫

wk

∣∣∣ζ̂
∣∣∣2 γwk(ζ̂) dζ̂ +

d
dt

∫

lv

∣∣∣ζ̂
∣∣∣2 γlv(ζ̂) dζ̂

]

− =
[
ıρU0

(∫

a
ζ̂ γ0(ζ̂) dζ̂ +

∫

a
ζ̂ γ1(ζ̂) dζ̂ +

∫

wk
ζ̂ γwk (ζ̂) dζ̂ +

∫

lv
ζ̂ γlv (ζ̂) dζ̂

)]

and the constituent component moments are analogously

M̂(t) = M̂0(t) + M̂1(t) + M̂2(t) + M̂3(t) (43)

where

M̂0 = − =
[
ıρU0

∫

a
ζ̂ γ0(ζ̂) dζ̂

]

M̂1 =
ρ

2
d
dt

∫

a

∣∣∣ζ̂
∣∣∣2 γ0(ζ̂) dζ̂

M̂2 =
ρ

2
d
dt

∫

a

∣∣∣ζ̂
∣∣∣2 γ1(ζ̂) dζ̂ − =

[
ıρU0

∫

a
ζ̂ γ1(ζ̂) dζ̂

]

M̂3 =
ρ

2
d
dt

∫

wk

∣∣∣ζ̂
∣∣∣2 γwk(ζ̂) dζ̂ − =

[
ıρU0

∫

wk
ζ̂ γwk(ζ̂) dζ̂

]

+
ρ

2
d
dt

∫

lv

∣∣∣ζ̂
∣∣∣2 γlv(ζ̂) dζ̂ − =

[
ıρU0

∫

lv
ζ̂ γlv(ζ̂) dζ̂

]

where= denotes the ‘imaginary part of’ andU0 is the incident velocity at the origin of the aerofoil-inertia system.

3.3 Extension to Three Dimensions

The approach is extended to three dimensions by using a simple blade-element-type method (strip theory)—the contribu-

tions of the individual wing sections are summed to give the total value for the entire wing. The framework is, therefore,

essentially a ‘quasi-3-D’ model with the following assumptions made in the process:

• that there is no mutual interference between adjacent wing sections;

• that there are no 3-D tip vortex effects;

• the effect of a mirror wing on the other side of the FMAV is ignored; and

• that there is no spanwise transport of vorticity in the leading-edge vortex.

These assumptions are inherent in the current modelling framework. There is some experimental justification for the

last assumption provided by the work of Dickinson [26,27, priv. comm.] who observed only weak spanwise flow. Details
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of Dickinson’s experimental data set are given in Part II [6]. Although not handled here, tip vortex effects may have an

important influence [85] (see also, discussion in Part II,§ 3.3).

As noted earlier, Sane & Dickinson found remarkable similarity between 2-D and 3-D flapping-wing flow, and strongly

speculated on the validity of using simple strip theory to extend 2-D flows to 3-D [56]. The blade-element analogy is,

therefore, used here. Use of this method, however, precludes treatment of rapid spanwise changes in wing cross-section.

4 Conclusion

In this work, insect-like flapping-wing flight has been identified as the optimum propulsion method for micro air vehicles

designed for indoor use. Hovering is the mode considered here in particular, primarily for its simplicity. Due to the nature

of insect wings and their kinematics, the concept of radial chords has been introduced. Using these, radial cross-planes

have been defined, which are unwrapped into equivalent flat cross-planes where the 2-D flow is then solved. This allows

for easy conversion of the model to 3-D by a blade-element-type analogy.

Insect wings execute a rather complex flapping motion. They flap back and forth while continually changing angle of

attack, and rapidly reverse their direction and incidence at the end of each halfstroke. A key feature of such flapping-wing

flows is their unsteadiness and the formation of a leading-edge vortex, in addition to the usual wake shed from the trailing

edge. What ensues is a complex interaction between the wing and the shed wakes which leads to unsteady oscillating

forces and moments.

In our approach, the flow associated with insect-like flapping wings is solved separately in each 2-D cross-plane. It

is decomposed into wake-free (quasi-steady) and wake-induced (unsteady) components, and solved individually for each

component. By using the linearity property of Laplace’s equation, the overall effect is then obtained by linear superpo-

sition. The quasi-steady component is determined by accounting for the unsteady motion of the wing and satisfying the

Kutta-Joukowski condition at the trailing edge. For the unsteady motion, the shedding of the leading-edge vortex requires

the additional requirement to satisfy the Kutta-Joukowski condition at the leading edge. By using Kelvin’s law (for the

conservation of circulation), two nonlinear wake integral equations are derived. These equations describe the flapping-

wing flow in its entirety and form the basis of this work.

Expressions for the forces and moments on the wing have been derived from the method of impulses, mainly for

its simplicity. More importantly, these forces (and moments) are decomposed into four constituent elements—quasi-

steady, apparent mass, wake-induced and wake components. The current work provides insight into the sources of these
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components, especially for drag (which has not been attempted before). In addition, the need for defining lift as the force

perpendicular to gravity, as opposed to normal to the relative freestream, for flapping wings has also been established.

Finally, the model is extended to a quasi-3-D one by means of a simple blade-element approach whereby the charac-

teristics for the entire wing are obtained simply by integrating along the span.

The wake-integral equations developed in this work are exact (within the limits of the assumptions made) but do not

have a closed analytical form. They must, therefore, be solved by numerical methods. This is the theme, together with

validation, of the second part of this paper [6].

The overall modelling approach is summarised in Figure 10. The model requires as input wing geometry and wing

kinematics for the hovering flapping wing. These are processed by the nonlinear, unsteady aerodynamic model described

above (Equations 18, 22, 25 and 26). The output from the model are force and moment data (via Equations 34 and 35)

and flow visualisation (see Part II).
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1 Żbikowski, R. Flapping Wing Autonomous Micro Air Vehicles: Research Programme Outline. InFourteenth Inter-

national Conference on Unmanned Air Vehicle Systems, volume Supplementary Papers, pp. 38.1–38.5. 1999.
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