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ABSTRACT 
 

Muscle foods such as meat, fish and poultry are an integral part of human diet. Over 

time, such food succumbs to spoilage, resulting from various intrinsic and extrinsic 

factors, the most significant of which is microbial activity. Spoilage changes the 

organoleptic properties of meat, rendering it unacceptable to the consumer, and may 

ultimate result in the food becoming toxic. Spoilage is therefore of major commercial 

and public health interest.  

 

This thesis describes the development and application of a novel suite of software 

tools designed to support novel instrumental approaches for the accurate, rapid and 

inexpensive evaluation of meat freshness. A pipeline was built for the analysis of 

highly heterogeneous data obtained by a diverse range of high-throughput techniques 

across four three-class case studies. As a first step, PCA was applied for 

dimensionality reduction, feature extraction and exploratory analysis. PLS-DA and 

SVMs were employed as classifiers, and classification ensembles implemented as a 

means of improving classification accuracy. Rigorous validation and evaluation 

methods based on bootstrapping and permutation testing were applied to ensure that 

the performance metrics are representative of real-world application, and to ascertain 

the statistical significance of the results. This was made possible by the development 

of an advanced optimisation approach, which reduced the computational demands of 

SVM tuning by up to ~ 90× times. The functionality of the pipeline was further 

enhanced by exploiting GPA and CPCA as data fusion techniques, to evaluate whether 

better classification accuracy is achieved when integrated as opposed to standalone 

datasets are used.  

 

SVM ensembles proved to be the most powerful and accurate classification method 

since they produced consistently higher prediction rates (   ) than PLS-DA. Among 

the analytical techniques, HPLC was established as the most diagnostic method for the 

assessment of meat freshness, with a     of 80%. Among the two data fusion 

techniques, CPCA outperformed GPA. However, CPCA only exceeded standalone 

HPLC in a minority of cases, presenting an overall     of 82%. 
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1 Introduction and Literature Review 
 

 

 

1.1 Introduction 

 

1.1.1 Overview of Systems Biology 

 

Breakthrough biological discoveries over the past decades, such as the revolutionary 

discovery of the double helix structure of DNA in 1953 by Watson and Crick, 

catalysed the blossoming of molecular biology (Watson and Crick, 1953). Acquiring 

information about the structure and properties of DNA and proteins led to outstanding 

progress in the years that followed as presented in Figure 1-1. Molecular biology has 

chiefly focused on identifying and investigating individual biological molecules by 

studying their properties and functions either as isolated entities or as small sets of 

components in very simple model systems. However, the reductionist approach 

adapted by molecular biology was not sufficient to interpret the intrinsic complexity 

of biological systems.  

 

The Human Genome Project has profoundly altered the practice and view of 

contemporary biology (Hood, 2003; Venter et al., 2001). In the post-genome era, the 

massive amount of biological data acquired by the advance of high-throughput 

technologies led to the rapid shift of interest towards systems biology. The marked 

increase in the amount of genomic, proteomic and metabolomic data due to the 

constant improvements in high-throughput tools, has granted the scientific community 

the opportunity to study complex biological systems as an integrated whole. Thus, 

systems biology emerged as a necessity helping us understand these complex system 

dynamics, as these are the key to understanding life. Systems analysis has historically 

been applied in a plethora of scientific fields such as economics, physics, psychology 

and most recently biology, covering a multitude of different areas such as 

developmental biology, ecology and immunology (Westerhoff et al., 2004).  
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Figure 1-1 Evolution from molecular biology to systems biology 

The line of inquiry represents the way mainstream molecular biology, under the pressure for system-

level study, started investigating groups of molecules rather than single macromolecules, while 

simultaneously investigated their interactions. The figure has been adapted from Westhoff et al. (2004). 

 

A system-level approach aims to generate novel technologies and effective tools 

based on the collection, integration, analysis, graphical visualisation, and ultimately 

modelling of biological information (Ideker et al., 2001; Hood, 2003). Mathematical 

modelling is the backbone of contemporary systems biology. To this day the term 

“mathematical” is usually hidden behind a “computational approach” (Mesarovic et 

al., 2005). A model is an effort to represent all the integrated highly heterogeneous 

information that derives from multiple experimental sources in an abstract manner. 

Current advances in systems biology and computing science are prompting scientists 

to use sophisticated mathematical models and powerful in silico simulations. Despite 

the continuous acquisition of new information as well as the overwhelming progress 

of computational and experimental methods, the high complexity of biological 

systems will always constitute an obstacle for the construction of a general, integrated 

and functionally meaningful model based on complete understanding  (Butcher et al., 

2004; Filkenstein et al., 2004). 
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1.1.2 The ‘omics’ disciplines 

 

Ever since the first automated DNA sequencing machine (See Figure 1-1), there has 

been a tremendous increase in the development of high-throughput platforms leading 

to the accumulation of vast amounts of highly heterogeneous biological data. These 

large-scale sets of data and biological information have inspired several novel 

fundamental concepts – namely, the ‘omics’ disciplines. These disciplines propel 

systems-level understanding, having as a chief aim the simultaneous quantification 

and identification of the building blocks of a biological system such as genes, proteins 

or metabolites, as well as the investigation of the interactions among them such as 

protein-protein.  

 

Three of the most important ‘omics’ sources are genomics, proteomics and 

metabolomics. The term genomics was established to denote the analysis of the entire 

genome – the complete genetic sequence – of an organism. In all cellular organisms, 

the genome is composed of deoxyribonucleic acid (DNA). Proteomics can be defined 

as the scientific field that focuses on the study of the proteome. The proteome is the 

entire collection of proteins that are expressed by a particular genome. However, even 

though the genome of a cellular organism is static – it alters only when mutations 

occur – the proteome changes constantly as a result of internal and external factors. 

Metabolomics is likewise defined as the comprehensive profiling of the metabolome. 

The metabolome consists of all the biochemicals and metabolites produced by a 

cellular organism. Metabolites are substances either required for or produced by 

biochemical reactions of metabolism that occur within the cells of an organism. 

Metabolomics allows scientists to study and compare the relationships between an 

organism’s genotype and phenotype, as well as the relationships between the 

genotype and the environment (Hassani et al., 2010).  

 

This project will be focusing on the field of metabolomics, and in particular the study 

of metabolites responsible for meat spoilage. The analytical techniques that will be 

used in this project are briefly presented as follows.  
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1.1.2.1 Fourier Transform Infrared (FTIR) Spectroscopy  

 

Fourier Transform Infrared (FTIR) spectroscopy is a very rapid (running over a few 

seconds) non-destructive analytical technique used for high-throughput biochemical 

fingerprinting (Ellis and Goodacre, 2001). In FTIR, a particular bond absorbs light or 

electromagnetic radiation by an infrared beam at a specific wavelength (Ellis et al., 

2004). As a result of FTIR analysis, an infrared absorbance spectrum can be 

extracted, which may be used as a biochemical or metabolic “fingerprint” of the 

samples. However, FTIR spectra tend to be quite complex featuring hundreds or 

thousands of variables, thus necessitating the use of statistical methods for their 

analysis. FTIR in combination with multivariate statistical techniques has proven to 

be a very fast and accurate method for food-based analyses and bacterial detection 

(Nicolaou et al., 2011).  

 

 

Figure 1-2 Electromagnetic spectrum 

The figure has been extracted from Sattlecker (2011).  
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1.1.2.2 High Throughput Liquid Chromatography (HPLC) 

 

High-performance liquid chromatography (HPLC) is a chromatographic technique 

used to separate a mixture of chemical compounds. It is mainly used in biochemistry 

and analytical chemistry to identify, quantify as well as purify the individual 

components in a mixture. The HPLC instrument consists of a solvent reservoir, 

transfer line with frit, high-pressure pump, sample injection device, column, detector, 

and data acquisition, usually together with data evaluation (Meyer, 2013) 

 

1.1.2.3 Electronic Nose (e-nose) 

 

An electronic nose (e-nose) is an instrument applied for the rapid non-destructive 

detection and analysis of microbial volatile compounds. The electronic noses attempt 

to mimic the human organoleptic olfactory interpretation (Persuad and Dodd, 1982). 

The instrument consists of an array of chemical gas sensors, which are capable of 

detecting and recognising simplex or complex odours. 

 

Electronic noses have shown great promise in the field of food analysis as a means of 

evaluating freshness and investigating shelf life. E-noses have become increasingly 

popular due to the fact that they resemble human sensory evaluation, but also since 

they are rapid, low-cost non-destructive techniques. Even so, the repeatability with 

electronic noses has been questioned since they present instabilities due to severe 

instrumental drift (Ellis and Goodacre, 2001). 

 

1.1.2.4 Raman Spectroscopy 

 

Raman spectroscopy is also a non-destructive method that can be considered to be 

complementary to FTIR spectroscopy. Both Raman and FTIR are powerful metabolic 

fingerprinting methods as they reflect accurately the phenotype of a sample, including 

changes to its metabolism (Nicolaou et al., 2011). The major advantage of Raman 

spectroscopy over FTIR is the fact that the contribution from water is very small and 

thus can be used directly on food without recourse to ATR (Argyri et al., 2013).  
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1.1.3 Microbial Spoilage in Meat 

 

Systems biology has gained in importance in food science and the food industry due 

to an increasing focus on food for better health and the demand for products of 

consistently high quality (Ellis et al., 2002; Hassani et al., 2010). Out of all foods that 

are a vital part of human diet, meat has been described as the most perishable of all. 

Muscle foods such as meat or poultry become unacceptable to the consumer when 

organoleptic changes occur due to spoilage (Ellis et al., 2002). Spoilage can be 

defined as “any change in a food product that renders it unacceptable to the consumer 

from a sensory point of view” (Gram et al., 2002; Ercolini et al., 2006) 

 

Meat spoilage may be the result of a plethora of intrinsic and extrinsic factors, the 

most significant of which is microbial activity (Gram et al., 2002). Even though 

changes of food substances during storage may be the result of endogenous enzymatic 

processes within muscle tissue post-mortem, it is generally accepted that detectable 

organoleptic spoilage is a result of decomposition and the formation of metabolites 

caused by the growth of microorganisms (Ellis and Goodacre, 2001; Ellis et al., 

2002). These organoleptic characteristics usually include the development of  

off-odours and off-flavours, the formation of slime in addition to any changes in the 

appearance such as discoloration; thus, consumers consider the meat as being 

undesirable. Due to its moist highly nutritious surface, meat stored at between -1 and 

25°C favours the growth of a wide range of spoilage bacteria. Under aerobic 

conditions, spoilage organisms that belong primarily to the genus Pseudomonas attach 

more rapidly to meat surfaces than other spoilage bacteria (Ellis et al., 2002). The 

organoleptic changes may vary depending on the microbial association contaminating 

the meat and the conditions under which it is stored. The development of organoleptic 

spoilage is related to microbial consumption of meat nutrients such as sugars and free 

amino acids, and the release of undesired volatile metabolites (Ercolini et al., 2006).  
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Fears over microbiological food safety issues have led to the requirement for a rapid 

and accurate detection system for microbiologically spoiled or contaminated meat. To 

date, various methods have been proposed to measure and detect bacterial spoilage in 

meat such as enumeration methods based on microscopy, ATP bioluminescence and 

the measurement of electrical phenomena as well as detection methods based on 

immunological procedures (Ellis et al., 2002). However, these techniques are  

time-consuming, labour-intensive and generate retrospective information; thus, they 

cannot be used for on- or at-line monitoring (Ellis et al., 2002; Argyri et al., 2011). 

Polymerase chain reaction (PCR) techniques may also be investigated; however, the 

main limitation of these techniques is the high equipment cost, the demand for highly 

trained staff as well as the risk of cross-contamination (Nicolaou et al., 2011). 

 

The research for reliable meat-quality sensors has led to the development of a plethora 

of rapid, non-invasive, and relatively inexpensive methods based on analytical 

instrumentation techniques such as Fourier transform infrared (FTIR) spectroscopy 

and electronic nose technology (Argyri et al., 2010; Panagou et al., 2010). The 

present study aims to develop an automated, reproducible and quantitative approach 

that defines the spoilage state of a product objectively. The application of analytical 

techniques such as the ones presented in Section 1.1.2 in conjunction with 

multivariate statistical techniques and machine learning algorithms may prove to be 

an effective, extremely fast and accurate method, which could have practical 

applications to ensure the quality and safety of meat and meat products. 

   

1.2 Multivariate Analyses and Chemometrics 

 

The vast amount of biological information generated by the advanced analytical 

instruments such as the omics fields, demand appropriate multivariate statistical tools 

for data analysis. Multivariate analysis can be defined as “the simultaneous statistical 

analysis of a collection of random variables” (Izenman, 2008). According to Vermuza 

and Filzmoser (2009), chemometrics may be defined as the “extraction of chemically 

relevant information out of analytical chemical data by mathematical and statistical 

tools”.  



 8 

The multivariate techniques applied in the field of chemometrics are conventionally 

divided into two main categories, namely supervised and unsupervised. Unsupervised 

methods “attempt to disclose naturally occurring groups and structures within the 

dataset without previous knowledge of any class assignment” (Alvarez-Ordoñez and 

Prieto, 2012). They chiefly focus on the discovery of patterns, trends, clusters and/or 

outliers in the data, and they include techniques such as Principal Component 

Analysis (PCA) and cluster analysis. On the other hand, supervised learning 

algorithms “make use of a priori knowledge of classes to guide the characterisation or 

classification process” (Alvarez-Ordoñez and Prieto, 2012); these algorithms generate 

prediction models for regression, classification, pattern recognition, or machine 

learning tasks. Characteristic examples of supervised learning involve Partial Least 

Squares Discriminant Analysis (PLS-DA) and Support Vector Machines (SVMs), 

among many others.  

 

1.3 Data pre-treatment 

 

Nowadays, the extraction of relevant information from highly heterogeneous datasets 

constitutes a major challenge (van den Berg et al., 2006). It is well established that 

prior to the application of any type of data analysis, proper data pre-treatment is 

crucial for the outcome and the interpretability of the results. Data pre-treatment can 

make the difference between a useful model and no model at all. Therefore, biological 

data under investigation are often scaled, centered and/or transformed. The 

application of pre-treatment techniques may prove to be extremely fruitful, especially 

under circumstances where the variables span over wide and different ranges. In 

addition, pre-treatment techniques aim to minimise the influence of disturbing factors 

such as measurement noise.  

 

The selection of chemometrics method to be applied, strongly influences the selection 

of the data pre-treatment methods. Different techniques focus on different aspects of 

the data. For instance, clustering algorithms focus on revealing similarity and 

dissimilarity patterns, whereas PCA attempts to explain the maximum variation based 

on a few meaningful components. Thus, a certain pre-treatment method may enhance 

the results of one technique and obscure the results of another.  
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1.3.1 Mean-centering 

 

Mean-centering is conducted by subtracting the mean of each variable (column). 

“Centering converts all the concentrations to fluctuations around zero instead of 

around the mean” (van den Berg et al., 2006). This is step is usually performed so that 

all the components found by PCA have as their origin the centre (centroid) of the data 

(Craig et al., 2006). In general, mean-centering enhances the interpretability of a 

model; it can be useful when different variables have different means. 

 

        

Equation 1 Mean-centering formula 

 

1.3.2 Auto-scaling 

 

In auto-scaling, also known as unit or unit variance scaling, each variable (column) is 

scaled to unit variance by using the standard deviation as the scaling factor. As the 

initial step, mean-centering is performed by subtracting the column mean from every 

data value. Subsequently, scaling is applied by dividing the centered columns by their 

standard deviation  . Auto-scaling is crucial if different variables are measured over 

very different ranges or units such as temperature, pressure and concentration 

(Brereton, 2009). Once scaled, all the variables will have the same weight and will be 

equally important in the analysis (Wold et al., 2001; van den Berg et al., 2006). If the 

data are mean-centered, the weighting reflects the covariance of the variables, while 

in unit variance scaling the weighting reflects their correlation (Craig et al., 2006). 

The mathematical equation for auto-scaling is  

 

    
(   )

 
 

Equation 2 Auto-scaling formula 
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1.4 Multivariate Analysis: Unsupervised Methods  

 

1.4.1 Principal Component Analysis 

 

As thoroughly described in Section 1.1 scientists attempt via high-throughput 

platforms to collect as much information as possible from a single experiment. This 

may result in the generation of a large number of measurements (variables), a subset 

of which may not be very informative or even related to the study. Datasets with such 

great number of variables tend to present high dimensionality, correlations and 

redundancies. The plots of Figure 1-3 demonstrate three distinct cases, where the data 

illustrate low, medium and high redundancy respectively. The higher the redundancy, 

the more difficult it becomes to reveal patterns and trends in the original data.  

 

 

Figure 1-3 Representation of possible correlations and redundancies in high-dimensional data 

For two random variables r1 and r2, the plot on the left displays no obvious relationship between the 

variables. However, the variables of the plots in the centre and the right are highly correlated since one 

can be used to predict the other. The figure has been extracted from Shlens, 2005.  

 

Principal Component Analysis (PCA) (Jackson, 1991; Wold et al., 1987) is the most 

commonly used technique for dimensionality reduction, data compression and feature 

extraction. The PCA algorithm reduces the initial number of possibly correlated 

variables into a new lower number of uncorrelated variables, known as the Principal 

Components (PCs). Geometrically, we can imagine the input data as a cloud of points 

in a high-dimensional space. As illustrated in Figure 1-4, this cloud of points is 

probably longer in a certain direction of the pattern space; in this direction the data 

appear to be most different and PCA draws the first axis (PC).  
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The first PC places all points the farthest apart from each other, extracting thus the 

highest variance. Similarly, a perpendicular to the first PC axis is drawn for the 

second PC, which accounts for the second highest variance. The process is repeated to 

get multiple orthogonal principal components. Each successive orthogonal axis 

displays a decreasing amount of the total variance. 

 

 

Figure 1-4 Extracting the Principal Components 

PCA projects the input data into a subspace of reasonable and meaningful dimension by setting new 

directions in the pattern space. Thus, the projected cloud of points is as dispersed as possible. The 

figure has been extracted from Kavraki (2007). 

 

In matrix notation, suppose that   variables have been observed on   instances.  

The generated multivariate dataset forms an       data matrix   with   rows 

(observations) and   columns (variables). Thus, a cloud of   points is created in an  

 -dimensional space, where a new axis is used per variable. The PCA algorithm 

reduces the size   of possibly correlated variables into   new uncorrelated variables 

(PCs), where      . Each PC can be expressed mathematically as an orthogonal 

linear combination of the original variables      . In PCA, the original matrix   

can be decomposed into the scores matrix          , loadings matrix           

and a residuals matrix  . Several algorithms can be used for data decomposition, the 

most widely applied of which are Singular Value Decomposition (SVD) and the 

Nonlinear Iterative Partial Least Squares (NIPALS) (Wold, 1975) algorithm. In 

general, the mathematical equation for PCA can be described by 

 

          

Equation 3 PCA scores and loadings 
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1.4.2 Cluster Analysis 

 

Cluster analysis consists of a set of unsupervised methods that are used in numerous 

data mining tasks. The clustering algorithms attempt to partition a dataset into several 

subsets – the clusters – so that data belonging to the same cluster are mutually similar, 

providing a sense of homogeneity.  

 

1.4.2.1 Hierarchical Cluster Analysis (HCA) 

 

Hierarchical clustering (HCA) is based on calculating the distances between   

elements found in a given matrix   of size      . The distances represent the degree 

of similarity/dissimilarity between these objects. The shorter the distance, the more 

similar the objects are with each other. HCA is based on two important categories of 

algorithms – distance and linkage algorithms.  

 

Distance algorithms determine how the similarity or “distance measure” between two 

given objects is calculated. The most widely used distance algorithms include 

Euclidean and Mahalanobis distance, among others. For instance, for two objects   

and   in  , the Euclidean distance in  -dimensional space satisfies the equation  

 

       √∑        
 

   

 

Equation 4 Euclidean distance algorithm 

 

Hierarchical clustering is graphically represented in tree structures, also known as 

dendrograms. Linkage algorithms determine how the clustering is performed.  

A bottom-up linkage algorithm includes the following steps:  

 

1. Each object forms and belongs to its own cluster 

2. The two closest clusters are linked together 

3. The two linked clusters are aggregated into a single new cluster 

4. The algorithm keeps iterating from Step 2 until the number of clusters is one 
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Linkage algorithms consist of various different algorithms such as single linkage, 

complete linkage and Ward’s method. For two given clusters   and  , a single 

linkage algorithm calculates the shortest distance between the two clusters as 

described in Equation 5  

 

          
        

‖   ‖ 

Equation 5 Single linkage algorithm 

 

Where   and   are elements of the clusters   and   respectively. 

 

1.4.2.2  -means Clustering 

 

 -means clustering is an unsupervised clustering technique that attempts to “minimise 

the sum of point-to-centroid distances, summed over all   clusters” (Arthur and 

Vassilvitskii, 2007). The objective function   for  -means clustering is 

 

   ∑∑‖  
   

   ‖
 

  

   

 

   

 

Equation 6 k-means clustering algorithm 

 

Where,   is the number of clusters,   
   

 is the  th
 pattern belonging to the  th

 cluster, 

   is the centre of cluster   and   is the number of data points. The algorithm’s steps 

can be described as follows: 

1. Initially, the number of clusters   is selected, for instance       

2. Randomly the items are assigned to the   clusters 

3. A new centroid is calculated for each of the   clusters (a distinct set of points 

belongs to a certain centroid) 

4. The distance of each item towards the   centroids is calculated 

5. The items are subsequently assigned to the closest centroid 

6. The algorithm keeps iterating until the assignments to the clusters are stable 

The algorithm’s simplicity and speed makes it an appealing technique for cluster 

analysis. However, a major disadvantage of this algorithm is that it is sensitive to the 

selection of the initial partitions. 



 14 

1.5 Multivariate Analysis: Supervised Learning  

 

This research will solely focus on the investigation of multivariate classification 

techniques. A classifier, also known as predictor, can be defined as “a function that 

maps an unlabelled instance to a label using internal data structures” (Kohavi, 1995). 

Supervised classification derives from the concept of learning by experience (Ciosek 

et al., 2005). A model is trained to distinguish groups of a predefined dataset where 

the class of each sample is already known. The training dataset is used to establish a 

mathematical model, which in turn should be capable of predicting the class 

membership of ideally unseen data (Izenman 2008). Supervised learning algorithms 

are characterised by a predefined set of parameters, which may have a profound effect 

on the resulting performance (Chapelle et al., 2002). Therefore, thorough selection of 

these parameters is a necessity.  

 

1.5.1 Partial Least Squares – Discriminant Analysis 

 

Partial Least Squares-Discriminant Analysis (PLS-DA) (Barker and Rayens, 2003)  

is a widely used classification technique in the field of chemometrics (Westerhuis et 

al., 2008). It is a linear model that consists of Partial Least Squares (PLS) (Wold, 

1975) dimensionality reduction and Linear Discriminant Analysis (LDA) applied on 

the PLS components. Unlike PCA, which attempts to capture the maximum variance, 

PLS-DA aims to maximise the covariance – accomplish both correlation and 

maximum variance – between the input data and an output class (Wise et al., 2003; 

Weber et al., 2011).  

 

In matrix notation, suppose that   is a predictor matrix, which corresponds to 

independent variables, and   is a class affiliation vector that holds the dependent 

variables. PLS-DA attempts to model the relationship between dependent and 

independent variables by projecting the data matrices   and   into a new subspace. 

The orthogonal axes in the PLS subspace are also known as Latent Variables (LVs). 

The output of PLS-DA is the product of two smaller matrices, the scores matrix  

(PLS-DA scores) and the predicted affiliation matrix. Thus, it satisfies the 

mathematical equations  
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Equation 7 Partial Least Squares - Discriminant Analysis 

 

Where,   represents the PLS score matrix,   and   are the PLS loadings, and   and   

are the PLS residuals. Although the PLS scores (LVs) are orthogonal as in PCA, the 

loadings are not (Brereton, 2009). LVs are likely to offer a better separation between 

different observations (samples) when compared to PCs since they take the class 

labels into account (Rossini et al., 2012). 

 

1.5.2 Support Vector Machines  

 

Support Vector Machines (SVMs) (Boser et al., 1992; Cortes and Vapnik, 1995) are a 

powerful state-of-the-art machine learning technique applied in data mining cases 

such as classification, regression and novelty detection. Initially introduced by Cortes 

and Vapnik (1995) for binary classification (Hsu and Lin, 2002; Glasmachers, 2008), 

SVMs became increasingly popular in the scientific community over the past decade.  

 

1.5.2.1 Linear SVM Classifiers: Separable Data 

 

“The simplest type of classifier is a linear classifier” (Bottou et al., 1994; Brereton et 

al., 2009). In a hypothetical binary classification problem, the SVM model is given as 

input a training dataset                      , where         is the set of   

input instances and       their associated class labels. The chief goal of any SVM 

algorithm is to determine a classification function that best fits the training dataset. In 

the case of linearly separable points, the decision function has the form   

 

         〈   〉        (∑       

 

   

) 

Equation 8 Linear SVM classifier as a decision function 

 

Where   is the weight vector,    is the  th
 training example with a corresponding label 

   and   is the bias. According to Boser et al. (1992),   and   are the “adjustable 

parameters” of the SVM decision function.  
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In any linearly separable binary dataset, there is an infinite number of possible 

discriminant hyperplanes that can finely separate the two classes (Bennett et al., 2000; 

Suykens et al., 2002). All generic planes, including the optimal separating 

hyperplane, satisfy the equation 

 

        

Equation 9 SVM linear separating hyperplane 

 

Support vector machines attempt to separate the data by fitting a hyperplane that 

returns a low generalisation error, while simultaneously aim to maximise the distance 

or ‘margin’ between the nearest points of the two classes (Bennett et al., 2000; 

Suykens et al., 2002). Two parallel class hyperplanes define the margin of the SVM 

classifier. The supporting class planes can be described by  

 

         

Equation 10 SVM supporting hyperplanes 

 

The margin of the SVMs is expressed by 
 

‖ ‖
 (Smola, 1998). According to Boser et al. 

(1992), the margin maximises by minimising the norm ‖ ‖ . This convex 

optimisation problem satisfies the equation 

 

   
 

 
‖ ‖  

                                           

Equation 11 SVM optimisation problem – primal form (hard-margin SVMs) 

 

The training points that are found on the edge of the margins of each class, which 

achieve the minimum distance from the optimal decision hyperplane, are termed 

Support Vectors (SVs). An important concept is that SVMs conduct linear 

classification based on a different approach than most chemometric methods. The 

SVM boundary depends solely on the selected support vectors, while the remaining 

samples have no influence over it (Boser et al., 1992). On the contrary, methods such 

as PLS-DA use all available samples in order to determine the separating planes 

between classes (Brereton et al., 2009; Xu et al., 2006). 
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1.5.2.2 Linear SVM Classifiers: non-separable Data 

 

The previous section provided an overview of linear SVM classifiers when applied to 

perfectly separable data. However, most of the real-life applications are complex and 

thus, separation between different classes is not as straightforward. In such cases, 

more expressive hypothesis spaces are required to describe non-separable linear and 

nonlinear cases (Christianini et al., 2000; Suykens et al., 2002).  

 

Cortes and Vapnik (1995) introduced additional slack variables    in the 

implementation of the SVMs in order to address the problem of non-separable data. 

The slack variables “relax” the hard-margin constraints, leading to softer margins that 

tolerate misclassifications (Cortes and Vapnik, 1995; Smola, 1998; Christianini et al., 

2000). The regularisation parameter    , known as the penalty error, determines 

the trade-off between training error toleration and margin maximisation (Chapelle et 

al., 2002; Boardman and Trappenberg, 2006). As the values of   increase, the 

misclassifications become more significant. Soft-margin SVMs require the solution of 

the linearly constrained quadratic minimisation problem: 

 

   
 

 
‖ ‖   ∑  

 

   

 

                                         

Equation 12 SVM optimisation problem – primal form (soft-margin SVMs) 

 

The constrained optimisation problem of Equation 12, which constitutes the primal 

objective function, can be solved using standard Lagrangian theory (Burges, 1998; 

Smola, 1998; Shölkopf and Smola, 2001). Thus, the primal optimisation problem can 

be expressed in the dual form: 

 

   ∑  

 

 
 

 
∑∑          

   
  

 

                               ∑  

 

     

Equation 13 SVM optimisation problem – dual form 
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Where    (    ) are the Lagrange multipliers and   their upper bound. Only the 

support vectors satisfy     , whereas the remaining instances      (Liu et al., 

2006; Xu et al., 2006). Therefore, omitting all the training instances that do not 

constitute the support vectors will result in exactly the same decision boundary 

(Belousov et al., 2002). 

 

1.5.2.3 Nonlinear SVM Classifiers  

 

A hypothetical case of nonlinear class separation is displayed in Figure 1-5. The input 

space under study is too complex to provide an optimal hyperplane that accurately 

separates the classes of the widely scattered data. Boser, Guyon and Vapnik (1992) 

extended once more the functionality of the SVMs with the introduction of the most 

powerful SVM attribute, the “kernel trick” (Smola and Shölkopf, 2004). Instead of 

forming a boundary in the non-separable input space, a nonlinear feature (kernel) 

function   projects the data into a high – possibly infinite – dimensional feature space 

  as demonstrated in Figure 1-5, where linear separation is theoretically feasible 

(Chapelle and Vapnik, 2000; Cristianini and Shawe-Taylor, 2000). The back-

projection of the optimal separating hyperplane from the new feature space to the 

original input space generates the nonlinear boundary of given complexity (Xu et al., 

2006; Brereton, 2009).  

 

 

Figure 1-5 Nonlinear SVM classifier 

The figure displays an example of feature mapping using the kernel trick. It is obvious that the original 

data cannot be separated by a linear hyperplane in the two-dimensional input space. The kernel 

function implicitly maps the data into a new high-dimensional feature space, where linear separation is 

feasible. The figure has been extracted from Brereton (2009).  
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Using the feature function        for implicit nonlinear mapping from the input 

space   to a feature space  , the primal optimisation problem can be expressed as:  

 

   
 

 
‖ ‖   ∑  

 

   

 

                                                

Equation 14 SVM optimisation problem – primal form (kernel trick) 

 

Due to the possibly infinite dimensionality of  , the primal optimisation problem of 

Equation 14 using the feature function      may be computationally too hard to 

solve. Thus, the optimisation problem is usually solved in its dual space, where the 

dimensionality is much lower than the feature space (Boser et al., 1992). By 

substituting the kernel trick in the dual form yields:  

 

   ∑  

 

 
 

 
∑∑         (     )

  

 

                               ∑  

 

     

Equation 15 SVM optimisation problem – dual form (kernel trick)  

 

 

Where  (     )          (  ) is a predefined kernel function that performs the 

nonlinear mapping. In addition to the linear kernel  (     )    
   , which 

corresponds to the original linear SVM, the most commonly applied nonlinear kernels 

include: 

 

Radial Basis Function (RBF):  (     )     (          )     (
        

 

   
) 

Polynomial:  (     )      
          

  

Sigmoid:  (     )          
           

Equation 16 Nonlinear SVM kernels 
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Every kernel is characterised by a set of parameters – the hyperparameters – that have 

to be optimised for a particular problem (Chapelle and Vapnik, 2000; Xu et al., 2006). 

The Gaussian Radial Basis Function (RBF) kernel is particularly popular especially in 

cases where there is little or no knowledge about the data under study. In RBF SVMs, 

only one kernel parameter has to be optimised – the value of   or   – in addition to 

the regularisation parameter C.  

 

The   value determines the degree of nonlinearity or width of the RBF kernel 

(Boardman and Trappenberg, 2006; Verplancke et al., 2008), and is inversely related 

to  , the spread of the data, where   
 

   . Higher values of   result in greater 

nonlinearity of the decision boundaries. More specifically, very high values of   (low 

values of  ) potentially result in sharp peaks, “spiky” functions and boundaries that 

surround individual samples as illustrated in Figure 1-6 (Valentini and Dietterich, 

2004; Brereton, 2009). As the   value decreases, the Gaussians become broader with 

smoother surfaces that fit the data quite well. According to Keerthi and Lin (2003), 

for small values of          the RBF kernel tends towards a linear boundary 

(Boser et al., 1992; Hsu et al., 2003). Thus, a linear classifier may be considered a 

special case of the RBF model since “with a suitable combination of hyperparameters 

     , the testing accuracy of the RBF kernel is at least as good as the linear kernel” 

(Boser et al., 1992; Keerthi and Lin, 2003; Hsu et al., 2003; Chang et al., 2010).  

 

In addition, as presented in Section 1.5.2.2, the cost parameter   controls the 

complexity of the SVM boundaries. More specifically, according to Xu et al. (2006), 

the cost parameter controls the optimal trade-off between the two criteria of Equation 

14, maximising the margin and minimising the training error. As    , the hard 

margin case is obtained, and thus, lower tolerance of misclassification is allowed 

(Brereton, 2009). The high values of   will force the creation of extremely complex 

boundaries that misclassify as few training samples as possible. Large values of   

may often lead to instances of overfitting (Foody and Mathur, 2004). On the contrary, 

a lower value of   creates wider margins, which allows instances close to the 

boundary to be ignored (Ben-Hur et al., 2010). For very low values of  , independent 

of the   value, the SVM models are unable to learn, causing a problem of underfitting 

(Valentini and Dietterich, 2004).  
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Figure 1-6 The effect of the hyperparameter   on the SVM boundaries 

The figure demonstrates the effect of varying the hyperpameter   as the cost parameter   is kept 

constant. For small values of  , the SVM boundary tends towards linearity. As   increases, the 

flexibility and curvature of the decision boundaries increase. For large values of  , the “spiky” 

functions and the plethora of narrow Gaussian “bumps” may result to a high training accuracy but low 

generalisation ability – a case of overfitting. The figure has been extracted from Ben-Hur et al. (2010).  

  

1.5.2.4 Multi-class SVMs 

 

SVMs were initially introduced for binary classification problems. Over the years, the 

functionality of SVMs was extended to allow multi-class cases. Several 

methodologies have been proposed, the most popular of which are “one-against-all” 

and “one-against-one”. Both methods divide the multi-class problem in a series of 

binary problems (Duan and Keerthi, 2005). 
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The “one-against-all” approach (Bottou et al., 1994) is the earliest and simplest 

method proposed, which involves determining how well a sample is modelled by each 

class individually, and subsequently selecting the class it is modelled-by at its best 

(Foody and Mathur, 2004; Brereton and Lloyd, 2009). Thus, for a   class problem,   

binary classifiers are created and trained, one for each given class (Karatzoglou et al., 

2006). The “one-against-all” approach is based on a “winner-takes-all” strategy (Duan 

and Keerthi, 2005). On the contrary, the most recent “one-against-one” (Kressel, 

1999) approach constructs several binary SVM classifiers for each available pairwise 

combination of classes (Hsu and Lin, 2002). Subsequently, the results of all individual 

classifiers are aggregated using a voting mechanism such as “majority vote” (Duan 

and Keerthi, 2005). In this case,          SVM models are created, one for each 

pairwise combination of classes. According to Hsu and Lin (2002), this approach 

verily generates robust outcome when employed with SVMs. 

 

1.5.3 Ensemble Models 

 

A major problem in multivariate classification is that often standalone classifiers may 

achieve very high classification accuracies in the training process, however, their 

generalisation performance (test performance) when applied to new unseen data may 

greatly vary. Therefore, instead of using only a single final model, the concept of a 

classification ensemble is based on the fusion of many diverse yet accurate models to 

obit a range of predictions (Dietterich, 2000; Westerhuis et al., 2008). Thus, this 

approach aims to improve the overall classification accuracy, and provide more stable 

and accurate results. An ensemble can be constructed using any type of classifier such 

as PLS-DA and SVMs.  
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1.6 Validation 

 

The most crucial step in supervised learning is the assessment of the performance of a 

classifier on future unseen data (Wold et al., 2001; Izenman, 2008); this is commonly 

referred to as the “generalisation performance” of the classifier (German et al., 1992). 

Two equally important performance metrics may be used to estimate the overall 

predictive power of a pattern recognition system. The first indicator frequently used in 

chemometrics is the percentage of correctly classified samples (   ): 

 

     
  

      
        

Equation 17 Percentage of correctly classified samples (%CC) 

 

Where    and     are the number of correct and incorrect classifications respectively 

(Ciosek et al., 2005). The sum of    and     is equal to the total number of instances 

  in the dataset. The model with the maximum number of correctly classified samples 

is considered optimal.  

 

As an alternative, the optimal classifier may be selected based on the prediction error 

(generalisation error). The best classification model attempts to minimise the 

prediction error, which is equal to the mean of squared prediction errors as provided 

by  

 

      √
∑      ̂   

 
   

 
 

Equation 18 Root Mean Square Error 

 

Where  ̂ are the predicted values,   are the initially observed values (the real classes) 

and   the total number of objects in a dataset.  
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Furthermore, metrics such as the bias and the variance are also very powerful tools for 

the assessment of a machine learning model. The bias of a method can be defined as 

“the difference between the expected and the estimated value” (Kohavi, 1995). In 

addition, the variance indicates the variability of a classifier’s predictive power across 

the different training sets (Bauer and Kohavi, 1999). Ideally, a good classifier presents 

both low bias and low variance. According to Burges (1998), the generalisation 

ability of a classifier is highly dependent on the “bias-variance trade-off” (Germal et 

al., 1992). 

 

1.6.1 The holdout method 

 

The holdout method randomly partitions the entire input dataset into two mutually 

exclusive subsets (Suykens et al., 2002). The two newly created sets are commonly 

termed as the training and the test set, or holdout set. A common approach is to 

randomly designate 1/3 of the initial data as the test set, whereas the remaining 2/3 of 

the data are used to train the model (Kohavi, 1995; Brereton, 2009). The test set is 

kept aside during the training process and is only used to evaluate the accuracy or the 

error rate of the trained classifier. In order to assure strong classifier and optimal 

prediction rates, there should be exactly a third of the instances for each available 

class label included in the test set (Kohavi, 1995; Brereton, 2009); this approach is 

often referred to as the stratified holdout method.   

 

The main drawback of this method is the demand for an adequate amount of samples 

in the test set. The prediction rate tends to increase as more instances are provided. 

The more instances included in the test set, the higher the bias of the estimate. 

However, for datasets that the initial number of samples is quite small, the results tend 

to present high variance. Thus, alternative algorithms such as cross-validation and 

bootstrapping are applied.  
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1.6.2 k-fold Cross-Validation 

 

Cross-validation (Wold, 1978) is the most popular validation technique. In  

 -fold cross-validation, the entire dataset is randomly split into   mutually exclusive 

subsets – the folds – of approximately equal size (Kohavi, 1995; Duan et al., 2003; 

Izenman, 2008). The algorithm of  -fold cross-validation performs   iterations in 

total. As demonstrated in Figure 1-7, in each iteration, one subset is considered to be 

the test set, while the remaining     folds are used to train the classifier. Therefore, 

each fold will be used exactly once for testing. As thoroughly described in the 

previous section, each test set is kept aside and should in no way be used during the 

development of the model (Brereton, 2006; Westerhuis et al., 2008). The total 

prediction rate of the classifier is calculated by averaging the individual test results 

over the   iterations.  

 

A great advantage of  -fold cross-validation is that all examples in the dataset are 

eventually used for both training and testing. Thus, the bias of this estimate is reduced 

compared to the holdout method. In general, the outcome of  -fold cross-validation 

depends highly on the split of the initial dataset into folds. Since this partition is not 

canonical, it may often lead to instances of high variance, especially for large values 

of   (Glasmachers, 2008); thus,     or      are most commonly applied for 

cross-validation (Clarke et al. 2009). 

 

 

Figure 1-7 k-fold Cross-Validation 

In  -fold cross-validation, the initial dataset is partitioned into     mutually exclusive folds of 

approximately equal size. In every run, a single fold is omitted and the remaining     sets are used in 

the model’s training process. One can conclude that the split and the allocation of samples into the 

folds may easily influence the prediction rates. The figure has been extracted from 

http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf 

http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf
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1.6.3 Leave-One-Out Cross-Validation 

 

Leave-One-Out Cross-Validation (LOOCV) is the extreme version of  -fold cross-

validation. In this case,   is equal to  , which is the total number of samples in the 

dataset (Duan et al., 2003). Thus, training and testing are repeated   times. During 

each run, a single sample is used as the test set, while all the remaining     

samples are used in in the model’s training process as illustrated in Figure 1-8.  

 

Even though the LOOCV algorithm produces an almost unbiased estimate of the 

expected test error, due to its high variance it may often be leading to unreliable 

estimates (Efron, 1983; Kohavi, 1995; Chapelle and Vapnik, 2000; Duan et al., 2003; 

Glasmachers, 2008; Clarke et al. 2009). Furhermore, LOOCV is a computationally 

expensive and time-consuming validation method; thus, it is mainly used in cases 

where the input data are extremely scarce such that the computational expense is no 

longer a discouraging factor (Cawley et al., 2007).  

 

 

Figure 1-8 Leave-One-Out Cross Validation (LOOCV) 

The figure graphically represents the steps of leave-one-out cross-validation. In this method, the 

number of folds is equal to the number of initial observations. Thus, in every run, all samples but one 

are used for training, whereas the single sample is kept aside for testing. The figure has been extracted 

from http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf 

 

http://research.cs.tamu.edu/prism/lectures/iss/iss_l13.pdf
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1.6.4 Bootstrapping 

 

Bootstrapping is a validation technique initially introduced by Efron et al. (1993). 

Thorough information about the methodology can be found in Efron and Tibshirani 

(1993). Bootstrapping has proven to be a powerful technique, especially when dealing 

with relatively small datasets.  

 

Given an initial dataset with   samples, a bootstrap training dataset is created by 

sampling   instances from the original data uniformly with replacement; based on this 

approach, any given sample could be present multiple times within the same bootstrap 

training set. The probability for any given instance not being present in the bootstrap 

training set after   selections is approximately 36.8% (Kohavi, 1995; Bauer and 

Kohavi, 1999). These instances constitute the bootstrap test set. A common approach 

is to repeat bootstrapping a great number of times in order to construct, for example, 

100 or even up to 1000 news bootstraps of the same size. The total number of 

bootstraps strongly depends on the number of samples in the initial dataset. 

Bootstrapping generates instances of lower variance and relatively moderate bias 

compared to the previous techniques. Even though bootstrapping is a fairly 

straightforward method, it consists a computationally demanding statistical procedure 

that may lead to extremely long execution times.  

 

1.6.5 Model Selection, complexity and the bias-variance trade-off 

 

It is a common approach to use validation techniques such as cross-validation or 

bootstrapping as a means of optimising the adjustable parameters of a classifier. In 

order to maximise the performance of a classification model, it is often tempting to 

repeatedly train the model until a minimum training prediction error (or maximum 

training accuracy) is achieved (Suykens et al., 2002; Brereton, 2006; Izenman, 2008).  
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In such cases, the model becomes quite complex. After a certain number of 

repetitions, this complex model is able to predict very accurately, with almost no 

errors, the given training dataset. However, when tested on unseen data, the 

generalisation performance appears to be relatively poor (Boser et al., 1992). The 

effect where the validation error increases while the training error steadily decreases 

is known as overfitting (Burges, 1998).  

 

 

Figure 1-9 Model complexity and overfitting; the bias-variance trade-off 

The figure has been adapted from Hastie et al. (2009).  

 

In order to avoid the possibility of overfitting, an optimal stopping point has to be 

determined during the optimisation process as illustrated in Figure 1-9. To address 

this issue, it is now becoming a common practice to apply the “three-way split” rule. 

As a first step, the initial dataset is divided into two disjoint subsets, the training and 

test set, where the test set plays the role of unseen data and is kept aside during the 

training process (Westerhuis et al., 2008; Smolinska et al., 2012). Subsequently, the 

training set is further split into training and validation sets using either cross-

validation or bootstrapping. The validation (often referred to as optimisation) dataset 

is used as a pseudo-test set in order to optimise the classifier and stop the training 

process before overfitting (Westerhuis et al., 2008). Once the optimal parameters 

have been identified, the independent test set is used to determine the performance of 

the predictor. 
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1.7 Permutation Tests 

 

Permutation tests (Good, 2006) are used to assess the statistical significance of the 

prediction results in addition to providing an objective estimation of the performance 

and stability of a model. Permutation testing makes use of non-parametric tests on an 

initial (null) hypothesis,   . In a classification problem, permutation tests attempt to 

prove whether the relationship between observed data and sample classes is really 

significant or whether a model could have been built to group samples into any 

arbitrary class.  

 

In each permutation iteration, the input data matrix remains unaltered while the 

associated class vector is randomly shuffled; thus, the class distribution in the dataset 

remains unaltered, however, the samples correspond to randomly assigned classes.  

This procedure randomises the association between the two sets of variables.  

Permutation testing is repeated in total a minimum of 100 times until a clear stable 

distribution of results is obtained. At the end of permutation testing, and assuming 

that the initial hypothesis is true, we can determine the frequency of models that 

presented accuracies equal or higher than the original model. This frequency metric, 

as illustrated in Figure 1-10, is commonly referred to as the  -value (Hubert and 

Schultz, 1976).  

 

 

Figure 1-10 Permutation tests and the P-value 

The figure displays generated permutation distribution under the null hypothesis, and highlights the  

 -value for the observed statistic. The figure has been extracted from Hesterberg et al. (2003).  

 



 30 

1.8  Aims and objectives 

 

The overall aim of this thesis was the construction of a suite of software tools 

designed to support novel instrumental approaches for the accurate, rapid and 

inexpensive evaluation of meat freshness. This work was carried out as part of the 

SYMBIOSIS-EU project, funded by European Commission Framework 7. The 

overall aim was addressed by the thesis’ objectives, which are presented as follows.   

 

Initially, a multivariate analysis pipeline was constructed as the first working 

prototype of the suite of tools. The statistical pipeline was developed for the analysis 

of the heterogeneous standalone data obtained by a single case study (“Shelf life beef 

fillets stored in air at 0, 5, 10, 15 and 20°C”). Unsupervised techniques were applied 

for dimensionality reduction, feature extraction and the investigation of underlying 

patterns in the data. In addition, classification models were built using PLS-DA and 

SVMs, whereas ensembles of individual classifiers were implemented as a means of 

increasing the generalisation performance. Various validation and evaluation methods 

were meticulously examined in order to ensure that the performance metrics are 

representative of real-world application, and to provide an indication of the statistical 

significance of the classification results.  

 

A high-level heuristic approach for the optimisation of the computationally intensive 

SVM tuning was implemented, which in addition to parallel programming, is applied 

in order to significantly reduce the overall execution times, minimise the 

computational complexity and satisfy the demand for computational power. 

 

Furthermore, various data integration algorithms for the fusion of heterogeneous data 

into a “global” consensus were examined as a means of determining whether better 

generalisation performance is achieved when integrated as opposed to standalone 

datasets are used. 
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In addition, in order to ensure the generic nature and applicability of the implemented 

software to real-world problems, the pipeline was thoroughly tested on three further 

independent case studies (“Shelf life of minced beef stored in air, MAP, and in active 

packaging at 0, 5, 10 and 15°C”, “Survey of minced beef” and “Pork stored in air and 

MAP”).  

  

Finally, the latest visualisation techniques, graphics libraries and web technologies 

were investigated in order to develop a wide range of graphs, dynamically generated 

reports and interactive visualisation tools that enhance the interpretability of the 

analysis results. 
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2 Development of the multivariate analysis 
pipeline for the detection of meat spoilage 

 

 

2.1 Introduction 

 

This chapter introduces a first prototype of the constructed multivariate analysis 

pipeline for the analysis of standalone heterogeneous data obtained by various 

analytical techniques. The pipeline was designed and implemented upon a single case 

study using samples of shelf life beef fillets stored in air at 0, 5, 10, 15 and 20°C. The 

first step of the analysis includes the application of unsupervised methods for the 

extraction of prominent features, dimensionality reduction and the investigation of 

underlying patterns in the data. The datasets are subsequently imported into  

multi-class machine learning models, which include PLS-DA and SVMs. 

Classification ensembles were implemented as a means of enhancing the 

generalisation performance of the individual models. Finally, thorough model 

validation and evaluation methods were applied to ensure that the performance 

metrics are representative of real-world application, as well as to provide an 

indication of the statistical significance of the results.  

 

2.2 Materials and Methods 

 

2.2.1 Case study 1: “Shelf life beef fillets stored in air at 0, 5, 10, 15 
and 20°C”  

 

2.2.1.1 Sample Preparation 

 

The first case study of this thesis investigates shelf life beef fillets stored in air at 0, 5, 

10, 15 and 20°C (Argyri, 2010). A detailed explanation of the experimental 

techniques and the methodology used in order to obtain the data for this case study 

can be found in Argyri (2010), Argyri et al. (2010) and Panagou et al. (2010).  
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In brief, fresh deboned beef fillets were purchased from a meat market in Athens 

(Greece) and transported under refrigeration to the laboratory within 30 minutes. 

Upon arrival, the samples were prepared by cutting the beef fillets into pieces with 

dimensions of 40mm wide, 50mm long and 10mm thick. After maintaining them for 

an hour at 4C, the samples were subsequently placed in 90mm Petri dishes and 

stored in high-precision incubation chambers (±0.5C) where they were left to spoil at 

0, 5, 10, 15 and 20C (Argyri, 2010). In case study 1, three experimental techniques 

have been employed; namely, FTIR spectroscopy, HPLC and e-nose. 

 

2.2.1.2 Sensory Analysis 

 

Sensory evaluation was performed during storage according to Gill and Jeremiah 

(1991) by a sensory panel of five trained staff members (staff from the laboratory) 

(Argyri, 2010). The assessment process was conducted under controlled conditions of 

light, temperature and humidity. Sensory assessment was based on the perception of 

colour and odour prior to and after cooking for 20 minutes at 180C in a preheated 

oven, while taste was described solely/only after cooking (Argyri et al., 2010; 

Panagou et al., 2010; Argyri et al., 2013). A meat sample, stored at -20C, freshly 

thawed and cooked, was presented to the panel as a reference sample.  

 

Each sensory attribute was scored using a three-point hedonic scale. The samples 

were classified into three distinct categories: fresh, semi-fresh and spoiled samples. 

Fresh samples were characterised by bright colours, typical of fresh oxygenated meat, 

and the lack of any off-flavours (Papadopoulou et al., 2011). For the semi-fresh 

samples, the formation of off-flavours was perceptible, but the samples were still 

considered of acceptable quality. Finally, a persistent dull or unusual colour, in 

addition to the presence of unacceptable off-flavours and putrid, sweet, sour or cheesy 

odours were considered indicative of microbial spoilage and the samples were 

classified as spoiled (Argyri et al., 2013). The integer values 1, 2 and 3 were used to 

describe fresh, marginal (semi-fresh) and unacceptable (spoiled) samples respectively. 

Score 1.5 was later introduced to indicate the first sign of meat spoilage. 
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Sensory panel scores were of the highest importance since they were used for the 

purposes of pattern recognition. However, a major drawback was the lack of 

homogeneity among the original sensory scores across the different instruments. For 

instance, the sensory scores provided along with the FTIR dataset consisted of three 

distinct classes; the dummy variables 1, 2 and 3 were used to represent fresh, semi-

fresh and spoiled samples respectively. However, for other datasets such as HPLC 

and e-nose, five different classes of sensory scores were present. In this case, the 

number 1 was used for fresh, 1.5 for semi-fresh, in addition to 2, 2.5 and 3 that were 

used for spoiled samples. Therefore, the standardisation of the sensory scores prior to 

analysis was a necessity. More specifically, all 1.5 values were assigned to class 2 

(semi-fresh), and values in the range between 2 and 3 to class 3 (spoiled). Finally, 

only three distinct levels of classification were retained for the analysis – namely 1, 2 

and 3.  

 

2.2.1.3 Fourier Transform Infrared (FTIR) Spectroscopy  

 

FTIR analysis was undertaken using a ZnSe 45 ATR (Attenuated Total Reflectance) 

crystal on a Nicolet 6700 FTIR spectrometer equipped with a DLaTGS detector with 

KBr Window (Argyri, 2010). Measurements were conducted on a thin slice of the 

aerobic upper surface (8 x 1 x 0.5 cm) of the beef fillets that was excised and placed 

in intimate contact with the crystal (Argyri et al., 2010; Panagou et al., 2010).  

 

The spectrometer was programmed to collect spectra in the mid-IR range between 

4000 and 400cm
-1

. Spectra over the wavenumber range 1500–1000cm
-1

, which reveal 

the metabolic fingerprint of spoilage (Ellis and Goodacre, 2001), were extracted and 

subjected to smoothing using the Savitzky-Golay algorithm (Argyri, 2010). The final 

FTIR dataset comprises 76 samples and 255 spectra in total. Based on the provided 

sensory scores, these 76 samples are classified into 26 fresh (F), 16 semi-fresh (SF) 

and 34 spoiled (S) samples. Figure 2-1 shows the mean FTIR spectra per each distinct 

class within the fingerprint region. 
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Figure 2-1 Mean FTIR spectra for case study 1 in the fingerprint region (1500-1000 cm
-1

) 

The plot depicts the mean FTIR spectra for each distinct class of shelf life beef fillets (stored in air at  

0, 5, 10, 15 and 20°C). The spectral region between 1500 and 1000cm
-1

 reveals the metabolic 

fingerprint of spoilage. Colour representation is used to identify the three classes as determined by the 

relevant sensory scores: fresh (red colour), semi-fresh (orange colour) and spoiled (green colour).  

 

2.2.1.4 High Throughput Liquid Chromatography (HPLC) 

 

The analysis was performed using a Jasco (Japan) HPLC equipped with a Model  

PU-980 Intelligent pump, a Model LG-980-02 ternary gradient unit pump and a  

MD-910 multi-wavelength detector (Argyri, 2010). The software used for the 

collection and the processing of the spectra in order to give concentrations of key 

metabolites was the Jasco Chrompass Chromatography Data system v1.7.403.1. 

Spectral data were collected from 200 to 600nm; however, chromatogram integration 

was performed at 210nm and the purity of the peaks was examined through the 

software using all spectral ranges. Solutions of oxalic, citric, malic, lactic, acetic, 

formic, tartaric, succinic and propionic acids were used as reference substances, 

analysed using the same programme, and their spectra were compared with the 

samples for the identification of the peaks (Argyri, 2010).  

 

In total, 52 samples were analysed in duplicate. Based on the provided sensory scores, 

the HPLC samples consist of 20 fresh (F), 14 semi-fresh (SF) and 18 spoiled (S) 

samples. 
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2.2.1.5 Electronic Nose (e-nose) 

 

The volatile profile of beef samples was determined using an electronic nose – the 

“Libra Nose” – by Technobiochip (Napoli, Italy) (http://www.technobiochip.com/). 

The instrument consists of an array of eight electronic chemical sensors (EU Patent 

[EP1505095]), as is depicted in Figure 2-2. In brief, 5g of sample were placed inside a 

100 ml volume glass jar; the samples were left at room temperature (20C) to enhance 

desorption of volatile and semi-volatile compounds from the meat into the gas phase. 

The headspace was pumped over the sensors of the electronic nose and the generated 

signal was continuously and in real time recorded to a personal computer.  

 

In total, measurements of 36 samples with their replicates using eight sensors were 

provided; however, due to instability issues, one of the eight sensors had to be 

removed hence leading to a total of seven sensors. Based on the provided sensory 

scores, the 36 samples of e-nose consist of 10 fresh (F), 7 semi-fresh (SF) and 19 

spoiled (S) samples. 

 

 

Figure 2-2 Sampling with Libra e-nose 

The picture illustrates the responses of the eight sensors of the Libra electronic nose during sampling. 

The figure was provided by Argyri et al. (personal contact). 
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2.2.1.6 Data Overview 

 

For each experimental technique, the total number of samples and variables as well as 

their data composition as described in the previous sections is summarised in Table 1.  

 

Datasets FTIR HPLC e-nose 

Fresh (F) 26 20 10 

Semi-Fresh (SF) 16 14 7 

Spoiled (S) 34 18 19 

Total #Samples 76 52 36 

Total #Variables 255 18 7 

Table 1 The sizes and data composition of standalone datasets from case study 1 prior to analysis 

 

 

2.2.2 Data pre-Processing and Dimensionality Reduction 

 

The first impediment that had to be overcome towards the construction of the 

multivariate analysis pipeline was the pronounced divergence of the datasets’ 

dimensions. Based on the entries of Table 1, not all samples were analysed by every 

analytical technique. In order to acquire directly comparable results, the rows of each 

dataset were filtered according to the samples’ names and sensory scores; thus, only 

the common samples were extracted and used throughout the pipeline. 

 

In the case of shelf life beef fillets, the intersection process when all three 

experimental datasets are considered simultaneously is illustrated in the Venn 

diagram of Figure 2-3. By the end of this step, all the samples of the intersected 

datasets refer to corresponding objects. Based on this data intersection, the common 

samples for case study 1 consist of 10 fresh, 6 semi-fresh and 16 spoiled samples.  
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Figure 2-3 Data intersection 

The figure demonstrates the samples’ intersection based on the data integration of FTIR, HPLC and 

electronic nose. The samples’ names and sensory values are cross-matched, and only the 32 common 

samples are extracted. 

 

Once filtered, each standalone dataset is mean-centered, using Equation 1.  

Mean-centering merely aids the interpretation of the results; however, when applied 

prior to PCA, it ensures that the first Principal Component captures the maximum 

variance instead of describing the mean of the data. Due to substantial differences in 

their numerical ranges, the datasets were also standardised (auto-scaled) prior to 

analysis using Equation 2. After PCA, a predefined number of Principal Components 

is extracted from the PC scores of each dataset, which can be subsequently imported 

into a classification model or ensemble. HCA and  -means clustering were also 

investigated on the standalone pre-processed data in order to highlight any underlying 

patterns.   

 

2.2.3 Standalone Classifiers: PLS-DA models with LOOCV  

 

The first and simplest classification model to be investigated on standalone datasets 

was PLS-DA. The optimisation process in PLS-DA involves the identification of the 

optimum number of latent variables (LVs), for which the highest percentage of 

correctly classified samples (   ) is accomplished. As an initial approach, and in the 

presence of an insufficient number of samples (see Table 1) leave-one-out  

cross-validation (LOOCV) was applied directly on the entire dataset. The number of 

LVs was determined using a stepwise addition method, by gradually increasing in 

each iteration the number of LVs by one. Once the validation loop comes to an end, 

the average values of the predicted accuracies are calculated and the optimal number 

of components (LVs) is identified. 
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2.2.4 Ensemble of Classifiers  

 

In an effort to enhance the overall accuracy (   ) of the classifiers, while 

simultaneously control the bias-variance trade-off and minimise the instances of 

overfitting (see Section 1.6.5), the use of ensembles of classifiers was also evaluated. 

 

1. Selection of the Classification Model  

 

First and foremost, the selection of the classification model to be applied had to be 

decided upon. There is no straightforward way of determining a priori which 

classification algorithm is the best; the selection of a classification model or kernel 

function highly depends on the problem under investigation. In cases where there is 

very little or no knowledge about the data under study, often more than one type of 

classifier may need to be tested. The choice of the classifier determines the 

hyperparameters to be optimised. In the case of PLS-DA, we are looking for the 

optimum number of latent variables (LVs), whereas in the case of RBF SVMs, the 

hyperparameters   and   have to be optimised. 

 

2. Random split 

 

For a given input dataset D, a random fraction of samples is removed and kept aside 

as an independent test set during the training process of the model. This selection of 

samples forms the dataset Dtest. This test set typically comprises a third of the original 

samples. Using a stratified holdout approach as described in Section 1.6.1, the test set 

consists of the same balance of sample classes as the initial dataset D. The remaining 

samples that are not selected, form the training set Dtrain. Since the test set is kept 

aside during the whole training process, the risk of overfitting is minimised (Ramadan 

et al., 2006). 
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3. Validation Techniques 

 

In the case of bootstrapping, a bootstrap training set DbootTrain is created by randomly 

picking   samples with replacement from the training dataset Dtrain. The total size of 

DbootTrain is equal to the size of Dtrain. Since bootstrapping is based on sampling with 

replacement, any given sample could be present multiple times within the same 

bootstrap training set. The remaining samples not found in the bootstrap training set 

make up the bootstrap test set DbootTest. Similarly, for  -fold cross-validation, the 

initial dataset D is partitioned into   mutually exclusive folds;      (10-fold  

cross-validation) was employed according to Section 1.6.2. In each iteration, a single 

fold will be used to form the test set DkfoldTest, while the remaining samples constitute 

the DkfoldTrain. In the ultimate case of LOOCV, DloocvTest consists of a single sample, 

while the remaining samples form DloocvTrain. 

 

4. Hyperparameter optimisation 

 

According to Section 1.5.2.3, nonlinear SVMs are usually considered a reasonable 

first choice. In the case of RBF models with bootstrapping, the SVMs are built and 

optimised using DbootTrain and DbootTest for different hyperparameter settings. More 

specifically, for each given combination of the hyperparameters   and  , a new SVM 

model is trained with DbootTrain and tested with DbootTest.  

 

The most intuitive and fairly naïve approach for parameter selection involves an 

exhaustive grid-search over an extensive range of hyperparameters. However, this is 

an extremely time-consuming and computationally intensive procedure, even if there 

is more than adequate processor power. Therefore, in this work, the parameter search 

was implemented based on the approach suggested by Hsu et al. (2003), also 

described in Meyer et al. (2003), in a two-step approach using a combination of a 

coarse and fine grid-search. Initially, the values of   and   increase exponentially 

with ranges equal to   [             ] and   [              ] respectively. 

The combination of hyperparameters that gives the highest overall classification 

accuracy is recorded as optimal. Once an optimal region is located on the grid, a finer 

grid-search is conducted in the “neighbourhood” of good parameters.  
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Linear SVMs were also investigated since they generally provide accurate results, and 

are relatively easy and fast to train. For the linear kernel, only the regularisation 

parameter   needs to be optimised; similar to RBF SVMs, the values   

[             ] were investigated using a combination of loose and fine tuning.  

 

To avoid reliance on one specific bootstrapping split, bootstrapping is repeated at 

least 100 times until a clear winning parameter combination emerges. Several 

methods can be used to determine the winning parameter; most commonly, the 

statistical average or the parameter that has most frequently been recorded as optimal 

is used. A similar approach is applied for the optimisation of the number of LVs in the 

case of PLS-DA. Since the datasets of case study 1 are classified into three distinct 

classes (fresh, semi-fresh and spoiled samples), the implemented models will 

constitute multi-class models.  

 

5. Construction of the classification ensemble  

 

Ultimately, the optimal parameters are used to train a new classifier with the full Dtrain 

dataset and test it on the independent test set Dtest, which has been left aside during the 

entire optimisation process.  

 

Even though the approach described thus far generates an excellent classifier, the 

random selection of test samples in the initial split may have been fortunate. For a 

more accurate and reliable overview, the whole process is repeated a minimum of 100 

times, as illustrated in Figure 2-4, until a stable average classification rate emerges. 

The output of this repetition consists of at least 100 individual classification models 

built using the optimum parameter settings. Rather than isolating a single classifier, 

all individual classification models are fused into a classification ensemble.  
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Figure 2-4 The process of constructing an ensemble of RBF SVMs optimised via bootstrapping  

 

6. Permutation Tests 

 

Permutation testing is a widely-applied process used in order to provide an indication 

of the statistical significance of the classification results. In a permutation test, the 

entries of the original class vector are randomly shuffled, while the class distribution 

is preserved. This approach destroys all the sample membership information since the 

samples of a permuted dataset correspond to randomly assigned classes (Westerhuis 

et al., 2008). The whole model building process as described in steps 2-5 is once more 

repeated for the “false” (permuted) classes. In general, permutation testing is 

performed at least 100 times until a stable distribution of results is obtained.   

 

2.2.5 The Architecture 

 

The application was developed on an Apple iMac under the operating system  

Mac OS X version 10.6.8, running on a 2.66 GHz quad-core Intel Core i5 processor 

and 4 GB memory.  
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2.2.6 Implementation in R 

 

The steps in the multivariate analysis pipeline were implemented using the R platform 

(R Development Core Team, 2012; http://www.r-project.org/), a free open-source 

software environment for statistical computing and graphics. R offers its users the 

means of loading optional code, data and documentation; these optional sources that 

include a set of functions, libraries and integrated programming languages, are 

commonly referred to as packages. The packages can be easily installed and 

distributed, thus R provides great extensibility to its users. The methodology 

presented thus far was implemented based on the following packages. 

 

The implementation of PCA is offered by a plethora of built-in and add-on R 

packages; among these, the stats package (R Core Development Team, 2012) 

provides the most commonly applied functions, namely princomp() and prcomp() 

for the implementation of PCA based on the NIPALS algorithm. Even so, a built-in 

script was produced that conducted PCA via SVD (see Section 1.4.1) 

 

The e1071 (Dimitriadou et al., 2010) package offers an R interface to the LIBSVM 

(Chang et al., 2011) C++ library. This package was not only used to build the SVMs, 

but also to perform optimisation of the hyperparameters based on the different types 

of kernels (linear, radial) using the simplistic approach of a grid search (Hsu et al., 

2010). The optimisation step may be conducted using the built-in function tune(), 

which applies a selected type of a validation algorithm such as cross-validation or 

bootstrapping as the optimisation method. In multi-class cases, the e1071 package 

applies a ‘one-against-one’ approach (see Section 1.5.2.4). 

 

The plsgenomics package (Boulesteix et al., 2011) performs binary or multi-class 

classification via the pls.lda() function. The implementation is based on the algorithm 

described in Boulesteix (2004).  

 

The boot package (Davison and Hinkley, 1997; Canty and Ripley, 2012) provides an 

interface to the original S library (http://statwww.epfl.ch/davison/BMA/library.html) 

for parametric and non-parametric bootstrapping and permutation testing.  

 

http://www.r-project.org/
http://statwww.epfl.ch/davison/BMA/library.html
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2.3 Results and Discussion 

 

2.3.1 Principal Component Analysis 

 

As an initial approach, PCA was employed on the standalone pre-processed data of 

case study 1. The percentage variance and cumulative variance for each successive 

PC is presented in Table 2. Successive PCs correspond to smaller percentage 

variance. In case study 1, it is noteworthy that the first three PCs of the FTIR and  

e-nose data account for at least 90% of the variance. In the case of e-nose the 

cumulative variance for the first three PCs even approximates 98%; thus, in this case 

we can graphically represent the former high-dimensional data using only two or 

three PCs without losing any valuable information. On the contrary, in the case of 

HPLC, the cumulative variance is significantly lower for the first PCs. The two-

dimensional scores plots of Figure 2-5 are a powerful visual aid to assess the results 

of PCA and reveal any underlying patterns in the data. In addition, the scatterplots 

were enhanced with dynamically generated 95% confidence ellipses for each distinct 

class. The ellipses aimed to illustrate the density of the samples, highlight the 

formation of any clusters of samples deriving from the same class as well as identify 

any outliers.  

 

 

 FTIR HPLC e-nose 

PCs  %Var  %Cum Var %Var  %Cum Var %Var  %Cum Var 

PC1 63.84 63.84 35.96 35.96 80.26 80.26 

PC2 19.92 83.76 19.04 55.00 15.14 95.40 

PC3 5.70 89.46 9.12 64.12 2.19 97.59 

PC4 4.40 93.86 7.36 71.48 1.34 98.93 

PC5 2.73 96.59 6.66 78.14 0.64 99.57 

Table 2 PCA proportion and cumulative variance captured for the datasets of case study 1 
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It is noteworthy that even though HPLC presented the lowest variance for the first 

two PCs compared to the other two techniques, the PCA scores of Figure 2-5 

demonstrate two well-defined clusters for the fresh and spoiled samples; the samples 

are linearly separable with the semi-fresh samples overlapping in between the other 

two classes. On the contrary, for the FTIR and e-nose datasets no well-defined 

clusters or linear separation between the samples of the different classes are obvious. 

The ellipses also enhance the detection of any outlying samples (outliers), such as the 

ones present in FTIR. Based solely on the outcome of this unsupervised method, 

HPLC appears to be the most discriminative technique. HCA and  -means clustering 

were also applied on the standalone pre-processed data in addition to PCA, however 

their results did not demonstrate any notable clustering and thus are not included. 

 

However, it is worth mentioning that the first few PCs do not necessarily contain the 

most discriminative information of the data (Schmid et al., 2009). This is due to the 

fact that PCA is an unsupervised method that calculates the principal components 

based on the accounted variance, while it completely disregards any correlation with 

the classes. The outcome of PCA is hence prone to subjective interpretation. Thus, 

supervised learning techniques such as PLS-DA and SVMs are more likely to offer a 

better discrimination of the samples compared to PCA (Rossini et al., 2012) 

 

 

(a) FTIR data 
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(b) HPLC data 

 

 
(c) e-nose data 

Figure 2-5 PCA score plots with 95% confidence ellipses for case study 1 

The two-dimensional scatterplots illustrate the scores of the first two PCs. Dynamically generated 95% 

confidence ellipses per each class were added in the plots in order to highlight the presence of any 

clusters and/or outliers. Colour representation was used to identify the three classes as determined by 

the relevant sensory scores: fresh (red colour), semi-fresh (orange colour) and spoiled (green colour). 

For comparison purposes, only the 32 common samples (10 fresh, 6 semi-fresh and 16 spoiled 

samples) are depicted in each plot.   



 

 

47 

2.3.2 Classification Results 

 

2.3.2.1 Overall Accuracies (%CC) 

 

The prediction results of all implemented classification models are illustrated in the 

bar charts of Figure 2-6 as percentages of correctly classified samples (   ). The 

first model to be tested on raw standalone data was PLS-DA with LOOCV, which 

constitutes a single classifier, and not an ensemble of classifiers. According to Section 

1.6.3, LOOCV is a nearly unbiased, albeit with a high variance, technique that may 

often lead to misleading results (Efron, 1983; Kohavi, 1995; Duan et al., 2003; 

Glasmachers, 2008); in this instance, since the test set is used for both model 

construction and optimisation purposes, it may often lead to over-optimistic results. 

For case study 1, the overall accuracies of FTIR, HPLC and e-nose are equal to 63%, 

84% and 59% respectively. Indeed, when the afore-mentioned percentages are 

compared to the accuracies of the other classification models of Figure 2-6, they 

appear to be overly optimistic.  

 

In the case of the classification ensembles, HPLC clearly demonstrates the highest 

overall accuracies among the three instrumental techniques. The HPLC data appear to 

generate higher     in the case of SVMs, especially for linear SVMs, compared to 

PLS-DA. Even though PLS-DA and linear SVMs both construct linear decision 

boundaries, the difference in accuracies can be possibly explained by the fact that 

support vector machines conduct linear classification based on a different approach 

than PLS-DA. As stated in Brereton et al. (2009), the SVM boundary depends solely 

on the selected support vectors, while the remaining samples have no influence over 

it. On the contrary, methods such as PLS-DA use all available samples in order to 

determine the separating planes between the classes (Xu et al., 2006). Finally, since 

the results of both linear and nonlinear (RBF) SVM ensembles approximate 80%, it 

can be concluded that the boundaries of the RBF SVMs may have been nearly linear, 

but still retain a wide margin (Brereton et al., 2009); as stated in Section 1.5.2.3, 

“with a suitable combination of hyperparameters      , the testing accuracy of the 

RBF kernel is at least as good as the linear kernel” (Boser et al., 1992; Keerthi and 

Lin, 2003; Hsu et al., 2003; Chang et al., 2010). 
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In the case of FTIR, linear classifiers (PLS-DA and linear SVMs) demonstrate higher 

overall predictions (   ) compared to nonlinear SVMs; in this instance, the overall 

accuracy of both PLS-DA and linear SVMs is equal to 59%, whereas the accuracy of 

RBF SVMs is notably lower. Since linear separation enhances the percentages of 

correctly classified samples, the application of nonlinear (RBF) SVMs was found to 

be unsuitable in this instance. Therefore, we can only assume that the data are 

relatively easy to separate in the input space using only linear models, and hence there 

is no necessity for a nonlinear projection into a high-dimensional feature space. 

Indeed, according to Xu et al. (2006), the relatively complex boundaries and 

formulation of kernel-based SVMs may not appeal very much in cases where the 

classes are nearly or completely linearly separable. Furthermore, according to 

Belousov et al. (2002), simplistic linear classification models such as PLS-DA may 

frequently outperform newer, more powerful classifiers.  

 

Finally, the e-nose dataset returns poor results for every type of classifier. Based on 

the PCA scores plot of Figure 2-5, one can only assume that the widely scattered  

and overlapping e-nose data may request extremely complex boundaries to 

successfully discriminate the different classes; therefore, nonlinear SVMs is expected 

to outperform the remaining classifiers. Indeed, it is interesting to note that the 

ensemble of RBF SVMs performs significantly better than the ensembles of linear 

classifiers, obtaining an accuracy of 47%. In this case, the ensemble of PLS-DA 

demonstrated the lowest overall accuracy across all implemented models.  
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Figure 2-6 Overall accuracies (%CC) for the standalone datasets of case study 1 

The figure illustrates the overall performance of all implemented classification ensembles on the 

standardised standalone datasets of case study 1. The bars represent the percentages of correctly 

classified samples (%CC) and are coloured according to the combination of classification model  

(PLS-DA, linear and nonlinear SVMs) and optimisation technique (LOOCV, 10-fold cross-validation 

and bootstrapping). PLS-DA with LOOCV constitutes a single classifier, whereas the remaining 

models compose ensembles of classifiers. The overall accuracies have been rounded towards the 

nearest integer. 
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2.3.2.2 Class Prediction Accuracies  

 

Even though the overall accuracy (   ) of a classification model is of the utmost 

importance, the success of a classifier may be also assessed by a plethora of other 

performance metrics. In a multi-class case, it is interesting to investigate class 

predictions, which determine how well a sample belonging to a specific class has 

been predicted. The percentages of correctly classified samples per class and 

instrument are summarised in Figure 2-7. The comparison of the class predictions 

presented in the figure confirms that the overall accuracies of a classifier may be 

occasionally misleading. For instance, even though the overall accuracies of a linear 

and nonlinear classifier may appear to be similar, a closer inspection of the class 

predictions may reveal significant differences among the different classifiers.   

 

As presented in Section 2.2.2, the data intersection approach extracted for case  

study 1 a total of 32 common samples along with their respective sensory scores; 

these samples consist of 10 fresh (F), 6 semi-fresh (SF) and 16 spoiled (S) samples. In 

this instance, the spoiled samples constitute the majority class, whereas semi-fresh 

samples the minority class. 

 

Even though HPLC generated the highest overall accuracies (   ) among the 

datasets of case study 1, FTIR presented the strongest and equally stable class 

predictions among all classification models, with noteworthy better rates for semi-

fresh samples than the remaining techniques. The FTIR data presented better overall 

as well as per-class prediction rates for the linear PLS-DA classifiers via 

bootstrapping or LOOCV; this is verified by both the overall accuracies of Figure 2-6 

and the class predictions of Figure 2-7. As thoroughly discussed in the previous 

section, it may be the case that the FTIR samples are linearly separable, thus, the 

complex boundaries of an SVM may not be able to separate them as accurately. 

Furthermore, it is notable that the classifiers, and especially the nonlinear SVMs, are 

relatively biased towards the majority class resulting in higher percentages of 

correctly classified spoiled samples. 
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In the case of HPLC, fresh and spoiled data are easily separable since their class 

prediction rates reach up to a maximum of 94% and 99% respectively. Also, the 

HPLC data present higher classification accuracies in the case of SVMs since the 

class predictions of fresh and spoiled samples exceed even those of the overoptimistic 

PLS-DA with LOOCV. Furthermore, semi-fresh samples are consistently difficult to 

predict; however in the case of HPLC they present higher class accuracies than the 

other two analytical techniques, presenting a maximum of 26%.  

 

Finally, it is obvious that the classifiers in the case of e-nose hardly ever manage to 

correctly predict the semi-fresh (SF) samples since the SF class accuracies return a 

maximum of 1% for the complex nonlinear RBF boundaries. On the contrary, the 

classifiers mainly identify spoiled samples leading to class accuracies consistently 

over 60%; in the case of SVMs, the e-nose data present better results since the class 

prediction of spoiled samples approximates 90%. Thus, it appears that spoiled 

samples dominate all e-nose models to the point that all fresh and semi-fresh samples 

were misclassified as spoiled samples in the majority of cases. The fresh samples do 

present a better performance for PLS-DA models than SVMs but not nearly as good 

as PLS-DA with LOOCV. 

 

Based on the documented class predictions obtained thus far, we can conclude that the 

majority of all misclassifications derive from the classifiers’ inadequacy to correctly 

classify semi-fresh samples. In addition, as expected, all implemented classification 

models, but especially SVMs, are biased towards the majority class (spoiled samples), 

while they present high misclassification rates for the minority class (semi-fresh 

samples). The documented confusion matrices verify this hypothesis since the 

majority of misclassified samples were falsely predicted as spoiled.  
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Figure 2-7 Class prediction rates of the standalone (prior to PCA) datasets for case study 1  

The figure illustrates the percentages of correctly classified samples per each individual class, when the 

auto-scaled standalone datasets of case study 1 are imported (prior to PCA) in the analysis pipeline. 

The class predictions are compared based on the instrumental techniques and classification models. 

Colour representation was used once more to identify the three classes as determined by the relevant 

sensory scores: fresh (red colour), semi-fresh (orange colour) and spoiled (green colour). All the class 

predictions presented in the figure are based on testing, preceded by thorough model training, using the 

optimal hyperparameters. The percentages have been rounded up to the nearest integer.   
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2.3.2.3 Comparison of validation techniques for the optimisation of the (RBF) 

SVM hyperparameters  

 

As thoroughly explained thus far, the prediction power and accuracy of a classifier is 

chiefly dependent on the optimisation (tuning) of its hyperparameters. The grid and 

surface plots of Figure 2-8 and Figure 2-9 aim at assessing the outcome of the 

optimisation process and defining the best technique. Simulations were initiated using 

a coarse grid-search; the grid resolution was gradually refined to a grid-step of 

        , forming a final grid space of 6561 points as presented in Figure 2-8. For 

each combination of hyperparameters in the grid, bootstrapping, 10-fold cross-

validation and LOOCV were applied on the training set.  

 

According to Section 1.6.3, even though LOOCV is a nearly unbiased technique, it 

often presents cases of unacceptable high variance, especially when applied to 

relatively small datasets such as the ones of case study 1. In addition, LOOCV is a 

computationally expensive validation technique that may lead to long execution times 

and computationally prohibitive solutions for relatively large datasets (Boardman and 

Trappenberg, 2006). On the contrary, 10-fold cross-validation, proved to be the fastest 

technique among the three. A great advantage of 10-fold cross-validation is that all 

instances within a dataset are eventually used for both training and testing. However, 

since the outcome highly depends on the random split into folds, this approach may 

lead to training instabilities and relatively high variance (see Section 1.6.2). In 

addition, cross-validation proved to be extremely prone to overfitting, especially 

during the fine-tuning process. Therefore, this technique proved to be unreliable. 

Ensembles of SVMs were also optimised using bootstrapping. Fine grid-search 

proved to be extremely fruitful since all overall prediction accuracies increased by a 

minimum of 2%. As presented in Section 1.6.4, the probability for any given instance 

not being selected in a bootstrap set is approximately 36.8%; thus, bootstrapping 

minimises the chances of overfitting (Kohavi, 1995). Indeed, overfitting was no 

exception in this case either, however, it was only present in a miniscule number of 

instances. Even though bootstrapping is a fairly straightforward method, it constitutes 

a computationally demanding statistical procedure that leads to extremely long runs. 

The execution times may increase exponentially for larger datasets.   



 

 

54 

The topology of the three-dimensional surface plots of Figure 2-9 consists mainly of 

sharp peaks and flat plateaus. The flat plateaus correspond to regions of robust 

parameters that generate good results, whereas the sharp peaks are usually formed due 

to noise. In the case of both LOOCV and 10-fold cross-validation, the surface plots of 

Figure 2-9 clearly demonstrate a great number of sharp peaks, which can be 

interpreted as local instabilities, possibly due to high variance. Furthermore, it is 

noteworthy that the rough surfaces of cross-validation, present more than one optimal 

solution, leading to many local optima. In the case of 10-fold cross-validation, local 

extrema (minima or maxima) may by the effect of random partitioning of the training 

data since the performance strongly depends on the particular data split. LOOCV 

minimises the effects of local extrema via the complete evaluation of all permutations 

of the training set at each point in the parameter search (Boardman and Trappenberg, 

2006). On the contrary, the surface plot of bootstrapping depicts a plethora of flat 

plateaus with stable and smooth transitions. Bootstrapping appears to minimise the 

variance that is obvious in the cases of cross-validation. Based on all documented 

results, bootstrapping can be considered the most accurate and stable optimisation 

method among the three, especially when dealing with relatively small datasets such 

as the ones case study 1.   

 

 
a) 
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b) 

 
c) 

Figure 2-8 Comparison of the optimisation of the hyperparameters of RBF SVMs via 

bootstrapping, 10-fold cross-validation and LOOCV respectively 

The grid plots demonstrate the dependence of the overall prediction error on the RBF hyperparameters 

C and   for different optimisation (validation) techniques. The FTIR data were used for demonstrative 

purposes. The total number of hyperparameter combinations forms a grid of 6561 points. A colour 

scheme is used to emphasise the divergence in performance. Grid points with dark blue colour are 

considered optimal since they correspond to robust combinations of hyperparameters with low error; 

on the contrary, areas with dark red colour result in high error (rates) and hence are considered 

unacceptable.   
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Figure 2-9 Three-dimensional error surface plots for the optimisation of the RBF parameters  

The three-dimensional surface plots of this figure correspond to the two-dimensional grid plots of 

Figure 2-8. This visual aid makes it easy and straightforward to identify sharp peaks, flat plateau 

regions and local extrema.   
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2.4 Conclusion 

 

This chapter presented the construction of a prototype multivariate analysis pipeline 

for the evaluation of meat freshness. The pipeline was developed on a single case 

study (case study 1) using the samples of shelf life beef fillets, stored in air at 0, 5, 10, 

15 and 20°C. In this case study, data have been acquired from three analytical 

techniques: FTIR spectroscopy, HPLC and e-nose. In addition, the provided sensory 

scores classified the samples in three distinct classes: fresh, semi-fresh and spoiled 

samples.  

 

As an initial step, unsupervised methods were applied on the standalone data for 

dimensionality reduction and the extraction of prominent features. The scores of the 

first two PCs from each standalone dataset were graphically represented in a two-

dimensional scatterplot, which was further enhanced with 95% confidence ellipses for 

each class as a means of identifying any clusters and/or outliers in the data. However, 

only in the case of HPLC there was an obvious linear separation between fresh and 

spoiled samples, whereas the remaining analytical techniques presented highly 

overlapping samples.  

 

In addition, the machine learning techniques that were employed include  

linear and nonlinear SVMs in addition to PLS-DA. Ensembles of individual 

classifiers were implemented to stimulate the prediction ability of single classifiers. 

Based on the obtained classification accuracies, the standalone classifier PLS-DA 

when optimised with LOOCV tends to exaggerate the classification performance and 

lead to misleading results. Among all implemented models, the ensembles of SVMs 

produced higher classification accuracies (   ) than PLS-DA. More specifically, the 

highest     was generated by standalone HPLC in the case of linear SVMs, and was 

equal to 80%. On the contrary, e-nose proved to be the technique with the least 

discriminative power resulting in poor results for all different classifiers. As far as the 

per-class accuracies are concerned, the semi-fresh samples were consistently difficult 

to correctly classify, whereas the classifiers, and especially SVMs, appeared to be 

biased towards the majority class (spoiled samples). 
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Furthermore, a thorough comparison between various validation techniques verified 

that LOOCV and  -fold cross-validation are prone to instances of high variance and 

overfitting. On the contrary, bootstrapping proved to be the most accurate and 

thorough technique; however, it often leads to extremely long execution times. 

Furthermore, in the case of nonlinear (RBF) SVMs, a two-step grid-search was 

employed as a means of identifying the optimal hyperparameters. The combination of 

bootstrapping with the computationally intensive grid-search does improve the overall 

classification accuracies (   ), however, it results in enormous time and 

computational costs. As a result, permutation tests were not feasible thus far due to 

the computationally expensive tuning approach. The optimisation of the SVM tuning 

process is therefore a necessecity.   
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3 Optimisation of the RBF SVM tuning process 
via bootstrapping 

 

 

3.1 Introduction 

 

This chapter introduces a new heuristic methodology for speeding up the optimisation 

process of the SVM hyperparameters via bootstrapping, chiefly focusing on the cases 

of SVMs with the RBF kernel. In this novel approach, a fast and robust 

approximation algorithm for constrained nonlinear optimisation, the Box complex 

algorithm, was used to replace the widely applied yet computationally intensive  

grid-search. The Box complex algorithm in addition to parallel programming was 

incorporated in the multivariate analysis pipeline as a means of significantly 

minimising the computational complexity and execution times as well as improving 

the overall performance of the classifiers.  

 

3.2 Materials and Methods  

 

The optimisation techniques presented in this chapter were implemented based on the 

datasets of case study 1 (see Sections 2.2.1 and 2.2.2).  

 

3.2.1 Parallel Computing 

 

With the exponential growth of computational power over the past decades, parallel 

programming is currently a fact. The fundamental idea of parallel computing is that   

processors should be   times faster than a single processor. Among the plethora of 

available parallel architectures, the master/slave model is particularly popular and 

straightforward in its implementation (Hong et al., 2005).  
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In the master/slave architecture, a single processor is randomly assigned to be the 

master, while the remaining processors constitute the slaves. Every parallel job in this 

model consists of a pre-processing, a slave and a post-processing task, which must be 

executed in this order (Sahni and Vairaktaris, 1996); all pre- and post-processing tasks 

are performed by the master, whereas the calculation tasks are carried out by the slave 

processors (Figure 3-1). More specifically, the master applies a “divide-and-conquer” 

approach by splitting any complex problems – commonly referred to as 

“embarrassingly parallel” problems – into smaller tasks, which are subsequently 

allocated to the slave processors. Since all the individual subcalculations are 

independent, no communication is needed between the slave processors. Once the 

execution of the subtasks has been completed, the master collects any responses and 

partial results back from the slave processors in order to produce the final output.  

 

The number of parallel tasks is usually equal to the number of available processors. 

Even though one would expect that   available slaves would result to a   times 

speedup, this is not attainable in practice since computational tasks vary greatly in 

complexity and size as demonstrated in Figure 3-1. Furthermore, the communication 

and exchange of data between the master and the slaves in addition to the aggregation 

of results by the master, adds significant delays and overhead (Vera et al., 2008). 

Even so, the appropriate distribution of tasks to the slaves may result in substantial 

gains towards efficiency, performance and scalability.  

 

 

Figure 3-1 Master/Slave architecture 

The figure illustrates three distinct cases: a) an “embarrassingly parallel” problem executed in sequence 

using a single processor, b) the ideal case, where the problem is executed   times faster with   slaves, 

c) a real situation, where the tasks vary both in size and execution time. The figures have been adapted 

from Tierney (2003), available at http://homepage.stat.uiowa.edu/~luke/talks/uiowa03.pdf.  

http://homepage.stat.uiowa.edu/~luke/talks/uiowa03.pdf
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In this research, computationally demanding tasks such as model evaluation and 

optimisation, also eminently time-consuming techniques such as bootstrapping, would 

greatly benefit from the application of parallel programming. The analysis pipeline 

that was presented in Section 2.2.4 involves several “embarrassingly parallel” 

iterations as summarised in Figure 3-2. Since these tasks run independently of each 

other, a divide-and-conquer parallelisation has been indeed feasible. There are several 

communication mechanisms that allow computational tasks to run cooperatively in 

parallel across a single multicore machine. In this work, the Message Passing 

Interface (MPI) (Gabriel et al., 2004) via the Rmpi (Yu, 2011) interface is employed.  

 

 

Figure 3-2 Embarrassingly parallel problems in the analysis pipeline 

The figure demonstrates all the iterations running in sequence within the analysis pipeline. Each of 

these problems runs independently, thus it can be easily parallelised.  

 

3.2.2 Approximation Algorithms 

 

Based on the overall accuracies of Figure 2-6, the ensembles of RBF SVMs were 

noticeably the most promising classification method. The generalisation performance 

of a nonlinear (RBF) SVM is greatly dependent on a suitable selection of   and  . 

Therefore, a two-step grid-search approach was initially applied as a means of 

hyperparameter optimisation (see Section 2.2.4). A grid-search over an arbitrary range 

of parameter values is an intuitive but computationally intensive technique, to the 

point that even parallel programming proved to be inadequate. In addition, the 
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precision of the classification accuracy is subject to the predefined grid resolution 

(Boardman and Trappenberg, 2006). Furthermore, the applicability of grid-searches is 

limited since they allow the simultaneous assessment of only two hyperparameters; 

therefore, they cannot be employed in cases where several hyperparameters need to be 

optimised simultaneously. Thus, the use of high-level approximation algorithms may 

help significantly minimise the execution times and the computational complexity. In 

general, there are two main categories of constrained nonlinear optimisation 

algorithms; namely, gradient-based algorithms and direct search methods. The 

function          to be optimised, whether constrained or unconstrained, is 

commonly referred to as the objective or cost function. 

 

A reasonable first approach would be to employ the widely popular gradient descent 

methods for the optimisation of nonlinear SVMs. Gradient descent methods use either 

the first derivative (gradient) or the second derivative (Hessian) of a given cost 

function in order to identify the optimal point. However, such algorithms misbehave 

in the presence of local extrema. The local optima (minima or maxima) and the 

occasional isolated peaks that were presented in the surface plots of Figure 2-10 can 

capture or deceive the gradient-based search algorithms (Staelin, 2003; Boardman and 

Trappenberg, 2006). In addition, the extremely flat plateau regions near the periphery 

of the plots may also confuse gradient-based algorithms since the search is more 

vulnerable to small errors or noise in the gradient estimation (Staelin, 2003). Thus, 

gradient descent methods are found to be impractical in this research. 

 

Another category of widely applied optimisation algorithms is the direct search 

optimisation methods (Kolda et al., 2003). The main attribute of direct search 

methods is that they seek out the minimum of a given objective function using only 

function values at given points of the function, and do not attempt to form an 

approximate gradient at any of these points. No derivatives of the cost function are 

required, which makes the algorithm very tolerant to noisy problems. Thus, these 

robust algorithms may prove to be best-suited in the tuning process of complex 

SVMs.  
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3.2.3 Nelder-Mead Simplex Algorithm 

 

The Nelder-Mead algorithm (Nelder and Mead, 1965) is the most widely employed 

direct search method for unconstrained nonlinear optimisation (Lagarias et al., 1998; 

Kolda et al., 2003). The algorithm is commonly referred to as the Nelder-Mead 

simplex; however, it greatly varies from the popular simplex algorithm by Dantzig 

(Dantzig, 1987), which is solely used for linear programming.  The Nelder-Mead 

method constitutes an extension of the simplex-based algorithm initially proposed by 

Spendley, Hext and Himsworth (Spendley et al., 1962). 

 

The Nelder-Mead algorithm approximates the optimal point by assessing the values of  

a given nonlinear cost function         , without using any implicit or explicit 

derivative information (Kolda et al., 2003). In comparison to the fixed shape simplex 

of Spendley et al. (1962), the Nelder-Mead algorithm is based on a variable shape 

simplex, which allows adaptions both in size and shape. “A simplex   in    is a 

geometric figure (polytope) in   dimensions of nonzero volume that is the convex 

hull of     vertices” where   is the total number of variables (Lagarias et al., 

1998); for example, a simplex in    has the form of a triangle (Nelder and Singer, 

2009). In order to identify the optimal point (the optimal solution), the Nelder-Mead 

algorithm constructs a series of new simplices in an iterative manner. In each 

iteration, the vertices of the simplex are sorted according to their cost function values. 

The algorithm attempts to replace the worst vertex with a new point, which depends 

on the worst point and the centre of the best vertices using four possible steps: 

reflection, expansion, (outside and inside) contraction and shrink (Lagarias et al., 

1998) as illustrated in Figure 3-3. A thorough review and step-by-step explanation of 

the Nelder-Mead simplex methodology can be found in Lagarias et al. (1998) and 

Nelder et al. (2009).   

 

The greatest appeal of the Nelder-Mead direct search algorithm according to Nelder 

and Singer (2009) is that it easily “adapts itself to the local landscape” such as the 

three-dimensional surface plots of Figure 2-9; the simplex is elongating itself down 

long slopes, it alters direction when encountering a valley at an angle, and it contacts 

as it approximates the minimum (Nelder and Singer, 2009).  
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Figure 3-3 The steps of the Nelder-Mead algorithm 

The Nelder-Mead steps include: reflection, expansion, (inside and outside) contraction and shrink. The 

figure was extracted from http://www.math.uiuc.edu/documenta/vol-ismp/42_wright-margaret.pdf 

 

3.2.4 Box Constrained Simplex Algorithm 

 

The Box complex algorithm (Box, 1965) is a derivative-free method used for 

nonlinear constrained optimisation. Unlike the other direct search methods of Section 

3.2.3, which are solely applied to unconstrained optimisation problems, Box extended 

the functionality of the algorithm by Spendley et al. (1962) by explicitly incorporating 

bounds and/or nonlinear inequality constraints into the search space via a constrained 

simplex, namely the “complex”. Similar to the Nelder-Mead simplex, a complex   in 

   is a flexible mathematical figure in   dimensions made up of at least       

vertices, where   is the total number of variables; the use of      vertices is 

recommended by Box. Each point’s coordinates in the complex correspond to 

individual variables of the objective function. The complex moves around the solution 

space by expanding or contracting in any direction as long as it is feasible. The Box 

complex algorithm solves the following constrained minimisation problem 

 

                     

                      

                  

Equation 19 Box complex algorithm 

http://www.math.uiuc.edu/documenta/vol-ismp/42_wright-margaret.pdf
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Where          is the cost function,   is the vector of parameter estimates, 

           are the lower and upper parameter bounds (explicit constraints) 

respectively,   is the total number of parameters and   the total number of positive 

nonlinear implicit constraints     . The approximation algorithm of Box complex 

performs four main steps towards identifying the optimum solution: reflection, 

expansion, contraction and shrinkage. A detailed description of the Box complex 

steps is provided in Box (1965).  

 

3.2.5 Implementation in R 

 

The Rmpi (Yu, 2011) package, which provides the MPI interface for R, was used as a 

means of implementing parallel programming. The package allows the creation of R 

scripts that run cooperatively in parallel across multiple machines, or multiple CPUs 

on one machine. The Rmpi backbone is based on the master/slave model that was 

presented in Section 3.2.1.  

 

In addition, the neldermead (Bihorel and Baudin, 2012) package was used for the 

implementation of the Box complex algorithm. The package comprises an R port to 

the neldermead module originally developed for Scilab (Chancelier et al., 1990; 

http://www.scilab.org), which provides a set of constrained and unconstrained direct 

search optimisation algorithms based on the simplex methodology. 

 

http://www.scilab.org/
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3.3 Results and Discussion 

 

3.3.1 Linear Models  

 

As an initial step towards optimising the analysis pipeline, parallel programming was 

applied to all implemented classification models. Even though the speedup of fairly 

simple optimisation techniques such as cross-validation is of interest, the chief aim is 

to examine the speedup of computationally tedious techniques such as bootstrapping. 

Parallel programming reduced the execution times to at least a third of the initial 

times as demonstrated in Figure 3-4.  

 

According to the figure, the relationship between the execution times and the number 

of slave processors is deviating from an ideal linear speedup. More specifically, there 

is a noteworthy improvement, represented by a big slope in the plot, from sequential 

(one processor) to parallel programming with two processors. Thus, the “divide-and-

conquer” approach indeed provides a significant speedup. For the HPLC and e-nose 

data, the recorded speedup is minimal after a certain point. Occasionally, for short 

calculations and/or small datasets such as the case of e-nose in Figure 3-4, the 

communication between the master and the slaves becomes so computationally 

expensive that the overhead forces the increase rather than the decrease of execution 

times after a certain (achieved) speedup; in this case, no further parallelisation is 

feasible. Thus, it is interesting to note that relatively large datasets such as FTIR, 

which demand more complex and time-consuming calculations, benefit to a greater 

extent from parallel programming than small datasets.  
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Figure 3-4 The relationship between the number of slave processors (master/slave model) and the 

execution times of an ensemble of PLS-DA with bootstrapping  

The figure illustrates the decrease in the execution times based on the number of slave processors. In 

this case, the master/slave architecture is employed to parallelise the bootstrapping iterations. It is 

obvious that the overall execution times have significantly improved with the application of parallel 

programming.  

 



 

 

68 

3.3.2 Nonlinear Models 

 

In order to test the performance and the applicability of the new heuristic for 

real-world cases, a simulation based on the methodology presented thus far was 

conducted using the HPLC dataset. The simulation aims towards the comparison 

between the grid-search and the Box complex algorithm for the optimisation of 

ensembles of nonlinear SVMs (RBF) via bootstrapping. In order for all results to be 

directly comparable, the exact same train, test and validation datasets were used for 

both algorithms. The algorithms are assessed based on their average train and test 

accuracies as well as the execution times.  

 

In Section 2.2.4 a combination of a coarse grid-search followed by a finer grid-search 

was proposed as a means of optimising the RBF hyperparameters      . The 

percentages of correctly classified samples (   ) of these models were presented in 

Figure 2-6. In addition, a new ensemble of SVM classifiers was optimised and tested 

using an exhaustive grid-based search with a refined resolution of        , which 

allowed greater grid granularity. The Box complex algorithm was also employed for 

the minimisation of the average bootstrapping test error during the training process of 

the SVMs. In this case, the inequality constraints correspond to the minimum and 

maximum predefined value boundaries that were set for the RBF hyperparameters 

(   ) in Section 2.2.4, where       {      } and       {      }. The 

formation of the initial complex begins with the selection of a random feasible point 

that must satisfy the minimum and maximum hyperparameter constraints as presented 

in Figure 3-5.  

 

A classification model has been selected at random out of the ensemble of classifiers 

(100 independent classifiers) for demonstrative purposes as a means of visually 

assessing the optimisation outcome of the two techniques. Figure 3-5 illustrates step-

by-step the Box complex simplices towards finding the optimal combination of 

hyperparameters. In addition, the high-resolution grid plot that constitutes the 

background of each figure, derives from the grid-search optimisation with a resolution 

equal to        ; each grid point corresponds to an average training error of 100 

independent bootstrap iterations for a predefined combination of hyperparameters.  
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9)  

 
11)  

 

13) 

 

15) 

 
10)  

 
12)  

 
14) 

 
16) 

Figure 3-5 Step-by-step representation of the Box complex algorithm towards identifying the 

optimal hyperparameters and the minimum bootstrapping error (HPLC data)  
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In the example of Figure 3-5, the Box complex algorithm performed 14 iterations and 

54 function evaluations in total before successfully identifying the optimal 

combination of hyperparameters. The initial combination of   and   produced an 

average bootstrapping test error equal to 0.31. After the application of the Box 

complex algorithm, the bootstrapping error decreased to 0.28. Based on the plots, the 

simplices become extremely small as they contract towards the minimum. In the final 

plot, no further improvement can be performed. Based on the graphs of Figure 3-5, 

we can conclude that the optimal combination of hyperparameters is indeed identified 

within robust areas of the grid. 

 

The optimisation results of Figure 3-5 derive from a single classifier. For the entire 

classification ensemble (100 individual classifiers), the optimal hyperparameters as 

selected by the Box complex algorithm are illustrated in Figure 3-6. In order to 

highlight any underlying patterns, the plots include contours of density estimations. It 

is interesting to note that only three out of 100 points are further apart from the rest 

and may be located in unacceptable regions with high prediction error.  

 

Figure 3-6 Contour plots of the density estimation of the optimal hyperparameters as defined by 

the Box complex algorithm 
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As an additional visual aid, these optimal points are plotted once more in Figure 3-7 

over a grid plot of the average performances of all 100 optimised classifiers as 

produced by the exhaustive grid-search. Once again, it is obvious that, barring three 

instances, all selected hyperparameters by the Box algorithm are located in robust 

regions on the grid. Based on these rare instance, we can conclude that even though 

the algorithm is robust since it is tolerant to noisy problems, it does suffer from one 

limitation; it is highly dependent on the randomly selected initial point, upon which 

the first complex (constrained simplex) is constructed. Therefore, if the initial point is 

chosen at random within an unacceptable region, it may fail to converge and 

terminate its functionality. 

 

 

Figure 3-7 Density, filled-contour, grid and contour plots for the HPLC optimisation 

The optimal hyperparameters of the Box complex algorithm are plotted on a grid plot formed by the 

average training performances of 100 classifiers as obtained from the exhaustive grid-search. Each 

classifier has been optimised using 100 bootstrap iterations.   
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Thus far, only the optimisation (bootstrapping) predictions of the classifiers have been 

investigated. Nevertheless, a successful and powerful machine learning model is 

established by examining its generalisation performance. Figure 3-8 provides a direct 

comparison of the percentages of correctly classified samples (   ) between the two 

optimisation techniques. Both ensembles achieve an overall test accuracy (   ) of 

79%. However, the Box complex algorithm utilised on average only 13 step iterations 

and 48 function evaluations towards the successful identification of the optimal 

hyperparameters as presented in Figure 3-9. On the contrary, the exhaustive grid-

search required on average 1681 evaluations, which amount to 168100 evaluations in 

total, thus leading to an enormous computational cost. Finally, Figure 3-8 verifies that 

at least 100 standalone classifiers are required in an ensemble optimised using the 

Box complex algorithm in order to generate an accurate and stable result. 

 

 

Figure 3-8 Comparison of the prediction accuracies between the grid-Search and the Box 

complex algorithm (HPLC data) 

The plot demonstrates the average test accuracies for the HPLC data against the number of classifiers 

in an ensemble. Even though the two techniques present different trends to start with, the final obtained 

overall accuracy was equal to 79% for the grid-search and 78.8% for the Box complex. When rounded 

to the nearest integer, both techniques account for 79% overall accuracy.  
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a) Number of iterations 

 

 

b) Number of function evaluations 

Figure 3-9 Histograms of the number of iterations and function evaluations respectively for an 

ensemble of nonlinear (RBF) SVMs optimised using the Box complex algorithm. 

The figure demonstrates the distribution of the total number of iterations and total number of function 

evaluations respectively as obtained by the application of the Box complex algorithm; the algorithm 

utilised on average a total of 13 steps and 48 function evaluations towards the successful identification 

of the optimal hyperparameters via bootstrapping. On the contrary, the exhaustive grid-search required 

on average 1681 function evaluations, which result in 168100 function evaluations in total, thus leading 

to an enormous computational cost. These values appear to be extremely burdensome when compared 

to the number of evaluations of the Box complex algorithm.  
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In a similar manner, the Box complex algorithm was applied to the remaining 

standalone datasets (FTIR and e-nose) to verify that the obtained results do not 

deviate from the ones obtained by the grid-search approach that were presented in 

Figure 2-6. The overall execution time for an exhaustive grid search as presented thus 

far was approximately 27 hours; thus, the two-step grid proposed in Section 2.2.4 is 

indeed a big improvement. The execution times for the construction of a full 

ensemble of RBF SVMs when optimised with different techniques via bootstrapping 

are available in Figure 3-10.  

 

Permutation tests were not feasible prior to the introduction of the new heuristic 

methodology. An estimation of the run times for the execution of permutation tests 

using the proposed loose-tuning/fine-tuning approach is illustrated in Figure 3-11; the 

execution times of 100 permutations tests for all different datasets and optimisation 

techniques are also displayed in Figure 3-11. It is truly noteworthy that the Box 

complex algorithm in combination with parallel programming accomplished a 

speedup up to ~ 91× times as illustrated in Figure 3-12. 
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Figure 3-10 Comparison of the execution times for the tuning of a single RBF SVM ensemble, when optimised with different techniques, via bootstrapping  

The graph provides a direct comparison between various implemented techniques for the optimisation of the SVM (RBF) hyperparameters in combination with 

bootstrapping. The execution times are based on the architecture described in Section 2.2.5. The execution times were rounded up to the nearest integer.  
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Figure 3-11 Comparison of the execution times of 100 permutation tests for the (RBF) SVMs when optimised with different techniques, via bootstrapping 

The graph provides a direct comparison of the execution times for 100 permutation tests when different optimisation techniques are used for the tuning process in 

combination with bootstrapping. The execution times are based on the architecture described in Section 2.2.5. The execution times were rounded up to the nearest integer.  
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Figure 3-12 Speedup produced by the different optimisation techniques 

Let us assume that we start with a two-step grid-search (loose-tuning plus fine-tuning). At first, the 

application of parallel programming provides a speedup around ~ 3× of the initial time. The application 

of sequential Box complex increased the speedup up to ~ 24×, which is 8× faster than the previous 

approach. Finally, the combination of Box complex and parallel programming result in up to ~ 91×, 

which is notably 30× faster than the first approach and approximately 4× faster than the second one. 

The differences in speedup may be justified by the number of iterations and function evaluations 

required by the Box complex to identify the optimum hyperparameters. In addition, the size of the 

dataset and any potential overhead play also a crucial role.  
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3.4 Conclusion 

 

In this chapter, a new heuristic methodology has been presented that can reliably 

identify optimal parameter settings for nonlinear SVMs (RBF kernel) with relatively 

small computational effort. The Box complex algorithm has significantly minimised 

the computational complexity and execution times of the hyperparameter optimisation 

and model construction. Furthermore, the addition of parallel programming to the 

implemented analysis pipeline, simplified “embarrassingly parallel” problems such as 

permutation tests into smaller faster tasks, and has proven to be extremely fruitful 

when applied to relatively large datasets.  
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4 Integration of Heterogeneous Data 
 

 

4.1 Introduction 

 

This chapter provides a thorough investigation of multi-block and morphometric data 

fusion techniques in order to determine whether better classification performance is 

achieved when integrated as opposed to standalone datasets are used. The hypothesis 

is that fusion of heterogeneous experimental data that derive from diverse sources 

may enable a more reliable method for spoilage detection as opposed to single 

instruments, as different instruments may provide complementary information about 

the biochemical state of a sample. In this context, we seek to improve the overall 

classification accuracy. However, the inherent complexity and heterogeneous nature 

of these data pose a significant challenge to the fusion process. All integrated datasets 

were analysed alongside the standalone data using the implemented statistical 

pipeline, while rigorous permutation testing indicated the statistical significance of the 

results. 

 

4.2 Materials and Methods  

 

4.2.1 Data Integration 

 

In recent years, there has been an increasing necessity for integrative analysis of the 

enormous amounts of data deriving from the ‘omics’ fields. Data fusion can be 

defined as “the integration of data and knowledge collected from disparate sources by 

different methods into a consistent, accurate, and useful whole” (Synnergren et al., 

2009; Wolpert, 1992; Roussel, 2003; Liu, 2004). According to Steinmetz et al. 

(1999), also described in Roussel et al. (2003), Smilde et al. (2005) and Smolinska et 

al. (2012), data integration techniques are organised in three distinct levels: low-level, 

mid-level and high-level fusion.  
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In low-level fusion, raw standalone data from different sources are concatenated at 

data level prior to any pre-processing. In this model, the columns (variables) of 

different data blocks are positioned next to each other, while the rows refer to 

corresponding entities. In theory, data integration should be of the highest efficiency 

when implemented at a low level. However, according to Smilde et al. (2005) this 

fusion approach is not considered optimal as it suffers from several drawbacks; first 

and foremost, when data are integrated at the lowest level, the possibility of dealing 

with noisy and highly redundant data is relatively high. Furthermore, the simplistic 

approach of concatenating all the raw data together may lead to extremely large 

datasets with disproportional ratios between observations and variables. Finally, the 

widely differing numerical ranges of the highly heterogeneous data as well as the lack 

of appropriate pre-processing may have a dramatic impact on the classification 

results. 

 

In the mid-level or intermediate level fusion, data integration is performed after the 

application of dimensionality reduction and/or feature extraction techniques, usually 

at the principal component or latent variables level (Smolinska et al., 2012). As the 

data from various sources are probably not homogeneous, they are initially subjected 

to suitable pre-processing methods (see Section 1.3) in order to standardise them. 

Since raw data often contain redundant information, dimensionality reduction and/or 

variable selection techniques are commonly applied on individual standardised data 

for the extraction of prominent features. The extracted features from each dataset are 

used to form a concatenated matrix or average consensus. The fused matrix is 

subsequently imported into a classification model. For both low-level and 

intermediate level fusion, classification is performed once the data integration step 

has been completed.  

 

On the contrary, high-level fusion involves the integration of the responses from all 

individual classification models that have been built on standalone pre-processed data, 

commonly after the application of decomposition methods. In this approach, the 

results of several models are fused using statistical averaging or majority voting in 

order to produce a single final output. However, high-level integration has to face the 

limitation that the models do not consider the correlations between the different data 

sources.  
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4.2.2 Procrustes Analysis 

 

Procrustes rotation or (ordinary) Procrustes Analysis (Gower, 1975; Gower, 2010) is a 

morphometric technique used for statistical shape analysis that “facilitates comparison 

between two matrices by rotating, scaling and reflecting one matrix so that it fits as 

closely as possible to the other” (Gower, 2010). The geometrical interpretation of a 

matrix in Procrustes Analysis is a shape of landmark configurations. Therefore, 

transformations are applied on one of the two shapes so that it matches as best as 

possible the other shape, usually referred to as the “target” shape. As illustrated in 

Figure 4-1, the three main transformations in Procrustes Analysis include translation 

(mean-centering), rotation and isotropic scaling. Translation is the centering process 

of a landmark configuration. Rotation/Reflection involves the rotation of points in 

order to minimise the difference between them. Scaling standardises the size of a 

landmark configuration against the size of the centroid. 

 

 

Figure 4-1 Procrustes Analysis superimposition 

The picture displays the geometric transformations performed by Procrustes Analysis, which include 

translation, rotation/reflection and scaling. The figure has been extracted from http://www.virtual-

anthropology.com/virtual-anthropology/geometric-morphometrics/procrustes-superimposition  

 

Given two initial matrices    and   , where    is of size       and    of size 

     , matrix    is transformed into     in order to match target matrix   , where   

is a transformation matrix. Subsequently, the algorithm attempts to match points     

to    . In Procrustes Analysis, it is essential that both matrices    and    have the 

same number of points (rows)  , referring to the same entities (Dijksterhuis and 

Gower, 1992). On the other hand, the equality in the number of columns is not of 

great importance. Thus, points in    may have a smaller number of columns than 

those in   . In this case, the matrices may be artificially equalised by adding columns 

http://www.virtual-anthropology.com/virtual-anthropology/geometric-morphometrics/procrustes-superimposition
http://www.virtual-anthropology.com/virtual-anthropology/geometric-morphometrics/procrustes-superimposition
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of zeros (Wu et al., 2002).  The “goodness-of-fit” criterion for matrix    to match    

is provided by the sum of squared errors as presented in Equation 20. The value of 

         measures the degree of dissimilarity between the two matrices after 

rotational and scaling effects have been applied. In this state, the shapes have become 

as similar as possible.  

 

             ‖      ‖
  

Equation 20 Procrustes Analysis rotation criterion 

 

Procrustes Analysis is an asymmetric method and its outcome depends solely on the 

choice of the reference object. Generally 

 

                  

Equation 21 Procrustes Analysis asymmetric dissimilarities 

 

4.2.3 Generalised Procrustes Analysis 

 

Generalised Procrustes Analysis (GPA) (Gower, 1975; Gower, 2010) is performed in 

cases where   matrices           , with      , need to be simultaneously 

transformed and matched against each other without any specific order. An intuitive 

initial approach would be to examine and evaluate all pair combinations of the initial 

  shapes by calculating the dissimilarity measures using the mathematical type of 

Equation 20. In this case, the sum of all dissimilarity measures could be presented as 

 

     ∑‖         ‖
 

 

   

 

Equation 22 Procrustes rotation criterion in GPA 

 

However, this approach results once more to asymmetry based on Equation 21. Thus, 

the idea of a single target matrix requires reconsideration (Gower, 2010). GPA was 

introduced in order to find a group average configuration (Dijksterhuis and Gower, 

1992; Dijksterhuis, 1994) or consensus (Gower, 1975), to which the individual 

subspaces are compared simultaneously (Figure 4-2). This new approach provides 

greater homogeneity and, in contrast to ordinary Procrustes Analysis, GPA is indeed a 
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symmetric method since the ordering of the objects does not affect the result. As 

illustrated Figure 4-2, the GPA algorithm is commonly performed after the 

application of PCA, in the subspace created by the Principal Components (Bessant et 

al., 1999; Smilde et al., 2003; Andrade et al., 2004).  

 

 

Figure 4-2 Generalised Procrustes Analysis 

The figure graphically represents the construction of the GPA consensus shape, based on which, the 

individual subspaces are compared simultaneously. In this case, each individual subspace is created by 

the Principal Components. The figure has been extracted from Andrade et al., 2004. 

 

The GPA algorithm is based on computing an iteratively updated average, the 

consensus  , which is playing the role of the target matrix (Gower, 1975; Dahl et al., 

2004). Along with the consensus, a set of the rotated matrices is provided, as similar 

to   as possible, deriving from the initial shapes (Gower, 1975). The GPA criterion 

can be mathematically defined as  

 

               ∑‖      ‖ 

 

   

 

Equation 23 Generalised Procrustes Analysis criterion using a consensus 

 

Where   is the number of matrices,    is the optimal transformation of the  th
 profile 

   and   is the average shape or consensus, which can be described as  

 

  
 

 
∑      

 

   

 

Equation 24 GPA Consensus 
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4.2.4 Multi-block Principal Component Analysis  

 

Multi-block PCA (Westerhuis et al., 1998; Smilde et al., 2003) is an extension of the 

widely used Principal Component Analysis, applied in cases where multiple blocks of 

data are present. A block of data or “data block” constitutes a logical entity, which 

commonly represents the data obtained from a single source. Multi-block methods 

have been developed to detect underlying relationships and common patterns between 

several individual blocks of data (Brereton, 2006; Xu and Goodacre, 2012). 

Furthermore, multi-block techniques have been applied extensively as a means of 

integrating heterogeneous data from multiple analytical origins into a unified 

“consensus” view (Xu and Goodacre, 2012). 

  

Several multi-block PCA algorithms have been introduced to date, among which, 

consensus PCA (CPCA) is probably the most commonly applied multi-block 

technique for classification purposes. The CPCA algorithm was initially introduced 

by Wold et al. (1987) and further investigated by Westerhuis et al. (1998). In 

addition, a detailed review of the technique can be also found in Qin et al. (2001) and 

Smilde et al. (2003).  

 

Let us consider   standalone matrices or blocks, each deriving from a single source or 

instrument as presented in Figure 4-3. A block matrix of size      may be denoted 

as   , where      . Commonly in multi-block cases, as with most data fusion 

techniques, the samples (rows) of different blocks refer to corresponding entities. 

Prior to the application of CPCA, the data have to be subjected to suitable pre-

processing. In order for all variables to have equal weights in the analysis,  

auto-scaling is applied according to the methodology described in Section 1.3.2.  

In addition, since the individual blocks may differ significantly with respect to their 

number of variables (Figure 4-3), the datasets are also subjected to “block-scaling” 

(Smilde et al., 2003; Brereton, 2009); the block-scaling factor is equal to the inverse 

of the square root of the number of variables within a specific block (Hassani et al., 

2010). This scaling prevents the dominant influence of a single block since each block 

will contribute the same amount of variance to the consensus of CPCA method. After 

data pre-processing, all individual blocks are concatenated into a single super-matrix 

  of size    , where   [          ] and           . 
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Figure 4-3 Steps of CPCA for the datasets of case study 1 

The heterogeneous FTIR, HPLC and e-nose data constitute three standalone data blocks. The figure 

highlights the need for the application of suitable pre-processing, and specifically for block-scaling 

since the number of variables among the datasets varies greatly. All pre-processed data are 

concatenated into a single super-matrix, upon which CPCA is performed.  

 

The output of CPCA consists of the super-scores matrix, the blocks’ scores and 

loadings matrices, and the block weights.  The super-scores matrix demonstrates the 

“global” variation trend across the heterogeneous blocks and constitutes the 

consensus object at the “super-level” (Hassani et al., 2010). In addition, each block’s 

scores and loading matrices provide a unique pattern of each block under the global 

consensus (super scores). Finally, the block weights demonstrate the contribution of 

each block to the super scores matrix. The CPCA algorithm “normalises the block and 

super loadings, and deflates the residual matrices based on super scores” (Qin et al., 

2001). In brief, the CPCA algorithm according to Qin et al. (2001) is described as 

follows:  
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1. Select vector      as a starting point  

2. Compute the block loadings 

         
      ‖    

     ‖ 

3. Compute the block scores 

              

4. Consider the matrix 

   [         ] 

5. Compute the global loadings 

       
      ‖  

     ‖ 

6. Update the global scores 

            

7. Iterate steps 2 - 6 until the convergence of      

8. Deflate the residuals        (          
      

     )     

 

The most notable breakthrough contribution pertaining to the field of multi-block 

algorithms was made by Westerhuis et al. (1998), whereby it was proved that the  

super-scores of CPCA are identical to the scores of normal PCA when applied on the 

concatenated set of blocks (the super-matrix) (Qin et al., 2001; Smilde et al. 2003) 

(see Figure 4-3). In addition, according to Westerhuis et al. (1998) regular PCA can 

be also used to calculate the individual block scores and loadings. Normal PCA may 

be applied using a plethora of algorithms, the most popular of which is the NIPALS 

algorithm (see Section 1.4.1). 

 

In the context of this project, consensus PCA was primarily investigated as a data 

integration technique rather than for the purpose of detecting an underlying common 

pattern between the different blocks. The super-scores of CPCA, which constitute the 

consensus matrix, are used as input into the implemented classifiers.  
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4.2.5 Data Integration and Analysis Pipeline 

 

The functionality of the multivariate analysis pipeline developed in the previous 

chapters was further extended to incorporate data fusion techniques. As presented in 

Section 2.2.1, the datasets of case study 1 have been acquired from beef samples 

using three main experimental techniques: spectroscopy (FTIR), high performance 

liquid chromatography (HPLC) and electronic nose. Initially, the datasets are cross-

referenced based on the samples’ names and sensory values (see Section 2.2.2). Based 

on this filtering, a total of 32 common samples are inserted in the data integration 

pipeline along with the respective sensory scores as depicted in Figure 4-4.  

 

As PCA is the first step towards data integration, the principal components of each 

experimental technique were also tested using the multivariate analysis pipeline. More 

specifically, the PCA data were analysed in a repetitive manner by increasing the 

number of principal components each time by one until the optimal number of PCs, 

responsible for the highest classification accuracy, was identified. Since PLS-DA 

employs the PLS algorithm for data decomposition and dimensionality reduction 

(Section 1.5.1), the application of PCA with this type of classifier is considered 

redundant. However, in order to obtain directly comparable classification results, this 

approach was also investigated and the outcome is presented as follows. 

 

In this work, data integration is employed using a “mid-level fusion” approach based 

on the methodology presented in Section 4.2.1. As a first step towards analysing the 

integrated datasets, unsupervised methods for dimensionality reduction and the 

extraction of prominent features are applied on pre-processed data. In the case of 

GPA, prior pre-treatment such as mean-centering and/or scaling is not a necessity 

since these steps are included in the algorithm. Thus, raw data are subjected to PCA, 

and a predefined number of Principal Components (PCs) is extracted from each 

dataset. The PCA scores of each instrumental technique are concatenated in a three-

way data matrix, which is subjected to geometric transformations. The output of GPA 

consists of the average (consensus) matrix in addition to all individual transformed 

matrices for the given combination of experimental techniques.  
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In the case of CPCA, standalone pre-processed (auto-scaled and block-scaled) data 

are concatenated into a single matrix – the super matrix. Subsequently, the super 

matrix is subjected to normal PCA. The output of PCA on all the concatenated blocks 

together (super matrix) constitutes the super scores, which will be used as the data 

integration consensus provided by CPCA. 

 

In both cases, the consensus, as produced by the data fusion techniques, is 

subsequently used as input into an ensemble of classifiers. Classification techniques 

that have been implemented include PLS-DA in addition to linear and nonlinear 

SVMs. According to Section 2.3.2.3, bootstrapping proved to be the most accurate of 

all validation techniques; therefore, it has been employed for hyperparameter 

optimisation. Finally, the classifiers are subjected to rigorous permutation testing, 

which is currently feasible due to the novel optimisation approach presented in 

Chapter 3. The permutation results provide an indication of the statistical significance 

of the results.  

 

4.2.6 Implementation in R 

 

The shapes package (Dryden, 2012) consists of a set of programming tools in R for 

the statistical analysis of shapes. The package was used for the implementation of the 

GPA using the function procGPA(). Along with the transformed shapes and the 

consensus, the algorithm returns among others, the measures of dissimilarities 

between the input matrices. 

 

Consensus PCA (CPCA) can be implemented by applying normal PCA as provided 

by a wide range of built-in and add-on R functions (see Section 2.2.8). Even so, in 

this work, a function was produced that conducted PCA via SVD.  
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Figure 4-4 Data integration workflow 

The figure represents the steps of the data integration and analysis process when all the datasets of case 

study 1 are used as input in the pipeline. FTIR, HPLC and e-nose constitute three individual blocks of 

data. In both data fusion techniques, the consensus is formed in the subspace created by the Principal 

Components at either the local or global (super) level.  
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4.3 Results and Discussion 

 

4.3.1 Exploratory Data Analysis 

 

The first implemented data fusion technique involved the GPA algorithm. As 

illustrated in Figure 4-5, the PCA scores from each experimental technique of case 

study 1 expand over wide and different numerical ranges. The GPA algorithm uses 

the output of PCA to perform statistical shape analysis in order to minimise the 

dissimilarity between the initial datasets. Figure 4-5 demonstrates step-by-step the 

geometric transformations (translation, rotation and isotropic scaling) performed by 

the GPA algorithm on all three standalone datasets simultaneously. Once the shapes 

are fitted as closely as possible to each other, the algorithm makes use of the 

individual transformed matrices in order to construct the consensus. The consensus 

matrix, as presented in Figure 4-6, is further used as the input into a classification 

ensemble.  

 

 

Figure 4-5 The steps of GPA (shown in order from left to right) when applied on the datasets of 

case study 1  

The two-dimensional scatterplots display the standalone datasets prior and after the application of GPA 

when all three experimental techniques of case study 1 are investigated simultaneously. In this case, the 

GPA algorithm is applied in the subspace created by the first two principal components. In order to 

demonstrate the differences in range of the initial datasets under study, PCA was applied on raw 

standalone data with no prior pre-processing. The GPA algorithm subjects all individual datasets to 

translation (mean-centering), rotation and isotropic scaling.  In the final plot, the shapes are as similar 

to each other as possible.  
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a) GPA 

 
b) CPCA 

Figure 4-6 The consensus of the first two Principal Components based on the fusion of all three 

experimental techniques of case study 1 using GPA and CPCA respectively 

The consensus output of GPA is compared against the super-scores obtained by CPCA; in both cases, 

all three experimental techniques of case study 1 (FTIR, HPLC, e-nose) were used simultaneously for 

the data fusion. Dynamically generated 95% confidence ellipses per each class were added in the plots 

in order to highlight the presence of any clusters and/or outliers. Colour representation was used to 

identify the three classes: fresh (red colour), semi-fresh (orange colour) and spoiled (green colour). 

Based on the graphs, the consensus shapes do not provide any obvious discrimination between the 

three classification groups since the distinct classes are highly overlapping. It is apparent that the good 

clustering between fresh and spoiled samples as observed by standalone HPLC in Figure 2-5 was 

destroyed during the fusion process with the other two analytical techniques.    
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4.3.2 Classification Results 

 

4.3.2.1 Overall Accuracies (%CC) 

 

The classification results of all the standalone datasets for case study 1 are illustrated 

in the bar charts of Figure 4-7 as percentages of correctly classified samples (   ). 

The overall accuracies of the standalone datasets prior to PCA have been thoroughly 

described in Section 2.3.2. As PCA is the first step towards data integration, the 

principal components of each experimental technique were also tested using the 

multivariate analysis pipeline according to Section 4.2.5  

 

Based on the bar charts of Figure 4-7, the overall accuracy of FTIR is clearly 

enhanced when the raw data are subjected to PCA; in particular, the results of both 

PLS-DA and SVMs increase by approximately 5%. Even so, as in the case of raw 

FTIR, the ensemble of nonlinear (RBF) SVMs performs relatively worse than the 

linear classifiers. In order to ensure that the low accuracy of the RBF models is not 

due to overfitting and/or the newly incorporated Box complex approximation 

algorithm, the result was verified by executing once more the grid search approach of 

Section 2.2.4. Indeed, the nonlinear boundaries of the RBF kernel proved to be too 

complex to correctly classify the simple FTIR data; linear separation clearly gives 

better results for this. Xu et al. (2006) report that chemometric algorithms such as 

PLS-DA are more efficient when applied on traditional analytical techniques such as 

spectroscopy, where the data are linear and well understood. In addition, according to 

Smoliska et al. (2012), a major drawback among kernel-based methods, also 

commonly encountered in the auto-scaling process, is that useful information on the 

importance of the variables is permanently lost. This impediment is crucial in the case 

of FTIR, where the spectral data may contain prominent peaks in significant 

biochemical absorption regions that may reveal differences between the samples of 

different classes. Furthermore, according to Section 1.5.2.3, an RBF SVM should be 

able to perform at least as well as a linear SVM (Boser et al., 1992; Keerthi and Lin, 

2003; Chang et al., 2010); thus, we can only assume that the optimisation process was 

unable to identify suitable combinations of hyperparameters that result in the same 
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accuracies as the linear models; possibly, the cost and/or gamma values that generate 

nearly linear boundaries did not satisfy the provided constraints.  

 

In the case of HPLC, PCA boosts the overall accuracy of the simplistic PLS-DA 

ensembles, while it decreases the results of both linear and nonlinear SVMs by 

approximately 5%. Since both types of SVMs produce a lower accuracy comparing to 

PLS-DA, we can only assume that the background of SVMs is the underlying cause 

for this result; as presented in Section 1.5.2.1, PLS-DA constructs the decision 

boundaries based on all available samples as a whole, whereas SVMs are solely based 

on the selection of support vectors. A thorough investigation of the class predictions 

may help towards justifying this hypothesis.  

 

Finally, the PCA scores from the e-nose dataset perform significantly better for all 

implemented classification models when compared to the accuracies of raw data. In 

particular, the SVM ensembles reach a maximum overall accuracy of 50%, the 

highest recorded result for this dataset. Despite the improvement in the results, as with 

the raw standalone data, the generalisation performance of e-nose is relatively poor 

since it generates the lowest accuracies among the three experimental techniques.  

 

The classification results of the integrated datasets using GPA and CPCA are 

displayed in Figure 4-8. For the GPA algorithm, SVMs produce at least as good 

results as PLS-DA in the majority of cases, with the linear SVMs taking the lead 

among the three classification ensembles. In addition, in the pairwise combination of 

FTIR with HPLC, as well as the simultaneous fusion of all three experimental 

techniques, linear SVMs have produced somewhat higher results when compared to 

those by the standalone principal components. On the contrary, the pairwise 

integration of either FTIR or HPLC with e-nose decreases the overall accuracy. It can 

be therefore concluded that e-nose clearly dominates the outcome of data integration 

and classification in this instance.  

 

Furthermore, in the majority of integrated datasets, the GPA algorithm produces 

higher overall accuracies compared to CPCA when linear and nonlinear SVM 

classifiers are employed. For the same instances, when PLS-DA is applied as the 

classification technique, the results between the two data integration techniques 
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appear to be similar (the differences are less than 1%). However, CPCA clearly 

improves the outcome of the integration between HPLC and e-nose, since the overall 

accuracies of all classifiers have increased by approximately 10% compared to GPA. 

Based on all documented classification results, the highest overall accuracy, equal to 

80%, was obtained for standalone HPLC prior and after the application of PCA. Even 

though the analysis of integrated datasets did demonstrate relatively good 

performance, the results were not as great as standalone HPLC.   

 

 

Figure 4-7 Overall accuracies (%CC) for the standalone datasets of case study 1 

The figure illustrates the overall performance of all implemented classification ensembles on the 

standalone datasets of case study 1. The bars represent the percentages of correctly classified samples 

(%CC) and are coloured according to the classification model under study (PLS-DA, linear and RBF 

SVMs). Analyses have been conducted both prior (raw data) and after PCA. In all implemented 

classifiers, bootstrapping was applied for hyperparameter optimisation. The overall accuracies have 

been rounded towards the nearest integer. 
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Figure 4-8 Classification Results for the integrated datasets of case study 1 

The figure illustrates the overall performance of all implemented classification ensembles on the 

integrated datasets of case study 1. The bars represent the percentages of correctly classified samples 

(%CC) and are coloured according to the classification model under study (PLS-DA, linear and RBF 

SVMs). Data integration has been performed using both GPA and CPCA. In all implemented 

classifiers, bootstrapping was applied for hyperparameter optimisation. The overall accuracies have 

been rounded towards the nearest integer. 
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4.3.2.2 Class Prediction Accuracies  

 

In addition to the overall accuracies, the per-class percentages of correctly classified 

samples for the standalone and integrated datasets of case study 4 are depicted in 

Figure 4-9 and Figure 4-10 respectively. In this case study, spoiled samples constitute 

the majority class; thus, as expected, spoiled samples obtain outstanding class 

accuracies throughout all classification models and experimental techniques; in the 

majority of cases, these class percentages were well above 90%.  

 

The class predictions of the raw standalone datasets were determined earlier, in 

Section 2.3.2.2. Since PCA is the first step towards data integration, the per-class 

accuracies of the individual PCA scores for each experimental technique are 

examined as follows. Based on Figure 4-9, the PCA scores of FTIR in the case of the 

PLS-DA ensembles increase the class accuracies of both fresh and spoiled samples, 

while the semi-fresh accuracies are equal to 0%. Since case study 1 is a multi-class 

problem, semi-fresh samples, which constitute the minority class, are extremely 

difficult to predict. Furthermore, in the case of linear SVMs, the application of PCA 

has proven to be extremely fruitful since the fresh and semi-fresh class accuracies 

increase by 11% and 25% respectively. On the contrary, the class predictions of 

spoiled samples decrease by 10%. Finally, for nonlinear (RBF) SVMs, the FTIR 

accuracies for all three classes increase substantially, but most importantly the class 

prediction of SF samples reaches the notable percentage of 31%.  

 

For the HPLC data, PLS-DA provides a strong nearly linear separation between fresh 

and spoiled samples with prediction rates above 90%, while the semi-fresh samples 

present a noteworthy accuracy of 17%. In the case of linear SVMs, the fresh and 

spoiled class predictions drop compared to raw HPLC, while the SF prediction rate 

increases by 32%; this fact justifies the decreased overall accuracy of HPLC in Figure 

4-7. As far as the RBF SVMs are concerned, the class predictions follow the trend of 

linear SVMs.  
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Similar to FTIR, the PLS-DA ensembles for the e-nose data increase the rates of fresh 

and spoiled samples, while the semi-fresh accuracies are equal to 0%. Even though 

linear and nonlinear SVMs generate higher percentages of correctly classified 

samples (   ), PLS-DA demonstrates better classification accuracies for the fresh 

samples compared to the SVMs. Finally, in the case of linear and nonlinear (RBF) 

SVMs, both fresh and semi-fresh accuracies significantly decrease, while the 

prediction rates of the majority class approximate 100%. 

 

To summarise the previous observations, as with raw data, the highest per-class 

accuracies for the semi-fresh samples are recorded in the case of FTIR data when 

SVMs are applied. In addition, the high overall accuracies of HPLC are justified by 

the nearly perfect class predictions of fresh and spoiled samples, especially for the 

linear classifiers (PLS-DA and SVMs). Finally, based on the e-nose class predictions 

it is obvious that the implemented classifiers have no discriminative power to 

correctly classify the semi-fresh samples; it appears that the boundaries of both the 

linear and nonlinear classifiers are dominated by the majority class, thus resulting in 

outstanding class predictions for the spoiled samples. 

 

According to Section 4.3.2.1, it is obvious that e-nose is a dominant technique that 

strongly influences the outcome of the integration and analysis process. In the case of 

GPA, the class accuracies from the pairwise fusion of either FTIR or HPLC with  

e-nose verify this hypothesis. Based on Figure 4-10, the high fresh and semi-fresh 

accuracies obtained by standalone FTIR and HPLC decrease once the integration is 

performed, for all the different types of classifiers. Furthermore, the integrated 

datasets present at least 80% in the class predictions of spoiled samples. This is to be 

expected, not only because spoiled samples constitute the majority class, but also 

because the standalone e-nose data most often resulted in high percentages of 

correctly classified spoiled samples. For the integrated dataset of FTIR and HPLC, the 

overall accuracies and class predictions of both linear and nonlinear models 

demonstrate similar results. After the integration, the spoiled accuracies increase for 

all three classifiers, while the performance of fresh samples drops for the linear 

models (PLS-DA and linear SVMs). The most noteworthy improvement from 

standalone to integrated datasets for all individual classes (sensory scores) was 

documented for the RBF SVMs. Finally, in the integration of all three datasets, it 
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appears that the different experimental techniques verily provide valuable 

complementary information in the consensus. The class predictions of spoiled 

samples demonstrate an increase to at least 91%, with better performances 

accomplished by the SVMs; this accuracy may be justified once more due to the 

presence of the e-nose dataset in the consensus. In addition, FTIR and HPLC 

contribute to the notably good predictions of the semi-fresh samples, whereas the 

performance of fresh samples decreases for all three classifiers.  

 

The CPCA per-class accuracies follow the same pattern as GPA in all cases besides 

the integration of HPLC and e-nose. It is noteworthy to mention that in the majority 

of cases, CPCA produces significantly higher classification rates for the fresh samples 

than GPA; on the contrary, GPA clearly favours both semi-fresh and spoiled samples, 

thus leading to higher class predictions compared to CPCA. Even though the 

application of multi-block PCA did overcome the limitations noted by GPA, it still 

did not produce as good or even greater results than standalone HPLC.  

 

As a general observation, all standalone and integrated datasets produce high rates for 

spoiled samples when tested with RBF SVMs. On the contrary, fresh samples 

demonstrate the best class rates for linear models, and especially in the case of  

PLS-DA. Semi-fresh samples are particularly favoured by linear SVMs, with 

noteworthy predictions for FTIR and HPLC. It is therefore apparent that the 

classifiers vary in their ability to distinguish between the different classes and the 

accuracy with which individual classes were classified differed markedly. Since the 

three classifiers operate in very different ways, they may be viewed as complementary 

sources of information rather than competing options.  
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Figure 4-9 Class prediction rates of the standalone (prior and after PCA) datasets for case study 1 

The figure illustrates the percentages of correctly classified samples per each distinct class, when the standalone datasets (prior and after PCA) of case study 1 are imported in 

the analysis pipeline. The class predictions are compared based on the instrumental techniques and classification models. Colour representation is used to identify the three 

classes as determined by the relevant sensory scores: fresh (red colour), semi-fresh (orange colour) and spoiled (green colour). 
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Figure 4-10 Class prediction rates of the integrated datasets for case study 1 

The figure illustrates the percentages of correctly classified samples per each distinct class, when the integrated datasets of case study 1 are imported in the analysis pipeline. 

Data fusion was performed using GPA and CPCA. It is noteworthy that CPCA produces significantly higher percentages of correctly classified fresh samples than GPA; 

however, the prediction rates of semi-fresh samples (minority class) are better when the GPA algorithm is applied.  
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4.3.3 Permutation Tests 

 

Even though thorough model validation and evaluation methods have been applied to 

ensure that the performance metrics are representative of real world application, 

“accuracy estimates are usually meaningless without a confidence interval” (Kohavi, 

1995; Brereton, 2006; Harrington, 2006).  

 

As a means of providing an indication of the statistical significance of the results, 

permutation tests were applied. The background of permutation testing was 

demonstrated in Sections 1.7 and 2.2.4. By randomising the data with respect to the 

sensory scores (classes), any prior association between the initial data and the classes 

is destroyed, while their initial distributional properties are preserved (Wu et al., 

2002; Westerhuis et al., 2008). As permutation testing is performed repeatedly a large 

number of times, a reference distribution for the null hypothesis is obtained. The 95% 

confidence interval (C.I.), which is equal to two standard deviations from the mean, is 

calculated based on the distribution of permuted classification results. If the observed 

non-permuted value is higher than both 95% confidence bounds, then the initial result 

is indeed significant. Metrics such as the  -value are also frequently reported in 

permutation testing; the  -value is equal to the proportion of permuted values that are 

at least as good as the observed statistic (Hubert and Schultz, 1976).  

 

In the context of this work, each permutation constitutes a single classification 

ensemble, which consists of 100 individual classifiers; each of these classifiers 

includes 100 bootstrapping iterations for the purposes of hyperparameter 

optimisation. The permutation tests were executed a total of 100 times for each 

dataset under study, which results to a total of one million iterations per dataset. 

Under the null hypothesis, the original non-permuted value is considered another 

random case. Thus, only 99 actual permutations are indeed required, in addition to the 

observed value, leading to 100 permutations in total; for the specific number of 

iterations, the lowest possible  -value will be equal to                  . 

Finally, all the permuted samples were drawn as an individual step prior to analysis to 

assure that the outcome of randomisation is not biased in any way. 
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Initially, permutation testing was applied solely on nonlinear (RBF) SVMs since the 

overall performance of these models was considered to be promising. The 

permutation results for the datasets of case study 1 are illustrated in the histograms of 

Figure 4-11. For all experimental data under study besides standalone e-nose, the non-

permuted overall accuracies are found well above the 95% confidence values; in 

particular, they are even greater than the 99% confidence intervals. For instance, the 

non-permuted     for the HPLC data is equal to 79%, which is significantly larger 

than 51%, the value corresponding to the 95% confidence interval of the permuted 

distribution. In the same instance, the best performance of the permuted data was 

noted at 59%, whereas the minimum at 45% as presented in Table 3. On the contrary, 

the low overall accuracy of the e-nose dataset, equal to 49%, was found below the 

upper bound of the 95% confidence interval; in this case, the result is considered non-

significant since it can be ascribed purely to chance. It can be concluded that e-nose 

does not have any discriminant power since its prediction ability is not better than that 

of a random classifier. Finally, these hypotheses are verified by the calculated  -

values. The majority of datasets produced  -values equal to 0.01; however, the e-nose 

dataset returned a larger  -value equal to 0.08. While a  -value of 0.08 is not large, it 

is rarely regarded as statistically significant.  

 

Kernel-based SVMs verily produced high classification accuracies; however, 

simplistic linear classifiers such as PLS-DA also demonstrated notable performance. 

Thus, permutation testing was conducted once more on the datasets of case study 1 

using PLS-DA classifiers in order to statistically assess their results. Figure 4-12 

depicts the relevant graphs. The PLS-DA permutation distributions demonstrate a 

similar trend to the SVM classifiers; once more, the outcome of e-nose is consistent 

with chance, whereas the remaining datasets render statistically significant results. As 

with RBF SVMs, the majority of datasets produced  -values equal to 0.01 besides the 

e-nose dataset, which returned a  -value of 0.57.  
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Even though the interpretation of the individual results from permutation testing is of 

the utmost importance, a direct comparison of the distributions of different classifiers 

may help us determine which classification technique is the best. Figure 4-13 and 

Figure 4-14 attempt to highlight any similarities and/or differences between the 

various permutation distributions. In addition, Table 3 and Table 4 summarise the 

most important descriptive statistics of these distributions. Based on the superimposed 

density curves of Figure 4-13 and the boxplots of Figure 4-14, it is noteworthy that 

the density estimations of the two classifiers obtain completely different spreads; all 

PLS-DA distributions cover wider ranges of values hence presenting greater 

variability and larger spreads, whereas the SVM distributions are clustered much 

tighter. Therefore, SVMs appear to be more consistent than PLS-DA since their 

results do not vary as much with each permutation. In addition, the minimum and 

maximum values of the PLS-DA distribution appear to be relatively extreme 

comparing to SVMs; in this case, the PLS-DA models achieve both the highest and 

lowest recorded values. Furthermore, the majority of the distributions are skewed 

right with the SVMs providing greater symmetry around the median compared to 

PLS-DA; based on the graphs and the entries of Table 3, a subset of the SVM 

distributions approximate a nearly Normal distribution. In addition, according to the 

median values of the density estimates (Table 3 and Table 4), it is obvious that the 

SVM distributions present higher mean and median than PLS-DA; therefore, the most 

likely observations (   ) of the permuted SVMs are considerably higher than the 

ones achieved by PLS-DA. Thus, we can markedly conclude that the RBF SVMs 

constitute stronger classifiers in comparison to the PLS-DA models since they 

generate consistently better results. 

 

Permutation tests on linear SVMs were not implemented due to the long execution 

times of this process. Since linear and nonlinear SVMs presented similar overall 

classification accuracies (   ), RBF SVMs were used for permutation testing for the 

new case studies.  
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Figure 4-11 Distribution plots of the permutation tests on the datasets of case study 1 using 

nonlinear (RBF) SVMs 

The figure depicts the histograms and density curves of the permuted results for the RBF SVMs, when 

applied on the datasets of case study 1. The red vertical lines highlight the original non-permuted 

overall accuracies (%CC) per each standalone or integrated dataset. The dashed purple lines indicate 

the 95% confidence intervals (two standard deviations from the mean). For the e-nose dataset, the red 

highlighted area represents the proportion of the distribution that is equal or greater than the observed 

non-significant value. The permutation distributions of the RBF SVMs approximate a nearly Normal 

distribution.  
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Figure 4-12 Distribution plots of the permutation tests on the data of case study 1 using PLS-DA 

The figure depicts the histograms and density curves of the permuted results for the PLS-DA 

ensembles, when applied on the datasets of case study 1. Similar to the SVM permutation plots, the red 

vertical lines highlight the initial non-permuted overall accuracies (%CC) per each standalone or 

integrated dataset. In addition, the dashed purple lines indicate the 95% confidence intervals (two 

standard deviations from the mean). For the e-nose dataset, the red highlighted area represents the 

proportion of the distribution that is equal or greater than the observed non-significant value. As with 

kernel-based SVMs, the result obtained by the analysis of the e-nose dataset is considered non-

significant. Finally, based on the graphs, the PLS-DA distributions appear to be skewed right.  
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Figure 4-13 Superimposed density plots of the permutation tests on the datasets of case study 1 

using PLS-DA and nonlinear (RBF) SVMs  

The figure provides a visual comparison of the permutation distributions when different classification 

models are applied on the datasets of case study 1; the distributions for PLS-DA and SVMs are 

depicted in a semi-transparent blue and red colour respectively. In these plots, the dashed lines 

represent the mean values of each density curve and are coloured accordingly. By superimposing the 

density plots, major differences in the shape, spread and location of the distributions can be identified.  
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 RBF SVMs 

Datasets 
Original 

%CC 

Mean 

Value 

Median 

Value 

Min 

Value 

Max 

Value 

Upper 

95%C.I. 

FTIR 62% 48 % 48% 45% 55% 51% 

HPLC 79% 48% 48% 45% 59% 51% 

E-NOSE 50% 47% 48% 43% 54% 51% 

FTIR & HPLC (GPA) 75% 47% 47% 44% 54% 50% 

FTIR & E-NOSE (GPA) 57% 48% 48% 45% 55% 51% 

HPLC & E-NOSE (GPA) 67% 48% 48% 44% 52% 50% 

ALL (GPA) 73% 48% 48% 43% 54% 51% 

FTIR & HPLC (CPCA) 72% 47% 47% 43% 55% 51% 

FTIR & E-NOSE (CPCA) 54% 48% 48% 44% 56% 51% 

HPLC&E-NOSE (CPCA) 76% 47% 47% 45% 56% 51% 

ALL (CPCA) 70% 48% 48% 44% 66% 52% 

Table 3 Descriptive statistics of the permutation distributions obtained by RBF SVMs  

(case study 1) 

The results presented in Table 1 have been rounded towards the nearest integer. 
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 PLS-DA 

Datasets 
Original 

%CC 

Mean 

Value 

Median 

Value 

Min 

Value 

Max 

Value 

Upper 

95%C.I. 

FTIR 63% 46% 45% 38% 60% 55% 

HPLC 80% 44% 44% 36% 57% 52% 

E-NOSE 44% 45% 44% 38% 58% 53% 

FTIR & HPLC (GPA) 75% 44% 43% 36% 62% 54% 

FTIR & E-NOSE (GPA) 59% 45% 44% 36% 57% 54% 

HPLC & E-NOSE (GPA) 66% 42% 42% 35% 62% 51% 

ALL (GPA) 72% 44% 43% 33% 60% 53% 

FTIR & HPLC (CPCA) 76% 45% 44% 38% 58% 53% 

FTIR & E-NOSE (CPCA) 57% 45% 44% 36% 57% 53% 

HPLC&E-NOSE (CPCA) 76% 44% 44% 38% 55% 52% 

ALL (CPCA) 73% 44% 44% 36% 56% 52% 

Table 4 Descriptive statistics of the permutation distributions obtained by PLS-DA (case study 1) 

The results presented in Table 2 have been rounded towards the nearest integer. 
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Figure 4-14 Boxplots representing the outcome of permutation testing when PLS-DA and RBF 

SVMs are applied on the datasets of case study 1 

The boxplots provide a powerful visual aid for a straightforward comparison of the descriptive 

statistics of a given permutation distribution. Each boxplot illustrates the “five-number summary”: 

namely, the minimum, first (lower) quartile, median, third (upper) quartile and maximum value.  

In addition, the observed non-permuted values are highlighted in a red colour. 
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4.4 Conclusion 

 

In this chapter, the functionality of the constructed multivariate analysis pipeline was 

once more extended to incorporate data integration techniques. Various approaches 

for the fusion of data from the analytical instruments have been evaluated in order to 

determine whether different instruments provide complementary information, which 

when brought together in an integrated analysis can provide a more reliable method 

for spoilage than single instruments. Generalised Procrustes Analysis (GPA) was the 

first data fusion technique to be investigated. The algorithm attempts to minimise the 

dissimilarities of the heterogeneous data by applying geometric transformations and 

simultaneous shape superimposition towards building a single consensus 

configuration. The alternative technique of consensus PCA (CPCA) was also 

implemented within the pipeline. The algorithm generates as an output a consensus 

scores matrix on the “super level”.  

 

Prior to permutation testing, no optimal classification method could be determined 

since the classification results of all different types of classifiers appeared to be 

equally good. However, in addition to verifying the statistical significance of the 

obtained results, the outcome of permutation testing clearly established SVMs as 

more powerful and robust techniques than PLS-DA since they consistently produced 

higher generalisation accuracies.  

 

The results obtained by GPA and CPCA were found to be greatly similar to each 

other, with the latter taking precedence in the weak cases presented by Procrustes. 

The     values obtained by the fused models were compared to the analysis results 

of the standalone datasets as presented in Chapter 2. For case study 1, HPLC as a 

standalone technique produced the best overall    , equal to 80%; in this instance, 

the results of both data integration techniques did not accomplish any improvement in 

the overall classification accuracy since they did not exceed the accuracy of 

standalone HPLC. However, these findings may only hold true for this particular case 

study, and thus the pipeline will be further applied on new real-world case studies as a 

means of establishing its generalisability.   
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5 Application of the multivariate analysis 
pipeline on new case studies 

 

 

5.1 Introduction 

 

Thus far, a novel suite of chemometric tools for the integration and analysis of highly 

heterogeneous analytical datasets has been designed, implemented and tested upon a 

single case study (“Shelf life beef fillets stored in air at 0, 5, 10, 15 and 20°C”). This 

chapter aims to verify the applicability of the constructed multivariate analysis 

pipeline on several independent case studies, and thus go some way to establishing 

the generic applicability of the developed tool suite. By reproducing the analyses and 

making the findings available through comprehensive comparison, we ensure that the 

implemented tool is representative of real-world application, and that it may be 

further employed by other scientists to studies and areas of inquiry far wider than the 

present study.   

 

5.2 Materials and Methods 

 

Thorough information about the experimental protocols of the new case studies can 

be found in Argyri (2010), Argyri et al. (2010), Argyri et al. (2011), Argyri et al. 

(2013) and Papadopoulou et al. (2011). The analytical techniques used in all case 

studies are the same as the ones of case study 1; besides Raman spectroscopy, the 

instruments’ technical specifications can be found in Section 2.2.1. In addition, 

sensory evaluation of the meat samples was performed according to Gill and Jeremiah 

(1991) as described in Section 2.2.2. Each designated class represents a distinct status 

of spoilage (fresh, semi-fresh and spoiled samples). The standalone and fused datasets 

of each case study under investigation were inserted in the implemented analysis 

pipeline according to Section 4.2.5. 
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5.2.1 Case study 2: “Shelf life of minced beef stored in air, MAP, and in 

active packaging at 0, 5, 10 and 15
o
C” 

 

5.2.1.1 Sample Preparation 

 

A detailed explanation of the experimental techniques and the methodology of case 

study 2 can be found in Argyri (2010) and Argyri et al. (2011). In brief, fresh minced 

beef (pH 5.5) was purchased from a meat market in Athens (Greece) and transported 

under refrigeration to the laboratory within 30 minutes, where it was stored at 1°C for 

1-2 hours. Two portions of 75 g were placed onto Styrofoam trays, where one was 

used for chemical and microbiological analysis, and the other for sensory assessment. 

Three packaging conditions were applied on the samples of minced beef: air, 

modified atmospheres (MAP) (40% CO2   30% O2   30% N2), and modified 

atmospheres with the presence of the volatile compounds of oregano essential oil 

(active packaging). Subsequently, the samples were stored in high precision 

incubation chambers under 0, 5, 10 and 15°C until spoilage was pronounced (intense 

discoloration and presence of off-odours). In case study 2, two analytical techniques 

were employed; namely, FTIR spectroscopy and HPLC.  

 

5.2.1.2 Fourier Transform Infrared Spectroscopy (FTIR) 

 

The spectrometer was programmed to collect spectra in the mid-IR range between 

4000 and 400cm
-1

. Out of the initial 1,869 variables, only the spectra that reveal the 

metabolic fingerprint of spoilage between the ranges of 1500 to 1000cm
-1

 were 

extracted and used for classification purposes. Thus, the final FTIR dataset consists of 

187 samples (with their replicates) and 259 variables. Based on the provided sensory 

scores, the 187 samples of FTIR consist of 66 fresh (F), 26 semi-fresh (SF) and 95 

spoiled (S) samples. Figure 5-1 shows the mean FTIR spectra of the samples of 

minced beef per each distinct class in the fingerprint region between 1500 and 1000 

cm
-1

. 
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Figure 5-1 Mean FTIR spectra for case study 2 in the fingerprint region (1500-1000 cm
-1

)
 

The plot depicts the mean FTIR spectra for the samples of shelf life minced beef (stored in air, MAP, 

and in active packaging at 0, 5, 10 and 15
o
C) per each distinct class. The spectral region between 1500 

and 1000cm
-1

 reveals the metabolic fingerprint of spoilage. Colour representation is used to identify the 

three classes as determined by the relevant sensory scores: fresh (red colour), semi-fresh (orange 

colour) and spoiled (green colour).  

 

5.2.1.3 High Throughput Liquid Chromatography (HPLC) 

 

In the case of HPLC, a total of 76 samples were analysed in duplicate. Based on the 

provided sensory scores, the 76 samples of HPLC consist of 26 fresh (F), 12 semi-

fresh (SF) and 38 spoiled (S) samples. 

 

5.2.1.4 Data Overview 

 

For each experimental technique, the total number of samples and variables as well as 

their data composition as described in the previous sections is summarised in Table 5. 
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Datasets FTIR HPLC 

Fresh (F) 66 26 

Semi-Fresh (SF) 26 12 

Spoiled (S) 95 38 

Total #Samples 187 76 

Total #Variables 1869 16 

Total #Variables (fingerprint region) 259 – 

Table 5 The sizes and data composition of standalone datasets from case study 2 prior to analysis 

 

5.2.2 Case study 3: “Survey of minced beef” 

 

5.2.2.1 Sample Preparation 

 

A detailed explanation of the experimental techniques and the methodology of case 

study 3 can be found in Argyri (2010, 2011, 2013). In brief, fresh minced beef (pH 

5.5) was purchased from a meat market in Athens (Greece) and transported under 

refrigeration to the laboratory within 30 minutes, where it was stored at 1°C for 1-2 

hours. Two portions of 75 g were placed onto Styrofoam trays, where one was used 

for chemical and microbiological analysis, and the other for sensory assessment. Two 

packaging conditions were applied on the meat samples of case study 3: air and 

modified atmospheres (MAP) (40% CO2   30% O2   30% N2). Subsequently, the 

samples were stored aerobically and under MAP at 5°C until spoilage was 

pronounced (intense discoloration and presence of off-odours). In case study 3, two 

analytical techniques were employed; namely, FTIR and Raman spectroscopy. 
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5.2.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 

 

Similar to case study 1, the FTIR dataset was generated from measurements based on 

a thin slice of the aerobic upper surface of the beef fillets that was excised and placed 

in intimate contact with the crystal (Argyri, 2010; Panagou et al., 2010; Argyri et al., 

2013). The spectrometer was programmed to collect spectra in the mid-IR range 

between 4000 and 400cm
-1

. Out of the initial 1,739 variables, only the spectra that 

reveal the metabolic fingerprint of spoilage, between the ranges of 1500 and  

1000cm
-1

, were extracted and used for classification purposes. Thus, the final FTIR 

dataset consists of 150 samples of minced beef with their replicates and 259 variables. 

Based on the provided sensory scores, the 150 samples of FTIR consist of 28 fresh 

(F), 52 semi-fresh (SF) and 70 spoiled (S) samples. Figure 5-2 shows the mean FTIR 

spectra of the samples of minced beef per each distinct class in the fingerprint region 

between 1500 and 1000 cm
-1

. 

 

 

Figure 5-2 Mean FTIR spectra for case study 3 in the fingerprint region (1500-1000 cm
-1

) 

The plot depicts the mean FTIR spectra of minced beef samples (stored aerobically and under MAP at 

5°C) per each distinct class. The spectral region between 1500 and 1000cm
-1

 reveals the metabolic 

fingerprint of spoilage. Colour representation is used to identify the three classes as determined by the 

relevant sensory scores: fresh (red colour), semi-fresh (orange colour) and spoiled (green colour). 
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5.2.2.3 Raman Spectroscopy 

 

Raman analysis was performed using a 633nm DeltaNu Advantage probe with a 

right-angled sampling attachment with the aperture positioned 16 mm above the 

surface of the meat sample delivering ~ 6 mW laser power (Argyri, 2010, 2013). The 

spectra were acquired over a Stokes Raman shift range between 200 and 3400 cm
-1

 at 

medium resolution (6 cm
-1

). The initial Raman dataset comprised 147 samples with 

their replicates and 1024 variables in total. Out of the initial spectral range, the spectra 

between the ranges of 400 to 1800cm
-1

 were extracted and used for classification 

purposes. Thus, the final Raman dataset consists of 147 samples and 450 variables in 

total. According to the provided sensory scores, the 147 samples of Raman consist of 

28 fresh (F), 49 semi-fresh (SF) and 70 spoiled (S) samples. Figure 5-3 shows the 

mean Raman spectra of the samples of minced beef per each distinct class in the 

region between 200 and 3400 cm
-1

. 

 

 

Figure 5-3 Mean Raman spectra for case study 3 in the range 200-3400 cm
-1

 

The plot depicts the mean spectra of minced beef samples (stored aerobically and under MAP at 5°C) 

per each distinct class. The spectral region between 400 and 1800cm
-1

 reveals the metabolic fingerprint 

of spoilage. Colour representation was used to identify the three classes as determined by the relevant 

sensory scores: fresh (red colour), semi-fresh (orange colour) and spoiled (green colour). 
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5.2.2.4 Data Overview 

 

For each experimental technique, the total number of samples and variables as well as 

their data composition as described in the previous sections is summarised in Table 6.  

 

 

Datasets FTIR Raman 

Fresh (F) 28 28 

Semi-Fresh (SF) 52 49 

Spoiled (S) 70 70 

Total #Samples 150 147 

Total #Variables 1739 1024 

Total #Variables (fingerprint region) 259 450 

Table 6 The sizes and data composition of standalone datasets from case study 3 prior to analysis 

 

5.2.3 Case study 4: “Pork stored in air and MAP” 

 

5.2.3.1 Sample Preparation 

 

A detailed explanation of the experimental techniques and the methodology of case 

study 4 can be found in Papadopoulou et al. (2011). In brief, fresh minced pork (pH 

5.6 – 5.8) was purchased right after grinding from a meat market in Athens (Greece) 

and transported under refrigeration to the laboratory within 30 minutes. Two portions 

of 50 g were placed onto Styrofoam trays, where one was used for chemical and 

microbiological analysis, and the other for sensory assessment. The samples were 

packaged and stored aerobically and under MAP in high precision incubators at 0, 5, 

10, and 15°C for up to 340 hours, until spoilage was pronounced (intense 

discoloration and presence of off-odours). In case study 4, three analytical techniques 

were employed; namely, FTIR spectroscopy, HPLC and e-nose. 
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5.2.3.2 Fourier Transform Infrared Spectroscopy (FTIR) 

 

Similar to the previous case studies, the spectrometer was programmed to collect 

spectra in the mid-IR range between 4000 and 400cm
-1

. Out of the initial 1,739 

variables, only the spectra that reveal the metabolic fingerprint of spoilage, between 

the ranges of 1500 and 1000cm
-1

, were extracted and used for classification purposes. 

The final FTIR dataset consists of 150 samples of minced beef with their replicates 

and 259 variables. Based on the provided sensory scores, the 150 samples of FTIR are 

classified into 18 fresh (F), 53 semi-fresh (SF) and 62 spoiled (S) samples. Figure 5-2 

shows the mean FTIR spectra of the pork samples per each distinct class in the 

fingerprint region between 1500 and 1000 cm
-1

. 

 

 

Figure 5-4 Mean FTIR spectra for case study 4 in the fingerprint region (1500-1000 cm
-1

) 

The plot depicts the mean FTIR spectra of pork samples (stored aerobically and under MAP at 0, 5, 10, 

and 15°C) per each distinct class. The spectral region between 1500 and 1000cm
-1

 reveals the 

metabolic fingerprint of spoilage. Colour representation is used to identify the three classes as 

determined by the relevant sensory scores: fresh (red colour), semi-fresh (orange colour) and spoiled 

(green colour). 
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5.2.3.3 High Throughput Liquid Chromatography (HPLC) 

 

In the case of HPLC, a total of 174 samples were analysed in duplicate. Based on the 

provided sensory scores, the 174 samples of HPLC consist of 26 fresh (F), 65  

semi-fresh (SF) and 83 spoiled (S) samples. 

 

5.2.3.4 Electronic nose (e-nose) 

 

In the case of e-nose, measurements of 90 samples (with their four replicates) using 

eight sensors were provided; based on the provided sensory scores, the 90 samples of 

e-nose consist of 18 fresh (F), 40 semi-fresh (SF) and 32 spoiled (S) samples. 

 

5.2.3.5 Data Overview 

 

For each experimental technique, the total number of samples and variables as well as 

their data composition as described in the previous sections is summarised in Table 7. 

 

 

Datasets FTIR HPLC e-nose 

Fresh (F) 18 26 18 

Semi-Fresh (SF) 53 65 40 

Spoiled (S) 62 83 32 

Total #Samples 133 174 90 

Total #Variables 468 17 8 

Total #Variables (fingerprint region) 259 – – 

Table 7 The sizes and data composition of standalone datasets from case study 4 prior to analysis 

 

5.2.4 The architecture 

 

The implemented multivariate analysis pipeline was tested on the new case studies on 

an Apple Mac Mini under the operating system Mac OS X version 10.8.2, running on 

a 2.3 GHz quad-core Intel Core i7 processor and 4 GB memory.  



 

 

 

 

 

121 

5.3 Results and Discussion 

 

5.3.1 Case study 2 

 

In case study 2 (“Shelf life of minced beef stored in air, MAP, and in active 

packaging at 0, 5, 10 and 15°C”), data have been acquired from two main 

experimental techniques: FTIR spectroscopy and high performance liquid 

chromatography (HPLC). The data intersection approach presented in Section 2.3.1 

extracted a total of 75 common samples along with their respective sensory scores, 

which were inserted in the analysis pipeline; these samples consist of 25 fresh (F), 12 

semi-fresh (SF) and 38 spoiled (S) samples. In this instance, the spoiled samples 

constitute the majority class, whereas the semi-fresh samples the minority class. 

  

Initially, PCA was applied on standalone pre-processed data for dimensionality 

reduction purposes in addition to investigating any underlying patterns in the data. 

The percentages of variance and cumulative variance for each experimental technique 

are presented in Table 8. In the case of FTIR, the first two PCs account for 99% of the 

variance. On the contrary, the HPLC data accumulate only 53.23% of the variance for 

the first three PCs, while at least five PCs are required to capture approximately 70% 

of the total variance. It is apparent that the percentages of variance and cumulative 

variance present a similar trend to the datasets of case study 1 (See Table 2) 

 

 

 FTIR HPLC 

PCs %Var  %Cum Var %Var  %Cum Var 

PC1 98.26 98.26 25.89 25.89 

PC2 0.83 99.09 14.12 40.01 

PC3 0.33 99.42 13.22 53.23 

PC4 0.21 99.63 9.22 62.45 

PC5 0.16 99.79 7.87 70.32 

Table 8 PCA proportion and cumulative variance captured for the datasets of case study 2 



 

 

 

 

 

122 

Figure 5-5 displays the PCA scores plots for the two datasets under study. Similar to 

Section 2.3.1, 95% confidence ellipses for each distinct class were added to the plot in 

order to highlight the density of the samples within a single class in addition to the 

formation of any clusters and/or outliers. In the case of FTIR, no distinct clusters can 

be identified since the different types of samples are notably overlapping; in addition, 

several outlying samples for each distinct class, which are located outside the 

confidence ellipses, can be identified in the plot. In addition, the first two PCs for 

HPLC do not demonstrate any well-defined clusters, however, they do provide a 

better separation between fresh and spoiled samples; in this instance, the number of 

overlapping samples is smaller than FTIR. 

 

Data integration of the datasets originating from FTIR and HPLC was performed 

using GPA and CPCA as described in Section 4.2.5. The geometrically transformed 

consensus of GPA is depicted in Figure 5-6. The outcome of CPCA – the super scores 

– is plotted along with the output of GPA. As can be concluded from the figure, both 

integrated datasets provide a relatively good separation between the fresh and spoiled 

samples with the exception of a miniscule of outliers. However, semi-fresh samples 

are once more overlapping in-between the other two classes.  
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(a) FTIR data 

 
(b) HPLC data 

Figure 5-5 PCA scores plots with 95% confidence ellipses for case study 2 

The two-dimensional scatterplots illustrate the scores of the first two PCs. Dynamically generated 95% 

confidence ellipses per each class were added in the plots in order to highlight the presence of any 

clusters and/or outliers. The colour representation used in the plot is similar to Figure 2-5. For 

comparison purposes, only the 75 common samples of shelf life minced beef (25 fresh, 12 semi-fresh 

and 38 spoiled samples) are depicted in each plot.  
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(a) GPA 

 

(b) CPCA 

Figure 5-6 The consensus of the first two Principal Components based on the fusion of the two 

experimental techniques from case study 2 using GPA and CPCA respectively 

The consensus of GPA is compared against the super-scores of CPCA in two-dimensional space 

(scores of the first two PCs). It is obvious that the most discriminative experimental technique (HPLC) 

has influenced the outcome of the data fusion by providing good separation between fresh and spoiled 

samples.    
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The classification results of the standalone and integrated datasets of case study 2 are 

presented in Figure 5-7 as percentages of correctly classified samples (   ). In the 

case of FTIR, the overall accuracy obtained by the RBF SVMs is extremely low 

compared to the other two linear techniques. It can be therefore concluded that the 

projection of the data into a high dimensional space by the kernel-based SVM is 

unsuitable in this instance. On the contrary, PLS-DA achieves 66%, the highest 

overall accuracy among the three techniques; as stated in Section 1.5.2, this result is 

justified by the fact that PLS-DA uses all available samples instead of a limited 

number of samples (the support vectors) to create the separation boundaries (Boser et 

al., 1992; Brereton et al., 2009; Smolinska et al., 2012); thus, it is less prone to be 

dominated by the majority class and the highly imbalanced classes. Furthermore, 

when the FTIR data were subjected to PCA, the overall accuracy of PLS-DA 

increased by 3% and by at least 10% in the case of SVMs. Even though PCA notably 

enhances the overall performance of all implemented classifiers, linear SVMs once 

more take the lead among the three classification ensembles. 

 

Both linear and RBF SVMs produce an overall accuracy equal to 71% for the HPLC 

data, which is significantly higher than the overall accuracy of 67% obtained by  

PLS-DA. According to Section 1.5.2.3, the performance of a nonlinear SVM can be at 

least as good as the linear SVM (Boser et al., 1992; Keerthi and Lin, 2003; Hsu et al., 

2003; Chang et al., 2010); thus, suitable combinations of the RBF hyperparameters (  

and  ) have formed boundaries that tend towards linearity and hence result in equal 

overall accuracies between the linear and nonlinear SVMs (Figure 5-7). In addition, 

the application of PCA has proven extremely fruitful in the case of nonlinear SVMs, 

where the highest recorded accuracy, equal to 73%, is observed.  

 

For case study 2, data integration was not as fruitful as expected. The documented 

    achieved by both GPA and CPCA do not exceed the highest recorded accuracy 

of 73% by standalone HPLC. However, in the case of CPCA and the linear classifiers 

(PLS-DA and linear SVMs), the overall accuracies of the integrated datasets are at 

least as good as those acquired by the standalone datasets. In the case of GPA, all 

results for the integrated dataset are lower than those of the individual datasets. This 
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observation confirms that indeed CPCA is a better data fusion technique compared to 

GPA. 

 

 

Figure 5-7 Overall accuracies (%CC) for the standalone and integrated datasets of case study 2 

The figure illustrates the overall performance of all implemented classification ensembles on the 

standalone and integrated datasets of case study 2. The bars represent the percentages of correctly 

classified samples (%CC) and are coloured according to the classification model under study (PLS-DA, 

linear and RBF SVMs). In the case of standalone datasets, analyses have been conducted both prior 

(raw data) and after PCA. Data integration has been performed using both Generalized Procrustes 

Analysis (GPA) and Consensus PCA (CPCA). In all implemented classifiers, bootstrapping was 

applied for hyperparameter optimisation. The overall accuracies have been rounded towards the nearest 

integer. 
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As established thus far, assessing the performance of a classifier solely based on the 

overall accuracies may be occasionally misleading. A closer inspection of the class 

predictions may reveal significant differences in the classifiers’ ability to discriminate 

the individual classes. The class rates for the datasets of case study 2 are depicted in 

Figure 5-8. Based on the graphs, the class predictions of fresh and semi-fresh samples 

in the case of PLS-DA and linear SVMs verify that the FTIR present higher 

accuracies for linear classifiers; on the contrary, as expected, the nonlinear SVMs 

strongly favour the majority class (spoiled samples), while the predictions of the 

minority class (semi-fresh samples) are equal to 0%. It is noteworthy that the 

application of PCA on the FTIR dataset provides a better separation of the data since 

the accuracies of fresh samples improve by at least 5% for the linear classifiers and by 

50% for the nonlinear classifiers. Even so, the percentages of correctly classified 

semi-fresh samples remain relatively low. Prior to PCA, the HPLC data generate 

considerably higher class accuracies than FTIR, with equally good predictions for 

fresh and spoiled samples. Both linear and nonlinear SVMs demonstrate higher class 

rates for the majority class compared to PLS-DA; this suggests that the SVM 

boundaries are strongly skewed towards the minority class (semi-fresh samples) due 

to the disproportionate class ratios. Once the data are subjected to PCA, the class 

accuracies of spoiled samples increase by at least 10% leading to an excessively high 

rate of 95%. However, it is interesting to note that the percentages of fresh and semi-

fresh samples decrease markedly, with only the exception of PLS-DA that retains 

good class predictions.  

 

In the majority of cases, the integrated dataset obtained by GPA produces lower class 

accuracies than those by the standalone techniques. In this instance, PLS-DA 

produces equally good accuracies for fresh and spoiled samples, while the SVMs are 

clearly dominated by the majority class. On the contrary, the CPCA algorithm 

achieved notable predictions for the fresh samples, which are significantly higher than 

those of the standalone techniques. In addition, the low accuracies of the semi-fresh 

samples improved, while the prediction rates of spoiled samples remained stable. 

Thus, we can conclude that CPCA minimises the negative impact of highly 

imbalanced datasets by combining the strongest assets of the individual origins, such 

as HPLC. 
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Figure 5-8 Class prediction rates of the standalone (prior and after PCA) and integrated datasets for case study 2 

The figure illustrates the percentages of correctly classified samples per each distinct class, when the standalone and integrated datasets of case study 2 are imported into the 

analysis pipeline. The class predictions are compared in respect to the standalone and fused techniques, and classification models. Based on the graph, it is apparent that  

semi-fresh samples are consistently difficult to predict.  
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In order to acquire statistical confidence in the obtained results, permutation testing 

was applied on the standalone and integrated datasets of case study 2 using RBF 

SVMs and PLS-DA. According to Figure 5-9, for all experimental data under study, 

when either linear or nonlinear classifiers are employed, the initial non-permuted 

overall accuracies (   ) are found well above the 95% confidence values; more 

specifically, the percentages of correctly classified samples (   ) are even greater 

than the 99% confidence intervals. For all instances, the  -values are equal to 0.01.  

 

Similar to the permutation results of case study 1, RBF SVMs and PLS-DA 

demonstrate great differences in their permutation distributions. Based on Figure 5-10 

and Figure 5-11, PLS-DA covers wider ranges (larger spread) and greater variability 

than SVMs; once more, the lowest and highest permuted values are recorded for PLS-

DA. On the contrary, the SVM distributions demonstrate a smaller spread and hence 

greater consistency in the results. In addition, based on the entries of Table 9 and 

Table 10, the permutations of the nonlinear SVMs present a higher mean and median 

(higher centre) than PLS-DA. Thus, we can conclude that the RBF SVMs constitute 

more powerful classifiers in comparison to the PLS-DA models since they generate 

consistently higher classification accuracies. Currently, permutation testing (100 

independent permutation tests) for a single dataset is completed within a few hours, as 

illustrated in Figure 5-12.  
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(a) RBF SVMs 

 
(b) PLS-DA 

Figure 5-9 Distribution plots of the permutation tests on the datasets of case study 2 using RBF 

SVMs and PLS-DA respectively 

The figure depicts the histograms and density curves of the permuted results for the RBF SVMs and 

PLS-DA ensembles respectively, when applied on the datasets of case study 2. The red vertical lines 

highlight the original non-permuted overall accuracies (%CC). In addition, the dashed purple lines 

indicate the 95% confidence intervals. In all instances, the non-permuted results are observed well 

above the 95% confidence intervals, thus the original results are confirmed as statistically significant. 
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Figure 5-10 Superimposed density plots of the permutation tests on the datasets of case study 2 

using PLS-DA and nonlinear (RBF) SVMs  

The figure provides a visual comparison of the permutation distributions when different classification 

models are applied on the datasets of case study 2; the distributions for PLS-DA and SVMs are 

depicted in a semi-transparent blue and red colour respectively. In these plots, the dashed lines 

represent the mean values of each density curve and are coloured accordingly. By superimposing the 

density plots, major differences in the shape, spread and location of the distributions can be identified.  
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 RBF SVMs 

Datasets 
Original 

%CC  

Mean 

Value 

Median 

Value 

Min 

Value 

Max 

Value 

Upper 

95%C.I. 

FTIR 69% 51% 51% 49% 53% 52% 

HPLC 73% 51% 51% 48% 56% 53% 

FTIR & HPLC (GPA) 70% 51% 51% 48% 55% 53% 

FTIR & HPLC (CPCA) 70% 50% 50% 49% 53% 52% 

Table 9 Descriptive statistics of the permutation distributions obtained by RBF SVMs (case  

study 2) 

The results presented in Table 5 have been rounded towards the nearest integer. 

 

 

 PLS-DA 

Datasets 
Original 

%CC 

Mean 

Value 

Median 

Value 

Min 

Value 

Max 

Value 

Upper 

95%C.I. 

FTIR 67% 48% 48% 43% 55% 53% 

HPLC 68% 49% 48% 44% 57% 54% 

FTIR & HPLC (GPA) 67% 49% 48% 43% 56% 54% 

FTIR & HPLC (CPCA) 70% 49% 49% 43% 55% 54% 

Table 10 Descriptive statistics of the permutation distributions obtained by PLS-DA (case study 

2) 

The results presented in Table 6 have been rounded towards the nearest integer. 
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Figure 5-11 Boxplots representing the outcome of permutation testing when RBF SVMs and 

PLS-DA are applied on the datasets of case study 2 

The boxplots provide a powerful visual aid for a straightforward comparison of the descriptive 

statistics of a given permutation distribution. Each boxplot illustrates the “five-number summary”: 

namely, the minimum, first (lower) quartile, median, third (upper) quartile and maximum value. In 

addition, the observed non-permuted values are highlighted in a red colour. 
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Figure 5-12 Execution times of the permutation tests on the datasets of case study 2 

The figure displays the execution times of 100 permutation tests using PLS-DA and RBF SVMs for 

each standalone and integrated dataset of case study 2. The execution times are based on a fully 

optimised analysis pipeline featuring parallel programming (master/slave architecture) over eight 

processors (see Section 5.2.4) as well as fast approximation algorithms for the optimisation of the 

classifiers’ hyperparameters via bootstrapping. The execution times have been rounded towards the 

nearest integer.  

 

5.3.2 Case study 3  

 

In case study 3 (“Survey of minced beef”), data have been acquired from two 

analytical techniques: FTIR and Raman spectroscopy. The data intersection approach 

presented in Section 2.2.2 extracted a total of 147 common samples along with their 

respective sensory scores, which were imported into the analysis pipeline; these 

samples consist of 28 fresh (F), 49 semi-fresh (SF) and 70 spoiled (S) samples. In this 

instance, the spoiled samples constitute the majority class, whereas fresh samples the 

minority class. It is crucial to note that this dataset is highly imbalanced with ratios 

that strongly favour the spoiled samples. As a result, these disproportionate class 

distributions may profoundly influence the performance of the classifiers.   
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PCA was applied for dimensionality reduction and feature extraction purposes on 

each of the standalone pre-processed data. The percentages of variance and 

cumulative variance are presented in Table 11. In the case of Raman, the first two PCs 

account for nearly 100% of the variance. Similarly, the FTIR data explain 97% of the 

total variance for the first three PCs. Thus, the data can be graphically represented 

using only the first two or three PCs without loosing any valuable information. The 

scores plots of PCA for the two analytical techniques are depicted in Figure 5-13.  In 

both cases, no obvious clusters or any type of visual discrimination is noted between 

the different classes. The samples of both FTIR and Raman are widely scattered and 

highly overlapping. Since both datasets require only the first three PCs to reach at 

least 97% of the variance, the following PCs will not have much discriminative 

information to add.  

 

In addition to the standalone datasets, data integration was also performed on the 

experimental techniques of case study 3 according to Section 4.2.5 and Section 5.3.1. 

A graphical comparison of the consensus as generated by GPA and CPCA 

respectively is displayed in Figure 5-14. As with standalone data, the fused datasets 

do not demonstrate any obvious separation between the fresh, semi-fresh and spoiled 

samples. On the contrary, the samples overlap, while several outliers are present. 

Thus, we can assume that linear supervised learning techniques may fail at 

discriminating the different classes, while nonlinear methods may prove to be more 

suitable in this instance.  

 

 

 FTIR Raman 

PCs %Var  %Cum Var %Var  %Cum Var 

PC1 80.61 80.61 98.35 98.35 

PC2 14.60 95.21 1.25 99.60 

PC3 2.08 97.29 0.32 99.92 

PC4 0.86 98.15 0.07 99.99 

PC5 0.61 98.76 0.01 100 

Table 11 PCA proportion and cumulative variance captured for the datasets of case study 3 
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(a) FTIR data 

 
(b) Raman data 

Figure 5-13 PCA scores plots with 95% confidence ellipses for case study 3 

The two-dimensional scatterplots illustrate the scores of the first two PCs. Dynamically generated 95% 

confidence ellipses per each class were added in the plots in order to highlight the presence of any 

clusters and/or outliers. The colour representation used in the plot is similar to Figure 2-5. For 

comparison purposes, only the 147 common samples of minced beef (28 fresh, 49 semi-fresh and 70 

spoiled samples) are depicted in each plot.  
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(a) GPA 

 

 

(b) CPCA 

Figure 5-14 The consensus of the first two Principal Components based on the fusion of the two 

experimental techniques from case study 3 using GPA and CPCA respectively 

The consensus of GPA is compared against the super-scores of CPCA in two-dimensional space (the 

scores of the first two PCs are used). In both cases, the data integration does not improve the separation 

between the distinct classes. Similar to the standalone datasets, the three classes are highly overlapping.  
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The classification results for the datasets of case study 3 are presented in Figure 5-15 

as percentages of correctly classified samples (   ). The overall accuracies of 

standalone and integrated datasets for both linear and nonlinear classifiers range from 

a minimum of 46% to a maximum of 48%. Therefore, we can conclude that the 

performance of all implemented classification models is equally poor. 

 

This is a case where the highly imbalanced data have profoundly affected the decision 

boundaries of both linear and nonlinear models. Thorough empirical testing by 

Chawla et al. (2002) and Liu et al. (2006) has established that the SVM boundaries 

become biased as the imbalance ratios increase. In case study 3, the disproportionate 

data composition has had a profound effect on the classifiers’ decision boundaries – 

even the boundaries by PLS-DA – hence it has dramatically influenced the overall 

performances. The class predictions of Figure 5-16 verify that the decision boundaries 

are indeed biased towards the majority class, whereas the ratios of misclassifications 

for the other two classes are significantly high. Only PLS-DA for the FTIR data 

presents low, but notably better class predictions for the fresh and spoiled samples 

compared to SVMs. Since the majority of fresh and semi-fresh samples are 

misclassified as spoiled, we can firmly conclude that the classification models have 

no discriminating power between the different classes. 

 

As an attempt to minimise the dominating behaviour of the majority class, the 

classification models were re-built using different weights for each designated class 

during the training and testing process; however, this approach did not notably 

improve the classification results. Therefore, several other approaches such as  

under-sampling of the majority class and/or over-sampling of the minority class may 

help to overcome this major impediment of the machine learning algorithms. 
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Figure 5-15 Overall accuracies (%CC) for the standalone and integrated datasets of case study 3 

The figure illustrates the overall performance of all implemented classification ensembles on the 

standalone and integrated datasets of case study 3. The bars represent the percentages of correctly 

classified samples (%CC) and are coloured according to the classification model under study (PLS-DA, 

linear and RBF SVMs). In the case of standalone datasets, analyses have been conducted both prior 

(raw data) and after PCA. Data integration has been performed using both GPA and CPCA. In all 

implemented classifiers, bootstrapping was applied for hyperparameter optimisation. The overall 

accuracies have been rounded towards the nearest integer. 
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Figure 5-16 Class prediction rates of the standalone (prior and after PCA) and integrated datasets for case study 3 

The figure illustrates the percentages of correctly classified samples per each distinct class, when the standalone and integrated dataset of case study 3 are imported in the 

analysis pipeline. Based on the results of the graphs, it is obvious that the decision boundaries are biased towards the majority class (spoiled samples), resulting in high 

prediction rates for this class and very low per-class accuracies for the other two classes (fresh and semi-fresh samples). 
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Finally, the outcome of rigorous permutation testing on the datasets of case study 3, 

as presented in Figure 5-17, has confirmed that all the obtained classification results 

are statistically non-significant. The results do not inspire any confidence since all the 

original non-permuted values are found below the 95% confidence intervals. Since 

the initial overall accuracies are equal to the results of random (permuted) classifiers, 

we can conclude that the models have no discriminating power between the different 

classes, and hence the null hypothesis cannot be rejected. The  -values range between 

0.03 and 0.1 for the nonlinear SVMs, and between 0.23 and 0.57 for the PLS-DA 

models.  

 

Even though the permutation tests established the performance of the classifiers as 

non-significant, RBF SVMs did once more demonstrate higher results than PLS-DA. 

This is obvious by a closer inspection of the superimposed density estimations of 

Figure 5-18 in addition to the “five-number summary” of Figure 5-19, while Table 12 

and Table 13 provide the supporting descriptive statistics. In addition, the afore-

mentioned  -values also verify this hypothesis. It is important to note that the 

observed values in the case of SVMs are found closer to the upper 95% confidence 

bounds than the respective values in PLS-DA. In certain cases such as the Raman 

dataset for the RBF SVMs, the non-permuted     is so close to the upper 95% 

confidence interval that is it only rejected due to some minor decimal differences.  

 

Finally, the execution times for all permutation tests of case study 3 are illustrated in 

Figure 5-20. Even though, the run times for the permutations of nonlinear SVMs are 

approximately 16 times slower than those of PLS-DA, we have proved that SVMs 

produce consistently better classification results than PLS-DA, even if they appear to 

be non-significant.  
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(a) RBF SVMs 

 
(b) PLS-DA 

Figure 5-17 Distribution plots of the permutation tests on the datasets of case study 3 using RBF 

SVMs and PLS-DA respectively 

The figure depicts the histograms and density curves of the permuted results for the RBF SVMs and 

PLS-DA ensembles respectively, when applied on the datasets of case study 3. In this case, all  

non-permuted results are found lower than the upper 95% confidence bounds; thus, they are considered 

statistically non-significant. For all the datasets under study, the red highlighted area represents the 

proportion of the distribution that is equal or greater than the observed non-significant value. 
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Figure 5-18 Superimposed density plots of the permutation tests on the datasets of case study 3 

using PLS-DA and nonlinear (RBF) SVMs  

The figure provides a visual comparison of the permutation distributions when different classification 

models are applied on the datasets of case study 3; the distributions for PLS-DA and SVMs are 

depicted in a semi-transparent blue and red colour respectively. In these plots, the dashed lines 

represent the mean values of each density curve and are coloured accordingly. By superimposing the 

density plots, major differences in the shape, spread and location of the distributions can be identified.  
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 RBF SVMs 

Datasets 
Original 

%CC 

Mean 

Value 

Median 

Value 

Min 

Value 

Max 

Value 

Upper 

95%C.I. 

FTIR 48% 48% 47% 46% 51% 49% 

RAMAN 48% 48% 47% 47% 49% 48% 

FTIR & RAMAN (GPA) 48% 48% 48% 47% 50% 48% 

FTIR & RAMAN (CPCA) 48% 48% 48% 47% 48% 48% 

Table 12 Descriptive statistics of the permutation distributions obtained by RBF SVMs  

(case study 3) 

The results presented in Table 8 have been rounded towards the nearest integer. 

 

 

 PLS-DA 

Datasets 
Original 

%CC 

Mean 

Value 

Median 

Value 

Min 

Value 

Max 

Value 

Upper 

95%C.I. 

FTIR 47% 46% 46% 44% 52% 49% 

RAMAN 48% 47% 47% 45% 53% 49% 

FTIR & RAMAN (GPA) 46% 46% 46% 44% 52% 49% 

FTIR & RAMAN (CPCA) 46% 46% 46% 44% 52% 49% 

Table 13 Descriptive statistics of the permutation distributions obtained by PLS-DA  

(case study 3) 

The results presented in Table 9 have been rounded towards the nearest integer. 
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Figure 5-19 Boxplots representing the outcome of permutation testing when RBF SVMs and 

PLS-DA are applied on the datasets of case study 3 

The boxplots provide a powerful visual aid for a straightforward comparison of the descriptive 

statistics of a given permutation distribution. Each boxplot illustrates the “five-number summary”: 

namely, the minimum, first (lower) quartile, median, third (upper) quartile and maximum value. In 

addition, the observed non-permuted values are highlighted in a red colour. 
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Figure 5-20 Execution times of the permutation tests on the datasets of case study 3 

The figure displays the execution times of 100 permutation tests using PLS-DA and RBF SVMs for 

each standalone and integrated dataset of case study 3. The execution times are based on a fully 

optimised analysis pipeline featuring parallel programming (master/slave architecture) over eight 

processors (see Section 5.2.4) as well as fast approximation algorithms for the optimisation of the 

classifiers’ hyperparameters via bootstrapping. The execution times have been rounded towards the 

nearest integer.  

 

5.3.3 Case study 4 

 

In case study 4 (“Pork stored in air and MAP”), data have been acquired from three 

main experimental techniques: FTIR, HPLC and e-nose. The data intersection 

approach presented in Section 2.2.2 extracted a total of 70 common samples along 

with their respective sensory scores, which were inserted in the analysis pipeline; 

these samples consist of 13 fresh (F), 31 semi-fresh (SF) and 26 spoiled (S) samples; 

therefore, unlike the afore-mentioned case studies, the semi-fresh – and not the 

spoiled – samples constitute the majority class, whereas the fresh samples represent 

the minority class.  
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PCA was once more employed as the initial step on pre-processed standalone 

datasets. The percentages of variance and cumulative variance for each experimental 

technique of case study 4 are presented in Table 14. The entries of Table 14 

demonstrate a similar trend to case study 1 (see Table 2). Figure 5-21 illustrates the 

PCA scores plots for case study 4. Both FTIR and e-nose data do not demonstrate any 

clustering or visible separation between the different classes. However, HPLC 

demonstrates two well-defined clusters for the fresh and spoiled samples respectively, 

which are linearly separable in two-dimensional space. In this instance, a subset of the 

semi-fresh samples is starting to form a distinct cluster with the remaining samples 

overlapping with the other two classes.  

 

The outcome of the implemented data integration techniques is depicted in Figure 

5-22. The figure is indicative of the data fusion for the datasets of case study 4, and is 

based on the simultaneous integration of all three experimental techniques. In this 

case, the consensus by GPA provides a nearly linear discrimination between fresh and 

spoiled samples, while the semi-fresh samples that constitute the majority class are 

scattered in-between the two classes. On the contrary, the super scores of consensus 

PCA do not reveal any patterns or trends in the data; the fresh, semi-fresh and spoiled 

samples are highly overlapping. In this instance, the projection of the data into a high-

dimensional space by kernel-based SVMs may prove to be fruitful. 

 

 

 FTIR HPLC e-nose 

PCs  %Var  %Cum Var %Var  %Cum Var %Var  %Cum Var 

PC1 62.68 62.68 29.85 29.85 86.95 86.95 

PC2 23.35 86.03 15.62 45.47 8.56 95.51 

PC3 8.07 94.10 11.60 57.07 1.46 96.97 

PC4 2.82 96.92 8.61 65.68 1.04 98.01 

PC5 1.01 97.93 6.90 72.58 0.93 98.94 

Table 14 PCA proportion and cumulative variance captured for the datasets of case study 4 
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(a) FTIR data 

 

(b) HPLC data 
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(c) e-nose data 

Figure 5-21 PCA scores plots with 95% confidence ellipses for case study 4 

The two-dimensional scatterplots illustrate the scores of the first two PCs for the auto-scaled data of 

case study 4. Dynamically generated 95% confidence ellipses per each class were added in the plots in 

order to highlight the presence of any clusters and/or outliers. The colour representation used in the 

plot is similar to Figure 2-5. For comparison purposes, only the 70 common samples of pork (13 fresh, 

31 semi-fresh and 26 spoiled samples) are depicted in each plot.  
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(a) GPA 

 

 

(b) CPCA 

Figure 5-22 The consensus of the first two Principal Components based on the fusion of the two 

experimental techniques of case study 4 using GPA and CPCA respectively 

The consensus of GPA is compared against the super-scores of CPCA in two-dimensional space (the 

first two PCs are used). In both cases, the data integration does not improve the separation between the 

distinct classes.  
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The classification results of the standalone and integrated datasets of case study 4 are 

displayed in Figure 5-23 and Figure 5-24 respectively as percentages of correctly 

classified samples (   ). Once more, the HPLC data (prior and after PCA) clearly 

demonstrate the highest overall accuracies among the three experimental techniques. 

In addition, the data appear to be favoured by nonlinear SVMs, for which the highest 

overall    , equal to 78%, is recorded. On the contrary, the results of the linear 

classifiers, and in particular those of PLS-DA, are significantly lower. Obviously, the 

nonlinear mapping into a high dimensional space by the kernel-based SVMs has been 

extremely fruitful in this instance.  

 

In the case of FTIR, similar to the previous case studies, linear classifiers (PLS-DA 

and linear SVMs) demonstrate higher overall accuracies (   ) compared to 

nonlinear SVMs both prior and after the application of PCA. Indeed, the spectral data 

appear to be extremely easy to separate by linear models and especially by traditional 

chemometric techniques such as PLS-DA; detailed information to support this theory 

can be found in Section 4.3.2.1. Therefore, the nonlinear projection of the FTIR data 

into a high-dimensional space by the RBF kernel has been found unsuitable. 

 

Finally, the e-nose data that have been subjected to PCA, result in significantly higher 

    according to Figure 5-23. However, the PLS-DA models demonstrate better 

overall performance compared to the remaining classifiers. Since both types of SVMs 

produce a lower accuracy comparing to PLS-DA, we can only assume that the 

background of SVMs is the underlying cause for this result; as presented in Section 

1.5.2.1, PLS-DA constructs the decision boundaries using all available samples as a 

whole, whereas the decision boundaries of the SVMs are solely based on the selection 

of support vectors. Thus, in the case of imbalanced datasets, the decision boundaries 

may favour the majority classes, while overlooking the minority classes. A thorough 

investigation of the class predictions may help towards justifying this hypothesis. 

Even so, the generalisation performance of e-nose is quite poor as it generates the 

lowest accuracies among the three experimental techniques.  
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The classification results of the fused datasets as obtained by GPA and CPCA are 

illustrated in Figure 5-24. Based on the plots, it is noteworthy that in all cases, the 

linear classifiers produce higher overall accuracies than nonlinear SVMs. Since the 

standalone datasets were mostly favoured by linear classification models, it was 

expected that the integrated datasets would demonstrate a similar pattern.  

 

For the GPA algorithm, PLS-DA and linear SVMs produce exactly the same results in 

the majority of cases, while the nonlinear SVMs demonstrate significantly lower 

accuracies. Even so, since all the     values of the fused datasets are lower than 

those presented by the standalone datasets, the application of GPA as a data 

integration technique has been found unfruitful for case study 4 

 

However, the application of CPCA has produced the best results observed thus far; in 

this instance, the maximum noted overall accuracy is equal to 82%, which is 

significantly higher than the maximum accuracy provided by standalone HPLC, equal 

to 78%. In general, linear classifiers demonstrate greater performance, with the linear 

SVMs taking the lead in the majority of cases. In addition, the nonlinear SVMs 

produce at least as good results as one of the other two classification techniques.  It 

appears that CPCA clearly improves the outcome of data integration by combining 

the most discriminatory features of the individual experimental techniques, and hence 

overcomes the limitations of GPA.  
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Figure 5-23 Overall accuracies (%CC) for the standalone datasets of case study 4 

The figure illustrates the overall performance of all implemented classification ensembles on the 

standalone datasets of case study 4. The bars represent the percentages of correctly classified samples 

(%CC) and are coloured according to the classification model under study (PLS-DA, linear and RBF 

SVMs). Analyses have been conducted both prior (raw data) and after PCA. In all implemented 

classifiers, bootstrapping was applied for hyperparameter optimisation. The overall accuracies have 

been rounded towards the nearest integer. 
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Figure 5-24 Classification Results for the integrated datasets of case study 4 

The figure illustrates the overall performance of all implemented classification ensembles on the 

integrated datasets of case study 4. The bars represent the percentages of correctly classified samples 

(%CC) and are coloured according to the classification model under study (PLS-DA, linear and RBF 

SVMs). Data integration has been performed using both GPA and CPCA. In all implemented 

classifiers, bootstrapping was applied for hyperparameter optimisation. The overall accuracies have 

been rounded towards the nearest integer. 
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In addition to the overall accuracies, the per-class percentages of correctly classified 

samples for the standalone and integrated datasets of case study 4 are depicted in 

Figure 5-25 and Figure 5-26 respectively. As expected, since semi-fresh (SF) samples 

constitute the majority class in this case study, they obtain noteworthy class 

accuracies – all well above 50% throughout all experimental techniques and 

classification models – in comparison to the SF prediction rates of the previous case 

studies. The HPLC data prior to PCA generate the best prediction rates among fresh, 

semi-fresh and spoiled samples, with exceptional percentages for the fresh samples, 

which represent the minority class. However, once the data are subjected to PCA, the 

outstanding accuracies of correctly classified fresh samples decrease, while the 

accuracies of spoiled samples increase. In addition, the class accuracies for the 

majority class (semi-fresh samples) increase for the PLS-DA classifiers while they 

decrease for the SVMs.  

 

In addition, the FTIR and e-nose data demonstrate a similar pattern; the classifiers 

produce equally good class accuracies for the semi-fresh and spoiled samples – the 

two larger sets of classes in this case study. However, the decision boundaries are 

unable to correctly discriminate the samples of the minority class (fresh samples), 

thus resulting in poor prediction rates. In the majority of cases, PLS-DA illustrated 

higher prediction rates per class than SVMs.  

 

Furthermore, for all fused datasets in this case study, the class accuracies as obtained 

by GPA underperform when compared to the results by CPCA. It is important to note 

that the data fusion by GPA strongly favours the spoiled samples even though the 

semi-fresh samples constitute the majority class in this case study. We can thus 

conclude that the data integration based on GPA does not produce as fruitful results as 

expected, and hence is found unfit. On the contrary, the CPCA algorithm achieved 

outstanding classification rates for the fresh samples, which are higher than those of 

the standalone datasets. In addition, the accuracies of the semi-fresh and spoiled 

samples are also enhanced, especially in the case of SVMs, with linear SVMs taking 

once more the lead among the other classifiers. Thus, we can conclude that CPCA 

minimises the dominance of weak instrumental techniques, while it enhances the 

integration outcome by combining the strongest assets of the individual origins. 
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Figure 5-25 Class prediction rates of the standalone (prior and after PCA) datasets for case study 4 

The figure illustrates the percentages of correctly classified samples per each distinct class, when the standalone datasets of case study 4 are imported in the analysis pipeline. 

It is noteworthy that even though the semi-fresh samples constitute the majority class in this instance, the class prediction rates of spoiled samples appear to be equally good.  
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Figure 5-26 Class prediction rates of the integrated datasets for case study 4 

The figure illustrates the percentages of correctly classified samples per each distinct class, when the integrated datasets of case study 4 are imported in the analysis pipeline. 

Data fusion was performed using GPA and CPCA. It is noteworthy that CPCA produces significantly higher percentages of correctly classified fresh samples (the minority 

class) than GPA.  
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The permutation results for the datasets of case study 4 using RBF SVMs and  

PLS-DA are illustrated in the histograms of Figure 5-27 and Figure 5-28 respectively. 

For most experimental data under study, the non-permuted overall accuracies are 

found well above the 95% confidence values; in particular, the majority of  

non-permuted results are even greater than the 99% confidence intervals. Thus, the 

application of permutation testing has confirmed that all obtained classification results 

by RBF SVMs are indeed statistically significant. Furthermore, in the case of PLS-

DA, all overall accuracies besides the one obtained by e-nose were also established as 

significant. However, the non-permuted value of the e-nose dataset, which is equal to 

49%, was found bellow the upper bound of the 95% confidence interval; therefore, 

the result can be ascribed purely to chance and the null hypothesis cannot be rejected. 

However, it is noteworthy that the observed classification accuracy for the e-nose data 

is found extremely close to the upper 95% confidence bound; even so, the  

non-permuted     is established as non-significant.  

 

In addition, based on the superimposed density curves of Figure 4-13 and the boxplots 

of Figure 5-30, it is obvious once more that the density estimations of the two 

classifiers obtain completely different distributions and spread. Table 3 and Table 4 

summarise the most important descriptive statistics of these distributions. As with 

case study 1 (see Section 4.3.3), we can conclude that the RBF SVMs constitute more 

powerful classifiers in comparison to the PLS-DA models since they generate 

consistently better results. 

 

Finally, the execution times for all permutation tests of case study 4 are illustrated in 

Figure 5-31. Once more thorough permutation testing, which consists of 100 

individual permutation tests, is completed only within a few hours. 
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Figure 5-27 Distribution plots of the permutation tests on the datasets of case study 4 using RBF 

SVMs  

The figure depicts the histograms and density curves of the permuted results for the RBF SVMs, when 

applied on the datasets of case study 4. The outcome of permutation testing for the datasets of case 

study 4 verifies that all of the obtained overall accuracies are statistically significant.  
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Figure 5-28 Distribution plots of the permutation tests on the data of case study 4 using PLS-DA 

The figure depicts the histograms and density curves of the permuted results for the PLS-DA 

ensembles, when applied on the datasets of case study 4. In the case of e-nose, the red highlighted area 

represents the proportion of the distribution that is equal or greater than the observed non-significant 

value.  
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Figure 5-29 Superimposed density plots of the permutation tests on the datasets of case study 4 

using PLS-DA and nonlinear (RBF) SVMs  

The figure provides a visual comparison of the permutation distributions when different classification 

models are applied on the datasets of case study 4; the distributions for PLS-DA and SVMs are 

depicted in a semi-transparent blue and red colour respectively. In these plots, the dashed lines 

represent the mean values of each density curve and are coloured accordingly.  
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 RBF SVMs 

Datasets 
Original 

%CC 

Mean 

Value 

Median 

Value 

Min 

Value 

Max 

Value 

Upper 

95%C.I. 

FTIR 54% 42% 42% 39% 53% 46% 

HPLC 78% 41% 41% 39% 47% 45% 

E-NOSE 47% 42% 41% 38% 49% 46% 

FTIR & HPLC (GPA) 64% 42% 41% 39% 48% 45% 

FTIR & E-NOSE (GPA) 50% 42% 42% 39% 52% 47% 

HPLC & E-NOSE (GPA) 72% 42% 41% 39% 50% 45% 

ALL (GPA) 67% 42% 41% 39% 52% 47% 

FTIR & HPLC (CPCA) 79% 42% 41% 39% 47% 45% 

FTIR & E-NOSE (CPCA) 59% 42% 41% 39% 50% 45% 

HPLC & E-NOSE (CPCA) 76% 42% 41% 37% 52% 47% 

ALL (CPCA) 74% 42% 42% 39% 50% 46% 

Table 15 Descriptive statistics of the permutation distributions obtained by RBF SVMs (case 

study 4) 

The results presented in Table 11 have been rounded towards the nearest integer. 
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 PLS-DA 

Datasets 
Original 

%CC 

Mean 

Value 

Median 

Value 

Min 

Value 

Max 

Value 

Upper 

95%C.I. 

FTIR 59% 40% 40% 33% 51% 47% 

HPLC 73% 41% 40% 34% 53% 48% 

E-NOSE 49% 42% 41% 35% 56% 50% 

FTIR & HPLC (GPA) 69% 40% 40% 32% 51% 49% 

FTIR & E-NOSE (GPA) 51% 42% 41% 36% 54% 50% 

HPLC & E-NOSE (GPA) 75% 41% 40% 35% 52% 50% 

ALL (GPA) 70% 41% 41% 34% 54% 49% 

FTIR & HPLC (CPCA) 72% 39% 39% 31% 52% 47% 

FTIR & E-NOSE (CPCA) 64% 39% 39% 32% 51% 48% 

HPLC & E-NOSE (CPCA) 74% 41% 41% 34% 54% 50% 

ALL (CPCA) 72% 41% 40% 33% 52% 50% 

Table 16 Descriptive statistics of the permutation distributions obtained by PLS-DA (case  

study 4) 

The results presented in Table 12 have been rounded towards the nearest integer. 
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Figure 5-30 Boxplots representing the outcome of permutation testing when RBF SVMs and 

PLS-DA are applied on the datasets of case study 4 

The boxplots provide a powerful visual aid for a straightforward comparison of the descriptive 

statistics of a given permutation distribution. Each boxplot illustrates the “five-number summary”: 

namely, the minimum, first (lower) quartile, median, third (upper) quartile and maximum value. In 

addition, the observed non-permuted values are highlighted in a red colour. 
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Figure 5-31 Execution times of the permutation tests on the datasets of case study 4 

The figure displays the execution times of 100 permutation tests using PLS-DA and RBF SVMs for each standalone and integrated dataset of case study 4. The execution 

times are based on a fully optimised analysis pipeline featuring parallel programming (master/slave architecture) over eight processors (see Section 5.2.4) as well as fast 

approximation algorithms for the optimisation of the classifiers’ hyperparameters via bootstrapping. The execution times have been rounded towards the nearest integer.  
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5.4 Comparison of the individual case studies 

 

In this chapter, the suite of machine learning and validation tools developed in 

Chapter 4 was applied to three further independent case studies. This Section provides 

an overall comparison of the performance of the three implemented classification 

ensembles (PLS-DA, linear and nonlinear SVM ensembles) among the different case 

studies, when applied on standalone and integrated datasets. In addition, this Section 

aims to reveal any common underlying patterns, similarities and/or differences 

between the different case studies and the classifiers. The overall trend across all four 

case studies is presented in the graph of Figure 5-32.  

 

For the FTIR data, all case studies besides the “Survey of minced beef” demonstrate 

the exact same pattern; clearly, linear classifiers (PLS-DA and linear SVMs) favour 

the standalone FTIR data both prior and after PCA. On the contrary, the overall 

performance of kernel-based (RBF) SVMs appears to be inferior to the other two 

linear classification ensembles. As thoroughly discussed in Section 4.3.2, Xu et al. 

(2006) support that relatively simplistic chemometric algorithms such as PLS-DA are 

more efficient when applied on traditional analytical techniques such as spectroscopy, 

where the data are linear and well understood. Therefore, the nonlinear projection into 

a high-dimensional feature space via a kernel is found unsuitable in this instance. 

Finally, for the standalone FTIR data that have been subjected to PCA, the accuracies 

of nonlinear SVMs approximate those of the linear models.  

 

In addition, HPLC proved to be the most diagnostic instrumental technique since it 

consistently produces the best recorded classification accuracies. In all case studies 

that include HPLC, the percentages of correctly classified samples (   ) are 

significantly higher when SVMs are applied on the datasets as opposed to PLS-DA; 

the HPLC data demonstrate outstanding results especially in the cases of RBF SVMs. 

Furthermore, the HPLC datasets that have been subjected to PCA also follow a 

similar trend, with exception of case study 1. 
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As far as the e-nose data (prior and post PCA) are concerned, in case study 1 the 

overall accuracies are significantly higher when SVMs, and especially RBF SVMs, 

are applied. On the contrary, in case study 4, standalone e-nose data present better 

predictions for PLS-DA. Even though the overall accuracies appear to be divergent, 

the classifiers are always strongly influenced in this case by the majority class – 

whether semi-fresh or spoiled samples. Even so, the e-nose datasets overall did not 

present any discriminative information, while the produced classification accuracies 

proved to be statistically non-significant. 

 

Finally, the Raman data of case study 3 produced similar     values to FTIR. 

However this case study suffered from a major impediment; the highly imbalanced 

datasets (see Sections 5.2.2 and 5.3.2) resulted in biased decision boundaries, which 

classified correctly only the sampled of the majority class. Thus, the Raman data have 

illustrated very poor generalisation performance. 

 

As far as the integrated datasets are concerned, both data fusion methods have 

demonstrated their own strengths and limitations. Even so, CPCA proved to be a more 

prominent data fusion technique than GPA. More specifically, CPCA clearly 

improves the outcome of the integration by combining the strongest assets of the 

initial datasets, while GPA appears to be consistently dominated by the weakest 

experimental technique. In the case of integrated datasets, SVMs, and in particular 

linear SVMs, demonstrated the most promising classification accuracies.  
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Figure 5-32 Investigating the common trends across all four individual case studies 
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5.5 Conclusion 

 

In order to verify the generalisation ability of the implemented multivariate analysis 

pipeline, the constructed statistical tools were tested upon three new individual  

real-world case studies featuring different types of data (beef fillets, minced beef, 

pork), which have been analysed using a variety of instruments (FTIR, HPLC, Raman 

and e-nose) under different temperatures and packaging. By analysing the new case 

studies, we were able to show that significant results can be obtained on further 

datasets. In addition, by a direct comparison of their results, some noteworthy 

conclusions were drawn.   

 

HPLC proved to be the best instrumental technique for the chosen application of 

assessing meat freshness. Standalone HPLC data, both prior and after the application 

of PCA, consistently demonstrated the highest percentages of correctly classified 

samples (%CC). Thus, we can conclude that the provided HPLC data contained 

abundances of several specific chemical compounds associated with and denoting 

spoilage. Conversely, the FTIR, Raman and e-nose data were the measurements of 

raw sensors with no prior feature selection or mapping to specific compounds. Also, it 

is obvious that the HPLC data present higher classification accuracies for kernel-

based (RBF) SVMs. On the contrary, the overall accuracies of the simple 

spectroscopic data by FTIR are clearly profiting by the application of linear 

classifiers, and especially by the application of traditional chemometric methods such 

as PLS-DA. In this instance, the nonlinear mapping by RBF SVMs has been found 

unfit. Finally, the e-nose data did not demonstrate any discriminative information, and 

its classification results proved to be statistically non-significant. 

 

As far as the integrated datasets are concerned, CPCA was consistently found to be a 

better data fusion technique than GPA. More specifically, CPCA clearly improves the 

outcome of the integration by combining the strongest features of the initial datasets, 

while GPA appears to be dominated by the weakest experimental technique. 
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6 Development of improved visualisation 

methods for chemometrics applications 

 

6.1 Introduction 

 

A range of novel visualisation tools has been used throughout this thesis. This chapter 

provides a thorough description of the visualisation techniques, graphics libraries and 

web technologies underlying these tools. Even though there has been tremendous 

progress in the field of chemometrics, often the visualisation tools used to 

demonstrate the results are out-dated and the graphs occasionally difficult to 

comprehend. One of the aims of this project was to pursue the development of new 

visualisation methods that enhance the interpretability of the project’s data and 

results, with a view to employing them for the construction of static images, 

interactive web-based graphs, and dynamically generated reports.  

 

 

6.2 Materials and Methods 

 

6.2.1 The importance of Data Visualisation 

 

Data visualisation can be defined as “the science of visual representation of data, 

which contains information abstracted in some schematic form, including attributes or 

variables for the units information” (Friendly, 2001). Over the past years, software 

systems have attempted to integrate heterogeneous data at both the data source and 

the semantic level (Goesmann et al., 2003). However, the sheer volume and 

complexity of the data under study makes it almost impossible to illustrate using 

traditional visualisation methods.  
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The chief aim of visualisation is to make the data accessible. The assessment of a 

good visualisation tool is based on a three-fold relationship among the designer, the 

reader and the data, as presented in the schematic diagram of Figure 6-1. According to 

Illinsky et al. (2011), in order for a visualisation graphic to be successful, first of all it 

needs to be informative. In addition, the designer has to convey the information in the 

most persuasive and efficient (possible) way, by including only precise information 

while keeping the visual “noise” at a minimum (Steele et al., 2010). Finally, the 

graphs must be aesthetically pleasing; according to Illinsky et al. (2011), visualisation 

“leverages the incredible capabilities and bandwidth of the humans’ visual system to 

move a huge amount of information into the brain very quickly”. The overall level of 

success of a visualisation tool is highly dependent on the balance in between these 

relationships. Designers often fail to achieve a balance between functionality and 

aesthetics, hence leading into extremely complex, abstruse, biased and/or misleading 

results.  

 

In this thesis, the graphs that represent the results of the multivariate analysis pipeline 

have been meticulously designed to satisfy all the afore-mentioned attributes; equal 

importance has been given to the implementation of the analysis pipeline as well as 

the development of efficacious comprehensive and reproducible graphs.  

 

 

Figure 6-1 The “designer-reader-data trinity” of data visualisation 

The visualisation outcome chiefly depends on which of these relationships is dominating over the 

others. Above all, the visualisation techniques have to be informative in addition to efficient. 

Furthermore, a visual aid should convey information to the readers in the most persuasive and 

aesthetically pleasing way. The figure has been extracted from Illinsky et al. (2011). 
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6.2.2 Generating static graphs 

 

As described in the previous chapters, the bulk of the work was implemented using 

the R project for statistical computing (see Section 2.2.6). Even though R does not 

qualify as a scripting language or web technology, it is a powerful and widely popular 

graphics tool for the construction of “publication-quality diagrams and plots” 

(Murrell, 2005).  

 

In this project, R has been extensively used as a means of constructing high-quality 

graphics that enhance the interpretability of the analysis results acquired by the 

multivariate analysis pipeline. Since R consists of a plethora of built-in and add-on 

packages of great variability, it is often extremely difficult to succeed in attaining 

optimal functionality; therefore, this section attempts to narrow down the enormity of 

the range of functions down to those of most relevance to the applications covered in 

this thesis. 

 

6.2.2.1 R packages and functions 

 

The plot() function, as provided by the built-in graphics package (R Development 

Core Team, 2012), is the core function for plotting R objects, and constitutes the 

backbone for all other graphics packages and plotting functions. In this work, the 

function was used to construct simple two-dimensional scatter plots. The 

corresponding three-dimensional scatterplots are available through the popular 

scatterplot3d (Ligges and Mächler, 2003) package and the homonymous function.  

 

A major innovation in the R graphics field has been achieved with the introduction of 

the ggplot2 package (Wickham, 2009; Wickham and Chang, 2012). Nowadays, the 

ggplot2 package is widely recognised among the R users as the “best graphics 

package for R” (http://www.inside-r.org/packages/ggplot2/reviews/simply-best-

graphics-package-r) due to its clean and subtle aesthetics, ease of use and intuitive 

syntax. The package has been developed based on the Grammar of Graphics, written 

by Wilkinson (Wilkinson, 2005; Wilkinson et al., 2005). Each new plot consists of 

several independent reusable components, built in a layered grammar (Figure 6-2), 

where each of these features provides an additional functionality. Thus, ggplot2 is 

http://www.inside-r.org/packages/ggplot2/reviews/simply-best-graphics-package-r
http://www.inside-r.org/packages/ggplot2/reviews/simply-best-graphics-package-r
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extremely powerful since it grants the users the ability to construct graphics precisely 

tailored to their needs rather than using a set of pre-defined plots. The majority of 

graphs presented in this PhD are solely based on the ggplot2 package; the 

functionality of the package has been customised in order to highlight the results and 

the outcome along every step of the multivariate analysis pipeline. The generated 

graphs cover a wide range of different plots, from simple scatterplots to histograms 

and barplots with complex layouts, among others.  

 

The ggplot2 package was also applied as a means of highlighting the density of points 

in a two-dimensional scatterplot. A similar functionality is also provided for the basic 

plot() function by the KernSmooth package (Wand et al., 2011). In this instance, the 

scatter plots are enhanced with smoothed colour density representation based on the 

algorithm by Wand and Jones (Wand et al., 1995).  

 

Finally, the ellipse package was utilised to generate two-dimensional scatterplots with 

95% confidence ellipses for each distinct input class. The methods were used to 

provide PC scores plots that convey more information than the simple scatter plots 

normally used. 
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Figure 6-2 Construction process of a ggplot2 graph – the layered grammar approach 

The figure depicts the construction process of a graph by the ggplot2 package. Each square in the 

figure stands for a single layer; a layer is formed by the combination of data, mappings, statistical 

information and the geometric object (geom), which controls the type of graph to be plotted. A plot 

may contain multiple layers; in this figure, the plot consists of three distinct layers and three panels. 

The components that usually make up a ggplot2 plot include the data, the mappings from variables to 

aesthetics, scales, coordinate and facet specifications, layers of annotations and geometric objects 

(geoms), among others. The figure has been extracted from Wickham (2009). 
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To construct the contour and surface plots (Section 2.3.2.3) of the optimisation 

process, the two afore-mentioned packages were once more employed. More 

specifically, the persp() function of the graphics package was applied to draw three-

dimensional surface (perspective) plots; the functionality of the built-in R function 

was extended to allow user-defined colour palettes as well as the addition of points on 

the surface plot. In addition, the contour() function was employed for the 

construction of contour plots, or alternatively the addition of contour lines to an 

existing plot. The contour plots may also be filled by using the filled.contour() 

function. The ggplot2 package also provides the users with a contour function, by 

simply adding the stat_contour() layer in the geometric object (geom component). 

Finally, the lattice package (Sarkar, 2008) provides the contourplot() function that 

implements similar plots upon a grid.  

 

The grid plots of Section 2.3.2.3 and Section 3.3.2 were based on the levelplot() 

function by the lattice package and the image.plot() function by the fields package 

(Furrer et al., 2012) respectively. Once more, the functionality of the command was 

extended in order to support the visualisation of points and simplices in the graphs. In 

addition, the ggplot2 package provides similar functionality by adding the 

geom_raster() or scale_fill_gradientn() components; however, in the case of 

ggplot2, the resolution of the grid is not as great as the afore-mentioned packages.  

 

Finally, the spectroscopic data were visualised using the emu package (Harrington, 

2011); similar functionality is provided by the newly introduced ChemoSpec package 

(Hanson, 2012) for the visualisation of spectroscopic data and chromatograms.  
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6.2.2.2 Generating dynamic reports via R 

 

In the context of reproducible research, the Sweave (Leisch, 2002; Leisch, 2005) 

framework has also been investigated for the construction of dynamic reports via R. 

Traditionally, the execution of R scripts is conducted first, followed by the gathering 

and reporting of the results. This approach is suitable for a small number of 

repetitions, however it is not very practical when the outcome of the analyses needs to 

be reproduced a plethora of times. Sweave supports the incorporation of R commands 

and/or scripts within LATEX documents (Leisch, 2005). Therefore, the functionality 

of high-quality typesetting and data analysis as provided by LATEX and R 

respectively, is integrated into a single unified statistical document (Leisch, 2005). 

The users can generate dynamic reports, which contain on-the-fly R output such as 

figures, tables, documentation, even R commands, among many others. In case that 

the input data or analysis change, the contents of the generated reports are 

automatically updated; thus, the greatest appeal provided by Sweave is 

reproducibility. Furthermore, the noweb syntax adopted by Sweave (Leisch, 2005) is 

extremely simple and straightforward to learn.  

 

The Sweave framework is currently a built-in R feature provided by the utils package 

(R Development Core Team, 2012). Instead of storing and running the commands 

from within an *.R script, a *.Rnw file is used instead as illustrated in Figure 6-3. 

Sweave translates the initial document into a LATEX file. Finally, the pdflatex() (or 

latex()) command compiles the LATEX file and generates a new report (such as .pdf 

or .eps or both), which contains the output as acquired by R. 

 

 

 

Figure 6-3 The workflow from Sweave to an automatically generated PDF file 

Initially, a *.Rnw file is created that includes the R scripts in addition to the LATEX commands for 

high-quality typesetting. Finally, the *.tex file is compiled into a *.pdf file. 
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6.2.3 Web technologies and Scripting languages  

 

Over the past years, the World Wide Web (WWW or W3) (Berners-Lee, 1996; 

Berners-Lee et al., 2001; Berners-Lee and Fischetti, 2008) has profoundly changed 

the rapidity of acquisition and storage of knowledge, as well as promoting the 

development of hitherto unimaginably intricate methods of dealing with the vast 

enormity of newly acquired knowledge and/or data. Web development and design is 

indeed an immense and complex field. With the exponential development of the 

informatics field over the past few years, nowadays there can be traced literally 

thousands upon thousands of different web technologies, methodologies, disciplines 

and standards, programming languages, and software packages. Some of the core and 

commonly used web technologies are depicted in Figure 6-4. 

 

The Web as we know it nowadays is actually the second phase in the Web’s 

evolution; namely, Web 2.0 (DiNucci, 1999; O’Reilly, 2005; O’Reilly, 2009).  

Web 2.0 is a collection of technologies, business strategies, and social trends; 

compared to its predecessor (Web 1.0), it is more dynamic, interactive, customised 

and media-intensive. Whereas with Web 1.0 the end-users remained passive simply 

viewing the contents of a web page, Web 2.0 allows its users to view, interact but also 

contribute to the content of a web page. Currently, a transition from Web 2.0 towards 

Web 3.0 is already emerging; Web 3.0 will include personalised and user-behaviour 

features, thus providing “a portable personal semantic web”.  

 

Web and grid technologies have developed at a dazzling rate, offering a multitude of 

advantages to the life sciences as a bonus from the computational sciences. These 

technologies have moved from their classical and somewhat static architectures to 

more dynamic and service-oriented ones as illustrated in Figure 6-4. Rich Internet 

Applications (RIAs) (Fraternali et al., 2010) became increasingly important and 

popular during the past decade, and currently play a prominent role towards the 

evolution of Web 2.0. RIAs resemble to a vast degree the characteristics and 

functionality of desktop applications, even though they are web-based, since they 

feature responsive user interfaces and interactive capabilities. Thus, web-based 

programs become easier to use and more functional to use compared to the static and 

limited web pages of Web 1.0. Clients in the RIA model handle user-interface-related 
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activity, while simultaneously the server processes and stores data in addition to 

returning the results back to the user. A RIA runs on a web browser, usually without 

the necessity of installing any software on the client side. In addition, RIAs are 

typically based on, or feature, asynchronous communication such as Asynchronous 

JavaScript and XML (AJAX). Therefore, clients can interact with the webpage 

without having to wait for results from the server. 

 

 

Figure 6-4 The progress of web technologies and programming languages over time 

The figure illustrates the progress of web technologies, from the PC era to current times where Web 2.0 

is the dominant web philosphy, all the way to proposed future web technologies such as Web 3.0 and 

Web 4.0. Along with the advance of web technologies, various different programming languages are 

displayed based upon each era. The shift of interest from static technologies such as HTML to 

dynamic, interactive and content-rich languages such as AJAX is depicted. The figure has been 

extracted from http://thepaisano.files.wordpress.com/2008/03/webtimeline.jpg 

 

Asynchronous JavaScript and XML (AJAX) (Garrett, 2005) was introduced as a 

means of web application development. AJAX is not a novel language or a single 

technology; rather, it is “a powerful combination of several different vigorous 

technologies, each flourishing in its own right” (Garrett, 2005; Lin et al., 2008; Wang 

et al., 2008). AJAX incorporates:  

 

 

http://thepaisano.files.wordpress.com/2008/03/webtimeline.jpg
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1. DOM for providing dynamic display and interaction 

2. CSS and XHTML for carrying out standardised-format presentation 

3. XML and XSTL for carrying out data exchange and processing 

4. The XMLHttpRequest object for asynchronous data retrieving and handling 

5. JavaScript for data processing and binding all the technologies together 

 

The adoption of AJAX has drastically enhanced interactive functionality in websites 

due its asynchronous nature. The classic web application model makes use of 

synchronous interactions in a request-wait-response client-server model. In this 

process, as illustrated in Figure 6-5, the client (user) triggers initially an HTTP 

request to the web server through a web interface. Subsequently, the server analyses 

the request sent by the client, and carries out any processing tasks such as retrieving 

data, among many others. Due to the synchronous nature of the model, the client has 

to unnecessarily wait while the server processes the submitted data. For every 

requested task, the application is locked up and the waiting time increases 

exponentially. In most cases, the browser displays blank pages while processing the 

data and the users must wait until the entire HTML page is reloaded. Finally, the 

server returns a response along with the requested results back to the user. This model 

is adapted from the Web’s original use as a hypertext medium, but it is not found fit 

for software applications since it makes a lot of technical sense, but does not make for 

a great user experience.  

 

AJAX on the other hand, which is based on asynchronous interactions, follows a 

completely different approach when compared to the classic web application model, 

as presented in Figure 6-5. AJAX allows the users to continue interacting with the 

web interface without any interruptions or page reloads, while simultaneously, 

messages are exchanged with the web server in the background. The 

XMLHttpRequest object, which constitutes the backbone of the AJAX 

methodology, uses a request-response model that supports the indiscernible exchange 

of data between client and server in the background. Therefore, the users avoid 

communicating directly with the server by stimulating an HTTP request as in the case 

of the classic model. On the contrary, due to the asynchronous nature of this 

methodology, the displayed contents of the browser can never be scintillated, delayed 
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or disappeared (Wang et al., 2008). Finally, data are returned to the AJAX engine 

without the necessity of completing the entire processing. The remaining supporting 

technologies incorporated into the AJAX method are in charge of creating direct, 

richer and more dynamic web interfaces that look and act like local desktop 

applications.  

 

 

Figure 6-5 Comparison between the classic and the AJAX web application model 

The figure provides a direct comparison between the traditional synchronous web application approach 

(left) and the asynchronous AJAX web application model (right). The figure has been extracted from 

Lin et al., (2008).  

 

jQuery (http://jquery.com/) is a light and exceptionally fast “write less, do more” 

JavaScript library, which simplifies client-side scripting and offers  

feature-rich functionality. Former long and complex JavaScript commands are 

simplified via jQuery to within a single or a few lines. For instance, HTML 

traversing, event handling, AJAX requests and replies, as well as animating become 

more rapid and user-friendly. 

 

In addition, the DataTables plug-in (http://www.datatables.net/) for the jQuery 

library has been employed for the construction of fully interactive feature-rich HTML 

tables, as opposed to the traditional static HTML tables within a web interface. 

DataTables support features such as pagination, on-the-fly filtering and sorting, 

among many others.  

http://jquery.com/
http://www.datatables.net/
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JavaScript Object Notation (JSON) is a lightweight, text-based, data interchange 

format (Crockford, 2006). Even though JSON derives straight from JavaScript, it is 

language-independent, hence it can be used by many different programming 

languages. JSON was employed in combination with jQuery and AJAX for the 

asynchronous and indiscernible exchange of data in the background between the web-

browser and the web-server. 

 

On the server-side, Perl (http://www.perl.org/) version 5.8.0 was used as the 

supporting scripting language. Even though Perl is not part of the RIA approach, it 

still constitutes a powerful tool in the field of bioinformatics.  

 

6.2.4 The iWebPlots package 

 

Over the past years, there have been numerous efforts to implement interactive 

graphics via R. In contrast to static graphs, with interactive plots the users have the 

ability to select, query and interact with the area defined by the plot as well as make 

use of dynamic features such as rotations and zooming. Only a miniscule number of R 

packages that implement this functionality have been released and they usually act as 

standalone programs. Therefore, the probability of them being embedded within web 

pages is highly diminished. This drawback can usually be overridden, when the plots 

are used in combination with other programming languages and/or plug-ins that add 

the interactive functionality.  

 

The iWebPlots package (Chatzimichali and Bessant, 2011) is a novel R package for 

the creation of interactive web-based plots, developed during this project. The first 

version of the package is available on CRAN, the official R repository, at 

http://CRAN.R-project.org/package=iWebPlots. However, the functionality of the 

package has been expanded since the first release, therefore new releases will be 

uploaded in the near future.  

 

In this package, interactivity is implemented using the fundamental HTML image 

maps methodology. An image-map can be defined as an image with clickable regions, 

commonly referred to as “hot spots”. These interactive areas may consist of 

http://www.perl.org/
http://cran.r-project.org/package=iWebPlots
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rectangles, circles and/or irregular polygons. iWebPlots is mainly dependent on the 

geneplotter Bioconductor (Gentleman et al., 2004; Gentleman and Biocore, 2012) 

package, which, among its other features, generates interactive heatmaps for 

microarray data. The functionality of the interactive image maps, as provided by the 

geneplotter package, was further extended towards building a variety of different 

types of plots such as scatterplots, histograms and barplots, among many others.  

 

The functions of iWebPlots take as input a matrix of coordinates with associated 

metadata, which are subsequently drawn in a plot using the R platform. The image 

that contains the plot is subsequently saved as a bitmap or PNG image. Prior to 

adding the image maps’ interactive features, the coordinates of the plot have to be 

converted from the Cartesian coordinate system into the user graphics coordinate 

system, which is measured in pixels. Once the corresponding pixels are calculated, an 

HTML layer is constructed upon the PNG image. At the end of this process, every 

point in the plot corresponds to a clickable area within the map.  

 

Additional features provided by the iWebPlots package include dynamic tooltips and 

text annotations as well as asynchronous alternations between two- dimensional and 

three-dimensional scatterplots. Finally, each plot can be interlinked with a static 

(HTML) or fully interactive data table (DataTables), which displays additional 

information about the data in the graph. The text of the tooltips and the data tables is 

customised directly by the users. 

 

The greatest strength of the iWebPlots package is its simplicity and ease of use; the 

package is based on pure HTML image maps methodology, so additional specialised 

software such as applets, libraries, graphical user interfaces (GUIs) or plug-ins are 

required by the end user. This allows the generated web-based plots to run problem-

free in every web browser with minimum execution times. The output of iWebPlots 

can be embedded within any HTML page or web project outside the realms of this 

project. Furthermore, the users can easily modify and expand the functionality of the 

package and of the generated HTML pages, therefore great extensibility is ensured. 

There are other R packages that implement similar functionality. The googleVis 

(Gesmann and de Castillo, 2011) package provides an R interface for the popular 
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Google Chart Tools (https://developers.google.com/chart/). The users can create 

dynamic, interactive, feature-rich web-based graphs via R, without uploading their 

data directly to Google. However, the package does have certain limitations; in order 

to visualise the graphs in the browser, there is a need for Internet connection in 

addition to the installation of the Flash plug-in. Another package, iPlots (Urbanek and 

Theus, 2003) is a powerful R package for the creation of interactive graphics that 

offers features such as querying, linked highlighting, and colour brushing, among 

others. Even so, the iPlots package runs as a standalone graphical user interface 

(GUI) within the R console, and cannot be embedded within any other project or 

interface. In addition, the core of the package is written in Java, hence a fully 

working Java installation on the local machine is expected.   

 

6.2.5 Constructing a web interface for demonstrative purposes 

 

As part of this project, a web interface has been constructed for demonstrative 

purposes as the front-end of the multivariate analysis pipeline. This approach attempts 

to evaluate whether the results of the analyses can be directly embedded within any 

HTML page and/or web project. As presented in Section 6.2.1, the web interface was 

chiefly built by using two powerful JavaScript-based technologies; namely, jQuery 

and AJAX. In this work, AJAX requests are triggered from the web front-end, more 

specifically from jQuery scripts embedded within static HTML pages, towards 

specific Perl files located at the server-side. These requests may also carry additional 

information such as associated data and input parameters. Subsequently, the Perl 

scripts execute the relevant R scripts, also stored on the web server, after passing 

these parameters. Once the R script terminates the execution of the scripts, it returns 

the output of the analyses (calculation results, plots, files, et al.) back to Perl. Finally, 

Perl sends an asynchronous AJAX response along with the requested results back to 

the original client-based script. The web interface is partially updated and the output 

from R is displayed to the user, without the need of reloading the entire page. Due to 

AJAX and its asynchronous functionality, the exchange of requests, responses and 

data is performed within seconds.  

 

 

https://developers.google.com/chart/
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In addition to the static figures generated by R, the iWebPlots package (see Section 

6.2.4) was also employed on the server-side for the construction of fully interactive 

web-based graphs. The graphs were easily incorporated in the main web interface for 

users to view. The functionality of iWebPlots in this context was successfully tested 

on the outcome of supervised and unsupervised techniques such as Principal 

Component Analysis (PCA).  

 

Finally, the DataTables plug-in has been used in order to construct a fully interactive 

data table. The table stores and displays associated metadata for the objects displayed 

in the plot; for instance, in the case study 1 (shelf life of beef fillets), such information 

may contain the name, class (sensory scores) and/or instrumental technique for each 

sample depicted in the graph. These data are exported from R in a JSON format that 

is received by AJAX and parsed by jQuery. One of the most powerful attributes of 

DataTables is the provided search mechanism. More specifically, the table can be 

filtered using either the default search box or by clicking one of the points in the 

interactive map. This “on-click” event generates an AJAX request, which is posting 

the selected sample’s name as a parameter against the entries of the data table. As a 

result, the table contents are filtered and only the matches are displayed. Finally, 

additional attributes include pagination, sorting as well as colouring of the rows based 

on a predefined criterion such as the class values (fresh, semi-fresh, spoiled samples). 
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6.3 Results and Discussion 

 

All the graphs throughout this thesis, which demonstrate the results of the multivariate 

analysis pipeline, have been generated by in-house scripts according to the 

methodology described in this chapter. Despite the variegated background and origins 

of these methods, the purpose of the implementation aimed to satisfy a common goal: 

to enhance the interpretability of the results as obtained by the multivariate analysis 

pipeline. 

 

For the first step of the multivariate analysis pipeline, data visualisation was 

employed as a means of exploratory data analysis in order to highlight any underlying 

trends and outliers. Initially, the output of PCA was visually represented using the 

base R graphics system, as presented in the static scatterplot of Figure 6-6(a). The 

generated two-dimensional plots were further enhanced with smoothed colour density 

representation based on the algorithm by Wand and Jones (1995) for the detection of 

any possible clusters (Figure 6-7(a)). It was therefore apparent that the limited 

functionality of the traditional plotting methods in addition to the predefined set of 

built-in parameters resulted in aesthetically poor graphs that did not enhance 

interpretability. 

 

Therefore, the powerful ggplot2 R package was extensively employed for the 

construction of publication-quality multi-layered graphics. Based on Figure 6-6(b) 

and Figure 6-7(b), it is obvious that the information depicted in the graphs has not 

changed; however, the plots are currently satisfying all the key points of Section 

6.2.1, by producing effective, persuasive and aesthetically pleasing graphs.  
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c) graphics package 

 

 

d) ggplot2 package 

Figure 6-6 Scatterplots produced by the graphics and ggplot2 package respectively 

The figure provides a direct comparison between the two-dimensional scatterplots generated by the 

built-in graphics package and the add-on ggplot2 package respectively. The scatterplots demonstrate 

the outcome of PCA when applied on the standalone mean-centered FTIR data of case study 1. Colour 

representation was used to identify the three classes according to their relevant sensory scores: fresh 

(red colour), semi-fresh (orange colour) and spoiled (green colour). For comparison purposes, only the 

32 common samples (see Section 2.3) are depicted in the graphs. It is obvious, that ggplot2 forms more 

aesthetically pleasing graphs compared to the default R graphics system. 
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a) KernSmooth package 

 

 

b) ggplot2 package 

Figure 6-7 Scatterplots with density estimation using the KernSmooth and ggplot2 packages  

Two-dimensional smoothed colour density scatterplots display the outcome of PCA when applied on 

standalone mean-centered FTIR data. Colour representation was used once more to identify the three 

distinct classes. Kernel density estimation techniques were applied to highlight the formation of any 

possible clusters. The scatter plots were initially enhanced with smoothed colour density representation 

using the KernSmooth R package (Wand et al., 2011). However, the density contour plots drawn by 

the ggplot2 package are relatively more intuitive and easier to comprehend than the basic plot. 
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In addition to aesthetics, faceting is the second most important functionality provided 

by the ggplot2 package. Facets are tables of graphics that represent subsets of data, 

commonly depicting the same type of graph. Faceting is an extremely powerful tool 

that enables direct and straightforward comparisons using several different parameters 

simultaneously. Figure 6-8 highlights the necessity for the application of specialised 

feature-rich libraries, using as an example the per-class percentages of correctly 

classifies samples from Section 2.3.2.2; in this instance, the two different graphical 

techniques that have been employed display exactly the same information. The first 

approach displays information using a static table of data. Even though this approach 

is extremely informative and efficient, it is relatively difficult for the reader to 

perform a direct visual comparison among the different cases, and extract any trends 

and/or underlying relationships. On the contrary, the powerful ggplot2 library makes 

use of different visualisation attributes, such as shapes, colour palettes and facets to 

grant the users with the ability to compare all different cases simultaneously. This 

functionality can be further extended to integrate several individual facets, which may 

consist of several different types of plots, together into a unified view. This approach, 

enables the simultaneous comparison of several different graphs in addition to 

parameters, and hence the comparison of several different aspects of the same study 

(see Figure 5-32).  

 

All the aspects that have been described thus far can be further exploited with the 

application of Sweave for the construction of dynamically generated reports. Figure 

6-9 demonstrates the simplicity upon which the Sweave framework is built. The R 

scripts are wrapped within a small set of LATEX commands, which generate a pdf 

report in a dynamic and automatic fashion. The same Sweave document such as the 

one of Figure 6-9 can be successfully applied unaltered to several other input files in 

order to generate the exact same plot but on different data. Therefore, this approach 

verifies that reproducible documentation as well as graphs and figures can be 

produced upon demand.  
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In order to test the applicability and generic nature of the package, it was thoroughly 

examined on various different Case Studies. The package constructs dynamic 

barplots, histograms and scatterplots, among others. Figure 6-10 demonstrates the 

most commonly applied visual aid for the outcome of hierarchical cluster analysis 

(HCA) – the dendrogram – as generated directly by the iWebPlots package. The lines 

connecting the nodes in the dendrogram represent the distance (the degree of 

dissimilarity) between the leaves or clusters. In this instance, the HCA algorithm has 

been applied on the PCA scores of the HPLC dataset for case study 1. Similar to the 

PCA score plots of Section 2.3.1, it can be concluded from the figure that mainly 

spoiled and fresh samples present good clustering, whereas semi-fresh samples are 

usually grouped with either one of the two. The leaves of the cluster are all 

interactive, while they can be easily coloured upon the user’s request.  

 

The web pages offer fully interactive plots and data tables with dynamic and 

asynchronous features (Figure 6-11) as described in Section 6.2.5. The users can 

interact with each point in the plot, which automatically filters the corresponding 

entry in the data table, whereas rollover and click upon events display dynamic 

tooltips with associated metadata. In addition, the users can highlight one, multiple or 

all available classification groups (fresh, semi-fresh, spoiled). Furthermore, the 

samples’ names can be dynamically enabled or disabled in the plots, whereas the 

users can alternate between two-dimensional and three-dimensional plots as easily. 

The scaling of the data and the axes can be altered at any time asynchronously 

without reloading the whole page. Finally, the users can view the spectroscopic data 

on the web interface upon demand.  
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Figure 6-8 Comparison of static data representation and powerful feature-rich visualisation  

The figure illustrates the significant differences between traditional visualisation approaches such as 

the static tables and the proposed visualisation tools. Even though the static table is informative, it is 

relatively difficult to perform a direct comparison across the different entries. On the contrary, the 

application of ggplot2 provides an efficient and straightforward way to simultaneously compare 

several parameters under study (instrumental techniques and classification/validation models, distinct 

classes, overall accuracies). 

Datasets FTIR HPLC e-nose 

PLS-DA (LOOCV) 80% 67% 69% 90% 33% 88% 40% 0% 62% 

PLS-DA (BOOT) 64% 24% 71% 86% 26% 92% 27% 0% 64% 

k-fold Linear SVM 65% 21% 73% 94% 16% 87% 6% 0% 86% 

k-fold RBF SVM 55% 10% 79% 94% 6% 99% 13% 0% 82% 

BOOT RBF SVM 41% 19% 77% 87% 23% 97% 6% 1% 90% 
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Figure 6-9 Sweave example for the dynamic construction of a PDF report directly from R 

The figure illustrates the simplicity of the Sweave format; all R functions are fused together with the LATEX commands into a single *.Rnw file.  In this example, Sweave 

generates a dynamic pdf report containing a ggplot2 boxplot for the comparison of permutation results for different classification ensembles. The relevant data are read from 

a comma-delimited Excel file. If the input data were to be changed by providing a different file, the actual R script could still be used without alterations in order to reproduce 

the final figure; thus, great reproducibility is accomplished.  
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Figure 6-10 Interactive dendrogram generated by the iWebPlots package representing the outcome of HCA when applied on the HPLC data of case study 1  

The figure displays the constructed dendrogram when HCA is applied on the HPLC dataset of case study 1. Once more, only the 32 common samples are used as a visual aid. 

In this example, “Euclidean distance” was applied as the distance algorithm and “centroid method” as the linkage algorithm. The samples have been automatically coloured 

by the iWebPlots package; different colour representations are used to differentiate the distinct classification groups (red colour is used for fresh, orange for semi-fresh and 

green for spoiled samples) In addition, the package provides full interactivity of the dendrogram’s leaves; the users can click or rollover the coloured boxes and/or labels, and 

view additional information about the sample under study. This interactive web-based plot can be embedded in any web interface and/or web project. 
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Figure 6-11 Partial view of the implemented web interface for the FTIR dataset of case study 1 

The figure depicts a partial view of the web interface and the PCA scores of the mean-centered FTIR 

data for case study 1. The interface includes an interactive plot, as generated directly by R, with an 

active HTML image map. The users can click upon each point in the plot to view relevant information 

about the sample in the plot. In addition, a fully interactive and dynamic data table stores the associated 

metadata. (Both) the table and plot are interconnected, allowing asynchronous exchange of data and a 

user-friendly impression. 
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6.4 Conclusion 

 

The work reported in this chapter mainly investigated three distinct fields of the R 

graphics system: high-quality static images with clean aesthetics, interactive graphs 

that can be embedded within a web interface, in addition to dynamically generated 

reports that contain reproducible documentation and graphics. All the graphs 

presented throughout this thesis have been generated by in-house scripts.  

 

In addition to the implementation of the multivariate analysis pipeline, great 

importance has also been given to the graphical representation of the research 

findings in the most effective and informative way. The generated graphs proved to 

be extremely efficient as means of data visualisation, while simultaneously they 

provide persuasive and aesthetically pleasing graphs that enhance interpretability. 

 

Furthermore, even though R is a powerful graphics tool, it grants limited interactivity 

to the users. For the graphical visualisation of the analysis’ steps, the derivative bonus 

was the implementation of the iWebPlots R package for the creation of interactive 

web-based plots. The generated plots were successfully incorporated as part of a  

user-friendly web interface, built for demonstrative purposes. Finally, automatically 

generated graphs by the analysis were exported in dynamic reports, thus providing 

great reproducibility.  
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7 Conclusion and Recommendations 
 

 

7.1 Summary 

 

This PhD aimed at the construction of a novel suite of software tools for the accurate, 

rapid and inexpensive detection of bacterial spoilage in meat and the evaluation of 

meat freshness. This research was carried out as part of the SYMBIOSIS-EU project, 

funded by European Commission Framework 7.  

 

Chapter 1 described the background of analytical techniques in combination with 

chemometric methods for the evaluation of meat freshness in the context of systems 

biology. In addition, the chapter presents a thorough background of state-of-the art 

classification, validation and evaluation techniques in an attempt to highlight their 

advantages and limitations.  

 

Chapter 2 introduced a first working implementation of the multivariate classification 

pipeline, designed for the analysis of the single-instrument datasets from a single case 

study (“Shelf life beef fillets stored in air at 0, 5, 10, 15 and 20°C”). Two different 

types of classification models were employed, namely PLS-DA and SVMs. 

Classification ensembles were implemented in addition to standalone classifiers, 

while various validation methods were investigated for the optimisation of their 

training parameters. Out of all the generated models, the ensembles of SVMs proved 

to be the most powerful since they demonstrated the highest overall accuracies (   ) 

in the majority of cases. In addition, the ensembles of PLS-DA proved to be  

well-suited for the simple spectroscopic data obtained by FTIR, which are 

characterised by nearly linear separation between the three distinct classes. On the 

contrary, the single classifiers of PLS-DA in combination with LOOCV exaggerated 

the generalisation accuracy and led to overoptimistic results. Bootstrapping proved to 

be the most thorough among the different validation methods since it produced the 

best bias-variance trade-off with only a minimum number of overfitting instances. 

Despite its accurate performance, this approach led to long execution times due to the 
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large number of individual models involved, especially when using SVMs as these 

take a long time to optimise. 

 

Chapter 3 presents a solution for speeding up the optimisation of the SVM 

hyperparameters via bootstrapping, particularly for the cases of nonlinear SVMs with 

the RBF kernel. To date, a naïve approach for the tuning process of the RBF SVMs 

has been used, whereby a grid-search is applied over a wide range of 

hyperparameters. Even though this simplistic technique is widely popular and 

extensively applied by the scientific community, it is very computationally intensive. 

A new heuristic approach was presented in which the Box complex algorithm for 

constrained nonlinear optimisation was used in the place of the time-consuming grid-

search. The approximation algorithm was incorporated in the multivariate analysis 

pipeline where in combination with parallel programming, speeded-up the 

computationally demanding SVM tuning process by up to ~ 90× times. It is important 

to note that, with the new methodology, the previously unfeasible permutation testing 

was successfully applied and executed within an average of a few hours. The validity 

of the newly introduced algorithm was confirmed by comparing the accuracies 

obtained by the Box complex algorithm with the ones by the grid-search on the same 

set of data. 

 

Once the analysis pipeline was built and optimised, its functionality was further 

extended to include the fusion of multiple heterogeneous datasets obtained by various 

analytical techniques. Chapter 4 describes the application of multi-block and 

morphometric integration methods as a means of determining whether better 

generalisation performance is achieved when integrated as opposed to standalone 

datasets are used. Furthermore, in order to confirm the reproducibility and generic 

nature of the implemented suite of tools, the analysis pipeline was successfully 

applied to three further independent real-world case studies (“Shelf life of minced 

beef stored in air, MAP, and in active packaging at 0, 5, 10 and 15°C”, “Survey of 

minced beef” and “Pork stored in air and MAP”). In addition to the individual 

analysis results, Chapter 5 also investigates the common trends across all four 

investigated case studies. In all cases, the FTIR data presented significantly higher 

classification accuracies for the linear classifiers, and especially for PLS-DA. Even 

so, it was verified that the ensembles of SVMs qualify as more powerful and robust 
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classification models since they produced consistently higher overall accuracies 

(   ) than PLS-DA. Among the analytical techniques, HPLC proved to be the most 

diagnostic technique for the assessment of meat freshness, with classification 

accuracies around 80%. On the contrary, e-nose did not demonstrate any 

discriminative information, and its results proved to be statistically non-significant. 

Thus, we can conclude that the provided HPLC data contained abundances of several 

specific chemical compounds associated with and denoting spoilage. Conversely, the 

FTIR, Raman and e-nose data were the measurements of raw sensors with no prior 

feature selection or mapping to specific compounds. At a per-class level, the semi-

fresh samples were consistently difficult to classify, whether they constituted the 

majority or minority class. Furthermore, in the majority of cases, CPCA produced 

higher overall and per-class accuracies (   ) than GPA. For case study 4, the     

obtained by CPCA managed to exceed not only the outcome of GPA but also the 

overall accuracy recorded by standalone HPLC, equal to 80%. This proves that the 

comprehensive fusion of valuable information from complementary analytical 

techniques may indeed result in greater performance. This observation proves that the 

fusion of the most discriminative information from complementary analytical 

techniques may indeed result in greater classification performance.    

 

In this research, in addition to the implementation of the analysis pipeline, great 

importance was also given in the development of powerful visualisation techniques as 

a means of enhancing the interpretability of the obtained results. Chapter 6 highlights 

the necessity for designing informative yet also aesthetically pleasing graphs. The 

graphical methods and web technologies presented in the chapter were used to 

construct the graphs throughout the thesis, demonstrate the outcome of the various 

analyses. The generated graphs, ranging from high-quality static images to 

reproducible reports and interactive web-based plots, proved to be more efficient as 

means of data representation than other traditional visualisation methods. 
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The generated suite of tools, as presented throughout this thesis, has covered with 

equal emphasis a wide range of chemometric fields, including data aggregation, 

integration, analysis and visualisation. The software tools show the most promise in 

terms of performance, flexibility and simplicity. Exceptional attention and precision 

has been given to the application of rigorous validation and evaluation techniques as a 

means of generating as accurate, robust and unbiased models as possible; as stated in 

Brereton (2006) and Westerhuis et al. (2008), even though proper validation of 

machine learning models has received special attention over the past decade, it is 

most often lacking in the recent applications. Furthermore, a novelty of this research 

was the application of advanced optimisation techniques, which resulted in a striking 

speedup of the end-to-end analyses without however compromising the integrity of 

the validation and evaluation process; the minimisation of the computational cost and 

complexity was so impressive, it reached the point where all end-to-end analyses 

within the pipeline were executed within a few hours on a personal computer, 

obviating any need of a server or supercomputer. In addition, the analysis pipeline 

was built in the context of reproducible research in an extremely simple, 

straightforward and user-friendly way. The functionality of the implemented 

statistical tools can be further fused into a unified form of a single R package. The 

package can be uploaded on CRAN, the official R repository, where it will be freely 

available to others users. Having confirmed the generic nature and applicability of the 

developed tools by testing them on new real-world case studies, the package can be 

equally efficient when applied by other scientists to areas of inquiry far wider and 

more diverse than the present study. Finally, the package provides a great degree of 

extendibility, since it allows its users to conduct completely personalised analyses in 

addition to modifying and expanding its functionality. 

 

In summary, the project aims and objectives set out in Chapter 1 have been 

successfully met. In addition, the project has generated ideas for further work, which 

are explored in the following Section. 
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7.2 Recommendations for Future Work 

 

7.2.1 Improved classification of semi-fresh samples 

 

A major outcome of this research was the fact that semi-fresh samples were 

consistently difficult to classify, which limited the     values obtained throughout 

the project. The reason behind the high misclassification rates may be two-fold and 

could be analysed as follows.  

 

From a chemometric point of view, the semi-fresh samples most frequently 

represented the minority class. However, it was demonstrated that the decision 

boundaries of most classifiers, but especially those of SVMs, are highly influenced by 

imbalanced data and hence become biased towards the majority class. As an attempt 

to minimise the dominating behaviour of the majority class, the classification models 

were re-built using different weights for each designated class during the training and 

testing process; however, this approach did not notably improve the classification 

results. Several other approaches available in the literature provide solutions to 

overcome this major impediment of machine learning algorithms. Most of the 

proposed methods are based on under-sampling the majority class and/or over-

sampling the minority class with replacement (Nojima et al., 2012). Synthetic 

composition of samples that derive from the minority class has also been extensively 

applied among other heurists (Nojima et al., 2012). However, a novel but quite 

prominent algorithm is the Synthetic Minority Oversampling Technique (SMOTE) 

(Chawla et al., 2002). The SMOTE algorithm performs under-sampling of the 

majority class and over-sampling of the minority class by creating synthetic instances 

using the  -nearest neighbour ( NN) rather than performing over-sampling with 

replacement. The success of the algorithm according to Chawla et al. (2002) lies in 

the fact that the synthetic examples are created in feature space rather than data space; 

thus, according to Liu et al. (2006) the SMOTE algorithm outperforms all the other 

proposed heuristics. Therefore, it may prove to be extremely fruitful when applied on 

the highly imbalanced datasets of this work. 
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In addition, the difficulty to correctly predict the semi-fresh samples can only indicate 

that the identification of semi-fresh samples by the sensory panel was not entirely 

based on its chemical composition, thus they are prone to subjective assessment. This 

project has solely focused on the investigation of multivariate classification 

techniques and problems. However, in addition to analytical measurements and 

sensory assessment, microbiological analyses were also conducted on the meat 

samples according to Argyri (2010) and Papadopoulou et al. (2011). The functionality 

of the multivariate analysis pipeline can be therefore expanded to include calibration 

cases by using as input the provided microbiological counts. The microbiological 

analysis included total viable counts (TVC), Pseudomonas spp., Br. thermosphacta, 

Enterobacteriaceae, lactic acid bacteria (LAB), yeasts and moulds, and pH.  

 

7.2.2 Improvement of the SVM optimisation algorithm 

 

Furthermore, the application of the Box complex algorithm has proven to be 

extremely fruitful in the process of tuning nonlinear SVMs with bootstrapping, 

leading to exceptional speedup rates without compromising the accuracy and integrity 

of the results. However, on very rare instances, the algorithm selected unsuitable 

combinations of hyperparameters as optimal. Even though the algorithm is robust 

since it is tolerant to noisy problems, it does suffer from one major impediment; it is 

highly dependent on the randomly selected initial point, upon which the first complex 

(constrained simplex) is constructed. Therefore, if the initial point is chosen at 

random within an unacceptable region, it may fail to converge and terminate its 

functionality. Therefore, the investigation of an approach for the identification of 

potentially successful starting points may prove to be extremely beneficial. As an 

alternative, a restart algorithm may be implemented, which randomly selects the 

initial points, performs Box complex, and subsequently extracts the combination of 

hyperparameters that presented the best performance. 
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7.2.3 Feature extraction 

 

Currently, feature extraction was implemented in the analysis pipeline only as part of 

PCA. However, a more thorough investigation of feature extraction algorithms may 

help increase the generalisation accuracy and apply further dimensionality reduction 

of the multivariate datasets. In any feature extraction algorithm, the variables are 

ranked based on their contribution to the classifier, and the variables that present high 

ranks are considered optimal. The implementation of feature extraction may be 

straightforward for relatively simple classification models, however the difficulty 

increases for the kernel-based SVMs, where the high-dimensional feature space is 

quite complex. A widely applied feature extraction method that may prove to be 

fruitful in the case of SVMs is the SVM-RFE algorithm (Guyon et al. 2002; the 

algorithm is based on the iterative backwards sequential selection method using 

weights as the variable criterion (Xu et al., 2006).  
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