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i 

ABSTRACT 

‘Lean’ or ‘lean thinking’ refers to an improvement philosophy which focuses on 

the fulfilment of customer value and the reduction of waste. This philosophy is 

credited with the extraordinary rise of Toyota, one of the largest and most 

profitable automotive companies in the world. This thesis presents a pioneering 

study investigating how lean thinking should be applied to product development 

(PD).  

The aim of the research was to construct an innovative model which supports 

the implementation of lean thinking in PD. This was achieved through 

progressive collaboration with practitioners from European manufacturing 

companies. The model provides a process for the conceptual development of 

an engineering project, and is composed of phases and activities for which 

methodologies have been defined. 

The construction of the lean PD model was preceded by a systematic literature 

review and an industrial field study, wherein 36 semi-structured interviews were 

conducted in five manufacturing companies in Europe. The constructed model 

was later implemented on two real-life case studies via action research. The two 

conducted case studies involved the product architecture design for a car audio 

head unit and the development of a helicopter engine.  

It was concluded that the lean PD model addresses various industrial 

challenges including customer value, communication, and innovation. 

Furthermore, by focusing on conceptual design, the lean PD model is expected 

to reduce design rework. As a result of the positive effects of the model, one of 

the companies involved intends to implement the lean PD model further, and 

wishes to extend the model to the rest of the organisation. 

This research makes four main contributions: (1) a novel lean PD model; (2) a 

number of tools developed to support the model; (3) a framework for lean PD 

enablers; and (4) a categorisation of challenges faced by PD in industry used to 

verify the relevance of the lean PD model. 
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1 INTRODUCTION 

1.1 Research Background 

The challenges faced by engineering companies are fierce, and many find 

themselves struggling for mere survival. The entire engineering enterprise is 

being compelled to improve; some of the pressures include economic crises, 

evolving market demands, stiff global competition, and the need to improve 

time-to market (Yelkur and Herbig, 1996; Murman et al., 2000; Molina et al., 

2005; De Brentani, 2010). Lean thinking – an improvement philosophy which 

focuses on the creation of value and the elimination of waste – is a potential 

weapon in this struggle (Womack and Jones, 2003). 

After the cold war, engineering companies were forced to shift their engineering 

paradigm from ‘anything to enhance capability’ to ‘better, faster and cheaper’ 

(Murman et al., 2000). As a result, the following two decades were subject to 

considerable improvement, with companies focusing on incremental 

enhancement and innovation to their products, as well as shorter project lead 

times, and improved cost effectiveness. However, with all the progress made, 

there was still substantial opposition to the ‘better, faster and cheaper’ 

paradigm. Reduced research and development (R&D) investment led to a 

reduction in innovation. Faster lead times were impeded by the incorporation of 

advanced hardware and software tools, new methods, rapid changes to 

customer requirements (often due to technological advances), and the 

adherence to new standards and regulations.  Cost effectiveness was 

obstructed by the push for higher employee salaries, inflation rates and 

increased global competition.  

The automotive industry is one of the most competitive, and amidst this 

competition Toyota Motor Co. has in recent years dominated the industry, and 

is seen by many to be the epitome of ‘better, faster and cheaper’ (Womack et 

al., 1990). 



 

2 

 

Figure ‎1.1 Top motor vehicle manufacturing companies by volume 2010 (World 

ranking of manufacturers, 2010) 

Toyota overtook General Motors (GM) to become the world’s largest automobile 

manufacturer in 2009 and 2010 (as shown in Figure ‎1.1), after GM had 

dominated the position for 77 years. Although Toyota was severely affected by 

vehicle recalls in 2009 and 2010, and a catastrophic earthquake and tsunami in 

2011, revenues of ¥18.583tn ($232.385bn) and profits of ¥283.6bn (US$3.5bn) 

were reported in May 2012 (see ‎A.1, ‎Appendix A). During the same period GM 

filed for bankruptcy protection and required a $50bn USA government bailout. 

As a result GM reclaimed their previous position of the world’s largest 

automobile manufacturer in 2011 and annual profits have since increased (see 

‎A.2, ‎Appendix A). It is the accelerated climb, profit margins, and entrance into 

world markets that is key here, and this is what led researchers and 

practitioners to study Toyota and in turn establish lean thinking as an 

improvement philosophy (Womack et al., 1990). 
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Lean thinking has been a subject of research for more than two decades, the 

focus of which has been on improving manufacturing processes (Khalil and 

Stockton, 2010), as well as administration, management and the supply chain. 

There has however, been comparatively less research done to apply ‘lean’ to 

product development (PD): the transformation of a market opportunity and a set 

of assumptions about product technology into a product available for sale 

(Krishnan and Ulrich, 2001). This is rather strange, as PD has the greatest 

influence on the profitability of any product (Duverlie and Castelain, 1999). One 

possible reason for this is the ‘room for creativity’ and subsequent unstructured 

and iterative approach in traditional product design. Research undertaken to 

improve PD with lean thinking may prove instrumental in the progress of 

engineering. 

A preliminary literature review and ensuing extensive review both confirmed the 

scarcity of academic research related to the application of lean thinking to PD. 

The opportunities for research in this field are countless and include defining the 

vernacular, proposing theory, developing methodologies, as well as analytical 

and experimental research. 

1.2 Research Aim and Objectives 

The primary aim of this research is to construct an innovative model which 

supports the implementation of lean thinking in PD. This aim is in response to 

the overall research question: how should lean thinking be applied to PD? 

The model which has been constructed, combines lean PD principles and 

practices, and provides a unique process for the conceptual phase of PD. The 

model is expected to help an organisation to develop new products that are 

more customer-focused and innovative, while reducing project risk and late 

design changes.  

From the onset of this research, project objectives were defined based on the 

research questions shown in Table ‎1.1. The five objectives are to: 

1. Review lean product development (PD) approaches and examine the 

current state of literature on the subject of lean PD 
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2. Explore whether or not lean PD has a presence in industry and identify 

current PD challenges faced  

3. Extract Lean PD principles and enablers from literature and define a 

framework that combines them 

4. Develop a process model through which lean thinking can be 

implemented in PD  

5. Test the model through industrial application 

 

Table ‎1.1 Research questions aligned with objectives 

Primary research question Research objective Supplementary questions 

What does lean product 
development (PD) mean? 

Review lean PD 
approaches and examine 
the current state of 
literature on the subject of 
lean PD 

How have different 
researchers approached 
lean PD and how do they 
compare? 

Have any case studies of 
aspects of lean PD been 
conducted, if so what has 
been done? 

What are the constituents 
of lean PD, and is there 
any consensus among 
researchers? 

Does lean PD have a 
presence in industry? 

Explore whether or not lean 
PD has a presence in 
industry and identify 
current PD challenges 
faced  

What are the challenges 
being faced by PD in 
industry? 

How should lean PD be 
structured and 
represented? 

Extract Lean PD principles 
and enablers from literature 
and define a framework 
that combines them 

What are the core enablers 
for lean PD? 

Which tools and methods 
support lean PD? 

How can lean PD 
principles and practices be 
implemented in a PD 
project? 

Develop a process model 
through which lean thinking 
can be implemented in PD  

Which tools can be used to 
support the implementation 
of lean PD? 

How do lean PD principles 
and practices interact with 
the PD environment? 

Test the model through 
industrial application 

Is the lean PD model 
effective in addressing PD 
challenges? 
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1.3 Overview of the LeanPPD FP-7 project 

This PhD project forms part of a European project titled ‘Lean Product and 

Process Development (LeanPPD)’. The European project is addressing the 

need of European manufacturing companies for a new paradigm that goes 

beyond lean manufacturing to ensure the lean transformation of PD in an 

engineering enterprise (LeanPPD website). This is a response to evolving 

market demands for products with greater customisation, higher quality, 

sustainability, quicker lead times and reduced cost. Models, methodologies and 

tools have been developed as part of the on-going research project to support 

the implementation of lean thinking in PD. An industry-focused approach has 

been ensured throughout the project by basing the research on business cases 

from different industry sectors in the European project consortium: aerospace, 

automotive and home appliances. These business cases helped to derive 

requirements for and test tools, methodologies and models developed as part of 

this research project. The multi-sector approach adopted supports the 

generalisation of research deliverables and findings. A list of consortium 

members is presented in Table ‎1.2. 

Table ‎1.2 Members of the LeanPPD FP-7 project consortium 

Consortium member name Short name Country 

1. Tecnalia Corporación Tecnológica Tecnalia Spain 

2. Cranfield University CU UK 

3. Rolls-Royce R-R UK 

4. University of Warwick WARWICK UK 

5. Institut für angewandte Systemtechnik Bremen ATB Germany 

6. VolksWagen A.G. VW Germany 

7. Ecole Polytechnique Fédérale de Lausanne EPFL Switzerland 

8. Visteon Engineering Services Ltd VES UK 

9. SISTEPLANT SIS Spain 

10. Politécnico of Milano POLIMI Italy 

11. Indesit INDESIT Italy 

12. SITECH Sp. So. o. SITECH Poland 
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1.4 Industrial collaborators  

This section provides an overview of the companies that have collaborated with 

the researcher in order to conduct the research presented in this thesis. 

1.4.1 Rolls-Royce Plc. 

Rolls-Royce (R-R) is a world-leading provider of power systems and services 

for use on land, at sea and in the air. The company has established a strong 

position in civil aerospace, defence aerospace, marine, energy and nuclear 

global markets. In 2011, R-R performed well in difficult market conditions and 

continued to invest for future growth, including £908 million in R&D. R-R have a 

£62.2bn order book, underlying revenue has grown to £11.3bn ($18.153bn)  

and underlying profit has increased 21 per cent to £1.2bn ($1.928bn). Over 

40,000 employees work for R-R in offices, manufacturing and service facilities 

in 50 countries around the world (R-R website). 

R-R has a broad customer base comprising 600 airlines, 4,000 corporate and 

utility aircraft and helicopter operators, 160 armed forces, more than 2,000 

marine customers including 70 navies, and energy customers in 120 countries. 

The company now has a total of 54,000 gas turbines in service worldwide and 

they generate a demand for high-value services throughout their operational 

lives. 

R-R continues to invest in core technologies, products, people and capabilities 

with the objective of broadening and strengthening the product portfolio, 

improving efficiency and enhancing the environmental performance of its 

products.  The company seeks to add value for its customers with aftermarket 

services that will enhance the performance and reliability of its products. This 

approach is fundamental to developing and sustaining collaborative long-term 

relationships in all its markets (LeanPPD website). 

1.4.2 Visteon Engineering Services Ltd. 

Visteon Engineering Services (VES) is a global automotive supplier with 

locations in 26 countries around the world. VES employs approximately 25,000 
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employees and had revenues of $8.05bn in 2011 (VES website). Aside from a 

strong global footprint, VES’s foundation is its portfolio of winning products – 

climate, interiors and electronics (including lighting). VES is a leading designer 

and manufacturer of vehicle interior systems, integrating the highest levels of 

craftsmanship and functionality, focused on enhancing the driving experience. 

VES has a full range of electronic products that control critical vehicle systems 

and connect people to their vehicles and the world around them. The portfolio 

consists of cockpit electronics, containing audio and infotainment, 

instrumentation and displays, control panels, power train electronics, and a 

lighting portfolio including front and rear lighting. The third-core area of the 

business is climate. VES is a global leader in the designing and manufacturing 

components, modules and systems that help keep vehicle cabin temperatures 

at desired comfort levels and engines cool. Key product lines in this area 

include: HVAC systems, power-train cooling, compressors, fluid transport and 

engine induction. Customers include all the major global vehicle manufacturers 

such as Ford, GM, Chrysler [and Daimler], Renault, Nissan, Hyundai, Honda, 

BMW and VW (VES overview presentation, 2009). 

1.4.3 Volkswagen AG 

With production facilities in 15 countries and a broad product range stretching 

from the high-efficient “blue motion” passenger car to luxury and sports cars, 

light & heavy duty trucks and commercial vehicles, the Volkswagen Group (VW) 

has grown to be one of the largest globally active automotive manufacturers 

with world-wide sales of over eight million units in 2011. The VW comprises 12 

active automotive and motorcycle companies. VW’s annual revenues exceeded 

€159bn (over $205bn) in 2011. The average number of employees worldwide is 

approximately 400,000 (Volkswagen website). 

Volkswagen's aim is to produce vehicles with ever increasing quality, safety and 

technology standards and at the same time reduce fuel consumption and 

emission levels. VW is interested in the application of new developments in all 

automotive areas not only to meet all relevant technical and legal requirements 
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but also to satisfy customer demands on a consistently high level (LeanPPD 

website). 

1.4.4 Indesit 

Indesit is one of Europe’s leading manufacturers and distributors of major 

domestic appliances, including washing machines, dryers, dishwashers, fridges, 

freezers, cookers, hoods, ovens and hobs. It is the undisputed leader in major 

markets such as Italy, the UK and Russia. Founded in 1975 and listed on the 

Milan stock exchange since 1987, the Group posted revenues of over €2.8bn 

(over $3.61bn) in 2011. Indesit Company has 14 production facilities (in Italy, 

Poland, the UK, Russia and Turkey) and 16,000 employees. The Group’s main 

brands are Indesit, Hotpoint and Scholtès (Indesit website). 

The company takes advantage of over 100 years of cumulative engineering 

experience, a highly motivated, qualified and inventive staff and an extensive 

network of partnerships with major companies and universities (LeanPPD 

website). The R&D division of the Indesit company owns all the patents on 

home automation, energy management, and electronic controls. (Indesit 

website). 

1.4.5 Sitech Sp. z o.o.  

The Sitech Group is a globally active subsidiary of Volkswagen AG with 

production companies in Germany, Poland and China. In Germany, Sitech 

GmbH has production facilities at Wolfsburg, Emden and Hanover. In Poland, 

the parent company of Sitech GmbH, Sitech Sp. z o.o., has one production 

facility, at Polkowice. The Sitech Group is also active in a joint venture in 

Shanghai (Sitech website). 

The Sitech Group has positioned itself as a development supplier to 

Volkswagen with its own seat development team, supplying steel seat 

structures and complete seats to VW brands (LeanPPD website). Sitech also 

produces components such as central consoles and instrument panels that are 

fitted to many VW models. In 2010, Sitech produced and delivered to customers 

a total of 9.83 million complete seating sets (car seats). Sitech’s customers are 
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not only VW passenger cars (including AUDI, Skoda and Porsche), but also 

other car manufacturers in international market. The Sitech Group currently 

employs about 3,980 people, including 2,100 with Sitech GmbH in Germany 

(Wolfsburg: 1,400, Emden: 400, Hanover: 300), 1,500 employees at Polkowice 

(Poland) and about 380 in Shanghai (Sitech website). 

1.5 Thesis Structure 

This thesis is arranged as a monograph, comprising seven chapters that are 

structured according to the progression of the research conducted. An overview 

of the contents of the chapters is provided in Table ‎1.3. Each chapter starts with 

an introduction intended to help the reader understand the rationale behind the 

chapter organisation. Summaries are provided at the end of chapters 2-6 to 

help recap chapter contents and sum up any salient points. 

 

Table ‎1.3 Thesis organisation: by chapter 

Chapter 1 Introduction  Research background 

 Aim and objectives 

 Overview of the wider LeanPPD European project 

 Overview of industrial collaborator companies 

Chapter 2 Research 
Methodology 

 Research context description 

 Research typology overview 

 Three-phase research design 

 Research methods employed 

 Approach towards data analysis 

 Research considerations  

Chapter 3 Literature 
Review 

 Review strategy 

 The historical foundation of lean PD 

 Research trends 

 Lean PD representations 

 Case study applications of lean PD 

 Research gaps 

Chapter 4 Industrial 
Context 

 Industrial field study description 

 Interview results  

 Discussion of field study results 
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Chapter 5 Model 
Construction 

 The development of a framework for lean PD 
enablers 

 A summative review of research regarding the 
application of lean PD to conceptual design via 
set-based concurrent engineering 

 A synopsis of how the lean PD model was 
constructed 

 Methodological recommendations for lean PD 
model activities  

 Tools recommended to support the lean PD model 

 Implementation process for the lean PD model 

Chapter 6 Industrial 
Applications 

 An overview of the action research approach 
adopted during case studies 

 Results from a case study involving the product 
architecture design for a car audio head unit 

 Results from a case study involving the 
development of a helicopter engine 

Chapter 7 Discussion 
and 
Conclusions 

 Discussion of case study results and the 
articulation of findings 

 An evaluation of the research, including: the lean 
PD model itself, the research methodology, 
research limitations, and the fulfilment of research 
objectives 

 Key research contributions 

 Implications for practitioners who wish to 
implement the lean PD model, or lean PD in 
general 

 Suggestions for future research 

 Conclusions based on the research conducted 

Appendices A - E  Automotive industry articles referred to in the 
introduction chapter 

 A table illustrating the numbers of practitioners 
involved in the research referred to in the research 
methodology chapter 

 An illustration of the stage-gate model referred to 
in the literature review chapter 

 An example of a PD model referred to in the 
literature review chapter 

 The interview instrument referred to in the 
industrial context chapter 
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2 RESEARCH METHODOLOGY 

This chapter presents background information about the research design as 

well as the adopted research methodology. 

This chapter is divided into seven sections: 

Section ‎2.1 provides some contextual information about the research. Section 

‎2.2 clarifies the research type by addressing both epistemological stances and 

research strategies related to the research in this thesis. In section ‎2.3 the 

research design is described and related to the research objectives presented 

in section ‎1.2. The research design draws on a number of research methods 

which are reviewed in section ‎2.4. This style of having research methods 

reviewed after describing the research design is somewhat unconventional, 

however, it was deemed appropriate in order to focus on research methods 

relevant to the described research design. Some key points regarding data 

analysis are discussed in section ‎2.5. Ethical considerations and threats to 

research trustworthiness are explained in section ‎2.6. A summary of the chapter 

is provided in section ‎2.7. 

2.1 Research Context 

It is important to clarify the context of research in order to develop an 

appropriate research methodology. This research focuses on contributing to the 

new product development (NPD) research area. NPD is the complete process 

of transforming conceptual ideas into tangible, marketable, and profitable 

products (Hart, 1996; Brethauer, 2002; Trott, 2008). This research may also fall 

under a number of other research areas including engineering design, systems 

engineering1, and concurrent engineering2. 

The research reported in this thesis was conducted primarily in the United 

Kingdom between the summers of 2009 and 2012. A substantial proportion of 

                                            
1
 ‘Systems engineering’ is defined as “a methodical, disciplined approach for the design, 
realisation, technical management, operations, and retirement of a system.” (Kapurch, 2008) 
2
 Concurrent engineering has been defined as “the consideration of the factors associated with 
the life cycle of the product during the design phase” (Abdalla, 1999) 
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the research was also conducted in a number of countries in Europe, including 

Germany, Italy, Poland, Spain and Switzerland. 

The research presented was carried out by the author with the support of a 

consortium of industrial and research partners (see Table ‎1.2). Over 300 

practitioners were involved over the duration of the project (see ‎Appendix B). 

Due to the scale of the research conducted over a short timescale, a number of 

students also supported mainly for the purpose of data collection.  

The research was applied during the concept development phase of real 

industrial projects at two different UK-based engineering companies. 

2.2 Research Type 

As the fundamental goal of this research is to contribute to knowledge, a 

philosophical stance and justification of what may be regarded as knowledge is 

important. Epistemology is the branch of philosophy concerned with the nature 

and limitations of human knowledge. It is recommended to discuss the 

epistemological standpoint before describing the actual design of research 

(Sayer, 1992). Research paradigms, strategies, types, and styles are all 

dependent on the research objectives or questions. 

This research involves the study of human beings in social settings and is 

therefore under the umbrella of social science or social research. As the 

research involves the development of theory for a real world setting, it would be 

considered to be applied research as opposed to pure research. Kumar (2010) 

proposes four central purposes and subsequent types of research: descriptive, 

correlational, explanatory and exploratory. It can be concluded based on the 

research objectives that exploratory and descriptive are both suitable in this 

case. Research objectives 1 and 2 mainly involve exploratory research, while 

the remaining objectives require descriptive research. 

In order to develop and communicate a rich understanding of the social setting 

and the impact of the research on it, a predominantly flexible and qualitative 

approach was adopted. This is especially significant where the research may 

need to draw on multiple perspectives and be responsive to both primary and 
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secondary data. It is worth mentioning a point raised by Hood (2006) that ‘most 

researchers will not fit neatly into the categories of any given typology’; the 

research presented in this thesis combines both epistemological standpoints 

and also research types. The standpoint that has been adopted is a hybrid of 

social constructivism and pragmatism. Social constructivism suggests that 

knowledge is created as a result of social interaction, while pragmatism 

suggests that knowledge is created as a result of practice. Moreover Robson 

(2011) commented that ‘pragmatism provides a highly compatible theoretical 

underpinning to mixing two types of method in the same project’. It is envisaged 

that the contribution to knowledge will be both a result of the interaction 

between social phenomena and also what the researcher will develop as a 

result of what is learnt from practice.  

Grounded theory, ethnography and case study research are three research 

strategies in qualitative research (Robson, 2011). Table ‎2.1 provides an 

overview of these three research strategies. 

Table ‎2.1 Overview of three qualitative design strategies (adapted from Robson, 

2011) 

Research Strategy Overview 

Grounded Theory The focus of research is on developing a theory of the 
particular social situation forming the basis of the 
study. The theory is ‘grounded’ in the sense of being 
derived from the study itself. Interviews are commonly 
used, but other methods are not excluded. 

Ethnography The focus of research is on the description and 
interpretation of the culture and social structure of a 
social group. Typically involves the longitudinal 
observation of participants, but other methods may 
also be used. 

Case Study The focus of research is on a case in its own right, 
and taking its context into account. Typically employs 
multiple data collection methods. 

 

Robson (2011) describes mixed methods research as a new research paradigm 

where pragmatism is the social underpinning for the research. In this research it 
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was envisaged that grounded theory would be employed for theoretical and 

methodological development, and case study research would be conducted for 

testing purposes. As the research involves a considerable amount of 

collaboration with industrial partner companies, it may also have some 

resemblance to ethnographic studies.  Potential benefits of multi-strategy 

designs have been described by Robson (2011) and Bryman (2006), and 

include: 

1. Triangulation due to different data types and methods 

2. Completeness and comprehensiveness of the research setting 

3. Ability to answer different research questions 

4. Ability to deal with complex phenomena and situations 

5. Explaining findings based on further investigation 

6. Refining research questions based on qualitative data 

7. Instrument development and testing 

To further elaborate on the adopted approach, the research ties in very well with 

action research. Cohen et al. (2007) define action research as “a small scale 

intervention in the functioning of the real world and a close examination of the 

effects of such an intervention”. Action research was employed to test the 

constructed lean PD model via case study research. The aspiration to develop a 

rich understanding of the social setting in question has already been mentioned, 

therefore a case study approach is deemed highly suitable. A case study can be 

used to describe what is learnt about a particular phenomenon within a 

contextual boundary, or propose some generalisations for similar contexts 

which may be tested in future case studies. Another advantage of adopting a 

case study approach is that it may benefit from prior development of theoretical 

propositions to guide data collection and analysis. 

Having explained the typology of the research, the actual research design and 

selected methods will be discussed in the following sections. 
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2.3 Research Design Adopted 

The research carried out as part of this study may be divided into three 

chronological phases (as illustrated in Figure ‎2.1). The first phase is the 

exploratory phase wherein the initial two objectives were addressed. This was 

followed by the development phase, in which a model and methodology was 

developed thus satisfying objectives 3 and 4. The third and final phase is the 

implementation phase through which the final objective was addressed.  

 

Figure ‎2.1 Phases of the research project 

 

  

Phase 3: Implementation 

Objective 5: Test the model through industrial case studies 

Phase 2: Development 

Objective 3: Extract Lean PD 
principles and enablers from 

literature and define a framework 
that combines them 

Objective 4: Develop a process model 
through which lean thinking can be 

implemented in product development  

Phase 1: Exploration 

Objective 1: Review lean product 
development (PD) approaches and 

examine the current state of 
literature on the subject of lean PD 

Objective 2: Explore whether or not lean PD 
has a presence in industry and identify 

current PD challenges faced  
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2.3.1 Phase 1: Exploration 

The exploratory phase involved an extensive analysis of literature related to the 

research topic as well as an investigation of five industrial partner companies. 

An audit of the literature review was kept in the form of a spreadsheet which 

captured the summary and analysis of each source. Through the literature 

review research trends and gaps were identified. Research trends were 

critiqued and a preferred direction for the research was determined. 

Initial interaction with industry involved various discussions through virtual web-

based meetings, and face-to-face meetings at a number of European locations: 

UK, Germany, Italy, and Poland. Meetings were held in order to understand 

industrial needs and to ensure an industrial-driven approach to the research. 

Regular virtual web-based meetings were held in order to discuss research 

progress and other specific issues. Face-to-face meetings were deemed 

infeasible as they would have obliged participants to rendezvous at a single 

location, and may not have ensured the participation of all parties. Some face-

to-face meetings were however, occasionally held. Minutes of each meeting 

were documented by the researcher as well as other attendees using 

notebooks. 

The author visited the five industrial partner companies in order to develop an 

initial understanding of the context and also to discuss the research topic. This 

involved over 100 hours of interaction. It was deemed necessary to visit the 

companies in order to observe and experience the actual setting of both PD and 

production activities. The observations and contextual notes for each visit were 

documented separately. Observations were informal and not pre-structured. 

Corporate PowerPoint presentations and other PD documentation were also 

provided for analysis. 

Further data was required in order to understand whether or not Lean PD had a 

presence in industry as well as the challenges that are currently faced. This was 

important in order to ascertain the relevance of Lean PD amidst the current 

challenges. Although observation and surveys could have been used, the 

researcher deemed semi-structured face-to-face interviews as the preferred 
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method in order to gain a deeper understanding of participant views, opinions 

and non-verbal cues. Another key differentiator was the opportunity to change 

the line of enquiry and discuss tertiary points that surround the question, as 

opposed to simply obtaining answers to a restricted number of questions.  

Based on the understanding gained from literature and initial interaction with 

industrial partner companies, a number of questions were developed. The 

questions were designed to probe discussions that would allow a qualitative 

analysis of a wider spectrum of lean PD enablers3 based on interview 

transcripts. A semi-structured questionnaire was thus developed to guide the 

interview process. A group of designers, engineers and managers were 

interviewed face-to-face at each company, and were selected on a 

representative basis by the responsible parties at each company. Interviews 

were carried out in company meeting rooms with multiple researchers present 

in order to ensure accuracy of transcription. Recording was avoided to ensure 

that participants were not fearful of potential repercussions for their answers. 

Prior to each interview, participants were briefed about the purpose of the study; 

the anonymity of responses was also communicated. Each interview ranged 

from 90 to 120 minutes depending on the responses from the interviewees. 

Multiple choice questions were designed to allow the interviewees to objectively 

characterise their company’s PD practice. Where respondents felt that the 

choices provided did not adequately represent their company or views, 

additional comments were captured. The questions did not use terms such as 

Toyota or Lean in order to remain impartial. Participants were given the option 

not to answer a question when they were unsure of the answer.  

The results from the interviews were compiled in a report along with their 

analysis, and sent to industrial collaborator representatives via email for 

verification.  Data collected via the interviews also helped to: 

 Develop an understanding of how lean PD ideas and approaches are 

perceived and responded to by practitioners 

                                            
3
 Lean PD enablers were extracted from literature, and are presented in section ‎3.5 
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 Develop a richer appreciation of the research context 

 Improve understanding of nuances in the research context 

 Provide expert opinion and guidance for the research 

 Highlight gaps in the research and areas that required further attention 

 Provide fresh stimuli for the research 

2.3.2 Phase 2: Development 

The first phase of research highlighted both research gaps and the relevance of 

the undertaken research. During the second phase of research a framework 

and methodology were developed to support the implementation of lean 

thinking in PD. This involved further analysis of literature and the identification 

of principles, methods and tools that previous research has used to describe 

lean PD. Principles, methods and tools were categorised to provide a 

framework of enablers for lean PD. This step was necessary in order to 

systematically perform a gap analysis between theoretical lean PD, and PD 

practice at the companies involved in phase 1 of the research. One of the key 

findings from this analysis was that the concept phase of PD is where lean PD 

was most unique.  

Further analysis of the literature revealed additional principles for the application 

of lean thinking to the conceptual phase of PD via set-based concurrent 

engineering (SBCE). The combined principles for lean PD were organised in 

chronological order in line with the process of PD. The focus was on concept 

development as opposed to the latter stages of PD. Based on this analysis the 

lean PD model was divided into five stages composed of activities that are 

based on the identified principles of lean PD. The model was reviewed by 

research and industrial partners and iteratively improved over the duration of its 

development. The lean PD model was also associated with methods and tools 

extracted from literature related to lean PD (refer to table Table ‎3.2). Other tools 

were also included based on recommendations from industrial experts over a 

series of workshops. 
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2.3.3 Phase 3: Implementation 

The developed lean PD model was applied to two case study projects during 

the implementation phase. The main purpose of this phase was to observe the 

effects of the model on the context of study.  

Conducting multiple case studies in each of the two (or even more) companies 

would have been ideal; however this was infeasible due to budget and time 

restrictions. Multiple cases in a single context could also have been carried out, 

however generalisability would have been jeopardised and the results are likely 

not to be as rich as multiple case studies from different contexts (companies). 

Multiple case studies were conducted as opposed to a single case study due to 

the analytical benefits that could be gained. Another reason for the selection of 

multiple case studies was the potential generalisability that could result if the 

findings in multiple cases are common4. The two case studies were conducted 

in parallel so that a single methodology could be tested in two different 

companies.  

The researcher played a participatory role during the concept development of 

each case and thus this phase would be described as action research. The 

purpose of action research is to influence or improve a practice of some kind, 

the understanding of the practice, and the situation in which the practice takes 

place (Robson 2011). Action research was conducted in order to influence or 

change the concept development process employed on real PD projects, which 

may not have been possible otherwise. This approach also allowed the 

researcher to play an explanatory role for the duration of phase 3. Due to the 

extent of the task involved, a number of students assisted during this phase for 

data collection purposes. Data was collected in the form of documentation, 

archival records, observation, and a questionnaire. The questionnaire was used 

to collect data about the concept development process employed on a historic 

case. This was followed by a number of meetings to discuss the research 

implementation further. A gap analysis was conducted between the developed 

                                            
4
 Common findings from the case studies are presented in section ‎7.1.3.1 
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lean PD model and the concept development process employed on the historic 

case. It may be suggested that comparing against company process 

documentation would be easier and more logical than the questionnaire 

approach adopted, however, one of the findings from phase 1 was that 

company process documentation is often idealistic. The gap analysis assisted in 

identifying potential changes from the current concept development processes 

employed, to the new approach proposed. These changes were proposed to 

PD representatives and the agreed changes were implemented. This resulted in 

bespoke versions of the methodology tailored for the specific application. Every 

effort was made to ensure that tailored versions were representative of the lean 

PD model and were harmonious with the case study objectives. The researcher 

participated in project meetings and guided the project to follow the new 

methodology. Once the implementation was complete, the changes were 

evaluated collaboratively with PD representatives at each company. 

2.4 Methods Employed for Data Collection 

Several methods were used for the purpose of data collection in this research. 

The research methods were selected based on the information required to 

achieve research objectives (Figure ‎2.2). As the selection of methods has 

already been discussed, this section will provide an overview of the methods 

employed. 

 

Figure ‎2.2 Employed data collection methods linked with research objectives 

Research 
Project 

Objective 1 

Literature 
Review 

Objective 2 

Observation 
(site visits) 

Interviews 

Objective 3 

Workshops 

Objective 4 

Workshops 

Objective 5 

Case Studies 
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2.4.1 Literature Review 

‘The literature is what is already known, and written down relevant to your 

research project’ (Robson, 2011). Multiple purposes for conducting a literature 

review have been proposed beyond the traditional review which comprises of 

the systematic identification, location, and analysis of documents containing 

information related to a research problem or aim. Some other purposes or 

advantages of a literature review adapted from Robson (2011) are that it: 

1. Exposes relevant gaps in literature or knowledge, and identifies principal 

areas of dispute and uncertainty requiring further study 

2. Helps identify general patterns to research and research findings by 

analysing multiple examples of research in the same area 

3. Juxtaposes studies with apparently conflicting findings to help explore 

explanations for discrepancies 

4. Helps to define terminology and identify variations in the definitions used 

by researchers or practitioners 

5. Helps to identify appropriate research methodologies and instruments for 

data collection  

6. Develops the researchers knowledge and understanding of the research 

topic 

7. Helps to prevent duplicating research and avoid pitfalls and errors 

experienced in previous research 

The types of literature that are included in an academic review may vary 

depending on its purposes. Furthermore there is also variation in the kinds of 

information that would be considered to be contributions to knowledge. Original 

research may be published in the form of articles, books, and reports. Each of 

these three publications may be subject to peer-review and academic rigour; 

however it is important to be aware of the strengths and weaknesses of each 

type. An evaluation of different types of publication is provided in Table ‎2.2. 
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Table ‎2.2 Strengths and weaknesses of different types of publication  

Type of publication Strengths Weaknesses 

Book Unconstrained length 
allows room for 
elaboration 

Peer-review process is 
often unstructured and 
may not be robust 

Journal article Academic rigour and 
originality are the main 
criteria 

Readability may be 
compromised  

Conference article Succinct communication 
of original research 

Academic rigour varies 
from one conference to 
another 

Academic report (thesis) Comprehensive 
representation of 
research  

Quality varies 
depending on the 
researcher and research 
institution  

Research project report Flexible structure and 
representation  

Stakeholder influence 
may affect the research 
results 

Other sources may also be considered when conducting a literature review and 

may prove highly insightful. The internet is increasingly becoming a 

considerable source for research. Academic databases and portals, 

government and legal publications, and a myriad of websites for research 

dissemination are additional sources that have been considered. 

2.4.2 Observation 

Actions and behaviour of people are a central aspect of research involving the 

real world. Observation is an obvious technique that may be employed to gain 

both a preliminary and even detailed understanding of phenomenon or social 

contexts. Practitioners often view researchers as too theoretical and even 

unaware of the reality for which they conduct research. A researcher’s presence 

in the field of study can therefore be instrumental to their appreciation of the 

research setting.  

Observational methods differ depending on the purpose of their use. The 

degree of pre-structure, formality, and the role of the observer are perhaps the 

main variables that influence the choice of approach. A formal approach 
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imposes structure and direction on the research, while an informal approach 

allows the researcher considerable freedom in what information is gathered and 

how it is recorded, normally in the form of notes and any additional 

documentation. The researcher may play the role of a pure observer or a 

participant, the basic difference being that the former requires an observation 

instrument, whereas in the latter the researcher is in effect the instrument. A key 

feature of participant observation is that the observer seeks to become some 

kind of member of the observed group. This involves physical presence, 

interaction, learning and sharing social conventions etc.  

Observation may be used for several purposes in a study. It is common to use 

observation in the exploratory phase of research, typically in an unstructured 

form, to gain insight into a situation as a precursor to subsequent research 

(Robson, 2011). Observation may be especially useful in multi-strategy 

research designs and may prove critical to achieving triangulation. Some of the 

dimensions that could be captured during observation include (adapted from 

Spradley, 1980): 

1. Location: physical setting; rooms, outdoor spaces, etc. 

2. Actors: the names and relevant details of the people involved 

3. Activities: the various activities of the actors 

4. Objects: physical elements 

5. Acts: specific individual actions 

6. Events: particular occasions e.g. meetings  

7. Time: when the observation took place 

8. Goals: what were the purposes of events 

9. Feelings: emotions expressed and their particular contexts 

2.4.3 Interviews 

The interview is a survey approach which allows the researcher to explore a 

topic of study from a sampled population. Table ‎2.3 compares different survey 

approaches. 
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Table ‎2.3 Evaluation of survey approaches (adapted from Walsh, 2001) 

Survey type Advantages Limitations 

Postal survey Saves on interviewing time 

Can reach a large number of 
people easily 

Respondents can think 
carefully about their answers 

Response rates are often low 

You cannot be sure who 
actually filled in the 
questionnaire 

Can be expensive due to 
postage costs  

Email 
survey/interview 

Most convenient and quick 
approach 

Can reach a large number of 
people very easily 

Respondents can think 
carefully about their answers 

Response rates are often low 

You cannot be sure who 
actually filled in the 
questionnaire 

Responses are often rushed 

Telephone 
survey 

Convenient and quick 

The interviewer can clarify 
questions and probe 
answers 

Can be expensive if calling 
overseas  

You cannot see the 
respondent  

Can be difficult to explain 
verbally 

Virtual interview The interviewer can control 
the survey 

The interviewer can clarify 
questions and probe 
answers 

Non-verbal information can 
be gained 

Subject to audio/visual quality  

The interviewer is likely to 
bias or influence the answers 

Face-to-face 
interview 

Response rate are likely to 
be high 

The interviewer has 
maximum control over the 
survey 

The interviewer can clarify 
questions and probe 
answers 

A wealth of non-verbal 
information can be gained 

Most time-consuming 
approach 

The interviewer is likely to 
bias or influence the answers 
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Researchers who conduct surveys take a broad, systematic view of a topic at a 

specific moment in time and collect empirical data on it (Walsh, 2001). Out of 

the different survey approaches face-to-face interviews are preferred when the 

research focus is exploratory and rich qualitative data is sought. 

Three common interview types are structured, semi-structured, and 

unstructured. Table ‎2.4 compares the three interview types. 

Table ‎2.4 Evaluation of interview types (adapted from Robson, 2011) 

Interview 
type 

Overview Advantages Limitations 

Fully 
structured  

Has predetermined 
questions with fixed 
wording, usually in a pre-set 
order; the use of open 
response questions is the 
only essential difference 
from a survey questionnaire  

Interviews can 
be quick 

Analysis of 
results is not 
complex 

 

Does not fit 
easily into 
flexible 
research 
designs  

Interviewer 
does not have 
the flexibility to 
explore issues 
that arise 
during the 
interview 

Semi-
structured 

The interviewer has an 
interview guide that serves 
as a checklist of topics to be 
covered and a default 
wording and order for the 
questions, but the wording 
and order are often 
substantially modified based 
on the flow of the interview, 
and additional unplanned 
questions are asked to 
follow up on what the 
interviewee says 

Used in flexible 
and multi-
strategy 
research 
designs 

Allows the 
interviewer to 
explore motives 

 

May be the 
most time-
consuming  

There may be 
inconsistencies 
between 
respondent 
answers and 
what the 
interviewer 
believes to be 
the case 

Unstructured The interviewer has a 
general area of interest and 
concern but lets the 
conversation develop within 
this area; it can be 
completely informal 

Interview time 
can be 
constrained  

Interviewer has 
maximum 
control over 
data collection 

Difficult to 
analyse results 

Lack of 
structure may 
lead to 
unsatisfactory 
results 
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The suitability of different interview types is dependent on the research 

objectives (or questions). The biggest challenge is to conduct interviews in a 

professional manner while avoiding influence and bias on the results. Interviews 

can be captured via a prepared template, by transcribing notes, and may also 

be recorded, subject to consent. 

2.4.4 Workshops 

Historically a workshop was a room or building in which mechanical products 

were manufactured or repaired. The term workshop is now also used to refer to 

an extended conference room meeting in which the sequence of items on the 

agenda leads to a clear deliverable. Researchers can control a workshop by 

maintaining the focus of discussion on the agenda and the end deliverable. 

Although workshops are not considered to be a fundamental data collection 

technique and are rarely found in research methodology literature, their merit is 

evident especially in industrial research. Key stakeholders can be brought 

together to discuss pressing research deliverables at the research setting or at 

another suitable and prudent location. 

 The involvement of key stakeholders and experts in this manner can be seen to 

provide a considerable level of validation to research. Consensus that is 

reached through workshops may be very supportive to research, while 

disagreement implies that further investigation is required in a particular issue. 

Workshops are highly suitable in flexible research design as they can be 

scheduled as and when required. 

2.4.5 Case Studies 

Yin (2003) describes the case study as “an empirical enquiry that investigates a 

contemporary phenomenon within its real life context, especially when the 

boundaries between phenomenon and context are not clearly evident”. He also 

suggests that case studies are preferred when “how” and “why” questions are 

posed, and when the focus is on contemporary phenomenon within a real life 

context. Conducting action research using a case study may be considered 

among the most challenging social science research endeavours due to the 
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need to combine and balance between research development, participation, 

influence, description and evaluation. Early development of theory is very 

important in case study research, whether the purpose of the case study is to 

develop or test theory. The goal of theory development is to have a sufficient 

blueprint for your study, which requires theoretical propositions that assist in 

guiding case study data collection (Yin, 2003). 

Assuming that through case study research statistical generalisation can be 

achieved is farfetched. Cases tend not to be sampling units, and should be 

considered to be experiments of some kind. Multiple cases are similar to 

multiple experiments and allow researchers to propose analytical 

generalisations based on their experimentation. 

2.4.6 Other Methods 

Additional research methods that were employed for data collection include: 

document analysis, reviewing archival records, and observing physical 

artefacts. These methods were employed in an unstructured fashion when they 

were deemed appropriate by the researcher and when the data became 

available. Additional techniques used for data collection and collaboration 

include face-to-face and web-based virtual meetings (via Cisco WebEx video 

conference software), telephone conversations, emails, and informal 

discussions. These methods will be discussed further throughout the 

subsequent chapters. 

2.5 Data Analysis 

In qualitative research it is important to consider the analysis of data before data 

collection. Walliman (2005) highlights that ‘by immersing him/herself in the data 

and then searching out patterns, surprising phenomena and inconsistencies, 

the researcher can generate new concepts and theory, or uncover further 

instances of those already in existence’. Repetition of words, incidents, 

emotions, and irregularities are particularly insightful in qualitative analysis.  

Preliminary analysis was conducted while applying each of the data collection 

methods and researcher comments were also captured. This process is quite 
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natural as the researcher adopts an analytical attitude towards the type and 

amount of data being captured. The second stage of analysis is the codification 

and collation of data. Quantitative analysis was conducted with data extracted 

from the literature review and interviews. Spreadsheets were used to support 

data analysis where possible, primarily to visualise data in the form of tables 

and charts. Once data was processed, qualitative analysis was performed in 

order to help generate theory based on the data extracted.  

Data from other methods were not analysed quantitatively, but were compiled in 

the form of reports. Reports were produced throughout the research providing 

analysis of data at the end of each research phase. Miles and Huberman (1994) 

propose three components of data analysis: data reduction, data display, and 

conclusion drawing and verification. Using suitable methods to display the data 

(in the form of matrices, graphs, charts and networks) aids in reducing data and 

its analysis (Walliman, 2005). 

2.6 Research Considerations  

In order to ensure the quality of research, ethics and trustworthiness have been 

given special attention.  

2.6.1 Ethics 

As social research is predominantly concerned with people, ethics requires 

careful consideration. The integrity of research depends on both its scientific 

rigour and also its ethical adequacy (Oxford Brookes University, Ethical 

Standards for Research Involving Human Participants: Code of Practice, 2003). 

The purpose of this research was to gain greater knowledge and understanding 

of a phenomenon and not to assist in any unethical cause. This research 

involved extensive communication with both researchers and practitioners, and 

care was taken to avoid any potential harm to those involved. An example of 

this is the anonymity of interviewee responses during interviews. In some cases 

the research was expected to benefit the participant and thus serve as a 

mutually beneficial activity.  
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Parties involved in the research did so with consent and were briefed about the 

research prior to their involvement. Honesty and integrity were central 

considerations in this research, especially between the researcher and 

participants. Participants were provided summaries of research results and 

consent was sought prior to any public dissemination activities. As this research 

involved company specific data, confidentiality agreements were signed and 

every effort was made to protect the confidentiality of data and information. 

2.6.2 Research Trustworthiness 

Validity and generalisability are considered to be central concepts to fixed 

research designs. Validity is concerned with whether the findings are really 

about what they appear to be about, while generalisability refers to the extent to 

which the findings of the enquiry are more generally applicable outside the 

specifics of the situation studied (Robson, 2011). However, Robson (2011) 

brings to light the considerable debate about the applicability of validity and 

generalisability to flexible research designs. This point is exacerbated in the 

case of multi strategy designs, as the different strategies are combined to 

neutralise weaknesses and enhance strengths in order to achieve stronger 

inferences.  

In order to ensure research trustworthiness the following tactics (adapted from 

Robson, 2011) have been applied to address researcher bias, respondent bias 

and reactivity: 

1. Prolonged involvement: research was conducted over three years with 

regular involvement of practitioners and other researchers  

2. Data triangulation: by employing different research methods to capture 

data from different sources 

3. Member checking: involved presenting results and analysis to 

participants in order to get feedback 

4. Peer debriefing and support: debriefing sessions with other researchers 

after data collection helped to reduce researcher bias 
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5. Negative case analysis: searching for instances which will disconfirm 

your theory helps to identify limitations and boundaries, as well as refine 

the theory 

6. Audit trail: a record of activities was kept for the duration of study  

7. Research dissemination: activities through which research was 

publicised resulted in the refinement of research due to criticism and 

feedback  

It is important to distinguish between internal and external generalisability 

(Maxwell, 1992). Internal generalisability refers to the generalisability of 

conclusions within the particular research setting, while external generalisability 

is beyond that setting. This point is exceptionally pertinent in flexible research 

design which is not reflective of random sampling. Internal generalisability may 

be claimed respective of the research settings, but external generalisability 

cannot. However, this is not to say that external generalisability cannot be 

commented on, or hypothesised based on even a single case (Yin, 2003). 

Another point raised with regards to generalisability is that the research should 

be repeatable. If theoretically a later investigator conducts the same research all 

over again using the same procedures they should arrive at the same 

conclusions. Research procedures, data collected, and analysis must all be 

carefully documented in order to warrant reliability. 

  



 

31 

2.7 Summary  

In this chapter background information about the research design and the 

adopted research methodology were described. 

The research presented in this thesis contributes to knowledge related to NPD. 

Research conducted is predominantly flexible and qualitative, and falls under 

the umbrella of social science. The research paradigm is a hybrid of social 

constructivism and pragmatism, and a multi-strategy design is employed. The 

research has been structured into three stages: (1) exploration; (2) 

development; and (3) implementation. Research methods used in the first 

phase include a literature review, observation, and semi-structured interviews. 

Workshops with practitioners and other researchers were the primary method 

used in phase 2. In phase 3 case studies were conducted to test the 

constructed lean PD model through action research. A variety of considerations 

were aforethought in order to mitigate research threats and biases, including 

ethical guidelines, prolonged involvement, and triangulation. 

The next chapter presents the literature review conducted in phase 1 of the 

research project.  
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3 LITERATURE REVIEW 

This chapter presents a systematic review of literature related to lean PD. The 

literature review addresses the first research objective: review lean PD 

approaches and examine the current state of literature on the subject of lean 

PD. 

The chapter is divided into 8 sections: 

In section ‎3.1 the strategy adopted for the literature search and review is 

explained. In section ‎3.2 the historical foundation of lean PD is presented. 

Research trends are presented and evaluated in section ‎3.3, followed by a 

synopsis of lean PD representations found in prior research in section ‎3.4. 

Enablers for lean PD were extracted from literature via content analysis and are 

presented in section ‎3.5. Case studies in which lean PD is suggested to have 

been implemented are reviewed in section ‎3.6. Identified research gaps are 

articulated in section ‎3.7, and a summary of the chapter is provided in section 

‎3.8. 

 

3.1 Literature Review Strategy 

A fair amount of research has been conducted on the subject of lean PD. It was 

thus necessary to review and appreciate the various research contributions 

made to the subject, and in turn identify where and how this research could 

contribute further. As the subject of research is relatively new, this review 

covered all publications related to lean PD found in the English language. The 

literature review sought to determine the history and state-of-the-art of the 

research area, including research trends, representations, and empirical 

research. A list of enablers was also extracted from the literature, which 

includes all techniques, methods, tools and mechanisms proposed to support 

lean PD. 

In order to identify and analyse the published body of knowledge on the subject, 

a systematic literature search was carried out (Robson, 2011). In the first stage, 
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a foundational understanding of the subject was gained through textbooks and 

other books which tend to address a wider audience and present ideas in a 

simpler fashion. Library catalogues, internet booksellers, and electronic book (e-

book) databases were the main sources for the first stage. In the second stage, 

the focus was on understanding the contributions made by researchers through 

academic research publications. A mixture of databases was used to locate 

journal and conference papers, including but not limited to: Scopus, ProQuest, 

EBSCO, Springerlink, IEEE Xplore, Emerald, and Science Direct. A number of 

research reports and other documentation were also reviewed; these were 

found primarily through internet searches. The third stage involved backtracking 

through references found in the literature considered to be key, in an attempt to 

ensure that important contributions were not overlooked. This stage was 

considered to be important due to the limitations of relying on keyword 

searches. Additional and new contributions were found using automated Zetoc 

alert emails which list the table of contents from particular journals and articles 

that match searches for keywords or authors’ names. 

Terms that define the research subject were selected as keywords. Keywords 

also included similar terms that may be used interchangeably. The main 

keywords that were used in searches were: ‘lean product development’, ‘lean 

engineering’, ‘lean design’, and ‘lean model’. Logical terms were also used to 

identify literature such as ‘lean AND product development’, and ‘lean OR Toyota 

AND design’. Truncating terms were also used in searches such as ‘engineer$’ 

or ‘develop*’. Publications were limited to the social and physical sciences 

research areas and were initially filtered by title and abstract. Publications that 

were not relevant to PD such as those that focus on manufacturing process 

improvement, operations management of the supply chain, or software 

development were not reviewed. All relevant literature was reviewed and 

critically analysed, a synopsis of which is provided in the ensuing sections of 

this chapter. 
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3.2 The Foundation of Lean Product Development 

Lean has become one of the most popular words in engineering improvement 

initiatives. In the foundation book ‘The Machine that Changed the World 

(Womack et al., 1991), the term ‘lean’ was explained as a combination of 

principles and ideas developed by Toyota, many of which were described 

earlier by Taichi Ohno (Ohno, 1988) while outlining the Toyota production 

system (TPS). Another publication in 1996 promoted the philosophy of ‘Lean 

Thinking’, which focuses on enhancing value and eliminating waste through the 

application of five core lean principles: (1) specify value; (2) identify the value 

stream; (3) flow; (4) pull; and (5) perfection (Womack and Jones, 2003). 

The term lean was initially used in reference to manufacturing operations; lean 

is now being used across a spectrum of sectors (Baines et al., 2006). The term 

lean has become confusing as some label Toyota practice as lean (Womack et 

al., 1991), while others label good practice as lean (Mynott, 2000). Lean 

thinking is no doubt based on Toyota unique approach, and much of the lean 

literature describes Toyota practices. Baines et al. (2006) identified a difference 

between earlier works where the focus was on waste elimination and latter 

works that focus on value creation. One reason for this may be that earlier 

works focused on manufacturing operations whereas latter works attempted to 

apply the same principles to different settings. Browning (2003) draws a 

similarity between engineering and an athlete, and argues that simply losing 

weight will not allow you to win a race. He quotes a number of cases where 

companies have over-emphasised on waste reduction and efficiency which 

resulted in lost production and sales. Such a causative relationship is however, 

not easy to prove. Lean manufacturing has evolved as its own discipline, and 

many have tried to adapt lean manufacturing principles to other parts of the 

engineering enterprise.  

The term 'lean production' was first interjected by John Krafcik in a Sloan 

Management Review article in 1988 (Krafcik, 1988), based on his master's 

thesis at the Massachusetts Institute of Technology (MIT). Krafcik had been a 

quality engineer in the Toyota-GM New United Motor Manufacturing Inc. 
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(NUMMI) joint venture in California before his MBA studies at MIT. Krafcik's 

research was part of the International Motor Vehicle Program (IMVP) at MIT, 

which resulted in the aforementioned book ‘The Machine That Changed the 

World’ (Womack et al., 1991). Prior to the term 'lean', TPS was considered to be 

‘fragile’ perhaps due to scepticism from the USA researchers who initiated the 

case study. The IMVP program actually had two initial phases, both led by 

Professor Daniel Roos; the founding director of MIT’s engineering systems 

division. The first 5-year research program began in 1979, aimed at 

understanding the future role of the automobile, while the second 5-year 

program began in 1985, aimed at measuring and describing the gap between 

the Western World and Japan (Holweg, 2007). 

While the focus of research at MIT was on TPS, Allen Ward, a professor of 

mechanical engineering at the University of Michigan (UM) was more 

concerned with PD. Allen had initially completed his PhD at MIT - at the same 

time as the IMVP - in artificial intelligence for automating engineering design. 

Through his studies he realised that conventional PD was fundamentally flawed 

and stumbled upon what he coined set-based concurrent engineering (SBCE): 

a unique PD process (Sobek et al., 1999; Ward, 2007). 

Allen Ward after joining UM continued in this research area. He began a case 

study of Toyota PD with a number of PhD students and later Jeffrey Liker, a 

professor of industrial and operations engineering. Allen was considered to be 

the leading USA authority on Toyota's PD process, and was the technical expert 

for a two-year collaborative project with the National Centre for Manufacturing 

Sciences in Michigan. The project (initiated by GM/Delphi) titled ‘Product 

Development Process - Methodology and Performance Measures’, aimed to 

understand how to make substantial PD improvements by studying world class 

companies that had distinguished themselves with a combination of high quality 

products and fast time to market (Kennedy, 2003). 
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3.3 Research Trends in Applying Lean Thinking to Product 

Development 

Researchers and practitioners took different journeys once they realised the 

potential benefit that PD could gain by becoming ‘Lean’ (Khan et al., 2011). 

These approaches may be divided into five categories, presented in Table ‎3.1:  

(1) Those who rebranded concurrent engineering as Lean PD 

(2) Those who viewed ‘Lean’ as lean manufacturing - as described in the 

various texts analysing TPS – and tried to adapt the various constituents to 

make sense to PD; in some cases lean manufacturing was mixed with other 

theories and approaches in order to ensure the proposed Lean PD approach 

was relevant to PD 

(3) Those who appreciated the foundation of Lean PD to be the Toyota PD 

system (TPDS), but - probably due to the lack of literature on the topic – 

incorporated some elements of TPDS into the five lean principles, combined 

with other ideas from lean manufacturing and tried to apply this combination to 

PD 

(4) A fourth group that identified the foundation of ‘lean’ to be Toyota and went 

to great extents to study TPDS from the Toyota Motor Company and identified a 

more comprehensive set of principles and mechanisms directly related to PD 

that were argued to be theoretically superior to conventional PD theory  

(5) A fifth group has recently emerged where researchers and practitioners 

have applied Toyota PD principles and practices in industrial companies; this 

group is reliant on group 4 for their principles and mechanisms  

All of these groups used Toyota’s success to support their approaches; 

however, Toyota’s success was not achieved by the approaches described by 

groups 1-3. Rather Toyota’s success was due to the approach and principles 

that they themselves adopted, and their PD practices may have contributed 

significantly. This means that only the researchers that focused purely on TPDS 

can substantiate such a claim (groups 4-5). 
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Table ‎3.1 Approaches/trends in applying lean thinking to product development 

Approach Author Year Title Source/Publisher 

1. Rebranding 
concurrent 
engineering 
as Lean PD 

Karlsson 
and 
Ahlstrom 

1996 The Difficult Path to 
Lean Product 
Development 

Journal of Product 
Innovation 
Management 

2. Adapting 
ideas from 
Lean 
Manufacture 
to PD in 
combination 
with other 
theories 

Mynott 2000 Lean Product 
Development  

American 
Technical 
Publishers 

Fiore 2003 Lean Strategies for 
Product Development 

Quality Press 

Cooper and 
Edgett 

2005 Lean, Rapid and 
Profitable New 
Product Development 

Product 
Development 
Institute 

Anand and 
Kodali 

2008 A Conceptual 
Framework for Lean 
New Product 
Development 

International 
Journal of Product 
Development 

Gautam and 
Singh 

2008 Lean product 
development: 
Maximizing the 
customer perceived 

value through design 
change (redesign) 

International 
Journal of 
Production 
Economics 

Reinertsen 2009 The Principles of 
Product Development 
Flow 

Celeritas 
Publishing 

Yadav and 
Allada 

2009 Developing a Lean 
Value Model for 
Product Development 

Proceedings of the 
ASME 2009 
International 
Design 
Engineering 
Technical 
Conferences  

Kumar et al. 2009 Optimization of Lean 
New Product 
Development process 
using Advanced Dual 
Stage Performance 
Phase method 

International 
Journal of Recent 
Trends in 
Engineering 

Beauregard, 
Bhuiyan 

2011 Post-Certification 
Engineering 

Engineering 
Management 
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Approach Author Year Title Source/Publisher 

and 
Thomas 

Taxonomy and Task 
Value Optimization in 
the Aerospace 
Industry 

Journal: Special 
Issue on Lean PD 

Nepal, 
Yadav and 
Solanki 

2011 Improving the NPD 
Process by Applying 
Lean Principles: A 
Case Study 

Engineering 
Management 
Journal: Special 
Issue on Lean PD 

Wang et al. 2012 Focus on 
Implementation: A 
Framework for Lean 
Product Development 

Journal of 
Manufacturing 
Technology 
Management 

3. Integrating 
elements of 
TPDS with 
Lean 
Manufacturing 
principles and 
methods, and 
applying them 
to PD 

Haque and 
James-
Moore  

2004 Applying Lean 
Thinking to New 
Product Introduction 

Journal of 
Engineering 
Design 

Oppenheim  2004 Lean Product 
Development Flow 

Systems 
Engineering 

McManus 2005 Lean Engineering: 
Doing the Right 
Things Right 

1st International 
Conference on 
Innovation and 
Integration in 
Aerospace 
Sciences 

Hines, 
Francis and 
Found 

2006 Towards Lean Product 
Lifecycle Management 

Journal of 
Manufacturing 
Technology 
Management 

Mascitelli 2006 The Lean Product 
Development 
Guidebook 

Technology 
Perspectives 

Hines and 
Packham 

2008 Implementing Lean 
New Product 
Development 

Proceedings of the 
2008 Industrial 
Engineering 
Research 
Conference 

Schuh, 
Lenders 
and Hieber 

2008 Lean Innovation: 
Introducing Value 
Systems to Product 
Development 

Proceedings to 
Portland 
International 
Conference 2008 
on Management of 
Engineering & 
Technology   
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Approach Author Year Title Source/Publisher 

Oppenheim, 
Murman 
and Secor 

2011 Lean Enablers for 
Systems Engineering 

Systems 
Engineering 

Letens, 
Faris and 
Aken 

2011 A Multilevel 
Framework for Lean 
Product Development 
System Design 

Engineering 
Management 
Journal: Special 
Issue on Lean PD 

4. Describing 
Toyota 
principles and 
practices 
based on a 
case study of 
TPDS 

Ward, Liker, 
Cristiano 
and Sobek 

1995 The Second Toyota 
Paradox: How 
Delaying Decisions 
Can Make Better Cars 
Faster 

Sloan 
Management 
Review  

Sobek, 
Liker and 
Ward 

1998 Another Look at How 
Toyota Integrates 
Product Development 

Harvard Business 
Review 

Sobek, 
Ward and 
Liker 

1999 Toyota's Principles of 
Set-Based Concurrent 
Engineering 

Sloan 
Management 
Review  

Kennedy 2003 Product Development 
for the Lean 
Enterprise 

The Oaklea Press 

Morgan and 
Liker 

2006 The Toyota Product 
Development System: 
Integrating People, 
Process, and 
Technology 

Productivity Press 

Ward  2007 Lean Product and 
Process Development 

Lean Enterprise 
Institute 

Kennedy, 
Harmon and 
Minnock 

2008 Ready, Set, Dominate: 
Implement Toyota's 
Set-based Learning 
for Developing 
Products and Nobody 
Can Catch You 

Oaklea Press 

5.  Applying 
TPDS 
principles and 
practices in 
industry 

Panchak 2009 Teledyne Benthos 
Adapts the Toyota 
Product Development 
System 

Association of 
Manufacturing 
Excellence 
(Target) 

Oosterwal  2010 The Lean Machine: 
How Harley-Davidson 
Drove Top-Line 
Growth and 

AMACOM 
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Approach Author Year Title Source/Publisher 

Profitability with 
Revolutionary Lean 
Product Development 

Schipper 
and Swets 

2009 Innovative Lean 
Development: How to 
Create, Implement 
and Maintain a 
Learning Culture 
Using Fast Learning 
Cycles 

CRC Press 

Radeka 2011 Lean product 
development 

provides 
manufacturing value 

Association of 
Manufacturing 
Excellence 
(Target) 

Liker and 
Morgan 

2011 Lean Product 
Development as a 
System: A Case Study 
of Body and Stamping 
Development at Ford 

Engineering 
Management 
Journal: Special 
Issue on Lean PD 

Benchmarking is not a new practice. Its origin is often quoted as the 

measurement of feet on a bench by cobblers, while later it was re-

contextualised to company performance measurement (Cooper and 

Kleinschmidt, 1995). The Japanese - while initiating their automobile industry - 

used benchmarking when they visited the USA automobile giants, as well as 

other European companies (Ohno, 1988). The USA used benchmarking in the 

International Motor Vehicle Program (IMVP) and the UM Toyota PD case study 

to evaluate and learn from Toyota and other Japanese companies. The global 

community develops as a whole and learns from each other to achieve 

excellence. This does not mean that one company will not outperform its 

competitors, nor does it mean that a company will disclose its advanced 

capabilities. Benchmarking however, must be done properly, and once 

complete, should not be generalised as an all-encompassing solution. Those 

who adopted lean manufacturing principles in PD may have witnessed some 

short term benefits. However, lean manufacturing was extracted from TPS and 

not TPDS. 



 

42 

When manufacturing principles and mechanisms are applied to PD there are a 

number of inconsistencies: the output is not a physical product received by a 

customer, eliminating waste does not identify poor quality, and value stream 

mapping (VSM) is based on the assumption that all the required value-adding 

steps are already present in a process. Another assumption is that five 

principles are sufficient for PD as they were for manufacturing, however, 

Morgan and Liker (2006) - who based their work on a case study of Toyota PD 

– developed 13 principles which were specific to PD. 

Based on the analysis that has been described, the author believes that Lean 

PD should refer to PD theory that is based on Toyota PD principles and 

practices, and not lean manufacturing5. Once lean PD is established - based on 

TPDS - then it may evolve into a discipline in its own right. This was indeed the 

case with lean manufacturing. Similarly, lean PD must not be constrained to 

Toyota practices. Lean PD must be a dynamic system that is always improving 

and responding to the challenges that PD faces. Currently research conducted 

in this area is limited and it must be steered in the right direction to avoid 

mistakes in theory and practice.  

In a review of Lean PD research, Leon and Farris (2011) categorised the 

research in this area into a number of knowledge domains including: 

performance, decisions, process, and strategy. Despite the difference in 

categorisation, their work is not contrary to the classification provided in this 

section. Through their analysis, the authors found that the Lean PD literature (to 

date) has focused on what types of things should be done (e.g. principles) in 

order to improve PD processes, rather than methodological recommendations 

for implementation (Leon and Farris, 2011). 

3.4 Representations of Lean Product Development  

Three models have been put forward to represent lean PD based on TPDS. 

These models will be discussed in this section. 

                                            
5
 As a result of this conclusion, lean PD and Toyota PD have been used interchangeably 

throughout the thesis 
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3.4.1 The Lean Product Development System Model 

Morgan and Liker (2006) put forward what they refer to as a ‘socio-technical 

systems model’ to describe TPDS. The model summarises 13 principles 

organised around three central ‘sub-systems’: (1) process, (2) skilled people, 

and (3) tools and technology (Figure ‎3.1). 

 

Figure ‎3.1 The lean product development system model (Morgan and Liker, 2006) 

Each principle has been described with convincing rationale and illustrative 

anecdotes from Toyota. Various methods, tools and mechanisms have also 

been described providing the research community with arguably the most 

comprehensive overview of TPDS. The authors also foster the idea that TPDS 

is an integrated evolving system which has developed over time. Although 

elements of their system have been described in isolation, albeit organised 

around three sub-systems, this is by no means what industrialists would 

describe as a PD model that can be used to guide a project team through the 
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PD process6. The model is however, based upon empirical evidence and 

provides a wealth of insight into TPDS. 

3.4.2 The Lean Development Model 

Ward (2007) contributes another representation of lean PD, which has also 

been referred to as the emergent learning model. The author states that the 

secret to lean PD is “learning fast how to make good products” and maintains 

this focus on learning, creating ‘usable’ knowledge, and producing consistently 

profitable operational value streams throughout. Operational value streams are 

described as "the output of development, and run from suppliers through plants 

into product features and out to customers" (Ward, 2007). In order to achieve 

these goals, four cornerstones are described, and despite the term model not 

being used by the author, it is discussed here as a significant contribution in the 

field of research (Figure ‎3.2). 

 

Figure ‎3.2 The lean development model (Ward, 2007) 

                                            
6
 A stage-gate PD model illustration and an PD model example are provided in ‎Appendix C and 
‎Appendix D respectively 
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Although this work was intended to be a textbook and a culmination of research 

conducted on the Toyota PD process (Ward et al., 1995), SBCE (Sobek et al., 

1999), and Toyota’s management of PD (Sobek et al., 1998), it was published 

posthumously based on an incomplete manuscript. Nevertheless, this 

contribution provides further insight into SBCE, portfolio management, and a 

number of other lean PD principles and practices. 

3.4.3 The Learning First Product Development Model 

Kennedy et al. (2008) elaborate upon a previous fictional business novel to 

describe the transformation of a PD model by practitioners. It may be argued 

that this publication does not warrant referencing in an academic report; 

however the authors must be credited with their endeavour to develop a model 

for lean PD (Figure ‎3.3). 

 

Figure ‎3.3 The learning first product development model (Kennedy et al., 2008) 

Although this work does not contribute much to the theory, a number of 

methods, tools, and mechanisms are uniquely described. The authors are also 

credited with dividing PD value into two value streams: product and knowledge. 
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3.5 Enablers for Lean Product Development 

This section introduces lean PD principles and practices - referred to here as 

enablers - advocated by researchers who focused on TPDS (group 4; see Table 

‎3.1). Citations for the different enablers are provided in Table ‎3.2. An overview 

of TPDS enablers follows. 

Table ‎3.2 Lean product development enablers: content analysis 

# Lean product 
development enablers 

Ward 
et al. 
1995 

Sobek 
et al. 
1998 

Sobek 
et al. 
1999 

Ward 
2007 

Morgan 
& Liker 
2006 

Kennedy 
2006 

Kennedy 
et al. 
2008 

Tally 

1 Checklists  x x x x x x x 7 

2 Chief engineer (technical 
leadership) 

x x x x x x x 7 

3 Set-based concurrent 
engineering (SBCE) 

x  x x x x x 6 

4 Integrating/target events  x  x x x x x 6 

5 Extensive prototyping/partial 
prototypes 

x x x x x x   6 

6 Trade-off curves   x x x x x 5 

7 Learning cycles: 
LAMDA/PDCA 

  x x x x x 5 

8 Employee 
empowerment/individual 
responsibility 

 x  x x x x 5 

9 Expert workforce 
development 

 x  x x x x 5 

10 Technical design standards 
/rules 

  x  x x x 4 

11 Knowledge-based 
environment / organisational 
learning 

   x x x x 4 

12 Knowledge flow/cadence     x x x x 4 

13 Minimum constraint 
(delaying specification, 
which is the results) 

x  x x   x   4 

14 PD value-focus    x x x x 4 

15 Knowledge/information pull 
(right place at right time) 

   x x x x 4 

16 A3 /problem & action report  x  x x   x 4 

17 Mentoring (Genchi 
Gunbutsu) 

 x  x x x   4 

18 Obeya (Collaboration) team 
rooms 

   x x x x 4 

19 Standardisation (skills, 
process, design) 

 x  x x x   4 
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# Lean product 
development enablers 

Ward 
et al. 
1995 

Sobek 
et al. 
1998 

Sobek 
et al. 
1999 

Ward 
2007 

Morgan 
& Liker 
2006 

Kennedy 
2006 

Kennedy 
et al. 
2008 

Tally 

20 Value-stream mapping 
(VSM) 

   x x   x 3 

21 Vision: shared 
company/product vision 
(Hoshin management) 

   x x x   3 

22 Culture (learning 
organisation; contribution 
focus-society/technical) 

   x x   x 3 

23 Rapid learning / 
comprehension 

   x x   x 3 

24 Knowledge focus (creation-
capture-representation) 

   x   x x 3 

25 Digital engineering: 
simulation & analysis tools 
(CAD/CAE/CAM) 

x     x   x 3 

26 Multiple full-scale models x  x   x     3 

27 Supplier SBCE x   x x     3 

28 Keiretsu (interlocking 
suppliers/reduced supplier 
tracking/communication) 

x     x x   3 

29 Design structures functional 
plan (K4) 

x  x   x     3 

30 Knowledge reuse     x x x   3 

31 Customer focus (needs & 
interests defined by 
customer) 

   x x   x 3 

32 Multi-project 
management/categorisation/ 
portfolio/families 

 x  x x     3 

33 Design in quality, mistake 
proofing (poke yoke)/early 
problem solving  

x x    x     3 

34 QFD/quality matrices x x    x     3 

35 Concept paper/blueprint x x    x     3 

36 Visual management/control      x x   2 

37 Staggered design 
release/product launch 

   x x     2 

38 Systems thinking    x x     2 

39 Knowledge databases 
(searchable know-how 
database)  

     x x   2 

40 Nemawashi (consensus 
decision making/counsel -
problem sharing) 

  x   x     2 

41 5 why's/root-cause analysis      x   x 2 

42 Kaizen (continuous 
improvement) 

     x x   2 
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# Lean product 
development enablers 

Ward 
et al. 
1995 

Sobek 
et al. 
1998 

Sobek 
et al. 
1999 

Ward 
2007 

Morgan 
& Liker 
2006 

Kennedy 
2006 

Kennedy 
et al. 
2008 

Tally 

43 Design (concepts) matrix   x   x     2 

44 Cross-functional/module 
development teams 

x     x     2 

45 Lessons learnt/reflection 
(hansei) 

     x   x 2 

46 Test-then-design    x     x 2 

47 Separating research from 
development (advanced 
technology planning) 

   x x     2 

48 Standard architectures/ 
common parts 

 x    x     2 

49 Limit curves/test to failure 
(Ijiwara) 

     x     1 

50 Levelled workload      x     1 

51 Competitor benchmark 
reports & teardown analysis  

     x     1 

52 Ringi process (formal 
decision making process for 
significant decisions) 

     x     1 

53 Process sheets 
(manufacturing process per 
part) 

     x     1 

54 Simultaneous engineering      x     1 

55 Digital Assembly      x     1 

56 Design Autonomation 
(Jidoka) 

     x     1 

57 Jikigata designs x           1 

58 Product Lifecycle Plan 
(Strategy) 

  x           1 

SBCE is a unique PD process, and is considered the main enabler for Lean PD 

by some researchers (Ward, 2007). Other enablers that have been described in 

the literature are either embodied within or support this process. Design 

participants practise SBCE by reasoning, developing, and communicating about 

sets of solutions in parallel. As the design progresses, they gradually narrow 

their respective sets of solutions based on the knowledge gained. As they 

narrow, they commit to staying within the sets so that others can rely on their 

communication (Sobek et al., 1999). The theory of SBCE is illustrated in Figure 

‎3.4. SBCE comprises of a number of principles, including: explore multiple 

alternatives, delay specification, a minimal constraint or ‘delayed commitment’ 
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policy, extensive prototyping (or simulation), and convergence upon the 

optimum design (Ward et al., 1995). PD integration/target events are another 

important enabler (Kennedy et al., 2008). These events are unique design 

reviews used to guide the set-based process. Supplier strategy also resonates 

through the research, with the focus being on inter-locking key suppliers 

(keiretsu). Empowering suppliers to develop their own set-based approach can 

enable reduced supplier tracking and provide more room for innovation (Liker et 

al., 1998). 

 

Figure ‎3.4 Set-based concurrent engineering process illustration (Sobek et al., 

1999) 

A number of additional design techniques are employed early in the design 

process, such as mistake proofing (Poke Yoke) and early problem solving, 

considering potential action scenarios to ensure conceptual robustness, and 

designing in quality (Morgan and Liker, 2006). A design structures plan is also 

developed by each functional department to work out the main features of the 

design. 

Another design technique that can support lean PD, is ‘test-to-failure’ (Ijiwara in 

Japanese), wherein prototypes are tested to the breaking point (Morgan and 
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Liker, 2006). The aim of this technique is to learn more about designs and their 

thresholds, and produce ‘limit curves’ which capture the results (Oosterwal, 

2010). This technique forms part of the ‘test-then-design’ approach, wherein 

decisions are made after designs have been tested and objective knowledge 

(evidence) is provided (Ward, 2007). Matrices for comparing design concepts 

and ensuring quality (e.g. quality function deployment) are also employed to aid 

in decision making (Sobek et al., 1999).  

The concept of value-focus is mentioned by all researchers, and the 

differentiation between product/customer value and process/enterprise value is 

also echoed. This principle is shared with lean manufacturing alongside value 

stream mapping which has been mentioned briskly by a number of researchers. 

This may be indicative of its limited application in PD or lack of clarity as to how 

it should be applied. A strategic approach to PD is employed by Toyota which 

allows projects to be used to enhance the knowledge value-stream (Kennedy et 

al., 2008). Ward (2007) proposes a product portfolio, categorised into a number 

of project types: tailoring, strategic breakthrough, limited innovation and 

reintegration, and research. Each category has a standard duration and follows 

a regular drumbeat with standard intervals. These development projects extract 

mature technologies from advanced technology teams that focus on R&D. Once 

a design is sufficiently mature for launch its release may be staggered to align 

with a multi-project plan that ensures the strategic launch of new products 

(Ward, 2007). This process is symbolic of the holistic systems thinking that 

Toyota applies to PD.  

The Chief Engineer technical leadership is another enabler in which a technical 

leader is involved prior to conception and remains at the helm throughout the 

entire PD process (Morgan and Liker, 2006). The chief engineer follows a 

shared company vision and is responsible for the generation of a design 

concept document, which is used to communicate the vision for the product 

system. Cross-functional module development teams also play a role in the 

chief engineer system (Morgan and Liker, 2006). 
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Another major enabler is a knowledge-based (KB) environment in which 

learning more about the design alternatives is the focus of PD activities (Ward, 

2007). Ensuring knowledge is pulled by upstream processes as opposed to 

pushed by downstream processes is another important factor which ensures 

that knowledge flows and is received in the right place at the right time (Morgan 

and Liker, 2006). Mechanisms for capturing, representing and communicating 

knowledge support the KB environment. These include: trade-off curves, check 

sheets, technical design standards and rules, and A3 single-sheet knowledge 

representations, which are primarily used for problem solving (Ward, 2007). 

These methods collectively provide a means for rapid communication and 

comprehension. Digital engineering including CAD, CAM, CAE, and other 

simulation software also support the KB environment (Morgan and Liker, 2006). 

A learning organisation culture wherein employees are rewarded and 

appreciated for their technical contribution is another echoed enabler. Junior 

employees are mentored by senior employees who train their students how to 

approach technical problems in addition to passing on a wealth of tacit 

knowledge. Learning cycles such as PDCA (plan-do-check-act), and LAMDA 

(look-ask-model-discuss-act) represent the general problem solving approach. 

This collaboration sustains an expert workforce which is empowered to make 

decisions and do their own responsibility-based planning. Another enabler is a 

knowledge-based (KB) engineering system, also referred to as a ‘know-how’ 

database (Morgan and Liker, 2006). The KB engineering system captures 

knowledge in a centralised database, with the capability to locate and extract 

required information easily. Another frequently mentioned technique is a 

lessons learnt process wherein experiences are reflected upon (Hansei in 

Japanese) and captured in the KB engineering system. Lessons learnt may also 

be published in books and provided to employees. 

A culture for continuous improvement (Kaizen) in addition to formal methods to 

incorporate improvements, have been suggested by researchers to be a key 

part of lean PD (Sobek et al., 1998). This enabler is also shared with lean 

manufacturing. Standardisation of processes, skills, and design methods allows 

continuous improvement to be regularly considered during meetings and 
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reviews (Morgan and Liker, 2006). The Toyota approach to problem solving 

(Obeya in Japanese) is a pertinent example, where an A3-single sheet problem 

report is prepared and then used as the focal-point of collaborative meetings in 

team rooms. The aim is to share the problem, take counsel and arrive at a 

consensus for decisions. This often includes some root-cause analysis and an 

investigation known as ‘5 whys’ where the source of a problem is identified. 

A number of other enablers have been mentioned by a single researcher or 

group, and may be relevant enablers for lean PD. However due to the unilateral 

mention and based on the critical analysis conducted, it is likely that they are 

not fundamental lean PD enablers. 

Oppenheim et al. (2011) offer a comprehensive checklist of what they term ‘lean 

enablers for systems engineering’ to the research field. The checklist is an 

amalgamation of recommendations for systems engineering organised around 6 

principles: (1) capture value defined by the customer; (2) map the value stream 

and eliminate waste; (3) flow the work through the planned and streamlined 

value-adding steps and processes; (4) let the customers pull value; (5) pursue 

perfection of all processes; and (6) respect people. Although a substantial 

contribution to the field, this framework is based on lean manufacturing 

principles merged with TPDS enablers and aerospace engineering best 

practices without distinction in many cases. 

Hopperman et al. (2011) developed a framework for organising lean PD 

enablers. The authors performed content analysis of literature that both 

addresses lean PD and provides a systems perspective in their 

recommendations for PD. This approach resulted in 11 ‘components’ of lean PD 

under which other ‘elements’ can be structured, 10 of these components have 

been included in Table 2 as enablers: strong project manager (chief engineer), 

workload levelling, responsibility-based planning and control, cross-project 

knowledge transfer, simultaneous engineering, supplier integration, product 

variety management (multi-project management), rapid prototyping, simulation 

and testing, process standardisation, and set-based engineering. The authors 
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include ‘specialist career path’ as a ‘component’, which is debatable. A similar 

framework was developed in this research and is presented in section ‎5.1. 

3.6 Lean Product Development Case Studies 

Until recently there were no published case studies on the implementation of 

Toyota PD principles and practices. There were however a number of cases of 

value-stream mapping (VSM) and similar process transformations where a 

number of improvements, including reduction in PD cycle time were achieved 

(McManus et al., 2005; Morgan and Liker, 2006; Hines and Packham, 2008; 

Kumar et al., 2009; Nepal et al., 2011). A case study was also put forward by 

Gautam and Singh (2008) in which they analysed the effect of making 

incremental design changes on the fulfilment of customer value for an unnamed 

automotive company.  

Panchak (2007) reported on the positive interim response that Teledyne 

Benthos provided upon their adoption of various Toyota PD practices.  

Teledyne Benthos is a provider of underwater equipment and quality control 

instrumentation. Test-then-design, A3 reports, trade-off curves, learning cycles, 

and checklists were all alleged to have been implemented; however, minimal 

empirical evidence was provided. 

Oosterwal (2010) provides an account of applying Toyota PD principles and 

practices at the Harley Davidson motorcycle company. The application of 

various TPDS enablers is claimed to have resulted in an increase to new 

product output (see Figure ‎3.5), and a decrease in launch issues and problems 

late in the development cycle. The author describes various problems that his 

company faced before their implementation of Toyota PD principles and 

practices supported by statistical data and graphs. The author also describes 

the various principles and practices adopted and outlines how the company 

benefitted. One mechanism that was unique in this work was limit curves, which 

depict feasible and infeasible design regions. This case study however, having 

been authored by a PD consultant, may be subject to bias and requires 

academic analysis and peer review. 
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Figure ‎3.5 Harley Davidson product development output from 1970 to 2009 

(Oosterwal, 2010) 

Similarly Radeka (2011) reported on the positive results that Playworld Systems 

Inc. experienced after trialling a number of Toyota PD practices.  Playworld 

makes commercial playground equipment for schools, new housing 

developments, and parks. A3 reports, learning focus, and the pursuit of multiple 

alternatives were all alleged to have been implemented; again with minimal 

empirical evidence. Playworld are suggested to have seen a 29% increase in 

new products in 2011, compared to the previous year, a reduction in the 

number of late projects by 29%, and only 1% of its new products were delayed 

more than 60 days from the scheduled introduction date.  

The Teledyne Benthos, Harley Davidson, and Playworld cases were conducted 

by practitioners and there is no evidence of research motivation or 

methodology. The cases are no doubt encouraging, and highlight the positive 

enhancements that implementation of lean PD research can result in. In spite of 



 

55 

this, without the substantiation of due protocol the cases lack academic 

integrity, and thus cannot be used as the basis for academic theory. 

Letens et al. (2011) evaluated a multi-level framework for lean PD through 

which they addressed the portfolio, project, and functional levels of PD. A 

number of Toyota PD principles and practices were applied in the three-year 

case study, including value-focus, generating and evaluating multiple alternative 

designs to obtain an increased understanding of trade-offs, and guidelines for 

standardisation and design re-use. The case study was conducted with the 

technical studies and installations department of the Belgian armed forces. The 

department is said to have experienced breakthrough improvements in a 

number of key performance measures: project throughput doubled, project work 

in progress (WIP) reduced from 82 to 20 live projects, the percentage of 

projects completed within their target lead times increased from 25% to 80%, 

and a coefficient for value-added time (effort/lead time) increased from 5% to 

20% (Letens et al., 2011).  Through this research the authors noted the need to 

define interim deliverables for lean PD.  

Morgan and Liker (2006) provide a comprehensive system’s view of lean PD 

through their 13 principles of TPDS. These principles were drawn on in the 

transformation of body development at the Ford motor company between 2004 

and 2009. Automotive body development has historically been a major 

bottleneck to launching products on time, at target cost, and with high quality 

(Liker and Morgan, 2011). The authors conducted a reflective case study in 

which live experiences were reflected on to develop lessons learnt (Kotnour and 

Landaeta, 2004).  The research began with a gap analysis between Mazda and 

Toyota, (which the authors believe shared all 13 principles) and Ford. Based on 

this analysis, opportunities for improvement were uncovered and a number of 

organisations and processes were established within the company to apply the 

13 principles. The case study involved the application of various Toyota PD 

practices as well as principles. The improvements to body development at Ford 

have been linked to a reduced average overall lead time of 40%, reduced 

internal tool and die construction time by an average of 50%, reduced internal 
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tool investment costs by an average of 45%, an increase in die production 

productivity of 400%, enhanced quality, and also improved employee morale 

(Liker and Morgan, 2011). Five key lessons gained from the case study are 

highlighted: (1) Lean processes can be effective in driving high quality, low cost, 

and short lead times in PD, (2) the transformation requires a long-term 

commitment and a staging of the transformation process, (3) Driven, 

accountable team members transform lean PD from static tools to a living high-

performance system, (4) The main role of lean tools is to make problems visible 

and provide a method of solving them at the root cause, and (5) Lean 

implementation is a social, cultural, and political transformation. This case study 

provides a strong case for both the portability of Toyota PD principles and 

practices, as well as the potential benefits that can be gained. 

3.7 Identified Research Gaps 

Lean PD is an emerging area of research that is currently growing. Conflicting 

approaches provide plenty of room for debate which can no doubt benefit from 

both theoretical and empirical research. It has been concluded based on this 

review that the Toyota PD system (TPDS) should be used as the basis for lean 

PD, and there is a considerable body of knowledge available to support the 

formulation of theory based on TPDS. This includes an array of principles and 

practices presented in Table ‎3.2. Research is required to differentiate between 

the most critical enablers and those which can be substituted with other 

equivalents. Field research may also be required to determine whether or not 

these enablers have a presence in industry. 

A number of principle-based representations have been published in order to 

support PD transformations, however they focus on what types of things should 

be considered for improvement (e.g. principles), rather than methodological 

recommendations for implementation. No integrated framework of the identified 

lean PD enablers has been put forward in the surveyed literature, nor has a 

methodological guide been formulated to support the application of lean thinking 

on an engineering project.   
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Sobek et al. (1999) went to great lengths to study and document Toyota’s 

SBCE approach, however, research is still required to construct a methodology 

for SBCE. In the model proposed by Morgan and Liker (2006) SBCE is given 

little attention. It is evident that other researchers consider SBCE to be a core 

enabler for lean PD (Ward et al., 1995; Sobek et al., 1999; Ward, 2007). A 

comprehensive model that combines all of the core lean PD enablers was not 

found. 

It may be that by focusing on PD as a system, insufficient attention is given to 

the most critical parts. Conceptual design appears to be where Toyota is most 

unique through SBCE. It may be that this stage provides a window of 

opportunities for structure and enhancement. Liker and Morgan (2011) 

highlighted this gap in their recommendation for future research on front-end 

loading and innovation. Process-related factors have been downplayed by 

some academics who consider organizational strategies to be the key to 

success (Cusumano, 1994; Cusumano and Nobeoka, 1998). Although the 

importance of organizational strategy is not disputed, it is vital to translate 

organizational strategy into processes in order to achieve enterprise success. 

Case studies conducted in the area of lean PD are scarce. The two case 

studies that have tested theories for lean PD based on TPDS, have taken an 

organisation-wide approach (Letens et al., 2011; Liker and Morgan, 2011). 

Although both studies have demonstrated the impact of their research on 

organisational departments through metrics, neither has provided an in-depth 

account of the development of an engineering component, sub-assembly, or 

system. This research is vital for the research community to learn about and 

understand how Toyota PD principles and practices - as phenomena - interact 

with the local environment in which they are applied. 

Some additional voids in the research area include: the interaction between 

lean PD and other PD approaches (e.g. systems engineering), the suitability 

and impact of TPDS enablers, and cultural implications of the various Toyota 

PD principles and practices. These gaps amongst others have been noted, but 

are not the focus of this research.   
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3.8 Summary 

In this chapter a systematic review of literature related to lean PD is presented. 

Historically, the term ‘lean’ has been used in reference to case studies of the 

Toyota Motor Company, such as in the case of lean manufacturing. It is argued 

that lean PD should similarly refer to PD theory based on Toyota PD principles 

and practices. A number of representations of lean PD (based on Toyota PD) 

have been put forward in literature, however they focus on what types of things 

should be considered rather than implementation, and none of the 

representations constitutes a PD model. Enablers for lean PD were extracted 

from research publications which focus on Toyota PD principles and practices; 

the list of enablers is integral to the construction of the lean PD model. A few 

case studies have been conducted to test Toyota PD principles and practices, 

most of which are by practitioners and lack academic integrity.  

Through the literature review the following key research gaps were identified: 

1. Research is required to differentiate between the most critical lean PD 

enablers and those which can be substituted with other equivalents 

2. Field research is required to determine whether or not lean PD enablers 

have a presence in industry 

3. No integrated framework of lean PD enablers has been put forward in the 

surveyed literature 

4. No methodological guide has been formulated to support the application 

of lean thinking on an engineering project  

5. Conceptual design appears to be where Toyota is unique through set-

based concurrent engineering for which no step-by-step methodology 

was found 

6. No in-depth case study was found where an engineering component, 

sub-assembly, or system was developed using lean PD 

The next chapter addresses the second research gap above, and focuses on 

exploring the industrial context for this research. 
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4 THE INDUSTRIAL CONTEXT 

This chapter presents an industrial field study carried out to better understand 

the industrial context for this research. This activity addressed the second 

research objective: to explore whether or not lean PD principles and practices 

have a presence in industry and identify current PD challenges faced. The 

findings from this study helped to provide direction for the construction of the 

lean PD model.  

The chapter is divided into 4 sections: 

In section ‎4.1 the development of the industrial field study is described, 

including the interview strategy and questionnaire design. This is followed by 

section ‎4.2 where the results from the interviews are presented, regarding both 

PD practice and challenges in industry. The results are subsequently discussed 

in section ‎4.3. A summary of the chapter is provided in section ‎4.4. 

 

4.1 Description of the Study 

Initial interaction with industry involved various discussions through virtual web-

based meetings, and face-to-face meetings at a number of European locations: 

UK, Germany, Italy, and Poland. Meetings were held in order to understand 

industrial needs and to ensure an industrial-driven approach to the research. 

One of the main topics of discussion was the enablers for lean PD. Especial 

interest was directed towards SBCE and the following anticipated benefits were 

put forward by key stakeholders from the five industrial collaborators (see 

section ‎1.4 for company details): 

 The SBCE methodology is the most important benefit 

 Decision support, decision reliability, minimising risk in PD, and 

supporting the selection of manufacturing technology (depending on 

production volume) 

 Allowing for different approaches, and supporting new creative solutions  

 Addressing innovation 
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 Reducing the gap between perceived quality and designed quality in 

order to improve customer responses to the designed and produced 

product 

 It should improve the efficiency of the whole PD (process) as it increases 

time savings and reduces design iterations 

4.1.1 Initial Interaction with Industry 

The five industrial partner companies were visited in order to develop an initial 

understanding of the context and also to discuss the research topic with key 

stakeholders. This involved both observation of design and manufacturing 

practice, and also discussions with engineers and managers.  

Four out of the five industrial partner companies have manufacturing systems 

(factories and workshops) in close proximity to the PD teams who design the 

products, each having implemented lean manufacturing principles and 

practices. Two of the companies have both PD teams and manufacturing 

systems collocated within the same building for a number of components. All of 

the companies have globally distributed supply chains and take advantage of 

cheaper labour and material costs. Although many similarities were observed, 

both the design and manufacturing at each company was unique and differed 

due to the type of product, design and manufacturing complexity, size of 

product, scale of production, and quality assurance, amongst other factors. 

Design work in all companies was predominantly computer-based, utilising a 

variety of CAD software and MS Office for the most part. The use of CAM, CAE, 

and other modelling and simulation software was witnessed in three of the 

companies. 

The site visits were important for a number of reasons: (1) they provided an 

early appreciation of the research context, including the variation in language, 

culture, and behaviour; (2) they helped to establish rapport with stakeholders 

and facilitated a better understanding of their views and concerns; and (3) they 

helped to define the scope of the research and discuss expectations. 
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4.1.2 Interview Strategy 

Further data was required in order to understand the presence of Lean PD in 

industry and also to identify the main challenges that are currently being faced. 

This was indeed an arduous task for a number of reasons. A logical approach 

would be to determine which of the lean PD enablers (identified in the literature 

review) were being formally implemented at each company using a checklist of 

some sort. Through initial interaction however, it was noted that the terminology 

that lean PD researchers had used was somewhat unconventional albeit 

intentionally. In addition, it was found that some terms were being used to 

different effect. The term chief engineer for example was being used at a 

number of companies; however the role and responsibilities of the chief 

engineer varied considerably from one company to another. This meant that 

enablers would have to be objectively described which would no doubt be more 

time-consuming.  

Another issue that arose was that merely determining whether or not each of 

the lean PD enablers was being implemented would not help to understand the 

different approaches that were being implemented. This was important because 

it was presumed that alternative approaches could be uncovered which were 

equivalent or superior to some of the lean PD enablers. With the aim of this 

research being to construct a new model, it would be nonsensical to overlook 

the advanced approaches that have been established in companies over time. 

With the above in mind a rather shrewd approach was devised. A restricted set 

of questions were developed which focused on what was viewed at the time to 

be the main lean PD enablers7, but each question would also be related to a 

number of additional enablers. Each question would also offer alternative 

descriptions in order to help characterise the approach of each company. This 

proved very tricky as it was impossible to pre-characterise all possible 

approaches in a short checklist. One of the questions is exhibited in Table ‎4.1. 

                                            
7
 As the research evolved, the author’s understanding improved and a framework of enablers 

was developed which categorise the lean PD enablers; the framework is presented in section 
‎5.1 
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In this question the main lean PD enabler of enquiry was ‘delaying specification’ 

however; the question also addresses ‘minimal constraint’ and SBCE, while at 

the same time characterising the company approach. In some cases additional 

lean PD enablers were not addressed by the question itself, but by the ensuing 

discussion. This information was captured in the form of interview transcription 

notes. 

Table ‎4.1 Semi-structured interview question example 

How is a product specification stabilised in your product development 
process? (Select one option) 

 
Specification provided early on by customer or central organisation and must 
be adhered to 

 Specification provided early on, but subject to engineering alterations 

 

Specification grows through continuous interactions along the stages of PD as 
the product understanding matures and we try to finalise the specification as 
early as possible 

 

Specification grows through continuous interactions along the stages of PD as 
the product understanding matures and we intentionally delay the final 
specification  

A series of review meetings with academic supervisors and other researchers 

helped to arrive at an agreed list of scenarios for each question, and it was 

concluded that in case the approach differed from what was described, 

comments and amendments to the descriptions would be noted. Had the focus 

of this study been quantitative, this would have proved a problem, however in 

the case of qualitative research it would only add to the richness of data. 

The questions were thus used to guide the explorative study through face-to-

face interviews with managers and engineers. It was important for these 

interviews to be face-to-face so that the behaviours and expressions of 

interviewees could be analysed and evidence could be requested by the 

interviewer for the answers provided. Thirty six candidates have been 

interviewed from the five companies. Each interview ranged from 90 to 120 

minutes depending on the responses from the interviewees. Multiple interviews 

were conducted in the same company in order to gain a better overall picture, 
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without losing the individual views and opinions. It was requested for interviews 

to be conducted individually (i.e. with a single interviewee), however this was 

not possible in all companies due to company policies for data collection and 

the availability of participants. The interviews were conducted between March 

and July of the year 2010. Table ‎4.2 provides an overview of the interviews that 

were conducted. Company names have been removed to ensure the 

confidentiality of responses, and replaced with letters (A-E). Company/interview 

numbers (#) have been used to separate interview sessions (some interviews 

involved multiple participants). 

Table ‎4.2 Profile of interviewees 

Company/ 
interview# 

Role in organisation Industrial 
experience (years) 

A1 Design engineer 21 

Design engineer 10 

Corporate specialist in design methods 24 

Corporate specialist in design methods 9 

A2 Corporate specialist in cost methods 26 

Head of design systems engineering 33 

Corporate specialist in design methods 27 

Head of quality systems 32 

A3 Chief of design 14 

Chief of manufacturing production 13 

Corporate specialist in design methods 21 

A4 Engineering senior manager 1 28 

Engineering senior manager 2 22 

Corporate specialist in knowledge based 
engineering 

14 

B1 Systems/Requirements manager 16 

B2 Software sub-systems manager 18 

B3 Mechanical technical fellow 29 

B4 Electronics technical fellow 9 

B5 Software validation senior engineer 19 

B6 Optical design engineer 12 

B7 Hardware validation engineer 11 
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Company/ 
interview# 

Role in organisation Industrial 
experience (years) 

C1 Project manager 9 

C2 Hardware design manager 10 

C3 Corporate specialist in noise and vibration 11 

C4 Virtual reality lab technician 9 

C5 Corporate specialist in materials  0 

D1 Director of technical development 15 

D2 Design manager 13 

D3 Stamping design engineer 7 

D4 Design team leader 8 

D5 Design engineer 8 

D6 Logistics manager 1 10 

D7 Logistics manager 2 5 

E1 Component development leader 18 

Product unit engineer 21 

Design engineer 0 

4.1.3 Qualitative Analysis Approach 

Results from the interviews were analysed qualitatively. The following 

considerations were made during the analysis of results in order to ensure the 

results represent PD at each of the studied companies, without neglecting 

individual opinions and perceptions: 

 Role in organisation: Responses from managers were weighted higher 

for questions that were related to organisational processes, while 

responses from engineers were weighted higher for design methods and 

tools employed in PD 

 Years of experience: Responses from interviewees who have been 

working for the organisation for a longer duration were generally 

weighted high, as they often had a better understanding of PD at their 

organisation 

 Consensus: Where there was a consensus or majority of responses, it 

was quite certain that the answer was representative of the organisation, 

whereas if the answers varied then further analysis was required to 
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provide a single representative result or a combined result representing 

different opinions or views 

 Incorrect responses: Some interviewees guessed, or answered without 

the required knowledge, such answers generally became apparent to the 

interviewer and were logged during the interview, and in some cases 

became apparent when comparing results 

 Transcripts: Notes taken during the interviews were consulted while 

analysing results to ensure the context of each answer was understood, 

and in some cases the behaviour of the interviewees 

The five companies that have been studied represent the aerospace, 

automotive and home appliances sectors as well as different tiers of the supply 

chain: OEM, first tier, and second tier suppliers. The companies were selected 

for participation in this project due to the complex nature of their products and 

their reputation for high quality engineering. Although it may be argued that the 

companies were not selected at random and thus results cannot be generalised 

to manufacturing companies in Europe, statistical sampling and population 

representation was not intended. The results are however likely to be indicative 

of the adoption of lean PD principles and practices by manufacturing companies 

in Europe, in addition to the challenges being faced8.  

4.1.4 Questionnaire Design 

This section describes the synthesis of questions that formed the basis of the 

semi-structured interviews.  With the aim of this research being to develop a 

novel model, it was sensible to understand whether or not the companies being 

studied actually had representations of the PD process. Eppinger et al. (1994) 

advocated the organisation of PD tasks by means of illustration, and proposed 

that the first step to improving a PD process is to model it. Iansiti (1995) divides 

PD models into two categories: (1) traditional models for PD that have emerged 

from observation, where the emphasis is on efficient execution of a sequentially 

                                            
8
 It is important to note that this study has been extended to a number of additional companies 

in Europe, and the overall findings were not dissimilar. 
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phased process and avoiding unnecessary change; and (2) flexible models that 

have been architected to gather and rapidly respond to new knowledge 

regarding technology and product markets, where the focus is on managing the 

development of a system, technological choices, and concept decisions. Finger 

and Dixon (1989) refer to the two types as descriptive and prescriptive. It is also 

known that the stage-gate model has pervaded engineering practice and has 

been adopted by many best practice companies (Cooper et al., 2002)9. This 

leads to the first question. 

Question 1.1a: Do you have a formal product development (PD) model (visual 

representation of the PD process, including the various stages, activities, 

mechanisms and supporting tools)?  

In this question three pieces of information were collected: the presence of a PD 

model, who developed it, and the level of adherence.  

The construction of a PD model may be a praiseworthy effort, but without 

supporting the personnel who are responsible for implementing its content, the 

benefit of a PD model is questionable. It could be the case that a mandated 

model provides nothing more than hurdles for PD teams to overcome. This 

gave rise to the second question. 

Question 1.1b: Is your PD Model effective in guiding PD operations? 

The issue of mandate is also quite interesting. In the case where a mandate 

exists, an engineer or manager who identifies that the most appropriate cause 

of action is to go against the mandate is left in a difficult situation. Their options 

are: (1) to seek approval to go against the mandate; (2) to go against the 

mandate and explain later why they did so; or (3) to submit to the mandate and 

absolve themselves of responsibility for any ramifications. The idea of engineers 

and managers having the authority and taking responsibility for decisions is one 

that is highlighted in various accounts of TPDS. This prompted the following 

question. 

                                            
9
 Refer to ‎Appendix C for an illustration of the stage-gate model 
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Question 1.2:  Do you have flexibility in how you do your job? (Or is it 

mandatory to comply to a process, that you do not have ownership of?) 

The issue of authority and responsibility in engineering is closely intertwined 

with leadership. Heavyweight project managers, chief engineers, and 

entrepreneurial system designers are all terms used to describe project leaders 

at Toyota (Karlsson and Ahlstrom, 1996, Morgan and Liker, 2006, and Ward, 

2007). Sobek et al., (1998) suggested that companies in the USA were moving 

towards a heavyweight project-management structure. However, the leadership 

approach, structure and style can vary considerably. This gave rise to the next 

question. 

Question 1.3a:  Is there a technical leader who is responsible for the entire 

development of a product from concept to launch? 

A discussion around the subject of leadership is likely to bring out opinions 

when discussed, it being a contentious subject. Thus a further question was 

included regarding leadership.   

Question 1.3b: How effective is your PD leadership? 

Another lean PD enabler considered to be a cornerstone of lean PD by Ward 

(2007) is set-based concurrent engineering. Constituents of SBCE include 

delaying specification, minimal constraint, extensive prototyping, convergence 

on an optimum solution, a KB environment, and KB decision making. These 

enablers were addressed in the subsequent two questions. 

 Question 1.4: Every specification is a compromise between what customers 

want and what can be provided. How is a product specification stabilised in your 

product development process? 

Question 1.5:  How do you select the design solution that will be developed? 

Toyota prides itself with an effective system for continuous improvement, or 

what they refer to as Kaizen. They promote improvement ideas and cultivate an 

environment receptive to change with the necessary procedures in place 

(Shingo, 2007). Although heralded as the fifth principle for lean manufacturing, 
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continuous improvement has also been associated with PD (Morgan and Liker, 

2006). The issue of interest is not whether or not companies want to improve 

their PD processes and practices; rather it is how they facilitate improvement. 

This gives rise to the next question. 

Question 1.6:  How are your current processes and work methods 

reviewed/improved? 

Up until now production or manufacturing and its involvement in PD has not 

been addressed. However, with the ‘lean researchers’10 referring to Toyota as 

their underpinning, there must be a strong link between the design and 

manufacture of products. Sobek et al. (1999) highlights this interaction rather 

dramatically, as though the two are in continuous conversation throughout PD 

(refer to Figure ‎3.4). With the proliferation of simultaneous engineering, 

concurrent engineering, and agile manufacture the relationship between design 

and manufacturing groups has improved (Ribbens, 2000; Büyüközkan et al., 

2004). However, it is expected that companies vary in their integration of the 

two disciplines, and of particular interest is the stages of PD where 

manufacturing engineers are involved as well as the level of involvement. This 

leads to the next question. 

Question 1.7:  Do manufacturing (production) engineers play an active role in 

each stage of product development? 

With the changing dynamics of engineering corporations, outsourcing both the 

manufacture of components and sub-assemblies as well as their designs has 

become all too common (Arnold, 2000; Hätönen and Eriksson, 2009). However, 

the approach that suppliers use to support the design of systems can vary 

considerably. In a study in the USA Liker et al. (1996) found that set-based 

design communication was more prevalent in Japanese parts suppliers as 

compared to USA suppliers. Through the next question this issue was 

addressed. 

                                            
10

 The term ‘lean researchers’ has been used here in reference to researchers in the fields of 
lean production/manufacturing and lean product development 
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Question 1.8: Do your suppliers provide you with multiple alternatives for a 

single part (component)? 

Effective management of development projects is key to the success of a 

manufacturing organisation (Cooper et al., 2002). Morgan and Liker (2006) refer 

to this as creating a levelled PD process flow. Oosterwal (2010) suggested that 

a key factor in achieving process flow was project initiation and that it would be 

wise to stagger project initiation in some cases. Honda’s ability to leverage key 

subsystems or platforms into new products has been highlighted as it can lead 

to rapid market responses and lower development costs (Meyer, 2008). 

Cusumano and Nobeoka (1997) associated this idea of multi-project 

management with Toyota over a decade earlier. This in turn led to the following 

question. 

Question 1.9:  How are projects currently initiated, and does the product 

development process flow? 

These questions formed the primary section of a questionnaire that was used 

as the main research instrument. The questionnaire included additional sections 

that focused on specific details regarding product design; KB engineering, and 

cost estimation11. Reference to results from these sections was however, useful 

in the analysis of results in general. A section for additional questions was also 

included that addressed challenges in PD12. The full interview instrument can be 

found in ‎Appendix E. 

Although the vast majority of lean PD enablers were addressed, some were 

excluded from the study (see Table ‎4.6). Enablers were excluded for a number 

of reasons: (1) some enablers are difficult to measure or determine their 

presence; (2) constraints on the interviews; priority was given to enablers that 

were considered to be more important; and (3) some enablers are standard 

elements of PD in all companies. 

                                            
11

 It is important to note that these 3 sections were designed by other researchers 
12

 This section was composed by the author 
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4.2 Results 

4.2.1 Product Development Practice in Industry 

This section presents the questionnaire results related to the PD processes at 

the five manufacturing companies studied. The section is organised according 

to the sequence of questions that were asked. 

All of the companies have developed PD models. As indicated in Figure ‎4.1, 

models tend to be developed by central organisations that are responsible for 

implementation. Multiple models existed in some companies which led to some 

initial confusion amongst the respondents. 

 

Figure ‎4.1 Question 1.1a:  Do you have a formal product development (PD) 

model? 

Despite the development of PD models, the actual guidance that they provide to 

PD teams is questionable. According to Figure ‎4.2, almost all respondents from 

four out of the five companies consider their model to be somewhat effective in 

guiding PD operations.  
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Figure ‎4.2 - Question 1.1b: Is your PD Model effective in guiding PD operations? 

Engineers and managers have varying degrees of flexibility with regards to how 

they perform their responsibilities. Figure ‎4.3 shows that most of the 

respondents are permitted to manage the order of tasks for which they are 

responsible, while some are empowered with a greater level of flexibility. 

 

Figure ‎4.3 – Question 1.2:  Do you have flexibility in how you do your job? 
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The ‘Chief Engineer’ title has a strong presence in industry, more often referring 

to a technical leader appointed after the concept stage. In most of the 

companies a non-technical project manager controls projects and is responsible 

for key decisions, as illustrated in Figure ‎4.4. 

 

Figure ‎4.4 – Question 1.3a:  Is there a technical leader who is responsible for the 

entire development of a product from concept to launch? 

Different approaches to PD leadership are tainted with imperfection. According 

to the results provided in Figure ‎4.5, the majority of respondents considered 

their company’s approach to leadership somewhat effective; company C serving 

as a marginal exception.  

 

Figure ‎4.5 – Question 1.3b: How effective is your PD leadership? 
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The way that a product specification is stabilised varies across companies and 

is likely to be dependent on a number of factors. Figure ‎4.6 shows that a 

spectrum of approaches to specification exists.  

 

Figure ‎4.6 – Question 1.4: How is a product specification stabilised in your 

product development process? 

None of the studied companies implement SBCE, as described in the literature. 

As indicated in Figure ‎4.7, companies may consider alternative design 

solutions, but only a single solution will be selected to be designed. 
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Figure ‎4.7 – Question 1.5:  How do you select the design solution that will be 

developed? 

Continuous improvement is something that companies strive for. Figure ‎4.8 

provides evidence that formal mechanisms are in place at each of the 

companies to support the continuous improvement of PD. This includes regular 

organisational process reviews as well as formal mechanisms to incorporate 

improvement suggestions. Evidence that good ideas are regularly incorporated 

was only claimed by interviewees in one company that excelled in this area. 
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Figure ‎4.8 – Question 1.6:  How are your current processes and work methods 

reviewed/improved? 

Although in some cases manufacturing engineers are involved late in the design 

process, there is an increasing trend to involve them earlier. Figure ‎4.9 

illustrates the spectrum of manufacturing involvement that interviewees have 

experienced at their companies.  
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Figure ‎4.9 - Question 1.7:  Do manufacturing (production) engineers play an 
active role in each stage of product development? 

Engineering suppliers tend to provide single solutions, rather than multiple 

alternatives. It can be inferred based on Figure ‎4.10, that there is a trend to 

develop solutions with suppliers, and in some cases multiple alternatives.  

 

Figure ‎4.10 – Question 1.8: Do your suppliers provide you with multiple 
alternatives for a single part (component)? 
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Project initiation depends on whether a company is customer-driven (e.g. 

suppliers to an OEM) or market-driven (e.g. consumables). Figure ‎4.11 shows 

that most of the studied companies tend to respond to customer requests (and 

business opportunities), while one of the companies has a strategic and 

consistent drumbeat of development projects.  

 

 

 

Figure ‎4.11 - Question 1.9:  How are projects currently initiated, and does the 
product development process flow? 
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4.2.2 Product Development Challenges 

This section presents the results regarding challenges faced at the five 

manufacturing companies studied. This section included open questions often 

with some options to allow cross-company analysis. It is important to note that 

this section was not repeated in every interview due to time constraints 

therefore the number of responses may vary.  

A range of problems were identified in the PD models at each of the companies. 

Figure ‎4.12 highlights the presence of five proffered problems, which 

respondents associated with the PD models at their companies. All of these 

problems were recognised to be present in multiple companies. 

 

Figure ‎4.12 Question 5.1: What are the main problems with your product 

development model? 

A variety of further problems were also expressed by respondents. Table ‎4.3 

presents these problems, which are more often specific to the particular 

companies. 
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Table ‎4.3 Additional problems with company product development models 

Company Problems with the current PD model 

A 

There is a lot of rework in the process that is expensive 
and time consuming 
Programme management is not effective (resourcing) 

We don’t write enough reports 

Preliminary design could be a lot better 

Centralised groups need to support more and add work 
less 

Far too many overlapping processes/models 

B 

It needs to be completed 

Delayed activities put pressure on the final deadline 

Other departments need to be involved earlier in PD 

Engineers do not understand the PD model and process 

Current model does not accommodate for more 
innovation 

C 

The PD model is confusing 

Unclear roles and responsibilities 

No escalation if process is not followed 

Sometimes individuals are advised not to follow the 
process to meet deadlines 

Delivery pressures lead inevitably to process deviation 

Customers change requirements and there is no software 
change disciplines 

Groups working in chimneys 

Groups not knowing the causality of their own tasks (1 
person depending on something from someone else) 

Late delivery of hardware 

Global organisation communication 

D 

Makes it difficult to meet new time-to-market reduction 

Model causes delays (does not deal with uncertainty 
effectively) 

Innovation and development are divided as part of the 
stage-gate model 

Over-the-wall communication 

E Process is dependent on other activities 
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Company Problems with the current PD model 

Hidden waste in process 

Challenges faced by engineering companies tend to be mutual. Figure ‎4.13 

illustrates this commonality, in particular with regards to cost overruns and 

employees being overburdened by the quantity of work.  

 

Figure ‎4.13 – Question 5.2: What are the main challenges faced in product 

development 

A blend of supplementary challenges was expressed by interviewees. These 

challenges are presented in Table ‎4.4 which draws attention to some common 

themes including communication and rework. 

Table ‎4.4 Additional challenges faced in product development 

Company Challenges faced in PD 

A 

Products hardly meet specification 

Concept phase lacks resources as they are tied in to 
rework, which is a recurring cycle 

Meeting market pressures by committing more technology 
with less cost 

Integrating functions in a single plan that suits everyone 
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Company Challenges faced in PD 

Attacking unit cost 

Programme time scales are not synchronous with OEM 
programmes 

B 

Innovation vs. cost 

Competitors are more experienced 

Innovation for the growing international market  

Designing for multiple customers 

Communicating the process to everyone 

Meeting weight and cost targets 

Machining and final assembly are not considered in design 

Communication culture is poor, especially between 
departments 

Fire fighting: the focus is on 'day-work' rather than learning 
and innovation 

C 

Platforms (integration) team receive optimised designs 
that require significant modification/ rework 

Design starts without requirements 

Emails are time-consuming 

Very hard to establish requirements and document 
interrelations 

Ambiguous requirements 

Time frame 

Shifting requirements 

Being reliant on internal personnel to do tasks that 
influence your own function 

Unclear requirements 

Advanced technology/PD 

Quantity of work 

D 

Design doesn’t meet specification 

Lack of openness between departments 

Lack of flexibility in constraints 

Communication 

Time pressure - not capable of delivering fully validated 
products 
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Company Challenges faced in PD 

E 
System complexity and the impact of design changes 

Too much information and too many computer systems  

Capturing knowledge is viewed as a time-consuming activity in most of the 

companies, and designers subsequently find it difficult to extract knowledge 

from previous projects. As indicated in Figure ‎4.14, each of the proffered 

problems was recognised to be present in multiple companies. 

 

Figure ‎4.14 – Question 5.3: What are the main challenges faced in capturing and 

representing knowledge 

Other challenges that were expressed by interviewees are presented in Table 

‎4.5. Common subjects that are visible include locating knowledge and 

knowledge obsolescence. 

Table ‎4.5 Additional challenges faced in capturing and representing knowledge 

Company Challenges faced in capturing and representing knowledge 

A 

Old CAD files often cannot be read due to technology 
obsolescence 

It can be very difficult to find knowledge 
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B 
Lessons learnt are captured but not used effectively for new 
projects 

C 

Capturing tacit knowledge 

Design starts before knowledge capture 

Lack of bookshelf designs 

Filenames and numbering systems are not 
common/standardised 

Mechanical drawings and referenced specifications are often 
inconsistent (book-shelving would be good) 

Knowledge is lost 

Cost data is not easily accessed by everyone 

Inadequate filtering of knowledge 

Not capturing knowledge properly 

D 

CAD files are not easy to find and retrieve 

No standard template for knowledge capture 

Capturing tacit knowledge 

Lessons learnt are captured but not used effectively for new 
projects 

E 
Difficult to get the right information in the right place at the right 
time 

4.3 Discussion of Results 

The findings provided in this section have been established by performing a 

qualitative analysis of data gathered at the five studied engineering companies. 

Both the results and findings from this study were compiled in a report. This 

report was sent via email to representatives from each of the companies for 

review, in order to ensure triangulation of results. This process helped to identify 

shortcomings and refine the overall findings.   

4.3.1 Product Development Models and the Implementation of Lean 

Product Development Enablers 

Formal PD models have been developed by all of the companies involved in 

this study, in one case over 20 years ago. The primary benefit that respondents 

suggested company models provide is an overview of PD stages and quality 

gates/milestones. Respondents in all of the companies identified limitations in 
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their PD models, in particular the lack of guidance that they provide for PD 

projects. Some departments within two of the companies have developed and 

currently administer local models to support project teams and guide them 

through the PD process. One of the companies had previously developed and 

mandated detailed guides for their PD models amounting to several hundreds of 

pages; however this approach was discontinued due to various issues including 

ownership, control, and adherence, amongst others. Problems with PD models 

that were found to be most widely held by interviewees were that they often 

cause important project work to be delayed due to unnecessary tasks or 

activities and they are not communicated well to employees. Communication of 

the PD model was not highlighted as a problem in Company B, however a 

number of interviewees were just about aware that a PD model existed at this 

company. Managers and engineers alike asserted that projects are often 

different therefore a single inflexible model should not be imposed on all 

projects as it would inevitably become a liability. Some interviewees mentioned 

that non-conformance to processes was common. All of the companies had 

made efforts to incorporate flexibility into their PD models. This leads to the first 

key finding: PD models should be enabling, simple, flexible, and not coercive. 

The flexibility given to designers, engineers, and also managers is encouraging. 

A general satisfaction was conveyed by employees regarding the level of 

flexibility that they had and that engineers in their company were afforded. In 

most of the companies employees were empowered to control the order of 

activities under their jurisdiction, while respondents in four of the companies felt 

there was a healthy degree of methodological flexibility as well. A degree of 

process rigidity in one company was communicated by way of results; similar 

sentiment was found in other companies as well. It was felt that the level of 

individual responsibility and employee empowerment was linked with company 

culture. 

Sobek et al. (1998) suggested that USA companies were moving towards a 

heavyweight project-management structure, and results from this study indicate 

the same trend in Europe. One company formally implements a chief engineer 
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system, wherein a technical leader is personally involved in market research 

and is technically responsible for a product from concept to launch. However, as 

in the other companies, a non-technical project manager is always managing 

the project. Another company has trialled this approach informally and 

witnessed substantial results. Other companies do employ technical leaders but 

they tend to be appointed after the concept stage or there are multiple leaders 

that lead different stages of PD. Despite the title ‘chief engineer’ or its 

equivalent being used at all of the companies, their approaches are all different 

and none are equivalent to the purist description of the chief engineer system 

employed at Toyota (Ward, 2007). Each of the approaches has its merits and 

demerits, yet it is unclear which approach is supreme. Most of the respondents 

considered their company’s approach to leadership as somewhat effective. 

Through the study of the five companies, it has been concluded that none of the 

companies applies SBCE as described at Toyota (Sobek et al., 1999). This 

finding is converse to what was concluded by Baines et al. (2007) about the 

presence of SBCE in the automotive and aerospace industries. Evidence was 

found for the consideration of multiple alternatives at each of the companies; 

however one solution is quickly selected based on subjective analysis. What is 

more is that the consideration of alternatives often takes place informally and is 

only reported for some specific analysis such as cost. One company has 

however, formally implemented a pseudo-set-based approach in the concepts 

stage of their PD, considering and evaluating multiple alternatives based on a 

given customer-focused criteria. However, simulation and prototyping was 

found to take place after conceptual decisions were made and the design 

concept was finalised. Physical prototyping is seen as costly and substitutable 

with computer models and simulation software, however the production of full-

scale prototypes remains vital in every project for each of the companies. Two 

companies have tested a set-based approach informally, where multiple 

alternatives were taken forward and simultaneously designed, but did not 

progress alternatives sufficiently to allow convergence upon optimum design 

solutions. None of the companies intentionally delay their specification of 

products and they tend to work in a constrained design space that limits their 
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innovation. The culture to specify and select design solutions as early as 

possible prevents the consideration of more of the design space. This lack of 

exploration is a manifestation of the project-focused attitude in PD, which is 

somewhat contrary to the learning-centric or KB environment employed at 

Toyota.  

Despite the efforts made by companies to improve, it could not be concluded 

that a culture to continuously improve was present at all of the companies. All of 

the companies have formal mechanisms to capture improvement suggestions, 

yet interviewees in most companies were not encouraged by the level of 

incorporation of ideas. One of the companies did excel in this area and 

employees seemed more optimistic, and consider contribution of improvement 

suggestions to be worthwhile. Lessons learnt are captured by all of the 

companies, but are not used effectively. However one company has a formal 

lessons learnt strategy which captures lessons from each project. Employees 

are encouraged to make suggestions which are fed back into the processes. 

All of the companies employ a systems engineering approach in conjunction 

with a combination of specification and requirements documents. Cross-

functional module development teams are only employed in one of the 

companies, however they are formed late in the design process. Manufacturing 

engineers tend to be involved in the design of products and their level of 

involvement increases as the project develops, however only three of the 

companies involve them in the concept stage albeit minimally. There is 

nonetheless a trend to increase manufacturing involvement in concept 

development.  

Three of the companies employ a supplier strategy in which some suppliers are 

interlocked with the company, while others are given less flexibility to design 

components (Figure ‎4.10). Suppliers to these companies do not employ SBCE, 

but they do sometimes offer alternative solutions based on a rough 

specification. This finding is similar to the study by Liker et al. (1996) which 

found that a set-based approach was not prevalent amongst USA suppliers. 
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It was found that at the systems level, project initiation may follow a drumbeat 

due to standard launch windows in certain product markets. However, all of the 

companies are responsive to customer requests, some in competition with other 

suppliers. Projects tend to run late in all of the companies, and activities are 

often sacrificed in order to meet launch dates. One of the key reasons for the 

lack of punctuality is the unplanned design changes and pervasive rework in 

engineering projects. This subject was discussed at length with interviewees 

and the two main causes that were highlighted were changes to customer 

requirements and poor decisions during the under-resourced concept phase of 

PD.  

Knowledge tends not to be pulled; rather it is pushed onto engineers, however 

almost all interviewees suggested that most design problems would be solved if 

the correct knowledge was in the right place at the right time. It was also found 

that most of the interviewees spend 80% of their time on routine tasks, with the 

exception of one company that puts special emphasis on innovation. However, 

none of the companies focus primarily on learning and increasing enterprise 

knowledge. Evidence for the use of trade-off curves was found in one company; 

however checklists were employed in all companies with varied usage and 

effectiveness. 

Only one of the companies has a separate research department dedicated to 

R&D, which offers mature technology to new products. Other companies have 

R&D departments that push their technology onto new products. 

A3 group problem solving is employed by two of the companies during design, 

both of which follow a plan-do-check-act learning cycle. One of these 

companies find it difficult to follow as the problem solving meetings are 

generally virtual and a single-sheet representation is not always used, while the 

other company finds that different departments vary in their methodologies. 

Mistake proofing is considered where possible in all of the companies, but there 

is no evidence that it is formally considered as part of their PD processes. 

Design for six sigma is used sometimes by three of the companies to ‘design in’ 
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quality. Robust design and Taguchi methods are also used in two of the 

companies. 

The results from the field study show that a number of lean PD principles and 

practices are indeed present in industry. This is the second key research finding 

from this study. As indicated in Table ‎4.6, each company formally implements 

an assortment of the lean PD enablers, however, evidence was not found for 

the formal implementation of many of the enablers in industry. 

Table ‎4.6 Formal implementation of lean PD enablers by companies A to E13 

Lean Product Development Enablers A B C D E 

Set-based concurrent engineering      

Multiple alternatives (designed)     x 

Delaying specification      

Minimal constraint    x  

Extensive simulation/prototyping (including full-scale 
models) 

    x 

Convergence on optimum solution      

Integration/target events      

Chief engineer technical leadership (one leader 
throughout a project) 

    x 

Design concept document      

Cross-functional module development teams & 
manufacturing involvement during the concept phase of 
PD 

x  x  x 

Knowledge-based environment (learning focus)       

Rapid learning/comprehension      

Knowledge/information pull (in right place at right time)      

Trade-off curves x     

Check sheets/lists x x x x x 

Technical design standards and rules x x x x x 

A3 single-sheet knowledge representations   x  x 

                                            
13

 This table is based on the framework for lean PD enablers presented in Table ‎5.1; table rows 
that have been coloured grey indicate the enablers that were not enquired about as part of the 
interview process. 
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Lean Product Development Enablers A B C D E 

Digital engineering (CAD/CAM/CAE/Simulation etc.) x x x x x 

Mentoring by senior employees (Genchi Gunbutsu)           

Learning cycles (PDCA/LAMDA)   x  x 

Expert workforce development           

Employee empowerment/individual responsibility x x x   

Value-focus (planning and development)           

Customer-focus (customer needs/wants)      

Value-stream mapping           

Supplier strategy (supplier types and interlocking) x  x  x 

Supplier Set-Based Concurrent Engineering      

Standardisation of processes, skills, and design methods  x x x x x 

A3 group problem solving (Nemawashi and Obeya)   x  x 

Root-cause analysis and 5 whys   x x x 

KB engineering system (know-how database)      

Knowledge reuse x x x x x 

Lessons learnt reflection process (Hansei)   x   

Test-to-failure (Ijiwara)           

Limit curves           

Test-then-design     x 

Design concepts matrix x x x  x 

Quality matrix (QFD) x  x   

Early problem solving           

Mistake proofing (Poke Yoke)      

Robust design (Taguchi) methods          

Design in quality x x x   

Design structures functional plan (K4)           

Multi-project plan and strategy    x x 

Separating research from development   x x x 

Continuous improvement (Kaizen) culture   x   

Standard architectures (and modularity) x x   x 

Number of lean PD enablers formally implemented by Co. 13 9 18 9 19 
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4.3.2 Challenges in Product Development 

The challenges that have been identified may be organised around 12 over-

arching categories. These categorised were formulated by the author by 

identifying major themes. The categories were refined via an iterative process 

through which feedback from researchers and practitioners was incorporated. 

Quotes from the interviews have been included here (as stated) in support of 

the proposed challenge categories. The 12 categories are: 

1. Design changes – detrimental to schedule, cost, workload etc. 

a. “There is a lot of rework in the process that is expensive and time 

consuming” 

b. “Customers change requirements and there is no software change 

disciplines” 

c. “Platforms (integration) team receive optimised designs that 

require significant modification/ rework” 

d. “System complexity and the impact of design changes” 

2. Customer value – misunderstood, poorly represented, and often not 

achieved  

a. “Design starts without requirements” 

b. “Very hard to establish requirements and document interrelations” 

c. “Ambiguous/unclear requirements” 

3. Design specification – documentation not customer-focused, causes 

delays, and often not met 

a. “Products hardly meet specification” 

b. “Design doesn’t meet specification” 

4. Knowledge – decisions made without knowledge, resistance to 

knowledge capture, lack of knowledge reuse, and loss of technical 

expertise 

a. “It can be very difficult to find knowledge” 

b. “Old CAD files often cannot be read due to technology 

obsolescence” 

c. “Inadequate filtering of knowledge” 
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d. “No standard template for knowledge capture” 

e. “Lessons learnt are captured but not used effectively for new 

projects” 

f. “Difficult to get the right info in the right place at the right time” 

g. “Too much information and too many computer systems” 

h. “(Difficulty in) capturing tacit knowledge” 

5. Process flow – often disjointed, phase-gate system doesn’t facilitate flow, 

and causes work to be pushed onto employees rather than pulled 

a. “Far too many overlapping processes/models” 

b. “Model causes delays (does not deal with uncertainty effectively)” 

c. “Innovation and development are divided as part of the stage-gate 

model” 

d. “There is hidden waste in the process” 

6. Communication – process not communicated well, lack of collaboration 

between departments, lengthy reports not effective   

a. “PD model is confusing” 

b. “Global organisation communication (difficult)” 

c. “Over-the-wall communication” 

d. “Other departments need to be involved earlier in PD” 

e. “Engineers do not understand the PD model and process” 

f. “Lack of openness between departments” 

7. Leadership – ineffective, lack of coordination, ambiguous responsibilities, 

and lack of process ownership 

a. “No escalation if process is not followed” 

b. “Unclear roles and responsibilities” 

8. Management – excessive bureaucracy, ineffective reward system, 

destructive pressure, and reducing profit margins 

a. “Makes it difficult to meet new time-to-market reduction” 

b. “(Excessive) quantity of work” 

9. Innovation – engineers distracted from innovation, inhibiting design 

standards, lack of exploration etc. 

a. “Preliminary design could be a lot better” 
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b. “Current model does not accommodate for more innovation” 

c. “Concept phase lacks resources as they are tied in to rework, 

which is a recurring cycle” 

d. “Lack of flexibility in constraints” 

e. “Fire fighting - the focus is on 'day-work' rather than learning and 

innovation” 

10. Planning – ineffective planning and use of resources, false promises, and 

inefficient document release process 

a. “Sometimes individuals are advised not to follow the process to 

meet deadlines” 

b. “Delivery pressures lead inevitably to process deviation” 

c. “Delayed activities put pressure on the final deadline” 

d. “Process is dependent on other activities” 

11. Time management – ineffective scheduling, not enough time to test, and 

design changes affect schedule 

a. “Programme management is not effective (resourcing)” 

b. “Late delivery of hardware” 

c. “Programme time scales are not synchronous with OEM 

programmes” 

d. “Time pressure - not capable of delivering fully validated products” 

12. Process improvement obstacles – meetings not favoured, VSM received 

with negativity, and preconceived ideas inhibit improvements 

a. “Centralised groups need to support more and add work less” 

Although the 12 categories are general and apply to the product lifecycle, the 

challenges appear to be skewed towards the early phase of PD. The root-

causes of the various challenges may be numerous, however one common 

element that is intertwined with many of the challenges is the perpetual ‘rework 

cycle’ that was discussed by interviewees at all of the companies that were 

studied (see Figure ‎4.15). One of the causes of what is referred to as the 

rework cycle is the under-resourced concept development phase, which was 

found to be filled with ambiguity, or is as many authors described it ‘fuzzy’ 

(Koen et al., 2001).  



 

93 

 

Figure ‎4.15 The rework cycle 

This leads to the third key finding from this study: rework is a common PD 

challenge faced by industry which may be addressed by improving the concept 

development phase. 

 

4.4 Summary 

In this chapter an industrial field study carried out to better understand the 

industrial context for this research is presented. 

The research presented in this chapter helped to develop a general 

understanding of the research context. Nuances in language, culture and 

behaviours at the different companies were noted and industrial interests were 

delineated. Particular interest in SBCE was aired throughout the study.  
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The results presented indicate clearly that lean PD principles and practices 

have a presence in industry. Some of these have been formally implemented in 

all of the companies that were studied, many of which are not unique elements 

of lean PD. Other lean PD enablers, such as SBCE were not found to be 

present in industry as described in the literature. These gaps warrant industrial 

applications and case based research. 

A plethora of challenges are being faced by PD teams and departments in 

industry, many of which stem from the concept development phase. One of the 

most prominent challenges is the prevention of design rework which often 

results from poor conceptual decisions.  

Although the construction of an all-encompassing lean PD model was initially 

envisaged, the literature review conducted and industrial field study have 

steered the research to focus on conceptual design. Previous research in this 

area has highlighted that conceptual design is where Toyota is most distinctive 

through their implementation of SBCE (Sobek et al., 1999). Liker and Morgan 

(2011) also recommended research in this area. Furthermore, the research 

findings underline the industrial warrant and justification for more focused 

research in conceptual design. 

The implications for the lean PD model are the following: (1) the scope of the 

model will be constrained to implementing lean PD principles and practices in 

conceptual design, (2) the research will focus on enhancing key conceptual 

decisions in order to prevent rework, and (3) research will be centred around 

SBCE for which no methodology has been found in the literature and none of 

the companies were found to be implementing. 

The next chapter describes the development phase of this research, and 

effectively the construction of the lean PD model.  

 



 

95 

5 MODEL CONSTRUCTION 

This chapter presents the construction of the lean PD model. The research 

presented in this chapter addresses the third and fourth research objectives: 

extract lean PD principles and enablers from literature and define a framework 

that combines them; and develop a process model through which lean thinking 

can be implemented in PD. 

The chapter is divided into 6 sections: 

In section ‎5.1 the development of a framework for lean PD enablers is 

presented. As chapter 3 provided a literature review for lean PD in general, a 

summative literature review of SBCE is provided in section ‎5.2. SBCE is 

effectively the process through which lean thinking can be applied in conceptual 

design. In section ‎0 the construction of the lean PD model for conceptual design 

is described. The lean PD model is composed of activities which are each 

described alongside their respective methodology in section ‎5.4. 

Recommended tools to support the implementation of the lean PD model are 

presented in section ‎5.5, including tools that were developed specifically to 

support the model. The implementation process is outlined in section ‎5.6. A 

summary of the chapter is provided in section ‎5.7. 

5.1 A Framework for Lean Product Development Enablers 

In order to construct a lean PD model, lean PD itself requires some further 

definition. The approach adopted was to first formulate a list of lean PD 

enablers presented in Table ‎3.2. Principles, methods, tools, and techniques that 

have been described by the researchers and practitioners who base their work 

on TPDS were analysed. Enablers that were mentioned in multiple publications 

were prioritised, while those mentioned unilaterally were scrutinised further and 

included on a case by case basis. Enablers that appeared to be overlapping 

were merged, while others that combined multiple practices were divided. Some 

of the enablers were merely included in descriptions of TPDS, while others were 

advocated as integral elements. The differences between descriptions of TPDS 

could be due to the research manuscript being incomplete such as in the case 
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of Ward (2007), restricted to part of the puzzle (Ward et al., 1995; Sobek et al., 

1999), or constrained to a particular example (Kennedy, 2006; Kennedy et al., 

2008). Forty seven enablers were identified as integral elements of TPDS. 

These enablers were classified into three categories: (1) core enablers; (2) 

techniques; and (3) tools. The core enablers are those that have received the 

most attention in the literature and appear to be the most distinctive elements. 

The core enablers for lean PD are depicted in Figure ‎5.1. 

 

Figure ‎5.1 The core enablers for lean product development  

The core enablers represent the crux of lean PD and in the author’s humble 

opinion characterises a complete PD system. The constituents being the 

following: (1) a development process: set-based concurrent engineering; (2) 

vision, strategy and planning: value-focused planning and development; (3) a 

leadership system: chief engineer technical project leadership; (4) people, 

infrastructure, and other capabilities: knowledge-based environment; and (5) the 

organisational culture: continuous improvement. The five core enablers are 

supported by various techniques (methods or sub-enablers) and tools 

(hardware, software, and documents). With this in mind the lean PD enablers 

have been structured into a framework, presented in Table ‎5.1. 

Table ‎5.1 Framework for lean product development enablers (Khan et al., 2011) 

Core Enablers Techniques Tools 

Set-Based Concurrent 
Engineering 

Multiple alternatives (designed) Design concepts matrix 

  Delaying specification Design structures functional 
plan  
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Core Enablers Techniques Tools 

  Minimal constraint Design concept document 

  Extensive simulation/prototyping 
(possibly including full-scale 
models) 

Digital engineering (CAD/CAM/ 
CAE/Simulation etc.) 

  Early problem solving  

  Test-then-design  

 Convergence on optimum solution  

  Supplier strategy (supplier types 
and interlocking) 

Supplier Set-Based Concurrent 
Engineering 

Mistake proofing  

Design in quality 

Robust design methods 

Integration/target events  

 

Value-focus (planning 
and development) 

Value-stream mapping 

Customer-focus (customer 
needs/wants) 

Quality matrix (QFD) 

  Multi-project plan and strategy   

Chief engineer 
technical leadership 

Cross-functional module 
development teams & 
manufacturing involvement 

 

Knowledge-focus 
(knowledge-based 
environment)  

Knowledge/information 
flow/cadence/pull (in right place at 
right time) 

Knowledge reuse 

Trade-off curves 

Check sheets/lists  

KB engineering system (know-
how database) 

  Expert workforce development 

Mentoring by senior employees  

Test-to-failure  

Rapid learning/comprehension 

A3 group problem solving  

Learning cycles (PDCA/LAMDA) 

Root-cause analysis and 5 whys 

 

 

Limit curves 

A3 single-sheet knowledge 
representations (including 
problem reports) 

Continuous 
improvement (Kaizen) 
culture 

Employee 
empowerment/individual 
responsibility 

Technical design standards and 
rules 

  Lessons learnt reflection process  

Standardisation of processes, 
skills, and design methods 

Standard architectures (and 
modularity) 

  Separating research from 
development 
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The framework for lean PD enablers provides a succinct reference for lean PD. 

This framework was instrumental in developing the research further. Although 

this contribution brings together the research presented in the literature, 

additional research was required in order to develop a testable process. 

Furthermore, it was necessary to focus on developing a model based on SBCE 

due to the research findings from the literature review and industrial field study. 

5.2 Previous Research on Set-Based Concurrent Engineering: 

Theory and Applications 

The research presented in chapter 3 addressed lean PD in general, however, 

with the focus on SBCE, an overview of research in this area is also required. 

Despite the distinctiveness of SBCE, it is firmly based on many generic 

engineering principles, and the associated literature is vast. This section is 

therefore not intended as an extensive review of the subject, but does provide a 

summary of research in this area. 

5.2.1 The Theoretical Foundation for Set-Based Concurrent 

Engineering 

The theoretical underpinning for SBCE is likely to be the natural progression of 

product design and development, although it has also been attributed to 

Japanese manufacturers (Ward et al., 1995). The notion to explore a set of 

alternative solutions before taking them through a structured evaluation process 

is common in engineering textbooks (Buhl, 1960; Ulrich and Eppinger, 2000, 

Buede, 2009). The systematic process of divergence and convergence is 

however a formidable engineering challenge (Clark and Fujimoto, 1991), and 

design teams that are under pressure to meet pre-specified time and cost 

targets are all too likely to make rushed selections (Tebay et al., 1984). When 

exploring alternative solutions a firm should consider modelling and prototyping 

solutions in parallel to allow objective analysis and comparison (Dahan and 

Mendelson, 1998). Thomke (1998) suggests that the optimal prototyping and 

testing strategy should balance the cost of prototyping and the cost of redesign. 

The early specification of design concepts is another common problem as it 

results in expensive design changes and other consequences later in the 
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design process. Bacon et al. (1994) found from their studies of high technology 

industries that an unchanging product specification in a dynamic environment is, 

at best, an elusive goal. Delaying commitment was eloquently promoted by 

Thimbleby (1988), who found that it often leads to new insights. He attributed 

delaying commitment to experts, and suggested that amateurs try to get things 

completely right the first time and often fail because they try to solve too many 

problems at once. Thimbleby also identified two problems when searching for a 

design solution: (1) the search may not be conducted effectively; and (2) a good 

idea or design may not be recognised or conversely a bad one may be 

mistakenly assumed to be good. Both of these problems are more likely to 

occur when designers are under excessive pressure, which results in a 

tendency to prefer early specification and reasonable decisions so that concrete 

problems can be concentrated on rather than abstract problems. By delaying 

commitment to the specification and design of a particular module, other 

modules are not as sensitive to any necessary design changes (Thimbleby, 

1988). All of the ideas summarised above are likely to have been formulated 

without input from case studies of Japanese companies. 

Ward et al. (1995) were the first to coin the term SBCE and advocated that it is 

potentially an underlying cause for Toyota's various successes. They looked for 

evidence of a set-based PD approach in the automotive industries of Japanese 

and the USA, and found it being practised at the Toyota Motor Co.  This work 

provided a case study of Toyota PD, but does not present a detailed process or 

methodology for SBCE. Sobek et al. (1999) built on this case study and 

developed the SBCE idea further. The authors describe SBCE through an 

organised group of principles and a number of supporting mechanisms. The 

authors described the process as follows: 

“Design participants practise SBCE by reasoning, developing, and 

communicating about sets of solutions in parallel. As the design progresses, 

they gradually narrow their respective sets of solutions based on the knowledge 

gained. As they narrow, they commit to staying within the sets so that others 

can rely on their communication.”  
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Ward also compiled a textbook that described SBCE supported by trade-off 

curves as the key elements of lean PD. In this approach the team breaks the 

system down into subsystems and sub-subsystems, identifies broad targets at 

each level, and creates multiple concepts for each component and whole 

system. They then filter concepts by ‘aggressive’ evaluation, while capturing 

information in the form of trade-off curves, and finally filter and converge based 

on the knowledge acquired (Ward, 2007). 

5.2.2 Concurrent Engineering and Set-Based Design 

Concurrent engineering is considered by many to be a breakthrough in the 

response to contemporary engineering challenges, and more and more 

companies continue to adopt this methodology even after 20 years since its 

inception. In concurrent engineering PD activities that previously took place 

sequentially, should be parallelised so that design, manufacturing, and other 

functions are better integrated. The primary objectives are essentially to reduce 

the elapsed time required to bring a new product to the market, and to facilitate 

the consideration of many aspects of a product’s lifecycle early in the design 

process. Although the objectives of concurrent engineering are logical, there is 

no single approach to achieve them. Concurrent engineering research has 

focused on supporting socio-organisational mechanisms with special emphasis 

on communication. It may be argued that typical concurrent engineering does 

not sufficiently address the logical and scientific nature by which product design 

problems need to be solved. This realisation led some researchers to divide 

product design into two groups: point-based design (PBD), and set-based 

design (SBD) (Ward et al., 1995). Point-based design starts by defining the 

problem typically through a specification document or functional requirements. 

A number of possible system solutions are generated, and after preliminary 

analysis the most promising or lowest-risk solution is selected. This is followed 

by an unconstrained number of iterations wherein parts of the solution 

(subsystems) are designed and modified by the functional groups involved until 

the system design is sufficiently close to the product definition. This is not 

always the case in first and second tier suppliers who may often only consider a 
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single solution. If the selection in both cases is deemed infeasible by any 

functional group at any time during PD, either the product definition has to be 

amended or the design process must effectively go back to the start but this 

time with increased time pressure. This ‘design optimisation’ approach involves 

repeated modifications, which can invalidate preceding design work and 

decisions, requiring activities to be repeated. This is quite simply in opposition 

to the lead time reduction sought by the parallelisation of activities. Typical 

concurrent engineering adds multiple actors and social structures to this 

simplistic model. Some companies have invested great effort to arrive at a PD 

process in which the sequence of activities and decisions minimises the number 

of design changes. However, this places more stress on the decisions, and 

leads to prolonged meetings and lengthy review processes which again 

increase lead time or cause PD tasks to be disregarded.  

 

Figure ‎5.2 Comparing point-based and set-based approaches (adapted from 

Sobek et al., 1996) 

Set-based design on the other hand, also begins by defining the problem and 

idea generation, but there is no selection of a system design solution. Set-

based design differs by each functional group broadly considering sets of 

possible subsystem solutions, and gradually narrowing their respective set while 

communicating with each other to converge on a final integrated system 

solution (Figure ‎5.2). The set of possibilities might include numerous discrete 

designs or a range of parameter values, and sets from previous projects can 

lead to a focused search and rapid convergence in subsequent projects. Set-
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based design offers a pertinent solution to the organisational challenge of 

differentiating functional groups and integrating project teams (Figure ‎5.3). 

 

Figure ‎5.3 Functional interaction in set-based concurrent engineering (Nahm and 

Ishikawa, 2005) 

The set-based design approach, when combined with concurrent engineering 

forms SBCE although the terms set-based design and SBCE have been used 

interchangeably (Liker et al., 1996). SBCE forces three important cultures: 

exploration of the design space, communication between interdependent 

groups without which no system can be formulated, and delayed commitment, 

which can only be achieved when feasibility is established. Table ‎5.2 provides a 

literature-based comparison between point-based design and set-based design. 

Table ‎5.2 Comparing point-based and set-based design (Sobek et al., 1999; 

Ballard, 2000; Ward, 2007) 

Point-based design (PBD) Set-based design (SBD) 

Costly design iteration feedback loops 
due to late design changes require 
lengthy meetings and invalidate 
previous decisions  

Decisions are delayed, while multiple 
prototypes are pursued, preventing 
late changes being required  

Detailed early design specifications & 
standards prescribe single solutions  

Loose ‘constrain where necessary’ 
specification developed late to allow a 
range of acceptable alternatives and a 
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Point-based design (PBD) Set-based design (SBD) 

creative design environment  

Regular communication with suppliers 
about design (joint design)  

Strong relationships and loose 
specification allows suppliers to 
provide solution sets without the need 
to check up on them  

Collocated dedicated design teams 
force communication (can lead to loss 
of expertise)  

Corporate communication culture does 
not require collocated teams  

Designers spend a large percentage of 
time in meetings  

Designers spend the majority of their 
time creating and analysing  

Design teams focus on working 
together to arrive at an ‘agreed’ single 
solution  

Design teams focus on learning more 
about the alternatives  

Creativity is inhibited by the need for 
agreement  

Allows for creative ‘radical’ 
improvements to be pursued with a fair 
degree of safety  

5.2.3 Contemporary Research on Set-Based Concurrent Engineering 

SBCE has attracted a fair amount of attention in recent years. Ballard (2000) 

hypothesised that the application of SBCE in combination with a number of 

additional lean PD enablers would reduce negative iteration in design. He 

suggested a number of strategies for reducing negative iteration in design listed 

in Table  5.3. 
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Table ‎5.3 Strategies for reducing negative iteration (Ballard, 2000) 

Restructure the design process 

 use value-stream mapping (VSM) to re-sequence 

 use pull scheduling to reduce batch sizes and achieve greater 
concurrency 

Reorganise the design process 

 make cross-functional teams the organisational unit 

 use team problem solving (call a meeting) 

 share ranges of acceptable solutions 

Change how the design process is managed 

 pursue a least commitment strategy 

 defer this decision (defer commitment) 

 practise set-based design 

 use the Last Planner system of production control 

Overdesign (design redundancy) when all else fails 

Ford and Sobek (2003) developed a system dynamics model to simulate a PD 

process in which four alternative automobile systems (e.g. cooling) are 

simultaneously designed. The authors associate the simultaneous development 

through the early stages of PD with ‘real options theory’. The central premise of 

real options theory is that, if future conditions are uncertain and changing the 

strategy later incurs substantial costs, then having flexible strategies and 

delaying decisions can increase project value when compared to making all key 

strategic decisions early in the project (Ford and Sobek 2003). The authors 

conclude that delaying managerial decisions can add value by keeping 

alternatives alive, and that purposeful and structured management of flexibility 

can potentially increase new PD project value significantly.  

Recently the focus of research has been specifically on concept selection. This 

includes the incorporation of fuzzy set theory/logic and the automated analysis 

of design parameters by means of mathematical algorithms (Nahm and 

Ishikawa, 2005; Telerman et al., 2006; Avigad and Moshaiov, 2010; Moreno-

Grandas et al., 2010; and Qureshi et al., 2011). These studies are also 

concerned with decisions under uncertainty, design optimisation and 

incorporating designer preferences. Nahm and Ishikawa (2006) extended their 
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previous work by incorporating designer preferences for alternative solutions 

with 3D CAD. Further to this research a design support system has been 

produced that generates a ranged set of design solutions that satisfy 

performance requirements (Inoue et al., 2010). After the functional parameters 

are input into the system, 3D CAD models are automatically amended due to a 

series of analyses and a recommended model is provided.  

Augustine et al. (2010) contribute a framework through which the best traits 

from an initial set of designs are combined to create a new set of hybrid 

concepts (Figure ‎5.4). This framework is an outstanding offering to the research 

field. 

 

Figure ‎5.4 Framework for concept convergence process (Augustine et al., 2010) 
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5.2.4 Set-Based Concurrent Engineering Case Studies  

Two case studies were identified in which set-based design approaches were 

implemented. Madhaven et al. (2008) developed what they refer to as a set-

based approach to multi-scale design illustrated in Figure ‎5.5. 

 

Figure ‎5.5 Schematic representation of a set-based approach to multi-scale 

design (Madhaven et al. 2008) 

The authors tested the approach initially by means of modelling and simulation 

tools and were encouraged by the results (Carlos et al., 2006). Two key benefits 

were identified: (1) creating a greater variety of solutions improves the chance 

of finding a good solution and possibly even faster; and (2) there is a lower risk 

of not finding any feasible solution and having to go through expensive 

iterations. Madhaven et al. (2008) explain how an intern converted the 

previous/current design process at Schlumberger, a developer of oil tools and 

services, to incorporate the developed approach. An industrial trial of the 

approach was conducted to test if the benefits obtained in the laboratory would 

be obtained in an industrial setting. The researchers found that the set-based 

method (SBM) resulted in a reduced number of costly iterations, and a better 

exploration of the design space which may have led to better quality and 

innovation.  

Raudberget (2010) conducted a number of case studies to test principles of 

SBCE, based on the work of Sobek et al. (1999). Participating design teams 

were encouraged and optimistic after initial applications. The researchers did 
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not produce a generic SBCE process, but rather they altered current processes 

to test the framework of principles proposed by Sobek et al. (1999). Case 

studies were conducted on mechanical engineering products or subsystems 

from three automotive companies and one company from the paper industry. 

Case study participants noted improvements in product cost and performance, 

level of innovation, project risk, and a reduction in engineering changes. These 

were suggested to have been achieved at the expense of increased lead times 

in three out of five case studies, and development costs in two. One possible 

reason for this is that the research focused on the set-based method and not 

enough attention was placed on the concurrency of activities. The researchers 

provide some recommendations for the introduction of SBCE in pilot projects 

(Table ‎5.4), but provide little information regarding the methodological changes 

that were actually performed.  

Table ‎5.4 Recommendations for the introduction of set-based concurrent 

engineering in pilot projects (Raudberget, 2010) 

Recommendation  Description 

Sidestep current 
development 
practices 

Allow teams to bypass the standard development processes 
when appropriate 

Avoid freezing concepts or product structures at early stages 
of development 

Train engineers  and 
managers 

Create a broad acceptance for the methodology by training a 
core team of managers and engineers  

Only select individuals that are willing to participate 

Adapt and use the 
three principles 

Match the intentions of the principles to the tasks at hand, 
without taking any shortcuts 

Allow flexibility in 
specifications 

Set broad targets initially for the most important specifications 
and leave the rest unconstrained  

Use the loosest possible constraints to create flexibility 

Narrow sets stepwise Gradually reduce the size of the sets as soon as information is 
available 

Decisions by 

elimination 

Reject solutions (based) on tangible reasons only  

Base decisions on results of tests, simulations, technical data, 
trade-off curves or other knowledge 

Include a low risk 
member in each set 

Use back-up solutions for (the pursuit of) innovative or low-
cost members of a set 

Avoid process design Postpone the formulation of a new development process until 
the experiences of SBCE are clarified 
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Recommendations and other lessons from the case studies presented in this 

section were carefully considered prior to implementation of the lean PD model. 

5.2.5 Set-Based Concurrent Engineering Principles 

Perhaps the most detailed publication about SBCE was produced by Sobek et 

al. (1999). The SBCE framework that is presented provides a combination of 

principles that characterise a SBCE process. The structured set of principles is 

based on a detailed case study of the TPDS, and is provided below: 

 

1. Map the design space 

a. Define feasible regions 

b. Explore trade-offs by designing multiple alternatives 

c. Communicate sets of possibilities 

2. Integrate by intersection 

a. Look for intersections of feasible sets 

b. Impose minimum constraint 

c. Seek conceptual robustness 

3. Establish feasibility before commitment 

a. Narrow sets gradually while increasing detail 

b. Stay within sets once committed 

c. Control by managing uncertainty at process gates 

 

Morgan and Liker (2006) briefly describe the SBCE process and provide 

examples of how Toyota implements it. They also describe some additional 

characteristics that are not mentioned in other works.  

Ward (2007) describes how SBCE works in a logical order which is useful in 

structuring a SBCE process. The following six steps are proposed: 

1. The team breaks the system down into subsystems and sub-

subsystems, into the smallest pieces feasible 

2. They identify broad targets for the system and each subsystem  
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3. They create multiple concepts for the system and each subsystem, 

including both product and manufacturing systems 

4. They filter these concepts by aggressive evaluation, identifying failure 

modes and finding failure points for each. They also filter by integration, 

eliminating concepts that don’t fit with each other, the customer’s needs 

(preferably as expressed after seeing what is possible), the competitive 

situation etc. 

5. Failure information goes into a trade-off knowledge base that guides the 

design. Trade-off curves describe the limits of performance that are 

possible with a given design approach 

6. As they filter, they increase the accuracy, detail, and cost of the concept 

models and tests. They tune the rate of convergence, the rate of 

detailing, and the level of innovation so that the last concept standing is 

well proven and optimised  

Principles of SBCE have therefore been identified in several literature sources. 

These principles have been classified into five categories (Table 4) as an 

extension of the initial set of principles proposed by Sobek et al. (1999). There 

are two additional categories: strategic value research and alignment, and 

create and explore multiple concepts in parallel; all of the categories have been 

supplemented by constructive additions from other researchers. The principles 

have also been supported by expert opinion from representatives of the five 

industrial collaborator companies. 

Table ‎5.5 Categorisation of set-based concurrent engineering principles 

Category Identified principles 

Strategic value 
research and 
alignment 

 

 Classify projects into a project portfolio (Morgan and Liker, 
2006; Ward, 2007) 

 Explore and establish customer value for projects (Morgan 
and Liker, 2006) 

 Align each project with the company value strategy (Ward, 
2007)  

 Translate customer value to designers (via concept paper) 
(Sobek et al., 1999; Morgan and Liker, 2006) 
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Category Identified principles 

Map the design 
Space 

 Break the system down into subsystems and sub-subsystems 
(Ward, 2007) 

 Identify targets/essential characteristics for the system (Ward, 
2007) 

 Decide on what subsystems/components improvements 
should be made and to what level (selective innovation) 
(Ward, 2007) 

 Define feasible regions based on knowledge, past experience 
and the chief engineer/technical leader, and consider different 
perspectives/functional groups (Sobek et al., 1999) 

 

Create and 
explore 
multiple 
concepts in 
parallel 

 Pull innovative concepts from R&D departments (Ward, 2007) 

 Explore trade-offs by designing multiple alternatives for 
subsystems/components (Sobek et al., 1999) 

 Schedule time for innovation and problem solving while the set 
of alternatives is broad (Morgan and Liker, 2006; Ward, 2007) 

 Ensure many possible subsystem combinations to reduce the 
risk of failure (Ward, 2007) 

 Perform extensive prototyping (physical/parametrical) of 
alternatives to test for cost, quality, and performance (Ward et 
al., 1995; Sobek et al., 1999; Morgan and Liker, 2006; Ward, 
2007) 

 Perform aggressive evaluation of design alternatives to 
increase knowledge and rule out weak alternatives (Sobek et 
al., 1999; Ward, 2007) 

 Transfer information into a trade-off knowledge base that can 
be used to guide the design (Ward, 2007) 

 Communicate sets of possibilities (Ward et al., 1995; Sobek et 
al., 1999; Morgan and Liker, 2006) 

 

Integrate by 
intersection 

 Look for intersections of feasible sets, including compatibility 
and interdependencies between components (Sobek, 1999; 
Morgan and Liker, 2006; Ward, 2007) 

 Impose minimum constraints: deliberate use of ranges in 
specification and initial dimensions should be nominal without 
tolerances unless necessary (Sobek, 1999) 

 Seek conceptual robustness against physical, market, and 
design variations (Sobek, 1999; Ward, 2007) 

 Consider lean product design and lean manufacturing 
concurrently (Sobek et al., 1999) 
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Category Identified principles 

Establish 
feasibility 
before 
commitment 

 Narrow sets gradually while increasing detail: functions narrow 
their respective sets in parallel, based on knowledge gained 
from analysis (Ward, 2007) 

 Delay decisions so that they are not made too early or with 
insufficient knowledge (Sobek et al., 1999; Ward, 2007) 

 Design decisions should be valid for the different sets and 
should not be effected by other subsystems (Sobek et al., 
1999) 

 Stay within sets once committed and avoid changes that 
expand the set (Sobek et al., 1999) 

 Control by managing uncertainty at process gates (Sobek et 
al., 1999) 

 Ensure manufacturing evaluates the final sets and dictates 
part tolerances (Sobek et al., 1999) 

 Ensure manufacturing begins process planning before a final 
system concept has been concluded (Sobek et al., 1999) 

 Delay releasing the final hard specification to major suppliers 
until late in the design process (Ward, 2007) 

 

This categorisation is a significant contribution for a number of reasons. Firstly, 

it combines lean PD principles for focusing on value with the initial principles of 

SBCE described by Sobek et al. (1999) which depend heavily on the chief 

engineer concept for the link with customer value. The previous work did not 

consider strategic advantages that can be taken from projects. Secondly, the 

most critical area of the SBCE process is the creation and exploration of 

solution sets, which Sobek et al. (1999) spread across their framework with little 

methodological guidance. In this categorisation the creation and exploration of 

solution sets has been highlighted as a category in its own right and important 

additions have been incorporated. The third contribution is the link with lean 

manufacturing which was not emphasised in previous research.  
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5.3 The Construction of the Lean Product Development Model 

Based on the research presented thus far (including the literature review, 

industrial field study, and investigation of SBCE), a process model for applying 

lean thinking to conceptual design has been developed. This is referred to 

throughout this thesis as the lean PD model. The model which has been 

developed is illustrated in Figure ‎5.7. The lean PD model combines Toyota PD 

principles and practices with industry requirements, recommendations and 

contextualisation. The process model was developed as an embodiment of the 

framework of lean PD enablers (section ‎5.1, Figure ‎5.1), and thus combines 

SBCE, a focus on value, a knowledge based environment, chief engineer 

leadership, and continuous improvement. The lean PD model also draws on 

other lean PD enablers outlined in section ‎5.1. The lean PD model provides a 

workable flow of activities for a PD project that is principle-based and can also 

be supported by company practices. The model may also be customised for 

each company in which it is implemented. 

A number of phases were first defined in order to represent the top-level 

process.  Although the phases may appear similar to some traditional PD 

models, the activities within them are unique which is why typical phase names 

have not been used. This is important because typical phase and activity names 

will be understood based on prior perceptions, which may be better avoided. 

Phases were determined based on key conceptual decisions that must be made 

during PD. These decisions were based on the Osborne-Parnes ‘creative 

problem solving’ process (Figure ‎5.6) and a review of PD decisions by Krishnan 

and Ulrich (2001). 
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Figure ‎5.6 Creative problem solving model V2.3 (Isaksen and Treffinger 1985) 

The following five questions were developed to represent the key decisions that 

have to be made during the conceptual phase of PD.  

1. What is the design challenge? (This includes fact finding, problem 

statement, specification, aim, objectives etc.) 

2. Which sub-system design options can be considered? (This includes 

generating options/ideas) 

3. Which sub-system design options will be considered for system 

integration? (This includes evaluating ideas based on knowledge gained 

through design activities against criteria) 

4. What is the optimum system solution identified? (This includes evaluating 

product system concepts) 

5. How can the system solution be optimised for acceptance? (This 

includes the detailed design, optimisation and qualification of products) 

These key decisions were then extrapolated to five phases of conceptual 

design. The five phases represent a bottom-up process for SBCE.  
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The five phases of the lean PD model are: 

1. Define value: the initial product concept definition is developed based on 

strategic goals, customer requirements, and any other factors that need to 

be considered 

2. Map design space: design participants or subsystem teams define the 

scope of the design work required as well as feasible design options/regions 

3. Develop concept sets: each participant or subsystem team develops and 

tests a set of possible conceptual subsystem design solutions; based on the 

knowledge produced in this phase some weak alternatives will be eliminated 

4. Converge on system: subsystem intersections are explored and integrated 

systems are tested; based on the knowledge produced in this phase the 

weaker system alternatives will be purged allowing a final optimum product 

design solution to progress into phase 5 

5. Detailed design: the final specification is released, manufacturing 

engineers provide tolerances and the process continues with detailed design 

activities 

 

Figure ‎5.7: The Lean PD model for conceptual design 
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5.4 Lean Product Development Model Activities 

The lean PD model is broken down further into activities as depicted in Figure 

‎5.8. Activities were initially defined by embodying lean PD principles and 

practices (based on Table ‎5.1 and Table ‎5.5) into steps in the process. A series 

of review meetings were held with representatives from industrial partner 

companies in order to refine the process14. In this section the activities will be 

described and step-by-step methodologies will be provided. The methodologies 

were developed to serve as recommendations; however the matter of 

importance is the presence and correct implementation of the activities in the 

PD process.  

 

Figure ‎5.8: The Lean PD model: activities view 

Although a sequential approach has been communicated, the chronological 

position of some activities within the model may be interchangeable. It is 

intended that the model would serve as a guide for a project team to organise 

                                            
14

 A number of researchers from the LeanPPD project consortium supported the development of 
methodological recommendations for activities in the lean PD model 
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and guide their PD efforts. Due to the breadth of activities within the lean PD 

model, the activities have not been defined to every minute detail. Moreover, it 

was assumed that a high-level of granularity would reinforce the flexibility of the 

lean PD model. The activities within each phase are described as follows15: 

 

Phase 1. Define Value: 

1.1 Classify project: Each project should be classified in order to forecast the 

time and cost commitment. The expected level of innovation at both the 

system and subsystem level should be clarified in addition to other 

relevant parameters. The intended market should also be clarified in the 

case that it impacts subsequent engineering activities. 

 

1.2 Explore customer value: Customer needs and desires should be 

thoroughly understood in order to determine system targets (e.g. reduce 

weight by x%) and ensure the necessary provision of customer value; 

The extent of this activity will depend on the level of innovation; design 

criteria will be determined based on customer value amongst other 

factors, to support the evaluation of alternatives product designs 

                                            
15

 A number of supporting tools are mentioned throughout the activity methodologies, these 
tools are elaborated upon in the subsequent section  

Methodology for activity 1.1:  

1. Create project classification matrix (refer to section ‎5.5.2.1) using a table or 

spreadsheet 

2. Create project name and schedule 

3. Determine customer/intended market 

4. Classify the level of innovation by colour-labelling the system design architecture 
and identify level of innovation required in each subsystem/module (refer to 
section ‎5.5.2.2) 

5. Estimate project costs e.g. man-month effort, cost investments, ROI, etc. 

6. Input additional parameter information 

7. Extract relevant representations from the table/spreadsheet 
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1.3 Align with company strategy: Each project should be aligned with the 

company PD strategy, in order to take strategic advantages from 

projects. This will prevent value (benefits) gained through projects from 

being wasted and ensure the enhancement of the PD process  

 

1.4 Translate value to designers: The information developed in this phase 

should be compiled in a document referred to as the product concept 

definition: both the strategic objectives and the understanding of 

customer value will be translated to the designers that are involved in the 

project via this document 

Methodology for activity 1.3: 

1. Identify strategic PD goals from company documentation (company strategy, 

engineering strategy, and R&D strategy documents) 

2. Create a matrix through which strategic goals may be structured and the impact 

of current projects may be analysed: goals vs. projects (refer to section ‎5.5.2.4) 

3. Analyse current projects against strategic PD goals to determine the strategic 

impact of each project on PD and populate this data via the matrix created 

4. Evaluate each future project against strategic PD goals using the same matrix 

and determine new goals where appropriate 

 

Methodology for activity 1.2:  

1. Customer value (needs and desires) should be internalised by technical project 

representatives using customer request documentation, requirements, market 

research methods, and meetings with customer representatives 

2. Customer value should be decomposed into attributes and 

structured/represented by creating a product value model (see section ‎5.5.2.3) 

3. System targets (requirements) should be defined in order to clarify how the value 

attributes will be achieved; Special emphasis may be directed towards how the 

product will be a unique offering in contrast with competitive products 
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Phase 2. Map Design Space: 

2.1 Each subsystem team should decide based on the product concept 

definition which sub-subsystems/components to improve and to what 

level of innovation; this will help to prevent over-engineering while 

encouraging the necessary innovation and enhancements 

 

2.2 Identify  subsystem targets: Each subsystem or component 

participant/team will analyse their architecture and identify their own 

lower-level targets (lower level requirements) based on the product 

concept definition 

Methodology for activity 2.1 

1. The product concept definition should be used by subsystem participants/teams 

to understand the strategic objectives, system targets, and the level of innovation 

required for their particular subsystem 

2. Based on the product concept definition subsystem participants/teams can 

further classify the level of innovation required for each component or sub-

subsystem; using a subsystem architecture template that depicts the modular 

breakdown of the subsystem architecture the level of innovation for the different 

product components or sub-subsystem may be labelled (refer to Figure  5.11) 

Methodology for activity 1.4 

1. A product concept definition template can be used by internal technical 

personnel to translate customer value to engineers; customer value may be 

represented visually using videos, photographs, sketches, diagrams etc. in 

addition to the necessary requirements, text and maths - this can be achieved 

using additional web-based techniques if necessary; the template should cater 

for different departments/functional groups as they will develop their 

subsystems/work based primarily on this document 

2. The product concept definition template combines the knowledge created in 

phase 1 in a single document; it may be that multiple versions are created for 

different audiences (e.g. senior managers) from the same information  
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2.3 Define feasible regions of design space: Appropriate design 

possibilities should be defined based on knowledge and past 

experience, while considering the views/constraints of different 

functional groups 

 

 

Methodology for activity 2.3: 

1. Each subsystem participant or team should identify and document design 

constraints on their subsystem: what can/cannot/should not be done. This 

information can be extracted from lessons learnt logs, design standards, best 

practize guides and checklists 

2. Each subsystem participant or team should identify (“map-out”) possible options 

for their subsystems, sub-subsystems and components. Feasible regions may 

include different fundamental concepts, components, arrangements, properties 

or geometry; R&D departments should be engaged in order to understand state-

of-the-art technologies 

3. Representatives for the other subsystems may be referred to at this stage to 

develop a pre-emptive understanding of interdependencies 

4. Manufacturing engineers should be consulted to understand their current/future 

production capabilities and constraints before developing any of the potential 

options. Manufacturing engineers can be requested to provide the relevant 

information in a simple visual format to aid the designers (checklists, diagrams 

etc.) 

5. Subsystem design constraints, manufacturing constraints and capabilities, 

interdependencies with other subsystems, possible options and related 

information should all be documented in the subsystem concept definition 

template which is used as the basis for the development of subsystem concept 

sets 

 

Methodology for activity 2.2 

1. System targets will be analysed in order to determine modifications to 

components or sub-subsystems that could help to achieve them  

2. Based on the product concept definition and innovation classification diagrams, 

lower-level targets (requirements) will be identified for sub-subsystems and 

components (e.g. reduce component weight by x%) 

3. Subsystem targets will be reviewed by the technical leader at the system level in 

order to ensure the correct flow down of system targets  

4. A subsystem concept definition template can be used to capture and 

communicate subsystem targets in addition to the innovation classification 



 

120 

Phase 3.  Concept Set Development: 

3.1 Extract design concepts: Concepts should be drawn from previous 

projects, R&D departments, and competitor products (benchmarking) 

 

3.2 Create sets for subsystems: This time is scheduled specifically for 

design teams to brainstorm and innovate so that a set of possible 

design solutions is proposed; The set for a particular subsystem may 

be only 2 options, while a subsystem or component that is not being 

changed would not require a set; Alternatives within a set may 

comprise of differences in fundamental concepts, components, 

arrangements, properties or geometry 

 

 

Methodology for activity 3.2: 

1. Based on the subsystem concept definitions, design teams can compose initial 

sets of design solutions for each of the subsystems which will include the 

extracted design concepts from activity 3.1  

2. Idea generation techniques (e.g. brainstorming) and innovation frameworks (e.g. 

TRIZ) can be used in order to provoke creativity and facilitate innovation 

3. Conceptual solutions can initially be sketched with minimum constraints: the 

deliberate use of ranges in specification, and initial dimensions should be 

nominal without tolerances unless necessary 

4. Where feasible, CAD software may be used to represent the conceptual ideas 

Methodology for activity 3.1: 

1. Subsystem criteria should be defined based on value attributes, system targets, 

constraints etc. 

2. Alternative subsystem and component design documentation/files should be 

extracted from previous projects, R&D departments, and competitor products 

based on the subsystem concept definition 

3. Knowledge-based engineering system (or product data/lifecycle management 

software) can be used as a central database from which information concerning 

previous projects and competitor products is captured and reviewed 

4. Alternative options may be mapped against subsystem criteria using matrices in 

order to filter some of the alternatives 
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3.3 Explore subsystem sets:  alternative solutions shall be simulated, 

prototyped, and tested for lifecycle cost, quality, and performance  

 

3.4 Knowledge capture and evaluation: Knowledge that has been created 

will be captured (quantitative and qualitative) in order to evaluate the 

sets 

 

  

Methodology for activity 3.4 

1. The knowledge created through testing should be represented in the relevant 

graphical formats: limit curves for representing breaking points (and safe zones) 

for a single design option, and trade-off curves to compare the set of alternative 

subsystems/components against subsystem design criteria(e.g. cost and 

expected performance) 

2. A SWOT analysis may also be conducted for the evaluation of options 

 

Methodology for activity 3.3: 

1. A plan should be produced for testing each sub-system/component alternative in 

order to ensure that the knowledge created through testing enables weak 

solutions to be exposed and increases confidence in the design; the plan can 

focus on rapid and low-cost techniques if necessary (refer to section ‎5.5.2.5) 

2. The plan referred to here as ‘subsystem knowledge creation plan’ should be 

translated into a document template which defines the test outputs and 

representations that would support the comparison of sets and other decision 

making 

3. The different options should be explored and analysed through simulation, rapid-

prototyping, mathematical modelling etc. to determine their feasibility, benefits, 

and potential costs and the results should be incorporated in the same template 
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3.5 Communicate sets to others: Each subsystem or component team will 

present their set to the other teams at an event (meeting) in order to get 

feedback and understand constraints 

 

 

Phase 4. Concept Convergence: 

4.1 Determine set intersections: Subsystems that progress into phase 4 

can be considered for system integration. The intersection of feasible 

sets will be reviewed, considering compatibility and 

interdependencies between subsystems and components  

 

Methodology for activity 4.1: 

1. Populate a design concepts matrix with subsystem/component sets in order to 

illustrate the possibilities for intersection/integration of the various sets into 

systems 

2. Identify any dependencies  

3. Determine which system combinations are possible and/or feasible using the 

concept intersection matrix (refer to section ‎5.5.2.6) 

4. Analyse the effect of subsystem or component selection on the system targets  

5. Discount system combinations that are infeasible based on knowledge from 

previous projects, dependencies, and potential/expected conflicts 

 

 

Methodology for activity 3.5 

1. Conceptual solutions may be represented using an A3 template or MS 

PowerPoint presentation. The presentation should include the background, 

current condition, proposal, sketch/CAD drawing, and SWOT analysis 

2. A ‘design set (integration) event' can be used as a milestone, where design 

teams come together to present their sets to each other  

3. The set will also be presented using comparative tools such as trade-off curves, 

and function means analysis  

4. Design teams will evaluate sets based on their constraints and will provide 

recommendations to each other; ideally, any subsystem design decision after 

this point should neither affect other subsystems nor be affected by other 

subsystems 

5. Based on the evaluation, some of the alternative options may be discarded from 

the sets 
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4.2 Explore system sets: Potential systems can be simulated/prototyped 

(parametric and physical), and tested for cost, quality, and 

performance 

 

4.3 Seek conceptual robustness: Conceptual robustness will be sought 

against physical, market, and design variation in order to reduce risk 

and improve quality 

Methodology for activity 4.2: 

1. A plan should be produced to test system combinations in order to ensure that 

the knowledge created enables weak system alternatives to be exposed and 

increases confidence in the design; The plan can focus on rapid and low-cost 

techniques, and check sheets can be used to track the tests (refer to section 

‎5.5.2.5) 

2. The plan referred to here as the ‘system knowledge creation plan’ should be 

translated into a document template which includes recommended 

representations for test results that would support the comparison of sets and 

other decision making 

3. The different options should be explored and analysed through simulation, rapid-

prototyping, mathematical modelling etc. to determine their feasibility, benefits, 

and potential costs and the results should be incorporated in the same template 

4. The knowledge created should be represented in the relevant graphical formats: 

limit curves for representing breaking points (and safe zones) for a single design 

option, and trade-off curves to compare the set of alternative 

subsystems/components against design criteria (e.g. cost and expected 

performance) 

5. A SWOT analysis may be conducted for the evaluation of each system option 
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4.4 Evaluate sets for lean production: Once the potential systems have 

been explored, they will be evaluated for lean production to assess 

the costs, efficiency, problems etc. 

 

4.5 Begin process planning for manufacturing: Once the potential 

systems have been evaluated, manufacturing and assembly chains 

will be considered. The effects on cost, time, quality, efficiency, 

potential problems etc. will also be considered. 

Methodology for activity 4.4: 

1. Manufacturing engineers may determine criteria with which system alternatives 

may be evaluated for manufacturability and assembly 

2. Lean production criteria should be developed so that system alternatives can be 

evaluated to determine the effect of the different system combinations on wastes 

in manufacture 

3. A 'lean production event’ or workshop may be held to evaluate system 

combinations for manufacturability and lean production with both design teams 

and manufacturing engineers present 

4. Criteria can be weighted, and design options may be evaluated by means of a 

matrix; check sheets can be used to focus the evaluation 

Methodology for activity 4.3: 

1. Identify adverse impacts that may arise from physical variation and noise factors 

such as manufacturing tolerances, aging, usage patterns, environmental 

conditions, etc.  

2. Brainstorm potential market influences and customer requirements/specification 

changes which may impact the final design solution 

3. Consider the effects of potential market influences and customer 

requirements/specification changes to the final design solution  

4. Brainstorm potential effects that may result from any unexpected changes  

5. Analyse the effect of the potential changes to the final design solution using a 

matrix 

6. Analyse the system combinations and rank each solution based on the analysis  
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4.6 Converge on the final set of subsystem concepts: Based on the 

evaluations and knowledge captured, sub-optimal system designs will 

be eliminated and the proven optimal design from the system 

alternatives will be finalised 

 

Methodology for activity 4.6: 

1. Individual system design solutions may be presented using an A3 template of 

MS PowerPoint presentation. The presentation should include the background, 

current condition, proposal, sketch/CAD drawing, and SWOT analysis 

2. Potential systems will be presented for comparison using trade-off curves, and 

decision matrices  

3. A design concepts matrix can be used in order to assess the fulfilment of system 

targets 

4. The manufacturing processes for potential systems can be evaluated with the 

designs in order to discount infeasible options, or options that are not cost 

effective before commitment 

5. After narrowing the options based on the knowledge gained from analysis, a final 

system will be converged upon; the final system combination will not be changed 

except in unavoidable circumstances and will be finalised at a 'design freeze 

(integration) event' where the final design will be presented/discussed 

 

Methodology for activity 4.5: 

1. Identify design criteria which are related to the manufacturing and assembly 

process (including criteria from design for manufacturability (DFM) and design 

for assembly (DFA)) 

2. Develop manufacturing process webs (refer to section ‎5.5.2.7) 

3. Develop assembly process webs (refer to section ‎5.5.2.7) 

4. Filter process alternatives based on design criteria, filtered design alternatives, 

etc. 

5. Identify knowledge required to evaluate manufacturing and assembly process 

chains 

6. Explore and evaluate candidate manufacturing process chains against cost, time 

and quality parameters 

7. Explore and evaluate candidate assembly process chains against cost, time and 

quality parameters 

8. Use a decision matrix to rank/compare alternative manufacturing and assembly 

process chains 
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The lean PD model provides a process for conceptual design up until design 

freeze and the initiation of detailed design. There are some activities that have 

however been included as recommendations for detailed design that will be 

described briefly here. 

 

Phase 5. Detailed Design: 

5.1 Release final specification: The final specifications will be released 

once the final system concept is concluded; this is important because 

by communicating that the specification will be released after all of 

the activities in phases 1 to 4, it will be more likely that the 

specification and commitment will be delayed 

5.2 Define manufacturing tolerances: Manufacturing will negotiate part 

tolerances with design teams; this is another aspect of delaying 

commitment in design  

5.3 Full system definition: Further detailed design work will follow; it is 

assumed that companies may continue with their detailed design 

processes for assurance and qualification of design solutions which is 

normally industry and product-specific 

5.5 Supporting Tools 

5.5.1 Tools Recommended to Support the Lean Product 

Development Model 

A list of recommended tools was developed for the lean PD model activities 

(Table ‎5.6). These tools were amalgamated from three sources: (1) identified 

lean PD enablers (Table ‎5.1); (2) practice at industrial collaborator companies; 

and (3) new tools developed to support the lean PD model (see section ‎5.5.2). 

Representatives from industrial partner companies asserted their preference for 

tools that their employees were already familiar with. Many of the tools from the 

lean PD enablers are standard engineering tools and are commonplace in 

industry. Representatives from industrial partner companies were however 

receptive to new tools that would provide significant benefit. New tools that have 
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been developed to support the lean PD model will be summarised in the 

subsequent section. 

Table ‎5.6 Recommended tools for the lean product development model activities 
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Identified 
lean PD 
enablers 

Design concepts matrix                                     
Design concept document (product definition)                                     
Digital engineering (CAD/CAM/CAE etc.)                                     
Quality matrix (QFD)                                     
Trade-off curves                                     
Check sheets/lists                                      
Know-how database (KBE system/PDM/PLM)                                     
Limit curves                                     
A3 single-sheet reports                                     
Technical design standards and rules                                     
Standard architectures (modular diagrams)                                     

Additional 
tools 

included 
from 

industry 

Market research tools                                     
Stakeholder analysis                                     
Requirements management software                                     
Requirements documents                                     
Lessons learnt logs                                     
Best practice guides                                     
Manufacturing process diagrams                                     
Function means analysis                                     
Functional flow diagram                                     
Parts tree                                     
Idea generation techniques (e.g. Brainstorming)                                     
Innovation frameworks (e.g. TRIZ)                                     
Rapid prototyping                                     
Modelling and simulation software                                     
SWOT analysis                                     
DFMEA/FMEA                                     
Risk analysis                                     
Analytical hierarchy process (AHP)                                     
Design for manufacture & assembly (DFM/DFA)                                     

Additional 
tools 

developed 
for the lean 
PD model 

Project classification matrix                                     
Customer value model                                     
PD strategy matrix                                     
Innovation classification diagrams                                     
Knowledge creation plan                                     
Concept intersection matrix                                     
Manufacturing and assembly process webs                                     
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Although the recommended tools are important, it is the activities themselves 

that are essential for the lean PD model to be implemented. There is a vast 

array of tools that have been developed for design and engineering purposes, 

many of which may be substituted with those that have been recommended 

here. Moreover, the recommended tools for a particular activity may overlap 

with one another, and a tool may also be used for multiple activities. 

5.5.2 Tools Developed to Support the Lean Product Development 

Model 

Whilst defining the lean PD model activities, a number of gaps were identified 

where the development of bespoke tools was warranted. In some cases a 

substitutable tool was found, however a simpler tool could be easily developed 

for the same purpose. In this section the developed tools will be presented16. A 

summary of the background for each of the developed tools is also provided.  

5.5.2.1 Project Classification Matrix 

A tool was required to classify the level of innovation of company/department 

projects, and also present project parameters to support the shift towards a 

better multi-project plan and strategy. A number of project management and 

technology assessment tools were reviewed, but none of these provided the 

simple and flexible functionality that was sought.  

A matrix was developed to fill this gap which maps projects against a number of 

project parameters. A fictional motorcycle company has been used as an 

example in Figure ‎5.9. 

 

Figure ‎5.9 Project classification matrix example 

                                            
16

 A number of researchers from the LeanPPD project consortium supported the development of 
the tools described in this section and their efforts must be acknowledged  
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The matrix includes the project name which ideally follows a standard format, 

scheduling information, the level of innovation, intended market, resource and 

cost data, and any other critical information deemed necessary. Risk has been 

included in the last column of the matrix as an example. The level of innovation 

has been numbered according to a scale developed to combine advantages 

from other classifications including technology readiness levels (TRLs), novelty, 

technological uncertainty, complexity and pace (NTCP), and approaches put 

forward by Ward (2007) and Oosterwal (2010). The numbered levels are as 

follows: 

1. No change 
2. Low innovation derivative 

– Change of geometry 
– Change of arrangement 
– Feature level changes 

3. Medium innovation derivative 
– Change product architecture 
– Change subsystems or components 

4. High innovation 
– Introduce new technology 
– New fundamental design concept 

5. Research and development 
– Strategic breakthrough 

This classification is not only relevant when classifying and planning future 

projects, but also when considering the level of innovation to be incorporated in 

systems, subsystems, and components. 

5.5.2.2 Innovation Classification Diagrams 

A tool was required to communicate the level of innovation required to different 

subsystems and components during a project. This tool would support the focus 

on value that was sought, preventing both over-engineering and under-

engineering17. 

The approach that was developed adopts the ‘level of innovation’ numbering 

scheme employed in the project classification matrix (see section ‎5.5.2.1). The 

levels are colour-coded, and subsystems and components may subsequently 

                                            
17

 This may be the result of designers being unclear about where to innovate or development 
projects being under-resourced 
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be labelled to visually communicate the planned focus for innovation efforts in a 

particular project (Figure ‎5.10 and Figure ‎5.11). 

 

Figure ‎5.10 Innovation classification diagram system-level motorcycle example 

 

Figure ‎5.11 Innovation classification diagram subsystem-level motorcycle 

exhaust example 

5.5.2.3 Product Value Model 

Capturing and translating customer needs and desires is of paramount 

importance in PD. Designers and engineers must understand these needs and 

desires (referred to as customer value), and design and develop products 
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accordingly. A simple representation was developed to bring together customer 

(or product) value attributes (Figure ‎5.12). The product value model structures 

customer/product value attributes for a particular project into five categories: (1) 

general functional, (2) product/sector-specific, (3) service and support, (4) 

psychological/sensory, and (5) other necessary attributes. The attributes may 

also be divided into primary and secondary goals. The central purpose of the 

product is also made clear. 

 

Figure ‎5.12 Product value model 

5.5.2.4 Product Development Strategy Matrix 

A tool was required to identify strategic benefits that can be sought from 

projects. This would enable a project team to focus not only on customer value, 

but also what is referred to as ‘process value’. Process value is that which 

enhances the process of PD and the organisation’s capability to develop 

products. The matrix that was produced structures strategic goals around four 

categories: (1) knowledge, (2) organisation, (3) capability, and (4) creativity 

(Figure ‎5.13). 
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Figure ‎5.13 Process value model 

A matrix was developed based on the process value model which aligns 

projects with process value attributes (Table ‎5.7). 

Table ‎5.7 Product development strategy matrix 

PD Process 
Value 
Category  

PD Process 
Value Attribute  

Strategic Goal 
for PD  

Strategic 
advantages 
of Project A  

Strategic 
advantages of 
Project B  

Creativity  People  Acquire skills  Skill x 
acquired  

Skill x enhanced  

 Process  Reduce process 
duration  

Duration of b 
reduced to …  

 

 Tools  Acquire state of 
the art design 
software  

  

Knowledge  Useful 
information  

   

 Tacit knowledge     

 Risk reduction     
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5.5.2.5 Knowledge Creation Plan 

In order to focus concept testing activities on creating representations of 

knowledge that would support decision making, a document template was 

proposed. A knowledge creation plan could be produced for each system, 

subsystem, or component in order to ensure that the knowledge created 

enables weak solutions to be exposed, and increase confidence in the 

prominent design solutions. The document was envisaged to serve both as a 

prescriptive test plan, as well as a live test and evaluation report in which results 

and outcomes can be populated (Figure ‎5.14). 

 

Figure ‎5.14 Knowledge creation plan contents example 

5.5.2.6 Concept Intersection Matrix 

A matrix was required to evaluate integration between sets of subsystem or 

component alternatives. The concept intersection matrix that was developed 

makes use of a traffic light colour coding approach in which green indicates that 

two components or subsystems are easy to integrate, amber (or orange) 

indicates that there is likely to be some conflict, and red indicates that the two 

do not integrate (Figure ‎5.15). The selection of colours is based on knowledge 

from previous projects and actually analysing or testing combinations. The 

results from this activity help to filter the sets of solutions in order to formulate 
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system combinations. An excel-based tool was developed to extend this matrix 

so that further analysis could be done to filter alternatives. This tool automates 

some analysis of system combinations and will be presented in chapter 6. 

 

Figure ‎5.15 Concept intersection matrix 

5.5.2.7 Manufacturing and Assembly Process Webs 

A simple visual representation was needed to understand the available 

manufacturing and assembly process options for a number of system 

combinations. This task is rather unique because in point-based engineering 

manufacturing and assembly are only considered for a single design. Process 

options are categorised according the manufacturing or assembly activities 

(Figure ‎5.16). Arrows are used to denote the possible process sequences. 
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Figure ‎5.16 Manufacturing and assembly process web example (Kerga et al., 

2012) 

 

5.6 Implementation Process 

In order to successfully implement the lean PD model in a company, the 

implementation process requires careful consideration. The recommended 

process is illustrated in Figure ‎5.17. The process summarises and represents 

the steps taken in this research, which were arrived at through interaction with 

researchers and practitioners. 

 

Figure ‎5.17 Lean PD model implementation process 

 

1. Understand 
Requirements 

2. Design the 
new approach 

3. Implement 
the new 

approach 
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The first step towards implementation of the lean PD model is to understand the 

requirements. This may be achieved by conducting a number of activities, 

including: 

 Hold preliminary meetings to present the lean PD model, outline potential 

advantages, and gain buy-in from top management and other 

stakeholders 

 Identify and select a suitable case study for implementation 

 Perform internal benchmarking and gap analysis in order to evaluate the 

concept development process of a historic case  

The second step is to design the new approach to be implemented on the 

selected case study. This may be achieved through the following activities: 

 Develop a recommendation for the implementation of lean PD model 

activities, based on the requirements  

 Hold workshops to refine the bespoke lean PD model approach 

 Develop an implementation plan for the case study 

The third step is to implement the new approach on the selected case study. 

The following activities are suggested: 

 Form a core design team to implement the lean PD model 

 Train the core team for the implementation of the lean PD model 

activities and supporting tools  

 Implement the model on the case study project 
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5.7 Summary 

In this chapter the construction of the lean PD model was described. 

Lean PD enablers extracted through the literature review were initially prioritised 

and structured into a framework. It was concluded that there are five core lean 

PD enablers: value-focused planning and development; the SBCE process; a 

knowledge-based environment; chief engineer technical project leadership; and 

a culture of continuous improvement. Due to the findings from the literature 

review and industrial field study, it was decided to focus on conceptual design, 

and a summative literature review was composed regarding SBCE. A model 

was developed for conceptual design based on the framework of lean PD 

enablers, and further principles of SBCE. This process model is referred to as 

the lean PD model. The lean PD model is divided into five stages which reflect 

five key decisions in PD. The phases are broken down into activities which 

embody the principles of lean PD and SBCE. A description and methodology for 

each activity is presented as well as a list of supporting tools. Some additional 

tools developed to support the lean PD model have also been presented and 

briefly described. The implementation process is also outlined in three steps: (1) 

understand requirements; (2) design the new approach; and (3) implement the 

new approach. 

The next chapter describes two industrial case studies in which the constructed 

lean PD model has been applied. The chapter reports the implementation 

phase of this research. 
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6 INDUSTRIAL APPLICATIONS 

Having constructed the lean PD model, the final objective was to test it in 

industry. In this chapter two case studies are presented in which the lean PD 

model was applied to live PD projects in industry.  

The chapter is divided into 4 sections: 

In section ‎6.1 a synopsis of the action research approach adopted during the 

case studies is described. The two conducted case studies involved the product 

architecture design for a car audio head unit, and the development of a 

helicopter engine. The results from the case studies are presented separately in 

sections ‎6.2 and ‎6.3. Case study descriptions are provided in addition to 

preparatory research conducted while developing the case studies. A summary 

of the chapter is provided in section ‎6.4. 

6.1 Action Research Overview 

The lean PD model provided a unique and coherent flow of activities which was 

based on both principles and contextual insight. Representatives of industrial 

collaborator companies showed conveyed both excitement as well as 

scepticism. This was important as the goal to apply the lean PD model on two 

live PD projects was idealistic and would require strong support from the 

companies involved. In selecting the case study companies practicality was also 

carefully considered. As per the action research approach adopted, the author 

would have to be involved in steering the case study projects which would 

require physical presence at company sites. The two companies that were 

selected were Visteon Engineering Services Ltd (VES) and Rolls-Royce Plc. (R-

R)18. Both of these companies are UK-based and have design centres in the 

UK. 

Preliminary meetings were held with project personnel at each of the companies 

to discuss the potential advantages of the lean PD model and to identify cases 

                                            
18

 see section ‎1.4 for industrial collaborator descriptions 
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that were suitable for the study. The selection of cases was challenging due to a 

number of issues, including project timescales, the capacity of project personnel 

to support research, and case relevance. This process actually took several 

months at both of the companies. Once the case studies were selected, data 

was collected regarding a historic case by means of an open questionnaire. The 

questionnaire and results for the two historic cases are presented in Table  6.1 

and Table ‎6.6. The purpose of this activity was to perform a gap analysis 

between the actual methodologies applied in projects with the methodologies 

proposed in the lean PD model.  

The questionnaire that was developed for historical case analysis was intended 

to capture the actual PD process employed on a previous project. Questions 

were asked regarding different tasks in concept development and were 

structured according to the activities in the lean PD model. Results were 

confirmed by member checking in order to ensure triangulation. Based on the 

responses to questions, it became clear where the lean PD model would make 

the most impact. It was felt that in some areas the current PD processes were 

analogous to a particular lean PD activity, and thus no or little change was 

encouraged.  

A bespoke lean PD approach was developed for each of the cases based on 

the gap analysis as well as subsequent meetings with company 

representatives. Once agreed these bespoke approaches were implemented 

with project personnel. Methodological recommendations provided in sections 

‎5.4 and ‎5.5 were referred to, in order to implement the lean PD model activities. 

The aim of the case studies was to understand the response to the lean PD 

model by evaluating it in relevant contexts. Due to time limitations on the study, 

it was not possible for the lean PD model to be implemented in full. A metric-

based evaluation was not intended as the focus was on understanding the 

response from industry.  

In this chapter the two cases are presented separately. A description of each 

case study is provided, followed by information about the case study 
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development, and finally the results. Some of the details regarding the cases 

have been omitted to ensure confidentiality. 

6.2 Case Study 1: Product Architecture Design for a Car Audio 

Head Unit 

6.2.1 Case Study Description 

A number of proposals were put forward to test the lean PD model at VES 

(VES), including a motorcycle instrument cluster. However, as a first tier 

automotive supplier, customers often specify the design to an incredible level of 

detail. As SBCE is a key enabler of the lean PD model, a case with a fair 

amount of design flexibility was sought. The audio head-unit (AHU) of an in-car 

entertainment system was selected for the case study based on a series of 

meetings with engineers and managers at the company.  

Products are currently divided by discipline at VES and are composed of the 

following: mechanical, electrical (hardware), software, and illumination. 

Company representatives directed the focus towards electrical hardware due to 

the potential to consider alternative design solutions. The electrical hardware for 

an AHU is referred to as the electronic main board, which has been depicted in 

Figure  6.1.  

 

Figure ‎6.1 Audio head unit example: front view, rear view, and electronic main 

board (left to right) 
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The product architecture is the actual composition of electrical components, 

carefully arranged on the electronic main board. Alternative options are 

available for the components labelled on the AHU main board layout example in 

Figure ‎6.2. 

 

Figure ‎6.2 Audio head unit product architecture: main board components 

6.2.2 Case Study Development 

A project that had already passed through the concept development phase was 

analysed. This project was planned to deliver over four million products to a 

particular customer over the course of five years. This meant that a small 

reduction in cost would have considerable impact on profit margins. The project 

had 24 months from the onset until start of production to design the product; 

however the research involvement actually started 6 months after the project 

start date. Data regarding the methodology that was employed for concept 

development is presented as captured in Table  6.1. 

The questionnaire was initially sent by email to a senior electrical engineer who 

worked on the project and later reviewed by means of a face-to-face follow-up. 

The respondent had 17 years of engineering experience, and his responses are 

included in the table verbatim.  
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Table ‎6.1 Historic case study 1 questionnaire results 

Lean PD Activity Questions Answer/Description 

1.1 Classify project 
type  

How was the project classified 
and when did this classification 
take place?  

No formal classification 

1.2 Explore 
customer value 

How was the voice of the 
customer represented to the 
design team? How do you 
ensure/measure that the 
design meets customer 
expectations? 

Hardware/software requirements 
documents; (the) design team designs 
according to the specifications; once 
the designed part is available it is 
measured against requirements 

1.3 Align with 
company strategy  

How was the project aligned 
with the company strategy? 
Was the project used to 
improve PD? 

Strategy alignment is assured by 
architecture group which defines the 
design architecture; (the) project is not 
used to improve PD 

1.4 Translate 
customer value to 
engineers  

How was the product/system 
concept communicated to 
designers? 

By giving architectural representations 
of the system  

2.1 Decide on level 
of innovation to 
subsystems  

How did you control the 
amount of innovation that was 
designed into sub-
assemblies/components? 

Not controlled 

2.2 Identify  
subsystem targets  

Did subsystem participants 
identify lower-level system 
targets (e.g. reduce weight by 
x%)? 

Since this is just a sub-system 
component in itself, we usually have 
overall target (e.g. cost) and this is 
difficult to sub-divide due to interaction 
and impact between components 

2.3 Define feasible 
regions of design 
space  

How did you ensure that 
designers/engineers designed 
within the constraints of 
manufacturing and other 
functions (without inhibiting 
innovation)? 

We have design rules for all disciplines 
for manufacturing; we also keep 
manufacturing plant involved 

3.1 Extract (pull) 
design concepts  

Were previous projects, R&D 
projects, and competitor 
products considered? How did 
you ensure that designers 
considered a range of options? 

Yes, both previous projects and 
competitor products considered; there 
is no process to ensure that designer 
considered range of options 

3.2 Create sets for 
sub-systems  

How were the initial sub-
assembly design alternatives 
represented? 

In the form of different block diagrams 

3.3 Explore 
subsystem sets 

What methods did you use to 
test subsystem/component 
design alternatives? Do you 
have a test strategy? 

They are not tested until a decision is 
made for one solution then design and 
tests starts 
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Lean PD Activity Questions Answer/Description 

3.4 Capture 
knowledge and 
evaluate 

In order to compare alternative 
sub-assembly designs what 
are the most critical 
characteristics that should be 
analysed? What methods did 
you use to compare design 
alternatives? 

Cost and performance; existing cost 
and performance information 

3.5 Communicate 
sets to others  

What information is required by 
different subsystem/functional 
teams in order to provide 
feedback and constraints 
regarding possible design 
alternatives? 

Usually this is in component level 
(Integrated Circuit) and in the form of 
datasheets from suppliers 

4.1 Determine set 
intersections  

How can you determine 
whether or not components will 
intersect with each other and 
how difficult it will be? 

No formal method, the architect knows 
about the functions and decides; the 
difficulty level is also hidden within the 
design process (i.e. there is no formal 
method of assigning difficulty levels) 

4.2 Explore system 
sets  

What methods do you use to 
test system design 
alternatives? Do you have a 
system test strategy? How did 
you evaluate the potential 
costs, quality, and performance 
of design concepts? 

Alternatives are not tested until a 
decision for a single design solution is 
made; we have an engineering 
specification (document) which defines 
testing and limits in an excel chart 

4.3 Seek 
conceptual 
robustness  

How did you ensure that the 
design works, regardless of 
variations in usage, 
environment, or the 
manufacturing process? How 
do you ensure the system will 
not be affected by making 
changes? 

Environmental tests; 
this is not part of the design 
requirement(s); (the) only issue can be 
component obsolescence but supply is 
assured by buyers 

4.4 Evaluate sets 
for lean production  

How did you analyse the 
effects of a design on its 
manufacturing process?  

By liaising with manufacturing 

4.5 Define 
advanced 
production process 
plans 

How and when did you begin 
process planning for 
manufacturing? 

Mechanical is at the very beginning; 
electrical is after architecture is fixed 

4.6 Converge on 
final system  

How did you decide/determine 
the final system design? 

Based on the material and engineering 
cost and also agreement with the 
customer 

Based on the answers provided, a number of gaps were identified; however 

there were suitable methodologies present for various activities as expected. 

These methodologies could simply be substituted into the process. Table  6.2 

summarises the results for case study 1.  
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Table ‎6.2 Gap analysis results for case study 1 

SBCE 1.1 1.2 1.3 1.4 2.1 2.2 2.3 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 4.5 4.6 

VES y y y x y  - y y    y y - x x x 

 

Key 

- Expedient methodology already in place 

x Gap identified but not addressed 

y Gap identified and addressed 

 Not considered for implementation 

 

The case that was studied was a sub-assembly for which the components are 

“off-the-shelf” and therefore do not require individual analysis. This meant that 

some activities were not considered for implementation from the onset: lean PD 

model activities 2.2, and 3.3-3.5. As the project progressed a decision was 

made to select one system combination. Although this was not in line with the 

intended research, it was out of the researcher’s control. This meant that the 

final activities could not be completed (lean PD model activities 4.4-4.6). 

6.2.3 Case Study Results 

This section has been structured according to the lean PD model activities19 and 

will describe the research undertakings.  

Phase 1. Define value 

1.1 Classify project type 

There was no formal approach to project classification at the company, nor was 

there a common naming strategy.  Although these are important issues, they 

cannot be addressed on a stand-alone project. A table was created to 

summarise project information and classify the level of innovation. As much of 

this information is confidential, a snapshot is provided in Table  6.3. 

                                            
19

   Refer to section ‎5.4 for details of the lean PD model activities 
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Table ‎6.3 Case study 1 project classification information 

Project 
Name  

Start Date  Duration (months)  Estimated 
End Date  

Level of 
Innovation  

AHU January 
2011 

24 months PD + 5 
years production 

2018 4 

The project was a new product design and was expected to embody a high 

degree of innovation. It was expected that the project would include the 

introduction of new technology as well as a different overall product 

architecture. The level of innovation was proposed by a senior electrical 

engineer. 

1.2 Explore customer value 

As the product being developed will be eventually judged by end users, analysis 

of their desires and needs was advocated in this research. The OEM customer 

company provided ‘statement of work’ (SoW) and technical specification 

documents, as well as CAD diagrams (Figure  6.3), technical standards, and 

requirements for the project to deliver against.  

 

Figure ‎6.3 CAD representations of the AHU design overview 
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Ideally end users would be consulted to understand their desires and needs 

directly, however this was not possible. Despite this, the product value model 

was demonstrated. Based on information extracted from requirements and 

customer specification documents, 34 customer value attributes were identified. 

The attributes included safety, reliability, upgradeability, recycling operations, 

amongst others. Brainstorming sessions were held with a senior engineer20 to 

identify un-elicited value attributes (Figure  6.4).  

 

Figure ‎6.4 Mind map of un-elicited value attributes for case study 1 

The value attributes were combined by the author to provide a visual 

representation of product value for the project (Figure  6.5). This representation 

was reviewed by 3 senior engineers from the company with 16, 17, and 20 

years of industrial experience respectively. 

                                            
20

 This is the same engineer mentioned earlier with 17 years of industrial experience 
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Figure ‎6.5 Product value model for case study 1 

Further analysis of the product value model was conducted with 3 engineers. 

The main purpose of the product was agreed to be to entertain the user, and 

therefore the most discomforting outcome for the user would be for the product 

to crash. Further to this realisation, components were analysed to determine 

whether an incorrect selection could result in a system crash. Using a QFD 

house of quality matrix, this analysis was mapped and metrics that could be 

used to compare components with regards to a potential crash were suggested. 

1.3 Align project with company strategy 

The project was aligned with the company strategy via a matrix that was 

developed in-house. This approach was not standard practice at the company; 

rather the matrix was developed for this project specifically. Furthermore, the 

matrix was actually used when evaluating product architecture options rather 

than the strategic alignment suggested at the start of the project. The matrix 

considered the alignment to PD strategy, future subsystem reuse, future 

business opportunities, and alignment to the overall corporate strategy. 
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1.4 Translate value to designers 

The product concept was communicated to designers via requirements, 

specification and SoW documents. Although it was noted that this was not the 

ideal approach, the researcher had no control over this choice. 

 

Phase 2. Map design space 

2.1 Decide on level of innovation to subsystems  

Based on the project information described in phase 1, an innovation 

classification diagram was produced (Figure ‎6.6). It became clear from this 

activity that the innovation and engineering effort should be focused on 3 main 

areas: (1) the tuner or digital signal processor (DSP); (2) the microcontroller; 

and (3) the main board layout. 

 

Figure ‎6.6 Innovation classification diagram for case study 1 

 

2.2 Identify subsystem targets 

As this case was a subsystem composed of ‘off the shelf’ components, there 

was no need to define lower level targets.  
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2.3 Define feasible regions of the design space 

As the innovation in this project was restricted to specific components, this was 

not a lengthy activity. A variety of components were considered and reviewed 

by a number of parties involved from different international company locations. 

Constraints are considered via design rules and OEM customer standards. The 

research did not contribute to this activity. 

 

Phase 3. Develop concept sets 

3.1 Extract design concepts 

A senior electrical engineer was responsible for identifying and analysing 

product architecture alternatives. However there were a number of parties 

involved from different international company locations, including the UK, USA 

and China. The design criteria for components were the requirements 

established from the technical specification. Components were only considered 

if they met functional requirements. Table  6.4 presents the extracted 

alternatives. 

 

3.2 Create sets for subsystems 

This activity was included to allow time for designers to ideate and think outside 

of the box. In this case the alternatives were selected based on requirements as 

explained and further innovation was not facilitated. Despite this a number of 

alternative components were examined. Table  6.4 presents the alternatives 

considered as well as descriptions regarding their sources. Component 

descriptions were provided by a senior electrical engineer working on the 

project. 
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Table ‎6.4 Alternative components considered for case study 1 

Component  Alternatives Description 

Microcontroller 

a1 Installed on previous design/s 

a2 Tested on a previous design 

a3 New ‘state of the art’ 

a4 New ‘low risk’ 

Tuner 
b1 Installed on previous design/s 

b2 New ‘state of the art’ 

Bluetooth 
c1 Installed on previous design/s 

c2 Installed on previous design/s 

Speech Processing  
d1 Installed on previous design/s 

d2 Installed on previous design/s 

DAB 
e1 Installed on previous design/s 

e2 Installed on previous design/s 

PSU 

f1 Installed on previous design/s 

f2 Installed on previous design/s 

f3 New 

CD 
g1 Installed on previous design/s 

g2 New 

Memory 

h1 Installed on previous design/s 

h2 Installed on previous design/s 

h3 Installed on previous design/s 

PCB 
i1 Installed on previous design/s 

i2 Installed on previous design/s 

 

Phase 4. Converge on system 

4.1 Determine intersections of sets 

Based on the alternative components considered in phase 3 there are 2,304 

potential system combinations21. Many of these combinations are however not 

possible due to integration conflicts, amongst other factors. A concept 

intersection matrix was populated by a senior electrical engineer to highlight 

these integration conflicts (Figure  6.7). Once populated the matrix was reviewed 

in a meeting between the researcher and the same engineer. 

                                            
21

 This number can be calculated by multiplying the number of alternatives for each component  
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Figure ‎6.7 Snapshot of the concept intersection matrix for case study 1 

This activity allowed combinations that were not actually possible to be 

eliminated. For example Figure  6.7 shows that microcontroller a1 does not 

integrate with bluetooth c2, while the other microcontrollers do not integrate with 

bluetooth c1. In this case the number of possible combinations was halved to 

yield 1152 possible combinations. No system combination was identified as 

easy to integrate, although upgrading a previous design solution was 

considered easier than replacing essential components with new components 

that had not been installed on previous projects.  

One of the key design parameters in this project was cost. In order to 

understand the impact of selecting one of the possible system combinations, 

cost analysis was conducted. Possible system combinations were first 

computed using a spreadsheet in MS Excel as shown in Figure  6.8. Each 

system combination was allocated a system number. 
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Figure ‎6.8 Snapshot of computed alternative system combinations 

Costs associated with each of the components were associated with component 

codes (A1, A2, B2 etc.) captured in a table on a separate worksheet in MS 

Excel. The cost of each combination was determined by programming cells to 

look up the associated costs for each component and calculate their 

summation22. The resulting graph is presented in Figure  6.9.  

 

 

Figure ‎6.9 Variation in the cost of possible system combinationsfor case study 1 

                                            
22

 This was achieved by using a complex combination of ‘VLOOKUP’ and ‘SUM’ functions 
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The standard deviation of system costs was calculated to be 3.0623. This finding 

highlighted the impact of the typical hasty selection of a system combination on 

the system cost. For the purpose of this study a cost threshold was set which 

was just below the medium cost of system combinations. This allowed 708 

combinations to be filtered, yielding 444 combinations. 

 

4.2 Explore system sets 

Based on a subjective analysis of the alternative combinations one 

microcontroller, one PSU and one type of memory were filtered. This analysis 

primarily considered the alignment with design requirements. All of these 

components had been tested by the company and analysed in the past.  This 

eliminated 272 options, leaving 172 combinations. 

This number of combinations was still very high and therefore some further 

subjective decisions were required. A strategic analysis was conducted to 

evaluate system combinations. Factors that were considered in this analysis 

included: alignment with corporate and PD strategy, supplier reputation, and 

future business, amongst others. Based on this analysis a number of 

components were discarded. This resulted in the elimination of 1 tuner option, 1 

speech recognition option, 1 DAB option, and 1 memory option. The remaining 

components are presented in Table  6.5. 

 

  

                                            
23

 For readers who are not au fait with statistical terms: the standard deviation shows the 
dispersion of system costs from the mean (or average) system cost 
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Table ‎6.5 Component sets recommended for further evaluation (case study 1) 

Component  Alternative  

Microcontroller 
A3 New ‘state of the art’ 

A4 New ‘low risk’ 

Tuner B2 New ‘state of the art’ 

Bluetooth C2 Installed on previous design/s 

Speech Processing  D2 Installed on previous design/s 

DAB E2 Installed on previous design/s 

PSU 
F1 Installed on previous design/s 

F2 Installed on previous design/s 

CD G2 Installed on previous design/s 

Memory H1 Installed on previous design/s 

PCB 
i1 Installed on previous design/s 

i2 Installed on previous design/s 

Due to business pressures, the project was not able to accommodate the 

convergent approach recommended in the lean PD model. The project faced a 

milestone at which 4 out of 8 alternative system combinations were considered. 

Although the selection of the alternatives may be questioned, the fact that the 

project considered 4 alternative system combinations was remarkable.  

The four combinations (or platforms) were reviewed against business and 

strategic objectives using a structured design criteria matrix. This allowed the 

team to quickly arrive at a final single system combination. This combination 

was among the combinations recommended for further evaluation. Despite 

thwarting the remaining activities of the lean PD model, the new approach that 

was adopted for this project was noteworthy.   
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6.3 Case Study 2: The Development of a Helicopter Engine 

As the first case study was addressing component level design and the 

integration of a subsystem, it was important to test the lean PD model at the 

system level. However, the second case (with R-R) was addressing power 

systems and was likely to be for an aerospace application. This meant that 

there would be an extraordinary level of complexity (Figure  6.10) and potentially 

more resistance to application on a live project. Despite the complexity in power 

systems engineering, the researcher sought to apply the developed model at 

the engine level. This direction was supported by a senior expert at the 

company with 15 years of industrial experience. 

 

Figure ‎6.10 Aircraft topology 

After numerous meetings in which the lean PD model was presented and 

discussed at one of the company sites, the research received considerable 

interest. A number of senior managers at the company were impressed with the 

lean PD model and were keen to see the process implemented on a real R-R 

project. One senior manager remarked that this approach could be the ‘game-

changer’ that has been needed to address new projects where innovation and 

competitive advantage are discriminators. Various proposals were put forward 

to test the lean PD model at R-R, including a civil aircraft engine. However, it 

was not easy to find a project that was in its infancy where project leaders were 

willing to accommodate the research. After sustained efforts, a systems design 

leader at another company site was informed about the research and welcomed 
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its implementation on a helicopter engine project. This was considered a 

breakthrough in the research, because not only was there an ideal system-level 

project but also someone willing to drive the case study forward within the 

company. 

The lean PD model was employed on a turbo-shaft helicopter engine, which is 

perhaps the most common type of engine used on modern helicopters and is 

likely to be used on futures engines as well (Figure  6.11). The prevalence of the 

turbo-shaft engine for helicopter engines is due to its provision of large amounts 

of power and a low weight penalty.  

 

Figure ‎6.11 Futuristic helicopter model image (Gizmag website) 

The exhaust stream drives an additional (free) turbine which in turn drives a 

propeller or rotor system to generate thrust as illustrated in Figure  6.12. 

 

Figure ‎6.12 Turbo-shaft engine schematic (Wikipedia website) 
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6.3.1 Case Study Development 

A recent project was selected for analysis in order to understand the PD 

process implemented for concept development on a real project. The goal of the 

project was to deliver an enhanced version of an engine to a particular 

customer, requiring a solution to some adverse environmental impacts 

experienced. The project had a relatively short duration from the onset until start 

of production to design the product. Data regarding the process that was 

employed for concept development is presented in Table  6.6. The questionnaire 

was initially sent by email to a senior engineer who worked on the project and 

was later reviewed by a follow-up interview. The respondent had 20 years of 

engineering experience and his responses are included here verbatim for the 

most part. Some answers have been amended for confidentiality purposes.  

Table ‎6.6 Historic case study 2 questionnaire results 

Lean PD Activity Specific Questions Answer/Description 

1.1 Classify project 
type  

How was the project classified 
and when did this classification 
take place?  

Classified as a new engine/major 
redesign; it was classified after the 
problem was understood 

1.2 Explore 
customer value 

How was the voice of the 
customer represented to the 
design team? How do you 
ensure/measure that the design 
meets customer expectations? 

Through meetings with the customer. 

1.3 Align with 
company strategy  

How was the project aligned 
with the company strategy? 
Was the project used to 
improve PD? 

Aligned to company strategy of profit 
through sales (department) and 
maintaining customer satisfaction by 
responding to urgent requirements; 
the project raised the possibility of 
creating future business 

1.4 Translate 
customer value to 
engineers  

How was the product/system 
concept communicated to 
designers? 

Requirements flow down and concept 
architectures modelling 

2.1 Decide on level 
of innovation to 
subsystems  

How did you control the amount 
of innovation that was designed 
into sub-
assemblies/components? 

The modelling activities identified 
those parts that should be changed, 
all others were kept as existing; the 
requirements documents and 
interfaces with exiting parts 
constrained the design 

2.2 Identify  
subsystem targets  

Did subsystem participants 
identify lower-level system 
targets (e.g. reduce weight by 
x%)? 

Yes 
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Lean PD Activity Specific Questions Answer/Description 

2.3 Define feasible 
regions of design 
space  

How did you ensure that 
designers/engineers designed 
within the constraints of 
manufacturing and other 
functions (without inhibiting 
innovation)? 

Using R-R standards and interface 
diagrams from existing design; mock-
ups were used for the harnesses; 
collaboration with partner 
company/ies. 

3.1 Extract (pull) 
design concepts  

Were previous projects, R&D 
projects, and competitor 
products considered? How did 
you ensure that designers 
considered a range of options? 

Based on previous designs; Advanced 
Projects (department) did a competitor 
technology comparison; (the) design 
process requires that alternatives are 
considered; e.g. different harness 
options considered 

3.2 Create sets for 
sub-systems  

How were the initial sub-
assembly design alternatives 
represented? 

 (Not answered, however this was 
discussed with company 
representatives) 

3.3 Explore 
subsystem sets 

What methods did you use to 
test subsystem/component 
design alternatives? Do you 
have a test strategy? 

Different harness options tested; rig 
testing (used to test alternatives); test 
plan (documents tests) 

3.4 Capture 
knowledge and 
evaluate 

In order to compare alternative 
sub-assembly designs what are 
the most critical characteristics 
that should be analysed? What 
methods did you use to 
compare design alternatives? 

Visual comparison of the harnesses; 
analysis and comparison of test 
results 

3.5 Communicate 
sets to others  

What information is required by 
different subsystem/functional 
teams in order to provide 
feedback and constraints 
regarding possible design 
alternatives? 

Physical geometry, aero and 
mechanical models 

4.1 Determine set 
intersections  

How can you determine 
whether or not components will 
intersect with each other and 
how difficult it will be? 

Pre-determined split of models,  trial 
Installations 

4.2 Explore system 
sets  

What methods do you use to 
test system design alternatives? 
Do you have a system test 
strategy? How did you evaluate 
the potential costs, quality, and 
performance of design 
concepts? 

Performance models, whole engine 
models e.g. for blade off 

4.3 Seek 
conceptual 
robustness  

How did you ensure that the 
design works, regardless of 
variations in usage, 
environment, or the 
manufacturing process? How 
do you ensure the system will 
not be affected by market 
changes? 

Product designed to meet (the) 
customer's operational envelope 
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Lean PD Activity Specific Questions Answer/Description 

4.4 Evaluate sets 
for lean production  

How did you analyse the effects 
of a design on its manufacturing 
process?  

Harness considered for assembly 

4.5 Define 
advanced 
production process 
plans 

How and when did you begin 
process planning for 
manufacturing? 

Planning for manufacture started in 
the concept stage 

4.6 Converge on 
final system  

How did you decide/determine 
the final system design? 

Design and business reviews 

Based on the answers provided, a number of gaps were identified; however 

there were appropriate methodologies present to support various activities as 

expected. Table  6.7 summarises the results for case study 2. 

Table ‎6.7 Gap analysis results for case study 2 

SBCE 1.1 1.2 1.3 1.4 2.1 2.2 2.3 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 4.5 4.6 

R-R y y y y y - y y y y y y y y x x x x 

 

Key 

- Expedient methodology already in place 

x Gap identified but not addressed 

y Gap identified and addressed 

 Not considered for implementation 

The case that was studied was similar to the engine that was developed using 

the lean PD model. The analysis of the previous project helped to produce a 

realistic plan for the implementation of the lean PD model. The project followed 

the lean PD model, but also adhered to the review process defined by R-R 

quality procedures. Due to time restrictions the majority of phase 4 of the lean 

PD model was not applied. Similarly, activity 2.2 was not applied.  

6.3.2 Case Study Results 

This section has been structured according to the lean PD model activities and 

will describe the research undertakings for case study 2. 
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Phase 1. Define value 

1.1 Classify project type 

There was no formal approach to project classification at the company, nor was 

there a common naming approach.  Although these are important issues, they 

cannot be addressed on a stand-alone project. A number of senior engineers 

did however, express their appreciation for the proposed approach for project 

classification. It was decided that the level of innovation would not be classified 

early on in this project. This was because one of the key outcomes was to 

determine how the system targets could be reached, and it was unknown at the 

time what level of innovation was required to achieve them. It was expected that 

the level of innovation would be between 3 and 5. A table was created to 

summarise project information and classify the level of innovation. As much of 

this information is confidential, a snapshot is provided in Table  6.8. 

Table ‎6.8 Case study 1 project classification information 

Project 
Name  

Start 
Date  

Duration (months)  Estimated 
End Date  

Level of 
Innovation  

Helicopter 
engine 

August 
2011 

20 months PD 
(including full scale 
prototype and testing) 

April 2013 3-5 

It was initially expected that the project would include the introduction of new 

technology as well as the possible incorporation of new materials and 

manufacturing techniques. The level of innovation was proposed by project 

engineers. 

 

1.2 Explore customer value 

One of the aims of the project was to develop an engine to meet future 

customer requirements. A number of project leaders felt that the customers did 

not need to be consulted directly, however, there were some key personnel 

within the company who had expertise in this area due to both their role within 

the company and their past experience. Meetings were held with these experts 

in order to capture customer desires and needs. There was also an extensive 
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amount of information available through company benchmarking reports and 

market studies which was taken into account.  

A number of project brainstorming sessions were also held to identify value 

attributes. Through this extensive activity a product value model was produced, 

however the product value attributes were categorised according to the different 

stakeholders rather than the approach proposed (see Table ‎6.9). This was 

deemed appropriate because the product was not one that involves direct end 

user interaction.   

Table ‎6.9 Approach used to initially structure value attributes 

The product value model included hundreds of attributes, which were later 

divided into primary and secondary attributes (Figure  6.13). Each attribute was 

coded in order for them to be referenced in future design work. 

Stakeholders Value attributes 

Rolls-Royce 

Cost 
Cost A  Cost 1 

Cost B   

Compliance  
Compliance A   

Compliance B   

Manufacturability     

End customer 

Efficiency      

Disruption     

Serviceability     

Airframer 

Weight     

Mounting     

Pay load     

World and environment 

Emissions     

Safety     

Regulations     
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Figure ‎6.13 Product value model for case study 2 

This yielded eight key product value attributes, which cannot be disclosed due 

to their confidential nature. The project team developed system targets for each 

of the eight key value attributes (Table  6.10); a fictitious list of key value 

attributes has been included.  

Table ‎6.10 Approach used to identify system targets for case study 2 

Key value attributes System targets 

Cost 
Reduce cost by A% 

Reduce cost by B% 

Compliance 
Standard1 

Standard2 

Manufacturability Reduce complexity 

Specific fuel consumption 
(SFC) 

Reduce SFC by C% 

Disruption Reduce time between repairs 

Serviceability Reduce service time 

Weight Reduce weight by X%  
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Key value attributes System targets 

Mounting Mounting time x hours 

Pay load Increase to x kg 

Emissions Reduce CO2 emissions 

Safety Comply with standards 

Regulations Comply with standards 

It was difficult to weight system targets (and attributes) in order to understand 

the project priorities, as the weightings from different stakeholders were 

expected to be different. A survey was produced and circulated among 

company experts to gather expert weightings for the attributes. The results 

enabled the prioritisation of attributes based on the average response. The 

output of this process is presented in Figure  6.14 as percentages. Attributes 

with a higher percentage were considered to be of greater importance in this 

project. 

 

Figure ‎6.14 Prioritisation of product value attributes represented as percentages 

Attribute 1:, 25%

Attribute 2:, 19%

Attribute 3:, 16%

Attribute 4:, 11%

Attribute 5:, 11%

Attribute 6:, 7%

Attribute 7:, 7% Attribute 8:, 4%
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Based on this analysis it was concluded that the four highest ranked value 

attributes should be focused on in this project. This resulted in four system 

targets which became the main drivers for the project. 

1.3 Align project with company strategy 

The project was aligned with the company strategy in a number of ways. First of 

all the ‘chief project engineer’24 was responsible for ensuring strategic alignment 

with business goals. Business strategy documents were reviewed in order to 

understand corporate strategies, while a number of meetings were held to 

understand product goals (for the specific engine) and goals for helicopters in 

general. No PD strategy was found to support the enhancement of the PD 

process. This provoked a meeting in which strategic PD goals were 

brainstormed.  

A PD strategy matrix was produced to combine the strategic goals identified 

and analyse how well the project was aligned with them. The author did not 

have access to the matrix due to the confidential nature of the data, and thus it 

could not been presented here. This activity helped to direct the project towards 

specific strategic goals. Three of the strategic goals were: (1) boost innovation, 

(2) incorporate new skills, and (3) amalgamate customer value information. An 

assortment of corporate, product, and helicopter goals were also addressed.  

1.4 Translate value to designers 

One further activity that was proposed by the project leaders was to identify the 

system functions based on the key value attributes. Quality function deployment 

(QFD) was used to analyse the interaction between key value attributes and 

functions (Figure  6.15). This work was extended further to analyse competitor 

products and identify system target values for key value attributes (engineering 

metrics). 

 

                                            
24

 The ‘chief project engineer’ is different to the chief design engineer on the project who serves 
as the technical leader 
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Figure ‎6.15 Quality function deployment: House of quality approach adopted for 

case study 2 

In order to represent product functions, a functional flow diagram was 

developed. As the functions on this project were similar to that of a previous 

project, a functional flow diagram was adapted. Figure  6.16 illustrates the 

adopted approach. 
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Figure ‎6.16 Functional flow diagram approach employed to represent product 

functions 

The outputs of activities in phase 1 were compiled on a compact disc to 

communicate the product concept to designers. Initially a web-based approach 

was envisaged, however, due to time constraints on the project, interactive MS 

PowerPoint presentations were used with hyperlinks to access background 

information. 

The culmination of phase one fell in line with the first project design review. The 

MS PowerPoint presentations were used by engineers working on the project to 

communicate the concept definition and a plan for future project activities. The 

review was chaired by the chief design engineer, while 8 additional senior 

engineers and company experts attended including the project manager, 

technical lead, and chief project engineer. A number of researchers also 

attended the review, including the author.  

The chief design engineer on the project was happy for the project to progress 

to the next stage, despite the absence of structured (detailed) requirements as 

is typical at the first R-R project review. Senior engineers and project leaders 

felt that the project had challenged company practice and had made significant 

contributions, especially in the drive towards more innovation. 
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Phase 2. Map design space 

2.1 Decide on level of innovation to subsystems  

Based on the project information described in phase 1, an innovation 

classification diagram was produced (Figure  6.17). It became clear from this 

activity that the innovation and engineering effort should be focused on 3 main 

areas: (1) the intake, (2) the compressor, and (3) the turbine. 

 

Figure ‎6.17 Innovation classification diagram exemplar for case study 225 

This method was received very well by personnel working on the project. The 

project manager actually suggested that this representation be used to project 

alternative system combinations and show the level of innovation within each 

alternative.  

2.2 Identify subsystem targets 

One of the main objectives of the project was to determine whether a number of 

challenging system targets could be achieved based on available technology. 

This was a formidable task within the project time scale. Subsystem targets 

were therefore not defined, although project personnel recognised this gap. 

 

  

                                            
25

 This is not the actual diagram produced for the R-R case study 
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2.3 Define feasible regions of the design space 

A variety of opportunities for innovation were considered and reviewed by 

project personnel. Project personnel engaged with functional subsystem groups 

in order to understand design possibilities. Constraints are typically considered 

based on company design standards and interface diagrams and documents 

from existing designs. There were some special constraints in this project which 

required careful attention. Both constraints and feasible regions of the design 

space were discussed with functional experts. Feasible regions of the design 

space were not however, formally documented. 

 

Phase 3. Develop concept sets 

3.1 Extract design concepts 

In order to ensure that a focused list of subsystem alternatives was developed, 

design criteria for subsystems were prepared with the support of a number of 

senior engineers. It was decided that technology maturity26 would form the initial 

design criteria for subsystem alternatives. Many meetings were held between 

project personnel and functional subsystem groups to understand the available 

design concepts for subsystems. Design concepts were initially recorded as 

notebook entries. As most of the concepts were ‘known’ solutions, 

documentation regarding these concepts was collected. 

3.2 Create sets for subsystems 

This activity was included to allow time for designers to ideate and think outside 

of the box. Due to the time and resource restrictions on the project, idea 

generation was not given sufficient attention. A number of alternative subsystem 

modifications were however, considered for system integration. The application 

of phase 3 of the lean PD model focused on the intake subsystem. For the 

intake subsystem, a detailed study was conducted involving various 
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 R-R use the technology readiness level (TRL) approach to assess the maturity of evolving 
technologies 
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alternatives. Five alternative intake systems were considered27, four power 

alternatives, and two alternatives for an additional capability. Table  6.11 

presents the alternatives considered. 

Table ‎6.11 Alternative components considered for the intake subsystem of case 

study 2 

System Power Additional capability (Ac) 

S1 P1 Ac1 

S1 P1 Ac2 

S1 P2 Ac1 

S1 P2 Ac2 

S1 P3 Ac1 

S1 P3 Ac2 

S1 P4 Ac1 

S1 P4 Ac2 

S2 P1 Ac1 

S2 P1 Ac2 

S2 P2 Ac1 

S2 P2 Ac2 

S2 P3 Ac1 

S2 P3 Ac2 

S2 P4 Ac1 

S2 P4 Ac2 

S3 P1 Ac1 

S3 P1 Ac2 

S3 P2 Ac1 

S3 P2 Ac2 

S3 P3 Ac1 

S3 P3 Ac2 

S3 P4 Ac1 

S3 P4 Ac2 

S4 P1 Ac1 

S4 P1 Ac2 

S4 P2 Ac1 

S4 P2 Ac2 

S4 P3 Ac1 

S4 P3 Ac2 

S4 P4 Ac1 

S4 P4 Ac2 

S5 P1 Ac1 

S5 P1 Ac2 

S5 P2 Ac1 

S5 P2 Ac2 

S5 P3 Ac1 

S5 P3 Ac2 

S5 P4 Ac1 

S5 P4 Ac2 
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 The ‘intake system’ is a constituent of the intake subsystem 
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3.3 Explore subsystem sets 

The knowledge creation plan was met with considerable support from project 

leaders and engineers. For the intake subsystem, a number of alternatives were 

considered and a knowledge creation plan was composed. The key 

representations sought through the intake knowledge creation plan were limit 

curves, trade-off curves, and a number of schematics. Each of the alternatives 

were modelled and tested by means of simulations, and in some cases physical 

tests.  

3.4 Capture knowledge and evaluate 

A limit curve was developed to characterise the impact of environmental 

conditions on the different intake system alternatives (Figure  6.18). System 1 

and 4 provide the best efficiency results. 

 

Figure ‎6.18 Efficiency of alternative intake systems: Limit curve for case study 2 

A trade-off curve was composed to compare the five intake system alternatives 

against efficiency and pressure loss within the intake system (Figure  6.19). 

System 2 provides the best combination of efficiency and lowest pressure loss, 

with systems 5 and 3 also performing well. 
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Figure ‎6.19 Efficiency (average) of intake system alternatives against pressure 

loss: trade-off curve for case study 2 

Intake power alternatives were evaluated against a number of criteria including 

cost and power loss. A trade-off curve was developed to present the four 

alternatives against the parameters of cost and power loss (Figure  6.20). The 

graph shows that both cost and power loss is lowest for alternative p2, although 

p1 is marginally more costly. 

 

Figure ‎6.20 Cost of intake power alternatives against power loss: trade-off curve 

for case study 2 
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Based on the analysis conducted of intake system alternatives and the resulting 

knowledge representations produced, three intake options were proposed 

(Table  6.12). Additional capabilities were not tested. 

Table ‎6.12 Intake alternatives proposed for system integration (case study 2) 

Intake options Intake system Power Additional capability 

New ‘state of the 
art’ solution 

s2 p2 Ac2 

Intermediate 
solution 

s2 p2 Ac1 

Low cost solution s5 p2 Ac1 

 

3.5 Communicate sets to others  

A second R-R design review was held after system combinations were 

analysed. The review will be discussed after presenting the results for lean PD 

activities 4.1 and 4.2. 

 

Phase 4. Converge on system 

4.1 Determine intersections of sets 

Based on the alternative subsystems considered in phase 3 there are 1152 

potential system combinations28. Table  6.13 presents the solution sets under 

consideration. All of these combinations were assumed to be possible; therefore 

integration was not considered to be an issue. The concept intersection matrix 

was therefore not used in this case. 

 

  

                                            
28

 This number can be calculated by multiplying the number of alternatives for each subsystem 
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Table ‎6.13 Subsystem alternatives recommended for system integration (case 

study 2) 

Subsystem Alternatives Description 

Intake 

a1 Installed on previous design/s 

a2 New  

a3 New ‘state of the art’ 

Combustion chamber 
material 

b1 Installed on previous design/s 

b2 New 

b3 New 

Combustion chamber 
architecture 

c1 Installed on previous design/s 

c2 New 

Combustion chamber 
additional function 1 

d1 No addition 

d2 New additional feature included 

Combustion chamber 
additional function 2 

e1 No addition 

e2 New additional feature included 

Turbine material 
f1 Used on previous design/s 

f2 New 

Turbine architectural 
amendment 1 

g1 No amendment 

g2 New amendment 

Turbine architectural 
amendment 2 

h1 No amendment 

h2 New amendment 

Combustion chamber 
additional feature 

i1 No addition 

i2 New additional feature included 

 

4.2 Explore system sets 

The subsystem alternatives were analysed against the key value attributes as 

well as other design criteria such as engineering costs and risks. Project 

leaders steered the design team to ensure system combinations were analysed 

in time for the second project design review. Function means analysis (FMA) 

was conducted to allow system combinations to be formulated. Six system 

combinations were put forward based on the FMA and analysed using a Pugh 

matrix. Four of the combinations were configured to focus on single system 

targets, and two were balanced systems which addressed all four system 

targets. The Pugh matrix was populated during a project meeting with senior 

project leaders. Based on this subjective analysis a single ‘best rated’ system 
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combination was proposed for review. Figure  6.21 illustrates the results of the 

analysis performed for the best-rated system combination. 

 

 

Figure ‎6.21 Target compliance of best rated system combination for case study 2 

The second design review meeting was attended by 16 senior engineers and 

project leaders, 8 project engineers, and a number of researchers including the 

author. The review was chaired by the chief design engineer; the project 

manager, technical lead, and chief project engineer were also present. 

Project engineers presented a summary of the project as well as the solution 

sets and best rated system combination. The main conclusion from the analysis 

was that the system targets could not be met using the available technology 

and under the current constraints. This meant that either more innovative 

solutions and design changes needed to be considered, or the system targets 

had to be reconsidered. There was a unanimous agreement that according to 

the criteria for a second R-R project design review, the project should be 

stopped as the system targets (or requirements) had not been achieved. 

However, as the process implemented was significantly different to typical R-R 

projects, it was agreed that the typical review criteria could not be used to judge 

the project. However, due to the momentum of the project and the impression 

created by the initiative, it was decided that more effort was required to develop 

superior concept sets. The group also agreed that more objective studies and 

Scale 

Meets requirements 9 

Some improvement 3 

Minimum improvement 1 

No change 0 

Minimum negative change -1 

Some negative change -3 

Large negative change -9 
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analyses were required to understand alternative options better, and that the 

review should be repeated once further analysis had been performed. Further 

implementation of the lean PD model was decided to be continued in the future.   

The lean PD model was credited with a number of substantial contributions to 

the project. Senior engineers highlighted the detailed analysis of customer value 

to be effective for understanding gaps in the market and future opportunities. 

The methodological consideration of alternatives was very helpful in enabling 

more innovation, and the process outputs provoked some fruitful discussions. 

 

6.4 Summary 

In this chapter two case studies are presented in which the lean PD model was 

applied to live PD projects in industry. 

The two companies selected for case studies were Visteon Engineering 

Services Ltd (VES) and Rolls-Royce Plc. (R-R) The product architecture for a 

car audio head unit was selected for the case study at VES, while a helicopter 

engine was selected at R-R. An open questionnaire was used to collect data 

about the PD process for a historic case. The data collected allowed a gap-

analysis to be performed between the historic case and the methodologies 

proposed for lean PD model activities. This allowed bespoke approaches for 

implementing the lean PD model to be proposed for the two cases. The author 

participated in the implementation of the lean PD model on both cases and the 

results of each applied activity are described separately. 

The next and final chapter discusses the results presented in this chapter as 

well as the research project in general.  

 



 

177 

7 DISCUSSION AND CONCLUSIONS 

The primary aim of this research was to construct an innovative model which 

supports the implementation of lean thinking in PD. As explained in chapter 2, 

the research was qualitative, and adopted a mixed methods approach. The 

study was organised into three phases. The first phase involved the exploration 

of lean PD theory and the industrial context, relying chiefly on literature, 

observation and interviews. The second phase is where the lean PD model was 

constructed based on principles and enablers extracted from literature, findings 

from phase 1, and workshops with both industrialists and researchers. The 

author guided the application of the model to two industrial case studies in the 

final phase of the study. A car audio head unit and a helicopter engine served 

as case studies, the results for which are presented in chapter 6. In this chapter 

the research outlined in earlier chapters is discussed.  

The chapter is divided into 6 sections: 

In section ‎7.1 case study results are discussed and findings from each case 

study are extracted. This is followed by a cross-case study examination through 

which key findings are derived. Common themes and differences between the 

findings in the two cases are discussed, followed by additional key findings 

expressed by practitioners during reflective ‘lessons learnt’ meetings at the end 

of each case study. In section ‎7.2 the research presented in this thesis is 

evaluated. First the lean PD model is evaluated based on the identified 

challenges from the industrial field study in chapter 4. The research 

methodology is then evaluated retrospectively, and research limitations are 

discussed. The fulfilment of research objectives is then discussed. Key research 

contributions are highlighted in section ‎7.3. In section ‎7.4 research implications 

are drawn for practitioners interested in implementing lean PD. Suggestions for 

future research are provided in section ‎7.5. Finally, conclusions based on the 

research are presented in section ‎7.6. 
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7.1 Discussion of Research Results 

In this section the results for each case study are summarised and research 

findings are derived. A cross case study comparison is provided and key 

findings are then interpreted in light of previous research. Research insights are 

also provided throughout the section.  

7.1.1 Case Study 1 

Case study 1 was setup to support the development of a new audio head unit 

(AHU) for an in-car entertainment system. The lean PD model was applied to 

develop the design of the electronic product architecture of the AHU. The author 

attended meetings with engineers at the company site throughout the course of 

this study to guide the application. Although it was envisaged that the majority 

of lean PD model activities would be implemented in this case, 4 of the initial 18 

lean PD model activities were deemed unnecessary due to the sets being 

composed of ‘off-the-shelf’ electrical components. These components did not 

have to be designed by the project and their specifications are provided by 

suppliers so there is no need to test them individually. Eight of the remaining 14 

proposed activities were implemented, while 6 activities were not implemented. 

This meant that complete application of the lean PD model was not possible in 

case study 1. Furthermore, convergence upon an optimal design was not 

possible because a single product architecture was prematurely selected due to 

project pressures. Five out of the seven tools developed for the lean PD model 

were tested, customer value was given special attention, sets of components 

were considered as well as alternative system combinations. The case was 

resource-restricted and priority was inevitably given to business pressures over 

research objectives. Moreover, the research was not given much room to 

influence project decisions. This is likely to have been due to the risks involved, 

especially with a live project.  

A number of findings were derived from case study 1: 
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 Ample time was available for PD but very little time was allowed for 

ideation and innovation, despite being graded a potentially high 

innovation project 

 The central purpose of the product is to entertain the end user, and while 

a plethora of requirements and specifications had to be considered from 

the OEM customer, it was concluded that the most critical value 

attributes are those that could compromise the purpose; any value 

attribute that compromises user entertainment should be prioritised over 

others 

 By using the product value model, hundreds of requirements and 

specifications could be reduced to a list of 30 attributes to represent the 

product; this was considered to be an effective way of communicating 

what the product was trying to achieve (as compared to lengthy 

requirements and specification documents) 

 The PD strategy matrix can be used to evaluate system combinations 

against strategic benefits; the matrix was developed to ensure that the 

project was aligned with company strategies from the onset and 

therefore an additional use was identified 

 By associating value attributes with engineering metrics (and target 

values), alternative components could be evaluated  

 If there is no formal mapping of the design space, there may be 

ambiguity in how the sets of solutions are determined; formally mapping 

the design space is likely to lead to a more thorough approach to 

identifying concepts and convergence 

 The number of alternative system combinations was much larger than 

expected, and the probability of arriving at the best combination using the 

typical subjective approach was found to be incredibly low 

 The bill of materials costs for possible system combinations has a high 

standard deviation; analysing the cost of a large number of system 

combinations can be easily automated and can support convergence 

when cost is a criterion; where components (or perhaps subsystems) can 
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be individually quantified against other metrics or criteria, similar 

analyses could be performed 

 With a considerably large number of component (or subsystem) 

alternatives, subjective decisions may be necessary to reduce the 

number of system combinations that can be tested 

 Project milestones may force subjective evaluation and the premature 

selection of a system solution 

7.1.2 Case Study 2  

Case study 2 was setup to support the development of a turbo-shaft helicopter 

engine. The lean PD model was applied to develop the design of the engine 

concept, and focused on three key subsystems: the intake, compressor, and the 

turbine. The author attended project meetings at the company site throughout 

the course of this study to guide the application. Due to the strong 

organisational support given to the research, there was a high degree of 

influence on development activities and project decisions.  This resulted in a 

more complete application of the lean PD model. Thirteen of the 18 proposed 

activities were implemented, while five activities were not implemented. Four of 

these unapplied activities are at the end of the process, all of which are 

expected to be completed as the project progresses further. Convergence upon 

an optimal design was not possible as the final activities were not executed. A 

single engine concept was prematurely proposed due to project pressures, but 

was not approved at a second design review due to system targets not being 

met. Five out of the seven tools developed for the lean PD model were tested, 

customer value was given ample attention, subsystem sets were considered as 

well as alternative system combinations, and a good degree of convergence 

was demonstrated for the intake system. Many other tools were also employed 

to support the activities, including lean PD enablers. Although the case involved 

many company resources, there was a shortage in the number of dedicated 

project engineers. This was identified in the industrial field study to be a typical 

PD challenge: the concept phase is often under-resourced (see section ‎4.3.2). 

The project manager expressed that the project had suffered according to 



 

181 

company milestones, despite achieving a significant level of success and 

validation for the process. This fact is not disputed, however it was proposed 

from the onset that the second design review be postponed until the final 

system is converged upon. The main output for the second design review is a 

single system solution, which is typically arrived at by subjectively deselecting 

alternative subsystem options. It was intended that this approach be countered 

through the application of the lean PD model. A number of findings were 

derived from case study 2: 

 Ample time was available for PD but very little time was allowed for 

ideation and innovation, despite the intention to demonstrate new 

technologies in the project 

 Product value attributes can be structured based on their stakeholders 

when there is no direct end-user interaction with the product 

 The product value model proved very effective in combining a mass of 

information regarding customer needs and desires, benchmarking 

reports, and market studies 

 By relating a new project to process enhancement, and corporate and 

business strategies, the project benefits can be increased, the project is 

better aligned with business strategies and the project can also influence 

the strategy 

 By combining the product value model and QFD, new market 

opportunities and ideas were generated 

 Visual representations applied as a result of the research were very 

effective during design reviews, and in general when communicating 

about the project 

 The innovation classification diagram was well received by both the 

project manager and engineers; the representation helped to discuss 

design options and constraints 

 Decomposing system targets into subsystem targets for an aircraft 

engine is a very challenging and formidable task 
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 Over a hundred requirements were reduced to a list of 8 key value 

attributes, and eventually 4 system targets to represent the key project 

requirements 

 Constraints from suppliers and partnering companies can require careful 

consideration when applying SBCE 

 Due to the nature of an aircraft engine, some senior engineers asserted 

that an engine cannot be designed by first considering modules in 

isolation due to the interdependence between subsystems, and the 

effects of changes to one subsystem on another; this was disproved by 

the case study 

 The knowledge creation plan proved effective in guiding the evaluation of 

alternative intake subsystem components; schematics, limit curves and 

trade-off curves were used to characterise the options and facilitate 

convergence upon 3 alternative intake subsystems 

 A cross-functional project team can be instrumental in engaging with 

functional groups and combining design alternatives 

 The number of alternative system combinations was much larger than 

expected (as with case study 1), and the probability of arriving at the best 

combination using a typical subjective approach was concluded to be 

incredibly low; in a turbo-shaft engine there are thousands of 

components and therefore the number of possible systems is actually 

much higher 

 All system combinations may be possible, and even easy to integrate, 

thus concept intersection may not help in filtering subsystem sets for 

every application; due to the limited testing of different system 

combinations in aerospace products, it is likely that the project team did 

not have extensive knowledge regarding integration and thus could not 

comment on the integration of potential systems  

 With a considerably large number of subsystem alternatives, subjective 

decisions may be necessary to reduce the number of system 

combinations that can be tested 
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 Project milestones may force subjective evaluation and the premature 

selection of a system solution 

 If system targets (or design requirements) are difficult to achieve using 

available technology, a set-based approach can help to determine 

whether it is possible to achieve them or not 

 SBCE is in line with the systems engineering approach, but is also 

complementary, as it facilitates the progressive evolution of requirements 

and the development of multiple solutions 

7.1.3 Key findings  

7.1.3.1 Common Findings in Both Case Studies 

As both case studies progressed there were a number of common themes 

identified. Company representatives began to talk about the lean PD model as 

though it is the right way to develop products. Furthermore, the initial debate 

around ‘what types of projects the model was relevant to’ changed to ‘whether 

the model was relevant to all projects’. This is similar to a finding by Raudberget 

(2010) based on some industrial trials of SBCE.  

There was a positive response to all of the tools developed to support the lean 

PD model. The focus on visual representations to support communication and 

PD decisions was supported by project leaders and engineers alike.  

Both companies develop design solutions based on requirements; however 

‘requirements’ is used as a catch-all term for different pieces of information. By 

applying the lean PD model, different ‘requirements’ were distinguished by 

using terms such as value attributes, system/subsystem targets, and design 

criteria. The terminology was met with some initial discomfort, but there was 

also considerable appreciation for multiple terms and better articulation in 

general. 

Although both of the cases started off with the potential to incorporate a high 

degree of innovation, very little time was allowed for ideation and innovation. 

The innovation in both projects can be described as merely incremental 

enhancements to previous designs. One of the challenges put forward by 
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practitioners to this stance was that live business projects were not where 

ideation and innovation should take place. However, it is through projects that 

innovative products are developed, and ideas and technologies are actualised. 

Time is therefore required on projects to consider new ways of solving 

engineering problems. Alternative solutions were considered during both cases, 

but the actual mapping of the design space did not appear to be formal or 

thorough. 

The consideration of solution sets resulted in a large number of system 

combinations. As a result it was concluded that some subjective decisions may 

be necessary in order to arrive at a feasible number of system combinations 

that can be further explored. This finding must be appended with a caution, as it 

was also found that rushed subjective decisions are likely to have resulted in 

rework on both projects29. Such subjective decisions were found to be 

pressured by tight schedules and project milestones. This was one of the 

barriers to SBCE suggested in previous research (Raudberget, 2010). Another 

factor that must be mentioned here is the lack of commitment to a convergent 

approach found in both cases. Both projects rushed to get to a single system 

solution without exploring other system combinations that were deemed 

suitable. Augustine et al. (2010) report a similar finding during a case study of 

their ‘concept convergence process’. The preference for subjective decisions 

may have also been caused by the concept phase being under-resourced and a 

lack of dedicated project engineers to support the project. 

In spite of the obstacles faced during the application of the lean PD model, both 

cases experienced positive outcomes. Both companies remain keen on further 

implementation, and one of them wishes to extend the model to the rest of the 

organisation. This is similar to a finding by Raudberget (2010), who suggested 

that the usefulness of an approach may be ascertained if companies intend to 

use it for future projects. 
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 It is difficult to establish a causal link here, but design changes or changes to requirements 
were noted in both cases 
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7.1.3.2 Differences Between the Case Studies 

Some distinctions between the case studies became apparent as they 

progressed. Case study 2 was met with an exceptional level of organisational 

support, which in turn resulted in a more complete implementation of the lean 

PD model as compared to case study 1. This may have transpired due to a 

variety of factors including the synergy between the research and company 

objectives, the relevance of the lean PD model to specific projects or project 

types, organisational culture, or some other exigency to improve. 

It was found that applying the lean PD model to a product system is much more 

complex than applying it to a subsystem. Alternative design solutions are 

present at both levels, but at the system level both subsystems and 

components need to be considered. For case study 2 it was initially suggested 

that components not be considered until a general system solution is decided, 

however as the case progressed it was necessary to consider components. At 

the component level sets may be larger, which inevitably increases the number 

of system combinations manifold as compared to subsystem alternatives. 

The application of the lean PD model was simpler in case study 1 due to the 

modular design of the product architecture and the standard interfaces present. 

In case study 2 a different approach was required due to the ‘functional-build’30 

approach adopted in the aerospace industry. 

7.1.3.3 Other Key Findings 

A number of additional findings have been included in this section. These have 

been formulated based on ‘lessons learnt’ discussions at the end of each case 

study.  

There was a consensus between case study 2 project leaders that the lean PD 

model is in line with systems engineering. One systems engineering expert at 

the company highlighted that the model complements systems engineering as it 

facilitates the progressive evolution of requirements and the simultaneous 
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 Functional build involves focusing on the completed assembly of a product rather than the 
individual parts 
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development of multiple solutions. Prior research suggested that lean principles, 

practices and tools enhances the delivery of value and reduction of waste in 

systems engineering (Oppenheim, 2008; Oppenheim et al., 2010). 

In case study 2, standard company design reviews (or quality gates) were held 

in order to assess project progress. Although a shift in the criteria was deemed 

appropriate, and the timings of reviews required careful planning, the case 

proved that standard reviews could be incorporated into an application of the 

lean PD model.  

Constraints require careful consideration in the application of the lean PD 

model. Moreover, the types of constraints that need to be considered vary 

between industries, projects, and tiers of the supply chain. Constraints may be 

imposed by end users, OEM customers, partnering companies, suppliers, 

governments, institutions, as well as internal company subdivisions. This point 

was raised by Sobek et al. (1999) in their categorisation of principles for SBCE. 

The system targets (or design requirements) in case study 2 were expected to 

be difficult to achieve using the available technology. By employing a set-based 

approach, the project team was able to swiftly determine whether it was 

possible to achieve them or not. This is quite different to the finding by 

Madhavan et al. (2008) that there is a lower risk of not finding a suitable solution 

with SBCE. Through this case study it was demonstrated that no suitable 

solution was found for a particularly challenging set of requirements.  

Another key finding was that cross-functional teams may be essential for 

implementing the lean PD model. This is especially true in a large organisation 

where information needs to be quickly gathered from numerous functional and 

organisational groups. Dedicated multifunctional teams were put forward as 

enablers for lean PD by Ward et al. (1995) and Morgan and Liker (2006). 

In both cases it was found that quality function deployment (QFD) is a valuable 

tool for the lean PD model. Sobek et al. (1999) suggested that Toyota rarely use 

QFD in projects based on their case study of TPDS. This may be because not 

all projects require the structured extrapolation of value attributes to system 
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functions and targets, particularly in the case of modifications to modular 

systems. QFD is likely to be essential in new innovative projects where 

functions and system targets are obscure.  

Some company representatives were sceptical with regards to considering 

more alternatives and the impact on project workload. Both cases demonstrated 

that this was not the case as no substantial increase was noticed prior to 

system testing. As multiple system combinations would require more testing, 

extra investment is likely. However these additional development costs are 

likely to be recovered by a reduction in late design changes, rework, and 

warranty costs as manifested in the industrial trials by Raudberget et al. (2010). 

Through the case studies it was found that getting projects to consider more 

design alternatives is not difficult, but to prevent them from making rushed 

subjective decisions and focus them on gradual convergence based on 

objective analysis can be immense. One possible reason for this may be that 

there is no incentive to gradually converge on an optimal solution, and it may 

not be the culture to do so.  The same may be said about considering 

alternatives in the first place and also knowledge reuse, as mentioned by 

Raudberget (2010). In spite of this, participants in the study found that an 

objective and knowledge-based convergent approach was superior and likely to 

be less risky as compared to alternative subjective approaches, although the 

latter may be faster. A similar finding was made by Augustine et al. (2010). 

It was concluded based on the case studies that an organisational 

transformation based on the lean PD model would require further engagement 

with senior managers as well as a long term commitment to the approach. 

Careful consideration of social, cultural, and political factors is also required in 

order to prevent resistance. Similar findings were suggested by Liker and 

Morgan (2011). Another key consideration is language and terminology. 

Unusual terminology was used in the lean PD model to differentiate activities 

from standard practices. This may require some finessing in the case of 

organisation-wide roll out.  
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7.2 Research Evaluation 

In this section a reflective review of the research is provided. The lean PD 

model is scrutinised against industry challenges to assess its relevance, and 

evaluated as a design theory. The research methodology is then reviewed; 

strengths and limitations are identified and discussed. Fulfilment of the research 

objectives is also discussed. 

7.2.1 The Lean Product Development Model 

Through the industrial field study reported in chapter 4, a number of challenges 

were found to be present in industry. The challenges were reduced to 12 over-

arching categories (refer to section ‎4.3.2). The challenge categories have been 

used to evaluate the relevance of the lean PD model. A summary of the 

evaluation is provided in  Table ‎7.1 followed by a discussion of each category.  

Table ‎7.1 The impact of the lean PD model on challenges faced by industry 

Challenge category 
Challenges addressed by the lean PD model 

Expected Observed 

1. Design changes 
 

 2. Customer value 

 

 

3. Design specification 

 

 

4. Knowledge 

 

 

5. Process flow 

 

 

6. Communication 

 

 

7. Leadership 
 

 8. Management 
 

 9. Innovation 

 

 

10. Planning 

 

 

11. Time management 
 

 12. Process 
improvement 
obstacles 

 

 
By applying the lean PD model it is expected that design changes will be 

reduced. This effect was not observed in the case study as the after-effects of 
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the lean PD model were not studied, nor were the number of design changes 

measured. The flexibility of the model in dealing with changing requirements 

was noted. 

Customer value is given significant attention in the lean PD model. The 

methodology provides recommendations for the capture and representation of 

customer value attributes. System and subsystem targets are defined based on 

these attributes and are included in the design criteria used to evaluate design 

options. 

In the lean PD model, specification documents are not released until a final 

system solution is converged upon. The specification of the design solution is 

thus delayed. For case study 2 no specification document was created during 

the application of phases 1 – 4 of the lean PD model. 

Due to the focus on knowledge incorporated into the lean PD model, decisions 

cannot be made without the relevant knowledge being present (such as test 

results). The application of the lean PD model resulted in the amalgamation of 

knowledge and the provision of various knowledge representations which 

supported decision making. 

The lean PD model provides a logical roadmap for an engineering project. In 

case study 2 in particular, it was found that there was a high degree of obscurity 

regarding what should be done until the lean PD model was applied. The model 

does therefore enhance process flow. 

In the case studies, visual representations served as communication 

mechanisms that engineers were happy to discuss. The cross-functional team 

employed in case study 2 was vital in engaging different organisational groups. 

Furthermore, consideration of sets of alternatives was welcomed by both 

engineers and functional groups, and it stimulated positive discussions. 

The chief engineer leadership approach is key to the application of lean PD. 

This was not specifically addressed in the application of the lean PD model, but 

positive effects are expected in future applications. Although the lean PD model 

aids in managing the design process, management in general was out of scope.  
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The lean PD model urges more exploration of the design space and is 

supportive of innovation. Sets of design solutions are considered and evaluated 

based on simulations and other tests. By focusing on conceptual design the 

lean PD model induces front-loading and thus more innovation. 

The lean PD model offers a staged process composed of activities with 

methodological steps. The first phase is predominantly a planning phase, and 

positive effects were witnessed during the case study. The project classification 

matrix in particular contributes to the early planning of projects.  

The impact of the lean PD model on time and project durations was not studied. 

Application of the model may have both positive and negative consequences on 

time. Similarly the model did not address process improvement obstacles. That 

said, it is expected the sustained implementation of the model would result in 

continuous improvement of PD processes.   

Having observed positive impacts on seven categories of challenges faced by 

PD in industry, and a further two expected, it can be concluded that the lean PD 

model is very relevant to its industrial context.  

From a theoretical perspective, the lean PD model embodies the components of 

a design theory as shown in Table ‎7.2. Although a complete theory cannot be 

claimed, the fundamental components are present, and some are more mature 

than others. 
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Table ‎7.2 Design theory components of the lean PD model research (adapted 

from Gregor and Jones, 2007) 

Design theory component Description Lean PD model research 

Purpose and scope (the 

causa finalis) 

“What the system is for,” the set of 
meta-requirements or goals that 
specifies the type of artefact to 
which the theory applies and in 
conjunction also defines the 
scope, or boundaries, of the 
theory 

The lean PD model supports the 
implementation of lean thinking in 
PD; the theory is relevant to the 
development of engineering 
products; the scope and 
boundaries of the theory requires 
further study 

Constructs 

(the causa materialis) 

Representations of the entities of 
interest in the theory 

Define value; map design space; 
develop concept sets; converge 
on system; detailed design 

Principle of form and 

function 

(the causa formalis) 

The abstract “blueprint” or 
architecture that describes an 
artefact, either product or 
method/intervention. 

A model is provided to aid in the 
implementation of Toyota PD 
principles and practices during the 
conceptual design of engineering 
projects 

Artefact mutability The changes in state of the 
artefact anticipated in the theory, 
that is, what degree of artefact 
change is encompassed by the 
theory 

Suggestions for further work are 
provided and it is expected that 
applications of the lean PD model 
would differ depending on the 
context 

Testable propositions Truth statements about the design 
theory 

It is claimed that the model is 
applicable to other PD contexts; 
goals include enhancing 

innovation and reducing rework 

Justificatory knowledge The underlying knowledge or 
theory from the natural or social or 
design sciences that gives a basis 
and explanation for the design 
(kernel theories) 

The theory is developed based on 
case based research about Toyota 
PD principles and practices 

Principles of 

implementation 

(the causa efficiens) 

A description of processes for 
implementing the theory (either 

product or method) in specific 
contexts 

Strong organisational support is 
required, in addition to a facilitator 
who is familiar with Toyota PD 
practice 

Expository instantiation A physical implementation of the 
artefact that can assist in 

representing the theory both as an 
expository device and for 
purposes of testing 

Case study examples are provided 
with detailed descriptions of 
interventions  

7.2.2 The Adopted Research Methodology 

A systematic literature review was conducted in order to identify and analyse 

the published body of knowledge on the subject of lean PD. A number of 

research gaps were identified including the absence of a framework of lean PD 

enablers, and methodological guidelines for the application of lean thinking in 

PD. As a result, this study focused on both theoretical and methodological 

development to support PD practice. By combining theoretical and contextual 

analysis, the lean PD model was formulated. The model represents a staged 
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process for implementing Toyota PD principles and practices during the 

conceptual design of engineering projects. The model focuses on conceptual 

design due to the results from analysis of the literature and findings from an 

industrial field study. Two case studies were conducted to test the lean PD 

model, yielding encouraging results. The research methodology adopted had 

several merits which will be mentioned in this section.  

The research presented in this thesis was established upon a hybrid 

epistemological standpoint, combining social constructivism and pragmatism. 

The contribution to knowledge is thus a result of interaction between social 

phenomena and lessons from the executed interventions. This standpoint 

ensured a ‘real world’ focus, as opposed to an artificial or purely theoretical 

study. Developing a comprehensive understanding of the research setting was 

therefore a prerequisite to constructing the lean PD model. Five industrial 

companies were studied from three engineering sectors in order to understand 

current industry practices and challenges faced in PD. Company 

representatives and PD experts were involved throughout the research project. 

This prolonged involvement with multiple organisations meant that the research 

benefited through suggestions and feedback from many practitioners. 

Moreover, the research methodology itself was communicated to company 

representatives and was enhanced due to their feedback.  

The aim of the research and research objectives were assigned from the onset, 

however, the adopted methodology allowed a fitting degree of flexibility. This 

allowed findings from the literature review and industrial field study to influence 

the research direction. The flexible design pervaded much of the research, 

including the interview strategy during the industrial field study and the case 

studies.    

MS PowerPoint presentations and reports were used throughout the project to 

impart analysis of data collected for member checking. Researchers and 

practitioners provided feedback and necessary corrections. Misrepresentation 

and misinterpretation were both reduced through this measure.  
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Multiple methods were used to ensure research quality and triangulation 

throughout the research. The main research methods employed were literature 

review, observations, interviews, workshops and case studies. Data was 

collected via questionnaires, interview transcripts, meeting and workshop notes, 

coding matrices, and other soft documentation. Additional approaches used to 

reduce bias and ensure trustworthiness were peer debriefing and support, 

negative case analysis, maintaining an audit trail of research activities and 

research dissemination. Various meetings and workshops were held where 

research results were presented, and feedback was received.  

As the research used a qualitative perspective, comparative analysis was 

employed throughout. This was true for the majority of the research conducted, 

including the two case studies. Two different cases were selected to maximise 

lessons from the implementation of the lean PD model, while also allowing for 

cross-case study examination. The case studies resulted in a rich 

understanding of the effects of applying the lean PD model.  

All in all, the defined research methodology allowed a detailed study of both 

theory and practice and the development and testing of the lean PD model. 

7.2.3 Research Limitations 

Research limitations were identified in three areas: (1) the research design; (2) 

quality of results; and (3) the lean PD model itself.  

The research design was qualitative, and therefore did not address the 

statistical significance of results. This issue permeated through the research, 

and as a result little metric-based analysis was possible. Had the research 

adopted a quantitative approach, it is likely that methods such as sampled 

surveys would have been present in the research. Adopting a quantitative 

approach however, may have jeopardised the richness of data collected 

regarding both the context and case studies.  

For the case studies, an action research approach was adopted which meant 

that the author’s preconceived ideas, and opinions could have influenced the 

results. Researcher bias during action research was somewhat mitigated by 
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involving multiple researchers and practitioners in the case studies. Action 

research is indeed a demanding research approach, and further cases are likely 

to have compromised the richness and reliability of results. Likewise, a limited 

number of case studies can be the basis for generalisation where the cases are 

central to theoretical development (Denzin et al., 2011). 

The lean PD model focused on conceptual design, and hardly addressed 

detailed design or any further activities in PD. This was decided upon based on 

the research results. The focus on conceptual design was due to findings from 

the literature review and industrial field study. This decision helped to focus the 

research and ensure richness of data.  

The usage of multiple methods for triangulation is very important in qualitative 

research. Due to the nature of qualitative research, the reliability of results and 

research validity must be given special attention, as analysis tends to be 

subjective and there is plenty of room for both researcher and participant bias. 

For example, interview results from the industrial field study were subject to bias 

due to participant judgements and opinions. There were some cases where 

inconsistencies existed between participant answers and what the researcher 

believed to be the case. As multiple interviews were conducted in the 

companies, incorrect beliefs and judgements became apparent during 

comparative analysis of results. In a few instances discrepancies were noticed 

by the author and results became clear by member checking and other 

triangulation methods.  

During the case studies, some participants appeared to be a bit unwelcoming 

and resisted the research. The lack of support from some participants is 

believed to have had some affect in the case studies, but it is not expected that 

the results were compromised in any way. Research quality could have been 

improved in some areas, such as the unstructured approach toward 

observation. Although there may have been some benefits to the informal 

approach adopted, upon reflection it was felt that a more structured approach 

may have been more suitable. 
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7.2.4 Fulfilment of the Research Aim and Objectives 

The primary aim of this research was to construct an innovative model which 

supports the implementation of lean thinking in PD. The resulting lean PD 

model provides a staged process that enables lean thinking to be applied during 

the conceptual phase of engineering projects. The lean PD model is presented 

in Figure ‎5.7. Five research objectives were composed to help guide the study. 

These objectives will be examined in this section. 

The first objective was to review lean PD approaches and examine the current 

state of literature on the subject of lean PD. A systematic review was carried 

out, analysing research trends, representations, enablers, and case studies 

conducted. This allowed the researcher to gain a specialist understanding of the 

subject and identify research gaps. Research gaps included the need to classify 

lean PD enablers, and the absence of methodological guidance for the 

implementation of lean PD in engineering projects. These gaps were addressed 

in the research conducted. 

The second objective was to explore whether or not lean PD has a presence in 

industry and identify current PD challenges faced. An industrial field study was 

conducted to gather data from practitioners primarily through semi-structured 

interviews. The results presented indicate clearly that lean PD principles and 

practices have a presence in industry. Some of the lean PD enablers described 

in the literature, such as SBCE were not found to be present in industry. A 

variety of challenges faced by PD were identified and organised under 12 over-

arching categories. The most prominent challenge appeared to be design 

rework resulting from poor conceptual decisions. This finding helped to steer the 

research to focus on conceptual design.    

The third objective was to extract lean PD principles and enablers from 

literature and define a framework that combines them. By analysing previous 

research, core enablers, methods, and tools were categorised and represented 

in the form of a framework for lean PD enablers (Table ‎5.1).  
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The fourth objective was to develop a process model through which lean 

thinking can be implemented in PD. Based on the critical analysis of lean PD 

and SBCE in particular; a process model for conceptual design has been 

developed. This is referred to as the lean PD model. The model provides a 

workable flow of activities for a PD project that is principle-based and can also 

be supported by company practices. The process may also be customised for 

each company in which it is implemented. 

The fifth and final objective was to test the model through industrial application. 

Two real engineering projects were used as cases to test the lean PD model. 

Cases included a helicopter engine, and the audio head unit for an in-car 

entertainment system. An action research approach was adopted to support the 

implementation of the lean PD model in the two cases, which resulted in a 

number of key findings. Both cases experienced positive results, including the 

enhanced consideration of design alternatives and innovation. Both companies 

remain keen on further implementation, and one of the companies wishes to 

extend the model to the rest of the organisation. It was concluded based on the 

case studies that the model addresses 9 of the 12 categories of challenges 

faced by PD in industry, and thus is very relevant to the context.  

7.3 Key Research Contributions 

The research presented in this thesis contributes to human knowledge in many 

ways. It is believed based on the author’s awareness of literature related to lean 

PD (and the systematic review carried out), that four key contributions have 

been made.  

1. A framework which classifies lean PD enablers has been put forward; in 

prior research the enablers of lean PD were scattered across various 

publications  

2. A generic lean PD model was developed based on Toyota PD principles 

and practices; the model supports the implementation of lean thinking by 

providing a workable flow of activities for the conceptual design of an 

engineering project 
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3. A number of novel tools have been developed and implemented to 

support the lean PD model; these include: a project classification matrix, 

innovation classification diagrams, the product value model, a PD 

strategy matrix, the knowledge creation plan, and the concept 

intersection matrix 

4. Challenges that are currently faced by PD in industry were captured and 

organised under 12 over-arching categories; the challenge categories 

have been used to review the relevance of the lean PD model but can be 

extended to other research endeavours 

Additional contributions to knowledge include the following: 

 Approaches towards lean PD have been categorised and reviewed; the 

author argues the superiority of focusing on TPDS as the foundation for 

lean PD 

 Through an industrial field study the presence of lean PD principles and 

practices was ascertained; the need for generic research-based methods 

to support the implementation of lean PD enablers, as well as integrated 

lean PD approaches was also uncovered  

 The lean PD model has been tested on two live case study projects; the 

cases provide rich qualitative descriptions and analysis which is likely to 

benefit future applications of lean PD in industry; this case-based 

research shows that Toyota principles and practices when combined can 

have positive results on the local environment 

7.4 Implications for Practitioners 

Researchers and practitioners have approached lean PD in different ways. 

None of the approaches are wrong. But focusing on TPDS and taking a 

comprehensive ‘systems’ approach may be more suitable for the development 

of a lean PD theory and perhaps more beneficial to industry. The lean PD 

model facilitates the combination of Toyota PD principles and practices with 

contemporary engineering best practice. The implementation of individual TPDS 

tools and methods is likely to have a positive impact on engineering practice; 

however it is the philosophy and principles of Toyota that led to the creation of 
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these tools and methods (Ohno, 1988; Liker, 2004). Furthermore the philosophy 

and principles attributed to Toyota are based on the progress of engineering 

throughout history; from the ancient civilisations of Egypt, China, Greece, Spain, 

and India, to the industrial revolutions in the UK, Western Europe, the USA, 

Japan, and later the rest of the world.  

Lean PD as a theory must go beyond TPDS if it is to be successful in the future. 

The lean PD model provides a staged process that enables lean thinking to be 

applied during the conceptual phase of engineering projects. The model can be 

used to guide a project, as was achieved in two cases presented in chapter 6. 

One of the companies that implemented the lean PD model intends to extend it 

to the wider organisation. This symbolises the success of the model in practice, 

and companies are welcome to test the model further. 

Based on this study, a number of lessons have been learnt which would benefit 

future implementation of the lean PD model. Firstly, organisational support may 

be key for successful implementation on projects, including the backing from 

senior management. Project leaders must be committed to the convergent 

approach so that sufficient resources and time are allocated for ideation, 

innovation, and analysing and testing alternative design solutions. This may 

also require some incentives so that engineers do not backtrack to point-based 

approaches. Rushed subjective decisions should be avoided, but a balance 

between subjective and objective decisions is acceptable.  

Companies wishing to trial the lean PD model should experiment with a number 

of flexible projects before applying the model on projects with tight schedules. 

Implementing the model on modular designs is simpler than functional builds, 

but complex applications are not unsuitable. As the understanding of the 

process matures the model can be tested on more demanding projects. 

Standard quality gates or design reviews may be used to assess project 

progress but some shift in criteria and timing will probably be required. 

Dedicated cross-functional project teams can be instrumental in implementation 

of the lean PD model, as was noted in this study.  



 

199 

7.5 Suggestions for Future Research 

Based on the findings from this study, a number of suggestions are put forward 

for further research. 

First of all, it is recommended that the lean PD model is tested through further 

implementation in industrial cases through action research. The lean PD model 

is expected to produce various benefits and such research will help to refine the 

model further.  

Secondly, research is required to extend the application of lean thinking to 

detailed design and the rest of the product lifecycle. In this research conceptual 

design was the focus, and it is suggested that future research should focus on 

specific areas of the product lifecycle while keeping other engineering activities 

and disciplines in mind.  

Thirdly, research undertaken to combine lean PD and lean production (or 

manufacturing) is highly recommended. The lean PD model does address this 

to some extent, but the combination with lean production is expected to be 

synergistic. 

A fourth area of research that requires attention is obliging ideation, innovation, 

analysing and testing alternatives, and convergence. The motivation of 

designers and engineers, controlling projects, communication between design 

teams and participants, and leadership towards correct implementation of 

SBCE are elements for further study. A framework for balancing between 

subjective and objective analysis and decisions would also prove helpful to this 

process. 

A number of research gaps were identified during the literature review, but were 

not specifically addressed in this research. These include: the interaction 

between lean PD and other PD approaches (e.g. systems engineering), the 

suitability and impact of TPDS enablers, and cultural implications of the various 

Toyota PD principles and practices. All of these gaps are suggested for further 

research. 
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7.6 Conclusions 

The intellectual proposition in this study was that engineering product 

development (PD) could benefit from the application of lean thinking. This claim 

has been made by a number of academics, but prior research focuses on 

principles and rationale, as opposed to methodological development. In order to 

substantiate this claim methodological research was required to determine how 

lean thinking should be applied to PD. A model to support the application of 

lean thinking in PD has been constructed and tested in this research. The main 

conclusions from this research are: 

1. Lean PD has been approached in different ways, however, lean PD 

should refer to PD theory based on Toyota PD principles and practices 

2. Conceptual design appears to be where Toyota PD is unique through the 

set-based concurrent engineering (SBCE) process 

3. The five core enablers of lean PD are the process of SBCE, chief 

engineering technical leadership, value-focused planning and 

development, a knowledge-based environment, and a continuous 

improvement culture  

4. For PD models to be effective they should be simple, flexible, enabling, 

and not coercive  

5. Lean PD principles and practices have a presence in industry, however 

some lean PD enablers, such as SBCE were not found to be present as 

described in the literature 

6. By implementing the lean PD model, design rework is expected to be 

reduced 

7. Practitioners were initially sceptical about lean PD principles and 

practices, however the lean PD model was effective in communicating 

and facilitating a different approach  

8. The application of lean thinking in the conceptual phase of PD addressed 

various industrial challenges including customer value, communication, 

and innovation 
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The conclusions presented above are based on research results presented in 

chapters 3, 4, 5, and 6. Conclusions 4-8 are reflective of the specific companies 

involved in the research; however it is likely that they are extendable to other 

engineering applications as well.  

Although the focus of this research has been on engineering and in particular 

PD, the theory could benefit the development of systems in general. It is hoped 

that this study will contribute to future research and in turn benefit the world. 

 

 

 





 

203 

REFERENCES 

Abdalla, H. S. (1999), "Concurrent engineering for global manufacturing", 
International Journal of Production Economics, vol. 60, pp. 251-260.  

Anand, G. and Kodali, R. (2008), "Development of a Conceptual Framework for 
Lean New Product Development", International Journal of Product 
Development, vol. 6, no. 2, pp. 190-224.  

Arnold, U. (2000), "New dimensions of outsourcing: a combination of 
transaction cost economics and the core competencies concept", European 
Journal of Purchasing & Supply Management, vol. 6, no. 1, pp. 23-29.  

Augustine, M., Yadav, O. P., Jain, R. and Rathore, A. P. S. (2010), "Concept 
convergence process: A framework for improving product concepts", 
Computers & Industrial Engineering, vol. 59, no. 3, pp. 367-377.  

Avigad, G. and Moshaiov, A. (2010), "Set-based concept selection in multi-
objective problems involving delayed decisions", Journal of Engineering 
Design, vol. 21, no. 6, pp. 619-646.  

Bacon, G., Beckman, S., Mowery, D. and Wilson, E. (1994), "Managing product 
definition in high-technology industries: a pilot study", California management 
review, vol. 36, no. 3, pp. 32-56.  

Baines, T., Lightfoot, H., Williams, G. M. and Greenough, R. (2006), "State-of-
the-art in lean design engineering: a literature review on white collar lean", 
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of 
Engineering Manufacture, vol. 220, no. 9, pp. 1539-1547.  

Baines, T. S., Lightfoot, H. W., Evans, S., Neely, A., Greenough, R., Peppard, 
J., Roy, R., Shehab, E., Braganza, A. and Tiwari, A. (2007), "State-of-the-art 
in product-service systems", Proceedings of the Institution of Mechanical 
Engineers, Part B: Journal of Engineering Manufacture, vol. 221, no. 10, pp. 
1543-1552.  

Baines, T., Williams, G., Lightfoot, H. and Evans, S. (2007), "Beyond theory: an 
examination of lean new product introduction practices in the UK", 
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of 
Engineering Manufacture, vol. 221, no. 11, pp. 1593-1600.  

Ballard, G. (2000), "Positive vs negative iteration in design", Proceedings Eighth 
Annual Conference of the International Group for Lean Construction, IGLC-6, 
Brighton, UK, pp. 17-25.  



 

204 

Beauregard, Y., Bhuiyan, N. and Thomson, V. (2011), "Post-Certification 
Engineering Taxonomy and Task Value Optimization in the Aerospace 
Industry.", Engineering Management Journal, vol. 23, no. 1, pp. 86-100.  

Brethauer, D. M. (2002), New product development and delivery: ensuring 
successful products through integrated process management, Amacom 
Books, New York.  

Browning, T. R. (2003), "On customer value and improvement in product 
development processes", Systems Engineering, vol. 6, no. 1, pp. 49-61.  

Bryman, A. (2006), "Integrating quantitative and qualitative research: how is it 
done?", Qualitative research, vol. 6, no. 1, pp. 97-113.  

Buede, D. (2009), The Engineering Design of Systems: Models and Methods, 
2nd ed, Wiley, New Jersey.  

Buhl, H. R. (1960), Creative engineering design, 1st ed, Iowa State University 
Press, Ames, Iowa.  

B y k zkan, G., Dereli, T. and Baykaso lu, A. (200 ),  A survey on the 
methods and tools of concurrent new product development and agile 
manufacturing", Journal of Intelligent Manufacturing, vol. 15, no. 6, pp. 731-
751.  

Carlos, S., Madhavan, K., Gupta, G., Keese, D., Maheshwaraa, U. and 
Seepersad, C. (2006), "A Flexibility-Based Approach to Collaboration in 
Multiscale Design", 11th AIAA/ISSMO Multidisciplinary Analysis and 
Optimization Conference, Portsmouth, VA. AIAA-2006-7063.  

Clark, K. B. and Fujimoto, T. (1991), Product development performance: 
Strategy, organization, and management in the world auto industry, 1st ed, 
Harvard Business Press, Watertown, MA.  

Cohen, L., Manion, L., Morrison, K. and Morrison, K. R. B. (2007), Research 
methods in education, 6th ed, Psychology Press, New York.  

Cooper, R. G. and Edgett, S. J. (2005), Lean, Rapid, and Profitable New 
Product Development, Product development institute, Michigan.  

Cooper, R. G., Edgett, S. J. and Kleinschmidt, E. J. (2002), "Optimizing the 
Stage-Gate Process: What Best-practice Companies Do", Research-
Technology Management, vol. 45, no. 5, pp. 21-27.  

Cooper, R. G. and Kleinschmidt, E. J. (1995), "Benchmarking the firm's critical 
success factors in new product development", Journal of Product Innovation 
Management, vol. 12, no. 5, pp. 374-391.  



 

205 

Cusumano, M. A. (1994), "The Limits of" Lean”, Sloan management review, vol. 
35, pp. 27-27.  

Cusumano, M. A. and Nobeoka, K. (1998), Thinking beyond lean, Free Press, 
New York.  

Dahan, E. and Mendelson, H. (1998), "Optimal parallel and sequential 
prototyping in product design", Unpublished Manuscript, MIT, MA.  

De Brentani, U., Kleinschmidt, E. J. and Salomo, S. (2010), "Success in Global 
New Product Development: Impact of Strategy and the Behavioral 
Environment of the Firm", Journal of Product Innovation Management, vol. 
27, no. 2, pp. 143-160.  

Denzin, N. K., Lincoln, Y. S. and Flyvbjerg, B. (2011), The SAGE handbook of 
qualitative research, 4th ed, Sage Publications, Inc, Thousand Oaks, CA.  

Duverlie, P. and Castelain, J. (1999), "Cost estimation during design step: 
parametric method versus case based reasoning method", The international 
journal of advanced manufacturing technology, vol. 15, no. 12, pp. 895-906.  

Eppinger, S. D., Whitney, D. E., Smith, R. P. and Gebala, D. A. (1994), "A 
model-based method for organizing tasks in product development", Research 
in Engineering Design, vol. 6, no. 1, pp. 1-13.  

Finger, S. and Dixon, J. R. (1989), "A review of research in mechanical 
engineering design. Part I: Descriptive, prescriptive, and computer-based 
models of design processes", Research in engineering design, vol. 1, no. 1, 
pp. 51-67.  

Fiore, C. (2003), Lean strategies for product development: achieving 
breakthrough performance in bringing products to market, American Society 
for Quality, Quality Press, Milwaukee, Wisconsin.  

Ford, D. N. and Sobek, D. (2003), "Modeling real options to switch among 
alternatives in product development", Proceedings of the 21st System 
Dynamics Conference, pp. 1-15.  

Gautam, N. and Singh, N. (2008), "Lean product development: Maximizing the 
customer perceived value through design change (redesign)", International 
Journal of Production Economics, vol. 114, no. 1, pp. 313-332.  

Gregor, S. and Jones, D. (2007), "The anatomy of a design theory", Journal of 
the Association for Information Systems, vol. 8, no. 5, pp. 312-335.  

Haque, B. and James-Moore, M. (2004), "Applying lean thinking to new product 
introduction", Journal of Engineering Design, vol. 15, no. 1, pp. 1-31.  



 

206 

Hart, S. (1996), New product development: a reader, The Dryden Press, 
London.  

Hätönen, J. and Eriksson, T. (2009), "30 years of research and practice of 
outsourcing-Exploring the past and anticipating the future", Journal of 
International Management, vol. 15, no. 2, pp. 142-155.  

Hines, P., Francis, M. and Found, P. (2006), "Towards lean products life cycle 
management", Journal of Manufacturing Technology Management, vol. 17, 
no. 7, pp. 866–887.  

Hines, P. and Packham, J. (2008), "Implementing lean new product 
development", Proceedings of the 2008 Industrial Engineering Research 
Conference, pp. 1462-1468.  

Holweg, M. (2007), "The genealogy of lean production", Journal of Operations 
Management, vol. 25, no. 2, pp. 420-437.  

Hood, J. C. (2006), "Teaching against the text: The case of qualitative 
methods", Teaching Sociology, vol. 34, no. 3, pp. 207-223.  

Huthwaite, B. (2004), The lean design solution: a practical guide to streamlining 
product design and development, 2nd ed, Institute for Lean Innovation, 
Mackinac Island.  

Iansiti, M. (1995), "Shooting the rapids: Managing product development in 
turbulent environments", California management review, vol. 38, pp. 37-58.  

Inoue, M., Nahm, Y. E., Okawa, S. and Ishikawa, H. (2010), "Design support 
system by combination of 3D-CAD and CAE with preference set-based 
design method", Concurrent Engineering, vol. 18, no. 1, pp. 41-53.  

Isaksen, S. G. and Treffinger, D. J. (1985), Creative problem solving, Bearly 
Ltd, Buffalo, New York.  

Kapurch, S. J. (2008), NASA Systems Engineering Handbook, 2nd ed, National 
Aeronautics & Space Administration (NASA), Hanover, Maryland, USA.  

Karlsson, C. and Ahlstrom, P. (1996), "The difficult path to lean product 
development", Journal of Product Innovation Management, vol. 13, no. 4, pp. 
283-295.  

Kennedy, M. N. (2003), Product development for the lean enterprise: why 
Toyota's system is four times more productive and how you can implement it, 
Oaklea Press, Richmond, Vancouver.  



 

207 

Kennedy, M., Harmon, K. and Minnock (2008), Ready, set, dominate : 
implement Toyota's set-based learning for developing products and nobody 
can catch you, Oaklea Press, Richmond, Vancouver.  

Kerga, E. T., Blázquez, A. and Khan, M. S. (2012), "Advanced process planning 
in lean product and process development", 18th International ICE 
Conference on Engineering, Technology and Innovation, 18-20 June, 
Munich, pp. 1-12.  

Khan, M. S., Al-Ashaab, A., Shehab, E., Haque, B., Ewers, P., Sorli, M. and 
Sopelana, A. (2011), "Towards lean product and process development", 
International Journal of Computer-Integrated Manufacture, DOI:    
10.1080/0951192X.2011.608723.  

Koen, P., Ajamian, G., Burkart, R., Clamen, A., Davidson, J., D'Amore, R., 
Elkins, C., Herald, K., Incorvia, M. and Johnson, A. (2001), "Providing clarity 
and a common language to the" fuzzy front end”, Research-Technology 
Management, vol. 44, no. 2, pp. 46-55.  

Kotnour, T. and Landaeta, R. (2004), "Writing reflective case studies for the 
Engineering Management Journal (EMJ)", Proceedings of the 25th Annual 
Meeting of the American Society for Engineering Management, October 20-
23, 2004.  

Krafcik, J. F. (1988), "Triumph of the lean production system", Sloan 
management review, vol. 30, no. 1, pp. 41-52.  

Krishnan, V. and Ulrich, K. T. (2001), "Product development decisions: A review 
of the literature", Management Science, vol. 47, no. 1, pp. 1-21.  

Kumar, P. S. S., Balasubramanian, S. and Suresh, R. (2009), "Optimization of 
Lean New Product Development process using Advanced Dual Stage 
Performance Phase method", International Journal of Recent Trends in 
Engineering, vol. 1, no. 5, pp. 71-76.  

Kumar, R. (2010), Research methodology: A step-by-step guide for beginners, 
3rd ed, Sage Publications Ltd, London.  

León, H. C. and Farris, J. A. (2011), "Lean product development research: 
current state and future directions", Engineering Management Journal, vol. 
23, no. 1, pp. 29-51.  

Letens, G., Farris, J. A. and van Aken, E. M. (2011), "A Multilevel Framework 
for Lean Product Development System Design", Engineering Management 
Journal, vol. 23, no. 1, pp. 69.  

Liker, J. K. (2004), The Toyota way: 14 management principles from the world's 
greatest manufacturer, 1st ed, McGraw-Hill, New York.  



 

208 

Liker, J. K. and Morgan, J. (2011), "Lean Product Development as a System: A 
Case Study of Body and Stamping Development at Ford", Engineering 
Management Journal, vol. 23, no. 1, pp. 16.  

Liker, J. K., Sobek, D. K., Ward, A. C. and Cristiano, J. J. (1996), "Involving 
suppliers in product development in the United States and Japan: Evidence 
for set-based concurrent engineering", IEEE Transactions on Engineering 
Management, vol. 43, no. 2, pp. 165-178.  

Madhavan, K., Shahan, D., Seepersad, C. C., Hlavinka, D. A. and Benson, W. 
(2008), "An Industrial Trial of a Set-Based Approach to Collaborative 
Design", Proceedings of the ASME IDETC/CIE Advances in Design 
Automation Conference, New York, pp737-747.  

Mascitelli, R. (2006), The lean product development guidebook: everything your 
design team needs to improve efficiency and slash time-to-market, 
Technology Perspectives, Northridge, California.  

Maxwell, J. A. (1992), "Understanding and validity in qualitative research", 
Harvard educational review, vol. 62, no. 3, pp. 279-301.  

McManus, H. L., Haggerty, A. and Murman, E. (2005), "Lean engineering: doing 
the right thing right", Proceedings of the 1st International Conference on 
Innovation and Integration in Aerospace Sciences, Queen’s University 
Belfast, Northern Ireland, UK, pp 1-10.  

Meyer, M. H. (2008), "PERSPECTIVE: How Honda Innovates*", Journal of 
Product Innovation Management, vol. 25, no. 3, pp. 261-271.  

Miles, M. B. and Huberman, A. M. (1994), Qualitative data analysis: An 
expanded sourcebook, SAGE publications, Inc, London.  

Molina, A., Aca, J. and Wright, P. (2005), "Global collaborative engineering 
environment for integrated product development", International Journal of 
Computer Integrated Manufacturing, vol. 18, no. 8, pp. 635-651.  

Moreno-Grandas, D. P., Hernandez-Luna, A. A. and Wood, K. L. (2010), 
"Integrating Preference and Possibility to Manage Uncertainty in Lean 
Design", Proceedings of the IEE Annual Conference and Expo 2010, 5-9 
June, Cancun QR, México, .  

Morgan, J. M. and Liker, J. K. (2006), The Toyota product development system: 
integrating people, process, and technology, Productivity Press, New York.  

Murman, E., Rebentisch, E. and Walton, M. (2000), "Challenges in the better, 
faster, cheaper era of aeronautical design, engineering and manufacturing", 
Lean Aerospace Initiative, unpublished paper.  



 

209 

Mynott, C. (2000), Lean Product Development: the manager's guide to 
organising, running and controlling the complete business process of 
developing products, Westfield Publishing, California.  

Nahm, Y. E. and Ishikawa, H. (2005), "Representing and aggregating 
engineering quantities with preference structure for set-based concurrent 
engineering", Concurrent Engineering, vol. 13, no. 2, pp. 123-133.  

Nahm, Y. E. and Ishikawa, H. (2006), "A new 3D-CAD system for set-based 
parametric design", The International Journal of Advanced Manufacturing 
Technology, vol. 29, no. 1, pp. 137-150.  

Nepal, B. P., Yadav, O. P. and Solanki, R. (2011), "Improving the NPD Process 
by Applying Lean Principles: A Case Study", Engineering Management 
Journal, vol. 23, no. 1, pp. 52-68.  

Ohno, T. (1988), Toyota production system: beyond large-scale production, 
Productivity Press, Cambridge, Massachusetts.  

Oosterwal, D. P. (2010), The Lean Machine: How Harley-Davidson Drove Top-
Line Growth and Profitability with Revolutionary Lean Product Development, 
AMACOM/American Management Association.  

Oppenheim, B. W. (2004), "Lean product development flow", Systems 
engineering, vol. 7, no. 4, pp. 352-378.  

Oppenheim, B. W., Murman, E. M. and Secor, D. A. (2011), "Lean enablers for 
systems engineering", Systems Engineering, vol. 14, no. 1, pp. 29-55.  

Panchak, P., ( 2009), Teledyne Benthos Adapts the Toyota Product 
Development System, 3rd ed., Association of Manufacturing Excellence, 
Illinois, USA.  

Qureshi, A., Dantan, J., Bruyere, J. and Bigot, R. (2011), "Set Based Robust 
Design of Systems–Application to Flange Coupling", Global product 
development: proceedings of the 20th CIRP Design Conference, Ecole 
Centrale de Nantes, Nantes, France, 19th-21st April 2010, Springer Verlag, 
pp. 347-356.  

Radeka, R., ( 2011), Lean product development provides manufacturing value, 
3rd ed., Association of Manufacturing Excellence, Illinois, USA.  

Raudberget, D. (2010), "Practical applications of set-based concurrent 
engineering in industry", Strojniški vestnik-Journal of Mechanical 
Engineering, vol. 56, no. 11, pp. 685-695.  

Reinertsen, D. G. (2009), The principles of product development flow: second 
generation lean product development, Celeritas, Burlington, Ontario.  



 

210 

Ribbens, J. (2000), Simultaneous engineering for new product development: 
manufacturing applications, Wiley, New York.  

Robson, C. (2011), Real world research: a resource for users of social research 
methods in applied settings, Wiley, Chichester.  

Sayer, A. (1992), Method in social science: A realist approach, 2nd ed, 
Routledge, New York.  

Schipper, T. H. and Swets, M. D. (2009), Innovative lean development: how to 
create, implement and maintain a learning culture using fast learning 
cycles,Taylor & Francis, London.  

Schuh, G., Lenders, M. and Hieber, S. (2008), "Lean innovation: introducing 
value systems to product development", Management of Engineering & 
Technology, 2008. PICMET 2008. Portland International Conference on, pp. 
1129-1136.  

Shingo, S. (2007), Kaizen and the art of creative thinking : the scientific thinking 
mechanism, Enna Products Corp; PCS Inc, Bellingham, Washington.  

Sobek, D. K., Ward, A. C. and Liker, J. K. (1999), "Toyota's principles of set-
based concurrent engineering", Sloan management review, vol. 40, no. 2, pp. 
67-84.  

Sobek, D. K. and Ward, A. (1996), "Principles from Toyota's set-based 
concurrent engineering process", ASME Design Engineering Technical 
Conferences and Computers in Engineering Conference, pp. 18-27.  

Sobek, I., Durward, K. and Liker, J. K. (1998), "Another look at how Toyota 
integrates product development", Harvard business review, vol. 76, no. 4, pp. 
36-49.  

Spradley, J. P. (1980), Participant observation, 1st ed, Holt, Rinehart and 
Winston, New York.  

Tebay, R., Atherton, J. and Wearne, S. (1984), "Mechanical engineering design 
decisions: instances of practice compared with theory", Proceedings of the 
Institution of Mechanical Engineers, Part B: Journal of Engineering 
Manufacture, vol. 198, no. 2, pp. 87-96.  

Telerman, V., Preis, S., Snytnikov, N. and Ushakov, D. (2006), "Interval/set 
based collaborative engineering design", International Journal of Product 
Lifecycle Management, vol. 1, no. 2, pp. 150-163.  

Thimbleby, H. (1988), "Delaying commitment", Software, IEEE, vol. 5, no. 3, pp. 
78-86.  



 

211 

Thomke, S. H. (1998), "Managing experimentation in the design of new 
products", Management Science, vol. 44, pp. 743-762.  

Trott, P. (2008), Innovation management and new product development, 3rd ed, 
Prentice Hall, Harlow, Essex.  

Ulrich, K. T. and Eppinger, S. D. (2000), Product design and development, 2nd 
ed, McGraw-Hill, Boston.  

Walliman, N. S. R. (2005), Your research project: a step-by-step guide for the 
first-time researcher, 2nd ed, Sage Publications Ltd, London.  

Walsh, M. (2001), Research made real: A guide for students, Nelson Thornes, 
Cheltenham.  

Wang, L., Ming, X. G., Kong, F., Li, D. and Wang, P. (2012), "Focus on 
Implementation A Framework for Lean Product Development", Journal of 
Manufacturing Technology Management, vol. 23, no. 1, pp. 4-24.  

Ward, A., Liker, J. K., Cristiano, J. J. and Sobek, D. K. (1995), "The second 
Toyota paradox: How delaying decisions can make better cars faster", Sloan 
management review, vol. 36, pp. 43-43.  

Ward, A. C. (2007), Lean product and process development, Lean Enterprise 
Institute, Cambridge, USA.  

Womack, J. P. and Jones, D. T. (2003), Lean Thinking: Banish waste and 
create wealth in your organisation, Simon & Schuster UK Ltd., London.  

Womack, J. P., Jones, D. T. and Roos, D. (1990), The machine that changed 
the world, Rawson Associates, New York.  

Yadav, S. and Allada, P. (2009), "Developing a Lean Value Model for Product 
Development", Proceedings of the ASME 2009 International Design 
Engineering Technical Conferences & Computers and Information in 
Engineering Conference, August 30 - September 2, 2009, San Diego, 
California, USA, ASME, pp. 481-488.  

Yelkur, R. and Herbig, P. (1996), "Global markets and the new product 
development process", Journal of Product & Brand Management, vol. 5, no. 
6, pp. 38-47.  

Yin, R. K. (2003), Case Study Research: Design and methods, 3rd ed, SAGE 
Publications, United Kingdom.  

 

  



 

212 

Referenced Websites 

LeanPPD website:                                                                        
http://www.leanppd.eu 

R-R website:                                                                                   
http://www.rolls-royce.com/ 

VES website:                                                          
http://www.visteon.com/index.html 

Indesit website: 
http://www.indesitcompany.com/inst/en/vision/corporate_governance/cGHom
e.action 

Volkswagen website: 
http://www.volkswagenag.com/content/vwcorp/content/en/homepage.html 

Sitech website:                                                                               
http://www.sitech-sitztechnik.de/en/sites.html 

Gizmag website:                                                              
http://www.gizmag.com/coaxial-rotor-system-helicopter-design/10279/ 

Wikipedia website:                                               
http://en.wikipedia.org/wiki/Turboshaft,

http://en.wikipedia.org/wiki/Turboshaft


  

 

213 

APPENDICES 

Whilst Heading 1 to Heading 6 can be used to number headings in the main body of 

the thesis, Heading styles 7–9 have been modified specifically for lettered appendix 

headings with Heading 7 having the ‘Appendix’ prefix as shown below. 

Appendix A Automotive Industry Articles 

A.1 Article 1: Toyota quarterly profit quadruples on recovery  

By Yuri Kageyama (Tokyo)  

The Associated Press May 9, 2012, 07:09AM ET  

Toyota's January-March profit more than quadrupled to 121 billion yen ($1.5 billion), 

and the automaker gave upbeat forecasts, marking a solid recovery from a sales 

plunge caused by a tsunami in Japan. 

Japan's No. 1 automaker forecast Wednesday its profit soaring to 760 billion yen 

($9.5 billion) for the fiscal year through March 2013, after plunging 30 percent to 

283.6 billion yen ($3.5 billion) for the year ended last month. 

The annual results were better than the company projection for a 200 billion yen 

($2.5 billion) profit, as well as the FactSet estimate at 279 billion yen ($3.49 billion) -- 

a sign of a turnaround from last year's tsunami that hobbled Toyota production 

around the world. 

Toyota's profit for January-March the previous year had been dismal at 25.4 billion 

yen because of the damage from an earthquake and tsunami that hit March 11, 

2011. The flooding in Thailand, which disrupted supplies, added to the decline. 

Toyota President Akio Toyoda acknowledged the hardships, but also pointed to the 

strong yen, which erodes the overseas earnings of Japanese exporters like Toyota. 

"Our vision is to establish a strong business foundation that will ensure profitability 

under any kind of difficult business environment," he said. 

"But thanks to the concerted efforts of our employees, suppliers and dealers, we 

were able to recover production and sales faster than anticipated and achieved a 

strong result." 
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Toyota, which makes the Prius hybrid, Camry sedan and Lexus luxury models, saw 

its vehicle sales grow in Japan, Europe and Africa, although not North America. 

However, it is regaining market share there. 

Toyota is expecting to sell 8.7 million vehicles this fiscal year, 1.3 million more 

vehicles than the nearly 7.4 million vehicles sold for the year ended March. 

The rise in gas prices and concerns about global warming are major plus factors for 

Toyota and other Japanese automakers that excel at producing compact fuel-

efficient models. 

Toyota's image suffered in North America over a series of massive recalls since 

2009, and its USA sales fell last year. But its sales and market share in the USA 

have almost recovered. 

"It's no secret that Toyota had a tough year last year due to the production fallout 

from the Japanese earthquake. In the last few months though, Toyota has made big 

strides to regain the USA market share it lost to its competitors," said Edmunds.com 

senior analyst Jessica Caldwell. 

But she warned Toyota needs to keep coming up with new products to maintain its 

recovery momentum amid intense competition. 

Toyota faces an increasingly powerful Hyundai Motor Co., a resurgent General 

Motors Co. and Volkswagen AG, which remains hard to beat in key growth markets 

such as China. 

Toyota's sales for the fiscal year ended March 31 totaled 18.58 trillion yen ($232 

billion), down 2 percent on-year. 

January-March sales rebounded to 5.7 trillion yen ($71.3 billion), up 23 percent from 

4.6 trillion yen the same period a year ago. 

The comeback at Toyota is playing out at other Japanese automakers. 

Last month, Honda Motor Co. reported its January-March profit jumped 61 percent 

on robust car and motorcycle sales, and forecast record global sales of 4.3 million 

vehicles for this fiscal year. 



  

 

215 

Toyoda, the grandson of Toyota's founder, vowed to lead a full turnaround, 

promising a range of products targeting emerging markets, in addition to established 

markets. 

"In recent years, we have suffered periods of hardship," he said. "This year, I am 

determined to show tangible results." 

Toyota shares closed unchanged at 3,145 yen ($39) in Tokyo, shortly before 

earnings were announced. 

------ 

AP Auto Writer Tom Krisher in Detroit contributed to this report.  
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A.2 Article 2: Record Profits, but Still Mixed Success at GM 

By Diane Brady 

July 22, 2012 11:28 AM EDT  

 

The term “record earnings” tends to enhance the mood of all who hear it. On one 

level, General Motors’ record annual profit is clearly good news. America’s largest 

automaker earned $7.6 billion on $150.3 billion in sales in 2011, just two years after 

taxpayers bailed it out. Moreover, its once-weak compatriots in the USA auto 

sector—Ford Motor and Chrysler Group—reported profits for the year, as well. That’s 

the first time the Big Three, as old-timers fondly call them, have all been profitable 

since 2004. 

But those profits have come at a cost. After years of watching companies build up 

cash even as the overall economy was in decline, Americans know all too well that 

the bottom line is only part of the picture. Not only has GM won back its financial 

health by closing plants and reducing wages, it’s not yet thriving in some areas that 

matter. 

Consider what’s happening on the actual assembly line. While sales rose across the 

board, Americans bought only about 12.8 million cars and trucks last year. That’s 

quite a comedown from the industry average of 16.8 million in annual sales from 

2000 to 2007, according to researcher Autodata. The good news is that GM was 

able to boost its total while also reducing the incentives needed to get people to buy. 

But it still made less profit per vehicle, as Americans bought fewer high-margin 

trucks, and GM lost market share from December through January. 

For most Americans, the bigger concern is jobs. The Center for Automotive 

Research has estimated that more than a million jobs were saved by the USA auto 

industry bailout. The actual number of workers once employed in the sector, though, 

may never return. From 2000 to 2009, the number of people employed by the auto 

http://mobile.businessweek.com/apps/quote?ticker=GM
http://mobile.businessweek.com/apps/quote?ticker=F
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industry fell from 1.13 million people to 500,000. While that number is expected to 

creep back to more than 750,000 if sales continue to rise, the reality is many of the 

remaining jobs may be history. 

More important, perhaps, those jobs that do come back will pay less and carry fewer 

benefits. USA automakers have adopted the two-tier pay system that is also credited 

with helping the airline industry. New workers are being hired at $15.78 an hour, or 

about half the rate of those hired under older union agreements. Of course, few can 

argue for the sustainability of pay-and-benefit packages at two to three times that 

level in today’s global economy. (Journalists and politicians cited autoworker pay 

rates as high as $75 an hour around the time of the bailout, though some $15 of that 

was from retiree benefits, and others dispute the calculations.) But it’s a stark 

reminder that the auto industry is no longer a reliable ticket to a middle-class life. 

While GM’s 47,500 blue-collar workers will now get a $7,000 profit-sharing bonus, 

that’s a fraction of the money worker groups have lost under new contracts. 

It’s not just labour that’s yet to experience the full fruits of GM’s earnings rebound. 

GM shareholders, who are still waiting for shares to regain their $35 initial public 

offering price, might argue that what’s needed now is even more cost-cutting, 

especially in sagging markets such as Europe. And taxpayers who opposed giving 

the company $50 billion in support and $15 billion in additional tax write-offs also 

may balk at the fact that they still face billions of dollars in losses from the bailout. 
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Appendix B Numbers of practitioners who contributed to 

the research 

 

Table ‎B-1Research engagements and the numbers of practitioners involved 

Research engagements No. of practitioners involved 

LeanPPD Consortium members 12 

Field study interviewees 37 

Additional interviews not reported in this 
thesis 20 

Participants of the LeanPPD value survey 72 

Case Study 1 8 

Case Study 2 50 

Additional personnel from RR 10 

Additional personnel from VES 3 

Additional personnel from VW 3 

Additional personnel from Indesit 2 

Additional personnel from Sitech 3 

Additional personnel for Getrag 30 

Practitioners from Caxios do Sul University 
who attended the LeanPPD value workshop 
in Cranfield University, UK, January 2010 10 

Practitioners who attended the LeanPPD 
workshop at Cranfield University, UK, 
September 2011 25 

Practitioners who attended the LeanPPD 
workshop at Rey Juan Carlos University, 
Madrid, February 2012 30 

Total 315 
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Appendix C The Stage-Gate® Model  
 

 

Figure ‎C-1 A Typical Five Stage Idea-to-Launch Stage-Gate Model (http://www.stage-

gate.com/newsletter/images/Figure-1.png) 

 

N.B. Loops indicate a series of design-test-feedback-and-revise iterations 
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Appendix D Product Development Model Example 

 

Figure ‎D-1 Example of a product development model with stages, activities, and 

checkpoints/gates (http://img.docstoccdn.com/thumb/orig/11760168.png) 
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Appendix E The LeanPPD Industrial Field Study 

Questionnaire 

 

Semi Structured Questionnaire for 

LeanPPD Field Study  

  

 

Grant Agreement number:  

 

NMP-2008- 214090 

Project acronym: Error! Unknown document property name. 

Project title: Lean Product and Process Development 

Funding Scheme: Large Collaborative Project 

Date of latest version of Annex I  
against which the assessment will be made: 

20.02.2009 

  

Academic Supervisor names, title  
and organisation: 

Dr. Ahmed Al-Ashaab & Dr Essam Shehab   
Cranfield University 

Project website address: www.leanppd.eu, www.leanppd.org, 

www.leanppd.net  

Authors: Muhammad S Khan; Rahman Alam, Maksim 
Maksimovic; Wasim Ahmad 

Start date of the project: 01.02.2009 

Duration: 48 months 

Responsible of the Document 

 

Cranfield University Team 

a.al-ashaab@cranfield.ac.uk 

Due date of deliverable                              n/a 

Document Ref.: Questionnaire for field study 

Version: 1 

Issue Date: 29/February/2010 

 

 

http://www.leanppd.eu/
http://www.leanppd.org/
http://www.leanppd.net/
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Name 
 
 

Job Title 
 
 

Role in organisation 
 
 

Years of Experience in 
current role 

 
 

Previous Role(s) 
 
 

Years of experience in 
previous role(s) 

 
 

Tel 
 
 

Email 
 
 

LinkedIn 
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E.1 Product Development Process 

E.1.1 Do you have a formal product development (PD) model (visual 

representation of the PD process, including the various stages, 

activities, mechanisms and supporting tools) and is it effective in 

guiding the PD operations? (select one option) 

Options 

Effectiveness  

Not 
Effective 

Somewhat 
Effective 

Very 
Effective 

 There is currently no PD model    

 
The current PD model is developed by a central 
organisation that administer its implementation, but it 
is not followed 

   

 
The current PD model is developed by a central 
organisation that administers its implementation, and 
it is followed 

   

 
The current PD model is developed, and maintained 
by decentralised groups that administer its 
implementation in their respective areas 

   

E.1.2 Do you have flexibility in how you do your job? (Or is it mandatory to 

comply to a process, that you do not have ownership of?)  

Options 

 Engineers must complete defined tasks in the order of process documentation 

 Engineers must complete defined tasks in process documentation but the order is flexible 

 
Engineers understand their responsibilities and are provided with company best practice 
information and complete key deliverables in accordance with project deadlines, but 
process documentation is not imposed on them 

E.1.3 Is there a technical leader who is responsible for the entire development 

of a product from concept to launch? (select one option) 

Options 

Effectiveness  

Not 
Effective 

Somewhat 
Effective 

Very 
Effective 

 
No technical supervisor has responsibility for the 
entire development of a product 

   

 

A project manager (non-technical) has responsibility 
for the entire development of a product while an 
engineer or a group engineers share some 
responsibility 

   

 
A chief engineer with a team of engineers have 
responsibility for the entire development of a product 
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E.1.4 Every specification is a compromise between what customers want and 

what can be provided. How is a product specification stabilised in 

your product development process? (select one option) 

Options 

 Specification provided early on by customer or central organisation & must be adhered to 

 Specification provided early on, but subject to engineering alterations 

 
Specification grows through continuous interactions along the stages of PD as the product 
understanding matures 

E.1.5 How do you select the design solution that will be developed? (select one 

option) 

Options 

 We only produce one design solution for each product 

 
We identify multiple solutions, and select the one that most closely matches the design 
specification 

 We identify multiple solutions and select the solution with the lowest development costs 

 
We design multiple solutions for each product/component, and rule them out as more 
information becomes available (due to prototyping, testing, integration etc.) 

E.1.6 How are your current processes and work methods reviewed/improved? 

(select one option) 

Options 

 Processes are not regularly reviewed 

 
Processes are reviewed at regular intervals by experienced company members or a 
central organisation, but improvement suggestions are rarely incorporated 

 
Processes are reviewed at regular intervals by experienced company members or a 
central organisation, and there is a formal mechanism to capture improvement suggestions 

 
Engineers are encouraged to make improvement suggestions at any time and there is a 
formal mechanism to capture suggestions, but engineers are not confident that good ideas 
will be incorporated  

 
Engineers are encouraged to make improvement suggestions at any time and there is a 
formal mechanism to capture suggestions, and there is evidence that good ideas are 
regularly incorporated 
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E.1.7 Do manufacturing (production) engineers play an active role in each stage 

of product development? (select one option) 

Options 

 Once the design is complete, it is communicated to the manufacturing engineers  

 Once the detailed design is prepared, the manufacturing engineers are involved 

 Once the final concept is selected the manufacturing engineers are involved 

 Manufacturing engineers are involved in concept selection 

 
Manufacturing engineers provide design constraints to design engineers before design 
solutions are prepared and they are also involved and referred to throughout the 
development process 

E.1.8 Do your suppliers provide you with multiple alternatives for a single part 

(component)? (select one option) 

Options 

 
Suppliers provide one part (solution) based on a detailed design specification that we 
provide 

 
Suppliers have flexibility to provide one (solution) based on a rough design specification 
that we provide 

 
Suppliers provide multiple solutions for most parts and we work with them to develop the 
solution 

 
Suppliers inform us on developments in what they can provide and we together develop 
multiple solutions and progressively eliminate weak solutions as the product design 
solution matures 

 

E.1.9 How are projects currently initiated, and the does the product 

development process flow? (select one option) 

Options 

 Project initiation is dependent on customer requests and projects often run late 

 Project initiation is dependent on customer requests, but projects rarely run late 

 Projects start at regular intervals, but do not have consistent standard durations 

 
Projects start at regular intervals, have consistent standard durations, and are composed 
of multiple project types (e.g. facelifts, major mods, redesign/breakthrough), but projects 
do run late 

 
Projects start at regular intervals, have consistent standard durations, and are composed 
of multiple project types (e.g. facelifts, major mods, redesign/breakthrough), but projects 
are always on time 
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E.2 Product Design 

 

E.2.1 Which of the following tool/techniques have you formally implemented and 

utilise as an aid during the design of the product? 

Tools/Techniques 

Frequency of use  Effectiveness 

Never Sometimes Always  
Not 
Effective 

Somewhat 
Effective 

Very 
Effective 

Design for Manufacture 
Assembly 

       

FMEA (Failure Modes 
Effective Analysis) 

       

TRIZ (Theory of Inventive 
Problem Solving) 

       

Value Analysis /Value 
Engineering 

       

Design to Cost        

Design for Recyclability        

Design for Modularity        

Design for Sustainability        

Design for Ergonomics        

Design for Maintainability        

Design for Aesthetics        

Design for Six Sigma        

Design for Reliability        

Design for Usability (user-
friendliness) 

       

Design for Serviceability        

Design for Minimum Risk        

Other:        
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E.2.2 From the diagrams below can you indicate what method(s) of product 

development do you currently follow and rate its effectiveness?  

 

 

 

 

 

E.2.3 During design do you consider incorporating error /mistake-proofing 

(features/elements/mechanisms) for the following: 

User 
Incorporation 

Never Sometimes Always 

End User    

Prototyping    

Manufacture    

Assembly    

Testing     

Packaging    

Storage      

Distribution/sales    

Delivery    

Disposal    

Recycling    

Service/Maintenance     

E.2.4 During concept selection which of the following criterions do you consider 

in reaching a final solution? (select applicable)  

 

 

 

 

Method 
Frequency of use  Effectiveness 

Never Sometimes Always  Never Sometimes Always 

Concurrent Eng        

Set-based Concurrent 
Eng 

       

Sequential Manner        

? 

 

Concurrent Eng Set-Based Concurrent Eng Sequential Manner 
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Criterions 

Considerations 

Criterions 

Considerations 

Sometimes 

 

Always 

 

Never Sometimes 

 

Always 

 

Never 

Function    Safety    

Critical to 
quality 

   Sustainability    

Durability    
Ease of 
Manufacture 

   

Technology    Portability    

Cost    
Enhanced 
Capability 

   

Performance    Usability    

Featurability    Reliability    

Ergonomics    Recyclability    

Customisation    Innovation    

Maintainability        

E.2.5 Have you considered adopting lean manufacturing techniques as a sense 

of inspiration during conceptual design? 

Example 
Consideration  

Yes No 

Single Minute Exchange Die (SMED) 

 

Replace 4 bolts that require 32 turns 
before the die is secure, with a clip-on 
attachment. 

 

  

 

Quick Change Over (QCO) 

 

Measuring different product models 
requires manual adjustment of the dial.  
By using model-specific spacers, 
adjustment time is reduced – allowing 
for quick change over. 
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Poke-Yoka (Mistake-proofing) 

 

Apply mistake proofing mechanisms 
and features to prevent the loss of the 
fuel cap and remind the user to use the 
correct type of fuel 

 

  

E.2.6 What approaches do you use in assuring optimal values (as assigned in 

the design specification) are achieved in your final design? 

 

E.2.7 What sources do you use to ensure the following are considered your 

design? (Select applicable) 

 

  

 

 

 

 

 

 

 
 

 Mathematical 
approaches 

 None Mathematical 
approaches 

 
Regression analysis 

 
Personal 
experience/understanding 

 
Multi-objective 
optimisation  

Design Matrix 

 
Other: 

 
Other: 

 

sources 
Factors 

Rules 
Design 
Standards 

Inspiration Innovation 
Personal 
Intuition 

Personal 
Experience 

Design 
text books 

Mistake-proofing 
       

Manufacturability 
       

Assembly 
       

Critical to quality 
       

Reliability 
       

Performance 
       

Sustainability 
       

Recyclability  
       

Innovation 
       

Ergonomics  
       

Cost 
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E.3 Knowledge Based Engineering & Environment 

 

Introduction: 

Efficient usage of product life cycle knowledge can only be accomplished, if the 
knowledge is captured and structured in a way that it can be formally 
represented and re-used within an organisation to support engineering 
decisions in product design and development. These procedures are defined as 
a Knowledge Life Cycle. 

 

 

 

Knowledge Capturing 

E.3.1 From your personal experience, how important do you assess the 

following sources of Knowledge? (Select one each) 

Sources of Knowledge 

Importance Comments 

Not 
important 

Important 
Very 
Important 

Essential for 
Competitive 
Advantage 

 

Design Rules:      

Heuristic Rules – Company own 
design rules 

    
 

Published Rules e.g. from Books      

Rules from supplier e.g. from 
Material Provider 

    
 

Design Standards      

Capability of current resources       

Capability of current process       

Previous Projects      

Tacit Knowledge (Expertise of 
Engineers) 

    
 

Other      
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E.3.2 Do you have formal initiatives or software(s) for capturing previous 

projects in a common database to provide a source of 

information and knowledge to support new product 

development? (Select one each) 

Initiatives 

Ratings 

No Initiative & Not 
Interested 

Desired Initiated 
In 

Progress 

Fully 
Established 

Lessons Learned      

CAD Files      

CAE Files      

Test Data      

BOM      

Technical Issues      

Cost Data      

Product Specifications      

Engineering Requirements      

Other      

E.3.3 Currently what are the implemented mechanisms to capture knowledge in 

your organisation and how efficient do you asses them? (Select 

one each) 

Mechanisms 

 Usage  Effectiveness 

Never Sometimes Always 
Not 
Effective 

Somewhat 

Effective 

Very 
Effective 

Verbal communication       

Questionnaires       

Document Templates       

Web-Blogs/ Notice Boards       

Other       

 We have no implemented mechanisms to capture knowledge in our organisation 

 

Knowledge Representation and Re-Use 

E.3.4 What technologies or functions are used in your company to realize that 

captured knowledge is re-used and shared during the product 

development process and how frequent it is used? In addition, 

do you think the knowledge content of the provided technologies 

are adequate in supporting decision taking in an efficient way? 

(Select one for usage and one for efficiency if applicable) 
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Technologies and Functions 

Usage Efficiency 

Never Some 
times 

Always Not 
Supportive 

Some Content 
is Adequate 
and Supportive 

All Content is 
Adequate and 
Essential for 
decision taking 

 
Knowledge Based 
Engineering System 

      

 Check Lists       

 Design Templates       

 
Design & Development 
Handbook or Manual 

      

 Quality Gates       

 
Assessment and judgment 
by Experts in your 
Organisation 

      

 Wikis       

 Web Servers / Intranet       

 E-Books       

 Reports       

E.3.5 How do you assess the importance of proven knowledge (e.g. test results) 

to support decision taking in product design and development? 

(Select one) 

Not Important Important Very Important Essential for any 
decision 

 

In general any product development task consists of two key elements; routine 
tasks and innovative tasks. 

The routine tasks are standard and done for all products; as most of the product 
are not developed from scratch rather they are successive from previous 
designs 

Innovative tasks distinguish the new product from previous ones and have not 
been considered before. 

E.3.6 Please estimate in percentage how much of your work is related to routine 

or innovative Tasks?  

100% routine - 0% innovative 

80% routine - 20% innovative 

60% routine - 40% innovative 

50% routine - 50% innovative 

40% routine - 60% innovative 

20% routine - 80% innovative 
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0% routine - 100% innovative 

E.3.7 Please estimate how much, in percentage, do you rely on knowledge from 

previous project when designing a new product? (Select one) 

100% 

80% 

60% 

50% 

40% 

20% 

0% 

E.3.8 What specific knowledge domain do you need for your regular 

engineering activities? (Select one each) 

  Importance 

Domain Not Important Important 
Very 
Important 

Injection Moulding    

Stamping    

Machining    

Casting    

Other    

E.3.9 From your personal experience, which of the following activities would you 

consider to be important for engineering decision taking? (Select 

one each) 

  Importance 

Activities Not Important Important Very 
Important 

Definition of Product Specifications    

Design for Manufacture and Assembly    

POKA YOKE – Mistake Proofing    

Tooling Design    

Cost Calculation    

Production Planning and Scheduling    

Testing and Simulations    

Other    
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E.3.10 Which commercial software do you use to support product 

development? 

Software for: 
Commercial Software  

(e.g. Catia V5)  

Release 

(e.g. R14) 

Product Lifecycle Management (PLM)   

Computer Aided Design (CAD)   

Product Data Management (PDM)   

Enterprise Resource Planning (ERP)   

Knowledge Based Engineering (KBE)   

Computer Aided Engineering (CAE), 

e.g. CFD, FEA etc. 

  

Computer Aided Manufacturing (CAM)   

Cost Calculations   

Quality Management   

Other   

E.3.11 What is your experience in using the following acclaimed commercial 

Knowledge Based Engineering systems? (If used select one and 

rate experience) 

Used 
Knowledge Based 
System 

Experience 

Bad – 

Not Useful 

Occasionally 

Beneficial 

Very Good - 

Recommended 
Comments 

 AML  - TechnoSoft Inc     

 
DriveWorks - 
SolidWorks 

   
 

 
Knowledge Fusion - 
UG 

   
 

 
Knowledgeware - 
Catia 

   
 

 
Expert Framework - 
ProEng 

   
 

 
Siemens Teamcenter 
– Enterprise 
Knowledge Foundation 

   
 

 PACE KBE Platform     

 other     

 I have not used any Knowledge Based Engineering system before 

 



 

235 

E.3.12 How and which of the following data is stored at your company for a 

specific product during the entire product life cycle? (If used 

select one or multiple for storage) 

No. Used Data 

Storage Form 

Paper 
Form 

PDM 

Database 
ERP 

Share 
Drive 

Other 

1  QfD      

2  BOM      

3  Cost Calculations      

4  Make or Buy      

5  RfQ      

6  Specifications 
Documents 

     

7  CAD Models      

8  CAD Drawings      

9  CAE Files      

10  DFMEA      

11  Test Reports      

12  Design Validation 
Reports 

    
 

13  Capacity Planning      

14  PFMEA      

15  PSW      

16  PPAP Documents      

17  Process Capability      

18  Resource Capability      

19  Change Requests      

20  Customer Satisfaction 
Reports 

     

21        
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E.4 Cost Estimation 

 

E.4.1 What is the role of cost estimation in product development? (You may 

select multiple options) 

 To target and reduce the overall development cost 

 To compare the cost of product/component alternatives 

 To support decision taking through cost visualisation 

 Others (please explain) 

 

E.4.2 Please assess the following product development cost drivers 

Cost Drivers 
Impact 

N/A 
Major Minor 

1 Product complexity and size     

2 Technical difficulty    

3 Development team experience, skill level and attitude    

4 Method of communication among team members    

5 Tools used for design (computer assisted tools)    

6 Reuse factor    

7 Design partners involvement     

8 Pressure to complete the job    

9 Out of sequence work    

10 Initial vendor specifications    

11 Availability of customer-furnished information and /or 
equipments 

  
 

12 Drawing types (Basic, assembly, manufacturing)     

13 Formal process (Phase review or stage gate process)    

14 Other    
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E.4.3 What methods do you use to analyse the cost of design changes?  

Methods 

Effectiveness 

Not 
Effective 

Somewhat 
Effective 

Very 
Effective 

Previous projects are analysed to generate the cost of a new 
product    

   

Expert system for cost estimation    

Historical cost data to predict the future cost    

Parametric approach to estimate the cost     

Activity / feature based cost analysis    

Commercial software    

In-house developed software / technique    

 

E.4.4 Who is responsible for cost estimation in product design?  

 

Finance personnel  

Design engineers  

Cost engineers  

Other   
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E.5 ADDITIONAL QUESTIONS 

E.5.1 What are the main problems with your current PD model? (you may select 

more than one option)  

Options 

 Too many sign-offs required (bureaucracy) 

 Needs to be updated to meet changing demands 

 Causes work to be delayed due to unnecessary tasks/activities 

 Engineers are forced to spend time on lengthy documentation (reports) 

 The model hasn’t been well communicated to employees 

  

E.5.2 What are the main challenges that you face in product development? (you 

may select more than one option)  

Options 

 Products are not innovative enough 

 We normally face cost overruns 

 We are always overburdened with the quantity of work 

 
Downstream engineers passed optimised designs that require significant modification or 
redesign? 

  

E.5.3 What challenges do you face with regards to knowledge capture and 

representation? (you may select more than one option) 

Options 

 Often very time-consuming 

 Incompatibility of knowledge formats between different software 

 
Unnecessary knowledge capture and over-crowded 
documents/figures/posters/databases etc. 

 Designers find it difficult to extract knowledge from previous projects 
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E.5.4 Do you think that mistakes in previous designs could have been 

prevented by the correct knowledge being provided at the right 

time? (select one option) 

 

E.5.5 How are design problems currently resolved in your company (A3)? 

(please explain) 

 

 

 

 

 

 

 

none      All 

 


