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Abstract 

This work aims at the advancement of state-of-art accelerometer design and optimization 

methodology by developing an ear-plug accelerometer for race car drivers based on a novel 

mechanical principle. The accelerometer is used for the measurements of head acceleration 

when an injurious event occurs. Main requirements for such sensor are miniaturization (2×2 

mm), because the device must be placed into the driver earpiece, and its measurement 

accuracy (i.e. high sensitivity, low crosstalk and low nonlinearity) since the device is used for 

safety monitoring purpose. 

A micro-electro-mechanical system (MEMS)-based (bulk micromachined) piezoresistive 

accelerometer was selected as enabling technology for the development of the sensor. The 

primary accelerometer elements that can be manipulated during the design stage are: the 

sensing element (piezoresistors), the micromechanical structure and the measurements 

circuit. Each of these elements has been specifically designed in order to maximize the sensor 

performance and to achieve the miniaturization required for the studied application. 

To achieve accelerometer high sensitivity and miniaturization silicon nanowires (SiNWs) as 

nanometer scale piezoresistors are adopted as sensing elements. Currently this technology is 

at an infancy stage, but very promising through the exploitation of the “Giant piezoresistance 

effect” of SiNWs. This work then measures the potential of the SiNWs as nanoscale 

piezoresistors by calculating the major performance indexes, both electrical and mechanical, 

of the novel accelerometer. The results clearly demonstrate that the use of nanoscale 

piezoresistors boosts the sensitivity by 30 times in comparison to conventional microscale 
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piezoresistors. A feasibility study on nanowires fabrication by both top-down and bottom-up 

approaches is also carried out. 

The micromechanical structure used for the design of the accelerometer is an optimized 

highly symmetric geometry chosen for its self-cancelling property. This work, for the first 

time, presents an optimization process of the accelerometer micromechanical structure based 

on a novel mechanical principle, which simultaneously increases the sensitivity and reduces 

the cross-sensitivity progressively. In the open literature among highly symmetric geometries 

no other study has to date reported enhancement of the electrical sensitivity and reduction of 

the cross-talk at the same time. Moreover the novel mechanical principle represents 

advancement in the accelerometer design and optimization methodology by studying the 

influence of a uniform mass moment of inertia of the accelerometer proof mass on the sensor 

performance. Finally, an optimal accelerometer design is proposed and an optimized 

measurement circuit is also specifically designed to maximize the performance of the 

accelerometer.  

The new proposed accelerometer design is capable of increasing the sensor sensitivity of all 

axes, in particular the Z-axis increases of almost 5 times in respect to the current state-of-art-

technology in piezoresistive accelerometer. This occurs thanks to the particular newly 

developed approach of combination of beams, proof mass geometry and measurement circuit 

design, together with the use of silicon nanowires as nanoscale piezoresistors. Furthermore 

the cross-sensitivity is simultaneously minimized for a maximal performance. The sum of the 

cross-sensitivity of all axes is equal to 0.4%, well below the more than 5% of the state-of-art 

technology counterpart reported in the literature.  Future work is finally outlined and includes 

the electro-mechanical characterization of the silicon nanowires and the fabrication of the 

proposed accelerometer prototype that embeds bottom up SiNWs as nanoscale piezoresistors. 
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Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

Since silicon devices have dominated IC chips for many decades, to date silicon is the most 

significant semiconductor currently available. Silicon nanowires devices can transport 

electrons and holes with enhanced opto-electro-mechanical properties, as known today due to 

the quantum confinement effect. Due to their enhanced features they could function as 

building blocks for nanoelectronics and advanced devices [1]. Furthermore, they present a 

very large piezoresistance effect [2-7], which is suitable for enhancing the mechanical 

sensors performance. Currently, other areas of study of this device are to improve silicon 

transistors [8, 9]. Silicon nanowires are also attractive for applications in the field-emission 

devices, photonics, chemical sensors and spintronics [10].  

The piezoresistive effect is a simple way used for converting, for example, acceleration in an 

electrical output. After an inertial force is applied to the sensor the strain on the piezoresistive 

material (silicon) changes  its electrical resistance proportionally, the correspondent voltage 

change is a measure of the acceleration by less than a constant of proportionality. 
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Currently, in the design and development of an accelerometer the main effort is to set the 

right trade-off between size and sensitivity that may satisfy the requirements of the device 

application. Conventional technology is limiting the fabrication of accelerometer below 1 

square millimetre due to the drastic loss in sensitivity [11, 12]. Basically when the 

miniaturization is the main concern of the application, sensitivity is the main issue to address, 

since the smaller is the device the lower will be its sensitivity. Obviously reduced sensitivity 

will drastically affect the accuracy of the device since a low signal to noise ratio is obtained. 

Much of MEMS technology currently face this issue by simply introducing an amplifier at 

the output level, sometimes monolithically as in capacitive pick-off (the way the acceleration 

is converted to an electrical signal) or in a complete different device as in piezoresistive pick-

off (hybrid system partitioning). Introducing an amplifier results into a relative signal noise 

that inevitably worsens the accuracy of the measurement. 

This research intends to address this issue in a different way by avoiding the use of an 

amplifier. In particular, the study exploits a phenomenon observed when the dimension of a 

piezoresistor shrinks down to the nanoscale, called in the literature “Giant Piezoresistance” 

[3]. By implementing the accelerometer with nanoscale piezoresistors (i.e. nanowires or 

quantum wires) the traditional design trade-off explained earlier using conventional 

microscale piezoresistors is overcame, due to the high sensitivity and the minuscule size 

achievable (see Figure 1-1). This is demonstrated in this work by designing a novel tri-axial 

miniature accelerometer based on nanoscale piezoresistors for applications in head injury 

detection of race car drivers.   
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Figure 1-1. Relationship between relative sensitivity and typical 

dimension of a piezoresistive accelerometer [12] 

 

1.2 Motivation 

Traumatic brain injuries (TBI) due to impacts are common in helmeted sports, such as 

hockey, football and motorsport. Therefore, significant research effort has been made in the 

past decade in order to monitor and prevent head injuries in these sports, especially in 

motorsport where the high speeds and forces mean that crashes are inevitable. In the past 

there have been many deaths and injuries to race drivers, one of the most famous was Ayrton 

Senna on May 1, 1994 at the San Marino GP in Imola when he died for a fatal massive brain 

injury due to a high speed impact with the wall.  The drivers were not monitored, therefore 

links between accelerations of specific body parts and injury could not be rigorously made.  

The first solutions introduced in the late 90s were instrumented helmets, mounting sensors 

capable to measure the amplitude of a crash through accelerometers. These instrumented 

helmets may not accurately measure the actual acceleration experienced by the head due to 
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mainly helmet-to-head fit and helmet liner properties. In the latter case, the shell of the 

helmet distributes the impact force over a large surface area, and the helmet liner absorbs the 

acceleration forces, thereby reducing the acceleration of the head to non-concussive levels. 

[15, 16, 17, 18, 19, 20, 21]   

Therefore, if the helmet shell or liner is instrumented, it is very difficult to estimate the 

amount of acceleration passed to the head. Helmets are designed to reduce the amount of 

acceleration experienced by the head; therefore, instrumented helmets may not reflect 

acceleration of the head [22, 23, 24], they overestimate the actual acceleration forces 

experienced by the head [22]. 

As accurate measuring of head accelerations is an important aspect in predicting head injury, 

it is important that the measuring sensor be well-coupled to the head. Therefore the 

instrumented helmet solution has been soon replaced in the new century, by a mouthpiece 

accelerometer in the football [25] and by attaching the accelerometer to an earpiece and not 

to the helmet in the motorsport [26, 27]. With these novel solutions the effects of the shell 

and liner properties are eliminated, allowing for the direct assessment of acceleration 

experienced by the head.   

A version of these types of earpieces, the Delphi Earpiece Sensor System [28], was adopted 

by the Indy Racing League and Championship Auto Race Teams (CART) in 2003. In 2006, 

Begeman, Melvin, Troxel  (Wayne State University) and Mellor (FIA Institute) [29] reported 

that signals from these earplugs mounted in post mortem human specimens (PMHS) showed 

a progressive phase lag from 50 to 100 Hz vibration when compared to skull measurement 

(rigidly mounted head accelerometers). These tests indicate less than perfect skull coupling 

for the earplugs mounted in the outer ear canal for high rate excitations. A step further has 

been made towards the improvement of the design of the ear-plug in order to obtain much 
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more accurate measurement at high rate and magnitude exposure by stiffening the coupling 

between the ear and the head.  

One explored solution has been to developing a miniaturized tri-axial accelerometer that is 

small enough to be placed in the ear canal portion of the earpieces [30]. The sensor 

measurement was well correlated to the reference sensor and therefore, demonstrated 

improved coupling to the head over the Delphi version that were perceived too bulky [31]. 

Moreover other advices for improving the accuracy of the measurements is by improving the 

positioning technique and mounting material, a stiff material is recommended [30]. 

Currently there is still a need for research in this area of study in order to develop a more 

precise and reliable earplug accelerometer mainly used for biomechanics measurements, e.g.  

in helmeted sports.  At the time of writing, no device on the market is available that is able to 

measure medium-g impact values with the size of few millimetres, because of the technical 

issues mentioned earlier. The only available micro-accelerometer on the market of the size of 

2×2mm, e.g. from Bosch or ST, are low-g devices that incorporate an amplifier within it. 

Furthermore, the only attempt made so far in fabricating miniature prototypes with nanowires 

has been made for measuring low-g impacts with the sensitivity being of the same order of 

magnitude of the state-of-art sensors counterparts [6, 13, 14].  

Other major applications of such novel sensors based on enhanced nanoscale piezoresistors 

are in the biomedical arena, such as implantable devices for motion/vibration sensing. 

Examples are in hearing aid systems (implantable sound sensor for cochlear implants [122]), 

heart wall motion measurement for cardiac artificial pacemakers (an adaptive control system 

that detects the human body activity level in order to adjust accordingly the pacemaker rate 

response [102]) and head injury monitoring of military soldiers in case of blast (the sensor is 

placed inside the helmet).  
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This study attempts a further improvement in the earplug sensor design by investigating 

possible ways of enhancing sensor performances and miniaturization, with the objective of 

achieving a more accurate response in case of medium-g impact crashes not achievable in 

state-of-art sensors. The data gathered from this new sensor would benefit all the stakeholders 

involved in the motorsports community. 

First of all the race drivers that would wear the sensor would benefit from a more accurate 

safety system. When an injurious event occurs a better and fast diagnosis of the traumatic 

brain injury (TBI) would be possible to the medical personnel.  

Medical, automotive researchers as well as engineers may use the data collected to evaluate 

how safety improvements like shoulder harnesses, helmets, seat belts and head and neck 

restraints commonly used in all forms of racing are helping prevent head injuries and 

eventually design better driver restraint systems and safety devices. 

1.3 Thesis Aim and Objectives 

The aim of this thesis is to advance current state-of-art knowledge of accelerometer design 

and optimization by developing a novel enhanced miniature accelerometer of 2 × 2 mm
2 

characterized by improved sensitivity and cross-sensitivity.  

The thesis objectives are: 

 To conduct literature survey to establish current state-of-art earplug 

accelerometer and nanoscale piezoresistors technology. 

 To design, model and optimize the novel accelerometer. 



 

 

31 

 

 To develop ear-plug accelerometer‟s circuits to enhance the performance of 

the devices.  

 To evaluate the silicon nanowires as accelerometer sensing elements 

1.4 Conclusion 

The thesis aim is addressed by designing and modelling a novel accelerometer that embeds 

silicon nanowires as nanometer scale piezoresistors and by also designing a tailored 

measurement circuit that maximizes sensor performance. Accelerometer design has been 

addressed based on the flow chart presented in Figure 1-2. To start with, the accelerometer 

design is modelled based on highly symmetric geometries with four surrounding beams. 

These types of geometries have been chosen for their low cross-sensitivity due to their self-

cancelled feature. Many geometries have been developed and analysed by finite element 

analysis technique, then the data have been collected and the design performances calculated 

(e.g., sensitivity, cross-sensitivity analysis, natural frequency). The design was set such that if 

the accelerometer performance is above or equal to the predefined technical specification for 

the device, the particular design is selected as a possible candidate, if not the design process 

is iterated. Furthermore, the possible candidate design is further modified based on an 

optimization method, where the mass moment of inertia of the proof mass becomes 

progressively uniform. The hypothesis demonstrated in this study is that with a uniform or 

even mass moment of inertia the performance of the accelerometer design is enhanced. 

Finally when the maximum performance is achieved a final new proposed design for the 

accelerometer is obtained otherwise the design is rejected, as illustrated in the schematic 

diagram on Figure 1-2.  
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Figure 1-2. Schematic of the methodology adopted to address the thesis aim. As it can be seen the FEM of highly 

symmetric mechanical structures are first optimized by obtaining a possible candidate (Chapter 3 and 4) then a 

further optimization is attempted by a new optimization approach based on the influence of the mass moment of 

inertia (Chapter 5). Finally the device with maximum performance is obtained as output (Chapter 6). 

1.5 Thesis structure 

The thesis is structured in literature review in Chapter 2, where state-of-art earplug 

accelerometer, piezoresistive accelerometers, piezoresistance and giant piezoresistance are 

addressed, with identified gap in knowledge and conclusion. The design, modelling and 

optimization of the accelerometer is presented in chapter 3, where also the potential of silicon 

nanowires as nanoscale piezoresistors is evaluated based on previous experimental work on 

silicon nanowires. In Chapter 4, all major electrical and mechanical performance indexes of 

the device are calculated and a comparison between conventional microscale piezoresistors 

and novel nanoscale piezoresistors is presented. Then in Chapter 5, a further design step is 

undertaken in order to enhance the performance of the device. This optimization process is 

based on the mechanical principle that even mass moment of inertia determines even 
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electrical sensitivity and therefore improves measurement accuracy. The Chapter 6 presents 

the final geometry version of the device which represents the optimal solution output of the 

optimization process adopted. Chapter 7 deals with the experiments undertaken to verify the 

fabrication feasibility of silicon nanowires used in the simulation studies conducted in the 

thesis. Firstly, the nanowires processing made by focus ion bean direct milling is presented 

and then followed by self-assembled fabrication process. Finally the present work is 

completed by Chapter 8 on conclusion and future work. 
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Chapter 2 

2 LITERATURE REVIEW 

2.1 Introduction 

This chapter addresses the latest scientific developments related to ear-plug accelerometer 

and then presents the different types of acceleration sensor currently available.   The chapter 

then focuses on the piezoresistive accelerometer technology for the ear accelerometer design. 

Finally, piezoresistance developments followed by the recent giant piezoresistance discovery 

and fabrication processes of silicon nanowires are addressed, before completing the chapter 

with the identified gap in knowledge and conclusion of the literature review.   

2.2 Overview of earplug accelerometer 

The earplug accelerometer is a miniature sensor specifically designed to be inserted inside the 

ear by an earpiece. An ear plug accelerometer must be small enough to fit in the earpiece.  
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According to Sanders and McCormick (1993) [130], ergonomic product design refers to 

“designing for human beings.” Accordingly, designing ergonomically ear-related products 

requires data on the dimensions and shapes of human ears. The anthropometric dimensions of 

outer ears, specifically the earhole length, the ear connection length, and the length of the 

pinna and the ear canal (see Figure 2-1 (a)), play a key development role in the design of our 

earpiece. However, human physical dimensions vary considerably with age, gender, race 

group, occupation, weight, height and so on [131] and the target users of our earpiece are 

different in gender, age, ethnicity, weight and height, therefore trying to accommodate all 

users is virtually impossible and costs increase proportionally with any effort to do so [132]. 

Therefore for cost effectiveness one needs to identify a typical target user at onset of the 

earplug accelerometer design.  

 

 

(a) 

 

(b) 

Figure 2-1. (a) Photo of outer ear that shows the length of different ear parts [133]; (b) Image of outer and inner ear 

[155].  

 

Not many studies have been done to examine the correlation among the anthropometric 

dimension of the ear, the human physical dimension and age. Hwa S. Jung and Hyung-Shik 

Jung (2003) [133] selected six hundred male and female Korean subjects aged 17–89 for their 
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study, four different points of the outer ear (the lengths of the pinna, the ear connection point, 

the earhole and the lobule thickness) were measured and analyzed along with demographic 

data, including age, stature and weight. When they examine the correlation among each 

variable they found that age, regardless of gender difference, had a greater effect on the 

dimensions of ears than weight and height. As for the age group where the increase rate is 

highest, results show that the dimensions of ears increase in all age groups except the 

dimension of the earhole which decreases from the age of forty to fifty. Bor-Shong Liu 

(2008) [132] in his research of two hundred subjects aged 20–59 found that the coefficient of 

correlations between the three different dimensions of the outer ear (the earhole length, the 

ear connection length, the length of the pinna) and stature were very low (0.27, 0.27, and 0.29 

respectively). In addition, the results showed that all ear dimensions had significant gender 

effects. From these studies seems that stature and weight play a minor role in the 

determination of the ear dimension. Age and sex are the most relevant variables that effect 

the growing of the ear. Concerning different ethnicity, Hwa S. Jung and Hyung-Shik Jung 

[133] in 2003, point out the shape and dimension dissimilarity of the ears between Koreans 

and Caucasians. Most of the Korean men have bigger ears with the shape of Disposition 

Nature, instead the ears of most Westerners had the shape of Bone Nature with few having 

Nutrition Nature or Disposition Nature (Figure 2-2). 

 

Figure 2-2. Ear shapes [133] 
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Based on the studies of the dimension and shape of the ears, we can apply the findings to the 

manufacturing of our ear plug accelerometer to ensure it fits properly. It is recommended that 

the length of the earhole be applied for designing our earpiece since it will resemble a 

earphone (see Figure 2-3). The main problem of many earphone users is that the earphone 

slips off, this was found especially to people in their 20s using a current model [133]. From 

this finding we concluded that in order to fit both big and small earholes, the earpiece should 

be made oblong and elongated inside the ear canal where the accelerometer would be placed 

(Figure 2-3).  

 

Figure 2-3. Moulded earpiece [156] 

 

We assume the race driver to be an adult male of an age from 20 to 50 years old. From this 

assumption we can identify the mean dimension of the earhole, considering that the human 

ear canal extends from the pinna to the eardrum and is about 26 mm in length and 7 mm in 

diameter in adults and it is slightly S-shaped (see Figure 2-1(b)). Below are listed the main 

results related to the earhole of the two studies examined above (Table 2-2 and Table 2-3) 

and the arithmetic mean obtained by merging the data from these studies (Table 2-4).    
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Table 2-1.  Earhole dimension, age group and percentile (mm) [132] 

 Percentile 

AGE N MEAN 5
th

 10
th

 25
th

 50
th

 75
th

 90
th

 95
th

 

20 50 14.4 11.0 11.7 12.2 14.0 16.7 17.5 18.6 

30 50 15.2 12.1 12.5 13.0 15.0 15.5 18.9 20.8 

40 50 15.3 12.0 12.0 13.5 15.0 17.0 19.5 20.2 

50 50 15.3 11.9 12.0 13.0 15.0 16.7 19.7 21.9 

 

                      Table 2-2. Earhole dimension, age group and percentile (mm) [133] 

 Percentile 

AGE N MEAN 5
th

 10
th

 25
th

 50
th

 

20 50 16.3 12.5 13.0 15.0 16.0 

30 50 17.2 14.7 14.7 15.8 17.4 

40 50 17.9 15.8 16.2 16.8 18.2 

50 50 18.3 16.6 17.0 17.5 18.4 

 

                            Table 2-3. Arithmetic mean of the anthropometric data 

AGE N 
MEAN 

Liu (2008) 

MEAN 

Jung and Jung (2003) 
MEAN 

20 50 14.4 16.3 15.35 

30 50 15.2 17.2 16.2 

40 50 15.3 17.9 16.6 

50 50 15.3 18.3 16.8 

                                                                              

From the data above we obtain the arithmetic mean of the earhole dimensions of around 16.2 

mm. This dimension is close to the 75
th

 percentile for all males based on anthropometric data 

of the research of Liu and 50
th

 percentile for people in their 20s, 25
th

 percentile for people in 

their 30s, 10
th

 for people in their 40s and 5
th

 percentile for people in their 50s in the research 
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of Jung and Jung. In engineering design, percentiles are the most used anthropometric data. A 

percentile value for an anthropometric dimension represents the percentage of a population 

with a body dimension of a certain size or smaller [131]. From the percentiles obtained by 

Jung and Jung seems that an earpiece should be slightly bigger in order to cover a wider 

population. We can therefore recommend a 2-mm increment in earpiece diameter, with the 

length of the earhole applied to 50
th

 percentile data of all males. However, earphones are 

made slightly bigger than the earholes to ensure a perfect fit. From this finding we can 

conclude that in order to fit both big and small earholes, the earpiece should be measuring 

around 18.2 mm×16.2 mm, based on the fact that an oval shape felt better, fitted more 

comfortably and without slip off. 

2.3 Instrumented helmets 

In the late 1990s for the first time in helmeted sports were introduced instrumented helmets 

mounting accelerometers to measure the severity of a head injury. The actual acceleration 

experienced by the head may not accurately be measured by these instrumented helmets due 

to mainly helmet-to-head fit and helmet liner properties. In the latter case, the impact force is 

distributed over a large surface area by the shell of the helmet, and the helmet liner absorbs 

the acceleration forces, thereby reducing the acceleration of the head to non-concussive levels 

[15, 16, 17, 18, 19, 20, 21]. Therefore, if the helmet shell or liner is instrumented, the 

measured acceleration would not be the actual acceleration passed to the head [22, 23, 24], 

basically they overestimate the actual acceleration forces experienced by the head [22]. 

It is important that the measuring sensor be well-coupled to the head as in predicting head 

injury accurate measuring of head accelerations represents a key aspect. Therefore in the new 
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century the instrumented helmet solution has been soon replaced, by a mouthpiece 

accelerometer in the football [25] and by attaching the accelerometer to an earpiece and not 

to the helmet in the motorsport [26, 27]. With these novel solutions the effects of the shell 

and liner properties are eliminated, allowing for the direct assessment of acceleration 

experienced by the head.   

2.4 Earpiece accelerometer 

In 2000, as the importance of the measurement accuracy was crucial the instrumented 

helmeted solution has been replaced by introducing the accelerometer in the ear together with 

an earpiece [26, 27]. Instrumented earplugs were first introduced in 2000 by the Air Force 

Research Lab (AFRL) as a means of measuring head accelerations in race car drivers after it 

was shown that instrumented helmets slipped on the head during impact events. The helmet 

moves relative to the head and it did not produce an accurate reading of head forces. A 

version of these earplugs, the Delphi Earpiece Sensor System (DESS), was adopted by the 

Indy Racing League and Championship Auto Race Teams (CART) in 2003 (Figure 2-4). For 

the first time researchers were able to collect data on the dynamic forces impacting a race car 

driver‟s head during an accident. 

 
 

Figure 2-4. DESS and the smaller Endevco earplug [31] 
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The sensing system was consisting of 3 accelerometers (Analog Devices ADXL193), one for 

each axis and two circuit boards. The system had to fit inside the earpiece alongside the 

transducer for the radio receiver. The DESS is a variable-capacitance MEMS-based 

accelerometer. When the proof mass moves, with control provided by the springs, 

interleaving capacitive-sensing fingers detect minuscule changes in capacitance, which then 

get converted electronically to an acceleration reading. The following table summarizes the 

DESS specifications. 

                                 Table 2-4. DESS Specification 

Measurement Range ±250g 

Sensitivity 8mV/g 

Filtering 400Hz 2 pole Bessel filter 

Pre-filter headroom 1400g 

Output Voltage Range 0.25 to 4.75V 

Supply Current 3mA 

Supply Voltage +5V 

Temperature Range -40 to 125 degrees C 

Weight 3 grams 

Dimensions 9.9mm x 10.2mm x 6.6mm 

 

In 2006, Begeman et al. [29] reported that signals from DESS earplugs mounted in cadavers 

showed a phase shift at 50 and 100 Hz vibration, indicating less than perfect coupling with 

the head. This led to the development of a new miniature tri-axial accelerometer that is small 

enough to be placed in the ear canal portion of communication earplugs (earpieces), thereby 
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improving the coupling and thus the reliability of the recordings from drivers undergoing 

multi-axial crash events. 

Jesse Bonfeld in 2009 proposed to develop this mini-triaxis device. The AFRL/RHPA 

(Biomechanics Branch) team collaborated with Bonfeld to build the new sensors and provide 

the validation testing and comparison with the current operational sensors [31]. The new 

7273GT sensors were mounted in molded earplugs and subjected to impacts as high as 300g 

with very short durations in multiple axes. They were also subjected to vibrations up to 100 

Hz. The earplugs were mounted in artificial ears which were mounted on rigid blocks and on 

manikin heads. The sensors showed good correlation with reference sensors and 

demonstrated improved coupling to the head over the current generation of earplug 

accelerometers [31, 118] (Figure 2-5(a) and (b)). 

 
 

                                       (a) 
 

                                     (b) 
 

Figure 2-5. (a) Close-up of the 7273GT die mounted on a flex [118]. (b) Complete in-ear triaxial shock measurement 

system (Endevco) [118]. 

 

After the findings of Begeman (2006) [29] other studies have been undertaken in order to 

investigate the mechanical coupling between human head acceleration and a small tri-axial 

accelerometer package inserted into the ear bony canal. In 2009 Panzer at al. [107] used post 

mortem human specimens (PMHS) to carry out impact tests over a broad range of frequency 

inputs using moderate rate drop tests and high rate shock tube tests. The measurements 
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profile used were historically been used to quantify head injury risk. The result was a good 

agreement between sensors measurements due to an improvement of sensor positioning 

within the bony canal. Another work during the same period suggests to enhancing the 

measurement accuracy of the earplug by improving the position techniques and by using a 

stiff material for the mounting plug [30].  

Recently, in 2012, a 3-axis acceleration switch of 3×3-mm specifically designed for traumatic 

brain injury was developed as an early warning capable to power up only when an injurious 

event occurs [108]. A novel three-axial biomechanic piezoresistive accelerometer enhanced 

by silicon nanowires as nanoscale piezoresistor as an implanted device for head injury g-

loads detection for racecar drivers was also proposed in 2012 [134]. 

2.5 Acceleration Sensor  

A sensor is a device that converts a physical phenomenon input into an electrical signal 

output.  Acceleration sensors are sensing devices that provide an output proportional to 

acceleration, vibration, shock and seismic waves as input, measured in g-force. These sensors 

have found a wide variety of applications in both research and development arenas along with 

everyday use. In addition to the very technical test and measurement applications, such as 

modal analysis (the study of the dynamic properties of structures under vibrational 

excitation), NVH (noise, vibration and harshness - the study and modification of the noise 

and vibration characteristics of vehicles), and package testing, accelerometers are also used in 

everyday devices. They are widely used in automotive and space (airbag sensors and 

automotive security alarms, crash detection, stability control and navigation [88]), biomedical 

(activity monitoring [90, 91, 92], surgical instrument tracking [87]), consumer electronics 
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(portable computing, cameras lens stabilization, cellular phones), robotics (control and 

stability [89]), structural health monitoring, and military and sports applications (i.e. football, 

boxing, hockey and racing) for real-time health monitoring of traumatic brain injuries (TBI) 

due to impacts or blasts [32].  

Currently there are three main different technologies of accelerometers and each has unique 

characteristics, advantages and disadvantages. These accelerometers are different regarding 

the output (integrated electronic piezoelectric - IEPE output, charge output, voltage output, 4-

20mA output, velocity output), the design (shear type, flexural type, single ended 

compression type) and the technology (piezo-electric, capacitive, convection heat transfer, 

optical, piezo-resistive and servo). Many manufacturers use their own trade name to referring 

to sensor with built-in electronics, such as ICP
® 

(PCB Piezotronics), Deltatron (Bruel & 

Kjaer), Piezotron (Kistler Instruments), Isotron [37], and LIVM (Low Impedance Voltage 

Mode), to name a few. IEPE sensors incorporate monolithically built signal conditioning 

electronics that convert the high-impedance signal output generated by the piezoelectric 

sensing element into a usable low-impedence voltage signal that can be easily transmitted, 

over ordinary cable, to any voltage readout or recording device. The charge output has also a 

high-impedance output because the electrical signal is generated directly by the piezoelectric 

sensing element. Therefore a signal conditioning is required in order to condition the signal to 

a low-impedance voltage [33]. Tribo-electric noise in the cable is a drawback determined by 

the high-impedance signal, therefore special treated cable should be used [32]. In industrial 

process control the analog 4-20 mA output is commonly used. The key advantage of this type 

of accelerometer output is that the signal accuracy is not affected by voltage drop in the line, 

and the loop can supply continuously operating power to the device [81].  Velocity output is 

commonly used to evaluate the health of a machine and the accelerometers with this type of 

output are typically used in condition monitoring applications. Velocity is also used in very 
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low frequency applications where the vibration amplitude is too small to measure and the 

velocity vibration is of higher and more meaningful value. Velocity output accelerometers are 

mainly effective if the vibration frequency is higher than 2 Hz and ideally 5Hz [34]. 

To perform the transduction principles of a piezoelectric accelerometer different mechanical 

configurations are currently available [33]. These configurations are different in the way the 

piezoelectric material is excited by the inertial forces of an accelerated mass. In the shear 

mode of operation under acceleration the mass applies a shear stress to the sensing crystals. 

Shear accelerometers excel in rejecting thermal transient and base strain sensitivity [33]. 

Furthermore, the shear geometry favours itself to a small size, which promotes high 

frequency response while minimizing mass loading effects on test structure [32]. Flexural 

mode designs utilize crystals shaped as beams that are supported to create strain on them 

when accelerated. This type of design is characterized by insensitivity to transverse motion, 

therefore they are well suited for low gravitational acceleration and low frequency 

applications such as structural testing [32]. The compression mode accelerometers represent 

the historical accelerometer design; they provide high rigidity combined to a simple structure. 

There are mainly three types of compression designs: upright, inverted and isolated.  

2.5.1 Piezoresistive Accelerometers 

In the piezoresistive accelerometers the piezoresistive effect describes the change of a 

material‟s electrical resistance caused by an applied mechanical stress proportional to the 

applied inertial forces. The piezoresistive effect determines a change in resistance of 

piezoresistors (gauges) connected electrically in a Wheatstone bridge circuit [85] (e.g., Z-axis 

piezoresistive accelerometer with four gages in a full-bridge configuration, see Figure 2-8) by 

the inertial force exerted by the seismic (or proof) mass (2 gages in tension, 2 gages in 

compression in the Figure 2-8) due to acceleration (see Appendix G). The unbalanced 
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Wheatstone bridge network detects the fractional resistance change producing a proportional 

output voltage; this is true in a full Wheatstone bridge because other types of bridge introduce 

nonlinearities (see Appendix G for details). This type of technology, differently from the 

piezoelectric one, allows for a response down to DC (i.e., they respond to steady-state 

accelerations). 

 

 

 

Figure 2-6. Z-axis Piezoresistive Accelerometer [32] 

 

At frequencies close to 0 Hz, piezoelectric accelerometers cannot, when high accuracy is 

required, measure the acceleration an object is subject to. A static force results in a fixed 

amount of charges on the piezoelectric material and working with conventional electronics, 

not perfect insulating materials, and reduction in internal sensor resistance results in a 

constant loss of electrons, yielding an inaccurate signal [160].  When this slight inaccuracy is 

integrated in order to determine velocity, displacement and tilt, it becomes quite large. As a 

result, the velocity and displacement data are then inaccurate. For a static or quasi-static 

acceleration signal measurement, it is preferable to use either a piezoresistive or variable-

capacitance accelerometer [37].  
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Many and diverse technologies are utilized in the piezoresistive accelerometer fabrication. 

Generally, in the bulk micromachining fabrication process the sequence of steps are: to grow 

the single crystal silicon; the ingot is trimmed, sliced, polished, and cleaned to obtain wafer; a 

mask layout on the wafer is patterned by a photoresist deposited film for diffusion or ion 

implantation of a dopant into a defined surface region; places defined by the mask are etched, 

followed by removal of the photoresist; and isotropic and/or anisotropic wet or plasma 

chemicals are used for releasing the structure by etching. The piezoresistive coefficients of 

the silicon are determined by the resultant stress distribution in the piezoresistors, the doping 

concentration and finally the orientation of the silicon wafer. The advantages of an 

accelerometer built in this way are: a high stiffness, resulting in a high resonant frequency (ω) 

which means a large usable frequency response. Other desirable features of such device 

fabrication are miniaturization, relatively large sensitivity (semiconductor strain gages have a 

gage factor 25 to 50 times that of metal), good linearity. Temperature compensation allows 

such devices to operate over a temperature range of -65 to +250ºF [32].  

Roylance and Angell introduced the first fully integrated piezoresistive micromachined 

accelerometers in 1978 for biomedical applications [38, 39]. A comprehensive review on 

micromachined piezoresistive accelerometers was provided by Yazdi et al. [119]. Monolithic 

integration of piezoresistive accelerometers with CMOS circuitry that improves the output 

and compensates also temperature drift were developed in early 1990s [120, 121]. More 

recently a novel wafer-level package technique has been developed by encapsulating the die 

with a thick polysilicon epitaxial cup that protects the piezoresistors from dicing and plasma 

processing. Some devices that implement such novel encapsulation technique are the ones of 

Kwon and Park [123] which fabricated a three-axes piezoresistive accelerometer by using 

bulk micromachining and silicon direct bonding technology with a polysilicon layer. Also 

Partridge et al. [124] and Park et al. [125] for the piezoresistors used oblique ion-
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implantation and deep reactive ion etching (DRIE) to fabricate devices designed for lateral 

acceleration sensing; moreover they adopted encapsulation technique in their devices. Park et 

al. developed a sub-mm single axis piezoresistive accelerometer as a sound sensor for a 

cochlear implant. This technology is a possible alternative for implantable hearing aids [122].  

For wireless structural monitoring Lynch et al. [126] combined a planar piezoresistive 

accelerometer with wireless sensing unit. 

Many different 3-DOF (degree of freedom) piezoresistive accelerometer designs with highly 

symmetric geometry have been developed in the past. Currently they can be divided in 

accelerometers with cross beams, cross-inset beams or surrounding beams designs. 

Most of the structures with highly symmetric geometry present a cross [94, 96, 97, 98, 100, 

101, 103] or a cross-inset beams [95, 99, 102, 105] due to the higher stress obtained during 

deformation. Even though surrounding beams design [2, 93, 104] presents a lower stress 

profile compared to the cross-inset beams counterpart, the surrounding beams design presents 

the advantage of reducing the beams deformation. Reduced deformation determines a lower 

nonlinearity and cross-sensitivity effect; therefore a higher accuracy of the measurement is 

expected at the expense of mechanical structure sensitivity. Another option for further 

sensitivity increasing of the mechanical structure is to combine the cross-inset beams design 

to the surrounding beams design as in the work of Amarasinghe et al. [106].  

Regarding different types of pick-off in the piezoelectric accelerometers the piezoelectric 

effect of quartz or ceramic crystals triggers an electrical output when subject to compression, 

flexion or shear forces. A force applied to a quartz crystal lattice structure modifies alignment 

of positive and negative ions, determining an accumulation of these charged ions on an 

electrode. In an accelerometer, the stress on the crystals occurs by the seismic mass applying 

a force upon the crystal. On the usable frequency range, this structure obeys Newton's second 
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law of motion. Therefore, the total amount of charge accumulated is proportional to the 

applied force to the seismic mass, and the applied force is proportional to acceleration, 

therefore ultimately the voltage output is a measure of the applied acceleration [33].  

The frequency response of the sensor is determined by the resonant frequency of the sensor, 

which occurs when the sensor is excited at his natural frequency (Figure 2-7). The resonant 

frequency (ωo) of the sensor can be calculated by:  

     
 

 
  ,  where k is the stiffness and m the mass. 

 
Figure 2-7. Typical frequency response of accelerometer [33] 

 

The usable frequency response as depicted in the Figure 2-7 is the flat area of the frequency 

response curve and extends to approximately ⅓ to ½ of the natural frequency [34]. 

The natural frequency of an accelerometer is the frequency at its highest peak (Figure 2-7). 

From a frequency of around ⅓ to ½ of the natural frequency the ratio of output to input or 

transfer function becomes non-linear and therefore the measurement is difficult to be 

interpreted. A higher natural frequency of an accelerometer frequency response is preferable 

since it is wider  the band of frequencies that can be measured. It can be seen from the 

formula of the resonant frequency that as the mass decreases the natural frequency increases 
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which is good for the measurement, but a small mass typically determine a lower sensitivity 

and this is true for most high frequency accelerometers [34]. 

In capacitive accelerometers the acceleration is a measure of an unbalanced bridge, 

measuring a change in capacitance. The pick-off element is formed by two parallel capacitors 

that work in a differential mode. These capacitors operate in a bridge configuration and are 

dependent on a carrier demodulator circuit to produce an electrical output proportional to 

acceleration. These types of accelerometer are built in a surface micromachining process [36] 

and typically a monolithically built electronic circuit is required for proper operation of a 

capacitive accelerometer. One of the major advantages of capacitive accelerometers is to 

measure low level (less than 2g), low frequency (down to DC) acceleration with high shock 

survivability, typically 5,000g or greater, and high accuracy [32]. 

In convectional heat transfer accelerometers a single heating element is centred in a substrate 

and suspended across a cavity with temperature sensors positioned in all four sides of the 

suspended heating element (Figure 2-8). Under zero acceleration the heat gradient will be 

symmetrical, which means that all the temperature sensors measure the same temperature. 

Due to convection heat transfer the acceleration in any direction causes the heat gradient to 

become asymmetrical and the unbalanced temperature sensors would represent a measure of 

the acceleration [35]. Simple electronics is typically used to converts the temperature 

measurements into signals. 

 
 

Figure 2-8. Convective Heat Transfer Accelerometer (MX2125) [128] 
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In the optical pick-off type of accelerometers the acceleration is converted in an electrical 

signal based on an optical intensity modulation techniques. There are two main categories of 

these devices. The first consist of two fibres attached to a substrate with supporting bars, one 

completely attached and the other one is a cantilever-like fibre beam. The other category is 

based on movable shutter fabricated by micromachined processes (MOEMS) [41]. An 

example is illustrated in the Figure 2-9.  

 
 

Figure 2-9. Silicon Micromachined MOEMS device [129] 

 

The servo or force-rebalance type of accelerometer, which integrate a control system with 

feedback, is the most sensitive (capable of sensing distant earthquakes in micro-g's) and most 

precise (used in navigation of spacecraft) accelerometer. All type of open-loop sensors 

described so far may have a certain actuation system that works as force-rebalance. Typically 

the accelerometer that implements such system is the variable-capacitance accelerometer 

since the actuation is straightforward.  
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2.6 Piezoresistance 

The piezoresistance effect can be described in a matrix form where each of the six fractional 

resistivity changes relates to each of the six stress components [40] (see Appendix H). Kanda 

[72] generalized the fractional resistivity change by [40]: 

   

 
       

 
                                                                      (2.1) 

where ω is a fixed voltage and current orientation and λ the stress orientation. 

Mathematically this yields a matrix of 36 coefficients. By definition, the elements of this 

matrix are called piezoresistance coefficients, πωλ, (ω, λ=1 to 6), expressed in Pa
-1

. 

Generally, two  piezoresistors‟ contacts are formed by masked-ion implantation method, and 

lie on very thin surface layer, the beam [32]. Therefore, only two piezoresistance coefficients, 

i.e. π’11 and π’12 are relevant for calculation. π'11 corresponding to the case the stress parallel 

with the direction of electric field and current density, thus it is called the longitudinal 

piezoresistance coefficient, denoted by πl. Similarly, π’12 relating to the case the applied 

stress  perpendicular to the electrical field and current density, hence it is called transverse 

piezoresistance coefficient, πt. The shearing stress is neglected since it is much smaller than 

the others. These two coefficients are expressed through three fundamental piezoresistance 

coefficients π11, π12, π44, and directional cosines (l, m, n) for arbitrary crystal orientation by 

the general formulation for longitudinal (πl  =  π’11) and transversal (πt  =  π’12) piezoresistive 

coefficient by Mason and Thurston [70]:  

   
            

   
    

   
    

   
                                               (2.2) 
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                     and       
     

                                          (2.4)                       

Based on the theory and equation above, the resistance change can be calculated as a function 

of the beam stress. In the accelerometer the piezoresistors are located on the surface of a thin 

beam, therefore the material is stressed mainly in two dimensions at the surface plane. The 

mechanical stresses are considered constant over the piezoresistors; the fractional resistance 

change is simply given by: 

  

 
                                                                              (2.5) 

where σl and σt are longitudinal and transversal stress, the shearing stress is neglected since 

very low respect to the others. It is noted that the above equation is only valid for uniform 

stress fields or if the piezoresistor dimensions are small compared to the beam size [71 , 40]. 

The first materials widely used as piezoresistors were single crystal germanium and silicon 

because with diamond lattice crystal structure. In 1954 in these semiconductor crystals Smith 

[48] reported the first measurements of large piezoresistive coefficients noting that this 

phenomenon could be explained by the work of Bardeen and Shockley [157], and later 

Herring [110, 111]. Smith measured the piezoresistive coefficients for (100) samples along 

the <100> and <110> crystal directions. Longitudinal and transverse coefficients for the 

fundamental crystal axes were determined directly. Shear piezoresistive coefficients were 

inferred. By these measurements and considering the crystal symmetry, Smith fully 

characterized the piezoresistive tensor of 7.8 Ω-cm at low p-Si concentration. At light 

concentrations (1.7×10
15 

cm
-3

), Smith [48] found the p-type longitudinal piezoresistive 

coefficient in the [110] direction for bulk silicon to be relatively constant at 72×10
-11

 Pa
-1

 

[(π11+π12+π44)/2]. His results have been showed graphically by Kanda [72] (see Appendix H). 

In other words, p-type piezoresistors must be oriented along the <110> directions to measure 

stress and thus should be either aligned or perpendicular to the wafer primary flat [73]. The 
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piezoresistance coefficient magnitude decreases significantly with the doping concentration 

and the temperature. The first systematic experimental study on piezoresistance over a broad 

temperature range (-90°C to 100°C) and doping concentration levels was carried out by Tufte 

and Stelzer [69] in the early 1960s. Subsequent studies by many investigators have generally 

confirmed the trend of their results. Kanda [72] has theoretically discussed the dependence of 

the piezoresistive coefficient on the impurity concentration and temperature. He concluded 

that the piezoresistive coefficient with a doping concentration of N at a temperature T, Π(N, 

T), can be generally expressed as: 

                                                                             (2.6) 

where Π(300K) is the piezoresistive coefficient at room temperature (300 K or 25°C) for low 

doped material of the same conductive type and P(N,T) is a factor indicating the dependence 

of the piezoresistive coefficient on the doping level and temperature. Based on the multi-

valley theory of semiconductor energy bands, the factor P(N,T) has been calculated. The 

calculated values of the P(N,T), agree well with the experimental values obtained by Mason 

[70] for doping concentrations less than 1×10
17

 cm
-3

, over the temperature range of 50°C to 

150°C, but differ by 21% at a concentration of 3×10
19

 cm
-3

 at room temperature. The error 

was attributed to dopant ions scattering for high dopant concentrations, whereas the 

calculation only considered lattice scattering. Harley and Kenny [53] later evaluated data 

from several researchers (see Figure 2-10) and provided an empirical fit of piezoresistance vs. 

concentration that better estimates the sensitivity for higher concentration devices.  
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Figure 2-10. Piezoresistive Factor comparison at room temperature [53] 

 

The theory underlying the physics of the piezoresistive effect of semiconductors are grounded 

in one-dimensional descriptions of electron and hole transport in crystalline structures under 

strain. During that period the existing theories were based on bandgap energies shifts, and the 

change in mobility with the lattice strain was explained as band warping or bending and the 

non-uniform density of states [109 – 112]. The many-valley model of Herring [110, 111] is 

the main model used for explaining the physics underlying the piezoresistive effect of n-type 

silicon. In 1988, Lin [113] explained the large mobility degradation at higher transverse 

electric field by the scattering mechanisms of quantized subbands at (100) silicon planes.  

The physics of p-type silicon piezoresistance has been almost unknown for decades due to the 

inherent complexity of valence band structure [114], most of the research and commercial 

piezoresistive devices had therefore been mainly based on experimental studies. However, 

only recently computational advances allowed improving the understanding of the p-type 

silicon piezoresistance effect [115 – 117].   
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2.6.1 Piezoresistance of p-type and n-type single crystal silicon 

The doping concentration [69, 161], type of dopant [69, 161], and temperature of the 

substrate [69, 72] influence the piezoresistive coefficients of single-crystal silicon that are not 

constants. Different elements of the π matrix (π11, π12 and π44) are affected differently by 

temperature and doping concentrations. With increasing temperature and doping 

concentrations the value of the piezoresistive coefficient decreases for both p- and n-type 

silicon. The values of π11, π12 and π44 for single-crystalline silicon under certain doping 

concentration and dopant types have been experimentally characterized. Several typical 

values for selected doping concentrations are listed in Table 2-5. 

Table 2-5. Piezoresistivity components for single-crystal silicon under certain doping values.  

Piezoresistive coefficient  

(10
-11 

Pa
-1

) 

n-type 

(resistivity = 11.7 Ωcm) 

p-type  

(resistivity = 7.8 Ωcm) 

π11 -102.2 6.6 

π12 53.4 -1.1 

π44 -13.6 138.1 

 

However, all 36 of the coefficients in the coefficient matrix [π] may be nonzero when 

referring to a Cartesian system of arbitrary orientation relative to the crystallographic axes 

[162]. In the case of silicon, the components of the matrix change if the x-, y-, and z-axes are 

not aligned to <100> directions.  

In the most commonly occurring cases, when the piezoresistor points in <100>, <110> or 

<111> directions [72, 163] the effective longitudinal and transverse piezoresistive 

coefficients are summarizes in Table 2-6.  
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Table 2-6. Formula for transverse and longitudinal piezoresistive coefficient for various 

commonly encountered resistor configurations. 

Direction of 

strain 

Direction of 

current 
Configuration Piezoresistive coefficient 

<100> <100> Longitudinal π11 

<100> <010> Transversal π12 

<110> <110> Longitudinal (π11 + π12 + π44)/2 

<110> <1  0> Transversal (π11 + π12 - π44)/2 

<111> <111> Longitudinal (π11 + 2π12 + 2π44)/2 

 

Combining the results in Table 2-5 and the formula of the piezoresistive coefficients in Table 

2-6 it is possible to estimate the fractional resistance change (Eq. 2.5) for n-type and p-type 

piezoresistors in the <100> and <110> direction. N-type piezoresistors in the <100> direction 

with a resistivity of 11.7 Ωcm have a fractional resistance change equal to: 

  

 
                                           

   

 
          

  

 
           (2.7) 

Equation 2.7 shows the fractional resistance change as function of only the longitudinal 

piezoresistive coefficient and that the fractional resistance change is zero for a transversal 

stress twice the longitudinal stress. Therefore n-type piezoresistors in the <100> direction are 

suitable for measuring acceleration when the longitudinal stress is the main stress component 

as in uniaxial stress application. Clearly the p-type piezoresitors in this direction with a 

resistivity of 7.8 Ωcm are not suitable for measurements due to the very low piezoresistive 

coefficients. 

In the <110> direction the n-type piezoresistors have a longitudinal coefficient of -31.2×10
-11 

Pa
-1

 and a transversal coefficient of -17.6×10
-11 

Pa
-1

. This configuration is in general not 

prefered for measurements due to the low piezoresistive coefficents compared to the <100> 
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direction. P-type pezoresistors in the <110> direction with a resistivity of 7.8 Ωcm show a 

fractional resistance change given by: 

  

 
     

   

 
    

   

 
  

   

 
                                                       (2.8) 

where π11 and  π12 are considered zero due to their very low value compared to the π44. This 

configuration is suitable for measurements and used in this study. P-type piezoresistors in the 

<110> direction are preferred in this work compared to the n-type in the <100> direction 

because is a convenient crystallographic orientation from a fabrication standpoint [53], 

moreover boron is the most common used dopant. In a (100)-oriented wafer the p-type 

piezoresistors in the <110> direction are orthogonal to each other, therefore fabricating the 

piezoresistors in the X and Y-axis pointing to the <110> direction it is possible to measure 

the in-plane acceleration by simple Wheatstone bridges circuits (see Appendix G and H for 

details). 

2.6.2 Giant Piezoresistance in Silicon Nanowires 

In the last decade experimental studies on piezoresistance effect of silicon nanowires agreed 

that SiNWs under uniaxial stress offers an enhanced piezoresistance effect respect to the bulk 

counterparts [2-7]. 

The origin and behaviour of this phenomenon called in the literature “Giant Piezoresistance” 

is currently not clearly understood. The origin of the giant piezoresistance effect was 

examined in numerous works [12, 45-47, 140-149]. Alongside with the quantum confinement 

[45, 137-139] the nature of the giant piezoresistance [3, 140] was explained by the following 

reasons: strong strain-dependence of effective masses of holes [46], strain modulation of the 

surface potential [47, 149], interface trapping of charged carriers [140] and stress 

concentration regions [150]. Existence of the giant piezoresistance in nanowires [3] was 
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contested in work [79]. To date, relatively few reports on the development of silicon 

nanowire-based sensors are available [42]. However, p-type single crystalline SiNWs have 

been studied for sensor applications [2, 13, 14, 43, 44, 134, 136]. 

Toriyama et al. studied silicon nanowire piezoresistors have been fabricated by separation by 

implanted oxygen (SIMOX), thermal diffusion, electron beam (EB) direct writing, and 

reactive ion etching (RIE) [43]. Longitudinal and transverse piezoresistive coefficients, πl 

<110> and πt <110> , are both dependant on the cross sectional area of the nanowires. The πl <110> 

of the nanowire piezoresistors increased (up to 60%) with a decrease in the cross sectional 

area, while πt <110> decreased with an increase in the aspect ratio of the cross sectional area. 

The enhancement behaviour of the πl <110> was explained qualitatively using 1-D hole transfer 

and hole conduction mass shift mechanisms. The decrease in the πt <110> with increase in the 

aspect ratio of the cross sectional area is explained due to decrease in the stress transmission 

from substrate to the nanowire. The maximum value, πl <110> of 48 x 10
-11

 Pa
-1

 at a surface 

concentration of 5 x 10
19

 cm
-3

, suggests enough sensitivity for sensing applications (see Table 

II, [43]). Dao et al. incorporated these p-type silicon nanowires as piezoresistive elements in 

a miniaturized 3-degrees-of-freedom (3-DOF) accelerometer [2, 6]. Initial experimental 

studies undertaken by He and Yang [3] reported a very high piezoresistive effect (increased 

up to 3,776%) of self-assembled single crystal silicon nanowires in the <111> 

crystallographic orientation. Reck et al.  later on used a lift-off and an electron beam 

lithography (EBL) technique to fabricate silicon test chips and study the piezoresistive 

properties of crystalline and polycrystalline nanowires as a function of stress and temperature 

[4]. They found that the piezoresistive effect in the <110> direction greatly increases as the 

silicon nanowire diameter decreases (up to 633%), consistent with the results from He and 

Yang [3]. Finally, Passi et al. [7] recently obtained an increase of piezoresistance of up to 

2,140% respect to the bulk-Si in the same crystallographic direction, the <110>. 
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Some hypotheses have been speculated on the origin of such phenomenon, initially it was 

explained based on transconductance data as being due to enhanced strain modulation of 

carrier mobility in the p-type <111> and <110> SiNWs [3]. However, first-principle 

calculations later on point out surface states being the main culprit in p-type <111> silicon 

nanowires [46, 47]. But in 2009 first-principles results on piezoresistive effect in silicon 

nanowires in the <111>, <110> and <100> directions carried out by Nakamura et al. [12, 45, 

137-139] were in contrast to the calculation by Cao et al.[46] that the hole transport occurs on 

the wire wall in p-type <111> SiNWs with dangling bond. Nakamura et al. [12, 45, 137-139] 

in their simulation model find out that the hole transport occurs stably in the interior of p-type 

<111> SiNWs without dangling bond. They conclude that the <100> direction is the most 

suitable one for integrating p-type SiNW without dangling bond as nanoscale piezoresistors 

and allege the origin of such Giant Piezoresistance in this direction (πl<100>= 588 × 10
-11

 Pa
-1

) 

can be explained in terms of orbital interactions theory [6, 12]. Finally in this study they 

obtained that the p-type <111> SiNWs without dangling bonds (H-terminated wire wall) have 

small piezoresistive coefficients, which is contradictory to the experimental results obtained 

by He and Yang [3] and in contrast to those in the case of p-type bare-walled <111> SiNW 

with dangling bonds, reported by Cao et al. [46]. Therefore Nakamura et al. [12, 45, 137-

139] predict that <111>-oriented SiNWs will not be suitable candidate for nanoscale 

piezoresistors. In conclusion it may be asserted that conductivity of p-type <111> SiNW 

differs greatly between wire walls with or without dangling bonds and then it is natural for 

SiNW with a giant piezoresistance coefficient to be under an irregular wall-termination 

condition [45]. Finally, recently experimental findings adduced the giant effect of being a 

surface induces effect with {110} surfaces inducing much larger piezoresistance than {100} 

surfaces [5], showing a clear aspect ratio dependence of piezoresistance coefficient. This 

work supports the computational work of Cao et al. [46] and Rowe [47] pointing towards 
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surface states being the source of giant piezoresistance. In particular Rowe identifies the 

origin of this phenomenon in the partial depletion of the conduction channel.   

Recently research by Milne et al. [79] claimed that this phenomenon may not exist after all 

The France-Switzerland research team claimed that the observations of giant piezoresistance 

were probably artefacts and caused by surface trapping of charges (also known as dielectric 

relaxation) that takes place in the Si/SiO2 interface and induced by the voltage applied to 

measure the resistance. The charge trapping results in partial depletion of the nanowires 

determining the giant effect. The team by applying a heterodyne detection (an oscillating 

stress to its samples) were able to separate any non-stress-related drift in the resistance value 

from that caused by the applied stress. In this way the stress repeatedly increases and then 

decreases as function of time. According to Rowe [158], heterodyne techniques were never 

applied before to piezoresistance measurement before, so previous measurements revealed 

large (but not stress-related) resistance change in the silicon nanowires. Yang replied [158] to 

the results of Rowe [47, 79] by saying that they reported piezoresistance measurements on 

top-down micro and nanowires while in their measurements they used bottom-up grown 

nanowires. Since bottom-up synthetic bridging nanowires have quite different strain levels, 

surface states and dopant profiles from those of top-down fabricated ones the results obtained 

are of different nature. Moreover, the team of research guided by Yang [86] recently 

demonstrated the first resonator piezoresistively transduced with very high frequency (100 

MHz) using silicon nanowire with on-chip electronic actuation at room temperature. Yang 

claimed that their resonator would not be possible without enhanced piezoresistance effect 

[86].  

Another study undertaken by Koumela et al. [80] showed that top-down nanowires appear in 

general to have a gauge factors close to bulk, except for low doped suspended nanowires with 
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a gauge factor twice as high as the bulk. Top-down nanowires [5, 79] have shown much 

lower piezoresistive coefficients than the ones observed for bottom-up devices [3]. The 

results of this study support the work of Milne [79] and Barwicz [5] where no giant effect 

was observed. Table 2-7 summarizes the major experiments undertaken on p-type silicon 

nanowires under stress/strain.   

The modelling of the silicon nanowires based on first principle simulation have revealed a 

piezoresistance effect higher than in the bulk counterparts in the <100> direction and similar 

to the bulk counterparts in the <111> [10, 12, 45, 46, 137-139]. These results are in contrast 

to the experimental work carried out so far. Therefore, future modelling and experimental 

work need to be conducted in conjunction in order to clarify the origin and to better describe 

the phenomenon under study. 
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Table 2-7. p-type silicon nanowires experiments 

Researchers 

and date 

Stress 

direction and 

Magnitude 

(MPa) 

Crystallographic 

Orientations 

Nanowires 

Size 

(W×T×L) 

Aspect 

Ratio 

(T/W) 

Doping 

Type 

Doping 

Concentration 

(cm-3) 

Sheet 

Resistance 

(Rs), 

Resistivity 

(ρ) or 

Resistance 

(R) 

Piezoresistive 

Coefficients: 

longitudinal (πl) 

and transverse 

(πt) (MPa-1) 

Resistance 

change vs. 

Stress 

response 

Tufte and 

Stelzer 

(1963) [69] 

N/A <110> Bulk N/A p-Type Ns: 5x1019 

ρ(Ω-cm): 

0.003 
 

πl: 31x10-5 

πt:-31x10-5 

Linear 

response 

Toriyama et 

al.  (2002) 

[43] 

Tensile (0 to 
80) 

<110> 

W: 53-

333nm 
T:53-65nm 

L: 3µm 

0.2 to 
1.01 

p-Type Ns: 5x1019 

Rs(Ω/□): 

809 
R(kΩ): 

9.1-105.8 

πl: 30 to 48x10-5 

πt:-4 to -20x10-5 
Linear 

response 

Toriyama et 

al. (2003) 

[44] 

Tensile (0 to 

115) 
<110> 

W: 100nm 

T:53nm 

L: 3µm 

0.53 p-Type Ns: 9x1019 

Rs(Ω/□): 
604 

R(kΩ): 

61.2 
 

πl: 38.7x10-5 

πt: 0 

Linear 

response 

Dao et al. 

(2004) [2] 

Tensile (0 to 

115) 
<110> 

W: 53nm 
T:53nm 

L: 3µm 

1 p-Type Ns: 5x1019 

Rs(Ω/□): 

809 
R(kΩ): 

105.8 

 

πl: 30 to 48x10-5 

πt:-4 to -20x10-5 

Linear 

response 

Okamura et 

al. (2005)* 

[13] 

-0.7 to 0.7 
(20G) 

<110> 

W: 100nm 

T:150nm 

L: 4µm 

1.5 p-Type Ns: 5x1019 

ρ(Ω-cm): 

0.003 

 

N/A N/A 

Sakai et al. 

(2006)* [14] 

-0.9 to 0.6 
(20G) 

<110> 
W: 300nm 
T:170nm 

0.56 p-Type Ns: 5x1019 

R(kΩ): 

20 

 

πl: 35x10-5 

 
N/A 

He and 

Yang (2006) 

[3] 

-80 to 80 <111>, <110> 

D<111>: 50nm 

To 350nm 

(diameter) 
D<110>: 73, 

75nm 

(diameter) 
L: 1.5 µm 

1 p-Type 

Ns<111>: 1x1015 to 

5x1019; 

Ns<110>: 1.3x1014 
and 6x1016 

ρ<111>(Ω-
cm): 

0.003 to 

10 
ρ<110>: 

0.3, 100 

πl<111>: 35x10-5 

to 3,550 x10-5 

πl<110>: 660 to 
3100 x10-5 

Non Linear 

response 

Reck et al. 

(2008) [4] 

Compressive 
(0 to 90) 

<110> 

W: 50 to 
350nm 

T:140 to 

480nm 
L:1 to 7 µm 

0.4 to 
1.4 

p-Type 
Ns: 4x1016 and 

3x1018 

ρ(Ω-cm): 

0.02 and 

0.4 

πl<110>: 70 to 
455x10-5 

Linear 
response 

Barwicz et 

al. 2010 [5] 

Compressive 

(0 to 150)  

<110>-
oriented 

<110>, <100> 

W: 5 to 

113nm 
T:23 to 

45nm 

L:400 nm 

0.4 to 

4.6 
p-Type Ns: 1x1015 ρ(Ω-cm): 

14 
πl<110>: 290x10-5 

Linear 

response 

Dao et al. 

(2010) [6] 
N/A <110> 

W: 35-

480nm 

T: 35nm 
L: 2µm 

0.07 to 

1 
p-Type Ns: 1.28x1018 N/A 

 

πl: 80 to 130x10-

5 

 

N/A 

Passi et al. 

(2010) [7] 

Tensile (0 to 

200) 
<100> 

W: 25-

1000nm 
T: 50nm 

L: 0.3 to 

2.4µm 

0.05 to 

2 
p-Type 

Ns: 6.55x1014 and 

4.74x1018 

ρ(Ω-cm): 
0.014 and 

20 

πl: 1350 to 
1538x10-5 

 

Non Linear 

response 

Milne et al. 

(2010) [79] 
-13.3 to 13.3 <110> 

W: 50-

3000nm 

T: 50-
2000nm 

L: 1, 30 µm 

0.1 to 2 
n-Type 

p-Type 
N/A N/A 

πl: -99 to 

205x10-5 

Non Linear 

response 

Koumela et 

al. (2011) 

[80] 

N/A <110> 

W: 36, 40 
nm 

T: 38, 40 nm 

L: 350 nm 
to 5µm 

 

~1 p-Type 
Ns: 5x1017 to 

2x1020 

ρ(Ω-cm): 
0.0006 to 

0.06 

Gauge Factor: 

235 

Linear 

response 

*SiNW embedded in an accelerometer 
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2.6.3 Fabrication processes of silicon nanowires 

Currently there are two main technologies for the fabrication/growth of nanowires: self-

assembly and top-down approach. The self-assembly technology is a growth mechanism. The 

more common growth mechanisms are vapour-liquid-solid (VLS) and oxide-assisted growth 

(OAG) mechanisms [10]. In the VLS model, the nanowire grows from a metal-catalyst 

droplet during silicon vapour deposition. The metal particles are present at the tips of the Si 

NWs. This mechanism is used by He and Yang [3] for growing their nanowires in the <111> 

and <110> direction using Pt as catalyst and SiCl4 as precursor at 900°C. The oxide-assisted 

growth process produces metal-free SiNWs. The mechanism does not require metal catalyst 

and the oxide is continuously needed throughout the entire nucleation and growth process 

[10]. Main problem of the use of this technology is the integration of the silicon nanowires 

growth into the MEMS fabrications steps.   

The top-down approach of fabrication of nanowires comprises mainly two different 

technologies: electron beam lithography (EBL) and nanoimprint lithography (NIL). These are 

currently part of standard industrial micro/nano fabrication. Both technologies have sub-10 

nm resolution, a limit of 3-5nm resolution is achievable with both technologies [50, 51]. EBL 

consists of a focused electron beam with nanometre spot size that is scanned across the 

surface to be patterned. EBL is a maskless lithography, where the electron beam directly 

creates the fine patterns with random shapes in positive and negative electron beam sensitive 

resists [51]. Because of serial pattern generation EBL suffers from serious throughput 

limitations. It is typically ideal for research and development and small volume production. 

The EBL is followed by RIE etching or lift-off as pattern transfer. For industrial scale 

nanowire fabrication, NIL is a more suitable technology. Ultraviolet nanoimprint is a 

mechanical molding technique. A template made from quartz or a flexible elastomer with a 
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3D relief is brought into intimate contact with a UV-curable resist spin-coated on top of a 

substrate. Applying low imprint pressure at room temperature, features are filled within 

seconds due to the low viscosity of the imprint resist. Alignment of template and wafer is 

carried out with high precision and the resist is hardened via UV-light through the backside 

of the template. Finally substrate and template are separated. The replicated resist relief can 

further be transferred into the substrate via RIE-process or used as functional element [50]. 

These two technologies can be combined, in particular the EBL is used to fabricate efficient 

moulds for nanoimprinting structures with high density moulds [50, 51].  

2.7 Gap in Knowledge 

All of the studies reported in this study agreed that low doping and surface-to-volume ratio 

represent the main parameters that boost the piezoresistance effect of SiNWs. Some 

hypotheses have been speculated on the origin of such phenomenon [42]. Recently the major 

culprit has been indicated to be surface-state induced effect for nanowires smaller than 70 nm 

width, and enhanced strain modulation of carrier mobility for larger nanowires [43].     

In this work the author intends to investigate experimentally the suitability of p-type SiNW in 

the <111> direction as nanoscale piezoresistors for mechanical sensors, by fabricating 

nanotechnology samples.  
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From the literature review outlined in the Table 2-5, the following summarized 

considerations have been made:  

a. No experimental data are available for SiNWs with feature around 5 nm in any of the 

<111>, <110> and <100> directions.  

Mainly because of technology difficulties in the downscale of SiNWs.  

b. No experimental data are available for p-type SiNW in the <100> direction under 

only uniaxial stress 

Because of the very low piezoresistive effect of the bulk piezoresistor counterparts in the 

<100> crystallographic direction  

c. No experiment has been undertaken on bottom-up silicon nanowires applying an 

oscillating stress. 

The surface charge trapping of SiNW was unknown before the study of Milne at al. [79] 

d. Not clear explanation has been given on the giant effect origin (surface induced or 

carrier mobility modulation or orbital interaction) and two studies [79, 80] did not 

observe this phenomenon at all. 

There are controversial results and explanations of previous theoretical and experimental 

studies. 

The p-type <100>, <111> SiNW showed Giant effect in first-principles calculations [10, 12, 

45, 46, 49],  

BUT:  

1 The p-type <100>, <111> SiNW are suitable as piezoresistor? 
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2 The bottom-up silicon nanowires under oscillating stress do they show an 

enhanced piezoresistance effect?  

The experimental work undertaken in this study aims to answers part of the first question 

demonstrating the feasibility of fabricating silicon nanowires as nanoscale piezoresistors in 

the <111> direction. 

2.8 Conclusion 

The investigation carried out on silicon nanowires will ultimately allow the development of 

inertial sensors (e.g. accelerometer) with a very tiny footprint being characterized by high 

sensitivity not achievable before. Traditionally a trade-off between miniaturization and sensor 

sensitivity has limited the miniaturization and together the accuracy achievable. To date no 

tri-axis accelerometer are commercially available with a size below 2×2 mm capable to 

measure impacts events of >250g; besides, none of them can avoid amplification of the 

output signal, mainly because the relative high thermo-mechanical noise due to small proof 

mass size. The sensitivity achievable by the incorporation of quantum wires that benefits 

giant effect within the sensor (two orders of magnitude larger than that of bulk silicon, [6]) 

will permit to obtain an electrical sensitivity (static response) such that the device will not 

require any kind of amplification (high accuracy of measurements) and will allow to achieve 

a miniaturization level not permitted before. Obviously, sensors that avoid amplifier enjoy a 

much higher sensing accuracy. This study will predict the advent of a new class of electro-

mechanical-system devices in the nanoscale dimension (NEMS) with a footprint less than 1 

square millimetre with high sensitivity and accuracy. 
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Major applications of such novel sensor based on enhanced nanoscale piezoresistors are in 

the biomedical arena, such as implantable devices for motion/vibration sensing. Examples are 

in hearing aid systems (implantable sound sensor for cochlear implants [112]), heart wall 

motion measurement for cardiac artificial pacemakers (an adaptive control system that 

detects the human body activity level in order to adjust accordingly the pacemaker rate 

response [102]) and head injury monitoring of military soldiers and race car drivers in case of 

blast and crash respectively (an earplug sensor placed in the inner ear canal). It is presumed 

that such devices, with these amazing technical characteristics driven by nanotechnology, 

will spread also in the area of consumer products as can be observed already with 

conventional accelerometers. 

Moreover, shrinking the miniaturization size in the sub-millimetre will pull the fabrication 

cost down due to the higher number of devices fabricated per silicon wafer (batch fabrication) 

and at the same time will increase the systems integration in a single chip allowing the 

development of increasingly intelligent sensors. Currently the most time and cost effective 

nanofabrication process of nanowires that seems more suitable for high volume 

manufacturing processes in the area of top-down fabrication technology is the nanoimprint 

lithography (NIL). The electron beam lithography (EBL) in comparison is much more time-

consuming process and with higher cost obtaining similar or less resolution than NIL. Other 

option is to grow the nanowires as self-assemble devices, which is the technique used in this 

work. Currently most of the work on silicon nanowires as nanoscale piezoresistors has been 

carried out on top-down fabricated sensors, therefore the few study on bottom-up silicon 

nanowires are not exhaustive, and this work intends to progress the knowledge on this type of 

sensors.   

All the historical findings since the experimental work of Smith [48], graphically described 

by Kanda [72] first and then improved by a fitting function of Harley and Kenny [53] that 
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perfectly describes the work of Mason et al. [70], Tufte et al. [69] and Kerr et al.[75] have 

been presented. The effort to explain the physics behind the piezoresistive phenomenon by 

Herring [110, 111] with his many-valley model and by Lin [113] with his scattering 

mechanism of subbands theory has been highlighted. The most recent advancement on the 

piezoresistive effect in the nanoscale dimension outlining all major experiments on p-type 

silicon nanowires and first-principle calculation by simulation models proposed by Nakamura 

et al. [12, 45, 137-139] have been addressed. The latest developments of Milne [79] and 

Koumela [80] on possible explanations of the giant effect as apparent phenomenon due to 

dielectric relaxation are also considered.   The work done so far on the giant piezoresistance 

effect is: 

a. Limited to nanowires size above 5 nm in the <110> and <111> directions,  

b. No experiments are currently available on bottom-up silicon nanowires applying 

oscillating stress.  

c. The work carried out on explaining this phenomenon, if really exists, by first-

principal simulations contradicts the results of various experimental studies. 

The next chapter deals with the design and simulation of a novel accelerometer that embeds 

silicon nanowires as nanoscale piezoresistors. Moreover in order to highlight the potential of 

the nanowires, a comparison to conventional microscale piezoresistors is proposed.   
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Chapter 3 

3 DESIGN, MODELLING AND OPTIMIZATION OF A BIO-MECHANIC 

PIEZORESISTIVE ACCELEROMETER WITH SILICON NANOWIRES 

3.1 Introduction 

This chapter aims at the design, modelling and optimization of a 3-axial single square 

millimeter bio-mechanic piezoresistive accelerometer and presents the simulation results. As 

accurate measuring of head accelerations is an important aspect in predicting head injury, it is 

important that the measuring sensor be well-coupled to the head [23]. Therefore, the main 

requirements of this application are miniaturization and medium-g measurement range to 

allow the accelerometer incorporation into an earpiece. In order to fulfil these requirements 

nanowires as nanoscale piezoresistive devices have been chosen as sensing element, due to 

their high sensitivity and potential in miniaturization [2-7, 43, 44].  The geometry structure 

has been selected based on sensitivity criteria by an optimization process using commercially 

available software ANSYS 12.1. Stress, deformation and modal analysis of nine different 

geometries has been undertaken with the common feature of being highly-symmetric (i.e. 

symmetry on the principal X and Y-axes, the respective diagonals and rotating of multiple of 
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90°). Moreover two new geometries not available in the literature have been developed in the 

study. These types of geometries are all single-mass and are divided in the literature in cross-

beams [94, 96-98, 100, 101, 103], cross-inset beams [95, 99, 102, 105], surrounding beams 

[2, 93, 104] and surrounding cross-inset beams [106]; all of them allow the minimizing of the 

overall cross-sensitivity due to a self-cancelling feature typical of highly-symmetric 

geometry. In the literature only few piezoresistive accelerometers have been developed with 

silicon nanowires and surrounding beams [13, 14]. 

Section 3.2 introduces the main elements and considerations that have driven the 

accelerometer design and in section 3.3 follows the FE modelling. In section 3.4 the 

optimization process of nine different shapes is presented. Section 3.5 presents the results of 

the device performance calculation by comparing silicon nanowires to conventional 

microscale piezoresistors. Finally the optimization results are presented and the final optimal 

geometry is enhanced with the design of overload end stops. 

3.2 Accelerometer design concept and considerations 

The key design criteria are to develop a „High Resolution - Low power 3-DOF Piezoresistive 

MEMS-based Accelerometer‟. Low power consumption is mandatory for this device since it 

is placed inside the ear, hence, specific attention must be paid  to power dissipation process in 

order to avoid discomfort during wear. This has a particular drawback in that it affects the 

signal to noise ratio due to the high resistance of the piezoresistors (high white noise). 

The resolution will be maximized by reducing the noise level to the minimum possible. 

Moreover due to the miniaturization currently achievable by MEMS fabrication processes the 



 

 

72 

 

sensor is designed for this type of technology. This last choice will affect notably the design 

since a design for manufacturing and for packaging is required. 

The basic ideas behind the design concept are driven by the required sensor technical 

specifications that are dependent on the particular sensor application (crash test) [32]. The 

target technical specifications of the accelerometer have been specifically designed to fulfil 

the application requirements that is to detect and measure high speed impacts of vehicles that 

have the typical characteristic of long duration transient (low frequency) and relatively high 

amplitude (medium-g impacts). The target sensor specifications are listed in the Table 3-1.   

Table 3-1. Target sensor technical specifications 

Range 

(g) 

Sensitivity 

(mV/g) 

Frequency 

Response (Hz) 

Shock 

Limit (g) 

Resolution 

(mg) 

Non- 

linearity 

Cross-         

Sensitivity 

Dimension 

(mm3) 

±250 4 0 to 1,000 ±1,000 <10 <1% FSO <5% <2×2×1 

 

First of all the accelerometer was designed as a tri-axial one in order to measure all the linear 

components of the acceleration when an accident occurs (three-degree of freedom, 3-DOF). 

The device is a single sensing element and not a multiple sensing element, which means that 

only one sensor is developed for simultaneously detecting the linear acceleration on the three 

axis, instead of implementing three sensing elements one for each axis. This choice has been 

made after considering the two options in place (single or multiple sensing elements). The 

main advantage of developing one sensor for each axis (X, Y, Z), as the Delphi earplug [127], 

is the reduced cross-axis sensitivity on each axis that can disturb the principal signal. On the 

other hand, the implementation of three linear sensors for a given chip size implies an overall 

lower sensitivity, due to the smaller relative proof mass of each sensor than a single 3-axial 

sensor in a given space. Therefore it requires more complex read out circuitry in order to 

amplify the signal. Moreover the major electronic and mechanical complexity of the three 
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sensor chip choice increases the total noise and then it reduces the minimum detectable 

acceleration which means it reduces the sensor resolution. Thus the quality of measurement 

(accuracy and resolution) has driven this design decision. 

Second, in order to overcome the cross-sensitivity issue of the single tri-axis accelerometer a 

highly symmetric geometry (i.e. symmetry on the principal X and Y-axes, the respective 

diagonals and rotating of multiple of 90°) is preferred, which means a proof mass suspended 

by four identical beams one for each side of the mass. This type of shape allows minimizing 

the overall cross-sensitivity of the device due to the self-cancelling feature that the highly 

symmetric geometry offers. Quad-beams sensing geometry is preferred because of its 

balanced structure stiffness and achievable sensitivity.  

The measurement range of each axis has been set to 250g FS for detecting medium-g impacts 

because inertial forces of the head at 75 to 150g are common in racing accidents [28]. The 

sensitivity has been set to 4 mV/g in order to obtain an output voltage of at most 1 V at 250g, 

which in general does not require amplification. The upper limit of the sensor bandwidth is 1 

kHz which is more than sufficient in case of shock measurement like crash observed via 

accident video footage, where by the driver's head move above 30 Hz [28]. It has been 

defined higher than necessary (the high frequency signals is also filtered) because it improves 

the dynamic response and the velocity of the response. A minimum of 0 Hz is required in 

order to detect a car impact, since generally a crash has a long duration transient of around 

hundreds of milliseconds (e.g., ≈ 0.5 sec or ≈ 2 Hz) [32]. The power and current supply, 

respectively 5 V and 10 mA, are supplied by the accident data recorder placed in the race car 

where the sensor is plugged in.   

Shock survivability is set to 1000g which is a typical value for piezoresistive shock 

accelerometer. The resolution is set to a maximum of 10mg since the application does not 

require a higher resolution. This owes to the fact that the precision of the acceleration 
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measured is less relevant than the sensor accuracy for the medical personnel monitoring the 

race, since they are only alerted when an accident exceeds a severity threshold. The precision 

of the data collected may be additionally relevant for vehicle designers that can deploy the 

data in designing better driver restraint systems and safety devices. The usefulness of the 

sensor readings for designers is regarded as secondary in the design concept. 

The overall sensor error, which is the sum of nonlinearity and cross-sensitivity in the 

dynamic working range, must be as small as possible in order to not affect the accuracy of the 

measurement. The target value of nonlinearity and cross-sensitivity are set to an acceptable 

limit (Table 3-1, <6%). Efforts are dedicated into designing a sensor with a smaller error 

(<2%).   

Finally the physical dimension of the sensor must allow perfect fit inside the ear canal (part 

of the earpiece which is normally 7mm diameter) (see section 2.2.1 Dimension and Shape of 

Human Ears). The maximum dimension has been set to 2×2×1mm. In order to avoid mass 

loading, the device weight has been set following the common rule-of-thumb where the 

sensor weight is less than 10% of the test article [37] (Appendix A - Physical 

Characteristics). In this case the test article is an adult head which generally weights more 

than 4 kg, therefore there is a wide margin in the accelerometer weight to allow flexibility in 

the application.  

The piezoresistive pick-off is selected due to the smaller size achievable and the opportunity 

of a hybrid system partitioning design due to the low impedance of the piezoresistive pick-off 

signal output. In other word, piezoresistive pick-off allows for integrating the signal 

conditioning far away from the sensing element, therefore main consequence is the 

opportunity of designing a larger seismic mass that enhance the sensor sensitivity. This type 

of system partitioning fits well for a moulded earpiece. Basically, the sensing element is 
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placed in the ear canal part of the earpiece and the necessary signal conditioning (amplifier 

and filter) can be placed in the outer part of it without affecting the accuracy of the 

measurement (see Figure 2-5 for an example). Furthermore the temperature drift, main 

concern of the piezoresistive pick-off, is restricted in the small temperature operation range of 

the device (+37°C to +40°C). 

The fabrication process preferred for releasing the microstructure of the tri-axis 

accelerometer is one of the three MUMPs (Multi-User MEMS) processes: the SOI-MUMPS 

(silicon-on-insulator Multi-User MEMS) [82]. This process has been developed by the 

MEMSCAP Company in a standard fashion starting from a three layered SOI wafer with 

device thickness 10μm and silicon substrate thickness 400 μm. This standardized process 

allows a consistent cost cut. 

3.3 Accelerometer model 

3.3.1 Mathematical model 

The mathematical modelling of the sensor is based on the classic configuration as second 

order mass-spring-damper mechanical system. Figure 3-1-(a) shows a schematic diagram of 

an accelerometer of one-degree of freedom. The spring constant (k) defines the stiffness of 

the entire structure. For the Hooke‟s law the deformation of a spring is directly proportional 

to the load applied, provided the limit of proportionality is not exceeded.  

The damping element (B) is the representation of all source of damping inside this structure 

including mechanical damping in the springs and support, airflow and acoustic radiation. 
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Figure 3-1. (a) Mass-spring-damper system; (b) Graphical representation of the electromechanical physical model 

involved in the sensing (K, K1, K2 are the constants) 

 

A model example of the sensing chip is shown in Figure 3-2. The proof mass in the centre 

area is suspended by a single beam that resembles a spring, while the damper is air in the 

model. The beam is clamped to an external fix frame (not showed in the figure). When 

acceleration is applied to the die, the proof mass is displaced due to inertial forces, resulting 

to beam deformation.  

The structure in Figure 3-2 is equivalent to the mechanical schematic diagram in Figure 3-1-

(a) with only a key difference: the spring in Figure 3-1-(a) is subject to axial load 

(compressive or tensile stress), whereas the beam in Figure 3-2 is subject to a transversal load 

(bending).  

 
 

Figure 3-2. Simple 1-DOF accelerometer with a beam and suspended proof mass. 
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Under acceleration on the Z-axis the beam deflects proportionally determining stress and 

strain on its surfaces. 

In the case of free-vibration without damping, the proof mass will oscillate with simple 

harmonic motion with frequency of fn (undamped natural frequency). For the simple mass–

spring system, fn is defined as: 

                         (3.1) 

where ωn is the angular natural frequency 

    
 

  
 

 

 
                                                                 (3.2)    

where fn is the natural frequency, k is the stiffness and m is the mass. 

The mechanical sensitivity (S) of the structure is related to the angular frequency as: 

   
 

  
                                                              (3.3) 

This equation clarifies the trade-off to be achieved between sensitivity and natural frequency 

in designing the accelerometer mechanical structure. 

The beam deformation, due to the applied stress (σ) (see Figure 3-1-(b)), leads to a change in 

resistance (ΔR) of piezoresistors proportional to the applied acceleration (A). The fractional 

resistance change (ΔR/R) in the measurement circuit is proportional to the output voltage 

drop Vout, therefore representing a measure of the acceleration; as demonstrated in Figure 3-

1-(b). 

3.3.2 Finite element modelling  

FE analysis of nine mechanical structures (Table 3-3), both static (under 250g in X or Y-axis 

and Z-axis direction) and modal analysis (free vibration, only the first three mode of 

operation are obtained) is conducted under simplified conditions (undamped structure, 

isotropic silicon material properties, tetrahedron meshing elements at maximum 30,000 
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nodes) since the first step of the optimization process represents just a qualitative study (only 

the shape is evaluated, not the geometry size). The boundary conditions for the static analysis 

(stress and deformation) are a vector of acceleration with amplitude of 250g and the beams 

clamped in one extreme to a fixed frame. Regarding the modal analysis set-up, the beams are 

clamped to a fixed frame in order to allow a free vibration of the proof mass in different 

mode shapes. 

The finite element analysis sets the following initial values for each of the nine structures 

under analysis, for structural shape comparison purpose (Table 3-2): 

                   Table 3-2. FEM analysis set up 

Initial proof mass volume (V) 144×10
-12

 m
3
 

Beam Thickness (t) 5 μm 

Silicon (single-crystal) density (ρ) 2330 kg/m
3
 

Young‟s modulus of silicon (E) 185 GPa 

Poisson‟s ratio of silicon (ν) 0.28 

Acceleration applied (a) 250g (around 2450 m/s
2
) 

Mass of the proof mass (m) 335520×10
-12

 kg (or 0.33 mg) 

 

 

 

Notice that all the structures under study have identical proof mass volume therefore since 

they are all under the same loading condition the inertial forces  applied to the beams of each 

structure are comparable. 
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Table 3-3. Highly symmetric shapes selected for the analysis 

SHAPE 1. Cross-beams 

The proof mass is suspended by four beams connected in the 

middle of each of the four sides of the proof mass 

perpendicularly. 

 

 

SHAPE 2. Surrounded-beams Picture-frame type 1 

The proof mass is suspended by four beams connected in the 

middle of each of the four sides of the proof mass 

surrounding it. 

 

 

SHAPE 3. Surrounded-beams Picture-frame type 2 

The proof mass is suspended by four beams connected in the 

middle of each of the four sides of the proof mass 

surrounding it. Moreover each beam form a closed shape.  

 

 

SHAPE 4. Surrounded-beams Picture-frame type 3 

The proof mass is suspended by four beams connected in the 

corner of each of the four sides of the proof mass 

surrounding it. 

 

SHAPE 5. Cross-inset beams  

The proof mass is suspended by four beams connected in the 

middle of each of the four sides of the proof mass 

perpendicularly and crossing inside the proof mass.  

 

 

SHAPE 6. Surrounded-cross inset beams Picture-frame 

type 1  

The proof mass is suspended by four beams connected in the 

corner of each of the four sides of the proof mass 

surrounding it and crossing inside the proof mass. 
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SHAPE 7. Surrounded-cross inset beams Picture-frame 

type 2 

The proof mass is suspended by four beams connected in the 

middle of each of the four sides of the proof mass 

surrounding it and crossing inside the proof mass. 

 

SHAPE 8. Surrounded-cross inset beams Picture-frame 

type 3 

The proof mass is suspended by four beams connected in the 

middle of each of the four sides of the proof mass 

surrounding it and crossing inside the proof mass. Moreover 

each beams for a closed shape. 

 

SHAPE 9. Surrounded beams Picture-frame type 4 

The proof mass is suspended by four beams connected in the 

corner of each of the four sides of the proof mass 

surrounding it. Moreover each beam form an open shape.  

 

 

3.4 Accelerometer Geometry Optimization 

This section addresses the decision making process of the device geometry design, which 

covers first the shape design and then the size design and optimization. 

The geometry structure, selected on sensitivity criteria, has been identified by an optimization 

process using commercially available software, ANSYS 12.1. This process consisted of an 

extensive stress/strain, deformation and modal analysis (undamped free vibration) of nine 

different highly-symmetric geometries (Table 3-3) divided in the literature as cross-beams 

[94, 96, 97, 98, 100, 101, 103], cross-inset beams [95, 99, 102, 105], surrounding beams [2, 

93, 104] and surrounding cross-inset beams [106]. All selected shapes are available in the 

literature except shapes no. 6 and 9 that are completely new (see Table 3-3). Shape no. 6 is 

designed as an evolution of shape no. 4 and 5, in fact is a combination of surrounding and 
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cross-inset beams. Shape no. 9 is designed as an evolution of shape no. 4, where the 

surrounding beams are extended.  

The design of the geometry of the micromechanical structure of the sensing element is 

divided in various steps as follows: 

 

1. Qualitative and comparative analysis of various types of structure shapes (shape 

design) 

2. Selection of possible shape candidates for the final structure 

3. Size optimization of the candidate shapes (size design and optimization – design for 

packaging) 

4. Selection of the best microstructure geometry 

5. Selection of a manufacturing process and adjustment of the geometry accordingly 

(design for manufacturing) 

6. Overload end stops design 

3.4.1 Accelerometer shape optimization 

In order to minimize the total chip size for a given sensor sensitivity and bandwidth this study 

selects the shape that maximize the stress and the natural frequency, that is, the one with the 

highest sensitivity and bandwidth. The sensor sensitivity and bandwidth are inversely 

proportional therefore a trade-off must be achieved, see equation (3.3). 

Since the piezoresistor changes resistance proportionally with the stress applied, for example 

in a tensile condition the resistance of the piezoresistor increases proportionally with the 

tensile stress, if the piezoresistor is placed where the maximal stress is located on the device 

beams the highest sensor sensitivity is then obtained. Therefore, if it is chosen a device shape 
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with the highest stress value, for a given proof mass volume and under the same load and 

boundary conditions, the device that offers the highest sensitivity can be identified. 

The FEM static analysis allows determining the device mechanical stress under load, while 

the modal analysis reveals the natural frequency at different modes of operation of the device 

under no load (free-vibration without damping). For both analyses the external frame of the 

mechanical structure is kept fixed in order to allow the movement of the suspended proof 

mass. The higher the natural frequency, which is the frequency at which the device resonates, 

the larger the usable bandwidth of the device. Typically, the usable bandwidth (linear 

dynamic response) is five times smaller (20%) than the natural frequency [34], see Figure 2-

7.  The shape optimization identifies the five best shapes out of the nine shapes under study 

(see Figure 3.3). 

3.4.2 Size optimization of the candidate shapes  

The next step is to define the size of beams and proof mass given a minimum natural 

frequency of five kilohertz as hard constraint, in order to obtain a bandwidth at least of one 

kilohertz (see specifications in Table 3-1). 

The optimization problem has as objective function to maximize the equivalent stress, in 

order to improve sensitivity, and as constraints the natural frequency of at least 5 kHz, and 

the die body size of at most 1.5×1.5-mm. This last constraint depends on the packaging 

decision. Since a chip-scale packaging is chosen for the sensing element, with a maximum 

packaging footprint of 2×2-mm the die body size may be at most 1.5×1.5-mm (i.e. packaging 

area = 1.2 × die body size). This last constraint accounts for the design for packaging.  

For all five shapes selected from the initial nine (shape optimization) the size optimization is 

carried out by design of experiments (DOE) approach (the size parameters are changed 

progressively to create many new designs), finally the stress analysis will indicate the 
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geometry with the highest performance (see Appendix C for the complete optimization 

study).  

3.4.3 Overload End Stops Design 

The final geometry output of the optimization process, is furthermore improved with the 

introduction of overload end stop in order to stop the proof mass movement when the device 

is subject to an acceleration of over 500g on either the X- or Y-axis. This feature will prevent 

both the device to resonate and potential fracture of the silicon (break of the beams) that 

occurs at the acceleration of around 1000g. At 1000g acceleration the structure achieves the 

maximum fracture stress of the silicon (set to 300 MPa which is an experimental conservative 

failure stress value for anisotropically etched diaphragms [83]). The actual fracture strength 

of silicon is given by Petersen [84] as being 7000 MPa, more than 20 times larger than the 

value set for the shock survivability.  

3.5 Results and discussion 

3.5.1 Shape optimization 

The various shapes addressed in this study are cross, surrounded, folded and inset beams with 

single mass (Table 3-3). Since the highly symmetric geometry selected, for in-plane 

acceleration only a single axis acceleration is simulated (X-axis acceleration), the results of 

the other axis is similar (see Appendix B for the complete study results). Note that the best 

five shapes out of the total initial nine are selected after the qualitative analysis that compares 

their performance. The optimization function used to select the five remaining shapes is 

maximization of stress and natural frequency (first mode of operation) in order to have 
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further chances to increase their performance in the next size optimization stage (Table 3-4 

for a summary). 

The five shapes selected as possible candidates for further optimization are depicted in Figure 

3-3, showing the beams deformation and stress under Z-axis acceleration. Notice that the 

number of each shape is correspondent to the order in the complete shape study, available in 

the Appendix B (see also Table 3-4). 

 

Shape n. 2     Shape n. 3 

 

Shape n. 4     Shape n. 5 

 

                                                                   Shape n. 9 

Figure 3-3. Five shapes selected as possible candidates for further optimization. The beams are deformed under Z-

axis acceleration. 
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The surrounded picture-frame beams type of accelerometers have demonstrated improved 

sensitivity at more than acceptable natural frequency (see Table 3-4).   

At the moment since the proof mass and beams size is an invariant for all shapes, the shape 

that offers the best performance is the number 9 (1
st
) with the highest values of stress, strain 

and deformation, followed in order by shape no. 3, 4, 5, and 2 respectively. Considering the 

higher natural frequency of shape no. 2 and no. 4 it follows that this two shapes have room 

for improving their performance at the size optimization stage, because reducing their natural 

frequency to the specified limit (5kHz) will inevitably increasing their sensitivity (see Eq. 

3.3). Finally shape number 4 for its sensitivity and wide frequency response looks promising 

from this analysis. 
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Table 3-4. Performance comparison of shapes selected 

Shape 

N° 

Accel. 

Axis 

Load: 

250g 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress 

(MPa) 

Maximum 

Shear 

Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal 

Elastic Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

Natural 

Frequency 

1st mode 

(kHz) 

Order based 

on the 

optimization 

function  

(1st  best – 

5th worst) 

2 

Z 53.46 52.42 29.04 2.89E-04 2.84E-04 1.20 

6.95 5th X, Y 48.69 50.73 26.91 2.63E-04 2.64E-04 1.52 

Tot. 102.15 103.16 55.95 5.52E-04 5.48E-04 2.72 

3 

Z 77.12 109.30 42.74 4.17E-04 4.80E-04 1.86 

5.78 2nd X, Y 61.04 86.58 32.44 3.30E-04 3.89E-04 1.98 

Tot. 138.16 195.88 75.19 7.47E-04 8.69E-04 3.84 

4 

Z 71.30 97.82 38.43 3.85E-04 4.46E-04 0.70 

8.93 3rd X, Y 62.94 74.00 34.02 3.40E-04 3.52E-04 0.92 

Tot. 134.24 171.83 72.46 7.26E-04 7.98E-04 1.62 

5 

Z 51.40 69.32 28.71 2.78E-04 2.96E-04 0.85 

5.28 4th X, Y 85.52 85.41 47.68 4.62E-04 4.37E-04 2.44 

Tot. 136.92 154.74 76.39 7.40E-04 7.32E-04 3.30 

9 

Z 82.49 122.41 44.95 4.46E-04 5.40E-04 1.93 

5.70 1st X, Y 65.13 92.66 35.02 3.52E-04 4.16E-04 2.00 

Tot. 147.62 215.07 79.98 7.98E-04 9.56E-04 3.94 

 

A slight problem occurs if we consider the total deformation of the five structures selected. In 

the case of large deformation the nonlinearity may affect the static response of the 

accelerometer. Large deflections are present as a rule of thumb if the transverse 

displacements in a slender structure are more than 10% of the thickness. Therefore the shape 

with small total deformation would be preferred (shape no. 4 and 2) due to lower nonlinearity 

error. 

Next the size of the five selected shapes will be optimized by a design of experiments 

approach.   
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3.5.2 Size optimization 

Figure 3-4(a) and (b) show the optimization results of the mechanical structure shape n. 2 

under Z-axis acceleration and X- or Y-axis acceleration respectively (DOE optimization). As 

it can be seen from the figures, all feasible points are above ~5 kHz, in order to get a 

bandwidth set in the specification of approximately 1 kHz. Moreover a Pareto frontier curve 

is drawn to highlight the boundary of the feasible points region (see Figure 3-4(a)). For all 

five shapes selected, under Z-axis and X- or Y-axis acceleration, the design points at higher 

equivalent stress are selected as optimal designs (see Appendix C for the complete study 

results). 

 

(a) 

 

(b) 

 

Figure 3-4. (a) Graph that shows the results of the DOE optimization process under Z-axis acceleration. All points 

above 5 KHz are feasible design points. Notice the Pareto frontier in the graph that is the boundary of the feasible 

points region. (b) Graph that shows the results of the optimization process under X-axis acceleration. Similar results 

are obtained for Y-axis acceleration 

 

For example, the optimal design point for shape no. 2 is as follows: 1
st
 mode (ωoz) of 5,251 

Hz (bending on Z-axis), the maximum equivalent stress (σeq) at 250g acceleration in the X or 

Y-axis are 87 MPa and 128 MPa in the microscale and nanoscale piezoresistors respectively. 
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In the Z-axis σeq at 250g acceleration is 91 MPa and 134 MPa in the microscale and 

nanoscale piezoresistors respectively (Table 3-5).  

By taking advantage of structure symmetry only the equivalent stress under X-axis 

acceleration has been analysed. The results for the Y-axis acceleration are equivalent. 

Nanoscale piezoresistors, due to stress concentration region (i.e. the width is 10 times smaller 

than conventional piezoresistors), show an equivalent stress that is 47% higher than the 

conventional counterparts under 250g. This increase represents an initial sensitivity 

enhancement for geometrical reasons. Clearly progressively reducing the piezoresistors 

dimension will increase the stress concentration effect. The 1
st
 mode shape of the structure is 

a Z-axis bending at more than 5 kHz. This value defines the bandwidth of the device 

frequency response. Under an optimal damping design the upper frequency limit is of 

approximately 1 kHz, as set in the specifications (Table 3-1). 

Three potential design candidates are selected for each of the five shapes using DOE, 

Therefore from a total of fifteen design points (see Appendix C) the best five geometries are 

identified (see Table 3-5). 

 

Table 3-5. Best geometry design candidates 

Shape Candidate 

Beam_

Width 

(μm) 

Mass_

Width 

(μm) 

Mass_T

hickness 

(μm) 

Beams_

Thickne

ss (μm) 

Total 

Deform

ation 

Reporte

d 

Frequen

cy 

(kHz) 

Equival

ent 

Stress Z 

Maximu

m 

(MPa) 

Total 

Deform

ation Z 

Maximu

m (μm) 

Equival

ent 

Stress X 

Maximu

m 

(MPa) 

Total 

Deform

ation X 

Maximu

m (μm) 

2 A 60 550 400 5 5.25 91 1.8 87. 2.7 

3 B 60 650 400 7 5.19 95 2.4 82.3 2.4 

4 C 70 650 500 6 5.24 103.5 1.6 112 2.8 

5 D 50 250 500 6 5.12 49.5 0.6 110 3 

9 E 70 550 500 8 5.36 65 2. 55 2.8 
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Candidate A (shape no. 2) and candidate C (shape no. 4) represent the best geometries both 

optimized in order to maximize sensitivity given the resonant frequency as a hard constrain 

(>5kHz) (see Appendix C for the complete optimization study). 

The main difference of these two geometries is the overall size, since candidate A has a die 

size of 550×550×400 μm (considering the surface for the bond pads overall the size is 

1210×1210×400 μm) and the candidate C has a die size of 650×650×500 μm (overall 

1330×1330×500 μm). 

The overall geometry dimensions of the two microstructures are available in the Figures 3-5 

(a) and (b). 

 
                                    (a) 

 
                                    (b) 

 

Figure 3-5. (a) Geometry Dimensions Shape no. 2. (b) Geometry Dimensions Shape no. 4 

 

Final consideration for a decision to be made between the two best geometries selected is the 

design of overload end stops. Overload end stops are required for two main reasons: first to 

prevent the accelerometer from resonating (at resonant frequency the structure could break) 

and second to limit the acceleration when the structure is subject to very high-g shock (when 

g-force > device shock survivability there could be a failure of the structure – breakage of the 

beams). For this purpose shape no. 2 allows for easily design of overload end stops necessary 
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for taking account of the reliability of the device and thus has been selected as final 

candidate. 

3.6 Conclusion 

The geometry design development of the micro-mechanical structure presented in this 

chapter optimizes the mechanical structure by improving the performance under the 

predefined constrains stated in the target specifications (Table 3-1). The shock survivability 

of 1000g is met thanks to the design of proper overload and stops for the three axes. Shape 

and size optimization (DOE) of various geometries has been conducted and the best structure 

has been selected and redesigned for manufacturing purpose. Finally the overload end stops 

have been added to the selected structure. The final structure presents the highest mechanical 

sensitivity and the required frequency bandwidth.  

The next chapter deals with the results calculations of the electrical design part of the 

accelerometer with sensitivity and cross-sensitivity estimation of conventional microscale 

piezoresistors vs. nanoscale piezoresistors. Moreover calculation of nonlinearity, damping, 

bandwidth, noise and resolution are presented.  
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Chapter 4 

4 ELECTRICAL PERFORMACE OF NANOSCALE PIEZORESISTORS 

COMPARED TO CONVENTIONAL MICROSCALE PIEZORESISTORS  

4.1 Introduction 

This chapter aims to evaluate silicon nanowires as nanoscale piezoresistors for a 

piezoresistive accelerometer and to develop the accelerometer measurement circuit to 

enhance the performance of the devices. All main accelerometer performance indexes are 

covered. Sensitivity, cross-axis sensitivity, nonlinearity, damping, bandwidth, noise and 

resolution are calculated with the objective of comparing the results obtained between 

conventional microscale piezoresistors and nanoscale piezoresistors.  All major signal errors 

are considered. The signal sensor error is a combination of different errors sources (i.e. 

mechanical, thermal and electrical origin) such as sensor cross-talk, nonlinearity and various 

types of noise (e.g. white, pink and brown). The precision of a measurement reflects how 

exactly the result is determined without reference to what the result means and is identified 

by the sensor resolution. The accuracy represents how the data recorded (sensor voltage 
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output) comes close to the true value measured (sensor acceleration input) and indicates the 

correctness of the result.  

Nanowires as nanoscale piezoresistive devices have been chosen as a sensing element, due to 

their enhanced piezoresistance effect under uniaxial stress (high sensitivity) and 

miniaturization achievable compared to  the conventional microscale counterparts [2-7]. The 

origin and behaviour of so called “Giant Piezoresistance” was examined in numerous works 

[12, 45-47, 140-149] but few reports are available on the development of silicon nanowire-

based sensors [42]. However, several studies have been conducted on p-type single 

crystalline SiNWs for sensor applications [2, 13, 14, 43, 44, 134, 136]. 

The results of the calculation presented in this chapter show that by exploiting the 

electromechanical features of nanowires as nanoscale piezoresistors, the nominal sensor 

sensitivity is overall boosted by more than 30 times compared to the conventional microscale 

piezoresistors. This approach allows significantly higher accuracy and resolution to be 

obtained with smaller sensing elements in comparison with conventional devices without the 

need of signal amplification. This achievement opens up new developments in the area of 

implanted devices where the high-level of miniaturization and sensitivity is essential. 

Next sections present the performance calculations of the accelerometer under a maximum of 

250g of acceleration and discuss each of the performance indexes calculated. Notice that a 

comparison between microscale and nanoscale piezoresistors is proposed and that all results 

are based on FE stress distribution analysis.         
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4.2 Methodology 

4.2.1 FEM model 

The output of the previous chapter that is the highly-symmetric mechanical structure with 

four surrounding beams (Figure 3-6) is the input of this chapter. This structure is the result of 

a thorough optimization process started from selecting five shapes out of nine highly 

symmetric structures by a shape optimization function (higher stress and natural frequency) 

and then each of the five shapes selected have been further investigated by a size 

optimization process (max. stress under the hard constraint of a natural frequency higher than 

5kHz). Then the structure geometry with optimal size and shape is identified.  

The optimized mechanical structure presents a square proof mass and four surrounding beams 

clamped-clamped to the fixed frame and connected to the suspended proof mass in the 

middle. The structure is here enhanced by designing overload end stops in the four corners of 

the frame able to stop the in-plane movements of the structure in case of acceleration higher 

than 500g. Moreover the optimized structure is further modified in order to comply with the 

fabrication process preferred for the device. 

For the performance calculation presented in this chapter the material selected for the 

mechanical structure of the sensing element is anisotropic single crystal silicon (SCS), which 

has been chosen for its mechanical properties (good stress tensile strength and high gauge 

factor) [73] and its wide adoption in MEMS fabrication processes (Table 4-1). The matrix of 

stiffness coefficients of SCS used in the FEM developed is [52] (further details available in 

Appendix J): 
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                              (4.1) 

In order to validate the sensitivity obtained in output from the FEM simulation, the model 

was compared to a similar model based on the mechanical structure and measurement circuit 

readily available in the literature [6, 93] (Figure 4-1-(a)) with length × width × thickness of 

2×2×0.45-mm and beams length × width × thickness of  1×0.06×0.01-mm. The longitudinal 

piezoresistive coefficient of each piezoresistor is 35×10
-11 

Pa
-1

. 

 
 

Figure 4-1. (a) Current state-of-art accelerometer mechanical structure [6, 93]; (b) Typical accelerometer under 

stress due to external forces (Z-axis acceleration and blue frame fixed). The red colour corresponds to the maximum 

displacement of the proof mass. In blue is the surrounding frame which is undeformed. 

 

See Table 4-1 and 4-2 for the inputs material and geometry parameters respectively, used in 

the developed FEM for sensitivity validation. 
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                           Table 4-1. Inputs material parameters used in the developed FEM 

Mechanical Structure material Single Crystal Silicon Anisotropic 

Density (kg/m
3
) 2330 

Matrix of stiffness Eq. 4.1 

 

                  Table 4-2. Input geometry parameters used in the developed FEM for sensitivity validation. 

Piezoresistive coefficient 35×10
-11 

Pa
-1

 

Device length × width × thickness 2×2×0.45-mm 

Beams length × width × thickness 1×0.06×0.01-mm 

 

The tetrahedron elements were used for the FE modelling due to a better meshing of the 

model and 250,000 nodes characterise the model mesh. Proximity meshing option was used 

because it allows a finer meshing on accelerometer beams to accurately capture the stress. 

The bottom side of the external frame of the mechanical structure (in blue in Figure 4-1-(b)) 

is fixed. The load has been applied by a gravitational force vector of 250g of magnitude, for 

each of the three axes.  

4.2.2 Measurement circuit 

The electrical circuit used to measure the acceleration in each axis is the classical Wheatstone 

bridge [85] that consists of four resistors connected to form a quadrilateral, a source of 

excitation (voltage or current) connected across one of the diagonals, and a voltage detector 

connected across the other diagonal. The difference between the outputs of two voltage 

dividers connected across the excitation was measured by the detector [32] (see Appendix G 

for details). The full-bridge configuration was adopted in the measurements due to the 
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inherent linearity and higher sensitivity. In this configuration the voltage output is equal to 

the source of voltage multiplied the fractional resistance change. 

A total of 16 nanoscale piezoresistors were placed in strategic locations on the top surface of 

the mechanical structure (Figure 4-2(a)). In order to maximize the device electrical 

sensitivity, the piezoresistors were placed where the highest stress regions were identified by 

FE stress distribution analysis (see Appendix D for the analysis results). The stress analysis 

was conducted on the model presented in Figure 4-1(b), which is the mechanical structure 

obtained from the previous optimization process (see also Figure 3-6).  

 
 

Figure 4-2. (a) Piezoresistors  location.16 nanoscale piezoresistors, in orange, are placed in strategic locations where 

the maximum stress is present in order to maximize the sensitivity and minimize the cross-sensitivity (top view). (b) 

Nanoscale Piezoresistor model. In blue is the nanowire and in green are the contacts 

 

A detailed image of a nanoscale piezoresistor placed on one of the four beams is presented in 

Figure 4-2(b). Each piezoresistor is geometrically identical with a length of 3 micrometers 

and a width of 100 nanometers. 

The measurement circuit is formed by three different full Wheatstone Bridges, one for each 

axis-sensing (Figure 4-3). Hence, the change in resistance of the piezoresistors is measured as 

the output voltage drop by these bridges. The advantage of using a bridge is that as the four 
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resistors are identical, the effect of the temperature coefficient can be cancelled out by the 

balanced configuration and moreover, the highly symmetric geometry chosen for the 

structure allows a self-cancellation of part of the cross-axis acceleration (the piezoresistors 

are intentionally positioned symmetrically for this reason). 

 

 
 

Figure 4-3. Measurement circuit design type A. (a) Ax-, Ay-bridge and (b) Az- Wheatstone Bridge measurement 

circuit 

 

There is a compensation effect when there is acceleration on the X- and Y-axis. For X-axis 

acceleration the Ax-bridge becomes unbalanced and detects the acceleration at is output, the 

Ay-bridge remains balanced since, on each arm, one resistance decreases and the other one 

increases by the same amount. Therefore overall the resistance on each arm remains 

unchanged. Simultaneously the total resistance in the Az-bridge remain unchanged since 

hypothetically, one resistance increases and the other one decreases by the same amount. This 

also gives a voltage drop of zero output since it remains balanced. 

For Y-axis acceleration the Ay-bridge becomes unbalanced and detects the acceleration while 

the Ax-bridge remains balanced giving, theoretically, a differential output voltage (voltage 

drop) zero; therefore the cross-talk is nearly zero. The Az-bridge, due to Y-axis acceleration 

behaves as follows, Rz1+Rz2+Rz3+Rz4 and Rz5+Rz6+Rz7+Rz8 remain unchanged, therefore the 

output remains zero. 
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Finally as in the case of Z-axis acceleration, the resistance decrement of Ax, Ay-bridge is 

theoretically equal since the geometrical symmetry is of identically designed resistance, and 

the two bridges remain balanced at zero volt output. In contrast, the Az-bridge, due to Z-axis 

acceleration becomes unbalanced and the output voltage is the measure of acceleration. Table 

4-3 summarizes the values of the resistance change, + is an increment, - is a reduction and 0 

unchanged.  

 

Table 4-3. Resistance change due to unbalanced bridge 

 

In reality the 16 piezoresistors will not be of equal resistance and nor of perfect geometrical 

symmetry because of fabrication errors and non-linearities. Therefore some cross-talk on the 

output signal is expected. 

4.2.3 Electrical Sensitivity and cross-axis sensitivity 

The electrical sensitivity S of the accelerometer can be defined as the ratio between the output 

voltage and the applied acceleration. In the case of in-plane acceleration (X- or Y-axis), the 

longitudinal stress on the beams that are perpendicular to the direction of the applied 

acceleration is larger than that distributed on the beam which are parallel to the acceleration 

orientation. Therefore, the piezoresistors to measure Ax are arranged on the Y-oriented beams, 

and vice versa. 

For example, in the case of X-axis acceleration, the electrical sensitivity for the Ax-bridge is 

[93]: 

 Rx1 Rx2 Rx3 Rx4 Ry1 Ry2 Ry3 Ry4 

Rz1+Rz2  

+Rz3+Rz4 

Rz5+Rz6  

+Rz7+Rz8 

Ax - - + + + - - + 0 0 

Ay - + + - - - + + 0 0 

Az - - - - - - - - - - 
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                                            (4.2) 

where Vout is the output voltage, Vin is the bias voltage applied to the piezoresistor (5V), and  

   

  
  is the fractional resistance change of Ax-bridge that is equal to [71, 40]: 

   

  
      

 
       

    
                                               (4.3) 

where πl and πt are longitudinal and transverse piezoresistive coefficients respectively.   
 
   

  

  
  are respectively longitudinal stress in the Y-axis in case of acceleration along the X-axis, 

and transverse stress in the X- and Z-axis directions. The shearing stress is negligible and, 

therefore, neglected. It should be noted that the aforementioned equation is only valid for 

uniform stress fields or if the piezoresistor dimensions are small compared to the beam size 

[56].  

Since the common approximation is valid in the <110> silicon crystallographic direction, i.e., 

πl  = -πt, the fractional resistance change becomes  

   

  
       

 
    

    
                                                     (4.4) 

The electrical sensitivity in the other directions is similarly calculated. The longitudinal 

piezoresistive coefficient at room temperature used for the conventional piezoresistor was 

72×10
-11

 Pa
-1 

 as reported by Smith [48], while the correspondent nanoscale value was, 

1527×10
-11

 Pa
-1

 , obtained by Passi et al.. [7].   

The cross-axis acceleration is an error of measurements related to different factors: the 

mechanical structure of the sensor and fabrication errors that affect its symmetry, the 

piezoresistors location on the top surface and the measurement circuit. Its sensitivity is 

calculated in percentage and it is the absolute value of the fraction of the voltage output of 

each axis other than the one under stress and the axis under stress. For example, the cross-
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axis sensitivities under the X-axis acceleration S(Ax-Ay)% and S(Ax-Az)% are detected, 

respectively, in the output of the Ay, Az-bridge for the nanoscale piezoresistors as follows: 

                     
      

      
                                       (4.5) 

           
      
      

                                                          (4.6)   

4.2.4 Nonlinearity 

The static response of the sensor (input/output relationship) is usually not perfectly linear. 

Nonlinearities are mainly related to nonperfect Ohmic contact of the piezoresistors at high 

bias voltage (> 0.2V), and/or due to large deflection (structure stiffness changes). The former 

causes the I-V characteristic to become nonlinear, the latter is typically present for slender 

structures. An Ohmic contact can be obtained by a high boron doping concentration localized 

in the contact pad. Instead, large deflection cannot be controlled in an open loop device. A 

controlled feedback is required (actuation) as in a servo or force-balanced accelerometer. 

Typically, the accelerometer that implements such system is the variable-capacitance 

accelerometer since the actuation is straightforward.  

The easier solution for piezoresistive accelerometers is to correct this nonlinearity 

electronically during calibration if necessary. A rule of thumb is that large deflection occurs 

if the transverse displacements in a slender structure are more than 10% of the thickness. This 

last condition occurs in the proposed device for acceleration over 100g and it has been taken 

into account in the FE analysis.  

Due to the inherent linearity of the response obtained, the nonlinearity is calculated using the 

end point linearity method, instead of the more common best fit straight line method (BFSL) 

or Least Squares BFSL Method [135]. This can be expressed as a percentage of either Full-

file://cns.cranfield.ac.uk/filestore/Users/SAS/s113172/Geometry%20Design/ds_Solver_Controls.html%23ds_solve_Large_Deflections
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Scale Output (FSO = 500g) or ± Full Scale (±FS = ±250g) in g‟s (g is the gravitational 

acceleration, i.e. = 9.8ms
−2

).  

The method for calculating the device nonlinearity (NL) is [56]: 

   
  

 

   
                                                              (4.7) 

The NL is calculated as the percentage of the fraction between the maximum deviation (MD) 

and the sensitivity (S) based on the FSO or FS. 

4.2.5 Damping 

Optimal damping design of the structure (damping ratio ζ=0.7) offers the widest bandwidth in 

the amplitude-frequency relationship (flat dynamic response). Therefore, the gaps between 

top/bottom cap and proof mass of the accelerometer have been designed to work in this 

regime. 

For the vibration in the vertical direction (first mode shape), there are two main types of 

damping acting on the seismic mass, i.e., viscous damping and squeeze-film air damping 

[93]. The latter occurs when the proof mass moves up and down, the air films trapped 

between the bottom/top surfaces of the seismic mass and the bottom/top caps are squeezed. 

This damping type is more dominant than the viscous damping [93]. The damping ratio, 

caused by double sided squeezed-film air damping, is defined by eq. (4.8), assuming that the 

air films have the same thickness d [58, 93]: 

  
    

       
    

    

      

 
                                              (4.8) 

where β is correction factor depending on the ratio between the width W and the length of 

seismic mass, ρ is mass density of silicon (2330 kg/m
3
), μ is viscosity of the air (1.81×10

-5
 

Pa-s), ωoz is undamped natural radian frequency in the first shape mode (bending on Z-axis). 
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4.2.6 Bandwidth 

The usable frequency response of the proposed accelerometer is calculated and is defined as 

the flat area of its frequency response curve. To do this, it is necessary to know the behaviour 

of the spring-mass-damper model when a harmonic force is added. A force of this type could, 

for example, be generated by a rotating imbalance. The applied sinusoidal acceleration with 

circular frequency  is  

                                                                       (4.9) 

adding the acceleration on the mass, the ordinary differential equation of the entire system 

becomes: 

   cos( )o

c k
x x x a t

m m                                              (4.10)
 

 

The steady-state deflection of the spring is of the form 

                                                                         (4.11) 

The result states that the mass will oscillate at the same angular frequency (ω) of the applied 

acceleration, but with a phase shift ϕ.  

The deflection magnitude xo, which is also the amplitude of the vibration, is related to the 

magnitude of the applied acceleration ao by 

      
  

     
 

 

     
 

  
 
 
 
 

    
 

  
 
 

                                        (4.12) 

where 
 

  
 is defined as the ratio of the harmonic force frequency over the undamped natural 

frequency of the mass-spring-damper model. 

As indicated by the notation, xo depends on the driving angular frequency . In particular, xo 

becomes diminishingly small when  is sufficiently large, and the accelerometer will cease to 

be useful for accelerations at such a frequency. In practice, the useful bandwidth within 
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which the accelerometer is used is given by the upper cutoff frequency c. This frequency is 

the maximum frequency at which the relative amplitude remains constant and the 

accelerometer sensitivity remains uniform, this is true when the second term of eq. (4.12) is 

equal to 1 and it is defined conservatively as 

      

     
                                                                    (4.13) 

and is given by 

                                                                           (4.14) 

where  

                                                                          (4.15) 

4.2.7 Noise and resolution 

Noise is any output voltage that occurs when there is no acceleration applied to the sensor. 

There are three typical noise sources existing in all piezoresistive sensors, including the 

Johnson noise (noise floor or white noise), Hooge‟s noise (or 1/f noise, also called pink 

noise), and the thermo-mechanical noise (brown noise or Brownian noise).  

The first two noises are easily distinguishable on a typical noise versus frequency spectrum, 

as shown in Figure 4-4. At low frequencies, all resistors suffer from conductance fluctuations, 

usually called 1/f noise because the noise power density [V
2
/Hz] decreases as one over the 

frequency. Added to this is Johnson noise, which is independent of frequency. Johnson noise 

is fundamental, due to thermal energy in a resistor, and is well understood [59]. 
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Figure 4-4. Typical cantilever noise spectrum showing Johnson and 1/f noise [53]. 

 

Hooge noise is a natural property of all resistors and dominates over Johnson noise at lower 

frequencies. It is theoretically determined that Hooge noise is equal to Johnson noise at 

approximately 40 Hz. Both Johnson and Hooge noise levels represent asymptotes for the 

accelerometer noise [60] (Figure 4-4).  

Improvements in fabrication can drive the noise levels of the current piezoresistive 

accelerometer closer to the theoretical Johnson and Hooge asymptotes. Figure 4-5 clearly 

shows the frequency dependence of noise in a piezoresistive accelerometer, with theoretical 

noise asymptotes also shown by Lynch et al. [60]. 

 

 

Figure 4-5. Noise spectral density of piezoresistive accelerometer [60] 
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Johnson noise is due to random motion (thermal agitation) of carriers in any electrical 

conductor. In a piezoresistor, Johnson noise can be described as [59, 93]: 

                                                                       (4.16) 

where kB is Boltzmann‟s constant (1.38 × 10
-23

 J/K), T is temperature (310 K or 37°C), R is 

the resistance of the piezoresistor at low carrier density (1×10
17

cm
-3

), and Δf is the 

measurement bandwidth. 

1/f noise is empirically determined noise, and can be estimated by the equation [53, 61, 93]:  

           
    

 

 
   

    

    
  

 

  
                                                   (4.17) 

where Vin is bias voltage across a piezoresistor with total number of carriers N, and fmax and 

fmin are upper and lower limit of measurement frequency, respectively. α is a dimensionless 

parameter called Hooge parameter which, for an implanted resistor, has been  found to vary 

depending on the anneal [62]. For semiconductors, α was found to be 10
-7

 [63, 64]. Several 

publications have shown that it is possible to decrease the value of α down to 3e
-6

 [62, 65-68].  

For a constant doping concentration, the number of carriers N = p · lp · wp · tp, where p, lp, wp 

and tp are, respectively, doping concentration, doping concentration length, width and depth 

of piezoresistor. Because other noise sources are independent of the frequency range, it is 

necessary to specify the 1/f noise for a specific bandwidth; this is done by dividing the 1/f 

noise by Δf. 

Thermo-mechanical noise is mechanical analog of Johnson noise, and consists of physical 

oscillations due to thermal agitation in the sensing structure. The thermo-mechanical noise 

equivalent acceleration can be written as [58, 93] 

 

     
        

 
         

 

  
                                                    (4.18) 
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where m is the mass of the seismic mass and T is the surrounding temperature. The total noise 

voltage is calculated for each bridge as the square root of the sum among the square power of 

each noise, as 

             
 
       

 
                                                  (4.19) 

The resolution of an accelerometer determines the minimum acceleration that can be 

measured. Resolution is defined as the noise divided by the sensitivity; therefore, the 

resolution of the accelerometer is defined by [93] 

    
      
  

   
, 

  
                   

 
 
     

    

   
                                                 (4.20) 

4.3 Results and discussion 

4.3.1 Structural analysis 

The mechanical structure geometry identified in the previous chapter requires a last step in 

the entire geometry design, which is to take into account  the sensor fabrication process and 

make the necessary adjustments to the structure size (device thickness 10 μm and silicon 

substrate thickness 400 μm). Therefore, the final optimized geometry was modified in order 

to comply with the manufacturing constrains of the MEMSCAP fabrication process (device 

thickness 10 μm and silicon substrate thickness 400 μm), and a final optimization process 

was undertaken to maximizing the device mechanical performance (max. sensitivity at the 

bandwidth required). The final geometry is presented in the Figure 4-6. 
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Figure 4-6. Optimized mechanical structure geometry 

 

 

Table 4-4 summarizes the final geometry size with the correspondent mechanical 

performance and compares it to the geometry before manufacturing process decision. The 

overall die body size passes from 1210×1210×400 μm to 1400×1400×400 μm, the cross 

section area of the beam and the natural frequency remain the same but the new design 

improves significantly the nonlinearity due to large deflection. This occurs because the total 

deformation in both design remain almost invariant but the beam thickness doubles. Finally, 

consideration is given to the maximum equivalent stress under X-, Y-axis acceleration that is 

mainly reduced in the new design due to the mass and beam width change. 

 

 

 

 



 

 

108 

 

Table 4-4. Final geometry size and performance 

 

Mass 

Width 

(μm) 

Mass 

Thicknes

s (μm) 

Beam 

Width 

(μm) 

Beams 

Thicknes

s (μm) 

Natural 

Frequenc

y -1st 

Mode 

(Hz) 

Equivale

nt Stress 

Z 

Maximu

m (Mpa) 

Total 

Deformat

ion Z 

Maximu

m (um) 

Equivale

nt Stress 

X 

Maximu

m (Mpa) 

Total 

Deformat

ion X 

Maximu

m (µm) 

MEMSC

AP 

design 

800 400 30 10 5270 87 2.3 61.6 2.1 

Best 

design 
550 400 60 5 5250 91 1.8 87.1 2.7 

 

Therefore the new constraints introduced by the manufacturing process selected don‟t 

negatively affect the overall performance of the accelerometer; rather improve accuracy and 

reliability except for a lower sensitivity contribution for in-plane accelerations. 

The final geometry is then enhanced with overload end stops as depicted on Figure 4-7 (a) 

and (b). As shown on the figure the four end stops, one for each corner, are designed to cross 

all the silicon substrate. The gap between the proof mass and the end stops is set to 5 μm, 

which correspond to an axial translation of the proof mass caused by around 500g of in-plane 

acceleration.    

 

(a) 

 

                                  (b) 

Figure 4-7. (a) Overload End Stop (Top view). The colour defines the total deformation of the structure under Z-axis 

acceleration. In red the maximum deformation and in blue the undeformed section. (b) Overload End Stop (Detail). 

The gap of 5 microns for in-plane acceleration allows a movement of the proof mass under a maximum of 500g of 

acceleration.  
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With respect to the overload end stop design for out-of-plane acceleration (Z-axis), this step 

is passed to the wafer level packaging design, since it concerns the bottom and top cap 

bonded to the die. It is anticipated that for obtaining optimal damping of the sensor the gap 

between the caps and the proof mass must be more than 5 μm, therefore breakage of the 

beams can occurs. To overcome this issue, bumpers of 3 μm of radius have been introduced 

in the caps, since the gap has been calculated to be totally around 8 μm. 

The designs‟ sensitivity is validated by comparing the sensitivity results to the demonstrator 

developed by Dao et al. [93]. The value of piezoresistive coefficient used for the sensitivity 

calculation is 35×10
-11

 Pa
-1

,
 
which is the value adopted by Dao et al. [93]. The simulation 

results of this study are on the same order of magnitude of the value of sensitivity obtained in 

the demonstrator device of Dao et al. [93]. Sensitivity under X-axis acceleration is 0.2 mV/g 

vs. 0.48 mV/g [93]; a similar value is obtained under Y-axis acceleration. Under Z-axis 

acceleration the sensitivity is 0.314 mV/g vs. 0.56 mV/g [93]. Figure 4-8 compares the two 

studies.  

 

Figure 4-8. Validation of the model sensitivity by comparing to the demonstrator performance of Dao et al. [19]. 
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4.3.2 Electrical sensitivity and cross-sensitivity 

In the calculation of the electrical sensitivity the temperature drift has been considered 

(temperature coefficient of sensitivity, TCS = 0.25 %/°C) since the device is meant to be 

inserted inside the ear canal (~37°C). Therefore, a further calculation of the sensitivity at the 

temperature of 37°C and 40°C has been undertaken (see Figure 4-9). The latter temperature 

has been identified conservatively as the maximum temperature before a dermal injury of the 

ear skin occurs [57].   

The temperature increase, as can be seen from Figure 4-9, significantly reduces the sensitivity 

of the device. The linearity is not affected since the resistors are hypothetically identical and 

in a Wheatstone bridge configuration.  

   

 
Figure 4-9. Temperature drift – Output Voltage vs. X- or Y-axis and Z-axis Acceleration. It was observed that the 

sensitivity is progressively reduced due to temperature increase. 
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Table 4-5 summarizes the sensitivity change due to the temperature drift for the microscale 

piezoresistors. As can be seen in Table 4-5 the sensitivity is overall reduced by around 4% by 

an increment of almost 18°C. This occurs because the increase of temperature reduces the 

value of piezoresistive coefficient corrected by the TCS. Similar results are obtained for the 

nanoscale piezoresistors.  

                                              Table 4-5. Temperature drift - sensitivity 

Temperature (°C) Ax, Ay (mV/g) Az (mV/g) 

22 0.684 0.907 

37 0.677 0.898 

40 0.655 0.868 

 

However, the temperature drift calculated takes into account the piezoresistive coefficient 

variation only but ignores the variation of the resistance value, which is considered invariant, 

due to the small temperature range. Therefore, if we consider the resistance temperature 

dependence overall the total effect is deteriorated. 

The calculated electrical sensitivity of nanoscale piezoresistors in the <110> direction at low 

boron concentration at 37°C, increases by approximately 3000% in comparison to the 

conventional ones (see Table 4-6). 

 

                                        Table 4-6. Voltage Noise – Sensitivity – Resolution 

Microscale Nanoscale Ratio 

 Ax,  Ay Az Ax,  Ay Az Ax, Ay Az 

Vjn  (µV) 1.01 1.42 3.2 4.52 3.1 3.2 

V1/f  (µV) 0.4 0.28 13.14 9.29 32 33 

VNoise  (µV) 1.2 1.97 13.53 10.41 11 5.3 

Sensitivity (mV/g) 0.67 0.9 20.9 28.9 30 32 

Resolution (mg) 1.78 2.2 0.64 0.36 0.36 0.16 



 

 

112 

 

Cross-sensitivity is below 5% for all axes due to the highly symmetric geometry selected. 

                     
      

      
                                             (4.21) 

           
      
      

                                                       (4.22)                            

As can be seen, the value obtained for Y-axis is the same as X-axis due to the geometrical 

symmetry. The cross-axis sensitivity related to the Z-axis acceleration is as follows: 

           
      

      
                                                     (4.23) 

           
      

      
                                                    (4.24) 

These values are a consequence of the highly symmetric geometry selected, the symmetric 

localizations of the piezoresistors on the top surface of the device, and the measurement 

circuit (see Figures 4-2(a) and 4-3). Similar results are obtained for the microscale 

piezoresistors.  

4.3.3 Nonlinearity, damping and bandwidth  

The result of nonlinearity for both microscale and nanoscale piezoresistors is less than 

1%FSO for all three axes. 

Considering an optimal damping condition the gap between the top and bottom caps for the 

proposed accelerometer is calculated (Eq. 4.8) with W = 800 μm, β = 1, H = 400 μm, and ωoz 

= 2πf z = 33 ×10
3
 rad/s. The value of d is found to be 8.12 μm with optimal damping 

condition (ζ=0.7). Since this value endangers the beams performance for acceleration over 

1000g, bumpers are incorporated in the top/bottom cap (see section 3.4.5 Overload end stop 

design in the Z-axis). For the second and third mode shapes (rotation around X- or Y-axis), 

the gaps between the two side walls of the seismic mass and the two inner side walls of the 

frame have not be designed for an optimal damping. Priority has been given to the design of 
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an optimized sensing chip structure (beam width). This gap is 50 μm. In this case, squeezed-

film air damping effect is much smaller than viscous damping. The damping ratio is therefore 

smaller than 0.7 (underdumped), and optimal damping is not achieved. 

The measurement bandwidth is calculated (Eq 4.15) in the case of optimal damping (  

    , where        and the cutoff frequency, which determines the measurement 

bandwidth, is 1054 Hz (fn = 5270 Hz), as set in the specification (Table 3-1).  

4.3.4 Noise and resolution 

The calculated Johnson noises corresponding to nanoscale and microscale piezoresistors are 

shown on the Table 4-6. This type of noise in the nanoscale piezoresistors is increased by 

around 300% mainly due to one order of magnitude higher resistance than conventional 

microscale ones. The resistance of the nanoscale piezoresistors is much higher than the 

conventional counterparts because of the reduced dimentison by keeping similar resistivity 

value (see Eq. 7.8). The total 1/f noise voltage corresponding to each measurement bridge is 

calculated to be approximately 30 times higher in the nanoscale devices due to the very low 

number of charge carriers, as clearly summarized on Table 4-6. For a constant doping 

concentration between nanoscale and conventional microscale piezoresistors, the number of 

carriers (N = p · lp · wp · tp, where p, lp, wp and tp are, respectively, doping concentration, 

doping concentration length, width and depth of piezoresistor) are dependent only on the 

piezoresistor dimension. The thermo-mechanical noises corresponding to each component of 

acceleration at 37°C with the bandwidths for X or Y bending (mode 2 and 3) of 5,539 Hz are 

in the order of few µg.    
   

 is the noise related to X- and Y-axis and    
  is the value related 

to Z-axis as follows: 

   
   

            
                                                        (4.25) 
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Equivalent thermo-mechanical noise voltage can be obtained by: 

   
   

          
   

                                                        (4.26) 

   
         

                                                           (4.27) 

As can be seen from the eq. (4.18), the thermo-mechanical noise is inversely proportional to 

the square root of the mass. Therefore, an increase of the mass can reduce the thermo-

mechanical noise. Notice that this type of noise remains unchanged between microscale 

nanoscale piezoresistors. Noise analysis indicates that the total voltage noise in the 

accelerometer is increased by ten times in the X and Y-axis, and five times in the Z-axis, see 

Table 4-6. The main contributor to the total noise signal is the Hooge noise due to very low 

number of carriers in the nanoscale piezoresistors. 

The resolution of the accelerometer with nanoscale piezoresistors is improved compared to 

the conventional microscale one of around 60-80% in all axes, due to their much higher 

sensitivity (see Table 4-6). However, the noise level of the nanoscale piezoresistors is worse 

than the conventional microscale ones because Johnson and Hooge noises are dependent on 

the resistance value and numbers of carriers respectively. Therefore, given the doping 

concentration, smaller size means higher resistance and lower number of carriers.  

Scaling down the device size will affect all three types of noise. In particular the Johnson 

noise will increase due to a larger frequency bandwidth (see Eq. 3.2), the Hooge noise will 

reduce for the same reason and the thermo-mechanical noise will increase is value based on 

the ratio between natural frequency and mass. In this last case, scaling down the device size 

the natural frequency will increase and the mass value will reduce, therefore the overall effect 

on the thermo-mechanical noise will be much worst then in the other noise types.   
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4.3.5 Discussion 

The results obtained from the combined FE modeling, simulation of the mechanical structure 

and performance calculation of both MEMS and nanostructure are interesting for this field of 

study. Input values used as piezoresistive coefficients for calculating the sensitivity and 

cross-sensitivity are obtained from experiments of Passi et al. [7] for the nanostructure and 

Smith [48] for the microstructure. This study raises the attention on SiNWs as devices being 

embedded into mechanical sensors as piezoresistors. The improved resolution of the designed 

accelerometer (less than 1mg on all axes) compared to the conventional microscale ones with 

60-80% increase (see Table 4-5) suggests that nanowires have the credential to be the sensing 

element of the future NEMS. This level of accuracy and precision of measurement is 

comparable to the capacitive counterparts‟ sensors. 

To date only few laboratory prototypes have been fabricated with silicon nanowire as 

nanoscale piezoresistors, as reported by Dao et al. [2] suitable for low-G measurements. 

However, their device [2] sensitivity for each axis is only about 400 µVg
−1

, and the resolution 

of 14 mg which requires further signal conditioning, see Table 4-7.  

This work instead presents a sensor with higher sensitivity obtained by calculations (20.9 

mVg
-1

), mainly due to a higher stress on the nanowires compared to the work of Dao et al. 

[2]. This is thanks to the optimization process undertaken that maximizes the stress on the 

beams of the mechanical structure, under the constraints listed in the specification (see Table 

3-1). The resolution in this study is improved considerably compared to the work of Dao et 

al. [2] (see Table 4-6) given that the sensor of Dao et al. is significantly smaller.   
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                               Table 4-7. Sensor performance comparison 

Microscale Nanoscale 

 This work Dao et al. [6] This work Dao et al. [2] 

Range Medium-g Low-g Medium-g Low-g 

Sensitivity (µV/g) 677 30 20,900 400 

Resolution (mg) 1.78 - 0.64 14 

Cross-Sensitivity (%) 2.78 5.5 2.78 - 

Dimension (mm3) 1.3×1.3×0.4 1×1×0.45 1.3×1.3×0.4 0.5×0.5×0.35 

 

The performance calculated of the sensor met the sensor specifications. Cross-sensitivity, 

nonlinearity and resolution are under the constraints set for this type of application; therefore, 

the designed sensor results suitable for the biomechanical application of head injuries 

monitoring. Finally, the total noise of nanoscale piezoresistors results are much higher than 

the conventional microscale ones; however, since in the nanoscale structures the sensitivity 

grows faster than the noise level, the overall resolution is significantly improved. It is 

worthwhile to point out that this work is based on previous published experimental work on 

nanowires structures used as piezoresistors [7, 48].  

4.4 Conclusion 

This chapter presented the electro-mechanical performance of a motion sensor for 

biomechanical measurement within a space-constrained environment developed in Chapter 3. 

Due to the exploitation of electro-mechanical features of nanowires as nanoscale 

piezoresistors the nominal sensor sensitivity is boosted overall by more than 3,000%. This 

technology avoids the need of signal amplification but allows a higher resolution with the 

advantage of a smaller sensing element. Therefore, in comparison with conventional devices, 

the measured accuracy is considerably improved.    
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This achievement opens up new developments in the area of implanted devices where the 

high-level of miniaturization and sensitivity is often essential. Example applications are in 

hearing aid systems (implantable sound sensor for cochlear implants [122]), heart wall 

motion measurement for cardiac artificial pacemakers [102] and head injury monitoring 

[134], amongst others. This study represents a valuable guideline for the development of 

future biomotion sensing devices.  

The next chapter deals with a novel electro-mechanical parametric study that intends to 

further enhance the electrical and mechanical performance of the accelerometer under study.  
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Chapter 5 

5 INFLUENCE OF VARIATIONS IN THE MASS MOMENT OF INERTIA INTO 

THE PERFORMANCE OF A TRI-AXIAL PIEZORESISTIVE 

ACCELEROMETER 

5.1 Introduction 

This chapter aims to introduce a further optimization of the piezoresistive accelerometer 

selected as a possible candidate in the Chapter 4, by exploring the influence of the variation 

in the mass moment of inertia of the accelerometer proof mass. In the literature no study is 

available on this new design optimization method.  

When the miniaturization is the main concern of the application, sensitivity becomes the main 

drawback, since the smaller the device is the lower is its sensitivity. Reduced sensitivity 

affects drastically the device accuracy, determining low signal to noise ratio.  MEMS 

technology currently faces this issue by simply introducing an amplifier at the output level, 

sometimes monolithically as in capacitive pick-off or in a complete different device as in 

piezoresistive pick-off (hybrid system partitioning). Introducing an amplifier introduces a 

relative signal noise that inevitably worsens the measurement accuracy. The work developed 
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in this chapter intends to address this issue in a different way by avoiding the use of an 

amplifier by exploiting the "Giant Piezoresistance" phenomenon observed when the 

dimension of a piezoresistor shrinks down to the nanoscale dimension [2-7, 13, 14, 43, 44]. 

Moreover, the study proposes a new design approach and compares different measurement 

circuits with the intention of increasing the accelerometer performance. By implementing the 

accelerometer with nanoscale piezoresistors (i.e. nanowires or quantum wires) connected in a 

particular measurement circuit and enhancing the geometry with an optimization study that 

progressively improves the sensor performance, the traditional design trade-off that must be 

addressed by designers using conventional microscale piezoresistors is overcome [93], due to 

the high sensitivity and the minuscule size achievable. 

The accelerometer design and optimization method proposed in this chapter creates a new 

solution (design) by changing the mass moment of inertia (MMI) of accelerometer proof mass 

to current solution. If the new solution is better, search proceeds utilizing the new solution, if 

not the older solution is retained. The objective function that guides the optimization process 

and generates feasible alternatives is that the mass moment of inertia (MMI) of the proof 

mass becomes constant for X-Y plane accelerations and therefore improving the 

accelerometer performance. The evaluation criterion is based on the performance calculation 

of sensitivity and cross-sensitivity.  

For this study, the initial design used in the design optimization method is the piezoresistive 

accelerometer studied in the previous chapters (see Figure 4-6). The objective function is 

defined from the hypothesis that even MMI of the accelerometer proof mass improves the 

device measurement accuracy. MMI is a property of a distribution of mass in space that 

measures its resistance to rotational acceleration about an axis and it is a purely geometric 

characteristic of the object, as it depends only on its shape and the position of the rotational 

axis.  
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A numerical model has been developed to assess the performances of six different new sensor 

design solutions of type A and B. Notice that only sensitivity and cross-sensitivity are 

evaluated here, mainly because the other performance indexes are purely dependent on the 

piezoresistor design which is a common variable for the different design addressed in this 

study.  

The study evolves from an uneven (or not constant) MMI to an even (or constant) MMI of the 

accelerometer proof mass in order to understand the effect of MMI changes on the sensor 

performance. The results reflect on advances in present state-of-art sensor performance. The 

study demonstrates that an even MMI does not always improve measurement accuracy, 

instead this improvement occurs only under particular circumstances dependent on type of 

measurement circuit, level of sensitivity of the sensing element and accelerometer beam 

geometry.  

Section 5.2 describes the numerical model adopted and validates the input of the FEM against 

a previous experimental work. Section 5.3 explains the design optimization approach applied 

for addressing the hypothesis formulated for this study. Section 5.4 presents the results of two 

different design types. Moreover the section deals with the measurement circuits design 

comparison, where two different measurement circuits are compared in terms of 

performance. The simulation results of the study are then discussed in section 5.5, 

formulating a thesis and providing future advice on possible further enhancement of the 

accelerometer design. Section 5.6 presents a conclusion section. 
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5.2 FE Modelling and input validation 

The input parameters used in the developed FEM for the material are available in  chapter 4 

in Table 4-1 and the geometry parameters are summarized in Table 4-4.  

The modelled geometries are analysed using 350,000 meshing nodes and tetrahedron 

elements with the use of ANSYS 12.1 commercial software. Moreover the modelled 

geometries are all highly symmetric micromechanical structure surrounded by four beams 

(Figures 5-1(a) and (b)) [2, 93, 104]. The initial designs, A1 and B1 (also available in Figure 

4-6), of the two different types of design evolution (curved and straight beams), have the 

same geometry also available in the literature [6, 93]. The other four designs (A2, A3, B2, 

B3) obtained after applying the design optimization method are completely new.  

 

 
                                    (a) 

 
                                     (b) 

Figure 5-1. (a) Evolutionary design approach of mechanical structures type A (curved beams). Design A1: square, 

Design A2: octagon, Design A3: circle. (b) Evolutionary design approach of mechanical structures type B (straight 

beams). Design B1: square, Design B2: octagon, Design B3: circle. 

 

 

The meshing option used for the meshing size is proximity, in order to increase the number of 

elements in the geometries areas of reduced size. This type of meshing, proximity, allows for 

a deeper meshing on the beams of the accelerometer mechanical structure, where good stress 

analysis is required. Boundary conditions are applied by fixing the bottom side of the external 
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frame of the mechanical structures. The load applied is a gravitational force vector of 500g of 

magnitude because it represents the maximum value reachable by the structure due to 

overload endstops. Notice that in order to effectively compare the performance results of 

these different geometries, they are all designed with the same proof mass volume. 

The designs‟ inputs are validated by comparing the sensitivity results of the initial design (A1 

or B1) to the demonstrator developed by Dao et al. [93]. The geometry parameters of Dao et 

al. demonstrator are available in Table 4.2. Moreover, the value of piezoresistive coefficient 

used for the sensitivity calculation is 35×10
-11

 Pa
-1

,
 
which is the value adopted by Dao et al. 

[93]. The simulation results of this study are on the same order of magnitude of the value of 

sensitivity obtained in the demonstrator device of Dao et al. [93], therefore the inputs of the 

simulation are considered valid (see Figure 4-9 for the results details). 

After validation of the device against a real demonstrator [93] further investigation on the 

design optimization of the model is carried out, which is the main purpose of this chapter. 

The optimization is a parametric one, where some parameters are changed individually and 

the performance calculated accordingly, in order to understand the effect of that particular 

parameter on the design performance. The parameters that are varied in this study are the 

piezoresistive coefficient of the sensing elements (i.e. 72×10
-11 

Pa
-1

 for conventional 

microscale piezoresistors [48] vs. 1527×10
-11

 Pa
-1

 for nanoscale piezoresistors [7]), the 

measurement circuit, the beams and proof mass geometry. The changes and combination of 

these parameters are made according to a design optimization approach that intends to 

increase the sensor performance progressively based on the hypothesis that an even mass 

moment of inertia (MMI) of the accelerometer proof mass under in-plane acceleration 

improves measurement accuracy. 
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5.3 Design optimization approach 

This section presents the design optimization approach that allows progressive reduction of 

the cross-axis sensitivity of our NEMS-based piezoresistive accelerometer by exploring new 

sensor designs. The study starts from a highly-symmetric micro-mechanical structure with 

square proof mass (design A1 or B1), studied in the previous chapters (Figure 4-6), and 

evolve this structure design based on a mechanical study with the objective of obtaining a 

much more even MMI on the X-Y plane when in-plane acceleration occurs, because in-plane 

acceleration determines mainly torsion on an axis of rotation. In principle an even, or 

constant, MMI on the X-Y plane should results in a corresponding even sensitivity under in-

plane acceleration (both uniaxial and biaxial), that results in a more accurate measurement of 

the acceleration and a reduced noise due to cross-sensitivity. This is true since both structural 

sensitivity (SAx) and MMI increase when the mass increases (both quantities are proportional 

to the mass, Eqs. 5.1 and 5.2), therefore MMI and sensitivity are proportionally related (Eq. 

5.3).  

2

1

N

i i

i

MMI m r


                                                            (5.1) 

where ri here is the distance from a point to the axis of rotation q. 

Ax Ax
l l

Ax

m
S

Ax Fx

  
                                                         (5.2) 

where 
Ax
l is the longitudinal stress at the piezoresistor Rx due to the application of the 

acceleration, Ax. Applying Newton‟s second law of motion (Fx = m · Ax), the proportional 

relationship of the structural sensitivity, SAx, and mass, m, is revealed. Therefore, 

 AxS MMI                                                               (5.3) 
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By keeping the MMI constant, which is obtained by designing the accelerometer proof mass 

with a uniform mass distribution in relation to the axis of rotation r, the structural sensitivity 

is kept constant as well (Eq. 5.3).Figure 5.2 shows the two steps of optimization, wherein the 

vector of biaxial acceleration (X-Y axis acceleration) is applied to the proof mass. Under 

these inertial forces the proof mass will rotate around the q axis, determining a MMI 

dependent on the distribution of masses. In the square proof mass the MMI due to uniaxial 

acceleration is different from the MMI due to biaxial acceleration, therefore is uneven. 

Moving forward towards the circular proof mass the MMI become the same for both uniaxial 

and biaxial acceleration, therefore similarly, the structural sensitivity will be the same for 

both uniaxial and biaxial acceleration, improving the overall measurement accuracy.  

 

Figure 5-2. Evolutionary design approach. The MMI under biaxial acceleration at each step of optimization become 

more and more similar to the MMI under uniaxial acceleration. Therefore the sensitivity, since it is proportional to 

the MMI, in the last step of optimization is the same for uniaxial and biaxial acceleration improving the measurement 

accuracy.  

 

The electrical sensitivity, Ax
ElecS , is itself proportional to the structural sensitivity (Eq. 5.4), 

therefore constant structural sensitivity implies constant electrical sensitivity [93].  

   

 MMI 

uneven 

 MMI even 

X-Y Acc. X-Y Acc. X-Y Acc. 

 

q q q 



 

 

125 

 

1
· · · ·


  Ax outX x
Elec in l Ax in

x

V R
S V S V

Ax Ax R
                                     (5.4) 

where 
 x

x

R

R
is the functional resistance change,  l  is the longitudinal piezoresistive 

coefficient and inV is the input voltage. Finally, this last relationship implies higher 

measurement accuracy, because the input/output relationship of the sensor (the acceleration 

applied, Ax, versus the output voltage of the accelerometer, Vout) remains the same for any in-

plane acceleration (both uniaxial and biaxial), determining a linear transfer function, which 

means that the device responds in the same way for acceleration of different directions on the 

X-Y plane. 

Next sections present the performance calculation of the electrical sensitivity and cross-

sensitivity of the two different types of design concept developed (design concept A: curved 

beams, and design concept B: straight beams, Figures 5-1 (a) and (b)). 

5.4 Results  

5.4.1 Design Concept Type A: Curved beams 

The performance calculation of each structure has been made considering the use of 

nanoscale piezoresistors made of silicon nanowires. The values of piezoresistive coefficients 

used in the calculation are obtained from previous experimental work on silicon nanowires 

[7]. In order to compare the microstructures under study a common measurement circuit is 

developed and an equivalent value for all proof masses is considered. Three microstructures 

are modelled (Figure 5-1(a)) and the approach adopted in order to reduce the cross-axis 

sensitivity is that the structures are improved and analysed progressively. The design 
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optimization approach applied in the development of the mechanical structures is based on 

the principle of making the mass moment of inertia even on the X-Y plane for each step of 

optimization. Figure 5-1 shows the three steps of optimization from a micromechanical 

structure on the X-Y plane with square proof mass (Design A1) to a micromechanical 

structure with circular proof mass (Design A3). Intermediate micromechanical structure is 

made up of an octagonal proof mass on the X-Y plane (Design A2). 

The method reported here differs from previous work [6] in the specific measurement circuit, 

since the measurement circuit adopted previously cannot be applied in the new designs 

geometries due to the use of curved beams. See Figures 4-6, 4-2(a) and 4-3 for the model, the 

piezoresistors location on the top surface of the chip and the measurement circuit of the 

starting design respectively. 

The performances of these three structures have been analysed, electrical sensitivity and 

cross-sensitivity have been calculated based on stress/strain analysis obtained by FEA. In 

order to be comparable all proof masses of the structures have identical volume (3×10
8
 µm

3
), 

moreover the piezoresistors are all placed in the same locations on the top surface of the chip 

(Figure 4-2(a)) and the measurement circuits are identical for all designs (Figure 4-3). The 

electrical sensitivity is calculated as the Wheatstone bridge voltage output divided by the g-

force applied, as in Eq. 5.4; the cross-axis sensitivity is calculated as fraction, where the 

denominator is the output voltage of the axis where the acceleration is applied and the 

numerator is the output voltage of the remaining axis, in percentage (Eqs. 4.4 and 4.5). The 

results are illustrated graphically in Figure 5-3 and 5-4 (see also Table I-1 in Appendix I).  
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Figure 5-3. Sensitivity comparison of three designs using silicon nanowires as nanoscale piezoresistors. Due to geometry 

effect the octagon design (A2) presents higher sensitivity under Z-axis acceleration. The circle design (A3) due to curved 

beams presents higher transversal stress than the octagon geometry A2; therefore the sensitivity under Z-axis acceleration is 

reduced. 

 
 

Figure 5-4. Cross-axis sensitivity of three designs using silicon nanowires as nanoscale piezoresistors. Beam geometry 

determines the superior performance of the octagon geometry (A2) with the lower cross-talk. The circle design (A3) due to 

curved beams (higher transversal stress) presents higher cross-talk than the octagon geometry (A2). 

 

The octagonal design (Design A2) shows the minimum cross-sensitivity and the higher Z-

axis sensitivity compared to the other designs. This is explained mainly by the advantageous 

geometry effect of the design optimization. In other words the much more even distribution 
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of masses in the octagonal design offers a better performance. This trend does not continue to 

the circular geometry (Design A3) because of the adverse effect of curved beams. The higher 

cross-sensitivity in the Design A3 (circle) respect to the Design A2 (octagon) is due to the 

effect of transversal stress, which is more relevant in Design A3 respect to Design A2 

because of curved beams, therefore reduces the effect of longitudinal stress and determines 

higher cross-talk (Figure 5-4). For the same reason the Z-axis sensitivity results reduced 

respect to the Design A2. Design A1 presents a very high cross-talk in the Z-axis output, this 

is mainly a consequence of geometric effects, due to a non-even distribution of masses on the 

X-Y plane. The Design A2 is stiffer with higher stress and sensitivity at higher natural 

frequency (5,412 Hz against 5,355 Hz of Design A3 and 4,453 Hz of Design A1, 1
st
 mode 

shape - bending on Z-axis), therefore, this shape overcome the classic trade-off between 

sensitivity and size of the sensor and offer a higher usable bandwidth. This is explained due 

to a better distribution of masses related to the geometry of the sensor, but is not so evident in 

the shape A3 (circle) because of much more transversal stress acting against the sensitivity. 

Finally, at equal mass value the octagonal geometry (A2) gives higher natural frequency and 

higher sensitivity. Therefore this shape allows for extreme miniaturization due to the 

improved overall performance.  

The effect of deformation in the square geometry (A1) follows the Hook law where higher 

deformation determines lower natural frequency (Eq. 3.3). In the octagonal geometry (A2) 

smaller deformation increases the natural frequency more than the other geometries. The 

same thing occurs in the circular geometry (A3) but with less effect. The design optimization 

approach reaches its limit with the octagonal geometry and does not improve progressively 

when it comes to the circular geometry. This is because the transversal forces are more 

evident in the curved beams of the circular geometry, acting against the sensitivity and 

therefore reducing the performance. 
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The octagonal sensor due to its higher performance is a possible candidate for fabrication (see 

Figure 5-5), thanks to its optimized geometry and the enhancement offered by the use of 

nanowires as nanoscale piezoresistor. Overall the sensor meets the requirements for the 

application for which has been designed initially by the target specifications (Table 3-1). 

 

 

Figure 5-5. (a) Octagonal geometry sensor (top view). (b) Octagonal geometry sensor (isometric view with mesh). 

 

5.4.2 Design Concept Type B: Straight beams 

Other two types of mechanical structure have been investigated with different measurement 

circuit that offers higher sensitivity. As before an optimization approach has been applied 

starting from the square design (Design B1), also available in the literature [6, 93], see Figure 

5-1(b). 

The main difference with the previous geometries type A is that the beams are left straight in 

order to minimize transversal stress that is relevant mainly in the circle design. The 
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measurement circuit is also different (see Figure 5-7(a) for the piezoresistors locations on the 

top surface of the accelerometer and Figure 5-7(b) for the Wheatstone bridges circuit). 

 

 
(a) 

 
(b) 

 

Figure 5-6. (a) Piezoresistors locations on the top surface of the chip (Design B1). (b) Measurement circuit type B.  -

(a) X, Y-axis Wheatstone bridge; (b) Z-axis Wheatstone bridge. 

 

 

As in the previous analysis the performance calculations are based on previous experimental 

work, in particular the longitudinal piezoresistive coefficient used for both nanoscale 

piezoresistors [7] and conventional microscale piezoresistors [48]. Again, in order to be 

comparable all proof masses of the structures have identical volume (3×10
8
 µm

3
), moreover 

the piezoresistors are placed all in the same locations on the top surface of the chip (Figure 5-

6(a)) and the measurement circuits are identical for all designs (Figure 5-6(b)). Table 5-1 

summarizes the electrical sensitivity and correspondent cross-axis sensitivity of the three 

designs type B under study with conventional piezoresistors.  
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Table 5-1. Sensitivity and cross-sensitivity of three designs type B with conventional piezoresistors 

 

X-axis 

ACCELERATION 

(500g) 

Y-axis 

ACCELERATION 

(500g) 

Z-axis 

ACCELERATION 

(500g) 

X, Y-axis 

ACCELERATION 

(500g) 

 

X-axis 

(V/G) 

Cross

-Y 

(%) 

Cross

-Z 

(%) 

Y-axis 

(V/G) 

Cross

-X 

(%) 

Cross

-Z 

(%) 

Z-axis 

(V/G) 

Cross

-X 

(%) 

Cross

-Y 

(%) 

X-axis 

(V/G) 

Y-axis 

(V/G) 

Cross

-Z 

(%) 

SQU

ARE 

5.66E-

04 
0.104 0.191 

5.65E-

04 
0.055 0.003 

8.37E-

04 
0.031 0.165 

5.61E-

04 

5.60E-

04 
0.011 

OCT

AGO

N 

5.41E-

04 
0.002 0.322 

5.41E-

04 
0.011 0.157 

8.32E-

04 
0.257 0.326 

5.40E-

04 

5.39E-

04 
0.339 

CIRC

LE 

5.37E-

04 
0.001 0.311 

5.37E-

04 
0.001 0.107 

8.34E-

04 
0.032 0.156 

5.36E-

04 

5.36E-

04 
0.285 

 

The cross-sensitivity does not improve with the straight beams because the combination of 

measurement circuit and shapes is not electromechanically advantageous; nevertheless it is 

reduced from the Design B2 to the Design B3 due the use of a circular proof mass. The cross-

sensitivity is less than 1% for square and circle geometries, respectively Design B1 and B3.  

The data of cross-sensitivity calculated with the use of nanowires as nanoscale piezoresistors 

are illustrated in the Figure 5-7. Regarding the sensitivity, it remains almost unchanged for 

each of the three different design of type B (see Table I-2 in Appendix I). 
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Figure 5-7. Cross-axis sensitivity of three designs type B with nanowires. As it can be seen optimization process not 

improves the performance from geometry B1 to geometry B2 but improves in B3 due to circular proof mass and 

straight beams. 

 

The high sensitivity of nanowires increases the cross-sensitivity as well but is overall reduced 

in the last design (B3, circle) due to the favourable effect of distribution of masses in the 

circular proof mass. The sensitivity, even if it is improved due to the use of nanowires it is 

less even for biaxial acceleration than in the previous results on conventional piezoresistors 

(Table 5-1). Moreover the cross-sensitivity deteriorates respect to the designs type A using 

nanoscale piezoresistors, mainly due to the output of the Z-bridge under X-axis acceleration 

(Figure 5-7). One can ascribe this effect of the cross-sensitivity to the use of the nanowires 

due to their higher sensitivity combined to the particular measurement circuit used in this 

case (Figure 5-6(a) and 5-6(b)).    

Finally, for higher sensitivity by using nanowires, the circle design (B3) is preferable on the 

other designs due to lower cross-sensitivity, less than 2%. Notice that the three geometries 

use the same type of beams (straight beams) and the same measurement circuit therefore the 

change in cross-sensitivity is attributed only to the proof mass geometry effect.  Given this 

performance results the circle design (B3) is also a possible candidate for fabrication (see 

Figure 5-8).  
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Figure 5-8. Circle design with straight beams (Top view) 

 

5.4.3 Effect on performance of beam geometry 

The performance results presented in the section 5.4.1 and 5.4.2 highlight the different effect 

of straight, octagonal and circular beams on device sensitivity and cross-sensitivity. 

Figure 5-9 compares the sensitivity of all geometries under study. As can be seen the much 

higher sensitivity under Z-axis acceleration for the type A geometries compared to the type B 

geometries is related mainly to the different measurement circuit deployed.  The sensitivity 

levels under X- and Y-axis acceleration change slightly among different geometries. The two 

designs with square proof mass and straight beams (A1 and B1) are identical except for the 

use of a different measurement circuit, therefore the sensivity change under Z-axis 

acceleration is down to it. The deisgn with octagonal mass and octagonal beams (A2) 

compared to the design with octagonal mass and straight beams (B2) present improved 

sensitivity for all axes, again the very high sensitivity under Z-axis acceleration is due to the 

measurement circuit used and the particular beam geometry. Similar results as the geometries 
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A2 and B2 are obtained comparing the design with circular proof mass and circular beams 

(A3) to the design with circular proof mass and straight beams (B3).  

 

Figure 5-9.  Sensitivity comparison among the various geometries analysed in the study. As can be seen square mass 

with straight beams gives similar sensitivity performance except under Z-axis acceleration due to the different 

measurement circuit used. The octagonal proof mass geometry with octagonal beams compared to straight beams is 

superior under all different acceleration directions, again the high improvement under Z-axis acceleration is related 

to the measurement circuit used and also the bend angle. Finally, the geometry with circular proof mass and circular 

beams shows slightly higher sensitivity levels than the geometry with circular proof mass and straight beams. 

 

Overall the results obtained shows that octagonal beam geometry compared to the straight 

one regardless of the proof mass geometry present higher sensitivity levels for out-of-plane 

acceleration and similar sensitivity levels for in-palne acceleration. This improvement of the 

sensitivity is related mainly to the particular measurement circuit used that enhance the 

sensitivity under Z-axis acceleration and also related to a higher stress available at the 

piezoresistors location, close to the attachments. This type of beam geometry presents higher 

stress at the attachments to the proof mass or frame because of the bend angle (45°) at the 

middle of the beam. The change in direction of the beam determines a slight increase of stress 
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compared to the straight beam. Note that the beam length is slightly reduced in the octagonal 

geometry compared to the straight one. 

Regarding the comparison between circular and octagonal beams, the sensitivity change is 

very little when it come to in-plane acceleration. Therefore in these particular cases the stress 

distribution on the beams is not much affected by the different geometry. Note that for these 

two types of beam geometries the beam length is similar.  

Under out-of-plane acceleration the sensitivity is notably different between octagonal and 

circular beam geometry. This difference is related to the distribution of transversal stress on 

the piezoresistor locations. The transversal stress affects negatively the sensitivity, therefore 

circular beams determine higher transversal stress than octagonal beams on the piezoresistors 

location. Under in-plane acceleration the change in transversal stress distribution between 

octagonal and circular beam geometry is compansated by the measurement circuit, this 

compensation is not occurring under Z-axis acceleration because of the particular 

measurement circuit used (see section 5.5 for details).    

The effect of transversal stress at the piezoresistor location is affected by the angle of 

curvature of the circular beam geometry. The higher is this angle the lower would be the 

effect of transversal stress on the sensitivity.  

Finally the octagonal beam geometry offer an enhanced sensitivity compared to the straight 

beam geometry due to a slightly increased stress at the piezoresistors location due to the bend 

angle and an enhanced sensitivity compared to the circular beam geometry due to a lower 

transversal stress at the piezoresistors location (improved sensitivity under out-of-plane 

acceleration). Measurement circuit comparison 
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From the performance calculations undertaken so far it is possible to evaluate the impact of 

the different measurement circuits deployed in the two types of geometries. Notice that the 

type of measurement circuit depends on the particular beam geometry (curved or straight) 

where the piezoresistors are placed (compare Figures 4-2 to 5-8). Therefore, the type of 

circuit is a consequence of the type of beams. In particular, notice that the starting geometry 

of the evolutionary design approach study (square geometry - Design A1 or B1) is identical 

for both types of geometries developed in this work; therefore the obtained values of 

sensitivity and cross-sensitivity are comparable based on the exclusive measurement circuit 

design. Table 5-2 compares the two measurement circuits deployed in this study. 

Table 5-2. Measurement circuit performance comparison between Square geometry type A1 and 

Square geometry type B1 

 

X-axis 

ACCELERATION 

(500g) 

Y-axis 

ACCELERATION 

(500g) 

Z-axis 

ACCELERATION 

(500g) 

X, Y-axis 

ACCELERATION 

(500g) 

 

X-

axis 

(V/G) 

Cross

-Y 

(%) 

Cross

-Z 

(%) 

Y-

axis 

(V/G) 

Cross

-X 

(%) 

Cross

-Z 

(%) 

Z-axis 

(V/G) 

Cross

-X 

(%) 

Cross

-Y 

(%) 

X-

axis 

(V/G) 

Y-

axis 

(V/G) 

Cross

-Z 

(%) 

Square 

type A1 

1.11E-

02 
0.06 2.78 

1.11E-

02 
0.052 2.76 

3.77E

-02 
0.005 0.013 

1.57E-

02 

1.57E-

02 
2.842 

Square 

type B1 

1.10E-

02 
0.15 2.2 

1.10E-

02 
0.090 0.004 

1.48E

-02 
0.022 0.115 

1.22E-

02 

1.22E-

02 
0.011 

 

As it can be seen from Table 5-2 the outputs obtained from the two measurement circuit 

under X-axis acceleration are comparable, similar results under Y-axis acceleration except for 

the output of the Z-bridge (cross-Z). These results are easily explained due to the symmetric 

location of the piezoresistors on the top surface of the sensor beams for X and Y-bridge in 

both types of design. When X-axis acceleration occurs the piezoresistors of the measurement 

circuit type A are compressed, meanwhile the correspondent piezoresistors of the 
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measurement circuit type B are tensed. Therefore, the absolute value of output voltage is 

similar.  

When it comes to the Z-bridge the values of the output voltage (cross-Z) are of the same 

order of magnitude under X-axis acceleration (2.78% and 2.2%), but very different under Y-

axis acceleration (type B is two order of magnitude smaller, 2.76% vs. 0.004% – lower cross-

talk, Table 5-2). This occurs because the type B Z-bridge circuit is unbalanced under the X-

axis acceleration and balanced under Y-axis acceleration, due to different piezoresistors 

locations. Under Z-axis acceleration the performance of the measurement circuit type A is 

much better than type B (37.7 mV/g vs 14.8 mV/g), this is down to the higher sensitivity 

obtained from the circuit design due to a higher number of piezoresistors under the same 

stress condition. In conclusion it was found out that the circuit type A has higher performance 

than type B, except for the output of Z-bridge under Y-axis acceleration (cross-Z) due to 

measurement circuit design. It could be possible to combine both types of measurement 

circuit for the Z-bridge and improve the measurement accuracy. This is currently reasonable 

only for the geometry type B with straight beams, due to the use of piezoresistors on the 

<110> direction. In the case of the type A geometries with no-straight beams, the feasibility 

of the measurement circuit should be tested since the use of piezoresistors on the <100> 

direction. If the nanowires built on the <100> direction give the expected sensitivity under 

stress [6, 12, 45] it could be possible to apply the improved measurement circuit to the new 

geometries developed in this study.  
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5.5 Optimum design selection 

By comparing the results obtained from the design optimization approach of geometry types 

A and B with the use of nanowires it can be concluded that the design A2 (octagon) and the 

design B3 (circle) are the favourite geometries for fabrication. Table 5-3 compares closely the 

performance results of the two geometries; clearly the octagon type A geometry (A2) 

presents higher performance in terms of sensitivity and cross-sensitivity, due to the combined 

geometry and measurement circuit effect. As  can be seen from the Table 5-3, the octagonal 

geometry type A considerably improves the cross-talk of the Z-bridge under in-plane 

acceleration and more than double the sensitivity under Z-axis acceleration. On the other 

hand, the circle geometry type B (B3) presents worst cross-sensitivity on the Z-bridge output 

under X-axis acceleration due to the measurement circuit effect (1.553% vs. 0.046%), but 

presents much more even sensitivity for in-plane acceleration (the sensitivity for biaxial 

acceleration is much closer to the uniaxial one, 11.5 mV/g vs. 14.9 mV/g for biaxial and 10.5 

mV/g vs. 11.9 mV/g, for uniaxial one - Table 5-3).  

 

Table 5-3. Sensor performance comparison of Octagon geometry type A2 and Circle geometry type 

B3 

 

X-axis 

ACCELERATION 

(500g) 

Y-axis 

ACCELERATION 

(500g) 

Z-axis 

ACCELERATION 

(500g) 

X, Y-axis 

ACCELERATION 

(500g) 

 

X-

axis 

(V/G) 

Cross

-Y 

(%) 

Cross
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Y-

axis 

(V/G) 
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-X 
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-Z 

(%) 

Z-axis 

(V/G) 

Cross

-X 

(%) 

Cross

-Y 

(%) 

X-

axis 

(V/G) 

Y-

axis 

(V/G) 

Cross

-Z 

(%) 

Octagon 

type A2 

1.19E-

02 
0.169 0.046 

1.19E-

02 
0.115 0.029 

6.06E

-02 
0.001 0.037 

1.49E-

02 

1.49E-

02 
0.040 

Circle 

type B3 

1.05E-

02 
0.010 1.553 

1.06E-

02 

0.000

5 
0.115 

1.48E

-02 
0.022 0.109 

1.15E-

02 

1.15E-

02 
0.128 

 

From those results, it could be interesting to exploit the potential of both designs combining 

them in a single design with circle geometry, plus beams and measurement circuit of the 
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octagon geometry type A (A2), in order to maximize the advantages coming from both 

design types. In this new design it may even possible to uses the potential of the improved 

measurement circuit explained earlier (section 5.4) that exploit nanowires on the <100> 

direction. This new design is addressed in the next chapter. 

The design optimization approach demonstrates that even sensitivity, due to geometry and 

measurement circuit, for biaxial in-plane acceleration reduces cross-sensitivity on the 

remaining axis (Z-axis); see the value change of the cross-Z under X-axis acceleration in 

Figure 5-7. The reason for this can be easily explained, because if we have higher sensitivity 

for biaxial in-plane acceleration (overall uneven), the correspondent cross-talk (Z-axis) would 

be higher as well for a proportional quantity. This is down to the relationship of piezoresistors 

in the measurement circuit (common location). This phenomenon can be much more 

appreciated with high sensitivity devices such as nanowires (see Figure 5-7).  

The study points out the possibility of developing a design that combines nanowires on the 

<110> and <100> direction. It should be noted that such design needs further investigation 

beyond present study due to the unknown behaviour of nanowires in the <100> direction 

under 5 nanometer size, and therefore, performance calculation are unavailable at this stage. 

The design performance at present can be calculated only with the use of <110> nanowires 

direction, therefore only a particular measurement circuit can be used, e.g. the two types 

investigated in this study, that limits the chances to maximize the sensor performance.  

5.6 Conclusion 

In summary, the hypothesis of this study is that an even mass moment of inertia would 

improve measurement accuracy. The hypothesis has been proved with a design optimization 
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approach (from uneven to even mass moment of inertia) and performance comparison 

(sensitivity and cross-sensitivity) of two types of design. Finally, the thesis obtained from the 

analysis of the calculations results is that even mass moment of inertia not always improve 

measurement accuracy, but it depends on the measurement circuit, the level of sensitivity of 

the sensing element (piezoresistors) and on the beams geometry (straight or curved). The 

electro-mechanical study developed is a valuable tool for enhancing the performance of any 

piezoresistive accelerometer that adopts four surrounding beams and a highly-symmetric 

geometry.  
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Chapter 6 

6 PROPOSED OPTIMAL ACCELEROMETER DESIGN 

6.1 Introduction 

This chapter presents the performance results of the optimal accelerometer design obtained as 

a final output of a design optimization approach developed in Chapter 5. The design 

optimization strategy adopted basically creates a new solution (design) by changing the mass 

moment of inertia (MMI) to current solution. If the new solution is better, search proceeds 

utilizing the new solution, if not the prior solution is retained. The final design is the result of 

three steps of design optimization that starts from a state-of-art design readily available in the 

literature [93] that is configured with straight beams and square proof mass. The optimization 

process is guided by an objective function that generates feasible alternatives. The objective 

function is based on changes of the MMI of the proof mass, which becomes more and more 

even at each step of design evolution for any biaxial acceleration (acceleration of X-Y plane). 

In the first step of optimization the square proof mass of the accelerometer becomes 

octagonal with two different designs, one with straight beams and one with curved beams. In 

the second step of optimization the octagonal proof mass of the accelerometer becomes 
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circular in two different designs, one with straight beams and one with curved beams. In the 

third and last step of optimization the final design is obtained. Notice that except for the first 

accelerometer geometry with square proof mass and straight beams, all designs obtained from 

the optimization process are completely new (not available in the literature). Therefore this 

work presents new device geometries achieved through adoption of an optimization process 

based on a novel design optimization approach (changes of the proof mass MMI). 

As expected the accelerometer geometry obtained as the final output of the design 

optimization approach has superior performance in term of sensitivity and cross-sensitivity in 

respect to the previous geometries. This new and final design increases the sensitivity but 

simultaneously reduces the cross-talk, a phenomenon not reported in the literature. Typically, 

an increase in sensitivity results to a proportional increase in the cross-sensitivity. 

This chapter work represents a further and final step in the enhancement of the accelerometer 

design performance. The aim is to maximize the performance of the accelerometer, thus 

sensitivity and cross-sensitivity are investigated, in order to improve the device measurement 

accuracy.  

6.2 Optimization strategy 

Figure 6-1 shows the entire design optimization process adopted for the study. As it can be 

seen, the approach starts from a state-of-art design and then evolves into two different 

designs types based on distinct beams geometry (curved beams type A and straight beams 

type B). Each step of evolution has common proof mass geometry that changes in the first 

step of evolution from square to octagon and in the second step changes into circle. 

Following a thorough performance analysis undertaken in Chapter 5 (section 5.4) two 
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geometries are selected (octagon type A – Design A2, and circle type B – Design B3, see the 

Figure 6-1) for their higher performance (higher sensitivity and lower cross-sensitivity - see 

results in Figure 5-3, 5-4 and Figure 5-7 in Chapter 5). The final design is obtained from a 

combination of these two geometries (Figure 6-1) that utilises the measurement circuit type A 

(Figure 4-2(a) and 4-3) due to the use of octagonal beams geometry.    

 

Figure 6-1. Flow chart of the design optimization approach. As it can be seen the geometry optimization starts with a 

square proof mass (Design A1/B1) and then it becomes octagonal (Design A2 and B2) and finally a circle (Design A3 

and B3). Two types of beams are used straight and curved. The final design is obtained after a performance analysis 

that indicates the superior geometries (Design A2 and B3). 
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6.3 FE Modelling 

The modelled geometry in Figure 6-2, which is the proposed optimal accelerometer design, is 

analysed with the use of ANSYS 12.1 commercial software by using 350,000 meshing nodes 

and tetrahedron elements and proximity meshing option for improved accuracy in the 

geometry areas of reduced size, such as the beams, where good stress analysis is required (see 

Figure 6-2(b)).  

 
                                  (a) 

                                    (b) 

Figure 6-2. (a) Optimal design (top view). The design is obtained from the combination of the octagon geometry type 

A and circle geometry type B and utilizing the measurement circuit of type A. (b) Meshed optimal design (isometric 

view). As it can be seen the beams have a much more dense mesh for accuracy enhancement. 

 

Boundary conditions are applied by fixing the bottom side of the external frame of the 

mechanical structures and then leaving the proof mass free to move. The load applied is a 

gravitational force vector of 500g of magnitude, one for each of the three principal axes. The 

material properties of the model are provided in Table 6-1. To allow comparison among the 

different geometries studied, all structures‟ proof masses have identical volume (3×10
8
 µm

3
). 
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                       Table 6-1. Model material and geometrical properties 

Mechanical Structure material Single Crystal Silicon Anisotropic 

Density (kg/m
3
) 2330 

Matrix of stiffness see Eq. 4.1 

Proof Mass volume 3×10
8
 µm

3
 

Proof mass radius 488.60 µm 

Proof mass thickness 400 µm 

 

 

In order to better understand the effect of beam and proof mass geometry on the sensor 

mechanical performance (sensitivity and cross-sensitivity) three different types of geometries 

have been developed (see Figures 6-3) with distinct curved beams (Design curved+circle and 

curved+circle 2, Figure 6-3(a) and (b) respectiveley) and with a doughnut proof mass (Figure 

6-3(c)) using the same measurement circuit type A. 

 

(a) 

 

(b)            
 

(c) 

Figure 6-3. (a) Curved+circle geometry. The beams have a concave geometry. (b) Curved+circle2 geometry. The beams 

have convex geometry. (c) Doughnut geometry. The proof mass is empty in the middle. 
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6.4 Results and discussion 

6.4.1 FEA results - nanowires as piezoresistors 

Figures 6-5 shows comparison of the sensitivity performance results for the final design to 

the three designs type A using similar measurement circuit (type A) and nanowires (the 

longitudinal piezoresistive coefficient at room temperature used for the nanoscale value is 

1527×10
-11

 Pa
-1

, obtained from Passi et al. [7] experimental work). Detailed results are 

provided in Table I-3 (Appendix I). As can be seen from Figure 6-6, the final optimal design 

presents under X or Y-axis acceleration a maximum increase in sensitivity of 16.2% (final vs. 

square A1), while under biaxial acceleration (X and Y-axis acceleration) an increase of 

19.5%. When it comes to the sensitivity under Z-axis acceleration the maximum increment of 

the final design is four times larger (proposed optimal design vs. square A1) and the 

minimum increment is of 216% (proposed optimal design vs. octagon A2), this is achieved 

thanks to the use of octagonal beams, circular proof mass, type of measurement circuit and 

nanowires. The final design presents the maximum performance in term of sensitivity. 
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Figure 6-4. Sensitivity comparison of different design. The proposed optimal design due to combination of 

parameters, such as octagonal beams, circular proof mass, measurement circuit type A and the use of nanowires 

determines the maximum performance. 

 

 

 

Figure 6-6 shows the cross-sensitivity of the different designs. As expected, the proposed 

design is superior with respect to the other studied accelerometer designs. The sum of the 

cross-sensitivity of all axes is minimized and equal to 0.4%. This result is attributed to the 

combination of different parameters selected after a thorough analysis, i.e. octagonal beams, 

circular proof mass, measurement circuit type A and nanowires. For the first time a design is 

capable of increasing the sensitivity and meanwhile minimizing the cross-sensitivity. This is 

in contrast to the design available in the literature [94 – 106] whereby any increase in 

sensitivity was reported to lead to a correspondent increase in the cross-sensitivity. 
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Figure 6-5. Cross-sensitivity comparison. The proposed optimal design presents lower cross-sensitivity. 

 

6.4.2 FEA results - conventional microscale piezoresistors 

With the use of conventional microscale piezoresistors (the longitudinal piezoresistive 

coefficient at room temperature used for the conventional piezoresistor is 72×10
-11

 Pa
-1 

as 

reported by Smith [48] experimental work), the proposed design also presents the highest 

performance mainly in term of cross-sensitivity (Figure 6-6 and 6-7). Therefore, in this 

particular case the effect of nanowires that increases cross-sensitivity especially on the Z-

bridges under X-axis acceleration observed previously (Figure 5-7) is not present, mainly 

because the measurement circuit used (type A).  

Other three different geometries types (curved+circle, curved+circle2 and doughnut) have 

been designed and the performance has been calculated with the use of conventional 
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piezoresistors. The new geometries due to the curved beams (concave and convex) present 

higher sensitivity because the beams are relatively longer and determine higher deformation 

and stress (see Figure 6-6), but at the cost of higher cross-talk (Figure 6-7). This is the main 

drawback in the state-of-art design [94 – 106], the proposed optimal design developed in this 

study overcome this effect. It is able to increase the sensitivity but not at the cost of the cross-

sensitivity, in fact the cross-sensitivity is reduced. 

 

Figure 6-6. Sensitivity comparison with conventional microscale piezoresistors. The final optimal design and the new 

beam geometries (curved+circle and curve+circle2) present higher sensitivity. The doughnut geometry presents the 

lower sensitivity compared to the other geoemtries. 

 

The use of nanowires in this study has its main impact on boosting the sensitivity under Z-

axis acceleration (Figure 6-5) mainly due to the measurement circuit used. The two 

geometries, curved+circle and curved+circle2, provide higher sensitivity due to curved beams 

used (Figure 6-6) but this effect does not prevent increases of cross-talk (Figure 6-7). As it 

can be seen in Figure 6-7, the cross-sensitivity of curved+circle and curved+circle2 

geometries is worst than the octagonal A2 design because the beams are much longer 
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determining higher deformation and stress and therefore higher cross-talk. The circle A3 

design compared to the curved+circle and curved+circle2 presents higher cross-talk due to 

the use of circular beams that reduces the effect of longitudinal stress compared to the 

transversal one on the piezoresistors. The doughnut geometry compared to the other 

geometries presents the lowest sensitivity in all axes of measurements. The concentration of 

mass on the edge of the proof mass does not improve the mechanical behaviour of the device 

instead the sensitivity get worst because of the reduced stress on the piezoresistors locations. 

This is more evident under X and Y-axis acceleration where rotation occurs under the axis 

perpendicular to the vector of the applied acceleration. Therefore the effect of a lower mass 

moment of inertia influences the in-plane sensitivity. For out-of plane acceleration the 

sensitivity is comparable to the state of art design (design Squate A1). Similar results are 

obtained with the doughnut geometry for the cross-sensitivity, which is not improved by a 

distribution of mass on the edge of the proof mass (Figure 6-7). 

Table I-4 (Appendix I) compares the results of sensitivity and cross-sensitivity of three type 

A designs, such as the proposed optimal geometry and the three new geometries 

(curved+circle, curved+circle2 and doughnut) with conventional microscale piezoresistors. 
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Figure 6-7. Cross-sensitivity comparison with conventional microscale piezoresistors. The new geometries 

(curved+circle,curved+circle2 and doughnut) present higher cross-talk. The final design results superior to all 

geometries studied. 

6.5 Conclusion 

In conclusion, from all the geometries studied and the performance comparison of each of 

them, it can be asserted that the proposed optimal design of this study with measurement 

circuit type A, octagonal beams, circular proof mass and with or without the use of nanowires 

is electromechanically superior to all the other geometries studied or available in the 

literature. With the use of nanowires, the optimal design presents under X or Y-axis 

acceleration a maximum increase in sensitivity of 16.2% (optimal design vs. square A1), 

while under biaxial acceleration (X and Y-axis acceleration) an increase of 19.5% is 
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observed. The sensitivity under Z-axis acceleration in the proposed optimal design has a 

maximum increment up to four fold (optimal design vs. square A1) and a minimum 

increment of 216% (optimal design vs. octagon A2).  Therefore the implementation of this 

electromechanical design would determine higher measurement accuracy with respect to the 

current state-of-art designs of the same type of accelerometer (bulk micromachined 

piezoresistive). The improvements of the proposed optimal design are related to a 

combinations of factors that have been studied throughout this work, and in particular the 

beams and proof mass geometry and the measurement circuit deployed. The beams with 

octagonal geometry showed higher performance when in combination to the circular proof 

mass (see Figure 6-6) due to the beams bending angle of 45 degree and the circular proof 

mass that incease the stress at the piezoresistors locations. This particular combination 

presents also the minimum cross-sensitivity for the same reason. If we consider the beam 

length it is observed an increase of sensitivity with the increase of beam length (see 

curved+circle and curved+circle2 geometries in Figure 6-6). This sensitivity improvement 

due to only the beam length determines a worsening of the cross-sensitivity (Figure 6-7) 

which was not observed by shorter beams with octagonal shape. 

Higher measurement accuracy of an earplug accelerometer means reliable data in case of an 

accident in predicting head injury; therefore, a much more accurate safety system would be in 

place. Future research on experimental work is required to develop the proposed optimal 

accelerometer design. 
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Chapter 7 

7 A FEASIBILITY STUDY ON THE FABRICATION OF SILICON NANOWIRES 

FOR NANOSCALE PIEZORESISTORS 

7.1 Introduction 

This chapter describes the set-up of the silicon nanowire experiments and the results 

obtained. Two different types of fabrication process are under study: Focus Ion Beam (FIB) 

direct milling and self-assembled nanowires. The former process is not a common practice in 

the silicon industry because of the long time and cost related to the fabrication of a single 

nanowire. The nanowire was fabricated by top-down approach by direct milling of the 

structure sidewalls. Amarasinge et al. [71] in their study demonstrate the feasibility of 

sensitivity enhancement of conventional piezoresistors with FIB tool through a nanometer 

stress concentration region. The latter fabrication process considered in this study is the self-

assembly technology which is a growth mechanism. The more common growth mechanisms 

are vapour-liquid-solid (VLS) and oxide-assisted growth (OAG) mechanisms [10]. In the 

VLS model, the nanowire grows from a metal-catalyst droplet during silicon vapour 

deposition. This mechanism is used by He and Yang [3] that observed an enhanced 
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piezoresistance effect in their nanowires grown in the <111> and <110> direction using Pt as 

catalyst and SiCl4 as precursor at 900°C. The main problem of the use of this technology is 

the integration of the silicon nanowires growth into the MEMS fabrications steps.   

The experiment undertaken in this study for fabricating silicon nanowires focuses on 

demonstrating our capability of fabricating their mechanical structure. Regarding the bottom-

up approach the fabrication process comprises the microfabrication of the samples with 

contacts and then the growing of the nanowires between them. This study is not intended to 

characterize electromechanically the fabricated nanowires. Potential future work would be to 

characterize the nanowires by applying an oscillating stress in order to avoid an apparent and 

time dependent giant piezoresistance effect caused by surface trapping of charges (also 

known as dielectric relaxation) [79]. 

7.2 Design of samples 

The samples for the bottom-up approach have been designed taking into account the size 

required for the samples to be placed into the characterization station (Figure K-2(a)). Figure 

7-1 below shows the sample design with the nanowires devices. 
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2 cm

Nanowires

Contacts

Sample edges 
and holes

100 um

3 um

660 um

3 mm

2 cm

 

Figure 7-1. Sample and nanowires design. The samples are specifically designed to fit in the characterization station 

(see Appendix K). The nanowires grown to be 3 microns with contacts of 100 square microns. As it can be seen a set 

of three pairs of nanowires are placed into the middle of the sample microstructure in order to have with 20 N a 

maximum of 100MPa of stress. 

   

As can be seen from Figure 7-1 the sample comprises 4 holes from which the sample is 

secured to the station for tensile test. The nanowires were designed to be placed in the middle 

of the sample where a concentration region is designed in order to increase the stress applied 

to the nanowires. The concentration region is designed in order to apply a maximum of 

around 100 MPa under 20 N of force, which is the maximum force the micro-tensile 

equipment can apply. The contacts size of the nanowires devices is set to 100×100 µm 

because a wire bonding will be necessary for electrical measurements. The length of the 

nanowires is set to 3 µm in order to have a solid structure. 

Figure 7-2 shows a front mask sketch of a SOI (110)-oriented wafer with the principal flat 

perpendicular to the [111] direction and two other flats placed in order to be able to rotate the 
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mask of the required angular degree and obtain samples on the other two remaining principal 

directions (see Figure 7-2). 

 

[111]

[011]

[-100]

35.26 54.74 

[100]

  

Figure 7-2. Masks design sketch. As it can be seen from the image three flats are designed for the mask layout in 

order to be possibly able to make nanowires on different direction just rotating the wafer relatively to the mask.  

 

The sample has been designed to be tested in a characterization station (Figure K-2 (a) and 

(b)). For tensile stress the front and back mask layout of the samples is presented respectively 

in Figure 7-3 (a) and (b). 

As can be seen in the figure three flats are designed for the reason explained earlier, 

moreover four mask aligner marks are designed in order to align the front and back mask (top 

right in Figure 7-3). On the top left of Figure 7-3(a) it can be seen the design of three pairs of 

contacts from which the silicon nanowires will be grown. 
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                                              (a) 
 

                                                (b) 
 

Figure 7-3. (a) Front mask design. In the inset on the left it can be seen the middle of the sample layout where the 

contacts are designed. On the inset on the right the mask aligner mark is shown. (b) Back mask design. The inset on 

the right shows the mask aligner mark. 

 

The two masks, front and back, are designed mirroring each other in order to be perfectly 

aligned during photolithography. 

Note that the SOI wafer used is a 4 inch wafer size but the space available for design is only 

the 3 inches in the centre because the mask aligner exposes only the three inches in the 

centre. After exposure both sides of the sample will be subject to plasma (DRIE) etching. 

Each nanowire in the test-chip is designed to have 2 contacts. Each contact is designed to 

obtained an Ohmic contact in order to have a I-V curve more linear has possible in the region 

of usage and fulfil therefore the Ohm law. In order to obtain such contact the resistance 

change encountered by the current flow from the metal track to the nanowire itself must be as 

smooth as possible. This is possible by using a heavy doping dosage (>1×10
19

 cm
-3

) on the 

contacts, on the other hand the nanowires will be lightly doped (~5×10
16

 cm
-3

) during grow to 

get the resistivity required by the application.  

The resistivity will affect the power dissipation of the entire sensor mainly by the Joule 

heating effect on the nanowires, therefore must be kept under control and designed in order to 

not exceed the limit of comfort for a human ear skin.  The final sensor is designed to work 
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with power on for at least two hours of race and placed into the drivers‟ ears with direct 

contact to ear skin, therefore, the device temperature during the two hours race must be 

acceptable for the driver ergonomics condition and avoid any kind of dermal injury. 

Special considerations are given into thermal conductivity of the surface, the geometry of the 

contact, and the duration of the contact which all determine whether dermal injury occurs in 

scenarios where conduction is the primary mode of heat transfer to the skin. The necrosis of 

the epidermal layer starts when the temperature of the epidermal cells reaches 44°C; this 

constitutes the threshold of pain. The human response to pain is rapid as it attempts to 

distance the part of body experiencing pain from the source of the heat. However, in many 

instances, the heat transfer rate is fast enough to cause irreversible damage in the short 

duration of the contact. In the race scenario, it is not possible for the body to distance itself, 

because the source of heat (device) covers the ear skin and the driver cannot prevents 

avoidance since focused on driving and covered by the helmet. In these case the skin 

temperature reaches and exceeds 44°C long enough to cause second or third degree burns. 

Thus, the time above a certain skin temperature constitutes the heat dose and determines the 

degree of the injury [57]. 

The maximum temperature to be reached by the device is then defined conservatively as less 

than 40°C, moreover considering the heat dissipation that occurs through the device 

packaging and the moulded earpiece material (plastic) before effectively reaching the driver 

ear skin, the temperature actually felt by the driver would drop to more or less the ear 

temperature one (37°C) therefore not affecting at all the driver comfortability. With this in 

mind the maximum current flowing into the piezoresistors has been estimated in the next 

section. 

The electrical power dissipated by the resistor is defined by the Joule‟s Law as: 
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                                                              (7.1) 

For the Newton's law of cooling: 

   
  

  
                                                             (7.2) 

At equilibrium the two rates must be equal as: 

                                                                         (7.3) 

Therefore the maximum power dissipated is: 

            
  

 
                                                   (7.4) 

The radiative heat transfer coefficient of human body is fixed to the generally accepted 

whole-body value of 4.7 W/m
2 

per K [159]. The surface area of the device in contact to the 

inner ear is calculated approximately as a cylindrical shape of the ear canal, which is 7mm of 

diameter and 26 mm of total length, therefore if we assume the length of the earpiece that 

goes deep inside the ear canal is about 10 mm, we obtain: 

                                                                 (7.5) 

The maximum temperature has been set less than 40°C and the temperature of the ear canal is 

around 37°C. The bias voltage is set to 5 V for the device, but a single nanowire will be 

powered by 2.5 V due to the measurement circuit (Wheatstone bridge). 

The value of the power is then:  

    
  

    
                                                 

                                                                                                                                                        (7.6) 

The maximum total current is therefore calculated as: 
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                                                        (7.7) 

This is the current that would put the device into the limit temperature of 40°C, which is not 

desirable. This current flow will split into the three Wheatstone bridges. 

Following, the value of a single nanowire resistance is calculated based on the selected light 

doping concentration of approximately 5×10
16

 cm
-3

. The correspondent resistivity is 0.35 

Ω·cm. 

The electrical resistance of a piezoresistor is defined by the resistivity and piezoresistor 

geometry like follows: 

    
 

   
                                                                        (7.8) 

where   is the resistivity that depends on the doping concentration and  ,     are respectively 

length, width and thickness of the piezoresistor. Estimating the ratio l/t of 50 and a nanowire 

width of 20 nm the resistance is easily calculated as: 

             
  

       
                                                (7.9) 

The correspondent current flow is then: 

       
      

      
 

   

       
                                              (7.10) 

thus, 

                                                                              (7.11) 

Ipiezo is three orders of magnitude smaller than the maximum total current calculated 

previously. Therefore, the doping concentration selected for the nanowires is a safe choice.    
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7.3 Experiments 

The following sections will bring the reader through the mechanical properties of the material 

used in the experiments, and then the fabrication of the samples.   

7.3.1 Materials 

The material selected for the sensing element was single crystal silicon, mainly chosen for its 

mechanical properties (good stress tensile strength and high gage factor). Furthermore 

micromachining of this material allows for batch production.  Different directions are 

indicated with respect to crystal basis using Miller indexes. The Miller convention is 

summarized in the Appendix J. 

In the design of piezoresistors the crystallographic orientation affects the piezoresistive 

sensitivity. For instance a <111> oriented piezoresistor in a (110) plane will have the highest 

piezoresistive sensitivity. More commonly <110> aligned piezoresistors on (100) wafers are 

used because of their high equal and opposite longitudinal and transverse piezoresistive 

coefficients.  

The stiffness matrix of an orthotropic linear elastic material like silicon can be written as: 

  

 
 
 
 
 
 
            
            
            
        
        
         

 
 
 
 
 

                                            (7.12) 

Because silicon is such an important economic material, these values have been investigated 

thoroughly, and the three independent stiffness coefficients of principal crystallographic 

orientations <100>, <010> and <001>, gives the following stiffness matrix [52]:  
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                          (7.13) 

To obtain Young‟s modulus and Poisson ratio in different directions see Appendix J for 

details. 

The initial material used for the fabrication of the samples is a four inches p-type silicon-on-

insulator (110)-oriented wafer, with 2 µm of device layer at 0.001-0.005 Ohm-cm, 1 µm of 

buried oxide layer and 300 µm of handle wafer at 1-20 Ohm-cm supplied by Ultrasil. The 

very low resistivity of the device layer has been selected in order to have Ohmic contacts for 

the nano-devices. Moreover, this type of oriented wafer is used in order to obtain nanowires 

devices on all three principal directions <111>, <110>, <100>, by simply rotating the wafer 

respect to the mask. 

7.3.2 Fabrication 

The two different approaches adopted in the fabrication process (FIB milling and bottom-up) 

of the silicon nanowires samples are addressed in the next sections. 

FIB fabrication 

Nanowires can be developed by a different approach than the conventional top-down 

approach by electron-beam lithography, by the use of FIB tool. The Focus Ion Beam tool 

allows a progressive direct milling of the material surrounding the nanowires and basically it 

shrinks the conventional piezoresistors into a nanoscale dimension.  
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This approach has been tested and the conventional piezoresistors can be enhanced by FIB 

tool processing. Figures 7-4 (a), (b) and (c) show the results of the processing. The structure 

is designed to shrink its dimension in order to have nanometre stress concentration region 

(NSCR).  

 

                      (a) 
                      (b)                         (c) 

Figure 7-4. (a) FIB processing (top view). The thickness of the structure is around 1 micron. (b) FIB processing (side 

view). The sidewall of the structure is here visible with a thickness of around 2 microns. (c) FIB processing (isometric 

view). The isometric view is showing the entire stracture.                             

 

The fabrication process for obtaining the accelerometer with nanowires by FIB tool 

represents the last step in the processing described in Appendix F for conventional 

piezoresistors (see Figures F-6 and F-7).  

Bottom-up sample microfabrication 

The masks for this processing have been designed in previous section (see Figures 7-3 and 7-

4) therefore first step is the photolithography of front side with single mask alignment, 

second step is DRIE of front side, third step is photolithography of back side with double 

mask alignment and finally DRIE etching of back side to release the samples.  
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Front side processing 

For the first step, the lamp used has a 5.4 mW/cm
2 

intensity, the photoresist adopted (S1818) 

has been distributed on the surface evenly by a spinning machine already programmed for the 

job (1.8µm thickness), after on the wafer has been pre-baked on a hot plate for 90 seconds. In 

order to stick properly the photoresist on the wafer surface the chemical 

hexamethyldisilazane (HMDS) has been used for 20 minutes before using the spin coating 

machine. 

The first run of exposure was set to 22 seconds and the development time (developer AZ326 

TMAH) to only 20 seconds, but due to the low profile of photolithography obtained the wafer 

has been cleaned up from the photoresist for reuse by acetone first and then isopropanol, 

finally on the hot plate for 1-2 minutes. Figure 7-5 (a) and (b) shows the gap between two 

contacts. Obviously as shown in the figures the development process didn‟t effectively 

remove the photoresist in between due to the low exposure time. 

 

                                (a)                                     (b) 

 

Figure 7-5. (a) Pair of contacts. The contacts shown in the picture are not completely separated. (b) Zoom on the gap 

between contacts not completely separated. 
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In the second run the hot plate time has been increased to 3 minutes and the exposure time 

has been increased to 27 seconds. In this case the development time was 20 seconds and then 

the microscopy check was undertaken, plus 5 seconds of development and checked again, 

another 5 seconds and checked again and then the plasma etching has been used at 12 W for 3 

minutes to remove the unwanted photoresist on the surface by O2. Since the results was not 

satisfactory due to debris between the contacts, other 10 seconds of development were added 

plus a total of 10 minutes (5 + 5 minutes) of plasma etching at 20 W is used. Finally the 

silicon wafer is ready for the DRIE etching. The Figure 7-6 (a) and (b) shows the final result. 

As it can be seen the two contacts are completely separated one another by 3 µm gap, 

ensuring after the DRIE etching a completely electrically isolated contacts. 

 

(a) 

 

(b) 

 

Figure 7-6. (a) Gap between contacts. As it can be seen from the image the gap is completely separated. (b) Two pairs 

of contacts perfectly separated. 

 

First of all a test has been undertaken by loading a dummy wafer on the DRIE chamber, with 

13 seconds of etching and 8 seconds of passivation cycle. All the checks of the machine were 

made to check that: i) the “fingers” that keep the wafer loaded were in the right location 

inside the chamber, ii) the chamber lid temperature was ofaround 45°C, iii) the cooler 
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temperature was ofaround 20°C, iv) the pressure was ofaround 0 mTorr. After all checks have 

been made the recipe for the test is loaded for processing (YASKAWA4.SET) with bias 

power of 15 W which is a deep standard process. Once the process is activated is required to 

check that the helium leakage is around 5-10 mT/min and then resume the processing. During 

the processing all the values obtained should match the values as set in the recipe. Another 

check to be made was to check in the chamber that the colour of the plasma was purple. 

Before to unload the wafer last check was to see that there is no plasma in the chamber, then 

unload.  

After the DRIE test has been run, the machine was ready to process the wafer using a shallow 

recipe with 7 seconds of etching and 5 seconds of passivation cycle, the bias power is 12 W. 

The etching speed was between 1.8 µm per minutes to 2.2 µm per minutes, therefore 3 

minutes were more than sufficient to etch 2 µm of the wafer device layer. In order to avoid a 

passivation layer at the end of the processing the machine processing was interrupted at the 

end of an etching cycle before passivation. During the processing some cycle were skipped 

and finally the chamber was unloaded. 

At the end of the DRIE processing the thickness has been measured to be between 4.18 µm to 

4.22 µm, which was reasonable considering a 1.5-1.8 µm of resist thickness. 

Finally in order to clean up the surface from debris the wafer was subjected to O2 in the 

chamber. Therefore the recipe was changed to O2 skin for 2 minutes. The resist was then 

completely removed and the thickness obtained was of around 2.4 µm, close to the actual 

thickness of the device layer (2 µm), therefore the etching was successful. 
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Back side processing 

Following the processing of the wafer front side, the processing on the back side is carried 

out. First of all the wafer back side was placed on the hot plate with a temperature of 93°C for 

2-3 minutes in order to dry completely. The programme of the spin coater was set to 

programme 16 (2000 rpm for 90 sec.). Before coating the wafer back side with photoresist, 

the surface and the edges were cleaned thoroughly by acetone firstly and then with 

isopropanol. Then two steps were used for coating the back side surface for a total of 20 µm 

of photoresist (AZ4562): spinning first to form 10 µm of photoresist and then 2 mins on the 

heater, then adding photoresist and spinning again, finally on the heater for 4-5 minutes. 

After the coating of photoresist the surface was ready for photolithography on the double 

sided mask aligner (MJB21). This machine for cooling is using just a fun, differently from 

the single mask aligner (MA56) that is using nitrogen gas. First of all the two masks were 

placed in the machine, front mask on the bottom and back mask on the top with the chrome 

sides facing together. The masks were then centralized by rotation and translation and the 

distance of the masks was set based on the wafer thickness plus the photoresist thickness (300 

µm handle wafer + 1 µm BOX + 2 µm device layer + 20 µm photoreisist = 323 µm). After 

coarse alignment process of the mask on the top to the mask on the bottom (mask adjustment 

by eyes) the alignment marks were aligned using the microscope and after releasing the mask 

adjustment button the fixing of the wafer can start. Next fine adjustment of the masks 

relatively to the wafer is carried out and the gap between the masks was introduced.     

Finally the exposure was set to 1 minute with a lamp of intensity of 13.2 mW/cm
2
, of course 

only the lamp on the top side is used since the bottom side of the wafer has been already 

exposed by a single sided mask aligner. After exposure the wafer was immerged in the 

developer solution made up of 50 ml of developer (AZ400) and 3.5 times of water (175 ml) 
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for 2.5 minutes and then the wafer was washed under water; finally the wafer was immerged 

again in the developer for another 1.5 minutes. The wafer was then checked by microscope 

for photoresist residue and photoresist thickness measure (27.8 µm – 28.5 µm).  Since the 

results were good the wafer back side is ready for DRIE etching (Figure 7-7). 

 
 

Figure 7-7. Back side ready for DRIE. Three samples are designed in a single wafer in order to efficiently exploit the 

available space of 3 inches.  

 

The DRIE etching was then run for 60 minutes, where 80 microns of silicon were etched. 

Prior to the etching, the wafer was put in a hotplate at 90°C for 3 minutes to post-bake the 

resist. Next step was to put the wafer on a backing wafer (silicon wafer with one side of 

platinum) before completing the etching in order to better control the deep etching of the 

wafer and release the samples. 

To backup the wafer, the wafer with the samples was firstly coated with photoresist 

(AZ4562) in order to stick the two wafers together. The spinning acceleration time was set to 

3 minutes, the spinning time to 60 seconds, the spin speed to 1000 rpm and the deceleration 

time to 6.6 minutes. After the spinning the wafer was dried on the heater at 90°C for 5 
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minutes using pieces of glass to avoid contact to the heater.  Then the backing wafer was 

coated by using the same resist on the wafer side without platinum and then spin it with 

acceleration time 3 minutes, spin time 15 seconds, spin speed 3000 rpm and deceleration time 

6.6 minutes. Finally the backing wafer was put on the heater and immediately afterwards the 

other wafer with the samples was placed on top of it, from the device side, for a couple of 

minutes. Now that the two wafers were bonded together the next step can be carried out. 

The final step was to etch completely the wafer till releasing the samples. Again the recipe 

was YASKAWA4.SET for a standard deep etching; the process time was set to two hours. In 

two hours of processing a total of around 260 µm of etch depth plus photoresist thickness was 

obtained. Since in the previous DRIE processing 103 µm of etch depth plus photoresist was 

obtained, this means that 160 µm were etched in 120 minutes, therefore the etch rate was 1.33 

µm per minute. 50-60 µm were left to etch in order to release the samples therefore, given the 

etch rate, 45 minutes of DRIE etching were remained (see Figure 7-8 (a) and (b)). The 

processing was set to one hour and stopped when the etching was complete. To clean up the 

surface an oxygen skin recipe was then loaded for 3 minutes. 

 
                                  (a) 

 
                                  (b) 

 

Figure 7-8. (a) Complete DRIE etching of a hole. The white color in the hole shows that the etching has reached the 

BOX. (b) The dark colour is the photoresist that remained after the DRIE etching. 
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Once the oxygen skin was stopped the wafer was unloaded from the ICP chamber. After a 

microscopy check the samples edges were cut with a cutter in order to allow the acetone to 

clean properly the SiO2 gaps. Finally the wafer was put into acetone overnight in order to 

release the sample structures (Figure 7-9(a)). 

The final result presents a misalignment of few microns (Figure 7-9 (b)).  

           

                               (a) 

                             

                                   (b) 

 

Figure 7-9. (a) Final released sample structure. (b) Misalignment of the central region with the contacts. 

 

Nanowire growth 

The nanowires were grown by Vapor-Liquid-Solid (VLS) synthesis using gold nanoparticles 

as metal catalyst and Silane mixture (2% SiH4 in 98% He) as Si precursor at 100sccm, 

moreover they were grown in the <111> direction.  The VSL is a 1D crystal growth that is 

assisted by a metal catalyst. This mechanism was suggested for wider use in the silicon 

industry by Wagner [153]. Figure 7-10 shows a schematic of the VLS mechanism where the 

metal catalyst forms liquid alloy droplets at high temperature by absorbing vapour 

components. The alloy is further supersaturated due to temperature or vapour pressure 

fluctuation. Basically the solution becomes with an actual components concentration higher 
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than the equilibrium concentration. Therefore it drives the precipitation of the component at 

the liquid-solid interface and the 1D crystal growth begins till the vapour components are 

supplied. The diameter and position of the 1D structure depends on the catalyst size and 

position [154]. The mechanism works at high temperature at which the metal catalyst forms a 

liquid alloy. In our chemical processing we used chemical vapour deposition (CVD) in 

conjunction with the mechanism. 

 

Figure 7-10. Growth of 1D structures by VLS mechanism [154]. (a) Metal catalyst thin-film deposition of Au catalyst 

by sputtering, (b) liquid alloy droplets formed by the metal catalyst by absorbing vapour components, (c-d) the alloy 

is supersaturated and precipitates at the liquid-solid interface growing the 1D structure. 

 

To grow the nanowires between two of the three pairs of contacts (see Figure 7-9(b)), sample 

were firstly coated with photoresist. Three layers of resist were applied to the sample surface 

of a total of 3-5 µm; first layer was of 500 µm of AR30012 and AZ5214 with ratio 1:1, 

second and third layer were made up of only resist AZ5214. The spin coater was set to 35 

sec. at 3000 rpm and after coating the sample was placed on hot plate at 100°C for one 

minute except after the last layer of coating where the sample was placed on hot plate at 
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100°C for 2 minutes. At the end of resist coating of the sample a microscopy check followed 

in order to verify the resist coating on the sample. Once the presents of resist on the sample 

has been ascertain the resist is ready to be patterned by laser in order to open windows for the 

gold deposition. Five windows were opened for each contact of 2×2µm in order to have more 

probability of success in the growing process (see Figure 7-10 (a) and (b)).  

After laser pattering the sample was immersed in the developer solution AZ726 for 40 

seconds and then the microscopy check was carried out. Since the windows were not 

completely opened the sample was developed for a total of 1 minute and 25 seconds. Once 

we were satisfied with the development the next step was to immerse the sample in HF for 

removing the native silicon oxide. The sample was then ready for gold deposition by 

sputtering with 50 W power for 3 seconds in order to deposit 5 nm thick gold film. To clean 

up the sample from the resist and leave only the gold on the patterned windows, lift off was 

carried out by immersing the sample in acetone and then in HF again. Finally the sample was 

ready for 2 hours of CVD process at high temperature (530°C) and partial pressure of 3 mbar 

in order to activate the VLS synthesis and then to allow the nanowires growing. As it can be 

seen in Figure 7-11(a) and (b) the nanowires growth in the five windows patterned by laser. 
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                                   (a) 

 
                                    (b) 

 

Figure 7-11. (a) Pairs of contacts with nanowires grown between them, see contacts in the middle. As it can be seen 

five different positions are chosen in contact gap to grow the nanowires. The sample broke during handling. (b) Five 

windows were opened in the contact gap and the nanowires grown in between. 

 

7.4 Results and discussion 

7.4.1 Focus Ion beams experiment results 

When ion beam milling, the trench edges will generally not be sharp edged; using lower 

beam currents can reduce the effects. The degree is also influenced by the material being 

milled. See the two images 7-12(a) and (b) of a milled pattern in silicon. 
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                                     (a) 

 

                                    (b) 

 

Figure 7-12. (a) Ion beam milling with higher current. (b) Ion beam milling with lower current. As it can be seen the 

trench edges were more sharp using lower beam current. 

 

This is usually not a problem unless preparing transmission electron microscopy (TEM) thin 

sections or samples with thin or multiple layers on the surface. In both these instances it is 

enough to deposit a layer of platinum as a sacrificial layer over the site of interest, protecting 

the sample from milling damage and transferring any milling damage to the platinum layer. 

In this case where the sensitive surface is a thin doped layer acting as a resistance, use of 

platinum is not possible. However some polymeric materials exhibit good resistance to the 

ion beam, and also mill cleanly, and it may be possible to use these instead. 

The achievable line width on the present system would however seem to be about 100nm 

(Figure 7-13). This is constrained by the imaging resolution of the machine (50nm); the 

accuracy of the positioning of the milling pattern (drift due to sample charging); and the 

patterning parameters (essentially fixed on the current system). More modern systems which 

allow programming of the beam patterning (bit mapping) may allow better control of the 

milling [71]. 
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The Figure 7-13 shows the best milling achieved. Note the top edge “rounding” and that the 

wall thickness is approx. three times the thickness of the measured (122 nm) undamaged top 

surface. 

 
 

Figure 7-13. Best milling achieved. The maximum width achievable with the FIB is of around 100 manometers. 

 

 

7.4.2 Nanowire growth experiment results 

Few nanowires were able to actually create a bridge structure between the two contacts (see 

Figure 7-14). The main reason for that is related to the short gap width (3 µm) between 

contacts determining deposition of gold on both sidewalls and not on one side only as 

expected. Therefore the nanowires grow on both sides of the contacts and interfere with each 

other during the growth, allowing few nanowires to complete the growth in one direction (see 

Figure 7-14). 
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                                  (a) 

 

                                    (b) 

Figure 7-14. (a) Nanowires grown on both sides of the gap due to the short gap width that do not allow deposition of 

the gold on one side only. Therefore the nanowires grown from both sidewalls of the gap width interfering with each 

other during growth. (b) Due to the nanowires growth from both sidewalls only few nanowires are able to form a 

bridge structure. 

 

As can be seen in Figure 7-15 the nanowire creates a bridge by crossing the entire gap width 

and then sticking on the opposite sidewall, finally forming a solid structure able to withstand 

high strain.  

 

Figure 7-15. The nanowire grows and sticks on the opposite sidewall and finally forming a solid bridge structure that 

withstands high strain. 
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The length of the two nanowires structure visible in Figure 7-16 is of 2.10µm which is less 

than the gap width. This means that the gap initially designed as 3 µm width is actually 

shorter after the DRIE etching.  

 

 
                                  (a)                                    (b) 

Figure 7-16. (a) Nanowires bridge structures between contacts gap. (b) The length of the two nanowires is of 2.10 µm 

which is smaller than the designed gap (3 µm). 

 

 

The two nanowires bridges structures have diameter that changes during growth. The 

nanowire on the top in Figure 7-17 is 148.5 nm wide at the beginning and 128.2 nm at the 

end, on the other side of the gap. The second nanowire on the bottom is 106.7 nm wide at the 

beginning and 65.62 nm at the end (see Figure 7-17)).  
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Figure 7-17. Two nanowires bridge structures. The nanowire width reduces during grow due to the change in size of 

the gold droplet. 

 

A third nanowire was found creating a bridge structure but the direction of growth was not 

the <111> direction (see Figure 7-18). As it can be seen in the figure the nanowire did not 

grow straight from the sidewall. This nanowire starts growing 112.3 nm wide and then 

completes the growth on the other side of the gap 73.8 nm wide. Again the nanowire size 

changes during growth mainly because of the changes in the gold droplet size.  
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Figure 7-18. Nanowire bridge structure starting 112.3 nm wide and ending 73.8 nm wide in a direction different from 

<111>. 

7.5 Conclusion 

The feasibility study was undertaken to fabricate nanowires for piezoresistors using FIB tool 

and CVD process Nanowires of around 100 nanometers were successfully fabricated by both 

type of processes. To improve the FIB work results a deposition of a layer of platinum as a 

sacrificial layer over the site of interest is recommended, in order to protect the sample from 

milling damage and transfer the damage to the platinum layer. Regarding the results obtained 

by growth is it recommended to increase the gap width from 3 to 5 µm in order to avoid the 

overlapping growth of nanowires observed that limits the number of nanowires able to form a 

bridge.   

In future work it would be possible to grow nanowires with reduced diameter by reducing the 

thickness of the gold sputtered on top surface of the device. This work represents a first step 

for future electromechanical characterization and testing of the silicon nanowires in order to 

ascertain their piezoresistive effect. 
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Chapter 8 

8 CONCLUSION AND FUTURE WORK 

The aim of this study was to advance the current state-of-art accelerometer design and 

optimization methodology by developing a novel accelerometer capable to measure head 

acceleration in case of an accident. The novel and enhanced accelerometer design has been 

developed, extensive finite element modelling and optimization has been conducted. Nine 

different shapes were studied with common feature of having highly symmetric mechanical 

structure. After the shape design, possible candidates have been selected for the final 

structure, and then the size optimization has been undertaken taking into account the 

packaging size (design for packaging). Two best microstructures were then selected and 

finally a design for manufacturing approach adjusted the device size accordingly. In the end 

of this first optimization process (DOE) overload end stops were introduced in the design. 

Silicon nanowires were also evaluated during the simulation of the earplug accelerometer, 

where both mechanical and electrical performance were analysed. Comparison of results 

between conventional microscale and nanoscale piezoresistors (nanowires) was performed 

showing that the nominal sensor sensitivity using nanowires is overall increased by more than 

30 times.  
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The optimization of the device mechanical structure and the measurement circuit was further 

developed based on a mechanical principle that intended to extra enhance the electrical and 

mechanical performance of the accelerometer under study. The mechanical principle studied 

the influence of variation in the mass moment of inertia of the device proof mass by an 

optimization approach that progressively changed the beams and proof mass geometry in two 

steps of evolution. Two main different types of beams geometry were studied, i.e. curved and 

straight beams, and the proof mass changes from square geometry to octagonal geometry and 

then to circular geometry. The study highlights the potential of two different devices, one is 

with octagonal proof mass with curved beams and the other one is with circular proof mass 

with straight beams. The measurement circuits of this two types of devices were also 

compared and an enhanced geometry and correspondent measurement circuit was finally 

proposed as optimal device for the application studied (earplug accelerometer). The 

fabrication of the device is also further investigated by the development of the layout design 

and metallization. The analysis demonstrated that even mass moment of inertia not always 

improve measurement accuracy, but it dependent on the measurement circuit, the level of 

sensitivity of the sensing element (conventional vs. nanoscale piezoresistors) and on the 

beams geometry (straight or curved). The proposed optimal design, thanks to the mechanical 

principle that has led the optimization process, presents higher sensitivity and lower cross-

sensitivity respect to the state-of-art design. For the first time during the optimization 

approach we are observing a progressively increment of the sensitivity and reduction of the 

cross-sensitivity.  

The optimized design allows for an extreme miniaturization, a size of 2×2 mm is achieved 

through the implementation of current fabrication process and packaging technology even if 

with some fabrication issues and limitations (see Appendix F). Moreover the resolution that 

expresses the precision of the sensor response (minimum detectable acceleration that depends 
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on the noise level) has been improved respect to the initial performance specifications by one 

order of magnitude. The accuracy target has been also improved with a maximal total error 

less than 1% (cross-talk and nonlinearity).    

Experimental work was also undertaken in order to ascertain our on capability of silicon 

nanowires fabrication. Nanowires have been fabricated by FIB tool and VLS process, 

demonstrating the feasibility of the fabrication process. Further work would be the 

metallization of the fabricated samples for characterization and testing purpose with the 

recommendation of increasing the contacts gap from 3 microns to 5 microns in order to avoid 

overlapping of silicon nanowires during the growth. Moreover the characterization and 

testing of nanodevice samples applying oscillating stress would ascertain the existence of the 

“Giant effect” on bottom-up silicon nanowires.  

Figure 8-1 shows the developed experimental study for future work with the objective of 

acquiring new knowledge related to the “Giant piezoresistance effect” by characterization 

and testing of the fabricated bottom-up silicon nanowires. Moreover the results obtained 

would allow fabricating for the first time the designed novel accelerometer with bottom-up 

silicon nanowires.  
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Figure 8-1. Diagram of the methodology adopted to address the first research aim. Notice that this work addresses 

only the first step of the research methodology that is the design and fabrication of test-chips in order to study the 

feasibility of sensor fabrication. 
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APPENDIX A.  TECHNICAL SPECIFICATIONS OF THE ACCELERATION 

SENSOR 

 

The main technical specifications of an accelerometer are: measurement range, electrical 

sensitivity, frequency response (bandwidth), shock survivability, resolution, cross-sensitivity, 

nonlinearity, thermal sensitivity, power consumption and physical characteristics. Each of 

them is described next. 

 

Measurement Range 

The measurement range is defined by the maximum and minimum absolute acceleration 

magnitude that the sensor can measure.  

 

Electrical Sensitivity 

The sensor electrical sensitivity is defined as the ratio of a change in the static response 

(output/input), measured in mV/g, to a change in an undesirable or secondary input, generally 

to a unit of power supply voltage change [34]. 

Of course higher sensitivity is preferable since a better signal to noise ratio is obtained, 

therefore a much simpler signal conditioning is required.    

 

Frequency Response 

The frequency response of a sensor is the signal time span covered for the measurement, the 

flat part of the dynamic transfer function (Figure 3) is the usable frequency range (dynamic 

range). In this region the sensor sensitivity keeps mostly linear except for some static inherent 
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nonlinearity (e.g. large deflection). Moreover the frequency response affects the speed of the 

measurement (dynamic response).  

Frequency response and measurement range are the signal characteristics that can be detected 

by the sensor, these characteristics must match the characteristics of the phenomenon 

measured (i.e. shock measurement) in order to design a proper sensor. 

The product of sensor electrical sensitivity and frequency response is sometimes called 

performance factor of the accelerometer, since both values are critical for the static and 

dynamic accelerometer performance. In designing an accelerometer the most of the effort is 

to maximize the performance factor that is the best trade-off between both values.     

 

Shock Survivability 

The shock survivability is simply the higher acceleration the sensor can withstand before 

breaking (i.e. failure of the mechanical structure). The stiffer is the sensor the higher is the 

acceleration the sensor can withstand. 

 

Resolution 

The resolution reflects for an analog system the ratio between noise level and sensor 

sensitivity. It is measured in g-force and defined by the minimum detectable acceleration. 

 

Cross-Sensitivity 

The cross-sensitivity is the undesirable signal output from other acceleration axes, also called 

transversal sensitivity and is measured as percentage of the output. 

 

Nonlinearity 
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The nonlinearity may be described as percentage of the entire range of the sensor (full-scale 

output, FSO) or half of it (full-scale, ±FS). It represents a measure of the relative maximum 

deviation of the static response from the simple straight line (End Point Linearity Method, 

EPL), the best fit straight line (BFSL) or the least square best fit straight line. 

 

Thermal Sensitivity 

The thermal sensitivity is typically given as the sensitivity to operating temperature, specified 

as worst case value over the full operating temperature range. It is expressed as the change of 

the sensitivity per degree of temperature change, typically in ppm/°C for sensitivity. This 

index is useful for predicting maximum sensitivity error with temperature [34]. 

 

Power Consumption 

The power consumption is the sensor consumption of electrical energy typically expressed by 

the Joule‟s Law as the product of the power supply (bias voltage) and the electrical current 

that flows in the measurement circuit. Low power consumption devices have better thermal 

performance, which is critical for sensors particularly sensitive to high temperature.   

 

Physical Characteristics 

The physical characteristics as sensor dimension and weight are in general important for an 

accelerometer since their mass loading effects on the sample measured. It is undesirable to 

place a large or heavy accelerometer on a small or light-weight structure. Mass loading will 

affect the accuracy of the results and skew the data. As a rule-of-thumb, in order to avoid 

mass loading the accelerometer‟s weight should be less than 10% of the test article [37]. 
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APPENDIX B. ACCELEROMETER MECHANICAL STRUCTURE - SHAPES 

STUDY RESULTS 

SHAPE 1. Cross-beams  

The shape of the accelerometer with four cross- beams and a single mass is represented in the 

figure below. 

 

 
 

Figure B-1. Cross-beam Single-mass Accelerometer 

 

 

The picture below shows the deformed shape under the out-of-plane acceleration and the 

maximum equivalent stress. 
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Figure B-2. Deformed structure Z-axis Acceleration 

 

 

From the deformed structure above it is clear the identical deflection of the four beams that 

simply translate the proof mass along the Z-axis of a quantity equal to the total deformation. 

The results obtained with FEM analysis of the structure (single-crystal silicon) under an 

acceleration of 250g on the Z-axis are as follows: 

 
Table B-1. FEA results shape 1 under Z-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

 39.8 50.28 21.91 2.15e-004 2.27e-004 0.80 

 

The Figure B-3 shows the deformed shape under the in-plane acceleration and the maximum 

equivalent stress. 
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Figure B-3. Deformed structure X-axis Acceleration 

 

The deformed structure under in-plane acceleration shows the main deformation of the two 

beams of the same axis of the applied acceleration, where the maximum stress is present, 

while the other two beams twist in a torsion deformation since the proof mass rotate 

relatively to the axis orthogonal to the applied acceleration (see Figure B-3). 

Under the in-plane acceleration (X or Y-axis) of the same amplitude (250g) the data obtained 

are: 

 

Table B-2. FEA results shape 1 under X- or Y-axis acceleraiotn 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

 39.8 50.28 21.91 2.15e-004 2.27e-004 0.80 

 

The natural frequency and the correspondent total deformation obtained via the modal 

analysis for the first three modes of operation of the accelerometer are: 

 

                              Table B-3. Mode of operation shape 1 
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Mode of Operation Natural Frequency (kHz) 

1
st
 Mode (Y-axis) 8.99 

2
nd

 Mode (Z-axis) 9.14 

3
rd

 Mode (X-axis) 9.96 

 

 

SHAPE 2. Surrounded-beams Picture-frame   

 

 

Figure B-4. Picture-frame Accelerometer 

 

 

 

 

 

 

Figure B-5. Deformed structure Z-axis Acceleration 
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Table B-4. FEA results shape 2 under Z-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

53.46 52.42 29.04 2.89E-04 2.84E-04 1.20 

 

 

 

Figure B-6. Deformed structure X-axis Acceleration 

 

 

Table B-5. FEA results shape 2 under X- or Y-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

48.69 50.73 26.91 2.63E-04 2.64E-04 1.52 
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Table B-6. Mode of operation shape 2 

Mode of Operation Natural Frequency (kHz) 

1
st
 Mode (Y-axis) 6.95 

2
nd

 Mode (X-axis) 7.16 

3
rd

 Mode (Z-axis) 7.41 

 

 

SHAPE 3. Surrounded-beams Picture-frame type 2 

 

 

 

Figure B-7. Picture-frame Accelerometer type 2 

 

 

 

 

Figure B-8. Deformed structure Z-axis Acceleration 
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Table B-7. FEA results shape 3 under Z-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

77.12 109.30 42.74 4.17E-04 4.80E-04 1.86 

 

 

 

Figure B-9. Deformed structure X-axis Acceleration 

 

 

Table B-8. FEA results shape 3 under X- or Y-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

61.04 86.58 32.44 3.30E-04 3.89E-04 1.98 

 

 

 

Table B-9. Mode of operation shape 3 

Mode of Operation Natural Frequency (kHz) 

1
st
 Mode (Y-axis) 5.78 

2
nd

 Mode (X-axis) 6.44 

3
rd

 Mode (Z-axis) 6.62 
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SHAPE 4. Surrounded-beams Picture-frame type 3 

 

 

 

Figure B-10. Picture-frame Accelerometer type 3 

 

 

 

 

 

 

Figure B-11. Deformed structure Z-axis Acceleration 
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Table B-10. FEA results shape 4 under Z-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

71.30 97.82 38.43 3.85E-04 4.46E-04 0.70 

 

 

 

Figure B-12. Deformed structure X-axis Acceleration 

 

 

 

Table B-11. FEA results shape 4 under X- or Y-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

62.94 74.00 34.02 3.40E-04 3.52E-04 0.92 

 

 

Table B-12. Mode of operation shape 4 

Mode of Operation Natural Frequency (kHz) 

1
st
 Mode (Y-axis) 8.93 

2
nd

 Mode (X-axis) 9.39 

3
rd

 Mode (Z-axis) 9.92 
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SHAPE 5. Cross-inset beams  

 

 

 

 

Figure B-13. Cross-inset beams Accelerometer 

 

 

 

 

 

Figure B-14. Deformed structure Z-axis Acceleration 
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Table B-13. FEA results shape 5 under Z-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

51.40 69.32 28.71 2.78E-04 2.96E-04 0.85 

 

 

 

 

Figure B-15. Deformed structure X-axis Acceleration 

 

 

Table B-14. FEA results shape 5 under X- ot Y-axis acceleraiotn 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

85.52 85.41 47.68 4.62E-04 4.37E-04 2.44 

 

 

 

Table B-15. Mode of operation shape 5 

Mode of Operation Natural Frequency (kHz) 

1
st
 Mode (Y-axis) 5.28 

2
nd

 Mode (X-axis) 5.55 

3
rd

 Mode (Z-axis) 8.95 
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SHAPE 6. Surrounded-cross inset beams Picture-frame  

 

 

 

 

Figure B-16. Surrounded-cross inset beams Accelerometer 

 

 

 

 

 

 

Figure B-17. Deformed structure Z-axis Acceleration 
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Table B-16. FEA results shape 6 under Z-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

78.52 101.77 42.69 4.24e-004 4.59e-004 3.62 

 

 

 

Figure B-18. Deformed structure X-axis Acceleration 

 

Table B-17. FEA results shape 6 under X- or Y-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

66.79 71.22 36.06 3.61e-004 3.41e-004 5.06 

 

 

Table B-18. Mode of operation shape 6 

Mode of Operation Natural Frequency (kHz) 

1
st
 Mode (X-axis) 3.83 

2
nd

 Mode (Y-axis) 3.86 

3
rd

 Mode (Z-axis) 4.23 
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SHAPE 7. Surrounded-cross inset beams Picture-frame type 2 

 

 

 

Figure B-19. Surrounded-cross inset beams Accelerometer type 2 

 

 

 

 

 

Figure B-20. Deformed structure Z-axis Acceleration 
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Table B-19. FEA results shape 7 under Z-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

74.78 80.91 40.97 4.04e-004 4.09e-004 3.82 

 

 

 

Figure B-21. Deformed structure X-axis Acceleration 

 

 

Table B-20. FEA results shape 7 under X- or Y-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

92.58 99.35 50.61 5.00e-004 5.13e-004 6.64 

 

 

Table B-21. Mode of operation shape 7 

Mode of Operation Natural Frequency (kHz) 

1
st
 Mode (X-axis) 3.26 

2
nd

 Mode (Y-axis) 3.28 

3
rd

 Mode (Z-axis) 4.12 
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SHAPE 8. Surrounded-cross inset beams Picture-frame type 3 

 

 

 

Figure B-22. Surrounded-cross inset beams Picture-frame Accelerometer type 3 

 

 

 

 

Figure B-23. Deformed structure Z-axis Acceleration 
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Table B-22. FEA results shape 8 under Z-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

107.05 149.28 59.16 5.78e-004 6.47e-004 7.88 

 

 

 

 

Figure B-24. Deformed structure X-axis Acceleration 

 

Table B-23. FEA results shape 8 under X- or Y-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

104.16 110.58 57.06 5.63e-004 5.71e-004 9.85 

 

 

Table B-24. Mode of operation shape 8 

Mode of Operation Natural Frequency (kHz) 

1
st
 Mode (Y-axis) 2.65 

2
nd

 Mode (X-axis) 2.67 

3
rd

 Mode (Z-axis) 2.82 
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SHAPE 9. Surrounded beams Picture-frame type 4 

 

 

 

Figure B-25.  Surrounded beams Picture-frame Accelerometer type 4 

 

 

 

 

 

Figure B-26. Deformed structure Z-axis Acceleration 
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Table B-25. FEA results shape 9 under Z-axis acceelration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

82.49 122.41 44.95 4.46E-04 5.40E-04 1.93 

 

 

 

Figure B-27. Deformed structure X-axis Acceleration 

 

 

 

 

Table B-26. FEA results shape 9 under X- or Y-axis acceleration 

Equivalent 

Stress 

(MPa) 

Maximum 

Principal 

Stress (MPa) 

Maximum 

Shear Stress 

(MPa) 

Equivalent 

Elastic Strain 

(Dimensionless) 

Maximum 

Principal Elastic 

Strain 

(Dimensionless) 

Total 

Deformation 

(µm) 

65.13 92.66 35.02 3.52E-04 4.16E-04 2.00 
 

 

 

 

 

 

 

 

 

Table B-27. Mode of operation shape 9 

Mode of Operation Natural Frequency (kHz) 

1
st
 Mode (Z-axis) 5.70 

2
nd

 Mode (X-axis) 6.06 

3
rd

 Mode (Y-axis) 6.13 
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APPENDIX C. SIZE OPTIMIZATION RESULTS OF ACCELEROMETER 

MECHANICAL STRUCTURES 

 

Here are presented for each shape selected the charts obtained from the optimization process 

as design points (maximum equivalent stress vs. natural frequency under X- and Z-axis 

acceleration) and a table listing only the 3 best optimized design points. As it can be seen 

from the design of experiment optimizations results a Pareto frontier is drawn that describes 

the boundary of the feasible points region. 

 

Shape n. 2 - size optimization 

 

 

Figure C-1. Optimization Shape n. 2, Z-axis acceleration 
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Figure C-2. Optimization Shape n. 2, X-axis acceleration 

 

 

 

 

Table C-1. Optimized design points candidate shape 2 

Sample 

Set 1 

Mass_W

idth 

(μm) 

Beam_

Width 

(μm) 

Beams_

Thicknes

s (μm) 

Mass_T

hickness 

(μm) 

Total 

Deforma

tion 

Reporte

d 

Frequen

cy 

(MHz) 

Equivale

nt Stress 

Z 

Maximu

m (MPa) 

Total 

Deforma

tion Z 

Maximu

m (μm) 

Equivale

nt Stress 

X 

Maximu

m (MPa) 

Total 

Deforma

tion X 

Maximu

m (μm) 

Candidate 

A 
550 60 5 400 0.0052 91.06 1.8605 87.16 2.7647 

Candidate 

B 
600 60 6 450 0.0050 87.80 1.8840 84.78 2.9822 

Candidate 

C 
650 80 6 450 0.0052 83.25 2.0118 79.87 2.7357 
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Shape n. 3 - size optimization 

 

 

Figure C-3. Optimization Shape n. 3, Z-axis acceleration 

 

 

 

Figure C-4. Optimization Shape n. 3, X-axis acceleration 
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Table C-2. Optimized design points candidate shape 3 

Sample Set 

1 

Beam_

Width 

(μm) 

Mass_T

hickness 

(μm) 

Beams_

Thicknes

s (μm) 

Mass_W

idth 

(μm) 

Total 

Deforma

tion 

Reporte

d 

Frequen

cy 

(MHz) 

Equivale

nt Stress 

Z 

Maximu

m (MPa) 

Total 

Deforma

tion Z 

Maximu

m (μm) 

Equivale

nt Stress 

X 

Maximu

m (MPa) 

Total 

Deforma

tion X 

Maximu

m (μm) 

Candidate 

A 
60 400 7 650 0.0051 95.08 2.4311 82.29 2.4023 

Candidate 

B 
80 500 7 650 0.0051 92.39 2.1327 84.44 2.9630 

Candidate 

C 
70 500 6 550 0.0051 78.75 1.7392 94.75 3.0830 

 

 

Shape n. 4 - size optimization 

 

 

 

Figure C-5. Optimization Shape n. 4, Z-axis acceleration 
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Figure C-6. Optimization Shape n. 4, X-axis acceleration 

 

 

 

Table C-3. Optimized design points candidate shape 4 

Sample Set 

1 

Mass_

Width 

(μm) 

Beam_

Width 

(μm) 

Mass_T

hickness 

(μm) 

Beams_

Thicknes

s (μm) 

Total 

Deforma

tion 

Reporte

d 

Frequen

cy 

(MHz) 

Equivale

nt Stress 

Z 

Maximu

m (MPa) 

Total 

Deforma

tion Z 

Maximu

m (μm) 

Equivale

nt Stress 

X 

Maximu

m (MPa) 

Total 

Deforma

tion X 

Maximu

m (μm) 

Candidate 

A 
650 70 500 6 0.0052 103.5 1.6372 111.9 2.8169 

Candidate 

B 
650 60 450 6 0.0052 93.48 1.8717 90.74 2.7334 

Candidate 

C 
650 80 500 6 0.0058 87.53 1.3178 96.40 2.2377 
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Shape n. 5- size optimization 

 

 

Figure C-7. Optimization Shape n. 5, Z-axis acceleration 

 

 

 

Figure C-8. Optimization Shape n. 5, X-axis acceleration 
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Table C-4. Optimized design points candidate shape 5 

Sample Set 

1 

Beam_

Width 

(μm) 

Mass_W

idth 

(μm) 

Mass_T

hickness 

(μm) 

Beams_

Thicknes

s (μm) 

Total 

Deforma

tion 

Reporte

d 

Frequen

cy 

(MHz) 

Equivale

nt Stress 

Z 

Maximu

m (MPa) 

Total 

Deforma

tion Z 

Maximu

m (μm) 

Equivale

nt Stress 

X 

Maximu

m (MPa) 

Total 

Deforma

tion X 

Maximu

m (μm) 

Candidate 

A 
50 250 500 6 0.0051 49.56 0.573 110.05 3.05 

Candidate 

B 
50 280 450 7 0.0053 46.48 0.672 89.30 2.60 

Candidate 

C 
60 250 500 6 0.0054 43.17 0.525 95.05 2.72 

 

 

Shape n. 9 - size optimization 

 

 

 

Figure C-9. Optimization Shape n. 9, Z-axis acceleration 
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Figure C-10. Optimization Shape n. 9, X-axis acceleration 

 

 

Table C-5. Optimized design points candidate shape 9 

Sample Set 

1 

Beam_

Width 

(μm) 

Mass_W

idth 

(μm) 

Mass_T

hickness 

(μm) 

Beams_

Thicknes

s (μm) 

Total 

Deforma

tion 

Reporte

d 

Frequen

cy 

(MHz) 

Equivale

nt Stress 

Z 

Maximu

m (MPa) 

Total 

Deforma

tion Z 

Maximu

m (μm) 

Equivale

nt Stress 

X 

Maximu

m (MPa) 

Total 

Deforma

tion X 

Maximu

m (μm) 

Candidate 

A 
70 550 500 8 0.0053 64.97 2.017 55.00 2.806 

Candidate 

B 
60 550 500 8 0.0051 58.86 1.977 56.20 3.030 

Candidate 

C 
80 550 500 8 0.0054 63.22 2.091 52.40 2.640 
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APPENDIX D. PROBE STRESS ANALYSIS RESULTS UNDER 250g 

ACCELERATION  

Stress comparison on the 16 locations of piezoresistors without NSCR –  

X-, or Y-axis  and Z-axis 250g acceleration 

 

STRESS 
RZ1 Probe 1 RZ2 Probe 2 RZ3 Probe 3 RZ4 Probe 4 

X-axis Z-axis X-axis Z-axis X-axis Z-axis X-axis Z-axis 

Normal - X 

Axis 

2.2663e-003 

MPa 

3.9592e-

002 MPa 

1.9856e-

003 MPa 

3.845e-002 

MPa 

-1.2142e-

002 MPa 

5.4542e-002 

MPa 

-4.8329e-

005 MPa 

5.124e-002 

MPa 

Normal - Y 

Axis 
-41.971 MPa 

64.797 

MPa 

41.993 

MPa 
64.85 MPa 

-41.72 

MPa 
64.464 MPa 41.891 MPa 

64.709 

MPa 

Normal - Z 

Axis 

5.5754e-002 

MPa 

-8.4352e-

002 MPa 

-5.5448e-

002 MPa 

-9.3768e-

002 MPa 

8.9818e-

002 MPa 

-0.15333 

MPa 

-7.2517e-

002 MPa 

-0.11542 

MPa 

XY Shear -1.3723 MPa 
0.54391 

MPa 

-1.4527 

MPa 

-0.59355 

MPa 

1.3253 

MPa 

-0.49144 

MPa 
1.4034 MPa 

0.57331 

MPa 

YZ Shear 0.62315 MPa 
5.5453e-

002 MPa 

-0.64268 

MPa 

2.8401e-

002 MPa 

-0.61491 

MPa 

-6.114e-002 

MPa 

0.61852 

MPa 

-6.3307e-

002 MPa 

XZ Shear 
2.5239e-003 

MPa 

-3.6187e-

003 MPa 

8.7742e-

003 MPa 

1.2822e-

002 MPa 

3.2831e-

003 MPa 

3.7757e-003 

MPa 

5.2838e-

003 MPa 

7.0955e-

003 MPa 

Equivalent 

(von-Mises) 
42.081 MPa 

64.826 

MPa 

42.11 

MPa 

64.885 

MPa 

41.836 

MPa 
64.52 MPa 

42.011 

MPa 

64.749 

MPa 

Maximum 

Principal 

7.5964e-002 

MPa 

64.801 

MPa 

42.053 

MPa 

64.855 

MPa 

0.10247 

MPa 
64.468 MPa 41.947 MPa 

64.714 

MPa 

Middle 

Principal 

3.6092e-002 

MPa 

3.5163e-

002 MPa 

-4.0834e-

002 MPa 

3.435e-002 

MPa 

2.6298e-

002 MPa 

5.0847e-002 

MPa 

-4.1146e-

002 MPa 

4.6519e-

002 MPa 

Minimum 

Principal 
-42.025 MPa 

-8.4539e-

002 MPa 

-7.2634e-

002 MPa 

-9.5116e-

002 MPa 

-41.771 

MPa 

-0.15344 

MPa 

-8.7479e-

002 MPa 

-0.11584 

MPa 

Intensity 42.101 MPa 
64.886 

MPa 

42.126 

MPa 
64.95 MPa 

41.874 

MPa 
64.621 MPa 42.034 MPa 64.83 MPa 

STRESS 
RZ5 Probe 5 RZ6 Probe 6 RZ7 Probe 7 RZ8 Probe 8 

X-axis Z-axis X-axis Z-axis X-axis Z-axis X-axis Z-axis 

Normal - X 

Axis 
0.49139 MPa 

-0.34712 

MPa 

-0.52093 

MPa 

-0.39084 

MPa 

0.43857 

MPa 
-0.3271 MPa 

-0.41094 

MPa 

-0.29538 

MPa 

Normal - Y 

Axis 
44.517 MPa 

-66.485 

MPa 

-44.675 

MPa 

-66.74 

MPa 

44.695 

MPa 
-66.709 MPa 

-44.464 

MPa 

-66.533 

MPa 

Normal - Z 

Axis 

1.2565e-002 

MPa 

-7.8245e-

004 MPa 

8.3224e-

003 MPa 

-1.9201e-

003 MPa 

-1.7854e-

002 MPa 

-1.0011e-002 

MPa 

3.3552e-

002 MPa 

5.4593e-

002 MPa 

XY Shear -2.8903 MPa 
1.2351 

MPa 

-3.0048 

MPa 

-1.2854 

MPa 

3.117 

MPa 
-1.2224 MPa 2.7417 MPa 

1.1814 

MPa 

YZ Shear 0.55795 MPa 
0.69619 

MPa 

-0.75843 

MPa 

0.57461 

MPa 

-0.83245 

MPa 

-0.51622 

MPa 

0.53389 

MPa 

-0.6188 

MPa 

XZ Shear 
1.1285e-002 

MPa 

-0.17094 

MPa 

-5.7743e-

002 MPa 

-7.9503e-

003 MPa 

-5.4222e-

002 MPa 

4.9946e-002 

MPa 

5.7904e-

002 MPa 

0.17628 

MPa 

Equivalent 

(von-Mises) 
44.559 MPa 

66.358 

MPa 

44.744 

MPa 

66.589 

MPa 

44.837 

MPa 
66.581 MPa 

44.541 

MPa 

66.454 

MPa 

Maximum 

Principal 
44.713 MPa 

6.9866e-

002 MPa 

2.1326e-

002 MPa 

4.0038e-

003 MPa 

44.929 

MPa 

5.3649e-003 

MPa 

6.6639e-

002 MPa 

0.12821 

MPa 

Middle 

Principal 
0.30992 MPa 

-0.38736 

MPa 

-0.3175 

MPa 

-0.36693 

MPa 

0.22018 

MPa 
-0.316 MPa 

-0.26778 

MPa 

-0.34213 

MPa 

Minimum -1.8148e-003 -66.515 -44.891 -66.77 -3.3403e- -66.735 MPa -44.64 MPa -66.559 
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Principal MPa MPa MPa MPa 002 MPa MPa 

Intensity 44.714 MPa 
66.585 

MPa 

44.913 

MPa 

66.774 

MPa 

44.963 

MPa 
66.741 MPa 44.707 MPa 

66.688 

MPa 

STRESS 
RX1 Probe 9 RX2 Probe 10 RX3 Probe 11 RX4 Probe 12 

X-axis Z-axis X-axis Z-axis X-axis Z-axis X-axis Z-axis 

Normal - X 

Axis 
-0.26348 MPa 

0.33812 

MPa 

0.19761 

MPa 

0.25009 

MPa 

-0.23757 

MPa 
0.30006 MPa 

0.28208 

MPa 

0.34077 

MPa 

Normal - Y 

Axis 
-49.076 MPa 

65.165 

MPa 

49.363 

MPa 

65.512 

MPa 

-49.497 

MPa 
65.673 MPa 49.182 MPa 

65.295 

MPa 

Normal - Z 

Axis 
0.11218 MPa 

-0.1418 

MPa 

-0.14985 

MPa 

-0.19811 

MPa 

0.12589 

MPa 

-0.17066 

MPa 
-0.15 MPa 

-0.18886 

MPa 

XY Shear -0.27051 MPa 
-1.2125 

MPa 

-0.15167 

MPa 

1.2015 

MPa 

0.24062 

MPa 
1.2957 MPa 

9.8363e-

002 MPa 

-1.2704 

MPa 

YZ Shear -0.7235 MPa 
-0.18626 

MPa 

0.54173 

MPa 

-0.17101 

MPa 

0.6711 

MPa 
0.22606 MPa 

-0.61265 

MPa 
0.21 MPa 

XZ Shear 
-2.3458e-002 

MPa 

3.1554e-

002 MPa 

1.7249e-

002 MPa 

5.2298e-

003 MPa 

-2.4173e-

002 MPa 

2.3297e-002 

MPa 

4.7307e-

002 MPa 

4.7676e-

002 MPa 

Equivalent 

(von-Mises) 
49.02 MPa 

65.102 

MPa 

49.35 

MPa 

65.521 

MPa 

49.458 

MPa 
65.649 MPa 

49.129 

MPa 

65.259 

MPa 

Maximum 

Principal 
0.1238 MPa 

65.188 

MPa 

49.369 

MPa 

65.535 

MPa 

0.13614 

MPa 
65.699 MPa 49.189 MPa 65.32 MPa 

Middle 

Principal 
-0.26297 MPa 

0.31716 

MPa 

0.19815 

MPa 

0.22814 

MPa 

-0.23756 

MPa 
0.27518 MPa 

0.28718 

MPa 

0.32118 

MPa 

Minimum 

Principal 
-49.088 MPa 

-0.14405 

MPa 

-0.15679 

MPa 

-0.19872 

MPa 

-49.508 

MPa 

-0.17223 

MPa 

-0.1629 

MPa 

-0.19477 

MPa 

Intensity 49.212 MPa 
65.332 

MPa 

49.526 

MPa 

65.733 

MPa 

49.644 

MPa 
65.871 MPa 49.352 MPa 

65.515 

MPa 

STRESS 
RY2  Probe 13 RY4 Probe 14 RY1 Probe 15 RY3 Probe 16 

X-axis Z-axis X-axis Z-axis X-axis Z-axis X-axis Z-axis 

Normal - X 

Axis 
-13.726 MPa 

65.192 

MPa 

13.672 

MPa 

64.932 

MPa 

-13.692 

MPa 
65.126 MPa 13.714 MPa 

65.284 

MPa 

Normal - Y 

Axis 

-5.3915e-002 

MPa 

0.2729 

MPa 

9.418e-

002 MPa 

0.40431 

MPa 

-8.9639e-

002 MPa 
0.43069 MPa 

7.9071e-

002 MPa 

0.35221 

MPa 

Normal - Z 

Axis 

3.0829e-002 

MPa 

-0.15181 

MPa 

-3.3108e-

002 MPa 

-0.17287 

MPa 

2.6953e-

002 MPa 

-0.13689 

MPa 

-2.7863e-

002 MPa 

-0.15539 

MPa 

XY Shear 0.36125 MPa 
-1.1267 

MPa 

0.39875 

MPa 

1.2751 

MPa 

-0.39301 

MPa 
1.2697 MPa 

-0.40089 

MPa 

-1.3002 

MPa 

YZ Shear 
2.2258e-003 

MPa 

-2.6375e-

002 MPa 

1.1685e-

002 MPa 

5.7134e-

002 MPa 

-2.3582e-

003 MPa 

3.2671e-002 

MPa 

-8.5442e-

003 MPa 

-3.6806e-

002 MPa 

XZ Shear 
-9.4849e-002 

MPa 

0.22013 

MPa 

-0.10138 

MPa 

-0.30089 

MPa 

-9.8287e-

002 MPa 
0.20906 MPa 

-8.5417e-

002 MPa 

-0.26356 

MPa 

Equivalent 

(von-Mises) 
13.73 MPa 

65.163 

MPa 

13.661 

MPa 

64.858 

MPa 

13.679 

MPa 
65.02 MPa 

13.707 

MPa 

65.227 

MPa 

Maximum 

Principal 

3.1484e-002 

MPa 

65.212 

MPa 

13.685 

MPa 

64.959 

MPa 

2.7659e-

002 MPa 
65.152 MPa 13.726 MPa 

65.311 

MPa 

Middle 

Principal 

-4.4378e-002 

MPa 

0.2546 

MPa 

8.4297e-

002 MPa 

0.38622 

MPa 

-7.8296e-

002 MPa 
0.40728 MPa 

6.8553e-

002 MPa 

0.32982 

MPa 

Minimum 

Principal 
-13.737 MPa 

-0.1538 

MPa 

-3.5669e-

002 MPa 

-0.18135 

MPa 

-13.704 

MPa 

-0.13906 

MPa 

-2.9649e-

002 MPa 

-0.16008 

MPa 

Intensity 13.768 MPa 
65.366 

MPa 

13.72 

MPa 
65.14 MPa 

13.732 

MPa 
65.291 MPa 13.756 MPa 

65.471 

MPa 
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Stress comparison of the 16 locations of piezoresistors with NSCR –  

X-, or Y-axis  and Z-axis 250g Acceleration 

 

STRESS 
RZ1 Probe 1 RZ2 Probe 2 RZ3 Probe 3 RZ4 Probe 4 

X-axis Z-axis X-axis Z-axis X-axis Z-axis X-axis Z-axis 

Normal - X 

Axis 

-2.1511e-004 

MPa 

6.6949e-

004 MPa 

3.578e-

004 MPa 

4.4011e-

004 MPa 

1.2024e-

003 MPa 

-1.7265e-003 

MPa 

-1.4012e-

003 MPa 

-2.6224e-

003 MPa 

Normal - Y 

Axis 
-61.072 MPa 

95.451 

MPa 

61.153 

MPa 

95.379 

MPa 

-61.419 

MPa 
95.919 MPa 61.42 MPa 

95.912 

MPa 

Normal - Z 

Axis 
-1.9341 MPa 

3.0164 

MPa 

1.8979 

MPa 

2.9728 

MPa 

-1.9135 

MPa 
2.9986 MPa 1.9191 MPa 

3.0027 

MPa 

XY Shear 
1.5844e-002 

MPa 

-1.1807e-

002 MPa 

1.4712e-

002 MPa 

1.1662e-

002 MPa 

-1.3771e-

002 MPa 

1.0553e-002 

MPa 

-1.3834e-

002 MPa 

-1.0845e-

002 MPa 

YZ Shear 0.12441 MPa 
0.60066 

MPa 

-0.21559 

MPa 

0.44709 

MPa 

-0.1414 

MPa 

-0.59102 

MPa 

0.11054 

MPa 

-0.63178 

MPa 

XZ Shear 
-7.9472e-003 

MPa 

1.2444e-

002 MPa 

-6.2008e-

003 MPa 

-9.5424e-

003 MPa 

-4.5511e-

003 MPa 

8.0931e-003 

MPa 

-3.6926e-

003 MPa 

-6.4112e-

003 MPa 

Equivalent 

(von-Mises) 
60.129 MPa 

93.985 

MPa 

60.228 

MPa 
93.93 MPa 

60.486 

MPa 
94.462 MPa 

60.484 

MPa 

94.454 

MPa 

Maximum 

Principal 

-1.786e-004 

MPa 

95.455 

MPa 

61.154 

MPa 

95.381 

MPa 

1.2162e-

003 MPa 
95.923 MPa 61.42 MPa 

95.916 

MPa 

Middle 

Principal 
-1.9339 MPa 

3.0126 

MPa 

1.8971 

MPa 

2.9707 

MPa 

-1.9132 

MPa 
2.9949 MPa 1.9189 MPa 

2.9984 

MPa 

Minimum 

Principal 
-61.072 MPa 

6.16e-004 

MPa 

3.3433e-

004 MPa 

4.0767e-

004 MPa 

-61.419 

MPa 

-1.7499e-003 

MPa 

-1.4114e-

003 MPa 

-2.6376e-

003 MPa 

Intensity 61.072 MPa 
95.455 

MPa 

61.154 

MPa 
95.38 MPa 

61.42 

MPa 
95.924 MPa 61.422 MPa 

95.919 

MPa 

STRESS 
RZ5 Probe 5 RZ6 Probe 6 RZ7 Probe 7 RZ8 Probe 8 

X-axis Z-axis X-axis Z-axis X-axis Z-axis X-axis Z-axis 

Normal - X 

Axis 

-8.6074e-004 

MPa 

1.4228e-

003 MPa 

9.3775e-

004 MPa 

1.5212e-

003 MPa 

1.9623e-

003 MPa 

-2.0007e-003 

MPa 

-5.3492e-

004 MPa 

-3.5019e-

004 MPa 

Normal - Y 

Axis 
67.121 MPa 

-100.53 

MPa 

-66.945 

MPa 

-100.37 

MPa 

67.098 

MPa 
-100.8 MPa 

-66.942 

MPa 

-100.49 

MPa 

Normal - Z 

Axis 
2.1551 MPa 

-3.2604 

MPa 

-2.1581 

MPa 

-3.2568 

MPa 

2.2037 

MPa 
-3.3157 MPa 

-2.1823 

MPa 

-3.2862 

MPa 

XY Shear 
2.4433e-002 

MPa 

-1.49e-002 

MPa 

2.4624e-

002 MPa 

1.5292e-

002 MPa 

-2.3263e-

002 MPa 

1.2802e-002 

MPa 

-2.0992e-

002 MPa 

-1.0812e-

002 MPa 

YZ Shear -0.94278 MPa 
2.1075 

MPa 

0.89359 

MPa 

2.0431 

MPa 

0.88728 

MPa 
-2.0556 MPa 

-1.0059 

MPa 

-2.1482 

MPa 

XZ Shear 
7.4231e-003 

MPa 

-8.2401e-

003 MPa 

5.9149e-

003 MPa 

6.1567e-

003 MPa 

5.0374e-

003 MPa 

-6.3798e-003 

MPa 

7.9688e-

003 MPa 

1.0363e-

002 MPa 

Equivalent 

(von-Mises) 
66.091 MPa 

99.013 

MPa 

65.911 

MPa 

98.843 

MPa 

66.041 

MPa 
99.243 MPa 

65.901 

MPa 

98.957 

MPa 

Maximum 

Principal 
67.135 MPa 

1.4478e-

003 MPa 

9.6496e-

004 MPa 

1.5365e-

003 MPa 

67.11 

MPa 

-1.9856e-003 

MPa 

-4.9667e-

004 MPa 

-3.1439e-

004 MPa 

Middle 

Principal 
2.1414 MPa 

-3.2148 

MPa 

-2.1458 

MPa 

-3.2138 

MPa 

2.1916 

MPa 
-3.2723 MPa 

-2.1667 

MPa 

-3.2388 

MPa 

Minimum 

Principal 

-8.9778e-004 

MPa 

-100.58 

MPa 

-66.958 

MPa 

-100.41 

MPa 

1.9412e-

003 MPa 
-100.84 MPa 

-66.958 

MPa 

-100.54 

MPa 

Intensity 67.136 MPa 
100.58 

MPa 

66.959 

MPa 

100.41 

MPa 

67.108 

MPa 
100.84 MPa 66.957 MPa 

100.54 

MPa 

STRESS 
RX1 Probe 9 RX2 Probe 10 RX3 Probe 11 RX4 Probe 12 

X-axis Z-axis X-axis Z-axis X-axis Z-axis X-axis Z-axis 

Normal - X 

Axis 

1.047e-003 

MPa 

-2.1554e-

003 MPa 

-1.0093e-

003 MPa 

-2.1023e-

003 MPa 

-7.1175e-

004 MPa 

1.0663e-003 

MPa 

-8.7477e-

005 MPa 

2.0189e-

004 MPa 

Normal - Y 

Axis 
-73.993 MPa 

98.108 

MPa 

73.007 

MPa 

97.097 

MPa 

-73.048 

MPa 
97.052 MPa 72.851 MPa 

96.734 

MPa 
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Normal - Z 

Axis 
-2.3361 MPa 3.094 MPa 

2.2966 

MPa 

3.0502 

MPa 

-2.2907 

MPa 
3.0528 MPa 2.2992 MPa 

3.0603 

MPa 

XY Shear 
-3.8872e-004 

MPa 

9.9615e-

003 MPa 

-4.1374e-

003 MPa 

-1.4729e-

002 MPa 

4.6983e-

004 MPa 

-1.0153e-002 

MPa 

3.7651e-

003 MPa 

1.4567e-

002 MPa 

YZ Shear -1.1505 MPa 
0.81582 

MPa 

1.0072 

MPa 

0.6434 

MPa 

1.1044 

MPa 

-0.75059 

MPa 

-1.0985 

MPa 

-0.743 

MPa 

XZ Shear 
6.3516e-003 

MPa 

-8.2005e-

003 MPa 

5.9767e-

003 MPa 

7.8669e-

003 MPa 

5.8807e-

003 MPa 

-8.0614e-003 

MPa 

6.8694e-

003 MPa 

8.8738e-

003 MPa 

Equivalent 

(von-Mises) 
72.881 MPa 96.61 MPa 

71.908 

MPa 

95.616 

MPa 

71.955 

MPa 
95.571 MPa 

71.754 

MPa 

95.249 

MPa 

Maximum 

Principal 

1.0644e-003 

MPa 

98.115 

MPa 

73.022 

MPa 

97.101 

MPa 

-6.965e-

004 MPa 
97.058 MPa 72.868 MPa 96.74 MPa 

Middle 

Principal 
-2.3176 MPa 3.087 MPa 

2.2823 

MPa 

3.0458 

MPa 

-2.2735 

MPa 
3.0468 MPa 2.2821 MPa 

3.0545 

MPa 

Minimum 

Principal 
-74.012 MPa 

-2.1786e-

003 MPa 

-1.0255e-

003 MPa 

-2.1254e-

003 MPa 

-73.065 

MPa 

1.0435e-003 

MPa 

-1.0869e-

004 MPa 

1.7326e-

004 MPa 

Intensity 74.013 MPa 
98.117 

MPa 

73.023 

MPa 

97.103 

MPa 

73.065 

MPa 
97.057 MPa 72.868 MPa 

96.739 

MPa 

STRESS 
RY2  Probe 13 RY4 Probe 14 RY1 Probe 15 RY3 Probe 16 

X-axis Z-axis X-axis Z-axis X-axis Z-axis X-axis Z-axis 

Normal - X 

Axis 
-20.663 MPa 

96.497 

MPa 

20.627 

MPa 

96.231 

MPa 

-20.572 

MPa 
96.056 MPa 20.757 MPa 

96.633 

MPa 

Normal - Y 

Axis 

3.5633e-004 

MPa 

-1.3149e-

003 MPa 

2.1356e-

004 MPa 

9.9457e-

004 MPa 

-5.3247e-

004 MPa 

2.2413e-003 

MPa 

4.9485e-

005 MPa 

9.4275e-

005 MPa 

Normal - Z 

Axis 

-0.64398 

MPa 

3.0067 

MPa 

0.64582 

MPa 

3.0142 

MPa 

-0.64473 

MPa 
3.0142 MPa 

0.65804 

MPa 

3.0648 

MPa 

XY Shear 
-3.4496e-003 

MPa 

1.1627e-

002 MPa 

-3.188e-

003 MPa 

-1.1053e-

002 MPa 

3.6683e-

003 MPa 

-1.2651e-002 

MPa 

3.6413e-

003 MPa 

1.2701e-

002 MPa 

YZ Shear 
-2.3e-003 

MPa 

9.8136e-

003 MPa 

2.5057e-

003 MPa 

1.0742e-

002 MPa 

2.6027e-

003 MPa 

-1.0646e-002 

MPa 

-2.4837e-

003 MPa 

-1.0661e-

002 MPa 

XZ Shear 0.15537 MPa 
-0.54465 

MPa 

0.16822 

MPa 

0.65891 

MPa 

0.16879 

MPa 

-0.64453 

MPa 

0.17626 

MPa 

0.67773 

MPa 

Equivalent 

(von-Mises) 
20.35 MPa 

95.034 

MPa 

20.314 

MPa 

94.766 

MPa 

20.259 

MPa 
94.59 MPa 

20.439 

MPa 

95.145 

MPa 

Maximum 

Principal 

3.6532e-004 

MPa 
96.5 MPa 

20.628 

MPa 

96.236 

MPa 

-5.2103e-

004 MPa 
96.06 MPa 20.759 MPa 

96.638 

MPa 

Middle 

Principal 
-0.64278 MPa 

3.0036 

MPa 

0.64441 

MPa 

3.0096 

MPa 

-0.64331 

MPa 
3.0097 MPa 0.6565 MPa 3.06 MPa 

Minimum 

Principal 
-20.664 MPa 

-1.3488e-

003 MPa 

2.0312e-

004 MPa 

9.5441e-

004 MPa 

-20.574 

MPa 

2.2013e-003 

MPa 

3.9214e-

005 MPa 

5.4838e-

005 MPa 

Intensity 20.664 MPa 
96.501 

MPa 

20.628 

MPa 

96.235 

MPa 

20.573 

MPa 
96.058 MPa 20.759 MPa 

96.638 

MPa 
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APPENDIX E. PACKAGING, 8 LEAD 2X2 DFN-EP 
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APPENDIX F. ACCELEROMETER FABRICATION 

For the fabrication of the enhanced final accelerometer design, some design and fabrication 

challenges have been identified after a thorough discussion with the IZM company part of the 

Fraunhofer Institute in Germany. 

The design and fabrication challenges are as follows: 

 

Design issue n.1: Stability issues and risk of breaking during dicing. 

- Beams design: 10 µm beams thickness 

Action taken: Since the design of the beams with 10 µm thickness represent a risk of 

breaking of the beams during dicing the thickness has been increased to 20 µm to ensure 

stability. Moreover dicing protection is considered. 

 

Design issue n.2: Minimum metal track width achievable from the process is 5 µm. 

- Metallization design: 2 µm width Aluminium traces  

Action taken: The metal traces have been designed below the minimum permitted by the IZM 

equipment; therefore an increase of the metal traces width to the minimum permitted (5 µm) 

is necessary. 

 

Design issue n.3:  

- Dicing protection:  

a. Anodic bonding of glass on the top side of the device: The top glass is 300 µm thick 

b. Use of material for covering the top side: Residual of material after removal 

Action taken: The anodic bonding of glass is preferred to the material covering because the 

glass bonding represents also a wafer level packaging itself. 
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Design issue n.4: Passive or active thermo-compensation maybe required. 

- Piezoresistors design: 2-5 kΩ resistance of piezoresistors  

Action taken: the use of 2-5 kΩ resistance of piezoresistors increases significantly the 

temperature of the device for self-heating of piezoresistors, therefore changing the behaviour 

of the piezoresistors. A thermo-compensation is a possible solution. 

 

Design issue n.5: 

- Self-heating of piezoresistors. 

Action taken: The self-heating of the device can be reduced by the use of current instead of 

voltage for powering the device. 

 

Design issue n.6: 

- Wire bonding design: Long wires could break due to contact to the micro-structure. 

Action taken: In order to avoid possible braking of the wires it is preferred to use flip chip 

interconnection by bumps. 

 

Design issue n.7: 

- Bond pads design: Minimum area 100 × 100 µm2. 

Action taken: The bond pads have been designed following the minimum area feature 

suggested by IZM. 
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Accelerometer layout design and fabrication 

This section illustrates the sensor layout design and fabrication process of the two design 

selected for possible fabrication with conventional and nanoscale piezoresistors (Design A2 

and B3). 

In order to complete the sensor design of the sensor selected from geometries type A 

(octagon – Design A2) and B (circle – B3) the masks layout for the fabrication of the sensor 

have been designed with commercial software CleWin that gives as output a .GDS file, see 

figure F-1and F-3. 

  
 

Figure F-1. .GDS file of the octagonal geometry sensor. 
 

Figure F-2. Metallization layers. (a) Layer 1, (b) Layer 2. 

 

Moreover, the metallization has been developed with commercial EDA software. The 

metallization has been developed in 2 layers due to the traces complexity (Figure F-2). 

 

 



 

 

240 

 

  
 

Figure F-3. .GDS file of the circular geometry sensor 

with nanowires 

 

Figure F-4. .GDS file of circular geometry sensor with 

conventional piezoresistors 

 

Finally, a further design and sensor development has been undertaken with conventional 

piezoresistors with the purpose of comparing the performance of conventional and nanoscale 

piezoresistors. It should be noted that the bond pads surrounding the sensor are one for each 

piezoresistor contact, Figure F-4 shows the masks layout of the sensor. This design has been 

chosen in order to complete the measurement circuit connections beside the sensor and not 

overlapping it in different layers, as designed in the octagon type A sensor (Figure F-1). This 

choice makes the sensor fabrication more simple and convenient. 

The conventional piezoresistors have been designed by Fraunhofer IZM, see Figure F-5. 

 
Figure F-5. Conventional piezoresistor design (Fraunhofer IZM) 

 

The process flow for the conventional piezoresistors fabrication is illustrated in the figure F-6 

and F-7. 
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Figure F-6. Conventional piezoresistor process flow (Fraunhofer IZM) 

 

The initial wafer (step 1) is exposed by photolithography that patterns the windows for 

contacts (step 2). Afterwards the contacts are doped by boron ion implantation (step 3) and 

the piezoresistors are also formed by boron ion implantation (step 4). Next step is the 

deposition of oxide for insulation (step 5) and the deposition of nitride for passivation (step 

6). Then the metallization is prepared by photolithography of windows (step 7). 
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Figure F-7. Conventional piezoresistor process flow part 2 (Fraunhofer IZM) 

 

The windows previously formed are etched; nitride and oxide layers are removed (step 8). 

Deposition of aluminium for metallization is performed (step 9) and photolithography for 

etching of metal is undertaken (step 10). Finally the aluminium is etched (step 11). To 

complete the processing the backside of the wafer is exposed to photolithography (step 12) 

and then etched. Last step to release the proof mass and beams is etching the wafer front side 

(step 13).  

The final sensor element before and after wafer level packaging is illustrated in the Figure F-

8. 
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Figure F-8. Sensor before and after packaging (Fraunhofer IZM) 
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APPENDIX G. PIEZORESISTIVE ACCELROMETER MEASUREMENT 

CIRCUITS 

Some of the most common sensors are the resistive elements. They are inexpensive to 

manufacture and relatively easy to interface with signal conditioning circuits. Resistive 

elements can be made sensitive to temperature, strain (by pressure or by flex as in the 

piezoresistive accelerometer), and light. Typically incorporated into force, pressure and 

acceleration sensors are the bridge circuits. Strain gages present a significant measurement 

challenge because the typical change in resistance over the entire operating range of a strain 

gage may be less than 1% of the nominal resistance value. Therefore is critical when applying 

resistive sensors to accurately measuring small resistance changes [32]. 

Attractive alternative for measuring small resistance changes accurately are offered by the 

bridges. The basic Wheatstone bridge [85] (see Figure G-1) consists of four resistors 

connected to form a quadrilateral, a source of excitation (voltage or current) connected across 

one of the diagonals, and a voltage detector connected across the other diagonal. The 

difference between the outputs of two voltage dividers connected across the excitation is 

measured by the detector [32]. 

 
Figure G-1. Wheatstone bridge and equations [32] 
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In most of sensor applications employing bridges the deviation from an initial value of one or 

more resistors in a bridge is an indication of the magnitude or a change in the variable that 

has been measured. In this particular case, the output voltage change is an indication of the 

resistance change. Typically the resistance changes are very small, therefore the output 

voltage change may be as small. In many bridge applications, there may be two, or even four, 

elements that vary (see Figure G-2). In each case, the value of the fixed bridge resistor, R, is 

chosen to be equal to the nominal value of the variable resistor(s). The variable resistor(s) 

deviation about the nominal value is proportional to the quantity being measured, such as 

strain as in the piezoresistive accelerometers [32]. 

 
Figure G-2. Output voltage and linearity error for constant voltage drive bridge configuration [32] 

 

The ratio of the maximum expected change in the output voltage to the excitation voltage is 

defined as sensitivity of a bridge.  

The single-element varying bridge comprises a single resistive strain gage. All the resistances 

are nominally equal, but one of them is variable by an amount  R (see Figure 11). As the 

strain gauge is either compressed or tensed, its resistance will decrease or increase, 

respectively, thus unbalancing the bridge and producing a proportional output voltage,   . 
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This arrangement, with a single element of the bridge changing resistance in response to the 

measured variable (mechanical force), is known as a quarter-bridge circuit (Figure 11). 

As the indicated in the equation, the relationship between the bridge output and  R is not 

linear. Depending on the applications, the bridge nonlinearity may be acceptable or not, but 

there are various methods available to linearize bridges. Software can be used to remove the 

linearity error in digital systems, since there is a fixed relationship between the bridge 

resistance change and its output (shown in the equations). To directly linearize the bridge 

output circuit techniques can also be used. Bridges may also be driven from constant current 

[32]. 

The all-element varying bridge or full-bridge circuit produces the highest signal (more 

sensitive) for a given resistance change, moreover is inherently linear. It is an industry-

standard configuration for load cells which are constructed from four identical strain gages or 

can be applied for a piezoresistive accelerometer with four identical gages (2 tension and 2 

compressed) (see Figure …). The type of measurement circuit adopted for the design of the 

ear-plug accelerometer related to this work is a full-bridge circuit, in order to obtain the 

highest sensitivity possible. 

In summary, there are many design issues relating to bridge circuits. After selecting the basic 

configuration, the excitation method must be defined and then the value of the excitation 

voltage or current must be determined. Although large excitation voltages determine 

proportionally larger full-scale output voltages, they also result in higher power dissipation 

and therefore self-heating errors. On the other hand, the sensitivity to noise may increase with 

low values of excitation voltage that require more gain in the conditioning circuits [32]. 
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APPENDIX H. DOPING CONCENTRATION AND ORIENTATION OF 

PIEZORESISTORS                                                                                                                                                           

Doping type and concentration affects the piezoresistive coefficients (π, longitudinal and 

transverse) that define the ability of the piezoresistor to change resistivity once a stress is 

applied (sensitivity of piezoresistor depends to piezoresistive effect). The higher is the doping 

density the lower are the piezoresistive coefficients (lower sensitivity) and resistivity but the 

temperature dependence of sensitivity decreases (Figure H-7). However, the temperature 

coefficient of sensitivity drops off faster than sensitivity. The piezoresistive coefficients 

depend also on the crystal orientation of the piezoresistor. For {100} wafers, that have been 

chosen for fabrication due to fabrication convenience, the piezoresistive coefficients for p-

type elements (boron doping) are maximal in the <110> directions and nearly vanish along 

the <100> directions (see Figure H-1). Smith [48] measured the piezoresistive coefficients for 

(100) samples along the <100> and <110> crystal directions. Longitudinal and transverse 

coefficients for the fundamental crystal axes were determined directly. Shear piezoresistive 

coefficients were inferred. By these measurements and considering the crystal symmetry, 

Smith fully characterized the piezoresistive tensor of 7.8 Ω-cm at low p-Si concentration as 

[48]: 
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                                  (H.1) 

 

At light concentrations (1.7×10
15 

cm
-3

), Smith [48] found the p-type longitudinal 

piezoresistive coefficient in the [110] direction for bulk silicon to be relatively constant at 

72×10
-11

 Pa
-1

 [(π11+π12+π44)/2]. His results have been showed graphically by Kanda [72] (see 

Figure H-1): 

 

Figure H-1. Room temperature piezoresistive coefficients in the (100) plane of p-type silicon. This graphic 

predicts piezoresistive coefficients very well for low doses. After Kanda [72] 

 



 

 

249 

 

In other words, p-type piezoresistors must be oriented along the <110> directions to measure 

stress and thus should be either aligned or perpendicular to the wafer primary flat (see Figure 

H-2) [73]. 

 

Figure H-2. n-type (100) oriented wafer showing the primary and secondary flats [73] 

 

In our device the piezoresistors are p-type silicon and they are oriented on the <110> 

directions (Young‟s modulus E = 169 GPa) for n-type {100} wafer (parallel or perpendicular 

to the primary flat, see Figure H-2 and H-3) because they provide high sensitivity on this 

directions and is a convenient crystallographic orientation from a fabrication standpoint [53]. 

It should be noted that saying that the surface of a wafer has a particular orientation such as 

(100) is arbitrary; any orientation within the equivalent {100} group of planes, such as (001), 

can alternatively be selected (see Figure H-3). 

 

 

Figure H-3. Illustration identifying various planes in a wafer of {100} orientation (the wafer thickness is exaggerated) 

[73] 
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All piezoresistors are arranged on the <110> directions along the four beams directions for 

both X and Y-axis direction. When referred to the crystallographic coordinate system of the 

silicon crystal, the coordinate transformation matrix (R) of the piezoresistor in <110> 

directions of the coordinate system are [58]: 

     

      
      
      

  

 
 
 
 

  

 

  

 
 

 
  

 

  

 
 

    
 
 
 

                                            (H.2)                                            

And then the longitudinal and transverse piezoresistive coefficients are calculated by the 

Mason and Thurston [70] general formula (2.2), (2.3) and (2.4). 

After substitution the formulae that express both coefficients for <110> directions and the 

circuit configuration are as follow [40]: 

      
       

 

 
                                                           (H.3) 

      
       

 

 
                                                           (H.4) 

The Figure H-4 shows the different test configuration for piezoresistive coefficient 

measurements. 
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Figure H-4. Notation for Smith’s test configurations [48] 

 

The longitudinal and transverse piezoresistive coefficients for <110> directions are then 

calculated (see Figure 13) and the approximation is sometimes made that for p-Si π11 = π12 = 

0 and then: 

        
   

 
                                                                     (H.5) 

where π44 is the shear coefficient. π44 originates from the change in mobility through carrier 

transfers and effective mass changes when the band structures of Si are modified by strains 

[74]. 

Therefore the fractional resistance change is simply given by: 

  

 
     

   

 
    

   

 
  

   

 
                                                       (H.6) 

Generally, the value of the shear piezoresistive coefficient π44 depends on boron 

concentration and temperature of measurement. 

The piezoresistance coefficient magnitude decreases significantly with the doping 

concentration and the temperature. The first systematic experimental study on piezoresistance 

over a broad temperature range (-90°C to 100°C) and doping concentration levels was carried 
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out by Tufte and Stelzer [69] in the early 1960's. Subsequent studies by many investigators 

have generally confirmed the trend of their results. Figure H-5 shows the dependence of π44 

on the doping level at room temperature and Figure H-6 shows the temperature coefficient of 

π44 for a p-Si material [58]. 

  

 

 

The temperature coefficient of sensitivity is estimated as 0.0025 (0.25%/°C) for a 

concentration of around 10
17

 cm
-3

 (Figure 15). 

Piezoresistive Coefficient 

Kanda [72] has theoretically discussed the dependence of the piezoresistive coefficient on the 

impurity concentration and temperature. He concluded that the piezoresistive coefficient with 

a doping concentration of N at a temperature T, Π(N, T), can be generally expressed as: 

                                                                              (H.7) 

where Π(300K) is the piezoresistive coefficient at 300K for low doped material of the same 

conductive type and P(N,T) is a factor indicating the dependence of the piezoresistive 

coefficient on the doping level and temperature. Based on the multi-valley theory of 

Figure H-5. Dependence of π44 on the doping level at 

room temperature 
Figure H-6. Temperature coefficient of π44 for a p-Si 

material. 
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semiconductor energy bands, the factor P(N, T) has been calculated. Some of his results are 

given in the Figure H-7 to show the trends for p-Si. It was claimed that the discrepancy 

between the theoretical results and the experimental results are within 15% for a temperature 

range o f - 50°C to +150°C and a doping level up to 5·10
18

 cm
-3

. 

  

 

Figure H-7. Piezoresistive Factor vs. p-Si concentration at different temperatures 

 

The calculated values of the P(N,T), agree well with the experimental values obtained by 

Mason [70] for doping concentrations less than 1×10
17

 cm
-3

, over the temperature range of 

50°C to 150 °C, but differ by 21% at a concentration of 3×10
19

 cm
-3

 at room temperature. The 

error was attributed to dopant ions scattering for high dopant concentrations, whereas the 

calculation only considered lattice scattering. Harley and Kenny [53] later evaluated data 

from several researchers (see Figure 17) and provided an empirical fit of piezoresistance vs. 

concentration that better estimates the sensitivity for higher concentration devices.  
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Figure H-8. Piezoresistive Factor comparison at room temperature [53] 

 

The figure above shows room-temperature data from Mason et al. [70], Tufte and Stelzer 

[69], and one point from Kerr and Milnes [75] is shown along with the theoretical curve from 

Kanda [72]. 

The fitting function for room temperature is applied for doping densities above 1×10
17

 cm
-3

. 

For doping concentrations below 1×10
17

 cm
-3

 the piezoresistive factor is set to 1. For 

concentrations in the range of interest (above 1×10
17

 cm
-3

), this data is well approximated by 

a straight line on the semilog plot. The complete fitting function of the piezoresistive factor is 

shown in the Figure H-9 and given by: 

      
    

         

 
 
      

                     

                                                       

                                     (H.8) 
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Figure H-9. Fitting Function at room temperature [53] 

 

This section has introduced the piezoresistance effect and how to calculate the fractional 

resistance change in conventional microscale piezoresistors.  
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APPENDIX I. TABLES CHAPTER 5 AND 6 

Table I-1. Sensitivity and cross-sensitivity of three designs type A with nanowires 

 

X-axis ACCELERATION 

(500g) 

Y-axis ACCELERATION 

(500g) 

Z-axis ACCELERATION 

(500g) 

 

X, Y-axis 

ACCELERATION (500g) 

 

 

X-axis 

(V/G) 

Cross-

Y (%) 

Cross-

Z (%) 

Y-axis 

(V/G) 

Cross-

X (%) 

Cross-

Z (%) 

Z-axis 

(V/G) 

Cross-

X (%) 

Cross-

Y (%) 

X-axis 

(V/G) 

Y-axis 

(V/G) 

Cross-

Z (%) 

SQUAR

E A1 

1.11E-

02 
0.0611 2.7794 

1.11E-

02 
0.0521 2.7576 

3.77E-

02 
0.0058 0.0139 

1.57E-

02 

1.57E-

02 
2.8421 

OCTAG

ON A2 

1.19E-

02 
0.1699 0.0463 

1.19E-

02 
0.1154 0.0294 

6.06E-

02 
0.0011 0.0374 

1.49E-

02 

1.49E-

02 
0.0403 

CIRCL

E A3  

1.15E-

02 
0.0105 0.6393 

1.15E-

02 
0.0964 0.6117 

3.84E-

02 
0.0227 0.0352 

1.43E-

02 

1.44E-

02 
0.7327 

 

 

 

 

Table I-2. Sensitivity and cross-sensitivity of three designs type B with nanowires 

 

 

X-axis ACCELERATION 

(500g) 

 

 

Y-axis ACCELERATION 

(500g) 

 

 

Z-axis ACCELERATION 

(500g) 

 

 

X, Y-axis 

ACCELERATION (500g) 

 

 

X-axis 

(V/G) 

Cross-

Y (%) 

Cross-

Z (%) 

Y-axis 

(V/G) 

Cross-

X (%) 

Cross-

Z (%) 

Z-axis 

(V/G) 

Cross-

X (%) 

Cross-

Y (%) 

X-axis 

(V/G) 

Y-axis 

(V/G) 

Cross-

Z (%) 

SQUAR

E B1 

1.10E-

02 
0.1474 2.1946 

1.10E-

02 
0.0904 0.0043 

1.48E-

02 
0.0220 0.1154 

1.22E-

02 

1.22E-

02 
0.0118 

OCTAG

ON B2 

1.06E-

02 
0.0274 2.1716 

1.06E-

02 
0.0339 0.1683 

1.48E-

02 
0.1794 0.2275 

1.16E-

02 

1.16E-

02 
0.0809 

CIRCL

E B3 

1.05E-

02 
0.0106 1.5536 

1.06E-

02 
0.0005 0.1152 

1.48E-

02 
0.0228 0.1090 

1.15E-

02 

1.15E-

02 
0.1283 
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Table I-3. Sensitivity and cross-sensitivity of three designs type A and final design with nanowires 

 

 

X-axis ACCELERATION 

(500g) 

 

 

Y-axis ACCELERATION 

(500g) 

 

 

Z-axis ACCELERATION 

(500g) 

 

 

X, Y-axis 

ACCELERATION (500g) 

 

 

X-axis 

(V/G) 

Cross-

Y (%) 

Cross-

Z (%) 

Y-axis 

(V/G) 

Cross-

X (%) 

Cross-

Z (%) 

Z-axis 

(V/G) 

Cross-

X (%) 

Cross-

Y (%) 

X-axis 

(V/G) 

Y-axis 

(V/G) 

Cross-

Z (%) 

SQUAR

E A1 

1.11E-

02 
0.0611 2.7794 

1.11E-

02 
0.0521 2.7576 

3.77E-

02 
0.0058 0.0139 

1.57E-

02 

1.57E-

02 
2.8421 

OCTAG

ON A2 

1.19E-

02 
0.1699 0.0463 

1.19E-

02 
0.1154 0.0294 

6.06E-

02 
0.0011 0.0374 

1.49E-

02 

1.49E-

02 
0.0403 

CIRCL

E A3 

1.15E-

02 
0.0105 0.6393 

1.15E-

02 
0.0964 0.6117 

3.84E-

02 
0.0227 0.0352 

1.43E-

02 

1.44E-

02 
0.7327 

FINAL 
1.29E-

02 
0.0630 0.0557 

1.29E-

02 
0.1036 0.0524 

1.92E-

01 

7.55E-

05 
0.0072 

1.71E-

02 

1.71E-

02 

5.35E-

02 

 

 

 

Table I-4. Sensitivity and cross-sensitivity of three designs type A, final design and two new 

geometries with conventional microscale piezoresistors 

 

 

X-axis ACCELERATION 

(500g) 

 

 

Y-axis ACCELERATION 

(500g) 

 

 

Z-axis ACCELERATION 

(500g) 

 

 

X, Y-axis 

ACCELERATION (500g) 

 

 

X-axis 

(V/G) 

Cross-

Y (%) 

Cross-

Z (%) 

Y-axis 

(V/G) 

Cross-

X (%) 

Cross-

Z (%) 

Z-axis 

(V/G) 

Cross-

X (%) 

Cross-

Y (%) 

X-axis 

(V/G) 

Y-axis 

(V/G) 

Cross-

Z (%) 

SQUARE 
5.35E-

04 
0.094 2.626 

5.34E-

04 
0.010 2.606 

3.54E-

04 
0.016 0.040 

5.37E-

04 

5.36E-

04 
3.7 

OCTAGO

N 

5.18E-

04 
0.074 0.044 

5.18E-

04 
0.065 0.027 

3.85E-

04 
0.005 0.197 

5.19E-

04 

5.19E-

04 
0.049 

CIRCLE 
5.15E-

04 
0.009 0.631 

5.15E-

04 
0.043 0.604 

3.55E-

04 
0.066 0.104 

5.16E-

04 

5.16E-

04 
0.887 

FINAL 
5.61E-

04 
0.005 0.054 

5.61E-

04 
0.065 0.050 

4.28E-

04 

1.83E-

03 
0.138 

5.61E-

04 

5.62E-

04 

7.04E-

02 

CURVED+

CIRCLE 

5.62E-

04 
0.031 0.252 

5.61E-

04 
0.067 0.269 

4.36E-

04 
0.072 0.164 

5.63E-

04 

5.62E-

04 
0.385 

CURVED+

CIRCLE2 

5.98E-

04 
0.008 0.528 

5.98E-

04 
0.047 0.510 

5.08E-

04 
0.004 0.029 

5.99E-

04 

5.99E-

04 
0.733 

DOUGHN

UT 

4.57E-

04 
0.0007 0.063 

4.58E-

04 
0.63 0.137 

3.57E-

04 
1.010 0.193 

4.55E-

04 

4.57E-

04 
0.189 
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APPENDIX J. SINGLE CRYSTAL SILICON MATERIAL PROPERTIES 

Miller convention: 

Use the [ ] notation to identify a specific direction, 

Use the < > notation to identify a family of directions with equivalent properties, for 

example: 

  

1. <100> has equivalent directions [100], [010], [001] or 

2. <110> has equivalent directions [110], [011], [101], [  0], [0  ], [ 0 ], [ 10], [0 1], 

[ 01], [1 0], [01 ], [10 ] or 

3. <111> has equivalent directions [111], [ 11], [1 1], [11 ] 

 

Use the ( ) notation to identify a specific plane, 

Use the { } notation to identify a family of planes with equivalent properties. 

The line on top of the axis  

In cubic crystal such as silicon the [100], [010] and [001]-directions are chosen to coincide 

with x, y, and z-axes, the (100)-plane showed in the figure below is orthogonal to the [100] 

direction. 
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Figure J-1. Silicon crystal structure: Different crystal orientations are indicated with Miller indexes with [100] 

coinciding with x-axis. Also shown is (100)-plane (that is plane orthogonal to [100] direction) and crystal unit cell (red 

box) [52]. 

 

Figure J-1 is an introduction to the crystallographic notation. As a crystal is periodic, there 

exist families of equivalent directions and planes. Notation allows for distinction between a 

specific direction or plane and families of such. 

In the design of piezoresistors the crystallographic orientation affects the piezoresistive 

sensitivity. For instance a <111> oriented piezoresistor in a (110) plane will have the highest 

piezoresistive sensitivity. More commonly <110> aligned piezoresistors on (100) wafers are 

used because of their high equal and opposite longitudinal and transverse piezoresistive 

coefficients.  

The cubic nature of the single crystal silicon (SCS) lattice, leads to orthotropic material 

properties. For an orthotropic material such as silicon the Young‟s modulus and Poisson‟s 

ratio depends on which crystal direction the material is being stretched. An orthotropic 

material has two or three mutually orthogonal two-fold axes of rotational symmetry so that its 

mechanical properties are, in general, different along the directions of each of the axes. 
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Orthotropic materials are thus anisotropic; their properties depend on the direction in which 

they are measured. 

To account for anisotropy tensor formalism is required. The general relationship between 

stress and strain is: 

 

 
 
 
 
 
 
  
  
  
  
  
   
 
 
 
 
 

 

 
 
 
 
 
 
                  
                  
                  
                  
                  
                   

 
 
 
 
 

 

 
 
 
 
 
 
  
  
  
  
  
   
 
 
 
 
 

                                (J.1) 

 

where C is the stiffness matrix.  

The stiffness matrix C of single crystal silicon (SCS) is simplified due to the requirement that 

the elastic properties of a continuum are invariant under an orthogonal transformation. This 

means that the stiffness matrix C satisfies a given symmetry condition if it does not change 

when subjected to the corresponding orthogonal transformation. The orthogonal 

transformation may represent symmetry with respect to a point, an axis, or a plane. 

Orthogonal transformations in linear elasticity include rotations and reflections, but not shape 

changing transformations. The above symmetry requirement can be satisfied only if: 

                                                                  (J.2) 

                  

Therefore, the stiffness matrix of an orthotropic linear elastic material like silicon can be 

written as: 
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                                            (J.3) 

 

Because silicon is such an important economic material, these values have been investigated 

thoroughly, and the three independent stiffness coefficients of principal crystallographic 

orientations <100>, <010> and <001>, gives the following stiffness matrix [52]:  

 

  

 
 
 
 
 
 
               
               
               
         
         
          

 
 
 
 
 

                          (J.4) 

 

To obtain Young‟s modulus in [100] direction just set all other stresses to zero and solve for 

Y[100] = T1/Ԑ1. This gives 

            
   

       
                                                 (J.5) 

The Poisson‟s ratio can similarly be obtained as: 

 

       
   

       
                                                            (J.6) 

The expressions and values for Young‟s modulus to [110]- and [111]-direction are given in 

Table J-1: 
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                         Table J-1. Young's modulus in [100], [110] and [111] direction [54] 

Direction Expression Value [GPa] 

[100]      
   

       
     130 

[110]  
    

             
     

           
             

  170 

[111]  
             

            
 189 
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APPENDIX K. CHARACTERIZATION AND TESTING OF SAMPLES 

Characterization 

Data collection is carried out on each nanowires of each test-chip through measurement 

instruments (source/measure). Figure K-1 below shows a single nanowire with 2 contacts, 

required to measure the change in resistance due to stress at various temperature. A constant 

electrical current is applied and the change in voltage output represents a measure of the 

resistance change, according to the Ohm law.  

 

 

Figure K-1. Nanowire 2-points contacts [3] 

 

The analysis of the data collected is based on the longitudinal piezoresistive coefficient that is 

calculated for each nanowire from the following equation: 

   

  

  

  
                                                                                  (K.1) 

where Ro is the resistance of the unstressed nanowire and σl the longitudinal stress. 

The gauge factor will be calculated as follows: 
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                                                                                (K.2) 

where  l is the longitudinal strain. 

From the data analysis a curve piezoresistive coefficient and/or gauge factor vs. stress is 

obtained. This curve represents the electro-mechanical behaviour of each nanowire. 

Moreover this curve varies based on the parameters under investigation (cross sectional area, 

aspect ratio, carrier density, irregularity of wire wall, temperature and crystallographic 

orientation). 

Testing 

The testing is carried out with a characterization station (see Figure K-2(a) for uniaxial test 

and Figure K-2(b) for bending test) that comprises probes for source/measure, microscope 

and a tensile kit equipped with an extra temperature controlling unit. The tensile kit 

established at Cranfield, was based on the 200N commercial model by DEBEN UK modified 

for the testing of micro- components by the addition of a new piezo- electric motor. The 

specific motor, model P-840 from Physik Instrument, is capable of high accuracy movement 

resolution of 2 nm, making it ideal for the particular application.  

There are two available options for the load cell, a 2 N and a 20 N. The force resolution of the 

kit is equal to 1000:1 so the minimum resolved force with the second cell fitted is 0.02 N. 

The station is designed to fit in a Philips XL 30 SEM chamber. The applied strain rate is 

variable with a minimum value equal to 4 nm/sec. The station is controlled by an external 

controlling unit (DEBEN UK) which is connected to a personal computer with win XP 

platform through RS 232 interface.  
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                                                        (a) 

 

                                (b) 

Figure K-2. (a) Prototype tensile kit, equipped with horizontal gripping jaws for conventional tensile testing [78]. (b) 

Prototype tensile stage kit, equipped with vertical gripping jaws and point tip for bending experiment. In the inset the 

pushing tip is shown in contact with a metal sample [78]. 

 

A 200 N load cell was used for the experiment due to the relatively high stress of around 

100MPa required for the experiment. Notice that single crystal silicon has fracture strength of 

around 7 GPa [84]. The sample features have been specifically designed to reach this stress 

level because it is a typical stress applied to the beams of medium-G miniature inertial 

sensors. 

The experiment consists of applying uniaxial stress (tensile and compressive) at different 

temperatures along the longitudinal axis of the nanowires through a prototype tensile stage. In 

the meanwhile a constant electrical current (~µA) is applied to each nanowire and electrical 

measurement of the potential drop (~100 nV) on the contacts electrodes will allow to 

calculate the change of resistance compared to the unstressed condition. Moreover for each 

nanowire the contact characteristic (I-V) is drawn. Finally the gauge factor and piezoresistive 

coefficient for each nanowire at different temperature are obtained.   

 

 



 

 

266 

 

ACHIEVEMENTS 

List of Publications and patents from this Thesis: 

M. Messina, J. Njuguna, V. Dariol, C. Pace, and G. Angeletti, “Design and Simulation of a 

Novel Bio-Mechanic Piezoresistive Sensor with Silicon Nanowires,” IEEE/ASME 

Transaction on Mechatronics, vol. PP, n. 99, 2012. 

M. Messina, J. Njuguna, “Potential of silicon nanowires structures as nanoscale 

piezoresistors in mechanical sensors” in IOP Conf. Ser.: Mater. Sci. Eng. vol. 40 012038, 

2012. 

M. Messina, J. Njuguna, “Design, Modelling and Optimization of a Bio-Mechanic 

Piezoresistive Accelerometer,” ASME Journal of Mechanical Design. Under review. 

M. Messina, J. Njuguna, “Influence of Variation in the Mass Moment of Inertia into the 

Performance of a Tri-axial Piezoresistive Accelerometer,” Journal of Micromachines. Under 

review. 

M. Messina, J. Njuguna, “Silicon Piezoresistance and Giant Piezoresistance in Silicon  

Nanowires,” Journal of Micromachines. In preparation. 

M. Messina, J. Njuguna, “High performance tri-axial piezoresistive accelerometer.” Patent 

Application Number EP12195830.0 


