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SMIARY 

A radial parabolic induced velocity distribution 
agreeing closely with flight measurements has been used for 
the hovering case. To this has been added a second induced 
velocity distribution, varying linearly from the front to the 
rear of the rotor disc, to allow for the effect of forward 
speed. The magnitude of this second induced velocity term 
depends on the advance ratio 11. 

Values of the force coefficients CH 
and CAS, 

the flapping coefficients ao, a1  and b1, and the rotor 

derivatives xe zq, yF, xu„ zu )cw,
w 

and yV  have been 

calculated for a typical case for the low forward speed region 
(11 = 0 - 0.14) for both uniform and non-uniform induced vel-
ocity and the results compared. Additional values of the 
flapping coefficients have been calculated for the speed 
range 11 = 0.14 - 0.24 and the results compared with flight 
measurements and with values based on the Hangler induced 
velocity distribution. Good agreement has been obtained. 

The values obtained for the rotor derivatives show 
that the effect of non-uniform induced velocity is almost 
negligible except in the case of z which is a very small 
derivative. 
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LIST OF snpoIs 

a 	Blade section lift curve sl- 

ao 	Blade coning angle 

aI 	First harmonic longitudinal flapping coefficient 
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At 	Parameter in expression for Wu  (5-16A) 

Ao 	Blade collective pitch angle 

Al 	Coefficient of -cos * in expression for cyclic 
feathering 
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b1 	First harmonic lateral flapping coefficient 
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1 	Coefficient of -sin * in expression for cyclic 
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C 	Lrbitrary constant 

CL 	Blade section lift coefficient 

CH 	H farce coefficient = H / 7r.R2p(n R)2  

CT 	Thrust coefficient = T / 7tR2p(C/ R)2  

CYS 	Lateral farce coefficient = Ys/xR2p(nR)2  

D Drag force on blade 

F 	 Aerodynamic farce on blade 

H Drag force in plane of rotor disc 

i 	Incidence of rotor disc 

I1 	Blade moment of inertia about flapping hinge 

L Tai ft force on blade 

11, 	Homent of aerodynamic forces about flapping hinge 
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tangential to the rotor cone 

✓ Velocity of forward flight 

VI 	Resultant Lir velocity relative to rotor disc (5-11) 
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Instantaneous blade flapping angle, measured from 

no-feathering plane 

Lock's inertia number, Y - 
p acR 4  
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0 	Instantaneous blade pitch angle measured from the 
tip-path plane 

Inflow factor 
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1. Introduction  

Although it is well known that the induced velocity 
distribution through a rotor is far from uniform, little has 
been written concerning the effect of this non-uniformity on 
blade flapping coefficients and rotor derivatives. 

Glauert (1) suggested a triangular distribution of 
induced velocity from the front to the rear of the rotor disc. 
This distribution gave values of the lateral flapping coeff-
icient b1 agreeing more closely with experimental, measure-
ments than values predicted using a uniform distribution. 

Uhrtin (7) used the induced velocity distribution 
calculated by Uhnclar (10), who treated the rotor disc as a 
circular wing, to obtain values of b1  which compared favour- 

ably with flight measurements by Ijyers (13). By considering 
the effect of this greater lateral tilt on the force coeff-
icients he concluded that there would be a significant effect 
on the rotor derivatives. 

Tho"Dihngler induced velocity distribution was cal-
culated on the assumption that the perturbation velocities 
due to the rotor disc were small compared with the free-
streau velocity. It is, therefore,not applicable at low 
forward speeds, (below 4 = 0.1 sac). 

To investigate the effect of non-uniform induced 
velocity at low forward speeds a parabolic radial distribution 
has been chosen which agrees well with flight measurements 
by Brotherhood (9) on a hovering helicopter. To this has 
been added a distribution varying linearly from the front to 
the rear of the rotor disc and depending in magnitude on the 
advance ratio p. Values have been calculated for the 
flapping coefficients, the force coefficients and the rotor 
derivatives. Those have been compared with values obtained 
assuming a uniform distribution of induced velocity over the 
rotor disc, and with the results obtained by Ahrtin (7) and 
the flight measurements by Myers (13). 

2, Notation 

The British system of notation has been adopted 
i.e. all forces and moments are referred to axes attached to 
the tip-path plane. The angle of incidence of the rotor 
disc is taken as being positive when the disc is tilted for-
ward with respect to the direction of flight. The system 
of axes is shown in Fig. 1. 

/The expression 



The expression for the cyclic feathering of the 
blades with respect to the tip-path plane is 

0 = 	111 cos * 	- B. sin V,  

 

(2-1) 

 

where O.  is the azimuth angle in the plane of the disc and 
is measured from the downstream direction in the direction 
of rotation of the blades. 

The expression for the blade flapping angle with 
respect to the no-feathering plane. is 

P = ao 	a1 cos * 
	

b1  in 	terms in 

higher harmonics 	(2-2) 

It has been shown by Lock (2) and others that, for 
the flapping and feathering systems to be equivalent, the 
first harmonic flapping coefficients are related to the 
cyclic feathering coefficients by the following expressions. 

I
al = B1  

bl = _ 1  

 

(2-3) 

 

3. The Flow Relative to the Rotor Disc 

For the rotor with forward velocity V, the 
component of V in a plane parallel to the tip-path plane 
is given by 

1 R = V cos 

 

(3-1) 

 

where 	p = V cos i /0 R 

is known as the 'advance ratio'. 

The velocity perpendicular to the tip-path plane is 

R = V sin i v 

 

(3-3) 

 

where v is the induced flow through the rotor disc, and X 
is the 'inflow factor'. 

/4. U.. 

. (3-2) 



4. The Flow Relative to a Blade 

For purposes of estimating derivatives the rotor is 
assumed to have a pitching velocity q and a rolling 
velocity r. Using the expression for cyclic feathering 
given by (2-1) the following expressions are obtained for the 
velocity components relative to a blade element at radius 
r = xR. 

(i) The velocity component perpendicular to the blade in 
a plane parallel to the tip-path plane. 

U
T 

= (x + p sin * ) R 

 

(4-1 ) 

 

(ii) The velocity component perpendicular to the blade 
and to the cone surface 

Up  = (aoil. cos t +N- 13-x sin * - a x cos 1,o)n R 

	 (4-2) 

where ao is the base angle of the rotor cone. 

The sprtnwisc velocity along the blade is 

(p. cos * 	Nao)il R 

The effect of this spanwise velocity is not consid-
ered in the subsequent analysis since the dominant term 
p cos * will be small at low forward speeds. 

The angle of incidence of the rotor blade clement is 

 

a = e 

 

(4-3) 

  

where 

Hence 

0 = tan-1 uN UP since U << UT 
 

 

apcos* +W-0xsin* - fl  x cos V 
a = o Al  cos *- Bi  sin * 	 

x + p sin 

	 (4,40 



Xox dx = 	X 2 T 

x2dx = 1— "mil1 0 
0 

0 
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5. The Induced Velocity  

5.1. The Induced Velocity_in iloverinJi 

Measurements by Brotherhood (9) show that the 
induced velocity in hovering is far from uniform over the 
rotor disc. His experimental values agree well with values 
calculated from propeller strip theory. 

It was found that the induced velocity distribution, 
as measured by Brotherhood, could be approximnted very closely 
(see Fig. 4) by the following simple expression. 

=- xa + 2x vT 

 

5-1) 

 

where vT is the value of the induced velocity at the edge 

of the rotor disc and x = r/R. This expression represents 
a parabolic distribution varying from zero at the centre of 
the disc to a maximum value at the edge of the disc. 

The following integrals are now evaluated for later 
reference. Note that XI 	

VT/CI  R 	
X
o 
= /a R 

fo 

Xo dx = 23 XT 

(5-2) 

o
x 
3 
 dx =X 30 T 

0  

5.2. The Induced Velocity at Moderate Forward Speeds  
(11  > 0.14)  

Following Glauert (1) it was decided to superimpose 
an induced velocity distribution, varyin2, linearly from the 
front to the rear of the rotor disc, on the induced velocity 
distribution in hovering, to account for the effect of forward 
speed. This linear induced velocity distribution is given 

/in non- 
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in non-dimensional form by 

X1x cos V =
(? 
 )X cos 	(5-3) 

This represents an induced velocity varying linc,xly from 
a value -X1 at the front of the disc to +X1 at the rezx 

of the disc. 

The choice of the value for %1 is arbitrary. 

Glauert (1) suggested letting it have the sane value as X0  

which, in his paper, represented an induced velocity uniform 
over the whole of the disc. It was decided to let Al  XT, T°  
for for II > 0.14 and later calculations of the flapping 
coefficients a0° a1° and b1 shoved good agreement with 

experimental values given in Ref. 13, and also with values 
calculated by liartln (7) using the 'Jangler induced velocity 
distribution (see Figs. 7-9). 

The effect of the angle of incidence of the tip-path 
plane on the induced velocity distribution has been ignored 
since the incidence is small in practice ('Gyrodyne condition'). 

5.3, The Induced Velocity at Low Forward Speeds  

At zero forward speed Xi  is zero and at moderate 

and high forward speeds the choice of X
1 = XT appears to 

give good agreement with flight measurements for the flapping 
coefficients. To cover the low forward speed range it was 
decided to assume an exponential increase, from Al = 0 to 

given by 

Al  
= 7'"T (1  - 

 

(5-'4.) 

 

and to choose c such that W1  = 0.9 WT  for p. = 0.10. 

This gives c = 23 and 

Al  = XT (1 - c-2311) 

 

(5-5) 

 

Again this expression for W
1 is somewhat arbitrary 

but (-Axes the proper end conditions 	(i.e. 1 = 	 •0 for 1.1 = 0; 

Xi 	AT  for 	> 0.14). 

/5640 'OS 
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5.4. The Variation of T -with 11 

For hovering, the value of A
T 

may be determined 

The thrust T is given by 

T 	f p2ar dr. 2v2  

0 
Hitting x = r/R and substituting for v from (5-1) 

T = 4m.R2pv;1.  (x3  - 14x¢14x¢ Lia
3
) dx 0   

11 )1 	2 	2 whence T = 0  aR pvT  

Now the thrust coefficient C - T 	p,KR2(1 R)2 

therefore 

XT 
= 1 44 	= 0.826 4.--T 

 

(5-6) 

 

The corresponding expression for uniform induced 
velocity is 

	

= 0.707 „FT  	.(5-61) 

where Wu  is the non-dimensional form of the uniform 

induced velocity. 

For moderate and high forward speeds Glauert (1) 
has developed the following formula for the thrust, by 
treating the rotor disc as a circular wing of span 2R, and 
having elliptical loading. 

	

(7cR2pV') vm  	 (5-7) 

where V' is the resultant velocity at the rotor disc given 
by 

from mamentwn theory. 

T 

2 	1  

V i  = 	(V sin i + vir,) 	+ (V cos i) 1 	... 
2 	

(5-8) 

and vm is the mean induced velocity given by 
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1 1 	

% 
vin  = 	r dr 	v dVr 

 

(5-9) 

 

Substituting v = vT (-x2  + 2x) 	RX1x cos le into 
(5-7) gives 

v
m 
	5/

6 
v
T  

or am  = StR = 5/6 XT  

 

(5-10) 

 

(5-8) can be written as 

V' = r R(X2  + p2)i 
	

(5-11) 

and by substituting (5-10), (5-11) and the expression for the 
thrust coefficient in (5-7) the expression for X

T becomes 

CT 	 6 	_ 1 	(5-12) 
XT - 

5 ?Nrn — 5 c 	2 4 

1(11.+7+ m) +µ2_r  

This leads to a quartic equation for XT  which 

cannot be solved in general terms. However for high 
forward speeds and low angles of incidence, i.e. 

2 
[.1 2> 7(0_ + Wca) i  XII  is given by the simplified expression 

Cm  

XT = 0.6 ---L  	(5-13) 

The corresponding expression for uniform induced 
velocity is 

1 
'? 	

C
T 
 

 

(5-13A) 

 

Due to the difficulty in solving (5-12) for and 
also to the doubtful validity of this expression at low 
forward speeds it was decided to use an empirical expression 
for XT of the form 

= 
A 

  

(5-14) 

   

+ p 

  

and to choose A and B to satisfy the following conditions& 

h
T = 0,826 1/6T 	for p = 0 

XT  = 0.6 CT/p 	for p = 0.25 
(5-15) 



A and. E are then given by 
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0.6 CT  

1 - 2.9 NrcT  

0.727 iCT  

1 - 2.9 iCT 

 

(5-16) 

B - 

 

Similarly for uniform induced velocity 

A'  
	 (5-14A) 

Bt + 

and 	AU  = 0.707 ICT  for u = 0 	1 
	(5-15L) 

Xu  = .0.5 CT/u for µ = 0.25 

giving 

A r - 
0.5 CT  

  

1 - 2.83 libT  
(5-16.0 

B 
	0.707 .t/CT  

- 2.8310T  

Curves of xtr ana against 1.1 for a thrust 

coefficient CT  = .0055 are presented in Fig. 5. 

5.5. The Derivatives of XT, Xi  and Xu. 

5.5.1. The Derivatives of XT  

 

XT 	XT 	CT) where CT 
= C

T
(0 

 

therefore 

    

axT  ax
T axT 

3CT 
d µ 	1.1 	3CT  • a [i 

  

(5-17) 

  

  

/where 

 



where 

giving 

and 

a7'T 75-71- 

axl  

and axT by differentiating (5-14), ac - are obtainea 

A 

awT 1 

(3+1J.)2  

ac T 2 

0.364 NT] 

(1-2.9 4OT)(B+p) T 

0.6(1-1.45 T) 

5.5.2. The Derivatives of ").0  

The corresponding expressions for uniform induced 
velocity are 

au N N = 	
acT 

d p 	a 11 + acT  s a 	 (5-17A) 

a-xu  , where 	= A 
	 (5-16A) a p (W+µ)2  

N 1  	
r- 	 0.355 %u  

and i 0.50(1-1,42 4'0
T
) acT  - (1-2.83 lorcT 	.1 )20:01)i 	 IftT  L. 

	(5-19A) 

56.3. The Derivatives of XI 

  

7.1 = (1 - e-23i1)XT - - X1 T'  (_ g) where 

therefore 
al  3/.1  d) 	&Xi  
d p a.xT  ap 	a 

  

giving 

   

a1 = (I - e-23p)   da 

T  
+ 23 e-23p xT 	

 (5-20) 

87.1 	 ax_ -23p. T Also 	= (1 - e 	) acT 	 OCT 
	(5-21) 



[ A a  
T = 2 	3 

 ....2 (.1  
2) 2 

1212_ _ 
12 n T 	2 + 4.0 

Ian 

and for uniform induced velocity 

CT = 
PL-32  + 

- 1 5 - 

6. The Thrust Coefficient 

The thrust T is given by the double integral 

T r--: 
b 
271 dx Pc dT dx ❑ 

d * 	 (6-1) 

The resultant force on a blade element au' area 
cR dx is  

dF = $ T pac,,R,2 a.lca 	(6-2) 

where U is the resultant of UT and UP  and U T  since 

UT ] 

klso the resultant force' F is very nearly perpen-
dicular to the tip-path plane so that 

dT Z dp 	p c 2
R 

 3 

(1.21-1
T A  

2 
dx 

 

(6-3) 

 

By substituting (6-3), (4-4) and (4,2) in (6-1) the 
expression for the thrust coefficient becomes (see 21ppendix I) 

(0-4) 

7. The Per xblaerthzgiffi_cien-t .  

For equilibrium of the rotor disc the cyclic 
feathering must be such that the aerodynamic moment produced 
on a blade balances the dynamic me tient about the flapping 
hinge given by 

2 
I1  ao 	2qQ-11  sin 	+ 2pC211  cos 0 	• • . (7-1 ) 

where I. is the blade moment of inerti t about the flapping 
hinge. 

The aerodyn=lc moment about the flapping hinge is 

/given by ... 



[la 4 	_ 2_. 4P 
1440,2 , 3 	40 yn 

"1 = - 

7-6k) Al  4 
2  

3 	13 PAo - 2 - 2 XU 
1 4-t11  

-16- 

given by 

= I 

	

dx 	(7-2) x aF   ax  
o 

dP Substituting for — dx from (6-3) the following 

expression is obtained for II, (see :appendix II) /, 

-1, 
pacn2R4F .L. 	.E21 	Ao. 	

u31

a. ) 
P' " = i____ 	10 XT - 3 4-  4 	5  + 4 

o 
 

	

(P _ Zi- L.... 	
B1 	2 , 	1 112B1) + in * 	 + _ p.1 , - 4 Q 	2 	12 i-IXT - 4 	) 	0 	3 

• 	COS 	(
Pao 	7\,1 	F 	1 2. 

3 _4  + 4 n 4 _ 8 hi  

+ terms in iii her harmonics ] 	(7-3) 

Comparing (7-1) with (7-3)  

ao =X  IL  -.2 (1+12  ) - .- X2 
_ .1.  _ pi 
	uP f  

(7-4)fo   3 	3 ▪ bn i  
Al  

	

4 Fla° 	4r A = 	(7-5) l 	
1+2N2 

7-  + 77 - 4 . 1-  yn ,- 

B1  2 	12 1-°̀ T 
	(7-6) 

4 
pacR   whore y - 	is known as Lock's inertia number. I1 

The corresponding expressions for uniform induced 
velocity are 

%Lr 	1 	4 1 2  
111.1 ) • • (7-41) 0 2 	 3 3 3 

/8. 	irolo 
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8. The H Force Coefficient  

The H force is the drag force in the tip-path 
plane. From Fig. 2 

dH = (dD cos 	dL sin 0)sin * (dL cos 0- dD sin O)sin 0.0  cos 'P 

	(8-1) 

Now 	ao and 0 are both small angles so that 

dH = dD sin + 0 dL sin 'P - ao dL cos 'P 	..(8-2) 

The term a60 or cos 'P is neglected since ao and 0 are 

both small and dD is small compared with dL. 

Now 	dL = 	pc CL  U2  dr 

where CL is the local blade lift coefficient = a(e -0) 

and 	dD = 1 pc5U
2 
 dr 

 

(8-4) 

 

where 5 = blade section profile drag coefficient, 
assumed constant, 

Substituting (8-3) and (8-4-) in (8-2) and putting 
U = UT and 0 = Up/UT  

U1, 
dH = pc ITT [ 5 + a .r.÷: 

L.  UT  sin - aoa B - 1j)cos*JR dx  UT  

  

(8-5) 
Idnrtin (7) neglected terms involving 2 

but 
retained such terms as 00, al00 and a00. Since 0, 3 and 
ao are all of the same order this simplification was not 

considered to be justifiable, and the terms involving 0* have 
been retained. 

The H force is given by the double integral 

fat 
b 	 dH H = Tz  il  dx 	Tx  d 'P 

0 	0 
(8-6) 

Substituting (8-5) in (8-6) the following expression 

/for the • 4 

(8-3) 
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for the H force coefficient CH is obtained 
2  

(see Appendix III) 

1 	 B 

CH = 2 
1A  acl  11).k 	2° 	2 + 	WT) 	

, 
( 2a  

Sao 
a0X iao  + 	+ 	+ 

la I 1 	P 
- 	 ci AT 3 + 8 1  

) 
...(8-7) 

The corresponding expression for uniform induced 
velocity is 

- C  H 2a 2 
au' 1,54 

2T2 	XU - 50  c 

9. The Side Force Coefficient C YS 

From Fig. 2 

ay = - (a0 dL sin* + loaL ...* 	dD cos o. ) 
(9-1) 

Substituting as in expression for H force 

 

2 

Bi 	 1/ao 
4i XU) -47(Pi XU) 	747 

 

2 
=- pcUT  

( Up 

l aoa 0 - 	Isin* T 

  

Up  

UT  - IT) + 5 I cos Id Rdx 
T 
	(9-2) 

dYS 

  

+ a 

    

       

Performing the double integration as before gives 
(see Appendix IV) 

a (- 	 X 
[ 	a • 

I 
	2 	 I 	. c = 	311 + 214AT  + B1 	+ p - 2 

YS 2 2 	 2ol 7 	6 T) 

X A 	pB1X1  p 
1 	 a 

LT "11  6 XT) 	6 	-Tr r  3 + 8 

_ 
(1,1i XT ""0 1131\  3  -7) ...(9-3) 

The corresponding expression for uniform induced 

/velocity is 
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velocity is 

a 
[ 

2
0 

I- 
2 	 2) 	, 	4+7t) CAS  = 	131.L 1 + 31A 	B1 G+ p - 2 	' 2 	L. 

p.; P 	ao 	[11.. 

--7 — 20 	8
1
) 	 XU - 32+ 70J 

 

(9-3i0 

 

10. The Rotor Stability Derivatives  

The rotor derivatives of importance, for the case 
of zero flapping hinge offset, are.- 

(i) The force-angular velocity derivatives 

X, Z, Yp 

(ii) The force-velocity derivatives 

xu, zu, Yvl xvr and 1.1 

Russell (6) and others have shown the basic 
equations for estimating rotor derivatives to be 

©X = - 	al - H 
	(10-1) 

Y = TA b1  + A Y s  	(10-2) 

Z = HAa1  - AT 	(10-3) 

These relations follow immediately from Fig. 3. 

For the case of controls fixed a change in longi-
tudinal flapping A a1  results in a change of incidence of 

	

the disc Ai = -A a1
i 	 di i.e. — = - 1 = — . 

	

a-, 	aB1 1 

In estimating the rotor derivatives the change in 
induced velocity in the disturbed motion was taken into 
account. This was done by assuming eqpations (5-17) and 
(5-18) to apply in the disturbed state. This assumption 
seems reasonable provided the disturbed motion takes place 
slowly. 

/In the ... 
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In the expressions for the aerivatives, in the 
following sections, Al  is replaced. by -bi  and B1  by al , 

from (2-3). Equations with the suffix 'A' refer to the 
uniform induced velocity case. 

11. The Force-Angular Velocity Derivatives x $ y
P 
 and z 

The force-angular velocity derivatives follow from 
equations (10-1) and (10-3) 

	

6a1 	301.1

qi  

	

- CT aq 	a 	 01-1) 

Y 
acys/ 

 

) 
	(11-2) 

ab 

ap = 0 0 T a p  

	

as 	ac 

6 qi 
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12. The force-Velocity Derivatives xu  and zu  

From equations (10-1) and (10-3) 
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The expressions for the partial derivatives are 
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13. The Force-Velocity Derivatives xw  and zw  

From equations (10-1) and (10-3) 

The effect of a disturbance velocity vr in the 
positive z 6irection is to cause a uniform flaw w through 
the rotor disc in the negative z direction. The inflow 
through the disc then becomes 
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or non-dimensionally 

X = 	+ Xo + X1 x cos * - X 
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The relevant partial derivatives are 
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14. The Force-Velocity Derivative yv  

velocity v in the positive y direction causes 
the H force vector to rotate through an angle v/V cos i 
giving a component -11v/V cos i in the y direction. In 
addition there is a change in the lateral tilt of the rotor 

	 giving rise to a force -Tal V cos i disc b1  = - al V cos i 

in the y direction. 

Therefore 
AY 	1 (H Ta1) 	(14-1) v 	V cos i 

whence 	YV 	
1 — (CH  CT  a1  ) 	(14,2) 

This expression is not applicable for the hovering 
condition where p = 0, but by symmetry in hovering 

yv  = Xu  

 

(14,3) 
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15. Calculation of Force CoefficientLJ  21appig Coefficients 
and Rotor Derivatives for a TypiuLl Case 

Values of farce coefficients, flapping coefficients 
and rotor derivatives have been calculated for a typical case 
using values given in ref. 13. The details of the configura-
tion are given in _Appendix V. 

Values have been worked out for both uniforn and 
non-uniform induced velocity distribution. The results of 
the flap:ying coefficients at moderate forward speeds are com-
pared with results calculated by Liartin (7) using the .1.:1_,mgler 
induced velocity distribution, and with flight measurements 
given in ref. 13. 

The results of the calculations are presented as 
follows.- 
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8. a 	1.1  ( I  

9. b1  vs 	(I 

' 10. 	
a1,b1 VS P. 

' 11. C C H'YS VS II ( ' 1 

' 12. ro  vs 

13. yi, vs 

t 14. z
q  

vs 

	

1  15. 	zu vs 

	

1  16. 	xu vs 

17.v, vs 

18. x. vs 

19. y VS 

(1-L 

) 

4  (4 = 0 - 0.14) 

(' ) 

11  . 1  I 1 	l 
l 

( '  t t 	1 
il / 

u (' ' r 	) ) 

p ( ' r 1 	
) 

µ ( 1  ) 

( ) 



-27- 

16. Discussion 

Referring to Figs. 7 - 9 it can be seen that the 
flapping coefficients, as calculated from the induced velocity 
distribution adopted, give good agreement with the flight 
measurements of ref. 13 and martin's results (7), based on 
the Mangler induced velocity distribution. In particular 
the values of the lateral tilt of the disc, bl, compare 

favourably, whereas those for the uniform induced velocity 
distribution considerably underestimate the actual case. 

The values of a1, the longitudinal flapping coeff-
icient are underestimated by all three theoretical induced 
velocity distributions. This is due to the fact that no 
account is taken of lateral asymmetry of the flow through 
the rotor disc. Certainly such asymmetry must exist since 
the effect of cyclic blade feathering (and/or flapping) is 
to produce a different lift distribution over the retreating 
blade than over the advancing blade. . However at low forward 
speeds this difference will be small and its effect on the 
induced velocity distribution can probably be ignored. IA 
higher forward speeds it could possibly be taken into account 
by introducing a term X2  x sin t into the expression for 
the induced velocity, where ?2  would be a function of the 

advance ratio 11. It would probably be difficult to find 
an expression for ?.2(pa) analytically, but an empirical 

expression based on experimental results might well be used. 

It is doubtful if the expression adopted for the 
induced velocity actually represents in any detail the true 
flow distribution through the rotor disc, except at or very 
near the hovering state. What it does represent is the 
overall trend of an increase in induced velocity from the 
front to the rear of the disc, which has been observed. This 
appears to be sufficient for the estimation of flapping 
coefficients and hence also of rotor derivatives. The Mangler 
induced velocity distribution, on the other hand, probably 
gives a much truer picture of the details of the flaw-  through 
the rotor. Measurements by Fail and. Eyre (11) and by 
Falabella and 1Ieyer (12) appear to confirm that the prediction 
of upflow over a region of the forward part of the disc is 
correct. However the ;jangler distribution involves somewhat 
complicated expressiens and it would appear that the much 
simpler representation of the flow used here is sufficient for 
the purpose of estimating rotor derivatives. 

Fig. 10 shows the values of the flapping coefficients 
over the low forward speed range. a is the same for both 
uniform and non-uniform induced velocity. bi  is much greater 

/for the 
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for the non-uniform induced velocity distribution because of 
the ten',

1
/4 which takes account of the longitudinal 

-  
asymmetry of flow through the rotor disc. A. is slightly 
amaller for the non-uniform induced. velocity case indicating 
that the resultant aerodynamic force acts closer to the blade 
root than for the uniform induced velocity case. 

Fig. 11 shows the variation of the drag force 
coefficient CH and the side force coefficient C 	with 

YS 
u for the two cases. It is interesting to note that CH  

is somewhat smaller for the case of non-uniform induced 
velocity than for the case of uniform induced velocity. This 
is due to the term Alab/6 being greater in magnitude than 

the additional terms involving .N.1. Cys  is negative for 

both cases but is considerably greater in magnitude for non-
uniform induced velocity. This is due to the larger values 
of 11 - = b1 and also to the terms involving X.  

The force-angluar velocity derivatives arc shown 
in Figs. 12-14, The derivative xq  is the same for both 

cases in as much as CT 
Oa1/3q is the same and the contribu- 

tion aa 
 from 	w,ag is small and very nearly the same. yp  

is also unaffected by non-uniform induced velocity since 
dbOp and 3 CT 	 cYs/ap are virtually identical for the 

two cases. The derivative z is slightly different for 

uniform and non-uniform induced velocity. It is proportional 
to CH since 3a1/3q is the same for both cases and 

'pith regard to the force-velocity derivatives it 
can be seen from Figs. 15 and 17 that zu  and z are 

virtually the same for uniform and non-uniform induced 
velocity. The expressions for acT/ap. and 3CT/Ar  are 
very nearly the same for the two cases and the CH 

da1/ 

and 09 
a
1/3X contributions to these 'z' derivatives 

are negligible. 

The derivatives xu and x are also virtually 

identical for uniform and non-uniform induced velocity. The 
3a 1/3u and C

T 
3a CT 	 1/fah71  terms are dominant in the 

/expressions for 

a oTAq = 0. This derivative is exceedingly small and would 

probcthly be ignored in most stability calculations. 
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expressions for these 'x' derivative so that the small 
changes in 13C a4  and aCH(Aw 	the two cases are 

relatively unimportant. 

The derivative yv 
is also very nearly the sane 

for both uniform and non-uniform induced velocity. The dom-
inant term in the expression for yv  is QTal  which is 

identical for the two cases. The small differences in CH 
have little effect. 

Summarising it can be said that the only derivative 
appreciably affected by non-uniform induced velocity is 

which is very small and relatively unimportant. 

It appears that, at low forward speeds, non-uniform 
induced velocity has no significant effect on rotor derivatives. 
At higher forward speeds it is possible that its effect might 
be more significant. Certainly if a lateral asymmetry of 
flow through the rotor disc were taken into account the values 
of a and its derivatives would be different for uniform 
and. nobn-uniform it diced velocity. This would affect all 
derivatives to some extent and particularly xci, xu, xw and 

yv. For a highly loaded rotor at high forward speeds it 
would be expected that CH  would. be  larger relative to CT  

than for the case of the lightly loaded rotor at low forward 
speeds considered here. This would mean that the 
CH 

aa1/aft and CH 
aaVaxw contribution to zu and zw 

would be significant and the effect of non-uniform induced 

velocity might be important. There is same doubt about 
this last statement, however, for at high forward speeds and 
high disc loadings, the main contributions to CH  would 

probably come from the pAo  and pa20  terms with the result 

that CH would be very nearly the same for both uniform 

and non-uniform induced velocity. 

/17. 	• Alt 
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17. Conclusions 

1) An important effect of non-uniform induced velocity 
is to increase considerably the magnitude of the lateral 
flapping coefficient b1. 

2) The value of CH is somewhat less fci the case of 

non-uniform than for uniform induced velocity and the value 
ofCYS considerably greater. 

3) The effect of non-uniform induced velocity on rotor 
derivatives at low forward speeds., is almost negligible except 
in the case of zq  which is a very small derivative. 
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APPENDIX  

Derivation of Thrust Coefficic:nt for Non-uniform Induced 
Velocitz 

	

J dx  4 	
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APPEMIX  II 

Derivation of Expression for LiA 

.11  
aF x 	dx 

From (4-1) and (6-3) 
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COS * (- 73— 
P 	 2 

- 	4. 	- 

+ terms in higher harmonics 

11=1DIX III  

Derivation ofCH  for Non-Uniform Inducod Velocity 
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LFWEDIX Iv 

Derivation of so  for Eon-Uniforli induced Velocity 
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ill-Jrdi:DIX  

Data Used in Computing Force Coefficiunts, Flapping i_ngles and 

Rotor Derivatives  

The values of the rotor derivatives etc. were cal-
culated for a typical single rotor helicopter, the Sikors1r 
HNS-1 (Army YR-AB). The required data vas obtained frau 
Ref. 13. The values of Ao  and i used were the actual 

measured flight values given in this reference. These 
values were extrapolated over the low forward speed range 
(Fig. 6). This procedure is considered satisfactory since 
it is only necessary to have these values of the right order 
for purposes of sholiing the effect of non-uniform induced 
velocity. 

Other relevant data is listed beini,T. 

CT  = 0.0055 

il = 225 R.P.E. 

Y = 12.1 

bc a' = 0.06 = 	at 0.75 R ItR 

[ 

Blade aerofoil section N.A.C.A. 0012 a = 5.73/rad. 

8 = 0.006 
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