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A radial parabolic induced velocity distribution
agreeing closely with flight measurements has been used for
the hovering case, To this has been 2dded a seccond induced
velocity distribution, varying linearly from the front to the
rear of the rotor disc, to allow for the effect of forward
specd. The magnitude of this second induced velocity term
depends on the advance ratio . '

Values of the force coefficients OH and CYS’

the flapping coefficients s 2y and bi’ and the rotor

derivatives xq, Z Xs 2 and.yv have been

3 Yps X9 2
gr P gt w
calculated for a typical case for the low forward speed region
(L = 0 = 0414) for both uniform and non-uniform induced vel-
ocity and the results compared. fAdditional values of the
flapping coefficients have been calculated for the speed

range M = 0414 = 0,24 and the results compared with flight
measurements and with values based on the llengler induced
velocity distribution. Good agreecment has been obtained.

The velues obtained for the rotor derivatives show
that the effect of non-uniformn induced velocity is almost
negligible except in the case of =z which is a very small
derivative, 4
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IIST _OF _ SYMBOTS

Blade section 1lift curve slorc

Blade coning angle

First harmonic longitudinal flapping coefficient

Parameter in expression for A, (5=16)

Porameter in expression for N; (5=164)

Blade collective pitch angle

Coefficient of =cos y in expression for cyclic
feathering

Number of blades

First harmonic lateral flepping coefficient

Parameter in expression for A (5=16)

Porameter in cxpression for N (5-164)

Coefficient of =sin ¢y in expression for cyclic
feathering

Blade chord

Lrbitrary constant

Blade section 1lift coefficient

H foarce coefficient = H / xR*p(Q R)*

Thrust coefficient =T / xR p(Q R)®

Lateral force coefficient = Ys/ﬂRzp(Q R)®

Drag force on blade

Lerodynamic farce on blade

Drag force in plane of rotor disc

Incidence of rotor disc

Blode noment of inertia about flapping hinge

Lift force on blade

lement of acrodynemic forces about flapping hinge
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List of Symbols (Contd.)

D

P

vi
X,Y,2
u’YV
p's

X, etca
xq etc,

a

B

W‘EE ! v ow

Iloment of dynamic forces about flapping hinge

Rate of roll (positive OY * 0Z)

Rate of pitch (positive 0Z + 0X)

Radial distance along blade from hub

Blade radius

Rotor thrust force

Disturbance velocities along 0X, 0Y, OZ respcctively

Resultant air velocity relative to blade element

(~

Alr velocity component perpendiculsr to blade and
to the rotor cone

Adr velocity component perpendicular to blade and
tangentizl to the rotor cone

Velocity of forward flight

Resultant air velocity relative to rotor disc (5-11)
Forces along O0X, 0Y, OZ respectively

2% 2 o0 respectively

Practional distance along blade, x = r/R

Non~dimensional form of derivative, X,

n

X,/p(QR)(nR?) etc.

n

Non-dimensional form of derivative, %y Xq/p(QR)ﬁTRz)R ctes

ingle of attack of blade clement, a = 6 - &

Instantaneous blade flapping anglc, neasured from
no-feathering plane

4

Lock's inertia number, v = Q%EE
1

Blade scction drag coefficient

Instantancous blade pitch angle measured from the
tip=-path plane

Inflow factor
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2 ; V cos i
0 Advance Ratio, u = S
v Induced velocity through the rotor disc at any point (ryv )
2n
v lMean induced velocity, v_ = . F rdr f vay
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Vo Value of the induced velocity at r = R in hovering,
andr =R, Vv = ;t% in forwerd flight
Vo Uniforn induced velocity
v
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T
v,I Parameter in expression v,x cos y for the induced
velocity distribution due to forwerd speed
P Adr density
o be
o Solidity factor, o = -y
U
~ P
g o=
T
v Blade azimuth angle measured from the dovmwind
position in direction of rotation
Q Angular velocity of rotor
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1. Introduction

Although it is well knowm that the induced velocity
distribution through a rotor is far from uniform, little has
been written concerning the effect of this non-uniflormity on
blade flapping coefficients and rotor derivatives.

Glauert (1) suggested a triangular distribution of
induced velocity from the front to the resr of the rotor disc.
This distribution gove values of the lateral flapping coeff-
icient b, agreeing more closely with experimental measure=-
ments than values predicted using a unifiorm distribution.

Hartin (7) used the induced velocity distribution
calculated by Hangler (10), who treated the rotor disc as a
circular wing, to obtoin values of by which compared favour-

obly with flight mcasurements by liyers (13)s By considering
the effect of this greater lateral tilt on the force coeff=
icients he concluded tnat there would be a significant effect
on the rotor derivatives,

The lMengler induced velocity distribution was cal-
culated on the assunption that the perturbation velocities
due to the rotor disc werc small compared with the free=-
streann velocity. It is, therefore,not applicable at low
forward specds, (below u = 0,1 say).

To investigate the effect of non-unifiornm induced
velocity at low forward speeds a parsbolic radial distribution
has been chosen vwhich agrees well with flight measurenents
by Brotherhocd (9) on o hovering helicopter, To this has
been added a distribution varying lincarly from the front to
the rear of the rotor disc and depending in megnitude on the
advance ratio p. Values have been calculated for the
flapping coefficients, the force coefficients and the rotor
derivatives. These have been compared with valucs obtained
assuning a uniform distribution of induced velocity over the
rotor disc, and with the results obtained by Martin (7) and
the flight nmeasurcments by liyers (13).

2, Notation

The British system of notation has been adopted
iece all forces and moments arc referred to axes attached to
the tip~path plane. The angle of incidence of the rotor
disc is taken as being positive when the disc is tilted for-
ward with respect to the direction of flight. The systen
of axes is shown in Fig. 1.

/The expression  eee



=

The expression for the cyclic feothering of the
blades with respect to the tip=-path plone is

Q = J:LO - J'-L1 cos ¢ - B1 sin ¢ 0-0'000000(2"1)
where ¢ is the aszimuth anglc in the plane of the disc and

is nmeasured from the dovmstream dircetion in the direction
of rotation of the blades,

The expression for the blade flapping angle with
respect to the no-feathering plane is

g = a, = &, cos v - b,,I siny + terms in

highCl" harmnonies ao.o,.-.-ol-(z"'z)

It has been shown by Lock (2) and others that, for
the flapping and feathering systems to be equivalent, the
first hermonic flepping coefficients are related to the
cyclic feathering cocfficients by the following expressions.

£11=B1}

_ ll..ltt.o!l.(2_3)
b -“1 ]

n

1

3¢ The Flow Reletive to the Rotor Disec

For the rotor with forward velocity V, the
camponcnt of V in a plene parallel to the tip-path plane
is given by

IJ.Q R = Vecos i .t..ll_.tlll.(5-1)
where u=VecosiAR NP LPPR . ¥
is knowvn as the 'advance ratio’',

The velocity perpendicular to the tip~-path plene is

MR = Vein i + v -n-oo---.-t-(E-B)

where v is the induced flow through the rotor disc, and M\
is the 'inflow factor!',

/‘]-I-o tee
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4o The Flow Relative to a Blade Eluwnt

For purposes of estimating derivatives the rotor is
assumed to have a pitching velocity g and a rolling
velocity pe Using the expression for cyclic feathering
given by (2-1) the following expressions are cbtained for the
velocity components relative to a blade element at radius
r = %R

(1) The velocity component perpendicular to the blade in
a plane parallel to the tip-path planc,

UT = (x + U sin ¥ ) QR lll.lll.l'..(li'-1)

(ii) The velocity component perpendicular to the blade
and to the cone surface

Up, =(aop cos'ﬁ'+l-§xsin'}' -%xcos ¥)Q R
.II...I....I(‘,'P-Z)

where 2y is the base angle of the rotor cone,

(1ii) The spanwise velocity along the blade is
(b cos y = ?xao)n R
The effect of this spanwise velocity is not consid-
ered in the subsequent analysis since the dominant termn

B cos ¢y Wwill be small at low forword speeds.,

The angle of incidencc of the rotor blade clement is

g = 0 = ﬁ n.oout!"lt!(‘]'*’?))
U U
where g = T 'I_IEN .EE since U, << T,
P T
i T
Hence L 4

aopcosw+?\—'ﬁxsinv-nxcos v

a:.ﬁxo—&l COSW-B,j sin y -
X+ U sin ¢

semessesesonii)

I i



5« The Induced Velocity

5e1e The Induced Velocity in Hovering

lieasurcments by Brotherhood (9) show that the
induced velocity in hovering is far from uniform over the
rotor disc. His experimental values agree well with values
calculated from propeller strip theory.

It was found that the induced velocity distribution,
as measured by Brotherhood, could be approximated very closely
(see Fige 4) by the following simple expression.

y
v_G. ="X2+ 2x -...-0--.--:\5-1)
5

where Vp is the value of the induced velocity at the edge

of the rotor disc and x = r/R. This expression represents
a parabolic distribution verying from zcro at the centre of
the disc to a maximum valuc at the cdge of the disc.

The following integrals are now cvaluated for later
refercncce Notc that A, = vT/QR s A= vo/ﬂR

[rom = &n
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5s2¢ The Induced Velocity at lloderate Forward Speeds

(1 > 0,14)

Following Glauert (1) it was decided to superimpose
an induced velocity distribution, verying lincarly from the
front to the rear of the rotor disc, on the induced velocity
distribution in hovering, to account for the effect of forward
speed, This linear induced velocity distribution is given

/irl non=- AR
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in non-dimensionel form by

Y
'h1x cos ¥ = ("r% )X cos ¢ ........-..-(5-3)

This represents an induced velocity varying linearly from

& value -X1 at the front of the disc to +11 at the reor

of the disc,

The choice of the value for L1 is arbitrary.

Glemert (1) suggested letting it hove the same value as L%

which, in his paper, represcnted an induced velocity uniform
over the whole of the discs It was decided to let M = Ao

for p > 0,14 and later calculations of the flapping
coefficients a_, a,, ond b, showed good cgreenent with

experimental values given in Ref, 13, and also with values
calculated by Mertin (7) using the Mangler induced velocity
distribution (sec Figs. 7-9).

The effect of the angle of incidence of the tip~path

plane on the induced velocity distribution has been ignored
since the incidence is =miall in preoctice ('Gyrodyne condition'),

5e3s The Induced Velocity at Low Forwerd Speeds

At gero forward specd R1 ig zero and at moderate
and high forward speeds the choice of l1 = lT appears to

give good agreement with flight measurements for the flapping
coefficients, To cover the low forwerd speed range it was

decided to assume an exponential increase, from 11 =0 to
K1 = Mps given by
-C
11 = KT (1 - “) llllll.....'(ﬁ-h)

and to choose ¢  such that 11 = 0.9 RT for u = 0,10,
This zives ¢ = 23 and
-2
11 = RT (1 - 8 3“) tno-iav-na||(5'5)

Lgain this expression for N\, is scmewhat arbitrary
but gives the proper end conditions (i.c. A\, =0 foru =03

Ay 3 My for p> 0,14).

/5-!-!-0 LB =]
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5eke The Veriation of N, with p

For hovering, the value of A
from nomentum theory.

p DAY be determined

The thrust T dis given by

R
T -.:f p2nr dr, 2v?
o

Putting x = r/R and substituting for v fron (5-1)
2 2 ] 5 4 3
T = LaR'pvg f (x° - La* + 4x°) ax
(0]

: Ly e 2

whence g 50 7R va

Now the thrust coefficient C’_I.‘ = ——E—-—-—z
prR (2 R)

therefore A —
')\T = J-;LE CT = 0.826{CT -n-.-n-noono(5-6)

The corresponding expression for uniform induced
velocity is

M o= 0.707 '\ET ssuasnnisweelDwbh]

where 7\'[1 is the non-dimensionsl form of the uniform

induccd velocity.

For moderate and high forwerd speeds Glauert (1)
has developed the following formula for the thrust, by
treating the rotor disc as o circular wing of span 2R, and
having clliptical loading.

T = (ﬂRaFJV') Vo --co-c-!lllo(5-7)

where V' is the resultant velocity at the rotor disc given
by
. 2 25
V' = ‘(V sin 1 + v,) + (V cos i) ersee(5-8)

and v is the mean induced velocity given by
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1 { e
v’m :"'"“::" r dr v oy ....--......(5‘9)
ke
o] Q

Substituting v = vy (~x* + 2x) +Q R\,x cos ¥ into

(5=7) gives

v, = 5/6 v
i v T ] l....'!..ltl(5‘10)
or N = Q% = 5/6 A
(5-8) can be written as
‘V' =QE(7\-2+ “2)% l....-.-'itl(5‘11)

and by substituting (5-10)j (5=11) and the expression for the

thrust coefficient in (5-7) the expression for Mp becomes

Crp

}'T o .56_ ’_,\m = % " - = ao-oooat(5_12)
L(“i"'?‘m) +p2_f

This leads to a quartic equation for )“T which

cannot be solved in general terms., However for high
forward spceds and low angles of incidence, i.e,

2
pE> >(ui o+ 2) A, is given by the simplified expression

C
7“1‘ - 0.6 -I_I- ’..-nooo--a.(5"13)

The corresponding expression for uniform induced
velocity is

Cc
1 T
A = -2" -}:"- oli.n.ottl.l(5-13A)

Due to the difficulty in solving (5-12) for Ay and

also to the doubtful validity of this expression at low
forward speeds it was decided to use an empirical expression

for ?LT of the form

')\_T = A 9.-.01.0....(5"14}
B+ p

end to choose A and B to satisfy the following conditionss

0
0.25

Moo= 0,826 v‘é,f for u
0.6 CT/u for u

Mp

I

vesessss(5=15)

i
]
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A and B are then given by

0.6 C,

L = &
1 = 249 V0,
f oooocloouaoc(5"‘16)

0.727 wch

y wch -

Similarly for uniform induced velocity

Al

£ ..l.l.ltll.l(5-1£'-f.'x)
v B' + u

i

0,707 {cT for p =0

‘045 CT/p for p

and RU

i }............(5—151;)

Q.25

giving

0.5 C
A = 5 T
1 = 2,83 -ch
O.lo.a-o..on(5"16IL)
B! = ———
1 - 2.8NcT
Curves of Np and Ay against u for a thrust

coefficient CT = 40055 are presented in Fig. 5.

5¢5¢ The Derivatives of KT’ A, and N

5e5e¢le The Derivatives of RT

XT = KT (i, CT) where CT £ GT(p)

therefore
o\ ahT oC
Dy T T (
_— o —— -+ . E— .....0001000(5-1?)

dp ~ op acT d U
/Where oo
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el 0

where 322 and 36 axe obtained by differentiating (5-1L4),

H T
giving akT

A

TH T (Bw)?

N 04364 1
and aoT = ] - 0.6(1=145 fCT} - -—-———-ET—-

T (1-2.9 JbT) (B+p) | VbT

55424 The Derivatives of AU

The corresponding expressions for uniform induced
velocity are

Py By B K

a m B m + aCT . W -u--cac-nnoo(sﬁﬂ?ﬂ-)
) A
where ot - .l!l.lli!.il(5"'18}lx)
¥ (B'+p)?
3 3 04355 Ny |
and a;U = : 3 | 0,50(1~1.,42 VCq) = Ty
T (1-2,83 VO ) (B'+u) | VCy
o...tuoc.-oo(5”19ﬂ-)

5¢5¢3¢ The Derivatives of A

A= (1 - e"‘?ﬂ*)xT = N (\ppe) where Ay = A(u)

therefore
dl1 611 th . am1

dyu amT du d u
giving
dh d
; . _ =23 M =231
——-p = (1 e ) d}.i + 23 e -LT .it.l(5"20)
o\ 0
i, R - 23 s
Also aCT = (1 e ) aOT 0....!00!."(5"21)

f6¢ aes
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6. The Thrust Coefficient

The thrust T is given by the double integral

™
S L |
T - 27 dx dx av !'Uaonoln...(6 1)

The resultant force on a blade element of area
cR dx is

2
3
drF = %p ac 03 R (%) o dx .lllli.'l"'(6-2)

where U is the resultant of U and U

T P
UT> >T

and U :UT since

Pl

Llso the resultant force F 1is very nearly perpen-
dicular to the tip-path plane so that

U 2
dT : dF :";‘p &OQZRJ C]"‘"‘EE) a dx nca-tl(6_3)

By substituting (6-3), (4~L) and (4~2) in (6-1) the
expression for the thrust coefficicnt becomes (sec Appendix I)

. 4 3 [.lB i

- -] ¥ ) BL_2o o _ 1, B l
CT_2_L3 .(1‘*2“) 5 "M T Yo |
n.ltn'.itii.(s—)‘“‘)

and for uniform induced velocity

(4 . My D N
o 1
|2 (e de) - - 2R ew

7e¢ The Feathering Coefficients

For equilibrium of the rotor disc the cyclic
feathering must be such that the acrodynamic moment produced
on a blade balances the dynamic moment about the flapping

hinge given by

- 2 =
HD = 110&0 - 2qQI1 sin ¢ + 2pnl1 cos ¢ 0000(7"1)

where I1 is the blade moment of inerti:i ebout the flapping
hinge.

The aerodynamic moment about the flapping hinge is

/given bY  eee
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given by 1
El o aF -
E*ﬂ. = foxdx dx l.t.ll..l!..(? 2)
Substituting for g fram (6-3) the following
expression is obtained for Ii, (see Appendix II)
A uB p2a
i, = [- 2o Bi, o, uP "1 0)
"I;'L”QPaGQRlé'iOKT 3 7% Yéa"T3 L
i B‘i 2 2
*ER GG S 12“7‘T"11"+3“"o‘8“31)
bag, M op By g e
Rt S e a ahd LD
+ tcrms in Wigher haxmorﬁcs] snavsesesansling)
Comparing (7-1) with (7-3)
. =
ik i
5 xi o % 1 Pl (7=
. L Hay 7\1 LP !
_{L1 S — ——3 +"l:— . -'YTQ-. I .-touo-o(?-E)
145 Lo
. ok 2., L B Lg
P1= T3 L3k 7 "1k g+ Q)
2 b o--..oo--oo.(? 6)
=
where ¥y = Iﬁi—- is known as Lock's inertia number,
1

The corresponding expressions for uniform induced
velocity are

, i
4y M HB I
S =TT . ST U S
Py =0 J_ii- ('1-!1.1. 3 3 . o GQ_J -o(? !-HL)
- i
b Mo q 4P l (7-54)
A = - T b ol sessenssssass i
1 1+"12P-2 -5 m Y{]_;
s & -
B b 125s LBL_ By . +_%‘(7_6A)
15 T3 |38 > Mt in i




8. The H Force Cocfficicent

The H foarce is the drag force in the tip-path
plane, From Fig, 2

dH = (dD cos @ + AL sin @)sin ¢ - (8L cos @ - AD sin @)sin a  cos ¥
.......'.'..(8‘1)

Nowr ay and @ are both small angles so that

dH:stin¢+ﬁdLsinW—aoaLcos'? ee(8-2)

The term ao;if dD cos ¥ is neglected since a  and g are
both small and dD is small compared with dL.

Now aL = %pc CLUa dr Dll.tlt.t.ll(B_E)
where Cp is the local blade lift coefficient = a(6-%)
and dD = %pcﬁUz dr 00.000000000(8"4)

where 0 = blade section profile drag coefficient,
assumed constant,

Substituting (8-3) and (8-4) in (8~2) and putting

U=U, end ;Zf:UP/'UT
U U U
2 P P i P
dH=“1§PCUn[!5+a—(B—-—> sm?-—aa(ﬁ--——)oos#]Rdx
i i UT UT (o] UT
ltotoo.n.n'l(B-S)

!

ilortin (7) neglected terms involving ¢ ® but
retained such terms as @0, a @ and a 0. Since f, 0 and

a, ore all of the same order this simplification was not

considered to be justifieble, and the terms involving ¢* have
been retained,

The H force is given by the double integral

i
e o
H = 21" OdJC odx d.‘f ...-.....o.l(a-'s)

Substituting (8-5) in (8-6) the following expression
/for the ..,
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for the H forece coefficient C.. = B is obtained
1 :’\J(QR)z

(see ﬂppendix I1I)

A Ea paz a
G_;a_g_‘__@_g_ 1 e} o1

BE B
5 t?E\-l-—--—~(p1+3?~.T)-—-—--—(;.L:L+6‘A1I‘)+ g o R iy

E‘E‘*"i‘i(‘”’"’%}*ﬂ'**'BpB‘i) ‘ ese(8=7)

The corresponding expression for uniform induced
velocity is

hya ua
Cy = 22 ].-@E-+—-—(p1+7\.0)-——(p1+).U)+T—+

-
A

4k

5 ‘ ;
+‘2"ﬁ H1+KU"'-3£._"%H-B1>‘J tl.lu..il..'(a-?-ﬂ-)

9¢ The Side Force Coefficient CYS

From Fig, 2

dYsz-(h dL siny + @dL cosy + dD cosy )

l'llll.ll!l.(9-l)

Substituting as in e}-pression for H force
Ua 3 0
GXS pc [ 'a a -

Performing the double integration as before gives
(see Appendix IV)

26

sEasseswsvelO-E)

smqf +

hS

a -
ag : 1 1 £ 5
CYSZT[_égthal+2MKT+B1 ('3"4‘!"-2)'%1»111? +-2—(,U.1+%?\.T)
A N uBy (a ;.u;)
1 ¥ 1o N 2 [ 1
tp ) -t - PR

- & <pi+g%-§2+5§1>]...(9—3)

The corresponding expression for uniform induced

/velocity is  .es



velocity is

PN l-lB,i
_m ——-+—-8->—% l_Li-{-?\_U-‘B"?‘-i- ) } .....u(?"i‘t)

10, The Rotor Stability Derivatives

The rotor derivatives of importance, for the case
of zero flapping hinge offset, are,-

(i) The force-angular velocity derivatives

x 3 ZC_I_ 2 yP

(i1) The force-velocity derivatives

o Fp Yy Xy and B

Russell (6) and others have shown the basic
equations for estimating rotor derivatives to be

AX == TA 31 - AH .lll.lll.lll(1o—1)
AY = Tﬂb1 + QYS .........co.(10'2)
Ad = Hﬂﬂ.‘i - AT ll.l'.ll'l.I('lO—j)

These relations follow lmediately from Fig. 3.

For the case of controls fixed a chenge in longi-
tudinal flopping A4 &, results in a change of incidence of
the disc ﬂiz-—ﬂa,l i.e.%=—1 ="‘a-j"‘.

a, 8}31

In estimating the rotor derivatives the change in
induced veleccity in the disturbed motion was taken into
account, This was done by asswming equations (5=17) and
(5-18) to apply in the disturbed state., This assunption
seeims reasonable provided the disturbed motion takes ploce
SlUleI

/In the eee
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In the expressions for the derivatives, in the

following sections, 4‘;1 is replaced by -‘D1 and B‘I by a

from (2-3), Equations with the suffix 'L' refer to the
uniform induced velocity case.

1’

11+ The Force-fngular Velocity Derivatives xq, Jp and z_q

The force=angular velocity derivatives follow from
equations (10=1) and (10-3)

da oC
1 H
a Q (- CT Tq - 3 Q) Uocolnoont.o(11"'1)

a (cT e ach) sienian s eealH12)

e
n

P T P P
da aC
1 B

Zq = 0 (CH aq v 3 q) ool-aouolotl(11 3)

Cp end Cp are obtained from equations (6-4) end
(8=7) respéctively,  The expressions for the partial deriva-
tives are

aC
L = 2k ..lnl..t..l.(11-}+)
o P ]“" 5 BRT
BQ!‘i + ok aﬂ"a—(-:—T-
oC
I = y ag =l '03-00031000(11"1#\")
o P o=
80 {1 +l ao‘-alU- !
L L BCTJ
BCT
a—q = 0 ooc--(11_5):(11-5j")
da N oC

J —----IL -'lt —T _T nonooonotl!t(-‘i‘l-s)

oo-oua-naoo.(11~6ﬁ.)
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aao
dn = ¥ cores(11=7), (14=74)
- M
oa an aC
1 1 4 5 N __ng
ap B § u .;'.spz 0 3 E"%-CE . J it-uc.n.o.--.(11"8)
631 } 1 1 " 2“ 67\.U BCT ('11_8‘&)
aP § = %pz 0 aCT . a—P_‘ assreevsen
da
i)
aJ a = 16 4 .ooc.(11"9),(11"9£§.)
v (1~zu2)
ab1 = J+ E aao + a}h1 L] aCT + l‘- ;.Il..'...-n¢(11"'10)
3 p 1+%p2.3 0P l;.aCT 9D TQ"}
sh b 2 l
1 = l{' 3 T"' Q l .Il.....lo..(11-10-ﬁ.)
op 4 B L P b § k)
1 45y
ok, 1
3q =° esse(11=11),(11=114)
Q (1 + 5®)
akT/acT etc. are obtained from equations (5-18) and
(5-19).
4, z
oo P e O W RS )+.a__""1_ e
dq 2 13q VL 5 "L M/ f T\ 8
0-........-.(11-12)
dC N pa, A ) a_ db _x
i _a0) _1 1 o _1 3 5 4
0 a TR aq<2+ = 2 -}_i_p'l-h‘?\‘U -g— 3 *'oaiﬂ.}""iﬂx)
aC. oa [_ a oo fﬁ
—i5 _ag)__o |3 2, O O U —_ 2 1
a;:.‘z[plgu1+w\T+2 (3+u) 49-1J+ 134_2 (37D
16 ©™4 4
ob oh
e (5 PPN 8 v 5 . .5 )
3o 4“’“*24}‘T>+a (“%“‘127‘1 o5, Py )+
i 5 0 “‘*‘1) 1 (%
5\ t1EMTE YR/ T \F - e (11-13)
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12¢ The force-Velocity Derivatives X, and z,

From equations (10=1) and (10-3)

6&1 aCH
Xu= -CT 3 m -—_a oo.nai.o....(12"1)
da aC
1 N
zu w CH d 43 . 0 ‘u ..IOQIUOOll.(12-2)

The expressions for the partial derivatives are

% , N
T = "a = o I iJ' IL = 2:'- i- -'_[2 .ctcoocog(12-3)
o p Oy ] o”" 212 Ju
211 +5—§—°—'—-=*
L e 8 18
BCT . e B A .j_- = -1. _a_}_U_ sene (12-3.&.)
) 53 i 1 a'}\_U"[ fo] 2 2 93 m RN
2{1 + 5 o0 =~ ’
L 4 BC?J
oa -ri-_L_,'_"i_ a
w2 X e g3 R &_1 }
B2 *2 10 du 3 3_ ------......(12 1;.)
da, A ., a
o o 1 i 1 =
E—JH 2 _2 B 3 dp B 3 = 3] 'iouco-.....(ﬁd L}A)
aa o dh -
sl L 2 o ik _ B -L T_l ) 0
G 1 1.8 3 ILOI o 12 )\T 12 B d i L pd'1 -ooo(12 5)
-2‘ | iy
da.
ok |2 o1, 1.y 3
1) - 1 -'jz"i.lz 1__3 AO pek 2 l[] 2 H du L “&1 .l‘.(12 5_-.\.)
db “a da dh
e, SURNVINS SR - N - O Wi y
d U _1 ;2 |} * 3 9 i + L d p i “’b1 t-t.lnotaala(12 6)
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13« The Force-Velocity Derivatives X and zw

From equations (10-1) and (10-3)

aa1 BCH

X_ﬁr = QR[_OT -a';_';_ ” "é""v';] -..10001-0-0(13"1)
da oC

Z'LT =0 R [ CH W d W] .ou.ooc.-noc(13 2)

The effect of a disturbance velocity w in the
positive 2z direction is to cause a uniform flow w through
the rotor disc in the negative 2z direction, The inflow
through the disc then becomes

AQR = QR (pi + A, + Myx cos V) =W

or non-dimensionally
k= }J.l-l-?\.o+l1 X cosy = KW' o'olcn-too-c(1j-3)
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where 7\“‘_ = "i‘;‘“‘:ﬁ .-oo-.l-not.('l}"li-)
It follows, therefore, that
J i 9 1 ) F
W CTTME®, T MR IE)  ceeseeseeer(135)
Equations (13-1) and (13-2) may then be written as
da aC
1 H
KW = - CT Ty -~ Ik o--.-oa--o-¢(13"6)
W W
da oC
1 T
Z_w_ = CH a.}"- - 67\._ l..lll...ll'(‘lj-?)
W W
where
3 3 ,
a?\.m? = . _am) --'.‘1309010(1)-8)
The relevont partial derivatives are
acT ag 1
“é‘_}:’" = -i:- = alT,_l ll"l!"'l.ll(15_9)
v 11+ 280 2L
1 24 va.,
L &
oC g "
iy . i“q"_ ] . o-oo'----ooa(13"‘9ﬂ)
o . a9 Ny
L, L GCT“:
P _x ’1...1._ i (13=10)
a.}\' = o !3 10 9] . EYN T XX EEREY
W b 2 ey
'g';;g'::% %"% ‘;%U"".':"zi cocooo--uv¢-(13'10fi)
W 7 T W |
; I 3
E‘{j"l__ :: %"%uﬁ . E“E‘I" o.-oot.;ct--(15'11)
R 1 |27 125 a)xwm{
221 = 1‘- %—’;‘p‘:‘;’g.g‘i‘z .oo.c-c--o-t(13"‘11-{1)
w 1 ;‘2! H W
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67\*.‘-: 1 +~;‘2112 %__»3 g W b ac’T ali.-‘
ab v osa |
a?\1 = li. 2 l% a_.g- 1 .-I.lﬁtl'.I.(13-12£‘b)
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14+ The Force=Velocity Derivative :

L velocity v in the positive y direction causes
the H force vector to rotate through an angle v/V cos i
giving a component «Hv/V cos i in the y direction. In
addition there is a chonge in the lateral tilt of the rotor

bl s e ey phvhicn ke “Ta, =
disc b1 % ¥ cos 1 8&HViNg rise b 8 Creoe T11 V cos i
in the y direction,
Therefore

AT 1

_T:"—- = - T_C.E)-S_i (H+ Ta1) |.0l.!lll|ll(1z'l'-1)
. _ S} 8
whence Iy T i (CH £ CT “1) sessnnensans(14-2)

This expression is not applicable for the hovering
condition where p = O, but by symmetry in hovering

¥y = X .ooc..-llu!.(“LP-S)
HABs s
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15« Calculation of Farce Coefficicnt:s, IMlopping Coefficients
and Rotor Derivatives for a Typical Case

Values of farce coefficicnts, flepping coefficients
and rotor derivatives have been calculated for a typical case
using values given in ref. 13. The details of the configura-
tion are given in /ppendix V,

Values have been worked out for both uniform and
non~uniform induced velocity distribution. The results of
the flapping coefficients at moderate forward speeds are com-
pared with results calculated by lartin (7) using the iingler
induced velocity distribution, and with flight measurements
given in ref, 13.

The results of the calculations are presented as
follows .=

Fige 7o a_ vs W (g = 0414 = 0.24)

o

'8 a, vs p & ' r )

' 9« b, vs u L . ')
'10, & ,a,,b, ve p (4 =0-0.1k)
' 14, CipCyg V8 B (F t)
' 42, x, ve u (b = 0 = 0.14)
'3, yp vs w (* ' ')
"hozgove w00 1)
'15. z vs (» ° ')

1 16, X, Vs § (v ro)
"4, e, ve g (f ' '
'18., x, vs M (¢ ')
Y48 ¥, we g (0 Y V)

/16- e
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16, Discussion

Referring to Figs. 7 - 9 it can be seen that the
flapping coefficients, as calculated from the induced velocity
distribution adopted, give good agreement with the flight
measurements of ref, 13 and llertin's results (7), based on
the llangler induced velocity distribution. In particular
the valucs of the lateral tilt of the disc, b1, compare

favourably, whereas those for the uniform induced velocity
distribution considerably undcrestimate the actual case,

The values of a,, the longitudinal flepping coeff-
icient are underestimated ° by all three theoretical induced
velocity distributions, This is due to the fact that no
account is taken of lateral asymmetry of the flow through
the rotor disc, Certainly such asymmetry must exist since
the effect of cyclic blede feathering (and/or flapping) is
to produce a different 1lift distribution over the retreating
blade then over the advancing blade, - However at low forward
speeds this difference will be small and its effect on the
induced velocity distribution cen probably be ignored. it
higher forward speeds it could possibly be taken into account
by introducing a term A, x sin ¥ into the expression for
the induced velocity, where Kz would be a function of the

advance ratio p. It would probebly be difficult to find
an expression for N,(u) analytically, but en empirical

expression based on experimental results might well be used.

It is doubtful if the expression adopted for the
induced velocity actually represents in any detail the true
flow distribution through the rotor disc, except at or very
necar the hovering state., What it does represent is the
overall trend of an increase in induced velocity from the
front to the rcar of the disc, which has been observed, This
appears to be sufficient for the estimation of flapping
coefficients and hence also of rotor derivatives, The langler
induced velocity distribution, on the other hand, probably
gives o much truer picture of the details of the flow through
the rotor, Measurements by Fail and Eyre (11) and by
Falobella and licyer (12) appear to confirm thet the prediction
of upflow over a region of the forward pert of the disc is
corrects However the ilangler distribution involves somewhat
complicated expressicns and it would sppeer that the much
simpler representation of the flow used here is sufficient for
the purpose of estimating rotor derivatives.

FPig. 10 shows the values of the flapping coefficients
over the low forward speed range, @, is the same for both
unif'orm and non-uniform induced velocity. b1 is much greater

/for the .ee
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for the non-uniform induced velocity distribution because of
the term 2, /4 which takes account of the longitudinal
asymmetry of flow through the rotor disc, 4 is slightly
smaller for the non-uniform induced velocity c¢ase indicating
that the resultant aerodynamic force acts closer to the blade
root than for the uniform induced velocity case,

Fig, 11 shows the variation of the drog force
coefficient CH and the side force coefficient CIS with

p for the two cases, It is interesting to note that GH

is somewhat smaller for the case of non-uniform induced
velocity than f'or the case of uniform induced velocity. This
is due to the term ﬂﬁac/tS being greater in magnitude then
the additional terms involving 10 CYS is negative for
both cases but is considerably greater in magnitude for non=

uniform induced velocity. This is due to the larger values
of I;,] - = b1 and also to the terms involving 7\1.

The force-angluer velocity derivatives are shown
in Figse 12-14. The derivative X, ig the same for both
cases in as mich as Gy aa1/8!:1 is the seme and the contribu-
tion from ac}i/aq is small and very nearly the same, Yp
is also unaffected by non-uniform induced velocity since

cp °1/P ena %¥8/sP are virtually identical for the
two casess  The derivative zCl is slightly different for

uniform ond non-uniform induced velocity. It is proportional
to Cy since aa1/aq is the same for both cases and

Cr/dq = 0, This derivetive is exceedingly small and would
probably be ignored in most stebility calculations.

With regard to the force~veloeity derivatives it
can be seen from Figs. 15 and 17 that z, and z_ ore

virtually the same for uniform and non-uniform induced
velocity. The cxpressions for c’.lCT/ op. ond acT/amr are
very nearly the same for the two cases and the Cy aa‘I/a;.L
end Cy 2oy /B?gf\r contributions to these 'z' derivatives

ore negligible,

The derivatives X, and x, ore also virtually
identical for uniform end non=-uniform induced vclocity., The
Coy aa’l/ap and Gy, aa1/67&W terms are dominent in the

/expressions for e
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expressions for these 'x' derivativer so that the small
changes in acH/ap and BCH/M\W {or the two cases are

relatively unimportant.

The derivative T is also very nearly the same

for both uniform and non-uniform induced velocity. The dom=-
inant term in the expression for . is CTa1 which is

identical for the two cases, The small differences in C
have little effect.

H

Summarising it can be said that the only derivative
apprecisbly affected by non-uniform induced velocity is zq

which is very small and relatively unimportant.

It appears that, at low forward speeds, non-uniform
induced velocity has no significant effect on rotor derivatives.,
At higher forward speeds it is possible that its effect might
be more significant. Certainly if a lateral asymmetry of
flow through the rotor disc were taken into account the values
of a, &and its derivatives would be different for uniform
and nén—uniform irdiced velocity, This would affect all
derivatives to some exicnt and particularly xq, X s X and
Tipe For a highly loaded rotor at high forward speeds it
would be expected that CH
than for the case of the lightly loaded rotor at low forward
speeds considered here. This would mean that the

oa da . ;
CH 1/ap. and CH ‘I/a?xw contribution to Zy and Z
would be significant and the effect of non-uniform induced

would be larger relative to CT

velocity might be important. There is some doubt about
this last statement, however, for at high forward speeds and
high disc loadings, the main contributions to CH would

probably come from the pA  — ond paz terms with the result
that CH would be very nearly the same for both uniform

and non-uniform induced velocity.

HATe ane



17. Conclusions

1) An important effect of non-unii'orm induced velocity
is to increase considerably the magnitude of the lateral
flapping coefficient b1.

2) 'The value of CH

non=uniform than for uniform induced velocity and the value
of CYS considersbly greater,

is somewhat lesgs fco the case of

3) The effect of non-uniform induced velocity on rotor
derivatives at low forward speeds is almost negligible except
in the case of Zq which is a very small derivative,
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APPENDIX T

Derivation of Thrust Coefficicnt for Non-uniforia Induced
Velocity

bf T
= = dx dx.dw

From (4=1) and (6-3)

n

2

GT -—-E;;———-—zz-f-i fa‘x f(x-t-p.sim&')ad'#
pr& (OR) o 0

i

Substituting for ¢ from (4~i)

Integrand

=(x+p siny)

aopcoswuiﬂ\ow&,ixcosv-gxsinw% X cosy¥
AO-A1cos '&LB,i siny -

X + {4 siny

. 7 P .
- (x+p siny) (aop cos y +Li1+?\o+7x1x cosy =~ §x siny - fcf

I

X cos8 W)

+ (P42 ux siny + uzsinzw)(ﬁo - A1 cosy = Bﬁsinw )

% E 2 2. 2 2 9- 2 2
sin ¥( a X -p i p'hO-B,lx +2{LLAOx) + cos w(—paox-)wx + o X = A,Ix )

4+ sin vcos w(-pzao—p?\,lx-!-p 8- X - 2pA_1x) + sin'y (W % x —2|.LB1J{+L.I.=A0)

sin ¥ =y A,sin ¥ cos ¥ = ?\Dx - pix + onz

2
= By 1

=]
[

1

5 MA

0 e C—-%gf[—?xx-ulx+Ax+H—--pB1x+,,O]dx
O [

(6 ]
1

| . gBJI B
r=% f‘(“ +%“2)"53-%“T‘T+%_‘!
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APPONDIX IT

Derivation of Expression for Ii »
2

1
dF
M o~ 24
..1_[03:3 dx

From (4=1) and (6-3)

1
i = % nesn | stai in 8 o O
1, =7 pa ox X+ sin a

Substituting for @ from (4=4)
Integrand

i B - I P 3 2 3 2
= = A xP-pix +A x '+ sinv (F x -4 ix-p\ _x-B,x +2ul x )

2

2 2 g. " 2
acx—ul1x +i a x -2}111,13{ )

2 3 3 3
+ cosy (-;.Laox =MX + % x =A,x )+ siny cosy (-u

2 2 2
+ sinz\sr (u fgl X —2HB1x +u2AOx) - u2B1x5m3w~u2A1x 8in ¥ cos ¥

Nowr 51112\&:%-“%’0052“’
. 3 i ; S
y = \V——s v
sin ¥ 4s:Ln " in 3
sinzs&.cosvy='jl:cosw—g:cos 3¢
so integrand
A

. Y. 3 uP 2 2 279
.- lox -pix +A0x + 50 X —pB1x tHToX
; P3>3 2, = 2 3 2
+ sin y( g X ~H Ax-UA x=B,x +2uh x = 7 4 B1x)
f - 2- 3 .E‘L 5 - 3- l 2
+ cos ¥( Ha_x R,Ix Ee = x A1x 3 B A1x)
+ terms in higher harmonics

Therefore o

2
B A
" 4 i H .1 p‘ 0)
iy = gpacR <'%7~T“§‘+ r i -t

2
o plEn o L D .
*ua w<;1 2 " 9z ¥




i
+ terms in higher harmonics ._j

APPENDIX TTI

Derivation of CH for Non-Uniform Induced Velocity

| s
H o= 2= foax i% ay
From (k=1), (4~4) and (8-5)
1 b
Cq = 7o fodx /i(X+usinwr)z _ ‘

[ ‘; (paocos ¢+ui+10+?\1x cosy —- % x siny - % % coslﬁ*)
e =
i a

X+ M sin ¢

. P : q i
Ba _cos¥ itk +h,xcos¥ - @ xsin ¥= § x cos ¥ ) 'sa.n v
ul

X A =B, cosy =B, siny -
o 1 1 .
X + W siny

Ha cos ¥ +Hui+h +\, xcos ¥ - g xsiny - % xcosﬂ
0 o 1
“cosy dy

™ (AO—A1cosw;r-B1sm-:r - .
x + 4 siny

i~ 2
Integrand =! -(paocos 1}-+1.Li+?\o+7\1xcos-,rr - -szsin Y- - xcosy ) ! siny

Q Q
-
+(x+poing ) [(paocos ¥ +AHA X, xCOSY~ -gxsinw - -g- XCOS ¥ )](AO-A1 cogy =B, sinw}‘
i X sing ]
+ a_(pa_cos ¢ +pi+h 4\, xcosy - = xsiny - = xcosy ) cos vy
oMo i 0 Q
: o T |
+(x +2pxsin ¥ +4 sin v) | = sinv -ao(AO—AJ'cos W—B1s:|.ntﬁr_), cos ¥|
I 2 2 £t .2 2 @2 2 2 Pz 2 E Ef_ 2 2 :
- l:(p 2,COS ¥+l 1 +\ +\,x COS y+ a7 * sin v+ o ¥ cos y+2p 2 icos y

+ 2#&03\0 cosy
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2l

I ea - s e 4 - - -g,_,c 2 . . -
+27\1|.1a0:xcou Vv 2““0 xsin ycosv¥ 2}.|-\LO ofcos \5'+2|.11?x0+2u17\ xcosy

1
g =

- 2ui = x sinyg
Q 3

—oui 4 o L yaing o\ 2 o B 2o
2}11n XCos ¥ +2}.D7x1xcosap 27\0 & xsiny 2?\0 Qxcosw 27\1 X siny cosy

..2}\1 gxgcoszw PJ;xasinw cosﬂ siny
Q -

p ; N g o B _a
+(x+psing )[(pl+?\o)(ﬁouln'i’ 4, sin¥ cos¥ B1sm¢')+(l1x+pao nx)

2 2
(Aosiny'f cosy =A,siny cosy +B,siny cosy )

P iR , 2 .3 2 2 ; -
- ﬁ-x(ﬁosm y=A,sin'y cos -B,sin g )+ acos®y+uia cosy +a N cosy

2 aoP aqd
+ao?\1xcos’? - _Q— xsinV cosy d—n—xcosﬁ'

2 . 2 , 2 5 . . 2 :
+(x +2uxsin¥ +p sin ¥ )(a smrr-aonocosur +aoﬂ1cos :Jz+€10131 siny cosy )

i 2.2 .2 " i , 6 2 - . 2
csin (=g =N = 2pdN tpiA XN A X+ T X )+cos ¥ (aop3.x+ao7\0x a b x )

+

siny cosy (2[12 a.oi—2uao?\o—2pi?\1x+2ui -g- x—2?\07\1

L BT
x+2?ko 0 b'e }.Llfs.,lx ?\Oﬁ,‘x

Aharah. &% s B ok
+ AMX b o X +iah x+a

P 2 =2 2
o0 X +4 ia0+p)~0ao+aol3ﬁx -2}1&0}&0}:)

+sin2w(2pi hl: x+2?\o E}E x-}31 pix-B17xOx- -g 1;0::2 +Aop2 i+Aou?uo+2 % ux)

=d Loy}

2 2 2 2 2 2
R o A 1
+COos 'P(p.aox+ao?\1x a, % x +2 A, x )+sin yeos y{(2ua

X+2N E X l:'g'xa
o] 1 .52 02

A B 2 q .2 P 2 2 A . g 2
- x +B X -p.aoB1x+A = X = :&11-pA1?xo+j.L OMx—p.ho 0 X 2 )

]l 10 10 o]

2

» xa- A x2—27\
02

P 2 < 2 2
~pa = x+2ua B, x-p aofao)mm“’ cos¥ (=it a-N, pa x+2pa % x

.1

sn, 3xaax e, Sx ki & e s 2 xegua A, %)
10 X MAX +A, & X -k Xkl 8 tda N X-pa & X+2ua A, x

; 2 2 " i q 2 2 " 3 B a
+sin ¥cos \V(—u?\1n1x+p-1 o Xb Akt ak, )+sin vcosy¥ (-pB1?»1x+u 19 %
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+LL Px— aB+ aﬁ)+mx&(—£—-;+n Ex - Bl—)\.B—ﬁ. g + —)
I-L-1Q 4 4 > L 02 q * = B Ba [ XM

B, £ x sin®
+4B, & x sin'y

Nowr

=
f(cas@,sinﬂ,sinﬁcose,sinzecose,cog 8s5in6,sin’6,sin 6cos) Ao =

™ bl s
2 2 2 4
f(sin“e,cos 6)ae = =, fsin 0.cos 6 A0 = “E i fsin 6 a0 = 5%
e) o (o]

Therefore 2
B Aupi pAMN
ao g 2 i g 4 b s 0 ©
CH=-2-- jl@.u.nx+7xonx-2 pix - 3 lx".?n“ox"' T 5
2 2 2
f.\.x
5 paix ao?\1x a_gx a, ph11
+ 3 UX 20 + =3 - SQ +-2-91x1x2-——~——8 +p.fx1%-ﬁx
P
+% LLB,ITIX}C'LX
Finally _ 2
A A,e pa
_agide, o 2 " - 10, -0
Cy=% 152+ 3 (p.:a.+3?\T) T (p1+%xT)+—T+ n
a\ MA, N A -
o 1 11 " 0.3 i
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APPENDIX IV

Derivation of GYQ for Non-Uniforn Induced Velocity
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APPEIDDIX V

Data Used in Computing Force Coefficicnts, Flepping ingles and

Rotor Derivatives

The values of the rotor derivatives etc. were cal-
culated for a typical single rotor helicopter, the Sikorsky
HNS=1 (fomy YR=AB), The required data was cobtained from
Refs 15, The values of AO and 1 used were the actual

meagured flight values given in this refercnce. These
values were extrapolated over the low forward speed ronge
(Fige 6)e This procedure is considered satisfactory since
it is only necesscry to have these values of the right order
for purposes of showing the effect of non-uniform induced
velocity,

Other relevant data is listed below,

Cp = 0,0055

Q = 225 R;P.I‘-‘{.

v = 4244

o = 0,06 = 22 at 0,75 R
= . = a0 .

5¢73/rad,

PBlade aerofoll section N.A.Cl.lle 0012 {a
0,006

b
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