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SUMMARY

A preliminary study is made of the theoretical gain
in power output obtained with a fully ducted land=type windmill
s campared with the standard unshrouded type windmill, The
design of the internal and external ducting is discussed
together vith its effects on the overall performance of the
vindmill, The differences in the aerodynamic design of the
blades for the ducted and unshrouded windmills are considered
and attention is drawn to the importance of the use of the
correct induced (or interference) velocities, A brief review
is included of recent Japanese theoretical and experimental
studies on ducted windmills. .

The gain in performance is shown to be due to (a) a
reduction in the tip loss and (b) the effect of the increased
axial velocity through the windmill by controlled diffusion
of the slipstream, The zain is showm to depend critically
on the internal frictional losses, the diffuser expansion ratio
dovnstream of the windmill and the external shape of the duct
at exit and less on the inlet contraction ratio, It is found
that with suiteble design of ducting the gain in power output
should be at least 65 per cent, as compared with the ideal
power output of an unshrouded windmill, if both the ducted
and unshrouded windmills are of the some dismeter, Since the
disc loadings of the ducted windmill sare very much lower than
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those of the unshrouded windmill, and the risk of high gust
loading will be less, it is suggested that the simplification
in the design of the windmill will partly offset the increascd
cost due to the windmill ducting,.
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) velocity potential, relative flow angle
circulation

FAY non-dimensional parameter

i angular velocity

Suffixes
15253 denote sections of the duct
n,t denote normal and tangential respectively

primes denote conditions just downstream of the windmill

bar denotes a ratio,

3« Introduction

This paper has been prepared at the suggestion of
lir, Golding of the Electrical Research Association following
on some preliminary work done by one of the authors, It is
intended to be only a preliminary paper outlining the gains
in performence obtained with a ducted windmill over an un-
shrouded windmill, as well as the limits imposed on the
ducting and the design of the blades,

It is known, from the simple momentum theory of the
windmill, that for an unshrouded windmill the meximm power
output is only 59.3 per cent of the availsble kinetic energy
of the wind per unit time crossing an area equal to that
swept out by the blades, (In practice due to aerodynamic
logsses this figure is reduced to zbout 40 per cent). Since
the action of the windmill in cbsorbing power from the wind
is to reduce the kinetic energy of the cir passing through it,
it follows that only part of the avail:ble wind upstream of
the windmill actually flows through the windmill disc. This
energy, wiich is lost to the windmill, smounts to LO per cent
of the availsble energy,

Various methods for increasing the power output from
windmills have been discussed by Betz!, These include the use
of multi-stage windmills and a combined propellor and windmill
in which the power to drive the propelior is provided by the
windmill, The propellor induces a higher axial velocity
through the windmill disc and thercby ‘nereases its power output,
Idthough the ducted, or axial flow, fan has been discussed by
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many authors since 1920 the ducted windmill has received
little attention. The first reference, known to the authors,
to the fain in power associated with the ducted over the
unshrouded windmill, is dus to Vezzani®. A more complete
accouny of the performence of ducted windmills is due %o
Sanuki” in which for the first time experimental results ar
given, Some further measurenents are described by Iwasaki
who also discusses the detailed aerodynamic design of
unshrouded and skrouded windmills. Independently one of
the present authors” recently drew attention to the gain in
power output obtained with the fully ducted windmill,

Tne ducted windmill, consisting of an entry cone, or
contraction, followed by a diffuser with the windmill operating
in the throat section, obtains its increased power output
from two independent effects, These wre (a) a reduction in
the tip loss and (b) a higher axial velocity through the wind-
mill disc obtained by controlled dirfusion of the slipstream.
The gein in performence due to (a) can only be found from a
complete smalysis of the acrodynamic design of the windmill.
The experimental and theoretical work of Twasalkilt show however
that this gain in power output can amount to as much as 30
per cent of the power of the unshrouded windmill * Saruki 's3
experiments on ducted winduills of 1,2,3,4 and 6 blades over
a range of blade settings were performed with a windmill
mounted between entry and exit cones having dieameters 1.5 and
141 respectively greater than the windmill diameter., The gain
in power output was greatest for a 2~blader and least for a
6~blader although in the former case the unshrouded power
output was so small that the blades were probably stalled,

The effect of (b) can, at least qualitatively, be found from
an application of one-dimensional flow theory when the internal
and external duct losses are included, The gain in power
output with suitsble duct design is found to be very mmuch
larger then in the former case and can amount to as much os

90 per cent of the power of the unshrouded windmill, (In
practical installations, however, it seems unlikely that

the total power output of a ducted windmill will exceed twice
that of an unshroud-d windaill of the same diameter). The
experiments of Sarmilcid show that with reletively crude ducting
and no effective slipstrean diffusion the increase in power
output is sbout 86 per cent for a two-blader windmill and
somewhat less for windmills having larger rumbers of blades,
although for the two~blader most of the gain in power arose
from an unstalling of the blades,

x The experiments, due to Iwaseki, were done with a shroud
ring of length equal to about one third of the windmill
diemeter, The tests were done at relatively large blade angles
and consequently the power outputs were well below the maximum,
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The aerodynamic design of the blades of the fully
ducted windmill is not as simple as in the case of either the
unshrouded windmill or the axial flow fan, In the latter
cases the disc loading and the power output can be calculated
on the basis of lifting line theory, once the induced, or
interference, velocities due to the vortex sheets in the slip-
stream, are known, These can be calculated from Goldstein's6
theory and the work of Lock and Yeatman/, KramerS, Kawadad,
Horiyal0, Theordorsen!?, fbel? and Tekeyamal3, In the case
of the fully ducted windmill the induced velocities are a
function of the ducting around the tips of the windmill blades,
the diffuser and conditions in the slipstream far dovmstream
of the winunill and its swrounding duct, A simple analysis
easily demonstrates how important a correct evaluation of the
induced velocities is in the aerodynamic design of a ducted
‘windmill,

Part I of this paper deals with the performance of
the ducted windmill and its comparison with that of the
unshrouded windmill on the basis of simple one-~dimensional
theory. DPart II, on the other hand, discusses the comparative
performances of ducted and unshrouded windmills using the vortex
theory of indmills,

PiRT T

One-dimensional flow theory

L., /inalysis '

In the simple acrodynamic theory of windmills, the

windmill is assumed to have an infinite number of blades, so
hat 1t effectively becomes a circular actuator disc over
which the axial farce is uniformly distributed, The rotation
of the slipstream is neglected and the axial component of the
velocity must be the same on both sides of the disc in order
to satisfy contimiity of flow, There is, however, a discon-
timuity in the pressure as the air flows across the disec,

It is assumed that the velocity across any plane perpendicular
to the windiaill axis is uniform and steady and the flow in-
canpressible, e will first find the power output from an
unshrouded windmill and then secondly compare its power

output with that of a ducted windmill of the type shown in
i’igure Te

Lo, The unshrouded m‘ndmill“"

The axial force, power output and efficiercycan
be obtained from an application of Bernoulli's equation and
the laws of conservation of mass and momentum to the control
surface ABCIEF (see figure 2), Since the rates of mass flow
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across sections '0', '2', '3' must be equal we have

VOSO = V282 = V383 .l.!ll.tl.!ﬁ(‘])

where V is the axial velocity and S is the cross-sectional
area normal to the windmill axis, Since the flows upstream
and downstream of the disc are irrotational we may separately
apply Bernoulli's equation to the motion in these two regions.
Therefore the total head, H, in these two regions is
respectively,
o

=D+ %pvi =D, + %pvé ? o)
‘E Seesssemonee 2

and. H3 > -;-pvg = p3 + -é-pvg

1]
e}
Nl

+

L
L
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Since the pressure p3 far downstream must equal

Pys the pressure difference across the actuator disc is

Dy =By = Ao (V2 - vg) crvesvueveseld)

=2
and the axial (drag) farce F acting on the windmill disc,
of area S,, is
F
fl vz
. -y ! . ': - ..i
F"' (P2 P2)Sz“ 2PS2V§ i.\1 vz) .clnol--:no-(}-l-)
o
If we apply the momentum equation to the control
surface ABCDEF it can be shown that
o = g -
F_X+po(So 33)+pv2 2(V0 Vj)
where X 1s the integral of the pressure forces acting on

the curved boundaries ABC and TEF due to the fluid
outside the slipstream. It can be shown that

X

1

_po (SO -85) ....n---ouoo(5)
and then

F

1l

Pvzsz (vo_vj) -.---.o----n(G)

It follows from equations (4) and (6) that

V. + T
vz - —O—E__j. .....Il..'.‘(?)
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Y
or F = P { _Eﬂﬁuuij 82 (VO - Vj) ...I’ll...l.(ha)
- A
'V _+ VN
where p (-ELE——EJ 82 is the rate of mass flow through the
7/

windmill disc and (VO - V3) is the difference between the

velocities of flow far upstream and far downstream,

The decrease of kinetic energy of the fluid in the
slipstream per unit time is
(V + V.,

BBy -

K i

ll

aP
_.__}.

/

ssssesenasse(B)

{V +V

which equals the work done by the fluid on the windmill, P,

If we define the power coefficient, Cps s the

ratio of the work done by the fluid on the windmill, to the
rate of flow of kinetic energy, far upstream of the windmill,
through an area equal to that swept ocut by the blades, then

o - -
3 sasssevessusld)

(This is the general expression for the windmill pewer
coefficient and is independent of the mumber of blades and the

size of windmill boss), If we assume that S, = nR% vihere

Rt is the outside radius of the windmill then
N SO .- R (17,/1) [ "ﬁ)
= %pszvg -;_‘;_pszvg e \ vﬁ

sisnskssusnal 1)

The maximum power coefficient Cp (vj/vo) is obtained when

- )
Vs = 3 (
6 tosao-o.otl.(11)
giving Cp = 3= = 0.593‘
max _,
The disc loading, f = 5 E = s corresponding to maxinum
2pS,V;5

power is



i —M = 2 ooo-o--oo-o-(12)

(1+V3/VO)
although the disc loading itself is a maximum when VE/VO = 0
a.'tld. f = ll-.

It should be noted that the definition of disc
loading f is different from that of the axial forcé,e (drag)

coefficient Cp = F é;ﬂ%vg « Tms when 8, = 7R 3
7 A"
GF = (1 - Vg /Vijf ....t..ll...(13)

and at maximum power
(O}\) = 8/9 ....'.*l‘.i.(1l")

Cp
max

by The ducted vindmiil

(1) Prictional losses neglected

Iet us consider the performance of a windmill mounted
in a duct having a cylindrical external profile (sec figure 3),
Since the flow is frictionless the only losses are those in
the windmill slipstream,

As the air flows through the duct its pressure is

decreased by flp across the windmill., The axial force, F,
on the windmill is given by

F = 8 r":“lp .0.0000-0.-.(1)

where 82 is the windmill disc area.

If we apply the momentun theorem to the control surface ABCD
we can show that

P = p52V2 (VO - Vm) - D .Il.......-.(2)

where D dis the drag on the duct due to the internal and
external flows,

If we next apply the momentum theorem to the flow inside the
slipstream it can be shown that:

P = p82V2 (VO - T{n) - &P (S'i &= 32) ou-.o---a--c(B)
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Equations (1) and (3) together give
_‘ﬁp 81 = P82v2 (vO i 121) ..to-.oonl..(li')
and equations (2) and (3) show that the duct drag

D = AP (31 = 82) o-oo-o-;.oco(5)

This simple expression for the duct drag arises from
the fact that its extermal profile is cylindrical, Equation
(5) is not true for external profiles other than cylindrical
and in any case it is only truefor inviscid flow,

I we apply Bernoullils equation to the flow upstream
and downstream of the windmill we get

essescessscs(6)

1

I&) Py + %pVi = Py + %pvg J
1\

and. Hy = p}+ %pvg = p_+ %pvg

1

)R.p = p2 - le = HO - H1 = %P(vg - 1-;2:]) .l..'..l(?)

which together with equation (4) leads to

S V +V
M 0 *5\
V2 - Sg ( 2 " SR

or alternatively
v 8, = 8, /vo % Ny

e 5 \ 5 ) ..-0000000(83')

v o 2 +
2 A

2

+
2

The first term on the right hand side gives the contribution to
V, due to the windmill slipstream and the second term is the

“

contribution due to the duct,.

The work done on the ducted windmill by the air is,
using equation (8) for Vos

. fVB + Vo
P=F Vz = {‘kpszvz = ff_JPSJj ("""‘"‘2"""'— ........(9)

rd
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or the power output for a given value of /ip is proportional
to the rate of volume flow through the windmill disc,

Now for an unshrouded windmill of disc area S the
power output is

w2 o ud
P -3 ___P S \ 2 ) .i....'..l.l(1o)

FPence the power outviat from a ducted windmill, where
the external prcfile is cylindrical, is equivalent to that
fron an vashrouded windmill, having (a) a disc area equel to
the duct dniet (exit) area, and (b) the seme pressure drop as
the ducted wihdmill,

When the external profile of the windmill duct is
not cylindrical (figure 4) equations (1) and (2) still hold,
but the duct drag, D, is given by

i fr

padsS - f P d3s .¢¢..--00-00(11)

where 'E' and 'I' denote the external and internal surfaces
of the duct respectively, Since the flow is one dimensional
the velocities inside the duct upstream of the windmill will
be equal to those at the corresponding section dowmstream.
Due to the pressure drop /A p across the windmill, the con-
tribution to the internal drag, betvween the inlet and the
scction dovnstream of the windmill having the same area as the
inlet, is equal to {‘_‘,p(S,1 - 82). Between this section and

the exit the external and internal pressure difference changes
from /Ap at the area S, to zero at S.. Hence a mean

1 3
value for this part of the dra contribution is

(mS; = 5,)
AOp —% » Where m is less than unity, and the

total drag becomes therefore,
(mS; - 8,)

D = ép (81 - 82) + [}p—‘% oo.ucn--o.tl(12)

Since F = Ap S, we have, after some rearrangement
m + S,/8

1 & D/F = oy ."Il....t..(12a)
2 32;03

mS, + S
and D is only positive when -—SLJ- > 2,
2



] Y

From equation (2) with the value of D from (12)
we find that

Psgvz (VO - v‘_) = :fj\:p i _52—; .ncoc..c-ot.(15)
But from equation (7)
_{f\,p & :é’p (VO - ?;_J) (VO + V:{_) ttl.tt.iolt.(1ll-)
and therefore
3 /
. (muj + S,[) i Vo # Vo) ¢i5)
o = 2 S ] ) / ssersaasenssn

or alternatively
VO +V {' mS

LX
sz 5 +i

Vo« VN
"I eesea(t52)

b
Since the power output is still given by

P=PFY

2

we find that when V, is substituted from equation (15)

2
(mS s,) {v v"s'
+ 1 L 0 ; bl ) l........."(16)

P = &p b
Thus the equivalent unshrouded windmill must have a disc area

&

(mS, + 8,)
of —2—~, It should be pointed out, however, that this

result is only very approximate and depends on the expression
obtained for the duct drag (equation (412), However, in
practical applications the use of the factor m is simpler than
say expressing the foiring drag in terms of the maximum velocity
on the external profile,

From equations (16) and (14) the power output can
also be written as
p(mS, + S,)

B ———28—'— (vO + V:U) (Vi - Vﬁ) .oooo-¢o-ooa(1?)

and the power coefficient, Cp, in terms of the windmill

swept area, = Rf;! 4nd Yo vppirean Teloodlyy ¥, I8
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2 2 1/ 2
C., = li- N ey 1 = v, = | .no-nooo.oo-(18)
B /mS., +3 mS, +3,\
where B =2 1&%’.2 and v = :{g
2 - t = Vo *

In the following section the importance of the
expansion ratio, 1/u = 33/82, and the pressure coefficient

: P),=P
at exit, C_ = 2o s ore demonstrated, The connection
PL}. prvi

between these parameters and the terms used above will now be
found,

Since the external and internal pressures at exit
are equal it follows that

V2

& e -:t- = i ..--oo---ant(19)
P)_‘_ V2
(o]
But from equation (14)
A__‘p__ = (1 --i 1—— = P ....---000-0(20)
tpv5 v/ v

sz = 1 = (P- v 4 O ) ..ll.l.l....(21)
Py

From equation (2) the disc loading

V.o C
f = F :% (1 -v'i) o _% ..o.lnoao-..(zz)
—;pié 52 . o - v
_ = D
where C-D —%Pvzs
o R

If we substitute for gr/\fo from equation (20) then

2V
2 2 2
vi+C. =1%fv .(_> sesee I‘.Cl.(zs)
D V *

%
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_ ey 2% LA = 4P
where TV = 5
0 Ir v

= olo....tl.n.(gha)
e
1 - (Wv+C_ )
Py

In terms of the drag coefficients, CD’ equation (12) becomes

mS_+3
CD + fvz = fv2 (-__§§;%> ......-c..-o(25)

and therefore on comparing equations (23) and (25) it follovrs

that
2
5+SJI m+Si/SJ 2vL1-

m3

DL”F‘ 001(26)
2 3 1= (W +C)

which after some rearrangement leads to

i N,
bpv ;i -/ v ) I 5
_— 2y P = = §— .--oto-n-..e(ZY)
1 - p2v2 - C 3
Py

A knowledge of the value of m enables the disc area of the
equivalent windmill to be determined,

A very simple result arises when Sy = S5. In this
case equations (5) and (12) show that m = 1, and solving
equation (27) for v gives

/ G-
2i91+3p4

v = Il.l.‘......(28)
Su

Thus if Cp is negative it cammot be more negative than - %

L
and not greater than zero (see below). These conditions
refer to maximum and zero power respectively, The fact that
values of CP more negative than = 1/3 are not permissible

L

is a rather surprising but nevertheless a very important ded-
uction. Similar restrictions exist on the values of p and v,
Prom cquations (20) and (8)
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v’t} T o
‘{I_ i /1 L I’V’z = 2!J.V -1 .t.l..ll.!l‘(zg)
o
or ﬁz = }+|J.'V ('1 - V]J) ..o.-oc--ooo(}o)

and p, and v must lie in the restricted range given by

%E <v {-EL- for positive values of f and V. e

Vhen m £ 1 the general forrmlae, replacing equation
(30) and (28) are respectively

i 1
2.2 fm+ S,/8 |
fvz = -lm_z i—‘_‘?u -1 i o--..-oo(31)
(m -+ S'I/S ) - P .,_{
3\_—. ———
/ i 2 3
J+ / :,l ! "‘. {
i f = 1
m+S17S3 Vs OPI;."!Em+S1/S§; “
and v = == '_‘.-, 3 000(32)

{_ 1"‘ h‘ ;l e Jj
H ’i_.r:1+S,i 783_) 1

Similarly the equation for the power coefficient
found from equation (18) is

. 2 :
7 A f 16 - : S S
C.=8 mS,/5, ) ]‘ w2/ -3
P B ;‘ | B

{ \ o 2
Rt 4 16+(1-CP1‘-)(I!1+S1/05)

| T

i f 2
, L - :_;16+(1-0PL)(m+s1/sj)

p.o 00;-..-.0.-0(35)

1 2
' 16 = (m+S1/S3)

|
Thus for positive values of f and v

m+ 8,/S m+ S,/8
st & SRR AL
& (2
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To these relations we must add the condition for
positive drag (equation 12a) viz. % + §,/8,> 2, although this

will always be satisfied no matter what values are used for
p and 8, /52.

Although all these relations are modified to some
extent when friction effevts are included nevertheless they
represent useful limiting values in preliminery design studies.

The important results obtained from this section are
as follows,=

(1) The interdependence of the windmill power output and
the fairing drag.

(2) The power output is proportional to the rate of
volume flow through the windmill disc for a given
disc loading.

(3) The velocity through the windmill disc is equal to the
slipstream and the duct contributions.

Lo, (continued). The Aucted windmill

(ii) Flow with frictional losses included (see figure L)

The flow far upstream, of velocity V., enters the
duct inlet, of area 81, with the velocity V1. The flow is

accelerated in the contraction and flows past the windmill of
disc area 82 with the velocity V,. The pressure discontimuity

across the windmill actuator disc is equal to p, = P) The
velocity decreases along the diffuser and leaves the exit, of
area 83 s Vith the velocity Vj' The velocity further
decreases downstream of the exit since the pressure P3 at
the duct exit is less than the uniform stream pressure P e
The velocity reaches a final value V  far downstream of the
duct exit,

In the external flow around the duct it will be
assumed that outside the duct boundary layer the total head is

constant and equal to its value far upstream. It will be
assumed that at the duct exit the pressure P, is constant

across the boundary layer and equal to the value p3 inside
the duct, In general P), will be less than Pye
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Inside the duct we will assune that the total head
loss in the boundary layer arising from the friction force at
the wall is distributed over the complste duct cross-section

isee cauplete mixing at each section is assumed, If Cp is

the local skin friction coefficient acting on the element of
surface of the duct of length ds and perimeter #D then the
total head loss, AH, between two sections of the duct is
given by

1!\2
AR =5 & D
4H=p 5 : Cp V2 3 ds
1,}'1
1."181
where from continuity V = = If CF is the mean

coefficient of skin friction in the duct between sections 1
and 2 then

~ 1‘2 a!D‘-'LB
i wugy | (5 as)
2P 1 24 N 1

where V1 and D, are the velocity and diameter respectively

at the section 1.

1

The following lcsses will be included,

,-jH1 the mean total head loss at entry

L\.H2 the mean total head loss in the contraction section
including the losses across guide vancs and fan
fairings

{1}13 the mean total head loss in the diffuscr.

If we epply Bernoulli's equation to the flow inside
the slipstream and the duct we obtain

H) =p, + '%Pvf, =D, + %—pvf + A, \j
Py + %pr =D, + %pvg +‘QHZ (;
D, + %Pvg = p} + %PVE L 4m \  sesesccescss(l)
P, + %PVS = Pp3 + %pvg +§H3 i

But the loss in total head across the windmill ﬂHz'
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is found from the axial (drag) force on the windmill

F = 52 (Pz - Pzt) ] SZQH% .l..l.....l‘(z)
A 1

and f = . s = . H2 000100010000(3)
5952"% ?Pvg

Prom equation (1) it can be shown that

ey
%P(-Vg -V?) =P3 -PQ+ _‘2‘_\‘ 'L\}I‘.}-I.-F AHZ'
i=1
but since p3 B and writing
o o thoFo . X3 % . 8
= = = p —
B, vz T V2 S Yo
then
2, 2 = A
(f + )V =1 = CP - i vz ..c...anat..(lﬁ')
Lo 5pV,
If further we put
QH,
h =1=C -
1 4
Py ﬁPVf,
O FAY:
and h2 = p.2 + sz - 11-]32
zpV5 2PVo
then equation (4) becomes
(f + hz) V2 = 111 oao.-a-.-a.o(S)
y o . 6
anc v —\f F + h2 coo.--o.-o-c( )
The power output * from the windmill is
P=FV ISSRRSSIEIS -

2

i

x This expression for power ocutput is only true when the drag
on the blades and the losses in the slipstream are neglected,
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and the power coefficient CP in terms of the windmill swept
2 . :
area 'r:'R.t and the upstream velocity VO is

k!
C e .o-o-'-otoio(B)
s 2
R,
If S, = 7R, then from equations (3), (7) and (8)
CP - fv3 ...-.----.-.(9)

and from equation (5)

GP=fV5= (h{V— h2 V3) .o-ooonoo-to(9a)

If the intermal duct friction is neglected
g}H1 = .f“_‘Hz = L\I—IB = 0 then the power coefficient can be

written CP s Where
ideal

™ 2 2
CP —] 1 - C ) - UV
ideal Py, .

Y ademarnieasalt0)

which equals the power coefficient cbtained from equation (21)
in the previous section,.

Both equations (9a) and (10) show very clearly that
large power cocefficients will be obtained when CP is negative,

u is very small and v is very large, although & these

varisbles are not independent,

For fixed values of h1 and h.z the maximum power

coefficient is obtained when

/
.
v 5% 3R ceeseererena(11)
giving .
B /2
o] = 2 _.._.]
Pmax h2 \\3 2." i)
(1-0c %2 sascianssseng)
‘ 2\ B i
LCP ) 3/2 ‘
ideal’ 3 B \
max /‘



-20u

and £ = 2 A
at Cp h2 /

mazx :} oa--ooonn-oc(13)
I 2 i
e } = 24
\ 1(10.11; at CP \‘
maz ...';

Tt can be seen that the entry contraction ratio
SJi /532 only affects the performance insofar as 1t affects the
losses 3 H, and /AH, and the pressure coefficient CPL,_'
The factors of greatest importance are the expansion ratio
of the diffuser, -EL- , the diffuser loss, AH,, and the

pressure coefficient, CP .

L

A measure of the gain in power output from the
ducted vindmill over the unshrouded windmill is the ratio of
their respective power coefficients, Thus if both windmills

have the same swept area, TB%. and the unshrouded windmill
L
is operating at its meximum output power coefficient G];, then

the performance factor r is given by

C
s E% - %% Pigd WAURUTT— . - 5

Then in addition the ducted windmill is operating
under maximum power conditions we find from equation (12) that

C /% B 3/2/

i 1 %
_.{.;1‘.;325 - L'T} / hE cesssssssesel(15)

or using the values of h‘l and h2

— : 4
CP l ‘:.2 "!1 c ﬂﬂ1\ 1;7) §
0 - el 4 K
n!la-x = AL!- - Ph' EPVD ;‘} e aee OII(15a)
CP (“2 . ZEHZ " &HE \)
! !
L %P\é J:e‘F’Vg / |
i_f'o '\‘_ L v \ 3/2
and \Bigontlmer 4 |2 U= %) o
CT = L 1 l;. .I....Il...l( )
P L ~
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The limit of usefulness of the ducted windmill can
be taken when CP/C% equals unity. Thus with no intermal

losses and CP = 0 the minimm value of the expansion ratio
i
i— s corresponding to {GP a;‘ /OI'J » is, from equation (16)
ideal'max

T

= 1.5&_ .--.-cici-t|(1?)

In addition, from equation (13), it can be shown that
the corresponding maximum value of the disc loading is

y
Cat C

P
max

{\fid'eal = 0.84 '.'......l..(18)

These results show, when internal duct losses are
neglected, that the ducted windmill hes a greater output than
the unshrouded vingaill when the external pressure coefficient 3
CP > 1s negative or zero, and the expansion ratio of the

A
diffuser, i— » 1is greater than 1,54, #1s0 the disc loading

is reduced from 2 to less than 084 when the windmill is
operating under maximum pover conditiens. Thus when internal
losses are neglected, the gain in power, with the dncted
Windmill, is proportional to the dif'fuser expansion ratio and
similarly the disc loading is inversely proporticnal to the
square of the diffuser expansion ratio,

(iii) Tip clearance of the ducted windmill

Since the action of a windmill is to create a
pressure drop across it, similar to the action of a gauze, it
is important to consider what effect the clearance between the
blades and the duct has on the reduction of mass flow through
the windmill and the power output,

fssume that the windmill of disc area S is uniformly
loaded and is placed in a duct of area S, (figure 5 ;4 The
velocity and pressure are respectively VO, Pg far upstream
and Vj, Py far downstream in the slipstream and V2, Py
outsides Frictional losses will be neglected throughout,

If we apply Bernoulli's equation to the flow inside and outside
the slipstream then

HO=PO+%9V§=p2 +-?sz§ coseccasssaa(l)
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-

and H‘I = Py +

s

where Hn is the total head upstream of the windmill and
outside the slipstream and H,] is the total head downstream
of the windmill,

If Ap is the uniform pressure drop across the
windmill then

- o o =
QP = hO H1 = ZpP (Vg v?) O..l.llltl..(z)
and the axial force, F, on the windmill is given by

P o= APS a-oo--a.-ooo(})

If we apply the momentum theorem to the control
surface ABCD (figure 5 ) then it can be shown that

F o= 28, (V2= ¥3) + p8; (T3 = T3) eeecennanona(h)

From continuity it follows that

Szvu e SSVB i (52 . Sj)vz .......-...-(5)
S Vv, -V
Lo s . 2 ]
giving B e I.II......II(é)
82 VE Vj
Ap : -
IF =k +then equations (2) and (4) cen be
A

o]

written respectively

Vé = V'; + k V‘: Illl‘...t...l(?)
v - s

and ;22 =1 =k {%"'1 —2—52\} -ooot-l-"ti(B)
(8]

) 2/

From equation (6), (7) and (8) we obtain
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1 =i ==} 1-1c1+—);
V. =V Vot
[} = 5 L 82 i (9)
v - v !,V 2 A A E NN NEN]
o
e ()
3/
W v
If we put n:-s,—;x=—g; z = == then
By 3 ¥s
equations (7) and (9) become
X2 = 1 £ k 52 ..ﬂ..l-l.lI.(1O)
and Em gy . 1z 7‘2 (1 =%~ In} (1)
x— 1 — 2 a0 senmBesdase
2kz

Cn elimination of x between equations (10) and (11)
we cota’n f'er =z

aZZ++sz+CZ2+dz+e = 0 -00030100000(12)
where a = = 1:2(1-11)2 - 2k(1+n) + ‘d ;) Ak
b= 4 {1 = k(14n)! ¥ a3

2k(14n) - 2

I

When the value of -S_ is near unity the solution of

2
equation (2) is
v
z:f‘- =-’i +k11 ..........--(13)
3 /
2 yi+k
V2
and x = 7~ can be found from equation (10).
3

If V dis the mean axial velocity through the
windmill disc the power output, P, is equal to

P = BV evecscsseess(1l)
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Vhen the value of %— is near unity the power
2

output coefficient, using equation (13) for z, is

B e x _(1-n)k
Op = T3 kg x - 1) ( ) (15)
Aoy o /1+MJ

for an ideal winlmill i.e. one having no tip clearance, n=1

and CP = Ko Thus the lcss in power due to tip
ideal
clesrance expressed as a ratio is
Cp (1-n)k
E_I_ %J] = :;Aha_ l.l..i.ﬂl.ll(jé)
F:13cal 2{V1+k—1 {

For moderate tip clearances the loss in power is
less than 1 poer cent and hence the neglect of tip clearance
in the previous calculations is justified,

Le, Calculated results and discussion

The optimum performance of ducted windmills having
diffuser expansion reiios, 1/p, of 2,3,4 and 5 and internal
total head loss coefiiciznts of 0, 0410, 0,15, 0,20 and 0.25
have been conpruted for values of duct exit pressure coefficient
C of 0, =0,1, =0.2 and =0.3, The entry loss

Py AH

coefficient — —jo— has been made zero throughout, since this
zpV,

will be its value in nearly all well designed duct systems,

These results shown dn tebles 1,2,3 and 4 have been compared

with the opilieom performonce of an unshrouded windmill, The

results are plotved in figures 6,7,8,2 and 10.

Inspection of figures ‘;u 9,10 shows that the
perforpance foctor r  depends o Hc‘s”,'r on the value of the
pressure coefficient, CP s at cxit. Thus the power output

L

of a ducted windmill will be increased significantly if the
difMser outlet is placed in the lee of an obstacle or by
providing a flow augmentor as shown in figure 1.

If we assume that a duct of good acrcdynamic design
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has an internal loss coefficient of 0.15, then with OP = = 0,15

N
and a diffuser expansion ratio of 3.5, figure 8 shows that
the ducted windmill gives an output power 65 per cent greater
than that of the ideal unshrouded windmill, If the diffuser
expansion ratio is increased to 5.0 the gain in the output
power would reach 85 per cent but it is questionable whether
the increased cost of the longer duct would justify this gain
in performance,

Inother important advantage of the ducted windmill
over the unshrouded windmill is the reduction in disc loading.
This is clearly scen on inspection of tables 4b and 1c., For
instance with a diffuser expansion ratio of 3,5 the disc
loading of the ducted windmill is only 25 per cent of that of
the free windmill case, This effect will considerably
simplipy the design of the ducted windmill and will result in
a reduction of the blade cost which will partly of'fset the
cost of' the ducting, It is interecsting to note that the
Reynolds mumber, based on the windmill chord, will be of
similar order in the two cases, since although the axial
velocity will be increased, the blade chord can be reduced
due to the smaller disc loading of the ducted windmill,

In addition to the reduction in disc loading the
gust loads on the bladcs of the ducted windmill will be much
smaller than for the unshrouded windmill. This is because
the contraction cone ahead of the windmill will tend to
improve the uniformity of flow across the windmill and to
reduce any unsteadiness in the flow., In order to take
maximum adventage of this effect, the contractlon ratio should
be at least 1.5,
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PART TIT

5¢ The gencralised momentvm theory of windmills

bhas The unshrouded windmill

In the one-dimensional or simple momentum theory
discussed in paragraph L4 the effect of the finite number of
blades has been neglected, and it has been assumed that the
induced velocity in the windmill slipstream is exial and uni-
form over any normal cross-gection of the slipstrcam. In the
generalised momentum theory, both the axial and rotational
components of the induced velocity, arising from the vortex
sheets shed from each of the windmill blades, are included
as well as their variation over the slipstream and with time.
The calcul>tion of the induced velocities will be left to the
section below on the vortex theory of windmills but in the
present paragraph expressions will be obtained for the mean
values of axial (drag) force and power output in terms of the
mean axial velocity far downstream of the windmill.,  Although
the major effects of the finite number of blades are included
their drag is nceglected,

If we assume that our windmill is designed to have
a minimum energy loss it follows from the work of Betz that the
vortex sheets shed from each blade move backwards as solid
helicoidal screw surfaces having constant pitch., Far dovmstream
of the windmill these vortex sheets will be of a constant
diameter, greater than that of the windmill owing to the slip-
stream expansion.

The laws of conservation of mass, momentum and
energy will be appliecd to the control surface ABCD (see figure
11) in order to find the mean axial force, torgue, and power
cutput from the windmill., An element of the surface AD,
far upstreom, will be denoted by dSo where the velocity and

pressure are Vo and P, respectively, Similarly, far
downstream, the clement of the surface BC will be denoted
by ds.:)a where the axial component of the velocity and pressurc

arc u, ond P, respcetively, The windmill, which is

rotating with an angular velocity () , has B blades which

are equispaced and straight. It is assumed to have no hub,
fairings or guide vanes, The axial force on the windmill
is F and the axial force, duec to the pressure of the
external flow on the curved boundaries of the slipstream,
will be denoted by X.
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If we therefore equate the rates of flow of momentum
across the control surface APRCD with the pressure forces on
the boundery and the internal body forces we can show that
(sce figure 11)

{7

€ 2

F=X4+ pO(SO - Sm) + ip (Po B pu1V0-pu1 )dsuo
L=

vosessossses(l)

Ext from an analysis of the flow outside the windmill slip-
strcam it can be shown that

X = PO (SOG"SO) ..o--oloclol(2)
giving

"
'

ko
1

2
(PO - P1 + Puﬁvo = Pu1) dsm ...Il.l.'...(j)

Since we are assuming that the vortex sheets are
moving through the fluid as solid helicoidal surfaces the
induced motion, far dowvnstream, can be derived in terms of the
velocity potential @ (div # ='q) satisfying the boundary
conditions of no flow across the vortex sheots and no flow,
relative to the shects, at infinity., Hence (po B P1) can

be found in terms of the induced velocity components from
Bernoulli's equation for the unsteady flow of an incompressible
fluid, Thus

2
3 Py
PO-P1 = '%t-g +"2_ ..I.l..l-.-.(h‘)

vhere @ is the velocity potential at o point r, 6, z
(cylindrical polar coordinates) duc to the axial movement
of the solid helicoidal surfaces through the fluid with the
velocity W, s and P, is the pressure in the fluid at

infinity. Now because the vortex sheets arc moving with the
velocity W, 1in the direction of the negative gz-axis it

can be shown that

Z=0 (z+ wt, r, 0) sssussanisasls)

Ir u_ = Qﬁ s

r =3 Yy = %“Qg > u_ = 20 then equation

06

(&) becomes, following Thoordorsen11,
2
P 4 |
PG - p1 = PWO uZ + 2 ll.nco..co..(6)
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_ 2 2 2 2
where Q = U, +uy+u
and cquation (3) beconof-:, since u, =V +u_,
UE
19 2
F=9p Pl -u, -y (VO - WO) d S, ssisekl)
g e
Since is a function of time we must integrate

equation (7) with respect to time in order to find the mean
veiue of the axial force, But since @ is a function of
z + wot an integration with respect to t may be replaced

by an integration with respect to z. The resultant volume
integral can be taken over an infinite cross-section normal
to the z axis and a distance along the z-axis equal to the
distance between succecssive vortex sheets, This distance is
cqual to H/B where H is the pitch of each vortex shect
and B is the mumber of bladces. Hence the mcan value of
the axiol (drag) force is

arg o 1
F = "-%i:li v -w)ia (8)
:f ! 12 = Z"'uz 5 O"'WO R'g sassescsse
wherc dv dis the element of volunic.

Now Theordorscn has showm that the separate integrals
on the right hand side of equation (8) can be written in terms
of the integral of the circulation tsken over the vortex sheets

in the slipstream of‘ radius R o* If the circulation at radius
r is denoted by [ (x) whereY x = r/R o ond
w H K(x)

= __B_ then we can write

.

B ) 2 -
T S 8 k ?’ERW )
Bl 2,4 2. 2\
H.J q-1 Vo= WO ﬂfo‘J ( .Olluctl'.l.(g)
£
B | -
=4 85 87 wze:rcR'?, !
H; Z o oo _J
L=
n
where k=2{ K(x) xdx ,
H

If we substitute equations (9) into (8) then
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_2F'I_Q=CF = 21(\?@' ’:-W’ '—2 lo.alalattot(10)
VorR i B
zpP "t . e t
where W= WO/V o°

Similarly it can be shown that the mean energy
loss, E, in the windmill slipstream can be written

R2
4 - - iy

CP 2_"']:‘_ ) = 2k ‘W’z (‘%-‘E'W """l ..!n.t.lli..(1ﬂ)
i i V2R o] . k O R2
2PYo™ t

But the power output, P, is equal to SiQ = (FVO-E) s where
Q 1is the cutput torque and L2 is the angular velocity of

the windmill, Hence the power coefficient CP is given by

R.?.

P - - e = o

0p = =2, (147) (1- 8 ”"’) =3 eoweealt2)
'gPV.O’."ERt Rt

Equations (10) to (12) can be compared with the
corresponding expressions obtained from the one-dimensional

: 2 . ;
theory. These are, if Sp =Ry s and V=V =W, (see
section 4a) _

_ W
by = 2w0 -7
F oW
-2 e]
CE = W'O ( - -2_ --..l'.l.l'l(13)

_ W\ 2
CP= ZWO(—E—)

and they are similar to the previous equations when

R'? . WD/E

:5 - — s k=1 and e/k = 4. For an infinite
V. - WD

number of blades when =——— is small k=e =1 and
_LLRw

therefore since e/k = 3 is not the limiting value we cammot
expect that the optimum performance, found fram the simple
theory, will be equal to that found from the more exact theory.

Theordorsen calls k the mass coefficient, and
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interprets it as the ratio of the mean rearward velocity, taken
over the entire slipstream cross-section, to the resrward
vaelcolty Ve Both k and e are functions of B and

v - W

~2...~2  gnd their values can be obtained from the tables given

b 20 e

in roference 11,
Before equations (10) to (12) can be used to predict
the perfornance of a windmill the slipstrcom expansion must be

fourd, From the simple theory we find that

2 -
Eop 1 = wh/ 2

‘-"‘)“ = """—""‘—":‘_ ln..inttliot(‘ll{-)
R, 1 -w

[ o]

—t

1+ :;_-.rc/2 for snall Ero .

A better approximation is duc to Theordorsen who
shows that from first ocrder calculations of the radial velocities

in the slipstrean,

ﬁ_
2, (-3)(-20)

: RRTUPRUMIDIIN (o . )

R [:!-ﬁo/z)C—ﬁo %+§D

s vt 9_ - i =
R A+ W (1: 5/2) for small W
.'!‘ 2
t‘ x K(x)cos“@ ax

i

where 5 = — is the average value of

il
) x K(x) dax
o

-

0052525 weighted by the factor x K(x),

v (1 - -T-Jro/z)

and g = tan—1 is the angle of
LR X x
Vo - wo
the relative flow at the windmill,. When TLR—_ is small
- AR P &

(i— - %\ s 0.5, and s 21,0, end then equations (114-) and (‘l5)
f' r

become equal, at least for small values of \?ID. For approximate
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calculations s can be put equal to the mean value of 005255

over the woke (i.e. approximately the value of cosz,ﬂf at x2 = 0.50)
or

s 1 ..ll..l..ilo(16)
~ W\ 2
§ % B oy« —‘l)
2 2
o
_I“J.Rt
where g, = .
o] Vo

Since the power output, P, is a function of the
mmber of blades, B, the ratio of the peripheral speed to
the wind velocity, Hos and W, no simple relation, in

general, exists for its maximum value, However when V O/_-:'ZRt

is very smoell k and e have values near unity and if we
use the approximate value of the slipstream expansion ratio
(equation (14) ) then it con be shown that the moimum power
output occurs when

wo = 0,422
giving CP 3 0.385 ..-.--oo-o-o(“l?)
max
(at Cp )
max

The corresponding valucs obtained from the simple
theory arc,

w, = 2/3
CP = 16/2? = 0'593 II.II.I.I...(18)
max
at CP
max

However when we use the more corrcct expression for

Ri_H /Ri from equation (15) we sec that Rm/i?t tends to infinity
B B o . e - =
when W _(m (i.es when b, is large W, = 2/3)e The

power cocfficicent CP does not rcach a maximum for a value of
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ﬁo < 2/3, when equation (15) is used for /EQQ in equation
- R
(12), but tends to infinity with R &E/Rt. v 14 appears

{herefore that equation (15) is not satisfactory when the slip-
strean expension is large and it must be expected that the
calculation of the radial vclocities according to a sccond
order theory would lcad to a modified formula for R OC‘/R .

In practice an instability must arise for same value of {'-?0
less then unity. In view of this instability in the operation

of the windmill the values of ﬁfo and CP given by cquation
max

(17) moy more nearly represent the limiting conditions obtainable

in practice.

So far we have found the maximum power conditions in
terms of W but it is more important to state how the power
cutput depends on the ratio .f}_Rt/VO for a given fixed pitch

windmill, If we consider the blade 1ift loading at a radius
of Q.75 R‘b’ say, as representative of the overall blade

loading we can relate 1?"-0 to pg and 0, the blade angle at
this radiuvs. From the vortex theory of windmills the
following relation exists, for the ideal windmill, between the
local blade angle, 6, and the local 1ift loading W

2K(x) W (1 = %) sin’g
a CL = i 23 \\ g on-oao(19)
w cos
(1 - % /2) (\1 - 52 coszﬁ)'/)

vhere 6 = g-a
L= 8- 0= a)
and ton @ = vn:: (1—%0/2)

L5 Rt X
@ is the angle of relative flow, ¢ is the angle of incidence,
¢y is the blade no-lift aongle, &y is the lift curve slope
and o is the blade solidity. If suitable values are chosen

C

for o, a_, b, end a_ it con be shown fron equation (19) that
the blade incidence, a, increases from its no-lift valuc at

W, =0 to its maximm valuc at about {'vo = 0,42 and falls again
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to its no-1ift angle when W_ = 1.0, This indicates that
the approximate relation for the slipstresam expansion given by
equation (14), which leads to a maximun pover output coefficient,
Cps at Fro = 0442, may be more representative than equation (15)
for large valucs of W o

For small values of Vo/ﬂRt » K(x) at x = 0,75 is
epproximately cqual to unity., If further we assume that
tnf=sin@ =g and cos & = 1 then, from equation (19),
we ind after some rearrangement that

=2 .

‘ND -‘I?C] P‘] + P2 = O .O'.tc-n-o-.(zo)
TIPS PR
r~ -
Su |
and P:ip (g-a) l1_.._o(e+a)
2 8% o 0.75 | A o 0.75 l

Real values of W can only be obtained fram equation (20)
when OE_E “"|
5 L8 Mo (o ao)0.75 =4 " fa . o ao\)
0] - 2 2
¢ 26 (ca) LO 32 Jou15
0.75
For both small and large @ equation (19) shows that C;, =0

when '9-70 = 1. It follows, from equation (19), that for values

(21)

of wo_g_‘_{1
-1 /2

0 o - essssussnnns 22

0.75 # ten ;\3“0) a, (22)

a relation which is independent of the blade solidity.
Bquations (21) and (22) represent the onset of instability and
correspond to the critical values of W noted above,

At the other end of the range zero power output is
obtained when W, = Os This occurs when

&
p.o = 3 cot (0 + 30)0.75 .ll....tl'..(zj)

Vhen B = 0 equation (23) shows that the maximum valuc of 0
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is given by

(0° )

max

(o]

o]
90 = aO ll..ln.tll..(zl{-)

0.75

The limits imposed on ﬁo and © cbove, for large
values of EU , correspond very closely to the limit of stable
operation observed experimentally by Iwasakil" for windmills of
less than 4 blades having values of 0 less than 200.

It should be noted that in the determination of the
gbove results the drag on the blades has been neglected. 1%
is thercfore probable that for large valucs of W, some of

these relations will need modification, In order to find the
rcduction i1 power output due to the cnergy lost in overcoming
the (profils) drag of the blades we must add to the cnergy
logss E +the amount ED where

- 1 ss_fR . . \3
= Be C -
2 2 D {v
VI(RS) RS Jo o

Ar sweessessesss(25)

where ¢ is the blade chord
W is the resultant velocity
CZD is profile drag coefficient,
Since the resultant velocity,

| Yo 2
VO = 5 cos Q‘
W o= - (see section 6) and the
sin @

1ift coefficient, C;, can be found from equation (19) we cgn

L,
rewrite (25) as follows
B ) 2 1;0(1—1',’0)1{ VAN (26)
4 2 LE ssoscssesvese
gpvg(ﬂRt ) Ho
N cDﬁzﬂ
i ox K(x) = j ax
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where Ly = R
E x K(x) ax
t/ O
and ¥ =V .
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The power coefficient corrected for blade profile drag becomes

Op = 2 W, (1-w.) H(%)z ( . %V-@'D) - %:} Y .- )

since £\ is the average value of (CD‘E’z/CL x) weighted
by the factor x K(x) we can find an approximate value for it
by putting it equal to its value at x2 = 0,50, or

2 - )2
PO s B | Yo
QAE_(S‘Q)(_H_?‘" (28)
N 3 I AN RN RN NN]
Ho Ho cL p2 W =
il R
z " ( Z
G c
where G—D- is the value of G—D at x = —j—:- s
L L N2
R
If finally we substitute for R‘“— from equation (1L4)
t
then for values of ﬁo below sbout 0,75, and large Eos
c.
D 2
5 ( 'ﬁ ( " _\ (1-—v_-;ro) Gy, (2+p'0)
CP=2kwo -T! --Ewo: 1 w
' - —-9-) 1r-2— ( - w}
2
.-......-...(29)

It follows that for normal values of CD/CL, say
about 40, the drag correction to the power coefficient for
moderate disc loadings is less than 5 per cent and it changes
the value of \_vo » corresponding to maximum power coefficient,
by less than 2 per cent.

Although these results have been obtained for an

unshrouded windmill it will be shown below that very similar
relations also exist for the ducted windmill,



5be The ducted windmill

(i) Discussion

In section (4) above the performence of the ducted
windmill has been cbtained on the as suption that the flow is
one-dimensicnal throughout and the number of blades is infinite,
Although in section (4b) the frictional losses in the duct
have been included no account wes taken of the energy losses
in the slipstresm due to the rearward movement of the helical
vortex sheets shed from each blade of the windmill, In addi-
tion although the interdependence of the winduill and its
fairing were noted and allowed for approximately no attaapt
was made to determine a correct formulation of the problem,

Let us assume in this section that we are ccnegidering
the perforuance of an ideal windmill, that is one in which the
vortex shects shed from the blades move rearwerd far downstream
as solid helicoidal surfaces, mounted in a duct of erbitrary
cross-section. It is then possible to calculate the axial
force, cnergy loss and power cutput in terms of W s the

axial displacement velocity of the vortex shects far downstreanm,
and the fairing (or duct) drag.

(ii) Flow through the duct

If we neglect the rotational effects in the windmill
slipstreom ond assumc that the axial velocity far downstrecam
is uniform over the slipstrcam, then it is permissible to
replace the windmill by a gouze s having a pressure drop equal
to that created by the windmill (figure 12), ,

The calculation of the internal and extbernal pressure
distribution over the duct alone in an inviseid flow can be
performed by the method of singulorities in which the duct is
replaced by a suitable distribution ond strength of sources,
sinks and vortices., £lternatively for a given distribution
of singulerities, or prescribed internal and external velocity
distributions thc shape of the duct can be calculated,

Vhen the pgouze is present in the duct the method of

aleulation is similar but is complicated by the vortex sheet
boundary dovmstream of the duct exit between the slipstream
and the free stream. The flow inside the slipstream is at

a lower total head than the flow outside but the pressurec
across the vortex shect is constont. A discontinuity must
therefore arise in the tangential velocitics on each side of
the vortex sheet, The main difficulty in the calculation
is that the shape and strength of the vortex sheets are not
knovn initially but can only be determined when the calculation
is complete,
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The standard mecthod of calculation is to reploce
the vortex sheet by a solid boundary across which a pressure
drop acts, equal to that across the gauze. The gauze is
then removed and the complete flow, internal and external,
is then henogenous  since the flow is at constant total head
everywherc, The shape of the vortex sheet and the velocity
distribution around the complete duct can be found by an
iterative method, ! Finally the velocity distribution across
the plane of the windmill can be determined,

The viscous effects on the pressure distribution
around the duct can be determined from a calculation of the
boundary layer displacement thickness using the first approxi-
mation to the pressurc distribution., The above calculation
for the pressure distribution must then be repeated for the
new 'effective’ duct shape, Thus finally the duct drag can
be determined as a sum of the tangential stress and normal
Pressure components together with the veloeity distribution
acrcss the plane of the windmill.

Naturally in some cases it would be better to find
the drag of the duct, housing the gauze, experimentally,
although in all cases the theorctical calculations will show
clearly what shape of duct is nccessary to avoid separation
of the boundary layer especially close to the duct exit.

It should be noted that very little cxperimental information
is available on the performence of ducted intakes of the type
rcequired for the ducted windmill, It is thereforc important
that a combined theorctical and experimental programme should
be dravm up to investigate the most suitable external and
internal profiles to suit the performance of high efficicncy
ducted windmills,

(iii) Performance of the ducted windmill

It will be assumed that the neglect of the rotational
components of the velocity in the slipstrcam in calculating
the drag and velocity distribution in the planc of the windmill
produces negligible errors in the values of these quantitics,.

# It can be recadily shown, according to inviscid flow theory,
that for ducts having a finite trailing cdge angle a stagnation
point of the internal flow, but not of the external flow, must
cxist at the trailing edge in order to satisfy the condition

of constant pressure across the vortex sheet springing from the
trailing edge. In consequence there will exist, close to the
duct exit, a region of large positive pressure gradient which,
in the real flow, might tend to causec separation of the
internal flow,
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It vill be assumed also that the velocity distribution
tlrough the windmill disc is equal to the sum of the slip-
stream and duct cffects calculated separately, The value
of the duct velocity chtained in secticn (ii) is based on
the slipstream velocity being uniform, Thus if Vz(x) is

the veleeity in the plane of the windmill, when the uniform
vilorilies in the slipstrcam are Vo and Vioss respectively,

Tor unslireom end downstream then the contribution to V2 due
"...O t}x’.} [I.T_".."_'.Jt is
; { ot Vﬁ;\ <
&1'2(::) = V.(x) - k—- 57—/ « The additional
= /7

contribution to szx) duc to the motion of the helicoidal
vortex shects inside the duct vortex shects far downstresm
of the duct exit will be discusscd below,

The axial farce on a ducted windmill, in which the
cffccts of friction ere included, can be found from an
application of the momentum equation to the three regions
shown in figure 13,

Iet BCD and BFE represent the displacement of
the boundaries of the duct and its weke to allow for the
cffects of the boundary loyer.

In region I outside the duct
ih
- e
PO (Sw SO) p ds =0 .40101-00000(1)
A=B=~C~D

In region IT the total drag force on the duct,
including friction is

D= p (8= G + f_;} pas +p UV ~u)d5 cevsesese(2)

In region IIT the axial force on the windmill is

F=pl8, - .S;,,) + JJ [(POHP‘I) MYy (Vo-u1)] ds_jt‘:f"'j P

i";,"B-"-F"-'E
c---.-.-.ou.(;)
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Thus from (1) and (3)

T

-
Po = Py + P4 (Vo—u,])‘l o S.oo > LJ pas + Py (Sc)'o'-soc)

BE.-BD ool-l-ollono(ll-)
and fram (2) and (4)
F+D' :Jy‘po —p1 +pu1 (Vo-fu1i] dsm oool-o-to-.o(5)
where .
D’=D—9LJ u(Vo—u)dS= pdS—po (S(,:G”SOU)

wake HD-BE

The duct drag force can be calculated, as explained
above, by replacing the vortex sheet FE by a solid boundary
when the windmill is removed, It is assumed that the pressure
drop, A p, across the windmill is uniform across the plane
of the windmill., Thus when the windmill is removed the vortex
sheets CD and EF can only be similarly placed when a pressure
difference A p is epplied across them, Since the flow
inside and outside the duct is then homogenous,” the velocity
and pressure distribution inside and outside the duct bound-
aries can be calculated, Allowance can be made for boundary
layer effects and in particular their effect on the duct
Pressure distribution and the effective duct area, SOCJ’ far
downstream, The duct drag can then be obtained.,

The integral on the right hand side of equation (5)
is identical with that for the unshrouded windmill, if we assume
that far downstream of the windmill the vortex sheets are
moving as rigid surfaces., Therefore from equation (10) of
section 5a

2
D! & 1 o R
F; 2 = Zk.Ff \1-‘? (‘;jg-+'e-).\ ﬂ .'...l..llll(6)
-l V ® R ° o k il R2
2 P O t t
_ ¥,
where W, =g end VO = w, is the axial velocity of the

(0]

windmill helical vortex sheets far downstream

and Rt is the outer radius of the windmill.

It should be noted that the values of ¢ and k will be



different from their velues for the unshrouded windmill due
to the presence of the vortex sheets in the bounding wake,
However no calculations of their values in this case are at
present available although presumably they could be obtained
by the experimental potential flow tank method suggested by
Theordorsen.

Thus for a given value of the axial force, ¥, the
pressure drag D' and the ceffective radius of the slipstrcam,
K _,, can be found.

The power output, P, from the windmill can be
obtained by cquating it to the difference between the kinetic
cnergics of the fluid far upstream and far downstream of the
windmill less the work done by the pressures on the bounding
surfaces ci the given control circuit.

Thus in the notation of section ba,

n— =
\$ P I
- - £ -
P e Plr-ny 150 m a5, )
where u = V_+u
1 le] Z
2 2
" = u, +ug+ (V. + uz)
But = pwu_ + 2/2
PoPy = PR, + Py
Therec 2 o u2 + u2 u2
where q_1 = u, g R

and if allowance for q, q, as functions of time are made then

i‘.h.....
P = -ﬁLBE j’ -u V_(V-w_) - ui(VO-WO)_l av secassssscas(B)
or
R2
P = = ezy22
CP = ‘W = 2k WO (1"\?0) (1 Ly k _'TO) R2 -nn-.o..t.i!(g)
2PV Ty t

which is identical with equation (12) of section 5a. The
correction for the drag of the blades is found from equation
(26) of scetion 5a. The value of Roa/Rt is found from the

duct calculations described above or approximately from
contimity, If the mean velocity increment in the plane of
the windmill due to the external duct is 6'\?'2 then approximately
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2 VO
2 :‘:5 - .--.........(10)
+ 1 ""W'O
and _
o & %, SVZ)
CP —:;':21(';?0 (1 —-]ETID) G —2_’+_'v:', .-...I......(11)

If we put k= e =1 and assume § = <W2/VD is
independent of {-'?o the maximum value of Cp occurs when

/ 2
ﬁ' = 5+26 = \'3 a 66 - 1}6 .I........I.(12)
o]
3
As an example if & = 2, 2—-}0=o.1+8anch= 1438
and similarly if 6 =1, W, = 046 and Cp = 0.89.

These geins in power output are of the same order of magnitude
as those calculated from onc-dimensional theory and therefore
Justify to some extent the conclusions based on those results.

It must be stressed at this stage that CP can
only be determined when F, D', W_ and R m/Rt satisfy

equation (6)s Thus cquation (6) is a compatability condition
for these variables,

The experimental results obtained from ducted fans
in streamlined fairings might at first sight be considered
useful data in connection with the design of ducted windmills
and so assist in formulating the accuracy of the above
theoretical results, However due to differences in duct geometry
and pressure gradients dovmstrcem of the windmill, the existing
data can only be used qualitatively but if anything seem to
confirm rather than contradict the above predictions.,

6. The vortex theory of windmills

In section 5 the performance of the windmill has
been analysed from a description of the vortex sheets, far
dovmstream of the windmill, shed from its blades, In this
way it was found unnecessary to specify the flow in the
vicinity of the blades and the detailed blade geometry.
However in making the assumption that the vortex sheets far
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dovmstream are moving rearward as rigid helicoidal surfaces

o certain distribution of circulation along the blades is
impliecds This in turn fixes the blade chord and blade pitch
angle as functions of radius, but this blade geometry is found
to be unsuitoble for most practical applications. However
small changes in blade geometry from the ideal have been shown
not to affect materially the description of the vortex wake

for domnstreams. Hence the vortex sheets in the form of rigid
helicoidal surfaces represents a good approximation to the
vortex weke of a windmill of arbitrary design. It should be
pointed out, however, that the assumption that the vortex sheets
are in the form of rigid helicoidal surfaces is not essential
and an adequate theory can be built up in which helieal
vortices of arbitrary strength are shed from each blade element,
The former osgumption is, however, best suited to practical
applicaticr.s,

The theory, as discussed below, is equivalent to
the 1ifting line theory of aerofoils and will be adequate when
the aspect ratio and the distance between adjacent blades are
large. For blades of small aspect ratio lifting surface
theory will be necessary , It is not envisaged, for the case
of rerofoils of conventional désign,-that such claboration of
the theory will prove necessary, R

If the windmill rotates with angular velocity L) in
a uniform flow of velocity V_ the 1lift on the elements of
cach blade is a function of tBe local blade incidence i.c. the
angle between the blade chord line and the resultant velocity.
This 1lift must be associated with the circulation around the
blade clement. But the circulation will vary from the tip
to the root of the blades and hence trailing vortices will
spring fram the blades and pass downstreem in helical paths
(sce figure ’u,_). In general the changes in circulation
along the blade will be grecatest near the tips and the roots
and hence in thesec regions there will be strong concentrations
of vaorticity. The induced velocities from the helical
vortices, in the slipstream downstream of the windmill, must
be cvaluated in order that the true resultant velocity of the
fluid relative to the blodes, and hence the truc angle of
incidence, can be cbtained. With this velocity and incidence
at each blade element and with the aid of the two-dimensional
characteristics of the blade section, the 1ift and drag
forces on the clement can be found (see figure 15). Since in
general the induced velccities are periodic in character, the
1if% and drag forces on the blade element are functions of
time., In this scction only the mean values with respect to
time of the induced velocities will be considered.
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6(2) The unshrouded vindmill

Since the axial component of the induced velocitics
is in the oppositc direction to that of the wind far upstreom
(see figure 15) the slipstream downstrcam of the windmill must
suffer an expansion. Thus the helical vortices springing
from the blades of the vortices must increase in dimmeter as
they move downstream. Ve assume that, for purposes of
calculation only, far downstrecam of the windmill the vortex
sheets do not roll up but contimie to move away from the wind-
mill in a regular manncr, On the assumption that the vortex
sheets arc of constant dismeter far downstream of the windmill,
the induced vclocity at a given radius due to these moving
vortex sheets can be calculated and hence the induced velocity
at the corresponding radius in the plane of the blades can be
found. In practice the cxpansion of the vortex clements in
the slipstream cam usually be neglected., The induced
velocitins are then calculated for a helical vartex of strength
-af at radius r, heving a pitch angle @' = tan“1(Vb-WD/11r),
where (Vbuwb) is the axial velocity of the vortex element
relative to the windmill, (The value of W_, which is only
independent of radius when the vortex moves as part of a rigid
helicoidal surface, can, to a first approxination, be estimated
with reasonable accuracy from the simple momentum theory
formula for axial forcc or power), Vhen i is large,
however, errors in the calculations of the induced velocity
distribution in the plene of the blades will arise if the
expansion of the vortex clements is neglected. This effect
will be discussed in section 6b below,

If P'(x',y',z') is a point on the vortex of
strength =d[” then the velocity induced d°q at the point
P(r,0,0) in the plane of the windmill, due to the clement of
length ds of the vortex at P' is by Biot-Savart's law

2 _al’ sinWag

d 4 = 1—}-‘?‘; R2 -c-a--ooooo-(1)

where R = PP' and ¥ is the angle between PP! and ds.
When we integrate over s from O +to 7, over all vortex

sheets, and along the length of each blade and find the
components of the induced velocity v end Wy perpendicular

and parallel respectively to the resultant velocity we have
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If the effect of the boss is included Wt(r) still
equals zero but the normal induced velocity, Wn(I') becomes,
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where By = o and Ri is the boss radius.
c O

A further increment in induced velocity arises from the flow
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field arcund the boss,. This can be cstimated by the method
described in section 5b(ii).
W and W, ave the components of the induced velocity in

the plane of the windmill due to the trailing vortices and act
normael to and in line with, respectively the velocity W',

W,

N g :
Tl | 1 F
. \ \2'5'\-’1_1 ]

.';j w, !
e et !
"o *900 ‘j‘ | Vn
y o |
T e o
e i
o ; e <1

At : l

V _=w
g = tzm—1 = 0> pitch angle of vertex far
\Qr downstream

2Wn resultant induced velocity far downstream
normal to W!

L resultant induced velocity in plane of windmill
(approximately normal to W).

In general no great loss in accuracy results if i, =W (see

ﬂ
figure 1 ) is assumed to act normal to the resultant velocity
We From the sketch sbove it can be seen that with the

above approximation

W = '—m— +é—o sin @ L k2

The angle of incidence, a, of the blade at radius r is

given by (see figure 1 )

a = g“‘ 0 oaoootoolllt(h-)
where # is the relative flow angle
and 0 1is the blade pitch angle relative to the plane

of rotation,
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The 1lift force per unit radius, L, acting on the blade at

radius r is given by

L = %sz C CL = p P(I‘) W(I') --.o-o-t.o-l(B)
where CL = a.o (a s (10) o..tllocll..(6)
a, @ two dimensional 1ift curve slope and the

no-1ift angle of the aerofoil section
2 local blade chord

WaeC
or, T-](r) = -'E'"'L .l..ll.llll.(?)

Equations (2) to (7) inclusive define an integral
equation which can best be solved by a method of successive
approximation,

In the design of airscrews Lock and Yeatman7 have

used, in place of equation (2), the corresponding values of
L determined by Goldstein for the ideal airscrew. They

tabulate a circulation function, f‘L , as a function of
sin § , v/R, B, where {_is defined from the relation
ca(f-06-a)

W1 = tcooo-onocal(a)

4 sin g

where 0 =22 is the blade solidity,

In place of equation (8) Theordorsen' | has found
a relation between oCp and W_ , #, B, and Vo-wo/n D

which can be written

2w _ 1-'} sin’
GCL ( i )W == ﬁ K(x) ﬁg ....ooto(g)
(‘I—WO/Z)( )

where K(x) = nx)

o ?

2m (V -7 ) is tabulated in reference 11,
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and 2 - =
cos“d (1 - WO)

function tabulated by ILock and Yeatman?.

corresponds to the

When W eand @ have been found for each radius
the 1ift and drag forces can be calculated and by resolution
the torque, Q, and axial force, F, can be cbtained (see

figure 1),
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where x=r/R 3 0= Bo/2mr ; W = WO/VO

A more convenient expression for the power output
coefficient can be found as follows. If the overall blade

solidity, o y is given by

R
AJ‘RE Be dr i
. - sasesFEREAIRAR 15
"E(Ri - Ri)

and uning the relations above for Cy and tan @ then

equation (1l4) beccmes
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From the experimental results of Iwasakiz" the
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enpirical relation between Cps sy 0 and C

o Ib.?5
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fom o
is CE):EL“i v t:) 5’ CL 00!....‘0000(18)
o 0.75

where the factor 0,25 represents the approximate value of the
integral cn the right hand side of equation (17).

The difference in the performance of slow and fast
rumning windmills can easily be demonstrated from the relations
abhove,

The slow running windmill has a low value of Ho =,QR{(TO

(say 1 to 2) and a high solidity (large number of blades). The
fast running windmill has a value of u_ (between 3 and 6) and

2

x dx

2
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a low solidity (small mumber of blades), The overall solidity
¢ in the former casc is usually about 1,0 and 0,2 in the latter.
Thus for a slow running windmill pi o is dbout 1 whereas for
a fast running windmill u2 & is sbout 2, On the other hand
the torque is proportional to o o « Therefore the slow
rumning windmill having values of By @ equal to about 1

has greater values than the fast running windmill whose value

of g G is cbout 0,6, This shows clearly why the slow
running windmill is favoured in cases of light or variable

‘W’ind .

6b, The ducted windmill

In section 5b the performance of the ducted windmill
hns been obtained from a consideration of the movement of the
helical vortex shcets far downstream snd the induced flow in
the plane of the windmill imparted by the duct. In finding
the local 1lift and drag forces acting on the blades the duct
and the helical vortex sheet induced velocities must first
be determined in the plane of the blades.

When the duct is of constent diameter and infinitely
long the effect of the duct is to prevent the normal expansion
of the slipstresam dovmstrcom of the windmill, As a result
the induced velocities in the plane of the blades arising from
the vortex sheets downstream of the windmill are different from
those of the unshrouded windmill due to this 'image effect',
The induced velocities far downstrcam superimposed on the
uniform axial vclocity will couse a variation of the axial
velocity across the duct, This variation is in general quite
significent and cannot justifiably be neglected.

For a duct of arbitrary shape the induced velocity,
due to the duct alone, can be calculated by the method
described in scction 5b(ii). The method propesed for the
caleulation of the induced velocity in the plane of the blades
duc to the helical vortex sheets dovmstream of the windmill,
follows from the fact that the induced velocitics, in the plane
of the windmill, are relatively insensitive to variations in
the radius of the vortex elements far downstream., Thus
although in the actual flow the vortex sheets must expand in
diameter, together with their images in the boundary wall
and the vortex sheets springingfrom the duct exit, it will
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be assumed that they are of constant diameter operating inside
a constant diameter duct infinitely long, The calculation
of the induced velocities from the helical vortex sheets from
a windmill mounted in a duct of arbitrary shape is therefore,
to a first spproximation, identical with that for a duct of
constant diameter.

The question now arises as to what pitch of the
helical vortex elements should be useds When w_, the axial

displacement velocity of the vortex element, is small campared
with V_  this question is easily answered, It has been
shovn in section 5 that the overall performance of an un=
shrouded windmill depends only on conditions in the ultimate
slipstream, Thus in the calculation of the induced velocities
between the vortex sheets far downstream of the windmill the
pitch of the vortex sheets must be based on VO =W, the

axial displacement veldcity of the vortex elements relative
to the windmill, Since W is assumed small compared with

VO the diameter of the vortex elements far dowvmstream are

only slightly greater than the corresponding elements at the
plane of the blades, In this case the induced velocity at
a given radius in the plane of the blades is very nearly
equal to half the calculated induced velocity, at the same
radius far downstream, in terms of the pitch of the vortex
sheets based on VO % This clearly is the value to take

in the case of a ducted windmill when the duct is one of
constant dismeter.

When W is not small compared with VD the vortex

element expands as it moves dovmstream and in consequence its
pitch changes due to both the change in dismeter and the axial
displacement velocity of the voritex element, If the induced
velocities in the plane of the blades are evaluated using the
Biot-Savart law allowing for this variation in diameter, it
can be shown, qualitatively, that the final result, as stated
cbove, is relatively insensitive to variations in the radius
of the vortex elements far downstream,

Thus in any approximate evaluation of the induced

velocities in the plane of the blades for large values of Vs

the pitch of the vortex sheets just downstream of the windmill
should be used, In the case of the ducted windmill the pitfch
of the vortex sheets should therefore be based on the axial
velocity, Vz, see section 5b,

In order to reduce the losses in the slipstream it
may prove advantageous to use guide vanes downstream of the
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windmill at the entrance to the diffuser., It is unlikely
that any great increase in power output will result from this
cause since any gain in overall efficiency will be partly
offset by the increased drag and by increased diffuser losses,

(1) Constant dismeter duct

If V_ is the axial velocity of the uniform flow
far upstream of the windmill, which is rotating with the
angular velocity,.fz_, then the elements of the B blades
at a radius, r, will each shed helical vortices, of pitch
engle §_ = tan™ ' (V J/0r), into the main flow., The
strength of these vortices will be -d[7, where -al is
the change in circulation around the blade element between
radius r and r + dr., The equivalent induced velocity

in the plane of the blades can be calculated using the Biot-
Savart lew and integrating over the complete length of the
vortex as discussed in section 6a sbove, However since the
helical vortices are moving inside a duct the images of the
vortices outside the duct must also be considered in order .
to satisfy the boundary condition of zero normal (or radial)
velocity at the duct boundary., A more dircet method is to
find a solution of the potential equation satisfying the
appropriate boundary conditions,

In either case the components of the induced
velocity®s13 in the plane of the windmill are

~F qf%Q I

B2 V1442 5.0V 14,2
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where W and w, are the components of the induced velocity

perpendicular and parallel to the resultant velocity\/ Vi -z-i\‘}_zrz.

.S'J_Rt

and o, =, where Rt is the blade tip radius

o
SR,
Bg =7 » where R(1 is the duct radius,.
o
Approximations to these expressions have been given

by Iwasﬂcil", where only the first term in the asymptotic
cexpansions of the Bessel. functions has been retained,

It should be noted that the axial velocity component
far downstrcam of the windmill is not equal to V_ but is

o
V, - W, where w_RU2w sec ﬁo (tan Q'D = VO/Qr). Clearly
g is not constent with radius and must vary in magnitude

and sign in order to satisfy the continuity relation. This
feature has been neglected by meost variters on the performance
of axial flow windnills (cr fans)., Its neglect is only
Justified when the blade circulation is so adjusted that the
magnitude of the radial velocity in the plane of the windmill,
is very small,

In some cases a better approximation to Vi is

required. This can be cbtained from the first approximation
to WO(I‘), on the assumption that the local pitch angle of
the vortex far dowmstream is ta:rf'A'l (VO—WO/f lr) in place of
tan-1(Vo/ﬂr). Thus W (r) can be determined from equation
(‘I) with p =.Qr/V0—WO(r) .

The procedure for finding the blade 1lift and drag,
and hence the output power from the windmill, is identical
with that described in section 6a cbove. It can easily be
shown, however, that one important result of the windmill
operating inside o duct is that the circulation, and therefore
the 1ift, do not fall off so rapidly towards the tip as in
the case of the unshrouded windmill, Iwesacki™ has shown that
the theoretical gain in power due to this cause alone can be
as much as 15 per cent and experiments have confirmed this,
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(ii) Duct of variable diameter

As stated above it will be assumed, in the calculation
of the induced velocity distribution in the plane of the windmill
due to the trailing helical vortex sheets, that the outside
diameter of the sheets is equal to the outside diameter of the
windmill and the vortex sheet diasmeter far dovmstresm is equal
to the duct diameter in the plane of the windmill, Tt is
assumed that the axisl velocity distribution across the plane
of the windmill, due to the venturi effect of the duct s has
been calculated, say, by the method discussed in section 5b(ii),

Thus the local velocity relative to the rotating
blades has the components J)r + w_ sin #' ond V, - w cos g '+87,,,
see figure 16, and the resultant velocity, W, and the relative
flow angle, @, both as functions of r/RO can be determined

once wn is known.

The angle of incidence of the blades, ¢, is given

by
a = g - 8 .....Il..l.l(z)
where tan @ = (Vo-wncos o} '+6V2) Vi (ﬂr+wnsin ') and the
local circulation, r‘, in terms of the 1lift coefficient, CL’
is
WeC _
L L Wi
r: "-'2— = f—-a(ﬁ—e—ao) ..-oonao---.(3)
where ¢ 1is the chord

a 1s the lift curve slope

and a, is the no-lift angle,

Equations (1) and (3) form an integral equation in
terms of w _(r) which rust be solved by a suitable approximate
nunerical method,
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7« Discussion

Detailed calculations of the performance of ducted
windmills baged on vortex theory have not been given in this
report since at this stage in the investigation concrete
proposals for the most satisfactory geometries of the duct
and blades have not yet been formulated. The vortex theary
of ducted windmills has been presented in order to check
qualitatively the conclusions cbtained from simple one-
dimensional theory and to form the basis for further
theoretical and experimental studies,

The conclusions reached in secction 4c that the
power output of a ducted windmill can be arranged to be at
least 65 per cent greater than that of an ideal unshrouded
windmill of similer gecmetry appears, if anything, to be on
the low side, although this figure corresponds to power 3
outputs greater than that obtained experimentally by Samuki

and.Iwasakih‘with fairly crude duct geometries. In both the
latter experiments the gains in power output obtained with
ducted windmills have been largely duc to reduction in tip
losses and blade unstalling and little or no effcct from
controlled diffusion. The evidence to date is not conclusive
as to the relative merits of long diffusers having large
exponsion ratios and high duct losses and short ducts having
small losses, In section L4c the mumerical calculations show
the need for high values of the diffuser expension ratio and
arge negative pressure coefficients at the duct exit but no
attempt has been made to find the corresponding internal and
external duct profiles of the duct and to investigate whether
or not the estimated losses are correct, The reason for
this is that little detailed information is availeble on the
flow of air through diffusers having free exits in which the
velocity external to the diffuser flow is considerably
grecater than the mean internal velocity downstream of the
exit, Under such conditions the 'diffuser efficiency' or
pressure recovery is likely to be greater than in the case
vhere the external velocity is zero. In addition the action
of the windmill is to speed up the flow near the walls of the
duct at the expense of the flow near the centre., Experinents
by Coller!® with & windmill mounted inside a wind tunnel
diffuser have shown an appreciecble improvement in the velocity
distribution in the diffuser, although naturally in these
experiments the upstrcam velocity was not uniform and there-
fore represent different conditions from those discussed heres.

It can be assumed, on the basis of present knowledge,
that, unless future experimental results prove to the contrary,
the most suitable form of duct will consist of an entry and
exit cone shoped to form an cnnular duct of'streamlined sections
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in which the exit to throat area ratio is about 3.5 and the
inlet area is made not greater than the exit area, The loss
in performance with ducts of crude aerodynamic shape can only
be determined from experiment,

In the structural design of ducts having large
inlet and exit area ratios the duct must withstand not only
the drag forces but also the inward radial forces, corres=
ponding to the 1ift on an aerofoil, The latter forces have
not been discussed in the text sbove although they can be
immediately derived from a knowledge of the pressure dis-
tribution over the duct which, incidentally, is required in
the calculation of the drag force., It has been stated in
the text that this drag force is not equal to the drag of
the duct when the windmill is removed. This is because the
lower pressure behind the windmill acts on the walls of the
duct and produces an extra drag, Although the duct develops
a radial force the induced drag is zero since no trailing
vertices are shed in a symmetrical flow,'? Vhen the duct is
inclined at an angle to wind a real lifting force and pitching
or yawing moment develop and, because there are now trailing
vortices, an induced drag. It is prcbable that the magnitude
of this pitching or yawing moment will play a very important
part in the design of the supporting structure for a ducted
windmilles The effect of duct incidence on the magnitude of
the induced velocity in the plane of the windmill is quite
small and Muttrayl/ has found that it is apprecisbly constant
over an incidence range of + 10°,

It was also shown from the calculations of section
be that the ducted windmill disc loading is, as a result of
the increased axial velocity, lower than in the case of the
corresponding unshrouded windmill, Since, in addition,
the tip losses will be reduced and gust effects lessened the
overall mechanical design of the ducted windmill should
prove simpler than its unshrouded counterpart, and would
therefore tend to offset the additional cost of the diffuser
and ducting, The increased steadiness in the flow through
the plane of the ducted windmill, as a result of the contrac-
tion effect of the inlet cone, will causc the rotational
speed to be steadier than in the case of the unshrouded wind-
mill, This should present some simplification to the speed
control problem. From the experimental results of Iwasaki
and Sanukid a two or three bladed windmill appears to be best
suited for operation inside & duct. The values of‘_QR_b/V o

corresponding to maximum power output are in the range 3.1
to 3.7

In order to confirm the above predictions and to
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optimise the geometrical layout from the conflicting points
of view of cost and aerodynamic efficiency it is suggested
that a wind tunnel testing prograsmme should be undertaken.

The models could be tested at a Reynolds number of sbout
1/5th full scale and because of this scale effect would give
slightly pessimistic results. Extrapolation to full scale
could be done using existing data on the variation of diffuser
efficiencies and skin friction effects with Reynolds number,

Gauzec screens of varicus mesh sizes and gauges
would be used in the plane of the windmill to represent any
desired value of disc loading. Only one contraction section
with a contraction ratio of about 1.5, as suggested by the
calculations above, would need to be made. A range of
diffusers, having different expansion ratios and cone angles,
various external body shapes, and ejector arrangements could
all be tested in turn, The results obtained from such an
experimental programme would be a valuable contribution to
the understanding of the ducted windmill problem.

After the completion of this experimental programme
the path would then be clear to commence the detailed design
of a windmill, by the methods discussed above, suitable for
high performence operation inside the optimum duct. In the
meantime the methods can be applied to the experimental
results of Sanukid and a comparison made between theory and
experiment, It is expected that as a result of these cal-
culations simple numerical methods will be evolved for the
performance of ducted windmills similar to those used at
present in the design of axial flow fans, It should be
noted, however, that a method in which the variation of the
axial induced velocity with radius is neglected is unlikely
to yield reliable results for the performance in this case.

Conclurions

1e The performance and design of ducted windmills
using one dimensional theory, including the effects of
friction and the external flow over the duct, are presented.

2e The results of the one dimensional theory are
comparced with more elsborate methods based on the vortex
theory of windmills and the acrodynamic performance of
ducted bodies,

3 The aerodynamic loading on the blades is discussed
and the differences in the induced velocity components between
ducted and unshrouded windmills noted.
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Le Calculations based on the one dimensional theory
show that gains in power ocutput of at least 65 per cent of the
maximum power output of the ideal unshrouded windmill can be
obtained when the windmill is shrouded with a duct of suitable
geometry., The importance of the diffuser cxpansion ratio
and the negative pressure coefficient at the duct outlet on
the power output are discussed,

5 The reduced disc loading and slight alleviation

of gustiness on the blades with the ducted windmill will, it

is suggested, partly offset the cost of the duct and supporting
structures The increased steadiness in the rotational speed
of the windmill is an important factor in favour of the ducted
Windmill.

e In view of the lack of experimental data on ducted
bodies of the type required for high performance operation
of ducted windmills a series of suitable wind tunnel
experiments is suggested., In these no windmill would be
used but its place taken by gauzes of different porosities
giving pressure drops equal to the windmill disc loading.
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Ducted Vindmill Performance
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