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SUMORY 

A preliminary study is made of the theoretical gain 
in power output obtained with a fully ducted land-type windmill 
is compared with the standard unshrouCed type windmill. The 
design of the internal and external ducting is discussed 
together with its effects on the overall performance of the 
windmill. The differences in the aerodynamic design of the 
blades for the ducted and unshrouded windmills are considered 
and attention is drawn to the importance of the use of the 
correct induced (or interference) velocities. A brief review 
is included of recent Japanese theoretical and experimental 
studies on ducted windmills. 

The gain in performance is shown to be due to (a) a 
reduction in the tip loss and (b) the effect of the increased 
axial velocity through the windmill by controlled diffusion 
of the slipstream. The gain is shown to de?end critically 
an the internal frictional losses, the diffuser expansion ratio 
downstream of the windmill and the external shape of the duct 
at exit and less on the inlet contraction ratio. It is found 
that with suitable design of ducting the gain in power output 
should be at least 65 per cent, as compared with the ideal 
power output of an unshrouded windmill, if both the ducted 
and unshrouded windmills are of the same diameter. Since the 
disc loadings of the ducted windmill are very much lower than 
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those of the unshrouded windmill, and the risk of high gust 
loading will be less, it is suggested that the simplification 
in the design of the windmill will partly offset the increased 
cost due to the windmill ducting. 
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Tables  

i s  Ducted windmill performance C
P4 
 = 0 

2. 1 	t 	, 	 --0.10 

3. t 	, 	 i 	 = 	0.20 

2+. 	r 	1 	 I 	 = - 0.30 

	

• 	: 	, 	I 	no internal losses, 

2. Notation 

ao 	lift curve slope forllade 

B 	number of blades 

chord 

CD 	drag coefficient 

= 	E energy loss coefficient C
D 2- V3/T2  2 o 't 

F P.  2 2 
=  	axial force coefficient ,10  
2 

11 
 o 	t 

CL 
	lift coefficient 

C 	
4 
	 pressure coefficient at duct outlet 

p2+ 	V2

-Po  

2 o 
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0   power coefficient 
v3 

2 o 

C 1 	maximum power coefficient of unshrouded windmill 

C
L 	

C
D  Cx = sin ---7 + w 	cos 

C
L 	

C
D  Cy  = 

sin 0 

D drag 

e 	energy loss coefficient 

E energy loss in slipstream 

ED 	profile drag energy loss 

f disc loading of windmill 

F 	axial (drag) force on windmill 

h
11
h
2 	non-dimensional coefficients 

H total head, pitch of vortex .sheets 

H 	loss of total head 

c• p)1 
	Bessel functions (I(z) = dio/dz) 

k 	pressure drop coefficient, mass coefficient 

X 	rate of flow of kinetic energy, circulation function 

Ko'Kl 	Bessell functions 

L lift 

m 	integer, factor in drag integral 

n 	area ratio 

p 	pressure 

/:113 	mean pressure drop across windmill 

P power 

resultant velocity 

Q 	torque 
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C 
r = 	performance factor, (r10,z cylindrical coordinates) 

P 
R. 	radius of ydndmill fairing 

Rt 	outside rnt9ius of windmill blades 

s 	 element of length, non-dimensional parameter 

S 	cross-sectional area 

t 	time 

ur'u0'uz -Talocity components 

u 	 axial component of velocity in slipstream or Like 

volume, velocity ratio 

V 	axial component of velocity 

V 
	

wind velocity 

wo 
	velocity of rigid helicoidal vortex sheet 

- 

VT
o 

= Viro/V
o 

T7 resultant velocity 

x 	velocity ratio, radius ratio 

X 	force 

z 	velocity ratio, (r,0,z cylindrical coordinates) 

a 	blade incidence 

a0 	no lift angle 

8 	velocity increment ratio due to duct 

efficiency 

0 	blade angle,(r,0,z cylindrical coordinates) 

angle 

circulation function 

reciprocal of diffuser expansion ratio, 

p 	density 

solidity 
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0 
	

velocity potential, relative flow angle 

circulation 

non-dimensional parameter 

angular velocity 

Suffixes  

1,2,3 	denote sections of the duct 

n:t 	denote normal and tangential respectively 

primes 	denote conditions just downstream of the windmill 

bar 	denotes a ratio. 

3. Introduction 

This paper has been prepared at the suggestion of 
Mr. Golding of the Electrical Research Association following 
on some preliminary work done by one of the authors. It is 
intended to be only a preliminary paper outlining the gains 
in performance obtained with a c9n 	windmill over an un- 
shrouded windmill, as well as the limits imposed on the 
quoting and the design of the blades. 

It is known, from the simple momentum theory of the 
windmill, that for an unshrouded windmill the maximum power 
output is only 59.3 per cent of the available kinetic energy 
of the wind per unit time crossing an area equal to that 
swept out by the blades. (In practice due to aerodynamic 
losses this figure is reduced to about 10 per cent). Since 
the action of the windmill in absorbing power from the wind 
is to reduce the kinetic energy of the air passing through it, 
it follows that only part of the availzble wind upstream of 
the windmill actually amis through the windmill disc. This 
energy, which is lost to the windmill, amounts to 40 per cent 
of the available energy. 

Various methods for increasing the power output from 
windmills have been discussed. by Betzl. These include the use 
of multi-stage windmills and a combined propellor amlwindmill 
in which the power to drive the propeller is provided by the 
windmill. The propellor induces a higher axial velocity 
through the windmill disc and thereby increases its power output. 
Although the ducted, or axial flow, fan has been discussed by 
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many authors since 1920 the ducted windrni 11  has received 
little attention. The first reference, known to the authors, 
to the ,ain in power associated, with tip ducted over the 
unshrouded windmill, is due to Vezzani-. A more complete 
account of the performance of ducted windmills is due to 
Sanukii in which for the first time experimental results arp 
given. Some further meaeurements are described by Iwasaki 
who also discusses the detailed aerodynamic design of 
unshrouded and shrouded windmills. Independently one of 
the present authors5  recently drew attention to the gain in 
power output obtained with the fully ducted windmill. 

The ducted windmill, consisting of an entry cone, or 
contraction, followed by a diffuser with the windmill operating 
in the throat section, obtains its increased power output 
from Lao independent effects. These ere (a) a reduntion in 
the tip loss and (b) a higher axial velocity through the wind- 
mill disc 	obtained by controlled diffusion of the slipstream. 
The gain, in performance due to (a) can only be found from a 
complete analysis of the aerodynamic design of the windmill. 
The experimental and theoretical work of lwasaki4  show however 
that this gain in power output can amount to as much as 30 
per cent of the power of the unshroudedwindmillux  Sanukivs3  
experiments on ducted windeills of 1,2,3,4 and 6 blades over 
a range of blade settings were performed with a windmill 
mounted between entry and exit cones having diameters 1.3 and 
1.1 respectively greater than the windmill diameter. The gain 
in power output was greatest for a 2-blader and least for a 
6-101ader although in the former case the unshrouded power 
output was so small that the blades were probably stalled. 
The effect of (b) can, at least qualitatively, be found from 
an application of one-dimensional flow theory when the internal 
and external duct losses are included. The gain in power 
output with suitable duct design is found_ to be very much 
larger than in the former case and can amount to as much as 
90 per cent of the power of the misbranded windmill. (In 
practical installations, however, it seems unlikely that 
the total power output of a ducted windmill will exceed twice 
that of an unshroud_:d windmill of the same diameter). The 
experiments of Sanuki3  show that with relatively crude ducting 
and no effective slipstream diffusion the increase in power 
output is about 86 per cent for a two-blader windmill and 
somewhat less for windmills having larger numbers of blades, 
although for the two-blader most of the gain in power arose 
from an unstalling of the blades. 

x The experiments, due to Iwasaki, were done with a shroud 
ring of length equal to about one third of the windmill 
diameter. The tests were done at relatively large blade angles 
and consequently the power outputs were well below the maximum. 



The aerodynamic design of the blades of the fully 
ducted windmill is not as simple as in the case of either the 
unshrouded windmill or the axial flow fan. In the latter 
cases the disc loading and the power output can be calculated 
on the basis of lifting line theory, once the induced, or 
interference, velocities due to the vortex sheets in the slip-
stream, are known. These can be calculated from Goldstein's6  
theory and the work of Lock and Yeatman7„ Kramer8, Kawada90  
Moriya10, Theordorsen111  Lbel2  and Takeyama13, In the case 
of the fully ducted windmill the induced velocities are a 
function of the ducting around the tips of the windmill blades, 
the diffuser and conditions in the slipstream far downstream 
of the winumill and its surrounding duct. A simple analysis 
easily demonstrates how important a correct evaluation of the 
induced velocities is in the aerodynamic design of a ducted 
windmill. 

Part I of this paper deals with the performance of 
the ducted 7.indmill and its comparison with that of the 
unshrouded windmill on the basis of simple one-dimensional 
theory. Part II, on the other hand, discusses the comparative 
performances of ducted and unshrouded windyills using the vortex 
theory of -cindmills. 

EY,RT I 

One-dimensional flow ti 2aa  

4. analysis  

In the simple aerodynamic theory of windmills, the 
winamill is assumed to have an infinite number of blades, so 
that it effectively becomes a circular actuator disc over 
which the axial force is uniformly distributed. The rotation 
of the slipstream is neglected and the axial component of the 
velocity must be the same on both sides of the disc in order 
to satisfy continuity of flow. There is however, a discon-
tinuity in the pressure as the sir flows across the disc. 
It is assumed that the velocity across any plane perpendicular 
to the wind all axis is uniform and steady and the flow in-
compressible. -:re will first find the power output fram an 
unshrouded windmill and then secondly compare its power 
output with that of a ducted windmill of the type shown in 
figure 1. 

4L. The unshrouded windmill14 

The axial force, power output and efficienoycan 
be obtained from an application of Bernoulli's equation and 
the laws of conservation of mass and momentum to the control 
surface ABCDEF (see figure 2). Since the rates of mass flow 
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across sections 101, '2', '31  must be equal we have 

V0  S0  = V2S2 = V3S3 

where V is the axial velocity and S is the cross-sectional 
area normal to the windmill axis. Since the flows upstream 
and downstream of the disc are irrotational we may separately 
apply Bernoulli's equation to the motion in these two regions. 
Therefore the total head, H, in these two regions is 
respectively, 

Jo = r 	1V2 = P2 11°172 
(2 

and 
	

E.3  = 	2pv2  = p3  21)1 

Since the pressure p3  far downstream must equal 

po„ the pressure difference across the actuator disc is 

p, 	= 	(‘1.43  - 1/23) 

and the axial (drag) force F acting on the windmill dire, 
of area S,, is 

V2  2 F = (p2-ppS2  = 102  Vo  %1 - 2  
o' 

If we apply the momentum equation to the control 
surface ABCDEF it can be shown that 

F = X + po  (30  - S3) + p V2  S2  (Vo  - V3) 

where X is the integral of the pressure forces acting on 
the curved boundaries 	ABC and. IMF due to the fluid 
outside the slipstream. It can be shown that 

x = - po  (so  - s3) 

and then 

F = pV2S2  Oro  - V3) 

It follown from equations (4) and (6) that 

V2  = 2 

(1) 

(3)  

(4)  
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IV0  4- V .\ 
or 	F  = P 21/ S2 C70 - V3)  

iV 1- V7\ 
where pi-2-7—.4) So. is the rate of mass flow through the 

1 / 
windmill disc and (Vo - V3

) is the difference between the 

velocities of flow far upstream and far downstream. 

The decrease of kinetic energy of the fluid in the 
slipstream per unit time is 

4 -j-3-7 --t S2 (V2o 

	

V 
=F 	 ()  ** 2 j 

which equals the work done by the fluid on the wdndmill, P. 

If we define the power coefficient, Op  as the 

ratio of the work done by the fluid on the windmill, to the 
rate of flow of kinetic energy, far upstream of the windmill, 
through an area equal to that swept out by the blades, then 

	

P - 	- p io 2  t 

(This is the general expression for the windmill ppwer 
coefficient and is independent of the number of blades and the 
size of windmill - ross). If we assume that S2  70.2  where  t 
Rt is the outside radius of the windmill then 

	

(14.V /V ) - 	V2  
1 - 

	

-3 	 2 	11\ 	V ,/ 

	

'fq-4)2110 	1)  52To 
	 (10) 

The maximum power coefficient CP (V-3/1/) is obtained when 

V
3
/Vo = 

16 giving 	CP 	= 27 =  0.593  max 

The disc loading, f = 	7 a  corresponding to maximum 

721382V  

(4a) 

(9) 

power is 



4.(1-V3A0) 
f   	2 

(1+V3/V0) 

although the disc loading itself is a maximum then V3/Vo = 0 

and f = 

It should be noted that the definition of disc 
loading f is different from that of the axial force (drag) 

	

coefficient CF = FfizkR2V2 	Thus when S2  = 7cR2  o 

CF 	 3 o = (1 - V2 	) 

and at maximum power 

= 8/9 

cP  
max 

4b. The ducted windmill 

(i) Frictional losses nog:looted 

Let us consider the performance of a windmill mounted 
in a duct having a cylindrical external profile (see figure 3). 
Since the flow is frictionless the only losses arc those in 
the windmill slipstream. 

As the fair flows through the duct its pressure is 
decreased by ..:113 across the windmill. The axial force, Fp  
on the windmill is given by 

F = S /\ p 

where S2 is the windmill disc area. 

If wo apply the momentum theorem to the control surface ',BCD 
we can show that 

F = pS2V2 (V0  - V) D 

where D is the drag on the duct due to the internal and 
external flown. 

If we next apply the momentum theorem to the flow inside the 
slipstream it can be shown that,  

F = pS2V2  CV0  - 	- 6p (S1  - S2) 	 (3) 

(12)  

(13)  

(14.) 

(i) 

(2) 
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Equations (1) and (3) together give 

lip Si  = pS2V9  (V0  - 10 

and equations (2) and (3) show that the duct drag 

D = 6p (Si  - S2 ) 

This simple expression for the duct drag arises from 
the fact thrt its external profile is cylindrical. Equation 
(5) :Ls not true for external profiles other than cylindrical 
and in any case it is only true for inviscid flow. 

If we apply Bernoulli's equation to the flow upstream 
and downstream of the windmill we get 

Ho  = p o + 1  = P2 	) 

 

(6) 

   

and 1 	 2 Hi  = 	+ 1-:pV2
2 
 = po  + -fpvI), 

These equations show that 

= P2 - p2 = Ho  - ri 	ig1.70  \72) 	
 

(7) 

which together with equation (4) leads to 

Si  (Vo  + 
V, = 

2  

or alternatively 

V + V 	s1  S2  (Vo  + V_ 	 a (8 V2 	
o 
2 	S2 	k, 	2 	

)  

The first term on the right hand side gives the contribution to 
V9  due to the windmill slipstream and the second term is the 

contribution due to the duct. 

The work done on the ducted windmill  by the air is, 

using equation (0) for V2„ 

(Vo 7.X  6  P = F V2  = 6pS2V2  = 	pSi  t 	2 	 (G) 

(5) 
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or the power output for a given value of i.`‘p is proportional 
to the rate of volume flaw through the windmill disc. 

Haw for an unshrouded windmill  of disc area S the 
power output is 

flTo  + 
P = 	S 	2 

	 (1o) 

Hence the power cutest from  a ducted winamill  where 
the external -fu rile is c lindrical is equivalent to that 
f-o:1 an Pashrouded windmill, having 	a disc area equal to  

diaot ir:t;tTe 	 the same pressure drop as  
the ducted wihdmill. 

-,:hen the external profile of the windmill duct is 
not cylindrical (figure 4) equations (1) and (2) still hold, 
but the duct drag, D, is given by 

D = 1 p dS 	i p dS 
0 

where T1  and 'I' denote the external and internal surfaces 
of the duct respectively. Since the flow is one dimensional 
the velocities inside the duct upstream of the windmill will 
be equal to those at the corresponding section downstream. 
Due to the pressure drop (q) across the windmill, the con-
tribution to the internal drag, between the inlet and the 
section downstream of the windmill having the same area as the 
inlet, is equal to e‘p(Si  - S2). Between this section and 

the exit the external and internal pressure difference changes 
from \-17) at the area S1 to zero at S

3
. Hence a mean 

value for this part of the dra contribution is 

Om S3 -  SI
) 

ZAP 	2 where m is less than unity, and the 

total drag becomes therefore, 
OuSx  - 

D = .6p (S1 - S2) + 6p 	 2 
	 (12) 

Since F = 6p S2  We have, after some rearrangement 

m + S1/S3  D/F 	 (12a) 
2 S2/S3 

mB +S 
.21. and 	 — _ -s- D is only positive when 	,■ 2. S2 
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.0 equation (2) dith the value of D from (12) 
we find that 

fin S, + SIti 
pS2V2  (Vo  Vo) = z\, 

But fran equation (7) 

= ip (V0  - y) Oro  v ) 

and therefore 

= L6.13.3=2.12 (1%  

	

2 	2 S2 	2 

or alternatively 

V +V. frnS +S - 2S \ /V +V \ 
V 

	

2 	2 	 
(_L 	 .)0)  	(15a) 2S2 	‘.1/4 	2 

Since the power output is still given by 

P= F V2  

we find that when V2 is substituted from equation (15) 

P  

	

(rnS

32 

 + S

1  ) 

	IVO + 

 2 	/ 

Thus the equivalent unshrouded windmill must have a disc area 
(_S__ + S ) )  of 2 	It should be pointed out, however, that this 

result is only very ap-2roximate and depends 
obtained for the duct drag (equation (12), 
practical applications the use of the factor 
say expressing the fairing drag in terns of 
on the external profile. 

From equations (16) and (14) the power output can 
also be written as 

p(ms + S ) 

	

P 	
38 1 	(Vo 7o) (V2o /e) 	 

and the power coefficient, Cp, in terms of the windmill 

swept area, g RR,  and the upstream velocity, Vo  is 

( 13 ) 

(15) 

	(16) 

on the expression 
However, in 
m is simpler than 
the maximum velocity 

(17) 
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2  S2  
— 	

\ 

	

S
2 

v 	 /1 — v 	 (18) Op  — 
rnS +S 	 mS +S ; 	  

j 
2 	 2 	/ 

V 
2 2 where 	S2 = t and v =  V 

In the following section the importance of the 
expansion ratio, 	= S3/S2„ and the pressure coefficient 

p4- Po at exit, C = 	, are demonstrated. The connection 
P4 -by()  

between these parameters and the terms used above will now be 
found. 

Since the external and internal pressures at exit 
are equal it follows that 

72,  

Cpl 
 

= 
V2 	

v2 2 	 (19) 
0  

	 (20) 

	 (21) 

Fram equation (2) the disc loading 

V 	
_12 
CF 	= 	( _ f 	 i 	 (22) 

S 	v 	V ) 

	

o • 	v2  2 2 2 

where 
CD - v2 , 

0 "2 

But from equation (14) 

AP 	1 	= f 
t V2 	 V20  v2  

and hence fran equations (19) and (20) 

v
2
f = 1 - (µ2v2  + C ) 

P4 

If we substitute for V AT0  from equation (20) then Cr  

') 
v2f CD = iv  • ( -W.—  • o fr) 

(23) 
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2V 	 - 	2 2 2v 1_1 - 1-v fj 
V V - o+ 	 fv

2 

	

2 2 	I2v 1 v 	/ p. v 	+up24_  

1 - (p2v2+0 ) 
P4 

(24)  

(24a) 

   

In tens of the drag coefficients, CD, equation (12) becomes 

CD + fv
2 
= fv 2 

(mS31-3) 

2S2 

and therefore on comparing equations (23) and (25) it follows 
that 	 r---  

which after some rearrangement leads to 

(25)  

1 
ii2 

r1,9 + S1 	m + S /S 	2v b -1, p v +C 	i 
1   1 	 -04- ---=  .„(20 232 	

_ 
2p 	

_ 
2 2 	% i - (p v +0 ) 

P4 

44.1.v 11 p2v2+C 
- m 

1 - µ2v2  C 
P 

 

(27) 

 

A knowledge of the value of m enables the disc area of the 
equivalent windmill to be determined. 

A very simple result arises when Si  = s3. In this 

case equations (5) and (12) show that rl= 1, and solving 
equation (27) for v gives 

2+ /1 + 30
p4 v _ 

3p. 

Thus if C 	is negative it cannot be flore negative than - 
Pk 	 3 

and not greater than zero (see below). These conditions 
refer to maximum and zero power respectively. The fact that 
values of C 	more negative than - -0 are not permissible 

P4 

is a rather surprising but nevertheless a very important ded-
uction. Similar restrictions exist on the values of p and v. 
From equations (20) and (8) 

(28) 
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V-1.! 

	

= {1 	fv2  = 21.1v - 1 	 (29) 

or 	fv" = 44v (1 - vi.1) 

and u„ and v must lie in the restricted range given by 

	

C V  < 
	

for positive values of f and V 

Lhen m / 1 the genpral formulae, replacing equation 
(30) and (28) are respectively 

(30) 

2 	16 p2v2 	+ Sl/S3  
fv 

(m + 	 )2 	2pv 

;77 - v/1 +CI  
5  p4jk +Si/S3J 

and 	v 

 

(31) 

 

...(32) 
/ 	

19 

Im.+Si/S31 

Similarly the equation for the power coefficient 
found fram equation (18) is 

s /s 	1 16 - (m+s1
/S
3
)2 

1 

f 	 f 
- i 16+ (1-CP4 
	I  
) (m+S A  /33 )

2 
1 

 ...I 

(1, 4 116+0-C
P4 
 )(m+S

1 
 /S

3 
)2 

x 
16 - (m+si/S3)2  

Thus for positive values of f and v 

m + S1/S3 	 + 51/53 
2p 

c1)4 
	̀\ 2 

ra.4-7173 

C - 8 	 2 

and 1 

(33) 
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To these relations we must add the condition for 

positive drag (equation 12a) viz. a 	S1/S2 2' although this 

will always be satisfied no matter what values are used for 

p and S1/S2  • 

Although all these relations are modified to same 
extent when friction effects are included nevertheless they 
represent useful limiting values in preliminary design studies. 

The important results obtained from this section are 
as follows,- 

(1) The interdependence of the windmill Tower output and 
the fairing drag. 

(2) The power output is proportional to the rate of 
volume flow through the windmill disc for a given 
disc loading. 

(3) The velocity through the windmill disc is equal to the 
slipstream and the duct contributions. 

4b. (continued). The ducted windmill 

Flow with frictional losses included (see figure 4) 

The flow far upstream, of velocity Von  enters the 

duct inlet, of area Si, with the velocity V1. The flow is 

accelerated in the contraction and flows past the windmill of 
disc area S2  with the velocity V2. The pressure discontinuity 

across the windmill actuator disc is equal to p2  — 	The 

velocity decreases along the diffuser and leaves the exit, of 

area S.., with the velocity V3. The velocity further 

decreases downstream of the exit since the pressure p
3 

at 

the duct exit is less than the uniform stream pressure pc,. 

The velocity reaches a final value V far downstream of the 

duct exit. 

In the external flow around the duct it will be 
assumed that outside the duct boundary layer the total head is 
constant and equal to its value far upstream. It will be 
assumed that at the duct exit the pressure p4  is constant 

across the boundary layer and equal to the value p3  inside 

the duet. In general p4  will be less than pc,. 
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Inside the duct we will assume that the total head 
loss in the boundary layer arising from the friction force at 
the wall is distributed over the complete duct cross-section 
i.e. complete mixing at each section is assumed. If of  is 

the local skin friction coefficient acting on the element of 
surface of the duct of length ds and perimeter nD then the 
total head loss, ZAII, between two sections of the duct is 
given by 

n I 	v2 D ds = p 7 	Cf. 

V 1S1 

	

where from continuity V = 	 If C
F 

is the mean 

coefficient of skin friction in the duct between sections 1 
and 2 then 

,2 f 	5 

- ; 	 a' S  D 	ji) 

where V
1 and D

1 are the velocity and diameter respectively 

at the section 1. 

The following lcsses will be included, 

the mean total head loss at entry 

	

II2 	the mean total head loss in the contraction section 
including the losses across guide vanes and fan 
fairings 

	

12,H, 	mean total head loss in the diffuser. 

If we apply Bernoulli's equation to the flow inside 
the slipstreaa and the duct we obtain 

Iio  = pc)  + 721)V0
2  
 e p1  + 	6111  

P1 zp ` P2 4  2 6H2  
p2  + 41r,2  = P2 + Lp.q 

v 	 9 

P2 + 	2 P3 + iTVS +:3113 

But the loss in total head. across the windpvin.L14 
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is found from the axial (drag) force on the windmill 

F  = 52 (P2 - PI)  = S2 614 

411-1,1 
and 	f = — 9  

V 
'IP

2  
2 

From equation (1) it can be shown that 

Jr(V,0  -'V23) = p - p + 	6.11. + 'o 
i=1 

but since p
3 
= p and writing 

s
2 	

V  c 	P4 - Po 	V3 

4V2 	112 	3 

= 	"Vo 
-• 

then 

(f
2
)v
2 
= - C - 

13), 	iv.' -a- 	2r 0 

If further we put 

‘_\ 
h
1 

= 1 - C - 
P4 	--L-ir2)  

2 LI-12 	2'i33 and 	h2  = p.+ 	0 + 
ipV; 	iplf 

then equation (4) becomes 

(f + h2) v2  = h1  	.(5) 

h 
and 	=I 1  	 (6) 

f + h2  

The power output x  from the windmill is 

P = F V-2 	 (7) 

(2) 

( 3) 

(4.) 

x This expression for power output is only true when the drag 
on the blades and the losses in the slipstream are neglected. 
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and the power coefficient Cp  in terms of the windmill swept 
2 area 	and the upstream velocity 11.0 is 

C - 
P 	„2,3 2p-Art,v o 

2 If S2  = 7cRt  then Fran equations (3), (7) and (8) 

C = f v3 	 (9) 

and fran equation (5) 

Cp  = f v3  = (hiv - h2  v3) 	 (9a) 

If the internal duct friction is neglected 

= 8112  = 8E3  = 0 then the power coefficient can be 

written 0 	s where 
ideal 

C 	
P 

- c 	p v 2 2  v 	 (10) 
ideal  

-- 

which equals the power coefficient obtained from equation (21) 
in ttae previous section. 

Both equations (9a) and (10) show very clearly that 
large power coefficients will be obtained when C

P4 
is negative, 

Ea is very small and v is very large, although 	these 
variables are not independent. 

For fixed values of h1  and h2  the maximum power 

coefficient is obtained when 

h1  v   
V 3 h2  

i h1 \ 3/2  
Cp 	= 2 h2 	7 1., ,1 
max 	\ 3 .,L,2  , 

(1 - c  -,3/2 	 (1 2 ) 

35
7 2 2 	',, 	P42 	i 

(1' 	
= 

ideal'  
---- 

11  
max 

) 

P 
( 8) 

giving 



and f 
at C 

= 2 h2  
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max 

 

(13) 

 

If.(1 al/  F 
f at C 

It can be seen that the entry contraction ratio 
S1  /S2  only affects the performance insofar as it affects the 

losses 	and /\152  and the pressure coefficient C 
PL 

The factors of greatest importance are the expansion ratio- 

of the aiffuser„ - 	the diffuser loss, 6.1-13, and the 

pressure coefficient, C 
F1- 

A measure of the gain in power output from the 
ducted windmill over the enshrouded windmill is the ratio of 
their respective poter coefficients. Thus if both windmills 

2 
have the same swept area, 7.P.„ and the unshroudedLindmill 

is operating at its maximum output power coefficient Cl„ then 

the performance factor r is given by 

27
(1 ) r 	 :5   4 = 	 f v  

then in addition the ducted windmill is operating 
under maximum power conditions we find from equation (12) that 

3/  ,, 	
1
I max 	;' 3 h ; 

r 
24- 	/ 	-1 2  

-2 

or using the values of hi  and h2  

2 II2 

(15) 

Cp  
-max 
C t  

/‘1.11.\ )3 	2 

A••• C 	- -77 ' 

	

Pi+ 	i•PVo  

/ 2 	/\H2 	6113  sN  

102 -2-1) 3

v2 
/ 

(15a) 

and 
\ -13/2 . 	 - C 	! P 

deal' max 	 P/4-•  

CFt  4 
(16)  
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The limit of usefulness of the ducted windmill can 
be taken when Cl,/Cl, equals unity. Thus with no internal 

losses and 
P 
C = 0 the minimum value of the expansion ratio 

4 
, corresponding to fc, 	) /4 , is, from equation (16) CI,,

rmax 

= 1.54 

 

(17 ) 

 

In addition, from equation (13), it can be shown that 
the corresponding maximum value of the disc loading is 

falj 	
= 0.84 	 (18) 

at CP  
max 

These results show, when internal duct losses are 
neglected, that the ducted windmill has a greater output than 
the unshrouded winc=1 wAen the external pressure coefficient, 
C
p 	

is negative or zero, and the expansion ratio of the 

diffuser) 1 — , is greater than 1.54. Also the disc loading 

is reduced from 2 to less than 0.84 when the windmill is 
operating under maximum power conditions. Thus when internal  
losses are neglected, the gain in power, with the Loted 
winu-imi.72.  is pro-ortional to the diffuser e ansion ratio and 
similarly the disc loading, is inversely proportional to the 
square of the diffuser expansion ratio.  

(iii) Tip clearance of the ducted windmill  

Since the action of a windmill is to create a 
pressure drop across it, similar to the action of a gauze, it 
is important to consider what effect the clearance between the 
blades and the duct has on the reduction of mass flow through 
the windmill and the power output. 

Lssume that the windmill of disc area S is uniformly 
loaded and is placed in a duct of area S2  (figure 5 ). The 

velocity and pressure are respectively Vo, po  far upstream 

and V3, p2  far downstream in the slipstream and V2, p2  

outside. Frictional losses will be neglected throughout. 
If we apply Bernoulli's equation to the flow inside and outside 
the slipstream then 

Ho 
	.102 P

2 
 

	 (1 o 	o 	o 	2 2  2 



and 
	

H1 = P2  +2p3 

where B"(71 is the total head upstream of the windmill and 

outside the slipstream and H1  is the total head downstream 

of the windmill. 

If 6p is the uniform pressure drop across the 
windmill then 

= o -H1 = ip 	- 

and the axial force, F, on the windmill is given. by 

F = p S 

If we apply the momentum theorem to the control 
surface ABC]) (figure 5 ) then it can be shown that 

F = 	S2  (V20  - 	pS3 	V) 	 (4) 

From continuity it follows that 

S2V - S3V3 = (S2 - S3)V2  

S, 	V2 - Vo giving 	
s2 

_._2 	v2 V3  

If Ar = k then equations (2) and (4) can be 
ipV20  

written respectively 

and 

- 

	

V2 _ v2 	v2 

	

3 	o 

Vx s -.. 

= 1 - k ( S  + 1 - 2 --4  
9 

S
2 0'  

From equation (6), (7) and (8) we obtain 

(2)  

(3)  

(5)  

(6)  

(7)  

(8)  
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IV \
2 

	

V2 Va 	 3, 
- -V 

3 	
/ V \2 

2k (-ja V3  

	

V2. 	
V 

If we put n= S  , x = 7- 2 z=oo  = —
o 
 then 

2 	 3 	V3 
eauations (7) and (9) become 

x
2 

= I + k z
2 

x 	 I --z2  (1 	k- and. 	
I 2kz2  

	 (110 

	 (11) 

Cn eli:aination of x between equations (10) and (11) 
we ntain fc,r z 

a z 	b z3 c z2 + d z + e = 0 	 (12) 

, where 	a = [1.c (1-n)2  - 2k(1+n) + 1] ; a = - 4 
b = 4 I 	k ( 1 +n 	 ; e = 	3 
o = 2k(1+n) - 2 

. When the value of S — is near unity the solution of 
2 

equation (2) is 

z = 
Vo  

=1 +
k(1-n)  

2 .11+k 

V-2 and x = v73  can be found from equation (10). 

If V is the mean axial velocity through the 
windmill disc the power output, P, is equal, to 

P = FV 

(9) 

(1 3 ) 

Ithere 	V = V3 (V2 	V3/ 

V2  - VoN\  
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S when the value of — s near unity the power S2 
out-put coefficient, using equation (13) for z, is 

C 	 _ kn 	x _ z, 	k  
P 	 Vo z 	- 1 

e 2 

(1-n)k  (15) 

2 .1/1+1,-,....1 

Far an ideal vrIn2mill i.e. one having no tip clearance, n=1 
add C 	= h. Thus the less in power due to tip 

Fidcal 
clearance expressed as a ratio is 

C (1.7n)k 
) 

ideal 	2[11+k-1t 

	 (16) 

For moderate tip clearances the loss in power is 
less than i per cent and hence the neglect of tip clearance 
In the previoas calculations is justified. 

4c. CaJeulated results and discussion 

The optimum perforrance of ducted windmills having 
diffuser exl)ansion 	1b, of 2,3,1- and 5 and internal 
to 4;n1 head less coefficiz.nts of 0, 0.10, 0.15, 0.20 and 0.25 
have ben comuted for values of duct exit pressure coefficient 
C 	of 0, -0.1, -0.2 and -0.3. The entry loss 

P/4. 	 PH 1 
coefficient ----- has been made zero throughout, since this 

o 
will be its value in nearly all well designed duct systems. 
Th.:.se results shown in. t;:.::des 1,2,3 and 14- have been compared_ 

bh the opti.oura perform-me° of an enshrouded windmill. The 
results are plotted in figures 6,7,8,9 and 10. 

Insnecti.on of figures'-1,7,6,9,10shovm that the 
perfc-m7nr.;) fto'csr r depends o::-1_tically on the valve of the 
pres,;Llre coefficient, Cp  , at exit. Thus the power output 

of a ducted windmill will be increased significantly if the 
dif'Iscr outlet is placed in the lee of an obstacle or by 
providing a flow augmentor as shown in figure 1. 

If we assume that a duct of good acre Arnie design 
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has an internal loss coefficient of 0.15, then with C
p4 
 = - 0.15 

and a diffuser expansion ratio of 3.5, figure 8 shows that 
the ducted windmill gives an output power 65 per cent greater 
than that of the ideal unshrouded windmill. If the diffuser 
vxpansion ratio is increased to 5.0 the gain in the output 
power would reach 85 per cent but it is questionable whether 
the increased cost of the longer duct would justify this gain 
in performance. 

Another important advantage of the ducted windmill 
over the unshrouded windmill is the reduction in disc loading. 
This is clearly seen on inspection of tables lb and lc. For 
instance with a diffuser expansion ratio of 3.5 the disc 
loading of the ducted windmill is only 25 per cent of that of 
the free windmill case. This effect will considerably 
simplify the design of the ducted windmill and will result in 
a reduction of the blade cost which uill partly offset the 
cost of the ducting. It is interesting to note that the 
Reynolds number, based on the windmill chord, will be of 
similar order in the two cases, since although the axial 
velocity will be increased, the blade chord can be reduced 
due to the smaller disc loading of the ducted windmill. 

In addition to the reduction in disc loading the 
gust loads on the blades of the ducted windmill will be much 
smaller than for the unshrouded windmill. This is because 
the contraction cone ahead of the windmill will tend to 
improve the uniformity of flow across the windmill and to 
reduce any unsteadiness in the flay. In order to take 
maximum advantage of this effect, the contraction ratio should 
be at least 1.5, 
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FART II  

5. The  generalised momentum theory of windmills  

5a. The enshrouded windmill  

In the one-dimensional or simple momentum theory 
discussed in paragraph the effect of the finite number of 
blades has been neglected, and it has been assumed that the 
induced velocity in the windmill slipstream is axial and uni-
form over any normal cross-section of the slipstream. In the 
generalised momentura theory, both the axial and rotational 
components of the induced velocity, arising from the vortex 
sheets shed from each of the windmill blades, are included 
as well as their variation over the slipstream and with time. 
The calculation of the induced velocities will be left to the 
section below on the vortex theory of windmills but in the 
present paragraph expressions will be obtained for the mean 
values of axial (drag) force and power output in terms of the 
mean axial velocity far downstream of the windmill. Although 
the major effects of the finite number of blades are included 
their drag is neglected. 

If we assume that our windmill is designed to have 
a minimum energy loss it follows from the work of Betz that the 
vortex sheets shed from each blade move backwards as solid 
helicoidal screw surfaces having constant pitch. Far downstream 
of the windmill these vortex sheets will be of a constant 
diameter, greater than that of the windmill owing to the slip-
stream expansion. 

The laws of conservation of mass, momentum and 
energy will be applied to the control surface ABCD (see figure 
11) in order to find the mean axial force, torque, and power 
output from the windmill, An element of the surface AD, 
far upstream, will be denoted by dS0  where the velocity and 

pressure are Vo  and po  respectively. Similarly, far 

downstream, the clement of the surface BC will be denoted 

by dSou  where the axial component of the velocity and pressure 

arc u
1 
 and p1 respectively. The windmill, which is 

rotating with an angular velocity 11. , has B blades which 
are equispaced and straight. It is assumed to have no hub, 
fairings or guide vanes. The axial force on the windmill 
is F and the axial force, due to the pressure of the 
external flow on the curved boundaries of the slipstream, 
will be denoted by X. 
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If we therefore equate the rates of flow-  of momentum 
across the control surface APODwdth the pressure forces on 
the boundary and the internal body forces we can show that 
(see figure 11) 

, 
o o 	 pi  + puili o-pu

2  
i)dT.J9  F = X + p (S 	S ) + 	(  

(1) 

Bat from an analysis of the flow outside the windmill slip-
stream it can be shown that 

= po  (Sx2- So) 	 (2) 

F = 	 o p1 + pu,V 	pu2  

	

o - 	I) dS  oc 	 (3) 

Since we are assuming that the vortex sheets are 
moving through the fluid as solid helicoidal surfaces the 
inalcedmotion, far downstream, can be derived in terms of the 
velocity potential 0 (div 0 = q) satisfying the boundary 

conditions of no flow across the,  vortex sheets and no flow, 
relative to the sheets, at infinity. Hence (pc,  - p1) can 

be found in terms of the induced velocity components from 
Bernoulli's equation for the unsteady flow of an incompressible 
fluid. Thus 

where 0 is the velocity potential at a point r, 0, z 
(cylindrical polar coordinates) due to the axial movement 
of the solid helicoidal surfaces through the fluid with the 
velocity wo  , and po  is the pressure in the fluid at 

infinity. Now because the vortex sheets arc moving with the 
velocity w in the direction of the negative z-axis it 

can be shown that 

0 = 0 (z + wot r 0) 

If •  
Ur = ar 3 U0 = Tao uz  = 	

then equation 
 az 

giving 

2 
P 	aft 	Pc11 p 	

p = 0 	I 	at 2 

(5) 

(4) becanes, following Theordorsen 
2 

P 

	

- p 	p w u + Po 	1 	o Z 	2 
	 (6) 
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2 where 	q2  - u
r
2 
 1..1 + 	+ uz 

20  

and equation (3) becaaes, since u1  = Vo  + u 

P 1-2 
2 = p *14) I c2L1 	uz  uz  (vo  - wo) 	sa) 	(7) 

Eine° qi  is a function of time we must integrate 
equation (7) with respect to time in order to find the mean 
value of the axial force. But since 0  is a function of 
z + wot an integration with respect to t may be replaced 

by an integration with respect to z. The resultant volume 
integral can bo taken over an infinite cross-section normal 
to the z alas and a distance along the z-axis equal to the 
distance between successive vortex sheets. This distance is 
equal to H/B where H is the pitch of each vortex sheet 
and B is the number of blades. Hence the mean value of 
the axial (drag) force is 

2 • cr 
F = 	11 	[-- u2 -u (V 	w ) dv oP 9 

H 	z 	z'o 	o 

where 	dv is the element of volume. 

Now Thoordorson has shown that the separate integrals 
on the right hand side of equation (8) can be written in terms 
of the integrel of the circulation taken over the vortex sheets 
in the slipstream of radius P If the circulation at radius 
r is denoted by T-(x) 1.;?herex = r/R 	and 

wH K(x) 
11(x) = 	B 	then we can write 

uz  dv = - wo k x Roo  

B 2 	 2 dv = wo k x R22 

; 	 2 a- 1 uz2  dv = wo e x R2 

P 
where 	k = 2 K(x) x dx 

If we substitute equations (9) into (8) then 

(8)  

(9)  



CF 
 

= 

C
E 

= 

Op = 

 

(13) 
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ll R2 

2 	9 = 	2k 17, 	zr 
to R- 	' 	0 	0 2  

t 	 =- 	 Rt 

- 
where wO = wC/Vos 

Similarly it can be shown that the mean energy 
loss, E, in the windmill slipstream can be written 

-2 (! 	e 	R
2 

C = 
E _1 .3
-
2 = 2k w 	"o 

	

ffp\10.7 t 	 Rt 

	

Ent the power output, P, is equal to 	= (FV0-E)„ where 

Q is the output torque and I-1 is the angular velocity of 
the windmill. Hence the power coefficient Cp, is given by 

R 

	

P 	2 

2 
e 	 = 2k 77 (1-47ro) 	- T wo 2 	 

oc (12) 

	

fiRowRt 	 Rt  

Equations (10) to (12) can be compared with the 
corresponding expressions obtained from the one-dimensional 

theory. These are, if S2  = Tat  , and V = Vo - w0 
(see 

■..;c 
section 4a) 

( o ) 

) 

and they are similar to the previous equations when 

R2 1 -o/2 

2 - 	 k = 1 and e/k = 	For an infinite 
Rt 	1 - w 

V.  

- 

ra 	
w" 

R 

- o  number of blades when 	 is small k = e = 1 and 
CL 

therefore since e/k = 1 is not the limiting value we cannot 

expect that the optimum performance, found from the simple 

theory, will be equal to that found from the more exact theory. 

Theordorsen calls k the mass coefficient, and 



2 -3-  

interprets it as the ratio of the mean rearward velocity, taken 

over the entire slipstream cross-section, to the retrwmrd 

velcoity wo. Both k and e are functions of B and 
V - w 

--9- and their values can be obtained from the tables given 

in .v-ierence 11. 

Before equations (10) to (12) can be used to predict 

the performance of a windmill the slipstream expansion must be 

found. From the simple theory we find that 

R, 	1 - r /2 
- 	= 

R ̀' 	 " \T
o 

A. 

1 + 7i0A for small tiro . 

Abetter approximation is due to Theordorsen who 
shows that from first order calculations of the radial velocities 
in the slipstream, 

R2 
.) 	• 

2
—  S 

0 . 	. 

Rt 	C^ 7(c)/2) 1^ 7To 	1c9 

(

;--Z--:-; 1 + \vo  fE - s/2) for small 1,7ro 

x K(x)cos20 dx 

11 

0 

2.4 cos io weighted by the factor x K(x), 

(14)  

(15)  

where 	s is the average value of 

x K(x) dx 

and 0 = tan71  
vo 	(1 - yr 

o/ 

 

is the angle of 

 

      

      

Vo - w 
the relative flow at the windmill. W 	R 

o 	stall is all 
. 	 6X) 

9- -  k 2 P-) ,A., 	 . 	P  0.5, and s 0,1.0 and then equations (14) and (15) 
( '- i 	 •I  

became equal, at least for small values of y'o. For approximate 
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9, 
calculations s can. be  put equal to the mean value of cos p 
over the wake (i.e. approximately the value of cos 20 at x

2 = 0.50) 

or 

 

1  s 

2-2- 	
) 2 

+ - 	- 

Rt  
Po 	Vo • 

 

(16) 

where 

 

Since the power output, PI  is a function of the 
nunther of blades, B, the ratio of the peripheral speed to 
the wind velocity, and wo  no simple relation, in 

general, exists for its maximum value. However when Vo/nRt  

is very mall k and e have values near unity and if we 
use the approximate value of the slipstream expansion ratio 
(equation (14) ) then it can be shown that the maximum power 
output occurs when 

lwo = 0.422 	-) 

giving 	CP 	= 0.385 max 

and 	CF 	= 0.424 

(at Op ) 

The corresponding values obtained from the simple 
theory are, 

VC 	= 2/3 

op 	= 16/27 = 0.593 
max 

CF 	= 8/9 

at Op  
max 

	(18) 

However when we use the more correct expression for 
2 

R fit, from equation (15) we see that oc  R /ht  tends to infinity  
1 

(17) 

when w 
0  - (? C/K 
	A) (i.e. when po  is large ito  = 2/3). The 

power coefficient C does not reach a maximum for a value of 
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(12), but tends to infinity with R /R . 	
Rt It appears 

t 
therefore that equation (15) is not satisfactory when the slip-
stream expansion is large and it must be expected that the 
calculation of the radial velocities according to a second 
order theory would load to a modified formula for P.c.v/Rt . 

In practice an instability must arise for same value of pro 
less than unity. In view of this instability in the operation 

- 
of the windmill the values of ire and 0 	given by equation 

max 
(17) play more nearly represent the limiting conditions obtainable 
in practice. 

So far we have found the maximum power conditions in 
terms of wo but it is more important to state how the power 

output depends on the ratio t/vo for a given fixed pitch 

windmill. If we consider the blade lift loading at a radius 
of 0.75 Rt, say, as representative of the overall blade 

loading we can relate we to o and 0, the blade angle at 

this radius. From the vortex theory of windmills the 

following relation exists, for the ideal 	 between the 

local blade angle:  0, and the local lift loading 11 

. 	„( 
211.(x).(x) wo (1 - -e) 	sin 

2
w  

ac 

where 	0 = 0 - a 

CL  = ao(0 - 0 - ao) 

and tan 0 = Vo (1412)  
jaRt  x 

is the angle of relative flow, a is the angle of incidence, 

ao  is the blade no-lift angle, a is the lift curve slope 
and a' is the blade solidity. If suitable values are chosen 

for a", a ) [1
0 
 and ao it can be shown from equation (19) that 

the blade incidence, a, increases from its no-lift value at 

177r
o  4:: 2/3, when equation (15) is used for 	in in equation 

L 	 - 
w 	2  -\ cos 

(1 - 7: /2) (1 - 	cos 129 

( 19) 

e = 0 to its maximum value at about tiro 
= 0.42 and falls again 
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to its no-lift angle when we = 1.0. This indicates that 

the approximate relation for the slipstream expansion given by 

equation (14), which leads to a maximum power output coefficient, 

Cr, at we = 0.42, may be more representative than equation (15) 

for large values of wo. 

For small values of Vo/Y1Rt 	K(x) at x = 0.75 is 

appz'oxiaately equal to unity. If further we assume that 

tan 0 = sin 0 = 0 and cos 0 = 1 then, from equation (19), 

we find after some rearrangement that 

-2 -
e P1 + P2  = 0 	 (20) 

0.75 

P2 = 	1-to (a  o) 	
(0 + ao) 

0.75 L_ 	 0.75 

Real values of w
e 

can only be obtained from equation (20) 

1-Lo  ("7 ao)0.75 	 ao 
00.75 0.75 	2 	 (ao  + -77-) 	(21) 

8 lje ((r ao) 	
/0.75 

For both small and large 0 equation (19) shows that CL  = 0 
- 

when ye = 1. It follows, from equation (19), that for values 

of 	yr 

00.75  3r, tan-1 	- ao 3110  

a relation which is independent of the blade solidity. 
Equations (21) and (22) represent the onset of instability and 
correspond to the critical values of wo  noted above. 

At the other end of the range zero power output is 
obtained when ye = 0. This occurs when 

P' 	= 
- cot (0 + a ) ep 	3 	 0.75 

lihen uo  = 0 equation (23) shows that the maximum value of 0 

:e 	P1  = 1 	[10  (o-  ao) 

and 

when 

	 (22) 

(23) 



(26) 
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x K(x) 	clx 
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!..s1 where 
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is given by 

too 1  = 90 	ao ` max'0.75 

The limits imposed on wC and 0 above, for large 
- 

values of 17 correspond very closely to the limit of stable 

operation Observed experimentally by Iwasaki for windmills of 

less thnn 4. blades having values of 0 less than 20°. 

It should be noted that in the determination of the 
above results the drag on the blades has been neglected. It 
is therefore probable that for large values of Tic  some of 

these relations will need mod-ificEtion. In order to find the 
reduction ill power output due to the energy lost in overcoming 
the (profil-)) drag of the blades we oust add to the cnergy 
loss E the mount ED  where 

1 r ED 	 t 	, '5 

	

ivV() t 	na, ! Bc C 	dr 	 (25) 7 	n 
(70.) 	

D 
Of 

t 0 

where 	c is the blade chord 

1-1 is the resultant velocity 

CD 
is profile drag coefficient. 

Since the resultant velocity, 

w 
Vo  (

1 - • D  cos20)  2  
sin 

(see section 6) and the 
0 

lift coefficient, CI?  can be found from equation (19) Fire can 

rewrite (25) as follows 

(24) 

x i(x) dx 
ti 0 

and 
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The power coefficient corrected for blade profile drag becomes 

CP = - 2k ;C (14 )-" 1(R 	k -  
o 	 P.° 

Since 	is the average value of (Crp2/CD  x) weighted 

by the factor x K(x) we can find an approximate value for it 

by putting it equal to its value at x2 = 0.50, or 

( 	

+ 

CD 

CL 

 ( 

 P•0 

2 +  1  -
2 	

- 

2 

1.1 

i  
- 2 

z  ro  2 2 

	

7-- 	0) 

	 (28) 

CD1
CD  

where 	is the value of 77- at x = 
`'L 	 1̀1.J 	42 

If finally we substitute for ÷, from equation (14) 
nt 

then for values of i; below about 0.75, and large  

CD 	\ 

CF  - - 2k ; 6 _ 	) 	 (1-7/o) 	ET, 
(2+110) 

• 2 I k 	

▪  

\ 

- 22) 41-2-1-Lo (1  - ;0) 

	 (29) 

It follows that for normal values of CD/CL, say 

about 40, the drag correction to the power coefficient for 

moderate disc loadings is less than 5 per cent and it changes 
- 

the value of w 	corresponding to maximum power coefficient, 

by less than 2 per cent. 

Although these results have been obtained for an 
unshrouded windmill it will be shown below that very similar 
relations also exist for the ducted. windmill. 

(27) 
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5b. The ducted wind-All  

(i) Discussion  

In section (4) above the performance of the ducted 
windmill has been Obtained on the assumption that the flaw is 
one-dimensional throughout and the number of blades is infinite. 
Although in section (4b) the frictional losses in the duct 
have been included no account was taken of the energy losses 
in the slipstream due to the rearward movement of the helical 
vortex sheets shed from each blade of the windmill. In addi-
tion although the interdependence of the windleill and its 
fairing were noted and allowed for approximately no attempt 
was made to determine a correct formulation of the problem. 

It us assume in this section that we are considering 
the poi-fol.-1m= of an ideal windmill, that is one in which the 
vortex sheets shed from the blades move rearward far downstream 
as solid helicoidal surfaces, mounted in a duct of arbitrary 
cross-section. It is then possible to calculate the axial 
force, energy loss and power output in terms of wo  the 

axial displacement velocity of the vortex sheets far downstream, 
and the fairing (or duct) drag. 

(ii) Flow through  the duct  

If we neglect the rotational effects in the windmill 
slipstream and assume that the axial velocity far dawnztream 
is uniform over the slipstream, then it is permissible to 
replace the windmill by a gauze, having a pressure drop equal 
to that created. by the windmill (figure 12). I 

The calculation of the internal and external pressure 
distribution over the duct alone in an inviscid flow can be 
performed by the method of singularities in which the duct is 
replaced by a suitable distribution and strength of sources, 
sinks and vortices. Alternatively for a given distribution 
of singularities, or prescribed internal and external velocity 
distributions the shape of the duct can be calculated. 

:;hen the auze is present in the duct the method of 
calculation is similar but is complicated by the vortex shoot 
bound9ry downstream of the duct exit between the slipstream 
and the free stream. The flow inside the slipstream is at 
a lower total head than the flow outside but the pressure 
across the vertex sheet is constant. A discontinuity must 
therefore arise in the tangential velocities on each side of 
the vortex sheet. The main difficulty in the calculation 
is that the shape and strength of the vortex sheets are not 
known initially but can only be determined when the calculation 
is complete. 
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The standard method of calculation is to replace 
the vortex sheet by a solid boundary across which a pressure 
drop acts, equal to that across the gauze. The gauze is 
then removed and the complete flow, internal and external, 
is then homogenous since the flow is at constant total head 
everywhere. The shape of the vortex sheet and the velocity 
distribution around the complete duct can be found by an 
iterative method.15  Finally the velocity distribution across 
the plane of the windmill can be determined. 

The viscous effects on the pressure distribution 
around the duct can be determined from a calculation of the 
boundary layer displaceraent thickness using the first approxi-
mation to the pressure distribution. The above calculation 
for the pressure distribution must then be repeated for the 
new 'effective' duct shape. Thus finally the duct drag can 
be determined as a sum of the tangential stress and normal 
pressure components together with the velocity distribution 
across the plane of the windmill. 

Naturally in some cases it would be better to find 
the drag of the duct, housing the gauze, experimentally, 
although in all cases the theoretical calculations will show 
clearly what shape of duct is necessary to avoid separation 
of the boundary layer especially close to the duct exit. 
It should be noted that very little experimental information 
is available on the performance of ducted intakes of the type 
required for the ducted windrill. It is therefore important 
that a combined theoretical and experimental programme should 
be drawn up to investigate the most suitable external and 
internal profiles to suit the performance of high efficiency 
ducted. windmills. 

(iii) Performance of the ducted windmill 

It will be assumed that the neglect of the rotational 
components of the velocity in the slipstream in calculating 
the drag and velocity distribution in the plane of the windmill 
produces negligible errors in the values of these quantities. 

* It can be readily shown, according to inviscid flow theory, 
that for ducts having a finite trailing edge angle a stagnation 
point of the internal flow, but not of the external flow, must 
exist at the trailing edge in order to satisfy the condition 
of constant pressure across the vortex sheet springing from the 
trailing edge. In consequence there will exist, close to the 
duct exit, a region of large positive pressure gradient which, 
in the real flow, might tend to cause separation of the 
internal flow. 



po  (Sly9- So) 	p dS 	= 0 	 (i ) 

OAB-C-D 

It w-111 be assumed also that the velocity distribution 
through the windmill disc is equal to the sum of the slip-
stream and duct effects calculated separately. The value 
of the duct velocity obtained in sectirn (ii) is based on 
the slipstream velocity being uniform. Thus if V2(x) is 

velccity in the plane of the windmill, when the uniform 
N,A.c.-:i!,71ms in the slipstream are Vo  and V00, respectively, 

_'.:ream and downstream then the contribution to V, due 
to t.-.e 	is 

4. V 
i LT 2' 	= V2  (x) - 	
0 	• The additional  

contribution to V2(x) due to the motion of the helicoidal 

vortex sheets inside the duct vortex sheets far downstream 
of the Cuct exit will be discussed below. 

The axial force on a ducted 	in 1.hich the 
effects of friction ere included, can be found from en 
application of the momentum equation to the three regions 
shown in figure 13. 

It BCD and BFE represent the displacement of 
the boundaries of the duct and its wake to allow for the 
effects of the boundary layer. 

In region I outside the duct 

In region II the total drag force on the duct, 
including, friction is 

D=-'1jo(5!J()- 	 p dS 	p 
) 	

u(V-u)dS 	(2) 

Fair--BE 	wake 

In region III the axial force on the windmill is 

F = po(s0 	 (P -301) 	P111(VO-ul) 	as)0 



Thus from (1) and (3) 

1 - 
F 	1  po  - p1  + pui  (Vo-ui  

and from (2) and (if) 

dS +ipdS +p(S
00
I -S

C 	X3 
 ) 

	 (4) 

F+D' =J
u 
 - p1  + 	 d Soo  

-- 

where 

)) 
D' = D - p 	u(Vo-u) dS = 	p as - p0  (SI -,. S ) 

00 cx, 
r 

wake 	 BD-BE 

The duct drag force can be calculated, as explained 
above, by replacing the vortex sheet FE by a solid boundary 
when the windmill is removed. It is assumed that the pressure 
drop, A p, across the windmill is uniform across the plane 
of the windmill. Thus when the windmill is removed the vortex 
sheets CD and EF can only be similarly placed when a pressure 
difference 41:) is applied across them. Since the flow 
inside and outside the duct is then homogenous,' the velocity 
and pressure distribution inside and outside the duct bound-
aries can be calculated. Allowance can be made for boundary 
layer effects and in particular their effect on the duct 
pressuredistributimandtheeffectiveductarea,S_

6
,far 

downstream. The duct drag can then be Obtained. 

The Integral on the right hand side of equation (5) 
is identical with that for the unshrouded windmill, if we assume 
that far downstream of the windmill the vortex sheets are 
moving as rigid surfaces. Therefore from equation (10) of 
section 5a 

R
2 

(6) 

tir 

V 
where 	1/ V o = — and Vo wo is the axial velocity of the 

0 

windmill helical vortex sheets far downstream 

and 	R
t is the outer radius of the windmilla 

It should be noted that the values of e and k will be 

( 5 ) 

DI  
2 	2 - 2k ;5'0 	- 	(-;1- + e k  )1 

F +  

72--  p V
o 	

Rt 	 Rt 
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aifferent from their values for the unshrouded windmill due 
to the presence of the vortex sheets in the bounding wake. 
However no calculations of their values in this case are at 
present available although presumably they could be obtained 
by the experimental potential flow tank method suggested. by 
Thoord❑rsenoll  

Thus for a given value of the axial force, F,  the 
preissure drag DT and the effective radius of the slipstream, 

q can be found. 

The power output, P,  from the windmill can be 
obtained by equating it to the aifference between the kinetic 
energies of the fluid far upstream and far downstream of the 
windmill less the work done by the pressures on the bounding 
surfaces ci the given control circuit. 

Thus in the natation of section 5a, 
n 

tt ~ 1 	 2-T 
P 	4) 	PI 

+ {V
20 q 

}I 
 u

I  dS 	. 	 (7) 

where 	u
1 

= V
o + uz 
2 	 , 

q2 = ur + u0
2 
 + (Vo + uz)

2 
 

But 	Po-p1 = Pwouz, Pql /2  

2 
where 	2 = ur + u©+ uz

2  

and if allowance for q, qi  as functions of time are made then 

P = 
R 
rdi[:u 
 ❑

V_XV 	) - u2(V -w 	dv H  di 	muo 0 	moo 

or 

R e 1-7- 	) 	̂ k -- N7 ) 
CP 

 = 	
2 

2k 
 00 0 -IpV0.ARt 	 Rt  

which is identical with equation (12) of section 5a. The 
correction for tho drag of the blades is found from equation 
(26) of section 5a. The value of R /ht  is found from the 00  
duct calculations described above or approximately from 
continuity. If the mean velocity increment in the plane of 
the windmill due to the external duct is 817'2 

then approximately 

(3) 

(9) 
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If we put k = e = 1 and assume 8 = 8V2/`V0  is 

independent of .o the maximum value of C occurs when 

As an example if 8 = 2, Tro  = 0.48 and Op  = 1.38 

and similarly if 	 8 = 1, 17I0  = 0.46 and CF  = 0.89. 

These gains in power output are of the same order of magnitude 
as those calculated from one-dimensional theory and therefore 
justify to some extent the conclusions based on those results. 

It must be stressed at this stage that Cp  can 

only be determined when F, D', 	andd 	satisfy 

equation (6). Thus equation (6) is a compatability condition 
for these variables. 

The experimental results obtained from ducted fans 
in streamlined fairings might at first sight be considered 
useful data in connection with the design of ducted windmills 
and so assist in formulating the accuracy of the above 
theoretical results. However due to differences in duct geometry 
and pressure graaients downstream of the windmill, the existing 
data can only be used qualitatively but if anything seem to 
confirm rather than contradict the above predictions. 

6. The vortex theory of windmills  

In section 5 the performance of the windmill has 
been analysed from a description of the vortex sheets, far 
downstream of the windmill, shed from its blades. In this 
way it was found unnecessary to specify the flow in the 
vicinity of the blades and the detailed blade geometry. 
However in making the assumption that the vortex sheets far 



downstream are moving rearward as rigid helicoidal surfaces 
a certain distribution of circulation along the blades is 
implied. This in turn fixes the blade chord and blade pitch 
angle as functions of radius, but this blade geometry is found 
to be unsuitable for most practical applications. However 
small changes in blade geometry from the ideal have been shown 
not to affect materially the description of the vortex wake 
far dognstream. Hence the vortex sheets in the form of rigid 
helicoidal surfaces represents a good approximation to the 
vortex wake of a windmill of arbitrary design. It should be 
pointed out, however, that the assumption that the vortex sheets 
are in the form of rigid helicoidal surfaces is not essential 
and an adf=quate theory can be built up in which helical 
vortices of arbitrary strength are shed from each blade element. 
The former assumption is, however, best suited to practical 
applicaticLs.7  

The theory, as discussed below, is equivalent to 
the lifting line theory of aerofoils and will be adequate when 
the aspect ratio and the distance between adjacent blades are 
large. For blades of small aspect ratio lifting surface 
theory will be necessary. 	It is not envisaged, for the case 
of aerofoils of conventional designi.that such elaboration of 
the theory -IA.11 prove necessary. 

If the windmill rotates with angular velocity Si in 
a uniform flow of velocity V the lift on the elements of 
each blade is a function of tRe local blade incidence i.e. the 
ogle  between the blade chord line and the resultant velocity. 
This lift must be associated with the circulation around the 
blade element. But the circulation will vary from the tip 
to the root of the blades and hence trailing vortices will 
spring from the blades and pass downstream in helical paths 
(see figure 14). In general the changes in circulation 
along the blade will be greatest near the tips and the roots 
and hence in these regions there will be strong concentrations 
of vorticity. The induced velocities from the helical 
vortices, in the slipstream downstream of the windmill, must 
be evaluated in order that the true resultant velocity of the 
fluid relative to the blades, and hence the true angle of 
incidence, can be obtained. With this velocity and incidence 
at each blade element and with the aid of the two-dimensional 
charactorisLics of the blade section, the lift and drag 
forces on the clement can be found (see figure 15). Since in 
general the induced velocities are periodic in character, the 
lift and drag forces on the blade element are functions of 
time. In this section only the moan values with respect to 
time of the induced velocities will be considered. 
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6(a) The unshrouded windmill  

Since the axial component of the induced velocities 
is in the opposite direction to that of the wind far upstream 
(see figure 15) the slipstreau downstream of the windmill must 
suffer an expansion. Thus the helical vortices springing 
from the blades of the vortices must increase in diameter as 
they move downstream. I.7e assume that, for purposes of 
calculation only, far downstream of the windmill the vortex 
sheets do not roll up but continue to move away from the wind-
mill in a regular manner. On the assumption that the vortex 
sheets are of constant diameter far downstream of the windmill, 
the induced velocity at a given radius due to these moving 
vortex sheets can be calculated and hence the induced velocity 
at the corresponding radius in the plane of the blades can be 
found. In practice the expansion of the vortex elements in 
the slipstream can usually be neglected. The induced 
velocities are then calculated for a helical vortex of strength 
-at' at radius rl  having a pitch angle 01  = tan-1(V0  o/ -51r) 

where (V-w ) is the axial velocity of the vortex element 
relative

0 
 to0the windmill. (The value of wED which is only 

independent of radius when the vortex moves as part of a rigid 
helicoidal surface, can, to a first approximation, be estimated 
with reasonable accuracy from the simple momentum theory 
formula for axial force or power). Mien wo  is large, 

however, errors in the calculations of the induced velocity 
distribution in the plane of the blades will arise if the 
expansion of the vortex elements is neglected. This effect 
will be discussed in section 6b below. 

If P'(xl,y1,z1) is a point on the vortex of 

strength -din  then the velocity induced d2q at the point 

P(r,010) in the plane of the windmill, due to the element of 

length ds of the vortex at P' is by Biot-Savart's law 

d2q 	- d 	sin 1-54rds  = 	7c  
R
2 

where R = PP' and AY'is the angle between PP' and ds. 

When we integrate over s from 0 to 	over all vortex 

sheets, and along the length of each blade and find the 
components of the induced velocity 7n  and wt  perpendicular 

and parallel respectively to the resultant velocity we have 

(1 ) 
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B 	number of blades 

	

Ro 	outer radius 

	

I,K 	Bessel functions of the third kind 
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If the effect of the boss is included VT
t
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equals zero but the normal induced velocity, wn(r) becomes, 
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whereP
I 
 = --- V -w and R. is the boss radius. - 	 1 

0 0 

A further increment in induced velocity arises from the flow 



field around the boss. This can be estimated by the method 
described in section 5b(ii). 
Fkr and wt are the components of the induced velocity in 

the plane of the windmill due to the trailing vortices and act 

normal to and in line with, respectively the velocity W'. 

wn  

n 2w w 

o 	 Vn 90 
_111 

0 0 

01  = tan -1 (--`:)—) 
r 	

pitch angle of vortex fax 
downstream 

2w 
n 
 resultant induced velocity far downstream 

normal to W/ 

W
n 	resultant induced velocity in plane of windmill 

(approximately normal to v.9. 

In general no great loss in accuracy results if wn = w1  (see 

figure 1 ) is assumed to act normal to the resultant velocity 

W. From the sketch above it can be seen that with the 

above approximation 

V - w /2 	rr 
son VT 	

2 + 	sin  

The angle of incidence, a, of the blade at radius r is 

given by (see figure 1 ) 

a = O - 

where 	0 is the relative flow angle 

and 	0 is the blade pitch angle relative to the plane 
of rotation. 

V -w 

(3) 

(4-) 
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The lift force per unit rnriius, L, acting on the blade at 

radius r is given by 

(5) 

where 	CL = ao (a - ao
) 	 (6) 

ao' a 	two dimensional lift curve slope and the 
no-lift angle of the aerofoil section 

c 	local blade chord 

or p  
WCC, 

Fl (r) - 2 

Equations (2) to (7) inclusive define an integral 
equation which can best be solved by a method of successive 
approximation. 

In the design of nirscrews Lock and Yeatman7  have 
used, in place of equation (2), the corresponding values of 
wn determined by Goldstein for the ideal airscrew. They 

tabulate a circulation function, It, as a function of 

sin 0 r/R
o 

B, where I(  is defined from the relation 

a-  ao(0 - 0 - ao) 

4 sin 0 /IL 

where 
c G = B  

27.r is the blade solidity. 

In place of equation (8) Theordorsen11 has found 

a relation between crCL and w 0, B, and V -VT /n D
o o 

om;  , 

which can be written 

L = -.12-012  c CL  = pr (r) 1.1(r) 

(7)  

(8)  

where K(x) = n 27cBx) 	(V o -VT
o 
 ) is tabulated in reference 11. w o  
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ELE/ (14.0/2) 
and   - 111(x) corresponds to the 

cos2  0 (1 - 7r0) 

function tabulated by Lock and Yea EU 7. 
When W and 0 have been found for each radius 

the lift and drag forces can be calculated and by resolution 
the torque, Q, and axial force, F, can be obtained (see 
figure 14). 

Hence 
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where 	x = r/R= Bc/2•Ar t / o- 	 tiro  = Ylo/Vo 

A more convenient expression for the power output 
coefficient con be found as follows. If the overall blade 

solidity, 0-  is given by 

11: Bc dr 
77' = 	2-2 	 (15) 

7(Rt  - Ri) 

and using the relations above for Cy  and tan 0 then 

equation (14) becomes 	 _ - 	2,..j)2 
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Fran the experimental results of Iwasaki.4  the 

empirical relation between 0 	and  CL  PI 

ORt  

V / o-  
0 

 
0,75 

rti~ ) 2 

is 	a  	t 	a  
P 	v 	

L0.75 
	(18) 

Where the factor 0.25 represents the approximate value of the 
integral on the right hand side of equation (17). 

The difference in the performance of slaw and fast 
running windmills can easily be demonstrated from the relations 
above. 

The slow running windmill has a low value of 120  =i1Ri(ro  

(say 1 to 2) and a high solidity (large number of blades). The 
fast running windmill has a value of 110  (between 3 and 6) and 

2 
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a low solidity (small number of blades). The overall solidity 

a in the former case is usually about 1.0 and 0.2 in the latter. 

Thus for a slaw running windmill p2 - is about 1 whereas for 
- a fast running windmill p2 

o cr is about 2. On the other hand 

the torque is proportional to po 	Therefore the slow 

running windmill having values of po  a equal to about 1 
has greater values than the fast running windmill whose value 

of po  a is about 0.6. This shows clearly why the slow 
running windmill is favoured in cases of light or variable 

wind. 

6b. The ducted windmill  

In section 5b the performance of the ducted windmill 
has been obtained from a consideration of the movement of the 
helical vortex sheets for downstream and the induced flow in 
the plane of the windmill imparted. by the duct. In finding 
the local lift and drag forces acting on the blades the duct 
and the helical vortex sheet induced velocities must first 
be determined in the plane of the blades. 

Yhen the duct is of constant diameter and infinitely 
long the effect of the duct is to prevent the normal expansion 
of the slipstream downstream of the windmill. As a result 
the induced velocities in the plane of the blades arising from 
the vortex sheets downstream of the windmill are different from 
those of the unshrouded windmill due to this 'image effect'. 
The induced velocities far downstream superimposed on the 
uniform axial velocity will cause a variation of the axial 
velocity across the duct. This variation is in general quite 
significant and cannot justifiably be neglected. 

For a duct of arbitrary shape the induced velocity, 
due to the duct alone, can be calculated by the method 
described in section 5b(ii). The method proposed for the 
calculation of the induced velocity in the plane of the blades 
due to the helical vortex sheets downstream of the windmill, 
follows from the fact that the induced velocities, in the plane 
of the windmill, are relatively insensitive to variations in 
the radius of the vortex elements far downstream. Thus 
although in the actual flow the vortex sheets must expand in 
diameter, together with their images in the boundary wall 
and the vortex sheets springngfrom the duct exit, it will 



-52- 

be assumed that they are of constant diameter operating inside 
a constant diameter duct infinitely long. The calculation 
of the induced velocities from the helical vortex sheets from 
a windmill mounted in a duct of arbitrary shape is therefore, 
to a first approximation, identical with that for a duct of 
constant diameter. 

The question now arises as to what pitch of the 
helical vortex elements should be used. When w0,  the axial 

displacement velocity of the vortex element, is small campared 
with V this question is easily answered. It has been 
shown In section 5 that the overall performance of an un-
shrouded windmill depends only on conditions in the ultimate 
slipstream. Thus in the calculation of the induced velocities 
between the vortex sheets far downstream of the windmill the 
pitch of the vortex sheets must be based on Vo  wo, the 

axial displacement velocity of the vortex elements relative 
to the windmill. Since w is assumed small compared with 

V the diameter of the vortex elements fax downstream are 

only slightly greater than the corresponding elements at the 
plane of the blades. In this case the induced velocity at 
a given radius in the plane of the blades is very nearly 
equal to half the calculated induced velocity, at the same 
radius far downstream, in terms of the pitch of the vortex 
sheets based on V 	w 	This clearly is the value to take 

in the case of a ducted windmill when the duct is one of 
constant diameter. 

When w"la is not small compared. with Vo 
the vortex 

element expands as it moves downstream and in consequence its 
pitch changes due to both the change in diameter and the axial 
displacement velocity of the vortex element. If the induced 
velocities in the plane of the blades are evaluated using the 
Biot-Savant law allowing for this variation in diameter, it 
can be shown, qualitatively, that the final result, as stated 
above, is relatively insensitive to variations in the radius 
of the vortex elements for downstream. 

Thus in any approximate evaluation of the induced 
velocities in the plane of the blades for large values of wee  

the pitch of the vortex sheets just downstream of the windmdll 
should be used 	In the case of the ducted windmill the pitch 
of the vortex sheets should therefore be based on the axial 
velocity, V2, see section 5b. 

In order to reduce the losses in the slipstream it 
may prove advantageous to use gujap vanes downstream of the 
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windmill at the entrance to the diffuser. It is unlikely 
that any great increase in power output will result from this 
cause since any gain in overall efficiency will be partly 
offset by the increased drag and by increased diffuser losses. 

(i) Constant diameter duct  

If Vo is the axial velocity of the uniform flow 

far upstream of the windmill, which is rotating with the 

angular velocity,-,, then the elements of the B blades 

at a radius, r„ will each shed helical vortices, of pitch 

angle 00  = tan /(Volar), into the main flow. The 

strength of these vortices will be -d r, where -dr is 

the change in circulation around the blade element between 

radius r and r dr. The equivalent induced velocity 

in the plane of the blades can be calculated using the Bict-
Savart law and integrating over the complete length of the 
vortex as discussed in section da above. However since the 
helical vortices are moving inside a duct the images of the 
vortices outside the duct must also be considered in order . 
to satisfy the boundary condition of zero normal (or radial) 
velocity at the duct boun6nry. A more direct method is to 
find a solution of the potential equation satisfying the 
appropriate boundary conditions. 

In either case the components of the induced 
velocity4,13 in the plane of the windmill are 

= 	r1(.) 	13.(1,2  270/ , 

 

im 	(Bm 

m=1 

( 1 ) 

and (0  = 
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where w and art are the components of the induced velocity 

perpendicular and parallel to the resultant velocitylV2  +!..1.2r2. 

and 
	 fl Rt

p o = ❑ 	
where Rt  is the blade tip radius 

	

= V 	where Rd  is the duct radius. 

Approximations to these expressions have been given 

by Iwasaki4, where only the first term in the asymptotic 
expansions of the Bessel. functio ns has been retained. 

It should be noted that the axial velocity component 
far downstream of the windmill is not equal to Vo  but is 

Vo  w
o$ 
 where w n sec 90 (tan 0 = Vo/f1r). Clearly 

v
lo 

is not constant with radius and must vary in magnitude 

and sign in order to satisfy the continuity relation. This 
feature has been neglected by most writers on the performance 
of axial flow windmills (or fans). Its neglect is only 
,justified when the blade circulation is so adjusted that the 
magnitude of the radial velocity in the plane of the windmill, 
is very small. 

In some cases a better approximation to wri  is 

required. This can be Obtained from the first approximation 

to w(r), on the assumption 

the vortex far downstream is 

tan-1 (1/ if/r). 	Thus w1(r) 

that the local pitch angle of 

tan-1(V ^VI
o 
 /nr) in place of 

can be determined from equation 

(1) with p Z2rAro-wo(r) . 

The procedure for finding the blade lift and drag, 
and hence the output power from the windmill, is identical 
with that described in section 6a above. It can easily be 
shown, however, that one important result of the windmill 
operating inside a duct is that the circulation, and therefore 
the lift, do not fall off so rapidly towards tpo tip as in 
the case of the unshrouded windmill. Iwasaki has shown that 
the theoretical gain in power due to this cause alone can be 
as much as 15 per cent and experiments have confirmed this. 
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(ii) Duct of variable diameter  

As stated above it will be assumed, in the calculation 
of the induced velocity distribution in the plane of the windmill 
due to the trailing helical vortex sheets, that the outside 
diameter of the sheets is equal to the outside diameter of the 
windmill and the vortex sheet diameter far downstream is equal 
to the duct diameter in the plane of the windmill. Tt is 
assumed that the axial velocity distribution across the plane 
of the windmill, due to the venturi effect of the duct, has 
been calculated, say, by the method discussed in section 5b(ii). 

Thus the local velocity relative to the rotating 
blades has the components .1-)r wn sin 0' and V - woos 

0'-1-8-V 

see figure 16, and the resultant velocity, 	and the relative 

flow angle, 0, both as functions of r/R0 can be determined 

once w
n 

is known. 

The angle of incidence of the blades, a, is given 
by 

a = O - 

where 	tan 0 = (V
o 
 -w 

n 
 cos 0'.4.8V2) Anr+w

n
sin 0') and the 

local circulation, r, in terms of the lift coefficient CL, 
is 

rf  WoCL 	We = 	=  2 	2 '(91 e  - co)  

where 	c is the chord 

a is the lift curve slope 

and 	ao is the no-lift angle. 

Equations (1) and (3) form an integral equation in 
terms ofwia(r) which must be solved by a suitable a pproximate 
numerical method. 

(2)  

(3)  
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7. Discussion 

Detailed calculations of the performance of ducted 
winamills based on vortex theory have not been given in this 
report since at this stage in the investigation concrete 
proposals for the most satisfactory geometries of the duct 
and blades have not yet been formulated. The vortex theory 
of ducted windmills has been presented in order to check 
qualitatively the conclusions obtained from simple one-
dimensional theory and to form the basis for further 
theoretical and experimental studies. 

The conclusions reached in section 4c that the 
power output of a ducted windmill can be arranged to be at 
least 65 per cent greater than that of an ideal unshrouded 
windmill of similar geometry appears, if anything, to be on 
the low side, although this figure corresponds to power 
outputs greater than that obtained experimentally by Sanuki3 

and Iv asaki4  with fairly crude duct geometries. In both the 
latter experiments the gains in power output obtained with 
ducted windmills have been largely due to reduction in tip 
losses and blade unstalling and little or no effect from 
controlled dLffusion. The evidence to date is not conclusive 
as to the relative merits of long diffusers having large 
expansion ratios and high duct losses and short ducts having 
small losses. In section 4c the numerical calculations show 
the need for high values of the diffuser expansion ratio and 
large negative pressure coefficients at the duct exit but no 
attempt has been made to find the corresponding internal and 
external duct profiles of the duct and to investigate whether 
or not the estimated losses are correct, The reason for 
this is that little detailed information is available on the 
flow of air through diffusers having free exits in which the 
velocity external to the diffuser flow is considerably 
greater than the mean internal velocity downstream of the 
exit. Under such conditions the 'diffuser efficiency' or 
pressure recovery is likely to be greater than in the case 
where the external velocity is zero. In addition the action 
of the windmill is to speed up the flow near the walls of the 
duct at th9 expense of the flow near the centre. Experiments 
by Collarlp with a windmill mounted inside a wind tunnel 
diffusor have shown an appreciable improvement in the velocity 
distribution in the diffuser, although naturally in these 
experiments the upstream velocity was not uniform and there-
fore represent different conditions from those discussed here. 

It can be assumed, on the basis of present knowledge, 
that, unless future experimental results prove to the contrary, 
the most suitable form of duct will consist of an entry and 
exit cone shaped to form an annular duct ofestreanlinod sections 
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in which the exit to throat area ratio is about 3.5 and the 
inlet area is made not greater than the exit area. The loss 
in performance with ducts of crude aerodynamic shape can only 
be determined from experiment. 

In the structural design of aucts having large 
inlet and exit area ratios the duct must withstand not only 
the drag forces but also the inward radial forces, 	corres- 
ppnding to the lift on an aerofoil. The latter forces have 
not been discussed in the text above although they can be 
immediately derived from a knowledge of the pressure dis-
tribution over the duct which, incidentally, is required in 
the calculation of the drag force. It has been stated in 
the text that this drag force is not equal to the drag of 
the duct when the windmill is removed. This is because the 
lower pressure behind the windmill acts on the walls of the 
duct and produces an extra drag. Although the duct develops 
a radial force the induced drag is zero since no trailing 
vortices are shed in a symmetrical flow.15  When the duct is 
inclined at an angle to wind a real lifting force and pitching 
or yawing moment develop and, because there are now trailing 
vortices, an induced drag. It is probable that the magnitude 
of this pitching or yawing moment will play a very important 
part in the design of the supporting structure for a ducted 
windmill. The effect of duct incidence on the magnitude of 
the induced velocity in the plane of the windmill is quite 
small and huttray17 has found that it is appreciably constant 
over an incidence range of 	100. 

It was also shown from the calculations of section 
40 that the ducted windmill disc loading is, as a result of 
the increased axial velocity, lower than in the case of the 
corresponding unshrouded windmill. Since, in addition, 
the tip losses will be reduced and gust effects lessened the 
overall mechanical design of the ducted windmill should 
prove simpler than its unshrouded counterpart, and would 
therefore tend to offset the additional cost of the diffuser 
and ducting. The increased steadiness in the flaw through 
the plane of the ducted windmill, as a result of the contrac-
tion effect of the inlet cone, will cause the rotational 
speed to be steadier than in the case of the unshrouded wind-
mill. This should present some simplification to the speed 
control problem. From the experimental results of Iwasaki' 
and Sanuki3  a two or three bladed windmill appears to be best 
suited for operation inside e duct. The values ofellRtATo 
corresponding to maximum power output are in the range 3.1 

to 3.7 

In order to confirm the above predictions and to 
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6b 

optimise the geometrical layout from the conflicting points 
of view of cost and aerodynamic efficiency it is suggested 
that a wind tunnel testing programme should be undertaken. 
The models could be tested at a Reynolds number of about 
1/5th full scale and because of this scale effect would give 
slightly pessimistic results. Extrapolation to full scale 
could be done using existing data on the variation of diffuser 
efficiencies and skin friction effects with Reynolds number. 

Gauze screens of various mesh sizes and gauges 
would be used in the plane of the windmill to represent any 
desired value of disc loading. Only one contraction section 
with a contraction ratio of about 1.5, as suggested by the 
calculations above, would need to be made. A range of 
diffusers, having di fferent expansion ratios and cone angles, 
various external body shapes, and. ejector arrangements could 
all be tested in turn. The results obtained from such an 
experimental programme would be a valuable contribution to 
the understanding of the ducted windmill problem. 

After the completion of this experimental programme 
the path would then be clear to commence the detailed design 
of a windmill, by the methods discussed above, suitable for 
high performance operation inside the optimum duct. In the 
meantime the methods can be applied to the experimental 
results of Sanuki3  and a comparison made between theory and 
experiment. It is expected that as a result of these cal-
culations simple numerical methods will be evolved for the 
performance of ducted windmills similar to those used at 
present in the design of axial flow fans. It should be 
noted, however, that a method in which the variation of the 
axial induced velocity with radius is neglected is unlikely 
to yield reliable results for the performance in this case. 

Conclur.ions 

1. The performance and design of ducted windmills 
using one dimensional theory, including the effects of 
friction and the external flow over the duct, are presented. 

2. The results of the one dimensional theory are 
compared with more elaborate methods based on the vortex 
theory of windmills and the aerodynamic performance of 
ducted bodies. 

3. The aerodynamic loading on the blades is discussed 
and the di inferences in the induced velocity components between 
ducted and unshrouded windmills noted. 
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4. Calculations based on the one dimensional theory 
show that gains in power output of at least 65 per cent of the 
maximum power output of the ideal unshrouded windmill can be 
obtained when the windmill is shrouded with a duct of suitable 
geometry. The importance of the diffuser expansion ratio 
and the negative pressure coefficient at the duct outlet on 
the power output are discussed. 

5. The reduced disc loading and slight alleviation 
of gustiness on the blades with the ducted windmill will, it 
is suggested, partly offset the cost of the duct and supporting 
structure. The increased steadiness in the rotational speed 
of the windmill is an important factor in favour of the ducted 
windmill. 

6. In view of the lack of experimental data on ducted 
bodies of the type required for high performance operation 
of ducted -Andmills a series of suitable wind tunnel 
experiments is suggested. In these no windmill would be 
used but its place taken by gauzes of different porosities 
giving pressure drops equal to the windmill disc loading. 
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Table 1, 2, 3 and 4. Ducted Yandmill Performance  

1/4 
h2 

C
P  
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C 
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2 

0.35 
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Table lb  
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Table lc 
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C
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r 0.97 1.17 1.28 1.33 
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v 0.86 1.04 1.11+ 1.19 
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r 

L 

v 
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1.04 
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1.21 
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1.06 
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AH2  + Aii 
- 0.25 
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1/p, 2 3 4- 5 
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le 3b  
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'4- 
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Table 3c 
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LH2  + I.H3  
- 0.25 

 

1A.J. 2 3 4 5 
r 1.22 1.43 1.53 1.58 
v 0.90 1.05 1.14 1.16 

Table 4z.  
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4 

d.H2  + 46r13  

1 /1-1  2 3 4 5 
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I 
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Table 4-b 
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Table Lirl 
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r 1.38 1.61 1.73 1.79 
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FIG. 9 DUCTED WINDMILL PERFORMANCE 
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FIG.10. DUCTED WINDMILL PERFORMANCE 
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FIG. II. DIAGRAM OF THE FLOW PAST 

AN UNSHROUDED WINDMILL 

(I) WINDMILL REPLACED BY A GAUZE 
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(3) WINDMILL ALONE 

F1G 12. GEOMETRY OF T1-E SLIPSTREAM 
OF A DUCTED WINDMILL 
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FIG.13. CONTROL SURFACES FOR THE FLOW 
PAST A DUCTED WINDMILL 

FIG. 14. THE HELICAL VORTEX SHEETS 
DOWNSTREAM OF A WINDMILL 
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FIG . 15. DIAGRAM SHOWING VELOCITY COMPONENTS AND 
FORCES ACTING ON BLADE ELEMENT AT RADIUS r. 
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E. V2  VELOCITY INCREMENT DUE 
TO DUCT. 

2 wn  NORMAL COMPONENT OF 
INDUCED VELOCITY FOR 
DOWNSTREAM. 

0 — wo) AXIAL VELOCITY OF HELICAL 
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FIG. 16. VELOCITY DIAGRAM SHOWING VELOCITY COMPONENTS 
DUE TO THE DUCT AND WINDMILL VORTEX SHEETS 


