REFORYT NO. 401

MARCH, 1956.

CCLLEGRE OF AEFERONAUTICS

|
[
=y
{

3]

CRANFPIELD

4 potential flow model for the flow dbout a

nacelle with jaot

...by—..

Arthur H, Craven, I.Se,, Fh.D., D.C,le,

SUMMARY

The inviscid incompressible flow round a thin nacelle
from which a jet is issuing is considereds It is shown that
the inhomogeneous motion can be transformed into an equivalent
heomegenecus motion which may be represented by two semi-infinite
distributions of vortices in the two-dimensicnal case and by a
semi~-infinite distribution of circular vortex rings in the axi-~
symmetric case. Ry assuming constant vorticity in the wake ang
constant or lincarly increasing vorticity to represent the duct,
the duct shope and the pressure distribution over its outer
surf'ace are calculated for given ratics of Jet speed to free
stream speed, Assuming a slender duct the vorticity represent-
ing it is cipressed,to a first arproximation, as a functiion of'
the duct width or diameter and the volume flow through the duct,
tlethods of extending the treatment to a thick-walled duct with

a wake of finite thickness and for including the Viscous effects
are sugscested,
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1IST OF SYREOLS

chord length of duct

half width of assumed duct shape

complete elliptic integral of the second kind
complete elliptic integral of the first kind
the modulus of the elliptic integrals
pressure

pressure in undisturbed stream

volume flow through dust

radial distance

radius of circular vortex ring

undisturbed free stream velocity
longitudinal corponents of the perturbation velocity

on the outside and inside surfaces of the duct
respectively '

‘ normal component of the perturba'bion velocity on duct

surface -

_ longitudinal distances |

normal distances

distances in axial direction

" angle between duct wall and X=ax18

angle of 4incidence of duct

strength per unit length of the vortex distribution in '
two dimensions

strength per unit length of wake vorticity distribution
for x upstream of auect leading edge

for x doawnstrean of duct leading edge




@ vector potential for a system of circular vortex rings
;-{ strength per unit length of vortex ring distributicn
o density

1. Introduction

In the past most work on jet flow has been confined
to the free jet and to the problem of the flow in the mixing .
region dovnstresm of the jet exit, Attenticn has been focussed
upon the velecity, and in scme cases the density and temperature
distributions in the nixing region.

Iittle hos been written, however, on the effect of the
jet upon the flow arcund the body from which it issues, and in
poarticular the effcet upon the flow at the reor end of the body.
This paper contains an attempt to set up potential flow models
for both two-dimensional and axi-symme tric ducts frem which jets
are issuing. Scme consideration is also given to the staggered
two-dinensional duct and the tro-dimensional duct at incidence,
Further, the approximations of slender body theory are used ©o
obtain expressions for the vorticity distributions representing
the ducts,

The detailed mathematical onalysis is given in
separate eppendices to this paper, only methods and results
being discussed in the main body. Reference to equations in
appendices is made by quoting the letter denoting the appendix
end the cquation mumber e.g. (8.32). A mumber in the position
of an index in the text denotes a reference included in the list
on page 19, in asterisk = signifies a footnote.

The suthor wishes to express his sincere gratituds to

liry G, Iilley and ire T.R.F. Nomeiler for their guidance and

constructive criticism throughout,
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2, A potential flow model representing the flow cbout a
nacelle from which a jet is issuing. The general

Eroblem .

Tn this problem we can recognise two distinct fields
of flow, the gases in each being inccmpressible and inviscide
There is the flow through the duct in which the total head of
the flow is changed by some external action (e.g. a jet engine)
and the flow exterior to the duct, Downstream of the duct
these two flows are separated by a wake across which the

- pressure must be contimious, Although the effect of the

thickness of the duct is discussed later, the nain arguments
are developed for a thin duct for vwhnich the wake is thin and
can be regarded as a dividing or wake streamline, or in the
sxi-symmetric case a stream surface, - Since, in general, the
£luid velocity is different on either side of this wake,

there will be, lying on this streamline or surface, a distrib-
ution of vorticity of strength per unit length equal to the
difference between the velocities, (fig. 1) e

Richemann and We'bex1 have published a series of
monographs dealing with duct flow, end mention this problen
emongst others concerning ducts ahd cowlings for propulsive
unitss They give in detail the solution of the problem of
an axi-symaetric duct without weke, 1.€. & duct from which
there is no jet velocity.  Since the total heads of jet and
stream are different we ere considering en inhomogensous
flow problem which cannot be treated by normal potential flow
methods without modification.

2.1. The equivalent homogeneous flow

The complete flow can be rendered homogeneous by
considering the total heads put equal without changing the
velocity in either the jet or the surrounding stream. In
consequence there will be a constant pressure difference
between the jet and the stream, and we must therefore assume
that the wake streamline or stream surface is replaced by an
infinitesimally thin surface separating the jet and stream,
and which can support the supposed pressure difference (fige 2)s

The validity of this argument can be sppreciated by
considering the equation of steady motion for an incCrpress=
ible dinviscid fluid, which can be written

Qe gradqz.-—-s)- grad p coensceveses(l)

for zero body force., This equation contains only the
pressure gradient and hence a constant change of pressure
as advocated sbove will not affect the velocity field.,
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This equivalent flow can now be treated by the usual methods,
Subseguently the conditions in the original flow can be found
by cancelling the pressure change across the wake.

202, The distribution of vorticity

Since, in the equivalent flow, the total heads are
the same on both sides of the dividing gurface, the pressure
difference across this thin surface is (A.i

2 2
&P = %P (VZ".-V..I)

where V 4 is the specd on the outside, and V2 the speed on’

the inside, of the dividing surface,

Now this (]J.V‘ldl_?lg surflace is a streamiine so that the direction
of flow on both sides of it are parallel to it, This enables
ns to represent the surface as a distribution of vorticity
equal in strength per unit length to the difference in velocity.
Thus the vorticity representing the dividing surface has
strength per unit length

- v -7 = 28p_
YW' = v2 v1 = v1+v2 -ooqo-woot;n(z)

The duct itself is idealised to a thin surface so
that in two dimensions it is represented, as for two thin
acrofoils, by two distributions of vorticSs, or in the axi-
syrmetric case, by a distribution of circular vortex rings.

The problem of the establishment of a potential model
for the jet flow now resolves itself into that of determining
the strength and position of the vortex distribution represent-
ing the wake, and zlso of determining the vorticity distribu-
tion which represents the duct,

3. The two-dimensicnal duct

The two-dimensicnal duct is considered both at zero
incidence and at a small incidence, The nmathsmaticai deriva=-
tion of results quoted in this section ere given in Appendix A
and Appendix B for the zero incidence case and the case of the
duct at small incidence respectively,

36le The syrmetrical duct at zero incidence

The two-dimehsional duct is taken as being' formed
by two similar thin aerofcils of chord length ¢, given by
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placed symmetrically sbout the x-axis in 2 uniform stream of
speed U parallel to the x~-axiSe - Following thin aerofcil

- theory, we replace the two thin aerofoils by distributions

of vortices, which must be contimous both in magnitude and
position with the vortex distribution representing the wake
so that the Joukowskl condition of no flow round the duct
trailing edges is gatisfied. From the symmetry of the con- -
figuration it is clear that, if the vortici representing
the upper thin aerofoil at X =X is Y(x1 , then that

representing the lower is -Y(x1).

3elale Ihe perturbation wveloclty

Tt is shown that these distributions of vorticity
1ead to a perturbation veloci®y at any point (x,y) which has
Jongitudinal and normal components given by (A.1,5) as

§ (0 ,
B VY {
w(x,y) = = 1 v(x, )i ‘ - 5 Yax,
S (o P4 ap)” (e, ) 2 () .
. sssaasspanod 3
and P _
v(x3) = 5 '\r(x)(‘xx) L : lax
i 3 3= 2 2 {
s - . (e rlmyy)? () +0y) |
-ov-o.-oc-a.(l{-)

The normal ccmponent is contimous through ¥ =¥, whereas the
longitudinal component is nota

N 1f the equasion for the position of the wake streamline
were known, il.ec. if we knew the relation between ¥, and X,

over the wake, then by using the boundary condition that the
duct walls are streamline

v .
A ] T+ u ..-v---o.u-o(5)

equations 3 and k4 give a singular integral equation for the
vorticity distribution Y(x,l). The integral equation will

be singular since at the point considered on the duct or wake
surface ¥ = ¥4 and X = X;e . Tn section 8 of Appendix &
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this problen is considered in slightly more detzil, and it

is shown that even when the problem is simplified by assuming
that u is very small compared with U, the vorticity in
the wake is assumed constant, and that the vorticity distribu-
tions representing the duct and woke lie a2long the lines

¥y =+ d, the integral eq_uation becornes (£030)

ne/2 1 ax, .
V(x,d) = Y(x‘j) (x_ mz ! e x oaoo.»o-.---( ;

1_:! _0/2 wad

The equation is an extension of the equation
Ry

t
g(e) = 3= ; ;,(:ﬂ”ll dn
A

which Schr?ﬁd&rz and S&ﬁmgez_].j have shovm to have the solution

s Y1
s 2 f‘!—ﬂ ‘

Eln) = i T |
f" —1

! [l Q.
g(r) 1eg M-y

As yet (6) has not been solved, but it is believed that a
solution may be possible following the method of Schridder
and S¥ngena

Assuming a slender duct, i.e., the duct chord large
compared with its width, with leading edges at x = 0, the
longitudinal component of the perturbation velocity can be
vritten

i) just outside the duct and wake (4.35)

}“\. )r?
“ 211 v(x)yy(x,)
val . 1
wol®) = = ) | 1= 1 EY e ¢ L (9)
: - \ — | (x—x ) i o
o 1
and : i
ii) just inside the wake (f.36)
- 5
K - iy ;1 :
ui(}:) = 1.10 + Y(}E) !_1 = {aJ(}*i ott-n-un-o-o(8)
Al
where denotes the Cauchy finite princinal part of the

singuldr integral, |
The normal ccmponent can then be calculated from

v o= (U+u)%b
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Furthermore, the vorticity distribution representing 2 slender
duct can be found (section 3.1 oh)e

3ele2e The perturbation velocity in speqial cases

To proceed further it is necessary to assume forms
for the vorticity distributions representing the duct and wake
streamlines, and to assume that the duct and weke have a chosen
shape, Ordinery thin aerofoil theory applies only to aerofoils
with small camber, and hence it is reasonable to suppose that
the argument developed here will apply only %o a duct whose
walls have small curvature and o wake which is o proximately
straight. Thus the chosen vortex distributions are assuned
to lie on the perallel lines y1(x) -=+d, vhere 4 isa
constant.

Tn Appendix A, section L, the vortex distributions
considered are

i) o constant vorticity, of strength ¥ = i per unit
length, along the dact and its wakee

ii) a linearly increasing strength of vorticity along
the duct, ond constant strength in the woke, 1.Ce
K ] . c c
y(x) = = x+3) 3 -3 €x£3
n = e
YW(K) 5 « s Xz P
and :
iii) a sirmsoidal variation of vorticity over the duct

and constant vorticity in the weke, 1.Ce

S c . c c
y(x) = Ksml;—é; (x + -2-)1 b "EQ’CSE
h !.' ® C
YW(X_) = s XZ77

The assumption of constent vorticity in the woke does place a
slight restriction on the solution since it implies, from (2)

that V,l -V, is constant, Now Dp = jz'p(V% _v{) is

(to a first order) constent, and hence V, + v, is constant.
Therefore, in the wake, we are assuning that V, and V, are

constants which is strictly only true if the wake streamlines
are straight and parallel to the x-axis, Wnile this is not
exactly the case figs. 3 and 5 show that it is very nearly SO.
Tf however the accuracy required demend it the variation in

V1 and V2 due to the curving of the wake streamline can be

i
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calculated by considering the balance beticen the centrifugal
force and the pressure on the boundary streamline, A new
vorticity distribution can then be found to replace the constant
distribution assumed at first and the modificd shape of the
wake calculated., This iterative rrocess can be repesated to
any degree of accuracy,

The perturbation velocity components given by a
constant overall vorticity distribution are, from(4.8,9), on
the outside of the upper surface of the duet and wake

i _ 7 -1 ;"x+c/2‘~‘_} §IC o &

u (x,d) = 5% j2 + tan (24 o= 5-36=

L

0 for x< -~ -g’-
'f,
‘ 1 for x};—ﬁz’-

cererersanan(9)

f7 4 .
LB {x ot (mel2)), 8K

ui(x.'ld) =92 “2 + t '\ 2d /‘J:;‘L-I' P oue..oo(‘IO)

and ) - y &

1
i« . { 24 %

V(l“[,d) :—'E-:logei-‘l +.”'_—__5} ! cnu-o-ooauua(11)

N I ELX-F:’E.,‘J E

| AR —_—

The normal component wv(x) dis contimuous across the duct and
voke, and infinite at the leading edge -~ a parallel with thin
aerofoil theory, It also tends to zero far upstreon and far
dovmstream, It is scen that at x = + » Wwhere

-1 x-i-c:@" _ =
ten ':&—1 =7 o
uo-.:(},ui:f{

Now, at infinity, K= V, = V, and hence the velocity on the
Jet side of the wake streamline is U + = LA ‘(V’.z - V,l) =V
and V1 on the freestream side, Also, far upstrean at

X==27, 6 =0 end hence,

2 2

. = Wit = 0
o 1

as required. Thus the conditions of the prcblen are satisfied
by the solution found,

Sinilar expressions for the other two assumed




vorticity distributions are considerably more complicated
and are given in Appendix A, section 4e2 and L4a3s

Zelade The shape of the duct and wake

Then the components of the perturbation velocity
have been found to a first approximation it is then possible
to find approximately the shape corresponding to the assumed
vortex distribution by using the condition that the surface
of the duct and wake must be a streamline, 1.€.

e
dx ~ Uwa

to give the slope of the profile at any value of x. The
shape is then found by integration. '

These calculations have been performed in the case
of the constant vorticity distribution and for the linearly
increasing distribution. The corresponding duct shapes are
shown in figs., 3 and 5 respectively.

To obtain the second approximation shovm in these
figures the assumed vorticity distribution wes teken to lie on
the shope calculated before, The components of the
perturbation velocity are then found mmerically and the duct
shape is re~calculated from them, This process cen be
repeated until the difference tatween two successive shapes
is negligible, giving the correct duct shape for the assumed
vorticity distribution. ' '

3.1e4s The vortex distribution for a given shape

In fig. 3 the duct shapes given by a constant
vorticity distribution for both V,/V, = 1.2 and vz/‘v1 = 1.3

are shown, It is seen immediately that the duct shape is
different in the two cases, and thus we can infer that a
given duct shape is represented by different vorticity
distributions for different speeds, but it is only by a
process of trial and error that a suitable vortex distribution
can be found without recourse to mumerical solutions of
equations of the form of (6), Birnbsum* has shown that for
fhe finite duct with no wake (i.e. straight through flcw5 three
basic vorticity distributions can be used which give the
shapes of a flat plate, a parabolic arc, and an S~-shaped
profile, In each case the vorticity at the trailing edge

is mero since there is no wake.

It is thought that the three vortex distributions
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given in section 3,1.2 cbove give a good besis for calculating
the shapes of ducts from which a jet is issuing. It rmst be
remembered, however, that whatever combination of basic.
distributions is used, the vorticity at infinity dovmstrean
mst be that given by (2) where V, tekes the free stream
value and Vé is the jet speed at infinity,

- If' the duct is assumed slender then an expression
for the vorticity, representing the duct and weke, can be
found explicitly. It is shown (4,41) that, if Q, is the

volune flow of fluid through wnit span of the duct, and U is
the free strean velocity, then the vorticity at y(x) on the
duct surface is . :

@]

Y(X) = W -U + O(E‘) .nu.-ooto-o:_(dz)

where c¢ is the length of the duct in the streamwise direction
and y/c is small, ‘

As an example an arbitrary duct shape with wake was
chosen (fig. 15) and the jet and free stream speeds taken such
that vz/v 4 = 1.25. Using the vorticity @istribution given by

(12) the duct shape corresponding to this distribution was
calculated from equations 3, 4 and 5 and the result compared
with the assumed shape (fige, 15)s The agreement between
assumed and calculated shape is close except near the leading
edge when, due to the nature of equation 4, a singularity is
to be expected, '

5s105s The pressure distribution

The pressure distribution over the outside surfoce
of the duct can be immediately calculated from the perturbation
velocity, Having found u and v as, for example, in (9)
and (11), the difference in pressure between a point on the
duct surface and in the undisturbed stream can be expressed as

g S |
i .2 2 21
obp =-p - p, = zpl - %p L£U+u)' + v_j
. &p ‘ 1 rﬁé 2 =z
5 & s e—— ll.l + 2ul + v IQQ’OI.D.D..(1))
ZpU v?

The pressure distributions for the ducts represented by the
constant vorticity distribution and the linearly increasing
vorticity distribution are given in Figs, 4 and 6. In both
cases. the pressure distributions corresponding to the Tirst
and second approximations to the duct shope are showm,




3¢2. The stapggered duct

1f the x~coordinates of the leading edges of the
upper and lower thin serofoils are different, but those of the
trailing edges are the same, We have a staggered duct of a
farm often met in practice. This case is considered in
Appendix A, section 7, where it is pointed out that there is
no longer symmetry about the x-axis, and hence 1t is unlikely
thet the same vorticity distribution can be used in this case,
even when the different limits of integration are taken.
The perturbation velocity can be calculated as before and from
it the shape and pressure distribution can be found, as for
the symmetrical duct,

3.5. The two-dimensional duct ot incidence (Appendix B)

Although the duct is supposed symetrical about the "
x~axis (fig. 7) the complete flow is not symmetrical about a
line drawn parallel to the undisturbed stream, Thus it is
unlikely that the duct shape, obtained by methods outlined in
section 3.1, will be exactly symmetrical since the cross flow
would be neglected,  However, provided the incidence is small,
such 2 golution will give some information about the flow
round o duct with jet at incidence.

Then a physically likely shape  (B,7) is assumed for
the shape of the wake, the integrals for the perturbation
velocity are formidable. 1T, “wowever, for small incidences
the vieke streamlines are assumed to leave the duct parallel
to the free stream (fig. 8) the perturbation velocity can be
calculated as in Appendix B, section 3.3, and the shape and
pressure distribution can be found as before.

The equations.for the components of the perturbation
velocity both show logerithmic singularities at the trailing
edge of the duct. These are due to the sudden change in flow
direction, which is assumed at the trailing edge.

}y The thin axi-symmetric duct

The thin a:ari—symnetric‘duct at zero incidence is
represented by a distribution of circular vortex rings the:
contres of whichlie on the z-axis, (the axis of symmetry)

Tt is shown in Appendix C that the magnitude of
the vector potential at a point P (z,r,f') due to the

= Tig. '9a
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distribution of vortex rings representing the duct is

1 -
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vhere R(z') is the radius of the vortex ring at z = z!

and F and E are elliptic integrals of the first and second
kind respectively of modulus

5* = hr R(z')
(z-z‘)2+5_x_'+R(z')j :

It is further shown thot the perturbation velocity at P has
components

ey -

e

u(z,r) = o i K(z') |F + R’ (2! )-r _(Z_Z') - dz ! -

“ Vo (z-z') +lR(z')-r B |(_z—z')2+ (R(z')+r)2§§
and. %‘ L - N

1 K(z')(z=z?) {,2 2r R(z!)E i dz!
o) = -k | Ko i - 3
T e ARGl (e P e
vswenyemmunk 19

Frem these the duct shape given in fig. 11 has been calculated.

If a slender duct is .assuméd then it is shown that the
strength per unit length of the vorticity distribution is

K(z) = v(a) = g5y = U+ 0(5)  srerracnnea(16)

As for the two-dimensional duct, which is not assumed
to be thin, the further solution of the problem of the non-
slender axi-syrmetric duct proceeds by assuming that®a chosen
vorticity distribution lies on a circular cylinder of constant
radius, The perturbation velocity is determined along the
duct surface, and the first epproximation to the Guct shape then
calculated from the boundary condition of no flow across the
surface, la.e,

ar _ _v
dz “ U +u

llore accurate approximations can then be found 23 in 3.1.3.
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Pige 11 shows a duct shape calculated for the case
VZ/V 4 = 063 wihich corresponds to a ducted radiators. Constant

vorticity has been assumed on the duct and in the wake, This
solution is compar with an intake duct calculated by
Kuchemann and Weber” and shown to be in close agreement. The
corresponding pressure distribution is shown in fig., 12.
Returning to jet flow where V 17 4 +the duct shape and
pressure distribution over the duct induced by the jet are
given in figse 13 and 14 for the cases of constant vorticity

and VQ/V1 = 1,5 and 1.24

5. The extension to a duct with walls of finite thickness

Previously the ducts considered have been formed
either by two thin aerofoils o~ by a thin cylinder, and no
consideration has been given +to the thickness of the walls.
Thick profiles can be represented by a distribution of )
sources and sinks superimposed upon the vortex distributicn
found previously. The calcenlation of the appropriate systen
of sources ond sinks 1s complicated, not only by the fact that
their strength and location are not lmown on the duct, but
also by the need to have a source distribution to rcpresent
the thickness of the weke.

Kuchemarm6 has suggested that the effect of thickness
is of minor importance compered with the comiber line of the
profile (i.e. fthe shape of the corresponding thin profile), end
that the thickness is only important when determining the rate
of flow through the ducts A correction to the velocity inside
+the duct is given as

g \
- 1B Lal - \
v, = g _[R 1; C_U-;-Vﬁzj

Y

where '\.Ta and V., are the speed on the inner surface of the

B
thick duct (radius Ra) and thin duct (radius Rﬁ) respect=

jively. By inference we can use this to determine the speed

inside a wake of finite thickness.

A general theory for a two-dimensional finite duct,
taking account of thickness, has been given by Wyittich!/, He
considers a disturbance velocity potential z(x,y) which must
satisfy Leplace's equation

V2 2(xy) = ©

g TEEA
figh g
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and the boundary condition
YA dx

on _ _ ~ on

over both aerofoils, He then deduces the appropriatec source
distribution of(s) in the form of a singular integral
equation, the integral being taken round two closed curvese.
The restriction that the curves rust be closed and finite
prevents the method being used without considercble modifica-
tion for a duct with wake. :

fnother method of including the thickness of the

duct walls in two dimensions is to represent them, as for
acrofoils, by the region of fluid at rest enclosed by a
systen of vortices arranged on the boundary of the duct and
its weke, The determination of the actual distribution of
vorticity representing the duct and weke is extremely

ifficult as agnin the integral equations are not solvable
except by mmerical methods, In a similar way, the thickness
of an exi-symmetric duct can be considered by toking a dis-
tribution of vortex rings on the inside and cutside surfaces
of the duct,.

Tn on attempt to correct the over-large values of
1ift on acrofoils found by the classical Joukowski circulation
theory, Witosynski end Thcmpsona have evolved a discontinuous
potential, They recognise a wake ‘behind the aerofeil bcunded
by the streamline {: 0 which is split at the trailing edge
into two branches, In transforming the aerofil to a circle
the wake region is excluded from the transformation. The
corresponding complex potential is single-velued, and def ines
the flow completely, except in the weke region. A developnent
of this theory mey perhaps assist in the solution of the problem
of a duct with wake from which a jet is issuing. ’

6, The effect of the flow in the mixing region

3 : The discussiors in the previous parts of this
" section have dsalt with only inviscid fluids., In proctice
- visecous mixing processes in the wake will affect the flow over
: the duct., I1ach has been written on the mixing in the wake,
8 but the effect of the mixing on the viscous flow zbout the
duct has not yet been investigated.

It is clear, however, that the viscous jet will
entrain sone of the fluid from the surrounding stream, and
thereby incrense the normal compenent of the perturbation
velocity near the duct trailing edge, This will cause the
now finite width wake, or mixing region, to curve further
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inwards., This increase in velocity also causes a reduction
in pressure at the rear of the duct, and therefore the duct
will experience a drag due to the presence of the mixing
region., Further, the reduction in pressure will tend to
prevent separation of flow vver the rear of the nacelle and
to restrain the formation of a turbulent boundary layer over
the nacelle, -

Viscous forces in the mixing region will also cause
the jet to be slowed up and thus the assumption of constant
vorticity in the weske, which was made earlier, is not
realiscble in practice.

To cover the effects of viscosity it is necessary to
extend the treatment given earlier in this section to consider
o distribution of sinks in the wake, eand also to include the
effsct of the boundary layer attached to the duct walls. The
actual flow outside the jet can be regarded as very nearly
equivalent to that produced by a systen of sinks along the,
jet axis, the strength of the sinks being sufficient to induce
the correct inflow at the jet boundary, Now the inflow
velocity is equal to

i) = in two dimensions
Jd x

(aF]
|

2 1 . : ;
ii) = 35 in axi~symmetric flow,

(7]

vihere I,{ ’ \_!_‘ are the appropria‘e stream functions for the
additional redial flow. The system of sinks has strength
per unit length proportional to o %'Lf/ dx., Squire and Trouncer
have shown that the required sink strength can be made up of’
a codbination of constant and linear sink distributions taken
over successive small lengths of the jet axis., The exact
analytic solution for the source strength involves an integral
equation, which is not readily solvable.

9

Tf the inflow has been found from the associated
problen of the flow in the mixing region, the value of

a (Jg a * . ) - .
-"-""a 2 -a-(}}—c' can be found‘:mmediately. _ Comparison between

these values and those calculated for a source distribution
of strength m extending over a small length give the
required value of the source strength at the appropriate
point of the jet axis.
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7. Concluding remarks

The potential flow model for the jet flow from a
nacelle is limited in its opplication by the method used in
deriving it. The representation of a duct by 2 simple vortex
distribution is only permissible when the duct is.thin, the
difference in the speeds of the jet and stream is smell, and
the speeds are low. As explained in section 5, the thickness
of the duct and wake lead to additicnal problems which have
yet to be investigated when the added complication of the jet
flow is included, Further, the effects of tewmperature ond
density difference between the jet and the free strean mush
be included, :

Viscous effccts, resulting in the development of the
have besn discussed fully in the literature
(eesge refs 125., A complete solution to the effect of the Jet
on the viscous flow around the body from vhich it is issuing
is, in fact, a union of the solutions of this paper and those
of the problem in the mixing region, The viscous effects
themselves can be represented by a system cf sinks in the
wake, the strength of the sink dis tribution being found from
the velocity of inflow into the jet, fn odded complication
is the presence, before mixing begins, of 2 developed boundary
layer, This also rmust be considered and included in the
determination of the sink distribution,

Knowing the temperature distribution in the mixing
region it should be possible to represent the flow of a hot
jet by a system of heat sources distributed, in the first
instance, along the jet axis. A first step in this study has
been made by Squire” who has calculated the temperature
distribution in the laminer mixing region of a hot jet by
considering the temperature field due to a single heat source
at the centre of the orifice, It stilll remains to determine
the effect of the temperature field on the flow round the body
from which the jet is issuing. Since the pressure across
the weke streamline rmst be contimuous it should then be
possible to allow for the effects of different density.

The calculation of the forces end moments on the
duct is complicated by the prdblem of representing the change
in “he +total head of the flow through the duct by a systen
of singuiarities, For a symmetrical duct at zero incidencs
there will be only a force in the free streanm direction bub
at incidence there will be 1lift end pitching moments in
addition., The incidence case is further complicated by the
cross flow arcund the duct and part of the wake., This has
not been considered in Appendix B and further investigation
is reguired to find the change in the vorticity distribution




necessary to represent the symmetrical duct at incidence.
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APPENDIX A

A potential-flovw .modsl far _two dimensional duct flow

1a The two-dimensional duct is considered formed by two
similer thin aerofoils, chord length c, placed symmetrically
about the x-axis in a uniform stream parallel to the x-exis.

Ve shall assume that the flow through ithe duct is accelerated
or slowed down by external action, so that there is a difference
in total head between the free streom and the flow from the
duct, giving an inhomogeneous flow., This also implies that
there is a wake in which resides a distribution of vorticity of
strength per unit length equal to the difference in velocity,

2, The equivalent honnceneous flow

To render the problem tractable, the flow is made
homogeneous by assuming the woke streamline replaced by an
infinitesinally thin solid boundaory, a continuation of the
duct, upon which the vorticity lies, This wall supports the
pressure difference between jet and stream, which rust then be
asgumed if the total heads are put equal without changing the
velocities (see fig. 2).

Ths, if V1 and V, are respectively the speecds just outside
Fa

and inside the weke streamlince at any point of its length, the
pressure difference supported by the so0lid boundary is

y

) 1 2 2
iaP = P‘-[ = pz = E{J(Vz . V.I) 800090005.00(1)

This pressure diffcerence is assumed constant along the wake,
end the strength of the bound vorticity distribution in the
wake replacing the solid boundary is

2.‘&\
YW = V2 . VJ‘ = I ) o-ao.o--anao(z)
p(V,l-i-Vz)

-3s The induced velocity

Ls in -thin aerofoil theory, the two thin aerofoils,
and here the wakes, are replaced by vortex distributions., The
distribution representing the upper cerofoil ond wake is taken
to be of strength *{(}{1) per unit length along the x-axis at

(X‘I 374 ), and that representing the lower aerofoil and weke then
has strength ﬂy(xi) at (x1,— y1). The vorticity is bound



e

on the aerofoil and weke boundary and hence ¥y, = f(x1) .

At any point 2z the complex pefhmbation‘lnbtential
w(z) due to these vortex distributions is given by

i 00 ¢
w(z) = £, y(x,) -érlog (z=z,) = log_(z-z ); dx
2% 1 L e 1 e 1;" 1
_0/2 lll'l.‘.l.l.(3)
where z, =X, + iy, = X, + iy,i(x,i) .
Novwr &p - -u + iv where u and v are the longitudinal and

dz
nornmal components of the induced velocity. Thus, at any point
(x,y) from (3) teking real end imaginary parts

1 Yy ™ Y-i y * ‘v‘} ! .
W = Y(x,}) / : 3 - " ) d-x1
o/ L(x-x,l) +(y=y,) (x=x, ) “+(3+y,) )
PR |
‘“Cﬁ'
1 1 1
b :EE | 5 }{1)(}(-*}(1)}' - dx‘:,
U -0/2 9 (x—x1)2+(y-—y1)2 (x—x1)2+(y+y1)2_(

s wonsneel D)

As the aserofoils are thin,- y will be approximately constant for
all values of x, and hence to a first approximation we put

i~ {_,Q

u=-%—;} v(x,) e - et zax1
ec/2 (x—-x1)2+(y-d)2 (x=x, )2+(y+d)2jf
NOUPRUOR, |
" {'u;;-{) ; )
v = %’E J T(x1)(}t—x1) J ! - . dx,
: ~o/2 o IO N CE R LR N
. ¢

To proceed without further approximation it is necessary to assume
vorticity distributions in terms of x and then the corresponding
perturbation velocity components can be calculated.
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L, The Perturbation Velocity in special cases

L,1s Constant vorticity along serofeil and woke

If the vorticity along the 2erofoils and their weke
is constant so that +(x) =/ 2long y = + d, then from (7)
the normal velocity component at any point x cn the duct is

O X0 “
K ( [ 1 ! =% /
¥ e = dz, - | o dx
2® ! ..c-x,‘ 1 i (:r-x )3.+ 1+ﬂ-2 12
(‘* ~c/2 Veg/2 VT '
2’ . Z2
andhencev:-—ﬂi-:log J"‘ +( 2 \—l vt-o-aosnoﬂ'(g)
L (= .
. \x+3/ ]

Thus v is infinite at the leading edge and tends to zero as
x tends to infinity.

The longitudinal component at any point on the duct
is obtained by evaluating u on y = do.

The longitudinal component of the perturbation
velocity on the outside of the duct and wake is, from (6)

g g+ 2
B o Ve | : o { L K o
" 2x 11:{*”; (-2) ; (2o, ) (3= 1) * 2x 1 (o Yot 1
I=> +{ e/ ARGl i U ~c/2 R
1s.€4 P o o 4 - UC‘U
4 -1 %472 M S 1
u =— tan - == lim (Y“d) : dx
2m 2d] c 2= \ ! N2 e ay2 1
-2 y-38+ | Joofp (% x, ) +(y-a) |
C- o8
Az -1 (x + E)/ 1
or W\ = -"T"E ::'é' + tan 2d \ o] P 5 l‘."l.....ﬂ(9)
" ! i
. 3 "
5.= 0, for x { - 7
6=, forx;a-g-

and, just inside the weke, taking the limit as y tends to d-

' g s b 2 e S e
u=g=J5 + tan K—-—z-(—i-—-/:l:+26,f‘orx2? 5,0 = 1

for x <~ 7,8 =0
l‘..'..'l’.'(1o)
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4,2, ILinear vorticity distribution on the aerofoil
As a second case, we consider a varticity distribution
such that =
W) =5 (x+5) 3 -$<x<3
‘Y(x1) = K ; > 3 %

i.,e. the vorticity is linearly increasing in the duct and
constant in the wake, _
From (7), the normal perturbation velocity component at a

point x, on the duct is
_K ["c/2 _ -
g/ ‘ c 1 i/
Vo e | (x-x,)(x, + %5 ) - “dx
[ = =
1 1 )
K| ) | =t - |
doso x—x1) (x-x,l) +hd - |

and afiter performing the integrations

' 2 2
k{1 ¢ | s | 1 e [ se I
v = 5= 2(x—2)10gé;1+; 02!~2(x+2)10ge 1 b ]
— (x5 (\X-l- 2} -

e =

- 2a tan—-‘i 2 cd . ?
2 4’+£12 _ 22 { :

x + hd ll-.__J
tto-at--9'-0(11)

The longitudinal perturbation velocity component on the outside
surface is given, freom (6), by

c
OO

Fi2 2all .
4 5 lll e 7) & 2a % ax,
—— + 0
o Jd ¢© (x—x1)2 + has ge (x—x1)2 + 4a°
-2 Jg
- o 0
ve/2 1 \
AS e/ S (g + 5 )ax, ] axy
bR | i s (-0)°
e /2 (xx,)% + (3-2)° Jg =i

-




or

5 ]
et cy l;dg
K lx -1 [ =35} “a x + 2
u(x) “oxij2 t tan L\ 2d /'I% * Tre IOge = e
[ e —y C] .!2
(- 3]
/. c -1 2dc v{x)
"o (X3t . 272 0
%= & Rt
L
where O = 0 for x_};-—zci
§=1for x<-3 ,.,(12)
and just inside the wake
- — 2
: N | (AN
u(x) —-3,--:-:-!32;--1-'l:an“Ji {————-——-x_z}i +____f{c110 (——-*———-—-x+2"} s
TR . 24/ * oxe 08 2 -
- - (x - E) +4ﬁ? -
w2 |
e (x + €) ban =282 + x(z) S
21c ] 2] & 2
2 =2 c
x 4+ 44 g
F
00095..0&9&.(13)

b3, The vorticity distribution in the form of a sine function

If the strength_ of vorticity distribution on the aerofoil
is assumed to be proportional to a sine function of x we take

R 4 . i . - 2
Y(r) = Ksin| 3 (x4 R RS
; end )
i
Y(}C,I) = !n\-; x,;.’-g- ..I'.Ill."b(1}'|‘)

giving a vorticity distribution which 'ineréases from zero at the
leading edge sinusoidally along the chord of the thin aerofoil
and is constant in the wake, :

From (7) the normal component of the perturbation
] : velccity is




' '?...'ﬁ i ‘:@ .I, ' _.-l 1. . I.:. -:i..

T/ c ) ~ ax
= X=X 2 3
vV =ox J 7 (= + QJJ (x-x4 (x_x1)2 (x_x1)2+4d |
-c/2 : _
14, - I 1
dx
+ = (x~x,) - 5 4
% L X=X )2 (x—x1) +4d’
c/2 1 b
i ] (2a)> %
= = log . 5
2% c
o (’F - 2) —
14 ) ~—- os Ef— (er 3 : = 4%,
’ . "o x—-x_‘) (x—-x ) +L;d. :
L 0/2 5
i " !“- K (y+2id) + 81 2= (X -21&)—‘ cos ==
D) =g Blgs At 2¢ i c
i N |
- 5251-01 g‘é (L.42id) - Ci -’2-‘-5 (.X—zld)J sinh =
i
.-nllniao-||(15)
and
g 1 01 2 (X 42id) + 01 B (X —21&)_} cosh 2
B = 5*_,01 o (X +21 5o (X : =
it Xt osa) | ainn F2
Y —"25— (% +2id) - Si -’-2‘-5 (X -2id) | sinh
ol o - UG) :
where X = Xy = Xy %
™ 3 5 7
5 bt osin & 5 _u w _u B e
i | ~t TR Tens 77 _‘
L O
ci(u) = oo & at = log_ ¥ - - i W es ¥
s T K e’ 21,2 Ll 636
= =

= Reference 10




i Yo
‘ 1 = e-t e—t
where 1c:ge W g dt - I = dt
Jo Yy

= .57?21(6) sece

(D and E ere seen to be real functions of X, x,, and d)

v becomes
f_" o | .
4 / 5 = G o
v:-ir;-;-log 1_{_‘,2&0\ g —— (cos%f-sin%‘}
: kx -3/ | 2fm .

i 2
[Sex)eDfS4 ) wst Bt 2K, a5 % uie
!?(2 X) D{\2+xj Slh_{j c}}-l-'Slh_\“’I
o T, . w=xY | se \ . fC : B 2x\
T e N ze Y e E\“Z'“’?“E(‘é'“?"c‘“z:(“'c—;
oﬂrf 2:{;-!
Ci — | =m == §j
T 11;-!‘_1 c_,_’_f
96000009.009(1?)

From (6), using the vorticity distribution given in (14), the
nornmal component of the perturbation velocity just outside the
duct is

g *l r;l.r?"
, (192 2aKsin| 2 (e, + )] ax, 2Ka ax )
] = E’;’E { i = ; o - * 2 !)
(U —e/2 (x-x,)" + 4a Ye/2 (o))" + 4a" |
4
g (1% el 2 (s + “g'ﬂ "
- E’E lim (3(""6.) f l -
y—a+ (/ac/2 (x—x1 " (y-a)°
Y g 3
{ 1< ax, {
+ : ;
i ) T
Yo/2 (xx,)? + (3-a)? |

which reduces %o



(cos ZX . sin

W-‘
o
O
(#

’“I
i e
e
P
no]
1
>
o —
e
~~
nof
+
v
p
| PA—
+

2‘« 27" 4 2c -2_5;.
i-;:‘r(-- -x)-G(= +:»-)¢i f
- 2 MY
X + ) -+
K /= - '2') v(x . &
2% .é—-‘-t 2(1’ ” ) ) 5=0f0rx:f—--2-
c
b=1Fforxz~- >
au-ona-a:.l-(18)
where
F(X) = f_ i -—(7{ +2id) - ci 2= (X -Zid)_ oosh =2
I...._ 2c h 2c " c
+ l:S:L I (X +2id)+ Si Z. ( %#=2id) | sinh zd
2¢ : 2c c
and
G(%)= 1 |81 5= (X.+2id)- 81 55 (?Z-Zid)d cosh g.%
- ici L. (4 +2id)+ Ci L_ (Cr-2id) i sinh rd
i 2e U T 2¢c Y 5 " 2¢
again P and G oare real functions of x, X and d,
3 -19'

Ha The shape of‘ the duct

Having calculated the components u,v cf the perturba-
tlon velocity on the outside of the duct and weke for a given
vortlclvy distribution, the slope of the duct surface can be
found since :

_@;{ _ s
(1_‘{ = __‘u-;_U anaaatooo-:ce(19)

vhere U is the free strean velocity.

This slope, integrated, gives the shape of the duct.

As can be seen from section 4 of this Appendix, the
components of the perturbation velocity are complicated even
for simple vorticity distributions, and an exact mtegr‘d
is unlikely to be found. Thus a numerical integration is
suggested in all cases.,

To obtain a second approximation to the shape of the

-
R
¥
A
r
1
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duct, the values of u and v are found with the assimed_
vorticity shape, and the shape recalculated as shown cbove.
Better approximations con be obtained by further iteraticns,

There is, cbviously, just one shape for a given
vorticity distribution but, provided the total vorticity at
the trailing edge is equal to the constant value of the
vorticity in the wake, different shapes can be obtained by
combining any mamber of vorticity distributions over the
chord of the thin aerofoils replacing the duct,

6. The Pressure Distribution over the duct

From the perturbation velocity components it is
also possible to calculate the pressure distribution over the
duct surface, If Py is the free stream pressure and p(x)

the pressure at any point x of the duct surface

p(x) =, =~ :";'*P(uz + 200 + v°)
&= p(x) - p, 1,0 g
% :_-—2-(11 + 200 + v ) .-tovornn.o&(zo)
pU© U

7

The effect of comprs

535ibility can be included by
using the result due to Glauert;

Coe 1

'E:;Q;:. = = on.tt-.n.aot_(21)
pi 140

whiere cpc is the pressure coefficient in the campressible flow

C s is the pressure coefficient in the corresponding
P incompressible flow

is the free stream llach nurber.

b
=

and

7+ The 'staggered' duct

If the x-coordinates of the leading edges of the
upper and lower aerofoils are differernt, representing a
stuggered duct, the perturbation velocity can still be
calculated although here there is not the simplification
which previously was the case due to syrmetry,
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Consider the duct formed by the upper aerofoil
y = I, (x), - c1/2 Lx & c/2  and the lower aerofoil

]

v -yz(:-c), "'02/2.5:,}{1«.0/2 where y,lfz}_}‘z(z,._ de

For such a conf:l.guratlon the perturbation velocity at any poins

(x,7) con be written in terms of its longitudinal and normal
components as

[ag ey roe
1 {3 e | T+,
SR ; ¥q(x;) &+ | 1o () 4%
i 24 2 2 2
(Y ...01/2 (x—-x1) +(y—y1) u’-vc:2/2 (x—x,l) +(y+3f2)
t.l..act.-tb(23)
and. VX (1o%
1 44 vy (%)) (2=, Jax, . 1, (%, ) (x=x, )ax,
V= o
27§ Pj i

(Vee /2 (x—-x.l) +(3“J1)2 0_02/2 (x—x1)2+(y+y2)2
sswerinsosnesl 2

vhere vy, (x,t) and  +v, (x ) are the vorticity distributions
representing the upper and lower thin aerofoils respectively,
and ¥y and ¥, ere functions of x,

-f . .
Since constant vorticity A is assumed in the wake, (23) and

(24) can be rewritten as

2 - /2 :
1 £l 1y () vy, Jax - & 1o () ) (r47,) ax
T ! > 2 2 2
g 01/2 (x—x1) +(y—y1) -02/’2 (x—x1) + (y+y2)
F"‘L-J:. Fd
S . " }
_ _{: : i 3"".)71 _ y+_;2 ;\ e
27 }; ] 1

L e

o/2. (o Py )2 (e oulyey,)? |
" E sknsnwebsesel25)




7 pe/2 ) ne/2 i ; S
R AN N I AN o N
el o {
=5 ? ; 12 5 32 2(
I —q/z (x-xal ) +(y"y1 / o "02/2 (}C-I_,i ) + (y+y2) J

Voo "‘ - 4

k| 1 4

rem RN T e

o/ Sl L x=xy ) +y+yp)
D’D‘.D'ﬁ.ﬂcs(zs)

vy and y, are not, in general, equal even in the wake, but
as a first approximation, particularly in the weake, ¥y and Vo
would be taken equal to a constent d.

The shape of each side of the duct and wake cen be
calculated as in section 5 of this appendix, and the pressure
distribution as in section 6.

8., The inverse problen

8e.1s In the previcus sections of this appendix a vorticity
distribution has been assumed, and the perturbation velocity
components calculated, from which the shape of a duct and its
- pressure distribution have been found. A more dirsct approach
l is to take a given shape and from it to find the vorticity
' distribution required to represent the duct, )

& 8.2. The exact integral equation for the vorticity
i distribution

The slope of the thin‘profiles naking up the duct is
given in terms of the perturbation velocity components as -

T W e

&y _ ¥ R <7 |

£

Now, for a symmetrical duct at zerd. incidence, the normal
corponent of the perturbation velocity at (x,y) is given in
terms of the vorticity distribution as, (equation 5),

bl 1, 1 S

V(X:Y) = S | Y(x )(:{"X )( : I - 1 - -
ox ! ! (x—X1)2+(Y-Y1)2 (x-x1)2+(yfy1)%f 1
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vhere y = + y1(x1) is the locus of the vorticity distribution.
Assume now that the vorticity distribution is constant

in the wake, and thus the effect at (x,y) of the wake
vorticity is
TS

(x-x, )2+ (y+y, VA

: f
VWG}C,Y} -=‘-% - '(}C"X,I) ( 2 1 )2
Ye/2

(3=x, )"+ (-,

o.o-l-oo-aoa(za)
Substituting from (28) into (27) we have

t“,c/2
v(x,y) = vw(x,.v) = -15;:- { «{(x1)(x-x1) ( 21 _ 1 ).2>dx1

d —c/2 (xx,) +(y-y,)° (z’c—_x1)2_-s-(:sr+y1

tel.anl.t.to(zg)'

and thus we obtain an integral equal for the vorticity distribu-
tion representing the aerofoils in terms of the normal perturba-
tion velocity given by the shape of the profile, and the knowm
constent vorticity in the wake,

Ls it stends (29) 5s not solvable exactly, If,
however, we assume the vorticity distribution to lie on the
lines y, =+ d, (29) can be simplified to

% /2 — ‘l ax,
V(:{ad) = "r(h:d-) - V (.C d) 1 T(xai) a K=
i /2 ' (x-x ) +4a°

............(30)

which, again, is not readily solvable,

9. An approximate solution using slender body theory

9.1, The perturbaticn velocity

Consider a duct made up of two thin aerofoils .
vy =+ y(x), 0L x<c and their weke. = At any point (=,¥)
the longitudinal perttu'bgt:l.on velocity is, from (L)

oo
1 r ¥, - Ty ]
w(ny) = - 2= 1 v(x,) 1
|

{

5 ;xrx1)2+cy-y1)2 () 24 (r)°

-
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nt of the perturba-

To obtain the longitudinal CORPOIK
~luate this integral

tion velocity on the éuct surface Wwe must ev

s y—> ¥y(x)

g o _ oo 5 _
u(x,y,) = 5= | Y\¥ —_— - — Ilim ! ¥X ' ;
A4l T 2R 1 2 2 -1 2= : 1 2 g NE
do (x-x,) "+, ¥4 do (:c(xji)) +(y=vy)
..00..'....' 3

egral is & singular

hat the second int
foil theory and hence

L is immediately cbvicus t
ered in thin aero

integral of the form encount
(5-‘;) moy be written

’ Aee
% S 2y
; 1 % -1 x
E’ u\:z:,y,‘) = 57 ll '\((x1) ——— s dx, + 7 Nf_,,_——(—:l—___ﬂ_.—- iuennel 32)
Jo e )P [ fany? -
s Y & )
the negative or positive sign being token according o8 We
e of the ducte.

consider the outer or imnner surfac

c, we can

h of the cuct a8
jiples of ¢ in

Now, taking the lengt
dinensional, ult

express all the lengths as non-

el "
wilS form

x = Xe, X4 = Xe and ¥4 = E:Y(XA[)C

Suhstituting these into (%2) we heve

.‘:\‘{;_) A

) 4 2¥e i / e -

W) =k | ¥ g W ¥ 2 Y<X>/ (14" [
: 3 (x-’x,t) -+i;£2§£2 7 S

o]
yihich, expanded in ascending powers of €&, becones
E‘.;J" : . — 40 y
1 i { W Lo o2 {
11-’}:.,‘.{:) e e N - 5 + . i = so® | d¥
. B0 =om | Tx )y (ex)® | (X )? !
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I we now sssume a slender duct, i.e. & small compeared with
unity, the terms of third end higher order of & in (33) cen be
neglected giving the longitudinal component of the per’m:c"oation

velocity on the duet surfece as
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3 G
y(X,)Y ax,

[TREp—

u(X,Y) = -f; + % ¥(X) \51 B % 2 E_{’(Xﬂzg .o (34)
. i _ :

4 o
o (X"X1) J

Tmis the actual longitudinal camponent of the pertm‘"bation
velocity on the outside surface of the duct ard wake is

(\GC-’
e | pemTea,
g

- | . xx)f

| , ) ;
w (1) == 201 -5 ?{x:(x);i

35)

and on the inside
2 -
U.i B uo s o ‘Y(X) i"i o % 82 {:.I’(Xllz oo.-o.ottooe(jé)

neglecting terms of third and higher order in €.

The normal component of the perturbaticn velocity
can be famnd immediately since the flow mist be tangential to
the duct surfaoce, i.€. ’

v = (U+u) %;% "

9.,2s The stream functions and vorticity

The camplex perturbation potential for the fluid
motion about the duct is

NG
v(z,) i‘-log (z-z,) - log (z-z )? ax

O

-
T 2%

L

o e,

where zy = X, # iy, and y, = yi(x)

Tmis the stream function for the perturbation is

{10 2 2
1 ( (K"Z‘C1 ) +(‘Y'Y.} )
4 o= o Y(xi) ) log dx,
/ 2 2
Yo oo (e ) e eyy)
= (109 2 2
Lo [ (x=x, ) +(7=y,)" )
(- 1 { 1 1 {
= 1= | ¥(x)) | Lo { &x, eea(37)
L ? i 2 )2 t
o s (x x1) +(y+y,)" |

It is seen that on the x-axis,

V=0 svsnensunanel 10)

=
“E
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Thus the stream function for the flow abeocut such a C'hlct in a
uniforn stream in the x-direction of speed U is

...Uy.;.l-]{'/ nnoeaoonanoa(jg)

Now on the duct surface, as on any strcamline, the streem
function is constant and equal, in magnitude,to half the
volume flow (Qo) through the duct, Thus, from (37) and (39),

on the duct surface

15.4) 2 2
(x=x,) "+ (5=y,)

3G momBidbar 1 e 108 4 :
2 ‘o li-'a'i N 1 e (x—x )2+( " )2 1.

e 1 Iy
or in dimensionless fora, using (32),
Q, " & P (x-x,[)2+82(§(~¥1)2 ) iy
fee = 7 Y g | v(Eleg ——————— af  (40)

Yo (X~X1) +& (Y+Y1)“

The integral equation (40) can be satisfied by

- U + 0(e)
giving the vortex distribution as

(x) ?_ - U + 0(3) ...u..n.u(i;-‘l)
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" LTPENDIX B

The two-dimensional duct at incidence

1e The methods of thin aerofioil theory used in the
previcus appendix are here applied to a two-dimensicnal duct
at incidence a, to a uniform stream of speed U at infinity.
The duct considered is formed by two thin aerofoils
s y(x), =-c £x&03 v(x) being always positive. The

waltes upon which the vorticity distributions lie are not now
mirror images of each other in the x-axis and hence we take
the walke streamline of the upper thin aerofoil y = y(x) to be
given by :

y=y,x) o&Lxg o

vhere y(0) = o (0)

and that of the lower zerofoil to be given by
y=3,(x) O=Zmxg

where ~y(0) = v.,(0)

such that v, (x) and y?(x) are both parallel to y = x tan e,
for lerge X

The configuration is showm in figure 7.

2, The vorticity distribution

221 The vorticzity in the wake

For reasons given in the rrevious sppendix the vorticity
distributions on the two wake streamlines are taken to be
constant and of equal magnitude but of different sign i.ea

(2 ==, (x) =K 3 0LxC 00 osssaveacancs(l)

2.2. The vorticity rcpresenting the duct

Previously a vortex distribution has been assumed and
this has dictated the shape of the duct., If, however, distribu-
tions of vorticity +y(x) and -y(x) are assumed to lie on
¥y=+y(x) and y =~ y(x) respectively, then éue to *he
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bending of the wake, the duct represented by these vorticity
distributions will not in general be symmetrical. It is
therefore assumed that the symmetrical duct is represented by
distributions of vorticity v,(x) replacing the upper thin

aerofoil and --Yg(x) replacing the lower,

3« The pertarbation velocity

3e1. General expressions

As in section 3 of Appendix A, the longitudinal and
normal compenents of the perturbation velocity at any point

(x,y) are
s \ y
T (7-3, )1y (x,) i (743,07, (x,) ‘ —
16?2 T
Y | 1/ Ty il i :
%
ma‘ Y o ; .
o [ =) H) )
vees— i (x-x,)/ - i ax, (3)
2n 1 5 2 2 2 1
{.j_,c .{(x-}‘--i) "*(Y'y.l) (]{—:{1) +(:}T+y2) {
or, cn expanding the vorticity distributions,
j = 1 i i {.Y':y-! )Y1 (X1) (y+YQ.)Y2(x ) }
u(x,y) = - o N 5 i 5 | ax,
‘ oo 1 (2)%4Gmy)" () *Hy+y,)° J’
f
i V40
’ K (v=5) +,) ]
bl j = tax, (4)
T e ) )PP o) el
Jo i 1 =Ty L 2% 3
-4

Following the assumptions of thin aerofoil theory the vorticity
: representing the duct walls is taken &5 lying up on the lines
y=24d, =cg£xx<0,

Hence, (4) becca:les

© fy-a)y(x) () )
whey) s o ds | 4 hmi - Ak L (.
! 5 s..! e {J (x--‘-c1)2+(y-c1)2 (::—x1)2+(sﬂ-d)2 J !
[ o;a (v-7,) .Y+3’2 )
T 2= 2 2 5 5 Ay (5)
Jo((x‘xA!) +(Y"Y1) (x ‘c.l) +(y+y2) j




and likewise (3) becomes

o) ; °
SUPPIN PRI L N LN,
vix,y) = 52 (x—x,) ¢ - =+ ax
® ) (xx Yu(y-0)%  (x=x,) %+ (3+a)” | .
- W 1 1 g
o7 :
K r ( 1 1
co | ey 2 z - 2 ol s
L}O [(—X"‘X,.i) +(yﬁ}r1) (X‘“]{1) ""'(y‘i'yzi \
-.tln-onn:ao(G}

Once forms for +,(x) and v,(x) are known the first integral
1 2

in each of (5) and (6) are calculable with no more difficulty
then that incurred in sechion 4 of the previous appendix,

3.2, The shape of the wake

To proceed with the integrals over the wake sae
form for y, and vy, must be assumed, Bquation ( 18) shows
that the wake sbreanlines will have very nearly exponential
form, Also both wake streamlines must be parallel to
¥y = x tan e, for large x and be continuous with their

perticular thin aerofoil,

: , . Iy W

iseg at x=0 y_l':-d,yz—-:—d,a—::-_ﬂ_zo
dyq  dy2

and for large x —=T— =73 = tan a

dx o4 o

The simplest form for ¥ ’ and Yo fulfilling these conditions
is ’
-x L

e + X - l; + d

¥; = tan a, £

1 “"‘:'i,‘

5

y2 = tan CLO ’-E_i + X - 1 - d oa-ue--ouano(?)

and, substituting from (7) into the second integrals of (5)
and (6), we have integrals of the form

f\;_‘;o ] I '-'X,i r'} e
y-d=-tanagi e +x, ~1 } -
2

2 — - —
Yo (x—x1) +Ld+ten ao(e x1+x1—~1) -3_'_!

The integrals over the wake can be simplified by
assuming that the wake streamlines are straight and parallel
~ to the free stream direction, Thus we take




e

Y4 d+xta_._nao

yz = —d + x’ ta!l ao ..’.I-ﬂ.ﬁﬂl..(B)

and the wake integral in (5) becomes

& y+d-—x160

Jo () slrmarm,0.) (oo B lyraon 0,)° -
vevessssesssld

oo
(y--d-—x19

3
i
y

vhwere 0 = tan a .
o o)

The idealised configuration is shovm in figure 8,

3e3e The perturbation velocity for the idealised duct

If wie put

2

_t‘"i. = 1 -‘.-6
3 o

jos}
I

-2(}:+80 Ey-@) s BY = -2(x+60 [y+é!._‘)
2 2 . 2 2 ;
C = X +(Y"’(1) 3 & = X +(y+d) o-c-aaa(lo)

(9) becomes

6 _x, =(y+d)

j E
J | E 2 st !
J o Axy+Bx,+C b {13{1+B x,#0

:""'C.)_log 'g_l"l'T-'T’ 1390009(11)
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vnere T = j=(y-d) = =
i
4

and =

2

et
g
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il
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and is thus essentially negative or zero.

Thus (rer. 10) for Bz—h.AC negative i.,es ¥y not on the wake
streamline

BGO
~(y-d) - 55~ —
7= Tt -1 B
= !__ _1 "2"- an ; 5
0 x ~|y-d  LAC~B
) B'BO .
~(y+d)- —5— y
and Ti= 24 225‘ i tm"‘i : 2 e iaulo(12)

0 x - (EH'&) / 1_n12

o v 4AC -8B

s

Tus fram (9), (10), (%1) and (12) the wake integral becomes

-

—60 lo-g 5:2+(y-c1)2 + 4 = x+ﬂo&—é.:l_ tan_1 x+80[_§r_+q.].
2 2 p) 21 -
1407 € xTa(y+)S 140 =3 0 _x=(y-a) 0 x=|y+d}

which, vhen BO =0 and y=d reduces to ?275+ tan —g—d and

agrees with (A9) and hence the longitudinal component of the
perturbation velocity is, for the simplified wake

He. 3 3
ig) = =] | vy () (red)yo(x) |
w(x,y) ==-5- | ¢ 5 . 2; %
2 ek ) Pe(y-a) (x—-x1)2+(sf+d) {
2o 1 ’ J
< [ o1 20,00
i it ltan a, log, ".ﬂ»‘/———)— tan™ !
27 (1+tan ao) ( x J—(y+d) L x—(y—d) :
’ x+90(y+c1)
- fan.  m—————
x0_~(y+d) |
.aa-oni..tvo(13) o
Similarly, the integral over the wuke in (6) becomes, using g
(8) and (10) ;
e I &
P Gexy) “"é"j'"""“ - = 8y '
o Ax, + Bx, +C Ax, +B'x, +C!
Yo 1 1 1 1 |

" which is equal to (ref. 10) : u
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x4 (y-a)2 2lx + 5% |z 4 _B |
- = log o G T Y _
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VIIC - B ViiC~-B" |
B _
i D .
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Al pr——t l
f'm -5+ Viagr-p2
1 ' x2+(v—-d)2 60 ? ~1 xJ-OO(y-—{i)
= 10g 4 - ] tan

2(1+6§) % x2+(y+d)2 2(1+6§) Ji 6 x-(y-a)

and nence the normal component of the perturbation velocity is

. - * q} .
o yy) ) ]
vxy) =5 | (exy) 5 5 - 2 i
do VG P oy Yoryea) |
R % 1 1 oF
%4 [ 2 2
TR i =)
- ~ : 105 i—ﬂnui_{_ -tan a
bl 2 ¥ 2 o
Lr{1+tan ao) | x +(y~rd)
f _q X+tan a (y—d) 1 x+(y+d)tan a, 3
4 tan - tan ¢
; x tan ao—(y-d) x tan aow(y+d)jJ
. ) ) 'ocu.-ea.nno(1£i-)

I7 y 1lies on the wake streamline ¥y = d + x tan as 32 - LiC

is zero and hence - ==

2 | 5 8y | '
T = —é- i( 6‘) "'_E;n_' i b'i......olt(15)
T' remaining unaltered.,
Twis - '
° )y, (x,) (y+a)v,(x,) )
(i) o w 4 ! o VN _ A ,!dx
VRV = o YT N2 2 5 > 2 9%y
b o l (JC-X,I) +(y-a) (x—x,[) +(y+d) f
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i { 2 (o 12 o f x+6_(y=d) I
+ - 5 }tanaologe *-Lx-"'vd'2+'t:an1 3 "321:"
2x{1+tone ) l} x +(y+d) xeo--(y.;.d) '
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Also, - o T tx 3 3
| X s i il L ] |
v(x:}") = ';? i (x—-x1 )‘f! 12 : 2 2 2“I 2{{ d:{'l'
. [Goxg )+ -0)" () 4 (34)°
2 2 7 %0 _+(y-d) x+0_(y+d)
- K 5 loge x2+ ‘d'é-_- tan aoi—o———é—+ tanmJI : e "'225'
La{1+tan ao) ; x +(y+d) }xwo(y—d) xﬂo—(yﬁi)
qo..nﬂ.néosn(17)

Similarly u(x,y) and v(x,y) can be calculated when y lies
on the lower wake sireamline in which case B'2 - LAC! will be
ZErO,

L, The duct shape

. &
The duct shape is found from the medified boundary '
condition over a body at incidence
dy _ v +Usina -
d.')C e L
u+ Ucos a

R TR T e
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APPENDIX C

The Axi-symmetric Duct in Potential Flow

1s The axi-symmetric duct is represented by a surface
distribution of vorticity made up of an infinite number of
coaxial circular vortex rings of radius R and strength ¥
per unit axial length, Both R and Y are functions of the
axlel distance z of the ring from the lip of the duct.
Reasoning on parallel lines to that given in sections 1 and 2
of appendix A shows that the vorticity extends into the wake
and that the equivalent homogeneous flow sbout the duct and
its wake can be represented by a semi-infinite distribution of
coaxial vortex rings., (See fig, 9),

2. The circular vortex ring

Consider a circular vortex ring of radius R .and
strength /A, such that the normal through the centre is the
zZ~2xis of cylindrical polar coordinates x,rs@. Consider
also the point P (x,r,d) 3 see fig, 10, :

-

In cases of axial symmetry the vector potential &
at P, as defined by Clebsch, has only one camponent which is
along the normal to the axial plane (i.e. the plane through’ the
exis and P), The unit vector along this normal is n., The
magnitnde of the vector potential is

>

¥

—

e

";f't _ :‘—> = _ Ir:; E ads
wEaw =g |
"':,27C
- ._if“_ \ R _cos ~ dﬂf'
Y PQ2
.,_)0 .
where Q is the point (0, R, ¢!'),
- LS
"..‘I‘i‘i.;i_ng ﬁ' - g = 2 AL
i KR (2 cos“X-1)a (1)
= Kl ssswsnac
7T = 1
Jo ()it
k™ /
vhere k2 = ""‘LLI‘_R'—""" . oo..o-psoiho(z)




which can be rev.«ri'tten as

: 2 _

K (R {2k 2

®=2‘JE (I‘) -_I'-F--IZEE - ope-oco-oott(})

where F and E are complete elliptic integrals of the first
end. second kinds respectively,

= vl

- s
The vector velocity q = urf? +u 2 is given by
-
d = curl (6 )
or Iy
a l-!..y . _ 1 a i -3 az
Y%Wwi=*2"8s * BTy 9 (@ &d) 3 Ug = O sseso(l)

35+ The vector potential for the duct and wake.

Consider now the duct of length c¢ and wake consisting
of a semi-infinite distribution of such circular vortex rings
stretching from zero to infinity, The magnitude of the vector
potential at P(z,r,d) due to the duct and wake is, from (3)
by integration

N0 } "
® - L },‘\(Z,)(m‘\ f2 e 28] asr .5)
Vo f_

Lr R(':’)

N 2
wacre now k =

(z=z" )2+ E‘-;R{z ! )12

and hence E and F are functions of z',

L. The Perturbation Velocity

_ The axiel component of the werturbation velocity
“at P 13, from (L) and (5),

I("J —

2r. 4 2.,__12 i 1
ek | i‘@ SR

T
“2

2

(z=z1) +|R(., )-:c-_‘ i (z.-z‘) !R(z’)+r
o......“...(ﬁ)

F &
J
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and. the radial component is

{1 G : =
1 K(z")(z=z") ( 2 + R(z!) E
e - _ )
ur‘z"{’) - 2% Es Ek N 2 . 2
“o L (z=2')+(r-R(z")) |
daz' .
i g5 = a.o.nubnu-(?)
{_(z—z“z-l-i R(”’)+“i S
) A RS RE] ¢

If P is taken on the duct surface then the mean
axial velocity (uz) is found by putting r = R(z) in (6) and
interpreting the improper integral so cbtained by its Cauchy
principal part. It has been shown (ref, 41) that

oo NP
. 15 R(z')-R(z) - 7 1
(uz) = hx <:C ‘{Dw'i" ol : Ew:{ «U -z ¥ 20(8)
r=R(z) T ol " 2(4K)R(2) T lp(a)R(at) |
5 S i 5
i‘_?t/2 o
3 in“gd
fere D = | 52 £ ag

! Z)R(=!
and k2 = I"R( )R(L ) 3 eoo.oo'-onao(9)

(z=-z* )2+ i:}j( z! )+R(z):§ &

<

for a finite thin duct of length co

This result can be generalised to the case of a duct with wake,
Since ithe vorter tube representing the weake is a stream tube
we may write, for the duct and wake,

I-‘l;;'. Ny -
(5,) =i oD+ Rz )R(z) 5 / k‘?’ (0% )
- I':R(Z) % ”}0 L v 2('1"'1{ )R(Z!) W} E;’:{(Z) R{Z'ﬁz

The actusl longitudinal velocity is obtained by adding the
contribution due to the local vorticity

ies £ %K/-‘:‘I +R(z)]

2%
{
s

—
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the negative sign referring to the flow outside the duct and

wake, and the positive to the inside,

For the outside surface, assuming a slender duct, (i.e. R(z)

is small compared with c), we have » by expanding the elliptic
integrals end taking the limit as Zea3mty

[ 2 \ 3
w1y %- log R(z) -C.—l-—-,z (Rz(z)!((z)i + 0 (EH (11)
dz A c/
The normal component of :he perturbation velocity for a slender
duct is
( 3
(u)) = J(W+u) &

o n--a---oo.n.(12)'
¥ r=R(z) {

5
PR

r=R(z)

5¢ The vorticity distribution

The vorticity distribution representing a slender
axisymmetric duct and wake cox be found by an extension of the
method used in ref, 11 for a slender finite duct without wake,

The Stokes! stream function for the semi-infinite
vorticity distribution in a uniform stream of speed U parsllel
to the axis of symmetry is : .

T

il{i(z,r) = - g"ﬁ——

100

( V2.2 2 W .. 2B
o | L ¥ i <
- g—,{ ; ((z 2R (el y P~ E;’(z~z')2+;;R(z’)+r{; | v(z1)dz!
i 2 1T 7 it i i
e o{_(z—z‘)“ﬂl}(z’)ﬂ_‘j - o

liow the Stokes' stream function at any point (z,r) is related
to the flux or volume flow Q rer unit time through a circle
of radius r normal to the a%is of symmetry

i.C. t‘b: - _

On the surface of the duct Y mist be constant_since the duct
surface is a stream~tube, Hence, the boundary conditicn is




and sz-RéE)- and is small,

-l
% _ _yR@, 1 2”}@ a1 2i2f(a")
ox 2" "% | (aeat)Prae(a)

F~E |

:5( ?)2+LR2(Z").}IEY(Z')-GZ’_

L_'

which, for a slender duct, reduces to

s :
e 2 ” 12 % 2 '
o - ! k_C_ !_g(z)R(z!_li y(zt)az! = 5 2 UR“(2) eeess(13)
Lo -
/
}"\?‘/2 0 >
vhnere Cw = S ’d coszﬁ ggz
o (1= _sinfg)

Equation (13) is satisfied by
QQ
‘Y(Z) = ‘é“(‘é‘)‘ - U + 0(8) pnoncoac-ooo("“{-)

( ) is the cross sectional area of the duct

vhere S(z)
nt (—J, \l:.l)
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