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SMEAR( 

The inviscid incompressible flow round a thin nacelle 
from which a jet is issuing is considered. It is shaan that 
the inha7aogeneous motion can be transformed into an equivalent 
homogeneous motion which may be represented by two semi-infinite 
distributions of vortices in the two—dimensional case and by a 
semi-infinite distribution of circular vortex rings in the axi-
sytmetric case. By assuming constant vorticity in the wake and 
constant or linearly increasing vorticity to represent the duct, 
the duct shape and the pressure distribution over its outer 
surface are calculated for given ratics of jet speed to free 
stream speed. Assuming a slender duct the vorticity represent-
ing it is expressed,to a first approximation, as a function of 
the duct width or diameter and the volume flow through the duct, 
idethods of extending the treatment to a thick-walled dact with 
a wake of finite thickness and for including the viscous effects 
are suggested. 
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LIST OF SYETOIS  

c 	chord length of duct 

a 	half width of assumed duct shape 

col 	plete elliptic integral of the second kind 

complete elliptic integral of the first kind 

k 	the modulus of the elliptic integrals 

p 	pressure 

Po 	pressure in undisturbed stream 

Qo 	volume flow through duct 

r 	rndi 	 al distance 

R 	radius of circular vortex ring 

U 	undisturbed free stream velocity 

u 	longitudinal components of the perturbation velocity o on the outside and inside surfaces of the duct 
respectively 

v 	normal component of the perturbation velocity on duct 
surfaCe - 

xx 	longitudinal distances 

y,yl 	normal distances 

z/z 	distances in axial direction 

a 	angle between duct wall and x-axis 

ao 	angle of incidence of duct 

strength per unit length of the vortex distribution in 
two dimensions 

Y17/ 	
strength per unit length of wake vorticity distribution 

0 	for x upstream of duct leading edge 
6 

for x downstream of duct leading edge 



vector potential for a system of circular vortex rings 

strength per unit length of vortex ring distribution 

density 

Introduction 

In the past most work on jet flow has been confined 
to the free jet and to the problem of the flow in the mixing 
region downstream of the jet exit. Ltteation has been focussed 
upon the velocity, and in some cases the density and temperature 
distributions in the mixing region. 

Little has been written, however, on the effect of the 
jet upon the flow around the body from which it issues, and in 
particular the effect upon the flow at the rear end of the body. 
This paper contains an attempt to set up potential flow models 
for both tao-dimensional and axi-symmetric ducts from which jets 
are issuing.-  Some consideration is also given to the staggered 
two-dimensional duct and the two-dimensional duct at incidence. 
Further, the approximations of slender body theory are used to 
obtain expressions for the vorticity distributions representing 
the ducts. 

The detailed mathematical analysis is given in 
separate appendices to this paper, only methods and results 
being discussed in the main body. Reference to equations In 
appendices is made by quoting the letter denoting the appendix 
and the equation number e.g. (A.32). A number in the position 
of an index in the text denotes a reference included in the list 
on page 19a 	An asterisk = signifies a footnote. 

The author wishes to express his sincere gratitude to 
Lilley and 	T.R.F. lionweiler for their guidance and 

constructive criticism throughout. 
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2. A otential flow model re resenting the flow about a 
nacelle from which a jet is issuing. 
problem.  

In this problem we can recognise two distinct fields 
of flow, the gases in each being incompressible and inviscid. 
There is the flow through- the duct in which the total head of 
the flow is changed by some external action (e.g. a jet engine) 
and the flow exterior to the duct. Downstream of the duct 
these two flows are separated by awake across which the 

-pressure must be continuous. Although the effect pf the 
thickness of the duct is discussed later, the main arguments 
are developed for a thin duct for which the wake is thin and 
can be regarded as a dividing or wake streamline, or in the 
axi-symmetric case a stream surface.- Since, in general, the 
fluid velocity is different on either side of this wake, 
there will be, lying on this streamline or surface, a distrib-
ution of vorticity of strength per unit length equal to the 
difference between the velocities, (fig. 1). 

I!chemann and Weber1 have published a series of 
monographs dealing with duct flow, and mention this problem 
amongst others concerning ducts and cowlings for propulsive 
units. They give in detail the solution of the problem of 
an axi-symmetric duct without wake, i.e. a duct from which 
there is no jet velocity. Since the total heads of jet. and 
stream are different we tre considering an inhomogeneous 
flow problem which cannot be treated by normal potential flow 
methods without modification. 

2.1. The equivalent homogeneous flow  

The complete flow can be rendered homogeneous by 
considering the total heads put equal without changing the 
velocity in either the jet or the surrounding stream. In 
consequence there will be a constant pressure difference 
between the jet and the stream, and we must therefore assume 
that the wake streamline or stream surface is replaced by an 
infinitesimnlly thin surface separating the jet and stream, 
and which can support the supposed pressure difference (fig. 2). 

The validity of this argument can be appreciated by 
considering the equation of steady motion for an incompress-
ible inviscid fluid, which can be written 

q. grad q = - grad p 	(1 ) 

for zero body force. This equation contains only the 
pressure gradient and hence a constant change of pressure 
as advocated above will not affect the velocity field. 

The general 
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This equivalent flow can now be treated by the usual methods, 
Subsequently the conditions in the original flow can be found 
by cancelling the pressure change across the wake. 

2.2. Th distribution of vorticity 

Since, in the equivalent flow, the total heads are 
the same on both sides of the dividing surface, the pressure 
difference across this thin surface is (A.1) 

2 	2 
il:1 = 4 (V2  - Vi) 

where V
1 

is the speed on the outside, and V
2 the speed on 

the inside, of the dividing surface. 
Now this dividing surface is a streamline so that the airection 
of flow on both sides of it are parallel to it. This enables 
us to represent the surface as a distribution of vorticity 
equal in strength per unit length to the clitference in velocity. 
Thus the vorticity representing the dividing surface has 
strength per unit length 

26p  
y = V2 - Vi 	1

1
+V
2 

• • a n *1 v 0 I. } (2  ) 

The duct itself is idealised to a thin surface so 
that in two dimensions it is represented, as for two thin 
aerofoils, by two distributions of vorticoo, or in the axi-
symmetric case, by a distribution of circular vortex rings. 

The problem of the establishment of a potential model 
for the jet flow now resolves itself into that of determining 
the strength and position of the vortex distribution represent-
ing the wake, and also of determining the vorticity distribu-
tion which represents the duct. 

3. The t.-To-dtmensianal duct  

The two-dimensional duct is considered both at zero 
incidence and at a mall incidence. Tho mathematical deriva-
tion of results quoted in this section are given in Apuendix A 
and Appendix B for the zero incidence case and the case of the 
duct at small incidence respectively. 

301. The symmetrical duct at zero incidence 

The two-dirl -tensional duct is taken as being formed 
by two similar thin aerofoils of chord length c„ given by 

..AIMPontlerstivegtiorolioamor...tt 
	 *ektrttivArgwev: 
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placed symmetrically about the x-axis in a uniform stream of 
speed U parallel to the x-axis. Following thin aerofoil 
theory, we replace the two thin aerofoils by distributions 
of vortices, which must be continuous both in magnitude and 
position with the vortex aistribution representing the wake 
so that the Joukowski condition of no flow round the duct 
tro-fling edges is satisfied. From the symmetry of the con- -
figuration it is clear that, if the vorticity representing 
the upper thin aerofoil at x = x1  is y(x1), then that 

representing the lower is -y(x1). 

3.1.1. The perturbation velocity  

It is shown that these distributions of vorticity 
lead to a perturbation velocity at any point (x,y) which has 
longitudinal and normal components given by (A.11-,5) as 

Y-Y1 	 u(x,y) = - 	y(x 	 2 	2 tdx 

	

-c/2 I 	-x1)2+(y-yi)
2 	(x-xi) +(y+yi) 

f 	1 	 1 	.) 
v(x,y) = 1-- 

- 27c 	y(x1 )(x-x-1) 	 2 , dx  
u-c/2 	 ((x-x1)2+(y-y1)

2 (x-x1)2+(y+yj  1 	j  

 (4) 

The normal component is continuous through y = y1 
whereas the 

longitudinal component is not. 

If the equation for the position of the wake streamline 
were known, i.e. if we knew the relation between y-1  and xI 
over the wake, then by using the boundary condition that the ' 
duct walls are streamline 

  

(5) 
dx U + u 

 

equations 3 and 4. give a singular integral equation for the 
vorticity distribution y(x1). The integral equation will 

be singular since at the point considered on the duct or wake 
surface y = y1  and x xl. In section 8 of Appendix A 

(3) 
and. 

-I (.0 



this problem is considered in slightly more detail, and it 
is shown that even when the problem is simplified by assuming 
that u is very small compared with U, the vorticity in 
the wake is assumed constant, and that the vorticity distribu-
tions representing the duct and wake lie along the lines 
y = d, the integral equation becomes (A.30) 

r/2 	

r- 4a2 	dx 

	

.2 	2 1 x-x
1 

y(xI) 	-04,a 
-0/2 

The equation is an extension of the equation 

CO 
t 	fin/ 

which SchrWer2 and SVhngon3  have shown to have the solution 

2 /1-11 	 /14u dp  
f (TO 	

1 	
gqi)  

7L 	11 	\ 	V 1-!-L 71-11  
!! -1 

As yet (6) has riot been solved, but it is believed that a 
solution may be possible following the method of Schrbider 
and 'CD'hngen. 

Assuming a slender duct, a.. e p the duct chord large 
compared with its width, with leading edges at x = 0, the 
longitudinal component of .the perturbation velocity can be 
written 

and 

	

11) 	just inside tFe -make (A.36) 

ui(x) = 110  y(x) 	(241 	 (8) 

	

where 	denotes the Cauchy finite principal part of the 
singulalr integral. 
The normal component can then be calculated from 

v = (U u) J1Y dx 

G*00000 &&&&& (6) 

i) 	just outside the duct and wake (A635) 

1 (JA
:..2] 	i y(xl)yi(x.1) 

u0(x) = - Ay(x) 5 _ „ „_ , , + , u,„/ ,   ail  (7) i 	(x-x )2 L0 	I 
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Furthermore, the vorticity distribution representing a slender 
duct can be found (section 3.1.4). 

3.1.2. The perturbation velocity in special cases  

To proceed further it is necessary to assume forms 
for the vorticity distributions representing the duct and wake 
streamlines, and to assume that the duct and wake have a chosen 
shape. Ordinary thin aerofoil theory applies only to aerofoils 
with small camber, and hence it is reasonable to suppose that 
the argument developed here will apply only to a duct whose 
walls have small curvature and a wake which is approximately 
straight. Thus the chosen vortex distributions are assumed 
to lie on the parallel lines y1(x) = d„ where d is a 
constant. 

In Appendix A, section 4, the vortex distributions 
considered are 

i) a constant vorticity, of strength y = i(per unit 
length, along the duct and its wake. 

ii) a linearly increasing strength of vorticity along 
the duct, and constant strength in the wake, i.e. 

y(x) = 	( 
	

9..) 	 --

- 

< 2 ; 

	 2 

• 	

2 

and 
iii) 	a sinusoidal variation of vorticity over the duct 

and constant vorticity in the wake, i.e. 

y(x) = V, sin r:Lc- ( x + )-1 • 	x < 
2c 	2 	2\s. 	*-~ 2 

yw(x) = 

The assumption of constant vorticity in the wake does place a 
slight restriction on the solution since it implies, from (2) 
that V. - V2 is constant. Now L'.p = 4 2  (V2  - V2) is 

2 	1 
(to a first order) constant, and hence V2  VI  is constant. 

Therefore, in the wake, me are assuming that V1  and V2 are 

constants which is strictly only true if the wake streamlines 
are straight and parallel to the x-axis. While this is not 
exactly the case figs. 3 and 5 show that it is very nearly so. 
If however the accuracy required demand_ it the variation in 
V1 and V2 due to the curving of the wake streamline can be 
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calculated by considering the balance between the centrifugal 
force and the pressure on the boundary streamline. A new 
vorticity distribution can then be found to replace the constant 
distribution assumed at first and the modified shape of the 
wake calculated. This iterative process can be repeated to 
any degree of accuracy. 

The perturbation velocity components given by a 
constant overall vorticity distribution are, Cram (L.8,9)„ on 
the outside of the upper surface of the duct and wake 

11,. ic 	, -1 f xc/2\I 	8/( 0 C 	 , 
U
o

( .e.: , a..) 	= -''.. .-.' + tan -1 	'"'"'' i 1 .. 	 --.. , 0 = 0 for 7,c,c - 2-A 2 	 2d ,(   
' )  1 for x,...?- — 

2 

•.....••••••(9) 

on the inside of the upper surface 

and 

x1-2/2 \, u.(x,d) =— 	-1- tan  22d 2 ); ..... 0.(11) 

r--  
g 	 2d 21 v(x,d) = 	
z 7,7c 

logeogc 1 -I- o 

2' 

The normal component v(x) is continuous across the duct and 
wake, and infinite at the leading edge - a parallel with thin 
aerofoil theory. It also tends to zero far upstream and far 
downstream. It is seen that at x = -1-7;P, where 

tan-1  (x  cL) 2d 	2 $ 

u 	0 	u. 

Now, at infinity, K= V2  - V1  and hence the velocii7 on the 

jet side of the wake streamlihe is U k.=V1 '(V2  VI ) = V2  

and V1  on the freestream side. Also, far upstream at 

x = :TO, 8 = 0 and hence, 

U
o 
	= 0 

as required. Thus the conditions of the problem are satisfied 
by the solution found. 

Similar expressions for the other two assumed 

1 '1 ) . ..... 0 • 0 o 0 s  ( 



vorticity distributions are considerably more complicated 
and are given in Appendix A, section 4-.2 and L3. 

3.1.3. The shape of the duct and wake  

Ilhen the components of the perturbation velocity 
have been found to a first approximation it is then possible 
to find approximately the shape corresponding to the assumed 
vortex distribution by using the condition that the surface 
of the duct and wake must be a streamline, i.e. 

_ v 
dx 	thu 

to give the slope of the profile at any value of x. The 
shape is then found by integration. 

These calculations have been performed in the case 
of the constant vorticity distribution and for the linearly 
increasing distribution. The corresponding duct shapes are 
shown in figs. 3 and 5 respectively. 

To obtain the second approximation shown in these 
figures the assumed vorticity distribution was taken to lie on 
the shape calculated before. The components of the 
perturbation velocity are then found numerically and the duct 
shape is re-calculated from them. This process can be 
repeated until the difference between two successive shapes 
is negligible, giving the correct duct shape for the assumed 
vorticity distribution. 

3.1.4. The vortex distribution for a given shape  

In fig. 3 the duct shapes given by a constant 
vorticity distribution for both 1/2/V1  = 1.2 and V2/11 = 1.3 

are shown. It is seen immediately that the duct shape is 
different In the two cases, and thus we can infer that a 
given duct shape is represented by different vorticity 
distributions for different speeds, but it is only by a 
process of trial and error that a suitable vortex distribution 
can be found. without recourse to numerical solutions of 
equations of the form of (6). Birnbaum has shown that, for 
the finite duct with no wake (i.e. straight through flaw) three 
basic vorticity distributions can be used which give the 
shapes of a flat plate, a parabolic arc, and an S-shaped 
profile. In each case the vorticity at the trailing edge 
is zero since there is no wake. 

It is thought that the three vortex distributions 
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given in section 3.1.2 above give a good basis for calculating 
the shapes of ducts from which a jet is issuing. It must be 
remembered, however, that whatever combination of basic. 
distributions is used, the vorticity at infinity downstream 
must be that given by (2) here Vi  takes the free stream 
value and V

2 is the jet speed 	at infinity. 

If the duct is assumed slender then an expression 
for the vorticity„ representing the duct =awake., can be 
found explicitly. It is shown (A.41) that, if Qo  is the 

volume flow of fluid through unit span of the duet., and U is 
the free stream velocity, then the vorticity at y(x) on the 
dact surface is 

Qo 

	

y(x) 	2y(x) 	U + 	 ..........0.(12) 

where c is the length of the duct in the streamwise direction 
and y/c is small. 

As an example an arbitrary duct shape with wake was 
chosen (fig. 15) and the jet and free stream speeds taken such 
that V2/V1  = 1.25. Using the vorticity distribution given by 

(12) the duct shape correspondircr to this distribution was 
calculated from equations 3, 4 and 5 and the result compared 
with the assumed. shape (fig. 15). The agreement between 
assumed and calculated shape is close except near the leading 
edge when, due to the nature of equation 4, a singularity is 
to be expected. 

3.1.5. The pressure distribution  

The pressure distribution over the outside surface 
of the duct can be immediately calculated from the perturbation 
velocity. Having found u and v as, for example, in (9) 
and (11), the difference'in pressure between a point on the 
duct surface and in the undisturbed stream can be expressed as 

2 	21  
8p ..p p = 4U? - zP  I(U+u)-  + v 

or 

l u 	2uU 	72. ] 

	

8p 	 2 	, 

ipU2  

The pressure distributions for the ducts represented by the 
constant vorticity distribution and the linearly increasing 
vorticity distribution are given in Figs. 4and 6. In both 
cases the pressure distributions corresponding to the first 
and second. approximations to the derlt shape are shown. 

• • 0 • $ • • •0•• (13) 
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3.2. The staggered duct  

If the x-coordinates of the leading edges of the 
upper and lower thin aerofoils are different, but those of the 
trailing edges are the same, we have a staggered duct of a 
farm often met in practice. This case is considered in 
Appendix A, section 7, where it is pointed out that there is 
no longer symmetry about the x-axis, and hence it is unlikely 
that the same vorticity distribution can be used in this case, 
even when the different limits of integration are taken. 
The perturbation velocity can be calculated as before and from 
it the shape and pressure distribution can be found, as for 
the symmetrical duct. 

3.3. The two-dimensional duct at incidence (Appendix B) 

Although the duct is supposed symmetrical about the. 
x-axis (fig. 7) the complete flow is not symmetrical about a 
line drawn parallel to the undisturbed stream. Thus it is 
unlikely that the duct shape, obtained by methods outlined in 
section 3.1, will be exactly symmetrical since the cross flow 
would be neglected. However, provided the incidence is small, 
such a solution will give some Information about the flow 
round a duct with jet at incidence. 

When a physically likely shape (B.7) is assumed for 
the shape of the wake, the integrals for the perturbation 
velocity are formidable. If, tiowever„ for small incidences 
the wake streamlines are assumed to leave the duct parallel 
to the free stream (fig. 8) the perturbation velocity can be 
calculated as in Appendix B, section 3.3, and the shape and 
pressure distribution can be found as before. 

The equations for the components of the perturbation 
velocity both show logarithmic singularities at the trailing 
edge of the duct. These are due to the sudden change in flow 
direction„.which is assumed at the trailing edge. 

4. The thin axi-symmetric duct  

The thin axi-symmetric duct at zero incidence is 
represented by a distribution of circular vortex rings thex  
centres of whichlie on the z-axis, (the axis of symmetry) 

It is shown in Appendix C that the magnitude of 
the vector potential at a point P (z,r„0/) due to the 

x fig. 9. 



distribution of vortex rings representing the duct is 

- 
1((zi) 11(AL) 	12-k2 F 	-E: dz' 

1 	1  
-I 	27c . 	1„. 	/ri Lk 	kJ 

where R(z') is the radius of the vortex ring at z = zl 
and F and E are elliptic integrals of the first and second 
kind respectively of mcdrilus 

R(zf) 4r  k2 = 
(z-z1)2+Li+R(z01 2  

It is further shown that the perturbation velocity at P has 
components 

r.60 

u(z0r) 	1((zI) F 
1 	 R2(z0-r2-(z-z')2 

 E 	
azt  = 

- 
too 	 (z-z92-1.[%zs)-r 2 kz-zt)

2 
(R(z1)+r)

2 
 

	 (14) 
and 

I 
	K(z')(z-z1)  v z r 	 1:23, 	2r R(nt)E 	 az'  ( , ) = 

(z--z') 2 r +IR.(zi)-ri 	z-z')`-1-(R(z)-rr.  

	 (15) 

From these the duct shape given in fig, 11 has been calculated. 

If a slender duct is .assured then it is shown that the 
strength per unit length of the, "Vcrticity distribution is 

ii(z) = Y(z) = 
	U 	❑o 	) 	 O 	 (16) 

As for the two-dimensional duct, which is not assumed 
to be tnin, the further solution of the problem of the non 
slender axi-symmetric duct proceeds by assuming thatla chosen 
vorticity distribution lies on a circular cylinder of constant 
radius. The perturbation velocity is determined along the 
duct surface, and the first approximation to the duct shape then 
calculated from the boundary condition of no flow across the 
surface, ifteo  

dr 
dz - U u 

More accurate approximations can then be found as in 3.1.3. 

,0,4e150,00,4--.dmtmA.w,vwymolv-T1-"-ftrmet"Immi""""tr! 
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Fig. 11 shows a duct shape calculated for the case 

V21 = 0.3 which corresponds to a ducted radiator. Constant 

vorticity has been assumed on the duct and in the wake. This 

	

solution is compare. 	an intake duct calculated by 
Kuchemann and Veber and shown to be in close agreement. The 
corresponding pressure distribution is shown in fig. 12. 
Returning to jet flow where V2/V/ ,.> i the duct shape and 
pressure distribution over the duct induced by the jet are 
given in figs. 13 and 14 for the cases of constant vorticity 
and V2/V1 = 1.5 and 1.2. 

5. The extension to a duct with walls of finite thickness  

Previously the &lets considered have been formed 
either by two thin aerofoils or by a thin cylinder, and no 
consideration has been given to the thickness of the walls. 
Thick profiles can be represented by a distribution of 
sources and sinks superimposed upon the vortex distribution 
found. previously. The calculation of the appropriate system 
of sources and sinks is complicated, not only by the fact that 
their strength and location are not known on the duct, but 
also by the need to have a source distribution to represent 
the thickness of the wake. 

Kuchemann
6 has suggested that the effect of thickness 

is of minor importance compared with the caMber line of the 
profile (i.e. the shape of the corresponding thin profile), and 
that the thickness is only important when determining the rate 
of flow through the duct-. A correction to the velocity inside 
the duct is given as 

	

- V = 	2  - 	U a 	# \ R 2  V 	 L  

a 

where Va and V are the speed on the inner surface of the 

thick duct (radius R )  and thin duct (radius R) respect- 

ively. By inference we can use this to determine the speed 
inside a wake of finite thickness. 

A general theory for a two-ajmensional finite duct, 
taking account of thickness, has been given by Wittich7. He 
considers a disturbance velocity potential Z(x,y) which must 
satisfy Laplace's equation 

gx,Y) = 0  

• 

SA a 	
14; • • 

. ..• 	 ,•mt, .471.--!!!VPItlenrr,r,t"PkA...110 
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I 

It 
V 

and the boundary condition 

azax 
an = I/ Tri 

over both aerofoils. He then deduces the appropriate source 
distribution a(s) in the form of a singular integral 
equation, the integral being taken round two closed curves. 
The restriction that the curves must be closed and finite 
prevents the method being used without considerable modifica-
tion for a duct with wake. 

Another method of including the thickness of the 
duct wallssin two dimensions is to represent them, as for 
aerofoils, by the region of fluid at rest enclosed by a 
system of vortices arranged on the boundary of the duct and 
its -wake. The determination of the actual distribution of 
vorticity representing the duct and wake is extremely 
difficult as again the integral equations are not solvable 
except by numerical methods. In a similar way, the thiokness 
of an axi-symmetrio duct can be considered by taking a dis-
tribution of vortex rings on the inside and outside surfaces 
of the duct. 

In an attempt to correct the over-large values of 
lift on aerofoils found by the classical Joukowski circulation 
theory, Witosynski and Thompson8  have evolved a discontinuous 
potential. They recognise awake behind the aerofoil bounded 
by the streamline 11.= 0 which is split at the trailing edge 
into two branches, In transforming the aeroRil to a circle 
the wake region is excluded from the transformation. The 
corresponding complex potential is single-valued, and defines 
the flog completely, except in the wake region. A development 
of this theory nay perhaps assist in the solution of the problem 
of a duct with wake from which a jet is issuing. 

6. The  effect of the flaw in the mixing region 

The discussiors in the previous parts of this 
section have dealt with only inyiscid'fluids. In practice 
Viscous mixing processes in the wake will affect the flaw over 
the duct. Mich has been written on the mixing in the wake, 
but the effect of the mixing on the viscous flow about the 
duct has not yet been investigated. 

It is clear, however, that the viscous jet will 
entrain some of the fluid from the surrounding stream, and 
thereby increase the normal col,ponent of the perturbation 
velocity near the duct trailing edge. This will cause the 
now finite width wake, or mixing region, to curve further 
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inwards. This increase in velocity also causes a reduction 
in pressure at the rear of the duct, and therefore the duct 
will experience a drag due to the presence of the nixing 
region. FUrther„ the reduction in pressure will tend to 
prevent separation of flow roverthe rear of the nacelle and 
to restrain the formation of a turbulent boundary layer over 
the nacelle. 

Viscous forces in the mixing region will also cause 
the jet to be slowed up and thus the assumption of constant 
vorticity in the wake, which was made earlier, is not 
realisable in practice. 

To cover the effects of viscosity it is necessary to 
extend the treatment given earlier in this section to consider 
a distribution of sinks in the wake, and also to include the 
effect of the boundary layer attached to the duct walls. The 
actual flow outside the jet can be regarded as very nearly 
equivalent to that produced by a system of sinks along the 
jet axis, the strength of the sinks being sufficient to induce 
the correct inflow at the jet boundary. Now the inflow 
velocity is equal to 

a i) — x in 'two dimensions 

is 
ii) " 	in axi-symmetric flow, r a x 

v/here 	T are the appropria4e stream functions for the 
addltional radial flow. The system of sinks has strength 
per unit length proportional to Wax. Squire and Trouncer9  
have shown that the required sink strength can be made up of 
a combination of constant and linear sink distributions taken 
over successive small lengths of the jet axis. The exact 
analytic solution for the source strength involves an integral 
equation, which is not rend~ 1y  solvable. 

If the inflow has been found from the associated 
problem of the flow in the mixing region, the value of 

a 	a (I) 
can be found immediately. Comparison between 

 x  

these values and those calculated for a source distribution 
of strength m extending over a small length give the 
required value of the source strength at the appropriate 
point of the jet axis. 
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7. Concluding remarks  

The potential flow model for the jet flow from a 
nacelle is limited in its application by the method used in 
deriving it. The representation of a duct by a simple vortex 
distribution is only permissible when the duct is thin, the 
difference in the speeds of the jet and stream is small, and_ 
the speeds are low. As explained in section 5, the thickness 
of the duct and wake lead to edaitional problems which have 
yet to be investigated when the added complication of the jet 
flow is included. Further, the effects of temperature and 
density difference between the jet and the free stream must 
be included. 

Viscous effects, resulting in the development of the 
nixing region, have been discussed fully in the literature 
(e.g. ref. 12). A complete solution to the effect of the jet 
on the viscous flow around the.body from which it is issuing 
is, in fact, a union of the solutions of this paper and those 
of the problem in the mixing region. The viscous effect 
themselves can be represented by a. system of sinks in the 
wake, the strength of the sink distribution being found from 
the velocity of inflow into the jet. An added complication 
is the presence, before mixing begins, of a developed boundery 
layer, This also must be considered and included in the 
determination of the sink distribution. 

Knowing the temperature distribution in the mixing 
region it should be possible to represent the flow of a hot 
jet by a system of heat sources distributed, in the first 
instance, along the jet axis. A first step in this study has 
been made by Squirel3 who has calculated the temperature 
distribution in the laminar mixing region of a hot jet by 
considering the temperature field due to a single heat source 
at the centre of the orifice. It stir. remains to determine 
the effect of the temperature field on the flow round the body 
from which the jet is issuing. Since the pressure across 
the wake strernline must be continuous it should then be 
possible to allow for the effects of different density. 

The calculation of the forces and moments on the 
duct is complicated by the problem of representing the change 
in the total head of the flow through the duct by a System 
of singularities. For a symmetrical duct at zero incidence 
there wiT1  be only a force in the free stream direction but 
at incidence there will be lift and pitching moments in 
aclaition. The incidence case is further complicated by the 
cross flow around the duct and part of the wake. This has 
not been considered in Appendix B and further investigation 
is required to find the change in the vorticity distribution 
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necessary to represent the symmetrical duct at incidence. 
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.A_PPENDEC A 

A potential-flow model far two dimensional duct flow 

1. The two--dimensional duct is considered_ formed by two 
similar thin aerofoils, chord length c, placed symetrioallY 
about the x-axis in a uniform stream parallel to the x-axis. 
Tie shall assume that the flow through the duct is accelerated 
or slowed down by external action, so that there is a difference 
in total head be 	Lvieen the free stream and the flow from the 
duct, giving an inhomogeneous flow. This also implies that 
there is a wake in which resides a distribution of vorticity of 
strength per unit length equal to the difference in velocity. 

2. The equivalent horan:7eneous flow 

To render the problem tractable, the flow is made 
homogeneous by assuming the wake streamline replaced. by an 
infinitesimally thin solid boundary, a continuation of the 
duct, upon which the vorticity lies. This wall supports the 
pressure difference between jet and stream, which must then be 
assumed if the total heads are put equal without changing the 
velocities (see fig. 2). 
.Thus, if V

1 
c...nd V„ are respectively the speeds just outside 

and inside the wake streamline at any point of its length, the 
pressure difference supported by the solid boundary is 

= pl  - 132  = Ip(-4 - v-1) 	O•OOOOO 000.0*(1) 

This pressure difference is assumed constant along the wake, 
and the strength of the bound vorticity distribution in the 

r 	 wake replacing the solid boundary is 

=- 	- 
2 	1 - 

  

(2) 

P(v14-v2) 

 

3. The induced velocity 

_Ls in thin aerofoil theory, the two thin aerofoils, 
and here the wakes, are replaced by vortex distributions. The 
distribution representing the upper accrofoil and wake is taken 
to be of strength y(xi  ) per unit length along the x-axis at 

(x1;y1
), and that representing the lower aerofoil and wake then 

has strength -y(xi) at (xi ,- y1). The vorticity is bound 

11!771‘4117,5-:9 
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an the aerofoil and wake boundary and hence y1 = f(xi) . 

At any point z the complex perturbation pOtential 
w(z) due to these vortex distributions is given by 

co 
ti 

w(z) = 1'— 2% 
y(

- 
 loge  (z-z,) 	loge(z-21)f dxl  

-c/2 
	(3) 

where z1  = x1  + iyi  = xi  + iy1(x1) . 

dw Nth( d---.-z- = - u + iv where u and v are the longitudinal and 

normal components of the induced velocity. Thus, at any point 
(x0y) from (3) taking real and imaginary parts 

100 

1 	 ( 	Y - Yi 	 y + Yi  

	

u = - 27 	y(x1) ) 	 dx1  

ti -c/2 	L(x-x1)2-1-(Y-Y1)2 	(x-x1)2+(y+y )2.)  

	 (4) 

1 	 1 	 1   y(x )(x-x ) 	 d-x  

	

0 	
1 	1 

^C/2 	 2+(y-Y1)2 	(x-x1)21-(Y÷Y1)
9
.f 

(5) 

As the aerofoils are thin, - y will be approximately constant for 
all values of x, and hence to a first approximation we put 
y1 = d giving 

r' tin 

  

Y - a  

1)24-(Y-a-)
2 

y + d  dx 
N 

(x-x1)
2 
 +(y+d)2(  

j 	 (6) 

  

  

p 0 

v y(x1)(x-x1) 	
1  1  

-c/2 	 (x_x1)24.(y_a)2 
(x-x1)2  +(y+d)

2  

To proceed without further approximation it is necessary to assume 
vorticity distributions in terms of x and then the corresponding 
perturbation velocity components can be calculated. 

(7) 
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4. The Perturbation Velocity in special cases  

4,1. Constant vorticity along aerofoil and  lank° 

aerofoils and their wake 
y =± d, then from (7) 
point x on the duct is 
rc0 

v 	t! 	 - x- dr1 	 f axi? 

/2 	 .1 	, (x-x -c/ 2 

and hence v = — 
/-vx 

_ 	 2 do )1 0  g e 	+ 
0 

eyes •J•OD•C•( 0  C, 	
) 

Thus v is infinite at the lending edge and tends to zero as 
x tends to infinity. 

The longitudinal component at any point on the duct 
is obtained by evaluating u on y = do  

The longitudinal component of the perturbation 
velocity on the outside of the duct and rake is, from (6) 

!---,4:u 	 , • :/..) 

.. 
	
lira 

1i
k. .._

(y -d 	
x1  

 

dx 

k)  

 
+ 
K 
 0i•  2g 	

i.'-c/2 (x-1 )2-
(

Y-a)2 
	11 	27C 	

(x-x  + 
 

44
2 
 

	 dx1 

...; 
i.e. 	_ 	- ry, 	 •- 

tan 	
2d2d 	2% 

 
• r/ 	 -x 	 . 

. 	_i 	x1 	 -1 	 u _ 
2 
—7c 	 - 

P 
 iira (y-d 	 ax 

c 	
2 	

( 
— 	 L 	y_4d+   

-
- 
2 	 (x-x1)2+(y-d)

2 	1 r 

..) 

ix  or 	u 	W  + tan 2% '2 
	

2d 	2 
0  

8 =' 

8 = 1, for x ? 2- ' 2 

and, just inside the wake, taking the limit as y tends to d- 

c , 
1 [  z  2  " /( 	 c : 	- 	• ' -- + -ban 	 + -7- 5 ; for x 7,  - 7,8 = 'I u = 2,7 2  \‘' 2d. i ; 	2 

• ..3 	 c 
for x .- -2-,6 = 0 

	 ( 1 0 ) 

**frow.vosnmo.p.k.ewPrivrert,10,...,4 

If the vorticity along the 
is constant so that y(x) =/‹. along 
the normal velocity component at any 

/ %ao 

 Wj 

(9) 

for x < 
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4.2. Linear vorticity distribution on the aerofoil  

As a second case, we consider a vorticity distribution 
such that 

Y(xl)  = 	(.?c  

Y(x1) X 

i.e. the vorticity is linearly increasing in the duct and 
constant in the wake. 
From (7), the normal -Perturbation velocity component at a 
point x, on the duct is 

pc/2 

v - 	112.  - 27c 	c 	(x-x 1)(x1 	) 

me.0 

K 	(x-x ) 

c/2 

	 ax 
(x-x1)2  +4012, 	1  

   

and after performing the integrations 

2  K f 	 2 v 	 )log-6 1 1 +1 	- I  (x 
c 
 )loge  1+ 4d 1   

{x-21 	 (2c+ -2;) 

 

2 cd 	'? 
2 2 	2 c  x + 4d 

	(11) 

- 2d tan-1  

 

The longitudinal perturbation velocity component on the outside 
surface is given, from (6), by c 

L 
, 	 IGO / y  

...: 	1
2 	2d1(  

(x1 + 2}` 	 2dl< dx1 

1 	 I 

Lx-x1)2  ~ (x-xi )24.4a 

27c 	c (x-x )2 .4 _ a2 
7 	1 2 

(x-x1)
2 
 + 

nl  (X> 

- 	 lim (y-d) 
d+ 

.10e1  41,. 
,t•,• 	

• 	 • 4 4- 	ir . • . 	Mrrilrlirlrrr.; 

00/2 
(x + )dx c 	I 	2 	I 

dx
1 

(x_x )2 + (y-d)2 	L.- 	1 L.2 (x-x )2+(y-d) 
2 
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or 	- 

K T 	
+ 

ix - 	
lor 

(x 
u(x) 2A 2 2d / 	2Ac 	'e 

i< _r_ 	÷c )
tan-'} 
	ado  .r.% 8 2c 	2 I  
2 c

2 	2 
x+ 

vvhere o = 0 for x , 2- 

E) = 1 for x < 	..(12) 

and just inside the wake 

i 	 + P7ce  lOge (X  + "V +iiii  
c\ 2 2 

N 	14 'A 	4.  ...1 fx — --9-71) 

11(x/  = 27c 1 7 + 'an 	2d2/1 
- E-1-42-12  

	

2dc 	ICL......'7  ). 8 + 	tan-1 x 

	
4- 

c
2 2, 	 ,.. 

4d 
2 + .2 _ 7  

	 (13) 

4.3, The vorticity distribution in the form of a sine function  

If the strength 

- 

of vorticity distribution on the aerofoil 
is assumed to be proportional to a sine function of x we take 

7C 	C‘ 	6 	EL Y(xi ) 	I\ sin 
1 
• 7  (x1 + 2) 
	

• 

- 2 
,ey 	

2 L_ 1,4 

y(xl) 	x - 2 

giving a vorticity distribution which increases from zero at the 
leading edge sinusoldally along the chord of the thin aerofoil 
and is constant in the wake. 

From (7) the normal component of the perturbation 
velocity is 



- 

\") c/2 

L . 

 

sin Th.— + cos -2---c- 

—
.1  

27tge 	

4. 

 

K 4 
2u127t -c/2 

(x -x1 

-25- 

)./2 _ 	I  
- 27, 	sin 1; (x-x1) 	

2 
- 

(x_xi ) 	)2+421 dx1  

1ou 

27c J(x-x) 	 1  (x_
xi

)2 
c/2  

1  
(x-x1 )2+4dd 

Putting % 
 

D 	7.7 Si 
2c  

•"' 71- r° 
2c 4  1.- 	4  

(X+2id) + Si 

(Y-+21d) 

- 

Ci 

2c 

It 
2c 

(X -21d)1 cosh 2-  

( X -2id)J sink -72-1  

	 (15) 
and 

EV) - 
- 2 C-  2c 

(3 +2id) + Ci It 2c ▪ cosh 14  

 

- Si 2c  (+2id) Si 2c (:.:(-2id) sink 

	 (16) 

where 
4jk: = 	3C1 "'" 

  

cu 

Si(u) 	I s in t dt = u u3 u5  

71.7 

ezia.  

s 

Ci(u) = 	cos t dt loge  y 	u
2 u6 

- &OS 

21.2 	244- 	61.6 

x Reference 10 
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Pi 	- e  

where 	logo  y = 	
1 t 
	dt 	e tdt 

J o  

= .57721(6) 

(D and E are seen to be real functions of x, x1, and d) 

v becomes 

v =log I I + r 	 / 2a \ 

L 
f  

—r- 	20 , (cos 	sin — 2c/ 2q27 - 

("" x) D 	- Si (1 - !29 + Si (71- P)I 

	

c 	 2x --77.=  [cos 7-‘3( I  E 7 	x\ 

	

+ sin -2z- L 	) E 	 -  
2v27( 

	

. ' 7, I 	2x 
+ CJ_ 7- i -1- ---)i 

	

..-i- 'i. 	c ./.i 

..0.•••.•00•(17) 

From (6), using the vorticity distribution given in (14), the 
normal component of the perturbation velocity just outside the 
duct is 

^ 1 	nv., 
- i-  \c/2 

 ( 1 	2d /(sin  sin i 'K  / 	=.=. I ay 	 2 K.d. dx 	-') I_T.-0  x,i  + , 1 1  _..1 
4- ; 

 _ a -.-- i 1 	 4 7  ... 	 f 	 - 	- I 	( 

2 	 2 ('-,' -c/2 

	

	 t.lc/2 	(a&x'1)2  + 4d. I (x-x1) + 4d
2- 

c1.1 , 
1 	. 	 (.7- 	 )! 

	

KsinCrc- 	I_  - 	lam (y-d) 
a+

Lq 	
2 -c/2 	(x-x1) 	(y-d)

2 

),,..0 
i< d-- 1  

■ 

c/2 (x-xi  )2 	(Y-d)2  

which reduces to 

ArealeR*Arv"s."' r 	' 



1 
0'" 

74.X 	 7txN ,fc 

	

N I 	 . 	;7:-C 
U = 	f(?.  OS 	+ sin —; 	 +x) + (cos — sin 2 	 2c 	2c, 2c 	2c/ 	2 2127,: -  

--; i 

	

G(
c 	c -2  -x)-G(-2  +x) I_ 	! 

c  
IK. riz 	1 x + --\ c 

+ -277, ( 2 + tan 	2d7  ) 	Y" 5 ' 8 = 0 for - ---- - 2 	A 	 - — 2 

8 = 1 for x 

05000.15 .M00(18) 

where 

7c 
F(:`.) = i 1 

I- 
0i 7-c-CX:+2±d.) 	Ci 2-1; a I -ad cosh c3— 

[Si 72-S-c- 	+21:1)+ Si 1.-.1  ( X-2i(1)] sink :=a  

and 

7C G(7-)= i 12i T27. (X.+2id.)- Si '2-'7  (7...-2id)J cosh 2-1 
,,-21a) i 	7 

2c 	14+ 	 I  I Ci 	(;I/+2'fl 2c 

again F and G arc real functions of x„ x
1
, and d, 

5, The shape of the duct  

Having calculated the components u,v of the perturba-
tion velocity on the outside of the duct and wake for a given 
vorticitr distribution, the slope of the duct surface can be 
found since 

dx 	u+U 
	 628B OOOOO ]0*(19) 

vrhere U is the free stream velocity. 

This slope, integrated, gives the shape of the duct. 

As can be seen from section of this Appendix, the 
components of the perturbation velocity are complicated even 
for simple vorticity distributions, and an exact integral 
is unlikely to be found. Thus a numerical integration is 
suggested in all cases. 

To obtain a second approximation to the shape of the 

• 	 1.1• 	 d.."411.1  .,4;v0,4veteivotottipi.r.tiRiptiorknor,""f 



duct, the values of u and v are found with the assumed.  
vorticity shape, and the shape recalculated as shown above. 
Better approximations can be obtained by further iterations. 

There is, obviously, just one, shape for a given 
vorticity distribution but, provided the total vorticity at 
the trailing edge is equal to the constant value of the 
vorticity in the wake, different shapes can be obtained by 
combining any number of vorticity distributions over the 
chord of the thin aerofoils replacing the duct. 

6. The Pressure Distribution over the duct  

From the perturbation velocity components it is 
also possible to calculete the pressure distribution over the 
duct surface. If pc,  is the free stream pressure and p(x) 

the pressure at any point x of the duct surface 

\ 
p(x) - ro  = 1--pu

2  + 2uU + v
2
) - 

or 
P(x) - Po  1  

• 

(u2 u„ 2\  + zu v ) * ***** C00000(20 ) 

 

1
!7[31J 

-2 

The effect of compressibility can be included by 
using the result due to Glauert; 

C
PC 	1 

Pi 
O ******* 0 	( 21) 

where c
Pc 
 is the pressure coefficient in the compressible flaw 

c 	is the pressure coefficient in the corresponding 
pi   incompressible flow 

ari,3, 	is the free stream "Hach number, 

7. The 'staggered' duct  

If the x--coordinates of the leading edges of the 
upper and lower aerofoils are different, representing a 
staggered duct, the perturbation velocity can still be 
calculated although here there is not the simplification 
which previously was the case due to symmetry. 
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Consider the duct fonaed. by the upper aerofoil 

y = yi (x), c1/2 x c/2 and the lower aerofoil. 

y = - y2(x) ; 	02/2 x 	where y1 (2) = y2  0) = d. 

For such a configuration the perturbation. velocity at any point 

(x,y) can be written in terms of its longitudinal and normal 
coraponents as 

• 1• 

1( i 	 Y - Y1 	 1 	 Y  + Y2  u = - — ' I 
2'A ( 	y (x ) 

1 1 	 dxi  + I Y2 	) 	 dx1  
f 

%.. 	 (x-xi  )2+(Y-Y1 )
2 

.1 
-c2/2 
	(x-x )2+(Y+Y2)2  ',1 -.■-• 

	  (23) 

pcy:: 
7r1 (x1)(x-x1)ax1 	1 	Y2 (x1)(x-x1

)clx1  v —• 	 1 
 

J 	(x-x)2 Y-Y +( 	)2  j_c  /2 (x-x1)
2

+(Y+Y2)
2 

C-c1/2 
2 

(24) 

where yi  (xi  ) and +y2(x2) are the vorticity distributions 

representing the upper and lower thin aerofoils respectively, 
and yi  and y2  are functions of x. 

Since constant vorticity 	is azzuraed in the wake, (23) zcsrul 
(2L) can be rewritten as 

u = 1 	

/2 
(xi  ) (Y-Yi  )ax 	

c/2 	
Y2(x1)(Y+Y2) 

27t 
( r- -c /2 (x-x

1 )
2
+(y-y1 )

2 
-c2/12 	(x-x1)2+ (Y+Y2)2  

- 
( 

	

K. 	:, 	Y-Y1 	Y+Yo 

	

- -Z7-t 	 N 2 , 	N 2- 	 2 ( 	
dx1 

2 -,... (x-xi ) +(y-y1) 	(= -x1) 
9
+ (y+y 	; 2 	.,- 

(25) 

and 	..Y.) 
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( Pc/2 	Y1(x)(x-x1)dxI 	
I"0/2 

	

2 l' ) 	 I 	[ 
y 	)(X .••X  i 	1 1  

V = 7  

(x-x02  +(Y-Y112Y1)2 	d -c2/2 (x-x1)2 
	\2 ( 

!.) c 2 (  

,x-x1) 	  
t (x-7-1)2  +(3r-Y1)2 	(x-x1)2+(Y+Y2)-2 

	
.1)  

dxi

/   

OOOOO 0001,,CG(26) 

yi  and y2  are not, in general, equal even in the wake, but 
as a first approximation, particularly in the wake, yi  and y2 
would be taken equal to a constant d. 

The shape of each side of the duct and wake can be 
calculated as in section 5 of this appendix, and the pressure 
distribution as in section 6. 

8. The inverse problem  

8,19 In the previous sections of this appendix a vorticity 
distribution has been assumed, and the perturbation velocity 
components calculated, from which the shape of a duct and its 

• pressure distribution have been found. A more direct• approach 
is to take a given shape and from it to find the vorticity 
disti-ibution reauired to represeht the duct, 

- 	3.2. The exact integral equation for the vorticity  
distribution 

The slope of the thin profiles =king up the duct is 
given in terms of the perturbation. velocity components as - 

dx 	Ti+u 
	(27) 

Now, for a symetrical duct at zerd incidence, the normal 
component of the perturbation velocity at (x,y) is given in 
terms of the vorticity distribution as, (equation 5), 

V(X2Y) 	..'2L 	Y(X1)(X'-9C1)(
(x-x )24-(y-y )2 	(x-x )

2+(y4.30- ) 	(IX I  7C 2) 
-c/2 	 1 



,2 dx1 
74x1)2+(y--yi)

2 
(x-xi)

2
+ y+yi) 

	 (29)• 
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where y = + y1  (xi)is the locus of the vorticity distribution. 

Assume now that the vorticity distribution is constant 
in the wake, and thus the effect at (xly) of the wake 
vorticity is 

v(x y ) 

  

-(x-x1  ) 
1 	dx  

((x-xi )2+(y-y1 )2 	(.-.,)24.(y+y1) 	1 

...... .....(28) 

Jc/2 

Substituting from (28) into (27) we have 

c/2 

v(x,y) 	vi(x,y) = 	I 	y(x1)(x-xi) 

-c/2 

and this we obtain an integral equal for the vorticity distribu-
tion representing the aerofoils in terms of the normal perturba-
tion velocity given by the shape of the profile, and the known 
constnt vorticity in the wake. 

As it stands (29) is not solvable exactly. If, 
hdclever, we assume the vorticity distribution to lie on the 
lines yi  = + d, (29) can be simplified to 

V(x,d) = +T(1  ,d) vw(x,d) = 

c/2 

-c/2 

y(xi)  
12 	1 	dx1  
)2+42 	x-xi  

11  

which, again, is not readily solvable. 

9. An approximate solution using slender body theory  

9.1. The perturbation velocity 

Cdnsider a duct made up of twu thin aerofoils 
y = + y(x), 04t: x ‹:.0 and their wake. . At any point (x,y) 
the longitudinal perturbation velocity is, fraa (4) 

(30) 

u(x,y) = 1 

0 

 , \ ( 	YtY1 

Y°̀:1)  
(x-x1)2-14Y-Yi  

Y4.7 1  

(x-x1)2+(Y4T1)2  I 
dx1 
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To obtain the longituainal component of the perturba
-

tion velocity on the duct surface we must evaluate this integral 

as Y---> Yi(xi) 

i.e. 	 )(2 	2y 	
Y-Y1 

111,71-_,yij = g 
y(x  ) ______L____ i 	, 	.2 	2 - 1 ax - 7x En  1 :Y(x-1 )  --r---2, 	 a" 

, 	
i 

kx-xij -04Y1 	3r.-- Yi j 0 	[xr-xi
) -1-(y-y'I ) 

0 	 (31) 

It is immediately obvious that the second integral is a singular 
al of the form encountered in thin aerofoil theory and hence 

integr  
(31) maybe written 

AOC 

	

u;,x,y1) = k 1 y(xi) --- 
2y

I 	7 	--CS1-Y3  

(x-xi)2+4y " -r -2-  / iayi) 	
......(3) 

wo  Sr 1+ (a-7c 

the negative or positive sign being taken according as we 
consider the outer or inner surface of the duct. 

Now, taking the length of the duct 
as c, •e can 

express all the lengths as non-dimensional multiples of c in 

the form 

x = Xcl  xi  = Xic and  y1 = cY(Xi)c 

StThstituting these into (32) ve have 

,Y) = 7-27 y(X1) 
i 1-  t (X) i 

	

J 	2 1--- 	.1 2) 

tit X 	1 

	

i 	
I- 
2  () '7J 

I 	i 

t 	(X-X
1

)
2
-I-4z 	

., 

., 0   

which, expanded in ascending powers of s, becomes 

1 	 i 
	E2y2 	& 62y2-12 Oc' 

y( i  )2E-,Y ( 
‘) 	,: 

i 	L__..i  _ ... 
, 	(x.„1) 	, 	,)2 	(Xr-Xi)

2 

% 0 

F 	(x0.1 	1 21-Y! Cv-51 2 2  LITY"(x1 	
....(33) 

y 	- 2  g 	4- 8  € 	• • • 

If we now 
assume a slender duct, i.e. e small comparedwith 

unity, the terms of third and higher order of s 
in (33) can be 

neglected giving the longitudinal component of the pertufbation 

velocity cn the auct surface as 
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6:j2y (Xi  )f dal 	 r 	-1 2 
u(X,Y) = 	 Y(X) ,C 1 	1 e2 YI(X)f 

jo 	( 1
)2 

Thus the actual longitudinal component of the perturbation 
velocity on the outside surface of the duct anal rake is 

uo(x) - iy(x) 2 
1 	2i 
e 	-1" (x) 2 	t + a r y(X,I  )C(XI  )axl  

(35) 
o 	(x-x-1 )

2 

and on the inside 

	

( 	1 ul  = uo  y(X) 1.1 - 7 e2  1Y/(42  

neglecting terms of third and higher order in e. 

The normal component of the perturbation velocity 
can be found immedint4y since the flow must be tangential to • 
the duct surface, i.e. 

v = (14u) 
dx 

9.2. The stream functions and vorticity  

The complex perturbation potential for the fluid 
motion about the duct is 

PC°  
w 	y(x ) Clog (z-z ) - log 

	

1 , 	1 	
dx1 

o 

where zi  = xi  iyi  and yi  = yi(x) 

Thus the stream function for the perturbation is 
!,;)0 

1 	( 	( X-2(1)
2 
1-(y-y1 )

2 

	

= 7,-1- i  y(xi) ,ilog 	 dIri  
G7L 	I 	 - 1 

C' .0 	L. 	V - ()̀-'xi )24 (Y+Yi )2  

or r  0.3 
(x-x1)24.(Y-Y1)

2 
) 

(J5 = 1- 4 	i 

	

7z 1 
Y(x1 ,  ) log 	  = 	1 dx 	..,(37) 

1,  o 	f. 	(x—xi )2+ (Y+3r/  )2  

f 
1 

It is seen that on the x-axis, 

11) = 0 	(33) 

imiummisinismio_ =rTftrrr, 7,'IrrT",77,1!FtetrMttrr!"M'AMT 
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Thus the stream function for the flaw about such a duct in a 
uniform stream in the x-tirection.  of speed U is 

	

UY 	ip 	 ^^^ 0 o we,  2. 50 9, (39) 

Now on the duct surface, as on any stre n e, the stream 
function is constant and equal, in magnitudevto half the  
volume flaw (Q) through the duct. Thus, from. (37) and (39), 

on the duct surface 

1 	 1 (3z-xi )2+(y-Y02  

Q0 ... 
-- Uu + 

4n 	
y(x1) log 	  dx1. 
o 	(x ac t } u 

 

or in dimensionless for z, using (32), 

0 -o 	 1  (x_x1)2+2(y.„1)2 
_,,,_„ 	_ y(x) + 	y(II)log 

41.c  
 dIK

1 	(4a) Aodfs 
do 	(x-x1  )2+E2(y+Y1  )2  

The integral equation (40) can be satisfied by 

Q 
U + 

260Y(x) 

giving the vortex distribution as 

90 
Y(x) = 	 0(e) 

4 	• 	 -"bb.Pill."1"115611"Tr.50"11"1"?'""atliglrallerOMar611,111E"firl*"` "7"t4(""WrilMa4:4"714.1-7111"1"tr 
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AI FENDIX  B 

The two-dimensional duct at incidence 

1, 	The methods of thin aerofoil theory used in the 
previous appendix are here applied to a trio-dimensional duct 
at incidence a to a uniform stream of speed U at infinity. 

The duct considered is formed by tJo thin aerofoils 

Y = *-± y(x), -c C x 0 ; y(x) being always positive, The 

enich the vorticity distributions lie are not now 
of each other in the x-axis and hence we take 
aniline of the upper thin aerofoil y = y(x) to be 

Y = Y1(x) 	x 

vrhere 	y(0) = y1(0) 

and that of the lower aerofoil to be given by 

y = y2(x) 	0Z x C==.c' 

where 	-y(0) = y2(0) 

such that y1  (x_) and y2(x) are both parallel to y = x tan co  

for large xo 

The configuration is shovni in figure 70 

2. The vorticity distribution  

2.1. The vorticity  in the wake  

For reasons given in the previouscppendix the vorticity 
distributions on the two wake streamlines are taken to be 
constant and of equal magnitude but of different sign i.e. 

yi(x) = y2(x) = K ; 0 	sic 	(1) 

2.2. The vorticity representing the duct 

Previously a vortex distribution has been assumed and 
this has dictated the shape of the duct. If, however, distribu-
tions of vorticity y(x) and -y(x) are assumed to lie on 
y = y(x) and y = - y(x) respectively, then due to the 

wakes upon v 
mirror images 
the wake stre 
given by 
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bending of the wake, the duct represented by these vorticity 
distributions will not in general be sy=etrical. It is 
therefore assured that the symmetrical duct is represented by 
distributions of vorticity y) (x) replacing the upper thin 

aerofoil and -y2(x) replacing the lower. 

3. The perturbation velocity 

3.1. General expressions  

As in section 3 of Appendix A, the longitudinal and. 
normal components of the perturbation velocity at any point 
(x,y) are 

u = 
(y-Yi )Yi (xi ) 

— 
2x 	-c  )(x-xI  )2-1-(3"-Y1)

2 
t  

(Y+Y2)Y2(x1)  

(x-x1)+(Y÷Y2)21 

and. 
'lc' 

1 v = 	(x-x 2it 
_c  

( 	Yl (xl ) 	Y2(x1 )  0 1,  C/X4 (3) 

1()&x1)2±(37 Y1)2 	( XX1)24-(Y-1-3r2r-  c 	I  

or, on expanding the vorticity distributions, 

1 	(Y-'371)Y1(xl)  u(x,y) = 7 ) 	)(.x1)2.t.(y_y1)2 :(( .021dx1 

(y-y1) 	(37.+Y-2) 
	  cizt 	(4) 

Following the assumptions of thin aerofoil theory the vorticity 
representing the duct walls is taken 	lying upon the lines 
y = a, -c x o. 

. - 
Hence, (4) becomes 

0° ' - 	1 a)y (x ) • 	(3' 	 (y+d)y2(x1) - 

(x-xl  )2-14Y-Far 

Y÷Y2 lax (5) 
(x-x1)

2÷(y+y2  ) 2s 

d o  (x-xi )2 (Y-y1 )2 	( 	)2÷ (Y+3r2 ) 2  ( 

u(x3Y) = 
d 	1(x-x1 )2+6r-a)2  -c 

K IT (Y-Y1)  
27. 	 2 	2 +(y-yi) 
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and likewise (3) becapes 

c0 	 i 
1 	i 	I 	, v(xl3r) =-.. — 	(x-x1) 27c 

1) _c  

1-1 (xi ) 
)24.(y_.(1)2 

Y2 (xl ) 	

ms, 

 d Y 
9 

X7-7,C )

2

4-(y+d)i 

No 	 , 

	

K. 	1 , 	, i 	1 	i  
+ 1..,-. 

Coi 

! o kx-x1)
.(x-xl)

2
+(y-T1)

2 _ (x-x1)2+(
y
+y2)2 

dx1 

•.....06.1%.(6) 

Once forms for y1(x) and y2(x) are known the first integral 

in each of (5) and (6) are calculable with no more difficulty 
than that incurred in section 4.of the previous appendix, 

3.2. The shape of the wake  

To proceed with the integrals over the wake sane 
form for y1  and y9  must be assumed. Ecuation ( 18) shows 
that the wal:e stream'Iines will have very nearly exponential 
form. Also both wake streamlines mus+. be parallel to 
y = x tan ao  for large x and be continuous with their 

particularhin aerofoil, 
dY2  

i.ei at x 0 	Yl a ; Y2 "=" -- a , Tr
dY1 
 .= a77.- - 

0 
 

dyi  dY2 	tan a and for large x 	= ax  

The simplest form for yi  and y2  fulfilling these conditions 
is 

17- 
= tan a0  ,e

x  + x 	a 

	

y 	:7_7 tan a
0 
 ;e 	+ x - 1 	d 

and, substituting from (7) into the second integrals of (5) 
and (6), We have integrals of the form 

y- d- tan a 1 0,f- e 

. -xi  
+x 1 -1 i 

9 - 	-xl 
,j 0  (x--x1 ) +Ld+tan ao(e +x1-1) -y 

The integrals over the woke can be simplified by 
assuming that the wake streamlines are straight and parallel 
to the free stream cii_rection. Thus we take 

(7 ) 
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y = a + x tan a 1 	o 

Y2= -d + x tan ao 	 ..... , . .....(8) 

and the wake integral in (5) becomes 

oor. 3r --  d - xi% 	y + d - x10c  
i 	. 	

, 
, 

tio  ((x-1)2+(y-&-x10 oi 	
4.  12 	

(x
-x

1 

0

a) 

\.2  '1,, dd;:1

j  
..........,.(9) 

vire 0
0 = tan a 

The idealised configuration is shown in figure 8. 

3.3. The perturbation velocity for the idealised duct  

If vie put 

= 1 + 02 
o 

B = -2(x+005.-41) 	B' = -2(x+001y+a) 

C = x4+(y-d)2 C' = x
2+(y+d)

2 

(3) becomes 
;100  
1 0o  x1  -(y-a) - 
	

o 1 
-(y+d) 

2 	dx jo 

	

	 1 
Axi+Bxl+C 
2 

0  1x +3 xl+C 

0 
log, -- 2- T 2A 	C T - T 	• 	• • 42 ( 

11 

( 	 BO 	I 	dx1 where 	T = 	- -2T, , 	2 
o Axi+baci+L; 

B/00) 	dx 1  

T'= <-(3r+d)  j Jo Axi+B x 

7.1  2 

	

Now B2-4AC = 	x+0 (7-(1); --40+0D rx2+( y-d o 

	

= 	F0 ox o 

GoOOPOO( , 	 ) 10 

and 

2 

-x'-,$110444nIt 
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and is thus essentially negative or zero. 

Thus (ref. 10) for B
2
-4AC negative i.e. y not on the wake 

streamline BO 
-(y-d) 

2A 
T 

0 x o •— 

7C 	- 1 	B - tan 2 

 

B' e
o 

- (Y+0,-) 
2  

T1= 	
A 

 

ox (y+d) 

 

and. 
- an -1 	B'  

2 	
t 
 	.....(12) 

v 4AC 

   

Thus from (9), (10), (1'1) and (12) the wake integral becomes 

-o 	.2 

—27 log x  +(Y-d)2  

1+0 
0 	

e 
x2+(3r+c1)2 + 1+02  

t
=71 X+ 0 Fy- 

0 .- 	
y+d-1 1 x+0 

o-  
- tan 	 • 

eo
x-(y-d) 	0 x-1  di 

0 

7C 
which, -when O

o 
= 0 and y=d. reduces to 7  + tan — 2d and 

agrees ITith (A9) and hence the longitudinal component of the 
perturbation velocity is„ for the simplified wake 

1 	I 
 VO 	1(17.,_(1)y1(X1) 

\ 
u(xly) = 	

:(x_x )24y-di 

(Y-14Y2(x1) 

(x-xi  )2+(y+d) 2  
.1 

dx
1 

/‹... 	t 	 2 , 	.2 	r 	.+0 (v-d 
x  -1-ky-d) 	I 	-1 	o- 	)  

+ 	7-- ;ten ao  loge 	9 	I tan 
27c(l+tan a0) ... 	 x

2
+(y+c1)- 	I 	oo

x-(y -a) 

- 

x+0 (y-Li.1.) 
- tan-1 	o ' 	1 

I 
x00-(y+d) I 

• * O 

 

(13) 

 

Similarly, the integral over the wake in (6) becomes, using 
(8) and (10)  

f.to0 

1 (x  x1)2 
1 	

- 
1  

.i 	
, 2 	 dx1 

, 	 1 I 	 1 .ix + Bx +C 	Lai  +B 'xi  +C" 

1  

,-,0 	 1 
--- 

which is equal to (ref. 10) 



T2  remaining unaltered, 

Mus 

u(x,y) = 

- 	2 ;:::0-1-tan a 
 

I 
2-K. 

I 'a  ( (y- a )1,1  ( x 1  ) 
, 	  

-c  1
t x_...„  )2. t.„...,N2 
‘ '1%-  i)  +0  LI)  

(7/C-X1  ) 2+ (y+13.) 2 	1

-1
2 r 	

4- 	
x4.00(y-d) , 1 an a log 4117- 	 tan 

o 	e 
x
2
4-(y+d)

2 	
x0o-

(y41) 	2 ‘ 

ONO 

(Y1-c1)Y2(x1)  
dx 
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lc- ILL:1Z 	
B \ 2x +  17c  

2 
x +(y+d)

a 	
—2' 1

2 - 
v4LC - B 

B 
4,311  

124-‘10-2 

2 (x  .4- 171) -- 
+ 	 2  

AAC!-B'2  

tan
-1  BI  
--- 

te /41C '-B12  

.--- 

(y- 1 	 x
2
+ d) 

a 	0 	 1  x+0 (y-d) o  
9 1Clge 	 Itan-' 	° 

2(1+0d 	x
2
+(y+4)

2 - 
2(1+00

2 
 ) L_ 	00x-(y-d) 

x+00(y4-d)--  

00x-(y+d)j 

and hence the normal component of the perturbation velocity is 

v(x,y) 
ir 

(x-x ) 	 
1 	.% 

• 
7••••C 

x_x1)2+(y_a)2 
Y2  (x1) ) 	) 

(x-x1)
2
+(y+d)2 
	1 

- tan 1  

  1  2
+(y-d)2 x  

4N(1+tan
2ao
) x2 

 4-(y+d)2  
-tan a 

x+tan ao(Y-a-) 	x+(y+Otan ao  
tan 	  

ao7(Y-d) 	x tan ao-(y+d) 

	 (i4) 

x tan 

Ii y lies on the wake-streamline yi  

zero and hence - 	---1 _ 
i 	B 0 m 	2 i f 	\ 	0 I 1 	- - or -a) + -- B 	21- i  

d + x tan ao B
2 
- 4AC 

( 5 ) 

• •••■0••0•3•06( 16) 

Ottannewsubwi rlingewaegostalIMIIIIIrril"—" """""""-- 



VOCyy 
1 

e 

(x-x 
Yi (xl )  Y2  (x1 ) 
	 9 I 
(x-x1 

  

..x1 )2+(y..(1)2 

 

fir 	 2 f 	\ 2 

	

taxi 
X —1—(,y—a) 	 X8 0+ 

 (y-d) x+00(y+d) 
 	7. I loge 	 - tan a ) 

01( -1+to.ri
2
a ) 	

)
2 

	

o - 
x+13 ( y—.C1) 	 x0o-(y 

•/s 00000 opula(17) 

Similarly u(x;y) and veiw) can be calculated when y lies 
on the lower wake streamline in which case B12  - 41T' -will be 
zero, 

The clict shape  

The duct shape is found from the modified boundary 
condition over a body at incidence 

v+U sin a 
dx 

u + U cos a 



APP MIX C  

The Axi-symmetric Duct in Potential Flow.  

1. The asymmetric duct is represented by a surface 
distribution of vorticity made up of an infinite number of 
coaxial circular vortex rings of radius R and strength y 
per unit axial length. Both R and y are functions of the 
axial distance z of the ring from the lip of the duct. 
Reasoning on parallel lines to that given in sections 1 and 2 
of appendix A shows that the vorticity extends into the rake 
and that the equivalent homogeneous flow about the duct and 
its wake can be represented by a semi-infinite distribution of 
coaxial vortex rings. (See fig. 9). 

2. The circular vortex ring  

Consider a circular vortex ring of radius R and 
strength A_ , such that the normal through the centre is the 
z-axis of cylindrical polar coordinates x,r,O. Consider 
also the point P (x2r,911) ; see fig. 100 

In cases of axial symmetry the vector potential 
at P, as defined by Clebsch, has only one component which is 
along the normal to the axial plane (i.e. the plane through'the 
axis and P). The unit vector along this normal is n. The 
ma&-nititde of the vector potential is 

- 

0 _ t( 
27c f 	r 

• ,27c 
K. R cos (ILL of  = 7+; 

Jo 
	PQ

2 

where Q is the point (0, R, 0'). 

writing 0' - 0 = 

- 21. _ 	R 	(2 cos .A./  -1)d- 
- -A 

di  4Rr) o 	1 	(1-k2cos2  
k2  

..... D. . (1 ) 

there 	k2 	4rR  

z
2
4-(r+R)2 

0* 
	 (2 ) 

04000PP 

• -7451Emrtrilll 
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which can be rewritten as 

, 
(R\7  ' 2-k2 

tLri  ) 	- 	 (3) 

where F and E are complete elliptic integrals of the first 
and second kinds respectively. 

.- 	 .- -> 
The vector velocity q = ur+uz 

q 	= curl (0 1.--;0 

is given by 

or 

	

a IL!) 	 i a U = 

	

az 	0 	= •-• r ar kr 	; 
u0 0 

3. The vector p2Iential for the duct and wake 

Consider now the duct of 
of a semi-infinite distribution of 
stretching from zero to infinity. 
potential at 1"(z„r70) due to the 
by integration 

length c and wake consisting 
such circular vortex rings 
The magnitude of the vector 

duct and wake is, from (3) 

7.17_ 63) 	)4.(z  !) (11.111 2 	9 	
E'. ...(5) 

"•C  

(.; 

r R(7  t} 
whare now k2 

f (n-z1 ) + !r+R k z9_1
2  

and hence E and F are functions of zl. 

L. The Perturbation Velocity 

The axial component of the -,)erturbation velocity 
at P is, from (4) and (5)$  

92  uz 	= 	,r\z.)iF R
2(z1)-r2-(z-z 	

11 	 dJr 	 
2 r 	2 1 	 2 	

2 j 

	

(z--z') -F1R(z i )-ri 	z 	R(z2)+r 
■.) 



and the radial component is 

:70  

I 	P((zi)(z-zt)  !Ic2F 	R z 
u,(z0r) - 2% 2 1 

'' 0 	 (z-z')
2+(r-R(z ')) 

dz '  

,21717 
/  
k 	R(z _L) 

If P is taken on the duct surface then the mean 
axial velocity (uz) is found by putting r = R(z) in (6) and 

interpreting the improper integral so obtained by its Cauchy 
principal part. It has been shown (ref. 11) that 

i)C 
4 

I 	01\ 	1 	
.0 	TN 

(Uz) 
r=1Z(z)= —1127 	1.1(a1-2 ( 1-'k2  )R(Z 0 -1 	r‘k z  )13.-111 	

'.0(3) 
- o 	 iR(z)R(z 1)1 

17/2 2r.4  
wilere ' PVT 
=dr/ 

k2 sin20 

and - 	N-R(z)R(n')  

 

***a POJ••...(9) 

 

 

V 
(z-z4)24Z(z1)+R(z)12  

for a finite thin duct of length co 

-This result can be generalised to the case of a duct with wake. 
Since the vortex tube representing the weke is a stream tube 
we may write, for the duct and wake;  

k3  (z')dz' 
(az) • 	

p 	R(z!)-R(7.) .  E  

	

. 	+ 	 1 	o c.(io) 
- r=R(z) 	 2(1-k2)RW) 

	

0 	 t71(Z) RfzIP j 

The actual longitudinal velocity is obtained by adding the 
contribution due to the local vorticity 

i.e. 

(7) 

"411111111111111111111111111111APIRrr*WM"612'4 
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the negative sign referring to the flow outside the duct and 
wake, and the positive to the inside. 
For the outside surface, assuming a slender duct, (i.e. R(z) 
is small, compared with c), we have, by expanding the elliptic 
integrals and taking the limit as z--4,z1, 

(1) 	
. 	4. 	R

2
(z1

)'<(z
1)  

dz1  
r=R(z) 	 lz-z 'I -3  

r , 
II 	log 2c 

a 
2 

2 

(R
2 
 (z)K(4 + 0 (E--)30-0 c/ dz 

 

The normal component of the perbarbation velocity for a slender 
duct is 

ar (ur)T=R(z)  = (U uz) dz  
r=R(z) 

5. The vorticity distribution  

The vorticity distribution representing a slender 
a:Lisymmetric duct and wake can be found by an extension of the 
method uced in ref. 11 for a slender finite duct without wake. 

The Stokes' stream function for the semi-infinite 
vorticity distribution in a uniform stream of speed U parallel 
to the axis of symmetry is 

U r 1.11(z,r) 2 

i   (z-z')2  -4-R
2 
 (z')+ r4" 	)i- _ 211. ; 	4 

P - El(z-z1)2.-pR(z' +rz ! y(z )izI 27c 1 	 -2 	h 	 1  7 	 i 
.-: o 	(7,-Z 1 ) -1-1.R(z).4-r1 	t - 

	

',.. 	L 	 n 

Now the Stokes' stream function at any point (z,r) is related 
to the flux or volume flow Qc. per'unit time through a circle of radius r normal to the axis of symmetry 

i.e. _ 	o 
t 	27c 

On the surface of the duct ip must be constant,since the duct 
surface is a stream-tube. Hence, the boundary condition is 

(12).  
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which, for a slender duct, reduces to 

oz)0 	 1• 
e 	I 
	 Q0 _ 

- 
27t 	k a w w 1 R(z)R(z1)! 

) 72 
y(m2)dzi 

= 27c 
UR2(z) / 080 0(13) 

-s•: here sin20  cos2ALIg 

o 
t1_kasin20)3/2 

and 
	

e = Cu  and is small. 
• 

Equation (13) is satisfied by 

y(z) - s'(7)- u 	❑(e) 	 ..0 ....... 0*(14) 

where S(z) = 'la
2
(z) is the cross sectional area of the duct 

at (z,R(z) )p 
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