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The free streamline technique is extended to the 

problem of two-dimensional jet flow from the rear of a nacelle. 

Complex potentials for the jet flow and the flow in the free 

stream are found and from these the equation of the wuke 

streamline and the velocity and pressure distributions are 

calculated. Some consideration is also given to the corres-

ponding axi-symmetric problem. 
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=DOLS  

a 	half width of jet at infinity 

c 	 half width of nozzle 

p 	pressure 

q 	fluid speed ratio (Q/V) 

fluid speed 

V1' V2 	skin velocity outside and inside the free streamline 
respectively 

a 	angle between duct wall and x-axis 

0 	 airection of fluid velocity 

density 

0 	two dimensional velocity potential 
axi-symmetric velocity potential 

two dimensional stream function 

Stoked stream function in axi-symmetric motion 

complex potential (0 + i(r) 

Kirchhoff's variable; loge  (-V 

1. Introduction  

The rear of a symmetrical two-dimensional duct can be 
idealised by a pair of converging thin straight plates (fig. 1). 
This paper is concerned with the prdalem of a jet issuing from 
such an idealised nacelle into a free stream together uith the 
corresponding axi-symmetric problem. Loth the jet and stream 
are considered to be inviscid and incompressible fluids. 

Solutions to these problems are sought using free 
streamline techniques. The detailed analysis is given in an 
appendix, reference to the equations in the appendix are 
given in the form (A.2). 



2. The free-streamline 	 plied to 	at the rear  
of a two-dimensional duct  

2.1. Steady irrotational discontinuous streamline motions  

For two-dimensional irrotational motion in a z-plane 

(z = x + iy) the coinplex potential w is given by 

= 	i) 	 •••C3•6100••(1) 

and if we consider a complex w-plane then (1) implies a trans-

formation between the z and w planes. Now, if Q is the 

fluid speed at any point z and 0 the direction of the fluid 

velocity at that point 

co' (z) = - Qc
-16  

and in steady motion 

P1+ 	 + - i 2 	Po 	1,r2 7Q1  =  

where V is the fluid speed at some reference point (say at 

infinity) where the pressure is pc), 

2.1.1. Kirchhoff's method 

The two-dimensional jet issuing from a nozzle leads 

to a problem in which the direction of the fluid is fixed along 

certain boundaries whereas along others the pressure is 

prescribed. Llong the latter boundaries the speed is constant 

and equal to the 'skin velocity'. These boundaries are called 

free streamlines. To deal with this and similar problems it 

is usual to employ the method originally due to Kirchhoff)  in 

which a third complex variable .11 is introduced and defined by 

( 	az) = loge  - V dw 

or 

	

/ 	 1 V ' 

	

- log ix 	+ i0  



2.'1.2. The corresponding transformations  

If the space occupied by the fluid in the z-plane is 

napped on to a complex 	-plane it will be seen that a 

boundary for which the fluid speed Q has a constant value is 

represented by a portion of the axis of imaginaries, whilst 

corresponding to any straight boundary for which is constant 

in the z-plane vie have a line parallel to the real axis in the 

JI-plane. Thus, the diagrams in the w- and 1.  -planes consist, 

in general, of polygons. These polygonal figures are then 

mapped on to a complex t-plane so that corresponding points 

coincide. This mapping is usually effected by means of the 

Schwarz-Christoffel transformation, the differential eauation 

of which is 

dz 

kt-t4)al/(t-t )a271  (t-17777 2 	". 	n 

where t = tr (real) rorreaponds to the corner Ar of the 

polygon where the direction, keeping the interior of the 

polygon on the left, suddenly changes by ar  and C is a 

constant. 

2.1.3. The intrinsic equation of the free streamline  

Pram (3) 

= e 

and, along a free streamline, 	is constant and the shin 

velocity is constant. Thus 

= ie 

and also 

dz = ds ei°  

where as is an element of arc of the free streamline. 

dt 
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Therefore 

- Vas ei0 = e
10 

dw = e
i0 dO 

or 

Hence the intrinsic equation of the free streamline is 

	

s 	 0  = const - {0)  
V 

or if the stream function is chosen so that its value is zero 

on the free streamline 

= const - w(0)  

where w is expressed as a function of 0 by means of the 

w - t an 2 

	

d 	t transformations. 

2.2. The solution of the problem of the idealised jet  
flow from a duct  

This solution is presented in detail in the appendix. 

In the following discussion the suffices, 	and 2  refer to 

the stream and jet respectively. 

The jet is taken as issuing from the funnel-shaped 

nozzle, given by the equation 

y = + (c - x tan a) 

wnere a is the angle between the duct wall and the x-axis, 

into a stream of speed V1  in the positive x direction at 

infinity downstream. The speed of the jet is V2  at x = (), 

where its width is 2a (fig, 2a), The width of the nozzle 

opening is 2c. For x 	the jet and stream are separated 

by a dividing streamline which is a continuation of the duct 

wall, and across which the pressure must be continuous. It is 

shown (A.5,6) that this is satisfied only if the velocities are 

constant, but not necessarily eoual on each side of the dividing 

V (5) 
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streamline. The dividing streamline is thus a free streamline 

as defined previously (sec. 2.1.1). 

2.2.1.econcotTh entials 

Th3 SI, w, and t-plane mappings for this problem are 

shown in fig. 2b and using the Schwarz-Christoffel transformation 

(4) the appropriate mapping functions are found to be, for the 

domain CII) occupied by the stream (A.9,10,17) 
J. 

V 4  a 	1-t4) 	 7r. J.. if 
(.1)1  = —7c1—  loge 	; t = cosh —a 	(6) 

and for the jet domain @I, (k.11,13) 

V2a 	:1 -t21 

w2 = 	loge 	4 	
t2  = cosh a 	(7) 

where 2a is the jet width at infinity downstream. 

The equations (6) and (7) give the complex potentials for both 

jet and stream respectively in terms of the speed ratio VA and 

the direction of flow 0. 

2.2.2, The ecruat hejet 	 aznd _ 

Substituting into (5) for the complex potential the 

intrinsic equation of the free streamline, which is the jet 

boundary, is found to be 

2 1z0 s = - log sin 
57. 	e 	,/ 

where s is measured from the lip of the nozzle where 0 = - a. 

Since along the free streamline 

dm = ds ei°  

the equation of the free streamline can be written (A.13) in 

the form 

gtO 

	

z = ico a a 
 ! 	

- - s 	e
i0 
 cm 2a — au 

, -a 

( - -2 

(8)  

(9)  
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for -a <:0 <0. 	(See fig. 3) 

Also it is shown that the relation between the jet width at 

infinity (a) and at the origin (c) is 

a = 	 (10) 14-I 

on/2 

where I = 2 i  sin 191  cot 0 d0 — 

Lo 

This completes the formal solution of the problem. 

2.2.3. Application of the formal solution 

Since the complex potentials (6) and (7) are not 

functions of z explicitly the actual determination of the 

velocity at any point in the field of flow can be difficult. 

As an example the flow in the stream (region 1) is calculated 

near the duct wall. Equation (A.20) expresses the distance 

up the duct wall from the exit lip C (00c0) as an integral 

of the velocity ratio ql  (= Q1/V1) in the form 

= as 	a 
tank (— log 

e 
 q1) 

1 

This equation has been solved numerically for the cases when 

the inclinations of the duct walls to the x-axis are 

a=-47027/7• The results are plotted in figs. 4 and 4a. 

Fv2ther, simple calculations give the corresponding pressure 

distributions, which are shown in fig. 5. 

2.3. Limitations cf the method 

It is immediately clear that this method can only 

apply at the rear of a duct and downstream of the jet exit. 

Also we can only use the method when the duct walls are straight. 

In practical cases however the duct angle a will be usually 

small, and thus the method can be applied to solve the idealised 

problem of the flow over a considerable portion of the tail of a 



body from which a jet issues. 

The free-streamline technique does require that the 

fixed boundaries be thin to fulfil the condition that the slope 

of the free streamline and the slope of the boundary should be 

continuous at the lip. Also the method cannot solve the problem 

where the outside and inside walls of the duct are not parallel. 

Here again the condition of continuity of slope at the jet exit 

would be violated. 

It would be interesting to consider the problem of 

the duct with a finite trailing edge angle, as mentioned above, 

more fully. It may be possible to represent the mixing region 

between the jet and stream by the space bounded by two free 

streamlines, one leaving the trailing edge parallel to the outer 

wall and the other parallel to the inner wall of the duct. This 

space is in some ways analgous to a deadwater region, and it 

should be possible to find values of the stream function consis-

tent with this hypothesis. 

3, Free streamlines in aeci-symmetric flow 

The existence of constant pressure free surfaces in 

steady axi-symmetric flow with prescribed fixed boundaries has 

been proved by Garabedian„ Ieuy and Schiffer
2 
	Theorems 

proving the uniqueness of these flows have been given by Gilbarg3, 

who has shown in particular that there can be only one axi-

symmetric flow from an orifice with prescribed flux. 

3.1. The stream function 

The steady axi-symmetric irrotational motion of an 

incompressible fluid can be described by a Stokes' stream function 

IT; in a meridian plane. If the x-axis is the axis of symmetry 

and r represents tha radial displacement from this axis, c[ 

satisfies the partial differential equation 
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, , a (1 a .,(n 	a 	, 1 a 	- ax‘.r ax 	ar r ar / 

which, in terms of the complex variables z = x + it and 

z* = x - it taken as independent variables, becomes 

,2 0,2 	. 	-,.. 	:\ 
0 	.: 	 1 	a',' 	a,,_.  

	

+  	,....... 	_ .._... i .... 	0 ,_ 
azaz* 	2(z-z*) .il az 	az .., * 

reouire the stream function for the flow which has 

a given surface of revolution as its constant pressure free 

surface. This surface will intersect the meridian plane 

considered in a curve C (which we call the free streamline) 

upon which the stream function must satisfy the conditions 

i) The stream function has a constant value which can 

be taken zero without loss of generality 

i.e. on C, 
= 0 

ii) the pressure is constant along C 

a Oi 
i.e. 	r 	an 	= 1  

Thus we have a Cauchy initial value problem for the (FLfferential 

equation (12) with initial data given on C by (13) and (14). 

The solution for 	has been given by Darbouxk, in terms of the 

Riemann function R(zsz*stst*) as 

2i - 17 (z9  z*) - 	1 	R(z,z';t:T) 	Ldt( 	(15) 
LG 	

ant 

where the integration is carried out along C for t*  = t and 

nt is the normal to C at the point t. 

R(zsz*;tst*) = 	  F I
f  (z-t)(z*-t*)  

t-t* 	(z-t*)(s*-t) 

- 

11.3.5...(2m-3)1- 	ra  
where F(w) =   ti7 	is the hypergcometric 

221-fl(m02  m-o 

	 (12) 

( 1 3 ) 

(14) 



series p(-i, 	1, w) satisfying the equation 

w(1-,w)F"(w) 	F' (s:) - 	= 0 

Garaledian5  shows that, if the equation of the curve C is 

z = g(z) 

then (15) reduces to 

- 	(1 	-1z (z,z) = Re 2-1 	/(z-g(t))(-z--t)gi(t) 171,4(z-t)(-7"-g(tO d.t 

zo 	
/1 

 (16) 

which is valid for any zo  on C. The equation (16) gives the 

stream function at any point in the flow in terms of the equation 

of the free streamline. 

3.2. The free streamline  

(ie now have to apply this stream function to the 

problem of jet flow. 'larabedian considers a special problem 

where the axis of symetrzy-  is a tangent to the curve C at some 

point, so that the value of the strearA function is zero on the 

axis of symmetry, which is a streamline, as well as on the free 

streamline C. This assumption is obviously not valid in the 

case of idealised jet flow, since there is flaw in the jet at 

infinity downstrean, and therefore, the two streamlines cannot 

intersect or touch. In fact on the axis of s3rmmetry the value 

of the stream function is V2a
2
/2 where V2 is the jet speed at 

infinity, where the jet raclius is a. 

Now on the x-axis for which z 

((z-t)(Z-g(t))  

Oz-g(t))(E-t) 

and hence (16) becomes 

= F(1) -21" 
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2 
V2a 

 
2 	

Z 	 1 
I 2 

2 

( O 
- 	IM ) 	1(x-g(t))(x-t)gl(t)1 dt - 	- 

where zo is the point (0.), ia) and the direction of the free 

streamline at the trailing edge of the duct (x = 0) must be the 

same as the di-rection of the duct wall, i,e. 

tan a = d g(s)-g(z)  
ax 	2i 

To find the equation of the free streamline we have to solve 

(17) with the condition that the free streamline is a continua-

tion of the duct trailing edge (18), and also show that the free 

streamline so found satisfies both the jet flow and the flow in 

the free stream. 

Garabedian suggests that a known form for C can be 

carried over from the two-dimensional case. This is not 

justified in his paper and would appear to be in error since 

the velocity potential 	and the stream function ty in axi- 
symmetric motion do not both satisfy the same equation. For 

this same reason Kirchhoff's method (2.1.1) cannot be applied 

to the axi-symmetric problem since a complex potential w, 

defined by 	+ 	and which satisfies the equations of motion, 

does not exist. Also the Kirchhoff velocity parameter IL 
cannot be defined. 

From these considerations it is seen that a solution 

of the axi-symmetric jet flow problem at the rear of a nacelle 

cannot follow the lines of the corresponding two-dimensional 

problem. The only known complete solution is that for the 

axi-symmetrio equivalent of a Borda mouth-piece found by - 

Southwell and. Vaisey6 using relaxation methods. Having solved 

(17) for the equation of the dividing streamline the stream 

function (16) is then known, and from it the velocity field in 

either jet or stream can be calculated. 

1 ' o 

( 3) 
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AITENDIX 

The /Pree Streamline/ method applied  to the flow at the rear of  

a two-dimnsional duct  

1. 	Consider a jet of incompress4le fluid moving irro- 

tationally in two dimensions through a funnel-shaped duct DC 

given by the equation 

y = c x tan a for x <0 and c positive 	(1) 

and 	y = x tan a c for 

and issuing into a surrounding stream of velocity V1  in the 

posit:'_ve x-direction at x = +a... The issuing jet asymptotes 

to a stream of speed V2  and half width a at x = +00. Due 

to the symmetry of the configuration, only the flow in the upper 

half of the z-plane (z = x iy) will be considered (see fig. 2a). 

The jet and stream are separated by a dividing, or wake, streamline 

CB. 

The total heads H1' and H2  of stream and jet respect-

ively are constant, and thus, if Ql  and Q2are  fluid velocities 

in their respective domains 

(p1-4pQ1) 	(p2+11:44) = H1 	= constant 
	

(3)  

Now the pressure p is continuous across the free streamline, 

i.e. p1  = p2■ 	Thus from (3), along CB 

2 
Q
2
1  - Q2 = const. 

Assuming constant vorticity along CB 

Q1 - Q2 = const. 

and hence from (4) 

Q1 	' Q2 	const. 

Therefore, from (5) and (6), Q
1  and Q2  are constants along CB 

(2 ) 
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and equal to VI  and V2  respectively by consideration of 

their values at x = 

2. The mappings  

The upper half z-plane is mapped on the whole of the 

t-plane so that the stream occupies the upper half, and the 

jet the lower half, of the t-plane•  The corresponding figures 

in the w,-plane (w = 0 + il!;) and the ,L-plane (11= lope  - + i0) ' 

are mapped upon the t-plane•  0 and 	are respectively the 
velocity potential and the stream function, f;,'L can be Nxitten 

	

= log (- V 	• IL')  = - Qe-i° 	 (7) e 	dw 	dz 

where V is the free streamline skin velocity, i.e. Vi  in the 

stream and V2 in the jet. These mappings are shown in fig. 2b. 

At x = 

wt(z) = - V 

or w(z) = - V(z-ia) 

so that y = V(a-y) at O p taking V/ = 0 along the dividing 

streamline which asymptotes to y = a. Along AOB, y = 0, so 

this is the streamline V9a. 

:dapping the semi-infinite strip BCD in the it-plane 

corresponding to the stream, upon the upper half t-plane we have, 

from the Schwarz-Christoffel theorem, using suffix 1 for region 1, 

i.e. the stream, 

d-c").1  

dt
1 
	2 - 
(t -1)2  

or 
i  t1 = cosh t— 

C 1 + D 

where C and D are constants. The points B, C and D are 

taken to correspond to t = + 1, -1,6* respectively. 



—i6— 

Since t = 1 at B where ,c) = Op  D = 0 

and t 	i at C where .1= -ia C = 

Equation (8) ten becomes 

Icr; 
t = cosh a 

Similarly, mapping the lower half w-plane (St 0) upon 

the upper half t-plane we have 

awl 	A 
dt1 - 1-t1 

where 2, is a constant, or 
(1-t1) wI = 	 2 A loge 	 (10) 

if we make the point C (t = - I) correspond to the origin in 

the w-plane■  

Now consider the mapping of the jet (region 2). The 

transformation between the _1:1. and t-planes yields, as in 

equation (9) 
07.2  

t2 = cosh 	a 
V2  

where, in this case, the real part of ..112  is log 7- . 
'2 

Mapping the infinite strip BCAO of the w-plane on to the lower 

halft--plane we have 

aw2 	B 
dt 	1-t 

or 

w2 = - B log2  ( 

 

. 	(12) 

 

On passing through B (t = 1) arg (1-t) changes by '11, 

or VI2  changes by B7c on passing through t = 1. 

(9) 

Hence 
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and, from (12) 
V,a 	,1-t2 , 2 

w2 	log ( 
e 	2 

Thus the complex potentials for each region is known 

(equations (10) and (13)) in terms of V — and 6, except for 

constant A which is determined in the next section. 

3. The equation of the dividing streamline  

The intrinsic equation for a free streamline is, in 

general, 

s = const - g_.(01 
V 

or, if the free streamline is IP= 0 

s = const - ,k)(0)  

Thus, from (11) and (13), along CB where 	= i0 

i 	 a  
) aV2 	(1 - cos 7. —
0 - 

s= const - V 
	

loge  
, 	'g 	 2 

a 	 'TO or 	s = — loge (sin
2  
2a)  

if we take s = 0 at C where 0 = - a. 

Also, from (9), (10) and (14), the intrinsic equation again 
measured from C is 

. s = I.   to 	(.s 
2 a6 a.n 	-7,— V

1 	 'e a 

and since (15) and (16) must represent the same curve 

V
1a A = 
'7C 

The equation of the dividing streamline can be 

obtained from the relation 

dz = dse113  

V 

(13)  

(14)  

(15)  

(16)  

(17)  



fram which, using (15) 
. 	ce 	:rt) sin 2 —cos — 2a 	2a 	;c 	i0 dz = - 	2 7c0 	. 4.72,a  e 	dO 7z 	.  
sin 2a 

a 	70 1.0 = - — cot "- e de a 	2a 

Thus, since z = is when x = 0, 0 = C: the equation of the 

dividing streamline becomes 

a ) 77.07  z = 	- 	ei0 	7  cot 	de 	 (la) 

0-a  
■•■••■••• 

for 	e z5 0. 

In particular equation (18) gives a relation between 

the jet width at the duct exit and at infinity. The imaginary 

part of (18) is 

re 

y = c - a — i I 	sin 0 cot gc0 — de u ; 	 2a 
0 -a 

and, at infinity, y = a and 0 = 0 

7c0 thus 	a = c 	sin 0 cot 7  de 

or 	 ( 1 9 ) 

r/2 

where 	T = 	sin 	cot 0 44 7c 

putting 0 
2a • 
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4. The flow in the stream near the sol:;..a boundary  

As an example, consider the flow on the free-stream 

side of the solid boundary. Here the complex potential is 

	

aV
1 loge 
	 it .L 1 

	

1 	1_ 

	

W1 	_Log 	- 	= cosh 

	

1 	 e 	2 	' t1 	2a 

dco 1 	i 
d z = Qle

-0  

= - Qieia  on CD 

Thus 	dw = -
1
dz eia  = Q

1 
 ds 

or 	ds - 	.-1-- da) 
- - Q 	1  1  1170 \ 

aV 	 72 - cosh 7, ) 
= - 1  a i log  

'xQi 	) 	e 	2 	1 

	

( 	 ) 	V 
Now, in the stream, the real part of 	i.e. log —1  is 

e Ql  

for 

s  = 	 a 
2a 	 l tank 	log eq) dq

1  

Q1 1 	q 0(.4  tere q.  = 

	 (20) 

It will be seen that s = 0 when Ql  = V1  i.e. at C, and that 

s tends to infinity with Q1. A graph of Q1  against s for 

various values of a is given in fig. 4. In the limiting case 

a = 0, equation (20) shows that there is no variation of Qi  as 

s varies. 

Also 

negative, thus 
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FIG. 4. VELOCITY VARIATION WITH DISTANCE FROM NOZZLE EXIT 
ON THE OUTSIDE OF THE IDEALISED TWO DIMENSIONAL DUCT 
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FIG, 4a. ENLARGEMENT OF VELOCITY VARIATION NEAR THE END 

OF THE IDEALISED DUCT [SEE FIG. 4] 
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FIG. 5. PRESSURE DISTRIBUTION ON OUTSIDE OF IDEALISED TWO DIMENSIONAL 

DUCT. 	(a =HALF JET WIDTH AT co) 


