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The free streamline technique is extended to the
problem of two-dimensional jet flow from the rear of a nacelle,
Complex potentials for the jet flow and the flow in the free
stream are found and from these the equation of the wake
streamline and the velocity and pressure distributions are
calculated., Some consideration is also given to the corres-

ponding axi-symmetric problem.
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half width of jet at infinity
half width of nozzle

pressure

fluid speed ratio (Q/V)

fluid speed

skin velocity outside and inside the free streamline
respectively

angle between duct wall and x-axis

direction of f£luid velocity

density

two dimensional velocity potential
axi=-symmetric velocity potential

two dimensionel stream function

Stoked stream function in axi-symmetric motion
complex potential (F + i)

™,

Kirchhoff'svarieble log_ (—v %) .

1« Introduction

The rear of a symetrical two-dimensional duct can be

idealised by a peir of converging thin stroight plates (fige 1).
This paper is concerned with the prollem of a jet issuing from
such an idealised nacelle into a free stream together with the
corresponding axi-symmetric problem, Both the jet and stream
are considered to be inviscid and incompressible fluids,

Solutions to these problems are sought using free

streamline techniques, The dotailed analysis is given In an
appendixy reference to the equations in the appendix are
given in the form (A.2).
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2+ The free=streamline method applied to the flow at the rear
of a two~dimensional duct

2e1¢ Steady irrotational discontimuocus streamline motions

For two-dimensional irrotational motion in a z-plane

(z = x + iy) the complex potential w is given by

(.0=Q’+ iLP .nne:ooseooo(1)

and if we consider a complex w=plane then (1) implies a trans-
formation between the 2z and w planes. Now, if Q dis the
fluid speed at any point z and 0 the direction of the fluid
velocity at that point

w'(z) = - Qe-lo
and in steady motion

P P

1 1 2 8] -1.V2

— 05 = — 4 &

P e 1 P E
where V 4is the fluid speed at some reference point (say ot
infinity) where the pressure is Pge

2o1e1e Kirchhoff's method

The two-dimensional jet issuing from a nozzle leads
to a problem in which the direction of the fluid is fixed along
certain boundaries whereas along others the pressure is
prescribed, Along the latter boundaries the speed is constant
and equel to the 'skin velocity's These boundaries are called
free streamlines. To deal with this and similar problems it
is usual to employ the method originally due to Kirchhoff1 in
which 2 third complex varicble {1 is introduced and defined by

o az
o A loge (_- v A ...0....0...(2)

or

f.’..:: 10&;(%}-}- i0 QI.....!....(B)



2s142¢ The corresponding transformations

If the space occupied by the fluid in the z-plane is
nepped on to a complex '/ -plene it will be seen thet a
boundary for which the fluid speed Q has a constant value is
represented by a portion of the axis of imaginaries, whilst
corresponding to any straight boundery for which is constant
in the z-plane we have a line parallel to the real axis in the
41 ~plane, Thus, the diegrems in the o~ and 4 .-plenes consist,
in generel, of polygons. These polygonal figures are then
mapped on to a complex t-plane so that corresponding points
coincide, This mapping is usually effected by means of the
Schwarz-Christoffel transformation, the differential ecquation
of which is

dz _ c
o (t=t, )“1/"‘(1:—1:2)“2/“. - (t-tn)“n/“

.t..alc(li-)

where % = t_ (real) rorresponds to the corner A, of the
polygon where the direction, keeping the interior of the
polygon on the left, suddenly changes by a, and C dis a

constant,

2¢1e¢3e [The intrinsic equation of the free stresmline

From (3)

dz i
-V = e

and, along a free stresmline, !’ is constont and the skin

velocity is constant. Thus
di= 10

and also

dz = ds ele

where ds 1is en element of arc of the free streanline,



or

s =3
fo mg

Hence the intrinsic equation of the free streamline is

s = const = M

= v
or if the stream function is chosen so that its value is zZero

on the free streamline

s i COI].St - -w?‘(fg)- ...l...l.ll.(5)

where w is expressed as a function of 0 by means of the

w=1t and Liw t trensformations,

2.2, The solution of the problem of the idealised Jjet
flow from a duct

This solution is presented in detail in the appendixe
In the following discussion the suffices, 4 and refer to
the stream and jet respectively.

The jet is teken as issuing from the funnel=-shaped

nozzle, given by the equation
y = + (c=x ten a)

wnere a is the angle between the duct wall and the x-axis,
into a stream of speed V1 in the positive x direction at
infinity downstream., The speed of the jet is V2 at x =&,
where its width is 2a (fig, 2a)e The width of the nozzle
opening is 2ce For x <0 the jet and stream are separated
by a dividing streamline which is a continuation of the duct
wall, and across which the pressure must be contimious, It is
shovm (A¢546) that this is satisfied only if the velocities are
constant, but not necessarily equal on each side of the dividing
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streamline, The dividing streamline is thus a free streamline
as defined previously (secs 2.141).

24241e The complex potentials

The {1, w, and t~plane mappings for this problem are
shown in fig, 2b and using the Schwarz-Christoffel transformation
(4) the appropriate mapping functions are found to be, for the
demain (1) Occupled by the stream (4,9,10,17)

e

1= t) 1:“1
m1 = —;E_ lOg ( cosh a i.tl..l'(s)

end for the jet domain (2} (4.11,13)

V,a /1=t = £
2 ! 2\\ 2
(4\)2 = T 103 { . ) _} ’ t2 = cosh o .0---.-‘(?)

where 2a is the jet width at infinity downstream.

The equations (6) and (7) give the complex potentials for both
Jet and stream respectively in terms of the speed ratio V/Q eand
the direction of flow 0,

242424 The equation of the jet boundary

Substituting into (5) for the complex potential the
intrinsic equation of the free streamline s which is the jet
boundary, is found to be

a. [ . 278
KR loge i\sm -2"5' -uunnn-(s)

where s is measured from the lip of the nozzle where 0 = = a,
Since along the free streamline

dz = ds ele

the equation of the free streamline can be written (4,18) in

the form
e
z = ic -% i ele cot ‘gﬁ de ..nq.o-oooo.(9)
a
t i
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for -a £0 L0, (See fige 3)
Also it is shown that the relation between the jet width at
infinity (a) and at the origin (e) is

a = 1_f._i. I......'I‘I'(1O)
/2
where I =*% r sin 2%@ cot ¢ ag
(e

This completes the formal solution of the problem,

2e2s3e Application of the formal solution

Since the complex potentials (6) and (7) are not
functions of 2z explicitly the actual determination of the
velocity at any point in the field of flow can be difficult.
As an exemple the flow in the stream (region 1) is calculated
near the duct wall, Equation (A.20) expresses the distance
up the duct wall from the exit lip C {C;co) as an integral
of the velocity ratio q, (= @Q ’ /‘v1) in the form
2a !EH '
B8 = == E tanh.(E-logeqi) thq_1 seassisakonal i)

g

This equation has been solved numerically for the cases when

the inclinations of the duct walls to the x-axis are

oy i o o A
=20’ 10 "
Further, simple calculations give the corresponding pressure
distributions, which are shown in fig. 5.

The results are plotted in figs. 4 and La,

2e3+ ILimitations of the method

It is immediately clear that this method can only
apply at the rear of a duct and dovnstream of the jet exit,
Also we can only use the method when the duct walls are straight.
In practical cases however the duct angle @ will be usually
small, and thus the method can be applied to solve the idealised

problem of the flow over a considerable portion of the tail of a



body from which a jet issues,

The free-streamline technique does require that the
fixed boundaries be thin to fulfil the condition that the slope
of the free streamline and the slope of the boundary should be
contimious at the lip, Also the method cannot solve the problem
where the outside end inside walls of the duct are not parallel.
Here again the condition of continuity of slope at the Jjet exit
would be violated,

It would be interesting to consider the problem of
the duct with a finite trailing edge angle » as mentioned above,
more fully. It may be possible to represent the mixing region
between the jet and stream by the space bounded by two free
streamlines, one leaving the trailing edge parallel to the outer
wall and the other parallel to the imner wall of the duct. This
space is in some ways analgous to a deadwater region, and it
should be possible to find values of the stream function consis-
tent with this hypothesis,

3¢ Free streamlines in axi-symmetric flow

The existence of constant pressure free surfaces in
steady axi-symmetric flow with prescribed fixed boundaries has
been proved by Garabedian, Lewy and SC.hifde'2. Theorems
proving the uniqueness of these flows have been given by G:l‘._'l.bar'g,3 s
who has shown in particular that there can be only one axi=

symmetric flow from an orifice with prescribed fluxe

3e1le The stream function

The steady axi-symmetric irrotational motion of an
incompressible fluid can be described by a Stokes! stream function
) in a meridien plane, If the x-axis is the axis of syrme try
and r represents the radial displacement from this axis, qf

safisfies the partial differential equation
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which, in terms of the complex veriables 2z = X + ir and
z¥ = x - ir taken as independent variables, becomes
L i
2 1 lau g}
P + pe " o7 - - Y= 0 oo-ooncutoc-(12)
dzdz 2(z=z") i "

fle require the stream function for the flow which has
a given surface of revolution as its constent pressure free
surfaces This surface will intersect the meridian plane
considered in a curve C (which we call the free streamline)
upon which the stream function must satisfy the conditions

i) The stream function has a constant value which can
be taken zero without loss of generality

i.e. on Cy
5‘1;': 0 caooooo.---¢(13’)

ii) the pressure is constant along C
1 oY

LeCo ™ on = 1 -cc.-.--...o('u-l-)

Tms we have a Cauchy initial value problem for the differential
equation (12) with initial data given on C by (13) and (14).
The solution for Ei: has been given by Darbouxlb, in terms of the

Riemann function R(z,z ,t,t") as

2 29
’}-' (Z,Z*) = %: R(Z,Z*;ti%) g;f [d‘t’ .0.--.----(15)
‘_;'Z""

where the integration is carried out along C for t* =% end
n, is the normal to C at the point te

t
R(Z!Z*;t,t*) _ '»-‘f(z“t*)(t—z*l s (z—-t)(z‘-t*)
t"t* \\‘ (Z_t*) (Z*-'t)
i ~ 2
€ 14305000 (2m=3)
where F(W) = '\?:‘: [ _’ P ds the hypergscmetric

. 2m 2
P,



series F(~%, =%, 1, w) satisfying the equation

w(1=w)F" (w) + P'(w) - %E_E)-

Ga:cabedian5 shows that, if the equation of the curve C is

z = g(z)

then (15) reduces to

l}(z,z) = Re '1;5";[ x/(z-g(t))(z-t)g '(t) F((‘a"t)(z g(tl))

2 \(z—g(t z—‘t)
.....I..II..(16)
which is valid for any 2z, on C. The equation (16) gives the

stream function at any point in the flow in terms of the equation
of the free streamline,.

3e2e The free streamline

Wle now have to apply this stream function to the
problem of jet flow, Gersbedian considers a special problem
where the axis of symetry is a tangent to the curve C at some
point, so that the value of the stream function is zero on the
axis of symmetry, which is a streamline, as well as on the free
streamline C, This assumption is obviously not valid in the
case of idealised jet flow, since there is flow in the jet at
infinity downstream, and therefore, the two streamlines cannot
intersect or touch, In fact on the axis of symmetry the value
of the stream function is V2a2/2 where V
infinity, where the jet radius is a,

> is the jet speed at

Now on the x-axis for which 2z = 2

» (z-t)('z'-gft)) - F(1) =
(z=g(t))(z=t)

and hence (16) becomes




v, 82 g { - -1 %
_f- = - 1_1'.. Im j l:(}:-g('b))(x-t)g'(t)l dt o.lc(1?)

lf_iz
(o)

-

where 2, is the point (o, 4a) and the direction of the free
streamline at the trailing edge of the duct (x = 0) must be the
ssme as the direction of the duct wall, isee.

tan a = %:{LEQ%T;EQ);] ...-o.lol..t(18)

To find the equation of the free stresmline we have to solve
(17) with the condition that the free stresmline is a contimua=-
tion of the duct trailing edge (18), and also show that the free
streamline so found satisfies both the jet flow and the flow in
the free stream,

Garsbedian suggests that a known form for C can be
carried over from the two=dimensional case, This is not
justified in his paper end would appear to be in error since
the velocity potential § and the stream function lf in axi=-
syrmetric motion do not both satisfy the same equation. For
his same reason Kirchhoff's method (2.1 1) cammot be applied
to the axi-symmetric problem since a complex potential w,
defined by § + i% and which setisfies the equations of motion,
does not exist, Also the Kirchhoff velocity parameter £
canmot be defined.

From these considerations it is seen that a solution
of the axi-symmetric jet flow problem at the rear of a nacelle
cammot follow the lines of the corresponding two-dimensional
problem, The only known complete solution is that for the
axi-symmetric equivalent of a Borda mouth=piece found by
Southwell and Vaisey6 using relaxetion methods, Having solved
(17) for the equation of the dividing stresmline the stream
function (16) is then known, and from it the velocity field in

either jet or stream can be calculated.
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APFENDIX

The 'Tree Streamline! method applied to the flow at the rear of
a two-dimensional duct

Te Consider a Jjet of incompressiple fluid moving irro=
tationally in two dimensions through a funnel=-shaped duct IC
given by the equation

y=c=xtana for x €0 and c positive (1)

and \

x tan a = ¢ for x,g;O o-.ooaooaao-(z)

and issuing into a surrounding stream of velocity V ’ in the
positive x-direction at x = + ove The issuing jet asymptotes
to a stream of speed V2 and half width a at x = +00. Tue
to the symmetry of the configuretion, only the flow in the uvper
helf of the z=plane (z = x + iy) will be considered (see fig. 2a),
The jet and stream are separated by a dividing, or weke, streamline
CBe

The total heads H1, and. H2 of stream and jet respect=
ively are constant, end thus, if Q1 and Q2 are fluid velocities
in their respective domains

(p1+%PQ?) - (P2+%PQ§) = H1 - Hé = constant cv-ouo.n(B)

Now the pressure p is continuous across the free streamline,
i.es Py = Pye Thus from (3), along CB

Q? = Qg = const, oooa-ao.-..o(#)

Assuming constant vorticity along CB

Q1 - Qz = const. .-t-ioc-oouo(5)

and hence from (L4)

Q1 + QZ = const, -ttoo'anocl-{6)

Therefore, from (5) and (6), Q, and Q, are constants along Ch
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and equal to V1 and Vé respectively by considerstion of

their values at x = +72c

2. The mappings

The upper half z=plane is mapped on the whole of the
t-plane so that the stream occupies the upper half, and the
Jjet the lower half, of the t-plane. The corresponding figures
in the w-plane (0 = # + if}) and the l-plane ({1= log, %:+ 10)
are mapped upon the t-plane, @ and Y are respectively the
velocity potential and the stream function, J{! can be written

_f'}_ = loge [— V%) ; '?"i‘;}"* = - Qe-ie .calu..utl.l(?)

where V is the free streamline skin velocity, i.c. V1 in the
stream and Vé in the jet. These mappings are shovn in fig. 2b,
At x = + o0
'(z)

or w(z)

-V

- V(z=ia)

so that l; = V(a=y) atoc, toking q& = 0 along the dividing
streamline which asymptotes to y = a. Along AOB, y = O, so
this is the streamline *P’: V.

Mapping the semi-infinite strip BCD in the £ L-plane
corresponding to the stream, upon the upper half t-plane we have,
from the Schwarz-Christoffel theorem, using suffix 1 for region 1,
i.ece the stream,

dj% B 8]

- o
¥ (t2)2
or
o 4 \)
t1 = Cos ‘T y oooncn-ouool(a)

where C and D are constants, The points B, C and D are
taken to correspond to t =+ 1, -1, respectively,
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Since t =1 at B where Ll= C,b, D=0
and t=-1 atC vwherefi=z-iz C = %
Equation (8) then becomes
T:.(}‘.,I
t,’ = ‘cosh o-tu-aoo.c-.(g)

Similerly, mapping the lower half w-plane ( § € 0) upon
the upper half t-plane we have

Wy oa
CAE =

where A 1is a constant, or
(1-4,)

(.01 = -Aloge D ..l.l..l.l'.(1o)

if we make the point C (4t = - 1) correspond to the origin in
the w~plane,

Now consider the mapping of the jet (region 2), The
transformation between the <) and t-plenes yields, as in

equation (9)
‘J'CPL-E
a

sesssseisnesi )

v
where, in this case, the real part of 4’.1:.2 is log Q_2 .
2

'b2 = cosh

Mapping the infinite strip BCAO of the w-plane on to the lower
half t-plane we have

b S 3
dat T 1=t
or
; 1=t
0.)2 = =B log2 ('2—) II.II.‘...I'(12)

On passing through B (t = 1) arg (1=t) chenges by =,
or ff-‘g changes by Bn on passing through t = 1.

Br =—v2a



and, from (12)

Ve A=t
S [ —2)
mz = % 10ge l\ 2’;‘ ..cootonol.o(13)

Thus the camplex potentials for each region is knowm
(equations (10) and (13)) in terms of %; and 6, except for a
constant A which is determined in the next section.

3¢ The equation of the dividing streamline

The intrinsic equation for a free streamline is, in

general,

8 = const-m)-

v

or, if the free streamline is /=0

s = const -%l -toousu--ao.(‘“{-)
Thus, from (11) and (13), along CB where L. = i0
aV2 1 = cos i
s:const—l-.—-log —_—
V2 ‘JT. (3] 2
-
or B = = "% loge LS:LI’]? % --u-a.nt¢coc(15)

if we take s =0 at C where 0 = = g,

Also, from (9), (10) and (14), the intrinsic equation again
measured from C is

A : 6 1
8 = ?1 loge (Slnz '?ét'c'z") tuo.ooc-otc-(‘]6)
and since (15) and (16) must represent the same curve
V,}a
A="'"‘"’R_l— l...!.!i!l.l(17)

The equation of the dividing streamline can be
obtained from the relation

dz = dseie



-18=

2 sm%cos gg - 16
dg = = ¥ 7 50 s 338 @
2a
cuBoot B

a 2a

Thus, since z = ic when x=0, 6 =- 0, the equation of the
dividing streamline becumes
(0
i io

2 = I -% e cot % de ...l..!..ll.(18)

9 -q

for -a,;g 6;50.

In particuler equation (18) gives a relation between
the jet width at the duct exit and at infinity., The imaginery
part of (18) is

10
z0

5o do

L§
|
& :
y=c== 1 sin0 cot
L!—a

and, at infinity, y = a and g =0

0
1.
thus a:c--E*'J sinﬁco‘h-@de
a 2a
g
c
or a8 = m ooo-to..-nc.(ﬂg)

where I=

sing%qcotﬁdﬁ

Ao

5

O

putting gf:-% .
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4e The flow in the stream near the solid boundary

As an example, consider the flow on the free-stream
side of the solid boundary., Here the complex potential is

av, 1-t, nil
0, &= = Zi.:::ge (-—-——): t, = cosh

1 T 2 1 2a
Also dm,l i
—_— = = Qe
Z 1
= =- Q,Iela on CD
Thus dw, = - Q,dz . Q, ds
1
or ds = = — dw
Q‘I 1
# L]
aV1 [‘I = cosh Q;:E [:
£ —'?Ed‘.‘log o :

Now, in the stream, the real part of dis Lo loge Eg-l is
negative, thus C

g
P
al3

logeq) dq sscesssnasss(20)

Q
for 1<L£qgou where q = e &
1
It will be seen that s = 0 when Q1 = V1 i.es at C, and that
s tends to infinity with Q 4+ A graph of Q,] against s for
various velues of a is given in fig. 4. In the limiting case
a = 0, equation (20) shows that there is no veriation of Q es

S varies,
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