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This report presents an approximate solution to the
problem associated with the root constraint in a swept wing.

The structure considered is a uniform rectangular
single cell box having closely spaced rigid ribs, Approxi=-
nate allowence is made far the effect of boom area at the spar-
skin Jjoints.

The stress distribution in the skin is represented
by a polynomial in the chordwise ordinate, oblique coordinate
notation being used, The final equations are derived by use
of the theory of minimum strain energy.

Corparison with experimental results has indicated
that the theory gives a satisfactory estimation of the con=
straint effects, and especially the influence of the spar
booms,

Consideration of the validity of the boom approxi-
nation shows it to be justified in two particular instances
having relatively large boom area.
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SYIIBOLS
A Spar boom area
&ij latrix inversions in definition of strains
B TW + T‘;
Ci(i—.-.O—B) Coefficients in expressions for stress resultants
D B ™ Tv:'
E Youngs Modulus
Fij Coefficients in strain eneigy equation
G Shear lodulus
Kij Coefficients of equations for 02 and C3
L‘lz Oblique couple components
H,‘J
Oxy System of cblique axes
S Shear stress resultent in skin
S, Sv'; Shear flows in reer and front spar webs
respectively
T1, '1‘2 Direct stress resultants in skin
T, T,;r Ioads in rear and front spar booms respectively
U Strain energy
Z Normal shear force
e Rib pitch parallel to x axis
2 Stringer pitch parallel to y axis
b Half depth of box
e Half width of box

e e Direct and shear strains in skin
l Span of box parallel to x axis

t t‘; Thickness of rear and front spar webs respectively
a Included angle between axes Ox and Oy
B A A‘H

c

EA A

Y J

C
A 1+ 5

w 1+ 33



1e Introduction

The root constraint problem of a swept box is complex,
Based on the oblique coordinate theory of Hemp (ref. 1), the
solution presented is an approximate one for the case of o
uniform rectangular swept box having closely spaced rigid ribs,.

The type of sclution, which is a strain energy
analysis, has been used by Hemp (ref., 2) for a box having zero
boam area, In this report an approximate extension to cover
the case of discrete booms is given,

2¢ Description of Box

The box is shown in Fig, 1. The notation used is
that of Refs 1o Skin reinforcement is by stringers and ribs
which are both assumed to be distributed and contribute to the
skin thickness. The spar webs are capeble of carrying only
shear loads, and are of unequal thickness, The spar booms
are of equal area, The root end is built in.

3+ Theory = Initial Assumptions

It is assumed that the skin spanwise direct stress
resultant, T1, can be expressed as a polynomial in the

chordwise ordinate, ys Terms containing powers of y greater
than two are considered to be negligible., The skin chordwise
direct stress resultant, T,y 1is assumed to be zero, shear

equilibrium being maintained by the ribs,.

Stress Distribution

T

1 =0 (x) +20,(x) L+ 303(,() %!2 )
oo--o-oa(1)

T2=O

b, SO

where C,(x), C,(x) and Cj(x) are arbitrary functions of x.

6T1 BIS)
Since for equilibrium 3= TE¥ ~5§ = 0
i dC 2 dC dc
i ( e e T
S"’ c kco+ c dx+02 dx+03 dx ...II.......(z)

where CO is a function of x.
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Equilibrium at the spar boom joints requires $-

aTW

sw=-(s)y=c+é—-£

, or,

5} = (S)y=-c+_?£
o*s 8§ =-?-Tlv£+c C +GC1+6C2+GC_,,\\
W 3dx k‘o d.x “dx " 4%

ssnsvesiniswil)

I

BT_‘T:r ; dc,i 602 605
B! pemit o (0 = + -
W 90X 0 dx " dx a x

Overall equilibrium with the applied loading at any
given sections requires $=-

|¥C
s = ) o
L, = 2bec (sW sw) 2b } S dy
i -C
and
~C
o '
M, = 2 (TW+TW) + 2b } T, dy
L =g

Writing 3= B=1T +T!

.l‘...l"t..l(h‘)

D - T!
W W

and substituting from Equations (1) = (3) &=

F4 dac
2 2 2 dD
L‘1 = 8be (CO + 3' “ﬁ + 2bc "a"x" ..-o-oooooco(5)
H1 = Zb iB + 2¢ (01 o+ 03)3 ....o--oo-oa(é)
Equations (5) and (6) yields-
6 ow ot ik B 0 2)
o - 2 34 % e * dx
8bc :‘ ..........-.(7)
I’-I !
§ e e
01 ~ lUbc 03 2¢ _J

Using Equation (7) to eliminate C,, C, in Equations (1)=(3)s-

1



e . - N X 3
T e ot W 5+ 0 (3'0 "') )
L Fa 25 a0 4 Y dC 1
. J..@_x(.Z__l;iE £ nlelas o s | |
» = cTLhax " e (o 2d.x>+c(3_ 2) x+y{:- ;'dxl\
h c ., c s :
ook L By Bl
w ~ 8be L dx l.tb+3 d x
4
G ool 1l @ 5.3 D ‘z
w  8ec 4 dx " Lb 3 4x Sl
....I.l.-..l(a)
ﬁ'.’!'.1
since ﬂ* = De
The spar boom loadi= T = Ei(e )
W xx’y=c
T! = BA(e_ )
W xx’ y==c

and since e = 4,,T, + S (see Ref. 1)i-

& S RN T

»

%; = Ay E(T,1 )y=c + (2, )yz_cJ + hyg [(S)y:c - (S)yz_ciz
D ( . :
o= Ay ’L(T1)y=o - (T, )y=-cj + by {(s)y=c - (s)yz_cj
EA A, e
Writing f= —— 2
; oo.--oo-uaco(9)
EA A
Y= —5-11 ﬂ

and. substituting from Equation (8)3-

2 2 ?_B yL Al 22 , dc By
xe 4B _ pptns S s NP, 5. SN < "SR W</ B e

ol (146) B=gg -5+ T - 2o (8 3)@:: A.BCCB‘{
D = Aﬁcc2+\r.c o D

casonsausssuiiG)

Equation (10) reveals the coupling between B and D
which is a function of sweep (ﬁ13) and boom area (A)e Since

the presence of this coupling term has the effect of doubling
the order of the final equations, and as y will be small for
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small boom area, the following assumption will be made in
calculating the strein energys-
2
Yz' ——dg = 0 .'...lll.ll.(11)
dx

The galidity of Equation (11) when ¥ is not small is discussed
in Bb.

AL, L 2 aC,  L4BcC )
P, 1 . 2vo . 2 5
sy Bepee pe i (PO 5Ty

, 2 ac
. xez (€ | LA - -
D=k pe Gy + F (5 1)* N Tx

k oooao-(12)
{
!
\
where A = (1 + ) J

-

Substitution from Equation (11) into Equation (8)
givesg=-

M yL ac 2 N
S 1.2y e 136-1) 2 {3y _w \
= mon*Bon to G e gt M’f%}
B
L 2 ac 4 2 ac. |
o _Zy (g I i ks - g_y_g 3
8 = 8bc ~ Lbon T 3+£ 3 pOe x+‘j?x 2 oJe Tx
b C_f { c;] (15)
w  Gbe bbb 3*T*dx f
P I AT | \
ST 8c Yo T3 W Fx \
where o = (38 + 1) ;"’

Strain Energy

The strain energy in the skins is given bys=

b e nl ";‘0
- i % 1 _ 2 2
Ug=2 | (£ Tyeeyy + £ Se, )axady = J | (8 T2, T sehs 8% any
Vo =c 4ot =g
since e_ =A,,T, + A,, S (see Ref, 1),
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The strain energy in the spar websg=

il W 7.2 2
S st el @
- i} ‘{_w oo -k 5. i\
L ! 2lt'exz+t"exz)dx_t}}(t+t_') i
t] o) & W w Ui o - w w r’z
The strain energy in the spar booms$=-
(1 \] (¥
- 1 ' R
Uy = 2 21\ Tw.(em)yzc + Tw(emc)yrcj dx = = 5 (Tw + TF ) dx
;o g Uo

The strain energy in the ribs is zero as the ribs are considered
to be rigid.

Since, by the Principle of Minimum Strain Energy, a
small arbitrary increase in the stress resultants and internal
locds must result in zero change of strain energy for given
applied loads,

&U = S(US + UW + UB) =0y
Fi L _
= 1 % 1 A A ;‘
= | i 24,,T,8T, + 2A,]3(T1as + SEST1) + 21»1.33 S8S ¢ dxedy
o y=c b J '\
: : {
; 2b Swasw S&ﬁs‘;\ 4 2 ;
— =t !
+ a T + oy dx + | = (TWE‘STW + TWSTW)GJ:
O . LI ’.JO F

"..........(1‘\,}'}7)

From Equation (13)3-

ac fo2
2y o (3p=1) 2) W
57, = <L &0, - yo S a(dx +{i-V2— 2({ &0,

2 /dc 2 dc
2 2 o) 5%
8 =|%+p - )0.5 ——}»f —-L!y.as( );
(_3 02 (d x {;?\. ‘32.,{ BB _2 -""(15)
ac.,\ ’
C ol 2\
6Sw_ 3 'a(dx)

1}

68! = E.!f‘ﬂ a 6 (_.....2_)
W 3 d x



And from Equation (12):-

8B = (3&—1)5’( )Jiﬁacj }
o { """""{5(15)
8D = LkfcubC, +h‘6076!\di) I e

e

The eveluation of the individual terms of Equation (14) is
given in Appendix 1, The resulting form of the equation isg-

{ dc a4 )
8U = 0 = j {F21602 + F225 (a—}%) + F 6(.'} +F, .0 ( \}/ dx. (16)
X/
o J

31773732
dc dil
where F2 1 is a function of 02 s d_%’ and Th
ac, a4l
1 ! ! . .. M ————
Foo T x O3 Mg Iy
ac,
t 1 1 |
FB'I 3 5 03, 1, L1
ac, dc, di
P ! ! ] 1 G —2. _.j. 1 L

32
Integrating Equation (16) by partss-

8U f 1

l . d(Fzz)\ ) ; a(r 2)
= L22602+F3,\60] + "115121- = f 8C,+ ipm- -75:-3 603 }
o Yol ’ .

and tip condition gives§ - (C ) 1 = (03):c=1 =0

therefore (502)]{:1 = (603)3::1 =0

but otherwise arbitrary )
-...I.-..l.-(17

L, Results

Rewriting Equation (17) to give equations for C

i 2
3.

and C
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2
a%c ac aL
¢ G5 3 1 .
e o oCotlly s gy =+, 200 d.x g T }J
a%c ac

—t az |
2 s Tx T Y K & 5
]

and boundary conditionsg- \ (18)
(%o 'J
\a <) o +K' (03) _+K2'1F(I-.-I )ho 25(z) 0+Ix26(L1)x___0£
140, |

f i =

! x, - +K‘2(C )xzo o K35 (Z)x=o

|
o

(Cx)ry = €l

where

i

A_.c 2 5
—251(15ﬁ2+103+3)+%‘°—gk%; l—‘; iy 5ve(36-1)

P - B T '/
LA l;.A.
T 5 ___.1
= - 12 (6pn1) K}, = —ap (156°+6641)
L I §
Lbhe 2L Lb\c
EP M L - N
8Ge '\tw ‘;)
A A
e (b)Y
9 16Ge ktw tw, 027\
= A C{‘.mz "'2"@‘+l\ +1I.A‘j =
53° (n2 ") .
i\
11
-7 B (6p¢1)
; 2
by 5 (66+1) . Ben¥
2 2

30b\ 2b\
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(1+8) ® (1+38)

Equation (18) enables the values of C, and 03 to
be found and hence completes the solution,

5« Comments

Validity of Approximation

In order to derive Equation (18) from the initial
assumption of Equation (1) it has been found necessary to
intraguce the further assurption of Equation (11) that

d

1'2 dx2 is zoro, It will be seen that this is correct when ¥

is zero, that is when the box is unswept or when there are no
spar boonse The values of the Ki,j for these two special
cases are given in /ppendix 2,

2

For 72 d__;; to be negligible when there is sweep and
dx 2
relatively large boom aree, 2_35 must be small compared to

ax
B as & itself will not necessarily te small, The degree
to which this is sufficiently true is not immediately apparent.
Accordingly two cases (ref. 3) have been analysed where y is
relatively large.

The first of these two cases is a )4.50 swept box
having a boom area such thot -i‘? = 0,34 Considering the case
of loading by a normal shear force applied at the tip, with
LJI = 0, and assuming C, = O, it was found from the theory

3
thatg=
:{202 d2B
« =5 = 0,04 A\B, at the root (x=0),
2 122

In this case ¥ = 0,75,
A 60° swept wing was the subject of the second

example, and here, with 54/ct = 0,266 it was found, for
similar loading thats=

X . S22 0,006 A8, at the root.
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where ¥y = 0,60,

These examples thus indicate that Equation (11) also
holds for relatively large ¥, and in fact good agreement with
experimentally derived results was obtained in these cases
(refe 3)

Unswept Case

Appendix 2 82 shows that in the unswept case, all

coupling terms between C, and 05 of Huation (18) are zero.

The equation for 02 is thus explicit and gives torsion cor-

straint plus the effect of unequal webs., The equation for 05

gives shear lag effect,
Thus the method is of value in considering the effect

of the distribution of end load carrying capacity in unswept
boxes,
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APPENDIX 1

Evaluation of the individual components of Equation (14)

(e . 2 3 e
8¢ (3= 1) ) 2"[ C ¢ 2
;=0

2
(z2)

"‘l

'l

- g YL 2 s X 532
(35 1){ 1)0 B(d x)» o {M + -— (‘1- -?C/J ud 37\ (35-1);’\':: -1.5:‘(-3-.)(_'603
2
+2c(‘5 ‘x )03603

Ale]
YL\ ac

~-c

e
‘- - ac veL, (36-1) sdc
2 fw 1 3 1 2
! 80Ty Ay = = Sy 80pthe (3_1"5')dx502"‘ 12 BA {dx)
f;-c L
3 ao £ s SL ’ 2, ac
2 2 2 2 1 {w 2 /1 w\ T2
_—.9%(919 1)3-—3(6(,—2;,-’“‘-?6(;-1) 603+2c r,@+ﬁ_ _3___)_}(503
LGUJ dC‘ - dC ‘de
1 2% 312, 28 . Y\ V2 .12
rsasay_-mba( x] * & (ﬁ+3 +5,:de6\_dx)
U =c
dc 2 Ao
B CRE A 0 L (TN B O L DL L
Zb\ 35 dx 3}‘.2 5 frd = ax;"*
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APPENDIX 2

Special Cases

Boom area ZEro,

ite. w=?\-=1

ﬁ:Y:O
s S T B .
5 teait, Tt 22 =" "¢
L . .
5 32 )
A
8y .
5 32 3
34 A
b 5
- Lbe Kélp'— Lbe
~ .{“.\.
IS BN . SO W A N B
& (T =) 26 = oo " Ygg? | b tv:,)
“24’15}0 " _-h
=2 BB c
A
)]
2kb
Zero Sweep
iece -Y=£113=0
Ao : 2 LA, w
2 bw” (1_ . 1 ~ 11
=—§L (156°4108+3) + ¢°g T 1-,_‘;) Ko =" 7%
_K32=K53=K52= o =Ky = O
AW -
I G W S £ T
e (\tw t\!‘r/} K26 8be 16Gc:2 :"_tw 'cv'”-
20 . 1) 11
= Aol =2 - =4+ =) K =-T(6ﬁ+1)
33(6L3?&§ 5\ 7/. 33 5he
g F+1
5 5 bkl
2
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FIGURE 1. SWEPT BOX



