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SIM=  

This report presents an approximate solution to the 
problem associated with the root constraint in a swept wing. 

The structure considered is a uniform rectangular 
single cell box having closely spaced rigid ribs. Approxi-
mate allouance is made for the effect of boom area at the spar-
skin joints. 

The stress distribution in the skin is represented 
by a polynomial in the chordwise ordinate, oblique coordinate 
notation being used. The final equations are derived by use 
of the theory of minimum strain energy. 

Comparison with experimental results has indicated 
that the theory gives a satisfactory estimation of the con-
straint effects, and especially the influence of the spar 
booms. 

Consideration of the validity of the boom approxi-
mation shows it to be justified in two particular instances 
having relatively large boom area. 
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SY:00LS  

A 	Spar boom area 

A.. 	liatrix inversions in definition of strains 

:B 	T + T 
lT 	1,7 

C.(i=0-3) Coefficients in expressions for stress resultants 

Tw 
TI 

E 	Youngs Modulus 

F.. 	Coefficients in strain eneifff equation 

Shear Modulus 

K.. 	Coefficients of equations for C2  and C3  

L1 Oblique couple components 
( U1 
 

Oxy 	System of oblique axes 

S Shear stress resultant in skin 

S 1  SI 	Shear flows in rear and front spar webs 
w w respectively 

T1, T2 	Direct stress resultants in skin 

T
w/ 

TI 	Loads in rear and front spar booms respectively 

U Strain energy 

Z 	 Normal shear force 

aR 	Rib pitch parallel to x axis 

a 	Stringer pitch parallel to y axis 

b 	Half depth of box 

Half width of box 

e e 	Direct and shear strains in akin 
xx xy 

Span of box parallel to x axis 

t, tI 	Thickness of rear and front spar webs respectively 

a 	included angle between axes Ox and Oy 

EA All 

Ell A 

co 	-1+30 
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1. Introduction 

The root constraint problem of a swept box is complex. 
Based on the oblique coordinate theory of Hemp (ref. 1), the 
solution presented is an approximate one for the case of c 
unif.tt rectangular swept box having closely spaced rigid. ribs. 

The type of solution, which is a strain energy 
analysis, has been used by Hemp (ref. 2) for a box having zero 
boom area. In this report an approximate extension to cover 
the case of discrete booms is given. 

2. Description of Box  

The box is shown in Fig. 1. The notation used is 
that of Ref. 1. Skin reinforcement is by stringers and ribs 
which are both assumed to be distributed and contribute to the 
skin thickness. The spar webs are capable of carrying only 
shear loads, and are of unequal thickness. The spar booms 
are of equal area. The root end is built in. 

3. Theory - Initial _os.umptions  

It is assumed that the skin spanwise direct stress 
resultant T1 , can be expressed as a polynomial in the 

chorawise ordinate, y. Terms containing powers of y greater 
than two are considered to be negligible. The skin chordwise 
direct stress resultant, T2, is assumed to be zero, shear 

equilibrium being maintained by the ribs. 

Stress Distribution  

T1 = C1(x) + 2C2  (x) 	+ 303
(x) 

T2 = 0 

where C1  (x)" C2  (x) and C3
(x) are arbitrary functions of x. 

1 + 3 S Since for equilibrium ;- a
3T
x a — = 0 

ac 
d 

where Co is a function of x. 

S = C (C + 	dC1  + 	d2+ k‘o,  o 	cdx 	c2 dx (2) 



)c 

L1 	= 	2bc (Sw - 	- 2b 	S 

-c 
and 

pC 

111 	= 	2b (Tw + Tv') + 2b 

-c 

Writing 	B = Tw + 1'; 

D=T 	- T1 
w 	w 

dy • 

Ti  dy 

(4) 
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Equilibrium at the spar boom joints requires :- 

aT 
s = (s) 	+ %v. 	y=c 	a x 

aT' 
st tit  
 (S)

y=-c 4.  a x 

aT 	dal 	ac2  ac3  
..• s - 	c + 	+ 	+ lv ax 	o dx dx dx 

(3) 

	

aT1 	dC1 	dC2  dC S  = 	c 	+ 
TT 	x 	o dx dx dx 

Overall equilibrium with the applied loading at any 
given sections requires 1- 

and substituting fran Equations (1) - (3) :- 

2 dC2 	zb  
L
1 
 = Eibc2  Co -3- dx 	c dx 

	

dD 
	 (5) 

= 2b [B + 2c (C
1 
 + C3

) 
	 (6) 

Equations (5) and (6) yield:- 

0  = L1 _ a dC2 	•I dD 
8bc2 	 40 	

2 
o 	 3' d x - 	' dx  

1.1
1  C - ---- - C - — 1 = 4bc 	3 2c 	 j 

(7) 

Using Equation (7) to eliminate Co, C1  in Equations (1)-(3):- 



L
i 	1 dD 	/ Z 	1 dB \ 	f2 - 

	dC 
S = - 

).___I  i  
+ 1;  - 74-17 - + c - Y-- ± Y  (.:1  - "2 

labc  rx  c  ( 7. 73,.)  3  
2) a x I d x c .. 	 c 	1\. 

/ 	2\ dC 

TI 

it 
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- 
	

2 

i  c  -1 1 B 
	

onYr
3 + - 4ac - 2c +  "  2.  

L1 	1 dD Z 	c dC2 
au = 8bc /74. dx 4b 3 dx 

LI 	1 dD Zc dC2 S I = - + -  w 	8b c 	dx 4b 3 dx 

(8) 

since d x = Z. 

The spar boom load:- Tw  EA(exx)y_c  

T= EA(e ) 
1 	 70C y=-c 

and since exx = A1 1 T1  + 1.13S (see Ref. 1):- 

, 

1 	 1 

 

B
(T 

Y=c 
 (Ti)y,0 

1 EA  + (S) y=c 	y=-c 

ET= A f 	_ - (T1)
y=-c 

+ 	f(S)y=0  (S) 
y-c 	 y=-4 

EA A
li Writing p = 

y  = 

and substituting from Equation (8):- 

L... 2 
a
2

E21 _0+13) B  = yL1 	/31'11 4.  y2
c

2 
dZ 	0  21n  1 ') dC2 

2 

	

	 b 2 b 	4b 	dx r"-Ye 3 d x 48cC3 dx 

dB 	„  D = 	 yc Pc C2  + y,, c 	- 2b
Z  

	 (10) 

Equation (10) reveals the coupling between 
which is a function of sweep (A13) and boom area (A). 

the presence of this coupling tern has the effect of 
the order of the final equations, and 	y will be 

B and D 
Since 

doubling 
small for 

( 9) 



-7- 

small boom area, the following assumption will be rude in 
calculating the strain energy:- 

2 d2B _ 0 Y •  
dx 

The validity of Equation (11) when y is not small is discussed 
in §5. 

i52:1  yl„.1  2_02 , 
Thus:- B = 2177 3x (30-1) 

dC 	46cC 2 
x  
	(12) 

2 dC 
D = 1+. 	C + 	{ 13- - 2 2 b X 	 x 

where 7. = (1 + g) 

Substitution from Equation (11) into Equation (8) 
gives:- 

(30-1) 	
dC 
 2 T 	+ 	+ 	C -yc 1 - 4bc.N. 	c 	2 	31, 	d x c

2 	X, 3 I 
I 

2 	ac, 	r 	2 ) 	ac 
S 	

L

ai  c 4t 	A. + (25 + - Y-2 	d x ÷'.1-(2-X. Y7 'Y.  a c 	
f 	(13) 

\i>  
= 
	dO2 

Syr - 	 24.b 
L1 	Z 	

c " dx  

S' = w 	8bc 4b - 3 • " d x 

where co = (3/3 + 1) 

Strain Energy 

The strain energy in the skins is given by:- 

I 	
Z 	c 	

dC
2 

rl t 
U5 - - 2 	(1- T1 . e3pc + 	 dz )dx• ,  = I 	2 	 xy 

c -c 
13 1 

T2+2.t .T1 S+A33  S
2
)dx41.7 

-  

since exy  = A
13
T
1 
+ A

33 
S (see Ref. 1). 



= 8(us  uw  UB) = 0 

P  ), 2A
11

T18T1  + 2A13(Ti8S + &a1) + 21,33  S8S dx. 

t i c u-c ( 

91, 	S 8S 	S'5St WW 16.1 	 dx + 	(T 8T + T'8T0dx 

	

VT 	
I 	W VT 	VT VT 
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The strain energy in the spar webss- 

	

tSw 	St 	 'S
2 	

S'
2 

U = 2b 7 	exz  + 	.exz  UM. = 
b 	

VT4* 

	

w 	 ( 	W 

(IX  
lj 0 	W 	 0 	 / 

The strain energy in the spar booms:- 

1 
• 	f , 	 (4 

U = 2 	
1 

Tirw,(exx)y=c + T;(exx)y=-'c dx = Fall- 1 
(T2 1. T'2) dx w w 

I. i 0 	 I 	Co 

The strain energy in the ribs is zero as the ribs are considered 
to be rigid. 

Since, by the Principle of Minimum Strain Energy, a 
small arbitrary increase in the stress resultants and internal 
loLds must result in zero change of strain energy for given 
applied loads. 

."-/ 0 

	(14) 
From Equation (15):- 

8T1  = a1  802 Yc  5X - 	(13-1) 5 \d x (ac2) 2Y1  - 	c3 

	

c 	2 
te 

2 	'dC \ f 	2 	lac 12 
8S =

3 
+ - Y--\ c.S (-2-) + ) 92  - 	y 8 t —1  02 ) 	dx , : X 	2r 	dx/' , 	c  

Ss - C14)  . 8 
ac2; 

tiT
(

----'  - 3 d xf 

dC 

Os T 	
2 ) P_V-0  ' - - • ( d V - 	3 	x 

(15) 



= 1222  802  +F 8C 32 3 
0 j0 
1 
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And from Equation (12):- 

0  2 dC2) 4fic 8B = 	(30-1) 8 (----1+ 	80 37% 	 d xi 	3 

2 	dC 
tbec  6D = 40c.802  + 	Y  5 d x) 

 

	(15) 
contd. 

 

The evaluation of the individual terms of Equation (14) is 
given in Appendix 1. The resulting form of the equation is:- 

dep 	 dC,vi 
8U = 0 = I (F21  802  + F22  8 ( d x =) + F31  SC3 +F32  8 (---L 	dx. (16) 0  1..  	d. x, 

de 	ai 
—2  and j where F21 is a function of 021 d x' -- d x 

F22 

F
31 

F 	' 32  

Integrating Equation (16) by 

SU= 0 = 

del C 11 	L 
a x" 3' •' 	x' I 

doC9  

d )(! C3' 111' L1 

aC dC all 2 	1 
C2' 2' a -le a x/ a x/ L1 

tit 

a.(F ,) 	a(F ) 

tF21- 	802+ S F31- 	?dx 

and tip condition gives: - (02)x.1  = (C3)x.1  = 0 

therefore (8e2)x_1  = (803)x=1  = 0 

but otherwise arbitrary 

Results  

Rewriting Equation (17) to give equations for C2  
and C3:- 



(6(3+1) K I32 —12- - 	15-N. 

A 

(15(3+60+1) 

w 
_ 

K21+ - 	ilbXc - 	3I-13w  
24 - OD"Kc 

-10- 

	

d
2

C2 	
dC IL

1 
K21 	2 +K22C2+K23  a-x -+1"

2 
Z-n

25 dx 
+1-

26 
 

 .d. x 
dx 

a.
2

C 	 dC2 , az K 	--- +K_ C +K 	= 
	.t.',. 

	

31 ax2 )3 3 32 d x - 	35 ax 

and boundary conditions:- 

	

cIC2 	I  
K

21 	x 	
+K2 7  (C3  ) x=0....+q4(11.1  )x=o+K— (Z ) x=o+i:26(L1 )x=o 

• x=0 	-/ 
rte; 

K_ +-K (C ) 	= 	K 	(z) 
d x 	-32 2 xr=o 	35 	x=0 x=0 

(c2)x=1 = (03)x=1 = 

where 

L-33c 	\ bw2 1 	-12\  

	

K - 	(150 +100+3)+ TT; 	+ t , 	-13y (A0 1) 21 	5 	 w 

14,t11w K22 = 

	

K23  = 	 p2  t 	
8fi„ 8A 

	

23 - 	5x \ 	+rs-H+ii 	K 	1 4. 
32 = 	

6/3+1 

w 	11 	1 
K = - — i1 - 	.1 

25 	8o 	%,tv,T. 	tle; i 

A w 
_a_ 	w 	/1 + 1 i  

K26 = Bloc 	, 	2 - t 	t 1  i 16C-c k., w 	w )-, 

• 2 	2w

' 	

1) 
K

31 
= Az 

' 

,c ( —7  - 7
+ 7i \ 5x. 	i 

K - 	" (6/3+1) 
33 	57,-c 

A33(6P+1) 	1111
2  

K35  
30b.N.2 	+ 

2bX2 

A13yw 

8bc 1. 
p2,0  4113" 
 1  

X
2 
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:1, 

P= 	 Y = 

= (i+g) 	 w = (i+v) 

Equation (13) enables the values of C2 
and C

3 
to 

be found and hence completes the solution. 

5. Comments  

Validity of Approximation  

In order to derive Equation (13) from the initial 
assumption of Ecuation (1) it has been found necessary to 
intrRduce the further assunption of Equation (11) that 

(ILB 2 
y 2 is zL,ro. It will be seen that this is correct when y 

ax- 

is zero, that is when the box is unwept or when there are no 
spar booms. The values of the K.. for these trio special 

cases are given in Appendix 2. 

2 d2B 
For 

y2 
	be negligible when there is sweep and 

dx
2 

relatively large boom area, a2B must be small compared to 
dx 

B as y itself will not necessarily to small. The degree 
to Lhich this is sufficiently true is not immediately apparent. 
Accordingly two cases (ref. 3) have been analysed where y is 
relatively large. 

The first of these two cases is a 450  swept box 

having a boom area such that Etc  =_ 0.34. Considering the case 

of loading by a normal shear force applied at the tip, with 
L
1 = 0, and assuming C3 

= 0, it was found from the theory 

that:- 

y
2
c
2 
 d

2
B 

2 	2 	0.04 ?.B0  at the root (x=0). 
dx 

In this case y = 0.75. 

A 600  swept wing was the subject of the second 
example, and here, with A/ct = 0.266 it was found, for 
similar loading that:- 

2 2 	2 
7 

d B 
2 	-- - 0.006 XB, at the root. 

dx 
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where y = 0.60. 

These examples thus indicate that Equation (11) also 
holds for relatively large y, and in fact good agreement with 
experimentally derived results was obtained in these cases 
(ref. 3),  

Unswept Case  

Appendix 2 §2 shows that in the unswept case, all 
coupling terms between C2  and C3  of Equation (13) are zero. 

The equation for C2  is thus explicit and gives torsion cor-

straint plus the effect of unequal webs. The equation for C_ 

gives shear lag effect. 

Thus the method is of value in considering the effect 
of the distribution of end load carrying capacity in unswept 
boxes. 

REFERENCES 

1.  Heap, On the application of oblique coordinates 
to the problems of plane elasticity and 
swept wing structures. 
R. and n. 2754 (Jan. 1950). 

2.  Hemp, Constraint effects on a swept box. 
Unpublished (LIAy 1953). 

3.  Griffin, K.H., 
and 

Constraint effects in box beams. 
Lecture to British Association, 1955. 

HOWC, D. (To be published in EngineerinE). 



-13- 

APPENDIX 1  

Evaluation of the individual components of Equation (14)  

2 3 	dC 

d. 
2)+ 	 )2 2 

9X
2 	d x 	xj 

2 9  2 

+ 	(3(3-1)/,:u.X -1)C3

4do

d x)+  21771 firil+  -7-71) 6_ _.0)\,,,c 3 3X 

2  + + 2c (2c  - Z(L) 4) \ 
2,1 

c -3--3 

 dC 	3 	2 	dc2 6 T1  Os ay 	YLI)  si 	- 	(9p -1) Z73c  = 	(111+ -77 k:T7c) 	9X 
-C 

 

ac 
+ 2c2 + p - 42-) c 	d. x (--ji) 

15 	3.%   
- 0 b (d2-1) 5 2 d xi 

iic ycLi  (30-1) 6  ( c1C2  
! s6T ay  _ 	Ze 60 1.,..2 (......o_ — 11 192 8c 	 

1 	3bX 	24-94-' 	31. 5) d x 	2 + 	12 bX 
(.-c 

	
\d x) 

2yc3 	2 	dC12 ( dC  \ 	L  ' 	
‘ 

97.  (9/3  -1) a-7c. 8 A.) 4. 7'11)  ( ci..) 
- 

.1) 
SC  +2c

2 
i
/1 	a  o.)2  ■ dc2 

3 	t1/4.15 +1--  3x) d x 6c3 

Li cw 	 2 3 2 + 
	

1) dC 	(ac  
SEliS dy = - 

r, 
12 b ' d 	+ 2c 

 le 	3 4- 	
2 

u 5,/ d x 	k_d_ x) 
F-c 

 

a-)
2  

Zc 	15) 6 
d.x  

(LI) 
+ ■, 	 k‘    2c3 2 - 2w 1) 2E1  (d°  

(3.0 5X. + 7 d x 6  ka. xi • 

1 (TwST__w  + Tw 	2 )dx = 	(138B + D8D)dx • w  
c. 
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APPENDIX 2  

Special Cases  

1. Boom area zero. 

i.e. w = X = 1 

Y = 0 

	

_ 	b 	1 	1 	
24.A.11 K  

	

21 - 	6G V/ 	
K22 	c 

8A 

K23 = 	5 

4A 
K1 = _11 
23 	5 

3A13.  

K24 = 	
24-bc 

1 '\ 
K = 25 	8Gc ( tea t wd 

K = 31 	21 

Ax/  
K - —14 35  24b  

2Alz  

K32 - 3 

32 - 3 

K - - 2k 	4bo 

1L22
'1  

K26 - 8bc 	t 
16Cc2 	w 

I,11 
K - 
33 - 	c 

2. Zero Sueep 

i.e. 1= 
	o 

Ac 
K22 = 	c K - 	

 0502+ice+3)
25 
(t 	

co 

21 	5 

K = K 	2 = Kt = Kt = 	= K1 	= 0 
23 	32 	3 	32 	2 	24 

w 	1 11 '`1, 

K25 = 8Ge t 	t I 

2 
co 	2o) 	1\ 

C • — — f 
33 	3x2 	3), 

K 	
A
33
(6/3+1) 

35 	3abx2  

A33'1) 	w 	/1 	1 \ 
K26 - abc 	 + -771 
16Gc2tw 

tw 

4All lc,  
K 	= 	,-

00P+Ai; 
33 	57c 
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BUILT IN ROOT 

CLOSELY SPACED SPACED 
RIGID RIBS 

S 

FIGURE 1. SWEPT 130X 

   


