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ABSTRACT 

The evaluation of the soil spatial variability using a fast, robust and cheap tool is one of 

the key steps towards the implementation of Precision Agriculture (PA) successfully. 

Soil organic carbon (OC), soil total nitrogen (TN) and soil moisture content (MC) are 

needed to be monitored for both agriculture and environmental applications.  The 

literature has proven that visible and near infrared (vis-NIR) spectroscopy to be a 

quick, cheap and robust tool to acquire information about key soil properties 

simultaneously with relatively high accuracy. The on-line vis-NIR measurement 

accuracy depends largely on the quality of calibration models. In order to establish 

robust calibration models for OC, TN and MC valid for few selected European farms, 

several factors affecting model accuracy have been studied. Nonlinear calibration 

techniques, e.g. artificial neural network (ANN) combined with partial least squares 

regression (PLSR) has provided better calibration accuracy than the linear PLSR or 

principal component regression analysis (PCR) alone. It was also found that effects of 

sample concentration statistics, including the range or standard derivation and the 

number of samples used for model calibration are substantial, which should be taking 

into account carefully. Soil MC, texture and their interaction effects are other principle 

factors affecting the in situ and on-line vis-NIR measurement accuracy. This study 

confirmed that MC is the main negative effect, whereas soil clay content plays a 

positive role. The general calibration models developed for soil OC, TN and MC for 

farms in European were validated using a previously developed vis-NIR on-line 

measurement system equipped with a wider vis-NIR spectrophotometer (305 – 2200 

nm) than the previous version. The validation results showed this wider range on-line 

vis-NIR system can acquire larger than 1500 data point per ha with a very good 

measurement accuracy for TN and OC and excellent accuracy for MC. The validation 

also showed that spiking few target field samples into the general calibration models is 

an effective and efficient approach for upgrading the implementation of the on-line 

vis-NIR sensor for measurement in new fields in the selected European farms.   
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1 General introduction 

1.1 Introduction 

Soil organic carbon (OC) is not only a key soil property for plant growth, but it is also 

essential for maintaining terrestrial ecosystems and for the overall environment, as OC 

reserves a large part of global carbon stock. It is the major component of soil organic 

matter, which is important in all soil processes. Shortages in OC result in decline of soil 

quality and crop production over the field. Soil OC is also an important component for 

evaluating soil resistivity to wind and water erosion (Morgan, 2005). Arable farming 

results in nitrogen loss from the soil-plant-system to the environment (Olfs, 2009). 

When the nitrogen inputs are surplus, nitrogen can be lost from land through runoff 

into surface water, denitrification and volatilization into the atmosphere, and leaching 

into groundwater (Miller and Wolfe, 1978). Leaching and denitrification are the two 

main processes through which nitrate lost is from soil to water environment and 

atmosphere (Addiscott, 2005). Nitrate in aquatic system may come from different 

sources, with only a small portion may be from nitrogen fertiliser. The rest may come 

from mineralization in soil, grazing animals or utilization of manures, ploughing old 

grassland as well as nitrogen deposition from the atmosphere (Addiscott, 2005). 

Nitrate leaching from land to ground water and stream water causes depletion of soil 

minerals, acidifying soils, affecting downstream water system and coastal marine 

ecosystems (Vitousek et al., 1997). Although plant uses mineral nitrogen, total 

nitrogen is important fraction as part of TN becomes mineral by a process called 

mineralisation (Addiscott, 2005). Soil moisture content (MC) is another critical soil 

property for regulation of plant growth and soil biology. Moreover, it regulates 

important soil processes such as soil nitrification/denitrification and hydrological such 

as leaching and erosion (Stenberg et al. 2010a). The spatial distribution variability of 

these three properties can be huge, even in a small field. This is the reason why this 

study focuses on the on-line measurement of these key soil properties, namely, OC, TN 

and MC. 
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The urgent need for doubling farm production over the next 25 years on less land and 

water resources through further intensification would inevitably involve substantial 

social, economic, and environmental cost. One of the strategies to minimize such costs 

through enhanced productivity and economic profits while simultaneously conserving 

the environment is precision agriculture (PA). PA can be defined as a historic and 

environmentally friendly strategy, in which farmers can vary input use and cultivation 

methods including application of seeds, fertilizers, pesticides, and water, variety 

selection, planting, tillage, harvesting to match varying soil and crop conditions across 

a field (Srinivasan, 2006). There are three fundamental elements in PA, namely 

describing variability, variable rate technology, and the decision support systems. 

Among these three components, the task of describing variability is the most 

important and should be done prior to the implementation of PA. In particular, it is 

based on variation within each field and should be understood in at least three 

aspects: spatial, temporal and predictive. Conventional description methods of soil 

spatial variability usually involve manual soil sampling, sample pre-treatment, 

laboratory chemical, physical analysis and mapping. Those procedures are very 

expensive, time-consuming and unaffordable by the farmers adopting site specific 

applications in PA, where high spatial sampling resolution is essential.  Therefore, the 

development of a fast, cost effective and environmentally friendly soil spatial 

variability detection method is a preliminary task for the implementation of PA. 

 

Visible and near infrared (vis-NIR) spectroscopy has become increasingly applied in soil 

analysis. The early stages of the implementation of the vis-NIR spectroscopy for soil 

analysis was along with multiple linear regression (MLR) calibration technique to 

determine key soil properties, such as soil MC, soil organic matter (SOM) or OC, TN and 

pH. With the emergence of commercial NIR spectrophotometers and multivariate 

calibration software packages, vis-NIR spectroscopy has been adopted much widely for 

the analysis of soil. Numerous researchers have extended the vis-NIR spectroscopy 

applications from the measurement of key soil properties (e.g. MC, pH, SOM, TN and 

OC) to almost all other soil micro and macro elements, such as phosphorous (P), 
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Potassium (K), sodium (Na), Calcium (Ca), Fe, cation exchange capacity (CEC), clay and 

magnesium (Mg). The analysis of soil with this technique was also extended to soil 

biological, physical and engineering properties. Multivariate calibration techniques 

made it possible to perform simultaneous measurements of several soil properties 

under consideration. 

 

On-line sensors for real-time measurement of soil parameters can be particularly 

useful tools for implementing sensor-based and map-based variable rate application of 

different input, because these sensors can lead to reduced labour, time and cost of soil 

sampling/analysis and allow for high spatial resolution of soil sampling. With the 

progress achieved in information technology, the differential global position system 

(DGPS) has been introduced into the on-line soil measurement system. The DGPS can 

be used to locate and navigate agriculture machines within a field and have the 

capacity to determine the geographic coordinate (latitude and longitude). Moreover, 

high-accuracy DGPS receivers can measure the altitude and the data can be used to 

calculate slope, aspect and other parameters relevant to the landscape. When a DGPS 

receiver and a data logger are used to record the position of each soil sample or 

measurement, a map based the on-line collected data can be generated and processed 

along with other layers of spatially variable information. Currently, DGPS has been 

integrated into current on-line soil sensing systems. One example of DGPS equipped 

on-line soil sensors are those based on vis-NIR spectroscopy. 

Compared to many non-mobile vis-NIR spectral measurements on dried or fresh soil 

samples, relatively few applications were found using the on-line vis-NIR spectroscopy 

measurement of soil constituents. This is attributed to the difficulties in designing and 

building on-line measurement systems (Mouazen et al., 2007). Inserting the 

illumination and detection units within the soil while driving with the tractor makes 

the delicate and fragile optical instrumentation to be prone to breakage, especially 

when the trial is to be carried out in fields with stubble and stones (Mouazen et al. 

2007). A review on the state-of-the-art of on-line vis-NIR measurement systems (Kuang 

et al., 2012a) reveals that there are only three systems available today, with  only one 
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system (e.g. Veris technologies, KS, the USA) commercially available. Shibusawa et al. 

(1999) developed an on-line vis-NIR (400-1700 nm) sensor to predict soil moisture, pH, 

electric conductivity (EC), SOM and NO3-N. The sensor system composed of three main 

sub-systems, namely, a soil-penetrating chisel with the housing for micro optical 

devices, an optical unit of illumination supply and spectrometer, and a control and 

data logging system (personal computer). They correlated spectral reflectance data at 

four single wavelengths to MC, pH, EC, and SOM, reporting R2 values of 0.68, 0.61, 0.64 

and 0.87, respectively. Christy et al. (2003) developed a prototype soil reflectance 

mapping unit equipped with a vis-NIR spectrophotometer (900–1700 nm), which 

became latter commercial system, sold today for research purposes by Veris 

Technologies, The USA. It consisted of a tractor driven steel shank dug soil to 10 cm 

depth and a quartz tungsten bulb mounted within the shank to illuminate the soil 

while optical fibres were used to transmit the reflected light to the spectrophotometer 

mounted above the shank. Results of a pilot study using data from a single field in 

central Iowa showed that locally weighted principal component regression (PCR) was 

capable of predicting MC, TC, TN, and pH with R2 values of 0.82, 0.87, 0.86, and 0.72, 

respectively. This system was further developed and the best one-field-out validation 

results were obtained for SOM (R2 = 0.67 and RMSE = 0.52 %) (Christy et al. 2008). 

Integrating the vis-NIR spectroscopy sensor of Veris with a Landsat enhanced thematic 

mapper (ETM) and a DGPS, Huang et al. (2007) configured, an on-line soil sensor for TC 

mapping in a 50 ha glacial till soils in Michigan, the USA. They claimed that r values 

between measured and predicted carbon values were equal to 0.81 and 0.62, using 

NIRS data and ETM imagery, respectively. Further application of this system, however, 

could not even provide semi-quantitative accuracy for soil OC and clay content with 

RPD=1.8 (Bricklemyer et al. 2010). Later research using the same sensor achieved 

better results for OC with R2 = 0.66 (Munoz et al. 2011) and RPD = 0.19 for OC (Knadel 

et al. 2011). However, the on-line system of Veris is equipped with a sapphire glass, 

which is susceptible to breakage due to the direct contact with soil containing stones.  

A much simpler and robust design to that of Shibusawa et al. (2001) without sapphire 

window optical configuration was designed and developed by Mouazen (2006a). In this 
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thesis this on-line measurement will be used (Fig. 1.1). It consists of a subsoiler, which 

penetrates the soil to the required depth, making a trench, whose bottom is 

smoothened by the downwards forces acting on the subsoiler. The optical probe is 

housed in a steel lens holder. This is attached to the backside of the subsoiler chisel in 

order to acquire soil spectral reflectance data from the smooth bottom of the trench. 

The subsoiler is retrofitted with the optical unit and attached to a frame by means of 

the three point linkage of the tractor (Mouazen et al., 2005a). A mobile, fibre type, vis-

NIR spectrophotometer (AgroSpec, Tec5, Germany) is used to measure soil spectra in 

diffuse reflectance mode. The spectrometer is an IP 66 model, protected for harsh 

working environments. A DGPS (EZ-Guide 250, Trimble, USA) is used to record the 

position of on-line measured spectra with sub-meter accuracy. A Panasonic semi-

rugged laptop is used for data logging and communication. The spectrometer system, 

laptop and DGPS were powered by the tractor battery. 
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Figure 1-1 The on-line visible and near infrared (vis-NIR) spectroscopy-based soil sensor developed by 

Mouazen (2006a) 

 

Adopting this on-line sensor, Mouazen et al. (2005) reported on on-line measurement 

of soil MC with a Zeiss Corona vis-NIR spectrophotometer (Zeiss, Jana, Germany) with a 

spectral range of 306.5–1710.9 nm. The spectrophotometer–optical unit system was 

calibrated for MC under stationary laboratory conditions on samples collected from an 

Arenic Cambisol field with different soil textures. The on-line field MC measurement 

showed a root mean square error of prediction (RMSEP) of 0.025 kgkg-1 and r value of 

0.75. A further development of the sensor application was reported by Mouazen et al. 

(2007) for the measurement of soil TC, MC, pH and available P in a 7000 m2 silt field in 

Belgium, obtaining a mean error values of 5.97, 0.37, 27.8 and 5.10 %, respectively, as 

compared to the laboratory reference methods. In a later published work, Mouazen et 

al. (2009) showed relatively high accuracy of prediction of extractable P with 

RMSE=1.07mg/100g-1 and RPD=1.42 based on national calibration model of P-ext 
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developed for the Flamish part of Belgium. From the results achieved so far by using 

the on-line sensor of Mouazen (2006a), it can be concluded that accuracy achieved so 

far for the measurement of key soil properties is not satisfactorily to claim robust and 

stable measurement system. Therefore, in this thesis a wider wavelength range 

AgroSpec spectrometer (Tec5 Technology for Spectroscopy, Germany) with a larger 

spectral range of 350 – 2200 nm will be considered to enhance the performance of on-

line prediction of key soil properties (TN, OC, MC), as the NIR wavelength range larger 

than 1700 nm proven to be critical for measurement of OC and TN in particular. The 

performance of the system with the new spectrophotometer for the measurement of 

soil OC, TN and MC will be evaluated at farm scale, considering four European farms in 

Denmark, Germany, Czech Republic and the UK. This chapter is a guide to all aspects of 

the research considered in this dissertation towards understanding the system and 

affecting factors and towards the optimisation of the system utilisation for the best 

performance. 

   

1.2  Calibration models for on-line measurement  

 

Although vis-NIR spectroscopy allows for rapid, cost effective and intensive sampling, 

researchers admit some shortcoming associated with instrumentation instability to 

ambient conditions (e.g. light, temperature, etc), transferability of calibration curves 

between different instruments, model scale (global, continental, regional, country, 

local, field) vs accuracy and others. Under in situ field measurement conditions with 

non-mobile or mobile instrumentation, additional challenges associated with the 

influences of soil MC, texture, colour, temperature, harsh field conditions, dust, 

contaminates like stones and excessive residues, and surface roughness are all affect 

the accuracy of measurement with vis-NIR spectroscopy (Mouazen et al., 2007; Waise 

et al., 2007). To compensate or overcome one or many of these difficulties, some 

solutions were suggested and implemented by researchers. These includes, among 

other methods, the selection of a proper instrumentation e.g. spectrophotometer, 

optical accessories and optical probe design (Mouazen, et al., 2009), improved spectra 
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filtering and pre-processing, better control of ambient conditions and the selection of 

the multivariate statistical analysis method (Stenberg et al., 2010a). 

Probably one of the most successful solutions to enhance the accuracy of vis-NIR 

measurement of soil attributes is the successful development of calibration models. 

However, it is still a challenge to develop accurate and robust calibration models for 

on-line measurement systems. Although some researchers suggested that the field 

scale models are of higher prediction accuracy (e.g. Christy, 2003) than larger 

geographic scale models, these are of limited practical values, as separate models 

should be developed for each particular field with the potential of increasing the cost. 

At least, farm scale or regional scale models have to be considered to take full 

advantage of the speed and cost effective acquisition of data with the vis-NIR 

spectroscopy-based on-line sensors.  

 

In order to enhance modelling of soil spectra for best performance of the vis-NIR on-

line sensor of OC, TN and MC (Mouazen et al. 2007) at farm scale, this thesis will study 

the effect of the following factors on accuracy: 

- Multivariate calibration techniques,  

- Sample statistics,  

- Sample number,  

- Soil MC, texture and their interaction on laboratory, in situ and on-line 

measurement conditions, and 

- Spiking strategy and spiked sample size on on-line measurement.  

Each of these five factors will be presented as one separate chapter, with brief content 

described below. It is worth noting that among the above mentioned four factors, the 

effect of calibration technique only will be evaluated using country scale data (e.g. 

Belgium and Northern France). 

 

1.2.1 Calibration technique  
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Though PLSR (Viscarra Rossel, et al. 2006) has become a standard multivariate 

calibration method, there are situations where the response is non-linear, which 

requires non-linear modelling techniques, such as artificial neural network (ANN) 

(Mouazen, et al. 2007) and support vector machine (SVM) (Viscarra Rossel, et al. 

2010). Since the linear PCR and PLSR analyses are the most common techniques for 

spectral calibration and prediction (Viscarra Rossel, et al., 2006a), with PLSR being the 

most accurate, other nonlinear techniques e.g. ANN and SVM methods have got much 

less attention and were rarely explored for the vis-NIR analysis of soil attributes. SVM 

study was not considered in this study as there is no commercial software available. 

Among those few studies utilising ANN,  Fidêncio, et al. (2002) employed radial basis 

function networks (RBFN) in the NIR region (1000-2500 nm) and Daniel, et al. (2003) 

used ANN in the vis–NIR region (400–1100 nm). No literature is available about 

combining PLS with ANN. 

Chapter 3 compares the performances of two linear (PCR and PLSR) and one non-

linear back propagation neural network (BPNN) multivariate statistical analyses for the 

prediction of spectrally active (OC) and inactive (K, Mg, Na and P) soil attributes using 

vis-NIR diffuse reflectance spectra of soil samples collected from Belgium and Northern 

France. It also aims at the evaluation of the prediction accuracy of combined BPNN-

PLSR, as compared to that of individual PCR, PLSR and BPNN analyses. This will inform 

of whether or not PLS will be efficient method to model soil spectra for on-line 

measurements.  

 

1.2.2 Sample statistics 

 

The statistics of soil samples including concentration range and standard deviation (SD) 

is another critical aspect affecting calibration. However, little research was found on 

this field, particularly at farm scale modelling. Stevens et al. (2010) reported improved 

results with local calibrations stratified by soil type and agro-geological region than 

with global calibrations. Spiking the local (target site) soil samples into the global or 

regional models has also proved to be an efficient way to improve the prediction 
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accuracy of target field for some soil constituents (Shepherd & Walsh, 2002; Brown, 

2007, Viscarra Rossel et al., 2008, Guerrero et al., 2010). Guerrero et al. (2010) 

observed that the number of samples in the calibration set could be also an important 

factor controlling the adaptability of calibrations to target sites and, thus, small-size 

models performed better than large-size model. We believe that the different model 

performance caused by different sample size is mainly attributed to sample statistics, 

including the variation in concentration range and SD. However, there is limited 

literature on the effect of sample statistics of calibration set on the prediction 

accuracy, particularly for in situ measurement conditions at the farm scale. 

Furthermore, the performance of multi-farm (general) models in predicting key soil 

properties compared with the corresponding models for individual farms with 

different sample number and statistics has not been explored so far. One of the 

obligations of this study is to investigate the relationship between the calibration 

accuracy of the studies soil properties and the variation range or SD of soil samples 

using data of three farms in Europe. It is hoped that results reported in chapter 4 to be 

useful for informing the best strategy of selecting the range of concentration in the 

calibration sample set used for the development of calibration models of OC, TN and 

MC. 

 

1.2.3 Sample number  

 

Sample number is a sensitive factor affecting calibration, as chemical analysis of soil 

samples with laboratory reference methods are required during the model calibration 

procedure. The more the samples analysed with reference methods the higher is the 

cost for running vis-NIR spectroscopy analysis, although this does not always provide 

better accuracy. Hence, the sample number used for model calibration should be 

taking into account and optimised towards establishing a compromise strategy 

between cost and model accuracy. No previous researcher has shown the relationship 

between RMSEP, representing model performance (accuracy) and the sample number 

for farm scale modelling. Therefore, it will be interesting to establish how the number 
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of samples affects the farm-scale model accuracy when the range of properties is kept 

constant. Guerrero et al. (2010) observed that the number of samples in the 

calibration set could be also an important factor controlling the adaptability of 

calibrations to target sites and, thus, small-size models performed better than large-

size model. Although some work has been reported about the effect of sample number 

on prediction accuracy, to our knowledge there is no report on the influence of the 

number of soil samples used for farm-scale calibration on the prediction error of 

models developed for the same range of variation in concentration of a soil property. 

This chapter will investigate the effects of the number of soil samples with the same 

concentration range on the prediction error of farm-scale calibration models of TN, OC 

and MC, developed using fresh soil samples collected from four farms in the Czech 

Republic, Germany, Denmark and the UK. This was important to evaluate, since a 

smaller number of sample needed for modelling means a reduction in cost of analysis 

with the vis-NIR spectroscopy. Furthermore, optimising the number of samples for 

appreciable accuracy at the lowest possible cost will be valuable information for 

researchers working on farm scale modelling of vis-NIR spectra and hence to guide the 

sampling strategy of on-line measurement adopted in this thesis. 

 

1.2.4 Influences of moisture content and texture  

 

Soil moisture content has for long been the main negative factor effecting field 

applications of vis-NIR spectroscopy for soil analysis. Absorption peaks of water that 

can be significant (e.g. at 1950 nm) mask wavebands associated with other soil 

attributes and thus deteriorate model performance and accuracy of these properties 

(e.g. OC, clay, etc) (Mouazen et al., 2005). Although drying of soil sample can remove 

soil moisture content, models established with spectra of dried samples is of little use 

for in situ and on-line applications. Apart from soil MC, soil texture is the other main 

factor to affect accuracy of vis-NIR spectroscopy (Mouazen et al., 2006b). Researchers 

concluded that small particle size can attribute to a better model performance (Fontán 

et al. 2010). Predictions of OC were most inaccurate for soils with a high sand content 
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(Stenberg, 2010b). Most literature considered the single effect of MC or texture on the 

prediction accuracy of SOM or OC. The interaction effect of both MC and texture (e.g. 

MC × clay; MC × silt; MC × sand) on in situ and on-line measurement of OC and TN at 

farm scale has not been studied so far. This chapter concerns about understanding and 

quantifying the individual and interaction effects of MC and soil texture on the 

performance of vis-NIR calibration models for in situ and on-line measurement of soil 

OC and TN. This will be considered to improve the measurement performance at farm 

scale vis-NIR spectroscopy. The ultimate target is to inform the best time (from MC 

point of view) for carrying out on-line measurement at different soil texture types. 

 

1.2.5 Spiking strategy and spiked sample size on on-line measurement 

 

After results achieved in the four Chapters discussed above are completed, it is hoped 

to learn about the best techniques and methods for optimal performance of the on-

line soil sensor at farm scale. In addition, this chapter aims also to optimise the 

modelling procedure of on-line sensor, including spiking technique and spiked sample 

size using a general dataset collected from the four European farms. Some studies 

suggested spiking local samples into the general calibration models can improve 

prediction accuracy under laboratory (Sanky et al. 2008) or in situ measurement 

conditions (Minasny et al. 2009; Viscarra Rossel et al. 2009; Waiser et al. 2007; 

Wetterlind and Stenberg, 2010). However, literature suggests that as yet, no general 

calibration procedure that included spiking strategy have been reported for on-line 

measurement, which has led to stable performance of on-line sensors, at the lowest 

production cost of establishing and upgrading the existed calibration models.  
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1.3 Aim, objectives and outline of this study 

1.3.1 Aim and objectives: 

 

The main aim of this work is to perform in-depth analyses of the influence of key 

factors affecting farm scale, vis-NIR calibration for in situ and on-line measurements. 

The ultimate aim is to utilise knowledge gained from the in-depth analyses to inform 

the best strategies and methods that should be followed during on-line measurement 

of OC, TN and MC, to guarantee robust and stable sensor performance, with 

appreciable accuracies. The on-line soil sensor used in this project is the one designed 

and developed by Mouazen (2006a). .  

 

To fulfil the project aim, the following objectives have to be addressed:  

 

1. To explore and eventually develop new calibration techniques to improve the 

accuracy of vis-NIR spectroscopy models of OC, TN and MC. Although, the focus 

of this project was on farm scale calibration, a country scale modelling will be 

considered only for this particular objective using soil samples collected from 

Belgium and Northern France. 

 

2. To develop and validate calibration models valid for each experimental farm in 

the four countries as well as a global calibration models valid for all four farms 

considered. 

 

3. To study the effect of sample statistics including the concentration range and 

standard deviation on prediction accuracy of studied soil properties. Fresh soil 

samples collected from the four farms will be considered. 

 

4. To study the effect of sample number used in the calibration set on prediction 

accuracy. This objective will be evaluated by using fresh soil samples. 
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5. To quantify the individual as well as the interaction effects of MC and texture 

on model performance, evaluated on laboratory, in situ and on-line modelling 

scenarios. 

 

6. To evaluate the effect of spiking strategy (method) and spiked sample size in 

the general dataset on on-line measurement accuracy of studied soil 

properties. 

  

7.  To evaluate the performance of a previously developed on-line soil sensing 

system (Mouazen, 2006a), for measurement of OC, TN and MC across four 

different countries in Europe, namely, Germany, the UK, Holland, Czech 

Republic and Demark. 
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1.3.2 Thesis structure: 

 

This thesis will be consisted of the following nine Chapters  

 

- Chapter 1 is the introduction and the aim and objectives, 

- Chapter 2 gives a comprehensive literature review on soil vis-NIR spectroscopy. 

The content of this chapter is part of a book chapter published in Advances in 

Agronomy (Kuang et al., 2012a).  

- Chapter 3 discusses the performance of various multivariate calibration 

techniques for modelling vis-NIR spectroscopic data for the prediction of soil 

properties. In particular, the performance of typical linear calibration methods 

will be compared with non-linear methods including ANN. The content of this 

chapter is part of a paper published in Geoderma (Mouazen et al., 2010).  

- Chapter 4 investigates the effect of sample statistics, e.g. concentration range 

and SD on the prediction accuracy. It will inform the sample statistics that 

should be taken into consideration for model calibration. The content of this 

chapter is part of a paper published in European Journal of Soil Sciences (Kuang 

and Mouazen, 2011).  

- Chapter 5 discusses how the sample number affects the model accuracy, 

aiming at concluding on the appropriate number of samples to be suggested for 

farm scale modelling. The content of this chapter is part of a paper accepted in 

European Journal of Soil Sciences (Kuang and Mouazen, 2012b).  

- In chapter 6, discusses the individual and interaction effects of soil MC and 

texture on in-situ and on-line vis-NIR spectroscopy measurement of studied soil 

properties. The content of this chapter is part of a paper under review in 

European Journal of Soil Sciences (Kuang and Mouazen, 2012c). 

- Chapter 7 discusses and evaluates on-line measurement of soil OC, TN and MC 

in three fields in three European farms. The content of this chapter is part of a 

paper under review in Soil & Tillage Research (Kuang and Mouazen, 2012d). 
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- Finally, chapter 8 provides conclusions for the whole work done in this study 

and outlook and guideline for future work are suggested. 
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2 Literature review 

2.1 Introduction  

 

For vis-NIR spectroscopy, to generate a soil spectrum, radiation containing all relevant 

frequencies in the particular range is directed to the sample. Depending on the 

constituents present in the soil the radiation will cause individual molecular bonds to 

vibrate, either by bending or stretching. These vibrations lead to absorption of light, to 

various degrees, with a specific energy quantum corresponding to the difference 

between two energy levels. As the energy quantum is directly related to frequency, the 

resulting absorption spectrum produces a characteristic shape that can be used for 

analytical purposes (Stenberg et al., 2010a). The fundamental frequency component 

from these vibrations in the mid-infrared (MIR) region result in overtones and/or 

combinations in the near infrared (NIR) region. In the visible (vis) range (400–780 nm), 

absorption bands related to soil colour is due to electron excitations, which assist the 

measurement of soil SOM and MC. However, in the NIR range, the overtones of OH 

and overtones and/or combinations of C-H + C-H, C-H + C-C, OH+ minerals and N-H are 

important for the detection of SOM, MC, clay minerals and nitrogen (Mouazen et al., 

2010). 

During the early stage of implementing this technique for soil analysis, the vis-

NIR (400-2500 nm) spectroscopy, along with multiple linear regression (MLR) 

calibration technique, was used to determine some soil properties, such as soil MC, 

SOM, total carbon (TC), inorganic carbon (C-in), organic carbon (OC), pH, cation 

exchange capacity (CEC) and total nitrogen (TN). As early as from 1965, Bowers et al., 

(1965) used a NIR spectrophotometer to evaluate the influences of MC, SOM, and 

particle size on energy reflectance. 

With the emerging of commercial NIR spectrophotometers and multivariate 

calibration software packages, the vis-NIR spectroscopy has been adopted much 

widely for soil analysis. Numerous researchers have extended the vis-NIR spectroscopy 

applications from the measurement of key soil properties (MC, pH, SOM, TN and OC) 
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with high accuracy to almost all other micro and macro elements with less accuracy. 

The analysis of soil with this technique was also extended to soil biological, physical 

and engineering properties. Multivariate calibration techniques allowed for 

simultaneous measurements of several soil properties under consideration. 

In this chapter, a comprehensive literature review about applications of the vis-

NIR spectroscopy of soil analyses under laboratory (non-mobile scanning is undertaken 

from dried and sieved soil samples in the laboratory), in situ (non-mobile scanning is 

undertaken from fresh unprocessed soil samples in the laboratory or in the field) and 

on-line (mobile scanning is undertaken from fresh prepared soil surface in the field) 

measurement conditions will be introduced. The main factors affecting performance 

on the vis-NIR spectroscopy for soil analysis will be also discussed. 

 

2.2 Laboratory visible and near infrared spectroscopy 

 

Laboratory vis-NIR measurement needs minimal sample pre-treatments and is 

subjected to minimum outside interferences. A typical procedure in a laboratory 

includes soil sampling, samples treatments (drying, grinding and sieving), optical 

scanning, data pre-processing, calibration and validation. Drying and grinding of soil 

samples can minimize the negative effects of MC and structure on the accuracy of 

prediction.  

 

2.2.1 Soil properties with direct spectral responses in near infrared range 

 

Since carbon and nitrogen have both direct spectral responses in the NIR region, which 

can be attributed to overtones and combinations of N-H, C-H + C-H and C-H + C-C, 

successful measurement of these two properties with NIR is expected. However, C and 

N have different forms in the soil, e.g. mineral, organic and inorganic, which have an 

influence on the accuracy. Summary of measurement accuracy of C and N with vis-NIR 
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spectroscopy is provided in Table 2-1. In summary, the prediction of soil C and N with 

NIR depends upon the form to be measured and the most successful measurement is 

reported for the organic, inorganic and total forms (Table 2-1). Due to the obvious 

absorbance peaks in the NIR range at the 1st, 2nd and 3rd overtone regions, literature 

proves MC to be the most accurately measured property with NIR with excellent 

accuracy (Chang et al., 2001; Mouazen et al., 2006b). Clay content was also reported to 

be accurately measured with NIR, which is attributed to the direct spectral response of 

clay minerals around 2300 nm (Viscarra Rossel et al., 2006b).  

Table 2-1 Summary of measurement accuracy of soil fundamental properties by laboratory visible and 

near infrared (vis-NIR) Spectroscopy 

Soil properties  

R2 * RMSEP RPD Accuracy Key references 

OC 0.46-0.98 0.06-2.90 (%) 1.30-9.70 A** Dalal and Henry (1986); Chang et al. (2001); Shepherd and 

Walsh (2002); Viscarra Rossel et al., (2010) 

C-inorg 0.53-0.96 0.17-0.56 (%) 4.01-4.99 A Krishnan et al., (1980); Cohen et al., (2005); Brown et al., 

(2006); Fontan et al., (2010). 

TN 0.04-0.99 0.0004-0.08 (%) 0.34-6.80 A Couteaux et al,. (2003); Dalal and Henry (1986); Vagen et al., 

(2006); Guerrero et al., (2010) 

pH 0.50-0.97 0.04-1.43 0.57-2.39 B-C Shepherd and Walsh (2002); Cohen et al., (2005); Mouazen et 

al., (2006c); Viscarra Rossel et al., (2010) 

Ca 0.07-0.95 0.66-52.90 (cmol kg-1) 0.60-2.75 B Cozzolino and Moron (2003); Cohen et al., (2005); Mouazen et 

al., (2006c); Zornoza et al., (2008) 

CEC 0.13-0.90 1.22-10.43 (cmol kg-1) 0.55-2.51 B Ben-Dor and Banin (1995); Chang et al., (2001); Mouazen et 

al., (2006a);  Brown et al., (2007); Awiti et al., (2008) 

Clay content 0.15-0.91 0.79-6.10 (%) 1.70-3.10 A Ben-Dor and Banin (1995); Chang et al., (2001); Brown (2007); 

Awiti et al., (2008) 

Sand content 0.59-0.92 1.91-11.93 (%) 0.87-3.40 C Ben-Dor and Banin (1995); Chang et al., (2001);  Cozzolino and 

Moron (2003); Awiti et al., (2008) 

Silt content 0.41-0.84 1.79-9.51 (%) 1.09-3.07 C Ben-Dor and Banin (1995); Chang et al., (2001);  Cozzolino and 

Moron (2003); Awiti et al., (2008) 

MC 0.84-0.98 0.50-4.88 (%) 2.36-5.26 A Chang et al., (2001); Chang et al., (2005); Dalal and Henry 

(1986); Mouazen et al., (2006b); Slaughter et al., (2001) 

Total P 0.01-0.93 1.35-24.6 (100 mg kg-1) 0.10-3.80 C Bogrekci and Lee (2005a); Mouazen et al., (2010); Wetterlind 

et al., (2010) 

Pavl 0.68-0.95 0.01-19.79 (100 mg kg-1) 1.70-4.54 C Bogrekci and Lee (2005a); Cohen et al., (2005); Ludwig et al., 

(2002) 

Pext 0.32-0.77 1.70-3.89 (100 mg kg-1) 0.40-2.07 C Chang et al., (2001); Cohen et al., (2005); Udelhoven et al., 

(2003) 

Mg 0.53-0.91 0.03-38.36 (cmol kg-1) 0.48-2.54 B Cozzolino and Moron (2003); Groenigen et al., (2003); 

Udelhoven et al., (2003); Wetterlind et al., (2010) 

K 0.11-0.85 0.05-1.84 (cmol kg-1) 0.52-5.13 D Cozzolino and Moron (2003); Groenigen et al., (2003); 

Mouazen et al., (2006c) 

Na 0.09-0.68 2.3-25 (cmol kg-1) 0.92-1.94 E Chang et al., (2001); Mouazen et al., (2006c); Mouazen et al., 

(2010) 

* Values of R2, RMEEP and RPD do not just represent the particular studies enlisted in adjacent column, but they are also based 

on other studies not listed in this table. 

** Classification of accuracy into A, B, C, D and E were based on maximum number of publications confirming an accuracy 

category for a soil property. R2: coefficient of determination, RMEEP: root square mean error of prediction, RPD: residual 
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prediction deviation (SD/RMSEP), A: excellent (RPD > 3.0 and R2 > 0.90; B: good (RPD = 2.5~3.0 and R2 = 0.82~0.90), C: approximate 

quantitative prediction (RPD = 2.0~2.5 and R2 = 0.66~0.81), D: distinguish between high and low (RPD = 1.5~2.0 and R2 = 0.50~0.65) 

and E: not usable (RPD < 1.5 and R2 < 0.5) (Chang et al., 2001). 

 

2.2.2  Soil properties without direct spectral responses in near infrared range 

 

Stenberg et al., (2010a) concluded that occasionally successful reports for the 

measurement of soil properties without direct spectral response in the NIR range is 

due to co-variation through other properties that have direct spectral responses in the 

NIR, e.g. carbon, nitrogen and clay. Literature illustrates that only few successful 

reports on P determination by vis-NIR spectroscopy are available (Table 2-1). To date, 

the most significant reports on successful measurement of P are those of Bogrekci & 

Lee (2005a and 2005b).Bogrekci and Lee (2005a) obtained probably the best R2 value 

of 0.92 between P concentrations and spectral absorbance using a vis-NIR 

spectroscopy in a fine sand soil type in Lake Okeechobee, in Florida. When they 

collected a larger amount of samples (150 - 345 samples) from more sites (3 - 10 sites), 

they reported a better prediction result (Bogrekci and Lee, 2005b). Literature (e.g. 

Chang et al., 2001 and Mouazen et al., 2006c) proves that the worst properties to be 

measured with NIR are K and Na (Table 2-1).  Measurement of pH, Ca and Mg were 

reported to be more successful as compared to K and Na, but underperformed those 

properties with direct spectral response in NIR. Therefore, further research is 

recommended to understand and probably improve the calibration accuracy of soil 

properties without direct spectral responses in the NIR range. 

 

2.2.3  Soil heavy metals 

 

Literature demonstrates the potential of the vis-NIR spectroscopy for the 

measurement of soil microelements with acceptable accuracy (Table 2-2). Moron and 

Cozzolino (2003) explored the use of NIR reflectance spectroscopy to study 
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microelements in surface soils from 332 sites across Uruguay. They claimed that R2 of 

the calibration and standard error of cross-validation (SECV) were respectively for Cu 

0.87 and 0.7, Fe 0.92 and 21.7, Mn 0.72 and 83.0 and Zn 0.72 and 1.2 on mg kg-1 dry 

matter. Siebielec et al., (2004) employed the NIR spectroscopy to measure soil metal 

content from natural background levels to high contents indicative of industrial 

contamination region and they claimed successful measurement of Fe, Cu, Ni and Zn 

(R2 = 0.87, 0.61, 0.84 and 0.67, respectively). From Table 2-2, it can be concluded that 

Fe, Cu and Zn can be measured with acceptable accuracy using the vis-NIR, which can 

be attributed to co-variation with other soil properties with direct spectral responses 

in NIR. Stenberg et al. (2010a) explained that heavy metals can be detected because 

they can be complex with SOM, associated with hydroxides, sulphides, carbonates or 

oxides that are detectable in the vis–NIR, or adsorbed to clay minerals. However, Al is 

the worst property to be measured followed by Mn. 

 

Table 2-2 Summary of measurement accuracy of soil microelements by laboratory visible and near 

infrared (vis-NIR) Spectroscopy 

Soil 

properties  

R2* RMSEP (mgkg-1) RPD Accuracy Key references   

Fe 0.64-0.94 3.7-23.60 1.35-3.30 A-B ** Malley and Williams (1997); Moron and 

Cozzolino (2003); Cohen et al., (2005) 

Cu 0.25-0.84 0.8-6.01 0.92-4.00 B Malley and Williams (1997); Chang et al., 

(2001); Siebielec et al., (2004); Wu et al., 

(2007) 

Mn 0.65-0.92 56.4-190 1.79-3.66 C Malley and Williams (1997); Chang et al., 

(2001); Moron and Cozzolino (2003) 

Zn 0.44-0.95 1.4-299 1.07-3.80 B Malley and Williams (1997); Kooistra et al., 

(2001); Cohen et al., (2005); Viscarra Rossel et 

al., (2006a) 

Al 0.61-0.68 0.88-506.7 0.5-1.97 D Siebielec et al., (2004); Cohen et al., (2005) 

* Values R2, RMEEP and RPD do not just represent the particular studies enlisted in adjacent column, but they are also based on 

other studies not listed in this table. 

** Classification of accuracy into A, B, C, D and E were based on maximum number of publications confirming an accuracy 

category for a soil property. R2: coefficient of determination, RMEEP: root square mean error of prediction, RPD: residual 

prediction deviation (SD/RMSEP), A: excellent (RPD > 3.0 and R2 > 0.90; B: good (RPD = 2.5~3.0 and R2 = 0.82~0.90), C: approximate 

quantitative prediction (RPD = 2.0~2.5 and R2 = 0.66~0.81), D: distinguish between high and low (RPD = 1.5~2.0 and R2 = 0.50~0.65) 

and E: not usable (RPD < 1.5 and R2 < 0.5) (Chang et al., 2001). 
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2.3  Non-mobile (in situ) field visible and near infrared spectroscopy 

 

Although the application of the vis-NIR spectroscopy has considerably reduced the 

labour and time for the analysis, soil sample preparation for laboratory analysis 

including drying, grinding and sieving is still tedious. For in situ and on-line 

measurement with vis-NIR, calibration models developed from dried, ground and 

sieved samples cannot be utilised, since measurement is performed with fresh soil 

samples. As early as more than two decades ago, using an integrating cylinder and two 

narrow band interference filters, Barrett et al. (2002) developed a spectrophotometric 

colour measurement for in situ well drained sandy soils, reporting a moderately strong 

correlation. Fystro et al. (2002) confirmed the ability of vis-NIR spectroscopy for 

measurement of OC, TN and their potential mineralization in grassland soil samples, 

arriving at a moderate accuracy (R2 > 0.7 and RPD > 1.5). Udelhoven et al., (2003) 

evaluated the ability of NIR spectroscopy to estimate soil Fe, Mn, Ca, Mg, K and they 

found that only Ca and Mg (R2 = 0.67 and 0.69, respectively) were predictable under in 

situ conditions.  Chang et al., (2005) attempted to predict TC, OC, TN, CEC, pH, texture, 

MC and potential mineralisable N and indicated that NIR was able to measure these 

soil attributes with reasonable accuracy using fresh soils (R2 > 0.74).  

Maleki et al., (2006) developed a calibration model of available P (Pavl) with 

acceptable prediction accuracy (R2 > 0.73) based on fresh soil samples with the 

intention to be used for on-line variable rate P2O5 application system. Combining vis-

NIR spectroscopy and laser induced breakdown spectroscopy (LIBS), Bricklemyer et al., 

(2005) reported moderate prediction accuracy (R2 = 0.70) of TC and C-inorg under in situ 

conditions. Meledenz-Pastor et al., (2008) identified optimal spectral bands to assess 

soil properties with vis-NIR radiometry in a semi-arid area and estimated SOM with 

worse accuracy (R2 = 0.73, RPD = 1.92 and RMSEP = 0.52%) than generally reported 

under laboratory condition. Viscarra Rossel et al. (2009) found there is higher 

prediction accracy for in situ soil caly content using field sacn spectra (RMSE = 7.9%) 
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than using Lab scanned spectra (RMSE = 8.3%). A summary of prediction performance 

of in situ vis-NIR spectroscopy measurement of soil properties is reported in Table 2-3. 

A comparison between Table 2.1 and Table 2.3 reveals that laboratory vis-NIR methods 

(Table 2-1) provide better accuracy than in situ field measurement, which can be 

attributed to the influence of MC and structure that were eliminated under laboratory 

conditions by drying, grinding and sieving. 

 

 

Table 2-3 Summary of measurement accuracy of fundamental soil properties by in situ visible and near 

infrared (vis-NIR) spectroscopy 

Soil 

properties  

R2 * RMSEP RPD Accuracy Key references  

OC 0.51-0.96 0.29-1.40 (%) 1.30-4.95 B-C ** Fystro et al., (2002); Udelhoven et al., 

(2003); Mouazen et al., (2010); Kuang & 

Mouazen (2011) 

TN 0.80-0.93 0.02-0.06 (%) 2.1-3.88 B Chang et al. (2005); Fystro et al., (2002); 

Mouazen et al., (2006c) 

pH 0.66-0.74 0.39-0.72 1.55-2.14 C Chang et al., (2005); Mouazen et al., 

(2006c); Mouazen et al., (2007) 

Ca 0.77-0.86 1.63-1.68 (cmol/kg-1) 2.10-2.19 C Chang et al., (2005); Udelhoven et al., 

(2003); Mouazen et al., (2006c) 

CEC 0.78-0.89 1.77-3.57 (cmolc/kg-1) 2.31-2.33 C Chang et al., (2005); Mouazen et al., 

(2006c) 

Clay 0.76-0.83 5.25-7.9 (%) 1.45-2.36 C Chang et al., (2005); Waiser et al., (2007); 

Bricklemyer et al., (2010) 

Sand 0.49 12.44 (%) 0.87 E Chang et al., (2005) 

Silt 0.13 6.04 (%) 0.80 E Chang et al., (2005) 

MC 0.4-0.98 1.0-6.4 (%) 1.98-5.74 A Ben-Dor et al., (2008); Mouazen et al., 

(2005); Slaughter et al., (2001) 

Total P & Pavl 0.09-0.80 2.3-25 (mg100g-1) 1.45-2.24 C Bogrekci and Lee, (2005a); Maleki et al., 

(2006c); Mouazen et al., (2007) 

Mg 0.49-0.84 0.30-0.30 (cmolc/kg-1) 1.39-1.56 D Udelhoven et al., (2003); Chang et al., 

(2005); Mouazen et al., (2006c) 

K 0.33-0.87 0.21-3.90 (cmolc/kg-1) 1.21-2.80 D Udelhoven et al., (2003); Zornaza et al., 

(2008); Mouazen et al., (2010); Wetterlind 

et al., (2010) 

Na 0.13-0.77 0.025-0.129 (cmolc/kg-1) 1.29-1.98 E Mouazen et al., (2006); Zornaza et al., 

(2008); Mouazen et al., (2010) 
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* Values R2, RMEEP and RPD do not just represent the particular studies enlisted in adjacent column, but they are also based on 

other studies not listed in this table. 

** Classification of accuracy into A, B, C, D and E were based on maximum number of publications confirming an accuracy 

category for a soil property. R2: coefficient of determination, RMEEP: root square mean error of prediction, RPD: residual 

prediction deviation (SD/RMSEP), A: excellent (RPD > 3.0 and R2 > 0.90; B: good (RPD = 2.5~3.0 and R2 = 0.82~0.90), C: approximate 

quantitative prediction (RPD = 2.0~2.5 and R2 = 0.66~0.81), D: distinguish between high and low (RPD = 1.5~2.0 and R2 = 0.50~0.65) 

and E: not usable (RPD < 1.5 and R2 < 0.5) (Chang et al., 2001). 

 

2.4  Mobile (on-line) field vis-NIR sensors 

 

Precision farming requires development of on-line sensors for real-time measurement 

of soil properties, because these sensors can lead to reducing labour and time cost of 

soil sampling and analysis. Compared to the non-mobile analysis, relatively less 

literature is available on the mobile vis-NIR spectroscopy analysis of soil properties. A 

review on the current status of on-line vis-NIR measurement systems confirms that 

only three on-line vis-NIR measurement systems are available (Shibusawa et al., 2001; 

Mouazen et al., 2005; Christy et al., 2008).  

The beginning of these systems dates back to 1991, when Shonk et al. (1991) 

developed a system to measure SOM and MC, which utilised a single wavelength (660 

nm) of light (Table 3-4). Shibusawa et al. (2001) developed an on-line vis-NIR (400 – 

1700 nm) sensor to predict MC, pH, SOM and NO3-N. Although this system is highly 

technically instrumented, it is rather expensive. Christy et al. (2008) developed a 

prototype soil reflectance mapping unit equipped with a vis-NIR spectrophotometer, 

which is commercially available in the market. The sapphire glass of the optical probe 

makes direct contact with soil and stones. A simpler design to the one of Shibusawa et 

al. (2001) without sapphire window optical configuration was developed by Mouazen 

et al. (2005). The system was successfully calibrated for MC, TN, TC, pH and available P 

in different soils in Belgium and northern France (Mouazen et al., 2005; Mouazen et 

al., 2007; Mouazen et al., 2009). More recently, employing the on-line system 

developed by Christy et al. (2008), Bricklemyer et al. (2010) reported on the on-line 

measurement for soil OC without achieving even semi-quantitative accuracy and clay 

content with a standard error of prediction (SEP) of 3.4 g kg-1 and a RPD value of 1.4, 
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respectively. Using the same system, coupled with topography and aerial photograph 

data, Munoz et al. (2011) reported low to moderate accuracy of soil OC measurement 

with R2 and RMSEP ranged from 0.44 to 0.66 and from 1.41 to 1.51 g kg-1, respectively. 

Applying this vis-NIR system in combination with electrical conductivity (EC) and 

temperature sensors in a Danish field, Knadel et al. (2011) obtained moderate 

prediction accuracy (RMSEP = 59.4 gkg-1 and RPD = 2.3) for soil OC. However, the vis-

NIR sensor alone only achieved a relatively low accuracy (RMSEP = 59.8 gkg-1, RPD = 

1.9). This review shows that on-line sensors still do not provide sufficiently accurate 

data for their use in the site specific application of different inputs. The variable 

degrees of performance of on-line sensors currently available might be attributed to 

the fluctuation in model performance, with the majority of them established for field-

scale analysis (e.g. Christy et al., 2008; Mouazen et al., 2005; Munoz et al., 2011)  

Shibusawa et al., 2001; or for regional- and country-scale analysis (e.g. Mouazen et al., 

2007; Mouazen et al., 2009). Some studies suggested spiking local samples into the 

general calibration models can improve prediction accuracy under lab (Sanky et al. 

2008) or in situ conditions (Minasny et al. 2009; Viscarra Rossel et al. 2009; Waiser et 

al. 2007; Wetterlind and Stenberg, 2010). 

Table 2-4 Summary of measurement accuracy of soil properties by on-line visible and near infrared (vis-

NIR) spectroscopy 

Spectral range 
nm Results Literatures  

Single wavelength  660 

 

SOM (r = 0.71)  Shonk et al., (1991) 

vis-NIR spectrum 

 

NIR spectrum 

 

 

NIR spectrum 

vis-NIR spectrum 

 

300-1700 MC, pH, SOM and NO3-N (R2 = 0.68, 

0.61, 0.64 and 0.19, respectively) 

Shibusawa et al., (2001) 

1603-2598 SOM and MC (R2 = 0.79 7 0.89, RPD = 

2.17 & 2.86, respectively) 

Hummel et al., (2001) 

900-1700 

 

MC, TC, TN, pH (R2 = 0.82, 0.87, 0.86 

and 0.72, respectively) 

Christy et al., (2008) 

300-1700 Similarity of OC, TC, MC, pH, P-avl and 

P-ext maps 

Mouazen et al., (2007) 

vis-NIR spectrum 

 

350-2224 OC (SEP = 0.34) and clay content (RPD 

= 1.4, SEP = 6.94 %) 

Bricklemyer et al., (2010) 



 

26 

Comparing to Tables 2-2 and 2-3 with Table 2-4 reveals that both the 

laboratory and in situ non-mobile vis-NIR methods provide better accuracy than the 

on-line method, which might be attributed to other factors influencing the latter 

method. These factors include among others noise associated with tractor vibration, 

sensor-to-soil distance variation (Mouazen et al., 2009) stones and plant roots and 

difficulties of matching the position of soil samples collected for validation with 

corresponding spectra collected from the same position. 

There are some challenges that hinder a stable, accurate and robust on-line 

measurement system from emerging for soil OC, TN and MC measurement. First of all, 

a robust spectrometer system with wide enough measurement wavelength range that 

covers significant absorbance bands for C and N (up to 2200 nm). For early on-line 

sensors, the wavelength ranges were as large as up to 1700 nm (Shibusawa et al. 2001; 

Mouazen et al., 2005; Christy, 2008). Some of relatively high measurement accuracy of 

SOM or OC with these sensors might be attributed to the high correlation with soil 

colour. For soil TN, there was only one successful case reported by Christy (2008), 

whose calibration was valid for a field scale. However, soil MC was the most successful 

measured properties, as there are significant O-H absorbance peaks in the NIR region 

(Mouazen et al., 2005). Secondly, a delicate design for the sensor probe holder, which 

should ensure constant sensor-to-soil distance and smooth soil surface where scanning 

takes place.  Using under field condition has proven that having a glass window 

between the soil surface and optical probe is not ideal, as the fragile glass might be 

broken, affecting the robustness of the system. Finally, even stable and high quality 

soil vis-NIR spectra can be acquired successfully during on-line measurement the 

overall accuracy depends largely on the calibration models. Though the field scale 

model can provide a relatively high accuracy (Christy 2008), it is rather costly, hence 

negatively affects adopting the on-line vis-NIR sensors for precision farming 

applications. Therefore, general calibration models for farm scale should be 

established for soil OC, TN and MC. This has to be accompanied with a spiking strategy 

and spiking rate that would assist improving the on-line prediction accuracy at 

relatively lower cost.      



 

27 

 

2.5 Factors affecting prediction accuracy of vis-NIR spectroscopy 

 

In addition to extended application of vis-NIR spectroscopy for the simultaneous 

determination of many properties of soil, numerous researchers attempted to find 

new approaches to improve the vis-NIR prediction accuracy. It is well known that, soil 

MC and soil particle size are the main factors influencing the measurement accuracy in 

addition to soil colour. Hence, quantification of the effects of these properties might 

be useful for the improvement of calibration models developed for both laboratory 

and in situ measurements. Other factors including spectra pre-processing, sample 

preparation, size of calibration area (local, national or global), spectrophotometer 

wavelength range and type of detectors and calibration methods also affect calibration 

accuracy. Scientists investigated and introduced new spectral pre-treatment methods, 

including non-linear calibration techniques and/or predictive indicator to obtain more 

accurate results. Others used spectra classification methods to classify soils into 

different MC or texture classes; for each class they suggested a separate calibration 

models (Mouazen et al., 2005 and Mouazen et al., 2006b). The effects of the following 

factors are discussed in view of acquiring information for improving performance of 

on-line sensors. 

 

2.5.1  Effect of calibration method 

 

In the early stage, some multi-linear regression calibration methods, such as stepwise 

multiple linear regression (e.g. Shibusawa et al. 2001), multivariate adaptive regression 

splines (Shepherd and Walsh, 2002), PCR (e.g. Chang et al., 2001) were accepted for 

vis-NIR spectroscopy modelling. The PLSR has also been used as standard calibration 

technique for most researchers (McCarty et al., 2002). Although the linear PCR and 

PLSR analyses are the most common techniques for spectral calibration and prediction 

(Viscarra Rossel et al., 2006a), with PLSR being the most accurate, other nonlinear 
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techniques e.g. artificial neural networks (ANN) have got much less attention and were 

rarely explored for the spectral analysis in soil sciences. Du and Zhou (2007) and Du et 

al. (2007; 2008) have successfully implemented ANN based on principal components 

(PCs) obtained from principal component analysis (PCA) on mid infrared (MIR) and 

photoacoustic MIR soil spectra. Only two examples on the use of ANN-PCs technique 

for soil analysis with NIR spectroscopy could be found in literature. Fidêncio et al. 

(2002) have implemented the radial basis function networks (RBFN) in the NIR region 

(1000-2500 nm) and Daniel et al. (2003) have used ANN in the vis–NIR region (400–

1100 nm). Other nonlinear calibration methods have been tested such as regression 

trees (RT) (Brown et al., 2006; Vasques et al., 2008; Viscarra Rossel and Behrens, 2010), 

multivariate adaptive regression splines (Shepherd and Walsh, 2002; Viscarra Rossel 

and Behrens, 2010), support vector machine regression (SVMR) (Stevens et al., 2010; 

Viscarra Rossel and Behrens, 2010), and penalized-spline signal regression (Stevens et 

al., 2010). Though regression tree sometimes can provide better accuracy, it is far too 

complicated for soil analysis.  Generally, the nonlinear calibration techniques have 

their potential of being much powerful calibration tools for vis-NIR spectroscopy. 

However, there is still a long way for them to be main stream analysis technique due to 

lack of a uniform software platform on which the nonlinear algorithms can be 

evaluated fairly.   

 

2.5.2 Effect of sample statistics (range and SD) 

 

Sample concentration range or SD is other essential factor to influence the model 

accuracy but has not attracted much attention. It is essential to indicate that the range 

of the calibration set should be equal or larger than the prediction set. However, larger 

range or SD will introduce higher root mean square of prediction (RMSEP) (Stenberg, 

et al.2010a). This issue needs more in depth analysis.    
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2.5.3  Effect of moisture content 

 

Literature shows that MC probably has the most influencing factor on the prediction of 

soil MC. Therefore, researchers attempt to understand and exclude this effect for 

effective application of field spectroscopy including in situ and on-line measurements. 

Mouazen et al. (2006b) tried to exclude the MC contribution to vis-NIR spectra by 

classifying (using factorial discriminate analysis, FDA) soil spectra into different MC 

groups and found that, for the single-field sample set, spectra were classified into six 

MC groups with correct classification (CC) of 94.1% and 95.6% for the calibration and 

validation sets, respectively. The corresponding data for multi-field sample set was 

three groups with CC of 88.1% and 79.7% for the calibration and validation sets, 

respectively. Adoption of an external parameter orthogonalisation (EPO) algorithm to 

remove the soil moisture effect on vis-NIR spectral, Minasny, et al. (2011) found better 

prediction accuracy for OC. This finding could be also potentially valuable for on-line 

prediction of soil properties, when scanned spectra can be pre-treaded automatically 

using suggested algorithm. In short, MC plays principally a negative role on field soil 

vis-NIR spectroscopy and there is still a research gap to be bridged in this study. 

 

2.5.4  Effect of soil texture 

 

Apart from soil MC, soil texture is the other main factor to affect accuracy of the vis-

NIR spectroscopy. Soil classification and evaluation has become a critical tool to 

monitor the soil development or degradation. Usually, SOM, total iron, silt, sand and 

mineralogy (quartz, magnetite, kaolinite and smectite) were the most important 

attributes influencing reflectance intensity and spectral features and allowed 

characterization and discrimination of soils. Fontán et al. (2010) concluded that 

particle size has a significant effect on the accuracy and precision of models developed 

for analysing C content in Mediterranean dry land Vertisols. Their results were 

improved for a small particle size soils (i.e. after grinding and sieving with 2 mm sieve), 



 

30 

as compared to untreated soils with clods. Using processed soil sample in the 

laboratory, Stenberg (2010b) concluded that predictions of OC were most inaccurate 

for soils with a high sand content. Along with principle component analysis (PCA) or 

FDA clustering techniques, Mouazen et al. (2006b) suggested classifying soil texture 

into different texture classes. For each class, authors suggested to establish calibration 

models for other soil properties, which they expect to result in improved prediction 

accuracy. How soil texture fractions (sand, clay and silt) affect (positively or negatively) 

the vis-NIR measurement of other soil properties is still unclear and more research is 

needed. Furthermore, the interaction effect of MC and texture has not been studied so 

far, although this might be the most influencing on the performance of on-line sensors.  

 

2.5.5 Effect of soil colours 

 

Historically, soil colour is a key feature used for the identification and classification of 

soils. Soil reflectance has a direct relationship with soil colour, as well as with other 

parameters such as texture, soil moisture and organic matter. Quantitative soil colour 

analysis is not easy for colour papers.  Mouazen et al. (2006b) focused on the potential 

of vis-NIR spectroscopy accompanied with PCA and FDA to derive colour groups 

utilising the Munsell soil colour charts. The intention was to establish groups of 

calibration models, each valid for one colour class. The results suggested that the vis-

NIR spectroscopy combined with chemometric tools has the potential of identifying 

different soil colour groups for a large geographical area. Moranon et al. (2007) 

established models between L* (lightness) of CIELAB colour model and MC. The results 

indicate that predictions of the dryness condition, presence of plant-available water 

and wetness near to field capacity, but not the specific water content, can be made 

with reasonable confidence in any soil by using the models calibrated in other soil of 

similar colour. Similar research had been done by Viscarra Rossel et al., (2009). From 

this brief literature review it can be concluded that colour has positive effect on vis-NIR 

spectroscopy measurement of other soil properties (e.g. OC), which suggests that no 

need to consider more research about this factor. 
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2.5.6  Effect of sample pre-treatment 

 

The effect of sample preparation such as grinding and drying and replication has not 

been addressed extensively. Barthes et al. (2006) conducted a research to assess how 

sample preparation affects NIR prediction of TN and total C. They concluded that the 

most accurate predictions (R2>0.907, RPD>3.37 and R2>0.936, RPD>3.37 for total C and 

total N, respectively) were obtained with oven-dried finely ground samples, with 

limited response to sample replication. In their application of NIR spectroscopy to 

determine OC in 10 farms in Uruguay, Cozzolino and Moron (2006) achieved 

determination coefficient (R2
CAL) and standard errors in cross validation (SECV) of 0.90 

and 0.6 for coarse-sand C, 0.92 and 0.4 for fine-sand C, and 0.96 and 2.1 for clay + silt 

C, respectively. Calibrations were poor for C/N ratio (R2
CAL< 0.65). Those two 

publications confirmed that grinding and drying played a positive role in Vis-NIR 

measurements of soil properties. No research on this factor will be considered in this 

thesis, since on-line measurement does not require sample pre-treatment including 

drying and sieving. 

 

2.5.7  Effect of spectrophotometer and measurement range 

 

In their work to choose a suitable wavelength range instrument for on-line soil sensor, 

Mouazen et al. (2006c) compared the prediction ability of short wavelength range 

(SWR) of 300-1700 nm and a full wavelength range (FWR) of 350-2500 nm using both 

dried and fresh soil samples. They suggested that a larger wavelength range than 1700 

nm was not useful for improving the measurement accuracy of soil properties (except 

N and C) with vis-NIR spectroscopy when measurement was to be conducted in field 

under wet conditions. Also the same research team has studied the measurement 

accuracy of MC of four spectrophotometers differing in wavelength range and type of 

detector, namely, a diode array (DA), a combination of diode array and scanning 
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monochrometer (DASM), a Fourier transform (FT) and a scanning monochrometer 

(SM) (Mouazen et al., 2006c). They found that the four instruments provided good 

predictions for soil MC with largest R2 values between 0.84-0.86 and the RPD values 

ranged from 2.53 to 2.75. Generally, a wider wavelength range instrument results in a 

higher measurement accuracy for most soil properties. This is the reason why at the 

start of this project, it was decided to replace the previously used Zeiss Corona 

spectrophotometer (Mouazen et al., 2005) by a wider spectral range AgroSpec 

spectrophotometer (tec5 Technology of Spectroscopy, Germany) with a spectral range 

of  305 – 2200 nm. 

 

2.5.8 Effect of scale and spiking 

 

Most studies on soil vis-NIR spectroscopic applications are limited to modelling within 

field scale or homogenous soil type area, although researchers tend to expand 

applications to national, continental or even global libraries. However, soil constituent 

models developed from large scale geographic area with diverse soil samples often 

completely fail or provide unacceptable prediction accuracy. Mouazen et al. (2006b) 

found a higher accuracy of MC quantitative prediction using a single-field sample set 

than for a multi-field samples set. When they applied the PLSR on the 1st derivative vis-

NIR reflectance spectra using soil samples obtained from six sites with similar soils 

across three counties in north central Montana, Brown et al. (2005) got relatively 

accurate prediction for OC and inorganic C (RPD>2) and demonstrate that ‘pseudo-

independent’ validation (random selection of non-independent test samples) can 

overestimate predictive accuracy relative to independent validation. To date, only few 

global models are reported (e.g. Brown et al. 2006; Viscarra Rossel et al., 2009). Brown 

et al. (2006) selected 3768 samples from all 50 U.S. states and two tropical territories 

and an additional 416 samples from 36 different countries in Africa (125), Asia (104), 

the Americas (75) and Europe (112), and obtained validation root mean squared 

deviation (RMSD) estimates of 54 g kg-1 for clay, 7.9 g kg-1 for OC, and 5.6 g kg-1 for 

inorganic C. Also, they found that combining global soil-spectral libraries with local 
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calibration samples has the potential to provide improved vis-NIR spectroscopy soil 

characterization predictions than with either global or local calibrations alone (Brown 

et al. 2007). Stevens et al. (2010b) reported improved results with local calibrations 

stratified by soil type and agro-geological region than with global calibrations. Spiking 

(refer to the procedure that add some samples to a general data set, then produce a 

new data set)   the local (target site) soil samples into the global or regional models has 

also proved to be an efficient way to improve the prediction accuracy of target field for 

some soil constituents (Shepherd & Walsh, 2002; Brown, 2007, Viscarra Rossel et al., 

2008, Guerrero et al., 2010). Guerrero et al. (2010) observed that the number of 

samples in the calibration set could be also an important factor controlling the 

adaptability of calibrations to target sites and, thus, small-size models performed 

better than large-size model. However, further research is needed as general 

calibration model has huge economical advantage over field scale models for on-line 

soil vis-NIR measurement. This should aim at optimising the number of samples, 

spiking strategy and spiking rate to be used for farm scale modelling for in situ and on-

line measurements. 

 

2.6 Conclusions  

 

The soil analysis with vis-NIR spectroscopy in the laboratory has relatively higher 

measurement accuracy, as compared to those for in situ and on-line measurements 

using fresh (wet) soil conditions. The laboratory analysis requires sample pre-

treatment and is subjected to minimum environmental interferes. However, the 

degree of accuracy depends on soil attribute to be measured, calibration geographical 

scale, sample statistics and sample size, type of spectrophotometer used and 

wavelength range, and soil type diversities. Generally, vis-NIR spectroscopy has proven 

to be a good tool for the prediction of soil MC, OC, SOM, TN and clay content   (R2>0.8 

and RPD>2.0) and to provide moderate or acceptable prediction accuracy for pH, Ca, 

CEC, P and Mg (R2>0.6 and RPD>1.5). However, literature suggests that it is quite 

difficult to measure K and Na (R2<0.6 and RPD<1.5) using the vis-NIR spectroscopy. 
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However, many of previous and current soil vis-NIR spectroscopic applications are 

limited to small geographic area e.g. field scale or homogenous soil type area. The 

larger scale modelling procedures with diverse soil type often results in less accurate 

model performance, or even complete failure might occurs. There are few successful 

calibrations using farm, regional or global soil spectral libraries, where spiking might 

offer potential solutions for enhancing model performance.  

 

In comparison to laboratory application, in situ measurement of soil properties is 

shown to provide lower accuracy due to the influence of soil moisture, plant debris, 

and variable particle size. Quantifying the effect of these factors is needed to 

understand and probably improve measurement accuracy of in situ and on-line 

measurements. 

  

The vis-NIR on-line soil sensors are rapid, non-destructive and compact and provide 

high spatial resolution with cost effective data. Although there are three on-line 

sensors with several successful applications, there is only one commercially available 

sensing system from Veris (Veris Technologies, KS, the USA). However, practical 

applications proved this sensor to be sensitive to breakage due to the sapphire optical 

window, which is in direct contact with soil and potential presence of solid objects like 

stones. The vis-NIR on-line sensor designed by Mouazen (2006a) and available at 

Cranfield University for further development proved to be simple, robust and does not 

have sapphire window sensitive to breakage. 

 

In comparison with electrical and electromagnetic sensors which are being widely used 

in PA today, the vis-NIR on-line sensors provide quantitative measurement of many 

soil attributes simultaneously. This character is essential for site specific application of 

different input in PA, which needs detailed (quantitative) information about the spatial 

variations in soil properties collected at low acquisition cost. Development of reliable 

and efficient methods of on-line measurement of soil properties using available 

hardware will be the direction of future research to be considered in this thesis.  
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3 Effect of multivariate calibration technique 

3.1 Introduction 

The vis and NIR diffuse reflectance spectroscopy has become increasingly attracting to 

researchers (e.g. Ben-Dor and Banin, 1995; Chang et al., 2001; Reeves and McCarty; 

2001; Shepherd and Walsh, 2002; Brown et al., 2006; Mouazen et al., 2007; Zornoza et 

al., 2008), due to well recognised advantages of this technique as compared to the 

laboratory reference methods of soil analysis. Although vis-NIR spectroscopy allows for 

rapid, cost effective and intensive sampling, researchers admit shortcomings 

associated with instrumentation instability to ambient conditions (e.g. light, 

temperature, etc), transferability of calibration between different instruments, 

difficulties associated with model scale (global, continental, regional, country, local and 

field) vs accuracy and others. Under in situ measurement conditions with non-mobile 

or mobile instrumentation, additional challenges associated with diverse soil moisture 

content, texture, colour, harsh field conditions, dust, stones and excessive residues 

and surface roughness all affect the accuracy of measurement with vis-NIR 

spectroscopy (Mouazen et al., 2007; Waiser et al., 2007). To compensate or overcome 

one or more of these difficulties, some solutions were suggested and implemented by 

researchers. This includes, among other methods, the selection of proper 

instrumentation e.g. spectrophotometer, optical accessories and optical probe design 

(Mouazen et al., 2009), improved spectra filtering and pre-processing (Maleki et al., 

2008), better control of ambient conditions (Mouazen et al., 2007; Waiser et al., 2007) 

and the successful selection of the multivariate statistical analysis. 

Probably one of the most recommended solutions to enhance the accuracy of vis-NIR 

measurement of soil properties is the successful development of calibration models. A 

comprehensive review of literature on calibration methods on diffuse reflectance 

spectroscopy and on comparison of predictions of soil properties using the most 
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common calibration techniques was provided by Viscarra Rossel et al. (2006a). These 

calibration methods include multiple linear regression analysis (e.g. Dalal and Henry, 

1986) and a stepwise multiple linear regression (e.g. Shibusawa et al. 2001), 

multivariate adaptive regression splines (Shepherd and Walsh, 2002), PCR (e.g. Chang 

et al., 2001), PLSR (e.g. McCarty et al., 2002) and boosted regression trees (Brown et 

al., 2006). Five multivariate techniques, namely, SMLR, PCR, PLSR, regression tree and 

committee trees were compared by Vasques et al., (2008) with the aim of identifying 

the best combination of multivariate statistics and spectra pre-processing to predict 

soil carbon. They concluded that PLSR performed the best as compared to other 

techniques tested. Although the linear PCR and PLSR analyses are the most common 

techniques for spectral calibration and prediction (Viscarra Rossel et al., 2006a), with 

PLSR being the most accurate, other nonlinear techniques e.g. ANN have got much less 

attention and were rarely explored for the spectral analysis in soil sciences. Du and 

Zhou (2007) and Du et al. (2007; 2008) have successfully implement ANN based on 

principal components (PCs) obtained from PCA on MIR and photoacoustic MIR soil 

spectra. Only two examples on using ANN-PCs technique for soil analysis with NIR 

spectroscopy could be found in literature. Fidêncio et al. (2002) have implemented the 

RBFN in the NIR region (1000-2500 nm) and Daniel et al. (2003) have used ANN in the 

vis–NIR region (400–1100 nm). No literature is available about combining PLSR with 

ANN for the analysis of soil properties with full range vis-NIR spectroscopy (350-2500 

nm) has been explored so far. 

The scope of this chapter is to compare the performances of linear PCR and PLSR and 

non-linear BPNN analyses for the prediction accuracy of spectrally active (OC) and 

inactive (K, Mg, Na and P) soil properties using vis-NIR diffuse reflectance 

spectroscopy. The BPNN analyses will be based on latent variables (LVs) obtained from 

PLSR (BPNN-LVs) and PCs obtained from PCA (BPNN-PCs) (Martens and Naes, 1989). 

 

3.2 Material and method 
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3.2.1 Collection of soil samples 

A total of 168 samples were obtained from the Soil Service of Belgium (Heverlee, 

Belgium). They were collected in the spring and summer of 2004 from many fields in 

Belgium and northern France. These fields represent a wide range of soil textures and 

colours. Collecting the samples during a relatively long period of time (5 months) 

resulted in samples with different moisture contents. Each sample was mixed and 

divided into two parts; the major amount of the soil was used for the laboratory 

chemical analyses, whereas the remaining part was used for optical measurement. 

Samples were stored in plastic bags at 4°C from the time of sampling until the time of 

analysis.  

 

3.2.2 Laboratory analyses of soil properties 

Laboratory analyses for OC and extractable forms of K, Mg, Na and P were performed 

by the Soil Service of Belgium (Heverlee, Belgium) using their official methods (Vanden 

Auweele, et al., 2000). Soil OC expressed in percentage of carbon weight to the total 

weight of dry soil was determined by the Walkley-Black method (Hesse, 1971). The air-

dried soil (1 g) was extracted with 20 mL ammonium lactate (0.1 N ammonium lactate 

and 0.4 N acetic acid; pH 3.75) to determine K, Mg and Na contents with atomic 

absorption spectrometry (AAS) (Egner et al., 1960). Phosphorus was determined by 

colorimetry (445 nm) on the same extract after addition of a mixture of ammonium 

vanadate, nitric acid and ammonium molybdate (Teicher, 1967; Csato and Kadar, 

1992).  

 

3.2.3  Description of vis-NIR spectrophotometer and optical measurement 

 

A mobile spectrophotometer (LabSpec@Pro Near Infrared Analyzer, Analytical Spectral 

Devices, Inc, USA) was used. It is with one Si array (350-1000 nm) and two Peltier 

cooled InGaAs detectors (1000-1800 nm and 1800-2500 nm). The sampling interval of 

the instrument was 1 nm. However, the spectral resolution was 3 nm at 700 nm and 10 
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nm at 1400 and 2100 nm. A high intensity probe with a light source built in was used. A 

quartz-halogen bulb of 3000 K° light source and a detection fibre are gathered in the 

high intensity probe enclosing a 35° angle. 

Optical scanning was carried out on fresh soil samples to build calibration models 

that can be used for in situ or on-the-go measurement. Only large plant residues and 

stones were removed from these fresh samples. Different amounts of non-sieved soil 

according to different textures were packed in Petri dishes of a 1.0 cm height by 3.6 cm 

in diameter. Soil in a Petri dish was shaken and a gentle pressure was applied on the 

surface before levelling with a spatula. This resulted in a smooth soil surface that 

ensured a maximum diffuse reflection and thus a good signal-to-noise ratio. Dark (7% 

reflectance) and white (75% reflection) reference measurements were taken before 

measurement of soil samples. One reading was collected from each soil sample. Each 

reading was an average of 15 successive measurements at 1.5 s, and this was used for 

spectra pre-processing and model establishment.  

 

3.2.4  Pre-processing of spectra 

 

The same pre-processing was used for all properties and for all analyses. Soil spectra 

were first reduced to 453-2448 nm, to eliminate noise at edges of each spectrum. 

After noise cut, spectra were reduced by averaging 5 successive wavelengths. 

Maximum normalisation was followed, which is typically used to get all data to 

approximately the same scale, or to get a more even distribution of the variances and 

the average values. The maximum normalisation is a normalisation that “polarizes” the 

spectra. The peaks of all spectra with positive values scale to +1, while spectra with 

negative values scale to -1. Since all soil spectra in this study have positive values, the 

peaks of these spectra scaled to +1 (Mouazen et al., 2005). The maximum 

normalisation led to better results for all elements as compared to other pre-

processing options tested. Spectra were then subjected to Savitzky-Golay first 

derivation (Martens and Naes, 1989). This method enables to compute the first or 

higher-order derivatives, including a smoothing factor, which determines how many 
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adjacent variables will be used to estimate the polynomial approximation used for 

derivatives. A second order polynomial approximation was selected. A 2:2 smoothing 

was carried out after the first derivative to decrease noise from the measured spectra. 

All pre-processing steps were carried out using MatLab software V. 7.1 (The Math 

Works, Natick, MA, USA). 

 

3.2.5  Establishment of calibration models  

Three different calibration techniques were used, namely, PCR, PLSR and BPNN. The 

PCR and PLSR were adopted for relating the variations in one response variable (OC, K, 

Mg, Na and P) to the variations of several predictors (wavelengths), using a TOMCAT, a 

MATLAB multivariate calibration toolbox (Daszykowski et al., 2007). Both PCR and PLSR 

model validation procedure was based on the leave-one-out cross validation method. 

The number of PCs of PCR and LVs of PLSR for a model was determined by examining a 

plot of leave-one-out cross validation residual variance against the number of loadings 

or latent variables obtained from PCR and PLSR, respectively (Martens and Naes, 

1989). For example, the number of latent variable of the first minimum value of 

residual variance was selected (Brown et al., 2005). Outliers were detected by 

subjecting the pre-processed spectra to PCA. The scores plot of the first two PCs 

provides two-dimensional maps showing the relation between data. Data points lying 

outside the 95% confidence ellipse (Hotelling T2) were considered as strong outliers 

(Figure 3-1) and were eliminated from the matrix (Constantinou et al., 2004). 

 

 

 

 

 

 

 

 

Figure 3- 1 Detection of outliers after principal component analysis (PCA) 
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The most popular neural network is BPNN (Bishop, 1995), which has been used for 

many applications. It can be used as calibration method for its supervised learning 

ability providing good results (Liu et al., 2008). Back propagation is the generalization 

of the Widrow-Hoff learning rule to Multiple-layer networks and nonlinear 

differentiable transfer functions (MatLab Neural Network Toolbox™ 6 User’s Guide). 

Input vectors and the corresponding target vectors are used to train a network until it 

can approximate a function, associate input vectors with specific output vectors, or 

classify input vectors in an appropriate way. Networks with biases, a sigmoid layer, and 

a linear output layer are capable to approximate any function with a finite number of 

discontinuities (MatLab Neural Network Toolbox™ 6 User’s Guide). Figure 3-2 

illustrates the architecture of the network that is most commonly used with the back 

propagation algorithm—the multilayer feed forward network. 

Extreme long training time and over-fitting are two main difficulties of ANN calibration 

when using raw infrared spectral data points as inputs. The detailed network training 

procedure could be found in the ‘MatLab Neural Network Toolbox™ 6 User’s Guide’. 

The input of BPNN might be either PCs obtained from PCA, or LVs obtained from PLSR 

(PLSR-vectors), and output will be the chemical values of the properties, some the 

input dimensions will be number of samples by PCs or LVs.  Adopting PCs or LVs as 

input for BPNN is an effective way of reducing computation resources and improving 

the robustness of ANN calibration (Janik et al., 2007). In this study the two possibilities 

were tested, namely BPNN-PCs and BPNN-LVs. The number of PCs chosen as input for 

BPNN was based on the cumulative percentage of explained data variance. The first 5 

PCs were considered as input in this study, since experience show that they can explain 

nearly 100 % of variance. The number of LVs considered as input for BPNN was the 

optimal number obtained at the first minimum value of residual variance, as explained 

by Brown et al. (2005). The selection of different numbers of PCs and LVs during the 

PCA and PLS, respectively, can be attributed to the fact that this procedure provided 
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the best results. Furthermore, this selection was also based on experience and review 

of literature. 

A standard three-layer feed-forward network composed of one input layer (PCs or 

LVs), one hidden layer (initially ten nodes) and one output layer (one node) was used. 

Each node in ANN, which represents a “neuron”, is associated with a transfer 

(activation) function that sums up the outputs from that node and passes them to the 

next layer in the network. This function was found achieved best accuracy for 

prediction. The tan-sigmoid function and a linear function were adopted in the hidden 

and in the output layers, respectively. The momentum set as 0.6, the least learning 

rate as 0.2, the threshold residual error as 0.5 × 10-5 and the training times as 2000, as 

suggested by He et al. 2008. During the training, 2 node configuration mehods were 

tested.  After training, the number of nodes of the hidden layer was adjusted (12) so 

that to achieve the best results. To avoid over-fitting, the cross validation option was 

adopted. More details on the mathematical background of the ANN approach can be 

found in literature (e.g. Cheng and Titterington, 1994; Basheer and Hajmeer, 2000). 

 

 

 

 

 

Due to the relatively small number of soil spectra covering a large geographical 

area, the total number of spectra (168) was randomly divided into two sets of 90 % 

and 10 %. We need around 150 soil samples to build up calibration models to obtain 
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Figure 3-2 Illustration of a feed-forward back propagation neural network (BPNN) 

containing input, hidden (with “n” neurons) and output layer 



 

42 

stable model performance, that’s why we divided the dataset to 90%:10%. The former 

set was the calibration set (cross-validation set) and was used to establish the 

calibration models based on leave-one-out cross-validation technique, which calculate 

the best model by using mean root mean square of prediction. The latter set was the 

validation set (prediction set) and was used for independent validation of the 

established models. This division of cross-validation (90%) and prediction (10%) sets 

was replicated three times and all four analyses (PCR, PLSR, BPNN-PCs and BPNN-LVs) 

were carried out on the three replicates. This was done in order to examine the 

robustness of calibration models developed for the prediction of five soil properties 

investigated. The sample statistics for the cross-validation and prediction sets for the 

three replicates are given in Table 3-1.  
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Table 3-1 Sample statistics of cross-validation and prediction data sets of the three divisions (replicates) of sample sets 

Property 

Number of 

samples 

Minimum Maximum Mean Standard deviation 

Cross-validation set      

OC, %       

 Set1 133 0.7 6.0 1.7 1.0 

 Set2 133 0.8 5.6 1.6 1.0 

 Set3 133 1.0 5.7 1.7 1.0 

P, mg 100 g-1       

 Set1 150 4.0 103.0 30.0 24.5 

 Set2 150 5.0 100.0 37.2 24.4 

 Set3 150 9.0 86.0 38.2 23.8 

Na, mg 100 g-1       

 Set1 140 0.8 10.0 3.3 3.1 

 Set2 140 1.3 9.9 3.7 3.2 

 Set3 140 0.9 8.3 3.3 3.0 

K, mg 100 g-1       

 Set1 139 7.0 78.0 24.6 18.3 

 Set2 139 9.0 76.0 25.4 18.2 

 Set3 139 8.0 73.0 24.8 17.8 

Mg, mg 100 g-1       

 Set1 148 3.0 60.0 19.0 14.6 

 Set2 148 6.0 51.0 18.7 14.3 

 Set3 148 6.0 60.0 19.2 14.6 

Prediction set      

OC, %       

 Set1 15 0.8 5.7 3.0 1.8 

 Set2 15 0.9 5.7 2.9 1.7 

 Set3 15 1.0 6.0 2.9 1.7 

P, mg 100 g
-1

       

 Set1 15 4.0 100.0 43.3 27.8 

 Set2 15 9.0 86.0 40.5 26.4 

 Set3 15 6.0 85.0 41.8 26.9 

Na, mg 100 g-1       

 Set1 16 1.5 9.0 4.6 3.8 

 Set2 16 1.3 7.9 4.4 3.5 

 Set3 16 1.4 8.5 4.5 3.8 

K, mg 100 g-1       

 Set1 16 2.0 73.0 49.1 24.3 

 Set2 16 10.0 77.0 51.4 24.1 

 Set3 16 10.0 74.0 52.1 24.3 

Mg, mg 100 g
-1

       

 Set1 15 3.0 54.0 23.7 14.1 

 Set2 15 4.0 47.0 22.6 13.9 

 Set3 15 5.0 46.0 23.2 13.6 
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3.2.6  Statistical indicators used to assess the accuracy of calibration models 

developed  

 

To compare between different calibrations methods established, the root mean 

square error of prediction of the independent prediction set was considered. The 

accuracy of each calibration was evaluated based on the residual prediction deviation 

(RPD=SD/RMSEP), which is the ratio of standard deviation of the laboratory measured 

values to RMSEP of the independent prediction set (Williams, 1987). The formula to 

calculate RMSEP is                   
 

 .It is the factor, by which the prediction 

accuracy has been increased, compared to the mean composition for all samples. 

Viscarra Rossel et al. (2006b) classified RPD values as follows: RPD<1.0 indicates very 

poor model/predictions and their use is not recommended; RPD between 1.0 and 1.4 

indicates poor model/predictions where only high and low values are distinguishable; 

RPD between 1.4 and 1.8 indicates fair model/predictions which may be used for 

assessment and correlation; RPD values between 1.8 and 2.0 indicates good 

model/predictions where quantitative predictions are possible; RPD between 2.0 and 

2.5 indicates very good, quantitative model/predictions, and RPD>2.5 indicates 

excellent model/predictions. This classification system was adopted in this study. 

 

3.3  Results and discussion 

 

3.3.1 Prediction accuracy obtained with different calibration methods 

 

The calibration methods considered in this study provide different prediction 

accuracy of the studied soil properties. Figure 3-3 and Figure 3-4 summarise 

predictions of OC and extractable forms of K, Mg, Na and P obtained in the three 
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replicates. Among soil properties studied, OC is the most accurately measured with 

BPNN-LVs (average values of the three replicates of R2
pre (coefficient of determination) 

= 0.84, RMSEP = 0.68% and RPD = 2.54). This prediction accuracy is classified to be 

excellent. One of the highest reported accuracy of OC measurement with a vis-NIR 

spectroscopy is that of Fidêncio et al. (2002), accounting for only two soils (Oxisols and 

Ultisols) in Brazil. Fidêncio et al. (2002) arrived at R2
pre  (coefficient of determination) 

value of 0.91 and RMSEP of 0.25 %, by conducting BPNN-PCs analysis on spectra of dry 

soil samples. By comparing this result with that of the current study, one can conclude 

that BPNN-LVs modeling is a better choice than BPNN-PCs, since the sample set used in 

the latter study was collected from large geographical area (Belgium and Northern 

France) including many soil types, and that optical scanning occurred under variable 

moisture content of soil samples. Similarly, results obtained with BPNN-LVs for Mg is 

also classified to be excellent, although the prediction accuracy is slightly lower than 

that of OC (average values of the three replicates of R2
pre = 0.82, RMSEP = 5.46 mg 100 

g-1 and RPD = 2.54). In spite of the fact that Mg does not possess direct spectral 

response in vis-NIR range, it is most likely to be measured throughout other properties 

as explained section 3.2. Both PLSR and PCR do not confirm Mg to be the second best 

property to be predicted after OC (Figure 4-4). Literature supports a high accuracy 

(R2
val = 0.82) for Mg measurement with NIR spectroscopy (van Groenigen et al., 2003), 

which was better measured than Ca, K and available P.  
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The predictions of K, Na and P are also best achieved with BPNN-LVs models (Figure 3-

3 and Figure 3-4). These predictions are classified as good model predictions (average 

values of the three replicates for R2
pre = 0.68 – 0.74, RMSEP = 2.10 – 13.94 mg 100 g-1 

and RPD = 1.77 – 1.94). Here, these models were considered to provide possible 

quantitative predictions. However, Figure 3-4 confirms P to be the best measured as 

compared to K and Na. Shepherd and Walsh (2002) reached high prediction qualities 

Figure 3-3 Mean values (average of three replicates) and standard deviation (error bar) of R2 and root mean 

square error (RMSE) obtained from principal component regression (PCR), partial least squares regression (PLSR), 

back propagation neural network-principal components (BPNN-PCs) and back propagation neural network-latent 

variables (BPNN-LVs) analyses for cross-validation (Cal) and prediction (Pre) data sets for: (a) organic carbon 

(OC), (b) extractable phosphorous (P), (c) extractable sodium (Na), (d) extractable potassium (K) and (e) 

extractable magnesium (Mg) 
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for exchangeable Mg, medium prediction quality for exchangeable K and poor 

prediction quality for P, whereas Mouazen et al. (2006c) reached medium prediction 

quality for exchangeable Mg and P and poor prediction quality for exchangeable K. 

Others reported high prediction accuracy for P (Bogrekci and Lee 2005a). It can be 

concluded that Mg and P can be measured with higher accuracy that Na and K, which 

is in line with results achieved in this study using BPNN-LVs analysis (Figure 3-3 and 

Figure 3-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Negligible differences in R2, RMSE and RPD values were observed between the 

three replications, drawing the conclusion that the models developed were stable (see 

the standard deviation in Figure 3-3 and Figure 3-4). The scatter plot of laboratory 

versus vis-NIR measured soil properties, including three replicates, is shown in Figure 

3-5), as an example. Since OC is the only spectrally active property, it is accepted that  

All four analyses result in the highest prediction accuracy for OC, as compared to 

the other four soil properties. Both the leave-one-out cross validation and prediction 

results showed that all BPNN-LVs models outperformed PCR, PLSR and BPNN-PCs 

Figure 3-4 Mean values (average of three replicates) and standard deviation (error bar) of residual 

prediction deviation (RPD) obtained from principal component regression (PCR), partial least squares 

regression (PLSR), back propagation neural network-principal components (BPNN-PCs) and back 

propagation neural network-latent variables (BPNN-LVs) analyses for cross-validation (Cal) and prediction 

(Pre) data sets for: organic carbon (OC), extractable phosphorous (P), extractable sodium (Na), extractable 

potassium (K) and extractable magnesium (Mg) 
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models (Figure 3-3 and Figure 3-4). Janik et al. (2009) reported similar results for the 

prediction of selected soil chemical and physical properties using mid infrared 

spectroscopy. Furthermore, PLSR provided smaller accuracy than BPNN-LVs but 

showed better performance than PCR (Figure 3-3. and Figure 3-4). Compared to PLSR, 

BPNN-PCs provided a slight improvement of prediction accuracy of all properties 

studies except OC (Figure 3-3 and Figure 3-4). 
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Figure 3- 5Scatter plot of laboratory measured versus visible (vis) and near infrared (NIR) predicted soil 

properties using back propagation neural network-latent variables (BPNN-LVs) models developed for the 

three prediction sets (Table 4-1) for: (a) organic carbon, (b) phosphorous, (c) sodium, (d) potassium and 

(e) magnesium. 

 

3.3.2  Regression coefficients and prediction 
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The regression coefficients distribution over the entire wavelength range (453 – 2448 

nm) shows distinguished few wavelength bands for almost all soil properties 

considered (Figure 3-6). These bands are in vis and NIR regions and might be attributed 

to energy absorption due to colour, water, organic constituents and clay minerals in 

the soil. Two peaks in vis range at about 490 and 640 are associated with the blue 

region around 450 nm and the red region around 680 nm. It was reported that the 

absorption band at 450 nm could be also caused by paired and single Fe3+ electron 

transitions to a higher energy state (Sherman and Waite 1985). These two peaks are 

remarkably similar for all properties except for K. This leads to the conclusion that 

colour contributes similarly to the prediction accuracy of all studied elements except K. 

In NIR region between 750 – 1800, only two distinguished peaks can be seen for all 

properties. These two peaks associate with the water absorption bands in the third 

overtone region (960 nm) and in the second overtone region (1450 nm). However, 

these peaks are more evident with OC, P, Na and K, as compared to Mg. It is clearly 

demonstrated that the most active spectral region is between 1800 and 2450 nm, 

where more distinguished bands can be seen. These bands associate with the water 

absorption band in the first overtone region (1950 nm), clay minerals around 2300 nm 

and C-H + C-H, C-H + C-C and N-H combinations (Figure 3-6). Of all chemical properties 

studied, only OC possesses direct spectral response (overtones or combinations) in NIR 

region, whereas all other properties (K, Mg, Na and P) do not have direct spectral 

responses. Therefore, the prediction of these properties (K, Mg, Na and P) may be 

attributed to locally present co-variation to spectrally active constituents (organic 

matter, carbonates, clays, etc). Such co-variations may of course vary between data 

sets. It is worth indicating that this paper reports on the measurement of the 

extractable fraction of K, Mg, Na and P, which makes the interpretation of the 

regression coefficients curve very complicated. In fact, what fraction of these 

properties can be correlated with NIR spectroscopy is still unknown and needs further 

investigation. For example, it is possible that the excellent prediction of extractable Mg 

(Figure 3-3. and Figure 3-4) is due to the high correlation between NIR and total Mg 

(indirectly captured by NIR through spectrally active compounds and minerals), which 
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is mediated through the relationship between the total and extractable Mg. Reeves 

and Smith (2009) have reported good results for the prediction of Mg with NIR 

considering soils from a geochemical survey of North America. They attributed this 

good prediction to Mg correlations with carbonate content and factors influencing 

cation exchange capacity, such as organic matter content (Malley et al., 2004). Miller 

(2001) realised that it is often not possible to confidently isolate relevant effects in the 

NIR spectrum based on knowledge of the sample’s chemistry and spectroscopy only. 

Therefore, further study is needed to understand why these properties are measurable 

with excellent (Mg) and acceptable accuracy (K, P and Na) using NIR spectroscopy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Conclusions 

 

Figure 3- 6 Regression coefficients distribution over the entire wavelength obtained from partial least squares 

regression (PLSR). Dotted lines representing zero correlation are separated by equal factor of 1.5 for clarity of 

presentation 
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The comparison among PCR, PLSR and BPNN methods for the prediction accuracy of 

OC, extractable forms of K, Na, Mg and P using vis and near infrared NIR diffuse 

reflectance spectroscopy allowed the following conclusions to be drawn: 

1.  BPNN-LVs models outperformed PCR, PLSR and BPNN-PCs models for all soil 

properties. 

2.  The best prediction accuracy obtained with BPNN-LVs model was for OC, which 

is the only property that possesses spectral response in the NIR region. However, 

comparable results to OC were obtained for Mg with BPNN-LVs models. 

3.  Soil mineral nutrients, namely, K, Mg, Na and P were found measurable with 

different degree of accuracy using vis-NIR spectroscopy, which was attributed to 

co-variation to spectrally active constituents. 

Based on results achieved in this study, it is recommended to adopt BPNN-LVs analysis 

as the best modelling method to predict soil properties (OC, K, Mg, Na and P). 

However, further studies are needed to provide in depth interpretation of the 

successful measurement of soil properties that do not possess direct spectral response 

in NIR region. 

 

 

 

 

 



 

53 

4 Effect of sample range or standard deviation on model 

accuracy  

4.1 Introduction  

The evaluation of the soil spatial variability using a fast, robust and cheap tool is one of 

the key steps towards the successful implementation of the precision agriculture 

(Srinivasan, 2006). During the last two decades, vis-NIR spectroscopy has been proved 

to be a fast, cost effective and a relative accurate alternative method to the laboratory 

analyses of soil physical, chemical and biological properties (Shepherd & Walsh, 2002; 

Brown et al., 2006; Mouazen et al., 2006a; Wetterlind et al., 2008). However, the 

successful application of the Vis-NIR spectroscopy depends largely on the development 

of accurate and robust calibration models, which is particularly crucial for in situ and 

on-line measurement conditions. This is because, under field-measurement conditions, 

the influence of environmental factors, namely, ambient light, soil moisture content, 

texture, colour, temperature, harsh field conditions, dust, stoniness and surface 

roughness are possible sources of error (Waiser et al., 2007). Thus, numerous 

researchers have explored new modelling approaches to improve vis-NIR calibration 

accuracy. 

Most studies on soil Vis-NIR spectroscopic applications are limited to within-field scales 

(Huang et al., 2007; Mouazen et al., 2005; Wijaya et a.l, 2001), or to homogenous soil-

type areas, although researchers tend to expand applications to regional or national 

(Mouazen et al., 2006c), continental or even global (Brown, 2007) scales. It was 

reported by Stenberg et al. (2010a) that the calibration scale affects the accuracy of 

the models developed, and that field-scale modelling provides the greatest accuracy. 

Models developed for large geographical areas based on diverse soil samples may 

provide unacceptable prediction accuracy or even fail, largely because of the large 

variability of texture type, colour, moisture content and origin of soil. However, 

spectral libraries for global calibration models should include sufficient number of soil 

samples, which can illustrate the soil variability in the new target site where the 

prediction will be carried out (Viscarra Rossel et al., 2008; Guerrero et al., 2010). 

However, the large sample number may increase the prediction error. Therefore, 
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before deciding on the scale of calibration, a decision on the degree of precision 

required has to be made. Cost evaluation for building calibration models has to be also 

considered.  

Mouazen et al. (2006b) reported greater accuracy of prediction (R2 = 0.98; RMSEP = 

1.6%; RPD = 5.22) of the soil moisture content of a local calibration developed for one 

field of about 7-ha, compared with a general calibration developed for several fields 

distributed in Belgium and Northern France (R2 = 0.88; RMSEP = 2.5%; RPD = 2.88). 

Similar results were found by the same research group for extractable phosphorous (P) 

(Mouazen et al., 2009). Stevens et al. (2010) reported improved results with local 

calibrations stratified by soil type and agro-geological region than with global 

calibrations. Spiking the local (target site) soil samples into the global or regional 

models has also proved to be an efficient way to improve the prediction accuracy of 

target field for some soil constituents (Shepherd & Walsh, 2002; Brown, 2007, Viscarra 

Rossel et al., 2008, Guerrero et al., 2010). Guerrero et al. (2010) observed that the 

number of samples in the calibration set could be also an important factor controlling 

the adaptability of calibrations to target sites and, thus, small-size models performed 

better than large-size model. We believe that the different model performance caused 

by different sample size is attributed to sample statistics, including the variation 

(concentration) range and SD. However, there is limited literature on the effect of 

sample statistics of calibration set on the prediction accuracy, particularly for in situ 

measurement conditions at the farm scale. Furthermore, the performance of multi-

farm (general) models in predicting key soil properties compared with the 

corresponding models for individual farms with different sample number and statistics 

has not been explored so far.  

The aim of the present paper is to investigate the relationship between the calibration 

accuracy and the variation range or SD of soil samples using data of three farms in 

Europe. The paper also compares the results of individual farm models with that of a 

multi-farm model using samples from three farms across three European countries. 
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4.2 Material and methods 

 

4.2.1 Soil samples  

 

A total of 408 soil samples were used in this study. They were collected from three 

different farms in Europe, namely, Mespol Medlov, A.S. (Czech Republic; 

http://farmsubsidy.org/CZ), Wimex (Germany; http://www.wimex-online.de), 

Bramstrup Estate (Denmark; http://www.bramstrup.dk). Bulked samples from 16 cores 

were collected from the upper soil layer (0 – 30 cm) in the spring of 2008 (Czech 

Republic and Germany) and in the spring of 2009 (Denmark), covering a large 

landscape and soil diversity. A total of 205 and 70 soil samples were, respectively, 

collected from six fields in the Czech Republic and five fields in Denmark. The 

remaining 128 soil samples were collected from four sub-areas belong to Wimex farm 

in Germany, with four samples from two fields at Reppichau, 50 samples from nine 

fields at RAG, 20 samples from ten fields at Aken and 54 samples from 15 fields at the 

Wulfen farm. About 200 g of each sample was stored at -18º C. Half of each sample 

was sent to the Leibniz Centre for Agricultural Landscape Research (ZALF) in Germany 

for soil chemical analyses and the remaining samples were to Cranfield University for 

optical measurements and data analysis. 

 

4.2.2 Chemical analysis  

 

Laboratory analyses of total carbon (TC), organic carbon (OC), total nitrogen (TN), 

extractable phosphorous (P) and pH were carried out by ZALF using standard 

procedures described here. The calcium acetate lactate method was used for 

preparing an extraction, in which P was measured by a colorimetric method. Soil TC, 

OC and TN were measured by a TrusSpecCNS spectrometer (LECO Corporation, St. 

Joseph, MI, USA) using the Dumas combustion method (Dumas, 1963). Soil pH was 

measured by a glass electrode in a 1:5 (volume basis) suspension of soil in a solution of 
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1 M KCl after shaking on a side-to-side shaker (set at 300 rpm per minute) for 60 

minutes. 

 

4.2.3 Optical measurement  

 

Each soil sample was placed in a glass container and mixed well. Big stones and plant 

residues were excluded. Then each soil sample was placed into three Petri dishes, 

which were 2 cm in depth and 2 cm in diameter. The soil in the Petri dish was shaken 

and pressed gently before levelling with a spatula to ensure a smooth soil surface and 

therefore maximum light reflection and a large signal to noise ratio (Mouazen et al., 

2005). 

Soil samples were scanned by a fibre Vis-NIR spectrophotometer (LabSpec@Pro Near 

Infrared Analyzer, Analytical Spectral Devices, Inc, Boulder, Co, USA): this had one Si 

array (350 – 1000 nm) and two Petier cooled InGaAs detectors (1000 – 1800 nm and 

1800 – 2500 nm). The sampling interval of the instrument was 1 nm. However, the 

spectral resolution was 3 nm at 700 nm and 10 nm at 1400 and 2100 nm and this data 

pre treatment can reduce the noise effectively without losing the spectral information.  

A high-intensity probe with a quartz-halogen bulb of 3000 K built-in was used. The light 

source and detection fibre were gathered in the high-intensity probe enclosing a 35° 

angle. A 100% white reference was used before scanning. A total of three scans were 

collected from each replicate, and these were averaged into one spectrum for each 

sample.  

 

4.2.4 Data pre-treatment 

 

The same pre-treatment of spectral data was carried out for all soil properties 

investigated by using the Unscrambler 7.8 software (Camo Inc.; Oslo, Norway). The 

spectra were first reduced to 450 – 2450 nm, to eliminate the noise at both edges of 

each spectrum. After noise was removed, spectra were reduced by averaging 5 
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successive wavelengths. Maximum normalization was followed, which is typically used 

to get all data to approximately the same scale, or to get a more even distribution of 

the variances and the average values. The maximum normalisation ’polarizes’ the 

spectra. The peaks of all spectra with positive values are scaled to +1, while spectra 

with negative values are scaled to -1. Since all soil spectra in this study had positive 

values, the peaks of these spectra were scaled to +1 (Mouazen et al., 2005). The 

maximum normalization led to improved results for all the investigated properties as 

compared with other pre-treatments tested. Spectra were then subjected to Savitzky-

Golay first derivation (Martens & Naes, 1989). This method enables the computation 

of the first- or higher-order derivatives, including a smoothing factor, which 

determines how many adjacent variables to be used to estimate the polynomial 

approximation used for derivatives. A second-order polynomial approximation was 

selected. A 2:2 Savitzky-Golay smoothing was carried out after the first derivative to 

remove noise from spectra.  

 

4.2.5 Establishment of calibration models 

 

The pre-treated spectra and the results of laboratory chemical analyses were used to 

develop the calibration models for the different soil properties listed in Table 4-1. Soil 

spectra were divided into either calibration (70%) or independent validation (30%) 

sets. The calibration spectra were subjected to a PLSR with leave-one-out cross 

validation using the Unscrambler 7.8 software (Camo Inc.; Oslo, Norway). The number 

of latent variables for a model was determined by examining a plot of leave-one-out 

cross validation residual variance against the number of latent variables obtained from 

PLSR. The latent variable of the first minimum value of residual variance was selected 

(Brown et al., 2005). Outliers were detected by using the residual sample variance plot 

after the PLSR. Samples located individually far from the zero line of residual variance 

were considered to be outliers and were excluded from the analysis. 
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Table 4-1 Sample statistics of laboratory results of samples collected from Bramstrump Estate farm in 

Denmark (70 samples), Wimex farm in Germany (128 samples) and Mespol Medlov farm in Czech 

Republic (205 samples) 

Property 
Nr of 

samples 

Calibration set Independent validation set 

 

1- Bramstrup Estate 

 

70 

Min Max Mean SD Min Max Mean SD 

 

Total carbon (TC) / % 

  

0.75 

 

18.02 

 

1.84 

 

3.0 

 

1.00 

 

13.11 

 

2.46 

 

3.47 

Organic carbon (OC) / %  0.74 14.43 1.74 2.5 0.99 11.89 2.37 3.22 

Total nitrogen (TN) / %  0.07 1.22 0.17 0.2 0.10 0.947 0.21 0.25 

Phosphorous (P) / mg 100g-1  3.34 13.01 6.46 2.1 3.69 11.13 6.17 2.24 

pH  6.67 8.22 7.19 0.5 6.89 8.16 7.37 0.34 

 

2- Wimex 

 

128 

  

 

Total carbon (TC) / % 

  

0.72 

 

7.61 

 

1.65 

 

1.2 

 

0.83 

 

7.44 

 

1.89 

 

1.40 

Organic carbon (OC) / %  0.70 3.51 1.38 0.7 0.82 3.49 1.57 0.60 

Total nitrogen (TN) / %  0.06 0.38 0.13 0.1 0.08 0.38 0.16 0.06 

Phosphorous (P) / mg 100g-1  2.78 12.92 7.02 1.9 2.67 53.27 10.65 11.62 

pH  6.01 7.59 6.78 0.4 4.92 7.70 6.65 0.71 

 

3- Mespol Medlov 

 

205 

  

 

Total carbon (TC) / % 

  

1.07 

 

2.28 

 

1.53 

 

0.2 

 

1.05 

 

2.04 

 

1.41 

 

0.21 

Organic carbon (OC) / %  1.06 2.16 1.48 0.2 1.04 2.03 1.39 0.21 

Total nitrogen (TN) /  %  0.11 0.24 0.17 0.0 0.11 0.21 0.16 0.03 

Phosphorous (P) / mg 100g-1  2.37 37.51 9.36 5.3 2.16 25.3 7.90 3.94 

pH  5.87 7.87 6.96 0.6 5.62 7.60 6.39 0.39 

 

4- General models 

 

403 

  

 

Total carbon (TC) / % 

  

0.72 

 

18.03 

 

1.63 

 

1.5 

 

0.83 

 

13.11 

 

1.73 

 

1.68 

Organic carbon (OC) / %  0.70 14.43 1.50 1.2 0.82 11.89 1.61 1.34 

Total nitrogen (TN) / %  0.06 1.22 0.16 0.1 0.08 0.95 0.16 0.11 

Phosphorous (P) / mg 100g-1  2.37 37.51 8.08 4.2 2.16 53.27 8.55 7.47 

pH  5.87 8.22 6.94 0.5 4.92 8.16 6.63 0.62 
 

 

Calibration models were developed for each farm separately using samples from each 

farm, whereas general calibration models using samples from all three farms were 
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developed. Tables 4-2 and 4-3 summarize the results of cross validation and 

independent validation, respectively. 

 

4.3 Results and discussion 

 

Both R2 and RPD were used to compare the prediction accuracy of different models for 

different properties, whereas RMSEP was used to evaluate the accuracy of 

measurement as compared with the standard chemical analysis. 

 

4.3.1 Farm individual models 

Examining results in Tables 4-2 and 4-3 reveals that the accuracy of prediction differed 

among the different farms. The best results were obtained for Bramstrup Estate farm, 

followed by those for Wimex farm (Germany), with R2 = 0.85 – 0.93 and RPD = 2.61 – 

3.96 for the cross-validation set, and R2 = 0.74 – 0.96 and RPD = 2.00 – 4.95 for the 

independent validation set obtained for both farms. These results are in line with 

those achieved by others (Chang et al., 2001; Reeves & McCarty, 2001; Brown et al., 

2005; Cohen et al., 2005; Guerrero et al., 2010) for the same soil properties. However, 

fresh soil samples were scanned in the present study to simulate in-situ measurement 

conditions, whereas the former studies used dried and sieved samples. The poorest 

results were obtained for the Mespol Medlov, A.S. farm for all the soil properties 

investigated. Although TC, OC and TN had direct spectral responses in the NIR region 

that should normally result in successful measurement, the poor accuracy of 

prediction of Mespol Medlov, A.S. models can be attributed mainly to the narrow 

range of concentrations of those properties in the soil samples (Table 4-1). For those 

soil properties without direct spectral responses in the NIR range (such as pH and P), 

the results are relatively poor (Tables 4-2 and 4-3).  
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Table 4-2 Validation results of partial least squares regression (PLSR)-cross validation models on 

calibration data set. Soil samples were collected from three European Farms, namely, Bramstrump 

Estate farm in Denmark (49 samples), Wimex farm in Germany (128 samples) and Mespol Medlov farm 

in Czech Republic (205 samples) 

Property 
LVa R2b Slope Intercept RMSEPc RPDd 

1- Bramstrup Estate              

 

Total carbon (TC) / %  

 

6 

 

0.90 

 

0.79 

 

0.29 

 

0.90 

 

3.29 

Organic carbon (OC) / % 6 0.93 0.81 0.27 0.63 3.96 

Total Nitrogen (TN) / % 5 0.90 0.75 0.03 0.06 3.38 

pH 1 0.15 0.16 6.04 0.41 0.94 

Phosphorous (P) / mg 100g-1 2 0.21 0.24 4.82 1.86 1.12 

        

2- Wimex  

      

 

Total carbon (TC) / %  

 

7 

 

0.85 

 

0.87 

 

0.20 

 

0.47 

 

2.61 

Organic carbon (OC) / % 3 0.87 0.87 0.17 0.24 2.75 

Total Nitrogen (TN) / % 4 0.87 0.87 0.02 0.02 2.91 

pH 1 0.64 0.64 2.38 0.26 1.68 

Phosphorous (P) / mg 100g-1 1 0.00 0.00 1.72 1.95 0.99 

        

3- Mespol Medlov, A.S.  

      

 

Total carbon (TC) / %  

 

8 

 

0.56 

 

0.63 

 

0.55 

 

0.16 

 

1.55 

Organic carbon (OC) / % 9 0.66 0.70 0.43 0.13 1.72 

Total Nitrogen (TN) / % 8 0.65 0.68 0.05 0.02 1.67 

pH 9 0.76 0.78 1.50 0.30 1.99 

Phosphorous (P) / mg 100g-1 9 0.51 0.57 3.97 3.75 1.42 

 

4- General models  

      

 

Total carbon (TC) / %  

 

9 

 

0.70 

 

0.68 

 

0.50 

 

0.80 

 

1.83 

Organic carbon (OC) / % 9 0.74 0.64 0.51 0.59 1.95 

Total Nitrogen (TN) / % 15 0.74 0.68 0.05 0.049 1.99 

pH 12 0.66 0.72 1.92 0.32 1.69 

Phosphorous (P) / mg 100g-1 9 0.26 0.33 5.68 3.86 1.09 

a latent variables. 

 b determination coefficient. 

 c root mean square error of prediction. 

d residual prediction deviation (Standard deviation/root mean square error of prediction) 
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Table 4-3 Validation results of partial least squares regression (PLSR)-cross validation technique models 

on independent validation data set. Soil samples were collected from three European Farms, namely, 

Bramstrump Estate farm in Denmark (21 samples), Wimex farm in Germany (128 samples) and Mespol 

Medlov farm in Czech Republic (205 samples) 

Property 
R2 Slope Intercept RMSEP RPD 

1- Bramstrup Estate            

Total carbon (TC) / %  0.89 1.24 0.09 1.10 3.15 

Organic carbon (OC) / % 0.96 1.10 0.01 0.62 4.95 

Total Nitrogen (TN)  / % 0.93 1.17 0.01 0.06 3.88 

pH 0.08 0.16 6.21 0.33 1.10 

Phosphorous (P) / mg 100g-1 0.37 0.28 4.15 1.72 1.40 

2- Wimex       

 

Total carbon (TC) / %  

 

0.74 

 

0.84 

 

0.42 

 

0.70 

 

2.00 

Organic carbon (OC) / % 0.75 0.83 0.23 0.30 2.00 

Total Nitrogen (TN) / % 0.75 0.79 0.03 0.03 2.10 

pH 0.16 0.22 5.40 0.63 1.13 

Phosphorous (P) / mg 100g-1 0.16 0.07 7.15 12.02 0.97 

       

3- Mespol Medlov, A.S.  

     

 

Total carbon (TC) / %  

 

0.14 

 

0.35 

 

0.97 

 

0.22 

 

0.95 

Organic carbon (OC) / % 0.12 0.53 0.58 0.19 1.07 

Total Nitrogen (TN) / % 0.09 0.21 0.11 0.03 0.81 

pH 0.30 0.38 0.93 0.30 1.31 

Phosphorous (P) / mg 100g-1 0.50 0.82 -1.47 4.41 0.88 

       

4- General models 

     

 

Total carbon (TC) / %  

 

0.83 

 

0.98 

 

0.28 

 

0.66 

 

2.45 

Organic carbon (OC) / % 0.83 0.96 0.11 0.54 2.49 

Total Nitrogen (TN) / % 0.79 0.99 0.01 0.05 2.21 

pH 0.03 0.12 5.71 0.70 0.90 

Phosphorous (P) / mg 100g-1 0.01 0.07 8.57 8.36 0.92 

b determination coefficient. 
 c root mean square error of prediction. 
d residual prediction deviation (Standard deviation/root mean square error of prediction) 
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Soil P is a crucial soil nutrient for plant growth and yield and in this study its 

measurement with Vis-NIR spectroscopy was unsuccessful (R2 ≤ 0.51; RPD ≤ 1.42), 

which is also in line with most studies reporting on the use of this technique for soil 

analysis. To date, the most significant reports on successful measurement of P are 

those of Maleki et al. (2006) and Bogrekci & Lee (2005a). This underlines the need for 

further investigation to understand and improve the calibration accuracy of soil 

properties without direct spectral responses in the NIR range for soil components such 

as P.  

 

4.3.2 General models 

In a similar way to the farm individual models, the accuracies (R2 and RPD) of the 

general calibration models for TC, OC and TN were good, emphasising the influence of 

the direct spectral responses of these properties in the NIR range (Tables 4-2 and 4-3). 

Furthermore, poor calibration results were obtained for properties without direct 

spectral responses such as pH and P (Tables 4-2 and 4-3). The accuracies of prediction 

of the general models in the independent validation (Table 4-3) were considerably 

larger (R2 = 0.79 – 0.83 and RPD = 2.21 – 2.49 in the independent validation set) than 

those for Mespol Medlov, A.S. (R2 = 0.09 – 0.14 and RPD = 0.81 – 1.07) and Wimex (R2 = 

0.74 – 0.75 and RPD = 2.0 – 2.1) farms only, but poorer than those of the individual 

models for the Bramstrup Estate farm. In spite of the fact that the mixed sample 

models were developed with a larger number of soil samples (403), they performed 

better than those of Mespol Medlov A.S. and Wimex farms, using a smaller number of 

soil samples of 205 and 128, respectively, which is a contradictory result to that 

reported by Guerrero et al. (2010). The larger sources of error caused by the larger 

variability in colour, texture and moisture content in the general models might explain 

the less successful output compared with the individual models for the Bramstrup 

Estate farm. 
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4.3.3 Prediction accuracy versus variation sample concentration 

To investigate the reason for the different quality of results obtained with different 

models, we plotted RPD against the range and R2 and RMSEP against SD of sample 

concentration obtained with the standard laboratory chemical analyses. Figures 4-1a, 

4-1b and 4-1c show RPD variation with range for the three properties with direct 

spectral response (TC, OC and TN). A positive linear correlation of RPD with the 

concentration range (R2 >0.97) was found for individual models of the three farms. The 

clear increase in RPD with the range explains the descending order of successful results 

obtained successively with models for Mespol Medlov, A.S., Wimex and Bramstrup 

Estate farms. In spite of the fact that general models have larger sample concentration 

ranges and SDs than all other individual farms, the greater soil variability (for example 

of colour, moisture content, soil texture, land management, parent material, etc) of 

the mixed sample set has resulted in deterioration of RPD and R2 values. These results 

prove clearly that farms with small variations in concentrations of a particular property 

will lead to poor model accuracy. However, RMSEP increased with SD (Figures 4-2a, 4-

2b and 4-2c), which demonstrates that, with increasing variability of sample 

concentration, the prediction error as compared with the chemical analysis (Saeys et 

al., 2005) also increases. Stenberg et al. (2010b) also discussed how the variation in soil 

organic matter (SOM) influences the prediction accuracy considered as RMSEP, and 

suggested that less soil variation expected at field scale would result in better 

calibrations than more general ones over larger geographic scales. Although R2 and 

RPD values (Tables 4-2 and 4-3) indicate that the prediction of TC, OC and TN for 

Bramstrup Estate farm models was more successful than for other individual farms and 

general models because of the larger range of sample chemical concentration in both 

the calibration and validation sets (Table 4-1), the errors (RMSEP) expected from 

Bramstrup models are much larger. An opposite relationship between RPD and range 

to those for TC, OC and TN was found for pH (Figure 4-1d), and no clear relationship 

between RPD and the range was found for P (Figure 4-1e). A similar trend for the 

relationship between RPD and sample concentration range were obtained for the 

relationship between R2 and SD for both groups with and without direct spectral 
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responses (Figure 4-2). As was the case of the Mespol Medlov A.S. model, the 

prediction of pH and P was poor for the Bramstrup Estate and Wimex farms, regardless 

of the concentration range and SD. This suggests that the variation of soil properties 

(both the range and SD), does not affect the prediction those without spectral 

responses, but does affect those properties with direct spectral responses. 

  

 

 

Figure 4-1 Variation of the residual prediction deviation (RPD) as a function of the sample concentration 

range in the validation set for (a) total carbon (TC), (b) organic carbon (OC), (c) total nitrogen (TN), (d) 

pH and (e) extractable phosphorous (P). Soil samples were collected from three European Farms, 

namely, Bramstrump Estate farm in Denmark (21 samples), Wimex farm in Germany (38 samples) and 

Mespol Medlov farm in Czech Republic (61 samples). 
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4.3.4 Analysis of prediction with different models 

 

To explain the various measurements regarding different soil properties, we plotted 

the regression coefficients for TC, OC, TN, P and pH resulted from the general model. 

The distribution of regression coefficients over the entire wavelength range (450 – 

2450 nm) studied shows distinguishable wavelength bands for almost all soil 

properties considered (Figure 5-3). These bands are in the Vis and NIR regions and 

might be attributed to energy absorption caused by colour, water, organic constituents 

and clay minerals in the soil. Two peaks in the Vis range at about 490 and 640 nm 

reflect the blue band around 450 nm and the red band around 680 nm. 
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Figure 4-2 Variation of root mean square error of prediction (RMSEP) and R2 as a function of the sample 

standard deviation (SD) in the validation sets for (a) total carbon (TC), (b) organic carbon (OC), (c) total 

nitrogen (TN), (d) pH and (e) phosphorous (P). Soil samples were collected from three European Farms, 

namely, Bramstrump Estate farm in Denmark (21 samples), Wimex farm in Germany (38 samples) and 

Mespol Medlov farm in Czech Republic (61 samples) 

 

It has been reported that the absorption band at 450 nm can be also caused by paired 

and single Fe3+ electron transitions to a higher energy state (Sherman & Waite, 1985).  

Another two peaks could be seen in Figure 4-3, which result from the water absorption 

bands in the third (960 nm) and second (1450 nm) overtone regions. However, the 

peak at 1450 nm was more evident with TC, OC, TN and P than with pH. It is clearly 
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demonstrated that the most active spectral region is that between 1800 and 2450 nm, 

where several distinct bands can be seen. These bands associate with the water 

absorption band in the first overtone region (1950 nm), clay minerals around 2300 nm, 

C-H + C-H, C-H + C-C, OH + minerals and N-H combinations (Mouazen et al., 2010). 

These peaks are much more evident with TC, OC and TN, than with pH and P. The 

regression coefficients of TC, OC and TN have similar trend and clearly defined peaks in 

both the Vis and NIR region. However, stronger peaks were found in the NIR region for 

TC, OC than for TN. Fewer and weaker peaks could be found in the Vis and NIR regions 

for P, and there was a ‘flat’ relationship for pH (Figure 4-3), both of which explain the 

unsuccessful measurement of these two properties. 

 

 

Figure 4-3 Regression coefficients distribution for total carbon (TC), organic carbon (OC), total nitrogen 

(TN), phosphorous (P) and pH over the entire wavelength obtained from the partial least squares 

regression (PLSR). Dotted lines representing zero correlation are separated by an equal factor of 1.5 for 

clarity of presentation 

 

450 950 1450 1950

R
el

et
iv

e 
co

rr
el

at
io

n

P

pH

TN

OC

TC

Wavelengh / nm

Blue red O-H O-H O-H N-H C-H+C-C

O-H+Minerals

C-H+C-H

2450



 

68 

Table 4-4 shows the cross-linear correlations between all five soil properties studied on 

the basis of the chemical analysis values of the general calibration set (408 samples). 

Good correlations (R 2≥0.92) between TC, OC and TN can be seen, whereas there were 

poor correlations between P and pH on the one hand and the spectrally active group of 

properties on the other hand. 

Table 4-4 Pearson correlations (R2 value) between chemical analysis value of total 

carbon (TC), organic carbon (OC), total nitrogen (TN), phosphorous (P) and pH for all 

soil samples collected from Bramstrump Estate farm in Denmark (70 samples), Wimex 

farm in Germany (128 samples) and Mespol Medlov farm in Czech Republic (205 

samples) 

 
TC OC TN P pH 

TC 1     

OC 0.93 1    

TN 0.92 0.97 1   

P 0.01 0.01 0.02 1  

pH 0.01 0.05 0.06 0.13 1 

 

The good correlation between TC and OC might be attributed to the extremely small 

contents of inorganic materials in the samples. The strong correlations between TC 

and TN, and that between OC and TN are because the N content in soil is almost 

entirely dependent on the organic matter content, and the overall TN: OC ratio is 1:10 

(Martin et al., 2002). 

 

4.4 Conclusions  

 

Using four groups of soil sample sets collected from three European farms as 

experimental materials, Vis-NIR calibration models for TC, OC, TN, P and pH have been 
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developed and the calibration accuracy was assessed. On the basis of the results 

obtained, the following conclusions can be drawn.  

 First, except for one farm (Czech Republic), the calibration and validation of TC, 

TN and OC of individual farm models were successful. Results ranged as R2= 0.85-0.93 

and 0.74-0.96 and RPD = 2.61-3.96 and 2.00-4.95, for the cross validation and 

independent validation, respectively. The poor prediction of pH and P was attributed 

to the fact that these two properties do not have direct spectral responses in the NIR 

range. 

 Second, independent farm-scale or field-scale models are not always the best 

performed models, because general calibration models covering several farms provide 

larger accuracy than individual farm calibration models developed with narrow range 

and SD of sample concentration. 

 Third, the SD and range of concentration of soil samples that explain the 

variability in the sample set are the determinant factors influencing the accuracy of 

calibration models. A larger SD and wider range of the calibration data set has resulted 

in larger R2 and RPD values, but also larger RMSEP values. However, properties without 

direct spectral response showed inconsistent relationships and therefore they are 

independent of SD and range of sample concentration. 

 Finally, a small range of variation in sample concentrations will not result in 

successful calibration, as shown with the results from the farm in Czech Republic). 

Therefore, to build a multi-farm calibration models with farms of different European 

countries, a large variation range should be selected that does not lead to 

unacceptable accuracy because of large RMSEP values. In fact, a compromise solution 

should be sought during the selection of calibration sample set so that to cover a wide 

concentration range without increasing the measurement error above a desired 

threshold. 
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5 Effect of number of samples on prediction error 

 

5.1  Introduction  

 

The urgent need to double farm production over the next 25 years using smaller land 

and water resources, through further intensification of agriculture will inevitably 

involve substantial social, economical and environmental cost. One of the strategies to 

increase productivity and economic profits while conserving the environment is PA. PA 

is an environmental friendly strategy, in which farmers can vary input use and 

cultivation methods including application of seed, fertilizers, pesticides, water, planting 

and tillage to respond to variable soil and crop conditions across a field (Srinivasan, 

2006). Conventional measurement of soil spatial variability needed for the 

implementation of PA usually involves manual soil sampling, sample pre-treatment, 

laboratory chemical and physical analyses and mapping. This procedure is very 

expensive and time consuming because the implementation of PA needs analysis of 

numerous soil samples to characterise the soil spatial variability in the field. Therefore, 

the development of fast, cost effective and environmental friendly methods for the 

measurement of soil spatial variability is a preliminary task for the implementation of 

PA. 

The vis-NIR spectroscopy recently became a proven technique for a fast, inexpensive 

and relatively accurate alternative method to the laboratory analyses of soil properties 

(Viscarra Rossel & McBratney, 1998; Shepherd & Walsh, 2002; Mouazen et al, 2010; 

Stenberg et al., 2010b). Today, intensive research is being carried out to establish new 

approaches, improve existing methods and combine several techniques of modelling 

to enhance the calibration accuracy of vis-NIR spectroscopy. Research indicates that 
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there is a debate on the optimal size of sample set to be used to build calibration 

models with the largest possible accuracy. This requires careful consideration, as 

recent reports showed this to affect the robustness and accuracy of the calibration 

models developed (Kuang & Mouazen, 2011). Although a large number of soil samples 

might be a better option to characterise the soil variability than a small sample set, the 

cost of analysing a larger number of samples would be significantly higher. In general, 

the spectral libraries need to include sufficient soil samples to account for the soil 

variability in the new target site, where the prediction will be carried out (Viscarra 

Rossel et al., 2008; Guerrero et al., 2010). However, this requirement is not always 

fulfilled due to the large number of soil samples needed (Shepherd and Walsh, 2002; 

Brown et al., 2006). Spiking the local (target site) soil samples into the global or 

regional models proved to be an efficient way to improve the prediction accuracy of 

target field for some soil constituents (Shepherd & Walsh, 2002; Janik et al., 2007, 

Viscarra Rossel et al., 2008, Guerrero et al., 2010). However, these studies did not 

compare the error resulting from calibration models established with a large number 

of samples with that of significantly smaller number of samples for in situ 

measurement conditions using fresh soil samples. Considering dried soil samples 

collected from one area in Spain, Guerrero et al. (2010) claimed that spiking could 

increase the prediction accuracy. The authors observed the important influence of the 

number of samples in the calibration set, which controls the adaptability of 

calibrations to target sites. They observed that a small-size model provided a better 

prediction accuracy of TN than large-size model. This conclusion is disputable because 

the authors did not use the same range of variation of soil properties for both the 

large-size and small-size models. Comparing the accuracy of general calibration models 

based on samples collected from three farms across Europe with that of farm specific 

calibration models for TC, TN and OC, pH and P, Kuang & Mouazen (2011) found that 

larger SD and wider variation ranges resulted in larger R2 values and RPD, but also 

larger RMSEP. Authors did not test the effect of sample number on the calibration 

accuracy of these properties for farm-scale modelling. Therefore, it will be interesting 

to establish how the number of samples affects the farm-scale model accuracy when 
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the range of properties is kept constant. To our knowledge there is no report on the 

influence of the number of soil samples used for farm-scale calibration on the 

prediction error of models developed for the same range of variation of a soil 

property. 

The aim of this study was to investigate the effects of the number of soil samples on 

the prediction error of farm-scale calibration models of TN, OC and MC developed 

using fresh soil samples collected from four farms in the Czech Republic, Germany, 

Denmark and the UK. This was important to evaluate, since a smaller number of 

sample needed for modelling would mean a reduction in cost of analysis with vis-NIR 

spectroscopy. 

 

5.2 Material and methods 

 

5.2.1 Soil samples  

A total of 399 soil samples were used in this study. They were collected from four 

different farms in Europe, namely Mespol Medlov, A.S. (Czech Republic, 

http://farmsubsidy.org/CZ), Wimex (Germany, http://www.wimex-online.de), 

Bramstrup Estate (Denmark, http://www.bramstrup.dk) (Kuang & Mouazen, 2011) and 

Silsoe Farm (the UK). Bulked samples from 16 cores were collected from the upper soil 

layer (0-30 cm) in the spring of 2008 (Czech Republic and Germany), spring of 2009 

(Denmark) and summer of 2009 (UK) and represented a diverse range of soil 

conditions. A total of 111, 70 ,128 soil samples were, respectively, collected from six 

fields in Mespol Medlov, A.S. farm in Czech Republic, five fields in Bramstrup Estate 

farm in Denmark, five fields in Silsoe farm in the UK and 36 fields at the Wimex farm in 

Germany. The number of samples taken from each field was depending on the field 

size and was collected randomly within the field with the aim of covering the whole 

field area. Table 5-1 provides information about the samples collected from different 

farms of this study.  

http://www.bramstrup.dk/
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About 200 g of soil was collected randomly for each sample and kept deep frozen (-18 

°C) until analysis. After careful mixing, half of each of the samples from the Czech 

Republic, Germany and Denmark was sent to Leibniz Centre for Agricultural Landscape 

Research (ZALF) in Germany for soil chemical analyses for TN and OC and the second 

half was sent to Cranfield University for optical measurement and data analysis. 

Samples collected from the UK were subjected to both optical and chemical 

measurement at the National Soil Resources Institute (NSRI), Cranfield University. 

           

Table 5-1 Sample information for four studied farms 

Country  
Nr of samples Nr of Fields Soil type  Farm 

size / ha 

Sampling 

time 

Czech 

Republic  

111 6 Sandy, Clay, silt 

clay loam 

2200 2008 

Germany  128 36 Sandy, clay, silt 

loam 

7000 2008 

Denmark  70 5 Sandy loam, clay 

loam 

300 2009 

UK 90 5 Sandy loam, clay 

loam, clay 

120 2009 

 

5.2.2 Chemical analysis  

The measurements of OC and TN were done by a TrusSpecCNS spectrometer (LECO 

Corporation, St. Joseph, MI, USA) using the Dumas combustion method. The MC was 

measured by oven drying the samples at 105°C for 24 hour.  

 

5.2.3 Optical measurement  
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Each soil sample was placed in a glass container and mixed well, after big stones and 

plant residues were removed. Then each soil sample was placed into three Petri 

dishes, which were 2 cm deep and 2 cm in radius. The soil in the Petri dish was shaken 

and pressed gently before levelling with a spatula. A smooth soil surface ensures 

maximum light reflection and high signal-to-noise ratio (Mouazen et al., 2005).  

 The soil samples were scanned in diffuse reflectance mode by an AgroSpec mobile, 

fibre type, vis-NIR spectrophotometer (tec5 Technology for Spectroscopy, Germany), 

with a measurement range of 305-2200 nm. Although this spectrophotometer does 

not cover the entire wavelength range in the NIR region, it was selected in this study as 

it uses diode array detectors, which proved to be stable under on-line measurement 

conditions (Mouazen et al., 2009). A 20 watt halogen lamp was used as a light source. 

A 100 % white reference was used before scanning, which was repeated every 30 

minutes. Three replicates were considered for each sample and a total of 10 scans 

were collected from each replicate. 

 

5.2.4 Data pre-treatment and establishment of calibration models 

 

The triplicate raw spectra were averaged to one spectrum, followed by noise cut on 

both sides arriving at a wavelength range of 371 - 2150 nm. A three-point (wavelength) 

average was applied in the visible range and 10-point average was applied in the NIR 

range. This was followed successively by maximum normalisation, Savitzky-Golay (S-G) 

first derivative and S-G smoothing.  Normalisation is typically used to get all data to 

approximately the same scale, or to get a more even distribution of the variances and 

the average values. The maximum normalisation method is a normalisation that 

“polarizes” the spectra. The peaks of all spectra with positive values scale to +1, while 

spectra with values negative values scale to -1. Since all the soil spectra in this study 

had positive values, the peaks of these spectra scaled to +1 (Mouazen et al., 2005). 

Spectra were then subjected to the S-G first derivative (Martens and Naes, 1989). This 

method enables computing the first or higher-order derivatives, including a smoothing 

factor, which determines how many adjacent variables will be used to estimate the 

mk:@MSITStore:C:/The%20Unscrambler8/Unscramb.CHM::/scaling.htm
mk:@MSITStore:C:/The%20Unscrambler8/Unscramb.CHM::/distribution.htm
mk:@MSITStore:C:/The%20Unscrambler8/Unscramb.CHM::/variances1.htm
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polynomial approximation used for derivatives. A second order polynomial 

approximation was selected. A 2:2 smoothing was carried out after the first derivative 

to remove noise from the measured spectra. The same pre-treatment was used for all 

properties, using Unscrambler 7.8 software (Camo Inc.; Oslo, Norway). 

The pre-treated spectra and the laboratory measurement were used to develop 

calibration models for the three soil properties, namely, OC, TN and MC. To study the 

effect of the number of samples of the calibration set on the prediction error, two 

types of calibration models were developed, namely large-size and small-size dataset 

models. For the former models, two-thirds of soil samples from each farm were 

randomly selected. From these two-third sample sets, 25 samples were randomly 

selected to develop the small-size dataset models. Particular attention was paid to 

ensure that the selection of 25 samples was carefully done to cover the full range of 

variation in soil properties on a farm. To eliminate the effect of different ranges of 

concentration of a property on the prediction error, the ranges were kept identical in 

both the calibration and prediction sets for both the large-size and small-size dataset 

models. The selection of calibration-prediction samples and the validation of PLS 

regression models were performed in the following sequences (Figure 5-1):             

 



 

76 

 

Figure 5- 1 Flow chart of steps considered during the model calibration and prediction set for the small- 

and large-size dataset models 
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Table 5-2 Sample statistics of laboratory results of both large- and small-size calibration sets of samples 

collected from Mespol Medlov farm in Czech Republic (111 samples), Wimex farm in Germany (128 

samples, Bramstrump Estate farm in Denmark (70 samples) and Silsoe farm in the UK (90 samples) 

 Property 
 Farm Sample 

number 

Calibration set 

      Min Max Mean Range SD 

 CZ 74 1.34 2.09 1.60 0.75 0.24 

 CZ 25 1.34 2.09 1.66 0.75 0.25 

 GM 84 0.35 4.84 1.51 4.45 0.78 

TN / g kg
-1

 GM 25 0.35 4.80 1.51 4.45 0.79 

 DK 46 0.72 1.64 1.28 0.92 0.20 

 DK 25 0.72 1.64 1.28 0.92 0.22 

 UK 62 0.92 3.07 1.80 2.15 0.50 

  UK 25 0.92 3.07 1.90 2.15 0.60 

 CZ 74 10.65 22.78 14.90 12.13 2.60 

 CZ 25 10.65 22.78 15.40 12.13 3.00 

 GM 84 4.58 76.10 18.00 71.52 15.00 

OC / g kg
-1

 GM 25 4.58 76.10 20.22 71.52 16.80 

 DK 46 7.50 16.79 12.60 9.29 2.20 

 DK 25 7.50 16.79 12.90 9.29 2.40 

 UK 62 8.51 29.42 18.00 20.91 4.90 

  UK 25 8.51 29.42 18.30 20.91 5.70 

 CZ 74 92.30 216.00 148.80 123.70 27.50 

 CZ 25 92.30 216.00 148.80 123.70 34.60 

 GM 84 55.10 330.50 157.20 275.40 45.30 

MC / g kg
-1

 GM 25 55.10 330.50 158.40 275.40 54.90 

 DK 46 82.40 131.00 101.10 48.60 12.20 

 DK 25 83.10 131.00 102.00 48.60 12.90 

 UK 62 86.48 268.80 165.19 182.38 44.30 

  UK 25 86.48 268.80 171.60 182.38 48.50 

The accuracy of models developed was evaluated by comparing values of the root mean square error of cross validation 

(RMSECV), RMSEP and bias in prediction. Bias was also considered to evaluate whether differences in RMSEP is due to bias or to 

the number of samples used in the calibration set. 

1- The entire soil spectra for each farm were divided into calibration (two-third) and 

prediction (one-third) sets. The sample statistics for these two sets are provided in 

Tables 5-2 and 5-3, respectively.   
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2- A subset was selected from calibration samples, which was used as the small-size 

calibration set. 

 

Table 5-3 Sample statistics of laboratory results of prediction set with samples collected from Mespol 

Medlov farm in Czech Republic, Wimex farm in Germany, Bramstrump Estate farm in Denmark, and 

Silsoe farm in the UK 

Property 
Farm Sample 

number 

Prediction set 

      Min Max Mean Range SD 

 CZ 36 1.3 2.1 1.6 0.8 0.2 

TN / g kg-1 GM 44 0.6 3.1 1.5 2.5 0.6 

 DK 24 1.0 1.6 1.3 0.6 0.2 

  UK 28 1.3 3.1 2.1 1.8 0.6 

 CZ 36 12.0 19.8 14.5 7.8 1.8 

OC / g kg-1 GM 44 7.2 71.5 18.1 64.2 11.9 

 DK 24 9.7 17.2 12.9 7.5 1.8 

  UK 28 12.2 30.2 20.3 18.1 5.4 

 CZ 36 96.9 197.0 150.1 100.1 25.8 

MC / g kg-1 GM 44 95.4 280.9 160.0 185.5 42.3 

 DK 24 85.8 128.6 104.6 42.8 14.6 

  UK 28 112.2 276.6 187.8 164.4 58.4 

 

3- The calibration spectra of the large-size and small-size datasets were subjected to a 

partial least squares regression (PLSR) with leave-one-out cross validation using an 

Unscrambler 7.8 software (Camo Inc.; Oslo, Norway).  

4- Both the small-size and large-size dataset models were validated on the same 

prediction set, extracted in step 1. 

Further analysis was considered to evaluate the effect of different-size datasets of the 

calibration set models on prediction accuracy. This was done for the Wimex farm only, 

which was considered as an example. The number of samples in the calibration set was 
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25, 50, 75, and 100. Those 4 different-size dataset models were validated using the 

same 28 samples used as prediction set. 

     

5.3 Results and discussion 

 

5.3.1 Prediction accuracy of models developed with large-size datasets 

Table 5-4 summarises values of R2, RPD, RMSEPCV and RMSEP, resulted from the large- 

and small-size dataset models for the prediction of TN, OC and MC. The accuracy of 

calibration and prediction varies from property to property and farm to farm.  

Examining values of R2 and RPD, which is the standard deviation divided by RMSEP 

obtained from the large-size dataset models in all four farms, reveals that the 

prediction of soil MC is the most successful, as compared to OC and TN with R2 = 0.80-

0.96 and RPD = 1.98-4.69 for the calibration set and R2 = 0.74-0.92 and RPD = 1.63-4.57 

for the prediction set. The accuracy of predicting OC (R2 = 0.58-0.90 and RPD = 1.30-

3.08 for the calibration set and R2 = 0.47-0.90 and RPD = 0.97-3.28 in the prediction 

set) is similar to that of TN (R2 = 0.61-0.88, RPD = 1.27-3.33 for the calibration set and 

R2 = 0.54-0.90, RPD = 1.19-3.33 in the prediction set), because OC and TN are strongly 

correlated (Table 5-5). Using crushed and air-dried soils samples, Brunet et al. 2007 

reported farm scale calibration models accuracy for TN with square error of prediction 

(SEP) = 0.03-0.39 g kg-1, which is comparable or higher than the majority of RMSEP 

values in this study (Table 6-4) even when fresh soil samples are used. Similarly, Moron 

and Cozzolino (2002) have built a farm scale organic carbon calibration model with 

RMSEP =5 g kg-1, which is higher than most of farm scale models’ RMSEP values 

reported in this study.   The values of the RMSECV and RMSEP reported in Table 5-4 for 

MC are smaller than those reported by other researchers with similar scale of 

calibration (Dalal et al., 1986; Slaughter et al. 2001; Mouazen et al. 2005). 

 

Table 5-4 Comparison of root mean square error of prediction in cross-validation (RMSEP-cv) and in 

prediction set (RMSEP), ration of prediction deviation (RPD) and R2 of total nitrogen (TN), organic 
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carbon (OC) and moisture content (MC) between large and small dataset-size models in Mespol Medlov 

farm in Czech Republic (CZ), Wimex farm in Germany (GM), Bramstrump Estate farm in Denmark (DK) 

and Silsoe farm in the UK 

Property 
  Farm Sample 

number 

Calibration set Prediction set 

LVs R
2

CV RPD-CV RMSEP-cv / 

g kg
-1

 

R
2

Pre RPD-Pre RMSEP, / 

g kg
-1

 

Bias 

 CZ 74 3 0.63 1.41 0.17 0.61 1.27 0.15 -0.002 

 CZ 25 2 0.57 1.32 0.19 0.54 1.19 0.16 0.002 

 GM 84 3 0.85 2.69 0.29 0.74 1.91 0.32 -0.003 

TN  GM 25 3 0.86 2.32 0.34 0.67 1.42 0.43 0.003 

 DK 46 9 0.81 2.40 0.05 0.68 1.60 0.10 -0.004 

 DK 25 2 0.66 1.47 0.15 0.69 1.45 0.11 -0.004 

 UK 62 5 0.83 3.13 0.16 0.88 3.33 0.18 0.006 

  UK 25 4 0.90 3.33 0.18 0.88 2.61 0.23 -0.001 

  CZ 74 5 0.65 1.44 1.80 0.58 1.35 1.33 -0.022 

 CZ 25 1 0.63 1.30 2.30 0.47 0.97 1.85 0.083 

 GM 84 5 0.85 2.94 5.10 0.77 1.86 6.40 -0.165 

OC GM 25 7 0.87 2.63 6.40 0.71 1.59 7.50 0.070 

 DK 46 6 0.86 2.82 0.78 0.61 1.58 1.14 -0.051 

 DK 25 4 0.86 2.18 1.10 0.66 1.49 1.21 0.008 

 UK 62 4 0.90 3.08 1.59 0.82 2.66 2.03 0.038 

  UK 25 3 0.90 3.28 1.74 0.82 2.35 2.30 -0.001 

  CZ 74 1 0.88 2.75 10.01 0.87 2.55 10.11 0.105 

 CZ 25 1 0.85 2.37 14.60 0.79 1.82 14.20 0.800 

 GM 84 4 0.90 3.04 14.90 0.80 1.97 21.50 -0.480 

MC GM 25 3 0.88 2.92 18.80 0.76 1.83 23.10 -0.390 

 DK 46 3 0.96 4.69 2.60 0.84 2.23 6.55 -0.260 

 DK 25 1 0.80 1.98 6.50 0.75 1.63 8.95 -0.390 

 UK 62 5 0.96 4.57 9.70 0.93 4.49 13.00 -0.057 

  UK 25 4 0.92 3.54 13.70 0.92 3.82 15.30 -0.179 

 

 All calibration models developed provide small RMSE, not only in the calibration set, 

but also in the prediction set (Table 5-4). The lowest prediction error (the smallest 

RMSEP) for the three properties studied, in both the calibration and prediction sets is 

for the farm in Denmark (Table 5-4), which is successively followed by the results for 

the Czech Republic, UK and German farms. These results confirm the conclusion 

obtained from a previous study (Kuang and Mouazen, 2011) that a larger range in 
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concentration range or a larger SD of samples in the calibration set result not only in 

higher R2 and RPD, but also in higher RMSEP values. The smaller variation ranges of the 

three properties (Tables 5-2 and 5-3) reported for the Denmark farm is the reason 

explaining why this farm had the smallest RMSEP, as compared to the other three 

farms. For a successful calibration, it is recommended to cover the widest possible 

variation range in soil properties, so that the prediction is feasible for any new field or 

farm with any concentration range that falls within the range of concentration of the 

calibration model. However, when the range of concentration of a property has to be 

decided in advance, the most meaningful criteria is RMSEP, as end users are interested 

to work with the smallest errors. A compromise selection of the range of variation 

should be made to cover a wide range of variation while preserving low RMSEP. 

Because the range of variation of soil properties was kept identical between the small-

size dataset and the large-size dataset models in the calibration and prediction sets for 

all four farms, the only criterion that could be used to assess accuracy was the RMSEP.  

 

5.3.2 Comparison between large- and small-size dataset models 

Comparing the accuracy of the large-size dataset models with corresponding small-size 

dataset (25 samples) models, estimated as R2 values, provide mixed results for all four 

farms in both the calibration and prediction, although the former results in a higher 

accuracy in majority of farms. Regarding RPD, large-size models provided higher RPD 

values than the small-size models in both the calibration and prediction sets. Also, 

since the range was kept identical in the calibration and prediction sets, the RMSEP is 

the most valuable parameter to consider, as this reflects the error. Figure 5-2a, 5-2b 

and 5-2c show the RMSEP values calculated for TN, OC and MC, respectively, to be 

lower for the large-size dataset models than for the small samples-size models (in both 

the calibration and validation sets). However, the error differences between the two 

sets vary from farm to farm. Comparing the number of latent variables (LVs) used 

during PLS in both the large- and small-size dataset calibration sets (Table 5-4), slight 

increases in the number of LVs for the former, as compared to the latter set can be 

observed. In some cases, the same LVs are used for both cases, whereas in another 
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case a larger number of LVs is used to develop the small-size dataset model (e.g. for 

OC model in the German farm). Furthermore, a similar conclusion can be drawn if 

values of the bias of the two modelling procedures are compared (Table 5-4). The 

absolute values of bias are relatively very small compared to RMSEP, thus the influence 

of bias is not important.  

Furthermore, examining the scatter plot of the measured versus predicted values, no 

samples can be observed as outliers that might explain the higher RMSEP values of 

small-size datasets. The scatter plots for measured and predicted TN, OC and MC in 

both calibration and prediction sets obtained for Silsoe farm are shown, respectively, 

in Figures 5-3, 5-4 and 5-5, as an example. Therefore, it can be concluded that 

differences in RMSEP values resulted from the two-size dataset models can be barely 

attributed to the number of LVs, present of outliers in the data sets or bias, which 

confirms that these differences are mainly due to different the number of samples 

considered during the development of calibration models for MC, OC and TN. There 

are two subgroups of soil samples in the data set, which are because the physical and 

chemical values of MC, OC and TN in one farm are significantly higher than that of 

other farms. 
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(c) 

Figure 5-2 Comparison of root mean square error of prediction (RMSEP) in prediction set of (a) total 

nitrogen (TN), (b) organic carbon (OC) and (c) moisture content (MC) between large- and small-size 

sample models 

 

For global and local calibration schemes using dry soil samples, Shepherd and Walsh 

(2002) reported a decrease in R2 and an increase in RMSEP values with the reduction in 

the number of soil samples used for calibration, which is in line with the results 

obtained in this study for farm-scale modelling under in situ measurement conditions. 

Guerrero et al. (2010) achieved more accurate calibration (higher R2 and lower RMSEP) 

for local, small-size dataset models, after spiking with a few local samples, than models 

derived from very large libraries. This was attributed to the fact that, among the large 

number of samples in the very large library, there were only few soil samples that 

could describe the variability of the target fields. Since Guerrero et al. (2010) did not 

consider the same range of variation when comparing the performance of the small 

sample model with the large sample model, the lower RMSEP of the former model, as 

compared to that of the latter model, might result from the narrow range of 

concentration (Kuang and Mouazen, 2011). Wetterlind et al. (2008) reported a 

successful farm scale calibration model for soil organic matter using 25 soil samples 

only, but with a relatively high RMSEP of 3.2 gkg-1, high R2 of 0.89 and RPD of 3.0.  
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(a) 

 

 

(b) 

 

Figure 5- 3Scatter plots of predicted versus measured moisture content (MC) shown for Silsoe Farm in 

the UK, as an example for (a) large- and small-size dataset models in cross-validation, (b) large- and 

small-size dataset models in prediction set 

Authors did not make it explicitly clear whether or not RMSEP could be improved by 

increasing the number of soil samples used for model development. 

0 

1 

2 

3 

4 

0 1 2 3 4 

P
re

d
ic

te
d

 /
 g

 k
g

-1
 

Measured / g kg-1 

Large_cal 

Small_cal 

0 

1 

2 

3 

4 

0 1 2 3 4 

P
re

d
ic

te
d

 /
 g

 k
g

-1
 

Measured / g kg-1 

Large_pre 

Small_pre 



 

86 

 

 

(a) 

 

 

(b) 

 

Figure 5- 4 Scatter plots of predicted versus measured organic carbon (OC) shown for Silsoe Farm in the 

UK, as an example for (a) large- and small-size dataset models in cross-validation, (b) large- and small-

size dataset models in prediction set 
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(a) 

 

 

(b) 

 

Figure 5- 5 Scatter plots of predicted versus measured moisture content (MC) shown for Silsoe Farm in 

the UK, as an example for (a) large- and small-size dataset models in cross-validation, (b) large- and 

small-size dataset models in prediction set 

 

Compared to other reports, the current study proves that large-size dataset models (> 

25 samples) for TN, OC and MC result in smaller RMSEP values, compared to small-size 
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dataset models of 25 samples, when the same concentration range is considered in 

both calibration sets. 

 

5.3.3 Effect of dataset size on prediction error 

Although, the increase in the number of samples can improve the prediction accuracy 

in terms of RMSEP, analysing large number of samples results in a significant increase 

in the cost of model development. 

 

Table 5-5 Pearson correlations (r value) between chemical analysis value of total nitrogen (TN), organic 

carbon (OC) and moisture content (MC) using soil samples collected from Mespol Medlov farm in Czech 

Republic, CZ (111 samples), Wimex farm in Germany, GM (128 samples), Bramstrump Estate farm in 

Demark, Dk (70 samples) and Silsoe Farm in the UK (90 samples) 

Farm 
Number of 

samples 

 TN  OC MC 

  TN 1   

CZ 111 OC 0.79 1  

  MC 0.10 0.05 1 

  TN 1   

GM 128 OC 0.85 1  

  MC 0.91 0.81 1 

  TN 1   

DK 70 OC 0.99 1  

  MC 0.97 0.98 1 

  TN 1   

UK 90 OC 0.96 1  

  MC 0.85 0.84 1 

 

To optimise the number of soil samples to be considered in the calibration set, so as to 

achieve accurate results at minimal cost, 25, 50, 75 and 100 soil samples from Wimex 

farm (Germany) were used to build four calibration models for MC, OC and TN. These 

models were validated on the same prediction set of 28 samples. Table 5-6 and Figure 

6-6 illustrate the decrease in RMSEP with increase the size of sample set. However, the 

rate of decrease varies, with the largest decrease occurring between models of 25 and 
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50 samples. This is particularly true for TN (Figure 5-6a) and OC (Figure 5-6b), whereas 

linear decrease is observed for MC.   

 

Table 5-6 Comparison of root mean square error of prediction in cross-validation (RMSEP-cv) and in 

prediction set (RMSEP-pre) and bias in prediction set of total nitrogen (TN), organic carbon (OC) and 

moisture content (MC) for different dataset-sizes models in Wimex farm in Germany (GM) 

Property 
Sample 

number   

Latent 

variables 

RMSEP-cv / g kg
-1

 RMSEP / g kg
-1

 Bias-pre 

TN  10 0.21 0.28 -0.05 

OC 100 6 4.20 6.40 -0.03 

MC   2 14.10 19.80 -0.37 

TN  11 0.24 0.28 -0.01 

OC 75 8 4.60 6.80 -0.04 

MC   2 15.30 20.90 0.54 

TN  10 0.27 0.28 -0.06 

OC 50 7 5.10 7.10 -0.02 

MC   1 16.80 21.70 -0.34 

TN  9 0.34 0.43 -0.01 

OC 25 8 6.40 7.80 -0.36 

MC   2 18.30 23.40 -0.22 
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(6) 

 

Figure 5- 6 Comparison of root mean square error of prediction obtained from calibration models 

developed with different sample number in both cross-validation (RMSEP-cv) and independent 

validation set (RMSEP) for Wimex farm in Germany for TN (6a), OC (6b) and MC (6c) 

 

Although, no tipping point between sample number and RMSEP can be deducted, a 

minimum of 50 soil samples is recommended to obtain a reasonable accuracy at a 

minimal cost for farm-scale calibration of vis-NIR spectroscopy for MC, OC and TN. A 

balance between accuracy and cost has to be made to select the optimal number of 

samples in the calibration set, which will be governed by the degree of accuracy 

required for a given application of model output. 

 

5.4 Conclusions 

 

This study investigated the influence of the dataset size of the calibration set on 

prediction error of MC, OC and TN with the vis-NIR spectroscopy under in situ (using 
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1. Individual farm-scale models for the four European farms can be successfully 

established with good accuracy. 

2. When the same range of variation of a given soil property was preserved, the 

RMSEP is the best indicator of accuracy; this is important because farmers and 

land managers are interested in the error of measurement of soil properties. 

3. The large sample data set models produced lower RMSEP than the small 

sample data set models (25 soil samples), in both the calibration and prediction 

sets for the three soil properties studied.  

4. The RMSEP decreases with sample number in linear fashion for MC, whereas 

for OC and TN the largest decrease occurred between models with 25 and 50 

samples.  

Overall, how many samples should be chosen for farm scale calibration models for 

MC, OC and TN depends on accuracy required. However, using around 50 soil 

samples to establish calibration models for MC, OC and TN at farm-scale modelling 

is considered appropriate, as it will result in smaller prediction errors than other 

models with smaller sample numbers. Increasing the number of samples beyond 

50 samples would lead not only to increase accuracy but also to increase cost. In 

the future, field scale models might need to be developed to establish a 

quantitative relationship between number of samples and RMSEP. 
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6 Effect of soil moisture and texture on laboratory, in situ and 

on-line prediction 

 

6.1 Introduction  

 

Soil OC is a key property for soil functioning, soil quality maintenance, plant nutrition 

supply and soil moisture content holding (Flessa et al., 2000). It is the major 

component of soil organic matter, which is important in all soil processes. Shortages of 

OC result in decline of soil quality and crop production over the field. There is a 

continuous cycle of OC in soils that is not uniform and dependent on mostly land use 

and land management systems. Therefore, even small changes in OC stocks cause 

important CO2 fluxes between terrestrial ecosystems and the atmosphere (Stevens et 

al., 2006). Soil OC is also important component to evaluate soil resistivity to wind and 

water erosion (Morgan, 2005). Nitrogen is another important nutrient for plant and 

sufficient N fertilizer application is critical for normal plant growth and development. It 

is in chlorophyll and therefore essential for photosynthesis and crop protein.  

However, over application of N fertilisers result not only in economical losses but 

ground water contamination is to be expected. Nitrate leaching from land to ground 

water and stream water causes depleting soil minerals, acidifying soils and affecting 

downstream water system and coastal marine ecosystems (Vitousek et al., 1997). PA is 

an environmental friendly strategy, in which farmers can vary input use and cultivation 

methods including application of seed, fertilizers, pesticides, water, planting and tillage 

to respond to variable soil and crop conditions across a field (Srinivasan, 2006). Hence, 

PA can increase the crop productivity while reduce fertiliser application and preserve 

the environment. Determination of within field variation in soil OC and TN at high 

resolution sampling is one of the prerequisites for the implementation of PA.  

During the last two decades, vis-NIR spectroscopy has proved to be a fast, cost 

effective, non-destructive and a relative accurate alternative method to the traditional 

laboratory analytical methods of soil physical, chemical and biological properties 
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(Shepherd & Walsh, 2002; Brown et al., 2006; Wetterlind et al., 2008; Mouazen et al., 

2010). Although the application of vis-NIR spectroscopy has considerably reduced the 

labour and time for the analysis, soil sample preparation for laboratory analysis 

including drying, grinding and sieving is still tedious. For in situ and on-line 

measurements with vis-NIR, calibration models developed from dried, ground and 

sieved samples cannot be utilised, since these measurements are performed with fresh 

(unprocessed) soils (Mouazen et al., 2005). Although MC can be successfully measured 

with vis-NIR spectroscopy, it is considered as one of the most critical factors that 

negatively affect the accuracy of measurement of other soil properties (Bogrekci & 

Lee, 2006; Lobell & Asner, 2001; Minasny et al. 2011; Mouazen et al. 2006b; Sudduth &  

Hummel, 1993). Modifications for removing the influence of MC on the accuracy of vis-

NIR measurement of soil properties have been considered by the classification of 

samples into different MC groups (Mouazen et al. 2006b), adoption of an external 

parameter orthogonalisation (EPO) algorithm (Minasny, et al. 2011), construction of 

dry soil spectra from wet spectra (Bogrekci & Lee, 2006) and drying of soil samples to 

remove MC (Ben-Dor & Banin, 1995; Chang et al., 2001). Most reports showed that the 

highest accuracy is to be expected when dried soil samples are used (Chang et al., 

2005; Mouazen et al., 2006b; Tekin et al., 2011). Unfortunately, for in situ and on-line 

measurements, calibration models should be developed based on vis-NIR scanning of 

wet soils.  

Apart from soil MC, soil texture is the other main factor to affect accuracy of the vis-

NIR spectroscopy. Fontán et al. (2010) concluded that particle size has a significant 

effect on the accuracy and precision of models developed for analyzing C content in 

Mediterranean dry land Vertisols. Their results were improved for a small particle size 

soils (i.e. after grinding and sieving with 2 mm sieve), as compared to untreated soils 

with clods. Using processed soil sample in the laboratory, Stenberg (2010b) concluded 

that predictions of OC were most inaccurate for soils with a high sand content. 

Cozzolino & Moron (2006) found mixed results for different textures, with coefficients 

of determination in calibration and standard errors in cross validation of 0.90 and 0.6, 

0.92 and 0.4 and 0.96 and 2.1 for coarse-sand C, fine-sand C and clay + silt C, 
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respectively. All above literature considered the single effect of MC or texture, on the 

prediction of soil organic matter or OC. The interaction effect of both MC and texture 

on prediction accuracy of OC and TN at farm scale has not been studied so far. 

Furthermore, to our knowledge, no reports studying these effects on models’ 

performance using on-line collected spectra can be found in the literature. 

The objective of this paper is to understand and quantify the individual and interaction 

effects of MC and soil texture on the performance of vis-NIR calibration models for in 

situ and on-line measurement of soil OC and TN. This will be considered to improve the 

measurement performance of the vis-NIR spectroscopy at farm scale modelling. 

 

6.2 Material and methods 

 

6.2.1 Soil samples  

A total of 174 soil samples were used in this study. They were collected in summer 

2009 from five fields in Silsoe Farm (Figure 6-1), the United Kingdom with variable soil 

texture and cropping condition (Table 6-1). The soil of those five fields is from the 

same mother material and subjected to nearly same farm management practices. Soil 

samples were collected from the surface layer from the bottom of 15 cm deep trench, 

opened by a tractor drawn subsoiler during on-line measurement. Around 200 g soil 

was taken from each soil sample and placed into a tightly sealed plastic bag to hold 

field moisture. The soil samples were then transferred to the soil laboratory in 

Cranfield University, where they were stored deep frozen (-18 °C) until analysis. After 

defrost and thoroughly mixed, each soil sample was divided into two parts equally. 

One part was used for MC measurement, where the soil was oven dried at 105°C for 

24 hours. Before drying the fresh (wet) soil was scanned with the vis-NIR 

spectrophotometer. The other part of the soil was dried at 45°C, sieved with 2 mm 

sieve and used for vis-NIR scanning under dry conditions. This part was also used to 

determine soil OC, TN and particle size distribution.  
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Figure 6-1 Location of five fields in Silsoe farm in the UK measured in summer 2009 with the on-line 

visible and near infrared (vis-NIR) sensor 

 

Table 6-1 Information of 174 soil samples collected from 5 fields in Silsoe Farm, the UK 

Field  
Area, 

ha  

Crop  Sample 

Nr  

Sand 

/ % 

Silt / %  Clay / % Texture  MC / %  

Avenue field  3 wheat  28 61.87 20.06 18.07 Sandy 

loam  

13.66 

Orchard field  2 wheat  26 40.11 27.38 32.51 Clay 

loam  

17.84 

Ivy Ground  3 soybean  40 21.14 27.17 51.69 Clay  25.05 

ShoeGround  4 wheat  40 64.98 20.93 14.09 Sandy 

loam  

13.43 

Copse field  3 wheat  40 14.55 27.84 57.61 Clay  26.88 

 

6.2.2  Chemical analysis  
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The measurement of OC and TN were carried out in the soil laboratory in Cranfield 

University by a TrusSpecCNS spectrometer (LECO Corporation, St. Joseph, MI, USA) 

using the Dumas combustion method (Sweeney, 1989). The measurement of MC was 

carried out using the oven drying method for 24 hour in 105°C.  Soil texture was 

measured with the sieving and sedimentation methods, according to BS 7755 Section 

5.4 (BSI, 1998). The texture analysis results of the five fields are based on a mixed 

sample from each field. Soil texture type was determined according to the United State 

Department of Agriculture (USDA, 1983) classification system. 

 

6.2.3 On-line measurement  

 

The on-line measurement system designed and developed by Mouazen (2006a) was 

used (Figure 6-2) to measure soil spectra in five selected fields in Silsoe farm in 

summer 2009, after previous crop was harvested. It consists of a subsoiler that 

penetrates the soil to the required depth, making a trench, whose bottom is 

smoothened due to the downwards forces acting on the subsoiler (Mouazen et al., 

2005). The optical probe, housed in a steel lens holder was attached to the backside of 

the subsoiler chisel to acquire soil spectra in reflectance mode from the smooth 

bottom of the trench. The subsoiler retrofitted with the optical unit was attached to a 

frame, which was mounted onto the three point hitch of the tractor (Mouazen et al., 

2005). An AgroSpec mobile, fibre type, vis-NIR spectrophotometer (tec5 Technology 

for Spectroscopy, Germany) with a measurement range of 305-2200 nm was used to 

measure soil spectra in diffuse reflectance mode. The spectrometer was IP 66 

protected for harsh working environments. Although this spectrophotometer does not 

cover the entire wavelength range in the NIR region, it was selected in this study as it 

uses diode array detectors, which proved to be stable under on-line measurement 

conditions (Mouazen et al., 2009). A 20 watt halogen lamp was used as a light source. 

A 100% white reference was used before scanning, which was repeated every 30 

minutes. A deferential global positioning system (DGPS) (EZ-Guide 250, Trimble, USA) 

was used to record the position of on-line measured spectra with sub-meter accuracy. 
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A Panasonic semi-rugged laptop was used for data logging and communication. The 

spectrometer system, laptop and DGPS were powered by the tractor battery. 

 

 

Figure 6-2 The on-line visible and near infrared (vis-NIR) spectroscopy-based sensor developed by 

Mouazen (2006a) 

 

Five fields in Silsoe farm in the UK (Fig 6-1) were measured with the on-line sensor in 

summer 2009, namely, Avenue, Orchard, Ivy Ground, Shoeground and Copse fields. In 

each field, blocks of 150 m by 200 m, covering 3 ha of land were measured. Each 

measured line was 200 m long with 10 m intervals between adjacent transects. The 

travel speed of the tractor was around 2 km/hour and the measurement depth was set 

at 15 cm. During the measurement at each line, 2 or 3 soil samples were collected 

from the bottom of the trench and the sampling positions were carefully recorded. 

Each of those samples were equally divided into two halves, with one half used to 

carry out the laboratory reference measurements of soil OC, TN and texture and the 
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other half was used for optical scanning of fresh soil and for measurement of MC (see 

above).   

 

6.2.4  Optical measurement  

 

Scanning of soil samples took place under fresh (unprocessed) and oven-dried 

conditions. Samples were placed in glass containers and mixed well, with big stones 

and plant residues excluded. Then each soil sample was placed into three Petri dishes 

which were 2 cm deep and 2 cm in radius. The soil in the Petri cup was shaken and 

pressed gently before levelling with a spatula. A smooth soil surface ensures maximum 

light reflection and high signal to noise ratio (Mouazen et al., 2005).  The soil samples 

were scanned in diffuse reflectance mode by the same vis-NIR spectrophotometer 

(AgroSpec from tec5 Technology for Spectroscopy, Germany). A total of 10 scans were 

collected from each replicate, and these were averaged in one spectrum.  

 

6.2.5 Data pre-treatment and establishment of calibration models 

 

The data set comprised of averaged spectra was subjected to noise cut to remove the 

noisy part of spectra on both sides, arriving at a wavelength range of 371 - 1900 nm. A 

3-point (wavelength) average was applied in the visible wavelength range and 10-point 

average was applied in the infrared wavelength range to reduce the number of 

wavelengths and smooth the spectra. This reduced method had achieved best 

calibration accuracy. This was followed successively by first Savitzky-Golay (S-G) 

derivative, maximum normalisation and first S-G smoothing. A 2:2 smoothing was first 

carried out to remove noise from the measured spectra. Normalisation is typically used 

to get all data to approximately the same scale, or to get a more even distribution of 

the variances and the average values. The maximum normalisation method adopted in 

this study is a normalisation that “polarizes” the spectra. The peaks of all spectra with 

positive values scale to +1, while spectra with negative values scale to -1. Since all the 

mk:@MSITStore:C:/The%20Unscrambler8/Unscramb.CHM::/scaling.htm
mk:@MSITStore:C:/The%20Unscrambler8/Unscramb.CHM::/distribution.htm
mk:@MSITStore:C:/The%20Unscrambler8/Unscramb.CHM::/variances1.htm
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soil spectra in this study had positive values, the peaks of these spectra scaled to +1 

(Mouazen, et al., 2006a). The maximum normalisation led to better results for the 

measurement of OC and TN, compared to the other pre-treatment options tested. 

Spectra were then subjected to Savitzky-Golay first derivative (Martens & Naes, 1989). 

This method enables to compute the first or higher-order derivatives, including a 

smoothing factor, which determines how many adjacent variables will be used to 

estimate the polynomial approximation used for derivatives. A second order 

polynomial approximation was selected. The same pre-treatment was used for both 

OC and TN models, which was carried out using Unscrambler 7.8 software (Camo Inc.; 

Oslo, Norway). 

 

Table 6-2 Sample statistics for calibration set and validation set of individual field samples and of total 

174 samples collected from 5 fields in Silsoe farm, the UK 

 
  Field OC / g kg-1  TN /  g kg-1 

    Min Max Mean SD  Min Max Mean SD  

 

 

Calibration 

set 

Avenue   9.4 22 17 4.2 0.9 1.9 1.5 0.35 

Orchard  16 22 20 3.9 1.6 2.1 1.9 0.27 

Ivy  24 35 28 3.2 2.4 3.1 2.7 0.33 

Shoeground  12 20 15 4.4 1.1 1.9 1.4 0.25 

Copse field  22 29 25 2.8 2.2 2.7 2.5 0.34 

Overall   9.4 35 21 7.9 0.9 31 2 0.76 

 

 

Validation  

set 

Avenue   13 18 16 3.8 1.2 1.7 1.5 0.31 

Orchard  17 25 20 3.6 1.7 2.0 1.9 0.26 

Ivy  27 34 30 2.8 2.2 3.1 2.8 0.28 

Shoeground  12 20 16 4.3 1.2 1.9 1.5 0.27 

Copse field  20 30 26 2.6 1.9 2.6 2.4 0.31 

Overall   13 34 22 7.4 1.2 3.1 2.2 0.72 

 

The pre-treated soil spectra of dried and fresh samples and the laboratory chemical 

measurement of OC and TN were used to develop calibration models of OC and TN. 

Out of the total number of samples of 174, 60 % (a total of 104 samples) of samples 

collected from each field were used for the development of calibration models, 
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whereas the remaining 40 % (a total of 70 samples) of samples from each field were 

used as prediction set (Table 6-2). The calibration spectra were subjected to a partial 

least squares regression (PLSR) with leave-one-out cross validation using the 

Unscrambler 7.8 software (Camo Inc.; Oslo, Norway). This was done in three 

repetitions, with samples randomly selected. The resulted accuracy of the three 

repetitions was averaged and reported in Table 6-3 for the in situ and on-line 

measurements and Table 6-4 for dry samples. 

 

6.2.6 Statistical evaluation of model calibration and prediction 

Both root mean square error of prediction (RMSEP) and residual prediction deviation 

(RPD), which is standard deviation of prediction set (S.D.) to RMSEP were used to 

compare the prediction accuracy of CO and TN models under dry, fresh (in situ) and 

on-line measurement conditions. Viscarra Rossel et al. (2006a) classified RPD values as 

follows: RPD<1.0 indicates very poor model/predictions and their use is not 

recommended; RPD between 1.0 and 1.4 indicates poor model/predictions where only 

high and low values are distinguishable; RPD between 1.4 and 1.8 indicates fair 

model/predictions which may be used for assessment and correlation; RPD values 

between 1.8 and 2.0 indicates good model/predictions where quantitative predictions 

are possible; RPD between 2.0 and 2.5 indicates very good, quantitative 

model/predictions, and RPD>2.5 indicates excellent model/predictions. This 

classification system was adopted in this study. Furthermore, to evaluate how 

significant are the separate and interaction effects of MC and texture fractions on the 

prediction accuracy of OC, two way univariate analysis of variance (ANOVA) of 

between-subjects effects test was carried out considering RPD and RMSEP obtained 

for the prediction set as accuracy indicators using Office 2007. 

 

6.3 Results and discussion 
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6.3.1 Soil spectral analysis 

To distinguish and group soil spectra from each field of the 5 fields considered in this 

study, principle component analysis (PCA) was carried out using soil spectra collected 

in the laboratory with fresh soil samples. The first two principal components (PCs) 

accounted for 97 % of total variance with the first PC accounted for 92 % of total 

variance (Figure 6-3). Three groups of soil samples can be observed, which are 

separated along principal component 1 (PC1), namely, sandy (Avenue and 

Shoeground), loam (Orchard) and clay (Ivy Ground and Copse) groups. However, 

separation between two fields (Avenue and Shoeground and Ivy Ground and Copse) of 

the same group can also be observed, with minimal overlapping of samples. These 

separations occur along PC2, which might be explained by the different MC in these 

fields. However, this might be due to the interaction effect of MC and texture. This 

implies that there is soil texture information in the vis-NIR soil spectra, which will 

potentially influence the soil vis-NIR measurement on soil properties.  

 

 

Figure 6-3 Principle component analysis (PCA) similarity maps for soil samples from Avenue (round), 

Orchard (square ), Ivy Ground (triangle), Shoeground (cross) and Copse (dot) fields 
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To analyse the soil moisture content and soil texture effects on the soil vis-NIR spectra, 

the average spectra of each field under wet and dry conditions are shown in Figure 6-

4. This Figure explains differences in MC and texture of each field, which is reflected 

and in-line with PCA plot shown in Figure 6-3 too. It can be clearly observed that the 

dry soil absorbs less light (large reflectance), as compared to wet soils of the same 

field. Also clay soil samples of Ivy Ground and Copse fields have smaller reflectance 

(larger absorption) in the NIR spectral range than that of loamy soils (Orchard field) 

and sandy soils (Avenue and Shoeground fields). Due to the interaction effect of both 

MC and texture, average reflectance in the vis and in the NIR change when samples are 

dry as compared to wet soil samples.  

 

6.3.2 In situ prediction accuracy of models with fresh soil samples 

Tables 6-3 summarises the RMSEP and RPD values of PLS cross validation and PLS 

model prediction using in situ (wet soil) collected spectra of the prediction set for each 

field. According to RPD limits of accuracy proposed by Viscarra Rossel et al. (2006), the 

accuracy of the prediction OC in the prediction set is evaluated as very good with RPD 

values range of 2.11-2.34 in all five fields. The accuracy for TN prediction is evaluated 

to be good to excellent with larger range of RPD of 1.91-2.68. 
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Figure 6- 4  The combined effect of moisture content (MC) and texture on soil spectra 

 

 

Table 6-3 Validation results of partial least squares regression (PLS) in cross validation (model) and in 

prediction sets for the prediction of soil organic carbon (OC) and total nitrogen (TN) under fresh in situ 

and on-line measurement conditions 

   
  Field OC  TN  

    RMSEP / g kg
-1

 RPD  SD  RMSEP
a
 / g kg

-1
  RPD

b
  SD  

In situ  

validation 

Avenue   1.69 2.24 3.8 0.11 2.64 0.31 

Orchard  1.66 2.16 3.6 0.11 2.45 0.26 

Ivy  1.30 2.15 2.8 0.11 2.17 0.28 

Shoeground  1.83 2.34 4.3 0.16 2.68 0.27 

Copse field  1.23 2.11 2.6 0.16 1.91 0.31 

On-line 

validation 

Avenue   1.74 2.18 3.8 0.12 2.51 0.31 

Orchard  1.75 2.05 3.6 0.11 2.36 0.26 

Ivy  1.4 2.03 2.8 0.13 2.08 0.28 

Shoeground  1.9 2.24 4.3 0.1 2.58 0.27 

Copse field  1.29 2.01 2.6 0.16 1.86 0.31 

Model  
 

3.34 2.36 7.9 0.28 2.71 0.76 

a 
residual prediction deviation (Standard deviation/root mean square error of prediction) 

b
 root mean square error of prediction. 
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6.3.3 On-line prediction accuracy of models with fresh soil samples 

As the soil organic matter (SOM) or OC are essential for soil management and carbon 

sequestration, they were the main properties considered for on-line vis-NIR 

measurement (Shonk et al., 1991; Shibusawa et al., 2001; Hummel et al., 2001; Christy 

et al., 2008; Mouazen et al., 2007; Bricklemyer et al., 2010). Although there are some 

significant absorbance peaks for carbon in both vis and NIR spectral ranges, only few 

moderate successful cases for on-line measurement have been reported so far 

(Hummel et al., 2001; Christy et al., 2008). This might be attributed to the affecting 

factors during on-line measurement, including noise associated with tractor vibration, 

sensor-to-soil distance variation (Mouazen et al., 2009) stones and plant roots and 

difficulties of matching the position of soil samples collected for validation with 

corresponding spectra collected from the same position (Mouazen et al., 2007). 

Compared to the on-line sensing of SOM or OC, there is even fewer study on TN can be 

found in the literature (Mouazen et al., 2007; Christy et al., 2008).  Only Christy et al., 

(2008) achieved high accuracy for TN (R2 = 0.86) for a field scale calibration. This was 

not confirmed stable for different fields as it is reported in the current study where on-

line validation is classified as good to very good in the five measured fields (Table 6-3). 

Actually, there is high correlation between OC and TN, because the N content in soil is 

almost entirely dependent on the organic matter content, and the overall TN:OC ratio 

is 1:10 (Martin et al., 2002).  

 

6.3.4 Prediction accuracy with models of dry soil samples 

Overall, after MC removal, the accuracy of OC and MC prediction has considerably 

improved comparing to that of the in situ and on-line prediction, not only in the cross-

validation, but also in prediction sets of the five measured fields. Therefore, under dry 

soil condition, the measurement of OC and TN is classified as excellent accuracy (Table 

6-4). This confirms that soil MC plays a negative role on the prediction of OC and TN 

with vis-NIR spectroscopy. The measurement of soil OC can be classified as excellent 
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for both cross-validation (RPD = 3.36) and prediction sets of 5 measured fields (RPD = 

2.66 - 3.39, RMSEP = 0.76 – 1.61 gkg-1), which is better accuracy as compared to 

previous studies (Dunn et al., 2002; Fidencio et al., 2002; Shepherd & Walsh. 2002; 

Chang et al., 2005; Brown et al., 2006). The measurement accuracy of TN was even 

better, which can also be classified as excellent for cross-validation (RPD = 3.84) and 

prediction sets of five measured fields (RPD = 2.85 - 3.45, RMSEP = 0.08 - 0.1gkg-1), 

which is comparable to those obtained in previous studies (Couteaux et al,. 2003; Dalal 

& Henry, 1986; Vagen et al., 2006; Guerrero et al., 2010). 

 

 

Table 6-4 Validation results of partial least squares regression (PLS) in cross validation (model) and in 

prediction data sets for the prediction of soil organic carbon (OC), total nitrogen (TN) using dry soil 

samples 

 
 Field OC TN 

Prediction   RMSEP / g kg
-1

 RPD SD RMSEP / g kg
-1

 RPD SD 

Avenue  1.32 2.86 3.8 0.1 2.96 0.31 

Orchard 1.16 3.08 3.6 0.08 3.15 0.26 

Ivy 0.88 3.17 2.8 0.08 3.27 0.28 

Shoeground 1.6 2.66 4.3 0.09 2.85 0.27 

Copse field 0.76 3.39 2.6 0.08 3.45 0.31 

Model    2.04 3.36 7.9 0.19 3.84 0.76 

 

 

6.3.5 Effect of soil moisture content and texture on prediction 

accuracy 

Figures 6-5 and 6-6 illustrate the effect of soil MC and texture (in terms of soil clay 

content) on the measurement accuracy of soil OC and TN, respectively. Under wet soil 

condition, the increase of field clay content and MC results in decrease of 

measurement accuracy of OC and TN in terms of RPD. Although the influence of MC on 

decrease of prediction accuracy of OC and TN with vis-NIR spectroscopy is in line with 
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other studies (Chang et al., 2005; Mouazen et al., 2006b;Tekin et al., 2011), clay 

content used to contribute to the enhancement of measurement accuracy (Stenberg, 

2010). However, results shown in Figure (6-5 & 6-6) give the illusion that clay fraction 

plays the same negative role as MC on prediction accuracy. When MC is removed by 

considering dry samples, it becomes clear that clay content plays a positive role on the 

accuracy of vis-NIR spectroscopy (Figures 6-5 & 6-6). The illusion that with increase in 

clay content, the prediction accuracy of OC and TN deteriorates when using wet soil 

samples, can be explained by the fact that clay can hold larger amount of water than 

sand due to the large water holding capacity and plasticity index of clay.  
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Figure 6-5 Mean values of three replicates of ratio of prediction deviation (RPD) obtained for prediction 

sets of five fields for on-line (white), in situ (grey), oven-dried (black) measurement for soil organic 

carbon (OC) 

 

Figure 6- 6 Mean values of three replicates of ratio of prediction deviation (RPD) obtained for prediction 

sets of five fields for on-line (white), in situ (grey), oven-dried (black) measurement for soil total 

nitrogen (TN) 
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When dry soil samples were used the highest accuracy for OC and TN prediction, 

measured as RPD was obtained for field with the highest clay content (Copse field), 

whereas the lowest RPD values was obtained for field with the lowest clay content 

(Shoeground field). Moreover, as the soil clay content increase, the prediction of soil 

OC in the field improved. Stenberg (2010b) reported increase in prediction error of OC 

with sand, which was also attributed to the scattering effect of sand content, which is 

in line with the finding of this study. 
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Table 6-5 Results of univariate analyses of variance (ANOVA) performed on the independent validation 

set to evaluate separate effect of moisture content (MC) and texture and interaction effect of MC and 

texture on prediction accuracy of organic carbon (OC) and total nitrogen (TN) evaluated as ratio of 

prediction deviation (RPD), root mean square error of prediction (RMSEP) for in situ measurement using 

wet soil samples  

 

  OC  TN 

  Source  MS F -ratio  p-value  MS F -ratio  p-value  

RPD  

MC   737.19 37.10 0.0002 722.67 36.28 0.0003 

Clay   2655.9 13.98 0.005 2163.83 8.455 0.027 

sand  3672.7 13.96 0.005 2628.28 13.83 0.005 

silt 1262.9 171.48 0.008 1243.89 167.78 0.009 

Interaction MC*Texture 1107.9 4.65 0.01 1098.59 4.6 0.01 

R
2
  

MC   768.57 33.87 0.0002 894.36 43.74 0.0001 

Clay   2647.2 16.54 0.003 3251.32 16.23 0.006 

sand  3823.1 14.44 0.005 4675.2 15.22 0.004 

Silt 1325.9 180.93 0.008 1123.26 212.63 0.05 

Interaction MC*Texture 1124.7 4.34 0.01 1234.12 5.12 0.009 

RMSEP  

MC   794.77 39.94 0.0002 925.63 46.60 0.0001 

Clay   2764.2 14.54 0.005 3003.98 15.81 0.004 

sand  3800.1 14.44 0.005 4080.4 15.51 0.004 

Silt 1337.9 180.93 0.03 1506.26 204.63 0.05 

Interaction MC*Texture 1144.7 4.80 0.009 1226.69 5.15 0.007 

 

Table 6-5 and Table 6-6 summarises the output of ANOVA, with the intention to 

evaluate how significant the effects on MC and soil texture fractions and the 

interaction between them on the prediction on OC and TN under both in situ (Table 6-

5) and on-line (Table 6-6) measurement conditions. In terms of measurement accuracy 

evaluated as RPD, R2 and RMSEP, MC, clay content, silt content and sand content all 

have significant effects on the prediction of OC (p<0.05), with MC has the most 

significant influence (p = 0.0001 regarding RPD).  
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Table 6- 6Results of univariate analyses of variance (ANOVA) performed on the independent validation 

set to evaluate separate effect of moisture content (MC) and texture and interaction effect of MC and 

texture on prediction accuracy of organic carbon (OC) and total nitrogen (TN) evaluated as ratio of 

prediction deviation (RPD), root mean square error of prediction (RMSEP) for on-line measurement 

 

  OC  TN 

  Source  MS F -ratio  p-value  MS F -ratio  p-value  

RPD  MC   745.63 37.53 0.0003 730.51 36.69 0.0003 

Clay   2671.91 14.06 0.006 2643.2 13.91 0.005 

sand  3691.77 14.03 0.005 3658.0 13.90 0.006 

silt 1273.96 172.96 0.02 1254.1 169.34 0.05 

Interaction MC*Texture 1113.39 4.67 0.01 1103.6 4.63 0.01 

R
2
  

MC   723.12 32.33 0.0001 834.23 43.74 0.0001 

Clay   2234.24 12.54 0.004 3654.1 16.21 0.003 

sand  3673.16 14.44 0.006 4945.2 15.67 0.006 

Silt 1123.95 183.93 0.009 1247.2 212.38 0.04 

Interaction MC*Texture 1865.7 4.34 0.01 1234.1 5.67 0.007 

RMSEP  

MC   788.18 39.61 0.0002 926.21 46.63 0.0001 

Clay   2751.9 14.48 0.005 3005.0 15.81 0.004 

sand  3785.74 14.39 0.005 4081.6 15.51 0.004 

Silt 1329.40 179.80 0.04 1507.0 204.73 0.01 

Interaction MC*Texture 1140.594 4.78 0.009 1140.5 4.78 0.009 

 

Tekin et al. (2011) found the effect of MC on the prediction of soil OC to be significant 

when this was tested on a data set with mixed texture samples collected from the UK 

and Turkey, which supports the finding of the current study. Further analysis shows 

that the interaction effects between MC and texture are significant for all accuracy 

standards and both on-line and in situ conditions. 

 

6.4 Conclusions  
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The signal effects of both soil MC and soil texture fractions and the interaction effects 

of MC and texture fractions on the prediction of OC and TN were investigated using 

soil samples collected from five fields of the same farm, with different field MC levels 

and soil textures. The investigation was carried out for dry, fresh and on-line collected 

vis-NIR spectral data. Results obtained allowed drawing the following conclusions: 

1. Soil MC, sand and silt fractions have negative influence, whereas clay content 

has a positive effect. Soil MC, silt, clay and sand fractions play significant role in 

soil vis-NIR spectroscopy for the prediction of soil OC and TN, with MC has the 

most significant influence on both on-line and in situ measurement conditions 

for both OC and TN. 

2. The interaction effects of MC with soil texture were found to be significant on 

both on-line and in situ conditions for both OC and TN; however, this was less 

significant than all individual effect. 

3. A better accuracy of vis-NIR spectroscopy of soil OC and TN is expected in dry 

and clay ridden than in wet and sandy fields. When measurement is to be 

carried out under mobile (on-line) or non-mobile conditions, it is recommended 

to access the field as driest possible conditions, particularly in clay fields. 

Accessing clay fields under wet condition would result in the highest expected 

error, as water holding capacity of clay is high. Larger error is to be expected in 

this case as compared to that in fields with light soils. 
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7 Validation of on-line measurement 

 

7.1 Introduction 

 

One of the strategies used in PA is to minimize the production costs through enhanced 

efficiency, which can increase profits and conserve the environment. It is proved that 

PA is an environmental friendly strategy, in which farmers can vary the use of input to 

respond to variable soil and crop conditions within a field (Srinivasan, 2006). 

Conventional determination of soil spatial variability usually involves manual soil 

sampling, sample pre-treatment, laboratory reference analyses and mapping. This 

procedure is very expensive, time consuming and provides scattered measurement 

points. Therefore, the development of a fast, robust, cost effective and environmental 

friendly detecting method of the soil spatial variability is a preliminary task for the 

implementation of PA.  

The vis-NIR spectroscopy is a recently proven technique for a fast, inexpensive and 

relatively accurate alternative method to the laboratory analyses of soil properties 

(Mouazen et al, 2010; Shepherd & Walsh, 2002; Stenberg et al., 2010; Viscarra Rossel 

& McBratney, 1998). In comparison to non-mobile analysis, there is considerably less 

literature available about on-line vis-NIR spectroscopy analysis of soil properties. 

Generally, both the laboratory and in situ non-mobile vis-NIR methods provide better 

accuracy than the on-line method (Kuang et al., 2012a). This might be attributed to 

other factors influencing the latter method only, such as noise associated with tractor 

vibration, sensor-to-soil distance variation (Mouazen et al., 2009), stones and plant 

debris and difficulties of matching the position of soil samples collected for validation 

with corresponding spectra collected from the same position (Mouazen et al., 2007). A 

review on the current status of on-line vis-NIR measurement systems confirms that 

only three systems are available today (Christy et al., 2008; Mouazen et al., 2005; 

Shibusawa et al., 2001). The beginning of these systems dates back to 1991, when 

Shonk et al., (1991) developed a system to measure SOM and MC, which utilised a 
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single wavelength (660 nm) of light, reporting a R2 of 0.83 for SOM. Shibusawa et al., 

(2001) developed an on-line vis-NIR (400 – 1700 nm) sensor to predict OC, MC, pH and 

NO3-N. Although this system is highly technically instrumented, it is rather expensive. 

Christy et al., (2008) developed a prototype soil reflectance mapping unit equipped 

with a vis-NIR spectrophotometer, which is commercially available in the market 

today. The sapphire glass of the optical probe makes direct contact with soil and 

stones. They have reported that OC can be successfully measured with a RMSEP of 3.0 

gkg-1 in a high OC variability area (standard deviation = 5.1 gkg-1 and range = 3.0-26.3 

gkg-1). A simpler design to the one of Shibusawa et al., (2001) without sapphire 

window optical configuration was developed by Mouazen (2006a). So far, the system 

provided variable degrees of success for the measurement of MC, total nitrogen (TN), 

total carbon (TC), pH and available P in different soils in Belgium and northern France 

(Mouazen et al., 2005; Mouazen et al., 2007; Mouazen et al., 2009). More recently, 

employing the on-line system developed by Christy et al. (2008), Bricklemyer et al. 

(2010) reported on the on-line measurement for soil OC and clay content. Although 

authors did not report quantitative estimation of accuracy for OC, they calculated a 

standard error of prediction (SEP) of 3.4 gkg-1 and a RPD value of 1.4 for clay content. 

Using the same system, coupled with topography and aerial photograph data, Munoz 

et al. (2011) reported low to moderate accuracy of soil OC measurement with R2 and 

RMSEP ranged from 0.44 to 0.66 and from 1.41 to 1.51 gkg-1, respectively. Applying 

this vis-NIR system in combination with electrical conductivity (EC) and temperature 

sensors in a Danish field, Knadel et al. (2011) obtained moderate prediction accuracy 

(RMSEP = 59.4 gkg-1 and RPD = 2.3) for soil OC. However, the vis-NIR sensor alone only 

achieved a relatively low accuracy (RMSEP = 59.8 gkg-1, RPD = 1.9). This brief review 

reveals that the existing on-line sensors do not provide sufficiently accuracy and 

stability to recommend them for site specific application of different inputs. The 

variable degrees of performance of on-line these sensors might be attributed to the 

fluctuation in model performance, with the majority of them established for field-scale 

analysis (e.g. Christy et al., 2008; Mouazen et al., 2005; Munoz et al., 2011  Shibusawa 

et al., 2001), or for regional- and country-scale analysis (e.g. Mouazen et al., 2007; 
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Mouazen et al., 2009). Some studies suggested spiking local samples into the general 

calibration models can improve prediction accuracy under laboratory (Sanky et al. 

2008) or in situ measurement conditions (Minasny et al. 2009; Viscarra Rossel et al. 

2009; Waiser et al. 2007; Wetterlind and Stenberg, 2010). As yet, no general 

calibration procedure that included spiking strategy have been reported for 

establishing calibration models of on-line sensors, which has led to stable performance 

of on-line sensors, at the lowest production cost.  

This paper aims at reporting on a methodology for the calibration of a vis-NIR on-line 

measurement system (Mouazen, 2006), including spiking concept for automatic data 

collection of OC, TN and MC at farm scale in three European farms. 

 

7.2  Material and methods 

 

7.2.1 Soil sample 

A total of 425 soil samples were used as the general dataset to be used to establish 

calibration models for the measurement of OC, TN and MC in European soils (Table 7-

1). They were collected from four different farms in Europe, namely Mespol Medlov, 

A.S. (Czech Republic, http://farmsubsidy.org/CZ), Wimex (Germany, 

http://www.wimex-online.de), Bramstrup Estate (Denmark, 

http://www.bramstrup.dk) and Silsoe Farm (The UK). Bulked samples from 16 cores 

were collected from the upper soil layer (0-30 cm) in the spring of 2008 (Czech 

Republic and Germany), spring of 2009 (Denmark) and summer of 2009 (UK) and 

covered diverse soil conditions. A total of 128, 97 and 48 soil samples were, 

respectively, collected from seven fields in Mespol Medlov, A.S. farm, six fields in 

Bramstrup Estate farm and two fields in Silsoe farm. Further 152 soil samples were 

collected from four sub-areas belong to Wimex farm, with four samples from two 

fields at Reppichau, 50 samples from nine fields at RAG, 20 samples from ten fields at 

Aken and 54 samples from fifteen fields at the Wulfen farm.  
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Table 7-1 Soil samples used to establish general calibration models for organic carbon (OC), total 

nitrogen (TN) and moisture content (MC). Samples were collected from Mespol Medlov, A.S. farm in 

Czech Republic, Wimex farm in Germany, Bramstrup Estate farm in Denmark and Silsoe farm in the UK 

Country  
Number of samples Nr of Fields Sampling time 

Czech Republic  128 7 2008 

Germany  152 37 2008 

Denmark  97 6 2009 

UK 48 3 2009 

 

Apart from these soil samples, another 113 soil samples were collected from three 

selected fields, where on-line measurement was carried out, namely, in Mespol 

Medlov, Bramstrump Estate and Silsoe farms (Table 7-2).  

 

Table 7- 2Information about the three fields in Mespol Medlov, A.S. farm in Czech Republic, Bramstrup 

Estate farm in Denmark and Silsoe farm in the UK, where on-line measurement took place in 2010 

Field 
Area, 

ha  

Crop  Sample 

Nr  

Texture type Sand, % Silt, % Clay, 

% 

Czech republic  2 wheat 48 Silt clay loam 4.86 70.58 24.56 

Denmark  2 wheat 37 Sandy loam 68.57 21.96 9.48 

UK  2 wheat  28 Clay loam 40.11 27.38 32.51 

 

These were considered as validation fields. They were collected during the on-line 

measurement from the bottom of trenches at a depth of 15 cm. Of these, 20 % were 

spiked into the general calibration dataset and the remaining 80% were used for the 

on-line validation purpose. The validation field in Silsoe farm is 500 m away from the 

nearest fields, where samples used for general data set were collected, whereas the 

validation fields in Mespol Medlov and Bramstrump Estate farms are 2.5 km and  3 km 

far from the nearest fields, respectively. A PCA, performed on 425 samples of general 
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calibration dataset and 113 validation data set show clear separation between 

validation samples from the general dataset samples (Figure 8-1). 

 

 

Figure 7-1 Principal component similarity map of principal component analysis (PCA) carried out on both 

425 calibration and 113 validation datasets. Principal components 1 and 2 accounted for 91.5 % and 6.9 

% of the total variance, respectively 

 

Around 200 g of soil from each sample was kept deep frozen (-18 °C) until analysis. 

After careful mixing, half of each sample from Czech Republic, Germany and Denmark 

was sent to Leibniz Centre for Agricultural Landscape Research (ZALF) in Germany for 

soil chemical analyses for TN and OC and the second half was sent to Cranfield 

University for optical measurement and data analysis. Samples collected from the UK 

and 113 soil samples collected during the on-line measurement in 2010, were 

subjected to both optical and chemical measurement at Cranfield University. Sample 

statistics of laboratory reference measurements is summarised in Table 8-3 for the 

calibration and validation datasets. 
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Table 7-3 Sample statistic for general calibration model (425) and samples taken during online 

measurement (133) in three in European. 

Model set  
Sample Nr Property,  

g kg-1 

Min Max Mean SD 

  OC  4.5 34.8 15.1 6 

General calibration set 425 TN  0.56 3.08 1.51 0.6 

  MC 77.3 292 156 95 

  OC 10.9 20.6 15.5 4.38 

Validation set 133 TN 1.09 2.13 1.62 0.39 

  MC 105 219 192 36.8 

 

7.2.2 On-line measurement  

The on-line measurement system designed and developed by Mouazen (2006) was 

used (Figure 1-1) to measure three fields in the three European farms. It consists of a 

subsoiler, which penetrates the soil to the required depth, making a trench, whose 

bottom is smoothened by the downwards forces acting on the subsoiler. The optical 

probe is housed in a steel lens holder. This is attached to the backside of the subsoiler 

chisel in order to acquire soil spectral reflectance data from the smooth bottom of the 

trench. The subsoiler was retrofitted with the optical unit and attached to a frame. This 

was mounted onto the three point hitch of the tractor (Mouazen et al., 2005). An 

AgroSpec mobile, fibre type, vis-NIR spectrophotometer (Tec5 Technology for 

Spectroscopy, Germany) with a measurement range of 305-2200 nm was used to 

measure soil spectra in diffuse reflectance mode. The spectrometer was an IP 66 

model, protected for harsh working environments. A deferential global positioning 

system (DGPS) (EZ-Guide 250, Trimble, USA) was used to record the position of on-line 

measured spectra with sub-meter accuracy. A Panasonic semi-rugged laptop was used 

for data logging and communication. The spectrometer system, laptop and DGPS were 

powered by the tractor battery. 
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Three fields were measured in summer 2010, namely, in Mespol Medlov, A.S. farm in 

Czech Republic, Bramstrup Estate farm in Denmark and Silsoe farm in the UK. In each 

field, blocks of 150 m by 150 m, covering about 2 ha of land were measured. Each 

measured line was 150 m long with 10 m intervals between adjacent transects (Figure 

8-2). The travel speed of the tractor was around 2 km/h and the measurement depth 

was set at 15 cm. During the measurement at each line, 2 or 3 soil samples were 

collected from the bottom of the trench and the sampling positions were carefully 

recorded with a DGPS. Each of those samples was equally divided into two parts. One 

half used to carry out the laboratory reference measurements of soil OC, TN and MC 

and the other half used for optical scanning. 

 

 

Figure 7-2 On-line measured lines and sampling positions during on-line measurement, shown in a field 

in Bramstrup Estate farm in Denmark 
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7.2.3 Laboratory reference analyses 

Soil OC and TN were measured by a TrusSpecCNS spectrometer (LECO Corporation, St. 

Joseph, MI, USA), using the Dumas combustion method. Soil MC was determined by 

oven drying of the soil samples at 105 ºC for 24 h. The results of the textural analysis of 

the three on-line measured fields were based on a mixed sample from each field. Each 

sample was subjected to wet sieving and a hydrometer test in order to determine the 

particle size distribution. Texture was determined according to the United State 

Department of Agriculture (USDA) classification system (Table 7-2). 

 

7.2.4 Optical measurement  

Each soil sample was put into a glass container and mixed well. Big stones and plant 

residue were removed (Mouazen et al., 2007). Soil from each sample was placed into 

three Petri dishes, which were 2 cm deep and 2 cm in diameter. The soil in the Petri 

dish was shaken and pressed gently before levelling with a spatula. A smooth soil 

surface ensures maximum light reflection and a high signal to noise ratio (Mouazen et 

al., 2007). The soil samples were scanned by the same AgroSpec portable 

spectrophotometer (Tec5 Technology for Spectroscopy, Germany), used during the on-

line measurement. A 100 % white reference was used before scanning. A total of 10 

scans were collected from each cup and these were averaged in one spectrum.  

 

7.2.5 Sample pre-treatment and development of calibration models 

7.2.5.1  Pre-treatment of spectra 

The laboratory non-mobile measured soil spectra for 425 samples were used to 

develop general calibration models, after spiking those with spiking samples from the 

three validation fields. The spectral range of these spectra was first reduced to 371 - 

2150 nm to eliminate the noise at both edges of each spectrum. The number of 

wavelengths was then reduced by averaging three successive wavelengths in the 

visible range, and 15 points in the NIR range. The Savitzky-Golay smoothing, maximum 

normalisation and first derivation (Martens & Naes, 1989) were successively 
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implemented using Unscrambler 7.8 software (Camo Inc.; Oslo, Norway). The pre-

treated spectra and the laboratory chemical measurement values were used to 

develop the calibration models.  

 

7.2.5.2  Spiking 

The purpose of spiking is to enhance the variability included in a general calibration 

dataset, by accounting for the soil variability present in new fields. This technique has 

been recommended by other researchers for non-mobile measurements (Guererro et 

al. 2010; Janik et al., 2007; Shepherd and Walsh, 2002; Viscarra Rossel et al., 2008). 

Three different spiking strategies of soil samples collected from the target validation 

fields (e.g. 3 on-line measured fields) were selected. These included - no spiking of soil 

samples, - spiking with laboratory non-mobile scanned spectra and - spiking with on-

line (mobile) spectra recorded during the on-line measurement. When spiking was 

considered with the latter 2 cases, about 20 % of a randomly selected set of samples 

(21 samples from the three fields) from the total 113 soil samples collected during the 

on-line measurement were spiked into the general data set of 425 samples, collected 

from the 4 European farms. After spiking, the total number of samples in the 

calibration set was 446. Furthermore, smaller ratios of samples of 10 % and 5 % were 

randomly selected from the laboratory measured spectra and were used as spiking 

sets to envisage the influence of different spiked sample numbers of the on-line 

prediction accuracy. 

 

7.2.5.3  Development of calibration models 

These table 7-3 sample sets were subjected to a PLSR with the leave-one-out cross 

validation using an Unscrambler 7.8 software (Camo Inc.; Oslo, Norway). A total of 3 

groups of models were developed based on 3 different spiking rates of 20, 10 and 5 % 

of collected soil samples from the three validation fields. The remaining 80, 90 and 95 

% of the total 113 samples were used to validate the on-line measurement and to 

develop maps comparing the laboratory reference with the corresponding on-line 
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measured values. The number of latent variables for a model was determined by 

examining a plot of the leave-one-out cross-validation residual variance against the 

number of latent variables obtained from the PLSR. The latent variable of the first 

minimum value of residual variance was selected. Outliers were detected using the 

residual sample variance plot after PLSR. Samples located far from the zero line of 

residual variance were considered outliers and excluded from the cross-validation 

sample set.  

 

7.2.5.4 Development of soil maps 

Two types of maps were developed, namely, validation and full-data points maps. 

ArcGis 10 (ESRI, USA) software was used to generate the former validation maps, using 

the inverse distance weighing (IDW) interpolation methods. To produce the latter 

maps, Vesper 1.6 software (Whelan, 2002), developed by Australian Centre for 

Precision Agriculture, was used to develop semivariogram models for OC, TN and MC 

using the entire field on-line data. Based on semivariogram parameters and kriging 

interpolation method, ArcGis 10 (ESRI, USA) was used to produce the full-data point 

maps using on-line measured spectra.  

 

 

Figure 7-3 A flow diagram explaining different steps performed during the study 
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7.3  Results and discussion 

 

A flow diagram illustrating the different steps taken into account in this study, from 

the collection of soil sample to the development of different maps is shown in Figure 

7-3. This diagram makes it clear that the vis–NIR calibration models were developed 

using soil spectra measured under a non-mobile laboratory environment. The 

applicability of these laboratory calibration models for the on-line prediction of soil 

properties was validated on spectra measured with the on-line vis–NIR sensor. 

 

7.3.1 Evaluation of accuracy of general calibration models  

Based on spiking strategies and ratio of samples spiked in the general calibration set, 

the accuracy of calibration models achieved based on cross-validation proves 

promising results (Table 7-4).  

 

Table 7-4 Comparison of model performance (20 % spiking with laboratory measured spectra) in cross-

validation and by using laboratory measured vis-NIR spectra of validation set for the prediction of 

organic carbon (OC), total nitrogen (TN) and moisture content (MC) in the three on-line measured fields 

in Mespol Medlov, A.S. farm in Czech Republic, Bramstrup Estate farm in Denmark and Silsoe farm in the 

UK 

  
    OC     TN MC 

Set Country Spiked 

samples 

RMSEP/ 

g kg-1 

RPD SD RMSEP/ 

 g kg-1 

RPD SD RMSEP / 

 g kg-1 

RPD SD 

Validation 

set 

CZ 9 0.69 2.38 1.64 0.07 2.57 0.19 7.4 3.16 23.4 

DK 7 1.00 2.31 2.30 0.09 2.38 0.21 3.2 3.95 12.8 

UK 5 0.95 2.41 2.30 0.09 2.34 0.20 5.8 3.27 19.2 

Cross-

validation 

 - - 2.30 2.82 6.50 0.23 2.61 0.6 22.20 4.28 95.0 

 

Examining RPD values, which is the standard deviation (SD) divided by RMSEP, reveals 

that RPD values for 20 % spiking ratio of laboratory-scanned spectra were 2.82, 2.61 

and 4.28 for OC, TN and MC, respectively. For validation of models using validation 
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sets (scanned under laboratory non-mobile conditions) of the three fields, RPD ranges 

were 2.31 – 241, 2.34 – 2.57 and 3.16 – 3.95, respectively for OC, TN and MC.  

 

Table 7-5 Comparison of model performance in cross-validation (model) and by using on-line 

measurement spectra of validation set for the prediction of organic carbon (OC), total nitrogen (TN) and 

moisture content (MC), using different spiking strategies and spiking rates in the three on-line measured 

fields in Mespol Medlov, A.S. farm in Czech Republic, Bramstrup Estate farm in Denmark and Silsoe farm 

in the UK 

  
    OC     TN MC 

Spiking 

strategy 

Country Spiked 

samples 

RMSE /  

 g kg-1 

RPD SD RMSEP /  

g kg-1 

RPD SD RMSE /  

g kg-1 

RPD SD 

Without 

spiking 

CZ NA 0.80 2.06 1.64 0.08 2.25 0.19 8.15 2.87 23.4 

DK NA 1.16 1.98 2.30 0.10 2.18 0.21 3.51 3.65 12.8 

UK NA 1.09 2.11 2.30 0.10 2.03 0.20 6.15 3.12 19.2 

Model  - - 2.30 2.61 6.00 0.24 2.5 0.6 24.55 3.87 95.0 

20 %  

on-line 

Spiking 

CZ 9 0.82 2.01 1.64 0.09 2.22 0.19 8.48 2.76 23.4 

DK 7 1.22 1.88 2.30 0.10 2.04 0.21 3.62 3.54 12.8 

UK 5 1.15 2.00 2.30 0.10 1.96 0.20 6.27 3.06 19.2 

Model  - - 2.30 2.82 6.50 0.23 2.61 0.6 25.00 3.76 94.0 

20 % lab 

spiking 

CZ 9 0.70 2.33 1.64 0.08 2.52 0.19 7.41 3.16 23.4 

DK 7 1.01 2.28 2.30 0.09 2.35 0.21 3.23 3.96 12.8 

UK 5 0.97 2.38 2.30 0.09 2.31 0.20 5.91 3.25 19.2 

Model  - - 2.30 2.82 6.50 0.23 2.61 0.6 22.20 4.28 95.0 

10 % lab 

spiking 

CZ 5 0.75 2.18 1.64 0.08 2.38 0.19 7.65 3.06 23.4 

DK 4 1.06 2.18 2.30 0.10 2.21 0.21 3.39 3.78 12.8 

UK 3 1.02 2.26 2.30 0.09 2.24 0.20 6.04 3.18 19.2 

Model  - - 2.30 2.74 6.50 0.23 2.56 0.59 22.14 4.29 95.0 

5 % Lab 

spiking 

CZ 3 0.76 2.16 1.64 0.09 2.18 0.19 7.91 2.96 23.4 

DK 3 1.07 2.15 2.30 0.10 2.09 0.21 3.61 3.55 12.8 

UK 2 1.07 2.15 2.30 0.09 2.11 0.20 6.19 3.10 19.2 

Model  - - 2.30 2.73 6.50 0.23 2.56 0.59 22.67 4.19 95.0 

 

According to Viscarra Rossel et al. (2006), an RPD value between 1.8 and 2 and 

between 2.0 and 2.5 indicates good and very good quantitative model predictions, 

respectively, whereas values above 2.5 indicate excellent prediction results. This 

means that the validation results of individual fields prove the prediction accuracy 

using non-mobile measured spectra to be very good to excellent model predictions for 
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the three studies properties. The high model accuracy for the three elements may be 

considered as a primary evidence of successful prediction of on-line measurement for 

soil OC, TN and MC. 

 

7.3.2  Validation of on-line measurement 

The same spectra pre-treatment was used for the on-line collected spectra as that 

used for calibration model development. The on-line collected spectra after spectra 

pre-treatment were used to predict MC, TN, and OC using the general calibration 

models developed in advance, as explained above. The chemical analysis values of the 

manually collected samples were compared with the on-line predicted concentration 

values at the same positions. Table 7-5 summarises the accuracy of the on-line 

measurement for studied soil properties based on different spiking methods and 

spiking ratios. Examining Table 7-5 reveals that RPD values were above 2 for all soil 

properties in all fields, except for 3 cases. Out of these 3 cases, RPD in 1 case was 1.98 

for OC in the field in Denmark. The other 2 cases (OC and TN in the Danish and the UK 

fields, respectively) were for models developed based on 20 % spiking of on-line 

collected spectra. This may suggest that spiking with on-line collected spectra is not 

the best strategy to follow. This might be attributed to difficulties associated with 

precision of matching sampling position of on-line collected spectra with 

corresponding soil sample used for laboratory reference analysis, which is an issue 

highlighted by Mouazen et al. (2007). However, this issue has only slight effect on 

prediction accuracy. Adopting Viscarra Rossel et al. (2006a) classification system for 

the prediction accuracy reveals that the on-line prediction for OC, TN and MC is good, 

good/very good and excellent performance, respectively, for both modelling strategies 

without and with spiking (Table 8-5).  

As SOM or OC are essential for soil management and carbon sequestration, they were 

the main properties considered for on-line vis-NIR measurement (Bricklemyer et al., 

2010; Christy et al., 2008; Hummel et al., 2001; Mouazen et al., 2007; Shibusawa et al., 

2001; Shonk et al., 1991). Although there are some significant absorbance peaks for 

carbon in both the vis and NIR spectral ranges, only few moderate successful cases for 
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on-line measurement have been reported so far (Christy et al., 2008; Hummel et al., 

2001). This might be attributed to the affecting factors during on-line measurement, 

including noise associated with tractor vibration, sensor-to-soil distance variation 

(Mouazen et al., 2009) stones and plant roots and difficulties of matching the position 

of soil samples collected for validation with corresponding spectra collected from the 

same position (Mouazen et al., 2007; Stenberg et al., 2010). Compared to the on-line 

sensing of OC, there is even fewer study on TN can be found in the literature (Christy 

et al., 2008; Mouazen et al., 2007).  Only Christy et al., (2008) archived high accuracy 

for TN (R2 = 0.86) for a field scale calibration. This was not confirmed stable for 

different fields, as reported in the current study where on-line validation is classified as 

good to very good in the three measured fields (Table 7-4). Actually, there is high 

correlation between OC and TN, because the N content in soil is almost entirely 

dependent on SOM content, and the overall TN:OC ratio is 1:10 (Martin et al., 2002). 

This high correlation explains and justifies the successful measurement of TN, although 

no direct spectral response exists for TN.      

Soil MC is the most successfully on-line measured soil property and higher accuracies 

were reported in the literature (Christy et al., 2008; Hummel et al., 2001; Mouazen et 

al., 2005). This is due to significant water absorbance peaks at 950, 1450 and 1950 nm. 

Although the range of MC was relative narrow in the current study (SD = 12.8 - 23.4 

gkg-1) (Table 7-5), the RMSEP for on-line prediction after 20 % spiking with laboratory 

scanned spectra was very small (3.23 gkg-1 - 7.24 gkg-1), proving the excellent 

performance of the sensor for on-line sensing of MC. 

 

 

 

 

7.3.3  Soil maps  

7.3.3.1 Validation maps 
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Figure 7- 4 Comparison maps based on laboratory chemical reference (left), on-line measured spectra 

(middle) and laboratory measured spectra (right) for organic carbon (OC) (a), total nitrogen (TN) (b) and 

moisture content (MC) (c), shown as example in the field of Bramstrup Estate farm in Denmark. Models 

used to predicted develop both spectral maps are based on 20 % spiking of laboratory measured spectra 
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Figure 7- 5Maps of error between laboratory reference method and on-line measured organic carbon 

(OC), total nitrogen (TN) and moisture content (MC), shown as an example in the field of Bramstrup 

Estate farm in Denmark. Models used to develop error maps are based 20 % spiking of laboratory 

measured spectra 
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In order to allow for meaningful comparisons between reference and on-line 

measured maps, the same number of classes (7 classes) was considered for all maps 

with each class has identical range in three maps (Mouazen et al., 2007). A comparison 

between maps of measured and predicted soil properties investigated shows large 

spatial similarity, with high and low values zones matches almost perfectly. No spatial 

differences can be observed between validation maps developed with on-line 

measured spectra and the corresponding maps developed with laboratory (non-

mobile) measured soil spectra. This proves the high quality of on-line measured 

spectra, which reflects the sensor stability and robustness during on-line 

measurement. Figure 8-5 shows the error maps between laboratory and on-line 

measured OC, TN and MC in the Denmark field. From these error maps, it can be 

observed that the largest error in the three maps occur at the boarder of each field, 

which might be attributed to errors associated with placing or removing the optical 

probe, respectively, at the start or end of some measured lines. Another reason might 

be the irregularity of the soil surface at the field circumference.  

 

7.3.3.2 Full-data point maps 

For the development of spatial distribution of the three soil properties using the entire 

data points collected with the on-line sensor, several semivariogram models where 

tested and the exponential semivarigrams provided the best fit. The semivarigram 

parameters of the three properties in the Denmark field are summarised in Table 8-6.  

 

Table 7-6 Semivariogram model parameters of organic carbon (OC), total nitrogen (TN) and moisture 

content (MC) used for mapping Bramstrup Estate field in Denmark 

property 
Model fit  Nugget (C0)  Sill (C0+C1) Range Proportion 

(C1/C0+C1) 

Sum  

of square error 

OC Exponential 0.9 2.38 9.43 0.58 1.033 

TN Exponential 0.008 0.027 8.45 0.67 0.002 

MC Exponential 167.7 321.1 6.48 0.47 20.24 
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Figure 7- 6 Maps of on-line measured organic carbon (OC) (a), total nitrogen (TN) (b) and moisture 

content (MC) (c) based on entire data points collected in the field of Bramstrup Estate farm in Denmark. 

Models used to develop these maps are based on 20 % spiking of laboratory measured spectra 

 

Maps show high spatial variability of the three soil properties, although the field area is 

remarkably small of 2 ha (Fig 8-6). This high variability encourages the need for on-line 

soil sensor for the characterisation of within field spatial variability of soil properties, 

as zones with different levels of concentration should be managed differently in PA, 
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particularly for site specific fertilisation. In particular, high similarity between OC and 

TN maps can be observed, which can be attributed to the fact that there is high 

correlation between OC and TN in the soil. 

 

7.3.3.3  Effect of spiking strategy and spiked sample number 

The best accuracy for the on-line measurement of the three studied properties was 

achieved for spiking with 20 % of laboratory scanned samples. Only slight increase in 

prediction accuracy of these models is observed for laboratory measured spectra 

(Table 7-4), as compared to corresponding model performances validated on on-line 

measured spectra (Table 7-5). However, prediction accuracy decreases as the number 

of spiked samples decreases (Fig. 7-8). The RPD values for MC and TN for modelling 

without spiking were almost equal to those with 5 % spiking. For OC, spiking with even 

small number of sample (e.g. 5 %) increases RPD values considerably of spiked models, 

as compared to none-spiked models (Figure 7-7). 
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(c) 

Figure 7- 7 Ratio of prediction deviation (RPD) values obtained from validation of general calibration 

models for on-line measured spectra of organic carbon (OC) (a), total nitrogen (TN) (b) and moisture 

content (MC) (c), using different spiking strategies and spiking sample numbers in three fields in Mespol 

Medlov, A.S. farm in Czech Republic, Bramstrup Estate farm in Denmark and Silsoe farm in the UK 
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In order to investigate the effect of sample number per hectare spiked into the general 

calibration set on prediction accuracy, variations in RPD values obtained from model 

validation of on-line set versus sample number spiked in the general data set (425 

samples) is shown in Fig 7-8. Clear increases in RPD values with sample number per ha 

spiked can be observed. However, the degree of increase differs according to soil 

property considered, with larger increases observed for OC and TN, and smaller 

increases for MC. This is also affected by the field measured. On the basis of average 

values of the RPD of three farms, an increase of spiked sample number from 1/1.5 to 

4.5 hectare (ha), leads to decrease in % RPD of 6.7 % and 15.6 % for OC and TN, 

respectively, whereas an increase in % RPD value of 4.6 % is observed for MC. This 

quantitative evaluation of % difference of RPD values may suggest that spiking of 

laboratory scanned spectra with a sampling rate of 1 to 2 samples per ha is sufficient 

to obtain accurate on-line prediction of soil properties. The model performance can be 

classified as very good for OC and TN and excellent for MC (Viscarra Rossel et al., 

2006). This sampling rate is almost identical to the sampling rate considered for 

conventional analysis of soil properties, adopted today by laboratories to provide 

fertilisation recommendations (Mouazen et al., 2007 & 2009). This reveals that with 

only slight decrease of accuracy, the consumable cost of on-line measurement of OC, 

TN and MC would be approximately identical to that of laboratory conventional 

methods, after excluding the costs of on-line sensor and general dataset. However, the 

traditional laboratories provide fertilisation recommendations based on 1 sample per 

ha, where the spatial variation in soil properties is ignored. Furthermore, the on-line 

measurement system enables the collection of high number of data points (around 

1500 readings per ha), with an average of 2 points per meter travel distance. Assuming 

that the laboratory methods of soil analysis do not borne to measurement error, which 

is not the case in practice, the detailed information about the spatial variation in soil 

properties obtained with the on-line sensor, even with less accuracy than that of the 

laboratory methods can be considered a pronounced advancement in the field of 
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proximal soil sensing. In addition to the high accuracy achieved for the measurement 

of the three properties, the performance show stability (Table 8-5) among the three 

fields, which is the ultimate objective of the vis-NIR calibration of soil properties, which 

suffers from fluctuation in performance between different sites. 
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(c) 

Figure 7- 8 Effect of sample number per hectare used for spiking on the ratio of prediction deviation 

(RPD) obtained from models validation using on-line measured spectra of organic carbon (OC) (a), total 

nitrogen (TN) (b) and moisture content (MC) (c) in the three on-line measured fields in Mespol Medlov, 

A.S. farm in Czech Republic, Bramstrup Estate farm in Denmark and Silsoe farm in the UK 

 

 

Considering the wide geographical and texture variation of the three measured fields 

(Table 7-2), the concept of general data set spiked with a small number of samples (1-2 

samples per ha) from each new measured field is a successfully calibration procedure 

for on-line vis-NIR measurement of soil OC, TN and MC. Generally, the general model 

concept proposed by Mouazen et al (2007) is based on a sufficient number of soil 

samples to account for the soil spatial variability in a new target site, where the 

prediction will be carried out (Guerrero et al., 2010; Viscarra Rossel et al., 2008). 

Spiking the local (target site) soil samples into the global or continental models for 
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non-mobile calibrations proved to be an efficient way to improve the prediction 

accuracy of target field for some soil constituents (Guerrero et al., 2010; Janik et al., 

2007; Minasny et al. 2009; Shepherd and Walsh, 2002; Viscarra Rossel et al., 2008; 

Viscarra Rossel et al. 2009; Waiser et al. 2007; Wetterlind and Stenberg, 2010). The 

successful implementation of spiking general calibration models with field specific 

samples confirms the sample spiking technique to be successfully applied for on-line 

vis-NIR spectroscopy sensing, similar to that of laboratory and in situ non-mobile vis-

NIR spectroscopy. 

 

7.4 Conclusions 

 

This chapter reports on the performance of an automatic data collection of soil 

properties at farm scale using a vis-NIR spectroscopy-based on-line measurement 

system. The results reported in this study allow the following conclusions to be drawn: 

1- The on-line measurement system is robust that enables the collection of data 

on several soil properties, simultaneously. 

2- This system enables the collection of large data points per field (around 1500-

2000 readings per ha). The large number of points will open new possibilities 

for the management of soil-water-plant system, which was not achievable so 

far.  

3- The accuracy of on-line measurement of OC, TN and MC was classified as very 

good to excellent prediction performance with RPD values range between 2.28 

and 3.96. 

4- The concept of general calibration models, spiked with 1-2 samples per ha from 

new measured fields are a successful procedure for the calibration of the on-

line vis-NIR sensor, which would result in precision, classified as very good for 

OC and TN and excellent for MC. The cost associated with the method is 

comparable to that of the laboratory traditional methods.  
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Further work is being undertaken to improve the prediction accuracy of the system by 

accounting for the effect of MC and texture on the result obtained. The concept of 

spiking of general calibration models needs to be tested for other soil properties than 

those reported in this study. 
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8 Conclusions and future work 

 

8.1  Conclusions 

The ultimate goal of this study was to optimise the calibration of a previously 

developed vis-NIR on-line sensor for improved accuracy and robustness for the 

measurement of key soil properties, such as OC, TN and MC. To fulfil this goal, two 

issues were taken into consideration. These were the use of a spectrophotometer with 

a wider spectral range of 305 – 2200 nm and the development of a more effective 

calibration approach. The latter was the most focused area in this study, for which in-

depth analyses of affecting parameters on model performance were considered.  

 

8.1.1 Vis-NIR calibration  

 

 The performance of calibration models developed with linear multivariate 

methods (PCR and PLSR) and non-linear method (BPNN) for the prediction of 

OC, extractable forms of K, Na, Mg and P using a vis-NIR spectrophotometer 

was compared. Results revealed that BPNN-LVs models outperformed PCR, 

PLSR and BPNN-PCs models for all soil properties. This might be due to the 

presence of non-linear relationship between soil vis-NIR reflectance spectra 

and property concentration. Acceptable measurement accuracy for soil 

properties without direct spectral response in NIR range was achieved, whereas 

very good accuracy was achieved for properties with direct spectral response 

(OC).  

 The performance of farm specific models for the prediction of TC, OC, TN, P and 

pH are not always better than general models valid for several farms. This is 

because general calibration models cover a wider concentration range and SD 

than that of farm specific models.  
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 The SD and range of concentration of soil samples that explain the variability in 

the sample set are the determinant factors influencing the accuracy of 

calibration models. For properties with direct spectral response in the NIR 

range, a larger SD and wider range of concentration in the calibration data set 

resulted in larger R2 and RPD values, but also larger RMSEP values. However, 

properties without direct spectral response showed inconsistent relationships 

and therefore they are independent of SD and range of sample concentration.  

 A small range of variation in sample concentrations will not result in successful 

calibration. Therefore, to build a multi-farm calibration models with farms of 

different European countries, a large variation range should be selected that 

does not lead to unacceptable accuracy because of large RMSEP values. In fact, 

a compromise solution should be sought during the selection of calibration 

sample set so that to cover a wide concentration range without increasing the 

measurement error above a desired threshold. 

 The sample number in the calibration dataset affects prediction accuracy of OC, 

TN and MC. Models developed with large datasets produced lower RMSEP than 

those with small sample datasets (e.g. 25 soil samples). Overall, how many 

samples should be chosen from each individual farm depends on accuracy 

required and 50 samples per farm is considered appropriate. Increasing the 

number of samples beyond 50 samples would lead not only to increase 

accuracy but also cost.  

 The single effects of both soil MC and soil texture fractions and the interaction 

effects of MC and texture fractions on the prediction of OC and TN were 

investigated using soil samples collected from five fields of the same farm, with 

different field MC levels and soil textures. Soil MC, sand and silt fractions were 

found to have negative influence, whereas clay content has a positive effect. 

The individual and interaction effects of MC, silt, clay and sand fractions were 

found to be significant, although MC has the most significant influence on both 

on-line and in situ measurements.  



 

141 

 A better accuracy of vis-NIR spectroscopy of soil OC and TN is expected in dry 

and clayey than in wet and sandy fields. When measurement is to be carried 

out under mobile (on-line) or non-mobile conditions, it is recommended to 

access the field as driest possible conditions, particularly in clay fields. 

Accessing clay fields under wet condition would result in the highest expected 

error, as water holding capacity of clay is high. Larger error is to be expected in 

this case as compared to that in fields with light soils. 

 

8.1.2 On-line sensor and measurement capability 

 

The on-line field measurement of OC, TN and MC in selected fields in studied European 

farm suggest the following conclusions: 

 

 The on-line measurement system is robust that enables the collection of data 

on several soil properties, simultaneously. This system enables the collection of 

large data points per field (around 1500-2000 readings per ha), which will open 

new possibilities for the management of soil-water-plant system.  

 The accuracy of on-line measurement of OC, TN and MC was classified as very 

good to excellent prediction performance with RPD values range between 2.28 

and 3.96 (Viscarra Rossel et al., 2006) and is much better than previous studies 

(Christy et al., 2008; Mouazen et al., 2007).  

 The concept of farm scale general calibration models, spiked with 1-2 samples 

per ha from new measured fields are a successful procedure for the calibration 

of the on-line vis-NIR sensor, which would result in precision, classified as very 

good for OC and TN and excellent for MC. The cost associated with the method 

is comparable to that of the laboratory traditional methods.  
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8.2  Future work 
The future work based on on-line measurement of soil properties will mainly need to 

utilise data measured on-line as input for variable rate fertilisation of key fertilisers. To 

achieve this goal, the following future work would be considered:   

1. To establish calibration models for soil P, K and Na using non-linear calibration 

methods. These models have then to be validated using on-line measured 

spectra. It is hoped that the non-linear calibration methods enable to establish 

successful models for these properties, as P and K are essential properties for 

plant growth, and to determine the amount of P and K fertilisers. 

2. To build field scale to establish a quantitative relationship between number of 

samples and RMSEP.  

3. To develop a self adoptive algorithm to detect X outliners during the on-line 

measurement as outliners is the main reason to deteriorate the validation of 

on-line prediction. 

4. To adopt the new algorithm developed by Minasny, et al. (2011) to remove the 

influence of MC from the spectra during the on-line measurement. 

5. To develop sub-calibration models of OC, TN, MC for separately soil texture 

fields to improve on-line prediction accuracy. 
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APPENDICES 

Appendix A Additional on-line measure results in 

European farms 

 

Table_Apx-1 Information about the two extra fields in Bramstrup Estate farm in Denmark and in 

experimental farm of Wageningen University in Holland where on-line measurement took place in 2010. 

Field 
Area, ha  Crop  Sample Nr  Texture type Sand, % Silt, % Clay, % 

Denmark  2 wheat 32 Sandy loam 
83.77% 11.94% 4.29% 

Holland   1.5 maize 48 Sandy loam 89.79% 8.37% 1.83% 

 

 

 

Table_Apx-2 Summary of on-line measurement validation for two extra fields in Bramstrup Estate farm 

in Denmark and in experimental farm of Wageningen University in Holland where on-line measurement 

took place in 2010. 

  
    OC     TN MC 

Spiking 

strategy 

Country Spiked 

samples 

RMSE,  

g kg-1 

RPD SD RMSEP, g kg-

1 

RPD SD RMSE, g kg-

1 

RPD SD 

30 % lab 

spiking 

Holland  9 0.59 2.21 1.31 0.064 2.03 0.13 4 2.71 11 

DK(2) 7 0.59 2.25 1.34 0.05 2.19 0.11 5 2.68 13.4 

Model  - - 2.30 2.82 6.50 0.23 2.61 0.6 22.20 4.28 95.0 
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Table_Apx- 3 Semivariogram model parameters of organic carbon (OC), total nitrogen (TN) and moisture 

content (MC) used for four fields on-line measured in European in 2010. 

Field 
property Model fit  Nugget (C0)  Sill (C0+C1) Range Proportion 

(C1/C0+C1) 

Sum of square 

error 

 OC Exponential 0.9 2.38 9.43 0.58 1.033 

Czech republic TN Exponential 0.008 0.027 8.45 0.67 0.002 

 MC Exponential 167.7 321.1 6.48 0.47 20.24 

 OC Exponential 0.14 7.9 5 0.99 0.10 

UK TN Exponential 0.01 0.04 11.7 0.75 0.00016 

 MC Exponential 0.44 0.24 2.88 0.36 13.3 

 OC Exponential 0.058 0.11 11.4 0.53 0.0018 

Denmark 2 TN Exponential 0.0063 0.016 13.6 0.62 0.000025 

 MC Exponential 0.988 2.86 7.22 0.68 0.42 

 OC Exponential 0.11 0.31 6.25 0.68 0.05 

Holland TN Exponential 0.006 0.023 3.73 0.75 0.0014 

 MC Exponential 0.173 4.56 4.51 0.96 33.1 
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Figure_Apx- 1Comparison maps based on laboratory chemical reference (left) and on-line measured 

spectra (right) for organic carbon (OC) (up), total nitrogen (TN) (middle) and moisture content (MC) 

(bottom) in the field of Mespol Medlov, A.S. farm in Czech Republic (chapter 8). Models used to 

predicted develop both spectral maps are based on 20 % spiking of laboratory measured spectra. 
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Figure_Apx- 2 Maps of on-line measured organic carbon (OC), total nitrogen (TN)  and moisture 

content (MC) based on entire data points collected in the field of Mespol Medlov, A.S. farm in Czech 

Republic (chapter 8). Models used to develop these maps are based on 20 % spiking of laboratory 

measured spectra. 
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Figure_Apx- 3 Comparison maps based on laboratory chemical reference (left) and on-line measured 

spectra (right) for organic carbon (OC) (up), total nitrogen (TN) (middle) and moisture content (MC) 

(bottom) in the field of Silsoe farm in the UK (chapter 8). Models used to predicted develop both 

spectral maps are based on 20 % spiking of laboratory measured spectra. 
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Figure_Apx- 4 Maps of on-line measured organic carbon (OC), total nitrogen (TN)  and moisture content 

(MC) based on entire data points collected in the field of Silsoe farm in the UK (chapter 8). Models used 

to predicted develop both spectral maps are based on 20 % spiking of laboratory measured spectra. 
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Figure_Apx- 5 Comparison maps based on laboratory chemical reference (left) and on-line 

measured spectra (right) for organic carbon (OC) (up), total nitrogen (TN) (middle) and moisture 

content (MC) (bottom) in the second field of Bramstrup Estate farm in Denmark.  
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Figure_Apx- 6 Maps of on-line measured organic carbon (OC), total nitrogen (TN) and moisture content 

(MC) based on entire data points collected in the second field of Bramstrup Estate farm in Denmark.   
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Figure_Apx- 7Comparison maps based on laboratory chemical reference (left) and on-line measured 

spectra (right) for organic carbon (OC) (up), total nitrogen (TN) (middle) and moisture content (MC) 

(bottom) in field of experimental farm in Wageningen University in Holland.  
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Figure_Apx- 8 Maps of on-line measured organic carbon (OC), total nitrogen (TN) and moisture content 

(MC) based on entire data points collected in the field of Wageningen University in Holland.  

 

  

 

 

 


