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ABSTRACT 

A biomarker is a characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes or pharmacological responses to a 

therapeutic intervention. The aim of this project was to deal with the identification of 

potential biomarker candidates from experimental data comparing samples displaying 

divergent physiological traits. Chapter 1 introduces the topic and the aims of the project. The 

primary aim was to identify the ideal statistical analysis methods and data pre- and post-

treatment options to use for potential biomarker identification from proteomic datasets. The 

product of this work was a statistical analysis pipeline for identifying potential biomarker 

candidates from proteomic experimental data. Proteomic data often suffers from missing 

values, so methods to deal with these were also evaluated in this project. 

Chapter 2 outlines the data sets that were used as well as presenting an overview of the 

“Biomarker Hunter” pipeline software solution created in this project. Chapter 3 evaluates the 

appropriate univariate statistical methods to use for biomarker identification and the results of 

biomarker identification using these techniques. Chapter 4 evaluates options for data pre- and 

post-processing. Chapter 5 suggests the use of missing value imputation as well as offering a 

novel clustering algorithm to deal with missing values. The software pipeline also offers 

multivariate statistical methods, which are evaluated in Chapter 6. Chapter 7 provides some 

business context for both biomarker discovery and the statistical analysis software available 

for the purpose of proteomic biomarker discovery.  

As well as providing a software pipeline for the identification of biomarkers, the project 

aimed to identify a suggested strategy for statistical analysis of proteomic experimental data. 

Strong conclusions regarding the ideal statistical approach could only be made if the list of 

actual, validated biomarkers were available. Unfortunately this information was not available, 

but in the absence of this a strategy was suggested based on the available information from 

both the available literature and the author’s interpretation of the results from this study. In 

terms of data pre-processing, this strategy involved not averaging technical replicates, and 

using total abundance normalisation to reduce technical variation. A novel clustering 

algorithm was suggested to reduce the presence of missing values prior to existing methods 

of missing value imputation. Following statistical analysis multiple testing correction 

methods should be implemented to reduce the number of false positives. 
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1 Introduction and Background 

This chapter provides the background knowledge to allow the understanding of the constantly 

evolving field of biomarker discovery from proteomic experimental data. The chapter begins 

with an introductory overview of proteomics and biomarkers in drug discovery along with the 

advantages these areas of study bring to the pharmaceutical and health industries. As 

proteomics studies biological systems on a protein or peptide level an introduction to proteins 

and protein chemistry is also presented. Following this there is an introduction to the various 

techniques used in the fast moving area of proteomics. This includes a description of the 

analysis techniques currently used in this industry including both mass spectrometry and gel-

based technologies. Data from these techniques is subsequently analysed using statistical 

methods, so an introduction to statistics in biomarker discovery will be presented. Finally an 

overview of the original project aims discusses the nature of study that was conducted over 

the four year EngD period. 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 2  © Cranfield University, 2011 

 

1.1 Introduction to Biomarker Discovery and Proteomics 

1.1.1 Biomarker Discovery 

The definition of a “biomarker” as agreed by the National Institute of Health (NIH) is “a 

characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes or pharmacological  responses to a therapeutic intervention” 

(Atkinson & Lesko, 2001).  

A biomarker may be a metabolite, protein or a feature on an image from gel-based 

techniques. Study in this field is focused on searching for these biological measures that are 

indicative of differences in biological state. The study of biomarkers is essential for a better 

understanding of biological systems, to allow the understanding of different biological 

processes through the identification of the biomarkers responsible for different states (e.g. 

diseases), and the discovery of biomarkers involvement in specific metabolic pathways, as 

well the subsequent identification of biomarker targets in drug and biomarker discovery 

(Stoughton & Friend, 2005). Biomarkers can be described as any biological parameter 

(genes, metabolites or proteins) which can be objectively measured, and can be used to 

indicate a particular biological (physiological or pathological) state (e.g. in drug discovery 

these would be substances which indicate diseased states or responses to therapeutic 

treatments).  

This study focuses more specifically on the discovery of medical biomarkers and the 

discovery of biomarkers which are indicative of the effect of a specific drug. It aims to 

revolutionise the diagnosis, treatment and prevention stages of diseases by potentially 

speeding up and controlling the drug discovery process. The main objective of biomarker 

discovery, for any diseases or disorders, is to facilitate the development of clinically viable 

biomarkers that can be used for diagnostic or prognostic applications. For this to be achieved 

these markers need to be clinically reliable and robust with a high diagnostic accuracy in a 

significant number of patients, irrespective of geographical barriers and other confounding 

factors (Pepe et al, 2001). 

In medical biomarker discovery these may be indicators for diagnosis, where the changes in 

abundance or chemical modification of proteins or peptides in samples (e.g. blood, urine, 

tissue) can be used to detect a diseased state. Alternatively they may be indicators of disease 

progression or in an ideal world an indicator of risk or susceptibility to a disease (e.g. the 

biomarker to recognise susceptibility to heart disease is cholesterol). 
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Researchers in drug discovery look for specific markers, or groups of markers, which fall into 

the following categories: 

 Diagnostic biomarkers: Identified to detect diseases, preferably at an earlier stage 

than existing techniques. 

 Prognostic biomarkers: Indicate how a disease may develop in a patient regardless of 

any treatments. 

 Predictive biomarkers: Predict the effectiveness of treatments within a patient. 

 Pharmacodynamic biomarker: Reveals the size, if any, of a biological response to a 

treatment. 

 Therapeutic biomarkers: Give information on possible new pathways for drug action. 

In drug discovery biomarkers may be substances which can be introduced into organisms to 

examine biological functions or health related phenomena. For example rubidium chloride 

has been used as a radioactive isotope for the evaluation of heart muscle perfusion (Karley et 

al, 2011). They can be used to help extract disease targets or pathways to validate drug 

activity mechanisms. In drug design biomarkers may indicate alterations in protein 

expression which are implicated in disease progress or disease susceptibility to administered 

treatments. 

Biomarker discovery is made possible due to advances in technology and better awareness of 

the human genome allowing more practical and affordable research. Most biological states 

and responses involve multiple proteins. Due to this it is essential to determine groups (or 

patterns) of biomarkers rather than individual biomarkers (Thayer, 2003). Detection of 

biomarkers can be summarised in the following series of steps which are all dependent on the 

previous step: 

1. Collection of relevant samples and experimental design. 

2. High throughput analysis of samples. 

3. Using computational and statistical methods to obtain useful biomarkers. 

Studies in this field are usually typified by small sample sizes, and subsequent verification is 

then conducted on a larger number of samples. To protect the study from methodological and 

analytical bias, different technologies should be used for the discovery and validation stages 

(Matta et al, 2008).  

There are a number of important hierarchical steps to be considered when demonstrating the 

clinical interest of a biomarker (Ray et al, 2010). These steps are: 
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1. Demonstrate that the biomarker is significantly modified in the diseased sample group 

compared to the control group. 

2. Asses the diagnostic properties of the biomarker. 

3. Comparing the diagnostic properties of the marker to existing tests available. 

4. Demonstrate that the diagnostic properties of the biomarker increase the physicians’ 

ability to make a decision. This can be tricky because the timing of diagnosis may be 

essential, but it may not be easy to identify. For example a particular treatment may 

be more accurate however other treatments may allow for earlier diagnosis. An 

example of this was seen when procalcitonin was suggested as a diagnostic biomarker 

for susceptibility to nose infections following cardiac surgery. Previously 

procalcitonin was determined to have a lower accuracy in the diagnosis of 

postoperative infection following cardiac surgery compared to the existing physicians 

approach so it was rejected. However later studies confirmed that the use of 

procalcitonin allowed for earlier diagnosis of infections (Jebali et al, 2007). 

5. Assess the usefulness of the biomarker, which needs to be distinguished to the quality 

of the diagnostic information provided. This involves both the characteristics of the 

test itself and the characteristics of the clinical context. Characteristics of the test may 

involve consideration of the cost, invasiveness, technical difficulties and speed. 

Characteristics of the clinical context include prevalence of the disease, consequences 

of outcome, cost and the consequences of therapeutic options.  

6. Demonstrate that measurement of the biomarkers affect the outcome. This is done 

using intervention studies, which are lacking for many novel biomarkers (Lokuge et 

al, 2010). 

 

1.1.1.1 The Capabilities of Biomarker Discovery 

The advantage of identifying a biomarker, or more likely a panel of biomarkers, is based on 

the premise that it will lead to the development of a sensitive and reliable assay that is easily 

readable. That ability, developed and validated in a platform, leads to the capability to 

develop an assay that is able to detect the biomarkers (i.e. proteins) at extremely low 

concentrations (Larner, 2008), To ensure long-term and widespread success the assay 

platform needs to be as non-invasive as possible. The ultimate goal, following the 

development of an assay kit, is to translate this assay into a user friendly, handheld point-of-



Page | 5  © Cranfield University, 2011 

 

care (POC) device which is able to monitor this panel of markers in body fluids such as blood 

or urine with minimal invasive procedures. 

There is an ongoing need to minimise the risk of serious adverse events following drug 

approval, as well as in clinical trials. The project sponsor is involved in the discovery of 

novel early stage biomarkers involved in diseases within model organisms such as rats or 

zebrafish embryos. These biomarkers are then subsequently translated to higher species such 

as humans and then validated. This leads to: 

 The earlier diagnosis of diseases in patients. 

 The monitoring of physiological responses in a systematic way. 

 The determination of the mechanisms which drugs use to deliver their effect. 

 The reduction in time and cost of the drug development process, due to the reduced 

cost and time of clinical trials (Higgs et al, 2005). 

 Decreased attrition rates within developmental candidates. This is because increased 

biological efficacy allows for lower doses which may lead to fewer drugs failing 

during testing stages due to associated toxicities (Thayer, 2003).  

 

1.1.1.2 The Challenges of Biomarker Discovery 

Despite recent developments there are relatively few novel biomarkers which have been 

translated to clinical uses. Although advances have been made in the field of proteomics, the 

discovery of biomarkers still remains one of the most challenging aspects and often further 

analysis is required to fully characterise the significant proteins and understand the 

phenotypic role of these potential biomarkers (Kreunin et al, 2007). These issues lie not only 

in technological advances but also in the discovery, translation and validation phases of using 

these markers to bring the drugs to patients. The lack of convincing biomarker experiments 

are not necessarily due to limitations with the technology but in the difficulty of elucidating 

useful clinical information from identified biomarkers (Listgarten & Emili, 2005). Reasons 

for this may include: 

 Cost and time dependent techniques make validation of biomarkers complex (Codrea 

et al, 2007). 

 Although a considerable amount of progress has been made in standardising the 

methodology and reporting of randomised trials, little has been accomplished 

concerning the assessment of diagnostic and prognostic biomarkers (Ray et al, 2010). 
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 Identification and modification of biomarkers in drug discovery does not guarantee 

increased survival in patients (Morgan, 2011). 

 There is a desperate need to have drastic advances in the current methods used for 

proteomic screening (Cho & Diamandis, 2011) especially with regards to biomarker 

identification using blood and urine as opposed to muscle (Listgarten & Emili, 2005). 

This allows for non-invasive diagnostic tests for diseases, as opposed to requiring 

tissue samples. 

 Muscle tissue is preferred as a base for biomarker research. However, this does not 

allow for a non-invasive test to be able to diagnose individuals suffering from earlier 

stages of the disease, predict possible associated risks, or detect patients who are not 

responding to the treatment (Etzioni et al, 2003). Hence currently drug discovery 

targets are focused on symptoms rather than the cause of the disease (Thayer, 2003). 

 Due to the immaturity of the field there are still no established benchmarks and 

standard methods (Sciclips, 2011). 

 When developing targeted therapies, not all drugs work on all patients and there is not 

much hope of therapies that can be universally effective (Thayer, 2003). 

 Blood samples contain large amounts of albumin and other high abundance proteins, 

which can screen low abundance proteins and may hinder the ability to identify those 

which may be relevant to the study. This has been addressed by using immuno-

affinity technologies such as cyclic abundant protein immunodepletion (CAPI) based 

on antibody technologies (APAF, 2006). 

 For biomarker studies to have an impact on the drug development process the time 

taken by the discovery and implementation should be short (i.e. less than 18 months) 

(Amir-Aslani & Mangematin, 2009). 

 As with all bioinformatics techniques, “garbage-in garbage-out” means that the results 

deduced from these methods are only as good as the samples used, regardless of how 

accurate the technology and statistical methods are. 
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1.1.2 Introduction to Proteins 

As stated before a biomarker can be any measurable biological medium indicative of 

physiological change. This study however is focused on protein biomarkers, in particular 

those that indicate a diseased state. The reason for the focus on proteomic study is because of 

the available types of biomarkers, proteins offer more promise because the proteome of an 

organism is far larger than, for example, the metabolome. This is particularly true if protein 

variants are considered. Proteins should therefore provide higher sensitivity than other types 

of markers. In the medical field, protein biomarkers are of great importance because it is 

relatively easier to produce diagnostic tests for a specific protein marker, which makes 

translation of the discovered markers easier to put into practice.  

This section gives an introduction to the area of protein science including the structure and 

formation of proteins, as well as an explanation of post translational modifications (PTMs). 

PTMs offer a plethora of candidates for biomarker detection that complement discoveries 

using strictly proteomic or genomic platforms (Krueger & Srivastava, 2006). Proteins are 

biochemical compounds which are comprised of one or more polypeptides. A polypeptide 

can be described as a linear chain of amino acids which are bonded together by peptide 

bonds. Protein chemistry is the area of science which relates to:  

 The obtaining and purifying of proteins 

 Investigation of protein structure and function  

 The controlling and engineering of proteins 

This area of research contributes in a number of industries in a wide variety of applications 

including clinical and pharmaceutical research.  One of the most ambitious experiments in 

protein chemistry is the study of how the structure of a protein affects its function. Much of 

the research in this field rely on physical measurements (usually spectroscopic) and/or 

chemical protocols (usually covalent modification). Physical measurements may also include 

diffraction, thermal or spectrometry methods as well as in-silico computer modelling. 

1.1.2.1 Structure of Proteins 

Proteins are large molecules, composed of one or more chains of amino acids, otherwise 

known as polypeptides. The primary sites of biological protein synthesis are ribosomes. 

Ribosomes are organelles existing in cells and are made up primarily from ribosomal 

ribonucleic acid (rRNA) and are essentially the building catalyst of proteins. They catalyse 

protein translation using the messenger ribonucleic acid (mRNA), in the nucleus, as a 
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template and subsequently form proteins from individual amino acids. Amino acids are 

linked to each other via amide bonds forming peptide chains (Figure 1). Folding of these 

peptides may occur when peptides are linked together via disulphide bridges as in Figure 2. 

Disulphide bonds play an important role in many facets of proteins. However disulphide 

bonds are not essential for protein folding and many cysteines cannot form disulphide bonds. 

Many proteins do not contain any disulphide bonds, as there are many non-covalent forces 

involved in the stabilisation of protein folds and the guiding of folding pathways. These non-

covalent forces include hydrogen bonding, ionic interactions, Van der Waals forces as well as 

hydrophobic packing. Generally extracellular proteins often have several disulphide bonds, as 

opposed to extracellular proteins which usually lack them (Beeby et al, 2005). 

The orders in which these amino acids are linked determine the eventual shape and function 

of the protein. The sequence of amino acids in a protein is defined by the sequence of a gene, 

which is programmed in the genetic code. Once formed these proteins automatically fold into 

their predetermined shape. Proteins may also form stable protein complexes with other 

proteins, in order to work together and achieve particular functions. 

 

 

Figure 1 - The formation of a peptide chain by linking amino acids using amide bonds. 
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Figure 2 – The formation of a disulphide bridge between cysteines. 

Proteins consist of a number of amino acids, linked in a linear sequence. Figure 3 shows the 

chemical structure of an amino acid. It consists of a carbon atom with four bonds. Three of 

these bonds are identical in all proteins, i.e. the hydrogen (H) atom, the amino group (NH
2
), 

and carboxylic acid (CO
2
H). When multiple amino acids combine to make a polypeptide 

chain, the peptide bonds are formed between amino group and the carboxylic group of 

adjacent amino acid residues. The fourth bond is referred to as the side chain, and essentially 

determines the structure and specific properties (e.g. hydrophobicity, size, aromaticity, 

charge, etc) of the amino acid. This group will determine the interactions between the atoms 

and molecules. However proteins are not just made up of amino acids, as water, metal ions, 

carbohydrates, lipids, phorphyrin rings and cofactors must also be considered. 

 

Figure 3 - The basic structure of an amino acid. 

There are 20 different side chains, hence 20 different amino acids from which proteins can be 

made. Each of these are represented by either a single letter or a three letter abbreviation (e.g. 
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Alanine can be denoted as either A or Ala). The overall structure of the protein is defined by 

the constituent amino acids as well as the peptide bonds and disulphide bridges, which 

connect the amino acids together. The primary structure of a protein is simply the linear 

sequence of amino acids in a polypeptide chain as shown in Figure 4. Proteins however carry 

out their functions in the body by three-dimensional (3D) tertiary and quaternary interactions 

between different substrates. The tertiary structure of a protein determines its eventual 

function in the cell. The structures arise when particular amino acids in a chain fold in order 

to create domains with specific structures. These domains may either be used as modules for 

larger structures or provide specific catalytic or binding sites. 

 

 

Figure 4 - The structure of proteins (Branden & Tooze, 1991).  

 

1.1.2.2 Formation of Proteins 

The overall formation of proteins from DNA (Deoxyribonucleic acid), situated in the nucleus, 

can be outlined as the transcription of DNA to RNA, followed by translation of this RNA 

(Ribonucleic acid) into the relevant protein (Figure 5).  
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Figure 5 - An outline of the process of protein formation following transcription of DNA 

into RNA and subsequent translation (www.nobelprize.org). 

DNA is a nucleic acid consisting of thousands of genes, which contains the genetic 

instructions for the development and functioning of all living organisms (except RNA 

viruses). A protein-coding gene is a segment of chromosomal DNA which directs the 

synthesis of a protein. DNA is contained in, and never leaves the nucleus of a eukaryotic cell. 

Instead the genes (genetic code) are copied (transcribed) into RNA, and subsequently 

translated into proteins in the cytoplasm. It is a double-stranded polymer made up of four 

simple nucleotide building blocks (i.e. Adenine (A), Thymine (T), Guanine (G) and Cytosine 

(C)), and provides the instructions on how to build a protein molecule (Figure 6). A gene is a 

defined as a sequence of DNA containing the genetic information, which influences the 

phenotype of the organism.    



Page | 12  © Cranfield University, 2011 

 

 

Figure 6 - The structure of DNA. The nucleotide building blocks comprise of a 

phosphate group, a deoxyribose sugar and one of four nitrogen bases. The two strands 

of complementary DNA are held together by hydrogen bonds, forming a double helix 

structure (Paszek, 2007). 

The sequence of bases within a strand of DNA defines the messenger RNA (mRNA) 

sequence, which consequently defines one or more protein sequences. Like DNA, RNA is 

also a complex nucleic acid. It is used in cells to assist with the synthesis of proteins. The link 

between the nucleotide sequences of genes and the resultant amino acid sequences of the 

proteins are defined by the rules of protein translation, otherwise known as the genetic code. 

The genetic code consists of codons which are formed from a sequence of three of the 

nucleotides mentioned above (e.g. ACG, CTT).  

During transcription the codons of a gene are copied into mRNA (Figure 7). This is achieved 

by RNA polymerase and the necessary transcription elongation factors travelling along the 

DNA template. The RNA polymerase synthesises an RNA strand complementary to one of 

two DNA strands. This polymerises the ribonucleotides into an RNA copy of the gene. This 

continues until the end of the gene, when the RNA polymerase falls of the DNA template in a 

process called transcription termination. This process is otherwise known as RNA synthesis. 
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Transcription is very important, as it is the process which helps mediate the expression of the 

genetic material contained within the DNA. The product of RNA transcription subsequently 

transfers the information from the DNA into the functional protein.  

 

 

Figure 7 - The process of protein transcription within the cell nucleus from which DNA 

is copied into RNA (www.nobelprize.org). 

Before RNA can be translated into a protein, it must undergo three major modifications prior 

to leaving the nucleus. These modifications are 1) Capping, 2) Poly(A)-tail and 3) Splicing. 

Capping involves attaching a special nucleotide to the end of the mRNA, which is necessary 

for the initiation of protein synthesis as well as serving as stabilisation.  Poly (A)-tail uses a 

special enzyme which attaches a chain of 150-200 adenine nucleotides to the pre-mRNA 

directly following transcription. This also adds to the stability and lengthens the lifetime of an 

mRNA molecule. Splicing involves removing the non-coding sequences; called introns, from 

the pre-mRNA to create mRNA, which only contains the coding sequences of a protein.  

Following this a ribosome decodes the RNA copy by reading the RNA sequence by base-

pairing the mRNA to transfer RNA (tRNA), which is used by organisms to bridge the four-

letter genetic code of mRNA into the amino sequence of the protein. This process is known 

as protein translation, and occurs outside the nucleus (Figure 8). This process involves a large 

number of protein factors that facilitate binding of mRNA and tRNA to the ribosome. The 

major role of the ribosome is to catalyse the coupling of amino acids into proteins according 

to the mRNA sequence. The role of the tRNA is to bring the amino acids to the ribosome. 

These amino acid chains, otherwise known as polypeptides fold into an active protein.  

Translation can be outlined in three distinct steps: 1) initiation, 2) elongation and 3) 

termination. Initiation involves the forming of an initiation complex within which the 

ribosome binds to the start site on the mRNA, while the initiator tRNA is bound to the 
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ribosome with the initiator codon. In elongation, amino acids join to the budding polypeptide 

chain. This is repeated until the termination codon is reached. This codon signals the last 

stage of protein translation, in which the ready-made protein is released from the ribosome.  

 

Figure 8 - The process of protein translation, outlined in the three steps 1) Initiation, 2) 

Elongation and 3) Termination (www.nobelprize.org). 

1.1.2.3 Functions of Proteins 

Proteins are essential building blocks for all living organisms and they facilitate biological 

functions in those organisms.  They regulate a variety of actions in living organisms, 

including replication of genetic code as well as the transportation of oxygen. Some examples 

of the functions of these proteins are shown in Figure 9. They are responsible for the 

regulation of cells and additionally determining the characteristics of an organism.  

Some proteins are enzymes which act as catalysts for biochemical reactions, and are essential 

for metabolism. The reason that proteins make good catalysts lies in their high specificity 

(Koshland, 1958). An example of a protein enzyme is pepsin which degrades dietary proteins 

in the stomach. There are a number of industrial uses for protein enzymes such as in the 

textile, detergent, pharmaceutical and food industries. However not all proteins are enzymes.   

Some proteins have structural or mechanic functions which are responsible for maintaining 

the shape of a cell, and serve as building blocks of the cells and tissues. Keratin is a structural 

protein found in hair. There are also proteins known as receptor proteins which receive some 

sort of stimuli prior to initiating a response in the cell. Rhodopsin is a receptor protein which 

lies in the retina of the eye and is used to detect light. Signalling proteins exist in order to 

transfer signals between or within cells. Insulin is a signalling protein, which is used to 

http://www.nobelprize.org/
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control blood sugar levels in blood. Other examples of proteins include gene regulatory 

proteins, as well as transport proteins, which transport molecules or ions around the body. 

 

Figure 9 – Examples of the functions of proteins (www.nobelprize.org). 

1.1.2.4 Protein Isoforms 

There are occasions when the same protein may take up different forms. These different 

forms of the same protein are called protein isoforms. These may be made from related 

genes, or may be produced by the same gene by alternative splicing. Some isoforms are 

caused by single-nucleotide polymorphisms (SNPs), which are variations in the DNA 

sequence that occur when a single nucleotide in the genome differs between members of a 

biological species or between paired chromosomes in humans. 

Due to protein isoforms it is possible to create categorically divergent proteins from the same 

gene, which increases the diversity of the proteome. The occurrence of protein isoforms 

partially explains why there have been a small number of coding regions, or genes, have been 

identified by the Human Genome Project (Powledge, 2000). These isoforms can be identified 

using microarray technology as well as complementary DNA (cDNA) libraries. 

1.1.2.5 Post-Translational Modifications (PTMs) 

Most of the proteins that are translated from mRNA undergo chemical modifications before 

becoming functional within the various cells of the body. Sometimes during synthesis, or 

shortly after, the amino acid residues in a protein can be chemically altered by these post-

translational modifications (PTMs). These modifications regulate how a particular protein 

sequence will act within the organism. These PTMs alter the physical and chemical properties 

via extra-translational processes and play an essential role in maintaining the uniformity, or 
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homogeneity, in the composition of a protein. Additionally they assist in using identical 

proteins within different cell types for different cellular functions. 

The result of these modifications may affect the folding, stability, activity and therefore 

ultimately the function of the protein. This may involve very complex systems of enzymes 

and the resultant modifications cannot be predicted from the DNA sequence. Examples of 

PTMs include, but are not limited to, glycosylation, sulfation or hydroxylation. Mass 

spectrometry can be used in the identification of PTMs. This is possible because these PTMs 

usually lead to a change in the molecular weight, which is often predictable.  

When studying diseased conditions, the expression of proteins is very important. PTMs play 

a significant role in modifying the end product of expression, as well as contributing towards 

biological processes and diseased conditions. The amino terminal sequences are removed by 

the proteolytic cleavage when the proteins cross the membranes. These terminal sequences 

target the proteins for their transportation to their point of action within the cell. 

1.1.2.6 Differential Expression 

A complete copy of an organism’s genome is contained in each cell of the organism. These 

cells may be of many different types and states, such as blood, nerve or skin cells etc. The 

difference between these cells is dependent on the differential gene expression. Differential 

gene expression is defined as how much each gene is expressed, as well as when and where it 

is expressed. The genetic information within a DNA molecule is expressed during both the 

DNA to RNA transcription stage as well as the protein translation stage. Different types of 

cells synthesise different sets of proteins at different times. At any given time only a fraction 

of our genes are expressed (Blau, 1992). It is projected that around 40% of the genome is 

expressed at any given stage (Ma et al, 2008). Gene expression is important in studying 

diseases as for many diseases specific patterns of expression are associated with different 

phenotypes. 
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1.1.3 Proteomics 

The term proteome is derived from the words PROTEin and genOME and can be described 

as the total protein composition of an organism, biological system or sample. Proteomics 

aims to identify, and possibly quantify, proteins in a biological system. This is a broad field 

of study and has different connotations to different aspects (Hubbard & Jones, 2010). Studies 

in this area often aim to quantify differential protein levels from complex biological samples 

in order to determine and understand specific markers of biological states to determine 

biological action, efficacy and toxicities (Higgs et al, 2005). It involves studying protein 

structures and functions on a large scale.  This may also include any modifications made to 

the complement of proteins. Studies are based on the assumption that the proteome holds the 

key to understanding biological mechanisms. Studying protein function allows researchers to 

correlate these differences in proteomic structure to any phenotypic occurrences and allows 

determination of relationships between these events and relevant protein levels. It is expected 

that studies in this field will yield a potential in novel drug development in the future. The 

main applications of proteomics can be outlined as: 

 Separation and Identification of proteins and their post-translational modifications 

(PTMs) from a biological sample giving rise to information relating to the sample 

 Analysis of differential protein expression associated with a specific phenotype (e.g. a 

diseased state)  

 Characterisation of proteins by exploration of their function  

 Discovering the protein interaction networks 

The mass analysis of peptides and proteins has been made possible by the use of techniques 

such as Electrospray Ionisation (ESI), Matrix Assisted Laser Desorption Ionisation (MALDI) 

or Desorption/Ionisation on Silicon (DIOS). It is these techniques ability to promote the 

proteins non-destructive vaporisation/ ionisation, through the removal of protons in an 

unambiguous order (Trauger et al, 2002). As well as molecular weight determination, these 

techniques are used for the purpose of protein identification (Sherman & Kinter, 2000) and 

protein PTMs (Mann & Neubauer, 1999).  

The determination of the complete and routine protein sequence is yet to be realised 

(Mathivanan et al, 2012), however it is possible to use proteolytic peptide fragments 

combined with data searching algorithms to identify proteins (Trauger et al, 2002). This can 

be done by enzymatic or chemical digestion of proteins, usually using Trypsin, combined 

with mass spectrometry techniques. This is followed by the mass analysis of the peptides and 
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database searching techniques. In complex samples, before the proteins are digested into their 

constituent peptides, the proteins may be separated into less complex protein mixtures. These 

can be separated using 2D Gel electrophoresis or chromatography based methods.  

1.1.3.1 Top-Down and Bottom-Up Proteomics 

Top-down proteomics involves separating intact proteins from biological samples using 

traditional separation techniques such as liquid chromatography (LC) and 2D gel 

electrophoresis (2DGE). This is followed by differential expression analysis using spectrum 

analysis or gel imaging platforms (Dalmasso et al, 2009). Spots or fractions which are 

thought to contain biomarkers are identified using mass spectrometry (MS). As the proteins 

are separated intact they reflect PTMs and intact protein masses. Other advantages of this 

approach include simplified sample preparation and the elimination of the time-consuming 

process of protein digestion needed for bottom-up methods. Unlike the bottom-up approach, 

which involves more specific and limited sample sets, the starting point for top-down 

proteomics can be hundreds of different complex biological samples (Figure 10).  

Although the more complex studies such as relative and absolute quantification of proteins is 

becoming more common, the mainstay of proteomic study continues to be bottom-up protein 

identification. Bottom-up proteomics refers to studies in which the information about the 

constituent proteins of a biological sample is reconstructed from individually identified 

fragment peptides. It can be defined as an attempt to identify all the expressed proteins 

present in cells, tissues and organisms or the differential analysis of biological systems 

reacting upon physiological changes such as diseases. This accounts for much of the protein 

research undertaken in MS laboratories today (Lamond et al, 2012). The objective of these 

studies is to identify as many of the protein components of a biological sample as possible.  

Bottom-up MS is facilitated by the proteolytic digestion of proteins, which is typically done 

using trypsin. This is usually followed by separation of the resultant peptides using one or 

more dimensions of liquid chromatography. The multiple LC eluents are then individually 

analysed by MS. The resultant sequence data is then used to determine the original protein 

composition of the sample. Due to the advances in the field of mass spectrometry, such as the 

resolution, accuracy, fragmentation technology and speed, the bottom-up analysis can 

identify more proteins within a complex sample than ever before (Lamond et al, 2012). 

While the top-down approach has limited sensitivity, the shotgun bottom-up approach is a 

highly sensitive method. The limitations of these methods however lie in the poor 
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reproducibility as well as the large number of missing data that is typical of these methods. In 

most cases the techniques have a very low throughput, leading to lower statistical power 

(Dalmasso et al, 2009). 

 

Figure 10 - The overview of general bottom-up and top-down proteomics profiling 

workflows (Dalmasso et al, 2009). 

1.1.3.2 The Use of Trypsin 

Trypsin is a proteolytic enzyme found in the digestive system of most vertebrates, where it 

hydrolyses proteins so that they can be broken down into smaller peptides. Trypsin belongs to 

the serine protease family, which are enzymes which cleave peptide bonds in proteins. This 

process is called trypsin proteolysis or trypsination (Figure 11). Trypsin is produced in the 

pancreas in its inactive form, known as proenzyme trypsinogen. It cleaves peptide chains 

mainly at the carboxyl side of the amino acids lysine or arginine. This cleavage does not take 

place if either the arginine or lysine residue is followed by a proline residue. 
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Figure 11 - Trypsin and water break down a polypeptide chain into smaller peptide 

fragments (Moyna, 1999). 

Trypsin is considered an endopeptidase, which means that it cleaves peptides within the 

polypeptide chain, as opposed to the end terminals of the chain leading to orderly and 

unambiguous cleavage of proteins. Because of this property it is often used in studies for the 

determination of the amino acid sequence of proteins. Trypsin continues to be used for the 

development of cell and tissue culture protocols (Yang et al, 2009). It is also used for protein 

identification through peptide sequencing techniques (Schuchert-Shi & Hauser, 2009). 

Trypsin is the favoured enzyme for techniques such as peptide mass fingerprinting, as it is 

relatively cheap and effectively generates peptides which are usually 8-10 amino acids long 

(Thiede et al, 2005). This size of peptide is more suited for analysis using mass spectrometry 

techniques.   

1.1.3.3 The Capabilities of Proteomics in Biomarker Discovery 

Proteomics has allowed the previously divergent areas of biomarker and drug discovery to 

converge. The study of proteomics has brought progression in the field of targeted drugs to 

treat certain diseases by creating drugs which inactivate any proteins which have been 

implicated in a particular disease. Genomic and proteomic data can be used to determine 

proteins, which are related to the diseased state, to be used as possible targets for future 

drugs. The 3D structure of these proteins can help develop compounds that may interfere 

with the function of the proteins, and hence interfere with the disease process (King, 2011).  
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1.1.3.4 The Constraints of Proteomics in Biomarker Discovery 

High-throughput peptide identification may be relatively straightforward, but identifying 

post-translational modifications (PTMs) is more challenging. Due to the existence of PTMs 

protein levels may be inaccurately measured in the samples because of the increase in number 

of possible matches and hence false assignments (Mallick & Kuster, 2010). Additionally 

alternative PTM or alternative splicing can cause a single gene to give rise to multiple 

proteins. Sometimes complexes may be created between proteins or RNA molecules, which 

are expressed only when complexes are formed (Phillips, 2008).  

Developments in this field have to take place in tight integration with the developments in 

LC-MS or gel-based technologies, which is currently a very rapidly evolving field (Bertsch et 

al, 2011). Due to this the actual clinical impact of these technologies in drug and disease 

research has been limited (Gad, 2009). For example some human disease genes such as sickle 

cell anaemia and cystic fibrosis have been identified for over 20 years, though the 

development of suitable therapies has been much slower than expected (Green & Guyer, 

2011). A study from the National Cancer Institute has been cited as a classic example of the 

failure of biomarker discovery (Cramer et al, 2011). In this study the researchers tested more 

than 35 ovarian biomarkers that were claimed in previous studies to be better than CA125, 

which is a well established ovarian cancer biomarker. Following the analysis of hundreds of 

tissue samples, the researchers found that none of the biomarkers were better than CA125. 

Proteomic study is considered more complex than genomic study, because unlike the genome 

the proteome is subject to changes due to post-translational modifications and the fact that 

certain proteins are made under different conditions (e.g. time, light, stress of physiological 

change). This is the case, especially in biomarker studies, which requires a large number of 

samples for increased confidence in the results. This leads to an increased complexity.  

Previously the detection of proteins which exist in a low abundance posed a great challenge 

in proteomic studies (Lipp, 2006). Although there have been advances in the form of targeted 

selected reaction monitoring (SRM) techniques (Hossain et al, 2011). SRM techniques 

present researchers with the added advantage of increased sensitivity and quantification 

compared with other, more traditional, MS-based techniques. These techniques are able to 

detect more low abundance proteins by reducing the background chemical noise to a low 

level, thus increasing the signal-noise ratio. These increased signals also improve the 

reproducibility of measurements. 
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There is a challenge in juggling the necessity to develop and adopt new technologies and 

focusing on the biological or clinical goals of the research (Lipp, 2006).The approval as well 

as the impact of these automated techniques is limited by the ability to efficiently handle and 

analyze the large volume of data produced by these methods. This is the inevitable flip-side 

of automation (Bertsch et al, 2011). 

Certain publications provide results from proteomic biomarker experiments and make 

conclusions using data generated from one or two biological samples. The small number of 

experiments is usually due to the time and cost which is required for these experiments. This 

however is not a sufficient number of experiments to base conclusions upon. Due to 

experimental variation it is unlikely that these studies will realise their full potential 

(Bantscheff & Kuster, 2007). 

 

1.1.4 Future of Biomarker Discovery 

The pharmaceutical industry currently aims to develop high-throughput screening methods to 

find potential drug candidates in large compound libraries (Angelino & Yang, 2012). More 

progress may be achieved in this field if the discovery process is made more effective 

(ECHRD, 2010), so multiple biomarkers can be identified, validated and accepted on the 

same patient samples (Cottingham, 2006). It is also suggested that research in this field 

should be focused on tissue samples rather than blood samples which are more complex to 

analyse. As well as the complexity, there may be a high abundance of relevant biomarkers 

directly at the disease site which are not transferred to the blood in such large quantities.  The 

counter argument is that biomarkers found in muscle tissue do not allow for non-invasive 

checks for diagnosis; however once the biomarkers are detected in their differentiated 

concentrations at disease sites, they can be checked for in blood samples (assuming that these 

biomarkers are transferred to the blood at all). It should be noted that not all the biology of 

these may be fully understood so care needs to be taken when using different sample types.  
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1.2 Introduction to Proteomic Techniques Used in Biomarker Discovery  

Proteomics is a field which is currently still evolving rapidly due to the rate of emergence of 

new technologies. The chief aim of biomarker discovery is to identify differentially expressed 

proteins (Wu et al, 2009). A number of platforms exist for the analysis of proteins, some of 

which will be discussed in detail in this thesis. Often these technologies are used in 

combination with each other such as LC-MS, where the LC stage is used to separate the 

sample into smaller, less complex portions and subsequently MS is used to identify the 

composition of the samples. Liquid chromatography separates ions or molecules in a solvent 

based on differences in absorption, ion exchange, partitioning or size.   These processes have 

their own disadvantages but when used in complement they can be used to obtain a fair 

representative coverage of the proteome over a wide dynamic range.   

This allows the comparison of samples from healthy individuals against samples from 

patients suffering from disease. Samples from a single patient can also be collected at 

different stages of the disease to monitor progress or reaction to treatment. 

There are various technical disciplines that are currently used in proteomics of which Mass 

Spectrometry is one of the many possibilities (Palagi et al, 2005):  

• Separation techniques 

 2-DE gels: Provide pI and molecular weight of proteins  

 LC alone: Only determines Retention Time (not very accurate)  

• Identification techniques 

 Protein Sequencing: much better predictor, but very time consuming  

 LC-MS/MS: Does not consider low abundance proteins (X Li et al, 

2005) 

 

The following sections describe the available proteomic technologies, used in this field, along 

with the strengths and limitations of each technique. The techniques described are: 

 2D gel electrophoresis (2DGE) 

 Mass spectrometry (MS) 

 Isobaric Tagging for Relative and Absolute Quantification (iTRAQ) 

 Label-free techniques 

 Liquid Chromatography – Mass Spectrometry (LC-MS) 
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1.2.1 2D Gel Electrophoresis Based Techniques 

2D Gel experiments are commonly used in biomarker discovery for the analysis of large 

amounts of proteins to identify biologically relevant changes (Grove et al, 2008). Proteins of 

interest to researchers can be studied using two-dimensional gel electrophoresis, which 

involves separating proteins in orthogonal directions. This method allows the visualisation of 

even small differences in proteins because modified proteins are separated from the 

unmodified forms. 

1.2.1.1 The Technology of Gel-Based Proteomics 

Gel technology involves separating proteins from a biological sample (such as blood or 

muscle tissue) on a SDS-polyacrylamide gel (SDS-PAGE). Two distinct steps are used for 

separation, one which separates proteins based on pH, and secondly based on molecular 

weight (Figure 12).  

 

Figure 12 – A description of how proteins are separated using 2D Gel electrophoresis. 

Peptides move horizontally based on their pH and vertically based on their molecular 

weight (www.whatislife.com). 

The gels are then stained to reveal clusters of spots. A spot in a 2D gel may represent either a 

protein or isoforms of a protein. It should not be assumed that a spot represents an individual 

protein as this is not always the case. Occasionally spots may belong to an alignment due to 

an error, which are also known as noise spots (Peres et al, 2008). Some spots may also 

represent more than one protein, which may lie very closely in the 2D space of a gel. These 

gels can then be used to compare with other gels from different samples. The intensity of 

each spot gives an indication of the relative abundance of the protein that exists in the 
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sample. Following the separation of proteins in the two-dimensional space the spots, which 

are of interest, may be extracted from the gel. Trypsin, or another suitable protease, is then 

used to digest the protein into its peptide constituents, some of which are unique to each 

protein. These mixtures are then analysed using MS. The gel-based techniques offer powerful 

visualisation allowing researchers to spot differentially expressed, or post-translational 

modified protein spots (Loh & Cao, 2008). 

1.2.1.2 The Capabilities of Gel-Based Proteomics 

Regardless of the fact that 2D gel electrophoresis is not an ultra-modern technology; it 

provides a well defined and robust technology for biomarker discovery when combined with 

Mass Spectrometry (MS).  This is due to its extremely high-resolving power for complex 

protein mixtures (Loh & Cao, 2008). An important consideration often ignored by enthusiasts 

of shotgun mass spectrometry is that although 2D gels only visualise proteins in a sample 

present in higher abundances, it does not mean that the proteins identified from gels are 

unrepresentative of the biological processes within the sample. More proteins identified, does 

not necessarily lead to a better understanding. It is still regarded as one of the most powerful 

tools in the field of proteomic research (Geng et al, 2011). Thousands of spots can be 

resolved on a single 2D gel and when coupled with MS can assist with detection of proteins 

within a large range of isoelectric points and molecular weights. The method provides both 

qualitative and quantitative information. Whilst 2D gel techniques are useful for the 

separation of proteins and quantification of protein levels they do require additional 

identification techniques further downstream, such as MS analysis. 

1.2.1.3 The Constraints of Gel-Based Proteomics 

The reproducibility of results from gel experiments is low; therefore comparison between 

different gels is difficult due to variation in gel composition and run conditions (Lipp, 2006). 

Because of this it is essential that experimental conditions are standardised as much as 

possible and reported accurately to be able to minimise or at least account for experimental 

differences. Advances in gel-based techniques have also been developed to provide greater 

reproducibility between runs (Loh & Cao, 2008). These advances include the introduction of 

gels with a narrow pH gradient range as well as the use of radioactive labelling, such as 

DIGE techniques. 

Traditional gel-based biomarker discovery methods involve comparing gels against each 

other. However, the low reproducibility of gels can make this difficult, as spots relating to the 
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same protein may travel to different locations on the gel and therefore can increase the 

occurrences of false positives and false negatives.   

This problem has been addressed by certain researchers by using a technique referred to as 

difference gel electrophoresis (DIGE) (Alban et al, 2003). DIGE involves labelling of the two 

samples using distinct cyanide dyes which fluoresce at different wavelengths (Figure 13). 

The two samples are then separated on the same 2D gel so that proteins from each sample run 

identically so they occupy the same gel volume. This reduces the inter-gel experimental 

variation between samples as identical proteins separate to the same coordinates. These 

proteins can then be visualised and quantified by altering excitation and emission optics in 

order to ensure a direct spatial correlation and hence comparable protein identity. In addition, 

the creation of a “total sample” preparation labelled with the third dye gives a between-gel 

comparator and underpins accurate normalisation. This allows for better comparison of 

samples using the 2D gel technique and eases the complex task of revealing biological 

variation. 

 

Figure 13 - 2D DIGE technique. Cy2, Cy3, Cy5:- fluorescent dyes. Samples are dyed 

and then combined prior to gel electrophoresis. Following this images are generated 

using different fluorescence wavelengths (Fitzgerald, 2002). 
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Additional issues with gel-based techniques arise from the fact that certain characteristics of 

proteins are often poorly represented by gel-based methods. These characteristics include the 

poor representation of proteins at: 

 Extremes of isoelectric points, i.e. very acidic or vey basic proteins. This can be 

addressed by splitting samples up over various isoelectric point ranges and analysing 

smaller, less complex samples. 

 Hydrophobic proteins. 

 Extremely high or low molecular weights. 

 Low abundance proteins, creating a biased view of the proteome skewed towards 

proteins which exist in higher concentrations. This can be addressed by albumin 

depletion or by immunoaffinity chromatography which simplifies complex samples 

by binding high abundance proteins to a column.  

 There is an inability to profile, quantify and compare large numbers of samples 

therefore limiting the statistical power of proteomic analysis (Levin et al, 2007). 
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1.2.2 Mass Spectrometry (MS) Based Techniques 

Although gel-based techniques are an established platform for these experiments, the use of 

Mass Spectrometry (MS) based techniques is growing in this field (Schulz-Trieglaff et al, 

2008). The previous research in this area has been focused on high throughput Mass 

Spectrometry based profiling of blood and tissue samples (Johann et al, 2004).  

1.2.2.1 The Technology of Mass Spectrometry (MS) Based Proteomics 

The output from a MS experiment is a mass spectrum plot which displays the mass-to-charge 

ratio (m/z) against the intensity of the signal which is correlated to the intensity of the peptide 

(Figure 14). Proteins are cleaved using trypsin to make them a suitable size for MS analysis. 

The spectra are often referred to as the mass fingerprint of the peptide composition of the 

samples. These can be compared against spectra generated in silico that are available in 

primary sequence databases to be able to identify the proteins contained within the sample. 

 

Figure 14 - Mass Spectrometry-based proteomics. Proteins are fractionated by trypsin 

digestion. Chromatography and mass spectrometry is then used to quantify the peptides 

(Blonder et al, 2007). 
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1.2.2.2 The Capabilities of Mass Spectrometry (MS) Based Proteomics 

One of the primary reasons for the use of Mass Spectrometry in proteomic biomarker 

discovery is the larger potential the technique has for complete automation (Malmstrom et al, 

2011). Protein mass spectrometry has been established as an indispensible choice for analysis 

in proteomics studies to identify relevant molecular patterns (Stanley et al, 2004), due to its 

adaptability, sensitivity and precision (Hanash, 2004). Currently it is widely used in this field 

(Colaert et al, 2011). It is preferred for these studies because of the techniques sensitivity, 

selectivity, accuracy, speed and output (Chen & Pramanik, 2009). As well as the choice of 

using MS for proteomic analysis, further choices need to be made regarding the growing 

options for ionisation and ion separation available in MS (Figure 15). Using MS following 

gel analysis is another technique which allows the detection of proteins which have a lower 

abundance which is a likely range for cancer biomarkers (Cottingham, 2006). An example of 

the use of mass spectrometry in proteomics is the technology of multidimensional protein 

identification technology (MudPIT). This is an unbiased method for rapid and large-scale 

proteome analysis (Washburn et al, 2001). This method involves multidimensional liquid 

chromatography followed by tandem mass spectrometry. This technology is paired with the 

use of database searching which utilizes the SEQUEST algorithm to comprehensively 

identify proteins in samples in a rapid and sensitive process (Link et al, 1999). 

 
Figure 15 – The simplified schematic of a mass spectrometer showing examples of 

various ionisation, analyser and detector options (Ashcroft, 2012). 

1.2.2.3 The Constraints of Mass Spectrometry (MS) Based Proteomics 

An issue with MS is that some peptides cannot be ionised, meaning they cannot be detected 

using this technique. Additionally blood samples are often very complex and produce very 

noisy spectra. Unless very accurate MS technology is used, results may be too inaccurate to 

confidently identify clinical biomarkers. This has been addressed through processes of 

sample fractionation to simplify more complex samples; however this takes time and 

decreases the throughput of studies.  
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1.2.3 Isobaric Tagging for Relative and Absolute Quantification (iTRAQ) 

This method is based on protein sequence tags and aims to provide a quick, sensitive and 

accurate technology to assist in biomarker discovery (Ross et al, 2004). Isobaric tagging has 

recently become very popular in proteomic profiling (Simon, 2011). Coupled with liquid 

chromatography-tandem mass spectrometry (LC-MS/MS), iTRAQ has revolutionised the 

field of biomarker discovery and identification (Zieske, 2006). iTRAQ is a non gel-based 

approach to quantitatively study protein expression, and is currently commercially available 

(Applied-Biosystems, 2006).  

1.2.3.1 The Technology of iTRAQ 

This technique allows the analysis of up to eight samples in a single run. The iTRAQ 

technique involves digesting the complex samples into smaller less complex ones by the 

process of reduction, alkylation and then Trypsin digestion (Figure 16). The digested samples 

are then chemically reacted with different iTRAQ reagents which contain stable isotopes. The 

reagents attach at the N-terminus of the digested peptides. The two peptide mixtures can now 

be combined, followed by separation using nano-liquid chromatography and subsequent 

analysis by tandem Mass Spectrometry methods. The peptides are tagged. The tags can be 

identified by detection of their unique low molecular mass reporter ions the peptides can be 

linked to their samples (Figure 17). Determining the intensity of the reporter ions also allows 

for quantification of the relevant peptides. For each reporter ion peak range, the total area is 

calculated by summing the areas between ion peak pairs using trapezoid approximation for 

calculating the area under a curve. 
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Figure 16 – The iTRAQ workflow. Up to eight samples are digested and then tagged. 

The samples are then combined and quantified using LC-MS. 
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Figure 17 - An example of iTRAQ spectra. The reporter ion peak is comprised of 

multiple ions (Zieske, 2006). 

 

1.2.3.2 The Capabilities of iTRAQ 

iTRAQ can be employed with existing techniques to identify proteomic compositions of 

samples to assist in biomarker discovery. When coupled with Matrix Assisted Laser 

Desorption Ionisation – Tandem Time of Flight (MALDI-TOF/TOF) MS techniques, iTRAQ 

provides both quantitative and qualitative data. It has been used in previous studies to identify 

potential biomarkers by determining differentially expressed proteins in head-and-neck/oral 

cutaneous squamous cell carcinomas (HNOCSCCs) against non-cancerous head-and neck 

tissues (Matta et al, 2008). 

Studies suggest that quantification of proteins and peptides using iTRAQ can be further 

enhanced by combining the technique with electron transfer dissociation (ETD) (Phanstiel et 

al, 2008). ETD provides the possibility to determine peptide sequences with post-translational 

modifications (PTMs), because of its ability to retain labile PTMs (Cook & Jackson, 2011).  
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1.2.3.3 The Constraints of iTRAQ 

iTRAQ can occasionally lead to false conclusions due to the false positive identification of 

proteins (Bantscheff & Kuster, 2007). Current data analysis techniques for iTRAQ struggle to 

report reliable relative protein abundance estimates due to problems of precision and 

accuracy (Karp et al, 2010). 

The technique relies heavily on full coverage of the proteome of the species being studied. 

This is not always the case depending on the species being investigated. Additionally the 

method is very powerful and ideally suited for biomarker discovery but is not able to handle 

tens or hundreds of samples, which is normally typical for biomarker studies, in a single run 

(Matta et al, 2008). There are ways around this by the inclusion of a control sample which is 

used in every run of multiple analyses, to allow normalisation of technical variance. 

 

1.2.4 Label-Free Based Techniques 

Current approaches of quantitative proteomics have mainly been based on implementing 

isotopic labelling; however another preferred alternative is the label-free approach (Yan & 

Chen, 2005). Although Isotope labelling and fluorescent labelling techniques have been 

widely used in quantitative proteomics research, researchers are increasingly turning to label-

free shotgun proteomics techniques for faster, cleaner, and simpler results (Zhu et al, 

2010). Label-free approaches look for discriminating peak patterns in mass spectra, without 

regard to their identity (Lai, Wang & Witzmann, 2013). 

1.2.4.1 The Technology of Label-Free Based Techniques 

Label-free techniques involve protein separation and comparison using two-dimensional 

polyacrylamide gel electrophoresis (2D-PAGE), followed by MS or tandem mass 

spectrometry (MS/MS) identification. It is a classical method for quantitative analysis of 

protein mixtures.   

1.2.4.2 The Capabilities of Label-Free Based Proteomics 

MS based label-free quantitative proteomics falls into two general categories. Those that 

measure changes in chromatographic ion intensities, such as peptide peak areas or peak 

heights, and those that involve the spectral counting of identified proteins. An advantage of 

the label-free approach is the reduction in cost, because the employment of stable isotopes is 

very costly, and it is not a simple process. Reviews of the differences between labelled 
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techniques, such as iTRAQ, and the label-free approach suggest that the total analysis time is 

reduced by 50% and experimental requirements are significantly reduced (Patel et al, 2009).  

There are however other technical advantages as well as simply a reduction in cost and time, 

as opposed to techniques that involve labelling. Evidence suggests that the dynamic range of 

quantification is higher with label-free techniques (Bantscheff et al, 2007). This allows 

researchers to measure significant variations within complex mixtures or even across the 

whole proteome, using a single experiment. Additionally when using the label-free approach 

there is only one sample to analyse by MS as opposed to 30-60 fractions which would need to 

be analysed when using techniques like iTRAQ. Research also suggests that the sequence 

coverage provided by label-free approaches is over four times greater than the coverage 

provided by iTRAQ (Patel et al, 2009). 

1.2.4.3 The Constraints of Label-Free Based Proteomics 

There is however also disadvantages of the label-free approach: 

 Although label-free techniques offer a higher dynamic range, for spectral counting 

this comes at the cost of unclear linearity and relatively poor accuracy (Patel et al, 

2009) 

 Quantitation of peptides or proteins is often affected by changes in peptide 

chromatography conditions.  

 There is an uneven dispersion of peptides throughout multi-dimensional separations.   

 Slight variances in the chromatography step can lead to irreproducible peptide 

separations (Leptos et al, 2006).  

 

1.2.5 Liquid Chromatography – Mass Spectrometry (LC-MS) 

Quantitative Liquid chromatography coupled with Mass Spectrometry (referred to as LC-MS) 

is being increasingly used in the differential profiling of biological samples (Katajamaa et al, 

2006). The combination of the methods allows high accuracy protein profile comparisons 

between different sets of biological samples (Kreunin et al, 2007).  

1.2.5.1 The Technology of LC-MS Techniques 

The liquid chromatography stage deals with the 2-dimensional physical separation of proteins 

within a sample. This is achieved by separating proteins dependent on their pI (Isoelectric 

point) and also by the size of the peptides in mass. The protein elutions are then analyzed 
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using the mass analysis capabilities of MS. It exploits the ability of MS to be able to identify 

and precisely quantify a large number of proteins (thousands) from complex biological 

samples.  The MS stage allows the acquisition of an accurate and reproducible protein 

molecular weight. 

1.2.5.2 The Strengths of LC-MS Based Proteomics 

Liquid Chromatography – Mass Spectrometry (LC-MS) methods are commonly used in 

proteomic studies (Peng & Gygi, 2001) at the biomarker discovery phase of drug discovery 

(Kawase et al, 2009). This technique has been used to identify potential biomarkers which 

identify breast tumour metastasis (Kreunin et al, 2007) as well as the discovery of potential 

Down’s syndrome biomarkers in maternal serum (Nagalla et al, 2007). The use of these 

techniques is not limited to proteomic research and more recently are also being implemented 

in the metabolomics field (Katajamaa et al, 2006).    

1.2.5.3 The Constraints of LC-MS Based Proteomics 

As with any technique, LC-MS is by no means without its limitations and boundaries 

including issues with the analysis of data (Bellew et al, 2006). One issue is that not all of the 

peptides present in a complex mixture are currently ionised and detected by MS; therefore the 

amino acid sequence is not fully accounted for (Listgarten & Emili, 2005). Additionally the 

dynamic range of some Mass Spectrometers is limited so low levels of peptides in a mixture 

might not be detected because they are not distinguishable from the background noise.  

Other limitations of this technique include: 

 Some peptides may be under represented or absent in mass spectra of complex 

mixtures of peptides.  

 Some modified peptides are unstable and may decay during ionisation or mass 

analysis therefore escaping detection.  

 Unlike MALDI, ESI used with LC-MS applies multiple charges to peptides which 

need to be determined in order to determine the mass of a peptide.   

 The comparison of peptides across experiments involves alignment in two dimensions 

rather than just one. This additional dimension of retention time varies in a non-linear 

way.  

 There may be deviations in the elution times across different experiments.  

 Ambiguity can occur when there is an overlap in the time and m/z spaces.  
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 Signal intensities can be affected by differences in overall sample composition.  

These limitations become more apparent as the amount of protein available for analysis is 

reduced due to the use of gel spots from 2-D PAGE. Signals from modified peptides, such as 

phospho-peptides or glycopeptides, are often not present from the mass spectra of peptide 

mixtures (Knochenmuss, 1998). To add to the complication, the modification on a given site 

is sometimes only partial. The result of this is that the corresponding unmodified peptide is 

observed instead of the modified peptide. This leads to the dangers of failure to recognise, 

and account for the presence of a modified peptide peak. Furthermore the influences of the 

experimental conditions on the PMF spectra are also a limiting factor to the successive use of 

MS for proteomic profiling for determination of biomarkers (Bellew et al, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 36  © Cranfield University, 2011 

 

1.3 The Use of Statistical Analysis in Proteomic Biomarker Discovery 

1.3.1 Biomarker Discovery Workflows 

Organisations involved in biomarker discovery, such as the sponsor company Oxford 

BioTherapeutics (OBT) use a range of both MS and 2D gel methods in their biomarker 

experiments. Figure 18 illustrates the work process flow used by these companies for their 

biomarker discovery projects. Datasets from some of these analyses (gel or MS based) were 

provided by OBT as part of their biomarker research. The focus of this EngD lies mainly 

within the statistical analysis step. Once the required statistical analysis is completed the 

results were provided to the company in the format described later in this thesis. Any further 

analysis (MRM/SRM) required to validate these biomarkers was then conducted.  

 

Figure 18 - The biomarker discovery work process flow. Collected samples are analysed 

and data files are created, ready for statistical analysis using software created for this 

EngD Project. 
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1.3.2 Experimental Design of Biomarker Discovery 

An aspect of proteomics studies is the discovery of biomarkers indicative of physiological 

differences (e.g. diseases or responses to treatments in biological systems). Experiments in 

this field aim to identify a correlation between abundances of proteins within a sample, and 

the biological conditions of sample groups. Use of differential analysis of protein expression 

levels has developed rapidly over recent years (Keselman et al, 2011).  

A factor that decides whether these experiments result in successful scientific discoveries is 

the quality of the experimental design. A good experiment suggests a “fair test” is conducted 

including only the variance that the experiment is trying to capture (i.e. the differences in 

biological states compared). However there may be biological and technical variation within 

the samples in the groups, which are not involved in the divergences seen in biological states. 

The effect of these variations can be reduced by using replicate samples (Molloy et al, 2003). 

As well as standardisation of sample and analysis protocols, there needs to be standardisation 

in the application of the statistical tests used throughout the study. 

A topic of frequent debates about experimental design in biomarker proteomics is the use of 

these replicates. These experiments usually contain two types of replicates including 

biological and technical replicates. Biological replicates are individual biological samples 

which are independent of each other, whereas technical replicates are multiple labelled repeat 

technical runs of the same biological sample. The purpose of including biological replicates is 

to control for biological diversity between samples (Altman, 2005). These are considered 

superior to technical replicates because they are often more informative. However biological 

replicates are often more difficult to obtain, and budgets may restrict the number of biological 

samples available for analysis. Technical replicates can however also be useful as they 

account for the technical variability within an experiment (Patterson et al, 2006). Technical 

variation may occur from differences in the experiment, such as in sample preparation and 

separation. 

Biological replicates are necessary in biomarker discovery experiments in order to draw 

conclusions about the differences between groups. As a general rule, the more biological 

replicates used, the better the statistical confidence (Ekefjard, 2010). If only one biological 

replicate in the groups are being compared, it is not possible to draw meaningful conclusions 

about differences between the samples. Technical replicates are not however useless as they 

allow the experiment to account for errors in the measuring techniques. Running multiple 

runs on the same biological samples is useful for reducing differences arising from the 
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running conditions. Technical replicates also result in a cost benefit as the number of samples 

is increased at a lower cost (Altman, 2005).  

1.3.3 Statistical Analysis Methods  

The proteomic experiments of interest for this study are those that aim to identify correlations 

and differences in the abundances of proteins between samples exhibiting divergent 

biological conditions.  

There are a number of statistical methods that can be employed for the use of proteomic 

biomarker discovery experiments. The relevant techniques will be discussed in later chapters 

in greater detail. Table 1 identifies the optimum statistical strategy that should be employed, 

depending on the nature of the question that needs to be answered.  

 

Table 1 - Ideal statistical methods for proteomics questions (Bantscheff & Kuster, 2007). 

Testing For? Question Optimum testing method 

Variances in protein 

abundance between sample 

groups (Different biological 

conditions) 

Do any proteins act 

significantly differently in 

various biological 

conditions? 

Multiple Hypothesis Testing 

Do any proteins show time-

dependent change? 

Analysis of Variance 

(ANOVA) 

Defining the class of an 

unknown sample 

Classification techniques 

such as PLS-DA 

Relationships between 

proteins and samples 

Which (if any) proteins are 

dependent on each other? 

Cluster Analysis such as 

HCA. 

Which (if any) proteins are 

responsible for variances 

between samples? 

Principal Component 

Analysis (PCA) 

As well as the statistical analysis techniques there is a choice of data pre-processing and post-

processing options that can be conducted on the data. There are a number of current 

algorithms available for this. The choice of statistical analysis and data processing techniques 

will inevitably have an effect on the biomarkers identified from these experiments. The best 

statistical approach to deal with data from these proteomic biomarker studies remains an area 

of ambiguity and interest (Blanchet et al, 2011), and forms the core focus of this project. 
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1.3.4 Errors in Hypothesis Testing  

When conducting statistical hypothesis tests, the result is a p-value (described in detail in 

Chapter 2) indicating the probability of each feature (peptide or protein) fulfilling the null 

hypotheses for the tests. The null hypothesis for these significance tests is that there is no 

difference between the samples being compared (i.e. null hypothesis suggests the feature is 

not a potential biomarker candidate). Potential biomarkers are indicated by a p-value of lower 

than the significance level of 0.05 (i.e. rejection of the null hypothesis that there are no 

differences between the samples). It is possible, however that the null hypothesis of no true 

difference is true and that the large difference between sample means occurred by chance.  

If this is the case, then the conclusion that the feature identified as a potential biomarker is in 

error. This type of error is called a Type I error or a false positive error. More generally, a 

Type I error occurs when a significance test results in the rejection of a true null hypothesis. 

The Type I error rate is affected by significance level used (0.05 for this study which is the 

generally accepted significance level in statistical significance testing (Butzen, 2011)). 

Lowering the significance level decreases the Type I error rate. It might seem that the 

significance level is the probability of a Type I error, but actually the significance level is the 

probability of a Type I error given that the null hypothesis is true.  

Another type of error seen in significance testing is failing to reject a false null hypothesis, 

called a Type II error or a false negative error. This is not a great cause for concern in 

proteomic biomarker studies where the number of features is generally large. When a 

statistical test rejects the null hypothesis, it suggests that the data doesn’t display strong 

evidence that the null hypothesis is false. It does not support the conclusion that the null 

hypothesis is true (i.e. the test is inconclusive). A Type II error occurs if the null hypothesis is 

false (i.e. there is a significant difference between the groups).  

Because of these errors it is better to use the p-value as an indication of the weight of 

evidence against the null hypothesis, rather than as part of a decision rule for making a reject 

or do-not-reject decision. In this study the Type I (false positive) errors are of greater concern 

than the Type II (false negative) errors. This is because the validation of biomarkers is an 

expensive process, so resources should not be wasted on non-markers. As there is generally a 

large number of features (therefore many statistical tests) it is not a great problem if some 

potential biomarkers are identified as non-markers. 
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1.3.5 Power Analysis 

For the successful discovery of biomarkers, it is important to address a correctly formulated 

clinical research question where power analysis is essential (Karp et al, 2007). Therefore all 

biomarker studies should have included an a priori calculation of the number of samples that 

need to be included in the study. The power of a test is its ability to correctly reject the null 

hypothesis of the statistical test (i.e. the ability to detect an effect, if an effect exists). The 

exact statistical power considerations that are relevant for interpreting a biomarker study 

depend on the nature of the study but generally focus on demonstrating that the sensitivity 

and/or specificity of a biomarker is superior to a stated value. The statistical power in a 

proteomic biomarker study depends on specific factors including: 

 Variance in protein expression 

 The size of the change in protein expression 

 The number of replicates 

 The significance level used 

For greater statistical power in an experiment, the number of replicates must be sufficient 

enough to distinguish between true differences and random effects (Zhou et al, 2012). Using 

too few replicates can lead to an underpowered study which will not identify changes in 

protein expression with statistical significance. Using too many replicates leads to an 

unnecessary waste of time and resources. This issue is frequently overlooked by researchers 

(Bachmann et al, 2006). Most researchers in quantitative proteomics rely solely on the 

estimation of p-values and a significance threshold (Karp et al, 2007), but this approach does 

not account for the effect of multiple testing which is described in more detail later in this 

thesis in Section 4.2.1. A measure of significance in terms of the false discovery rate (FDR) 

is then calculated to return a q-value. A q-value is used to maintain the power by allowing the 

researcher to achieve an acceptable level of false positives or false negatives. 
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1.4 Project Aims 

1.4.1 Identification of the Suggested Statistical Analysis Methods for Biomarker 

Discovery 

The overall objective is to identify a recommended statistical approach for the identification 

of features (peptides or proteins) which are differentially expressed between divergent groups 

of samples. This will allow the identification of peptides or proteins which are responsible for 

the divergent traits displayed between sample groups. 

As stated earlier there are a number of statistical methods that can be employed for the use of 

proteomic studies and biomarker experiments. At present no one correct method or answer is 

defined for biomarker discovery but it is through development of the combination of all these 

technologies that the biomarker field will thrive (Haleem et al, 2011). Although there has 

been advances in this area there is ambiguity regarding the best statistical approach, including 

the pre-processing and post-processing options to deal with data from these proteomic 

biomarker studies (Blanchet et al, 2011). 

Along with the development of a software pipeline to be discussed in Section 1.4.2, the 

various methods available for statistical analysis as well as data pre- and post-processing will 

be investigated and reviewed. These methods will be made available using the software 

pipeline. Following the use of this pipeline on actual proteomic data from biomarker 

experiments the recommended methods of data treatment and statistical analysis will be 

presented. 

 

1.4.2 An R Toolkit for Biomarker Discovery from Proteomic Data  

Software and algorithms available for the statistical analysis of data created from biomarker 

experiments remains a subject of interest in proteomics (Zhu et al, 2010). One of the required 

outcomes of this project is the development of a reliable pipeline software solution for the 

identification of biomarkers through the use of statistical analysis of experimental datasets.  

Although there are currently software platforms that exist in order to conduct statistical 

analysis on biomarker data (e.g. Marker View) these often are limited in their range of 

statistical tests. Currently the commercial options available for this analysis usually provide 

black-box analysis tools which often cannot be modified and it is often difficult to understand 
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the inner workings of the software. These tools do not allow OBT to use their expertise and 

modify the analysis workflow to their or their clients’ individual requirements.  

Often the existing software is not able to deal with or analyse the sheer amount of data 

created from these experiments. These issues can only be overcome by new developments in 

algorithms, data management and software engineering (Malmstrom et al, 2011). Only then 

can the full potential of these studies be realised. It is very important that these software 

projects are developed alongside tight integration with the method developments in 

technologies used such as Mass Spectrometry based or gel-based methods. 

The software pipeline developed for this project will allow users to conduct high-throughput 

statistical analysis in order to identify biomarkers from datasets obtained from biomarker 

experiments. The toolkit developed through this EngD project was named Biomarker Hunter. 

This pipeline software will aim to identify peptides or proteins which are differentially 

expressed following various treatments in order to identify the effects these treatments may 

have on these markers. It will conduct a range of both multivariate and univariate statistical 

techniques in order to identify features of interest between different groups of samples.  

The use for this pipeline will be to evaluate the various statistical methods described in 

section 1.4.1 in a high throughout manner. The advantage this software provides to biomarker 

companies such as OBT is the ability to produce higher quality results for their clients, which 

will lead to higher client confidence. This will add value to the biomarker experiments 

conducted by these companies. Currently OBT use the GeneSpring MS software for the 

univariate analysis and do very little in terms of multivariate analysis. The idea behind the 

pipeline is to conduct univariate analysis, as well as providing multivariate analysis options.  

 

1.4.3 Identification of Suitable Methods for Dealing with Missing Values in 

Proteomic Data 

Statistical techniques usually require, and work best with, complete datasets. Proteomic 

datasets are often incomplete due to numerous issues including identification, technical range 

and sensitivity of the proteomic technologies employed for quantitative analysis. Methods of 

dealing with these missing values prior to statistical analysis still remain a key issue in 

proteomic analysis (F. Li et al, 2011). Proteomic data from biomarker experiments can 

generally contain about 50% of missing values (Bantscheff & Kuster, 2007). If these values 

are just ignored, the loss of information can induce a considerable bias to the dataset.  
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Reasons for missing values in proteomic data may be either biological or technical. 

Biological reasons may represent a protein that is truly missing from a particular sample or 

those features which are present but at a level that is below the detection level of the analysis 

tool. Although the biological implication of these two cases is different, it is often not 

possible to differentiate between them. A proteomic feature refers to an experimental 

parameter which relates to a peptide or a protein. These may be in the form of a gel spot or 

peak on mass spectra. 

Examples of technical causes of missing values in gel-based data include inaccuracies 

encountered during the electrophoresis process (Albrecht et al, 2010). These include: 

 pH variations in the running buffer 

 Incomplete or over-focusing in the first dimension 

 Poor transfer from first to second dimension 

 Different run times in the second dimension 

 Gel variations in staining  

 Local differences in protein migration on gels (This may be caused by incomplete 

polymerisation or air bubbles in the gel) 

 Differences in image analysis (e.g. high background noise, poor resolution of spots or 

poor detection and separation of nearby spots) 

A recent study showed that the occurrence of missing values in gels does not correlate with 

the spot locations; however feature intensity is a function of the percentage of missing values 

(Miecznikowski et al, 2010). Values which are present in high abundances in other sample 

groups are more likely to be detectable than those present at lower levels. Therefore the more 

abundant a protein is, the lower the chance that the protein will be below detection level in 

another sample group (Wood et al, 2004). This also applies to MS (F. Li et al, 2011). 

The consequence of missing values is that they can have a significant effect on the 

conclusions that are drawn from the data. Values that are missing due to biological reasons 

are important for analysis as they provide an insight into the differences between the samples. 

Missing values caused due to technical variations are not of biological interest but need to be 

avoided. It is important to identify the causes for missing values so that they can be treated 

differently. This may be determined by identifying whether there is a systemic relationship in 

the number of missing values between the experimental groups. Random distribution of the 
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missing values suggests that the reason for the missing values is technical. Non-random 

distributions lead to the suggestion that the missing values are biological (Cardillo, 2008). 

This project will address this issue of dealing with missing values in proteomic data. Features 

below the detection value may be replaced with zeroes or another arbitrary low threshold 

value. This may be acceptable if the values are missing because a feature’s abundance being 

below the detection value, or those that are truly not present. However this is not acceptable 

for values that are missing for other reasons such as other technical reasons. There are 

additional imputation methods than can replace missing values based on a model created 

using the existing data, for these purposes. Existing methods of imputation will be researched 

and implemented in an appropriate manner. 

Additionally many values may not be present due to the incorrect mismatching of features. 

This occurs when an individual peptide or protein is identified as different features between 

samples. To deal with these missing values, the creation of a novel algorithm for the 

reduction of missing values will also be implemented and reviewed. This will aim to address 

the issues of features (peptides or proteins) that have incorrectly been identified into two or 

more separate features. This will be achieved through the creation of a clustering algorithm, 

“ClusterFix”, to re-cluster the original dataset. This novel algorithm as well as the existing 

missing value imputation techniques will be the focus of Chapter 5. 

 

1.4.4 Researching the Business Opportunities for Biomarkers and Statistical 

Analysis Software 

As this is an EngD research project it is important to consider the business and economic 

aspects of this research area. This will be discussed in Chapter 7. This chapter will outline the 

business opportunities that will be presented through quicker, more efficient discovery of 

biomarkers. It will discuss the clinical impact that biomarkers aim to deliver both in terms of 

health benefits to patients and economic benefits to organisations such as healthcare 

providers and drug manufacturers. This chapter will also consider the competition in the 

industry by presenting a SWOT analysis and a review of competitive software that exists in 

the industry. 
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2 Materials and Methods 

This chapter discusses the resources that were used throughout this project. The first section 

discusses the datasets that were provided by the sponsor company OBT, on which the 

statistical analysis was conducted. Firstly an outline of the types of data that will be analysed 

using the pipeline software will be discussed. Then a list of the actual proteomic datasets 

provided for this project will be presented. Following this, an overview of the pipeline 

software, Biomarker Hunter, will be described. 

2.1 Data from Proteomic Biomarker Data 

Oxford BioTherapeutics (OBT) provides data from experiments which consist of groups of 

samples. This data is usually in the form of pivot tables, which is a method of summarizing 

large amounts of data and presenting it in an easy-to-read format. These datasets are 

generally .csv files with each row representing a feature (e.g. a peptide), and each column 

representing a different sample. Features are often referred to as Molecular Cluster Indexes 

(MCIs) or Protein Cluster Indexes (PCIs). The datasets may previously have been normalised 

using the GeneSpring MS or similar software using log transformations. 

The benefit of using the datasets provided by the sponsoring company is that these are large 

in terms of the number of samples and are generally of high quality, as the company was at 

the time providing proteomics as a service and has high quality control standards. Crucially, 

it was also expected that the studies from which these datasets came would progress to the 

validation stage, where potential markers found during the statistical analysis would be 

validated experimentally using targeted proteomics (SRM). Unfortunately, only one of the 

three studies did actually reach the validation stage and for commercial reasons it has not 

been possible to ascertain what the biomarkers were in that study. 
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2.1.1 Dataset 1 – Circadian Variation  

Data from this experiment aims to identify whether circadian rhythm or “body clock” has an 

effect on the protein expression of DMSO (Dimethyl sulfoxide) treated Zebrafish Embryos 

(ZFEs). The circadian clock regulates various physiological processes. It is unknown how 

circadian clock controls physiological rhythmicity. As most living organisms display 

circadian rhythm to some extent, to adapt to daily environmental changes, it is important to 

be aware of its effects on future studies. Most circadian clocks are close to 24 hours. 

To determine whether time of sample collection affects the levels of proteins detected by 

comparing five independent biological replicates at each of two time points using 2D gel 

analysis. The circadian rhythm is investigated using five pools of DMSO treated ZFE (A-E) 

with two samples from each pool, one collected at 0900 hours and another at 1200 hours. The 

2D gel results from these tests were analysed to identify any differentially expressed proteins. 

Table 2 shows the samples that were analysed and their reference numbers which were used 

in the output diagrams from the study. Since gel-based analysis is conducted on proteins 

rather than peptides, the features (proteins) for this study are often referred to as Molecular 

Cluster Indexes (MCIs). Each sample contained 1,678 MCIs or features. This dataset differs 

from the others as it does not contain any missing values. This is because specific 2D gel 

spots were chosen and analysed for this study. Figure 19 shows the range of intensities 

contained within the dataset, showing the majority of proteins within the lower intensity 

range between 0 and 1 million.  

Table 2 – An experimental outline for circadian rhythm study, including the sample 

names. Five samples were collected at two different time points and analysed using 2D 

gel technology. 

Pool  Time point 09:00 12:00 

A A9 A12 

B B9 B12 

C C9 C12 

D D9 D12 

E E9 E12 
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Figure 19 - A histogram showing the number of features (proteins) within specific 

intensity ranges for Dataset 1. 

This data was specifically created to determine whether there were any changes in protein 

expression between the samples collected at 9 am as opposed to those collected at noon. This 

was achieved by conducting the multivariate analysis techniques to identify if the time of 

collection had a significant impact on the expression of proteins between these two groups. 

2.1.2 Dataset 2 – Project 9549 Label-Free Analysis (OBT) 

This dataset is obtained from label free MS analysis, consisting of 31 samples run in 

duplicate giving a total of 62 experiments. The samples are split into four groups being 

compared (named 1, 2, 3 and 4). There are eight samples in groups 1, 2 and 4 and seven 

samples in group 3. Since there were duplicate runs conducted there are two readings 

(technical replicates) for each sample. One of the sample groups is a control group whereas 

the other three groups are various doses of treatment. This experiment is done for a highly 

sensitive project, therefore the nature of the sample groups have to be kept confidential. This 

data involves study at the peptide level so the features (peptides) for this study are often 

referred to as Peptide Cluster Indexes (PCIs). Table 3 illustrates the experimental outline for 

this data set. For each sample there are a total of 8,892 features that have been identified. This 

shows that for each group there are 16 total samples except for group 3 which has 14.   
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Table 3 - Experimental outline for Dataset 2 – Project 9549 Label-Free Analysis. X 

represents a dataset being available for each sample. 

Group/Sample 
Sample 

1 
Sample 

2 
Sample 

3 
Sample 

4 
Sample 

5 
Sample 

6 
Sample 

7 
Sample 

8 

Group 1 - Run 1 X X X X X X X X 

Group 1 - Run 2 X X X X X X X X 

Group 2 - Run 1 X X X X X X X X 

Group 2 - Run 2 X X X X X X X X 

Group 3 - Run 1 X X X X X X X  N/A 

Group 3 - Run 2 X X X X X X X  N/A 

Group 4 - Run 1 X X X X X X X X 

Group 4 - Run 2 X X X X X X X X 

The data has already been normalised. The dataset contains the natural logarithms of the 

normalised data with one row per feature and a column for each experiment. This data suffers 

from a large proportion of missing values (i.e. 327772 values, which accounts for over 60% 

of the dataset). Missing values have been replaced by the value 0.01.  The natural logs of the 

values are given as these are what the statistical analysis is to be carried out on.  Therefore a 

value of ln(0.01) = -4.60517 indicates the value is missing. Figure 20 shows the number of 

features within specific intensity ranges. Analysis of this dataset involves comparing the 

peptide expression between the four groups using both multivariate and univariate statistical 

techniques. Table 4 shows how the four groups were compared for univariate analysis. 

 

Figure 20 - A histogram showing the number of features (peptides) within specific 

intensity ranges for Dataset 2. 

 



Page | 49  © Cranfield University, 2011 

 

Table 4 - A table showing how the samples were pooled in four groups. The cells 

marked with an X show how the groups were compared with each other. 

Groups 1 2 3 4 

1 

 

   

2 X 

  
  

3 X X 

 
  

4 X X X   

 

2.1.3 Dataset 3 – Xenograft Pre-Clinical Project (OBT) 

This study involves the analysis of plasma aiming to investigate the influence of compound 

administration on protein expression. It is based on the mouse Xenograft model (Richmond & 

Su, 2008). It aims to identify proteins which are differentially expressed in Xenograft mice 

which have undergone treatment of a compound administered at different dose levels. This 

will allow development of an assay to monitor the efficacy of drug treatment.  

20 different biological samples were analysed using state of the art LC-MS comparative 

peptide profiling methods. Each sample underwent a replicate run, to include technical 

replicates, so there will be 40 samples in total (Table 5). For each sample there are a total of 

94,727 features that have been identified for analysis. Although there are a large number of 

features, this data suffers from a large proportion of missing values (over 90%). There is a 

need to identify and validate a set of differentially expressed peptides between these samples. 

This data involves study at the peptide level so the features (peptides) for this study are 

referred to as Peptide Cluster Indexes (PCIs).  

The biological samples consist of: 

 5 mice (biological replicates) treated with dose A(1) 

 5 mice (biological replicates) treated with dose B(2) 

 5 mice (biological replicates) treated with dose C(3) 

 5 untreated mice (biological replicates) (Vehicle)(4) 
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Table 5 - Experimental outline for Dataset 3 – Xenograft Pre-Clinical trial. X represents 

a dataset being available for each sample. 

Group/Sample 
Sample 

1 
Sample 

2 
Sample 

3 
Sample 

4 
Sample 

5 

Group A(1) - Run 1 X X X X X 

Group A(1) - Run 2 X X X X X 

Group B(2) - Run 1 X X X X X 

Group B(2) - Run 2 X X X X X 

Group C(3) - Run 1 X X X X X 

Group C(3) - Run 2 X X X X X 

Group D(4) - Run 1 X X X X X 

Group D(4) - Run 2 X X X X X 

 

Figure 21 shows the number of features within specific intensity ranges for this dataset. This 

shows that the majority of values fall within the lower intensity range below 25 million. This 

graph however was not very informative so Figure 22 shows a breakdown of the features 

within this lower intensity range (0-25). The four groups were compared in the same manner 

as Dataset 2, as shown previously in Table 4.  

 

Figure 21 - A histogram showing the number of features (peptides) within specific 

intensity ranges for Dataset 3. 
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Figure 22 - A histogram showing the number of features (peptides) between zero and 25 

within specific intensity ranges for Dataset 3. 
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2.2 Design and Implementation of the Biomarker Hunter Pipeline 

This section discusses the creation of the pipeline software that will be used to identify 

biomarkers from the proteomic biomarker experimental data described in section 2.1. The full 

R script is presented in Appendix A as well as a copy of the program and user manual 

(Appendix D) provided on the supplemental CD ROM for this thesis. The key features of this 

software include: 

 Support of different proteomic workflows (e.g. gel, LC-MS and iTRAQ) 

 Traceability of statistical analysis and data pre- and post-processing methods 

 Support for multiple groups of samples 

 Extensive range of univariate and multivariate statistical techniques in a high 

throughput manner 

 Various data pre- and post processing options 

 A novel method of dealing with missing values 

The statistical programming platform R has been chosen as the platform in which to create 

the pipeline (www.r-project.org). R is an open-source environment which enables statistical 

computing and visualisation. As it is free software it is preferred as university and perhaps 

small enterprises do not always have budgets to spend on the commercial alternatives such as 

MATLAB licences. Free software also brings advantages for the distribution of this software 

as commercial licenses may create a barrier to the use of the pipeline. R also contains many 

pre-written packages for various algorithms which lead to easier programming. 

Firstly an overview of the pipeline will be presented. There are four stages of analysis that 

comprise the pipeline: 

 Data Pre-Processing 

 Statistical Analysis 

 Data Post-Processing  

 Results Presentation 

Figure 23 shows the flow of data through the software pipeline. Firstly quantitative data from 

gel-based or MS based experiments is pre-treated using various options, to ensure the data is 

suited for the subsequent statistical analysis. Once the statistical analysis is conducted the 

data may need to be processed prior to presenting the resulting list of biomarkers. 
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Figure 23 - An overview of the Biomarker Hunter Pipeline. It shows the flow of data 

from 1) The original datasets being pre-treated for statistical analysis 2) The statistical 

analysis conducted and subsequently 3) The output of results (i.e. potential biomarkers). 

 

The following sections describe the various sections of the pipeline from pre-processing the 

data, to statistical hypothesis testing, and then subsequent post- hoc testing, multiple testing 

correction and finally creating the output files.  
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2.2.1 Data Pre-Processing 

The process of the pipeline from data importation to preparing the data into groups prior to 

statistical analysis, described above, is illustrated in Figure 24. The accepted file format for 

this pipeline is .csv files. The first row contains the column headings. The first column 

identifies the feature (e.g. MCIs or PCIs) that is being analysed as shown in Table 6. 

Additional columns may also be present for LC-MS data, for the mass and retention times.  

 
Figure 24 - Flowchart describing data pre-processing steps prior to statistical analysis 

 

Table 6 - An outline of a dataset that can be analysed using Biomarker Hunter, using 

data from MS or gel-based techniques. This example shows one control sample and 

three various doses of treatment (The mass and retention time columns are optional). 

 

Before any analysis is conducted the features of the dataset need to be extracted from the data 

file and arranged in a form suitable to carry out the relevant analysis. Due to differing 

laboratory conventions, in order to class any missing values as such, the user is prompted for 

the syntax that has been used to denote missing values (i.e. 0, 0.0, NA, N/A). 

In order to identify the samples and group them the user is presented with two options. This 

can be achieved either manually, using command line prompts, or with the use of grouping 

data in the form of a separate .csv file. A grouping file (.csv) consists of two columns 

specifying the group name and their respective column numbers (Table 7).  
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Table 7 - An example of a grouping list, that can be used to split the samples into their 

corresponding groups. Column 1 - respective group name Column 2 column number  

 

Firstly the raw data needs to be sorted into its relevant sample groups for calculation of the 

group statistics and subsequent statistical hypothesis testing. Following this the user will be 

presented with data pre-treatment options which will be discussed in the following sections. 

Biomarker Hunter provides options for normalisation and dealing with technical replicates 

and missing values. 

2.2.1.1 Normalisation 

The pipeline offers an option for normalisation of technical variances between the samples if 

the data requires it. The software offers Total Intensity Normalisation which is explained in 

detail in section 4.1.1. It involves the division of the abundance values by the sum of all 

values within the sample. 

2.2.1.2 Averaging of Technical Replicates 

There are two options with regards to the management of technical replicates. These can 

either be treated as individual samples (i.e. not averaging the dataset) or can be averaged 

prior to analysis. The advantages and disadvantages of these options form the focus of section 

4.1.2. 

2.2.1.3 Missing Value Treatment 

Additionally the user will be presented with options to deal with the missing values in the 

proteomic datasets. This includes both options for missing value imputation as well as the 

novel clustering algorithm “ClusterFix”. These options for the treatment of missing values, 

and their effects on statistical analysis, are the focus of Chapter 5. 
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2.2.2 Statistical Analysis  

This section describes the various analysis methods offered in Biomarker Hunter to identify 

potential biomarkers from proteomic data. The software conducts a range of statistical tests 

that can be used to identify the differences within and between groups of samples. The 

analysis portion of the pipeline conducts a range of analyses including univariate analysis, 

multivariate analysis as well as additional calculations (i.e. means, feature presence and fold 

changes) that help in the identification of biomarkers and provide insight into the data. 

 

2.2.2.1 Univariate Analysis 

Once the groups have been defined, the statistical tests described in Figure 25 are conducted. 

These statistical hypothesis tests will be described in detail in Chapter 3 along with the 

methodologies, advantages and limitations of each technique.  

Each of these tests return a p-value, indicating the probability of each feature (peptide or 

protein) fulfilling the null hypotheses for the tests. There are two overall types of univariate 

analysis conducted in Biomarker Hunter. These are pair-wise and group-wise analysis. For 

pair-wise analysis a p-value is returned for each group comparison. For example if there are 

four groups being compared (i.e. groups 1-4) there will be six p-values returned (i.e. Grp 1 

vs. Grp 2, Grp 1 vs. Grp 3, Grp 1 vs. Grp 4, Grp 2 vs. Grp 3, Grp 2 vs. Grp 4, Grp 3 vs. Grp 

4) as shown in Figure 26. When group-wise analysis (i.e. ANOVA and Kruskal-Wallis) is 

conducted one p-value is returned for the whole analysis regardless of the number of groups 

being compared. This p-value represents the probability that there are statistically significant 

differences between all the groups being analysed. Post-hoc analysis can be conducted to 

identify which groups the differences lie between. These post-hoc tests return a p-value for 

each group comparison as with the pair-wise analysis. 
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Figure 25 - An outline of the univariate hypothesis tests implemented for Biomarker 

Hunter showing the parametric and non-parametric alternatives for both one-way and 

group-wise analysis 

For the group-wise methods (i.e. Welch ANOVA and Kruskal-Wallis) the null hypothesis for 

the tests is that all groups being compared come from the same sample (i.e. a non-marker). 

The ANOVA post-hoc Tukey analysis p-values show the probability of each individual group 

being from the same population as each other group. For the pair-wise statistical analysis (i.e. 

Welch T-test and Wilcoxon-Mann Whitney) a p-value is obtained for each FEATURE, 

comparing each individual group compared against each group except for itself with the same 

null hypothesis. 

 

Figure 26 - A table showing how pair-wise tests are conducted when four groups are 

being compared (An X represents a test being conducted). 
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For the ANOVA tests a post-hoc Tukey analysis is conducted to identify which groups 

display statistically significant differences. The post-hoc analysis for the Kruskal-Wallis test 

is actually the non pair-wise analysis of the Wilcoxon Mann-Whitney tests, so no further 

post-hoc testing is necessary. 

The univariate techniques also cover both parametric and non-parametric analysis methods. 

Non-parametric methods are usually less powerful as they use less information in their 

calculations. They do not consider the observed values. Instead these tests use the ranked 

order of these values for calculation. Parametric tests use information about the means and 

deviations from the mean, unlike the non-parametric options which only use the ordinal 

position of pairs of scores. Although parametric techniques lead to more conclusions, the 

non-parametric tests offer simplicity as the analysis is not affected by outliers. This is 

because the non parametric tests are concerned with the ranks of values rather than the actual 

values.
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2.2.2.2 Multivariate Analysis 

The use of classical statistical analysis hypothesis tests such as T-tests, Wilcoxon tests and 

Analysis of Variance tests (ANOVA) treat each individual variable to be treated 

independently. These tests therefore ignore any correlations or relationships that may exist 

between variables. This may prevent the identification of biomarkers that are combinations of 

individual variables. 

Univariate and multivariate statistical methods have both been used for the analysis of data 

from proteomic experiments. The advantage of incorporating a multivariate approach is the 

additional benefit of information about the relationships between samples and variables. The 

multivariate statistical methods enable the identification of the relevant proteins or peptides 

by focusing on the covariance structure between proteins rather than concentrating just on 

individual protein or peptides.  

The software therefore provides the user with the option of conducting a range of multivariate 

statistical tests. These methods are the focus of Chapter 6 which describes the available 

methods along with their advantages and limitations. These tests are: 

 Principal Component Analysis (PCA) 

 Hierarchical Cluster Analysis (HCA) 

o These techniques involve the use of distance and correlation measures. All the 

available distance and linkage algorithms can be used in Biomarker Hunter 

based on user choice. 

 Partial Least Squares – Discriminant Analysis (PLS-DA) 

There are other multivariate techniques that can be utilised to analyse data of this nature. 

These were not used in Biomarker Hunter as there was not enough time to apply these 

methods within the EngD study period. These methods include Support Vector Machines 

(SVM) and Neural Networks. SVM is a supervised machine learning model with associated 

learning algorithms that analyse data and recognise patterns, used for classification and 

regression analysis. A basic SVM uses a set of input data and predicts which of the two 

possible classes form the output (Hua & Sun, 2001). Neural networks are part of the field of 

artificial intelligence which, in contrast to being programmed, are trained. This means that 

examples are presented to the network and the network adjusts itself by some learning rule 

usually based on how correct the response is to the desired response (Livingstone et al, 1991). 
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2.2.2.3 Additional Analysis 

As well as the univariate and multivariate analysis conducted there are other pieces of 

information extracted from the dataset that help with the determination of a potential 

biomarker. These are returned in the output files. The additional analysis includes: 

2.2.2.3.1 Feature Presence  

This is the number of values present for each feature within each sample group. This is 

represented as a number rather than a percentage. The feature presence is useful, as certain 

potential biomarkers may have a low feature presence. These features are harder to detect 

making them relatively poor choices for biomarkers. If it is hard to detect using advanced 

proteomic techniques then this reduces the potential for practical application of the 

biomarker. There is also the issue that there is limited information used to conduct the 

statistical tests. The number of present values for each feature within all the samples will also 

be presented as the total feature presence. 

2.2.2.3.2 Mean Values 

The average of all the intensities within each sample group will be calculated to present the 

user with more information about the actual data within each group. This takes into account 

the presence of missing values (i.e. divides the sum of abundance by the number of present 

values rather than number of samples in question). 

2.2.2.3.3 Fold Change (Ratio) 

This is a number which explains how much a quantity varies between groups. This is 

calculated by dividing the mean of the primary group by the mean of the secondary group 

(i.e. Group 1 Vs Group 2 -> Mean(Grp1)/Mean(Grp2)). A negative value suggests that there 

is a decrease in means from the primary group to the secondary group.  A fold change will be 

calculated between all the sample groups involved. The fold change, or ratio, is usually 

considered a relevant criterion for stating difference and similarity between measurements 

(Tchitchek et al, 2012). As a rule of thumb, MS-based proteomics should aim to be accurate 

within a 1.3- to 2-fold change, which is a cut-off often chosen for biological significance 

(Mann & Kelleher, 2008). This fold-change level though depends on the experiment. There 

are open questions with regards to the reliability of the degree of fold change from proteomic 

quantitative data sets (Mahoney et al, 2011).  
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Selecting differentially expressed proteins only by fold change is thought to lead to more 

false conclusions than acceptable. It is however a useful piece of information which can be 

combined with other statistical information in order to lead to more reliable conclusions. For 

example higher abundance proteins have more quantifiable peptides, and the precision of 

quantitation is higher than for low-abundance proteins with few peptides. This means that the 

significance of an observed fold change should be considered in the context of absolute 

protein abundance. Some researchers have even developed improved versions of fold change, 

which incorporate other information for identifying differentially expressed proteins in 

shotgun proteomics (Carvalho et al, 2012). 

 

2.2.3 Data post-Processing (Multiple Testing Corrections) 

The user has the option to perform multiple testing corrections to allow for the error produced 

when performing a large number of statistical significance tests. This is presented as an 

option, as a user may not want to implement multiple testing because they want to retain all 

the potential biomarkers. There are also a number of multiple testing correction options 

available to the user. 

Once the p-values have been obtained the user is asked whether they would like to conduct 

any multiple hypothesis testing corrections. The user can choose from five different 

correction methods which are described in detail in section 4.3.2. Following all the above 

analysis the output is presented to the user in the form of comma separated value (.csv) files. 

If multiple testing corrections are applied then two output files are created (1: Uncorrected 

data, 2: Corrected data).  

2.2.4 Results Presentation 

This section describes the various outputs from the Biomarker Hunter Pipeline that can be 

used to help analyse the results from all the statistical tests. 

2.2.4.1 Univariate Output Files 

This .csv file will present all the p-values from the univariate analysis as well as the 

additional analysis conducted as described in section 2.2.2.3 (ProjectName_FullOutput.csv). 

Each row represents a feature (peptide or protein), while the columns are appropriately 

labelled as to the information they contain. The contents of this file are outlined in Table 8. If 

multiple testing corrections are applied then a version of this .csv will also be created with the 
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corrected p-values. As well as containing the relevant p-values for all the hypothesis tests the 

output files also contain group means, feature presence, and fold-changes between each 

group.  

 

Table 8 - An outline describing the contents of each column of the FullOutput.csv files 

(Shaded sections suggest multiple columns are included) 

Column Heading Contents 

Feature Identifier An identifier representing a feature (peptide) (PCI or MCI). 

Mean A mean abundance value is calculated for each sample group. 

Feature Presence 

Group  / Total 

Shows the number of samples within the group in which the feature 

has been detected. The total feature presence is the number of 

samples in which the feature is detected in all the groups. 

Fold Change A number explaining how the means vary between groups. 

Welch T Test (Pair-

wise comparisons) 

 The T-test p-value is returned comparing each group against the 

others.  

ANOVA p.value A single p-value comparing all the groups.  

ANOVA Tukey 

(Pair-wise 

comparisons) 

The ANOVA Tukey p-value is returned comparing each group 

against the others. 

Kruskal-Wallis    A single p-value comparing all the groups.  

Wilcoxon (Pair-wise 

comparisons) 

 The Wilcoxon p-value is returned comparing each group against the 

others.  

An additional .csv file is created containing lists of all the features that have been identified 

as a potential biomarker (ProjectName_BiomarkerList.csv). A potential biomarker is a 

feature which gives a p-value less than 0.05 for any of the univariate statistical tests. A list 

will be presented for each univariate test conducted showing the feature identifiers and their 

respective p-values as shown in Table 9. 
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Table 9 - An example of a potential biomarker list produced by Biomarker Hunter 

showing the feature identifiers and respective p-values for the biomarker candidates. 

This shows the results of a group comparison of hypothetical Groups A and B. 

Potential markers identified by            

T-Test ( A  / B ) 

P-Value Potential markers identified by 

Wilcoxon ( A  /  B ) 

P-Value 

63689 0.0172 63689 0.0198 

7323 0.0180 4091 0.0305 

 

Users may conduct multiple analyses using the same datasets but using the different options 

presented in Biomarker Hunter. In these cases it is of utmost importance to keep track of the 

different options used for the analysis. Therefore an options file is created for each analysis 

stating the various options used (Table 10). This provides traceability of the data pre- and 

post-processing options used for the analysis. 

Table 10 - An example of an options file. This identifies the user choices with regards to 

the various options available in Biomarker Hunter. 

Biomarker Hunter Options Filename: 

Is the data natural logs? n 

ClusterFix used? y 

Is Multiple Testing implemented? y 

Multiple Testing Method? BH 

Missing data imputed? y 

User defined Minimal Value Imputation used? N/A 

 

2.2.4.2 Clustering Output Files 

If the clustering option described in Chapter 2.2.1.3 is selected then there are a number of 

additional files created in the results folder. A copy of the dataset following clustering is 

presented as a .csv file (Table 11). Additionally a file which shows the result of the clustering 

on each feature is created in a .csv format (ProjectName_ ClusteredData.csv). This shows 

which features have been clustered together. 
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Table 11 - An outline describing the contents of each column of the ClusteredData.csv 

files (Shaded sections suggest multiple columns are included). 

Column  Notes 

Feature 

Identifier 

The following columns are present for each feature. The clustering loop iterates 

through each feature as the primary feature: the feature against which all other 

features (secondary features) will be checked for potential matches. 

 Status This column will state any clustering changes that are relevant to each 

feature. 

Number of 

potential 

matches 

The number of secondary features which have been found within the 

Primary features mass-retention time window.  

Clustered (as 2º) 

with Feature 

For any feature which has been classed as “Matched” this column will 

identify the feature they have been matched with (Primary feature). 

2º Matches The secondary features which are potential matches for the Primary 

feature. 

In order for users to observe the effectiveness of the clustering option a comparison table is 

created to be acquainted with the effects of clustering on the number of missing values as 

shown in Table 12. 

Table 12 - An example of a Cluster Comparison table which outlines the effectiveness of 

clustering on the dataset. 

 

2.2.4.2 Multivariate Results 

If the multivariate option is chosen the user will also be presented with multivariate results. 

This includes principal component analysis (PCA), hierarchical cluster analysis (HCA) and 

partial least squares discriminate analysis (PLS-DA). PCA results are presented as a plot of 

the two most important principal components (i.e. components that represent most of the 

variance between the groups). HCA results are presented as dendrograms showing the 

distance relationships between groups. The PLS-DA test returns a list of potential 

biomarkers. 

Initial Post-Clustering

Number of PCI 10,000 9,500

Total Possible Values 200,000 190,000

None Missing Values 170,000 170,000

Percentage of None missing Values 85.00 89.47
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2.2.4.3 Boxplots 

Biomarker Hunter gives the user the option to create boxplots for features of interest 

following the statistical analysis. Boxplots are a good method for displaying sample 

differences across groups of data for visual comparison. An illustration of the principle of 

boxplots is shown in Figure 27.   

2.2.4.3.1 Methodology of Boxplots 

These are also called box and whisker plots. They summarise the following measures: 

 The median of the group 

 The upper and lower quartiles of the group 

 The minimum and maximum data values from the data group 

The box in a boxplot contains the middle 50% of the data. The upper edge of the box 

indicates the 75th percentile (third quartile) of the data set, and the lower part indicates the 

25th percentile (first quartile). The range of the box is also known as the inter-quartile range 

(IQR). The line within the box represents the median value of the data in the group. If this 

line is not exactly in the middle of the box, this suggests the data is skewed. 

The "whiskers" or extremes of the vertical lines represent the minimum and maximum data 

values in the group. If there is a presence of outliers the whiskers extend to a maximum of 1.5 

times the inter-quartile range. The points outside the ends of the whiskers are outliers or 

suspected outliers. 
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Figure 27 - An example of a boxplot illustrating what various points of the boxplot 

represent. Outliers that do not fit the model will be represented by lone data points 

 

Boxplots present many advantages. They are a very convenient way to graphically display a 

variable's means and spread at a glimpse. They allow the indication of the data's symmetry 

and the presence of any data skewing, while taking the outliers into consideration. Creating a 

boxplot for a feature, one quickly can compare data between groups of samples side-by-side 

on the same graph. However, due to the large number of features in typical datasets, it is not 

practical to view boxplots for each feature. They can however be a good way to visualise data 

for features of interest (i.e. markers or non-markers) after the conclusions from the univariate 

or multivariate have been reviewed. 

A weakness of boxplots is that they have a propensity to give emphasis to the tails of a 

distribution, which are the least certain points in the data set. They also tend to conceal many 

of the particulars of the distribution (Tukey, 1977).  
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2.2.4.3.2 Implementation of Boxplots in Biomarker Hunter 

Following the statistical analysis of datasets and the creation of all the output files, the user 

has the option to create boxplots for features of interest or those that warrant further 

investigation. The user can input the feature identifier and a boxplot will be created using the 

bplot function in R, which is part of the “fields” package. 

2.2.4.3.3 Results of Boxplots in Biomarker Hunter 

Examples of boxplots created using Biomarker Hunter are presented throughout this thesis. 

 

2.2.5 The Use of Biomarker Hunter 

All algorithms used in the software pipeline have been individually validated using existing 

techniques. Results obtained for all calculations were compared against results from various 

validated tools such as Microsoft Excel, GeneSpring (Agilent, 2011) and manual calculations. 

Chapter 3 presents results from univariate analysis conducted using Biomarker Hunter for 

Dataset 3 described in section 2.1.3. This analysis does not apply any data pre- and post-

processing options discussed in this chapter. The effect of these options will be presented in 

Chapter 4. The options for dealing with missing values will be evaluated in Chapter 5. The 

uses of the multivariate options in Biomarker Hunter are presented in Chapter 6.  

 

 

 

 

 

 

 

 

 



Page | 68  © Cranfield University, 2011 

 

3 Univariate analysis 

Four univariate tests were chosen for this pipeline. The choice of these four tests was based 

on a review of appropriate analysis methods for this purpose (Bantscheff & Kuster, 2007). 

They were also chosen because this range of tests cover both a parametric and non-parametric 

univariate alternatives for both pair-wise analysis (i.e. 1 vs. 2), and group-wise analysis (i.e. 1 

vs. 2 vs. 3 vs. 4) as shown previously in Figure 25. Scores which indicates the number of tests 

that identify each individual peptide as differentially expressed (i.e. a potential biomarker) are 

also presented. 

The theory behind these tests is that for those features with a low p-value (i.e. p-value < 0.05) 

there is a 95% chance of the two groups being different, hence the treatment or differences 

between the groups have an effect on the peptide or protein. The features (MCI, PCI, protein 

or peptide) with the low p-values can then be investigated further as potential biomarkers. Of 

course just one low p-value doesn’t necessarily suggest a change between samples. So the 

result output from the software contains a column which counts the number of low p-values 

for each peptide or protein. This allows the determination of peptides or proteins (features) 

that warrant further investigation (i.e. as the number of statistical tests returning a low p-value 

increase, so does the confidence in the result not occurring simply by chance).  

This chapter concentrates on the four univariate techniques used for statistical analysis. Each 

technique will be reviewed by discussing the methodologies as well as the uses and 

limitations of each technique. Results of the univariate analysis conducted on Dataset 3 are 

also presented and finally the results from all four techniques will be compared and 

evaluated. Since these techniques do not allow for missing values to be involved in the 

analysis, the missing values in Dataset 3 will be replaced by zeroes for the purpose of 

statistical analysis in this chapter. This method of imputation is not ideal for this purpose. The 

reason this crude imputation was used for this section is that one of the project aims is to 

highlight the effects of imputation. This statistical analysis also does not involve the use of 

any of the data pre- and post-processing methods described in section 2.2 of the Materials and 

Methods chapter. These will be investigated later in the statistical analysis conducted for 

Chapter 4. 
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3.1 The T-test 

One of the major questions asked in the majority of biomarker studies is whether a particular 

treatment or intervention has caused a significant change in a biological parameter. The 

Student’s t-distribution (Appendix D) is a probability distribution, which allows the means of 

normally distributed datasets of relatively small number of samples to be compared against 

each other. This is done by comparing the means relative to the sample variation or 

dispersion (standard deviation of the difference between sample means) of the sample groups.  

For smaller datasets the calculated means and standard deviations are not representative of 

the actual mean and standard deviation (those which would be derived in the presence of 

larger datasets). In most real-life statistical studies the standard deviation of the population is 

unknown, so estimations need to be determined from the datasets themselves.  Using the 

Students’ version of the t-test allows for the existence of outliers in the data unlike normally 

distributed data. 

The paired t-test is a statistical hypothesis test which can be used when the comparison of two 

small sets of quantitative data is needed, where each of the samples are related in a certain 

way. The test is used to determine if two groups of samples are statistically different from 

each other (Figure 28). The statistical power of the paired t-test lies in studies where 

differences between groups are relatively small compared to that of the variation within 

groups. 

 

Figure 28 - Comparison of means of a control and a treatment group (Trochim et al, 

2006). 
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The paired t-test also allows determinations of whether differences between sample sets are 

significantly different. It is based on whether the differences between datasets are relative to 

the spread or variability of the data. When comparing sets of data, the differences between 

the mean values may be identical, however the variation between datasets may be different. 

Groups within datasets displaying low variability will appear as more different, as there is 

less overlap between the curves (Figure 29). When there is high variance the difference 

between groups will appear as less important.  

The most common design of a paired t-test would be where one attribute variable represents 

different individuals and the other may be before and after some form of treatment. 

Sometimes pairs can be spatial rather than temporal (i.e. left vs. right etc). An example may 

be a patients resting and active heart rates following heart surgery. 

 

Figure 29 - Different variability between datasets (Trochim et al, 2006). Samples with 

lower variability appear as more differentiated due to less overlap, compared to those 

displaying a low variability. 

 

The null hypothesis of a paired t-test would be that the mean variation between paired 

observations is zero. A prerequisite for the test is that the differences between pairs are 

normally distributed. Where this is not the case, the Wilcoxon signed rank test can be used 

instead (Rosner et al, 2006). Alternatively the Welch version of the T-tests can be applied to 

allow for non-normality of data distribution. 
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3.1.1 Methodology of the T-test 

There are various forms of the t-tests and it is important to use the appropriate method for the 

intended purpose. This section describes the process of both the Students t-test as well the 

paired t-test. 

3.1.1.1 Methodology of the Students T-test 

The null hypothesis of the Student’s t-test assumes that the test data displays a student’s t 

distribution (Equation 1). The probability density function for the Student’s t-distribution has 

the similar bell shape of the normal distribution curve with a zero mean and a variance of 

one. The bell is however usually shorter and wider as actual statistical data is not usually 

evenly distributed but approaches the taller and narrower shape as the number of degrees of 

freedom increases. The reason for the shape is because real life data would usually have more 

occurrences in the tails.  

      
  

   
  

     
 
  

     
  

 
 

  
   
 

 

 

Equation 1 - Probability density function for the Student t-distribution (v = Degrees of 

freedom, Γ = Gamma function, t = t-statistic). 

The student form of the t-test also assumes that the variances of the involved data sets are 

equal (i.e. display homoscedasticity). The original form of the student t-test cannot be 

conducted unless this is the case. The homogeneity of variances between groups can be 

checked, usually by utilisation of Levene’s test (Livingston, 2004). The test involves 

calculation of a t value which is checked against the relevant threshold p-value at the required 

statistical significance level from the students t-distribution table, which is usually 0.05 (95% 

significance level) for most biological research. As the calculated t-value increases so does 

the probability that there is a statistically significant difference between the groups of data. If 

the value is higher than the threshold value then the null hypothesis can be rejected and the 

conclusion can be made that the variations between the samples are not simply due to chance. 
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A T-test can be conducted on groups of data using the following steps: 

1. The null hypothesis (H0) assumes there is no difference between the sample means. 

The alternative hypothesis (HA) is that there is a difference caused by the treatment. 

2. n1, n2 = Number of replicates of each respective sample 

3. 1, 2 = Mean of respective sample sets 

4. ,  = Standard deviation of respective sample sets  

5.   = Variance of the difference between the means 

                 
   

  
  

   

  
 

 

6. A t-value can then calculated 

   
         

    
  

         

  
 

7. Obtain p-value from t-table (Appendix D) 

a. Degrees of freedom:- total number of samples – 2 

b. Significance level:- Usually 0.05 (i.e. 95% significance level)  

8. The null hypothesis is rejected if the calculated t-value is above that of the p-value 

and a conclusion can be made that there is a significant difference in the two samples.  

The t-value increase as differences between the means become more significant. The t-

value is positively correlated with the number of samples so lower sample sizes cause 

lower t-values. The t-value will also increase as the standard deviation of the samples 

decreases, because when samples are less scattered the groups are more likely to be 

significantly different if the means of the groups are different. Care needs to be taken 

when conducting multiple t-tests as this can result in incorrect conclusions (false 

positives), because this results in multiplication of the probabilities. As the number of 

successive t-tests goes up, the probability of significance decreases.  

 

3.1.1.2 Methodology of the Paired T-test 

Firstly the differences between the observations from the two samples are calculated for each 

pair of samples. Subsequently the mean and the standard error of these differences are 

determined. The mean is divided by the standard error of the mean to generate a t-statistic 

(Ts). The Ts is t-distributed with degrees of freedom equal to one less than the number of 

pairs. 
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The t-test is performed using a formula which involves a ratio. The methodology is similar to 

that of the signal-to-noise ratio (Trochim et al, 2006). The difference between the two means 

is divided by a measure of the dispersion or variability of the scores, which is the standard 

error of the difference (1). The difference between the means is simply the difference 

between the obtained means for the two groups. The symbol  refers to the mean of the 

treatment sample and  being the mean of the control sample. The standard error of differences 

(variability) needs to actually be calculated. It is obtained by calculating the variance for each 

group, which is done by squaring the standard deviation. The variance is then divided by the 

population of the sample. These values are then added together and their square root is taken 

(3). If the treatment mean is larger than that for the control sample the t-value will be positive 

and vice versa.  

Once the t-value has been obtained it is compared against the t distribution table to determine 

whether the ratio is big enough to be significantly different. The table has columns which 

represent the different significance levels (0.05 (95% confidence) is usually the accepted 

significance level. A 95% significance level suggests that there is a 5% chance that the 

difference may be classed as statistically significant but actually are not different, and are just 

differentiated through chance. The rows of the table represent the degrees of freedom for the 

analysis. For the t-test the degrees of freedom would be the total population of samples in 

each group minus the number of groups (two for the paired t-test). The relevant t-statistic can 

be found from the significance level and degrees of freedom and subsequently compared to 

the t-value obtained from the calculations. If the calculated t-value is higher than that of t-

statistic obtained from the table, the null hypothesis can be rejected and we can conclude that 

the two sets of data are statistically different. 
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3.1.2 Constraints to the T-test 

3.1.2.1 Constraints to the Students T-test 

T-tests are very sensitive to the interdependence of data. If individual samples within the data 

sets have intrinsic relationships with each other the tests may conclude that differences are 

present between the groups, even when there are not any. These may occur due to: 

  Unknown relationships existing within the datasets. E.g. A particular group of 

patients who may be intolerant to the treatment existing in one group. 

 Time-series effects where the time of sample collection has an effect on the biological 

data. E.g. Circadian rhythm may have an effect on the proteins expressed in a 

biological system. 

 Effects caused by the origin of the data. E.g. One group of data being heavily 

represented by a minority not representative of the actual population. 

Like all other statistical studies the analysis of the data can only be as good as the quality of 

the data collected. If the experimental design used to collect the information is flawed then no 

amount of statistical manipulation can surmount the inability to interpret the results 

(Livingston, 2004). Therefore it is essential the data is of the correct nature and correctly pre-

treated, if necessary, before conducting the student t-test (or any statistical analysis for that 

matter), to avoid misuse of the test(s) (Table 13). As with any statistical test the limitation of 

the test is that nothing can be proved or disproved, however statements with a degree of 

accuracy can be made. 

The size of a sample is positively correlated with the probability that the sample of the mean 

is the same as the mean of the entire population. The central limit theorem suggests that when 

smaller numbers of values are used to represent larger populations there is a lower probability 

that the calculated mean is the same as the actual population mean (Livingston, 2004).  

The t-test is not suited to studies where the comparison of more than two groups is required 

because the test compares one group directly against another. One reason for this is that the 

number of tests increases as a function of the number of groups leading to increased 

complexity. Also due to the increased number of analyses there will be an increase in the 

possibility of Type I (false positive) errors.  
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Table 13 - Conditions that must be considered when applying T-tests (Livingston, 2004). 

Factor Explanation Test for factor Solution 

Implicit 

factor 

Data are not 

randomly 

distributed; the value 

of a data point is 

dependent on some 

factor relating to 

how it was collected.  

Determine correlation 

between the data and 

the order in which it 

was collected either 

statistically or by 

plotting as a graph. 

Evaluate experimental design; 

randomise when possible. 

Consider regression analysis 

with statistical control for 

implicit factors. 

Sample 

independence 

Samples in the two 

groups depended on 

one another. 

Determine correlation 

between the two 

samples. Evaluate 

experimental design. 

Paired t-test. 

Outliers Outliers will affect 

both mean values 

and variances. 

Evaluate probability 

graphs to determine 

the effect of outliers. 

Use nonparametric statistics. 

Normal 

distribution 

If the population 

from which the 

sample is derived is 

skewed, t-testing 

may be invalid. 

View probability or 

box plot; quantitate 

skewness. 

If the skew in the two 

populations is the same, then t-

tests are generally accurate as 

long as the sample sizes are 

approximately equal. Skew has 

little effect if sample sizes are 

greater than 10 in each group. 

Perform log, square root, or 

inverse transform on original 

data. Check normalisation 

following transformation with 

repeat probability or box plot. 

Unequal 

variance 

Conventional t-tests 

require that the two 

populations being 

compared have 

equal variance. 

Examine the sample 

distributions 

graphically or perform 

f-test for equal 

variance on the 

samples. 

Nonparametric tests or t-tests for 

unequal variances. If the two 

samples have the same number 

of samples, then the t-test is 

likely to not be affected by 

unequal variance. Variance can 

be equalised by log 

transformation. 

Unequal 

sample size 

Small sample sizes 

tend to have large 

variances. If one 

sample is large and 

the other small, it is 

likely that there are 

unequal variances. 

Determine power of 

the t-test. 

Increase sample size. 
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3.1.2.2 Constraints to the Paired T-test 

Biomarker discovery studies search for the causes of changes in biological state. As well as 

the various biological states, there are sometime other factors that are associated with the 

exposures that the study is investigating which independently affects the biological states. If 

the occurrence of these factors varies between groups being compared, they distort the 

observed association between the disease and exposure under study.  These are called 

confounding factors or variables (CDPH, 2009). Additionally, although the paired t-test is 

ideal for the evaluation of differences between two sets of values, however problems may 

occur when trying to analyse other types of differences (Linnet, 1999).  

3.1.3 Alternatives to the T-test 

Non-parametric statistical tests can be used as alternatives to the student’s t-test where t-

testing is inappropriate. The ability of non-parametric tests to detect differences is not as 

powerful as the parametric counterparts so they should usually not be used as a first choice 

(Dallal, 2000).  

3.1.4 T-test Implementation in Biomarker Hunter 

The Welch version of the T-test was used in Biomarker Hunter because the alternative, 

student’s T-test requires the samples to display equal variances. Since the Welch T-test does 

not make any assumptions about the variance between sample groups, it is more preferable. 

This test however does assume that both populations have the same standard deviation. Since 

different biological samples are used for each run, the unpaired version of the T-test is used, 

as the paired algorithm assumes the samples being compared are from the same biological 

sample. 

The T-test is applied by comparing each of the treatment sample groups against an untreated 

control sample group. The T-test returns a p-value, which is the probability of the two groups 

being compared being significantly different. This test compares peptide intensities for each 

group against each of the other groups. For the purposes of analysis there is a numerator 

(primary sample group) and a denominator (secondary sample group) as described in the 

previous section. This test is implemented in R using a loop, which conducts a test conducted 

individually on each feature being analysed, comparing every group of samples against each 

other. The test is applied using the t.test function in R. 
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3.1.5 T-test Results 

The Welch T-test was conducted on Dataset 3 (Xenograft Pre-Clinical Project - label-free 

analysis) which aims to compare four groups of samples. This resulted in a total of 1171 

features (peptides) being identified as potential biomarkers (i.e. showing a statistically 

significant difference in expression) between the different sample groups (Table 14). Some of 

these potential markers were identified as significantly differentially expressed in more than 

one group comparison, and subsequently 806 unique features were classed as features of 

interest (i.e. returning a p-value lower than 0.05 for the T-test). 

Table 14- The number of biomarkers (statistically different features) found using the 

initial Welch T-tests on Dataset 3, for each group comparison. The first column states 

the groups being compared. 

Groups 1 2 3 4 

1 1171 

 
2 160       

3 264 265     

4 124 142 216   

 

Researchers may want to identify how many features are identified as significantly 

differentiated in more than one pair-wise univariate test as shown in Table 15. This shows 

that eight features were identified as significantly differentially expressed in four of the six 

group comparisons. These features are identified in Table 16, and are likely to be strong 

candidates for further validation. However this fact can only be determined once these results 

are compared with a list of validated biomarkers identified from this study. This information 

was not available so it was not possible to determine whether those potential markers 

identified in more than one pair-wise test is more likely to be a stronger marker. 

Table 15 - The count of features found as significant in the Welch T-test for Dataset 3 

and the number of tests in which they were identified as such. 

 

 

 

+ve Hypothesis Tests Number of 

Features 

1 530 

2 195 

3 73 

4 8 
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Table 16 - The feature identifiers and p-values for the eight features that were identified 

as significantly different in four of the group comparisons, using the Welch T-tests on 

Dataset 3.  

 

 

 

 

 

 

 

 

 

Table 17 shows a list of features with the ten lowest p-values for each group comparison. 

From this list of 60 features, ten of them were identified as potential biomarkers in more than 

one comparison (Table 17), suggesting they may be stronger candidates for further validation. 

It was noticed that feature 1722 was identified as a biomarker in four group comparisons 

(Table 16) as well as having the lowest p-value for two group comparisons (Table 17), 

suggesting that this feature may be of interest and warrants further study. A boxplot was 

created using Biomarker Hunter to visually inspect the data for feature 1722 (Figure 30), in 

order to determine whether the results from the T-tests correlate with the raw data. 

 

 

 

 

 

 

 

 

 

Potential Biomarkers in 

Four T-tests 

p-values 

1722 0.000361 0.040343 0.000368 0.03478 

18970 0.02488 0.022415 0.012784 0.011264 

2364 0.04088 0.036751 0.038101 0.041704 

2658 0.007867 0.017965 0.016167 0.037666 

4427 0.006579 0.024673 0.005383 0.030516 

6856 0.005809 0.001557 0.006438 0.00175 

7603 0.028199 0.047512 0.026475 0.044272 

9166 0.016999 0.028767 0.023953 0.041033 
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Table 17 - The list of features with the lowest p-values for each of the group 

comparison, using the Welch T-tests on Dataset 3. 

Welch T 

Test (2/1) 

p-

values 

Welch T 

Test (3/1) 

 p-

values 

Welch T 

Test (4/1) 

 p-

values 

9066 0.000428 12800 
 0.000131 1020 

 0.000819 

6427 0.000944 1250 
 0.000141 9660 

 0.00174 

1599 0.002371 2159 
 0.000197 20767 

 0.002691 

6144 0.002671 4485 
 0.00021 3260 

 0.004108 

7010 0.003387 10036 
 0.000214 10383 

 0.005261 

1775 0.003643 5839 
 0.000231 2122 

 0.006272 

8051 0.0038 5384 
 0.00028 4240 

 0.00888 

8408 0.003922 8215 
 0.000303 20722 

 0.009928 

5135 0.004778 1722 
 0.000361 6113 

 0.010344 

2692 0.005423 1231 
 0.000369 2929 

 0.0105 

Welch T 

Test (3/2) 

p-

values 

Welch T 

Test (4/2) 

 p-

values 

Welch T 

Test (4/3) 

 p-

values 

8973 0.000162 10383  0.000481 6635  0.000197 

11067 0.000232 22835  0.001195 2159  0.000209 

12800 0.000238 749  0.001331 1803  0.000247 

10034 0.000316 6427  0.002542 10547  0.000448 

10202 0.000355 21970  0.003182 5839  0.000457 

1722 0.000368 531  0.003554 8151  0.000481 

4262 0.000411 11899  0.003818 4824  0.000738 

9303 0.000543 8051  0.004224 7767  0.000744 

8032 0.000571 404  0.004862 9077  0.000847 

8215 0.000624 4427  0.005383 8973  0.000917 

 

 

 

 

 

 



Page | 80  © Cranfield University, 2011 

 

Table 18 - A list of features which returned the lowest p-values in more than one group 

comparison using the Welch T-test, with the number of tests in which they were 

identified as such. 

Welch 

Lowest P-

Values 

Number of 

Occurrences 

8051 3 

1722 2 

2159 2 

5839 2 

6427 2 

8215 2 

8408 2 

8973 2 

10383 2 

12800 2 

Looking at the boxplot for feature 1722 (Figure 30) it can clearly be determined that the 

intensity values from group 3 are significantly lower than the other three groups. The plot 

shows that 50% of its values are almost out of the total range of values for the other groups 

(i.e. the box for Group 3 is almost outside the range of the whiskers for the other groups). 

This boxplot supports the Biomarker Hunter conclusion that this feature is a strong candidate 

as a potential biomarker.  
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Figure 30 - A boxplot comparing the four groups of intensity data presented for feature 

1722, which was identified as a biomarker in four group comparisons as well as having 

the lowest p-value for two group comparisons 

For comparison a boxplot was also created for feature 12004 which was only identified in 

one group comparison and had a relatively higher p-value (i.e. 0.049985), than the other 

biomarker candidates. This was done to determine whether the data correlates with the 

Biomarker Hunter conclusions. It is expected that the groups of data will show a difference; 

however the variance between the groups in these cases is less likely to be as obvious, 

compared to those displayed by feature 1722. These expectations were confirmed in the 

boxplot for feature 12004 shown in Figure 31. Looking at this there is no clear distinction in 

the abundance of this protein between the groups. 
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Figure 31 - A boxplot comparing the four groups of intensity data presented for feature 

12004, which had a relatively higher p-value, than the other biomarker candidates. The 

dots represent outliers which were outside the accepted values for the whiskers. 
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3.2 The Wilcoxon Mann-Whitney Test 

Also known as the Wilcoxon rank-sum test, this is a non parametric alternative to the two-

sample t-test, and allows researchers to signify if two samples appear as if they are from the 

same distribution. It uses the Hodges-Lehman estimate of variance in central tendencies 

between populations. As with all of these statistical models, the null hypothesis is that the 

samples belong to the same population and they subsequently have the same probability 

distribution (Variances in central tendencies between populations is zero).  

The Wilcoxon Mann-Whitney test assumes that the two samples being compared are 

independent of each other, and allows for different sample sizes. The test is very similar to 

Student’s t-test. It can only be conducted on numeric or ordinal data. Although the 

distribution doesn’t need to display normality and may have arbitrary values; however they 

must have the same shape. 

 

3.2.1 Methodology of Wilcoxon Mann-Whitney Test 

The model requires computation of a U value (often referred to as a U statistic). When using 

large samples, which is typical of biological data, computation is required; however when 

using smaller samples a simpler direct method is preferred. The Wilcoxon Mann-Whitney 

can be conducted to compare data using the following steps: 

1.  The data from all experiments used for the test should be arranged in a single list 

ordered by their value. Each value is then ranked. 

2. The ranks for each observation in Sample X are added up.  

R = Sum of all the ranks 

N = Number of observations  

                      

3. nx = Sample size for sample X 

Rx = Sum of ranks for Sample X 

         
          

 
 

The greatest value for U is the product of the number of observations in both groups 

(i.e. If Ux is at the maximum value, then the U value for Sample Y would be zero).  
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4. If the U value for Sample X is more than that the U value for most of the U values if 

the data was rearranged in random orders, the null hypothesis can be rejected. 

Therefore a conclusion can be derived that Sample X is significantly different to Y. 

 

When using biological samples the above method would become complex very quickly, so 

the normal approximation method can be used. 

 

1.    = Standard deviation of U 

     
                

  
 

2. μU = Mean of U 

μ
    

  
      

 
 

3. z-value = Standard normal deviate 

 

   
       

  
 

4. The significance of the z-value is checked against the normal distribution table 

(Appendix D). 

3.2.2 Constraints to the Wilcoxon Mann-Whitney Test 

When applied to smaller datasets, the generality of the test can make the test less powerful 

than the t-test. This also applies when there are small numbers of samples or replicates in 

each group. For example if there are only two replicates in each group, such as used in 

iTRAQ analysis the use of the Wilcoxon test is not useful. This is because the technique deals 

with ranks rather than the values so when the number of replicates is reduced, so is the power 

of the Wilcoxon analysis. Additionally the test doesn’t allow for the conclusion of two 

sample groups being the same even if no significant differences are found. 

3.2.3 Alternatives to Wilcoxon Mann-Whitney Test 

The Wilcoxon Mann-Whitney test can be used in all the situations where an independent 

samples Student’s t-test is appropriate. The Wilcoxon test is more robust with regards to the 

distribution of the samples, as it is not based on any assumptions of distribution, so is used 

more widely. However, the cost of this generality is that the t- test is more powerful because 
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it is based on actual values rather than ranks. When larger biological samples are used this 

loss of power is not significant.  

3.2.4 Wilcoxon Mann-Whitney Implementation in Biomarker Hunter 

The Wilcoxon test is the non parametric alternative to the two-sample T-test, and allows 

researchers to discover if two samples appear as if they are from the same distribution. It is 

also applied by the comparison of each of the treatment sample groups against an untreated 

control sample group. As with the T-test, the Wilcoxon test also returns a p-value indicating 

the probability of the null hypothesis being incorrect (i.e. the two groups being significantly 

different). This test also compares peptide intensities for each group against each of the other 

groups, as with the T-test. This is conducted in R using the wilcox.test function. 

3.2.5 Wilcoxon Mann-Whitney Results 

The Wilcoxon Mann-Whitney test was conducted on Dataset 3 (Xenograft Pre-Clinical 

Project) comparing four groups of samples. This resulted in a total of 1151 features being 

identified as potential biomarkers (i.e. showing a statistically significant difference in 

expression) between the different sample groups (Table 19). Some of these biomarkers were 

identified as significantly differentially expressed in more than one group comparison, and 

subsequently 805 unique features were classed as features of interest (i.e. returning a p-value 

lower than 0.05 for the Wilcoxon Mann-Whitney test). 

Table 19 - The number of biomarkers (statistically different features) found using the 

initial Wilcoxon Mann-Whitney tests on Dataset 3, for each group comparison. The first 

column states the groups being compared. 

Groups 1 2 3 4 

1 1151 
  

  2 137       

3 281 297     

4 106 108 222   

 

To identify how many features were identified in more than one test the number of 

occurrences for each feature were evaluated as shown in Table 20. This shows that two 

features were identified as significantly differentially expressed in five of the group 

comparisons, while four were identified in four group comparisons. These features are 

identified in Table 21, and are likely to be features that are of interest to researchers. Without 
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comparing these results with a list of actual, validated biomarkers it is not possible to assess 

whether the number of significant group comparisons affects the likeliness of that feature 

being an actual biomarker. This information was not available for the purpose of this study.    

Table 20 - The count of features found as significant in the Wilcoxon tests for Dataset 3 

and the number of tests they were identified as such. 

+ve Hypothesis Tests Number of 

Features 

1 534 

2 201 

3 63 

4 4 

5 2 

Table 21 - The feature identifiers for the features that were identified as significantly 

different in four or five of the group comparisons, using the Wilcoxon tests on Dataset 3. 

Feature 

Identifier 

Number of 

Positive Wilcoxon 

Tests 

4607 5 

6856 5 

18970 4 

2658 4 

4427 4 

540 4 

Table 22 shows a list of features with the ten lowest p-values for each group comparison. 

From this list of 60 features, nine of them were identified as potential biomarkers in more 

than one comparison (Table 22), suggesting they are likely to be of interest to researchers as 

potential biomarkers. It was noticed that features 4607, 540 and feature 4427 were identified 

as potential biomarker candidates in multiple group comparisons (Table 22) as well as having 

the lowest p-value for multiple group comparisons (Table 23), suggesting that these features 

are  likely to be of interest and warrant further study. A boxplot was created using Biomarker 

Hunter to visually inspect the data for feature 4607 (Figure 32), in order to determine whether 

the results from the Wilcoxon tests correlate with the raw data. 
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Table 22 - The list of features with the lowest p-values for each of the group 

comparison, using the Wilcoxon tests on Dataset 3. 

WilcoxTest 

(2/1) 

p-values WilcoxTest 

(3/1) 

p-values WilcoxTest 

(4/1) 

p-values 

1020 0.000487 540 0.000149 1020 0.000725 

9066 0.00105 4607 0.000206 20767 0.00414 

6427 0.001572 1231 0.000325 9660 0.00493 

7757 0.002455 9954 0.000418 7675 0.006253 

8408 0.002786 3333 0.000487 10383 0.007932 

7010 0.004571 8215 0.000487 3260 0.008218 

1599 0.005434 1250 0.000487 10553 0.008665 

4427 0.006815 12800 0.000566 916 0.008931 

3309 0.006841 4675 0.001293 3290 0.009004 

3921 0.007707 10036 0.001505 2071 0.009004 

WilcoxTest 

(3/2) 

p-values 
WilcoxTest 

(4/2) 

p-values 
WilcoxTest 

(4/3) 

p-values 

11067 0.000111 749 0.000325 540 0.000149 

540 0.000203 22835 0.001329 1058 0.000206 

1231 0.000206 7918 0.003363 1803 0.000206 

10034 0.000325 6427 0.00356 8151 0.000325 

8602 0.00038 10383 0.003775 10547 0.000431 

10202 0.000487 21970 0.004069 4824 0.000529 

8973 0.000725 11899 0.005328 4607 0.000572 

4262 0.000784 4427 0.006815 16924 0.000756 

12800 0.000784 4607 0.007913 4262 0.000784 

7268 0.00105 8051 0.008594 10375 0.000861 
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Table 23 - A list of features which returned the lowest p-values in the Wilcoxon analysis 

in more than one group comparison, with the number of tests in which they were 

identified as such. 

Wilcox 

Lowest P-

Values 

Number of 

Occurrences 

540 3 

4607 3 

1020 2 

1231 2 

4262 2 

4427 2 

6427 2 

10383 2 

12800 2 

Looking at the boxplot for feature 4607 (Figure 32) it can be seen that there are differences in 

the intensity values between the groups. The values from Groups 1 and 4 are significantly 

lower than the other two groups, while there is evidence to suggest that the abundance of this 

feature in Group 4 is significantly different to those in Group 3. The plot shows that 50% of 

the values from Group 4 are above the total range of values for the other groups (i.e. the box 

for Group 3 is outside the range of the whiskers for the other groups). This boxplot supports 

the Biomarker Hunter conclusion that this feature may be a strong candidate as a potential 

biomarker.  
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Figure 32 - A boxplot comparing the four groups of intensity data presented for feature 

4607, which was identified as a potential biomarker in multiple group comparisons. 

 

A boxplot was also created for feature 14340 which was only identified in one group 

comparison and had a relatively higher p-value (i.e. 0.048892), than the other biomarker 

candidates (Figure 33). This was done to determine whether the data displays the expected 

features. Again it was expected that the groups of data will show a difference; however it will 

show fewer differences between the groups. This boxplot showed that the differences 

between the values in Group1 are significantly different to Group 3 however there is 

insufficient data to compare with the other two groups. 
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Figure 33 - A boxplot comparing the four groups of intensity data presented for feature 

14340, had a relatively higher p-value than other features. 
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3.3 Analysis Of Variance (ANOVA) 

ANOVA represents a group of statistical models which help explain the variances within 

datasets by partitioning them into components by their different explanatory variables. It is a 

versatile model allowing data from a number of experiments to be analysed collectively and 

accounts for missing data, which is a typical trait of most proteomic data. The t-test is used to 

determine whether data contained in two groups is significantly different; however it is not 

able to deal with a larger number of groups in one computation. ANOVA compresses data 

into a single F-value to be able to evaluate the null hypothesis (that there is no difference 

between the different groups, i.e. a non-marker or that treatment has no effect on this feature). 

The technique allows distinguishing between the differences in the samples that occur due to 

group membership to those that occur simply due to chance or sampling errors. 

An example of how ANOVA is used in biological research can be explained using the 

Dataset 3. One-way ANOVA could be used for this study. There are four different groups of 

samples; where A, B, and C represent mice that have been administered with different doses 

of a treatment and the vehicle (control) group are mice which have not received treatment. 

The categorical variable to evaluate whether the treatment has had an impact would be the 

dose administered. The response variables would be the protein expression of the groups. 

One of the requirements of the ANOVA test is that the datasets are independent of each 

other. It assumes that all the data is normally distributed and displays homoscedasticity (i.e. 

display equal variances). The Kolmogorov-Smirnov and Shapiro-Wilk tests can be used to 

test the normality of the data, and Levene’s test is usually used to test that the datasets display 

homoscedasticity. ANOVA also assumes that samples have been randomly analysed. An 

ANOVA analysis should yield very similar result to t-tests, but ANOVA is preferred by 

researchers due to its increased power to deal with more complex experimental design.  

There are three main variations of ANOVA: 

 One-way ANOVA: This version is ideally suited to studies where there is one 

control group and several treatment groups. One-way ANOVA can be applied to two 

or more independent datasets but usually used when more than two datasets are 

involved (otherwise the t-test can be used). The one-way ANOVA can also be used on 

repeated measures, where a particular sample is used to measure the effect of different 

treatments (i.e. protein expression before and after a treatment on a sample). 
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 Factorial ANOVA: This is the ANOVA application used when the aim of the study 

is to evaluate the effects of two or more treatments. The most common form of the 

test is the two-by-two version (two independent variables, each with two levels). 

 MANOVA (Multivariate ANOVA): Can be applied when more than one dependent 

variable is present. 

One-way ANOVA tests are useful in evaluating the effects of different doses of treatment by 

identifying differences between various groups of data. ANOVA can also be used to analyse 

iTRAQ data from complex biological samples across several MS experiments (Oberg et al, 

2008). This is the form of ANOVA used in Biomarker Hunter and remains the focus of this 

topic. 

 

3.3.1 Methodology of ANOVA 

The aim of the technique is to obtain two independent estimates of population variance. One 

estimate is sensitive to the effects of any particular treatments and any errors between the 

groups, and the other is sensitive to errors within the group. If the null hypothesis is true, and 

there is no difference between treatment groups, then both these estimates should be equal 

resulting in an F-value of one. A ratio of larger than one suggests that the difference between 

the groups is larger than the error within the sample so the groups are significantly different.  

The general models usually used in ANOVA are: 

 Fixed effects model: Assumes all data is normally distributed and varies only in their 

means. In this model multiple treatments are applied to the datasets to observe if there 

are any changes in the response variable values. This allows estimation of the ranges 

of values that a particular treatment would generate in the population.  

 Random effects model: Assume the data describes a hierarchy of different datasets 

where the differences are constrained by the hierarchy. It is used in instances where 

treatments are not fixed, such as when various treatments (random variables) are 

sampled from larger populations.  

 Mixed effects model: A combination of fixed and random effects are observed in the 

datasets 
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ANOVA is conducted on data using the following technique: 

1. The null hypothesis for ANOVA assumes that there is no difference between groups 

(i.e. the treatments have no effect on the proteins expressed) 

2. Degrees of freedom (numerator) = number of groups – 1 

3. Degrees of freedom (denominator) = Total number of samples - number of groups 

This is also known as the expected variation of the group 

4. The formula for variance is: 

               
  

  
 

SS = Sum of squared deviation about the mean 

df = Degrees of freedom 

5. An F-ratio is calculated from the  

         
                                            

                                          
 

6. An f-value of around one is expected if the null hypothesis is correct, allowing for the 

conclusion that there is no difference between the datasets. If there is a significant 

difference between datasets (e.g. a particular treatment has an effect on protein 

expression) a significantly larger value is observed and the null hypothesis can be 

rejected.  When there are only two means being compared the F-test is equivalent to 

the t-test. The relationship between the two tests are: 

      

7. If the null hypothesis is rejected then the levels which differ should be investigated 

further. 

8. Tukey analysis on the ANOVA results can be conducted in order to identify the 

groups between which there are statistically significant differences. These results are 

also presented as p-values and are usually similar to results from the T-tests. 

 

3.3.2 Constraints to ANOVA 

ANOVA has limited strength in detecting linear relationships, due to the higher p-values 

(Lazic, 2008). This may result in more Type II errors (False negatives), and significant 

differences may not be noticed.  
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3.3.3 Alternatives to ANOVA 

If the data does not display normality the non-parametric Kruskal-Wallis test can be used as 

an alternative. The Kruskal-Wallis test allows for non-normality of data within the samples. 

A possible alternative to one-way ANOVA for the Dataset 3 may be to consider the doses as 

a continuous numeric variable and using a regression analysis method (Lazic, 2008). In some 

cases this may be more appropriate. When four samples (three treatments and one control) 

are used ANOVA will treat them as four parameters where regression only considers two 

parameters (the slope and the intercept). Due to the loss of a degree of freedom for every 

estimated parameter the ANOVA analysis has fewer degrees of freedom than the regression 

method. As a general rule, as the number of samples increase so does the power of regression 

analysis compared to ANOVA. There is the argument that using the regression method may 

increase the occurrence of Type I errors (false positives); however the inclusion of Type II 

errors is more of an issue.  

The results obtained from regression analysis are also less complex and in turn more 

informative. Care needs to be taken when using the regression method to avoid misuse. For 

example the predictor variable must be continuous and the relationship between the response 

and predictor variables must be linear.  

Another alternative is the two stage technique ANOVA-PCA which aims to compare the 

variance between datasets with the variance of the residual error (Sarembaud et al, 2007). The 

technique of principal component analysis is discussed in section 6.2. The variance is 

separated into factors.  

1. The data matrix is decomposed into data matrices based on different 

experimental factors (Principal Components). 

2. Principal Component Analysis (PCA) is conducted for each factor matrix with 

the residual error matrix taken into account. 

3.3.4 ANOVA (Analysis of Variance) Implementation in Biomarker Hunter 

One-way Welch ANOVA compresses data into a single F-value to be able to evaluate the 

null hypothesis that there is no difference between the different groups (e.g. that treatment 

has no effect). The technique allows distinguishing between the differences in the samples 

that occur due to group membership to those that occur simply due to chance or sampling 

errors. This test works in a group-wise manner and returns only one p-value for each peptide, 

which specifies the probability that there are statistically significant differences between all 

the groups. This is achieved in R using the aov function. 
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3.3.5 One-Way Welch ANOVA (Analysis of Variance) Results 

ANOVA analysis, and subsequent Tukey analysis, was conducted on Dataset 3 (Xenograft 

Pre-Clinical Project) which was provided by OBT comparing four groups of samples. This 

resulted in a total of 221 features being identified as potential biomarkers (i.e. showing a 

statistically significant difference in expression with a confidence level of 95%) between all 

the different sample groups (Table 24). Some of these features were identified as significantly 

differentially expressed in more than one group comparison.  

Table 24 - The number of potential biomarkers (statistically different features) found 

using the initial ANOVA analysis as well as the subsequent Tukey analysis on Dataset 3, 

for each group comparison. The first column states the groups being compared. 

Groups 1 2 3 4 

1 221 

2 25       

3 88 61     

4 23 22 83   

To identify how many features were identified as potential markers in more than one test the 

number of occurrences for each feature was evaluated as shown in Table 25. This shows that 

21 features were identified as significantly differentially expressed in three of the group 

comparisons. These features are identified in Table 26, and are likely to be strong candidates 

for further validation; however this can only be determined by comparing these results with a 

list of actual, validated biomarkers. As this information is not available it is not possible to 

identify whether this is true. 

Table 25 - The count of features found as significant in the ANOVA Tukey tests for 

Dataset 3 and the number of tests in which they were identified as such. 

+ve Hypothesis Tests 

Number of 

Features 

1 115 

2 62 

3 21 

 

Table 27 shows a list of features with the ten lowest p-values for each group comparison as 

well as the overall ANOVA analysis. From this list of 70 features, three of them were 

identified as potential biomarkers in three group comparisons (Table 28), suggesting they are 

strong candidates for further validation. Feature 8791 was the feature with the lowest p-value 

when all the groups were compared together so this feature requires further study. This 

feature was also identified in two post-hoc Tukey tests as a feature of interest.  
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Table 26 - The feature identifiers for the features that were identified as significantly 

different in three of the ANOVA Tukey tests on Dataset 3. 

Potential Biomarkers in Three 

ANOVA Tukey Tests 

12568 4427 

14297 4485 

1775 4515 

20955 4824 

23223 540 

2760 5839 

2929 6144 

31924 8791 

3226 8936 

4262 97 

9954   
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Table 27 - The list of features with the lowest p-values for each of the group 

comparison, using the overall ANOVA and subsequent Tukey tests on Dataset 3. 

Overall 

ANOVA   

P-Value 

p-

values 

ANOVA 

Tukey  

Group2-

Group1 

p-

values 

ANOVA 

Tukey  

Group3-

Group1 

p-

values 

ANOVA 

Tukey  

Group4-

Group1 

p-

values 

8791 0.000127 6144 0.001311 540 0.000272 10383 0.006943 

10375 0.00013 6427 0.00576 5839 0.000273 20767 0.008426 

2159 0.000139 7010 0.007135 1250 0.000483 9660 0.010865 

1231 0.000291 1775 0.008338 6985 0.000668 3260 0.013874 

5384 0.000312 31924 0.009498 9954 0.000751 3063 0.014104 

1020 0.00039 7415 0.013863 4485 0.000958 11164 0.015279 

941 0.000464 4427 0.014599 7010 0.001019 5052 0.018804 

5839 0.000673 1599 0.015373 4824 0.001559 2929 0.019387 

8237 0.000736 11164 0.015939 6641 0.003086 20955 0.024916 

9954 0.00077 2692 0.023826 3333 0.004006 4515 0.025333 

 

ANOVA 

Tukey  

Group3-

Group2 

p-

values 

ANOVA 

Tukey  

Group4-

Group2 

p-

values 

ANOVA 

Tukey  

Group4-

Group3 

p-

values 

2159 0.000102 22835 0.005237 10547 0.000137 

8215 0.000458 31924 0.007616 4824 0.00016 

4824 0.000766 9902 0.010395 10375 0.000369 

8791 0.000798 18970 0.012488 540 0.00064 

6144 0.00154 749 0.013451 97 0.000786 

7001 0.002145 6427 0.017372 4607 0.000867 

9723 0.002146 1775 0.017634 6076 0.001179 

1722 0.003091 2929 0.01945 6985 0.001195 

97 0.003728 6144 0.022393 916 0.001693 

5839 0.003906 10383 0.022831 4262 0.001767 

 

 

 



Page | 98  © Cranfield University, 2011 

 

Table 28 - A list of features which returned the lowest p-values in more than one group 

comparison, with the number of tests in which they were identified as such. 

ANOVA 

Lowest P-

Values 

Number of 

Occurrences 

4824 3 

5839 3 

6144 3 

97 2 

540 2 

1775 2 

2159 2 

2929 2 

6427 2 

6985 2 

7010 2 

8791 2 

9954 2 

10375 2 

10383 2 

11164 2 

31924 2 

 

It was also noticed that features 4824, 5839 and feature 6144 were identified as a potential 

biomarker in three group comparisons (Table 26) as well as having the lowest p-value for 

three post-hoc ANOVA Tukey tests (Table 26), suggesting that these features are also likely 

to be of interest and warrant further study. 

A boxplot was created using Biomarker Hunter to visually inspect the data for feature 8791 

(Figure 34), in order to determine whether the results from the ANOVA analysis correlate 

with the raw data. Looking at this boxplot, there is some evidence to suggest that there are 

differences between the groups. The values from Groups 3 are significantly lower than the 

Groups 2 and 4, as well as a slight difference in median values compared to Group 1. The 

plot shows that 50% of the values from Group 3 are almost below the total range of values for 

Groups 2 and 4 (i.e. the box for Group 3 is outside the range of the whiskers for Groups 2 and 

4). This boxplot supports the Biomarker Hunter suggestion that this feature may be a 

potential candidate as a biomarker.  
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Figure 34 - A boxplot comparing the four groups of intensity data presented for feature 

8791, which was the feature with the lowest p-value when all the groups were compared. 

A boxplot was also created for feature 8653 which was only identified as a potential 

biomarker in one group and returned a relatively higher p-value (i.e. 0.049230) for overall 

ANOVA analysis, than the other potential biomarker candidates (Figure 35). This was done 

to determine whether the data displays the expected features. Again it was expected that the 

groups of data will show a difference; however it will show fewer differences between the 

groups. This boxplot shows that the differences between the values between the groups are 

not as clear as compared to feature 8791 (Figure 34). This may suggest that feature 8653 may 

not be as strong a candidate as a potential biomarker as feature 8791; however it is not 

possible to make a definitive conclusion regarding this until the results are compared to a list 

of actual, validated biomarkers. 
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Figure 35 - A boxplot comparing the four groups of intensity data presented for feature 

8653, which returned a relatively higher p-value. 
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3.4 Kruskal-Wallis Test 

The Kruskal-Wallis is a non-parametric alternative to the ANOVA statistical hypothesis test. 

It is an extension of the Mann Whitney U test. Like the other methods used the Kruskal-

Wallis is a test for equality of population means between three or more groups. The test is 

identical to the Welch ANOVA but rather than testing the data, the data is replaced by their 

ranks (similarly to the Wilcoxon test). The Kruskal-Wallis compares the medians of the 

different sample groups (different treatments) to determine whether the null hypothesis can 

be rejected. Similarly to the other tests used the null hypothesis is that the sample groups 

come from the same population. The alterative hypothesis would be that there is a difference 

between the means of the groups being tested (i.e. the samples come from different 

populations). When using samples where the distributions of the sample groups have been 

proved to be non-normal and the variances have been found to be different, the Kruskal-

Wallis test is more ideally suited to the data than the Welch ANOVA.  

 

3.4.1 Methodology of the Kruskal-Wallis tests 

The Kruskal-Wallis test is conducted by: 

1. Ordering the data of all the samples in a single sequence in ascending order. 

2. A rank is given to all the values (the smallest value being ranked 1). If there are any 

equivalent values, the rank position is averaged. 

3. The ranks of the samples are split into their groups and are summed up in each group. 

4. The following formula is used to create a K (Kruskal-Wallis) statistic: 

  
  

      
 

  
 

  

 

   

         

n = total number of observations, i=sample, Ri = Rank of the sample 

5. If the calculated k value is less than the chi-squared table value then the null 

hypothesis is accepted (i.e. there is no difference between the populations of the group 

being tested). If it is greater than this value then we accept the alternative hypothesis, 

that there is a difference between the groups’ populations. A p-value is extracted, 

which is the probability of the null hypothesis being false. A p-value of 0.05 (5%) 

suggests that there is a 95% probability that the samples belong to different groups. 



Page | 102  © Cranfield University, 2011 

 

The parametric methods being used are the Welch T-test and its group-wise equivalent the 

Welch ANOVA. The Welch ANOVA analysis also returns what is referred to as the ANOVA 

Tukey p-values, which are the results of the Tukey HSD (Honestly Significant Difference) 

tests. The HSD tests are post-hoc tests used in conjunction with ANOVA, in which the p-

values from these tests show the probability of the individual group means being different 

from each other, allowing identification of groups whose means come from different 

populations. Since the ANOVA method is similar to the Welch T-test, the ANOVA Tukey 

conclusions are usually similar to the pair-wise Welch T-test results.  

 As described earlier the Kruskal-Wallis test is the non-parametric alternative to the group-

wise ANOVA. The non-parametric alternative to the T-test is the Wilcoxon-Mann Whitney 

test. As the Kruskal-Wallis test ignores the values, instead using the ranks, its post-hoc Tukey 

analysis is exactly the same as the pair-wise Wilcoxon-Mann Whitney p-values.  

3.4.2 Constraints to the Kruskal-Wallis Test 

Being a non-parametric analysis method, no assumptions are made about the populations’ 

normality and variance unlike ANOVA. It however does assume that the data distribution is 

identically shaped and scaled. When there is evidence of normality the Kruskal-Wallis is not 

as powerful as the ANOVA due to the fact that it is a non-parametric method. It works best 

when there are at least five samples present in each group (Gaten, 2000). Ideally both sample 

groups should have an equal feature presence but some differences are allowed.  

3.4.3 Alternatives to the Kruskal-Wallis Test 

An alternative to Kruskal-Wallis is to perform a one way ANOVA on the ranks of the 

observations. ANOVA when carried out on the actual data rather than the values is also a 

parametric alternative to the Kruskal-Wallis test. 

3.4.4 Kruskal-Wallis Implementation in Biomarker Hunter 

The Kruskal-Wallis was also implemented to offer a full range of statistical tests in 

Biomarker Hunter as well as to provide a group-wise alternative to the Wilcoxon Mann-

Whitney tests. It also provides the non-parametric alternative to the One-way Welch 

ANOVA. As with the ANOVA this test works in a group-wise manner and returns one p-

value for each peptide, specifying the probability that there are statistically significant 

differences between all the groups. This test is conducted in R using the kruskal.test function. 
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3.4.5 Kruskal-Wallis Test Results 

The Kruskal-Wallis group-wise analysis was conducted on Dataset 3 comparing four groups 

of samples in one test for each feature. This resulted in a total of 203 features identified as 

potential biomarkers (i.e. showing a statistically significant difference in expression) between 

all the different sample groups (Table 29). As stated earlier the post-hoc analysis for the 

Kruskal-Wallis is the same as the Wilcoxon pair-wise analysis.  

Table 29 - The number of potential biomarkers (statistically different features) found 

using the initial Kruskal-Wallis analysis on Dataset 3. 

Kruskal-Wallis TEST 

Number Of 

Biomarkers 

Overall KW 203 

Table 30 shows a list of features with the ten lowest p-values for the Kruskal-Wallis analysis, 

suggesting they are of further interest. Feature 4607 was the feature with the lowest p-value 

when all the groups were compared together. Both this feature and 4262 were identified as 

being in the list of ten features with the lowest p-values, as well as being identified in the list 

of ten lowest Wilcoxon p-values for multiple group analyses (shown earlier in Table 23). 

This suggests that both these features may be of potential interest as a biomarker. 

Table 30 - The list of features with the lowest p-values for each of the group 

comparison, using the overall Kruskal-Wallis tests on Dataset 3. 

Kruskal 

Wallis Lowest 

P-Values 

p-values 

4607 0.000125 

8215 0.000321 

10547 0.000407 

9723 0.000906 

4824 0.000998 

6856 0.001235 

4262 0.001421 

8791 0.001503 

8615 0.001531 

9954 0.001738 
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3.5 Analysis of Univariate Results 

3.5.1 Strongest Biomarker Candidates 

As stated earlier the validation stages have great time and cost constraints. Because of this it 

may be necessary to identify the features which have been identified as potential biomarkers 

in more than one test, as there may be more confidence that this feature is significantly 

responsible for the physiological differences between the groups. Without knowing the actual 

answers (i.e. a list of actual validated biomarkers), it is not possible to determine which tests 

are more appropriate, or in fact if all the tests are necessary or appropriate. It is also not 

possible to determine whether important biomarkers are found in specific tests that are not 

found in others. If this is the case, all the tests should be conducted in order to identify these 

novel markers that would not be found if only one or two methods of univariate analysis are 

conducted.  Additionally the tests need to be conducted on a much larger number of datasets 

from various studies, with validated biomarkers, in order to identify the best statistical 

approach. 

Features identified in all four tests may be stronger because they are identified as having 

statistically significant differences in abundance despite the limitations of each technique. 

Each univariate test is applied with a 95% confidence level. The theory of the confidence 

level suggests that it is unlikely for a false positive occurrence in all the tests. The results 

from all the univariate analysis techniques were compared in an attempt to identify the 

potential biomarker candidates that were significant in multiple univariate tests. However, as 

stated previously, it is not yet clear whether those features that are significantly differentiated 

in multiple statistical tests are more likely to be actual biomarkers. This can only be 

determined following comparison with a list of actual, validated biomarkers.  

In the absence of such information, only predictions (based on the premise that all univariate 

tests should be conducted) can be made as to which features are the strongest biomarker 

candidates. Using all four univariate methods a total of 3,048 features were identified as 

potential biomarkers with 1,023 unique features identified as potential biomarkers across all 

four tests. In total there were 14 statistical tests for each feature. This includes six for each of 

the pair-wise tests and one for each group-wise test. Table 31 shows that 14 features were 

identified as potential biomarkers in more than ten univariate tests, which are identified in 

Table 32. 

 



Page | 105  © Cranfield University, 2011 

 

Table 31 - The count of features found as significant in the univariate tests for Dataset 3 

and the number of tests in which they were identified as such.  

+ve Hypothesis Tests Number of Features  

1 359  

2 279  

3 97  

4 87  

5 49  

6 31  

7 21  

8 40  

9 25  

10 21  

11 10 14 
12 3 

13 1 

 

Table 32 - A list of the features identified as potential biomarkers more than ten 

univariate tests. A full version of this table is given as an output when using Biomarker 

Hunter. 

Feature 

Identifier 

Positive 

Tests Count 

4427 13 

18970 12 

2658 12 

4607 12 

1775 11 

2760 11 

2929 11 

31924 11 

3226 11 

4485 11 

4824 11 

5839 11 

6856 11 

97 11 
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3.5.2 Comparison of Univariate Techniques 

Methods exist to validate these potential biomarkers from statistical analysis, such as multiple 

reaction monitoring (MRM) (Anderson & Hunter, 2006) and Immunohistochemistry (IHC) 

methods (Sullivan & Chung, 2008). These methods however are limited by the time and cost 

bottlenecks that exist between the biomarker discovery and validation stages (Glaser, 2007). 

Due to this the validation stages are often only conducted on those features that are more 

likely to be responsible for the differences between the groups. Therefore researchers may 

want to see how many features are identified in more than one test. 

This section compares the univariate techniques to identify any relationships or correlations 

between the results (i.e. the features that are identified as potential biomarker candidates). 

These comparisons are shown using Venn diagrams. This is achieved by showing the number 

of features identified as potential biomarker candidates using the various methods and the 

number of features identified by both techniques (i.e. shown in the overlapping region). In 

total, there were 1,023 unique features identified as potential markers by the univariate 

statistical tests. The four univariate statistical methods gave complementary results (Figure 

36). This shows that 134 features were identified as potential biomarker candidates by all 

four univariate methods prior to the application of multiple testing corrections. With the 

exception of the Kruskal-Wallis technique all the other techniques also identify unique 

features as potential biomarker candidates that the other techniques do not, especially the two 

pair-wise hypothesis tests (The Welch T-test and the Wilcoxon Tests). 
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Figure 36 - A Venn diagram comparing the number of biomarkers identified from all 

four univariate approaches. 

Figure 37 compares the results from both the pair-wise techniques, i.e. the Welch T-tests and 

the Wilcoxon Mann-Whitney univariate tests. The Venn diagram shows that 595 features 

were identified as potential biomarker candidates by both techniques. These features may be 

more likely to be of interest as potential biomarkers than the features identified in only one 

test. Once again, this can only be determined following comparison of these features with a 

list of actual, validated biomarkers. 
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Figure 37 - A Venn diagram comparing the number of features identified by both the 

pair-wise univariate techniques (i.e. the T-test and Wilcoxon test). 

 

The Welch T-tests analysis identified 211 features as potential biomarkers, which were not 

identified by the Wilcoxon. Similarly there were 210 features that were not identified by the 

Welch T-test analysis. These results suggest there is good correlation between the two 

methods; however there are differences in the techniques which allow the identification of 

additional potential biomarkers for both techniques. This information can be useful in two 

ways. It gives further confidence to the features that were identified in both techniques. 

Additionally the identification of features as potential biomarkers in just one of the tests can 

be useful when there are only a small number of total features identified as potential 

biomarker candidates. When this is the case, it may be necessary to retain as many potential 

biomarker candidates as possible. 

Figure 38 compares the results from both the group-wise univariate techniques, i.e. the Welch 

ANOVA and the Kruskal-Wallis univariate tests. This Venn diagram shows that 138 features 

were identified as potential biomarkers by both techniques. These features may be more 

likely to be of interest as potential biomarker candidates than the features identified in only 

one test. 
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Figure 38 - A Venn diagram comparing the number of features identified by both the 

group-wise univariate techniques (i.e. the ANOVA and Kruskal-Wallis tests). 

 

The Welch ANOVA analysis identified 83 features as potential biomarkers, which were not 

identified by the Kruskal-Wallis tests. Similarly there were 65 features that were not 

identified by the Kruskal-Wallis analysis. These results also display good correlation between 

the two methods; while the differences in the techniques allow the identification of additional 

features as potential biomarker candidates for both techniques.  

Figure 39 compares the results from both the parametric univariate methods, i.e. the Welch 

T-tests and the ANOVA univariate tests. The Venn diagram shows that 219 features were 

identified as potential biomarkers by both techniques. These features may be more likely to 

be of interest as potential biomarkers than the features identified in only one test. 
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Figure 39 - A Venn diagram comparing the number of features identified by both the 

parametric univariate techniques (i.e. the T-test and ANOVA tests). 

The comparison shows the individual pair-wise univariate analysis identifies a relatively 

large number of potential biomarkers which are not identified by Welch ANOVA analysis 

(i.e. 587). There are only two features that were identified by the group-wise ANOVA 

analysis which were not identified by the Welch T-test. It was expected that the pair-wise 

analysis would identify a higher number of potential biomarkers. This is simply because there 

was a large number of tests conducted (i.e. there are six pair-wise analyses for every group-

wise analysis). The majority of the features identified by the group-wise analysis should be 

identified by the pair-wise tests as the p-values for the pair-wise tests will usually be lower. 

This is because there is more confidence in these pair-wise comparisons in supporting the 

alternative hypothesis for the univariate tests (i.e. there is a statistically significant difference 

between the groups). In the pair-wise analysis only two groups are compared, so when 

differences are found there is higher confidence in the conclusion, as opposed to when four 

groups are compared. 

A boxplot was created for the features that were identified as potential biomarkers using the 

ANOVA group-wise analysis but not by the T-tests. However both of these features did not 

contain sufficient data points to create boxplots. One of these features was 12361 for which 

the boxplot is shown in Figure 40. This boxplot shows that data is sparse and the differences 

between the groups are not as obvious as those observed earlier for high confidence 

biomarkers. This boxplot suggests that those features identified as potential biomarkers by 
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ANOVA, but not the Welch T-test, may not be features that warrant further study. However 

these features cannot be dismissed as non-markers until these results are compared with the 

list of features that are actual, validated biomarkers. 

 

Figure 40 - A boxplot comparing the four groups of intensity data presented for feature 

12361, which was identified as potential biomarker using the ANOVA group-wise 

analysis but not by the T-tests. 

Figure 41 compares the results from both the non-parametric univariate methods, i.e. the 

univariate Wilcoxon and Kruskal-Wallis tests. The Venn diagram shows that 203 features 

were identified as potential biomarkers by both techniques. These features may be more 

likely to be of interest as potential biomarker candidates than the features identified in only 

one test. As the non-parametric test compares the ranks of values as opposed to the actual 

values there is no difference between the Kruskal-Wallis post-hoc analysis and the Wilcoxon 
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Mann-Whitney pair-wise tests. There were an additional 602 features that were identified by 

the pair-wise Wilcoxon analysis alone. As expected there were no features identified by the 

Kruskal-Wallis analysis that were missed by the Wilcoxon tests. When a feature is identified 

as a potential biomarker by the Kruskal-Wallis it is certain that at least one of the pair-wise 

Wilcoxon tests will identify that feature as a potential biomarker. 

 

 

Figure 41 - A Venn diagram comparing the number of features identified by both the 

non-parametric univariate techniques (i.e. the Wilcoxon and Kruskal-Wallis tests). 
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3.5.3 Conclusions from Initial Univariate Analysis 

The results from the univariate analysis techniques identify potential biomarker candidates 

with reasonably good correlation between the different types of analysis. This is shown by 

the fact that a number of features have been identified as potential biomarkers by multiple 

univariate tests. There is also a relatively good overlap of features identified by multiple 

techniques as shown by the Venn diagrams in the previous section. 

This initial univariate analysis however is limited by the fact that there is a large percentage 

of missing values in the dataset. Dataset 3 has 40 samples and 94,727 features identified in 

each sample meaning there are a total of 3,789,080 possible values. Of these 3,421,648 

values are actually missing (i.e. over 90% missing values). This is not atypical of data from 

these types of proteomic methods and the reasons for these missing values will be explained 

and dealt with later in this thesis in Chapter 5. 

Additionally the number of potential biomarkers is relatively high and the time and cost 

constraints mean it may not always be possible to validate all these biomarkers. It is therefore 

important to reduce the number of false positive identifications of features as potential 

biomarker candidates. This is because the current number of potential biomarkers is too large 

to justify validating them all, especially if a large number of them are thought to be false 

positive results. This selection needs to be more refined. This leads to the need for multiple 

testing corrections. 

Whenever these statistical tests are conducted there is a 5% confidence level used. This 

means there is a one in twenty chance (i.e. %5 chance) that the difference observed between 

the groups is due to chance. Datasets from proteomic biomarker experiments are generally 

large datasets and involve the analysis of a large number of peptides or proteins (features). 

When the statistical tests are carried out in such a large number times there is an increased 

probability of error. This theory suggests that out of the thousands of features identified as 

potential biomarkers, 5% of these features may have been observed simply by chance. 

Multiple testing correction methods exist to take this into consideration, and will be evaluated 

in the next chapter along with the other data pre- and post-processing options. 
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4 Improvements to the Statistical Analysis Workflow 

Although the statistical analysis conducted in Chapter 3 identified a list of potential 

biomarkers from Dataset 3, there remain unaddressed issues. There are existing methods of 

data pre- and post-processing that can be respectively applied to the datasets and the results 

of the statistical analysis. There may be technical variance due to the systematic errors 

involved with proteomic techniques. This technique analyses each sample in the experiment 

individually. Due to systematic error between LC-MS runs there may be technical variation 

between the data from each sample. Methods such as Total Abundance Normalisation can be 

used to account for this technical variation. Another option to average out technical variance 

is to average the values obtained from the technical replicates. This chapter discusses both the 

use of normalisation and the averaging of technical replicates to reduce technical variation. 

Another issue with the univariate results is the large number of potential biomarkers 

identified. Validation is a long and expensive process so it is not feasible to attempt to 

validate thousands of potential markers, so there is a need to address this. However, it is 

important that plausible markers are not ignored simply because of cost. It is of great 

importance that the validation of biomarkers is based on the plausibility of the potential 

marker as opposed to just consideration of the cost of validation. This chapter offers multiple 

testing corrections as a solution to reduce the amount of false positive identifications of 

features as potential biomarker candidates. This gives researchers more confidence in the 

potential biomarkers outlined by Biomarker Hunter.  

Biomarker Hunter offers both pre- and post-processing options. Prior to conducting statistical 

analysis, the software offers methods for scaling, technical replicate averaging and missing 

value imputation. Following the statistical hypothesis testing the software pipeline also offers 

multiple testing correction options to control the error rates of these tests. These methods 

have been researched and implemented in a pipeline in Biomarker Hunter. There are three 

stages of analysis that comprise the pipeline which are: 1) Data Pre-Processing, 2) Statistical 

Analysis and 3) Data Post-Processing. This chapter discusses the available methods of data 

pre- and post-processing that will be made available using the Biomarker Hunter pipeline. 

The effect that these processes have on the results from Biomarker Hunter will be evaluated 

in order to identify the recommended method of evaluating potential biomarkers from 

proteomic data. Although pre-processing also involves dealing with missing values; this will 

be focused on later in Chapter 5. 
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4.1 Data Pre-Processing 

The raw data which obtained from quantitative biomarker experiments are usually unsuited 

for the purpose of statistical analysis. This means that the raw data requires some pre-

preparation before it can be used for analysis. The issues with the raw data include: 

 Often biological data is not normally distributed, and a number of statistical tests 

assume the data is normally distributed. Raw data is also affected by the problem of 

variance which can distort the results obtained from any statistical tests. These issues 

can be addressed using log transformation. 

 Systematic variations may obscure real biological changes between groups.  

 Most biomarker experiments involve the inclusion of technical replicates. This causes 

the problem of technical bias if used at the expense of biological replicates (Dowsey 

et al, 2010). If technical replicates are used it is essential that normalisation is carried 

out, otherwise technical bias may eclipse the biological effects. 

 Due to the limitations of the proteomic tools, not all the features, present in these 

samples, are identified in each sample by these tools. This is especially true for 

features that are present in low abundance, and those with poor detectability. The 

result of this is that a number of missing values may exist for each sample in the 

dataset. Statistical techniques usually require, and work best with, complete datasets. 

This issue can be addressed by estimating the values that are missing. There are a 

number of techniques available to do this which will be discussed in detail in Chapter 

5. It should be noted that as the number of estimated values in a dataset increases, the 

statistical power of the tests is essentially decreased. 

 There are usually a number of outliers included in the data that require special 

attention. Outliers are values that are grossly dissimilar from other comparable 

observations (Bantscheff & Kuster, 2007). Outliers may be a true observation of a 

special case peptide species such as post translational modifications (PTMs), or they 

may be false readings. These can be visually inspected and excluded from any 

statistical analysis but this can result in a loss of data. 

 Data may contain noise, which may be mistaken for a low abundance protein or 

peptide; hence the inclusion of false positives in the data.  

The two optional data pre-processing steps offered in Biomarker Hunter, that are discussed in 

this section are: 1) Normalisation and 2) Averaging of technical replicates.  
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4.1.1 Normalisation  

Occasionally the data obtained has previously been normalised using log normalisation. If 

this is the case it is necessary to specify this as it may have an effect on how subsequent 

calculations are done. When logarithmic values are used, multiplication is achieved by adding 

the values rather than the standard approach of multiplication (Brown, 2011).  

This study involves the comparison of samples from different experiments, which may have 

limited reproducibility due to differences in sample preparation and sample loading. 

Additional issues in reproducibility are presented when using gel-based techniques due to 

staining or image acquisition. These systematic variations may obscure real biological 

changes between and within sample groups (i.e. Type I or Type II errors). Therefore Total 

Spot Normalisation (gels) or Total Intensity Normalisation (MS) may be used to reduce the 

systematic variance, which may otherwise distort the biological differences between samples.  

 

4.1.1.1 Available Methods for Normalisation of Technical Variance 

Data pre-treatment methods convert the raw data to a different scale such as a relative or 

logarithmic scale. Different data pre-treatment methods such as auto-scaling and range-

scaling greatly affect the outcome of the data analysis. This is because different pre-treatment 

methods emphasise different aspects of the data. As well as all the other methods of pre-

treating the data, both these methods have their own advantages and disadvantages.  

Auto-scaling is based on data dispersion. It uses the standard deviation as the scaling factor 

so the mean-centred values are divided by the standard deviation. Range scaling uses 

biological range as the scaling factor. The biological range can be described as the difference 

between the minimum and maximum values reached in the experimentation. This is usually a 

much higher value than the standard deviation. As a result of this the data is scaled down to a 

greater degree. It clusters the data into tighter packed groups. The advantage of using auto-

scaling over range-scaling is that the standard deviation, which is used as the scaling factor, 

accounts for all of the measurements rather than just two values as in range-scaling. 

Therefore range-scaling is more sensitive to the presence of any outliers. 

Total abundance normalisation has been employed as a normalisation technique specifically 

for the purpose of dealing with the occurrence of systematic variation in both gel-based and 

MS-based proteomic analysis (Berth et al, 2007). It is currently employed in the commercial 
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Progenesis software range developed by Nonlinear Dynamics. For 2D gel experiments, this 

involves dividing the volume of each spot by the total volume of all the spots in that sample. 

This usually results in very small values so it is then multiplied by a scaling factor. This can 

also be applied to MS experiments by dividing the intensity of each peak by the sum of all the 

intensities in that sample and then multiplying this by a scaling factor. This normalisation 

technique assumes that the changing values don’t account for a large proportion of the total 

sums of values, and that methods that do not display technical variance such as DIGE are not 

being used.  

For 2D Gel experiments: 

                    
                

                         
                 

 

For MS experiments: 

                       
                   

                            
                 

4.1.1.2 Implementation of Normalisation in Biomarker Hunter 

The pipeline’s normalisation offers the total abundance normalisation, created specifically for 

this purpose, to scale the data. Auto-scaling and range-scaling are particularly good methods 

but are generally more suited for multivariate techniques (Berg et al, 2006).Although auto-

scaling and range-scaling are potential options, following further literature searches, total 

abundance normalisation emerged as the appropriate scaling method (Albertin et al, 2007). It 

is currently the normalisation technique used in commercially available software used for 2D 

gel electrophoresis experiments (Nonlinear, 2010). This uses the same formula as Total Spot 

Normalisation. 

Total Abundance Normalisation: 

                       
                      

                               
                      

4.1.1.3 Univariate Results Following Normalisation of Technical Variance 

The use of total abundance normalisation on Dataset 3 was conducted using Biomarker 

Hunter to observe the effects it has on the identification of potential biomarker candidates. 

Following total abundance normalisation 3,127 features were identified as potential 
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biomarkers using all the tests. A number of these features were identified in multiple tests and 

it was found that using all the techniques 1,040 unique features are identified as potential 

biomarker candidates. This is slightly more than the 1,024 unique potential biomarker 

candidates identified when normalisation was not applied. Table 33 shows the number of 

times a feature is identified as a potential biomarker alongside the number of features in each 

category. It shows that 39 features were identified in ten or more univariate group 

comparisons, and one feature was identified in fourteen univariate group comparisons. Prior 

to normalisation 35 features were identified in ten or more statistical tests.  A list of the 

strong candidates for potential biomarkers (i.e. features identified in eleven or more statistical 

tests) is shown in Table 34. This needs to be compared with a list of actual, validated 

biomarkers to identify if normalisation has a positive impact on the quality of potential 

biomarker candidates. 

Table 33 - The comparison of positive hypothesis tests with and without normalisation 

for Dataset 3. 

 
With Normalisation No Normalisation 

 +ve 

Hypothesis 

Tests 

Number of 

Features 

+ve 

Hypothesis 

Tests 

Number of 

Features 
 1 357 1 359 

 2 289 2 279 

 3 110 3 97 

 4 77 4 87 

 5 54 5 49 

 6 24 6 31 

 7 31 7 21 

 8 26 8 40 

 9 33 9 25 

39 
10 19 10 21 

11 15 11 10 

12 3 12 3 

13 1 13 1 

14 1   
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Table 34 - A list of the features identified as potential biomarkers in eleven or more 

univariate tests following normalisation for Dataset 3. A full version of this table is 

given as an output when using Biomarker Hunter. 

Feature 

Identifier 

Positive 

Tests 

Count 

4427 14 

6856 13 

18970 12 

4607 12 

6641 12 

10547 11 

1722 11 

1775 11 

19450 11 

2658 11 

2760 11 

2929 11 

31924 11 

3226 11 

4485 11 

4615 11 

5839 11 

6427 11 

794 11 

9954 11 

 

This list is similar to the results presented prior to normalisation. To see the overlap of 

features identified with and without normalisation a Venn diagram is presented in Figure 42. 

This shows that 889 features were identified in both sets of statistical analysis. There were 

also 151 features which were identified as a potential biomarker following normalisation, 

which were not previously identified. It also shows that 134 of the original potential 

biomarker list were not identified in this statistical analysis run. It was expected that the 

normalisation would have an effect on the resultant biomarker candidates as the 

normalisation adjusts the raw data to deal with the systematic error. The choice of whether to 

use this normalisation option is mainly dependent on the nature of the data. If there is any 

chance that the data may be subject to systematic error, then normalisation should defientely 

be used. However if the technique accounts for this systematic error, such as DIGE, then this 

option may be ignored. 
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Figure 42 - A Venn diagram comparing the number of features identified in Dataset 3 

prior to normalisation and after normalisation. 
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4.1.2 Dealing with Technical Replicates 

Technical replicates are produced by multiple labelling of the same sample as opposed to 

biological replicates, which are actually different samples. These are explained in detail in 

section 1.3.2. 

4.1.2.1 Available Methods for Dealing with Technical Replicates 

There are two options with regards to the management of technical replicates. These can 

either be treated as individual samples or can be averaged prior to analysis. For comparative 

purposes it is useful to see results from an averaged dataset as well as a non-averaged dataset, 

so the user is presented with the option to average the technical replicates or leave them as 

they are.  

4.1.2.2 Implementation of Dealing with Technical Replicates in Biomarker Hunter 

Ideally the technical replicates should not be averaged prior to analysis. This is because 

averaging these samples results in the subsequent analysis losing substantial power. 

Additionally, following manual inspection of the data there are many peptides detected in one 

replicate and not the other. If the averaging option is used then the data, for each feature 

(peptide or protein) is averaged using the following conditions: 

 If each technical replicate of the sample has a value, the average (mean) is used as the 

value representing both replicates 

 If only one run of the sample has a value, the present value is used to represent both 

replicates (i.e. no averaging) 

 If both runs have missing values, a single missing (NA) value is used to represent 

both replicates 

4.1.2.3 Univariate Results Following Averaging of Technical Replicates 

The effect of averaging technical replicates was observed on Dataset 3 using Biomarker 

Hunter to observe the effects it has on the identification of potential biomarkers. Following 

the averaging of technical replicates 2,481 features were identified as biomarkers using all the 

tests. A number of these features were identified in multiple tests and it was found that using 

all the techniques 959 unique features are identified as potential biomarkers. This is slightly 

lower than the 1,024 unique potential biomarker candidates identified when the replicates 

were not averaged.  
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Table 35 shows the number of times a feature was identified as a potential biomarker 

alongside the number of features in each category. It shows that 19 features were identified in 

eight or more univariate group comparisons, out of which two features were identified in 

eleven univariate group comparisons. A list of the strong candidates as potential biomarkers 

(i.e. features identified in eight or more statistical tests) is shown in Table 36. 

Table 35 - The comparison of positive hypothesis tests with and without averaging of 

technical replicates for Dataset 3. 

 
Averaging No Averaging 

 +ve 

Hypothesis 

Tests 

Number of 

Features 

+ve 

Hypothesis 

Tests 

Number of 

Features 
 1 273 1 359 

 2 337 2 279 

 3 151 3 97 

 4 71 4 87 

 5 43 5 49 

 6 36 6 31 

 7 29 7 21 

19 
8 12 8 40 

9 5 9 25 

10 0 10 21 

11 2 11 10 

 

  
12 3 

 

  
13 1 
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Table 36 - A list of the features identified as potential biomarkers in eleven or more 

univariate tests following the averaging of technical replicates for Dataset 3. The full 

table is given as an output when using Biomarker Hunter. 

Feature 

Identifier 

Positive 

Tests 

Count 

7514 11 

9843 11 

196 9 

2649 9 

2931 9 

334 9 

8858 9 

10240 8 

1050 8 

1417 8 

256 8 

373 8 

6404 8 

6840 8 

8280 8 

8317 8 

8611 8 

8885 8 

8994 8 

 

To see the overlap of features identified with and without the averaging of technical 

replicates, a Venn diagram is presented in Figure 43. This shows that only 132 of the features 

were identified in both sets of statistical analysis. There were over 1,600 features which were 

only identified as a potential biomarker in only one set of statistical analysis. This shows poor 

correlation between these results and those prior to averaging of the replicates.  
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Figure 43 - A Venn diagram comparing the number of features identified in Dataset 3 

prior to the averaging of technical replicates and after the averaging of technical 

replicates. 

 

Looking at these results it shows that the averaging of replicates drastically changes the 

identification of the potential biomarkers. As stated earlier, the averaging of technical 

replicates causes a substantial loss in power of the statistical analysis. This is because the 

inclusion of technical replicates allows the “averaging out” of technical variation (Ekefjard, 

2010). Additionally when technical replicates are not averaged, the analysis includes 

information of the technical variation in the experiement. This means that any protein 

expression changes which are due to subtle differences in the experimental technique would 

not be seen after averaging of these replicates (Krawetz, 2009). This averaging option is still 

provided in the Biomarker Hunter pipeline, but it will not be used for the suggested strategy 

for the identification of biomarkers suggested by this thesis. Unlike the other options there is 

not good correlation between the two analysis runs. It would be of great interest to compare 

results from these different techniques against a list of actual, validated markers to identify 

whether averaging of technical replicates is actually a good option. 
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4.2 Data Post-Processing 

Once statistical analysis has been conducted on the data there is often a need to conduct post-

processing of the analysis results. When there are a large number of potential biomarker 

candidates identified, it is important to ensure that these significant differences which have 

been observed simply due to chance are removed from the list. This is especially the case for 

datasets such as Dataset 3 (which was analysed in Chapter 3). For this data, thousands of 

features were identified as significant potential biomarkers. Although there are a large 

number of tests, allowing for more consideration being given to those features identified 

multiple times, it may be possible that important biomarkers are lost in the large clutter of 

features. This chapter investigates multiple testing corrections as a solution to reduce the 

number of false negative occurrences and reduce the list of potential biomarkers by 

attempting to reduce the number of false positive identifications of potential biomarkers. 

4.2.1 Multiple Testing Correction 

Statistical analysis of biological data rarely involves testing just a single hypothesis. 

Biomarker studies typically rely on techniques that allow large numbers of proteins, peptides, 

genes etc to be monitored in one experiment. The statistical hypothesis tests such as Welch’s 

T-test, ANOVA or the Kruskal-Wallis return a p-value, which signifies the probability of the 

null hypothesis being correct. The null hypotheses in all the statistical tests used in the 

Biomarker Hunter pipeline assume that there is no difference between the means of the 

groups being compared.  

For any individual statistical test there is a pre-set probability of the inclusion of a Type I 

error. These tests are vulnerable to Boole’s Inequality (Seneta, 2004), meaning that the 

probability of at least one of the peptides in the experiment list being differentially expressed 

is less than or equal to the sum of the probabilities of all the individual events. Using a 

confidence interval of 0.05 (5%), about one out of twenty tests will typically produce a false 

positive. 

If a multiple number of tests (n) are conducted, each with a significance probability (β), then 

the probability that one of the tests is significant is: 

       

When the number of tests is greatly increased, to thousands for example, as in the 

experiments conducted for biomarker discovery there is an implied occurrence of false 
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positives (i.e. a rejection of the null hypothesis, in a case where it is actually true) or a “Type 

I error”. Multiple testing corrections amend all the p-values from these statistical hypothesis 

tests to allow for the occurrence of these false positives. The p-values for each peptide, or 

protein, is corrected to account for the family-wise error rate and to maintain the overall error 

rate equal to, or below the p-value cut-off used for the tests. A widespread problem, 

encountered with computational statistical hypothesis testing, is how to approach multiple 

testing corrections.  

When applying Univariate hypothesis tests repeatedly there are additional issues presented. 

When any statistically significant change in the protein volume is concluded, it is based on 

the probability of observing that change. The chance always remains that any statistically 

significant protein or peptide is only reported as significant due to natural variation. These are 

examples of type I errors or “false positives”. The generally accepted significance level is 

95% which means that results with less than 5% chance of being different due to natural 

variation will be reported as significant. Because of the sheer number of variables analysed 

the chance of false positives is greatly increased. This problem can be addressed through 

algorithms which have been devised to adjust p-values based on the number of variables 

involved in the analysis. These methods are referred to as multiple testing correction 

methods. 

The datasets from OBT biomarker experiments measure the presence of several thousand 

peptides or proteins (i.e. 8,000 to around 90,000 PCIs (Peptide Cluster Indexes) or MCIs 

(Molecular Cluster Indexes)) simultaneously across varying groups, which may indicate 

disease, or varying treatments. So the statistical tests (e.g. T-test) are carried out on each 

feature separately. So for example if the significance level is 0.05 signifying a 5% probability 

that the null hypothesis has been falsely rejected, so when 100,000 tests are conducted 5,000 

of these could potentially be false positives. When conducting 100 tests, there is a 99.4% 

chance that at least one of the results is a false positive (Stark, 2011). Table 37 illustrates the 

importance of implementing multiple testing corrections when carrying out multiple 

comparisons, because we would like to minimise the inclusion of false positives not just for 

individual tests but also for the collection of features being tested. It shows how the 

probability of a false positive incidence is affected by an increase in the number of features. 
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Table 37 - Rate of Occurrence of false positives with increasing number of statistical 

tests. Adapted from Silicon-Genetics, 2003 

Number of 

features 

tested (N) 

False positive 

incidence 

Probability of calling 1 or more 

false positives by chance (100(1-

0.95
N
)) 

1 1/20 5% 

2 1/10 10% 

20 1 64% 

100 5 99.40% 

 

4.2.1.1 Available Methods for Multiple Testing Correction (MTC) 

All available methods of MTC available in the R stats package were investigated and 

implemented in the pipeline. The Biomarker Hunter pipeline software offers five methods for 

multiple testing corrections which will all be described in this chapter, outlining the benefits 

and drawbacks of each method. This section will also compare the techniques to identify the 

difference between the techniques. These methods are:  

1. Bonferroni (Bland & Altman, 1995) 

2. Holm (Holm, 1979) 

3. Hochberg (Hochberg, 1988) 

4. Hommel (Hommel, 1988) 

5. Benjamini Hochberg (Benjamini et al, 1995) 

4.2.1.1.1 Bonferroni Correction Method 

This method is based on the first-order Bonferroni inequality, which is a modification of the 

Boole’s inequality (Bland & Altman, 1995). The Bonferroni inequality concludes that in any 

given set of outcomes (p(1), p(2), p(3)....p(n)), the probability of their union (i.e. of the event 

p(1) or p(2) or p(3) or p(n)) cannot be greater than the sum of their probabilities (Shaffer, 

1995). It is a simpler, but more stringent method than the Holm approach (Dunnett & 

Tamhane, 1991). The Bonferroni approach simply rejects any null hypotheses if the corrected 

p-value, in this case obtained by multiplying the actual p-value by the total number of tests 

conducted, is below the critical (cut-off) p-value. 

P-value(Corrected)   P-value * Total Number of statistical tests(n) 

P-value(Corrected)   0.0    SIGNIFICANT 
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4.2.1.1.2 Holm Correction Method 

The Holm method is a modified, slightly less rigorous, version of the Bonferroni correction 

and is also known as the Bonferroni Step-down correction method. It is a sequentially 

rejective technique. The Holm method rejects the null hypothesis in cases only where the p-

value, and subsequently its corrected (lower) p-value is below the p-value cut off. The Holm 

corrected p-values are obtained by: 

A. Ranking the p-values for each individual PCI (or MCI) in ascending (small to large) 

order. 

B. Multiplying the smallest p-value (p(A)) by the total number of tests. P-values less 

than the 0.05 (5%) cut-off point suggest the null hypothesis should be rejected. 

P-value(A)(Corrected)   P-value(A) * Total Number of statistical tests(n)   

P-value(A)(Corrected)   0.0    SIGNIFICANT 

C. The next p-value (p(B)) is then multiplied by the total number of statistical tests 

minus one. 

P-value(B)(Corrected)   P-value * (n – 1)   

P-value(B)(Corrected)   0.0    SIGNIFICANT 

D. The third p-value (p(C)) in the ranked set is then multiplied by the total number of 

statistical tests minus two. 

P-value(C)(Corrected)   P-value * (n – 2)  

P-value(C)(Corrected)   0.0    SIGNIFICANT 

E. This routine is continued, decreasing the multiplying factor by one in each step, until 

a FEATURE(x) is classified as not significant 

P-value(x)(Corrected)   0.0    NOT SIGNIFICANT 

The strength of the Holm method is that it is a statistically very powerful despite the values of 

the unobservable parameters. This method does not assume independence of data, which is 

useful especially when dealing with biomarker data. Often in biomarker experiments there is 

a relation between the data. For example when dealing with peptides there is a relationship 

between the intensities of the peptides which belong to the same protein. There may also be 

relationships between proteins with regards to their function or up-down regulation. 

This method returns a family-wise error rate comparable to that of the Bonferroni method. 

The Holm method; however does not guarantee confidence levels less than those provided 

using the original Bonferroni correction. As the p-value increases, the test gets progressively 

less corrective; therefore the test becomes less conservative.  
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4.2.1.1.3 Hochberg Correction Method 

This method is also known as the Simes-Hochberg correction method as it is based on the 

Simes Inequality (Simes, 1986). The Hochberg method is a simpler but sharper correction 

technique than the Holm correction method (Hochberg, 1988). Like the Holm method the 

Hochberg approach is based on ordered p-values. Unlike the Holm method the Hochberg 

method rejects all hypotheses with p-values less than or equal to the p-value cut-off point. 

The Holm correction method stops checking through the ranked p-values as soon as the null 

hypothesis has been rejected. The Hochberg correction works in reverse, starting first with 

the larger p-values in the ranked list. The Hochberg corrected p-values are obtained by: 

A. Ranking the p-values for each individual PCI (or MCI) in descending order. 

B. Unless the highest p-value (p(1)) is less than the critical (cut-off) p-value, in which 

case all the null hypotheses must be rejected, the correction starts with the second 

highest value. The correction starts by multiplying this p-value by two. If this value is 

less than the 0.05 (5%) cut-off point then the feature would be classed as significant. 

P-value(2)(Corrected)   P-value(2) * 2   

P-value(Corrected)(2)   0.0    NOT SIGNIFICANT 

C. The next p-value (p(3)) is then multiplied by 3. 

P-value(3)(Corrected)   P-value * 3  

P-value(3)(Corrected)   0.0    NOT SIGNIFICANT 

D. This routine is continued, increasing the multiplying factor by one in each step, until a 

feature is classified as significant 

P-value(Corrected)   0.0    SIGNIFICANT 

 

The corrected p-values are uniformly lower than those produced by the Holm method. This 

suggests the Hochberg step-up approach has more power than the Holm step-down approach.  

The high power of the Hochberg method; however comes at the expense of having to assume 

the p-values are all independent of each other (Walsh, 2004). This could be a cause for 

concern for the biomarker data, especially if dealing with peptides. When using peptides 

some features will not be independent of others as many will belong to the same protein, so 

this must be taken in to consideration when choosing this correction method. When some of 

the data is not independent it is better to use the Holm approach as it does not assume 

independence of data. 
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4.2.1.1.4 Hommel Correction Method 

As with the Hochberg approach the Hommel correction method is based on Simes Inequality. 

It is more powerful and slightly more complicated than the Hochberg method (Shaffer, 1995). 

This technique is also based on the ordered p- value procedure and like the Hochberg 

approach starts with the largest p-value first. The Hommel method rejects all hypotheses in 

which the corrected p-value is less than or equal to the critical value divided by k (π/k). The 

value k can be calculated by: 

      
 

           
 

 
             

Where: π   Critical p-value, n = total number of statistical tests 

A. Ranking the p-values for each individual PCI (or MCI) in descending (large to small) 

order. 

B. For the highest p-value (p(1)) : i = 1, j = 1.  

So if p(1)  0.0 (π) then all the null hypotheses must be rejected suggesting that all the 

features are significant biomarkers. If this is not the case then the next iteration of the 

test is conducted. 

C. For the next highest value (p(2)) : i = 2, j = 1,2. 

If P(2) > 0.05*(1/2) then the next iteration of the test is conducted. 

D. For the next p-value in the ranked list p(3): 

If p(3) > 0.05*(1/3) 

Then p(2) is retested to check whether p(2) > 0.05*(2/3)  

E. These iterations are continued until a p-value is equal to or less than the critical value 

multiplied by the multiplying factor (   ). When this occurs the i + j values are used: 

Corrected critical p-value cut-off   0.0 (π)/(i+j) 

F. All null hypotheses are rejected if their p-value is less than or equal to (π)/(i+j). 

 

4.2.1.1.5 Benjamini-Hochberg Correction Method 

The correction methods described thus far have been based on ordered p-values. These 

techniques provide a strong control over the family-wise error (FWE) rate. The less stringent 

Benjamini-Hochberg approach aims instead to control the false discovery rate (FDR) 

(Benjamini et al, 1995). The false discovery rate can be described as the fraction of false 

positives throughout all the tests which are classed as significant (Walsh, 2004). Like the 
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Simes-Hochberg correction, the Benjamini-Hochberg is a step-up procedure. This correction 

technique is a relatively less conservative technique so is relatively more tolerant towards 

false positives; however it also reduces the occurrence of false negatives (Type II) errors (i.e. 

not rejecting the null hypothesis when there is a significant difference between groups). 

Benjamini-Hochberg corrected p-values can be obtained using the following approach: 

A. Ranking the p-values for each individual feature in descending (large to small) order. 

B. As with the Simes-Hochberg approach the largest p-value (p(1)) is left as it is 

and the correction starts with the second largest p-value (p(2)). The second 

largest p-value is multiplied by a multiplying factor, obtained by dividing the 

total number of statistical tests conducted (n) by its rank in the list. If this 

corrected p-value is less than the critical (cut-off) p-value (π   0.0 ) then the 

null hypothesis can be rejected. 

P-value(Corrected)   P-value * 
Total Number of statistical tests(n)

Total Number of statistical tests(n) – 1 
 

P-value(Corrected)   0.0    SIGNIFICANT 

C. This sequence is continued for all the ranked p-values for example for the next 

p-value in the ranked list (p(3)). 

P-value(Corrected)   P-value * 
Total Number of statistical tests(n)

Total Number of statistical tests(n) – 2 
 

P-value(Corrected)   0.0    SIGNIFICANT 

As the rank increases, and the p-value decreases, the corrections become more stringent 

similarly to the Bonferroni step-down approach. As the false discovery rate (FDR) approach 

gives an error rate that is proportionate to the number of features it provides a good 

alternative to family-wise error rates (FWR). 

Compared to the first four methods, the Benjamini-Hochberg approach is relatively more 

ideally suited to data from biomarker experiments where we are dealing with an extremely 

large number of significance tests, due to the fact that it is a less conservative method. The 

statistical hypothesis tests (i.e. ANOVA, Kruskal) reduce a large dataset to a significantly 

smaller one. For some researchers analysing biomarker data, it may be a concern to ensure 

that no true positives are removed from the significance list, even if this comes with the slight 

inclusion of false positives (Shaffer, 1995). Usually however due to extreme validation costs 

it is of utmost importance for researchers to reduce the occurrence of false positive 
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identification of biomarkers. This suggests that MTC should be used but the Benjamini –

Hochberg is most ideal as it is less stringent. 

 

4.2.1.2 Implementation of Multiple Testing Correction in Biomarker Hunter 

The pipeline software allows the user to use any of the methods described in the previous 

section to conduct multiple testing corrections. These were implemented using the p.adjust 

function in the R stats package. As stated previously the Benjamini-Hochberg correction 

approach is most ideally suited to data from biomarker experiments. These methods along 

with the other correction approaches were conducted on Dataset 2 to compare the effects the 

corrections have on the results. Table 38 shows the difference between the correction 

approaches. The p-values for the Welch T-test comparing Group one against Group two were 

corrected using the five different methods.  

Table 38 - The effect of Multiple Testing Corrections on Dataset 2 

 

The Benjamini-Hochberg correction method retained more significant features than the other 

approaches. This may have been due to the fact that the Benjamini-Hochberg is a less 

stringent method and aims to protect the true-positive values. As the number of statistical 

tests is significantly large it can be seen that to maintain a family-wise error rate the number 

of significant markers is substantially reduced to a single digit. Upon examination of the 

corrected datasets the two significant features (feature 3810 and feature 243) were common 

through all five correction approaches. Four other features were also classed as significant 

using the Benjamini-Hochberg approach (features: 1234, 3936, 4005, and 3324). As the 

experiment involved study at the peptide level it is very possible that these identified features 

may belong to the same protein. 

This shows good correlation between the techniques as well as suggesting that for the types 

of datasets being analysed the Benjamini-Hochberg may be the most ideal as it retains a 

higher number of true positive statistical hypothesis tests.  
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4.2.1.3 Univariate Results Following Multiple Testing Corrections 

When the multiple testing correction methods were applied to Dataset 3 there were no 

differences between the different correction methods. Unlike when multiple testing 

corrections were applied to Dataset 2, all five methods of p-value correction returned the 

same biomarkers. Following multiple testing correction a total of 281 features were identified 

as biomarkers, of which 180 were unique. Compared to the uncorrected analysis, this list of 

180 features is far more manageable than the list of over a thousand unique features. This 

suggests that when there is time and cost constraints the multiple testing methods should be 

implemented when there are a large number of potential biomarkers.  

Table 39 shows the number of times a feature is identified as a biomarker alongside the 

number of features in each category. It shows that one feature was identified in five 

univariate group comparisons. As the multiple testing is only conducted on the p-values from 

the original statistical analysis, all of the features identified after correction were identified in 

the original analysis. 

Table 39 - The comparison of positive hypothesis tests with and without multiple testing 

corrections for Dataset 3. 

MTC No MTC 
+ve 

Hypothesis 

Tests 

Number of 

Features 

+ve 

Hypothesis 

Tests 

Number of 

Features 

1 102 1 359 

2 57 2 279 

3 20 3 97 

4 0 4 87 

5 1 5 49 

  
6 31 

  
7 21 

  
8 40 

  
9 25 

  
10 21 

  
11 10 

  
12 3 

  
13 1 

A list of features identified in three or more statistical tests is shown in Table 40. The analysis 

from this dataset suggests the method of correction used is not important. However the results 

from Dataset 2 as discussed in the implementation of MTC, as well as the available literature 
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suggest that the Benjamini-Hochberg algorithm is the most appropriate for this use (Shaffer, 

1995).  

Table 40 - A list of the features identified as potential biomarkers in three or more 

univariate tests following Multiple Testing Correction for Dataset 3. A full version of 

this table is given as an output when using Biomarker Hunter. 

Feature 

Identifier 

Positive 

Tests 

Count 
540 5 

12568 3 

14297 3 

1775 3 

20955 3 

23223 3 

2760 3 

2929 3 

31924 3 

3226 3 

4262 3 

4427 3 

4485 3 

4515 3 

4824 3 

5839 3 

6144 3 

8791 3 

8936 3 

97 3 

9954 3 

4.3 Conclusions for the Use of Data Processing 

If there is the possibility of technical variance between samples then total abundance 

normalisation should be applied prior to statistical analysis. Ideally technical replicates 

should be treated as individual samples (i.e. not averaged). Following statistical analysis 

MTC is strongly suggested as it is not justifiable to validate thousands of features, so false 

positives should be avoided. Although there was no difference when these methods were 

applied to Dataset 3, the results from Dataset 2 agree with the theory from the literature that 

Benjamini-Hochberg approach may be more appropriate (Pascual et al, 2010). However; it is 

impossible to determine whether the Benjamini-Hochberg is actually more appropriate 

without comparing this list of markers with a list of actual, validated biomarkers. 
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5 Evaluation of Solutions for Missing Values 

One of the first main concerns when the datasets, provided by OBT were analysed were the 

high number of missing values that were contained in the data. Dataset 2 had 64% of the 

values missing and Dataset 3 had more than 90%. This is not atypical of proteomic datasets 

and remains a big issue in proteomics (Albrecht et al, 2010). For the analysis of these datasets 

it was important to first understand the reasons for the presence of missing values. From there 

the next challenge was to create provisions in the created pipeline software to deal with these 

missing values in an effective and appropriate manner, in order to provide accurate 

conclusions without causing the data to be skewed. 

After consulting various journal articles it was obvious that missing values is a widespread 

issue encountered by many studies in the field (Vlahou, 2008) (F Li et al, 2011). It also 

became clear that systematic approaches to dealing with these missing values are still lacking 

(Sariyar et al, 2011). This chapter describes why missing values are so common in biomarker 

experimental data. It then describes two of the main provisions that have been included in 

Biomarker Hunter to help tackle these issues. The first solution offered is the commonly 

applied technique of imputation of missing values, which is not restricted to biomarker 

studies, but is also used in various other fields for statistical analysis. The second solution is 

more problem-specific to the issue of missing values in label-free biomarker experiment data. 

This clustering solution identifies those peptides that have not been matched correctly and 

correlates their intensity values. Following the evaluation of the recommended strategy for 

missing values combined with conclusions made in Chapters 3 and 4 a suggested strategy is 

identified. This strategy and the results of analysis using this process are presented in section 

5.3 of this chapter. 

Firstly we must consider the causes of these missing values. As the number of features (i.e. 

peptides, proteins or genes) is increased there is an associated higher problem of missing 

values in the proteomic datasets.  These missing values occur through the experimental 

techniques used to obtain biomarker data. For example, when using 2D gel techniques, less 

intense spots are more susceptible to missing values. These missing values may still be very 

important with regards to regulation and signalling of the peptide or protein in question. 

Sensitive MS techniques allow the identification of this low abundant class of proteins, but 

are still prone to missing values for various reasons. 



Page | 136  © Cranfield University, 2011 

 

 
Figure 44 - A graph showing the occurrence of features in Dataset 3 in each feature presence group 
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Figure 44 shows the frequency of features with the possible feature presence levels for 

Dataset 3. It can be seen over 33,000 of the features have a feature presence of one, meaning 

that there are thirty nine missing values in each of these features. The graph also shows that 

only a small percentage of features contain full or high feature presence. 

All proteomic data contains missing values which may either be due to: 

 The peptide or protein being present, but at a level below the limit of detection of the 

mass spectrometers or other analytical methods. For these cases, there is an increased 

error if the user imputes the missing values with a zero. A zero value would suggest 

that the sample is not present at all, which is not the case.  

 The occurrence of mismatching caused due to feature distortion. This happens when 

values which belong to the same marker (e.g. peptide) are classed into two or more 

different features. This may occur when values from the same marker fall outside the 

stringent mass and retention time windows used by the clustering algorithms provided 

by the mass-spectrometry providers. Mismatching may occur in both mass 

spectroscopy and gel-based methods. 

 Truly missing data. This refers to true zero values. This suggests that the feature 

(protein or peptide) is not present in the sample being tested. 

Additionally when gel-based techniques are used: 

 Spots may be missing because of poor transfer from the first to second dimension.  

 Another biological reason may be the shift of the protein to a different point in the 

pI/molecular weight gel co-ordinate due to post translational modifications (PTMs).  

It is of great importance to replace as many of these missing values with plausible values, a 

process known as imputation, to avoid leading to false conclusions (Azuaje, 2005). Any 

amount of missing data can cause significant effects on the conclusions made based on the 

data. It is also necessary to distinguish those values that are truly missing as imputing these 

values will cause a great bias in the dataset. There are two categories of missing values 

(Little, 1987). Values may be missing at random (MAR), meaning the likelihood of a missing 

feature may be determined by the observed data. The second category is those values that are 

Missing Completely at Random (MCAR) which means the values are missing, independent 

both of observable variables and of unobservable parameters of interest. 
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5.1 Selective Missing Value Imputation 

Imputation involves the substitution of certain, plausible, values to replace missing data 

points. It is a preferred method of pre-processing a dataset with missing data prior to 

statistical analysis. In most biomarker discovery experiments the problem of missing values 

cannot simply be dealt with (Aittokallio, 2010), and are sometimes simply ignored. 

If the discarded cases form a representative and relatively small portion of the entire dataset, 

then feature deletion may indeed be a reasonable approach. However, case deletion leads to 

valid inferences in general only when missing data are missing completely at random in the 

sense that the probabilities of response do not depend on any data values observed or missing. 

In other words, case deletion implicitly assumes that the discarded cases are like a random 

subsample. When the discarded cases differ systematically from the rest, estimates may be 

seriously biased. Moreover, in multivariate problems, case deletion often results in a large 

portion of the data being discarded and an unacceptable loss of power. 

There have been methods published to deal with these missing values such as: 

o Row-average method 

o K-nearest neighbour (KNN) 

o Singular Value Decomposition (SVD) 

o Bayesian Principal Component Analysis (BPCA) missing value estimation 

o Maximum Likelihood Algorithm 

Whichever approach is used there needs to be consideration of the structure of the datasets 

and the nature of the experiment.  

With regards to univariate tests (such as ANOVA) there is an argument suggesting that 

missing values can be ignored. However the reduced number of replicate values within 

features leads to lower power in the statistical tests.  

When conducting multivariate statistics, it is very important to deal with these missing values 

correctly to be able to draw accurate and realistic conclusions as the missing values can skew 

the dataset and lead to wrong conclusions. This is due to the increase in score error estimation 

when too many missing values are present. 
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5.1.1 Available Methods of Imputation 

5.1.1.1 No Imputation 

This simple but very crude approach to missing value treatment is to ignore the cases which 

have a percentage of missing values above a desired threshold. This approach is appropriate 

when the percentage of missing values is very low but analysis of the OBT datasets and 

reference from previous experiments show that this is not usually the case in proteomic 

biomarker experiments. If the percentage of missing values is high, there is a vast loss of 

information and may introduce a bias. 

5.1.1.2 Minimal Value Imputation (MIN) 

This approach is also a simple and crude method which involves replacing the missing values 

with zeroes. This is the method currently employed by all the commercially available image 

analysis software (Albrecht et al, 2010). This approach works under the assumption that all 

the missing values are due to the protein either being actually absent in the sample groups or 

the proteins being below the detection level of the analysis tools. This method ignores the 

prospect of missing values due to technical reasons.  

This approach can be modified by replacing the missing values with a non-zero minimal 

intensity value. One option for this includes using the global minimum intensity value of all 

the present values (Almeida et al, 2005), however other variations of this imputation do exist. 

This choice of imputation does not make a difference to the detection of statistically 

significantly different peptides and proteins. 

5.1.1.3 Average Imputation 

This simple approach involves imputing the missing values with the average value of all the 

present values for that peptide or protein. This can be either the row mean or the row median. 

The assumption behind this method is that the abundances of proteins do not vary much 

between different sample groups. This can be a problem as the assumption is not always true 

and the method becomes more complicated as the percentage of missing values for the 

protein or peptide is increased. This method deals with the missing values caused by both 

biological and technical reasons. This method is more often used to compare the other 

imputation methods rather than being used as an actual imputation technique (Jung et al, 

2006). 
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A variation of this method is to impute missing values with a median of the present values 

within the sample group. This method is referred to as REPMED. This ignores the 

assumption of the low variance in abundance between groups and is better suited to 

proteomic biomarker studies. The limitation to this approach is that there needs to be a 

minimum of three present values within the sample group for the relevant protein or peptide 

in order to be able to calculate a median. This approach has not yet been applied to proteomic 

data as this is not always the case with these datasets (Albrecht et al, 2010). 

5.1.1.4 Multiple Imputation 

Multiple Imputation (MI) is a Monte Carlo procedure in which the missing values are 

replaced by m>1 simulated versions, where m is typically small (i.e. < 10). Each simulated 

dataset is analysed and the results are combined to calculate estimates and confidence 

intervals which incorporate the missing data uncertainty (Schafer, 1997). Due to advances in 

computational methods and software, the MI procedure has become useful in the eye of 

researchers in biomarker research, whose studies are often hindered due to the presence of 

missing data. Unless the rate of missing information is extremely high, there is little 

advantage to producing and analyzing more than a few imputed datasets. The imputed model 

at best is an approximation; fortunately MI tends to be quite forgiving of departures from the 

imputation model. If working with binary or ordered categorical variables, it is satisfactory to 

impute under a normality assumption and then round off the continuous imputed values to the 

nearest category. If the distribution of the variables are heavily skewed, these may be 

normalised (e.g. by taking logarithms) then returned to their original scale after imputation. 

5.1.1.5 K Nearest Neighbour (KNN) 

This approach is often used for both proteomic and transcriptomic data. The assumption 

behind this approach is the relationship between expression profiles of the values of certain 

peptides or proteins (Albrecht et al, 2010). The missing values are imputed with a weighted 

mean of the available values of the k most related values in this particular sample. The 

relation is estimated using Euclidean distance. An optimal value of k is calculated empirically 

for each dataset (Troyanskaya et al, 2001). The method is robust and sensitive, especially in 

cases where the percentage of missing values is less than 20% for the particular peptide or 

protein. It performs better than the average imputation techniques with regards to 

deterioration of power when the missing value percentage is increased. This method however 
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does not account for truly absent proteins. In these cases KNN imputation will cause artificial 

values which may not represent the true biological nature of the data. 

5.1.1.6 Bayesian Principal Component Analysis (BPCA) 

This method assumes that missing values occur randomly and independent of other features. 

This assumption is not often true for proteomic data therefore BPCA is not the most ideal 

technique for proteomics. 

5.1.1.7 Weighted Estimation Procedures 

In some situations, good estimates can be obtained through weighted estimation methods. In 

fully parametric models, maximum-likelihood estimates can be obtained from the incomplete 

data by specialised numerical methods, such as the Estimation Maximisation (EM) algorithm. 

Those procedures are more efficient than MI because they do not involve simulation. In most 

cases one could perhaps derive a better statistical procedure than MI for any statistical 

problem. However in most situations where the missing data is considered an annoyance 

rather than the primary focal point, a simpler, approximate solution with good properties can 

be preferable to one that is more efficient but problem-specific or difficult to implement. 

 

5.1.2 Constraints to Missing Value Imputation 

It should be taken into account that there is a greater degree of uncertainty, following 

imputation, than if the imputed values had actually been observed. It is important that the 

appropriate technique for imputation is used for the study as applying a non-suitable method 

can be more harmful than if the missing values were left as they were. Incorrect imputation 

leads to problems such as distorted estimates, standard errors and hypothesis tests (Little, 

1987).  

Real-life data very rarely conforms to such convenient models and even the very best case 

scenario for imputed data is that the model is approximately true. This is especially the case 

for the drug biomarker datasets provided by the sponsor company. As described earlier, these 

datasets have more than half of the values missing. Imputing all of these values will seriously 

skew the data as there are more imputed values than actual values in the model. 
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5.1.3 Implementation of Imputation Methods in Biomarker Hunter 

5.1.3.1 Choice of Imputation Method for Biomarker Hunter 

The chosen imputation model needs to be compatible with the analyses to be performed on 

the subsequent datasets. The imputation model should preserve the associations or 

relationships among variables that will be the focus of later investigation.  

For Biomarker Hunter the choice of imputation method was based on the results of a 

comparative study of these techniques (Albrecht et al, 2010). This study compared results 

using different imputation techniques to identify the most appropriate method to use for 

proteomic biomarker data. This study involved evaluating the imputed datasets against the 

original data with respect to: 

 Root Mean Squared Error (RMSE) 

 Sensitivity 

 Specificity 

 Precision 

 Jaccard Index 

 F-measure 

This study found that Minimal Value Imputation (MIN) produces the largest amount of errors 

whereas the average imputation method, REPMED, was the best single method for the 

imputation of partial datasets. This conclusion suggests that the majority of the missing 

values are the result of technical reasons as opposed to the protein or peptide being actually 

absent. Both Bayesian Principal Component Analysis (BPCA) and K-Nearest Neighbours 

(KNN) approaches work well in cases of proteins or peptides with higher feature presence 

(i.e. a lower number of missing spots). When these techniques are conducted on the entire 

dataset there is a more error involved. 

None of these methods individually give perfect results; however the best results are obtained 

when a combination of these techniques are used dependent on the situation. The 

combination of MIN and KNN gave the best results in this study (Albrecht et al, 2010).  

For those proteins or peptides which have a low feature presence (i.e. below 26%) the best 

imputation method is MIN. For those proteins and peptides with a high feature presence (i.e. 

above 74%) KNN (with k=15) was seen to be the best approach. This study concluded that 

there is no most effective method for those features with a feature presence between 26% and 

74%, however the REPMED imputation technique resulted in the fewest errors for this group. 
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5.1.3.2 Implementation of Imputation Method in R 

In order to ensure the optimum method of imputation is applied to the dataset the Biomarker 

Hunter software has the option for selective imputation. The method of imputation is 

dependent on the percentage of missing values for each peptide (i.e. the feature presence for 

each peptide).  

If the user chooses the imputation option then no further actions are necessary, and 

imputation will be applied to the dataset. If the clustering option, described in the following 

section, is also used then clustering will take place prior to imputation. This is because 

clustering aims to reduce the number of missing values rather than replace them with new 

values, and therefore increase the feature presence of the peptides. 

The feature presence (i.e. Percentage of non missing values) for each peptide is calculated 

prior to imputation so these values are called upon for the imputation section of Biomarker 

Hunter. The dataset is split into three smaller sections of peptide lists based on the feature 

presence. This is illustrated in Figure 45 which shows that the peptides with a low feature 

presence will undergo minimal value imputation (MIN). Those with a high feature presence 

will undergo K-nearest neighbours’ imputation (KNN), and the remaining data will have 

values imputed by the average imputation method (REPMED). The following three sections 

describe how the datasets are affected depending on their feature presence. 
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Figure 45 - An illustration of how a dataset may be split prior to imputation. Features 

with a i) low feature presence undergo MIN imputation ii) high feature presence 

undergo KNN and the rest use the REPMED technique. 

5.1.3.2.1 Data Section with Low Feature Presence 

The section of the dataset that has a low feature presence (i.e. less than 25%) undergoes 

Minimal Value Imputation (MIN). This is done in R by replacing all of these features with 

zero. 

5.1.3.2.2 Data Section with High Feature Presence 

The section of the dataset that has a high feature presence (i.e. larger than 75%) undergoes K-

nearest neighbours’ imputation (KNN). This is done in R using the impute.knn function. The 

K Nearest Neighbour (KNN) imputation method is implemented using the R package 
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“impute”.  This package provides the function to impute missing values in incomplete 

datasets using the nearest neighbour averaging algorithm (impute.knn).  

5.1.3.2.3 Data Section with a Feature Presence between 26% and 74% 

The section of the dataset that has a feature presence between 26% and 74% undergoes the 

repeated median method (REPMED). The data is first split into its sample groups. Following 

this a median value is calculated for each row (peptide) in each sample group. The missing 

values for each peptide are then replaced with the median of values from its group. This is 

illustrated in Figure 46. 

 

Figure 46 - A section of data before and after REPMED imputation 

 

5.1.4 Univariate Results Following Missing Value Imputation 

Selective imputation based of the feature presence was conducted to observe the effects it has 

on the identification of potential biomarker candidates. Using all four univariate methods a 

total of 1,394 features were identified as potential biomarkers following use of the clustering 

algorithm. Many of these features occurred in multiple tests. A total of 403 unique features 

were identified as potential biomarkers. This is significantly lower than the 1,024 unique 

potential biomarker candidates identified when the missing value imputation was not applied.  

Table 41 shows the number of times a feature is identified as a potential biomarker candidate. 

It shows that 16 features were identified in ten or more univariate group comparisons. Prior to 

missing value imputation 35 features were identified in ten or more statistical tests.  Once 

again this was expected as there are more features with a higher feature presence. When there 

are too many missing values it may not be possible to conduct a statistical test. Because the 

imputation techniques account for these missing values the tests would be conducted for 

those features with an originally low feature presence. 
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Table 41 - The comparison of positive hypothesis tests with and without missing value 

imputation for Dataset 3. 

Missing Values Imputed No Imputation 

+ve 

Hypothesis 

Tests 

Number of 

Features 

+ve 

Hypothesis 

Tests 

Number of 

Features 

1 115 1 359 

2 92 2 279 

3 52 3 97 

4 28 4 87 

5 31 5 49 

6 21 6 31 

7 22 7 21 

8 11 8 40 

9 15 9 25 

10 8 10 21 

11 7 11 10 

12 1 12 3 

  
13 1 

A list of the strong candidates for potential biomarkers (i.e. features identified in ten or more 

statistical tests) following clustering is shown in Table 42. 
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Table 42 - A list of the features identified as potential biomarkers in ten or more 

univariate tests following the use of missing value imputation. A full version of this table 

is given as an output when using Biomarker Hunter. 

Feature 

Identifier 

Positive Tests 

Count 

3062 12 

1231 11 

2325 11 

2956 11 

4607 11 

5384 11 

5688 11 

10547 11 

38 10 

2485 10 

3519 10 

4902 10 

5262 10 

5752 10 

8209 10 

8936 10 

 

To see the overlap of features identified with and without missing value imputation a Venn 

diagram is presented in Figure 47. This shows that 218 features were identified in both sets of 

statistical analysis. There were also 185 features which were identified as a potential 

biomarker following missing value imputation, which were not previously identified. It also 

shows that 985 of the original potential biomarker candidate list were not identified following 

missing value imputation.  
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Figure 47 - A Venn diagram comparing the number of features identified in Dataset 3 

prior to missing value imputation and after imputation. 

 

Looking at these results it shows that missing value imputation significantly changes the 

number of potential biomarker candidates identified. As stated before the original dataset had 

a high number (over 90%) of missing values. This means a large number of the values in the 

dataset which has the missing data imputed are modelled values rather than real values. This 

was expected to have a significant affect on the statistical analysis.  

Feature 9838 was recognised as a feature which was not identified as a potential biomarker 

prior to missing value imputation but was identified following missing value imputation. A 

boxplot for this feature is presented in Figure 48.  
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Figure 48 - A boxplot comparing the four groups of intensity data presented for feature 

9838, which was not identified as a potential biomarker prior to missing value 

imputation but was identified following missing value imputation. 

 

This feature originally had 23 missing values out of 40. This means it falls into the category 

of features which are imputed using the REPMED technique. The missing values are replaced 

by a median value of the actual data in the group. The original boxplot does show slight 

variation between samples and imputing the missing data may bring out this variation.  

A reason for the lower number of features identified as potential biomarkers may have been 

due to the fact that the original dataset had a large number of features (i.e. 84,487 feature) 

that had a low feature presence (Table 43). The missing values in this group are replaced by 

zero. This causes a restriction in the statistical analysis. Because a lot of these features 



Page | 150  © Cranfield University, 2011 

 

contain a large number of zeroes the data becomes essentially constant between groups. This 

means a t-test can not be conducted using this data, due to the limitations of the t.test function 

in R. This function returns an error when the two groups of data being compared are constant. 

Looking at Table 43 it can be seen that it will not be possible to conduct the univariate 

statistical tests on a large number of features. This is responsible for the large number of 

features that were not identified as potential biomarkers following missing value imputation. 

Table 43 - A breakdown of features from Dataset 3 based on the feature presence. The 

second column states the number of features in each group. 

Imputation 

Method 

Number of 

Features 

Feature 

Presence 

MIN 

Imputation 84,487 Low (<25%) 

REPMED 9,070 
Middle (25%-

75%) 

KNN 1,170 High (>75%) 

 

The choice whether imputation should be used or not is not obvious, especially since there is 

no list of actual, validated biomarkers to compare these results with. It is a useful tool for 

identifying features which have a reasonable amount of actual values (i.e. above 50%). It 

makes the variations in the data more apparent. However when there is a large number of 

missing values the technique actually hinders the analysis of these features. Ideally data with 

a low feature presence (i.e. below 25%) should be excluded from the analysis (Albrecht et al, 

2010). This is a preferred solution as it is not really possible to make strong conclusions using 

such little amounts of data. If statistical analysis is conducted on these features then ideally 

missing value imputation should not be used on this portion of the data.  
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5.2 Creation of a Clustering Algorithm to Effectively Reduce the 

Amount of Missing Data 

5.2.1  Why Imputation Isn’t Enough - The Problem  

Although missing value imputation is commonly used and a useful tool in biomarker 

discovery, there are limitations to what can be achieved with imputation alone. Although 

Biomarker Hunter distinguishes between the qualities of the data and uses the appropriate 

imputation method; the number of missing values to begin with is so great that imputation 

alone would create a large degree of uncertainty that the imputed values represent the actual 

values. Due to the high number of missing values that are typical of the datasets from 

biomarker experiments, there is a need for a more intuitive, problem-specific solution to deal 

with this issue. 

For the scope of this project, there was not much need to deal with truly missing values 

(biological missing values). Although these may also be important it is possible to conduct 

statistical analysis by ignoring or removing these values prior to data analysis. However there 

is a pressing issue to deal with the technical reasons for missing values. This is because 

simply ignoring these values can lead to false conclusions. 

As determined in Chapter 5.0.1 a major issue with these experiments is the features that may 

be incorrectly matched during the mass spectrum or gel spotting stage of the experiment. This 

occurs when a feature representing a peptide or protein is incorrectly identified. This can 

occur due to a number of reasons which can be illustrated using Figure 49 as an example. If 

the mass and retention time windows set in the peak selection or spot detection software are 

less (i.e. more accurate) than the accuracy of the mass spectrometry instruments used for the 

experiment. This results in cases where a feature (i.e. peak representing a peptide) found in a 

particular sample is labelled as a different peptide (feature) in other samples. This may be 

because it lies outside the mass/retention time window set by the feature detection software.  

As illustrated in Figure 49, feature one (F1) lies outside the mass and retention time window 

of feature two (F2), whereas feature three (F3) lies within the window.  In some cases it may 

be possible that features such as F1 are incorrectly classed as different features even though 

they actually represent the same peptide. This occurs when the mass and retention time 

window (circle in Figure 49) is less than the accuracy of the mass spectrometer used. It is this 

problem that will be dealt with, in this section, using a clustering algorithm. 
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Figure 49 - A chart plotting mass vs. retention time for a collection of features from 

Dataset 3. The circle represents a mass and retention time window around Feature F2. 

F3 lies within the mass and retention time window whereas F1 lies slightly outside this 

window. 

5.2.2 Method: Reducing the Missing Values by Identifying Mismatched 

Features - The Solution  

Re-clustering of features provides an alternative approach to imputation which is specific to 

the biomarker experiments conducted by OBT. The aim was to create software based in R to 

reduce the number of missing values, and subsequently implement this option in the R based 

pipeline Biomarker Hunter.  

This was achieved by searching for features which are likely to have been mismatched and 

then combining the values of these features. The option goes through each feature (Primary 

Feature) and firstly finds any features that are potential matches. The hypothesis underlying 

this clustering approach is that some features appear as missing because the mass and 

retention time windows are too stringent in relation to the accuracy of the analytical tools 

used (Mass Spectrometers). This causes certain peptides or proteins to appear as two or more 

features rather than one. This clustering option identifies features to cluster together based on: 

 Mass and retention time windows 

 Missing value Patterns 

 Dealing with more than one potential match 
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5.2.2.1 Mass and Retention Time Window 

The potential matches must lie within the user defined mass and retention time window of the 

primary feature. For each feature, the first task carried out by the algorithm is to identify all 

other features that lie within the mass and retention time window. The accuracy of the 

clustering (i.e. the size of the mass and retention time windows) can be set by the user. 

Ideally this level should be set depending on the accuracy, or just slightly outside, the 

accuracy of the mass spectrometer. This will allow any features that may actually relate to the 

same peptide, as the primary feature, to be identified. Table 44 illustrates an example of a 

potential match list, created following this step. It may be possible that a number of these 

potential matches may not represent the primary feature so it is necessary to identify which of 

the potential matches, truly represent the primary feature. This issue is dealt with using the 

missing value pattern of the potential matches. 

Table 44 - An example of a potential match list, including intensity values, for a primary 

feature. This shows that features 265, 345 and 400 lie within the mass and RT window 

of feature 1. NA represents missing values. 

Feature # Sample 1-1 Sample 1-2 Sample 2-1 Sample 2-2 Sample 3-1 Sample 3-2 

1 (Primary 

Feature) 12.52 13.26 25.22 NA NA NA 

265 15.57 15.26 26.54 25.63 34.55 35.93 

345 15.29 NA NA 26.99 33.45 33.98 

400 NA NA NA 24.91 34.11 34.25 

 

 

5.2.2.2 Missing Value Pattern 

Once a list of potential matches has been created, the features that cannot possibly be a match 

are eliminated from the list. This section of the algorithm ensures that features that definitely 

do not relate to the same peptide are not clustered together. Using the example match list in 

Table 44, it can clearly be seen that feature 265 does not represent the primary feature 1 

because it does not have any missing values. Feature 345 also does not represent feature 1 as 

the missing value pattern does not match (i.e. there is a present value for sample 1-1 in both 

the primary feature and feature 345). From the list only feature 400 is a match there are no 

conflicting values between this feature and the primary feature. In this case the values from 

both from both features will be merged to create one full feature as shown in Table 45. 
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Table 45 - Primary Feature 1 data following clustering 

Feature # Sample 1-1 Sample 1-2 Sample 2-1 Sample 2-2 Sample 3-1 Sample 3-2 

1 (Primary 

Feature) 12.52 13.26 25.22 24.91 34.11 34.25 

 

 

5.2.2.3 Conflicting Matches 

It may be possible that there are two or more potential matches for the primary feature as 

illustrated in Table 46. In this example feature 1 is the primary feature for which a match is 

being searched for. A conflicting match occurs when two or more features lie within the mass 

and time retention window and also have a matching missing value pattern. In these cases the 

feature which lies closest to the primary feature in the mass and retention time window is 

used as the matching secondary feature. The methodology used is described in more detail in 

the following section. 

Table 46 - An example of a potential match list, including intensity values, for a primary 

feature with two possible matches 

Feature # Sample 1-1 Sample 1-2 Sample 2-1 Sample 2-2 Sample 3-1 Sample 3-2 

1 (Primary 

Feature) 12.52 13.26 25.22 NA NA NA 

400 NA NA NA 24.91 34.11 34.25 

426 NA NA NA 25.99 33.99 36.66 

5.2.3 Constraints of the Clustering Algorithm  

Although this technique will reduce the number of missing values it is important that it is 

used properly. It is imperative that the correct mass and retention time windows are 

employed. If this is not done the use of the clustering algorithm could result in serious 

misrepresentation of the biomarkers identified.  

An alternative to this clustering algorithm is available in the Progenesis SameSpots software 

(Non-Linear, 2010). This is a commercially available package that deals solely with 2D gel 

data. This presents a novel alignment approach which allows for gel distortions in the 

analysis of 2D gels without incurring any missing values. This is done by positioning all the 

spots in exactly the same location so all the gels contain the same number of spots. This 

software however is used earlier in the biomarker discovery workflow described earlier in 

section 1.3.1. This software needs to be implemented at the gel image analysis stage. This is 
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seen as the superior tool to use for the purpose of reducing missing values compared to other 

available methods (Fong et al, 2009). The Progenesis LC-MS software also applies a similar 

algorithm to eliminate missing values in LC-MS data. Unfortunately using the Progenesis 

tools was not an option for this project as the gel images and MS peaks had already been 

identified. 

5.2.4 Implementation of the Clustering Algorithm in Biomarker Hunter 

This section describes in detail how the clustering algorithm works and conducts the solution 

as described in section 5.2.1. 

5.2.4.1 Data Importing and Extraction of Feature 

The script imports a .csv file of data from either mass spectrometry or 2D-gel experiments. It 

allows the user to remove any unnecessary rows which may be contained in the file. For the 

clustering script the first column should contain the identifier of the index, which is referred 

to as PCIs or MCIs. The following columns should contain the intensity values from the 

experiments. The final two columns should contain the relating mass and retention times. The 

program extracts the information separates this information into its relevant components.  

1. Feature List: A list (Vector) of all the identifiers (“PCIList” in R). 

2. Intensity Data: A matrix of all the intensities with each row representing an index 

(identified by the Feature List), and each column representing a different sample 

(“IntensityData” in R). 

3. Mass Data: A vector containing the mass data (“MassData” in R). 

4. RT Data: A vector containing the retention time data (“RTData” in R) 

 

5.2.4.2 Calculating Feature Matrix 

To allow both quick calculations of the feature presence and for subsequent pattern matching, 

a binary version of the intensity data is created. This is referred to as the feature presence 

matrix (“FeaturePresenceMatrix” in R). An example of a feature presence matrix is shown in 

Figure 51, which shows the resultant matrix from the example dataset shown in Figure 50. 

This is achieved by making a copy of the intensity data and changing all the missing values to 

a zero and giving all other (present) cells a value of one. The feature presence for each feature 

can then easily be calculated by using the R function rowSums on the feature presence 
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matrix. This creates a vector of the feature presence results (FeaturePresenceResult), for 

which the Feature List can be used as a reference index.  

 
Figure 50 - An example of proteomic data 

 

 

 

Figure 51 - An example of a Feature Presence matrix for Figure 50 

Figure 52 Illustrates the preparation steps required prior to the clustering steps which are 

described above.  

 

Figure 52 - The preparation of a dataset prior to clustering. 

 

5.2.4.3 Create Clustering Results File 

A blank output data frame (“ClusterInfo” in R) is created which will subsequently be used to 

display the information of which features have been clustered together. Table 47 is a column 

by column brief of the output data frame. 

 

 

 

 

 

 

 

 

PCI Grp1 Grp1 Grp2 Grp2

1 8.51 0.00 1.59 2.02

2 0.00 8.14 0.00 0.00

PCI Grp1 Grp1 Grp2 Grp2

1 1 0 1 1

2 0 1 0 0
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Table 47 - Explanation of the Output File (ClusterInfo) 

Column 

Heading 

Notes 

1 Feature 

Identifier 

The following columns are present for each feature (Data may include NA’s). 

The clustering loop described later in this section will iterate through each 

feature as the primary feature: the feature against which all other features 

(secondary features) will be checked for potential matches. 

2 Status 

 

This column will state the outcome, for each feature, of the clustering 

loop. This information will be either: 

 “100% Actual Feature Presence” – These features already have 

100% feature presence so do not need any clustering. 

 “No Potential Secondary Matches” – These features cannot be 

clustered with any other features. This suggests there are no 

features which fall within the mass-retention time windows and 

also have no conflicts in the Feature Presence matrix. These 

potential secondary matches will be identified in column five and 

onwards. 

 “Clustered as Primary” – These features have one or more potential 

matches which fall within the mass-retention time windows and 

also have no conflicts in the Feature Presence matrix. 

 “Matched” – These features, as a secondary feature, have been 

found as a clustering match for another feature (Primary feature) 

 “Conflicting Matches” – These are features for which more than 

one feature has been found to be a potential match, but there is a 

conflict in the Feature Presence matrix between the secondary 

features. 

3 Number of 

potential 

matches 

For any feature which has been “Clustered as Primary”, or “Conflicting 

Matches”, this column will contain the number of secondary features 

which have been found within the Primary features mass-retention time 

window. There should also be no intensity values in the secondary Feature 

Presence matrix for samples that contain values in the Primary feature. 

4 Clustered (as 

secondary) with 

features 

For any feature which has been classed as “Matched” this column will 

identify the feature they have been matched with (Primary feature). 

5 – 20 

Secondary 

Matches 

These columns identify the secondary features which are potential matches 

for the Primary feature. 
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5.2.4.4 The Clustering Loop 

This section describes the process which finds features which can be clustered together. This 

loop is conducted for each feature in the list of data. Figure 53 illustrates the loop that goes 

through each feature.  

i. Firstly the feature presence is checked. If the feature presence is already 100%, 

this means that all the samples have an intensity value for this feature which 

means clustering is not needed. Unless this is the case the algorithm continues to 

step ii. 

ii. A mass and retention time window is created using the primary features Mass and 

retention time values along with the user defined mass and retention time 

tolerance levels.  

 

Figure 53 - The Primary Loop 

iii. A secondary loop searches through all the other (secondary) features to see if they 

are potential matches for the candidate (primary) feature. It immediately rejects 

those features which: 

a) have already been matched 

b) display 100% feature presence 

c)             have a feature presence more than the number of missing    

values in the primary feature 

iv. The remaining rows are checked to find those that fit within the created mass-

retention time window. For those features which fall into this category the binary 

Feature Presence matrix is checked for any conflicts between the primary and 

secondary features. This is done by adding together the binary rows of the primary 

feature and the secondary feature and ensuring there is no values above 1 in the 

results list. Figure 54 and 37 show examples of conflicting and non-conflicting 

matches. In Figure 55, the feature 2 would be rejected as a possible match as the 

second sample has intensity values in both features. 
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Figure 54 - An example of two non-conflicting feature presence matches 

 

 
Figure 55 - An example of two conflicting feature presence matches 

 

Figure 56 illustrates the process of searching for potential matches for each Primary feature. 

If there is at least one other (secondary) feature whose mass and retention times fall into this 

category, the algorithm for this feature continues to step v. Those features with no matches 

are classed as “No Potential Secondary Matches” in the status column of the ClusterInfo 

output data frame. 

 

 

Figure 56 - The secondary loop which searches for potential matches 

v. A subset of the Feature Presence matrix (PatternMatchMatrix” in R) is created 

using the primary features and secondary features which may be potential matches 

(Figure 57). Column sums are created using the R function colSums to ensure 

there is no pattern matching conflicts like those illustrated in Figure 58. If any of 

the column sums contain a value greater than one, the primary feature is classed as 

“Conflicting Matches” in the status column of the ClusterInfo output data frame. 

 
Figure 57 - An example of a non-conflicting feature presence matrix 

 

PCI Grp1 Grp1 Grp2 Grp2

1 1 0 1 1

2 0 1 0 0

PCI Grp1 Grp1 Grp2 Grp2

1 1 1 0 1

2 0 1 1 0

PCI Grp1 Grp1 Grp2 Grp2

1 1 0 0 1

2 0 1 0 0

3 0 0 1 0
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Figure 58 - An example of a conflicting feature presence matrix 

vi. Assuming there are no pattern match conflicts in the previous steps (Figure 57), 

the remaining features are “Clustered” together. A loop iterates through each 

sample in the primary feature. If there is a value present then this is ignored. If a 

value is missing, the secondary features are searched for a value within that 

sample to replace any missing values that it can. 

 

5.2.4.5 Clustering output Files 

Once the above steps have been conducted on each feature a clustered version of the original 

dataset is created. This is done by removing the rows of data which have been clustered as 

secondary features. Three csv files are created: 

1. Clustered data (Projectname_ClusteredData.csv) – A copy of the clustered dataset.  

2. Clustering information (Projectname_ClusteredInfo.csv) – The results of how the 

clustering algorithm has performed for each feature as described in Table 47. 

3. Clustered comparison information (Projectname_ClusterComparison.csv) – This 

table contains the statistics comparing both the original and clustered dataset. It 

contains the number of features, total possible values and the number and percentage 

of present values as shown in the hypothesised example in Figure 59. 

 
Figure 59 - An example of a Cluster Comparison table which outlines the effectiveness 

of clustering on the dataset. 

 

 

 

PCI Grp1 Grp1 Grp2 Grp2

1 1 0 0 1

2 0 1 0 0

3 0 1 1 0

Initial Post-Clustering

Number of PCI 10,000 9,500

Total Possible Values 200,000 190,000

None Missing Values 170,000 170,000

Percentage of None missing Values 85.00 89.47
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5.2.5 Results of using the Clustering Algorithm 

The Clustering algorithm was used on Dataset 3 to identify its effects on the univariate 

analysis conducted. This section describes the use of this algorithm as well as its impact on 

the results obtained. 

5.2.5.1 The Mass and Retention Time Window Used  

It was necessary to identify the number of features which fall within the mass and retention 

time windows of each other feature. This was tested using different mass and retention time 

windows to give an idea of which tolerance levels should be used. The ideal tolerance level is 

variable depending on factors such as, the accuracy of the analysis tools (LC-MS), the 

tolerance levels used on the original clustering software or the companies’ requirements. 

Figure 60 shows a graph of the number of features which fall within the mass and retention 

time tolerance levels for each other feature (Mass tolerance: ±0.1  RT tolerance: ±0.5s). This 

is the mass and RT tolerance levels that were used on Dataset 2. This shows that over 54,000 

features have no close neighbours within the tolerance levels. The various mass and retention 

time windows were also tested. These graphs are also presented in Figure 60. 
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Figure 60 - Number of potential matches within the mass and tolerance windows for 

each feature 
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Following discussions with the laboratory the ideal mass and retention time windows for this 

dataset were: Mass tolerance: ±0.1 & RT tolerance: ±0.5seconds. This was because these 

values matched the sensitivity of the mass spectrometer. 

Looking at the graphs in Figure 60 it can be seen that the other mass and retention time 

windows were not ideal. Increasing the mass tolerance has an effect on the number of 

features within the windows. This is because the mass accuracy is much higher than accuracy 

of the retention time. The graphs show that increasing the mass window creates a larger 

number of features within the windows. This would cause clustering of features that don’t 

belong to the same peptide, which would lead to huge errors in the dataset. This was also the 

case when the retention time window was increased to ±1second. When the retention time is 

decreased the increased stringency decreases the number of mismatched peptides that can be 

clustered. 
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5.2.5.2 Evaluation of the Clustering algorithm in Use  

Once the Clustering algorithm was applied to Dataset 3, the nature of the dataset was 

compared prior to clustering and following clustering. The comparison is shown in Table 48. 

This shows that the number of features was reduced which in turn resulted in a decrease in 

the percentage of missing values in comparison to the original dataset. This shows the 

clustering algorithm software does have a significant impact on the number of missing values 

in the dataset. It is important that the ideal tolerance levels are adjusted depending on the data 

source (i.e. the accuracy of the LC-MS technology). Although the results shown only display 

a slight increase, this is because the initial percentage of missing values was large.  

Table 48 - Comparison of the dataset before and after ClusterFix was applied 

  Initial 

Post-

Clustering 

Number of Features 94727 75863 

Total Possible Values 3789080 3034520 

Present Values 367432 367193 

Percentage of Present 

Values 9.69713 12.1005299 

5.2.5.3 The Effect of Clustering on Statistical Analysis Results 

The use of the clustering algorithm on Dataset 3 was analysed to observe the effects it has on 

the identification of potential biomarkers. Using all four univariate methods a total of 3,510 

features were identified as potential biomarkers following use of the clustering algorithm. 

Many of these features occurred in multiple tests. A total of 1,163 unique features were 

identified as potential biomarkers. This is slightly more than the 1,024 unique potential 

biomarker candidates identified when the algorithm was not applied. This was expected as 

the use of the clustering algorithm, although reducing the number of features, increases the 

feature presence of the remaining features. This gives more confidence to the individual 

univariate tests for these features. 

Table 49 shows the number of times a feature is identified as a potential biomarker alongside 

the number of features in each category. It shows that 43 features were identified in ten or 

more univariate group comparisons, and one feature was identified in thirteen univariate 

group comparisons. Prior to clustering 35 features were identified in ten or more statistical 

tests.  Once again this was expected as there are more features with a higher feature presence.  

 



Page | 166  © Cranfield University, 2011 

 

Table 49 - The comparison of positive hypothesis tests with and without using the novel 

clustering algorithm for Dataset 3. 

Clustering Algorithm 

Used No Clustering 

+ve 

Hypothesis 

Tests 

Number of 

Features 

+ve 

Hypothesis 

Tests 

Number of 

Features 

1 383 1 359 

2 344 2 279 

3 97 3 97 

4 97 4 87 

5 65 5 49 

6 41 6 31 

7 29 7 21 

8 39 8 40 

9 25 9 25 

10 27 10 21 

11 14 11 10 

12 1 12 3 

13 1 13 1 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 167  © Cranfield University, 2011 

 

A list of the strong candidates for potential biomarkers (i.e. features identified in eleven or 

more statistical tests) following clustering is shown in Table 50. 

Table 50 - A list of the features identified as potential biomarkers in ten or more 

univariate tests following use of the clustering algorithm. A full version of this table is 

given as an output when using Biomarker Hunter. 

Feature 

Identifier 

Positive 

Tests Count 

31189 13 

4607 12 

16780 11 

17500 11 

1775 11 

2760 11 

2929 11 

3226 11 

4485 11 

4824 11 

5103 11 

53826 11 

5839 11 

6856 11 

9077 11 

97 11 

 

To see the overlap of features identified with and without clustering a Venn diagram is 

presented in Figure 61. This shows that 875 features were identified in both sets of statistical 

analysis. There were also 288 features which were identified as a potential biomarker 

following clustering, which were not previously identified. It also shows that 148 of the 

original biomarker list were not following clustering. It was expected that the clustering 

would have an effect on the resultant biomarker candidates as the clustering changes the 

nature of the dataset by combining values of certain features.  
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Figure 61 - A Venn diagram comparing the number of features identified in Dataset 3 

prior to clustering (Chapter 3) and after clustering. 

 

Looking at these results it shows that clustering does not drastically change the number of 

potential biomarkers identified. The results also show that there are a number of features 

identified following clustering that were previosly ignored. One of these features was Feature 

31189. Looking at the clustering information this feature was clustered with Features 38386 

and 2658. Feature 2658 was previously identified as a strong candidate as a potential 

biomarker which would explain why Feature 31189 is now identified as a potential biomarker 

following clustering. 

Feature 840 was identified as a potential biomarker following clustering but not prior to it. 

Looking at the clustering information this feature was clustered with Features 64515, 48867, 

17489, and feature 20271, which are all features that were also not identified as a potential 

biomarker candidate following clustering. Before clustering occurred all these features had a 

low feature presence (i.e. Feature 840 had 36 missing values). Following clustering with four 

other features only five of the values for this feature were missing. Figure 62 shows a boxplot 

of the data following clustering. This boxplot suggests there may be significant differences in 

the data between the groups, specifically between group 3 and the other groups.  
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Figure 62 - A boxplot comparing the four groups of intensity data presented for feature 

840, which was identified as a potential biomarker following clustering but not before. 

 

It would be interesting if it was possible to identify the features that have been clustered 

together for Feature 840, in order to identify whether this clustering was appropriate. This 

would help validate the clustering algorithm, but unfortunately this information is not 

available due to the confidentiality of the experiment. 
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5.3 The Suggested Analysis Strategy for Biomarker Identification 

Following the conclusions from this chapter and Chapters 3 and 4 a suggested statistical 

analysis strategy was decided. The suggested analysis steps are outlined in the options file 

obtained from Biomarker Hunter (Table 51). Statistical analysis was conducted on Dataset 3 

using this strategy. Technical replicates were not averaged. Total abundance normalisation 

was implemented to reduce technical variation. The clustering algorithm was used to reduce 

the presence of missing values prior to missing value imputation. Following statistical 

analysis the Benjamini Hochberg algorithm was used as the multiple testing correction 

method. It is important to remember that this suggested strategy relies more on the theories 

suggested by the literature as opposed to results compared with actual, validated biomarkers. 

An actual ideal statistical analysis strategy can only be suggested following this comparison. 

Table 51 - The options file for the statistical analysis using the suggested strategy.  

Biomarker Hunter Options Used? 

Total abundance normalisation ? Y 

Averaging of technical replicates? N 

ClusterFix used? Y 

Missing data imputed? Y 

User defined Minimal Value Imputation used? N 

Is Multiple Testing implemented? Y 

Multiple Testing Method? Benjamini-Hochberg 

 

Using this suggested analysis strategy a total of 302 features were identified as potential 

biomarkers of which 201 were unique. Table 52 shows the number of times a feature is 

identified as a potential biomarker alongside the number of features in each category. It 

shows that twenty six features were identified in three univariate group comparisons. This 

suggests that these are the features of greatest potential interest and are identified in Table 53. 

Proteins are usually made up of a number of peptides. As this experiment involved on the 

study of peptides it is expected that a number of these features will relate to the same 

proteins. This is because all the features relating to protein biomarkers will be differentially 

expressed between the groups. This will reduce the number of potential biomarker 

candidates. 
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Table 52 - The comparison of positive hypothesis tests using the suggested analysis 

strategy and the original analysis (Chapter 3) without any data processing for Dataset 3. 

Suggested Strategy Used 

Chapter 3 (No 

Processing) 
+ve 

Hypothesis 

Tests 

Number of 

Features 

+ve 

Hypothesis 

Tests 

Number of 

Features 

1 126 1 359 

2 49 2 279 

3 26 3 97 

  

4 87 

  

5 49 

  

6 31 

  

7 21 

  

8 40 

  

9 25 

  

10 21 

  

11 10 

  

12 3 

  

13 1 

 

Table 53 - A list of the features identified as potential biomarkers in three univariate 

tests following the suggested statistical analysis strategy for Dataset 3. A full version of 

this table is given as an output when using Biomarker Hunter. 

Feature 

Identifier 

Positive Tests 

Count 

Feature 

Identifier 

Positive Tests 

Count 

1250 3 49809 3 

12568 3 5103 3 

14297 3 53826 3 

16294 3 540 3 

16780 3 5839 3 

1722 3 6144 3 

17500 3 6427 3 

1775 3 794 3 

23223 3 83143 3 

2760 3 8936 3 

2929 3 91342 3 

3226 3 9954 3 

3570 3 4485 3 
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6 Multivariate analysis 

This chapter now focuses on the multivariate analysis options available for the use of 

biomarker identification from proteomic experimental data. The principal advantage of 

proteomic analysis is the quantification of a large number of variables simultaneously, 

allowing the generation of very large multivariate datasets. Due to the large dimensionality of 

proteomic biomarker datasets, and intrinsic difficulty in identifying small differences 

between groups, they can be effectively analysed through statistical multivariate tools. The 

main benefit of multivariate techniques is that they allow combinations of features to be 

identified, as opposed to the univariate methods which just provide information about each 

individual variable independently.  

These tools are effective in representing the multivariate structure of the proteomic data. 

Although these techniques are usually used to identify any relationships between sample 

groups, post-hoc analysis can be conducted to identify the features (peptides or proteins) that 

are responsible for the variations between the sample groups (if any). 

The use of multivariate statistical methods or pattern recognition techniques which analyse a 

group of peptides rather than only concentrating on a single peptide at a time can help with 

this loss of correlation information. These techniques are generally better, than univariate 

methods, at dealing with “long-lean datasets”, in which the number of proteins or peptides 

being analysed greatly outnumber the number of samples. This is usually the case with 

proteomic biomarker experiment data. Any models that are constructed through these 

multivariate techniques must be robustly tested using cross validation through a “train and 

test” procedure.  

As mentioned earlier in section 2.2, the Biomarker Hunter pipeline offers three multivariate 

methods. These are Principal Component Analysis (PCA), Hierarchical Cluster Analysis 

(HCA) and Partial Least Squares – Discriminant Analysis (PLS-DA). Both PCA and HCA 

are methods which have been designed to identify the relationships between the samples and 

proteins rather than identifying differences in protein abundance like the univariate tests. 

Although PLS-DA is a classification technique, it can be used to identify features (peptides or 

proteins) that are responsible for the classification of these sample groups. 
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In this chapter, these multivariate methods are evaluated on proteomic experimental data. The 

chapters will explain the methodologies of the techniques along with their uses and 

limitations. The results offered by these methods will also be presented. The multivariate 

techniques HCA and PCA were conducted on Dataset 1 (Circadian Variation). These 

techniques were implemented to determine whether time of sample collection significantly 

affects the proteomic composition of Zebrafish Embryos (ZFEs). These results will be in the 

form of PCA scores plots and HCA dendrograms. The PCA analysis will be used to 

investigate the features that are responsible for the variance between datasets. The 

multivariate technique PLS-DA was used on Dataset 3, the same data that the univariate 

analysis was conducted on, allowing direct comparison. These results will be compared with 

the univariate results obtained for this dataset in Chapter 3. To allow a fair comparison the 

PLSDA will be conducted without any data pre- or post-processing options. The missing 

values were replaced by zeroes. 

 

6.1 Hierarchical Cluster Analysis (HCA) 

Cluster analysis is a set of techniques usually conducted on datasets in order to form 

homogenous groups of samples, based on their observed characteristics. Cluster analysis can 

be used in tests where classification of a sample is needed as well as when data needs to be 

simplified or relationships within datasets need to be identified. It allows a large number of 

variables to be represented by a lower number of factors. Cluster analysis allows the 

extraction of information from datasets with large amounts of inter-related data to assist in 

making conclusions about the data. Identification of groupings among variables based on 

relationships which emerge from the correlation matrix allows conclusions to be made 

regarding the nature of an unknown or unclassified sample.  

Hierarchical cluster analysis uses nested tree-like dendrograms which reflect the relationship 

between samples based on their distance from each other. Each sample starts off as its own 

cluster and they are appropriately merged until each sample belongs to a larger cluster. There 

are a variety of distance measures and clustering methods that can be utilised for HCA. The 

three general types of similarity measure are: 
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1. Distance measures: These are most commonly used in biological studies. The most 

common distance measure used is the Euclidean distance (Bagnall & Janacek, 2005) 

                

dxy is the distance between samples x and y related to the variable in question. X is the 

variable in question. 

2. Correlation measures 

3. Agreement or matching-type measures 

There are also various methods used to cluster the samples. The most common used is the 

average linkage algorithm. The results may differ dependent on which of these are used. All 

these methods have their own uses and advantages.  

6.1.1 Methodology of HCA 

The basic theory behind cluster analysis is the minimisation of the ratio: 

                             

                              
 

First the problem or question being evaluated needs to be defined. For example is sample X 

from a diseased or normal state individual, or are there any relationships between groups of 

samples. Then a representative set of attributes are identified (i.e. in this case the abundance 

of peptides or proteins in each sample are obtained from proteomic techniques). These 

variables are converted into comparable, compatible units to allow direct comparison 

between samples. A correlation matrix is then created using the required distance measure to 

use (e.g. Euclidean or Mahanolobis distance measures). The entities are then grouped using a 

linkage algorithm (e.g. Single or complete linkage). These methods determine the number of 

clusters presented. A HCA dendrogram is then created which can be visually analysed by 

researchers. 

6.1.2 Constraints of HCA 

Issues arise with cluster analysis due to the fact that it is a highly subjective process and no 

tests are implemented to test the significance of the results (Child, 2006). Most cluster 

analysis use relatively simple methods which are not usually supported by an extensive body 

of statistical reasoning. Compared to other statistical methods it largely relies on the user to 

make correct conclusions based on the dendrogram. Additionally the different linkage 

methods usually generate different solutions for the same dataset, so it is often difficult to 



Page | 175  © Cranfield University, 2011 

 

evaluate the quality of the clustering and therefore difficult to make confident statements with 

regards to HCA results. Some problems may also arise when comparing variables using 

different units as well as when variables are correlated with others 

6.1.3 HCA Implementation in Biomarker Hunter 

If multivariate analysis is selected then the user is asked for the required distance measure 

and agglomeration methods. Once these have been selected a distance matrix is created in R 

using the dist function by calculation of the distances between the rows of a data matrix. 

Using this distance matrix a dendrogram is created using the hclust function in R which is 

then saved as a plot (Figure 63) in the results folder. The pipeline offers all the available: 

 Distance measures (Gordon, 1999) 

o Euclidean 

o Maximum 

o Manhattan 

o Canberra 

o Binary 

o Minkowski 

 Linkage algorithms (Gordon, 1999) 

o Ward 

o Single 

o Complete 

o Average 

o Mccquitty 

o Median 

o Centroid 

6.1.4 HCA Results 

Hierarchical Cluster Analysis (HCA) was conducted on Dataset 1. Examples of dendrograms 

produced can be seen in Figure 63 and Figure 64, using different distance measure methods. 

As described in section 2.1.1 there were a total of ten samples analysed for this study. The 

study aims to determine whether there are significant differences in protein expression 

between samples collected at 0900 and those collected at 1200. There are five samples (A-E) 

in each time group (9 or 12). If the circadian rhythm (i.e. time of sample collection) has a 

significant effect on protein expression then this will be displayed by tight clustering of 
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samples A:E9 and tight clustering of samples A:E12. The dendrogram should also display 

clear differences between the two clusters of samples from group 9 and group 12. 

There was evidence of grouping between the different time points, but there was also some 

evidence of close grouping between samples from different time points. This is shown in 

Figure 63 with the close relationship between samples A-9 and D-12, as well as between B-9 

and E-12. This suggests that the time may have an effect between the groups however there 

are also variations between the sample groups that are not due to time 

 

Figure 63 - HCA cluster dendrogram for the circadian rhythm study, using Euclidean 

distance measure and complete linkage algorithm. 

Similar traits were shown when the Manhattan distance measure is implemented rather than 

the Euclidean measure (Figure 64). Although there is some separation between samples from 

different time groups, this dendrogram shows very close relationships between E-9 and E-12. 
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Figure 64 - HCA cluster dendrogram for the circadian rhythm study, using Manhattan 

distance measure and complete linkage algorithm 
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6.2 Principal Component Analysis (PCA) 

PCA is a non-parametric, multivariate technique used to analyse large datasets which is 

ideally suited to a study where the structure of relationships among samples is being 

examined within interdependent datasets. It can be useful for extracting relevant information 

from confusing datasets. PCA involves the elimination of data redundancy hence reducing 

the number of variables. It is usually used for the investigation of the relationships within 

datasets with a large number of variables, and can help explain these variables in terms of 

their common underlying structure. PCA involves aggregation of the information obtained 

from a set of variables into a simpler, more manageable set of variables, referred to as 

components and factors, while still retaining as much of the data contained in the original 

dataset. PCA reduces the dimensionality of the data by retaining the characteristics of the 

data which contribute the most to its variance.  

A factor or component can be referred to as a linear combination of the original variables. 

They represent the underlying dimensions which summarise the information obtained from 

the original set of variables. Mathematically PCA can be described as an orthogonal linear 

transformation that converts the larger dataset into a simpler co-ordinate system in a way that 

the greatest variance by any projection of the data comes to lie on the first principal 

component (PC) and the second greatest on the second and so on. 

6.2.1 Methodology of PCA 

PCA involves decomposition of the matrix X into a smaller dataset Y which has a dimension 

of L. Matrix Y is the Karhunen-Loeve transform (KLT) of matrix X (Gerbarands, 1981). 

            

If matrix X has a dimension (Number of variables) of L. PCA must reduce the data in a 

manner that the entire dataset can be described with a lower number of components M. The 

data is arranged into N number of vector each representing a single grouped observation of 

the M variables. A matrix is then formed with dimensions of M x N.  

PCA is done by considering the total variance of the variables. The Eigenvalue (or latent 

root) is the amount of variance accounted for by a factor. A factor matrix shows factor 

loadings. Factor loadings show the correlation of each variable to each factor.  

First the problem or question being evaluated needs to be defined. For example, is sample X 

from a diseased or normal state individual, or are there any relationships between groups of 
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samples. This is followed by selection of samples for the purpose of analysis. The relevant 

factors (i.e. the variables and the respondents) are then extracted (Shlens, 2005). The data is 

then organised in a m x n matrix, where m = number of variables and n = number of samples. 

From this the co-variance of the variables is calculated using either the SVD or eigenvector 

decomposition methods (Jolicoeur & Mosimann, 1960). This leads to a reduced list of 

variables (factors) which are then labelled based on the amount of variance each factor 

captures. The criteria for the Eigenvalue suggest that the factors included in the analysis 

should account for the variance of more than a single variable (i.e. Eigenvalue > 1). 

 

6.2.2 Constraints of PCA 

PCA does have some limitations however the majority of these lie within its actual strengths. 

PCA is a non-parametric test and no prior knowledge is incorporated therefore the 

compression of the data matrix may incur loss of information. The technique relies on second 

order statistics and can be statistically dependent, in which case PCA may fail to find the 

most compact description of the data (Kambhatia & Leen, 1997). As with most analysis 

techniques the amount of noise in the dataset must be low so this should be removed prior to 

PCA analysis (Shlens, 2005). 

PCA is a linear method and may cause problems where relations between the X and Y values 

are not linear: This has lead to non-linear PCA algorithms such as kernel PCA. If the data 

contains sufficiently large anomalies this may misconstrue the PCA’s definition of normal 

variance, PCA assumes that the mean and the variance in a dataset entirely describe the 

probability distribution of it (Ringberg et al, 2007). Additionally In cases where PCA is used 

for clustering it doesn’t account for class separation. 

 

6.2.3 PCA in Biomarker Hunter 

If multivariate analysis is required then a PCA graph comparing the two most significant 

principal components against each other as shown in Figure 65 is saved in the results folder. 

The principal component analysis is conducted using the prcomp function in R. Following 

that a plot is created using the scores matrix and the plot function in R. 
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6.2.4 PCA Results 

Principal Component Analysis (PCA) was conducted on Dataset 1 to provide a visualisation 

that would allow conclusions to be made regarding the sensitivity of circadian rhythm 

between samples collected at 09:00 and samples collected at 12:00. The PCA analysis was 

conducted twice on Dataset 1. The first analysis was done by removing the missing values 

from the dataset (Figure 65), while the second analysis was done with the missing values 

being replaced by zero (Figure 66). 

 

Figure 65 – A PCA plot to identify any possible relationships between samples collected 

at 09:00am compared to samples collected at 1200noon from Dataset 1 (Ignoring 

missing values).  
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Table 54 - Variance attributable to each Principal Component (PC) for the analysis of 

Dataset 1 (Ignoring missing values).  

Principal Component Variance Variance (%) Cumulative variance (%) 

PC1 0.792294548 79.23% 79.23% 

PC2 0.178102698 17.81% 97.04% 

PC3 0.006567569 0.66% 97.70% 

PC4 0.002632282 0.26% 97.96% 

The results of the first analysis show that the first two principal components (PCs) capture 

97% of the variance (Table 54), with PC1 representing more than 79% of the variance. If the 

samples are significantly differentiated into the two time bands with respect to PC1 (i.e. 

differentiated horizontally) then it can be concluded that circadian rhythm severely affects the 

expression of proteins. 

 

Figure 66 - A PCA plot to identify any possible relationships between samples collected 

at 09:00 am compared to samples collected at 1200 noon from Dataset 1 (Missing values 

replaced by zero). 
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Table 55 - Variance attributable to each Principal Component (PC) for the analysis of 

Dataset 1 (Replacing missing values with zero). 

Principal Component Variance Variance (%) Cumulative variance (%) 

PC1 0.703707109 70.37% 70.37% 

PC2 0.164424594 16.44% 86.81% 

PC3 0.026567569 2.66% 89.47% 

PC4 0.026322827 2.63% 92.10% 

PC5 0.020633945 2.06% 94.17% 

The results of the second PCA show that the first two principal components (PCs) capture 

86% of the variance (Table 55), with PC1 representing more than 70% of the variance. So 

again if the samples are significantly differentiated with regards to PC1 (i.e. differentiated 

horizontally) then it can be concluded that circadian rhythm severely affects the expression of 

proteins. 

In both the PCA analyses there is some evidence of differences between samples taken at 

0900 hours and those from 1200 hours, in that those taken at 0900 hours appear higher in the 

plot. However, the vertical axis only represents 16% of the variance within the samples, so 

the influence of sampling on the overall variance is low. The horizontal axis however 

(representing 70% of the variance) does not show correlation with the time of collection. The 

PCA results suggest that there are small differences between samples collected at 0900 and 

those at 1200 but there is more variation within the samples which is due to factors other than 

time. Through Biomarker Hunter a list of features (gel spots) which contribute most to the 

position of the points in the PCA plot were identified for each PC (Table 56 and 57). This 

was done by examining the loadings matrix from the PCA analysis. 

Table 56 - A list of MCI's contributing to most of the variance for each PC (Analysis 1 – 

Missing values ignored) 

PC1 PC2 

705 

479 

576 

416 

705 

385 

831 

392 

479 
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Table 57 - A list of MCI's contributing to most of the variance for each PC (Analysis 1 – 

Missing values replaced by zero) 

PC1 PC2 

416 

479 

705 

576 

 

479 

705 

385 

 

These results show that features 705 and 479 are very influential for both PC1 and PC2. 

Features 416 and 576 are significantly responsible for the variance displayed in PC1, while 

features 385, 831 and 392 are significantly responsible for the variation in PC2. This suggests 

that these features may warrant further investigation with regards to their impact on the 

circadian rhythm, as PC2 shows some distinction between the two groups of samples. For 

smaller datasets (i.e. smaller number of features) the dataset can be transposed to treat the 

different samples (A:E 9 and 12) as variables and treat the features as the samples to see if 

any grouping occurs between the features. If any distinct features are identified then these are 

likely to be the features responsible for the variance between the samples. 
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6.3 Partial Least Squares Discriminant Analysis (PLS-DA) 

Approaches such as Principal Component Analysis (PCA) simply identify the amount of 

variance a protein gives to total variation in a given dataset. Additionally they are both 

unsupervised explanatory techniques. This means that all the variables are treated in the same 

way and there is no distinction between explanatory and dependent variables. Alternatively 

PLS determines a threshold level for which proteins are significant in the classification of 

samples into various groups. The threshold value can then be set to identify those proteins or 

peptides which contribute to the differences between samples. PLS-DA is a supervised 

technique which is designed to identify the differences between defined groups. 

PLS-DA is a classification technique which classifies samples following consideration of its 

multivariate structure. PLS-DA is a supervised multivariate classification method which has 

been identified as a technique which can be used for the purpose of classification of data from 

proteomic experiments. It is a multivariate regression technique which can be used to identify 

relationships between one or more dependent variables (Y) and a group of descriptors (X). 

The group of descriptors (X) and the dependent variables are simultaneously modelled to 

discover the latent variables (LV) in X, which can be used to predict the latent variables in Y 

while concurrently identifying the largest possible information present in X. The Latent 

Variables (LV) are similar to the principal components (PCs) that are calculated from 

Principal Component Analysis (PCA), so the first LV accounts for the largest amount of 

maximum residual variance.  

6.3.1 Methodology of PLS-DA 

PLS-DA based classification techniques assign an object (x) to a class (g) where P(g/x) is at 

its maximum value where: 

       
        

        
 

Pg = prior probability of class g   Pk   prior probability of class k (k ≠ g) 

f(x|g) = probability density function of class g  f(x|k) = probability density function of class k 

Each class is derived by a Gaussian multivariate probability distribution obtained by the 

following formula.  
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Pg = prior probability of class g 

Sg = covariance matrix of class g 

Cg = centroid of class g 

p = number of descriptors 

In Linear Discrimination Analysis (LDA) the covariance matrix of each class is approximated 

with the pooled covariance matrix and all the classes are considered to have a common 

weighted average of the shape of the present class. The variables contained in the model 

which discriminate the classes can then be identified. This is achieved step-wise by iteratively 

choosing the most discriminating variables. 

Using the PLS-DA technique there are various options with regards to the identification of 

the group of features that are significantly responsible for the differences between groups. 

These techniques include jack-knife estimation and cross model validation. 

6.3.1.1 Partial Least Squares with Jack-Knife Estimation 

PLS has been used to extract data from 2D Gel Electrophoresis (2DGE) through the use of 

discrimination PLS with a variable selection (Jack-knife) procedure (Jessen et al, 2002). PLS 

allows the successful identification of the spots which can be characterised by a systematic 

variation. The Jack-knife procedure allows the identification of only the spots with actual 

relevant variations. PLS-DA can also be applied to identify differences between a number of 

proteomic datasets (Karp et al, 2005). 

Partial Least Squares (PLS) regression with Jack-knife estimation of significant regression 

coefficients can be calculated to identify significant variables (Grove et al, 2008). The idea 

behind this technique is to search for variables with a large variation across the sample 

groups. To avoid scaling down these variables and scaling up those variables displaying less 

variation, the group-scaling method is used to calculate a weight based on the variation 

between the groups while keeping out the variation between the peptides or proteins. These 

weights can be calculated based on the standard deviation for the protein in question with 

relation to the various sample groups.  The significance level for each variable is based on the 

stability of the estimated regression coefficients. Once the proteins or peptides with 

significant regression coefficients have been identified, a new PLS regression with Jack-

Knife is conducted using only these variables. This technique is repeated until the point of 

convergence (where all the variables are classed as significant).  



Page | 186  © Cranfield University, 2011 

 

6.3.1.2 The Cross Model Validation (CMV) 

This is a Partial Least Squares (PLS) analysis with the inclusion of an additional validation 

step. It involves the removal of one sample before the model is built based on the remaining 

samples. The model is built using PLS with Jack-Knife and full cross-validation. The 

eliminated sample is then classified using the results from the PLS analysis. The technique is 

repeated until all samples have been taken out of the analysis.  

6.3.2 Constraints to PLS-DA 

Although PLS based techniques provide a higher predictive accuracy and reduced chance of 

correlation compared to regression alone, there is an increased risk of neglecting the real 

correlations (Cramer, 1993). There is also an increased sensitivity to the relative scaling of 

the descriptor variables. 

6.3.3 PLS-DA in Biomarker Hunter 

Partial Least Squares Discriminant Analysis (PLS-DA) with jack-knifing can be conducted 

on the datasets using an R script separate to the Biomarker Hunter script. In a published study 

various statistical testing methods were conducted on 2D gel-based proteomic data to identify 

biomarkers (Grove et al, 2008). The methods compared were ANOVA, PLS with Jack-

knifing, Cross Model Validation, and the Power-PLS method. The reason for PLS-DA with 

jack-knifing being used as the preferred PLS-DA model is because besides ANOVA, PLS-

DA was seen to be the most complementary method to use as a multivariate technique. Due 

to the results of this study the jack-knifing procedure was applied in Biomarker Hunter to 

identify the biomarkers. 

The script conducts PLS-DA on the dataset, and then subsequent jack-knife analysis is 

conducted to return p-values for each peptide (feature). The features that are seen to show 

significant differences are then extracted into a new dataset where the PLS-DA and jack-

knife techniques are repeated until all the features are classed as significant. 

6.3.4 Biomarker Hunter - PLS-DA in use 

The Partial Least Squares – Discriminant Analysis (PLS-DA) was conducted on Dataset 3 

(Xenograft Pre-Clinical Project) which was provided by OBT which aims to compare four 

groups of samples. Once PLS-DA was conducted, jack-knifing was conducted to identify 

features with a p-value lower than 0.05. These features will be extracted into a new dataset, 

on which the process the PLS-DA and then jack-knifing procedure were repeated until the 
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point of convergence (all the features have a p-value lower than 0.05 for the jack-knifing). 

This follows the technique used for the identification of potential biomarkers from other 

studies (Grove et al, 2008).  

This resulted in a total of 57 features being identified as potential biomarkers (i.e. showing a 

statistically significant difference in expression) between the different sample groups (Table 

58). When compared to the list of potential biomarker candidates obtained using the 

univariate approach, it was found that all of the biomarkers identified using this technique 

were identified by the univariate tests. As far as the analysis of this dataset is concerned, the 

PLS-DA technique did not identify any potential biomarkers unique to this test. It can 

however be used as a technique to add confidence to those features identified using univariate 

techniques. 

Table 58 - A list of features identified as potential biomarkers using PLS-DA 

List of Features Identified as Potential Biomarkers 

1131 9303 8091 1250 1328 55 1677 

6113 6856 4020 97 764 1765 168 

8408 5433 9166 2122 983 2303 171 

588 7415 2769 9660 723 2509 1830 

6641 1538 6985 6794 1481 2183 
 5658 3778 3501 20081 3100 2652 
 6058 2781 2572 2187 3850 2670 
 1058 5752 2760 10383 3954 269 
 4582 4803 9253 10321 4232 2832 
 8995 4427 4784 794 4498 1554 
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7 Business Aspects of Proteomic Biomarker Discovery 

This chapter will outline the business opportunities that will be presented through quicker, 

more efficient discovery of biomarkers. An introduction to the sponsor company will be 

provided to give context to the industrial application of biomarker discovery. It will then 

discuss the clinical impact that biomarkers aim to deliver both in terms of health benefits to 

patients and economic benefits to organisations such as healthcare providers and drug 

manufacturers. A SWOT analysis describing the companies’ considerations when conducting 

such research is also presented as well as a review of existing software in the market.  

7.1 Sponsor Company - Oxford BioTherapeutics (OBT) 

OBT Previously OGS (Oxford Genome Services and Oxford GlycoSciences) are a leading 

organisation in the relatively immature field of proteomics. They aim to develop innovative 

and break-through cancer treatments through the discovery of novel diagnostic biomarkers 

and targets to improve disease management through tailored treatments. They specialise in 

personalised drugs, which are more effective for individuals due to the variety of genetic 

differences amongst individuals. Individualised medicine (also known as personalized 

medicine) focuses on differences between people and the potential for these differences to 

influence medical outcomes (Figure 67). This contrasts the trial-and-error (empiric) method 

previously used, and still frequently used today (Chapman, 2010). 

 

Figure 67 - The principle of individualised medicine as opposed to empiric medicine 

(Chapman, 2010). 
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OBT has experience in safety biomarker discovery research with the FDA and large 

pharmaceutical companies, such as Pfizer. The company’s strengths also include an 

expanding network of relevant alliances with key technology providers. OBT have access to 

the OGAP® proteomic data analysis and interpretation database. OGAP is one of the world’s 

largest databases of human proteins which allow an in-silico validation of biomarkers with 

human in-vivo data. It is built up from protein disease data which has been linked with 

genetic and clinical information. It contains information extracted from human tissues 

including samples from patients suffering from known diseases. It allows the identification of 

biomarkers which are useful for drug discovery and development. OGAP provides a unique 

source of qualified targets and biomarkers assisting in the transfer of determined markers to 

their clinical benefits. The database allows for re-profiling of existing targets in order to 

develop these further. The database also has a set of tools which can be used to analyse 

various proteomic data. 
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7.2 Commercial Impact of Biomarkers and Biomarker Hunter 

7.2.1 Commercial Aspects of Biomarker Hunter 

From a commercial perspective pharmaceutical companies would benefit from improving 

productivity in research & development through earlier application of biomarkers for safety 

and efficacy in the drug discovery process. Regulatory agencies interests lie in development 

of more predictable animal models and translatable biomarker approaches to take advantage 

of technological “omics” related advances.  

This software will aim to reduce the cost of conducting preclinical and clinical validation 

studies. This is based on the premise that it will lead to a decrease in the time, required to 

develop accurate biomarker assays within drug development programs, by the earlier 

indication of features (i.e. peptides or proteins) of interest. The realisation of these biomarker 

assays will lead to the earlier diagnosis of diseases in patients. The software will aim to lead 

to the determination of the mechanisms which drugs use to deliver their effect in a time 

effective manner due to the reduction in time and cost of the drug development process. 

In its current form Biomarker Hunter is an open source pipeline meaning it is freely available. 

While this is the case it is difficult to make a commercial impact because the software can not 

be sold for a profit. Firms have invested billions of dollars in developing open source 

software, which is freely available. This accounts for a number of jobs and revenue, which 

could be added to the economy (Ghosh, 2006). This represents Problems associated with 

open source are well documented and include: 

 The development and distribution of open source software is of a non-centralised 

nature. This reduces the chance of having someone to blame if things go wrong and 

introduce a degree of risk to the future development of individual applications. 

 There are hidden costs involved despite the non-existent acquisition costs. This may 

include, among other issues, staff retraining. 

 The lack of user friendly tools and documentation and neglect of the importance of 

intuitive user interfaces. 

 The rapid pace of changes to open source software, arising from the huge base of 

contributing programmers. 

 The risk of open source software stagnating due to developer distraction or loss of 

motivation or resources. 
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The market penetration of open source software is very high. A large share of private and 

public organisations report some use of open source software in most applicational domains 

(Ghosh, 2006). In the private sector, the adoption of open source software is driven by 

medium and large sized firms. As far as industries are concerned, open source software saves 

them over 36% in software research and development investments that can result in increased 

profits for them. These profits can be more usefully spent in further innovation. 

It is quite common in the software industry that great achievements can start from volunteer-

based projects (Phipps, 2010). This can work initially but eventually if the project becomes a 

threat to larger, controlled organisations that develop commercial software. At this point, for 

the sake of survival and competition, the project may have to fortify its position by fostering 

commercial involvement to enable the project to advance and compete. The 

commercialisation of a successful open source project is part of the projects natural lifecycle. 

In terms of the Biomarker Hunter software created by this project it is possible that 

commercial gain can be achieved from open source projects. Many independent software 

vendors use open source frameworks within their proprietary, for-profit products and 

services. As far as customers are concerned they may be willing to pay for additional services 

such as legal protection or high quality support that is typical of commercial software, on top 

of the independence that open source software provides. This commercial benefit is only 

likely to be achieved if there are a large number of users that rely on the software. The vast 

majority of commercial open source companies experience a conversion ratio well below 1% 

(Wheeler, 2006). Although commercialisation of open source software is difficult, it is by no 

means impossible. For example Red Hat and VA software are both open source companies 

that have gone public. There is also the opportunity for open source projects to be acquired 

by current public organisations. The other alternative would be to create a commercial 

version of Biomarker Hunter, but this would not be achieved in R. The code would have to be 

converted to a different programming platform. 
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7.2.2 Clinical Impact of Validated Biomarkers 

Biomarkers can be found in different biological systems including muscle, blood plasma or 

embryos. In the Proteomic field of biomarker discovery, the aim is to identify those proteins 

which can be utilised to explain a particular biological process. For example in drug 

discovery there is a need to identify the process of the disease as well as measure responses to 

drugs. The biomarker can also be used to diagnose a particular diseased state or condition. 

The identification of these proteins (biomarkers) is very important to pharmaceutical and 

biotechnology oriented companies. These companies need to have accurate measurements of 

responses to experimental treatments and new drugs. Some diseases require invasive 

techniques, such as biopsies, in order to diagnose patients. This can be uncomfortable for 

patients as well as increasing healthcare costs (Ludwig & Weinstein, 2005). 

The ability to identify and validate biomarkers linked to particular disease using a cost 

effective and non-invasive method could revolutionise current clinical trial practices (Soares 

& Shaw, 2010). This can be achieved through the development of a biomarker assay, which 

can be translated into a hand held point-of-care (POC) device that monitors these biomarkers 

in body fluids. Biomarkers could be very useful for doctors to make decisions on how to treat 

patients. If a biomarker can be developed that can identify whether a particular patient will 

respond to this therapy, it can reduce the costs. This is because there is less time and 

resources being wasted on patients which will not respond to the therapy. It also reduces risks 

of undesired side effects. This reduced cost will lead to increased profits and therefore better 

shareholder dividends. 

A number of drug development companies, as well as organisations that have been contracted 

to carry out research on their behalf, spend a considerably significant amount of time, energy 

and resources in biomarker discovery. These resources are spent to be able to discover, 

identify and measure novel biomarkers (Netterwald, 2010). One of the most important criteria 

for the biomarker discovery process is that no assumptions should be made about the 

biomarker to be discovered. 

The pharmaceutical industry desperately needs biomarkers to better target its drugs to its 

patients. This however presents a double-edged sword as a biomarker may keep a billion 

dollar drug development process from getting derailed by stratifying patients into responders 

and non-responders before entering clinical trials (Krueger, 2005). This is because successful 

validation of the markers would lead to more approvals as well as cheaper and earlier failure 

for non-promising drugs. A good example to outline this issue is the anti-inflammatory drug 



Page | 193  © Cranfield University, 2011 

 

Vioxx marketed by Merck & Co (Horton, 2004). This drug was withdrawn over safety 

concerns but only after it created 2.5 billion US Dollars in sales revenue for Merck & Co.  

Biomarkers are a very active area of research. This can be measured by the number of 

scientific or medical articles published on this topic (Figure 68). Between 1960 and 1989, 

approximately 42,000 peer reviewed articles were available on the PubMed database. This 

number more than doubled in the 1990s and nearly doubled again between 2000 and 2009. 

Another indicator of the growing interest in biomarkers is the existence of journals dedicated 

to the topic, such as Molecular Biomarkers. 

The FDA has regulatory oversight over all medical tests or test systems that are manufactured 

for commercial use in point-of-care settings. It is surprising that, despite this increasing 

interest in biomarkers, the number of clinical biomarker tests approved by the Food and Drug 

Administration (FDA) has not kept pace with this increased research (Figure 69) (Phillip et 

al, 2012). In fact, this number has actually decreased in the past decade, and few of the 

approved biomarkers have become standard practice (Chapman, 2010), Reasons for this 

include the time and cost of developing a new drug, from discovery to patient use, is 

constantly increasing.  

 

Figure 68 - A histogram showing the number of published scientific or medical articles 

related to biomarkers (Chapman, 2010). 
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Figure 69 - Although there has been increased interest in biomarkers this has not 

affected the number of validated biomarkers in clinical use (Chapman, 2010). 

 

There has been an obvious delay in the clinical impact that proteomic biomarker research has 

delivered. This can be exemplified by the fact that the first proteomics based in vitro 

diagnostic multivariate index assay (IVDMIA) for ovarian cancer was only recently approved 

by the FDA (Fung, 2010). This was the Vermillion’s OVA1 test which includes four novel 

protein biomarkers which were discovered and validated using the Surface-enhanced laser 

desorption/ionisation (SELDI) platform. SELDI is a high-throughput biomarker discovery 

and protein-profiling tool. The SELDI platform allowed Vermillion to conduct a 600 sample 

validation study in less than six months. Other technologies and approaches take the same 

time to screen 10-15 samples. 

When making payment decisions for new drugs and expensive interventions, cost-

effectiveness and cost-utility studies are used. These studies are relatively rare for the 

evaluation of cost-utility for clinical laboratory tests. As the medical costs increase along with 

decreased resources it is likely that new biomarkers may increasingly be scrutinised with 

respect to their economic benefits in addition to the clinical utility (Scott, 2010). This 

represents an additional struggle for routine use of new biomarkers, but prior to this the 

markers must still display clinical usefulness.  Thus a newly discovered marker will never 

make economic sense if it does not display clinical usefulness.  
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When both diagnostic accuracy and potential clinical usefulness have been established there 

are several types of economic studies that new biomarkers may undergo. The most common 

of these studies is the cost-utility study. This test estimates the ratio between the cost of the 

intervention or test and the benefit it produces. The benefit is usually measured in the number 

of years gained in full health by the patient. The ratio is measured in amount of money per 

quality adjusted life year (QALY) (Pai, 2012). 

The challenges associated with the discovery of biomarkers and the eventual development of 

biomarker-based clinical tests go hand-in-hand with the challenges facing other medical 

products. The US FDA issued several reports which explain why there has been a problem 

translating these scientific findings into medical products in clinical use (US-FDA, 2004). 

These issues include: 

 The current medical product development is becoming increasingly inefficient, costly 

and challenging. 

 The number of new drug and biological applications submitted to the FDA is 

significantly decreasing, as well as the number of innovative medical device 

applications. 

 Innovators focus their efforts on drugs and applications with a potentially high market 

return, due to increased costs of product development. 

 The applied sciences needed for medical product development has not kept pace with 

the tremendous advances in basic sciences.  

 Not enough applied scientific work has been done to create new tools to get 

fundamentally better answers about how the safety and effectiveness of new products 

can be demonstrated in a faster, more accurate and cheaper way. 
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7.3 SWOT Analysis 

The analysis is based on an existing project currently being carried out by the sponsoring 

organisation OBT, for which the software and outcomes of this EngD project will be utilised. 

Certain company names have been withheld to protect company and project anonymity. 

SWOT analysis (also known as the Internal-External Analysis) is a simple yet very useful 

tool to illustrate the strengths and weaknesses of a company or project with relevance to the 

study as well as the opportunities it will create and the possibility of external threats. It allows 

companies to identify good business opportunities, and be aware of the pitfalls so they can be 

managed in an appropriate manner. 

A SWOT analysis involves the study of both internal and external influences on a project 

(Figure 70). The Strengths and weaknesses identified are usually internal factors that can 

often be controlled by the organisation, whereas the opportunities and threats are external 

factors upon which organisations have limited control. 

 
Figure 70 - An illustrative explanation of a SWOT analysis 

 

Figure 71 in section 7.3.5 shows the overall SWOT analysis for this study, which is discussed 

in detail in the following sections.  

 

7.3.1 Strengths 

The strengths identify the advantages a business has that its competition does not necessarily 

possess, as well as the implied strengths that clients may see in the organisation. Strengths 
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cannot simply be tasks the company does, or a unique idea the organisation has had. These 

strengths are always relative to the competition, as in what this organisation does that its 

competitors do not offer. 

The strengths that OBT has over its competitors lie mainly within the fact that they have an 

established and robust technology platform for proteomic biomarker studies. They have 

collaborated with a number of the top ten pharmaceuticals organisations as well as the FDA 

and boast a history of successful studies and partnerships. These studies have often resulted 

in the discovery of novel biomarkers which have then been validated and translated into drug 

targets, which have positive impacts both for drug discovery and health services. Various 

biomarkers identified by OBT have been used for: 

 Efficacy and toxicological profiles of new drug candidates 

 Identification of disease biomarkers to result in the accurate testing for early signs of 

diseases 

 Determination of whether certain treatments are working, and if the patients are 

responding to them or not 

 Identifying new targets for therapeutics 

OBT are based in an industrial park in Oxford which has a number of companies who can 

carry out screening of compounds effects, using zebrafish embryos for OBT for a fee based 

service. The co-locality of the organisations make it an ideal partnership as they can both 

focus on the area they specialise in (i.e. OBT do not have to spend resources on becoming 

experts in screening), and it is easier for the organisations to transfer samples between each 

other. The location also allows the organisations to be able to hold meetings rather than only 

having telephone and email contact which results in better project co-ordination and 

management.  

Zebrafish are a good, inexpensive model to use in drug development research. They are 

vertebrates so are more closely related with humans than models based on invertebrates (e.g. 

Drosophila) without backbones. These models have more similar biological traits with the 

human model. They also reproduce in large numbers so often they are more cost effective, 

where a large number of samples are required.  

These studies usually use the zebrafish embryos (ZFE) and since these are produced outside 

the parent body they are easy to isolate. Zebrafish embryos develop very quickly, and usually 

take about 24 hours to become fish, whereas other species may take longer. This is especially 
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true when conducting studies using mice, which take up to 21 days to develop. The use of 

zebrafish embryos has been well established to screen drug candidates for possible 

toxicological effects based on morphologic and/or phenotypic observations (Nusslein-

Volhard, 2002). ZFEs display the majority of organ systems present in mammals, including 

the cardiovascular, nervous and digestive systems. Additional characteristics that make them 

advantageous for large-scale, high-throughput compound screening are their small size, 

transparency and their ability to absorb compounds through the water. The technique also 

benefits through economies of scale and reduced animal usage making ZFEs an even more 

attractive toxicology model if the toxicity biomarkers discovered can be translated into 

humans. There was significant overlap between biomarkers identified in ZFEs and those 

identified using the same hepatotoxins, in rats (Kurz et al, 2010). This suggests that ZFEs 

may represent a viable model organism to identify novel safety biomarkers. 

OBT also has a strategic alliance with Biosite, which is a specialist in the field of antibody 

development. Biosite use technologies such as Omniclonal which allow the generation of 

large numbers of antibodies in a high throughput manner. This allows OBT to obtain 

antibodies against their cancer targets with better-quality binding characteristics. 

Another primary strength of OBT is their staff off scientists who have immense experience in 

the field. Many of the scientist who currently run the organisation have remained from the 

previous version of the company OGS which was in 1998. Their track record and proficiency 

in this area of study give the organisation scientific credibility which is very important to 

potential clients who may be interested in using the services provided by OBT. As well as 

this they have links with proteomics experts in Cranfield University which further solidify 

their scientific credibility. Evidence of this credibility has been proven through grant support 

the Department of Trade and Industry (DTI) as well as potential interest being shown by the 

FDA in upcoming projects. 
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7.3.2 Weaknesses 

The weaknesses identify the improvements the organisation must make and anything that 

should be avoided. Any issues that may cause you to lose business should also be tackled. 

Even though the weaknesses are usually internal, as with the strengths, it is important to also 

focus on the external view of clients and partners, and what they may see as weaknesses in 

your organisation.  

A major weakness of these biomarker studies is that there is often not much confidence in the 

statistical methods applied. This lack of trust in the statistical analysis is necessary to justify 

the expenses brought by validation techniques. This means often the studies are not followed 

up and meaningful conclusions (i.e. identification of valid markers) are not made. This is a 

serious issue for many of the studies conducted by biomarker companies (Vora, 2011). 

Since OBT would be taking part in its first grant assisted project, this brings with it new 

territories not explored by OBT before. Previous biomarker studies conducted by OBT have 

been on a much smaller scale and the projects have usually been more specific. Projects 

involving the DTI grant will be large scale screening of a large list of compounds (i.e. several 

hundred) in order to discover the candidate biomarkers for hepatoxicity and nephrotoxicity. 

These will then be validated and a panel of biomarkers will be selected for use in a 

commercial assay for hepatoxicity, and another panel of biomarkers for a commercial assay 

for nephrotoxicity. Although OBT has plenty of experience working with large organisations 

and conducting biomarker studies, they have never experienced such a large scale project. 

Even the pilot study for the project is considerably larger than studies they have carried out 

before. 

Although OBT have experience using ordered peptide arrays, their experience is limited. 

They do not have robust Standard Operating Procedures (SOPs) set. This is an area that needs 

to be focused on and addressed. 

At this stage of the project there are no pharmaceutical company partnerships for this study. 

Usually in these large projects there is usually a potential client who is willing to fund the 

projects, who would exclusively have rights to the results from the study. As this is a 

government funded project the financial support is not an issue but a pharmaceutical client 

will need to be identified and secured in order for organisations involved in this project to 

make a commercial gain. 
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7.3.3 Opportunities 

This section identifies the business opportunities that can arise from these studies. These 

identify not only the business gain but also how the project may influence changes in 

technology and client organisations, as well as the effect on the public. It will identify 

whether the strengths of the organisation and the study will open up opportunities as well as 

how the weaknesses can be tackled to create new opportunities. 

These studies will allow the development of a FDA approved safety biomarker panel for 

hepatoxicity, which will lead the market in this field leading to a commercial assay for 

toxicity. These can be useful to pharmaceutical organisations and can create a potential 

market either as an ongoing service for these organisations or as an asset that can be sold.  

The collaborations involved in this study may create strong relationships for future studies. 

As stated before there is a company involved who specialise in the farming and research of 

ZFEs which will be useful for future studies, to reduce the need for in-house specialists. 

There are also collaborations with hardware technology vendors as a named technology 

partner. This will help in the form of contribution of equipment and possibly funding.  

Since the project involves the screening of such a large number of compounds it may 

possibly give rise to the potential for a database and software capabilities that can be 

marketed. These can also be utilised to attract future clients and help to obtain governmental 

grants for subsequent studies. There is also the potential opportunity to leverage the 

connections made through any potential pharmaceutical industry customers in order to raise 

the profile of OBT as well as any alliance company products, in order to promote sales. 

 

 

 

 

 

 

.  
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7.3.4 Threats 

The threats identify the potential obstacles faced by the organisation. This may include the 

activities being carried out by competitive organisations as well as effects this study may 

have on OBT. Outcomes of this project may affect quality standards and specifications for 

the company. Changing technologies may also have an impact on the position of OBT in the 

industry and these threats need to be identified before they adversely affect the business. 

The requirement for the DTI grant for a grant is that more than one Small or Medium 

Enterprise (SME) must be involved in the project. This project involves collaboration with 

another company which may cause potential relationship issues with regards to the people or 

companies involved.  

Another external issue that may occur is the time involved in these projects. Since these 

projects take several years, before useful results are obtained. It is possible that within this 

time competitive companies may develop an equivalent or superior panel of biomarker assays 

for hepatoxicity or nephrotoxicity before OBT. As this industry is very competitive, many 

organisations keep their research confidential so by the time other companies have developed 

their panel of biomarkers OBT may have already spent a lot of time and resources on this 

project. If this situation arises OBT may not be able to make any financial gain from the 

project, so the progress of this project is extremely time sensitive. 

The commercial potential for this study is dependent on the interest of pharmaceutical 

organisations wanting to invest in the panel of biomarkers. These clients were not identified 

prior to the start of the study; therefore the commercial success of this project is dependent on 

a pharmaceutical partner or client. Some companies have been approached but there was 

limited interest in the development of a safety biomarker discovery effort. Some 

pharmaceutical companies have been hesitant to be involved in studies using zebrafish as 

they have not previously used ZFE’s as a model. These threats however can be handled by 

stressing the involvement of the FDA in this project. 
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7.3.5 SWOT Diagram – How to Present SWOT in Meetings 

 

Figure 71 - A SWOT analysis of the OBT safety biomarker study (Dataset 1) as it would 

be presented in meetings, with succinct bullet points which are to be discussed during 

the meeting. 
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7.4 Existing Algorithms and Software 

This section reviews the existing tools which are available to users for the purpose of 

statistical analysis of data from biomarker experiments. The section will focus on the tools 

involved in the statistical analysis of data from biomarker experiments, or the statistical 

analysis components of larger pipelines. The section will discuss the available options for the 

user and state the benefits or limitations to using the particular software in comparison with 

Biomarker Hunter, the software created through this project. An overview of the software is 

presented in Table 59 at the end of the section. 

 

7.4.1 Commercial Software 

7.4.1.1 MarkerView Software 

The MarkerView software is a program , created by Applied Biosystems, which is designed 

for biomarker profiling workflows. It contains a range of statistical analysis and graphics 

tools (Applied-Biosystems, 2005). Its statistics capabilities include: 

 Principal Component Analysis 

o Offers various scaling algorithms such as Mean Centering and Autoscaling 

o Presents groupings in a scores plot 

o Allows review of the loading plot to identify variables that contribute to the 

clustering (i.e. potential biomarkers) 

 T-Tests 

The advantages of this software, as opposed to Biomarker Hunter, mainly lies in its ability to 

take in raw data and also conduct the spectral peak picking as well as being able to align mass 

and retention time values. However the statistical analysis of the data is restricted solely to 

the Principal Component Analysis and T-Tests. 

7.4.1.2 PDQuest 

This commercial software produced by Bio-Rad (BioRad, 2011) can be used for the imaging, 

analysing and the data-basing of data from proteomic biomarker experiments. It is however, 

limited to the field of 2D gels and does not deal with data from MS based techniques. As far 

as statistical analysis is concerned the software offers normalisation, and both differential and 

statistical analysis. The normalisation technique used is similar to the total spot normalisation 
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technique used in commercial software Progenesis produced by Non-Linear. However the 

PDQuest software also takes into account any pipetting errors.  

Differential analysis is also offered by PDQuest which simply gives a value relating to how 

much a certain protein is up or down regulated in various condition groups. This technique 

suggests that any protein which is up- or down-regulated between sample groups, with a 

minimum variation factor of ±2.0, may be a potential biomarker (Marengo et al, 2004). 

However if DIGE is used a lower variation factor can be accepted due to reduced variation 

between samples. With PDQuest only the proteins which display a variation factor above that 

of the minimum will qualify for the statistical analysis step. 

For the purpose of statistical analysis the PDQuest software uses the students T-test. Once the 

proteins which are differentially expressed have been identified these are analysed using the 

T-test. Those proteins with a p-value of 0.05 or lower are then identified as potential 

biomarkers.  

As with MarkerView the advantages of this package are that it provides options for image 

filtering and spot detection prior to statistical analysis. This however also means that it is 

unable to deal with data from Mass Spectrometry experiments. Also the statistical analysis is 

restricted to the students T-test which is not an ideal technique to employ for the data 

involved. The students T-test assumes the data is normally distributed and this is not usually 

the case. This requires the use of a Bartlett test to identify whether the data displays 

normality. Biomarker Hunter however utilises the Welch T-test which accounts for data that 

does not display non-normality. Biomarker Hunter also has an option allowing the user to 

decide whether they want to screen the dataset and only conduct statistical analysis on 

samples with a variation factor set by the user. 

7.4.1.3 Pipeline Pilot Biomarkers Toolkit 

Pipeline Pilot is a commercial biomarker toolkit created by Accelrys and is used to manage, 

integrate and analyse large datasets obtained from “omics” biomarker experiments (Accelyrs, 

2010). For its statistical analysis component it utilises the R statistical programming 

language.  

With regards to statistical analysis the software produces boxplots to allow users to 

graphically visualise the data as well as conducting ANOVA analysis to identify any 

differences between the means of different sample groups. The software is very useful in that 

it can deal with a variety of data and help to identify biomarkers of interest using various 
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techniques. However its statistical analysis is restricted to ANOVA and does not use any non-

parametric analysis. 

7.4.1.4 Progenesis LC-MS 

Progenesis LC-MS is an advanced proteomics based research tool (Non-Linear, 2010). It is 

commercially available and it allows analysis of data from label-free quantitative data. It can 

be used alongside most MS hardware and produces data with no missing values. This is 

achieved by automated detection and quantification of each peptide ion. The outline of a 

peptide ion in one run is found and consequently applied to all subsequent runs to provide a 

complete data set. This is illustrated in Figure 72 where the outline of the peptide ions has 

been marked in red and all peaks within this area are quantified. The software uses ion 

intensities rather that the traditional approach of spectral counting. These methods have been 

compared and the benefits of the ion intensity approach used by Progenesis outweigh those of 

spectral counting (Zhixiang, 2010). The statistical analysis options offered in this package are 

limited as far as univariate techniques are concerned as the only option offered is ANOVA. 

The software does offer more on the multivariate side as the software provides options for: 

 False Discovery Control 

 Principal Components Analysis 

 Correlation Analysis 

 Power Analysis 

 

Figure 72 - Progenesis LC-MS Quantifies peptides based on ion abundance (Non-

Linear, 2010) 
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The advantage this software has over Biomarker Hunter obviously lies in its ability to 

produce datasets with no missing values which is the biggest issue faced in this field of 

research. Although the statistical analysis is limited, the Progenesis software more than 

makes up for this by creating datasets with no missing values. Biomarker Hunter however is 

not a tool that creates datasets alongside MS hardware. Biomarker Hunter is only concerned 

with the analysis of data created from biomarker experiments. 

 

7.4.2 Freely Available Software 

7.4.2.1 MaxQuant 

MaxQuant is a freely available proteomics software package, which can be used for the 

analysis of large MS datasets. It is an analysis pipeline which offers: 

 Feature detection and quantification 

 Peptide mass correction 

 Peptide and protein identification 

 Protein Quantification 

The pipeline does offer statistical analysis options; however this is limited to the one way non 

parametric analysis in the form of the Wilcoxon-Mann Whitney test. There are no parametric 

alternatives or any group analysis such as the Kruskal-Wallis or ANOVA tests. The 

advantage that MaxQuant shares with Biomarker Hunter is that it is freely available, so it is 

readily accessible by all laboratories regardless of the budget available to them. 

7.4.2.2 QuiXoT 

QuiXoT is a software package produced by the Centro de biologica, based in Spain (Navarro, 

2009). It is created for the purpose of automated statistical analysis, and is used for high 

throughput quantitative proteomics data from experiments which incorporate stable isotope 

labelling.  

QuiXoT employs a novel multi-approach statistical model which deals with the various 

sources of variation individually and then allows accurate control of the outliers at the 

scanning stage and at the peptide level. This allows identifying proteins of interest among 

several stable isotopic labelling approaches. 
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7.4.2.3 The OpenMS Proteomics Pipeline (TOPP)  

TOPP is an open-source software pipeline based in the C++ programming language which is 

freely available from OpenMS (Malmstrom et al, 2011). It can be used for the management 

and analysis of data from LC-MS experiments. The pipeline encompasses a number of 

smaller applications which can be used to create an analysis pipeline. The tools fall into the 

following categories: 

 File Handling 

 Signal Processing and Pre-processing 

 Quantitation 

 Protein/Peptide Identification 

 Protein/Peptide Processing 

 Targeted Experiments 

 Peptide Property Prediction 

 Map Alignment 

 Graphical Tools 

Although this pipeline contains many algorithms, unfortunately it does not contain any 

statistical analysis tools which can be used for differential analysis. 
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Table 59 - An overview of currently available statistical analysis software reviewed for this study. 
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8 Discussions and Conclusions 

The following sections discuss the outcomes of the project aims outlined in section 1.4. These 

aims being: 

 Identification of suitable methods for dealing with missing values in the data from 

proteomic biomarker experiments (Section 8.1). This aim was only partially achieved. 

This was mainly due to the lack of information regarding which features were actual, 

validated biomarkers. Because this information was not available, it was not possible 

to make definitive statements regarding the most ideal or efficient approach to 

statistical analysis for proteomic biomarker data. As it was not possible to make actual 

conclusions about the ideal statistical approach, it was only possible to make 

prediction based on the analysis of one dataset.   

 The evaluation of the suggested statistical analysis methods for the discovery of 

biomarkers from proteomic experimental data (Section 8.2). This aim was  achieved; 

however it is not yet possible to determine whether the novel clustering algorithm is 

actually appropriate. This can only be determined once the results are compared with 

actual, validated biomarkers lists to see if the clustering has a positive impact on the 

nature of the data, as opposed to just reducing missing values by clustering together 

features which do not represent the same peptide or protein. Appropriate imputation 

methods to deal with missing values have been implemented, but this research was 

not conducted in this study. These methods were chosen based on existing literature 

(Albrecht et al, 2010). 

 The development of an R toolkit (i.e. Biomarker Hunter) for the identification of 

biomarkers from proteomic experimental data (Section 8.3). This aim was wholly 

achieved and an R script is presented in Appendix A as well as an executable file on 

the supplemental CD. This was used throughout the study and has been validated 

against existing software and manual calculations. However, it may be necessary to 

change some of the features based on comparison of this research with validated 

biomarkers. Currently this is presented as open source software, so can be pursued 

and developed as more information becomes available. 

 Researching the Business Opportunities for Biomarkers and Statistical Analysis 

Software (This was discussed previously in Chapter 7). 
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8.1 Identification of Suitable Methods for Dealing with Missing Values  

Imputation algorithms are methods that replace missing values with appropriate values using 

modelling techniques. The suggested method for imputation is selective imputation based on 

the feature presence (Albrecht et al, 2010). For features with a feature presence below 25% 

minimum value imputation (MIN) should be used. This replaces the missing values with a 

value of zero. For a high feature presence, above 75% KNN imputation is the ideal method. 

For the remaining features the REPMED technique should be implemented. This replaces the 

missing values with a median value of the actual values within the group. Although 

imputation allows the replacement of missing values based on models, it can cause 

misrepresentation of the data when large datasets have to be imputed. As the percentage of 

missing values increases, there is a higher proportion of them compared to actual values. 

This calls for the need of a novel algorithm which reduces the presence of missing values. 

The clustering algorithm ClusterFix was developed to identify features that have been 

incorrectly mismatched as different features. This option should be used to reduce the 

missing values prior to selective imputation, so there are fewer imputed values in the dataset 

compared to actual values. Although options were devised for the manipulation of missing 

values, as a list of validated biomarkers was not available, it was not possible to determine 

the effects of these techniques in terms of the quality of the potential biomarker candidates.  
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8.2 Recommendations for Statistical Analysis Methods for Biomarker 

Discovery 

This section outlines the recommendations for the statistical analysis of proteomic 

experimental data, as well as the suggested methods of data pre-treatment and post-hoc data 

treatment. These conclusions are made from both the statistical analysis conducted for this 

project as well as the extensive review of existing literature available in this field of research. 

Once again, as a list of actual, validated biomarkers was not available, it was not possible to 

determine the effects of these techniques in terms of the quality of the potential biomarker 

candidates. Because of this, the following suggestions are mainly based on the literature and 

may change, based on comparison of the results from this project with a list of actual, 

validated markers. 

8.2.1 Data Pre-Treatment Options 

If normalisation has not been conducted prior to analysis, it is strongly recommended that this 

is done. If the quantitative analysis approach used is subject to technical variation between 

samples then its effects need to be accounted for. This can be accounted for using the Total 

Intensity Normalisation option offered in Biomarker Hunter. This can be ignored for 

techniques which remove technical variation such as iTRAQ or 2D DIGE (difference gel 

electrophoresis). Additionally the statistical analysis can benefit from the use of data scaling 

techniques such as log transformation, or auto scaling and range scaling. This adds strength to 

the subsequent statistical analysis conducted on the data (Limpert et al, 2001).  

Ideally technical replicates should be left as individual samples within the groups as opposed 

to averaging them. This is because the inclusion of these technical replicates helps to limit the 

variability within the experiments by averaging it out. It also enables the statistical models to 

account for the subtle differences in the experimental technique. Additionally when the 

technical replicates are averaged the implied feature presence of the samples increases. This 

is because when only one of the technical replicates has an actual value the presence of the 

missing value is ignored. This increases the percentage of present values. This would lead to 

higher p-values in the univariate hypothesis test, which results in an increased probability of 

the inclusion of false positives. 

Chapter 5 discusses that selective imputation based on feature presence along with use of the 

clustering algorithm is the ideal technique for dealing with missing values. 
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8.2.2 Statistical Analysis 

The four univariate statistical methods conducted by Biomarker Hunter gave complementary 

results. A Venn diagram was created to identify the overlap between the different techniques. 

This shows that 139 features were identified as potential biomarkers by all four univariate 

methods prior to the application of multiple testing corrections. With the exception of the 

Kruskal-Wallis technique all the other techniques also identify unique potential biomarkers 

that the other techniques do not, especially the two pair-wise hypothesis tests (The Welch T-

test and the Wilcoxon Tests). 

The addition of multivariate tests can be used to answer further questions. PLS-DA with the 

jack-knifing procedure can be used to identify features that are significantly differentially 

expressed between groups. This technique is very stringent, therefore it doesn’t identify any 

unique features as opposed to the univariate analysis but the list can refine the list of potential 

biomarker candidates obtained by the other techniques. The PCA and HCA techniques can be 

used to detect relationships between samples. 

8.2.3 Post-Treatment Options 

The pipeline offers various methods of multiple testing corrections to reduce the occurrence 

of false positives. False positives are inevitable in large datasets due to the errors caused by 

the multiple hypothesis tests. The use of multiple testing corrections is strongly advised. This 

seriously reduces the number of biomarkers identified using the pipeline. This can be an 

advantage, as it means that fewer features need to be validated. Validation is a time and cost 

expensive procedure and can create a bottleneck in biomarker discovery. If the false positive 

occurrences are reduced then this speeds up the biomarker discovery process as well as bring 

cost reduction. This is often the case for academic studies where budgets are often restricted. 

MTC however does not apply to the multivariate tests and is ignored for these tests. 

There is however a downside to multiple testing corrections. Due to the large number of 

features (peptides or proteins) the number of statistical tests is also very high. Since the 

multiple testing algorithms are based on the number of tests these methods are usually very 

stringent. These methods significantly reduce the p-values obtained from the tests as seen in 

the univariate results following multiple testing corrections presented in section 4.2.1.3. This 

significantly reduced the number of potential biomarker candidates identified as well as the 

number of tests in which the features are seen as significant. For Dataset 3 the Welch T-tests 

only returned one feature with a p-value below 0.05 following corrections (Feature 540). The 



Page | 213  © Cranfield University, 2011 

 

stringency of these tests couple with the large number of features can create a high proportion 

of false negative errors (i.e. features that are potential biomarkers being incorrectly classed as 

a non-marker). This is the reason that the Benjamini-Hochberg is suggested by the available 

literature on this topic (Shaffer, 1995). This theory also agrees with the results of the multiple 

testing corrections conducted on Dataset 2 which showed that the Benjamini-Hochberg 

algorithm retained six markers, while all the others retained only two.  

Multiple testing corrections can be ignored if the user would like to retain as many potential 

biomarkers as possible at the expense of the inclusion of potential false positive conclusions. 

This may occasionally be the case for biomarker studies conducted by large organisations 

with larger budgets and resources, especially in the pharmaceutical industry. The drug 

biomarker industry is an internationally competitive business (Hampel et al, 2010). Since the 

time taken for biomarker discovery and validation is usually long the projects are usually 

long-term contracts so companies are always competing for an edge. This may mean the 

ability to identify biomarker assays of a higher quality (i.e. identifying a higher number of 

actual biomarkers that other companies are not able to provide due to time and cost 

bottlenecks). In these cases the company may be willing to sacrifice the resources to give 

them a competitive edge.  
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8.3 An R Toolkit for Biomarker Discovery from Proteomic Data 

Using the R statistical programming language a user friendly statistical pipeline, “Biomarker 

Hunter”, was developed. The R script for this software is presented in Appendix A. As well 

as this a copy of the program has been provided on the supplemental CD and the user manual 

as shown in Appendix B. This software allows the statistical analysis of large proteomic 

datasets for the identification of features (peptides and proteins) that are differentially 

expressed between different groups of samples. These features are expected to be diagnostic 

of the physiological differences between the sample groups.  

This software can be used by researchers who have quantified the proteomic composition of 

physiologically different samples, using gel or MS based technologies. It allows the user to 

employ the various data treatment methods, described in this thesis, giving them control over 

the nature of this analysis.  

8.3.1 The Current State of the Biomarker Hunter Pipeline Software 

Datasets can be pre-treated using normalisation, replicate averaging, missing value 

imputation as well as the novel clustering algorithm to reduce missing data. It conducts four 

univariate statistical techniques in the form of the Welch T-test, Wilcoxon test, Group-wise 

ANOVA and the Kruskal-Wallis. The stable version of Biomarker Hunter provided also 

performs multivariate analysis in the form of PCA and HCA. The PLS-DA multivariate 

analysis however had to be presented as a separate piece of software. This is because memory 

issues in R are created when conducting PLS-DA. The portion of R code conducting the PLS-

DA is presented in Appendix C. Following the statistical analysis, the user can implement 

various methods of multiple testing corrections to reduce the occurrence of false positives in 

the univariate analysis. The user is then presented with the output of results described in 

section 2.2.4 as well as the ability to create boxplots for features of interest. This software has 

been used to create lists of biomarkers for datasets for the sponsor company. This pipeline 

has been used to create all the results presented in this thesis. 

8.3.2 Capabilities of the Biomarker Hunter Pipeline Software 

The advantage this software can bring to the field of proteomic lie primarily in the 

automation of the statistical analysis tasks that need to be conducted subsequent to the 

quantitative analysis of proteomic samples. This leads to the decrease in the time that is 

required to develop accurate biomarker assays. This can be used for a range of studies 

involving the need to identify peptides or proteins responsible for the differences between 
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divergent groups of samples. Compared to the statistical software alternatives, both 

commercially and freely available, the range of statistical analysis algorithms offered in 

Biomarker Hunter is much wider (Section 7.4).  

Additional to this the user has better control and understanding of the inner workings of the 

statistical analysis compared to the commercial black-box statistical tools. This allows 

organisations to conduct statistical analysis with better understanding and transparency of the 

analysis and processing steps conducted, providing open source traceable statistical analysis. 

This means the analysis can be adjusted based on the requirements of the researcher. For 

example if the user would like to retain as many potential biomarkers, at the expense of false 

negative identifications, it is possible to skip the multiple testing corrections step. 

The reduction in time as well as the fact that Biomarker Hunter is freely available software, 

also leads to a reduction in the costs involved in biomarker discovery. This can assist 

proteomic biomarker studies especially for organisations with limited budgets. This pipeline 

eliminates the need for expensive commercial statistical analysis options such as GeneSpring 

MS. There is also potential for the extension of this pipeline as a tool for the identification of 

biomarkers outside of proteomics (e.g. genomics and metabolomics). As the software created 

is open-source it is available to researchers in the field to analyse data from their biomarker 

experiments. If this is used for a study, where the researchers have an appropriate budget to 

validate these markers there is further potential for the evaluation of the optimal strategies for 

biomarker identification from proteomic biomarker discovery data. 

8.3.3 Future Work for Biomarker Hunter 

Following the statistical analysis stage the biomarkers are validated using techniques such as 

Multiple Reaction Monitoring (MRM). As the nature of the studies conducted is sensitive, the 

identity of the features has been kept confidential. Unfortunately the author has not been 

provided with the list of the validated markers in order to evaluate the quality of the list of 

biomarkers obtained using the software pipeline Biomarker Hunter. Comparison of the list of 

biomarkers provided by the pipeline software with the list of validated markers would enable 

the evaluation of Biomarker Hunter as a viable tool for the purpose of biomarker 

identification. Ideally all the features identified by Biomarker Hunter should undergo MRM 

in order to be able to evaluate the amount of false positive identifications by Biomarker 

Hunter. A list of the actual biomarkers would also help evaluate the ideal data treatment 

options to identify the suggested strategy to implement for the evaluation of biomarkers. 
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As datasets from proteomic biomarker experiments are generally very large, univariate 

calculations can lead to longer computational times for analysis. This has been constantly 

addressed through the development of the software pipeline. Currently the software takes less 

than one hour for even large datasets (i.e. over 90,000 features) if clustering is not required to 

reduce missing values. The computation time for clustering however can take a long time on 

very large datasets. This can take over 24 hours in some cases (i.e. over 90,000 features). 

Relatively, this is not a large problem as the actual quantitative analysis may take months to 

conduct in the first place. However the implementation of parallel processing could reduce 

this time for extremely time sensitive studies. Parallel frame works have been developed in R 

which could be used alongside High-Performance Computing (HPC) to reduce processing 

times for biological computing such as the SPRINT package (Hill et al, 2008). If time 

sensitivity is an issue then the script can be updated to implement the use of these parallel 

frameworks.  

Once the list of actual, validated biomarkers is available, the various functions of the pipeline 

may need to be changed. This may include inclusion or removal of statistical analysis tests, or 

development of the ClusterFix algorithm amongst other features. Additionally as not all 

researchers are familiar with the R programming language, it would be useful to implement a 

user-friendly GUI front-end to Biomarker Hunter. It would also be useful to produce a web-

based interface for Biomarker Hunter. This would make the software more likely to be used 

by more researchers and improve the potential economic impact this software can bring. If, 

following additional research, it is discovered that this pipeline is likely to have widespread 

usage; it may make sense to develop a commercial version of the software using these 

algorithms. This would lead to better chance of having an economic benefit of the pipeline.   

Due to memory issues it was not possible to implement the PLS-DA in the pipeline so it is 

presented as a separate piece of software. Other researchers have come across this problem 

when dealing with large datasets, and solutions are constantly being developed. These could 

be implemented to create one full pipeline. 
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8.4 Concluding Remarks 

It is extremely disappointing that it was not possible to obtain information about the features 

that the analyses in this thesis have indicated to be potential biomarkers. Contrary to 

expectations, the identities of the peptides and proteins to which the features relate are not 

available, nor any indication as to which features proved to be real biomarkers during 

experimental validation. Without knowing the “correct answers” it is impossible to make 

robust recommendations as to which of the many statistical workflows should be used. 

However, it has been possible to evaluate the relative differences between the output of the 

various workflows in terms of the level of agreement or difference between them. The 

Biomarker Hunter software produced during this project is to be released into the public 

domain, allowing others to easily take the next step to establish the most appropriate 

workflow when such data is available. The obvious area of future work for this project is to 

compare the results from the tests conducted in this project with a list of actual, validated 

biomarkers. Alternatively the statistical analysis can be repeated using data from a project for 

which a list of actual, validated biomarkers is available.  

It should be noted that the development of data processing algorithms in the absence of 

known answers is widely accepted within proteome informatics. All the crucial early work on 

peptide and protein identification from LC-MS/MS was done using samples of unknown 

composition, and algorithms for quantitation using in vivo labelling methods such as SILAC 

can only ever be evaluated on samples containing proteins of unknown abundance.  
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APPENDIX A – BiomarkerHunter.r 

#clear console 

rm(list=ls()) 

#calls for the impute library (needs to be done each time for some reason) 

library(impute) 

#create project name to idntify output files 

ProjectName <- readline(prompt = "Enter the Project name to identify Output Files:") 

 

########## Stage 1 ################################ 

##### Data Set importing and Initial Manipulation## 

#Allows user to choose the file 

DataFile <- choose.files(default = "AKTESTDATA.csv", caption = "Select the file containing the data", multi = 

FALSE, filters = "csv") 

#prompts user for the syntax given to missing values 

NAsyntax <- readline(prompt = "Enter the syntax given to NA values:") 

#Creates an instance of the dataset 

zz <- read.csv(DataFile, strip.white = TRUE, na.strings = NAsyntax) 

#Allows the user to choose or create a file to store results outputs 

results.dir <- choose.dir(default = "F:/Apr2010 Pr9549", caption = "Select the folder in which to store 

Clustering Results :") 

setwd(results.dir)   

 

############# Stage 2 ############################# 

########## Group Data Structure ################### 

#Removes additional rows by asking user for first data row 

head(zz[,1:2]) 

DataStartPoint <- readline(prompt = "Which row contains the first set of data values?:") 

#asks user for total number of samples 

TotalNumberofSamples <- readline(prompt = "Enter the total number of samples in the dataset :") 

TotalNumberofSamples <- as.numeric(TotalNumberofSamples) 

#asks user for total number of Groups 

cat("Enter the number of different groups being compared :") 

NumberofGroups <- scan(file = "", what = integer(0),nlines = 1) 

#for Looping purposes 

groupcolumns <-  NumberofGroups + 1  

#Creates an instance of the data without additional rows 

zzData <- zz[DataStartPoint:length(zz[,1]),] 

SampleNames <- colnames(zzData) 

#Creates expected feature presence 

FeaturePresenceExpected <- zzData[1,1:NumberofGroups] 

FeaturePresenceExpected [1:NumberofGroups] = 0 

#Use groupscript? 

DataEntryCheck <- readline(prompt = "Would you like to enter data 1)Manually or 2)Using Grouping script:") 

#The following for loops create vectors with the column numbers of the data in each group 

GroupSeparator <- list() 

#implements groupscript if chosen 

    if (DataEntryCheck == 2){ 

    #choose groupscript datafile 

      GroupDataFile <- choose.files(default = "AKTESTDATA.csv", caption = "Select the file containing the 

Grouping data", multi = FALSE, filters = "csv") 

      GroupingCSV <- read.csv(GroupDataFile, strip.white = TRUE, na.strings = NAsyntax) 

      #creates a table of unique groups 

      Group_Table <- table(GroupingCSV) 

         for (i in 1:NumberofGroups) { 

          Groupname <- row.names(Group_Table)[i] 

          GroupSeparator[[i]] <- as.vector(which(Group_Table[i,] == 1)) 

          GroupSeparator[[i]] <-  GroupSeparator[[i]] + 1 

          FeaturePresenceExpected [i] <-  length(GroupSeparator[[i]]) 
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          } 

        }else{  

          for (i in 1:NumberofGroups) { 

            #For every group the user is prompted for the number of samples in the group 

            Groupname <- paste("Group", i, sep = " ", collapse = NULL) 

            GroupText <- paste("Enter the number of samples in", Groupname, ":" , sep = " ", collapse = NULL) 

            GroupsampleNumber <- as.numeric(readline(prompt = GroupText)) 

            #imputs expected feature presence 

            FeaturePresenceExpected [i] <-   GroupsampleNumber 

            #Creates a blank vector to be used for the imoputation of col numbers 

            Group <- rep(NA, GroupsampleNumber) 

            GroupHeaders <- rep(NA, GroupsampleNumber) 

            GroupColumnNumbers <- GroupText 

            #allows the user to dteremine greoup structure 

              for (j in 1:GroupsampleNumber) { 

                GroupSampleName <- paste("Group", i, "- Sample", j, sep = " ", collapse = NULL) 

                GroupSampleText <- paste("Enter column number containing", GroupSampleName, ":"  , sep = " ", 

collapse = NULL) 

                datacolumn <- as.numeric(readline(prompt = GroupSampleText)) 

                Group[j] <- as.numeric(datacolumn) 

                GroupHeaders[j] = GroupSampleName 

                GroupColumnNumbers <- c(GroupColumnNumbers, datacolumn) 

                } 

              GroupSeparator[[i]] <- GroupColumnNumbers[-1]     

              } 

            } 

             

########## Stage 3 ################################ 

########## Options ################################ 

#checks if the data is logged (As this affects the calculations that need to be done) 

LogsCheck <- readline(prompt = "Are the data natural logarithms ? (y/n)[Case sensitive]:") 

#Offers TSN as normaliusation method 

NormalisationCheck <- readline(prompt = "Normalise the data using TSN (Total Spot Normalisation)? 

(y/n)[Case sensitive]:") 

#checks if the user wants to average technical replicates 

AverageCheck <- readline(prompt = "Would you like to average technical replicates? (y/n):")     

#Asks the user whether they would like to use Clusterfix   

ClusterAlgorithmCheck <- readline(prompt = "Use Clusterfix to reduce missing values? (y/n):")     

  if (ClusterAlgorithmCheck  == "y"){ 

    #Collects additional information needed for clusterfix 

    MassColumn <- readline(prompt = "Which column contains the Mass data?:") 

    RTColumn <- readline(prompt = "Which column contains the Retention Time (RT) data?:") 

    MassTolerance <- as.numeric(readline(prompt = "Mass tolerance level (+/-) you would like to use?:")) 

    RTTolerance <- as.numeric(readline(prompt = "Retention time tolerance level (+/-) you would like to use?:")) 

    MassColumn <-as.numeric(MassColumn) 

    RTColumn <- as.numeric(RTColumn) 

    #Creates vectors of the mass and RTdata 

    MassData <- as.vector(zzData[,MassColumn]) 

    RTData <- as.vector(zzData[,RTColumn]) 

    } 

#Asks the user whether Mutliple testing Correction is required 

MultipleTestingCheck <- readline(prompt = "Implement Multiple Testing Correction methods? (y/n):") 

  if (MultipleTestingCheck == "y"){ 

    #Asks the user for MTC method 

    cat("1(holm), 2(hochberg), 3(hommel), 4(bonferroni), 5(BH), 6(BY) \n") 

    MultipleTestingMethod <- as.numeric(readline(prompt = "Which Multiple Testing method to apply?")) 

    }  

#checks if Imutation is required 

MissingValueImputationCheck <- readline(prompt = "Impute missing values using selective Imputation? 

(y/n):")     
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  #If imputation isnt rquired then asks the user if MIN imputation is required 

  if (MissingValueImputationCheck == "n"){ 

    MissingValuesCheck <- readline(prompt = "Replace missing values (NA) with an arbitrary value? (y/n)[Case 

sensitive]:") 

      #asks the user for the value to use for MIN imputation  

      if (MissingValuesCheck == "y"){ 

        ReplacementNAsyntax <- readline(prompt = "Syntax You want to give to all NA values:") 

        ReplacementNAsyntax <- as.numeric(ReplacementNAsyntax) 

        } 

      } 

#Checks if Multivariate analysis is required 

MultivariateCheck <-  readline(prompt = "Conduct Multivariate analysis? (y/n):")   

#Removes additional columns 

zzData <- zzData[,1:(TotalNumberofSamples +1)] 

#Creates Vector of identifiers 

PCIList <- as.vector(zzData[,1]) 

#Aberages the data if required 

  if (AverageCheck  == "y"){ 

    #creates a sequence of 20 groups of 2   starting from the second column  

    ix <- seq(from=2,to=(TotalNumberofSamples +1), by=2) 

    #creates an average for each pair of values 

    A <- zz[,ix] 

    B <- zz[, ix+1] 

    Ave <- (A + B)/2 

    Asub <- is.na(B) & !is.na(A) 

    Bsub <- !is.na(B) & is.na(A) 

    Ave[Asub] <- A[Asub] 

    Ave[Bsub] <- B[Bsub] 

    averagedResults <-  cbind(zz[,1],Ave ) 

    zzData <- averagedResults  

    SampleNames <- colnames(zzData) 

#re-enter the group structure following averaging 

  TotalNumberofSamples <- readline(prompt = "Enter the total number of samples in the dataset :") 

  TotalNumberofSamples <- as.numeric(TotalNumberofSamples) 

  #asks user for total number of Groups 

  cat("Enter the number of different groups being compared :") 

  NumberofGroups <- scan(file = "", what = integer(0),nlines = 1) 

  #for Looping purposes 

  groupcolumns <-  NumberofGroups + 1  

  #Creates an instance of the data without additional rows 

  zzData <- zz[DataStartPoint:length(zz[,1]),] 

  SampleNames <- colnames(zzData) 

  #Creates expected feature presence 

  FeaturePresenceExpected <- zzData[1,1:NumberofGroups] 

  FeaturePresenceExpected [1:NumberofGroups] = 0 

   

  DataEntryCheck <- readline(prompt = "Would you like to enter data 1)Manually or 2)Using Grouping script:")  

      #### sample grouping needs to be redone 

      GroupSeparator <- list() 

      if (DataEntryCheck == 2){ 

        GroupDataFile <- choose.files(default = "AKTESTDATA.csv", caption = "Select the file containing the 

Grouping data", multi = FALSE, filters = "csv") 

        GroupingCSV <- read.csv(GroupDataFile, strip.white = TRUE, na.strings = NAsyntax) 

        #creates a table of unique groups 

        Group_Table <- table(GroupingCSV) 

           for (i in 1:NumberofGroups) { 

            Groupname <- row.names(Group_Table)[i] 

            GroupSeparator[[i]] <- as.vector(which(Group_Table[i,] == 1)) 

            GroupSeparator[[i]] <-  GroupSeparator[[i]] + 1 

            FeaturePresenceExpected [i] <-  length(GroupSeparator[[i]]) 
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            } 

          }else{  

            for (i in 1:NumberofGroups) { 

              #For every group the user is prompted for the number of samples in the group 

              Groupname <- paste("Group", i, sep = " ", collapse = NULL) 

              GroupText <- paste("Enter the number of samples in", Groupname, ":" , sep = " ", collapse = NULL) 

              GroupsampleNumber <- as.numeric(readline(prompt = GroupText)) 

              #imputs expected feature presence 

              FeaturePresenceExpected [i] <-   GroupsampleNumber 

              #Creates a blank vector to be used for the imoputation of col numbers 

              Group <- rep(NA, GroupsampleNumber) 

              GroupHeaders <- rep(NA, GroupsampleNumber) 

              GroupColumnNumbers <- GroupText 

                for (j in 1:GroupsampleNumber) { 

                  GroupSampleName <- paste("Group", i, "- Sample", j, sep = " ", collapse = NULL) 

                  GroupSampleText <- paste("Enter column number containing", GroupSampleName, ":"  , sep = " ", 

collapse = NULL) 

                  datacolumn <- as.numeric(readline(prompt = GroupSampleText)) 

                  Group[j] <- as.numeric(datacolumn) 

                  GroupHeaders[j] = GroupSampleName 

                  GroupColumnNumbers <- c(GroupColumnNumbers, datacolumn) 

                  } 

                GroupSeparator[[i]] <- GroupColumnNumbers[-1]     

                } 

              }       

      } 

       

########## Stage 4 (Optional) ##################### 

######### TSN Normalisation ####################### 

  if (LogsCheck == "n"){ 

    if (NormalisationCheck  == "y"){ 

      zzData_noMCI = zzData[,-1] 

      zzData_noMCI <- apply(zzData_noMCI, 2, as.numeric) 

      # Normalised volume = volume spot n/total volume of all spots * scaling factor 

      col_sums <- colSums (zzData_noMCI, na.rm = TRUE, dims = 1) #Creates a vector of sums of each colum 

      data_norm <- scale(zzData_noMCI, scale=col_sums, center=FALSE) 

      data_norm = data_norm*1000000 

      zzData <- cbind(PCIList, data_norm) 

      } 

    } 

 

########## Stage 5 ################################ 

####Create Feature Presence Matrix ################ 

FeaturePresenceresult <- zzData[,1:2] 

FeaturePresenceresult[,2] = 0 

FeaturePresenceMatrix <- zzData[,-1] 

FeaturePresenceMatrix <- as.matrix(FeaturePresenceMatrix) 

FeaturePresenceMatrix[ is.na(FeaturePresenceMatrix)] <- as.numeric(0) 

FeaturePresenceMatrix[FeaturePresenceMatrix != 0] = as.numeric(1) 

rownames(FeaturePresenceMatrix) <- PCIList 

FeaturePresenceMatrix <- apply(FeaturePresenceMatrix, 2, as.numeric) 

FeaturePresenceresult[,2] <- as.numeric(rowSums(FeaturePresenceMatrix, na.rm = TRUE)) 

FeaturePresenceresult <- apply(FeaturePresenceresult, 2, as.numeric) 

colnames(FeaturePresenceresult)[2] = "Total Feature Presence" 

TotalFeaturePresenceExpected <- sum(FeaturePresenceExpected) 

FeaturePresenceExpected <- c(FeaturePresenceExpected, TotalFeaturePresenceExpected) 

#Calculates initial Feature Presence statistics To compare against clustered results 

InitialNumberofPCI <- length(zzData[,1]) 

InitialNoneNA <- sum(FeaturePresenceresult[,2]) 

InitialTotalNumberofValues <-  InitialNumberofPCI * TotalNumberofSamples 
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InitialPercentageofNA <- (InitialNoneNA/InitialTotalNumberofValues)*100 

zzData <- apply(zzData,2,as.numeric)  

    

########## Stage 6 (Optional) ##################### 

############CLUSTERFIX ############################ 

  if (ClusterAlgorithmCheck  == "y"){ 

    cat("Using Clusterfix") 

    #Prompts the user for the columns with the mass and RT data  

    MassData <- as.vector(MassData) 

    RTData <- as.vector(RTData) 

#Create Cluster Output File  

    ClusterInfo <- as.matrix(zzData[,1:21]) 

    ClusterInfo[,2:21] = 0 

    colnames(ClusterInfo)[1] <- "Primary PCI" 

    colnames(ClusterInfo)[2] <- "Status" 

    colnames(ClusterInfo)[3] <- "No of potential Matches" 

    colnames(ClusterInfo)[4] <- "Clustered (as secondary) with PCI" 

    colnames(ClusterInfo)[5:21] <- "Potential Secondary Matches" 

    ####### Preparation for Loop    ##################### 

    #Allows the user to set Mass and Retention time tolerance levels 

    ClusterMatchCheck <- as.matrix(zzData[,1:2]) 

    ClusterMatchCheck[,2] = 0 

    ClusteredData <- as.matrix(zzData[,-1]) 

    MassRTToleranceMultiplyingFactor <- as.numeric(RTTolerance/MassTolerance) 

#k is the row number for the primary PCI (This for loop Is iterated for each PCI 

      for (k in 1:length(FeaturePresenceresult[,1])) { 

        cat(paste(k, "\n", sep = " ", collapse = NULL)) 

#this if/else loop rejects PCI's which have no missing values 

          if (FeaturePresenceresult[k,2] == TotalNumberofSamples){ 

            cat("No Missing Values") 

          ClusterInfo[k,2] <- "100% Actual Feature Presence" 

          ClusterMatchCheck[k,2] <- as.numeric(1) 

          }else 

          { 

#Excludes PCI's which have already been matched 

          if (ClusterMatchCheck[k,2] != 1) { 

           #Creates Mass and RT Windows 

           PCIMass <- as.numeric(MassData[k]) 

           PCIRT <- as.numeric(RTData[k]) 

           MassUpperLimit <- PCIMass + MassTolerance 

           MassLowerLimit <- PCIMass - MassTolerance 

           RTUpperLimit <- PCIRT + RTTolerance 

           RTLowerLimit <- PCIRT - RTTolerance  

#creates a vector called rowlist to access the correct rows of information during clustering 

           rowlist <- as.vector(k) 

#this for loop  searches all other PCI's to find potential matches (Secondary PCI's) 

                for (p in 1:length(FeaturePresenceresult[,1])) { 

#Excludes the Primary PCI 

                  if (p != k) { 

#Excludes PCI's which have already been matched 

                if (ClusterMatchCheck[p,2] != 1) { 

#Excludes samples outside of the Mass and RT windows 

                 if ((as.numeric(MassData[p]) <= MassUpperLimit) && 

(as.numeric(MassData[p]) >= MassLowerLimit) && 

                      (as.numeric(RTData[p]) <= RTUpperLimit) && (as.numeric(RTData[p]) >= RTLowerLimit)) { 

#Excludes PCI's where the total Feature Presence of both Primary and matching PCI is above that of total 

sample size 

                  if ((FeaturePresenceresult[k,2] + 

FeaturePresenceresult[p,2]) <= TotalNumberofSamples) { 

#Primary and secondary count are the respective rows from feature presence matrix 
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#This if/else statement checks that there are no overlaps between PCI's  

#by calculating sums of Feature Presence Matrix 

                   PrimaryCount <- FeaturePresenceMatrix[k,] 

                   SecondaryCount <- FeaturePresenceMatrix[p,] 

                   PrimaryMinusSecondary <- PrimaryCount - 

SecondaryCount 

                   PrimaryPlusSecondary <- PrimaryCount + 

SecondaryCount 

                       #This if/else statement checks that there are no overlaps 

between PCI's 

                            if(all(PrimaryPlusSecondary < 2)) { 

                              rowlist <- c(rowlist, p) 

                              } 

                            } 

                        } 

                      } 

                    } 

                  }#closes the loop for searching through secondary PCI's 

#Creates a Feature Presence matrix of the primary PCI and all possible matches  

#and corresponding rownames and values from zzData 

              PatternMatchMatrix <- FeaturePresenceMatrix[rowlist,] 

              PatternMatchMatrixRownames <- PCIList[rowlist] 

              MatchedValues <- zzData[rowlist,] 

#This if/else statement skips the next stages if there are no potential matches 

                if (length(rowlist) == 1){ 

                  cat("No Matches") 

                  ClusterInfo[k,2] <- "No Potential Secondary Matches" 

                  }else 

                  { 

                  MatchedValues <- as.matrix(MatchedValues[,-1]) 

                  PatternMatchMatrixColumnSums <- colSums(PatternMatchMatrix) 

#This if/else statement checks that there are no overlaps between secondary PCI's 

#If there are any conflicts this if statement identifies the closest match 

                    if(any(PatternMatchMatrixColumnSums >= 2)){ 

                      ClusterInfo[k, 2] <- "CONFLICTING matches" 

                      cat("CONFLICT") 

                      ConflictingSampleLocation <- as.numeric(which.max(PatternMatchMatrixColumnSums)) 

                      ConflictingPCIsRowPatternMatchMatrix <- 

which(PatternMatchMatrix[,ConflictingSampleLocation] == 1) 

                      ConflictingPatternMatchMatrix <- PatternMatchMatrix[ConflictingPCIsRowPatternMatchMatrix,] 

                      ConflictingMassValues <- 

as.numeric(MassData[rowlist[ConflictingPCIsRowPatternMatchMatrix]]) 

                      ConflictingRTValues <- as.numeric(RTData[rowlist[ConflictingPCIsRowPatternMatchMatrix]]) 

#Calculates the Differences in Mass and RT from the primary PCI 

                      ConflictingMassDifference <- abs(ConflictingMassValues - PCIMass) 

                      ConflictingRTDifference <- abs(ConflictingRTValues - PCIRT) 

                      ConflictingMassDifference <- ConflictingMassDifference * MassRTToleranceMultiplyingFactor 

                      TotalDifference <- ConflictingMassDifference  + ConflictingRTDifference 

#Identifies the location of the Closest Neighbour 

                      ClosestNeighbour <- which.min(TotalDifference) 

#Removes the false Matches 

                      ConflictingPCIsRowPatternMatchMatrix <- ConflictingPCIsRowPatternMatchMatrix[-

ClosestNeighbour] 

     

#remove conflicting rows from PatternMatch Matrix , rownames, rowlist and matched values 

                      PatternMatchMatrix <- PatternMatchMatrix[-ConflictingPCIsRowPatternMatchMatrix,] 

                      PatternMatchMatrixRownames <- PatternMatchMatrixRownames[-

ConflictingPCIsRowPatternMatchMatrix] 

                      MatchedValues <-  MatchedValues[-ConflictingPCIsRowPatternMatchMatrix,] 

                      rowlist <- rowlist[-ConflictingPCIsRowPatternMatchMatrix] 
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                      } 

####### Cluster the Matches into Primary ############ 

#This for loop goes through each value in the primary PCI to see if there are any missing values 

                  for (Value in 1:length(PatternMatchMatrix[1,])) { 

                    if(PatternMatchMatrix[1,Value] == 1) { 

                      }else 

                      { 

#If there are any missing values this for loop searches for a replacement value in the other PCI's 

                      for (Value2 in 2:length(PatternMatchMatrix[,1])) { 

                        if(PatternMatchMatrix[Value2,Value] == 1) { 

#SecondaryValue <- rowlist[Value2] 

                          ClusteredData[k,Value] <- as.numeric(MatchedValues[Value2,Value]) 

                          } 

                        } 

                      } 

                    } 

#The following lines of code enter the relevant columns of teh clusterinfo putput file 

                ClusterMatchCheck[k,2] <- 1 

                ClusterInfo[k,2] <- "Clustered as Primary" 

                  for (secondary in 2:length(rowlist)){ 

                    MatchedPCI <- rowlist[secondary] 

                    ClusterMatchCheck[MatchedPCI,2] <- as.numeric(1) 

                    ClusterInfo[MatchedPCI, 4] <- PCIList[k] 

                    ClusterInfo[MatchedPCI, 2] <- "Matched" 

                    ClusteredData[MatchedPCI,]  <- paste("Clustered with PCI", PatternMatchMatrixRownames[k], 

sep = " ", collapse = NULL) 

                    ClusterInfoColumn <- as.numeric(4) 

                      for (SecondaryMatches in 2:length(rowlist)){ 

                        ClusterInfoColumn <- as.numeric(ClusterInfoColumn +1) 

                        ClusterInfo[k,ClusterInfoColumn] <- PCIList[rowlist[SecondaryMatches]] 

                        ClusterInfo[k,3] <- length(PatternMatchMatrixRownames) - 1 

                        } 

                    cat(PCIList[rowlist]) 

                    cat("Clustered\n") 

                    } 

                  } 

              } 

            } 

        } 

     ClusterInfo[,4:21][ ClusterInfo[,4:21] == 0] = "NA" 

#Creates new Clustered Feature Presence Matrix  

    ClusteredRows <- grep("Clustered", ClusteredData[,1]) 

    ClusteredDataReduced <- ClusteredData[-ClusteredRows,] 

    PCIListReduced <- PCIList[-ClusteredRows] 

    rownames(ClusteredDataReduced) <- PCIListReduced    

    FeaturePresenceMatrix2 <- as.matrix(ClusteredDataReduced) 

    FeaturePresenceMatrix2[ is.na(FeaturePresenceMatrix2)] <- as.numeric(0) 

    FeaturePresenceMatrix2[FeaturePresenceMatrix2 != 0] = as.numeric(1) 

    rownames(FeaturePresenceMatrix2) <- PCIListReduced 

    FeaturePresenceMatrix2 <- apply(FeaturePresenceMatrix2, 2, as.numeric) 

    colnames(FeaturePresenceMatrix2)[2] = "Total Feature Presence" 

    #Calculates Post Clustering Feature Presence statistics 

    PostNumberofPCI <- length(ClusteredDataReduced[,1]) 

    FeaturePresenceresult2 <- zzData[1:PostNumberofPCI,1:2] 

    FeaturePresenceresult2[,2] = 0 

    FeaturePresenceresult2[,2] <- rowSums(FeaturePresenceMatrix2, na.rm = TRUE) 

    FeaturePresenceresult2[,1] <- PCIListReduced 

    FeaturePresenceresult2 <- apply(FeaturePresenceresult2,2,as.numeric) 

    PostNoneNA <- sum(as.numeric(FeaturePresenceresult2[,2])) 

    PostTotalNumberofValues <-  PostNumberofPCI * TotalNumberofSamples 
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    PostPercentageofNA <- (PostNoneNA/PostTotalNumberofValues)*100 

    #creates the clustered comparison file 

    ClusteredComparisonFile <- matrix(nrow = 4, ncol = 2, byrow = FALSE, dimnames = list(c("Number of 

PCI", "Total Possible Values", "None NA Values", "Percentage of None missing Values"),c("Initial", "Post-

Clustering"))) 

    ClusteredComparisonFile[,1] <- c(InitialNumberofPCI, InitialTotalNumberofValues, InitialNoneNA, 

InitialPercentageofNA) 

    ClusteredComparisonFile[,2] <- c(PostNumberofPCI, PostTotalNumberofValues, PostNoneNA, 

PostPercentageofNA) 

    #Creates Filenames for output files 

    ClusteredDataFileName <- paste(ProjectName, "_ClusteredData.csv", sep = "") 

    ClusterInfoFileName <- paste(ProjectName, "_ClusteringInformaftion.csv", sep = "") 

    ClusterComparisonFileName <- paste(ProjectName, "_ClusterComparison.csv", sep = "") 

    #Creates csv files of clustrered data, Clusterinfo file and the Cluster comparison data 

    write.csv(ClusteredDataReduced, file = ClusteredDataFileName, row.names = TRUE) 

    write.csv(ClusterInfo, file = ClusterInfoFileName, row.names = FALSE) 

    write.csv(ClusteredComparisonFile, file = ClusterComparisonFileName, row.names = TRUE) 

    zzData <- cbind(row.names(ClusteredDataReduced), ClusteredDataReduced)  

    }else 

    { 

    #Removes additional columns 

    zzData <- zzData[,1:(TotalNumberofSamples +1)] 

#Clustered Feature Presence Matrix  

    FeaturePresenceMatrix2 <- as.matrix(zzData) 

    FeaturePresenceMatrix2[ is.na(FeaturePresenceMatrix2)] <- as.numeric(0) 

    FeaturePresenceMatrix2[FeaturePresenceMatrix2 != 0] = as.numeric(1) 

    rownames(FeaturePresenceMatrix2) <- PCIList 

    FeaturePresenceMatrix2 <- apply(FeaturePresenceMatrix2, 2, as.numeric) 

    colnames(FeaturePresenceMatrix2)[2] = "Total Feature Presence" 

    FeaturePresenceresult2 <- zzData[,1:2] 

    FeaturePresenceresult2[,2] = 0 

    FeaturePresenceresult2[,2] <- rowSums(FeaturePresenceMatrix2, na.rm = TRUE) 

    FeaturePresenceresult2[,1] <- PCIList 

    FeaturePresenceresult2 <- apply(FeaturePresenceresult2,2,as.numeric) 

    } 

     

########## Stage 7 (Optional) ##################### 

######### IMPUTE MISSING VALUES ################### 

zzData <- apply(zzData,2,as.numeric) 

  if (MissingValueImputationCheck  == "y"){ 

    MissingValuesCheck <- "n" 

    cat("Imputing Missing Values") 

    #calculates the feature presence cut-off points for various methods of imputation 

    FPBelow <- ceiling(TotalNumberofSamples * 0.25) 

    FPAbove <- floor(TotalNumberofSamples * 0.75) 

    #creates 3 different lists of PCI's to extract from dataset  

    FPBelowlist <- which(FeaturePresenceresult2[,2] <= FPBelow) 

    FPAbovelist <- which(FeaturePresenceresult2[,2] >= FPAbove) 

    #extracts partial dataset into 3 lists for imputation 

   FPBelowData <- zzData[FPBelowlist,] 

   FPAboveData <- zzData[FPAbovelist,] 

   FPMiddlelist <- c(FPBelowlist, FPAbovelist) 

   FPMiddleData <- zzData[-FPMiddlelist,] 

   ####### KNN ################################# 

    if(exists(".Random.seed")) rm(.Random.seed) 

   KNNImputedData <- impute.knn(FPAboveData[,-1] ,k = 10, rowmax = 0.9, colmax = 0.96, maxp = 

length(FPAboveData[,1])) 

   #KNNImputedData <- KNNImputed$data 

   KNNData <- cbind(FPAboveData[,1], KNNImputedData)                                   

    ######## Minimal Value imputation MIN ############ 



Page | XXI  © Cranfield University, 2011 

 

    FPBelowData [ is.na(FPBelowData)] <- as.numeric(0) 

    MINImputedData <- FPBelowData 

    ######### REPMED ############################## 

      for (i in 1:NumberofGroups) { 

        MiddleGroupData <-  FPMiddleData[,as.numeric(GroupSeparator[[i]])] 

        RowMedian <- as.numeric(apply(MiddleGroupData, 1, median, na.rm = TRUE)) 

          for (j in 1:length(RowMedian)) { 

            MiddleGroupData[j,][ is.na( MiddleGroupData[j,])] <- as.numeric(RowMedian[j]) 

            } 

        FPMiddleData[,as.numeric(GroupSeparator[[i]])] <-  MiddleGroupData[j,] 

        }  

      zzData  <- rbind(KNNData, FPMiddleData, MINImputedData)   

      PCIList <- zzData[,1] 

      }               

 

########## Stage 8 (Optional) ##################### 

######### Multivariate Analysis ################### 

  if (MultivariateCheck == "y"){ 

    require(reshape) 

    MultivariateData <- zzData 

    MultivariateData[is.na(MultivariateData)] <- 0 

    ###########  PCA  #################################### 

    result = prcomp(MultivariateData, center=FALSE) 

    #obtain scores matrix 

    scores=result$rotation 

    #PC1 vs PC2 plot 

    PCAFileName <- paste(ProjectName, "_PCAPlot.wmf", sep = "")  

    plot(scores[,1], scores[,2], xlab="PC1", ylab="PC2") 

    text((scores[,1]+0.0015),(scores[,2]+0.003), colnames(MultivariateData)[2:length(zz[1,])]) 

    dev.copy(win.metafile ,PCAFileName) 

    dev.off() 

    #Print summary of variance 

    print(summary(result)) 

    ###########  HCA  #################################### 

    #Dendrogram with Choice of distance and agglomeration methods 

    cat("1(euclidean), 2(maximum), 3(manhattan), 4(canberra), 5(binary), 6(minkowski) \n") 

    HCADistanceMethod <- as.numeric(readline(prompt = "Which Distance meausure would you like to 

apply?(1-6)")) 

    cat("1(ward), 2(single), 3(complete), 4(average), 5(mcquitty), 6(median), 7(centroid) \n") 

    HCAagglomerationMethod <- as.numeric(readline(prompt = "Which Agglomeration method would you like 

to apply?(1-7)")) 

    #Define distance method 

     if (HCAagglomerationMethod == 1){ 

      HCAagglomerationMethod <- "euclidean" 

      }else 

      if (HCAagglomerationMethod == 2){ 

       HCAagglomerationMethod <- "maximum" 

       }else 

       if (HCAagglomerationMethod == 3){ 

        HCAagglomerationMethod <- "manhattan" 

        }else 

        if (HCAagglomerationMethod == 4){ 

         HCAagglomerationMethod <- "canberra" 

         } 

         else 

         if (HCAagglomerationMethod == 5){ 

          HCAagglomerationMethod <- "binary" 

          }else 

          if (HCAagglomerationMethod == 6){ 

           HCAagglomerationMethod <- "minkowski" 
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           }   

    #Define Agglomeration method 

     if (HCADistanceMethod == 1){ 

      HCADistanceMethod <- "ward" 

      }else 

      if (HCADistanceMethod == 2){ 

       HCADistanceMethod <- "single" 

       }else 

       if (HCADistanceMethod == 3){ 

        HCADistanceMethod <- "complete" 

        }else 

        if (HCADistanceMethod == 4){ 

         HCADistanceMethod <- "average" 

         } 

         else 

         if (HCADistanceMethod == 5){ 

          HCADistanceMethod <- "mcquitty" 

          }else 

          if (HCADistanceMethod == 6){ 

           HCADistanceMethod <- "median" 

           }else 

            if (HCADistanceMethod == 7){ 

            HCADistanceMethod <- "centroid" 

            } 

    HCAFileName <- paste(ProjectName, "_HCAPlot.wmf", sep = "")      

   

    HCAData <- dist(t(MultivariateData), method = HCADistanceMethod) 

    dendrogram <-hclust(t(HCAData), method = HCAagglomerationMethod, members = NULL) 

    plot (dendrogram) 

    dev.copy(win.metafile ,HCAFileName) 

    dev.off() 

    } 

     

################ Stage 9 ############################ 

####### Create Analysis Data Groups ################# 

Grouplist <- list() 

Naresult <- zzData[,1:groupcolumns] 

Naresult[,2:groupcolumns] = as.numeric(0) 

Meanresult <- zzData[,1:groupcolumns] 

Meanresult[,2:groupcolumns] = as.numeric(0) 

FeaturePresenceresult <- zzData[,1:(groupcolumns+1)] 

SampleNamesRow <- names(zzData[2:(TotalNumberofSamples+1)]) 

FeaturePresenceresult <- zzData[,1:(groupcolumns+1)] 

FeaturePresenceresult[,2:(groupcolumns+1)] = as.numeric(0) 

zzDataGrouped <- zzData[,1] 

PCIList <- as.vector(zzData[,1]) 

####### DEFINING GROUPS LOOPS ####################### 

  for (i in 1:NumberofGroups) { 

    Grouplist[[i]] <- zzData[,as.numeric(GroupSeparator[[i]])] 

    zzDataGrouped  <- cbind(zzDataGrouped, zzData[,as.numeric(GroupSeparator[[i]])])  

    cat("Processing Group Sample and Statistics...... PLEASE WAIT\n") 

    Samp <- data.matrix(Grouplist[[i]]) 

    Samp <- apply(Samp,2,as.numeric) 

      if (LogsCheck == "y"){ 

        expSamp <- exp(Samp) 

        }else 

        { 

        expSamp <- Samp 

        }  

# GROUP STATS ################################# 
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##calculates AND ENTERS MEANS 

    cat("Calculating Group Stats (Means and Feature Presence...... PLEASE WAIT\n") 

    Meanresult[,i+1] <- rowMeans(expSamp, na.rm = TRUE) 

    colnames(Meanresult)[i+1] = paste("Mean - Group ", i) 

    colnames(FeaturePresenceresult)[i+1] = paste("Feature Presence Group ", i) 

    ##calculates AND ENTERS Feature Presence 

    GroupFeaturePresence <- Samp 

    GroupFeaturePresence[ is.na(GroupFeaturePresence)] <- as.numeric(0) 

    GroupFeaturePresence[GroupFeaturePresence != 0] = as.numeric(1) 

    FeaturePresenceresult[,(i+1)] <- as.numeric(rowSums(GroupFeaturePresence, na.rm = TRUE)) 

      if (MissingValuesCheck == "y"){ 

          Samp[is.na(Samp)] <- ReplacementNAsyntax 

          Grouplist[[i]] <- Samp 

        }   

    #rename(Group, Groupname) 

    AnalysisVariable <- paste("Group", i, sep = "", collapse = NULL) 

    assign(AnalysisVariable, Samp) 

    } 

colnames(FeaturePresenceresult)[groupcolumns+1] = "Total Feature Presence " 

ForRowSumming <- FeaturePresenceresult[,2:groupcolumns] 

ForRowSumming <- apply(ForRowSumming,2,as.numeric) 

RowsumsforTotalFP <- rowSums(ForRowSumming) 

FeaturePresenceresult[,groupcolumns+1] <-  RowsumsforTotalFP 

FeaturePresenceresult <- apply(FeaturePresenceresult,2,as.numeric) 

 

################ Stage 10############################ 

####### COMPARITIVE ANALYSIS lOOP ################### 

FoldChange <- PCIList 

FoldChangeTemp <- zzData[,1:2] 

FoldChangeTemp[,2] = 0  

FoldChangeHead <- "PCI" 

TTestHead <- "PCI" 

WilcoxHead <- "PCI" 

TTestresult <- zzData[,1]  

TTestresultTemp <- zzData[,1:2] 

TTestresultTemp[,2] = 0  

Wilcoxresult <- zzData[,1]  

WilcoxresultTemp <- zzData[,1:2] 

WilcoxresultTemp[,2] = 0 

groupsminusone <- NumberofGroups - 1  

  for (k in (1:groupsminusone)) { 

    #GetGroupName <- paste("Samp", k, sep = "")  

    #SampleDenom <- eval(as.name(GetGroupName)) 

    cat(paste("Group ", k, " Analysis ...... PLEASE WAIT\n" , sep = " ", collapse = NULL)) 

    GroupAnalysisDenominator <- as.data.frame(Grouplist[k])  

      for (l in (k+1):NumberofGroups)  { 

        cat(paste("Group ", k, "vs" , l, " Analysis ...... PLEASE WAIT\n", sep = " ", collapse = NULL)) 

        GroupAnalysisNumerator <- as.data.frame(Grouplist[l])  

        FoldChangeTemp[,2] <- as.numeric(Meanresult[,l+1]) / as.numeric(Meanresult[,k+1]) 

        for (p in 1:length(zzData[,1])) { 

          SampleDenominator <- as.vector(GroupAnalysisDenominator[p,])  

          SampleNumerator <- as.vector(GroupAnalysisNumerator[p,])  

          SampleDenominatorTranspose <- t(GroupAnalysisDenominator[p,])  

          SampleNumeratorTranspose <- t(GroupAnalysisNumerator[p,])      

            if (p == length(zzData[,1])/4) { 

              cat("25% Completed.............\n") 

              }  

            if (p == length(zzData[,1])/2) { 

              cat("50% Completed.............\n") 

              }  
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            if (p == length(zzData[,1])/1.5) { 

              cat("75% Completed.............\n") 

              }       

            if (FeaturePresenceresult[p, (k+1)]  < 2 | FeaturePresenceresult[p,l+1] < 2) { 

              TTestresultTemp[p,2] <- NA  

              WilcoxresultTemp[p,2] <- NA 

              }else  

              { 

              TTestresultTemp[p,2] <- t.test(SampleNumerator, SampleDenominator, na.rm=TRUE, var.equal = 

FALSE, paired=FALSE, conf.level=0.95)$p.value 

              WilcoxresultTemp[p,2]  <- wilcox.test(SampleNumeratorTranspose, SampleDenominatorTranspose, 

na.rm=TRUE, paired=FALSE, conf.level=0.95)$p.value 

              } 

            } 

        FCHead <- paste("Fold Change (", l, " / ", k, ")") 

        TTHead <- paste("Welch T Test (", l, " / ", k, ")") 

        WilcHead <- paste("Wilcoxon Mann Whitney Test (", l, " / ", k, ")") 

        FoldChangeHead <- c(FoldChangeHead, FCHead) 

        TTestHead <- c(TTestHead, TTHead) 

        WilcoxHead <- c(WilcoxHead, WilcHead) 

        FoldChange <- cbind(FoldChange, FoldChangeTemp[,2])  

        TTestresult <- cbind(TTestresult, TTestresultTemp[,2]) 

        Wilcoxresult <- cbind(Wilcoxresult, WilcoxresultTemp[,2]) 

        cat("Analysis 100% Completed\n") 

        } 

      } 

colnames(FoldChange) <-  FoldChangeHead 

colnames(TTestresult) <-  TTestHead 

colnames(Wilcoxresult) <- WilcoxHead 

 

#################### Stage 11 ########################## 

###################  Groupwise Analysis################# 

ANOVAresult <- zzData[,1:6] 

ANOVAresult[,2:6] = 0  

colnames(ANOVAresult)[2] = "ANOVA NA p-value" 

colnames(ANOVAresult)[3] = "ANOVA NA (groups as.numeric) p-value" 

colnames(ANOVAresult)[4] = "ANOVA -4.60517 p-value" 

colnames(ANOVAresult)[5] = "ANOVA -4.60517 (groups as.numeric) p-value" 

colnames(ANOVAresult)[6] = "oneway test -4.60517 p-value" 

KRUSKALresult <- zzData[,1:2] 

KRUSKALresult[,2] = 0  

colnames(KRUSKALresult)[2] = "Kruskall Wallis p-value" 

TotalIntensityList <- zzData[,1] 

GroupingList <- c() 

LabelsList <- c() 

  for (q in (1:NumberofGroups)) { 

    cat("Creating ANOVA list structure.........Please Wait\n")  

  UnlistedGroupData <- as.data.frame(Grouplist[q]) 

  TotalIntensityList <- cbind(TotalIntensityList, UnlistedGroupData) 

  GroupingListTemp <-  c()  

  GroupSize <- as.numeric(FeaturePresenceExpected[q]) 

    for (grp in 1:GroupSize) { 

     GroupingListTemp <-  c(GroupingListTemp, q)  

       } 

  GroupingList <- c(GroupingList, GroupingListTemp) 

  LabelTemp<- paste("Group", q, sep = "", collapse = NULL) 

  LabelsList <- c(LabelsList, LabelTemp) 

    } 

RownameList <- c() 

  for (r in (1:TotalNumberofSamples)){ 



Page | XXV  © Cranfield University, 2011 

 

    RownameList <- c(RownameList, r) 

    } 

ANOVATukeyresult <- TTestresult 

ANOVATukeyresult[,2:length(ANOVATukeyresult[1,])] = 0  

TotalIntensityList <- TotalIntensityList[,-1] 

###################   ANOVA TUKEY Header ############################ 

#Searches for Row with best Feature Presence 

BFP <- which.max(FeaturePresenceresult[,(groupcolumns+1)]) 

datalist <-  vector(mode = "numeric") 

  for (vec in 1:TotalNumberofSamples){ 

    datalist[vec] <- TotalIntensityList[BFP,vec] 

    } 

  if (MissingValuesCheck == "y"){ 

    datalist[ is.na(datalist) ] <- ReplacementNAsyntax 

    }  

"zzzanova" <- structure(list(Intensity = datalist,  

        Group = structure(GroupingList, .Label = LabelsList, class = "factor"),  

        Sample = structure(as.numeric(1:TotalNumberofSamples))) 

        , .Names = c("Intensity", "Group", "Sample"),  

        row.names = RownameList, class = "data.frame")    

#Conducts the ANOVA for that PCI 

zzz.aov <- aov(Intensity ~ Group, data = zzzanova) 

#TUKEY 

zzz.aov.tk <- TukeyHSD(zzz.aov)  

colnames(ANOVATukeyresult)[2:length(ANOVATukeyresult[1,])] <- rownames(zzz.aov.tk[[1]]) 

ANOVATukeyHead <- c("PCI", rownames(zzz.aov.tk[[1]])) 

TotalIntensityList <- zzData[,1] 

 for(sampleclusters in 1:NumberofGroups){ 

  TotalIntensityList <- cbind(TotalIntensityList, Grouplist [[sampleclusters]]) 

  } 

TotalIntensityList <- TotalIntensityList[,-1] 

TotalIntensityList <- apply(TotalIntensityList,2,as.numeric) 

  cat("Conducting ANOVA........Please Wait\n") 

 ###################   ANOVA Row wise Loop ############################ 

  for(s in 1:length(zzData[,1])) { 

    if (s == length(zzData[,1])/4) { 

      cat("25% Completed.............\n") 

      }  

    if (s == length(zzData[,1])/2) { 

      cat("50% Completed.............\n") 

      }  

    if (s == length(zzData[,1])/1.5) {                                                     

      cat("75% Completed.............\n") 

      }  

    ##Does a check to ensure that at least 2 samples are present in each group 

  if(any(FeaturePresenceresult[s,-1] < 2)){   

    ANOVAresult[s,2:6] <- NA 

    KRUSKALresult[s,2] <- NA 

    cat("Not enough Samples\n") 

    }else  

      { 

      cat("ANOVA\n") 

      #Create a list which can be analysed by ANOVA 

      datalist <-  vector(mode = "numeric") 

        for (vec in 1:TotalNumberofSamples){ 

          datalist[vec] <- TotalIntensityList[s,vec] 

          } 

    if (MissingValuesCheck == "y"){ 

      datalist[ is.na(datalist) ] <- ReplacementNAsyntax 

      }  
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    "zzzanova" <- structure(list(Intensity = datalist,  

        Group = structure(GroupingList, .Label = LabelsList, class = "factor"),  

        Sample = structure(1:TotalNumberofSamples)) 

        , .Names = c("Intensity", "Group", "Sample"),  

        row.names = RownameList, class = "data.frame") 

    zzz.aov <- aov(Intensity ~ Group, data = zzzanova) 

    sum<-summary(zzz.aov) 

    #retreive p-value 

    ANOVAresult[s,2] <- unlist(sum)["Pr(>F)1"] 

    sum <- summary(aov(Intensity ~ as.numeric(zzzanova$Group), data = zzzanova))   

    ANOVAresult[s,3] <- unlist(sum)["Pr(>F)1"] 

    #Conducts the ANOVA for that PCI 

    zzz.aov <- aov(Intensity ~ Group, data = zzzanova) 

    #Assign the summary to an object 

    sum<-summary(zzz.aov) 

    #retreive p-value 

    ANOVAresult[s,4] <- unlist(sum)["Pr(>F)1"] 

    sum <- summary(aov(Intensity ~ as.numeric(zzzanova$Group), data = zzzanova)) 

    ANOVAresult[s,5] <- unlist(sum)["Pr(>F)1"] 

    ANOVAresult[s,6] <- oneway.test(Intensity ~ Group, data = zzzanova, var.equal = FALSE)$p.value 

    KRUSKALresult[s,2] <- kruskal.test(Intensity ~ Group, data = zzzanova)$p.value 

    #TUKEY   

    zzz.aov.tk <- TukeyHSD(zzz.aov)  

    TukeyGroups <- c("PCI", rownames(zzz.aov.tk[[1]])) 

  for (tkrow in 2:length(TukeyGroups)) { 

   for (tkcol in 2:length(ANOVATukeyHead)) { 

    if (TukeyGroups[tkrow] == ANOVATukeyHead[tkcol]) { 

     ANOVATukeyresult[s,tkcol] <- zzz.aov.tk[[1]][(tkrow-1),4] 

    }   

   } 

  }      

        } 

      }   

ANOVATukeyHead <- paste("ANOVA Tukey ", ANOVATukeyHead) 

colnames(ANOVATukeyresult) <- ANOVATukeyHead 

colnames(ANOVAresult)[6] <- "Overall ANOVA P-Value" 

cat("ANOVA Analysis 100% Completed\n") 

 

################ Stage 12 ########################### 

######### Create output files   ##################### 

FullPValues <- cbind(TTestresult, ANOVAresult[,6], ANOVATukeyresult[,-1], KRUSKALresult[,2], 

Wilcoxresult[,-1]) 

FullPValuesColumnNames <- c(colnames(TTestresult), colnames(ANOVAresult)[6], 

colnames(ANOVATukeyresult[,-1]), colnames(KRUSKALresult)[2], colnames(Wilcoxresult[,-1])) 

FullPValues <- apply(FullPValues,2,as.numeric) 

colnames(FullPValues) <- FullPValuesColumnNames  

colnames(FullPValues)[1] = "Feature Identifier" 

FullOutput <- cbind(Meanresult, FeaturePresenceresult[,-1], FoldChange[,-1], FullPValues[,-1]) 

OutputFileName <- paste(ProjectName, "_FullOutput.csv", sep = "") 

write.csv(FullOutput, file = OutputFileName, row.names = FALSE) 

 

################ Stage 13 ######################### 

######## Multiple Testing Correction ############## 

MultipleTestingData <- FullPValues 

MultipleTestingData[,2:(length(MultipleTestingData[1,]))] = 0  

if (MultipleTestingCheck == "y"){ 

 if (MultipleTestingMethod == 1){ 

  MultipleTestingMethod <- "holm" 

  colnames(MultipleTestingData) <- paste("Holm", colnames(FullPValues), sep = "_")  

  }else 
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  { 

  if (MultipleTestingMethod == 2){ 

   MultipleTestingMethod <- "hochberg" 

   colnames(MultipleTestingData) <- paste("Hochberg", colnames(FullPValues), sep = 

"_")  

   }else 

   { 

   if (MultipleTestingMethod == 3){ 

    MultipleTestingMethod <- "hommel" 

    colnames(MultipleTestingData) <- paste("Hommel", 

colnames(FullPValues), sep = "_")  

    }else 

    { 

    if (MultipleTestingMethod == 4){ 

     MultipleTestingMethod <- "bonferroni" 

     colnames(MultipleTestingData) <- paste("Bonferroni", 

colnames(FullPValues), sep = "_")  

     } 

     else 

     { 

     if (MultipleTestingMethod == 5){ 

      MultipleTestingMethod <- "BH" 

      colnames(MultipleTestingData) <- paste("Benjamini-

Hochberg", colnames(FullPValues), sep = "_")  

      }else 

      { 

      if (MultipleTestingMethod == 6){ 

       MultipleTestingMethod <- "BY" 

       colnames(MultipleTestingData) <- 

paste("Benjamini-Yekutieli", colnames(FullPValues), sep = "_")  

       } 

      } 

     } 

    } 

   } 

  } 

      for (pvaltests in 2:length(MultipleTestingData[1,])) { 

         CurrentMTCData <-  as.numeric(FullPValues[,pvaltests]) 

       MultipleTestingData[,pvaltests] <- p.adjust(CurrentMTCData, method = 

MultipleTestingMethod) 

        } 

  CorrectedFullOutput <- cbind(Meanresult, FeaturePresenceresult[,-1], FoldChange[,-1], 

MultipleTestingData[,-1]) 

  FullPValues <- MultipleTestingData 

  CorrectedOutputFileName <- paste(ProjectName, "_", MultipleTestingMethod, "_CorrectedOutput.csv", sep = 

"") 

  write.csv(CorrectedFullOutput, file = CorrectedOutputFileName, row.names = FALSE) 

 } 

 

################ Stage 14 ########################### 

#Create Options File       

 

OptionsFile <- mat.or.vec(8, 2) 

OptionsFile[1,1] <- "Biomarker Hunter Options" 

OptionsFile[2,1] <- "Is the data natural logs?" 

OptionsFile[3,1] <- "Clusterfix used?" 

OptionsFile[4,1] <- "Is Multiple Testing implemented?" 

OptionsFile[5,1] <- "Multiple Testing Method?" 

OptionsFile[6,1] <- "Missing data imputed?" 

OptionsFile[7,1] <- "User defined Minimal Value Imputation used?" 



Page | XXVIII  © Cranfield University, 2011 

 

OptionsFile[1,2] <- paste("Filename:", DataFile, sep = "") 

OptionsFile[2,2] <- LogsCheck 

OptionsFile[3,2] <- ClusterAlgorithmCheck 

OptionsFile[4,2] <- MultipleTestingCheck 

  if (MultipleTestingCheck == "y"){ 

    OptionsFile[5,2] <- MultipleTestingMethod 

    } 

  if (MultipleTestingCheck == "n"){ 

    OptionsFile[5,2] <- "NA"   

    } 

OptionsFile[6,2] <- MissingValueImputationCheck 

  if (MissingValueImputationCheck == "n"){ 

    OptionsFile[7,2] <- MissingValuesCheck 

      if (MissingValuesCheck == "y"){ 

        OptionsFile[7,2] <- paste(MissingValuesCheck, "(",ReplacementNAsyntax, ")", sep = "") 

        } 

    } 

OptionsFile[8,1] <- "Total Spot Normalisation?"     

OptionsFile[8,2] <- NormalisationCheck 

OptionsFileName <- paste(ProjectName, "_OptionsFile.csv", sep = "") 

write.csv(OptionsFile, file = OptionsFileName, row.names = FALSE) 

 

################ Stage 15 ########################### 

######### Significant biomarkers List ############### 

FullPValues[FullPValues == 0] = "ZERO" 

PotentialBiomarkerList <- FullPValues 

NumberOfMarkers <- "Number of Biomarkers" 

PotentialBiomarkerList[,2:length(PotentialBiomarkerList[1,])] <- "NA"  

PotentialBiomarkerList <-cbind(PotentialBiomarkerList, 

PotentialBiomarkerList[,2:length(PotentialBiomarkerList[1,])]) 

PBListColNumber <- 1 

FullBiomarkerList = NULL 

  for (tests in 2:length(FullPValues[1,])) {  

    SignificantMarkers <- which(FullPValues[,tests] <= 0.05) 

    PBListColNumber <- PBListColNumber + 1 

    colnames(PotentialBiomarkerList) [PBListColNumber] =  colnames(FullPValues)[tests] 

    colnames(PotentialBiomarkerList) [PBListColNumber+1]   = "P-Value" 

      if (length(SignificantMarkers) == 0){ 

        cat("No Potential Biomarkers!\n") 

        NumberOfMarkers <- c(NumberOfMarkers, 0)       

        PotentialBiomarkerList[1,PBListColNumber] <- "No Potential Biomarkers" 

        PBListColNumber <- PBListColNumber + 1 

        PotentialBiomarkerList[1,PBListColNumber] <- "NA" 

        }else 

        { 

        cat("Biomarkers Found!\n") 

        NumberOfMarkers <- c(NumberOfMarkers, length(SignificantMarkers)) 

        SignificantMarkersList <- FullPValues[SignificantMarkers,1] 

        FullBiomarkerList <- c(FullBiomarkerList, SignificantMarkersList) 

        SignificantPValues <- FullPValues[SignificantMarkers, tests]  

        PotentialBiomarkerList[(1:length(SignificantMarkersList)),PBListColNumber] <-SignificantMarkersList 

        PBListColNumber <- PBListColNumber + 1 

        PotentialBiomarkerList[(1:length(SignificantMarkersList)),PBListColNumber] <- SignificantPValues 

        } 

    }  

NumberOfMarkers <-  as.numeric(NumberOfMarkers) 

PotentialBiomarkerList <- PotentialBiomarkerList[1:max(NumberOfMarkers[-1]),-1] 

rownames(PotentialBiomarkerList) <- 1:max(NumberOfMarkers[-1]) 

#Creates a list of significant PCI and their occurence in each test 

FreqOfOccur <-as.data.frame(table(FullBiomarkerList)) 
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colnames(FreqOfOccur)<-c("PCI","Count")  

FreqOfOccur_Sort <- FreqOfOccur[order(-FreqOfOccur$Count, na.last = TRUE) , ] 

colnames(FreqOfOccur_Sort)<-c("Feature Identifier","Positive Tests Count") 

BiomarkerFileName <- paste(ProjectName, "_BiomarkerList.csv", sep = "")  

BiomarkerListFileName  <- paste(ProjectName, "_BiomarkerOccurence.csv", sep = "")  

write.csv(PotentialBiomarkerList, file = BiomarkerFileName, row.names = FALSE) 

write.csv(FreqOfOccur_Sort, file = BiomarkerListFileName, row.names = FALSE) 

# GroupList       

GrouplistFileName <- paste(ProjectName, "_GroupList.csv", sep = "")  

write.csv(GroupSeparator, file = GrouplistFileName, row.names = FALSE) 

GrouplistFile <- read.csv(GrouplistFileName, strip.white = TRUE, na.strings = NA) 

GrouplistColnames <- paste("Group" ,c(1:NumberofGroups)) 

colnames(GrouplistFile) <- GrouplistColnames 

write.csv(GrouplistFile, file = GrouplistFileName, row.names = FALSE) 

 

################ Stage 16 ########################### 

#########             BoxPlots        ############### 

BoxplotsCheck <- readline(prompt = "Would you like to create boxplots for any Feature? (y/n):") 

library(fields) 

  while (BoxplotsCheck  == "y"){ 

    BoxplotsFeature <- readline(prompt = "Which Feature would you like to create a Boxplot for?:") 

    BoxplotsFeature <- as.numeric(BoxplotsFeature) 

    BoxplotsData <- as.numeric(which(PCIList == BoxplotsFeature)) 

    BoxplotsData <- TotalIntensityList[BoxplotsData,] 

    BoxplotsData[which( BoxplotsData == 0 )] <- "NA" 

    BoxplotsData <- as.numeric(BoxplotsData[-1]) 

    BoxplotsHeading <- paste("Tukey boxplot (including outliers) for PCI ", BoxplotsFeature , sep = "") 

    bplot(as.numeric(BoxplotsData), GroupingList, style = "tukey", outlier = TRUE,  

  col="red", main = BoxplotsHeading, 

    xlab = "Groups", ylab = "Intensity", plot = TRUE) 

    BoxplotsFilename <- paste(BoxplotsFeature, "_Boxplot", sep = "") 

    savePlot(filename = "BoxplotsFilename", type = "jpeg", device = dev.cur(), restoreConsole = TRUE) 

    BoxplotsCheck <- readline(prompt = "Create another boxplot for any Feature? (y/n):") 

    } 
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APPENDIX B - Biomarker Hunter – A User Guide  

(All screenshots are from Microsoft Windows XP and will differ on other operating systems) 

Biomarker Hunter is a reliable pipeline software solution, based in the statistical 

programming platform R, which will be utilized for the identification of biomarkers through 

the use of statistical analysis of experimental datasets. It can be used to identify peptides or 

proteins which are differentially expressed following various treatments in order to identify 

the effects of the treatment. This was created as part of an EngD Project undertaken at 

Cranfield University (Patel A. , Bioinformatics Solutions for the Development and 

Evaluation of Statistical Approaches in Proteomic Biomarker Discovery, 2011). For detailed 

discussion about the development of this software package please refer to the thesis. Figure 

73 shows an overview of the Biomarker Hunter pipeline software.  

 
Figure 73 - An overview of the Biomarker Hunter pipeline software. 

 

The pipeline allows the user to analyse data from proteomic biomarker experimental data. It 

offers a variety of data pre-processing options including normalisation, replicate averaging, 

missing value imputation as well as the novel clustering algorithm (ClusterFix) to reduce 

missing data, prior to statistical analysis. The software offers a variety of univariate and 

multivariate statistical analysis methods to analyse the proteomic datasets. Following the 

statistical analysis, the user can implement various methods of multiple testing corrections to 

reduce the occurrence of false positives in the univariate analysis.  
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The user is then presented with the output of results which will be described in this user 

manual. Biomarker Hunter offers a number of data pre-processing options including: 

 Normalisation of technical variance 

 Averaging of technical replicates 

 Missing value treatment  

o Missing value imputation 

o The novel clustering algorithm “ClusterFix”  

Biomarker Hunter offers a range of statistical analysis options: 

 Univariate Analysis (Figure 74) 

 
Figure 74 - An outline of the univariate hypothesis tests implemented for Biomarker 

Hunter showing the parametric and non-parametric alternatives for both one-way and 

group-wise analysis 

 Multivariate Analysis 

o Principal Component Analysis (PCA) 

o Hierarchical Cluster Analysis (HCA) 

 

Subsequent to the analysis, the user has the option to implement multiple testing corrections 

to allow for the error of a large number of statistical tests. These methods are: 

 Bonferroni (Bland & Altman, 1995) 

 Holm (Holm, 1979) 

 Hochberg (Hochberg, 1988) 

 Hommel (Hommel, 1988) 

 Benjamini Hochberg (Benjamini et al, 1995) 

Once this is completed the following files will be available in the results directory 

 ProjectName_FullOutput.csv (Contains the following univariate results) 

o (Mean) Mean value of intensities for each Group 

o FeaturePresence (Number of none NA samples in each group and overall for 

each identifier(PCI, MCI) 

o Foldchange (Fold change between each group) 

o TTest  (Welch T-test p-values between each group) 



Page | XXXII  © Cranfield University, 2011 

 

o Wilcox  (Wilcoxon Mann Whitney test p-values between each group) 

o ANOVA (Welch Anova p-values) including Post-hoc Tukey p-values  

o Kruskall (Kruskall Wallis p-values between all groups) 

o ProjectName_BiomarkerList.csv (A list of feature identifiers with a p-value 

below 0.05 for each test conducted) 

o ProjectName_OptionsFile.csv (A table presenting the used options for the 

software) 

o ProjectName_BiomarkerOccurence.csv (The occurrence of features identified 

as biomarkers between the univariate tests) 

 

IF THE CLUSTERFIX OPTION IS USED THEN THE FOLLOWING FILES WILL ALSO 

BE AVAILABLE 

 ProjectName_ClusteredData.csv (A copy of the dataset after the clustering has been 

conducted) 

 ProjectName_ClusteringInformaftion.csv (A output file which identifies which PCI’s 

are clustered with which others) 

 ProjectName_ClusterComparison.csv (Statistics illustrating the effectiveness of the 

clustering algorithm) 

 

IF THE MULTIVARIATE OPTION IS USED THEN THE FOLLOWING FILES WILL 

ALSO BE AVAILABLE 

 ProjectName_PCA.jpg (A PCA plot) 

 ProjectName_HCA.jpg (A HCA dendrogram) 

 

 

 

 

 

 

 

 

Step by Step Guide 

1. To use the Biomarker Hunter pipeline software the machine must first have the 

statistical programming language R installed. If this is not the case R can be installed 

from one of the CRAN mirrors found at (http://www.r-project.org/). 

 

2. Once R is installed, an instance of the R console needs to be opened which should 

look like Figure 75: 

 

http://www.r-project.org/
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Figure 75 - R Console 

3.  Using the commands – File>Change dir.....  set the working directory to the 

directory in which the software file named BiomarkerHunter.r is stored. 

4. In the R console now type the command  

> source("BiomarkerHunter.r") 

 

5. You will then be prompted to enter a project name which will then be used to identify 

any output files. This may contain any valid filename characters (i.e. You can't use 

any of the following characters in a file name: \ / ? : * " > < |) 

Enter the Project name to identify Output Files: 

 

6. Select the file containing the dataset you would like to analyse using Biomarker 

Hunter using the pop up browser (Figure 76): 
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Figure 76 - Data file pop-up selection box 

 

The software package contains a file which can be used for test purposes named 

BHTestdataset.csv. The dataset must be in a comma separated file format which, if 

not available, can easily be created using excel or a similar spreadsheet solution. The 

first column should be an identifier for each feature (protein, peptide or gene etc.). 

The following columns should contain the abundance of each protein for each sample. 

If the dataset contains mass and retention time data, these columns should be placed 

after the sample intensity columns. The samples do not necessarily have to be in a 

particular order as the data will be sorted by the software. Additional rows of 

information above the data are allowed which can be removed using this software.  

Table 60 shows an outline of how an acceptable dataset should be structured. 

Takeda2_all_files

AKTestdataset2.csv

1 2 X

PCI Sample 1 Sample 2 Sample X Mass data RT Data

1 Intensity S1 Intensity S2 Intensity SX Mass PCI 1 RT PCI 1

2 Intensity S1 Intensity S2 Intensity SX Mass PCI 2 RT PCI 2

3 Intensity S1 Intensity S2 Intensity SX Mass PCI 3 RT PCI 3

4 Intensity S1 Intensity S2 Intensity SX Mass PCI 4 RT PCI 4  
Table 60 - Outline of an acceptable dataset .csv file (Mass and RT columns are optional) 

7. You will then be asked to identify the missing values in the dataset by imputing the 

syntax given to the missing values (i.e. NA, N/A, 0 or other minimal values). (Use 

“0” for BHTestdataset.csv) 

Enter the code given to NA values: 
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8. The following prompt allows the user to remove any additional rows above the actual 

data by asking for the row number of the first row of data. IF YOU ARE VIEWING 

THE FILE IN EXCEL, ONE ROW WILL BE USED AS A HEADER SO YOU 

SHOLD USE (ROW NUMBER – 1). (Use “6” for BHTestdataset.csv (In excel the 

first data row is contained in row 7))  

Which row contains the first set of data values?: 

 

9. You will then be prompted for the total number of samples being analysed with the 

prompt below: (Use “24” for BHTestdataset.csv) 

Enter the total number of samples in the dataset : 

 

10. You will then be prompted for the number of different sample groups: (Use “4” for 

BHTestdataset.csv) 

Enter the number of different groups being compared: 

 

11. You will be presented with two options for the extraction of samples into their 

respective groups. This can either be done manually or using a grouping file. 

 

Would you like to enter data 1)Manually or 2)Using Grouping script: 

 

If Option 1 is used you would be asked for the number of samples in each group as 

well the corresponding column numbers for each sample in the group  (each column 

number must be entered individually):  

Enter the number of samples in Group 1: 

Enter column number containing Group 1 - Sample 1: 

For BHTestdataset.csv, each group has 6 samples, with the columns assigned as 

specified below (note that column 1 is the identifier). 

 Group 1 : 2, 3, 4, 5, 6, 7 

 Group 2 : 8, 9, 10, 11, 12, 13 

 Group 3 : 14, 15, 16, 17, 18, 19 

 Group 4 : 20, 21, 22, 23, 24, 25 

 

If Option 2 is used you can provide the location of a grouping file. A grouping file is a 

.csv file with two columns with column headers (Figure 77). The first column will 

state the group identifier (A name or number referencing the group, which will be the 

same for each sample in the group). The second column will identify the column 

numbers of the samples in all the groups. 

 

 

Group 

Identifier 

Column 

Number 

A 2 

B 3 
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C 4 

A 5 

B 6 

C 7 

Figure 77 - An example of a grouping file 

12. You will be prompted (Figure 78) to specify the folder in which to store results: 

Ideally a newly created folder should be used. 

 
Figure 78 - Results folder pop-up selection box 

13. If the data has been normalised previously using natural logarithms (log) then this 

needs to be specified. (Use “n” for BHTestdataset.csv) 

Are the data natural logarithms ? (y/n)[Case sensitive]: 

 

14. If normalisation is required, the software offers normalisation through the Total Spot 

Normalisation (TSN). (Use “y” for BHTestdataset.csv) 

This involves using the formula: 

 

NInt =   Intensity of PCI n 

TOTInt =  Total Intensity of all the PCI’s in the sample(column) 

Scaling = A factor by which all values are multiplied to allow for extremely 

small numbers 

Normalise the data using TSN (Total Spot Normalisation)? (y/n)[Case sensitive]: 

15. The aim of the Clusterfix Option is to reduce the number of missing values. It aims to 

achieve this by searching for PCIs which lie within user-specified mass and retention 

time windows and share a similar pattern with regards to missing values. This requires 

mass and retention time data. (Use “y” for BHTestdataset.csv) 

Use Clusterfix to reduce missing values? (y/n):  

If Clusterfix is used then you will be asked for the columns with the mass and 

retention time (RT) data. (Use “26” = mass and “27” = RT for BHTestdataset.csv). 

Which column contains the Mass data?: 

Which column contains the Retention Time (RT) data?: 
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You will then be asked for the tolerance levels for mass and retention time. (Use 

“0.1” = mass and “0.5” = RT for BHTestdataset.csv). 

Mass tolerance level (+/-) you would like to use?: 

Retention time tolerance level (+/-) you would like to use?: 

 

16. The Biomarker Hunter pipeline software offers six methods for multiple testing 

corrections. Implement Multiple Testing Correction methods? (y/n)Case sensitive: 

(Use “y” for BHTestdataset.csv). If Multiple Testing will be used then you will be 

asked for the number relating to the method to be used. 

1(holm), 2(hochberg), 3(hommel), 4(bonferroni), 5(BH), 6(BY) 

Which Multiple Testing method to apply? 

 

17. The Biomarker Hunter software allows the imputation of missing values that cannot 

be fixed using the Clusterfix option. The imputation method depends on the feature 

presence of the PCI. These methods are explained in detail in the thesis. 

Low feature presence (i.e below 26%) -> Minimal Value Imputation (MIN) 

Feature presence between 26% and 74% -> Repeated Median (REPMED) 

High feature presence (i.e. above 74%) -> k-nearest neighbours (KNN) 

 (Use “y” for BHTestdataset.csv) 

Impute missing values? (y/n): 

If Imputation is not chosen then it is possible for the user to choose a minimal value to 

replace all NA values. 

Replace missing values (NA) with an arbitrary value? (y/n)[Case sensitive]: 

(if (y) then -> Syntax You want to give to all NA values: 

 

18. Once the final column number has been entered the first stage of the analysis (Welch 

T-Test and Wilcoxon test) will begin. The R display will keep you updated as to 

which stage of the analysis is being conducted, like this: 

Calculating Group Means...... PLEASE WAIT 

Calculating Feature Presence...... PLEASE WAIT 

Group  1  Analysis ...... PLEASE WAIT 

Group  1 vs 2  Analysis ...... PLEASE WAIT 

25% Completed............. 

50% Completed............. 

75% Completed............. 

Analysis 100% Completed 

This will continue until each group has been compared with every other group and the 

user will then be informed that certain files are now available in their set results 

directory. 

19. The second stage (ANOVA and Kruskall Wallis) of the analysis will then be 

conducted while the user is presented with the progress: 

Conducting ANOVA........Please Wait 

25% Completed............. 

50% Completed............. 

75% Completed............. 

ANOVA Analysis 100% Completed 
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20. Once this is completed the files described earlier will be available in the results 

directory. 

 

21. Biomarker Hunter gives the user the option to create boxplots for features of interest 

following the statistical analysis. Boxplots are a good method for displaying groups of 

data for visual comparison. An illustration of the principle of boxplots is shown in  

Figure 79. 

 

Figure 79 - An example of a boxplot illustrating what the various points of the boxplot 

represent. 
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APPENDIX C – PLSDA Portion of Biomarker Hunter 

########## Stage 7  ############################### 

######### Do PLS######## ################### 

###################################################     

PLSdata <- data.frame(GroupingList = GroupingList, PCIList = I(FullDataListTrans)) 

#PLS_BigData <- big.matrix(data.frame(GroupingList = GroupingList, PCIList = I(FullDataListTrans))) 

 

#BHPLS1 <- plsr(GroupingList ~ PCIList, ncomp = 10, data = PLSdata, jackknife = False, validation = "LOO") 

#do plsr , enable jackknife 

BHPLS1 <- plsr(GroupingList ~ PCIList, ncomp = 10, data = PLSdata, jackknife = TRUE, validation = "LOO") 

#conduct jack knife on plsr result 

BHPLS1_Jackknife <- jack.test(BHPLS1,ncomp = BHPLS1$ncomp, use.mean = TRUE) 

#BHPLS1_Jackknife <- jack.test(BHPLS1, P.values = TRUE,ncomp = BHPLS1$ncomp, use.mean = TRUE) 

#extract pvalues from jackknife result 

BHPLS1_Pvalues <- BHPLS1_Jackknife$pvalues 

 

NewDataList <- FullDataListTrans 

CurrentPCIList <- PCIList 

#Now to create a loop to repeat until point of convergence 

  while (any(BHPLS1_Pvalues >= 0.05)) { 

  SignificantPCI_Columns <- which(BHPLS1_Pvalues <= 0.05) 

  CurrentPCIList <- CurrentPCIList[SignificantPCI_Columns] 

  NewDataList <-  NewDataList[,SignificantPCI_Columns] 

  NewPLSdata <- data.frame(GroupingList = GroupingList, PCIList = I(NewDataList)) 

  BHPLS1 <- plsr(GroupingList ~ PCIList, ncomp = 10, data = NewPLSdata, jackknife = TRUE, validation = 

"LOO") 

  #conduct jack knife on plsr result 

  BHPLS1_Jackknife <- jack.test(BHPLS1,ncomp = BHPLS1$ncomp, use.mean = TRUE) 

  #extract pvalues from jackknife result 

  BHPLS1_Pvalues <- BHPLS1_Jackknife$pvalues 

  } 

Potential_Biomarkers <- cbind(CurrentPCIList,BHPLS1_Pvalues)   

    #identify p-values which are considered significant 
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APPENDIX D – Statistical Reference Tables 

Student's t-Table 

(Obtained from www.statsoft.com) 

 

The Shape of the Student's t distribution is determined by the degrees of freedom. As shown 

in the animation above, its shape changes as the degrees of freedom increases. For more 

information on how this distribution is used in hypothesis testing, see t-test for independent 

samples and t-test for dependent samples in the chapter on Basic Statistics and Tables. See 

also, Student's t Distribution. As indicated by the chart below, the areas given at the top of 

this table are the right tail areas for the t-value inside the table. To determine the 0.05 critical 

value from the t-distribution with 6 degrees of freedom, look in the 0.05 column at the 6 row: 

t(.05,6) = 1.943180.  

 

 

 

 

 

 

 

 

 

 

 

 

t-table (normal distribution) http://davidmlane.com/hyperstat/t_table.html 

t table with right tail probabilities 

 

df\p 0.40  0.25  0.10  0.05  0.025  0.01  0.005  0.0005  

1  0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192 

2  0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991 

3  0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240 

4  0.270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103 

5  0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688 

http://www.statsoft.com/textbook/stbasic.html#t-test%20for%20independent%20samples
http://www.statsoft.com/textbook/stbasic.html#t-test%20for%20independent%20samples
http://www.statsoft.com/textbook/stbasic.html#t-test%20for%20dependent%20samples
http://www.statsoft.com/textbook/stbasic.html
http://www.statsoft.com/textbook/gloss.html#Student%27s%20t%20Distribution
http://davidmlane.com/hyperstat/t_table.html
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z-table 

Obtained from http://www.intmath.com/Counting-probability/z-table.php 

The following z-Table indicates the area to the right of the vertical centre-line of the z-curve 

(or standard normal curve) for different standard deviations. 

Example 

The green shaded area in the diagram below represents 1.45 standard deviations from the 

mean (which is 0). The area of this shaded portion is 0.4265 (or 42.65% of the total area 

under the curve). 

To get this area, we read down the left side of the table for the standard deviation's first 2 

digits (the whole number and the first number after the decimal point, in this case 1.4), then 

we read across the table for the "0.05" part (the top row represents the 2nd decimal place of 

the standard deviation that we are interested in.)  

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 

We have: 

(left column) 1.4 + (top row) 0.05 = 1.45 standard deviations 

The area represented by 1.45 standard deviations to the right of the mean is shaded in green 

in the following standard normal curve. 

 

You can see how to find the appropriate value in the full z-table below. 

 

http://www.intmath.com/Counting-probability/14_Normal-probability-distribution.php
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3304 0.3365 0.3389 

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

 


