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ABSTRACT

A biomarker is a characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes or pharmacological responses to a
therapeutic intervention. The aim of this project was to deal with the identification of
potential biomarker candidates from experimental data comparing samples displaying
divergent physiological traits. Chapter 1 introduces the topic and the aims of the project. The
primary aim was to identify the ideal statistical analysis methods and data pre- and post-
treatment options to use for potential biomarker identification from proteomic datasets. The
product of this work was a statistical analysis pipeline for identifying potential biomarker
candidates from proteomic experimental data. Proteomic data often suffers from missing

values, so methods to deal with these were also evaluated in this project.

Chapter 2 outlines the data sets that were used as well as presenting an overview of the
“Biomarker Hunter” pipeline software solution created in this project. Chapter 3 evaluates the
appropriate univariate statistical methods to use for biomarker identification and the results of
biomarker identification using these techniques. Chapter 4 evaluates options for data pre- and
post-processing. Chapter 5 suggests the use of missing value imputation as well as offering a
novel clustering algorithm to deal with missing values. The software pipeline also offers
multivariate statistical methods, which are evaluated in Chapter 6. Chapter 7 provides some
business context for both biomarker discovery and the statistical analysis software available

for the purpose of proteomic biomarker discovery.

As well as providing a software pipeline for the identification of biomarkers, the project
aimed to identify a suggested strategy for statistical analysis of proteomic experimental data.
Strong conclusions regarding the ideal statistical approach could only be made if the list of
actual, validated biomarkers were available. Unfortunately this information was not available,
but in the absence of this a strategy was suggested based on the available information from
both the available literature and the author’s interpretation of the results from this study. In
terms of data pre-processing, this strategy involved not averaging technical replicates, and
using total abundance normalisation to reduce technical variation. A novel clustering
algorithm was suggested to reduce the presence of missing values prior to existing methods
of missing value imputation. Following statistical analysis multiple testing correction

methods should be implemented to reduce the number of false positives.
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1 Introduction and Background

This chapter provides the background knowledge to allow the understanding of the constantly
evolving field of biomarker discovery from proteomic experimental data. The chapter begins
with an introductory overview of proteomics and biomarkers in drug discovery along with the
advantages these areas of study bring to the pharmaceutical and health industries. As
proteomics studies biological systems on a protein or peptide level an introduction to proteins
and protein chemistry is also presented. Following this there is an introduction to the various
techniques used in the fast moving area of proteomics. This includes a description of the
analysis techniques currently used in this industry including both mass spectrometry and gel-
based technologies. Data from these techniques is subsequently analysed using statistical
methods, so an introduction to statistics in biomarker discovery will be presented. Finally an
overview of the original project aims discusses the nature of study that was conducted over

the four year EngD period.
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1.1 Introduction to Biomarker Discovery and Proteomics

1.1.1 Biomarker Discovery

The definition of a “biomarker” as agreed by the National Institute of Health (NIH) is “a
characteristic that is objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes or pharmacological responses to a therapeutic intervention”
(Atkinson & Lesko, 2001).

A biomarker may be a metabolite, protein or a feature on an image from gel-based
techniques. Study in this field is focused on searching for these biological measures that are
indicative of differences in biological state. The study of biomarkers is essential for a better
understanding of biological systems, to allow the understanding of different biological
processes through the identification of the biomarkers responsible for different states (e.g.
diseases), and the discovery of biomarkers involvement in specific metabolic pathways, as
well the subsequent identification of biomarker targets in drug and biomarker discovery
(Stoughton & Friend, 2005). Biomarkers can be described as any biological parameter
(genes, metabolites or proteins) which can be objectively measured, and can be used to
indicate a particular biological (physiological or pathological) state (e.g. in drug discovery
these would be substances which indicate diseased states or responses to therapeutic

treatments).

This study focuses more specifically on the discovery of medical biomarkers and the
discovery of biomarkers which are indicative of the effect of a specific drug. It aims to
revolutionise the diagnosis, treatment and prevention stages of diseases by potentially
speeding up and controlling the drug discovery process. The main objective of biomarker
discovery, for any diseases or disorders, is to facilitate the development of clinically viable
biomarkers that can be used for diagnostic or prognostic applications. For this to be achieved
these markers need to be clinically reliable and robust with a high diagnostic accuracy in a
significant number of patients, irrespective of geographical barriers and other confounding
factors (Pepe et al, 2001).

In medical biomarker discovery these may be indicators for diagnosis, where the changes in
abundance or chemical modification of proteins or peptides in samples (e.g. blood, urine,
tissue) can be used to detect a diseased state. Alternatively they may be indicators of disease
progression or in an ideal world an indicator of risk or susceptibility to a disease (e.g. the

biomarker to recognise susceptibility to heart disease is cholesterol).
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Researchers in drug discovery look for specific markers, or groups of markers, which fall into
the following categories:
e Diagnostic biomarkers: Identified to detect diseases, preferably at an earlier stage
than existing techniques.
e Prognostic biomarkers: Indicate how a disease may develop in a patient regardless of
any treatments.
e Predictive biomarkers: Predict the effectiveness of treatments within a patient.
e Pharmacodynamic biomarker: Reveals the size, if any, of a biological response to a
treatment.

e Therapeutic biomarkers: Give information on possible new pathways for drug action.

In drug discovery biomarkers may be substances which can be introduced into organisms to
examine biological functions or health related phenomena. For example rubidium chloride
has been used as a radioactive isotope for the evaluation of heart muscle perfusion (Karley et
al, 2011). They can be used to help extract disease targets or pathways to validate drug
activity mechanisms. In drug design biomarkers may indicate alterations in protein
expression which are implicated in disease progress or disease susceptibility to administered

treatments.

Biomarker discovery is made possible due to advances in technology and better awareness of
the human genome allowing more practical and affordable research. Most biological states
and responses involve multiple proteins. Due to this it is essential to determine groups (or
patterns) of biomarkers rather than individual biomarkers (Thayer, 2003). Detection of
biomarkers can be summarised in the following series of steps which are all dependent on the
previous step:

1. Collection of relevant samples and experimental design.

2. High throughput analysis of samples.

3. Using computational and statistical methods to obtain useful biomarkers.

Studies in this field are usually typified by small sample sizes, and subsequent verification is
then conducted on a larger number of samples. To protect the study from methodological and
analytical bias, different technologies should be used for the discovery and validation stages
(Matta et al, 2008).

There are a number of important hierarchical steps to be considered when demonstrating the

clinical interest of a biomarker (Ray et al, 2010). These steps are:

Page | 3 © Cranfield University, 2011



1. Demonstrate that the biomarker is significantly modified in the diseased sample group
compared to the control group.

2. Asses the diagnostic properties of the biomarker.

3. Comparing the diagnostic properties of the marker to existing tests available.

4. Demonstrate that the diagnostic properties of the biomarker increase the physicians’
ability to make a decision. This can be tricky because the timing of diagnosis may be
essential, but it may not be easy to identify. For example a particular treatment may
be more accurate however other treatments may allow for earlier diagnosis. An
example of this was seen when procalcitonin was suggested as a diagnostic biomarker
for susceptibility to nose infections following cardiac surgery. Previously
procalcitonin was determined to have a lower accuracy in the diagnosis of
postoperative infection following cardiac surgery compared to the existing physicians
approach so it was rejected. However later studies confirmed that the use of
procalcitonin allowed for earlier diagnosis of infections (Jebali et al, 2007).

5. Assess the usefulness of the biomarker, which needs to be distinguished to the quality
of the diagnostic information provided. This involves both the characteristics of the
test itself and the characteristics of the clinical context. Characteristics of the test may
involve consideration of the cost, invasiveness, technical difficulties and speed.
Characteristics of the clinical context include prevalence of the disease, consequences
of outcome, cost and the consequences of therapeutic options.

6. Demonstrate that measurement of the biomarkers affect the outcome. This is done
using intervention studies, which are lacking for many novel biomarkers (Lokuge et
al, 2010).

1.1.1.1  The Capabilities of Biomarker Discovery

The advantage of identifying a biomarker, or more likely a panel of biomarkers, is based on
the premise that it will lead to the development of a sensitive and reliable assay that is easily
readable. That ability, developed and validated in a platform, leads to the capability to
develop an assay that is able to detect the biomarkers (i.e. proteins) at extremely low
concentrations (Larner, 2008), To ensure long-term and widespread success the assay
platform needs to be as non-invasive as possible. The ultimate goal, following the

development of an assay Kit, is to translate this assay into a user friendly, handheld point-of-
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care (POC) device which is able to monitor this panel of markers in body fluids such as blood

or urine with minimal invasive procedures.

There is an ongoing need to minimise the risk of serious adverse events following drug
approval, as well as in clinical trials. The project sponsor is involved in the discovery of
novel early stage biomarkers involved in diseases within model organisms such as rats or
zebrafish embryos. These biomarkers are then subsequently translated to higher species such
as humans and then validated. This leads to:
e The earlier diagnosis of diseases in patients.
e The monitoring of physiological responses in a systematic way.
e The determination of the mechanisms which drugs use to deliver their effect.
e The reduction in time and cost of the drug development process, due to the reduced
cost and time of clinical trials (Higgs et al, 2005).
e Decreased attrition rates within developmental candidates. This is because increased
biological efficacy allows for lower doses which may lead to fewer drugs failing

during testing stages due to associated toxicities (Thayer, 2003).

1.1.1.2 The Challenges of Biomarker Discovery

Despite recent developments there are relatively few novel biomarkers which have been
translated to clinical uses. Although advances have been made in the field of proteomics, the
discovery of biomarkers still remains one of the most challenging aspects and often further
analysis is required to fully characterise the significant proteins and understand the
phenotypic role of these potential biomarkers (Kreunin et al, 2007). These issues lie not only
in technological advances but also in the discovery, translation and validation phases of using
these markers to bring the drugs to patients. The lack of convincing biomarker experiments
are not necessarily due to limitations with the technology but in the difficulty of elucidating
useful clinical information from identified biomarkers (Listgarten & Emili, 2005). Reasons
for this may include:
e Cost and time dependent techniques make validation of biomarkers complex (Codrea
et al, 2007).
e Although a considerable amount of progress has been made in standardising the
methodology and reporting of randomised trials, little has been accomplished

concerning the assessment of diagnostic and prognostic biomarkers (Ray et al, 2010).
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e Identification and modification of biomarkers in drug discovery does not guarantee
increased survival in patients (Morgan, 2011).

e There is a desperate need to have drastic advances in the current methods used for
proteomic screening (Cho & Diamandis, 2011) especially with regards to biomarker
identification using blood and urine as opposed to muscle (Listgarten & Emili, 2005).
This allows for non-invasive diagnostic tests for diseases, as opposed to requiring
tissue samples.

e Muscle tissue is preferred as a base for biomarker research. However, this does not
allow for a non-invasive test to be able to diagnose individuals suffering from earlier
stages of the disease, predict possible associated risks, or detect patients who are not
responding to the treatment (Etzioni et al, 2003). Hence currently drug discovery
targets are focused on symptoms rather than the cause of the disease (Thayer, 2003).

e Due to the immaturity of the field there are still no established benchmarks and
standard methods (Sciclips, 2011).

e When developing targeted therapies, not all drugs work on all patients and there is not
much hope of therapies that can be universally effective (Thayer, 2003).

e Blood samples contain large amounts of albumin and other high abundance proteins,
which can screen low abundance proteins and may hinder the ability to identify those
which may be relevant to the study. This has been addressed by using immuno-
affinity technologies such as cyclic abundant protein immunodepletion (CAPI) based
on antibody technologies (APAF, 2006).

e For biomarker studies to have an impact on the drug development process the time
taken by the discovery and implementation should be short (i.e. less than 18 months)
(Amir-Aslani & Mangematin, 2009).

e As with all bioinformatics techniques, “garbage-in garbage-out” means that the results
deduced from these methods are only as good as the samples used, regardless of how

accurate the technology and statistical methods are.
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1.1.2 Introduction to Proteins

As stated before a biomarker can be any measurable biological medium indicative of
physiological change. This study however is focused on protein biomarkers, in particular
those that indicate a diseased state. The reason for the focus on proteomic study is because of
the available types of biomarkers, proteins offer more promise because the proteome of an
organism is far larger than, for example, the metabolome. This is particularly true if protein
variants are considered. Proteins should therefore provide higher sensitivity than other types
of markers. In the medical field, protein biomarkers are of great importance because it is
relatively easier to produce diagnostic tests for a specific protein marker, which makes
translation of the discovered markers easier to put into practice.

This section gives an introduction to the area of protein science including the structure and
formation of proteins, as well as an explanation of post translational modifications (PTMs).
PTMs offer a plethora of candidates for biomarker detection that complement discoveries
using strictly proteomic or genomic platforms (Krueger & Srivastava, 2006). Proteins are
biochemical compounds which are comprised of one or more polypeptides. A polypeptide
can be described as a linear chain of amino acids which are bonded together by peptide

bonds. Protein chemistry is the area of science which relates to:

e The obtaining and purifying of proteins
e Investigation of protein structure and function

e The controlling and engineering of proteins

This area of research contributes in a number of industries in a wide variety of applications
including clinical and pharmaceutical research. One of the most ambitious experiments in
protein chemistry is the study of how the structure of a protein affects its function. Much of
the research in this field rely on physical measurements (usually spectroscopic) and/or
chemical protocols (usually covalent modification). Physical measurements may also include

diffraction, thermal or spectrometry methods as well as in-silico computer modelling.

1.1.2.1 Structure of Proteins

Proteins are large molecules, composed of one or more chains of amino acids, otherwise
known as polypeptides. The primary sites of biological protein synthesis are ribosomes.
Ribosomes are organelles existing in cells and are made up primarily from ribosomal
ribonucleic acid (rRNA) and are essentially the building catalyst of proteins. They catalyse

protein translation using the messenger ribonucleic acid (mRNA), in the nucleus, as a
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template and subsequently form proteins from individual amino acids. Amino acids are
linked to each other via amide bonds forming peptide chains (Figure 1). Folding of these
peptides may occur when peptides are linked together via disulphide bridges as in Figure 2.
Disulphide bonds play an important role in many facets of proteins. However disulphide
bonds are not essential for protein folding and many cysteines cannot form disulphide bonds.
Many proteins do not contain any disulphide bonds, as there are many non-covalent forces
involved in the stabilisation of protein folds and the guiding of folding pathways. These non-
covalent forces include hydrogen bonding, ionic interactions, Van der Waals forces as well as
hydrophobic packing. Generally extracellular proteins often have several disulphide bonds, as

opposed to extracellular proteins which usually lack them (Beeby et al, 2005).

The orders in which these amino acids are linked determine the eventual shape and function
of the protein. The sequence of amino acids in a protein is defined by the sequence of a gene,
which is programmed in the genetic code. Once formed these proteins automatically fold into
their predetermined shape. Proteins may also form stable protein complexes with other

proteins, in order to work together and achieve particular functions.
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Figure 1 - The formation of a peptide chain by linking amino acids using amide bonds.
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Figure 2 — The formation of a disulphide bridge between cysteines.

Proteins consist of a number of amino acids, linked in a linear sequence. Figure 3 shows the
chemical structure of an amino acid. It consists of a carbon atom with four bonds. Three of
these bonds are identical in all proteins, i.e. the hydrogen (H) atom, the amino group (NH?),
and carboxylic acid (CO®H). When multiple amino acids combine to make a polypeptide
chain, the peptide bonds are formed between amino group and the carboxylic group of
adjacent amino acid residues. The fourth bond is referred to as the side chain, and essentially
determines the structure and specific properties (e.g. hydrophobicity, size, aromaticity,
charge, etc) of the amino acid. This group will determine the interactions between the atoms
and molecules. However proteins are not just made up of amino acids, as water, metal ions,

carbohydrates, lipids, phorphyrin rings and cofactors must also be considered.

Amino group H

Carboxyl group

Side chamn

Figure 3 - The basic structure of an amino acid.
There are 20 different side chains, hence 20 different amino acids from which proteins can be

made. Each of these are represented by either a single letter or a three letter abbreviation (e.g.
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Alanine can be denoted as either A or Ala). The overall structure of the protein is defined by
the constituent amino acids as well as the peptide bonds and disulphide bridges, which
connect the amino acids together. The primary structure of a protein is simply the linear
sequence of amino acids in a polypeptide chain as shown in Figure 4. Proteins however carry
out their functions in the body by three-dimensional (3D) tertiary and quaternary interactions
between different substrates. The tertiary structure of a protein determines its eventual
function in the cell. The structures arise when particular amino acids in a chain fold in order
to create domains with specific structures. These domains may either be used as modules for

larger structures or provide specific catalytic or binding sites.

Primary Secondary Tertiary Qualernary

o fan pam

Figure 4 - The structure of proteins (Branden & Tooze, 1991).

1.1.2.2 Formation of Proteins

The overall formation of proteins from DNA (Deoxyribonucleic acid), situated in the nucleus,
can be outlined as the transcription of DNA to RNA, followed by translation of this RNA

(Ribonucleic acid) into the relevant protein (Figure 5).
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Figure 5 - An outline of the process of protein formation following transcription of DNA
into RNA and subsequent translation (www.nobelprize.org).

DNA is a nucleic acid consisting of thousands of genes, which contains the genetic
instructions for the development and functioning of all living organisms (except RNA
viruses). A protein-coding gene is a segment of chromosomal DNA which directs the
synthesis of a protein. DNA is contained in, and never leaves the nucleus of a eukaryotic cell.
Instead the genes (genetic code) are copied (transcribed) into RNA, and subsequently
translated into proteins in the cytoplasm. It is a double-stranded polymer made up of four
simple nucleotide building blocks (i.e. Adenine (A), Thymine (T), Guanine (G) and Cytosine
(C)), and provides the instructions on how to build a protein molecule (Figure 6). A gene is a
defined as a sequence of DNA containing the genetic information, which influences the

phenotype of the organism.
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Figure 6 - The structure of DNA. The nucleotide building blocks comprise of a
phosphate group, a deoxyribose sugar and one of four nitrogen bases. The two strands
of complementary DNA are held together by hydrogen bonds, forming a double helix
structure (Paszek, 2007).

The sequence of bases within a strand of DNA defines the messenger RNA (mRNA)
sequence, which consequently defines one or more protein sequences. Like DNA, RNA is
also a complex nucleic acid. It is used in cells to assist with the synthesis of proteins. The link
between the nucleotide sequences of genes and the resultant amino acid sequences of the
proteins are defined by the rules of protein translation, otherwise known as the genetic code.
The genetic code consists of codons which are formed from a sequence of three of the

nucleotides mentioned above (e.g. ACG, CTT).

During transcription the codons of a gene are copied into mMRNA (Figure 7). This is achieved
by RNA polymerase and the necessary transcription elongation factors travelling along the
DNA template. The RNA polymerase synthesises an RNA strand complementary to one of
two DNA strands. This polymerises the ribonucleotides into an RNA copy of the gene. This
continues until the end of the gene, when the RNA polymerase falls of the DNA template in a

process called transcription termination. This process is otherwise known as RNA synthesis.
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Transcription is very important, as it is the process which helps mediate the expression of the
genetic material contained within the DNA. The product of RNA transcription subsequently

transfers the information from the DNA into the functional protein.

termination
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Figure 7 - The process of protein transcription within the cell nucleus from which DNA
is copied into RNA (www.nobelprize.org).

Before RNA can be translated into a protein, it must undergo three major modifications prior
to leaving the nucleus. These modifications are 1) Capping, 2) Poly(A)-tail and 3) Splicing.
Capping involves attaching a special nucleotide to the end of the mMRNA, which is necessary
for the initiation of protein synthesis as well as serving as stabilisation. Poly (A)-tail uses a
special enzyme which attaches a chain of 150-200 adenine nucleotides to the pre-mRNA
directly following transcription. This also adds to the stability and lengthens the lifetime of an
mRNA molecule. Splicing involves removing the non-coding sequences; called introns, from

the pre-mRNA to create mRNA, which only contains the coding sequences of a protein.

Following this a ribosome decodes the RNA copy by reading the RNA sequence by base-
pairing the MRNA to transfer RNA (tRNA), which is used by organisms to bridge the four-
letter genetic code of MRNA into the amino sequence of the protein. This process is known
as protein translation, and occurs outside the nucleus (Figure 8). This process involves a large
number of protein factors that facilitate binding of mMRNA and tRNA to the ribosome. The
major role of the ribosome is to catalyse the coupling of amino acids into proteins according
to the mRNA sequence. The role of the tRNA is to bring the amino acids to the ribosome.

These amino acid chains, otherwise known as polypeptides fold into an active protein.

Translation can be outlined in three distinct steps: 1) initiation, 2) elongation and 3)
termination. Initiation involves the forming of an initiation complex within which the

ribosome binds to the start site on the mRNA, while the initiator tRNA is bound to the

Page | 13 © Cranfield University, 2011



ribosome with the initiator codon. In elongation, amino acids join to the budding polypeptide
chain. This is repeated until the termination codon is reached. This codon signals the last

stage of protein translation, in which the ready-made protein is released from the ribosome.

chain of aming acids —=

Figure 8 - The process of protein translation, outlined in the three steps 1) Initiation, 2)
Elongation and 3) Termination (www.nobelprize.orq).

1.1.2.3 Functions of Proteins

Proteins are essential building blocks for all living organisms and they facilitate biological
functions in those organisms. They regulate a variety of actions in living organisms,
including replication of genetic code as well as the transportation of oxygen. Some examples
of the functions of these proteins are shown in Figure 9. They are responsible for the

regulation of cells and additionally determining the characteristics of an organism.

Some proteins are enzymes which act as catalysts for biochemical reactions, and are essential
for metabolism. The reason that proteins make good catalysts lies in their high specificity
(Koshland, 1958). An example of a protein enzyme is pepsin which degrades dietary proteins
in the stomach. There are a number of industrial uses for protein enzymes such as in the

textile, detergent, pharmaceutical and food industries. However not all proteins are enzymes.

Some proteins have structural or mechanic functions which are responsible for maintaining
the shape of a cell, and serve as building blocks of the cells and tissues. Keratin is a structural
protein found in hair. There are also proteins known as receptor proteins which receive some
sort of stimuli prior to initiating a response in the cell. Rhodopsin is a receptor protein which
lies in the retina of the eye and is used to detect light. Signalling proteins exist in order to

transfer signals between or within cells. Insulin is a signalling protein, which is used to
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control blood sugar levels in blood. Other examples of proteins include gene regulatory

proteins, as well as transport proteins, which transport molecules or ions around the body.
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Figure 9 — Examples of the functions of proteins (www.nobelprize.org).

1.1.2.4 Protein Isoforms

There are occasions when the same protein may take up different forms. These different
forms of the same protein are called protein isoforms. These may be made from related
genes, or may be produced by the same gene by alternative splicing. Some isoforms are
caused by single-nucleotide polymorphisms (SNPs), which are variations in the DNA
sequence that occur when a single nucleotide in the genome differs between members of a

biological species or between paired chromosomes in humans.

Due to protein isoforms it is possible to create categorically divergent proteins from the same
gene, which increases the diversity of the proteome. The occurrence of protein isoforms
partially explains why there have been a small number of coding regions, or genes, have been
identified by the Human Genome Project (Powledge, 2000). These isoforms can be identified

using microarray technology as well as complementary DNA (cDNA) libraries.

1.1.2.5 Post-Translational Modifications (PTMs)

Most of the proteins that are translated from mRNA undergo chemical modifications before
becoming functional within the various cells of the body. Sometimes during synthesis, or
shortly after, the amino acid residues in a protein can be chemically altered by these post-
translational modifications (PTMs). These modifications regulate how a particular protein
sequence will act within the organism. These PTMs alter the physical and chemical properties

via extra-translational processes and play an essential role in maintaining the uniformity, or
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homogeneity, in the composition of a protein. Additionally they assist in using identical

proteins within different cell types for different cellular functions.

The result of these modifications may affect the folding, stability, activity and therefore
ultimately the function of the protein. This may involve very complex systems of enzymes
and the resultant modifications cannot be predicted from the DNA sequence. Examples of
PTMs include, but are not limited to, glycosylation, sulfation or hydroxylation. Mass
spectrometry can be used in the identification of PTMs. This is possible because these PTMs

usually lead to a change in the molecular weight, which is often predictable.

When studying diseased conditions, the expression of proteins is very important. PTMs play
a significant role in modifying the end product of expression, as well as contributing towards
biological processes and diseased conditions. The amino terminal sequences are removed by
the proteolytic cleavage when the proteins cross the membranes. These terminal sequences

target the proteins for their transportation to their point of action within the cell.

1.1.2.6 Differential Expression

A complete copy of an organism’s genome is contained in each cell of the organism. These
cells may be of many different types and states, such as blood, nerve or skin cells etc. The
difference between these cells is dependent on the differential gene expression. Differential
gene expression is defined as how much each gene is expressed, as well as when and where it
is expressed. The genetic information within a DNA molecule is expressed during both the
DNA to RNA transcription stage as well as the protein translation stage. Different types of
cells synthesise different sets of proteins at different times. At any given time only a fraction
of our genes are expressed (Blau, 1992). It is projected that around 40% of the genome is
expressed at any given stage (Ma et al, 2008). Gene expression is important in studying
diseases as for many diseases specific patterns of expression are associated with different

phenotypes.
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1.1.3 Proteomics
The term proteome is derived from the words PROTEin and genOME and can be described
as the total protein composition of an organism, biological system or sample. Proteomics
aims to identify, and possibly quantify, proteins in a biological system. This is a broad field
of study and has different connotations to different aspects (Hubbard & Jones, 2010). Studies
in this area often aim to quantify differential protein levels from complex biological samples
in order to determine and understand specific markers of biological states to determine
biological action, efficacy and toxicities (Higgs et al, 2005). It involves studying protein
structures and functions on a large scale. This may also include any modifications made to
the complement of proteins. Studies are based on the assumption that the proteome holds the
key to understanding biological mechanisms. Studying protein function allows researchers to
correlate these differences in proteomic structure to any phenotypic occurrences and allows
determination of relationships between these events and relevant protein levels. It is expected
that studies in this field will yield a potential in novel drug development in the future. The
main applications of proteomics can be outlined as:

e Separation and Identification of proteins and their post-translational modifications

(PTMs) from a biological sample giving rise to information relating to the sample
e Analysis of differential protein expression associated with a specific phenotype (e.g. a
diseased state)
e Characterisation of proteins by exploration of their function

e Discovering the protein interaction networks

The mass analysis of peptides and proteins has been made possible by the use of techniques
such as Electrospray lonisation (ESI), Matrix Assisted Laser Desorption lonisation (MALDI)
or Desorption/lonisation on Silicon (DIOS). It is these techniques ability to promote the
proteins non-destructive vaporisation/ ionisation, through the removal of protons in an
unambiguous order (Trauger et al, 2002). As well as molecular weight determination, these
techniques are used for the purpose of protein identification (Sherman & Kinter, 2000) and
protein PTMs (Mann & Neubauer, 1999).

The determination of the complete and routine protein sequence is yet to be realised
(Mathivanan et al, 2012), however it is possible to use proteolytic peptide fragments
combined with data searching algorithms to identify proteins (Trauger et al, 2002). This can
be done by enzymatic or chemical digestion of proteins, usually using Trypsin, combined
with mass spectrometry techniques. This is followed by the mass analysis of the peptides and
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database searching techniques. In complex samples, before the proteins are digested into their
constituent peptides, the proteins may be separated into less complex protein mixtures. These

can be separated using 2D Gel electrophoresis or chromatography based methods.

1.1.3.1 Top-Down and Bottom-Up Proteomics

Top-down proteomics involves separating intact proteins from biological samples using
traditional separation techniques such as liquid chromatography (LC) and 2D gel
electrophoresis (2DGE). This is followed by differential expression analysis using spectrum
analysis or gel imaging platforms (Dalmasso et al, 2009). Spots or fractions which are
thought to contain biomarkers are identified using mass spectrometry (MS). As the proteins
are separated intact they reflect PTMs and intact protein masses. Other advantages of this
approach include simplified sample preparation and the elimination of the time-consuming
process of protein digestion needed for bottom-up methods. Unlike the bottom-up approach,
which involves more specific and limited sample sets, the starting point for top-down

proteomics can be hundreds of different complex biological samples (Figure 10).

Although the more complex studies such as relative and absolute quantification of proteins is
becoming more common, the mainstay of proteomic study continues to be bottom-up protein
identification. Bottom-up proteomics refers to studies in which the information about the
constituent proteins of a biological sample is reconstructed from individually identified
fragment peptides. It can be defined as an attempt to identify all the expressed proteins
present in cells, tissues and organisms or the differential analysis of biological systems
reacting upon physiological changes such as diseases. This accounts for much of the protein
research undertaken in MS laboratories today (Lamond et al, 2012). The objective of these

studies is to identify as many of the protein components of a biological sample as possible.

Bottom-up MS is facilitated by the proteolytic digestion of proteins, which is typically done
using trypsin. This is usually followed by separation of the resultant peptides using one or
more dimensions of liquid chromatography. The multiple LC eluents are then individually
analysed by MS. The resultant sequence data is then used to determine the original protein
composition of the sample. Due to the advances in the field of mass spectrometry, such as the
resolution, accuracy, fragmentation technology and speed, the bottom-up analysis can
identify more proteins within a complex sample than ever before (Lamond et al, 2012).

While the top-down approach has limited sensitivity, the shotgun bottom-up approach is a

highly sensitive method. The limitations of these methods however lie in the poor
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reproducibility as well as the large number of missing data that is typical of these methods. In

most cases the techniques have a very low throughput, leading to lower statistical power

(Dalmasso et al, 2009).
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Figure 10 - The overview of general bottom-up and top-down proteomics profiling

workflows (Dalmasso et al, 2009).

1.1.3.2 The Use of Trypsin

Trypsin is a proteolytic enzyme found in the digestive system of most vertebrates, where it

hydrolyses proteins so that they can be broken down into smaller peptides. Trypsin belongs to

the serine protease family, which are enzymes which cleave peptide bonds in proteins. This

process is called trypsin proteolysis or trypsination (Figure 11). Trypsin is produced in the

pancreas in its inactive form, known as proenzyme trypsinogen. It cleaves peptide chains

mainly at the carboxyl side of the amino acids lysine or arginine. This cleavage does not take

place if either the arginine or lysine residue is followed by a proline residue.
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Figure 11 - Trypsin and water break down a polypeptide chain into smaller peptide
fragments (Moyna, 1999).

Trypsin is considered an endopeptidase, which means that it cleaves peptides within the
polypeptide chain, as opposed to the end terminals of the chain leading to orderly and
unambiguous cleavage of proteins. Because of this property it is often used in studies for the
determination of the amino acid sequence of proteins. Trypsin continues to be used for the
development of cell and tissue culture protocols (Yang et al, 2009). It is also used for protein
identification through peptide sequencing techniques (Schuchert-Shi & Hauser, 2009).
Trypsin is the favoured enzyme for techniques such as peptide mass fingerprinting, as it is
relatively cheap and effectively generates peptides which are usually 8-10 amino acids long
(Thiede et al, 2005). This size of peptide is more suited for analysis using mass spectrometry

techniques.

1.1.3.3 The Capabilities of Proteomics in Biomarker Discovery

Proteomics has allowed the previously divergent areas of biomarker and drug discovery to
converge. The study of proteomics has brought progression in the field of targeted drugs to
treat certain diseases by creating drugs which inactivate any proteins which have been
implicated in a particular disease. Genomic and proteomic data can be used to determine
proteins, which are related to the diseased state, to be used as possible targets for future
drugs. The 3D structure of these proteins can help develop compounds that may interfere
with the function of the proteins, and hence interfere with the disease process (King, 2011).
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1.1.3.4 The Constraints of Proteomics in Biomarker Discovery

High-throughput peptide identification may be relatively straightforward, but identifying
post-translational modifications (PTMs) is more challenging. Due to the existence of PTMs
protein levels may be inaccurately measured in the samples because of the increase in number
of possible matches and hence false assignments (Mallick & Kuster, 2010). Additionally
alternative PTM or alternative splicing can cause a single gene to give rise to multiple
proteins. Sometimes complexes may be created between proteins or RNA molecules, which
are expressed only when complexes are formed (Phillips, 2008).

Developments in this field have to take place in tight integration with the developments in
LC-MS or gel-based technologies, which is currently a very rapidly evolving field (Bertsch et
al, 2011). Due to this the actual clinical impact of these technologies in drug and disease
research has been limited (Gad, 2009). For example some human disease genes such as sickle
cell anaemia and cystic fibrosis have been identified for over 20 years, though the
development of suitable therapies has been much slower than expected (Green & Guyer,
2011). A study from the National Cancer Institute has been cited as a classic example of the
failure of biomarker discovery (Cramer et al, 2011). In this study the researchers tested more
than 35 ovarian biomarkers that were claimed in previous studies to be better than CA125,
which is a well established ovarian cancer biomarker. Following the analysis of hundreds of

tissue samples, the researchers found that none of the biomarkers were better than CA125.

Proteomic study is considered more complex than genomic study, because unlike the genome
the proteome is subject to changes due to post-translational modifications and the fact that
certain proteins are made under different conditions (e.g. time, light, stress of physiological
change). This is the case, especially in biomarker studies, which requires a large number of
samples for increased confidence in the results. This leads to an increased complexity.

Previously the detection of proteins which exist in a low abundance posed a great challenge
in proteomic studies (Lipp, 2006). Although there have been advances in the form of targeted
selected reaction monitoring (SRM) techniques (Hossain et al, 2011). SRM techniques
present researchers with the added advantage of increased sensitivity and quantification
compared with other, more traditional, MS-based techniques. These techniques are able to
detect more low abundance proteins by reducing the background chemical noise to a low
level, thus increasing the signal-noise ratio. These increased signals also improve the

reproducibility of measurements.
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There is a challenge in juggling the necessity to develop and adopt new technologies and
focusing on the biological or clinical goals of the research (Lipp, 2006).The approval as well
as the impact of these automated techniques is limited by the ability to efficiently handle and
analyze the large volume of data produced by these methods. This is the inevitable flip-side
of automation (Bertsch et al, 2011).

Certain publications provide results from proteomic biomarker experiments and make
conclusions using data generated from one or two biological samples. The small number of
experiments is usually due to the time and cost which is required for these experiments. This
however is not a sufficient number of experiments to base conclusions upon. Due to
experimental variation it is unlikely that these studies will realise their full potential
(Bantscheff & Kuster, 2007).

1.1.4 Future of Biomarker Discovery

The pharmaceutical industry currently aims to develop high-throughput screening methods to
find potential drug candidates in large compound libraries (Angelino & Yang, 2012). More
progress may be achieved in this field if the discovery process is made more effective
(ECHRD, 2010), so multiple biomarkers can be identified, validated and accepted on the
same patient samples (Cottingham, 2006). It is also suggested that research in this field
should be focused on tissue samples rather than blood samples which are more complex to
analyse. As well as the complexity, there may be a high abundance of relevant biomarkers
directly at the disease site which are not transferred to the blood in such large quantities. The
counter argument is that biomarkers found in muscle tissue do not allow for non-invasive
checks for diagnosis; however once the biomarkers are detected in their differentiated
concentrations at disease sites, they can be checked for in blood samples (assuming that these
biomarkers are transferred to the blood at all). It should be noted that not all the biology of

these may be fully understood so care needs to be taken when using different sample types.
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1.2 Introduction to Proteomic Techniques Used in Biomarker Discovery

Proteomics is a field which is currently still evolving rapidly due to the rate of emergence of
new technologies. The chief aim of biomarker discovery is to identify differentially expressed
proteins (Wu et al, 2009). A number of platforms exist for the analysis of proteins, some of
which will be discussed in detail in this thesis. Often these technologies are used in
combination with each other such as LC-MS, where the LC stage is used to separate the
sample into smaller, less complex portions and subsequently MS is used to identify the
composition of the samples. Liquid chromatography separates ions or molecules in a solvent
based on differences in absorption, ion exchange, partitioning or size. These processes have
their own disadvantages but when used in complement they can be used to obtain a fair

representative coverage of the proteome over a wide dynamic range.

This allows the comparison of samples from healthy individuals against samples from
patients suffering from disease. Samples from a single patient can also be collected at
different stages of the disease to monitor progress or reaction to treatment.

There are various technical disciplines that are currently used in proteomics of which Mass
Spectrometry is one of the many possibilities (Palagi et al, 2005):
e Separation techniques
= 2-DE gels: Provide pl and molecular weight of proteins
= LC alone: Only determines Retention Time (not very accurate)
e Identification techniques
= Protein Sequencing: much better predictor, but very time consuming
= LC-MS/MS: Does not consider low abundance proteins (X Li et al,
2005)

The following sections describe the available proteomic technologies, used in this field, along
with the strengths and limitations of each technique. The techniques described are:

e 2D gel electrophoresis (2DGE)

e Mass spectrometry (MS)

e [sobaric Tagging for Relative and Absolute Quantification (iTRAQ)

e Label-free techniques

e Liquid Chromatography — Mass Spectrometry (LC-MS)
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1.2.1 2D Gel Electrophoresis Based Techniques

2D Gel experiments are commonly used in biomarker discovery for the analysis of large
amounts of proteins to identify biologically relevant changes (Grove et al, 2008). Proteins of
interest to researchers can be studied using two-dimensional gel electrophoresis, which
involves separating proteins in orthogonal directions. This method allows the visualisation of
even small differences in proteins because modified proteins are separated from the

unmodified forms.

1.2.1.1 The Technology of Gel-Based Proteomics

Gel technology involves separating proteins from a biological sample (such as blood or
muscle tissue) on a SDS-polyacrylamide gel (SDS-PAGE). Two distinct steps are used for
separation, one which separates proteins based on pH, and secondly based on molecular

weight (Figure 12).
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Figure 12 — A description of how proteins are separated using 2D Gel electrophoresis.
Peptides move horizontally based on their pH and vertically based on their molecular
weight (www.whatislife.com).

The gels are then stained to reveal clusters of spots. A spot in a 2D gel may represent either a
protein or isoforms of a protein. It should not be assumed that a spot represents an individual
protein as this is not always the case. Occasionally spots may belong to an alignment due to
an error, which are also known as noise spots (Peres et al, 2008). Some spots may also
represent more than one protein, which may lie very closely in the 2D space of a gel. These
gels can then be used to compare with other gels from different samples. The intensity of

each spot gives an indication of the relative abundance of the protein that exists in the
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sample. Following the separation of proteins in the two-dimensional space the spots, which
are of interest, may be extracted from the gel. Trypsin, or another suitable protease, is then
used to digest the protein into its peptide constituents, some of which are unique to each
protein. These mixtures are then analysed using MS. The gel-based techniques offer powerful
visualisation allowing researchers to spot differentially expressed, or post-translational
modified protein spots (Loh & Cao, 2008).

1.2.1.2 The Capabilities of Gel-Based Proteomics

Regardless of the fact that 2D gel electrophoresis is not an ultra-modern technology; it
provides a well defined and robust technology for biomarker discovery when combined with
Mass Spectrometry (MS). This is due to its extremely high-resolving power for complex
protein mixtures (Loh & Cao, 2008). An important consideration often ignored by enthusiasts
of shotgun mass spectrometry is that although 2D gels only visualise proteins in a sample
present in higher abundances, it does not mean that the proteins identified from gels are
unrepresentative of the biological processes within the sample. More proteins identified, does
not necessarily lead to a better understanding. It is still regarded as one of the most powerful
tools in the field of proteomic research (Geng et al, 2011). Thousands of spots can be
resolved on a single 2D gel and when coupled with MS can assist with detection of proteins
within a large range of isoelectric points and molecular weights. The method provides both
qualitative and quantitative information. Whilst 2D gel techniques are useful for the
separation of proteins and quantification of protein levels they do require additional
identification techniques further downstream, such as MS analysis.

1.2.1.3 The Constraints of Gel-Based Proteomics

The reproducibility of results from gel experiments is low; therefore comparison between
different gels is difficult due to variation in gel composition and run conditions (Lipp, 2006).
Because of this it is essential that experimental conditions are standardised as much as
possible and reported accurately to be able to minimise or at least account for experimental
differences. Advances in gel-based techniques have also been developed to provide greater
reproducibility between runs (Loh & Cao, 2008). These advances include the introduction of
gels with a narrow pH gradient range as well as the use of radioactive labelling, such as
DIGE techniques.

Traditional gel-based biomarker discovery methods involve comparing gels against each

other. However, the low reproducibility of gels can make this difficult, as spots relating to the
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same protein may travel to different locations on the gel and therefore can increase the

occurrences of false positives and false negatives.

This problem has been addressed by certain researchers by using a technique referred to as
difference gel electrophoresis (DIGE) (Alban et al, 2003). DIGE involves labelling of the two
samples using distinct cyanide dyes which fluoresce at different wavelengths (Figure 13).
The two samples are then separated on the same 2D gel so that proteins from each sample run
identically so they occupy the same gel volume. This reduces the inter-gel experimental
variation between samples as identical proteins separate to the same coordinates. These
proteins can then be visualised and quantified by altering excitation and emission optics in
order to ensure a direct spatial correlation and hence comparable protein identity. In addition,
the creation of a “total sample” preparation labelled with the third dye gives a between-gel
comparator and underpins accurate normalisation. This allows for better comparison of
samples using the 2D gel technique and eases the complex task of revealing biological
variation.
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Figure 13 - 2D DIGE technique. Cy2, Cy3, Cy5:- fluorescent dyes. Samples are dyed
and then combined prior to gel electrophoresis. Following this images are generated
using different fluorescence wavelengths (Fitzgerald, 2002).
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Additional issues with gel-based techniques arise from the fact that certain characteristics of
proteins are often poorly represented by gel-based methods. These characteristics include the
poor representation of proteins at:

e Extremes of isoelectric points, i.e. very acidic or vey basic proteins. This can be
addressed by splitting samples up over various isoelectric point ranges and analysing
smaller, less complex samples.

e Hydrophobic proteins.

e Extremely high or low molecular weights.

e Low abundance proteins, creating a biased view of the proteome skewed towards
proteins which exist in higher concentrations. This can be addressed by albumin
depletion or by immunoaffinity chromatography which simplifies complex samples
by binding high abundance proteins to a column.

e There is an inability to profile, quantify and compare large numbers of samples

therefore limiting the statistical power of proteomic analysis (Levin et al, 2007).
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1.2.2 Mass Spectrometry (MS) Based Techniques

Although gel-based techniques are an established platform for these experiments, the use of
Mass Spectrometry (MS) based techniques is growing in this field (Schulz-Trieglaff et al,
2008). The previous research in this area has been focused on high throughput Mass

Spectrometry based profiling of blood and tissue samples (Johann et al, 2004).

1.2.2.1 The Technology of Mass Spectrometry (MS) Based Proteomics

The output from a MS experiment is a mass spectrum plot which displays the mass-to-charge
ratio (m/z) against the intensity of the signal which is correlated to the intensity of the peptide
(Figure 14). Proteins are cleaved using trypsin to make them a suitable size for MS analysis.
The spectra are often referred to as the mass fingerprint of the peptide composition of the
samples. These can be compared against spectra generated in silico that are available in
primary sequence databases to be able to identify the proteins contained within the sample.

(1) Sample SDS- Excised (2)Trypsin Peptide
fractionation PAGE proteins digestion mixture

E—
»oos =
=
(3) Peptide
chromatography
and ESI
(4) MS (5) MS/MS
200 ;
) LLEAAAQSTK ‘
S 400/ 516.27 (2+) |
g ‘ y7 |y8
S ‘ 100182 sQAA[E[L L
S 200] 516.27 (24) i
= y5Y6,
(2] 4
: Ll T
= y
= ol e, o Ll adlollll gl L1
400 600 800 200 600 1000
m/z m/z

Figure 14 - Mass Spectrometry-based proteomics. Proteins are fractionated by trypsin
digestion. Chromatography and mass spectrometry is then used to quantify the peptides
(Blonder et al, 2007).
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1.2.2.2 The Capabilities of Mass Spectrometry (MS) Based Proteomics

One of the primary reasons for the use of Mass Spectrometry in proteomic biomarker
discovery is the larger potential the technique has for complete automation (Malmstrom et al,
2011). Protein mass spectrometry has been established as an indispensible choice for analysis
in proteomics studies to identify relevant molecular patterns (Stanley et al, 2004), due to its
adaptability, sensitivity and precision (Hanash, 2004). Currently it is widely used in this field
(Colaert et al, 2011). It is preferred for these studies because of the techniques sensitivity,
selectivity, accuracy, speed and output (Chen & Pramanik, 2009). As well as the choice of
using MS for proteomic analysis, further choices need to be made regarding the growing
options for ionisation and ion separation available in MS (Figure 15). Using MS following
gel analysis is another technique which allows the detection of proteins which have a lower
abundance which is a likely range for cancer biomarkers (Cottingham, 2006). An example of
the use of mass spectrometry in proteomics is the technology of multidimensional protein
identification technology (MudPIT). This is an unbiased method for rapid and large-scale
proteome analysis (Washburn et al, 2001). This method involves multidimensional liquid
chromatography followed by tandem mass spectrometry. This technology is paired with the
use of database searching which utilizes the SEQUEST algorithm to comprehensively

identify proteins in samples in a rapid and sensitive process (Link et al, 1999).

Data
System

: }
lonisation Source Analyser Detector
E.g. Electrospray (ESI), Mass-to-charge (m/z), e.g. E.g. Photomultiplier
matrix assisted laser Quadrupole, time-of-flight, microchannel plate electron
desorption (MALDI) magent, FT-ICR multiplier

Figure 15 — The simplified schematic of a mass spectrometer showing examples of
various ionisation, analyser and detector options (Ashcroft, 2012).

1.2.2.3 The Constraints of Mass Spectrometry (MS) Based Proteomics

An issue with MS is that some peptides cannot be ionised, meaning they cannot be detected
using this technique. Additionally blood samples are often very complex and produce very
noisy spectra. Unless very accurate MS technology is used, results may be too inaccurate to
confidently identify clinical biomarkers. This has been addressed through processes of
sample fractionation to simplify more complex samples; however this takes time and

decreases the throughput of studies.
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1.2.3 Isobaric Tagging for Relative and Absolute Quantification (iTRAQ)

This method is based on protein sequence tags and aims to provide a quick, sensitive and
accurate technology to assist in biomarker discovery (Ross et al, 2004). Isobaric tagging has
recently become very popular in proteomic profiling (Simon, 2011). Coupled with liquid
chromatography-tandem mass spectrometry (LC-MS/MS), iTRAQ has revolutionised the
field of biomarker discovery and identification (Zieske, 2006). iTRAQ is a non gel-based
approach to quantitatively study protein expression, and is currently commercially available
(Applied-Biosystems, 2006).

1.2.3.1 The Technology of iTRAQ

This technique allows the analysis of up to eight samples in a single run. The iTRAQ
technique involves digesting the complex samples into smaller less complex ones by the
process of reduction, alkylation and then Trypsin digestion (Figure 16). The digested samples
are then chemically reacted with different iTRAQ reagents which contain stable isotopes. The
reagents attach at the N-terminus of the digested peptides. The two peptide mixtures can now
be combined, followed by separation using nano-liquid chromatography and subsequent
analysis by tandem Mass Spectrometry methods. The peptides are tagged. The tags can be
identified by detection of their unique low molecular mass reporter ions the peptides can be
linked to their samples (Figure 17). Determining the intensity of the reporter ions also allows
for quantification of the relevant peptides. For each reporter ion peak range, the total area is
calculated by summing the areas between ion peak pairs using trapezoid approximation for

calculating the area under a curve.
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Figure 16 — The iTRAQ workflow. Up to eight samples are digested and then tagged.
The samples are then combined and quantified using LC-MS.
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Figure 17 - An example of iTRAQ spectra. The reporter ion peak is comprised of
multiple ions (Zieske, 2006).

1.2.3.2 The Capabilities of iTRAQ

ITRAQ can be employed with existing techniques to identify proteomic compositions of
samples to assist in biomarker discovery. When coupled with Matrix Assisted Laser
Desorption lonisation — Tandem Time of Flight (MALDI-TOF/TOF) MS techniques, iTRAQ
provides both quantitative and qualitative data. It has been used in previous studies to identify
potential biomarkers by determining differentially expressed proteins in head-and-neck/oral
cutaneous squamous cell carcinomas (HNOCSCCs) against non-cancerous head-and neck
tissues (Matta et al, 2008).

Studies suggest that quantification of proteins and peptides using iTRAQ can be further
enhanced by combining the technique with electron transfer dissociation (ETD) (Phanstiel et
al, 2008). ETD provides the possibility to determine peptide sequences with post-translational
modifications (PTMs), because of its ability to retain labile PTMs (Cook & Jackson, 2011).
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1.2.3.3 The Constraints of iTRAQ

ITRAQ can occasionally lead to false conclusions due to the false positive identification of
proteins (Bantscheff & Kuster, 2007). Current data analysis techniques for iTRAQ struggle to
report reliable relative protein abundance estimates due to problems of precision and

accuracy (Karp et al, 2010).

The technique relies heavily on full coverage of the proteome of the species being studied.
This is not always the case depending on the species being investigated. Additionally the
method is very powerful and ideally suited for biomarker discovery but is not able to handle
tens or hundreds of samples, which is normally typical for biomarker studies, in a single run
(Matta et al, 2008). There are ways around this by the inclusion of a control sample which is

used in every run of multiple analyses, to allow normalisation of technical variance.

1.2.4 Label-Free Based Techniques

Current approaches of quantitative proteomics have mainly been based on implementing
isotopic labelling; however another preferred alternative is the label-free approach (Yan &
Chen, 2005). Although Isotope labelling and fluorescent labelling techniques have been
widely used in quantitative proteomics research, researchers are increasingly turning to label-
free shotgun proteomics techniques for faster, cleaner, and simpler results (Zhu et al,
2010). Label-free approaches look for discriminating peak patterns in mass spectra, without
regard to their identity (Lai, Wang & Witzmann, 2013).

1.2.4.1 The Technology of Label-Free Based Techniques

Label-free techniques involve protein separation and comparison using two-dimensional
polyacrylamide gel electrophoresis (2D-PAGE), followed by MS or tandem mass
spectrometry (MS/MS) identification. It is a classical method for quantitative analysis of

protein mixtures.

1.2.4.2 The Capabilities of Label-Free Based Proteomics

MS based label-free quantitative proteomics falls into two general categories. Those that
measure changes in chromatographic ion intensities, such as peptide peak areas or peak
heights, and those that involve the spectral counting of identified proteins. An advantage of
the label-free approach is the reduction in cost, because the employment of stable isotopes is
very costly, and it is not a simple process. Reviews of the differences between labelled
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techniques, such as iTRAQ, and the label-free approach suggest that the total analysis time is

reduced by 50% and experimental requirements are significantly reduced (Patel et al, 2009).

There are however other technical advantages as well as simply a reduction in cost and time,
as opposed to techniques that involve labelling. Evidence suggests that the dynamic range of
quantification is higher with label-free techniques (Bantscheff et al, 2007). This allows
researchers to measure significant variations within complex mixtures or even across the
whole proteome, using a single experiment. Additionally when using the label-free approach
there is only one sample to analyse by MS as opposed to 30-60 fractions which would need to
be analysed when using techniques like iTRAQ. Research also suggests that the sequence
coverage provided by label-free approaches is over four times greater than the coverage
provided by iTRAQ (Patel et al, 2009).

1.2.4.3 The Constraints of Label-Free Based Proteomics

There is however also disadvantages of the label-free approach:

e Although label-free techniques offer a higher dynamic range, for spectral counting
this comes at the cost of unclear linearity and relatively poor accuracy (Patel et al,
2009)

e Quantitation of peptides or proteins is often affected by changes in peptide
chromatography conditions.

e There is an uneven dispersion of peptides throughout multi-dimensional separations.

e Slight variances in the chromatography step can lead to irreproducible peptide

separations (Leptos et al, 2006).

1.2.5 Liquid Chromatography — Mass Spectrometry (LC-MS)

Quantitative Liquid chromatography coupled with Mass Spectrometry (referred to as LC-MS)
is being increasingly used in the differential profiling of biological samples (Katajamaa et al,
2006). The combination of the methods allows high accuracy protein profile comparisons

between different sets of biological samples (Kreunin et al, 2007).

1.2.5.1 The Technology of LC-MS Techniques

The liquid chromatography stage deals with the 2-dimensional physical separation of proteins
within a sample. This is achieved by separating proteins dependent on their pl (Isoelectric
point) and also by the size of the peptides in mass. The protein elutions are then analyzed

Page | 33 © Cranfield University, 2011



using the mass analysis capabilities of MS. It exploits the ability of MS to be able to identify
and precisely quantify a large number of proteins (thousands) from complex biological
samples. The MS stage allows the acquisition of an accurate and reproducible protein

molecular weight.

1.2.5.2 The Strengths of LC-MS Based Proteomics

Liquid Chromatography — Mass Spectrometry (LC-MS) methods are commonly used in
proteomic studies (Peng & Gygi, 2001) at the biomarker discovery phase of drug discovery
(Kawase et al, 2009). This technique has been used to identify potential biomarkers which
identify breast tumour metastasis (Kreunin et al, 2007) as well as the discovery of potential
Down’s syndrome biomarkers in maternal serum (Nagalla et al, 2007). The use of these
techniques is not limited to proteomic research and more recently are also being implemented

in the metabolomics field (Katajamaa et al, 2006).

1.2.5.3 The Constraints of LC-MS Based Proteomics

As with any technique, LC-MS is by no means without its limitations and boundaries
including issues with the analysis of data (Bellew et al, 2006). One issue is that not all of the
peptides present in a complex mixture are currently ionised and detected by MS; therefore the
amino acid sequence is not fully accounted for (Listgarten & Emili, 2005). Additionally the
dynamic range of some Mass Spectrometers is limited so low levels of peptides in a mixture
might not be detected because they are not distinguishable from the background noise.

Other limitations of this technique include:

e Some peptides may be under represented or absent in mass spectra of complex
mixtures of peptides.

e Some modified peptides are unstable and may decay during ionisation or mass
analysis therefore escaping detection.

e Unlike MALDI, ESI used with LC-MS applies multiple charges to peptides which
need to be determined in order to determine the mass of a peptide.

e The comparison of peptides across experiments involves alignment in two dimensions
rather than just one. This additional dimension of retention time varies in a non-linear
way.

e There may be deviations in the elution times across different experiments.

e Ambiguity can occur when there is an overlap in the time and m/z spaces.
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e Signal intensities can be affected by differences in overall sample composition.

These limitations become more apparent as the amount of protein available for analysis is
reduced due to the use of gel spots from 2-D PAGE. Signals from modified peptides, such as
phospho-peptides or glycopeptides, are often not present from the mass spectra of peptide
mixtures (Knochenmuss, 1998). To add to the complication, the modification on a given site
is sometimes only partial. The result of this is that the corresponding unmodified peptide is
observed instead of the modified peptide. This leads to the dangers of failure to recognise,
and account for the presence of a modified peptide peak. Furthermore the influences of the
experimental conditions on the PMF spectra are also a limiting factor to the successive use of

MS for proteomic profiling for determination of biomarkers (Bellew et al, 2006).
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1.3 The Use of Statistical Analysis in Proteomic Biomarker Discovery

1.3.1 Biomarker Discovery Workflows

Organisations involved in biomarker discovery, such as the sponsor company Oxford
BioTherapeutics (OBT) use a range of both MS and 2D gel methods in their biomarker
experiments. Figure 18 illustrates the work process flow used by these companies for their
biomarker discovery projects. Datasets from some of these analyses (gel or MS based) were
provided by OBT as part of their biomarker research. The focus of this EngD lies mainly
within the statistical analysis step. Once the required statistical analysis is completed the
results were provided to the company in the format described later in this thesis. Any further
analysis (MRM/SRM) required to validate these biomarkers was then conducted.

&

Sample Collection

2

l Gel Analysis
B 1T

Mass 2D Gel
Spectrum Spotting
Analysis

L Q)

Converted to Data files

Cranfield
@ @ Biomarker
Hunter

Statistical Analysis

(:f Biomarker
3 Discovery
Figure 18 - The biomarker discovery work process flow. Collected samples are analysed

and data files are created, ready for statistical analysis using software created for this
EngD Project.
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1.3.2 Experimental Design of Biomarker Discovery

An aspect of proteomics studies is the discovery of biomarkers indicative of physiological
differences (e.g. diseases or responses to treatments in biological systems). Experiments in
this field aim to identify a correlation between abundances of proteins within a sample, and
the biological conditions of sample groups. Use of differential analysis of protein expression
levels has developed rapidly over recent years (Keselman et al, 2011).

A factor that decides whether these experiments result in successful scientific discoveries is
the quality of the experimental design. A good experiment suggests a “fair test” is conducted
including only the variance that the experiment is trying to capture (i.e. the differences in
biological states compared). However there may be biological and technical variation within
the samples in the groups, which are not involved in the divergences seen in biological states.
The effect of these variations can be reduced by using replicate samples (Molloy et al, 2003).
As well as standardisation of sample and analysis protocols, there needs to be standardisation
in the application of the statistical tests used throughout the study.

A topic of frequent debates about experimental design in biomarker proteomics is the use of
these replicates. These experiments usually contain two types of replicates including
biological and technical replicates. Biological replicates are individual biological samples
which are independent of each other, whereas technical replicates are multiple labelled repeat
technical runs of the same biological sample. The purpose of including biological replicates is
to control for biological diversity between samples (Altman, 2005). These are considered
superior to technical replicates because they are often more informative. However biological
replicates are often more difficult to obtain, and budgets may restrict the number of biological
samples available for analysis. Technical replicates can however also be useful as they
account for the technical variability within an experiment (Patterson et al, 2006). Technical
variation may occur from differences in the experiment, such as in sample preparation and

separation.

Biological replicates are necessary in biomarker discovery experiments in order to draw
conclusions about the differences between groups. As a general rule, the more biological
replicates used, the better the statistical confidence (Ekefjard, 2010). If only one biological
replicate in the groups are being compared, it is not possible to draw meaningful conclusions
about differences between the samples. Technical replicates are not however useless as they
allow the experiment to account for errors in the measuring techniques. Running multiple

runs on the same biological samples is useful for reducing differences arising from the
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running conditions. Technical replicates also result in a cost benefit as the number of samples

is increased at a lower cost (Altman, 2005).

1.3.3 Statistical Analysis Methods
The proteomic experiments of interest for this study are those that aim to identify correlations
and differences in the abundances of proteins between samples exhibiting divergent

biological conditions.

There are a number of statistical methods that can be employed for the use of proteomic
biomarker discovery experiments. The relevant techniques will be discussed in later chapters
in greater detail. Table 1 identifies the optimum statistical strategy that should be employed,

depending on the nature of the question that needs to be answered.

Table 1 - Ideal statistical methods for proteomics questions (Bantscheff & Kuster, 2007).

Testing For? Question Optimum testing method

Variances in protein
abundance between sample
groups (Different biological
conditions)

Do any proteins act
significantly differently in
various biological
conditions?

Multiple Hypothesis Testing

Do any proteins show time-
dependent change?

Analysis of Variance
(ANOVA)

Defining the class of an
unknown sample

Classification techniques
such as PLS-DA

Relationships between
proteins and samples

Which (if any) proteins are
dependent on each other?

Cluster Analysis such as
HCA.

Which (if any) proteins are

Principal Component

responsible for variances
between samples?

Analysis (PCA)

As well as the statistical analysis techniques there is a choice of data pre-processing and post-
processing options that can be conducted on the data. There are a number of current
algorithms available for this. The choice of statistical analysis and data processing techniques
will inevitably have an effect on the biomarkers identified from these experiments. The best
statistical approach to deal with data from these proteomic biomarker studies remains an area

of ambiguity and interest (Blanchet et al, 2011), and forms the core focus of this project.
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1.3.4 Errors in Hypothesis Testing

When conducting statistical hypothesis tests, the result is a p-value (described in detail in
Chapter 2) indicating the probability of each feature (peptide or protein) fulfilling the null
hypotheses for the tests. The null hypothesis for these significance tests is that there is no
difference between the samples being compared (i.e. null hypothesis suggests the feature is
not a potential biomarker candidate). Potential biomarkers are indicated by a p-value of lower
than the significance level of 0.05 (i.e. rejection of the null hypothesis that there are no
differences between the samples). It is possible, however that the null hypothesis of no true

difference is true and that the large difference between sample means occurred by chance.

If this is the case, then the conclusion that the feature identified as a potential biomarker is in
error. This type of error is called a Type | error or a false positive error. More generally, a
Type | error occurs when a significance test results in the rejection of a true null hypothesis.
The Type | error rate is affected by significance level used (0.05 for this study which is the
generally accepted significance level in statistical significance testing (Butzen, 2011)).
Lowering the significance level decreases the Type | error rate. It might seem that the
significance level is the probability of a Type | error, but actually the significance level is the

probability of a Type | error given that the null hypothesis is true.

Another type of error seen in significance testing is failing to reject a false null hypothesis,
called a Type Il error or a false negative error. This is not a great cause for concern in
proteomic biomarker studies where the number of features is generally large. When a
statistical test rejects the null hypothesis, it suggests that the data doesn’t display strong
evidence that the null hypothesis is false. It does not support the conclusion that the null
hypothesis is true (i.e. the test is inconclusive). A Type Il error occurs if the null hypothesis is

false (i.e. there is a significant difference between the groups).

Because of these errors it is better to use the p-value as an indication of the weight of
evidence against the null hypothesis, rather than as part of a decision rule for making a reject
or do-not-reject decision. In this study the Type | (false positive) errors are of greater concern
than the Type Il (false negative) errors. This is because the validation of biomarkers is an
expensive process, so resources should not be wasted on non-markers. As there is generally a
large number of features (therefore many statistical tests) it is not a great problem if some

potential biomarkers are identified as non-markers.
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1.3.5 Power Analysis

For the successful discovery of biomarkers, it is important to address a correctly formulated
clinical research question where power analysis is essential (Karp et al, 2007). Therefore all
biomarker studies should have included an a priori calculation of the number of samples that
need to be included in the study. The power of a test is its ability to correctly reject the null
hypothesis of the statistical test (i.e. the ability to detect an effect, if an effect exists). The
exact statistical power considerations that are relevant for interpreting a biomarker study
depend on the nature of the study but generally focus on demonstrating that the sensitivity
and/or specificity of a biomarker is superior to a stated value. The statistical power in a
proteomic biomarker study depends on specific factors including:

e Variance in protein expression
e The size of the change in protein expression
e The number of replicates

e The significance level used

For greater statistical power in an experiment, the number of replicates must be sufficient
enough to distinguish between true differences and random effects (Zhou et al, 2012). Using
too few replicates can lead to an underpowered study which will not identify changes in
protein expression with statistical significance. Using too many replicates leads to an
unnecessary waste of time and resources. This issue is frequently overlooked by researchers
(Bachmann et al, 2006). Most researchers in quantitative proteomics rely solely on the
estimation of p-values and a significance threshold (Karp et al, 2007), but this approach does
not account for the effect of multiple testing which is described in more detail later in this
thesis in Section 4.2.1. A measure of significance in terms of the false discovery rate (FDR)
is then calculated to return a g-value. A g-value is used to maintain the power by allowing the
researcher to achieve an acceptable level of false positives or false negatives.
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1.4 Project Aims

1.4.1 Identification of the Suggested Statistical Analysis Methods for Biomarker
Discovery

The overall objective is to identify a recommended statistical approach for the identification
of features (peptides or proteins) which are differentially expressed between divergent groups
of samples. This will allow the identification of peptides or proteins which are responsible for

the divergent traits displayed between sample groups.

As stated earlier there are a number of statistical methods that can be employed for the use of
proteomic studies and biomarker experiments. At present no one correct method or answer is
defined for biomarker discovery but it is through development of the combination of all these
technologies that the biomarker field will thrive (Haleem et al, 2011). Although there has
been advances in this area there is ambiguity regarding the best statistical approach, including
the pre-processing and post-processing options to deal with data from these proteomic
biomarker studies (Blanchet et al, 2011).

Along with the development of a software pipeline to be discussed in Section 1.4.2, the
various methods available for statistical analysis as well as data pre- and post-processing will
be investigated and reviewed. These methods will be made available using the software
pipeline. Following the use of this pipeline on actual proteomic data from biomarker
experiments the recommended methods of data treatment and statistical analysis will be

presented.

1.4.2 An R Toolkit for Biomarker Discovery from Proteomic Data

Software and algorithms available for the statistical analysis of data created from biomarker
experiments remains a subject of interest in proteomics (Zhu et al, 2010). One of the required
outcomes of this project is the development of a reliable pipeline software solution for the

identification of biomarkers through the use of statistical analysis of experimental datasets.

Although there are currently software platforms that exist in order to conduct statistical
analysis on biomarker data (e.g. Marker View) these often are limited in their range of
statistical tests. Currently the commercial options available for this analysis usually provide

black-box analysis tools which often cannot be modified and it is often difficult to understand
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the inner workings of the software. These tools do not allow OBT to use their expertise and

modify the analysis workflow to their or their clients’ individual requirements.

Often the existing software is not able to deal with or analyse the sheer amount of data
created from these experiments. These issues can only be overcome by new developments in
algorithms, data management and software engineering (Malmstrom et al, 2011). Only then
can the full potential of these studies be realised. It is very important that these software
projects are developed alongside tight integration with the method developments in
technologies used such as Mass Spectrometry based or gel-based methods.

The software pipeline developed for this project will allow users to conduct high-throughput
statistical analysis in order to identify biomarkers from datasets obtained from biomarker
experiments. The toolkit developed through this EngD project was named Biomarker Hunter.
This pipeline software will aim to identify peptides or proteins which are differentially
expressed following various treatments in order to identify the effects these treatments may
have on these markers. It will conduct a range of both multivariate and univariate statistical

techniques in order to identify features of interest between different groups of samples.

The use for this pipeline will be to evaluate the various statistical methods described in
section 1.4.1 in a high throughout manner. The advantage this software provides to biomarker
companies such as OBT is the ability to produce higher quality results for their clients, which
will lead to higher client confidence. This will add value to the biomarker experiments
conducted by these companies. Currently OBT use the GeneSpring MS software for the
univariate analysis and do very little in terms of multivariate analysis. The idea behind the

pipeline is to conduct univariate analysis, as well as providing multivariate analysis options.

1.4.3 ldentification of Suitable Methods for Dealing with Missing Values in
Proteomic Data

Statistical techniques usually require, and work best with, complete datasets. Proteomic
datasets are often incomplete due to numerous issues including identification, technical range
and sensitivity of the proteomic technologies employed for quantitative analysis. Methods of
dealing with these missing values prior to statistical analysis still remain a key issue in
proteomic analysis (F. Li et al, 2011). Proteomic data from biomarker experiments can
generally contain about 50% of missing values (Bantscheff & Kuster, 2007). If these values

are just ignored, the loss of information can induce a considerable bias to the dataset.
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Reasons for missing values in proteomic data may be either biological or technical.
Biological reasons may represent a protein that is truly missing from a particular sample or
those features which are present but at a level that is below the detection level of the analysis
tool. Although the biological implication of these two cases is different, it is often not
possible to differentiate between them. A proteomic feature refers to an experimental
parameter which relates to a peptide or a protein. These may be in the form of a gel spot or

peak on mass spectra.

Examples of technical causes of missing values in gel-based data include inaccuracies
encountered during the electrophoresis process (Albrecht et al, 2010). These include:

e pH variations in the running buffer

e Incomplete or over-focusing in the first dimension

e Poor transfer from first to second dimension

e Different run times in the second dimension

e Gel variations in staining

e Local differences in protein migration on gels (This may be caused by incomplete

polymerisation or air bubbles in the gel)
e Differences in image analysis (e.g. high background noise, poor resolution of spots or

poor detection and separation of nearby spots)

A recent study showed that the occurrence of missing values in gels does not correlate with
the spot locations; however feature intensity is a function of the percentage of missing values
(Miecznikowski et al, 2010). Values which are present in high abundances in other sample
groups are more likely to be detectable than those present at lower levels. Therefore the more
abundant a protein is, the lower the chance that the protein will be below detection level in
another sample group (Wood et al, 2004). This also applies to MS (F. Li et al, 2011).

The consequence of missing values is that they can have a significant effect on the
conclusions that are drawn from the data. Values that are missing due to biological reasons
are important for analysis as they provide an insight into the differences between the samples.
Missing values caused due to technical variations are not of biological interest but need to be
avoided. It is important to identify the causes for missing values so that they can be treated
differently. This may be determined by identifying whether there is a systemic relationship in

the number of missing values between the experimental groups. Random distribution of the
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missing values suggests that the reason for the missing values is technical. Non-random

distributions lead to the suggestion that the missing values are biological (Cardillo, 2008).

This project will address this issue of dealing with missing values in proteomic data. Features
below the detection value may be replaced with zeroes or another arbitrary low threshold
value. This may be acceptable if the values are missing because a feature’s abundance being
below the detection value, or those that are truly not present. However this is not acceptable
for values that are missing for other reasons such as other technical reasons. There are
additional imputation methods than can replace missing values based on a model created
using the existing data, for these purposes. Existing methods of imputation will be researched

and implemented in an appropriate manner.

Additionally many values may not be present due to the incorrect mismatching of features.
This occurs when an individual peptide or protein is identified as different features between
samples. To deal with these missing values, the creation of a novel algorithm for the
reduction of missing values will also be implemented and reviewed. This will aim to address
the issues of features (peptides or proteins) that have incorrectly been identified into two or
more separate features. This will be achieved through the creation of a clustering algorithm,
“ClusterFix”, to re-cluster the original dataset. This novel algorithm as well as the existing

missing value imputation techniques will be the focus of Chapter 5.

1.4.4 Researching the Business Opportunities for Biomarkers and Statistical
Analysis Software

As this is an EngD research project it is important to consider the business and economic
aspects of this research area. This will be discussed in Chapter 7. This chapter will outline the
business opportunities that will be presented through quicker, more efficient discovery of
biomarkers. It will discuss the clinical impact that biomarkers aim to deliver both in terms of
health benefits to patients and economic benefits to organisations such as healthcare
providers and drug manufacturers. This chapter will also consider the competition in the
industry by presenting a SWOT analysis and a review of competitive software that exists in

the industry.
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2 Materials and Methods

This chapter discusses the resources that were used throughout this project. The first section
discusses the datasets that were provided by the sponsor company OBT, on which the
statistical analysis was conducted. Firstly an outline of the types of data that will be analysed
using the pipeline software will be discussed. Then a list of the actual proteomic datasets
provided for this project will be presented. Following this, an overview of the pipeline

software, Biomarker Hunter, will be described.

2.1 Data from Proteomic Biomarker Data

Oxford BioTherapeutics (OBT) provides data from experiments which consist of groups of
samples. This data is usually in the form of pivot tables, which is a method of summarizing
large amounts of data and presenting it in an easy-to-read format. These datasets are
generally .csv files with each row representing a feature (e.g. a peptide), and each column
representing a different sample. Features are often referred to as Molecular Cluster Indexes
(MCls) or Protein Cluster Indexes (PCIs). The datasets may previously have been normalised
using the GeneSpring MS or similar software using log transformations.

The benefit of using the datasets provided by the sponsoring company is that these are large
in terms of the number of samples and are generally of high quality, as the company was at
the time providing proteomics as a service and has high quality control standards. Crucially,
it was also expected that the studies from which these datasets came would progress to the
validation stage, where potential markers found during the statistical analysis would be
validated experimentally using targeted proteomics (SRM). Unfortunately, only one of the
three studies did actually reach the validation stage and for commercial reasons it has not

been possible to ascertain what the biomarkers were in that study.
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2.1.1 Dataset 1 — Circadian Variation

Data from this experiment aims to identify whether circadian rhythm or “body clock™ has an
effect on the protein expression of DMSO (Dimethyl sulfoxide) treated Zebrafish Embryos
(ZFEs). The circadian clock regulates various physiological processes. It is unknown how
circadian clock controls physiological rhythmicity. As most living organisms display
circadian rhythm to some extent, to adapt to daily environmental changes, it is important to

be aware of its effects on future studies. Most circadian clocks are close to 24 hours.

To determine whether time of sample collection affects the levels of proteins detected by
comparing five independent biological replicates at each of two time points using 2D gel
analysis. The circadian rhythm is investigated using five pools of DMSO treated ZFE (A-E)
with two samples from each pool, one collected at 0900 hours and another at 1200 hours. The
2D gel results from these tests were analysed to identify any differentially expressed proteins.
Table 2 shows the samples that were analysed and their reference numbers which were used
in the output diagrams from the study. Since gel-based analysis is conducted on proteins
rather than peptides, the features (proteins) for this study are often referred to as Molecular
Cluster Indexes (MCIs). Each sample contained 1,678 MCIs or features. This dataset differs
from the others as it does not contain any missing values. This is because specific 2D gel
spots were chosen and analysed for this study. Figure 19 shows the range of intensities
contained within the dataset, showing the majority of proteins within the lower intensity
range between 0 and 1 million.

Table 2 — An experimental outline for circadian rhythm study, including the sample
names. Five samples were collected at two different time points and analysed using 2D
gel technology.

Pool Timepoint | 09:00 @ 12:00

A A9 Al2
B B9 B12
C C9 C12
D D9 D12
E E9 E12
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The Frequency of Intensities Within a Range: DATASET 1
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Figure 19 - A histogram showing the number of features (proteins) within specific
intensity ranges for Dataset 1.

This data was specifically created to determine whether there were any changes in protein
expression between the samples collected at 9 am as opposed to those collected at noon. This
was achieved by conducting the multivariate analysis techniques to identify if the time of

collection had a significant impact on the expression of proteins between these two groups.

2.1.2 Dataset 2 — Project 9549 Label-Free Analysis (OBT)

This dataset is obtained from label free MS analysis, consisting of 31 samples run in
duplicate giving a total of 62 experiments. The samples are split into four groups being
compared (named 1, 2, 3 and 4). There are eight samples in groups 1, 2 and 4 and seven
samples in group 3. Since there were duplicate runs conducted there are two readings
(technical replicates) for each sample. One of the sample groups is a control group whereas
the other three groups are various doses of treatment. This experiment is done for a highly
sensitive project, therefore the nature of the sample groups have to be kept confidential. This
data involves study at the peptide level so the features (peptides) for this study are often
referred to as Peptide Cluster Indexes (PCIs). Table 3 illustrates the experimental outline for
this data set. For each sample there are a total of 8,892 features that have been identified. This

shows that for each group there are 16 total samples except for group 3 which has 14.
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Table 3 - Experimental outline for Dataset 2 — Project 9549 Label-Free Analysis. X
represents a dataset being available for each sample.

Sample | Sample | Sample | Sample | Sample | Sample | Sample | Sample
Group/Sample 1 2 3 4 5 6 7 8
Group 1-Run 1 X X X X X X X X
Group 1 - Run 2 X X X X X X X X
Group 2-Run 1 X X X X X X X X
Group 2 - Run 2 X X X X X X X X
Group3-Run1 X X X X X X X N/A
Group 3 - Run 2 X X X X X X X N/A
Group 4 - Run 1 X X X X X X X X
Group 4 - Run 2 X X X X X X X X

The data has already been normalised.

The dataset contains the natural logarithms of the

normalised data with one row per feature and a column for each experiment. This data suffers

from a large proportion of missing values (i.e. 327772 values, which accounts for over 60%

of the dataset). Missing values have been replaced by the value 0.01. The natural logs of the

values are given as these are what the statistical analysis is to be carried out on. Therefore a

value of In(0.01) = -4.60517 indicates the value is missing. Figure 20 shows the number of

features within specific intensity ranges. Analysis of this dataset involves comparing the

peptide expression between the four groups using both multivariate and univariate statistical

techniques. Table 4 shows how the four groups were compared for univariate analysis.
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Figure 20 - A histogram showing the number of features (peptides) within specific
intensity ranges for Dataset 2.
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Table 4 - A table showing how the samples were pooled in four groups. The cells
marked with an X show how the groups were compared with each other.

Groups 1 2 3 4
2| X
3| X X
4 X X X

2.1.3 Dataset 3 — Xenograft Pre-Clinical Project (OBT)

This study involves the analysis of plasma aiming to investigate the influence of compound
administration on protein expression. It is based on the mouse Xenograft model (Richmond &
Su, 2008). It aims to identify proteins which are differentially expressed in Xenograft mice
which have undergone treatment of a compound administered at different dose levels. This

will allow development of an assay to monitor the efficacy of drug treatment.

20 different biological samples were analysed using state of the art LC-MS comparative
peptide profiling methods. Each sample underwent a replicate run, to include technical
replicates, so there will be 40 samples in total (Table 5). For each sample there are a total of
94,727 features that have been identified for analysis. Although there are a large number of
features, this data suffers from a large proportion of missing values (over 90%). There is a
need to identify and validate a set of differentially expressed peptides between these samples.
This data involves study at the peptide level so the features (peptides) for this study are

referred to as Peptide Cluster Indexes (PCls).

The biological samples consist of:

e 5 mice (biological replicates) treated with dose A(1)
e 5 mice (biological replicates) treated with dose B(2)
e 5 mice (biological replicates) treated with dose C(3)

e 5 untreated mice (biological replicates) (Vehicle)(4)
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Table 5 - Experimental outline for Dataset 3 — Xenograft Pre-Clinical trial. X represents
a dataset being available for each sample.

Sample | Sample | Sample | Sample | Sample
Group/Sample 1 2 3 4 5

Group A(1) -Run 1
Group A(1) - Run 2
Group B(2) - Run 1
Group B(2) - Run 2
Group C(3) - Run 1
Group C(3) - Run 2
Group D(4) - Run 1
Group D(4) - Run 2

XX XXX [X [ X
XX XXX [ X [X
XX [X XX [ X [X X
XX XXX [ X [X
XX XXX [ X [X

Figure 21 shows the number of features within specific intensity ranges for this dataset. This
shows that the majority of values fall within the lower intensity range below 25 million. This
graph however was not very informative so Figure 22 shows a breakdown of the features
within this lower intensity range (0-25). The four groups were compared in the same manner

as Dataset 2, as shown previously in Table 4.

The Frequency of Intensities Within a Range: DATASET 3
366322

370000

320000

270000

220000

170000

120000

Mumber of Features (Peptides)

70000

20000 936 126 36 2 5 4 0 1

0-25 26-30 31-75 76-100 101-125 126 -150 151 -175 176 -200 201 - 225
-30000

Intensity Range

Figure 21 - A histogram showing the number of features (peptides) within specific
intensity ranges for Dataset 3.
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The Frequency of Intensities Within a Range: DATASET 3
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Figure 22 - A histogram showing the number of features (peptides) between zero and 25
within specific intensity ranges for Dataset 3.
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2.2 Design and Implementation of the Biomarker Hunter Pipeline

This section discusses the creation of the pipeline software that will be used to identify
biomarkers from the proteomic biomarker experimental data described in section 2.1. The full
R script is presented in Appendix A as well as a copy of the program and user manual
(Appendix D) provided on the supplemental CD ROM for this thesis. The key features of this
software include:

e Support of different proteomic workflows (e.g. gel, LC-MS and iTRAQ)

e Traceability of statistical analysis and data pre- and post-processing methods

e Support for multiple groups of samples

e Extensive range of univariate and multivariate statistical techniques in a high

throughput manner
e Various data pre- and post processing options

e A novel method of dealing with missing values

The statistical programming platform R has been chosen as the platform in which to create
the pipeline (www.r-project.org). R is an open-source environment which enables statistical
computing and visualisation. As it is free software it is preferred as university and perhaps
small enterprises do not always have budgets to spend on the commercial alternatives such as
MATLAB licences. Free software also brings advantages for the distribution of this software
as commercial licenses may create a barrier to the use of the pipeline. R also contains many
pre-written packages for various algorithms which lead to easier programming.

Firstly an overview of the pipeline will be presented. There are four stages of analysis that

comprise the pipeline:

e Data Pre-Processing
e Statistical Analysis
e Data Post-Processing

e Results Presentation

Figure 23 shows the flow of data through the software pipeline. Firstly quantitative data from
gel-based or MS based experiments is pre-treated using various options, to ensure the data is
suited for the subsequent statistical analysis. Once the statistical analysis is conducted the

data may need to be processed prior to presenting the resulting list of biomarkers.
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Figure 23 - An overview of the Biomarker Hunter Pipeline. It shows the flow of data
from 1) The original datasets being pre-treated for statistical analysis 2) The statistical
analysis conducted and subsequently 3) The output of results (i.e. potential biomarkers).

The following sections describe the various sections of the pipeline from pre-processing the
data, to statistical hypothesis testing, and then subsequent post- hoc testing, multiple testing

correction and finally creating the output files.
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2.2.1 Data Pre-Processing

The process of the pipeline from data importation to preparing the data into groups prior to
statistical analysis, described above, is illustrated in Figure 24. The accepted file format for
this pipeline is .csv files. The first row contains the column headings. The first column
identifies the feature (e.g. MClIs or PCIs) that is being analysed as shown in Table 6.
Additional columns may also be present for LC-MS data, for the mass and retention times.

Define Sample
Data from
. Groups and Is normalisation .
Egloﬂ:::::s Missing Value ~> required? Yes emmp | Normalise
pe Syntax
No
- ; Group Data Average . .
Stahsht;la Analysis toha — Tachnleal & o s a::r:g::gs o'f‘;:;::mal
P Analysed Replicates p

No «
Figure 24 - Flowchart describing data pre-processing steps prior to statistical analysis

Table 6 - An outline of a dataset that can be analysed using Biomarker Hunter, using
data from MS or gel-based techniques. This example shows one control sample and
three various doses of treatment (The mass and retention time columns are optional).

Group 1 Group 2 Group 1 Group 2 Group 2
Peptide |Samplel |[Sample2 |Sample3 |Sampled |SampleX |Massdata |RT Data
1 Intensity 51 |Intensity 52 | Intensity 51 |Intensity 52| Intensity 5X |Mass PCI1 |[RT PCI 1
2 Intensity 51 |Intensity 52 | Intensity 51 |Intensity 52| Intensity 5X |Mass PCI 2 |RT PCI 2
3 Intensity 51 | Intensity 52 | Intensity 51 |Intensity 52| Intensity 5X |Mass PCI 3 |RT PCI 3
4 Intensity 51 |Intensity 52 |Intensity 51 |Intensity 52| Intensity 5X |Mass PCl 4 |RT PCl4

Before any analysis is conducted the features of the dataset need to be extracted from the data
file and arranged in a form suitable to carry out the relevant analysis. Due to differing
laboratory conventions, in order to class any missing values as such, the user is prompted for

the syntax that has been used to denote missing values (i.e. 0, 0.0, NA, N/A).

In order to identify the samples and group them the user is presented with two options. This
can be achieved either manually, using command line prompts, or with the use of grouping
data in the form of a separate .csv file. A grouping file (.csv) consists of two columns

specifying the group name and their respective column numbers (Table 7).
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Table 7 - An example of a grouping list, that can be used to split the samples into their
corresponding groups. Column 1 - respective group name Column 2 column number

Group | Column
Group 1 1
Group 1

Group 2

Group 2

Group 3

Group 3

Group 4

o« I o T O Y N TR Y

Group 4

Firstly the raw data needs to be sorted into its relevant sample groups for calculation of the
group statistics and subsequent statistical hypothesis testing. Following this the user will be
presented with data pre-treatment options which will be discussed in the following sections.
Biomarker Hunter provides options for normalisation and dealing with technical replicates

and missing values.

2.2.1.1 Normalisation

The pipeline offers an option for normalisation of technical variances between the samples if
the data requires it. The software offers Total Intensity Normalisation which is explained in
detail in section 4.1.1. It involves the division of the abundance values by the sum of all

values within the sample.

2.2.1.2 Averaging of Technical Replicates

There are two options with regards to the management of technical replicates. These can
either be treated as individual samples (i.e. not averaging the dataset) or can be averaged
prior to analysis. The advantages and disadvantages of these options form the focus of section
4.1.2.

2.2.1.3 Missing Value Treatment

Additionally the user will be presented with options to deal with the missing values in the
proteomic datasets. This includes both options for missing value imputation as well as the
novel clustering algorithm “ClusterFix”. These options for the treatment of missing values,

and their effects on statistical analysis, are the focus of Chapter 5.
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2.2.2 Statistical Analysis

This section describes the various analysis methods offered in Biomarker Hunter to identify
potential biomarkers from proteomic data. The software conducts a range of statistical tests
that can be used to identify the differences within and between groups of samples. The
analysis portion of the pipeline conducts a range of analyses including univariate analysis,
multivariate analysis as well as additional calculations (i.e. means, feature presence and fold

changes) that help in the identification of biomarkers and provide insight into the data.

2.2.2.1 Univariate Analysis

Once the groups have been defined, the statistical tests described in Figure 25 are conducted.
These statistical hypothesis tests will be described in detail in Chapter 3 along with the

methodologies, advantages and limitations of each technique.

Each of these tests return a p-value, indicating the probability of each feature (peptide or
protein) fulfilling the null hypotheses for the tests. There are two overall types of univariate
analysis conducted in Biomarker Hunter. These are pair-wise and group-wise analysis. For
pair-wise analysis a p-value is returned for each group comparison. For example if there are
four groups being compared (i.e. groups 1-4) there will be six p-values returned (i.e. Grp 1
vs.Grp 2, Grp 1 vs. Grp 3, Grp 1 vs. Grp 4, Grp 2 vs. Grp 3, Grp 2 vs. Grp 4, Grp 3 vs. Grp
4) as shown in Figure 26. When group-wise analysis (i.e. ANOVA and Kruskal-Wallis) is
conducted one p-value is returned for the whole analysis regardless of the number of groups
being compared. This p-value represents the probability that there are statistically significant
differences between all the groups being analysed. Post-hoc analysis can be conducted to
identify which groups the differences lie between. These post-hoc tests return a p-value for

each group comparison as with the pair-wise analysis.
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Figure 25 - An outline of the univariate hypothesis tests implemented for Biomarker
Hunter showing the parametric and non-parametric alternatives for both one-way and
group-wise analysis

For the group-wise methods (i.e. Welch ANOVA and Kruskal-Wallis) the null hypothesis for
the tests is that all groups being compared come from the same sample (i.e. a non-marker).
The ANOVA post-hoc Tukey analysis p-values show the probability of each individual group
being from the same population as each other group. For the pair-wise statistical analysis (i.e.
Welch T-test and Wilcoxon-Mann Whitney) a p-value is obtained for each FEATURE,

comparing each individual group compared against each group except for itself with the same

Secondary Sample Group

Comparison |Groupl |Group2? |Group3 |Groupd
Group 1 X X X
Group 2 X X
Group 3 X
Group 4

null hypothesis.

Primary
Sample

Group

Figure 26 - A table showing how pair-wise tests are conducted when four groups are
being compared (An X represents a test being conducted).
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For the ANOVA tests a post-hoc Tukey analysis is conducted to identify which groups
display statistically significant differences. The post-hoc analysis for the Kruskal-Wallis test
is actually the non pair-wise analysis of the Wilcoxon Mann-Whitney tests, so no further

post-hoc testing is necessary.

The univariate techniques also cover both parametric and non-parametric analysis methods.
Non-parametric methods are usually less powerful as they use less information in their
calculations. They do not consider the observed values. Instead these tests use the ranked
order of these values for calculation. Parametric tests use information about the means and
deviations from the mean, unlike the non-parametric options which only use the ordinal
position of pairs of scores. Although parametric techniques lead to more conclusions, the
non-parametric tests offer simplicity as the analysis is not affected by outliers. This is
because the non parametric tests are concerned with the ranks of values rather than the actual

values.

Page | 58 © Cranfield University, 2011



2.2.2.2 Multivariate Analysis

The use of classical statistical analysis hypothesis tests such as T-tests, Wilcoxon tests and
Analysis of Variance tests (ANOVA) treat each individual variable to be treated
independently. These tests therefore ignore any correlations or relationships that may exist
between variables. This may prevent the identification of biomarkers that are combinations of

individual variables.

Univariate and multivariate statistical methods have both been used for the analysis of data
from proteomic experiments. The advantage of incorporating a multivariate approach is the
additional benefit of information about the relationships between samples and variables. The
multivariate statistical methods enable the identification of the relevant proteins or peptides
by focusing on the covariance structure between proteins rather than concentrating just on

individual protein or peptides.

The software therefore provides the user with the option of conducting a range of multivariate
statistical tests. These methods are the focus of Chapter 6 which describes the available
methods along with their advantages and limitations. These tests are:
e Principal Component Analysis (PCA)
e Hierarchical Cluster Analysis (HCA)
o These techniques involve the use of distance and correlation measures. All the
available distance and linkage algorithms can be used in Biomarker Hunter
based on user choice.

e Partial Least Squares — Discriminant Analysis (PLS-DA)

There are other multivariate techniques that can be utilised to analyse data of this nature.
These were not used in Biomarker Hunter as there was not enough time to apply these
methods within the EngD study period. These methods include Support Vector Machines
(SVM) and Neural Networks. SVM is a supervised machine learning model with associated
learning algorithms that analyse data and recognise patterns, used for classification and
regression analysis. A basic SVM uses a set of input data and predicts which of the two
possible classes form the output (Hua & Sun, 2001). Neural networks are part of the field of
artificial intelligence which, in contrast to being programmed, are trained. This means that
examples are presented to the network and the network adjusts itself by some learning rule

usually based on how correct the response is to the desired response (Livingstone et al, 1991).
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2.2.2.3 Additional Analysis

As well as the univariate and multivariate analysis conducted there are other pieces of
information extracted from the dataset that help with the determination of a potential
biomarker. These are returned in the output files. The additional analysis includes:

2.2.2.3.1 Feature Presence

This is the number of values present for each feature within each sample group. This is
represented as a number rather than a percentage. The feature presence is useful, as certain
potential biomarkers may have a low feature presence. These features are harder to detect
making them relatively poor choices for biomarkers. If it is hard to detect using advanced
proteomic techniques then this reduces the potential for practical application of the
biomarker. There is also the issue that there is limited information used to conduct the
statistical tests. The number of present values for each feature within all the samples will also
be presented as the total feature presence.

22232 Mean Values

The average of all the intensities within each sample group will be calculated to present the
user with more information about the actual data within each group. This takes into account
the presence of missing values (i.e. divides the sum of abundance by the number of present

values rather than number of samples in question).

2.2.2.3.3 Fold Change (Ratio)

This is a number which explains how much a quantity varies between groups. This is
calculated by dividing the mean of the primary group by the mean of the secondary group
(i.e. Group 1 Vs Group 2 -> Mean(Grpl)/Mean(Grp2)). A negative value suggests that there
is a decrease in means from the primary group to the secondary group. A fold change will be
calculated between all the sample groups involved. The fold change, or ratio, is usually
considered a relevant criterion for stating difference and similarity between measurements
(Tchitchek et al, 2012). As a rule of thumb, MS-based proteomics should aim to be accurate
within a 1.3- to 2-fold change, which is a cut-off often chosen for biological significance
(Mann & Kelleher, 2008). This fold-change level though depends on the experiment. There
are open questions with regards to the reliability of the degree of fold change from proteomic

guantitative data sets (Mahoney et al, 2011).
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Selecting differentially expressed proteins only by fold change is thought to lead to more
false conclusions than acceptable. It is however a useful piece of information which can be
combined with other statistical information in order to lead to more reliable conclusions. For
example higher abundance proteins have more quantifiable peptides, and the precision of
quantitation is higher than for low-abundance proteins with few peptides. This means that the
significance of an observed fold change should be considered in the context of absolute
protein abundance. Some researchers have even developed improved versions of fold change,
which incorporate other information for identifying differentially expressed proteins in

shotgun proteomics (Carvalho et al, 2012).

2.2.3 Data post-Processing (Multiple Testing Corrections)

The user has the option to perform multiple testing corrections to allow for the error produced
when performing a large number of statistical significance tests. This is presented as an
option, as a user may not want to implement multiple testing because they want to retain all
the potential biomarkers. There are also a number of multiple testing correction options
available to the user.

Once the p-values have been obtained the user is asked whether they would like to conduct
any multiple hypothesis testing corrections. The user can choose from five different
correction methods which are described in detail in section 4.3.2. Following all the above
analysis the output is presented to the user in the form of comma separated value (.csv) files.
If multiple testing corrections are applied then two output files are created (1: Uncorrected
data, 2: Corrected data).

2.2.4 Results Presentation

This section describes the various outputs from the Biomarker Hunter Pipeline that can be

used to help analyse the results from all the statistical tests.

2.2.4.1 Univariate Output Files

This .csv file will present all the p-values from the univariate analysis as well as the
additional analysis conducted as described in section 2.2.2.3 (ProjectName_FullOutput.csv).
Each row represents a feature (peptide or protein), while the columns are appropriately
labelled as to the information they contain. The contents of this file are outlined in Table 8. If

multiple testing corrections are applied then a version of this .csv will also be created with the
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corrected p-values. As well as containing the relevant p-values for all the hypothesis tests the

output files also contain group means, feature presence, and fold-changes between each

group.

Table 8 - An outline describing the contents of each column of the FullOutput.csv files
(Shaded sections suggest multiple columns are included)

Column Heading

Contents

Feature ldentifier

An identifier representing a feature (peptide) (PCI or MCI).

Mean

A mean abundance value is calculated for each sample group.

Feature Presence

Group / Total

Shows the number of samples within the group in which the feature
has been detected. The total feature presence is the number of

samples in which the feature is detected in all the groups.

Fold Change

A number explaining how the means vary between groups.

Welch T Test (Pair-

wise comparisons)

The T-test p-value is returned comparing each group against the

others.

ANOVA p.value

A single p-value comparing all the groups.

ANOVA

(Pair-wise

Tukey

comparisons)

The ANOVA Tukey p-value is returned comparing each group

against the others.

Kruskal-Wallis

A single p-value comparing all the groups.

Wilcoxon (Pair-wise

comparisons)

The Wilcoxon p-value is returned comparing each group against the

others.

An additional .csv file is created containing lists of all the features that have been identified
as a potential biomarker (ProjectName_BiomarkerList.csv). A potential biomarker is a
feature which gives a p-value less than 0.05 for any of the univariate statistical tests. A list
will be presented for each univariate test conducted showing the feature identifiers and their

respective p-values as shown in Table 9.
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Table 9 - An example of a potential biomarker list produced by Biomarker Hunter
showing the feature identifiers and respective p-values for the biomarker candidates.
This shows the results of a group comparison of hypothetical Groups A and B.

Potential markers identified by | P-Value | Potential markers identified by | P-Value
T-Test(A /B) Wilcoxon (A / B)

63689 0.0172 63689 0.0198

7323 0.0180 4091 0.0305

Users may conduct multiple analyses using the same datasets but using the different options
presented in Biomarker Hunter. In these cases it is of utmost importance to keep track of the
different options used for the analysis. Therefore an options file is created for each analysis
stating the various options used (Table 10). This provides traceability of the data pre- and
post-processing options used for the analysis.

Table 10 - An example of an options file. This identifies the user choices with regards to
the various options available in Biomarker Hunter.

Biomarker Hunter Options Filename:
Is the data natural logs? n
ClusterFix used? y

Is Multiple Testing implemented? y

Multiple Testing Method? BH
Missing data imputed? y

User defined Minimal Value Imputation used? N/A

2.2.4.2 Clustering Output Files

If the clustering option described in Chapter 2.2.1.3 is selected then there are a number of
additional files created in the results folder. A copy of the dataset following clustering is
presented as a .csv file (Table 11). Additionally a file which shows the result of the clustering
on each feature is created in a .csv format (ProjectName_ ClusteredData.csv). This shows

which features have been clustered together.
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Table 11 - An outline describing the contents of each column of the ClusteredData.csv
files (Shaded sections suggest multiple columns are included).

Column Notes
Feature The following columns are present for each feature. The clustering loop iterates
Identifier through each feature as the primary feature: the feature against which all other

features (secondary features) will be checked for potential matches.

Status This column will state any clustering changes that are relevant to each
feature.

Number of The number of secondary features which have been found within the

potential Primary features mass-retention time window.

matches

Clustered (as 2°) | For any feature which has been classed as “Matched” this column will

with Feature identify the feature they have been matched with (Primary feature).
2° Matches The secondary features which are potential matches for the Primary
feature.

In order for users to observe the effectiveness of the clustering option a comparison table is
created to be acquainted with the effects of clustering on the number of missing values as
shown in Table 12.

Table 12 - An example of a Cluster Comparison table which outlines the effectiveness of
clustering on the dataset.

Initial Post-Clustering
Number of PCI 10,000 9,500
Total Possible Values 200,000 190,000
None Missing Values 170,000 170,000
Percentage of None missing Values 85.00 89.47

2.2.4.2 Multivariate Results

If the multivariate option is chosen the user will also be presented with multivariate results.
This includes principal component analysis (PCA), hierarchical cluster analysis (HCA) and
partial least squares discriminate analysis (PLS-DA). PCA results are presented as a plot of
the two most important principal components (i.e. components that represent most of the
variance between the groups). HCA results are presented as dendrograms showing the
distance relationships between groups. The PLS-DA test returns a list of potential

biomarkers.
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2.2.4.3 Boxplots

Biomarker Hunter gives the user the option to create boxplots for features of interest
following the statistical analysis. Boxplots are a good method for displaying sample
differences across groups of data for visual comparison. An illustration of the principle of

boxplots is shown in Figure 27.

22431 Methodology of Boxplots

These are also called box and whisker plots. They summarise the following measures:

e The median of the group
e The upper and lower quartiles of the group

e The minimum and maximum data values from the data group

The box in a boxplot contains the middle 50% of the data. The upper edge of the box
indicates the 75th percentile (third quartile) of the data set, and the lower part indicates the
25th percentile (first quartile). The range of the box is also known as the inter-quartile range
(IQR). The line within the box represents the median value of the data in the group. If this

line is not exactly in the middle of the box, this suggests the data is skewed.

The "whiskers™ or extremes of the vertical lines represent the minimum and maximum data
values in the group. If there is a presence of outliers the whiskers extend to a maximum of 1.5
times the inter-quartile range. The points outside the ends of the whiskers are outliers or

suspected outliers.
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Figure 27 - An example of a boxplot illustrating what various points of the boxplot
represent. Outliers that do not fit the model will be represented by lone data points

Boxplots present many advantages. They are a very convenient way to graphically display a
variable's means and spread at a glimpse. They allow the indication of the data's symmetry
and the presence of any data skewing, while taking the outliers into consideration. Creating a
boxplot for a feature, one quickly can compare data between groups of samples side-by-side
on the same graph. However, due to the large number of features in typical datasets, it is not
practical to view boxplots for each feature. They can however be a good way to visualise data
for features of interest (i.e. markers or non-markers) after the conclusions from the univariate

or multivariate have been reviewed.

A weakness of boxplots is that they have a propensity to give emphasis to the tails of a
distribution, which are the least certain points in the data set. They also tend to conceal many
of the particulars of the distribution (Tukey, 1977).
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2.24.3.2 Implementation of Boxplots in Biomarker Hunter

Following the statistical analysis of datasets and the creation of all the output files, the user
has the option to create boxplots for features of interest or those that warrant further
investigation. The user can input the feature identifier and a boxplot will be created using the

bplot function in R, which is part of the “fields” package.

2.24.3.3 Results of Boxplots in Biomarker Hunter

Examples of boxplots created using Biomarker Hunter are presented throughout this thesis.

2.2.5 The Use of Biomarker Hunter

All algorithms used in the software pipeline have been individually validated using existing
techniques. Results obtained for all calculations were compared against results from various
validated tools such as Microsoft Excel, GeneSpring (Agilent, 2011) and manual calculations.
Chapter 3 presents results from univariate analysis conducted using Biomarker Hunter for
Dataset 3 described in section 2.1.3. This analysis does not apply any data pre- and post-
processing options discussed in this chapter. The effect of these options will be presented in
Chapter 4. The options for dealing with missing values will be evaluated in Chapter 5. The
uses of the multivariate options in Biomarker Hunter are presented in Chapter 6.
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3  Univariate analysis

Four univariate tests were chosen for this pipeline. The choice of these four tests was based
on a review of appropriate analysis methods for this purpose (Bantscheff & Kuster, 2007).
They were also chosen because this range of tests cover both a parametric and non-parametric
univariate alternatives for both pair-wise analysis (i.e. 1 vs. 2), and group-wise analysis (i.e. 1
vs. 2 vs. 3 vs. 4) as shown previously in Figure 25. Scores which indicates the number of tests
that identify each individual peptide as differentially expressed (i.e. a potential biomarker) are

also presented.

The theory behind these tests is that for those features with a low p-value (i.e. p-value < 0.05)
there is a 95% chance of the two groups being different, hence the treatment or differences
between the groups have an effect on the peptide or protein. The features (MCI, PCI, protein
or peptide) with the low p-values can then be investigated further as potential biomarkers. Of
course just one low p-value doesn’t necessarily suggest a change between samples. So the
result output from the software contains a column which counts the number of low p-values
for each peptide or protein. This allows the determination of peptides or proteins (features)
that warrant further investigation (i.e. as the number of statistical tests returning a low p-value

increase, so does the confidence in the result not occurring simply by chance).

This chapter concentrates on the four univariate techniques used for statistical analysis. Each
technique will be reviewed by discussing the methodologies as well as the uses and
limitations of each technique. Results of the univariate analysis conducted on Dataset 3 are
also presented and finally the results from all four techniques will be compared and
evaluated. Since these techniques do not allow for missing values to be involved in the
analysis, the missing values in Dataset 3 will be replaced by zeroes for the purpose of
statistical analysis in this chapter. This method of imputation is not ideal for this purpose. The
reason this crude imputation was used for this section is that one of the project aims is to
highlight the effects of imputation. This statistical analysis also does not involve the use of
any of the data pre- and post-processing methods described in section 2.2 of the Materials and
Methods chapter. These will be investigated later in the statistical analysis conducted for
Chapter 4.
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3.1 The T-test

One of the major questions asked in the majority of biomarker studies is whether a particular
treatment or intervention has caused a significant change in a biological parameter. The
Student’s t-distribution (Appendix D) is a probability distribution, which allows the means of
normally distributed datasets of relatively small number of samples to be compared against
each other. This is done by comparing the means relative to the sample variation or

dispersion (standard deviation of the difference between sample means) of the sample groups.

For smaller datasets the calculated means and standard deviations are not representative of
the actual mean and standard deviation (those which would be derived in the presence of
larger datasets). In most real-life statistical studies the standard deviation of the population is
unknown, so estimations need to be determined from the datasets themselves. Using the
Students’ version of the t-test allows for the existence of outliers in the data unlike normally
distributed data.

The paired t-test is a statistical hypothesis test which can be used when the comparison of two
small sets of quantitative data is needed, where each of the samples are related in a certain
way. The test is used to determine if two groups of samples are statistically different from
each other (Figure 28). The statistical power of the paired t-test lies in studies where
differences between groups are relatively small compared to that of the variation within

groups.

treatment

group
mean

Figure 28 - Comparison of means of a control and a treatment group (Trochim et al,
2006).
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The paired t-test also allows determinations of whether differences between sample sets are
significantly different. It is based on whether the differences between datasets are relative to
the spread or variability of the data. When comparing sets of data, the differences between
the mean values may be identical, however the variation between datasets may be different.
Groups within datasets displaying low variability will appear as more different, as there is
less overlap between the curves (Figure 29). When there is high variance the difference

between groups will appear as less important.

The most common design of a paired t-test would be where one attribute variable represents
different individuals and the other may be before and after some form of treatment.
Sometimes pairs can be spatial rather than temporal (i.e. left vs. right etc). An example may

be a patients resting and active heart rates following heart surgery.

medium R A
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high
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low I |
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B

Figure 29 - Different variability between datasets (Trochim et al, 2006). Samples with
lower variability appear as more differentiated due to less overlap, compared to those
displaying a low variability.

The null hypothesis of a paired t-test would be that the mean variation between paired
observations is zero. A prerequisite for the test is that the differences between pairs are
normally distributed. Where this is not the case, the Wilcoxon signed rank test can be used
instead (Rosner et al, 2006). Alternatively the Welch version of the T-tests can be applied to

allow for non-normality of data distribution.
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3.1.1 Methodology of the T-test
There are various forms of the t-tests and it is important to use the appropriate method for the
intended purpose. This section describes the process of both the Students t-test as well the

paired t-test.

3.1.1.1 Methodology of the Students T-test

The null hypothesis of the Student’s t-test assumes that the test data displays a student’s t
distribution (Equation 1). The probability density function for the Student’s t-distribution has
the similar bell shape of the normal distribution curve with a zero mean and a variance of
one. The bell is however usually shorter and wider as actual statistical data is not usually
evenly distributed but approaches the taller and narrower shape as the number of degrees of
freedom increases. The reason for the shape is because real life data would usually have more

occurrences in the tails.
v+1 _(V+1
r 2 ( 2 )
) (145)
ot (3)

Equation 1 - Probability density function for the Student t-distribution (v = Degrees of
freedom, I' = Gamma function, t = t-statistic).

f@®) =

The student form of the t-test also assumes that the variances of the involved data sets are
equal (i.e. display homoscedasticity). The original form of the student t-test cannot be
conducted unless this is the case. The homogeneity of variances between groups can be
checked, usually by utilisation of Levene’s test (Livingston, 2004). The test involves
calculation of a t value which is checked against the relevant threshold p-value at the required
statistical significance level from the students t-distribution table, which is usually 0.05 (95%
significance level) for most biological research. As the calculated t-value increases so does
the probability that there is a statistically significant difference between the groups of data. If
the value is higher than the threshold value then the null hypothesis can be rejected and the

conclusion can be made that the variations between the samples are not simply due to chance.
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A T-test can be conducted on groups of data using the following steps:

1. The null hypothesis (Hp) assumes there is no difference between the sample means.
The alternative hypothesis (H,) is that there is a difference caused by the treatment.
ni, N, = Number of replicates of each respective sample
1, 2= Mean of respective sample sets

, = Standard deviation of respective sample sets

o~ w N

= Variance of the difference between the means
ol? o022
(Variance) 6d?> = — + —
nl n2
6. A t-value can then calculated
‘- x1l— x2 _ X1l — x2

Vod? od
7. Obtain p-value from t-table (Appendix D)

a. Degrees of freedom:- total number of samples — 2
b. Significance level:- Usually 0.05 (i.e. 95% significance level)
8. The null hypothesis is rejected if the calculated t-value is above that of the p-value

and a conclusion can be made that there is a significant difference in the two samples.

The t-value increase as differences between the means become more significant. The t-
value is positively correlated with the number of samples so lower sample sizes cause
lower t-values. The t-value will also increase as the standard deviation of the samples
decreases, because when samples are less scattered the groups are more likely to be
significantly different if the means of the groups are different. Care needs to be taken
when conducting multiple t-tests as this can result in incorrect conclusions (false
positives), because this results in multiplication of the probabilities. As the number of

successive t-tests goes up, the probability of significance decreases.

3.1.1.2 Methodology of the Paired T-test

Firstly the differences between the observations from the two samples are calculated for each
pair of samples. Subsequently the mean and the standard error of these differences are
determined. The mean is divided by the standard error of the mean to generate a t-statistic
(Ts). The Ts is t-distributed with degrees of freedom equal to one less than the number of

pairs.
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dif ference between group means

Dt value =
(Dt value variability of groups
XT - XC

2)t l = ———"
(2)t value SE(K, — X))
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(varT 4 varc)
nr Ne

(3)t value =

The t-test is performed using a formula which involves a ratio. The methodology is similar to
that of the signal-to-noise ratio (Trochim et al, 2006). The difference between the two means
is divided by a measure of the dispersion or variability of the scores, which is the standard
error of the difference (1). The difference between the means is simply the difference
between the obtained means for the two groups. The symbol refers to the mean of the
treatment sample and being the mean of the control sample. The standard error of differences
(variability) needs to actually be calculated. It is obtained by calculating the variance for each
group, which is done by squaring the standard deviation. The variance is then divided by the
population of the sample. These values are then added together and their square root is taken
(3). If the treatment mean is larger than that for the control sample the t-value will be positive

and vice versa.

Once the t-value has been obtained it is compared against the t distribution table to determine
whether the ratio is big enough to be significantly different. The table has columns which
represent the different significance levels (0.05 (95% confidence) is usually the accepted
significance level. A 95% significance level suggests that there is a 5% chance that the
difference may be classed as statistically significant but actually are not different, and are just
differentiated through chance. The rows of the table represent the degrees of freedom for the
analysis. For the t-test the degrees of freedom would be the total population of samples in
each group minus the number of groups (two for the paired t-test). The relevant t-statistic can
be found from the significance level and degrees of freedom and subsequently compared to
the t-value obtained from the calculations. If the calculated t-value is higher than that of t-
statistic obtained from the table, the null hypothesis can be rejected and we can conclude that

the two sets of data are statistically different.
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3.1.2 Constraints to the T-test

3.1.2.1 Constraints to the Students T-test

T-tests are very sensitive to the interdependence of data. If individual samples within the data
sets have intrinsic relationships with each other the tests may conclude that differences are
present between the groups, even when there are not any. These may occur due to:

e Unknown relationships existing within the datasets. E.g. A particular group of
patients who may be intolerant to the treatment existing in one group.

e Time-series effects where the time of sample collection has an effect on the biological
data. E.g. Circadian rhythm may have an effect on the proteins expressed in a
biological system.

e Effects caused by the origin of the data. E.g. One group of data being heavily

represented by a minority not representative of the actual population.

Like all other statistical studies the analysis of the data can only be as good as the quality of
the data collected. If the experimental design used to collect the information is flawed then no
amount of statistical manipulation can surmount the inability to interpret the results
(Livingston, 2004). Therefore it is essential the data is of the correct nature and correctly pre-
treated, if necessary, before conducting the student t-test (or any statistical analysis for that
matter), to avoid misuse of the test(s) (Table 13). As with any statistical test the limitation of
the test is that nothing can be proved or disproved, however statements with a degree of
accuracy can be made.

The size of a sample is positively correlated with the probability that the sample of the mean
is the same as the mean of the entire population. The central limit theorem suggests that when
smaller numbers of values are used to represent larger populations there is a lower probability
that the calculated mean is the same as the actual population mean (Livingston, 2004).

The t-test is not suited to studies where the comparison of more than two groups is required
because the test compares one group directly against another. One reason for this is that the
number of tests increases as a function of the number of groups leading to increased
complexity. Also due to the increased number of analyses there will be an increase in the
possibility of Type | (false positive) errors.
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Table 13 - Conditions that must be considered when applying T-tests (Livingston, 2004).

Factor

Implicit
factor

Sample
independence

Outliers

Normal
distribution

Unequal
variance

Unequal
sample size
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Explanation Test for factor
Data are not Determine correlation
randomly between the data and

distributed; the value [the order in which it
of a data point is was collected either
dependent on some statistically or by
factor relating to plotting as a graph.
how it was collected.

Samples in the two | Determine correlation

groups depended on |between the two

one another. samples. Evaluate
experimental design.

Outliers will affect |Evaluate probability
both mean values graphs to determine

and variances. the effect of outliers.
If the population View probability or
from which the box plot; quantitate

sample is derived is |skewness.
skewed, t-testing
may be invalid.

Conventional t-tests |[Examine the sample
require that the two |distributions
populations being  |graphically or perform

compared have f-test for equal
equal variance. variance on the
samples.

Small sample sizes | Determine power of
tend to have large  the t-test.

variances. If one

sample is large and

the other small, it is

likely that there are

unequal variances.

Solution

Evaluate experimental design;
randomise when possible.
Consider regression analysis
with statistical control for
implicit factors.

Paired t-test.

Use nonparametric statistics.

If the skew in the two
populations is the same, then t-
tests are generally accurate as
long as the sample sizes are
approximately equal. Skew has
little effect if sample sizes are
greater than 10 in each group.
Perform log, square root, or
inverse transform on original
data. Check normalisation
following transformation with
repeat probability or box plot.

Nonparametric tests or t-tests for
unequal variances. If the two
samples have the same number
of samples, then the t-test is
likely to not be affected by
unequal variance. Variance can
be equalised by log
transformation.

Increase sample size.
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3.1.2.2 Constraints to the Paired T-test

Biomarker discovery studies search for the causes of changes in biological state. As well as
the various biological states, there are sometime other factors that are associated with the
exposures that the study is investigating which independently affects the biological states. If
the occurrence of these factors varies between groups being compared, they distort the
observed association between the disease and exposure under study. These are called
confounding factors or variables (CDPH, 2009). Additionally, although the paired t-test is
ideal for the evaluation of differences between two sets of values, however problems may

occur when trying to analyse other types of differences (Linnet, 1999).

3.1.3 Alternatives to the T-test
Non-parametric statistical tests can be used as alternatives to the student’s t-test where t-
testing is inappropriate. The ability of non-parametric tests to detect differences is not as

powerful as the parametric counterparts so they should usually not be used as a first choice
(Dallal, 2000).

3.1.4 T-test Implementation in Biomarker Hunter

The Welch version of the T-test was used in Biomarker Hunter because the alternative,
student’s T-test requires the samples to display equal variances. Since the Welch T-test does
not make any assumptions about the variance between sample groups, it is more preferable.
This test however does assume that both populations have the same standard deviation. Since
different biological samples are used for each run, the unpaired version of the T-test is used,
as the paired algorithm assumes the samples being compared are from the same biological

sample.

The T-test is applied by comparing each of the treatment sample groups against an untreated
control sample group. The T-test returns a p-value, which is the probability of the two groups
being compared being significantly different. This test compares peptide intensities for each
group against each of the other groups. For the purposes of analysis there is a numerator
(primary sample group) and a denominator (secondary sample group) as described in the
previous section. This test is implemented in R using a loop, which conducts a test conducted
individually on each feature being analysed, comparing every group of samples against each

other. The test is applied using the t.test function in R.
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3.1.5 T-test Results

The Welch T-test was conducted on Dataset 3 (Xenograft Pre-Clinical Project - label-free
analysis) which aims to compare four groups of samples. This resulted in a total of 1171
features (peptides) being identified as potential biomarkers (i.e. showing a statistically
significant difference in expression) between the different sample groups (Table 14). Some of
these potential markers were identified as significantly differentially expressed in more than
one group comparison, and subsequently 806 unique features were classed as features of
interest (i.e. returning a p-value lower than 0.05 for the T-test).

Table 14- The number of biomarkers (statistically different features) found using the
initial Welch T-tests on Dataset 3, for each group comparison. The first column states
the groups being compared.

Groups 1 2 3 4
1 1171

2 160
3 264 265
4 124 142 216

Researchers may want to identify how many features are identified as significantly
differentiated in more than one pair-wise univariate test as shown in Table 15. This shows
that eight features were identified as significantly differentially expressed in four of the six
group comparisons. These features are identified in Table 16, and are likely to be strong
candidates for further validation. However this fact can only be determined once these results
are compared with a list of validated biomarkers identified from this study. This information
was not available so it was not possible to determine whether those potential markers
identified in more than one pair-wise test is more likely to be a stronger marker.

Table 15 - The count of features found as significant in the Welch T-test for Dataset 3
and the number of tests in which they were identified as such.

+ve Hypothesis Tests Number of
Features
530
195
73
8

B W0 IN (-
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Table 16 - The feature identifiers and p-values for the eight features that were identified
as significantly different in four of the group comparisons, using the Welch T-tests on
Dataset 3.

Potential Biomarkers in p-values
Four T-tests
1722 0.000361 | 0.040343 | 0.000368 | 0.03478
18970 0.02488 | 0.022415 | 0.012784 | 0.011264
2364 0.04088 | 0.036751 | 0.038101 | 0.041704
2658 0.007867 | 0.017965 | 0.016167 | 0.037666
4427 0.006579 | 0.024673 | 0.005383 | 0.030516
6856 0.005809 | 0.001557 | 0.006438 | 0.00175
7603 0.028199 | 0.047512 | 0.026475 | 0.044272
9166 0.016999 | 0.028767 | 0.023953 | 0.041033

Table 17 shows a list of features with the ten lowest p-values for each group comparison.
From this list of 60 features, ten of them were identified as potential biomarkers in more than
one comparison (Table 17), suggesting they may be stronger candidates for further validation.
It was noticed that feature 1722 was identified as a biomarker in four group comparisons
(Table 16) as well as having the lowest p-value for two group comparisons (Table 17),
suggesting that this feature may be of interest and warrants further study. A boxplot was
created using Biomarker Hunter to visually inspect the data for feature 1722 (Figure 30), in

order to determine whether the results from the T-tests correlate with the raw data.
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Table 17 - The list of features with the lowest p-values for each of the group
comparison, using the Welch T-tests on Dataset 3.

Welch T p- Welch T p- Welch T p-
Test (2/1) values Test (3/1) values Test (4/1) values
9066 0.000428 12800 0.000131 1020 0.000819
6427 0.000944 1250 0.000141 9660 0.00174
1599 0.002371 2159 0.000197 20767 0.002691
6144 0.002671 4485 0.00021 3260 0.004108
7010 0.003387 10036 0.000214 10383 0.005261
1775 0.003643 5839 0.000231 2122 0.006272
8051 0.0038 5384 0.00028 4240 0.00888
8408 0.003922 8215 0.000303 20722 0.009928
5135 0.004778 1722 0.000361 6113 0.010344
2692 0.005423 1231 0.000369 2929 0.0105
Welch T p- Welch T p- Welch T p-
Test (3/2) values Test (4/2) values Test (4/3) values
8973 0.000162 10383 0.000481 6635 0.000197
11067 0.000232 22835 0.001195 2159 0.000209
12800 0.000238 749 0.001331 1803 0.000247
10034 0.000316 6427 0.002542 10547 0.000448
10202 0.000355 21970 0.003182 5839 0.000457
1722 0.000368 531 0.003554 8151 0.000481
4262 0.000411 11899 0.003818 4824 0.000738
9303 0.000543 8051 0.004224 7767 0.000744
8032 0.000571 404 0.004862 9077 0.000847
8215 0.000624 4427 0.005383 8973 0.000917
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Table 18 - A list of features which returned the lowest p-values in more than one group
comparison using the Welch T-test, with the number of tests in which they were
identified as such.

Welch
Lowest P- | Number of
Values Occurrences
8051
1722
2159
5839
6427
8215
8408
8973
10383
12800

NN NN INININININ W

Looking at the boxplot for feature 1722 (Figure 30) it can clearly be determined that the
intensity values from group 3 are significantly lower than the other three groups. The plot
shows that 50% of its values are almost out of the total range of values for the other groups
(i.e. the box for Group 3 is almost outside the range of the whiskers for the other groups).
This boxplot supports the Biomarker Hunter conclusion that this feature is a strong candidate

as a potential biomarker.
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Tukey boxplot (including outliers) for PCI1 1722
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Figure 30 - A boxplot comparing the four groups of intensity data presented for feature
1722, which was identified as a biomarker in four group comparisons as well as having
the lowest p-value for two group comparisons

For comparison a boxplot was also created for feature 12004 which was only identified in
one group comparison and had a relatively higher p-value (i.e. 0.049985), than the other
biomarker candidates. This was done to determine whether the data correlates with the
Biomarker Hunter conclusions. It is expected that the groups of data will show a difference;
however the variance between the groups in these cases is less likely to be as obvious,
compared to those displayed by feature 1722. These expectations were confirmed in the
boxplot for feature 12004 shown in Figure 31. Looking at this there is no clear distinction in
the abundance of this protein between the groups.
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Figure 31 - A boxplot comparing the four groups of intensity data presented for feature
12004, which had a relatively higher p-value, than the other biomarker candidates. The
dots represent outliers which were outside the accepted values for the whiskers.
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3.2 The Wilcoxon Mann-Whitney Test

Also known as the Wilcoxon rank-sum test, this is a non parametric alternative to the two-
sample t-test, and allows researchers to signify if two samples appear as if they are from the
same distribution. It uses the Hodges-Lehman estimate of variance in central tendencies
between populations. As with all of these statistical models, the null hypothesis is that the
samples belong to the same population and they subsequently have the same probability

distribution (Variances in central tendencies between populations is zero).

The Wilcoxon Mann-Whitney test assumes that the two samples being compared are
independent of each other, and allows for different sample sizes. The test is very similar to
Student’s t-test. It can only be conducted on numeric or ordinal data. Although the
distribution doesn’t need to display normality and may have arbitrary values; however they

must have the same shape.

3.2.1 Methodology of Wilcoxon Mann-Whitney Test
The model requires computation of a U value (often referred to as a U statistic). When using
large samples, which is typical of biological data, computation is required; however when
using smaller samples a simpler direct method is preferred. The Wilcoxon Mann-Whitney
can be conducted to compare data using the following steps:
1. The data from all experiments used for the test should be arranged in a single list
ordered by their value. Each value is then ranked.
2. The ranks for each observation in Sample X are added up.
R = Sum of all the ranks
N = Number of observations
Rt sampresy = N(N + 1)
3. ny=Sample size for sample X
Rx = Sum of ranks for Sample X

n,(n, + 1)
2
The greatest value for U is the product of the number of observations in both groups

Uy =R, —

(i.e. If Uy is at the maximum value, then the U value for Sample Y would be zero).
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4. If the U value for Sample X is more than that the U value for most of the U values if
the data was rearranged in random orders, the null hypothesis can be rejected.

Therefore a conclusion can be derived that Sample X is significantly differentto .

When using biological samples the above method would become complex very quickly, so

the normal approximation method can be used.

1. oy = Standard deviation of U

2. uy=Meanof U

ny * n,
3. z-value = Standard normal deviate
U - llU)
z= ———
Oy

4. The significance of the z-value is checked against the normal distribution table
(Appendix D).

3.2.2 Constraints to the Wilcoxon Mann-Whitney Test
When applied to smaller datasets, the generality of the test can make the test less powerful

than the t-test. This also applies when there are small numbers of samples or replicates in
each group. For example if there are only two replicates in each group, such as used in
ITRAQ analysis the use of the Wilcoxon test is not useful. This is because the technique deals
with ranks rather than the values so when the number of replicates is reduced, so is the power
of the Wilcoxon analysis. Additionally the test doesn’t allow for the conclusion of two

sample groups being the same even if no significant differences are found.

3.2.3 Alternatives to Wilcoxon Mann-Whitney Test

The Wilcoxon Mann-Whitney test can be used in all the situations where an independent
samples Student’s t-test is appropriate. The Wilcoxon test is more robust with regards to the
distribution of the samples, as it is not based on any assumptions of distribution, so is used

more widely. However, the cost of this generality is that the t- test is more powerful because

Page | 84 © Cranfield University, 2011



it is based on actual values rather than ranks. When larger biological samples are used this

loss of power is not significant.

3.2.4 Wilcoxon Mann-Whitney Implementation in Biomarker Hunter

The Wilcoxon test is the non parametric alternative to the two-sample T-test, and allows
researchers to discover if two samples appear as if they are from the same distribution. It is
also applied by the comparison of each of the treatment sample groups against an untreated
control sample group. As with the T-test, the Wilcoxon test also returns a p-value indicating
the probability of the null hypothesis being incorrect (i.e. the two groups being significantly
different). This test also compares peptide intensities for each group against each of the other

groups, as with the T-test. This is conducted in R using the wilcox.test function.

3.2.5 Wilcoxon Mann-Whitney Results

The Wilcoxon Mann-Whitney test was conducted on Dataset 3 (Xenograft Pre-Clinical
Project) comparing four groups of samples. This resulted in a total of 1151 features being
identified as potential biomarkers (i.e. showing a statistically significant difference in
expression) between the different sample groups (Table 19). Some of these biomarkers were
identified as significantly differentially expressed in more than one group comparison, and
subsequently 805 unique features were classed as features of interest (i.e. returning a p-value
lower than 0.05 for the Wilcoxon Mann-Whitney test).

Table 19 - The number of biomarkers (statistically different features) found using the
initial Wilcoxon Mann-Whitney tests on Dataset 3, for each group comparison. The first
column states the groups being compared.

Groups 1 2 3 4
1 1151

2 137
3 281 297
4 106 108 222

To identify how many features were identified in more than one test the number of
occurrences for each feature were evaluated as shown in Table 20. This shows that two
features were identified as significantly differentially expressed in five of the group
comparisons, while four were identified in four group comparisons. These features are

identified in Table 21, and are likely to be features that are of interest to researchers. Without
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comparing these results with a list of actual, validated biomarkers it is not possible to assess
whether the number of significant group comparisons affects the likeliness of that feature
being an actual biomarker. This information was not available for the purpose of this study.

Table 20 - The count of features found as significant in the Wilcoxon tests for Dataset 3
and the number of tests they were identified as such.

+ve Hypothesis Tests Number of
Features

534
201
63
4

5 2

Table 21 - The feature identifiers for the features that were identified as significantly
different in four or five of the group comparisons, using the Wilcoxon tests on Dataset 3.

B0 IN |-

Feature Number of
Identifier Positive Wilcoxon
Tests
4607 5
6856 5
18970 4
2658 4
4427 4
540 4

Table 22 shows a list of features with the ten lowest p-values for each group comparison.
From this list of 60 features, nine of them were identified as potential biomarkers in more
than one comparison (Table 22), suggesting they are likely to be of interest to researchers as
potential biomarkers. It was noticed that features 4607, 540 and feature 4427 were identified
as potential biomarker candidates in multiple group comparisons (Table 22) as well as having
the lowest p-value for multiple group comparisons (Table 23), suggesting that these features
are likely to be of interest and warrant further study. A boxplot was created using Biomarker
Hunter to visually inspect the data for feature 4607 (Figure 32), in order to determine whether
the results from the Wilcoxon tests correlate with the raw data.
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Table 22 - The list of features with the lowest p-values for each of the group

comparison, using the Wilcoxon tests on Dataset 3.

WilcoxTest | p-values | WilcoxTest | p-values | WilcoxTest | p-values

(2/1) (3/1) (4/1)

1020 0.000487 540 0.000149 1020 0.000725
9066 0.00105 4607 0.000206 20767 0.00414
6427 0.001572 1231 0.000325 9660 0.00493
7757 0.002455 9954 0.000418 7675 0.006253
8408 0.002786 3333 0.000487 10383 0.007932
7010 0.004571 8215 0.000487 3260 0.008218
1599 0.005434 1250 0.000487 10553 0.008665
4427 0.006815 12800 0.000566 916 0.008931
3309 0.006841 4675 0.001293 3290 0.009004
3921 0.007707 10036 0.001505 2071 0.009004

WilcoxTest | PValues | \vijcoxTest | PVAIUES | \wijcoxTest | P-Values

(3/2) (4/2) (4/3)

11067 0.000111 749 0.000325 540 0.000149
540 0.000203 22835 0.001329 1058 0.000206
1231 0.000206 7918 0.003363 1803 0.000206

10034 0.000325 6427 0.00356 8151 0.000325
8602 0.00038 10383 0.003775 10547 0.000431

10202 0.000487 21970 0.004069 4824 0.000529
8973 0.000725 11899 0.005328 4607 0.000572
4262 0.000784 4427 0.006815 16924 0.000756

12800 0.000784 4607 0.007913 4262 0.000784
7268 0.00105 8051 0.008594 10375 0.000861
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Table 23 - A list of features which returned the lowest p-values in the Wilcoxon analysis
in more than one group comparison, with the number of tests in which they were
identified as such.

Wilcox
Lowest P- | Number of
Values Occurrences
540
4607
1020
1231
4262
4427
6427
10383
12800

NN NN NN W W

N

Looking at the boxplot for feature 4607 (Figure 32) it can be seen that there are differences in
the intensity values between the groups. The values from Groups 1 and 4 are significantly
lower than the other two groups, while there is evidence to suggest that the abundance of this
feature in Group 4 is significantly different to those in Group 3. The plot shows that 50% of
the values from Group 4 are above the total range of values for the other groups (i.e. the box
for Group 3 is outside the range of the whiskers for the other groups). This boxplot supports
the Biomarker Hunter conclusion that this feature may be a strong candidate as a potential

biomarker.
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Tukey boxplot (including outliers) for PCl14607
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Figure 32 - A boxplot comparing the four groups of intensity data presented for feature
4607, which was identified as a potential biomarker in multiple group comparisons.

A boxplot was also created for feature 14340 which was only identified in one group
comparison and had a relatively higher p-value (i.e. 0.048892), than the other biomarker
candidates (Figure 33). This was done to determine whether the data displays the expected
features. Again it was expected that the groups of data will show a difference; however it will
show fewer differences between the groups. This boxplot showed that the differences
between the values in Groupl are significantly different to Group 3 however there is

insufficient data to compare with the other two groups.
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Tukey boxplot (including outliers) for PCI 14340
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Figure 33 - A boxplot comparing the four groups of intensity data presented for feature
14340, had a relatively higher p-value than other features.
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3.3 Analysis Of Variance (ANOVA)

ANOVA represents a group of statistical models which help explain the variances within
datasets by partitioning them into components by their different explanatory variables. It is a
versatile model allowing data from a number of experiments to be analysed collectively and
accounts for missing data, which is a typical trait of most proteomic data. The t-test is used to
determine whether data contained in two groups is significantly different; however it is not
able to deal with a larger number of groups in one computation. ANOVA compresses data
into a single F-value to be able to evaluate the null hypothesis (that there is no difference
between the different groups, i.e. a non-marker or that treatment has no effect on this feature).
The technique allows distinguishing between the differences in the samples that occur due to

group membership to those that occur simply due to chance or sampling errors.

An example of how ANOVA is used in biological research can be explained using the
Dataset 3. One-way ANOVA could be used for this study. There are four different groups of
samples; where A, B, and C represent mice that have been administered with different doses
of a treatment and the vehicle (control) group are mice which have not received treatment.
The categorical variable to evaluate whether the treatment has had an impact would be the

dose administered. The response variables would be the protein expression of the groups.

One of the requirements of the ANOVA test is that the datasets are independent of each
other. It assumes that all the data is normally distributed and displays homoscedasticity (i.e.
display equal variances). The Kolmogorov-Smirnov and Shapiro-Wilk tests can be used to
test the normality of the data, and Levene’s test is usually used to test that the datasets display
homoscedasticity. ANOVA also assumes that samples have been randomly analysed. An
ANOVA analysis should yield very similar result to t-tests, but ANOVA is preferred by

researchers due to its increased power to deal with more complex experimental design.

There are three main variations of ANOVA:

e One-way ANOVA: This version is ideally suited to studies where there is one
control group and several treatment groups. One-way ANOVA can be applied to two
or more independent datasets but usually used when more than two datasets are
involved (otherwise the t-test can be used). The one-way ANOVA can also be used on
repeated measures, where a particular sample is used to measure the effect of different

treatments (i.e. protein expression before and after a treatment on a sample).
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e Factorial ANOVA: This is the ANOVA application used when the aim of the study
is to evaluate the effects of two or more treatments. The most common form of the
test is the two-by-two version (two independent variables, each with two levels).

e MANOVA (Multivariate ANOVA): Can be applied when more than one dependent
variable is present.

One-way ANOVA tests are useful in evaluating the effects of different doses of treatment by
identifying differences between various groups of data. ANOVA can also be used to analyse
ITRAQ data from complex biological samples across several MS experiments (Oberg et al,
2008). This is the form of ANOVA used in Biomarker Hunter and remains the focus of this

topic.

3.3.1 Methodology of ANOVA

The aim of the technique is to obtain two independent estimates of population variance. One
estimate is sensitive to the effects of any particular treatments and any errors between the
groups, and the other is sensitive to errors within the group. If the null hypothesis is true, and
there is no difference between treatment groups, then both these estimates should be equal
resulting in an F-value of one. A ratio of larger than one suggests that the difference between

the groups is larger than the error within the sample so the groups are significantly different.

The general models usually used in ANOVA are:

e Fixed effects model: Assumes all data is normally distributed and varies only in their
means. In this model multiple treatments are applied to the datasets to observe if there
are any changes in the response variable values. This allows estimation of the ranges
of values that a particular treatment would generate in the population.

e Random effects model: Assume the data describes a hierarchy of different datasets
where the differences are constrained by the hierarchy. It is used in instances where
treatments are not fixed, such as when various treatments (random variables) are
sampled from larger populations.

e Mixed effects model: A combination of fixed and random effects are observed in the

datasets
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ANOVA is conducted on data using the following technique:

1.

The null hypothesis for ANOVA assumes that there is no difference between groups
(i.e. the treatments have no effect on the proteins expressed)
Degrees of freedom (numerator) = number of groups — 1
Degrees of freedom (denominator) = Total number of samples - number of groups
This is also known as the expected variation of the group
The formula for variance is:
SS

S? (Variance) = T
SS = Sum of squared deviation about the mean
df = Degrees of freedom

An F-ratio is calculated from the

(Calculated variation of the group averages)

F ratio =
(Expected variation of the group averages)

An f-value of around one is expected if the null hypothesis is correct, allowing for the
conclusion that there is no difference between the datasets. If there is a significant
difference between datasets (e.g. a particular treatment has an effect on protein
expression) a significantly larger value is observed and the null hypothesis can be
rejected. When there are only two means being compared the F-test is equivalent to
the t-test. The relationship between the two tests are:
F = t?

If the null hypothesis is rejected then the levels which differ should be investigated
further.

Tukey analysis on the ANOVA results can be conducted in order to identify the
groups between which there are statistically significant differences. These results are

also presented as p-values and are usually similar to results from the T-tests.

3.3.2 Constraints to ANOVA
ANOVA has limited strength in detecting linear relationships, due to the higher p-values

(Lazic, 2008). This may result in more Type Il errors (False negatives), and significant

differences may not be noticed.
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3.3.3 Alternatives to ANOVA

If the data does not display normality the non-parametric Kruskal-Wallis test can be used as
an alternative. The Kruskal-Wallis test allows for non-normality of data within the samples.
A possible alternative to one-way ANOVA for the Dataset 3 may be to consider the doses as
a continuous numeric variable and using a regression analysis method (Lazic, 2008). In some
cases this may be more appropriate. When four samples (three treatments and one control)
are used ANOVA will treat them as four parameters where regression only considers two
parameters (the slope and the intercept). Due to the loss of a degree of freedom for every
estimated parameter the ANOVA analysis has fewer degrees of freedom than the regression
method. As a general rule, as the number of samples increase so does the power of regression
analysis compared to ANOVA. There is the argument that using the regression method may
increase the occurrence of Type | errors (false positives); however the inclusion of Type II

errors is more of an issue.

The results obtained from regression analysis are also less complex and in turn more
informative. Care needs to be taken when using the regression method to avoid misuse. For
example the predictor variable must be continuous and the relationship between the response
and predictor variables must be linear.
Another alternative is the two stage technique ANOVA-PCA which aims to compare the
variance between datasets with the variance of the residual error (Sarembaud et al, 2007). The
technique of principal component analysis is discussed in section 6.2. The variance is
separated into factors.

1. The data matrix is decomposed into data matrices based on different

experimental factors (Principal Components).
2. Principal Component Analysis (PCA) is conducted for each factor matrix with

the residual error matrix taken into account.

3.3.4 ANOVA (Analysis of Variance) Implementation in Biomarker Hunter

One-way Welch ANOVA compresses data into a single F-value to be able to evaluate the
null hypothesis that there is no difference between the different groups (e.g. that treatment
has no effect). The technique allows distinguishing between the differences in the samples
that occur due to group membership to those that occur simply due to chance or sampling
errors. This test works in a group-wise manner and returns only one p-value for each peptide,
which specifies the probability that there are statistically significant differences between all

the groups. This is achieved in R using the aov function.
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3.3.5 One-Way Welch ANOVA (Analysis of Variance) Results

ANOVA analysis, and subsequent Tukey analysis, was conducted on Dataset 3 (Xenograft
Pre-Clinical Project) which was provided by OBT comparing four groups of samples. This
resulted in a total of 221 features being identified as potential biomarkers (i.e. showing a
statistically significant difference in expression with a confidence level of 95%) between all
the different sample groups (Table 24). Some of these features were identified as significantly
differentially expressed in more than one group comparison.

Table 24 - The number of potential biomarkers (statistically different features) found
using the initial ANOVA analysis as well as the subsequent Tukey analysis on Dataset 3,
for each group comparison. The first column states the groups being compared.

Groups 1 2 3 4
1 221
2 25
3 88 61
4 23 22 83

To identify how many features were identified as potential markers in more than one test the
number of occurrences for each feature was evaluated as shown in Table 25. This shows that
21 features were identified as significantly differentially expressed in three of the group
comparisons. These features are identified in Table 26, and are likely to be strong candidates
for further validation; however this can only be determined by comparing these results with a
list of actual, validated biomarkers. As this information is not available it is not possible to
identify whether this is true.

Table 25 - The count of features found as significant in the ANOVA Tukey tests for
Dataset 3 and the number of tests in which they were identified as such.

Number of
+ve Hypothesis Tests Features
1 115
2 62
3 21

Table 27 shows a list of features with the ten lowest p-values for each group comparison as
well as the overall ANOVA analysis. From this list of 70 features, three of them were
identified as potential biomarkers in three group comparisons (Table 28), suggesting they are
strong candidates for further validation. Feature 8791 was the feature with the lowest p-value
when all the groups were compared together so this feature requires further study. This

feature was also identified in two post-hoc Tukey tests as a feature of interest.
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Table 26 - The feature identifiers for the features that were identified as significantly
different in three of the ANOVA Tukey tests on Dataset 3.
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Potential Biomarkers in Three

ANOVA Tukey Tests
12568 4427
14297 4485
1775 4515
20955 4824
23223 540
2760 5839
2929 6144
31924 8791
3226 8936
4262 97
9954
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Table 27 - The list of features with the lowest p-values for each of the group
comparison, using the overall ANOVA and subsequent Tukey tests on Dataset 3.
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Overall p- |ANOVA| p- [ANOVA| p- [ANOVA| p-
ANOVA | yalyes | Tukey | yalues | Tukey | values | Tukey | values
P-Value Group2- Group3- Group4-
Groupl Groupl Groupl
8791 | 0.000127 | giaa | 0001311 | 54 0.000272 | 1033 | 0.006943
10375 0.00013 | @427 0.00576 | 5g3g | 0.000273 | og7g7 | 0.008426
o159 | 0.000139 | 7010 | 0.007135| 1959 | 0.000483 | gggo | 0.010865
1931 | 0000291 | 4775 | 0.008338 | gog5 | 0.000668 | 3969 | 0.013874
5384 | 0.000312 | 3719p4 | 0.009498 | gg5q4 | 0.000751 | 30963 | 0.014104
1020 0.00039 | 7415 | 0.013863 | g4g5 | 0.000958 | 11164 | 0.015279
941 0.000464 | 4497 | 0.014599 | 70919 | 0.001019 | gp5p | 0.018804
5839 | 0.000673 | 1599 | 0.015373| 4goq | 0.001559 | 5909 | 0.019387
8237 | 0.000736 | 11164 | 0.015939 | ggaq | 0.003086 | o955 | 0.024916
9954 0.00077 | o592 | 0.023826 | 3333 | 0.004006 | 4515 | 0.025333
ANOVA|[ p- [ANOVA| p- [ANOVA| p-
G-I;’I(J)E%- values GTrch)E?z/l- values GTr‘;SEi’l_ values
Group?2 Group?2 Group3
2159 | 0.000102 | 9og3s | 0.005237 | 10547 | 0.000137
8215 | 0.000458 | 31904 | 0.007616 | 4g04 0.00016
4824 | 0.000766 | gggp | 0.010395| 19375 | 0.000369
8791 | 0.000798 | 18970 | 0.012488 | 549 0.00064
6144 0.00154 | 749 0.013451 97 0.000786
7001 | 0002145 | gap7 | 0.017372| 4g07 | 0.000867
9723 | 0002146 | 1775 | 0.017634| gg7 | 0.001179
1799 | 0.003091 | 9909 0.01945 | gggs | 0.001195
97 0.003728 | 144 | 0.022393| 915 0.001693
5839 | 0.003906 | 1033 | 0.022831| 4060 | 0.001767

© Cranfield University, 2011




Table 28 - A list of features which returned the lowest p-values in more than one group
comparison, with the number of tests in which they were identified as such.

ANOVA
Lowest P- | Number of
Values Occurrences
4824
5839
6144
97

540
1775
2159
2929
6427
6985
7010
8791
9954
10375
10383
11164
31924

NN NN INININDINDINDINININDINDINDWW|W

It was also noticed that features 4824, 5839 and feature 6144 were identified as a potential
biomarker in three group comparisons (Table 26) as well as having the lowest p-value for
three post-hoc ANOVA Tukey tests (Table 26), suggesting that these features are also likely
to be of interest and warrant further study.

A boxplot was created using Biomarker Hunter to visually inspect the data for feature 8791
(Figure 34), in order to determine whether the results from the ANOVA analysis correlate
with the raw data. Looking at this boxplot, there is some evidence to suggest that there are
differences between the groups. The values from Groups 3 are significantly lower than the
Groups 2 and 4, as well as a slight difference in median values compared to Group 1. The
plot shows that 50% of the values from Group 3 are almost below the total range of values for
Groups 2 and 4 (i.e. the box for Group 3 is outside the range of the whiskers for Groups 2 and
4). This boxplot supports the Biomarker Hunter suggestion that this feature may be a
potential candidate as a biomarker.
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Tukey boxplot (including outliers) for PCI 8791
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Figure 34 - A boxplot comparing the four groups of intensity data presented for feature
8791, which was the feature with the lowest p-value when all the groups were compared.

A boxplot was also created for feature 8653 which was only identified as a potential
biomarker in one group and returned a relatively higher p-value (i.e. 0.049230) for overall
ANOVA analysis, than the other potential biomarker candidates (Figure 35). This was done
to determine whether the data displays the expected features. Again it was expected that the
groups of data will show a difference; however it will show fewer differences between the
groups. This boxplot shows that the differences between the values between the groups are
not as clear as compared to feature 8791 (Figure 34). This may suggest that feature 8653 may
not be as strong a candidate as a potential biomarker as feature 8791; however it is not
possible to make a definitive conclusion regarding this until the results are compared to a list
of actual, validated biomarkers.
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Tukey boxplot (including outliers) for PCI1 8653
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Figure 35 - A boxplot comparing the four groups of intensity data presented for feature
8653, which returned a relatively higher p-value.
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3.4 Kruskal-Wallis Test

The Kruskal-Wallis is a non-parametric alternative to the ANOVA statistical hypothesis test.
It is an extension of the Mann Whitney U test. Like the other methods used the Kruskal-
Wallis is a test for equality of population means between three or more groups. The test is
identical to the Welch ANOVA but rather than testing the data, the data is replaced by their
ranks (similarly to the Wilcoxon test). The Kruskal-Wallis compares the medians of the
different sample groups (different treatments) to determine whether the null hypothesis can
be rejected. Similarly to the other tests used the null hypothesis is that the sample groups
come from the same population. The alterative hypothesis would be that there is a difference
between the means of the groups being tested (i.e. the samples come from different
populations). When using samples where the distributions of the sample groups have been
proved to be non-normal and the variances have been found to be different, the Kruskal-
Wallis test is more ideally suited to the data than the Welch ANOVA.

3.4.1 Methodology of the Kruskal-Wallis tests
The Kruskal-Wallis test is conducted by:
1. Ordering the data of all the samples in a single sequence in ascending order.
2. Arrank is given to all the values (the smallest value being ranked 1). If there are any
equivalent values, the rank position is averaged.
3. The ranks of the samples are split into their groups and are summed up in each group.

4. The following formula is used to create a K (Kruskal-Wallis) statistic:

K
k=2 V54
_n(n+1),1ni (n+1)

1=

n = total number of observations, i=sample, R; = Rank of the sample

5. If the calculated k value is less than the chi-squared table value then the null
hypothesis is accepted (i.e. there is no difference between the populations of the group
being tested). If it is greater than this value then we accept the alternative hypothesis,
that there is a difference between the groups’ populations. A p-value is extracted,
which is the probability of the null hypothesis being false. A p-value of 0.05 (5%)
suggests that there is a 95% probability that the samples belong to different groups.
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The parametric methods being used are the Welch T-test and its group-wise equivalent the
Welch ANOVA. The Welch ANOVA analysis also returns what is referred to as the ANOVA
Tukey p-values, which are the results of the Tukey HSD (Honestly Significant Difference)
tests. The HSD tests are post-hoc tests used in conjunction with ANOVA, in which the p-
values from these tests show the probability of the individual group means being different
from each other, allowing identification of groups whose means come from different
populations. Since the ANOVA method is similar to the Welch T-test, the ANOVA Tukey
conclusions are usually similar to the pair-wise Welch T-test results.

As described earlier the Kruskal-Wallis test is the non-parametric alternative to the group-
wise ANOVA. The non-parametric alternative to the T-test is the Wilcoxon-Mann Whitney
test. As the Kruskal-Wallis test ignores the values, instead using the ranks, its post-hoc Tukey
analysis is exactly the same as the pair-wise Wilcoxon-Mann Whitney p-values.

3.4.2 Constraints to the Kruskal-Wallis Test

Being a non-parametric analysis method, no assumptions are made about the populations’
normality and variance unlike ANOVA. It however does assume that the data distribution is
identically shaped and scaled. When there is evidence of normality the Kruskal-Wallis is not
as powerful as the ANOVA due to the fact that it is a non-parametric method. It works best
when there are at least five samples present in each group (Gaten, 2000). Ideally both sample

groups should have an equal feature presence but some differences are allowed.

3.4.3 Alternatives to the Kruskal-Wallis Test
An alternative to Kruskal-Wallis is to perform a one way ANOVA on the ranks of the
observations. ANOVA when carried out on the actual data rather than the values is also a

parametric alternative to the Kruskal-Wallis test.

3.4.4 Kruskal-Wallis Implementation in Biomarker Hunter

The Kruskal-Wallis was also implemented to offer a full range of statistical tests in
Biomarker Hunter as well as to provide a group-wise alternative to the Wilcoxon Mann-
Whitney tests. It also provides the non-parametric alternative to the One-way Welch
ANOVA. As with the ANOVA this test works in a group-wise manner and returns one p-
value for each peptide, specifying the probability that there are statistically significant

differences between all the groups. This test is conducted in R using the kruskal.test function.
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3.4.5 Kruskal-Wallis Test Results

The Kruskal-Wallis group-wise analysis was conducted on Dataset 3 comparing four groups
of samples in one test for each feature. This resulted in a total of 203 features identified as
potential biomarkers (i.e. showing a statistically significant difference in expression) between
all the different sample groups (Table 29). As stated earlier the post-hoc analysis for the
Kruskal-Wallis is the same as the Wilcoxon pair-wise analysis.

Table 29 - The number of potential biomarkers (statistically different features) found
using the initial Kruskal-Wallis analysis on Dataset 3.

Number Of
Kruskal-Wallis TEST Biomarkers
Overall KW 203

Table 30 shows a list of features with the ten lowest p-values for the Kruskal-Wallis analysis,
suggesting they are of further interest. Feature 4607 was the feature with the lowest p-value
when all the groups were compared together. Both this feature and 4262 were identified as
being in the list of ten features with the lowest p-values, as well as being identified in the list
of ten lowest Wilcoxon p-values for multiple group analyses (shown earlier in Table 23).
This suggests that both these features may be of potential interest as a biomarker.

Table 30 - The list of features with the lowest p-values for each of the group
comparison, using the overall Kruskal-Wallis tests on Dataset 3.

Kruskal p-values
Wallis Lowest

P-Values
4607 0.000125
8215 0.000321
10547 0.000407
9723 0.000906
4824 0.000998
6856 0.001235
4262 0.001421
8791 0.001503
8615 0.001531
9954 0.001738
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3.5 Analysis of Univariate Results

3.5.1 Strongest Biomarker Candidates

As stated earlier the validation stages have great time and cost constraints. Because of this it
may be necessary to identify the features which have been identified as potential biomarkers
in more than one test, as there may be more confidence that this feature is significantly
responsible for the physiological differences between the groups. Without knowing the actual
answers (i.e. a list of actual validated biomarkers), it is not possible to determine which tests
are more appropriate, or in fact if all the tests are necessary or appropriate. It is also not
possible to determine whether important biomarkers are found in specific tests that are not
found in others. If this is the case, all the tests should be conducted in order to identify these
novel markers that would not be found if only one or two methods of univariate analysis are
conducted. Additionally the tests need to be conducted on a much larger number of datasets
from various studies, with validated biomarkers, in order to identify the best statistical

approach.

Features identified in all four tests may be stronger because they are identified as having
statistically significant differences in abundance despite the limitations of each technique.
Each univariate test is applied with a 95% confidence level. The theory of the confidence
level suggests that it is unlikely for a false positive occurrence in all the tests. The results
from all the univariate analysis techniques were compared in an attempt to identify the
potential biomarker candidates that were significant in multiple univariate tests. However, as
stated previously, it is not yet clear whether those features that are significantly differentiated
in multiple statistical tests are more likely to be actual biomarkers. This can only be

determined following comparison with a list of actual, validated biomarkers.

In the absence of such information, only predictions (based on the premise that all univariate
tests should be conducted) can be made as to which features are the strongest biomarker
candidates. Using all four univariate methods a total of 3,048 features were identified as
potential biomarkers with 1,023 unique features identified as potential biomarkers across all
four tests. In total there were 14 statistical tests for each feature. This includes six for each of
the pair-wise tests and one for each group-wise test. Table 31 shows that 14 features were
identified as potential biomarkers in more than ten univariate tests, which are identified in
Table 32.
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Table 31 - The count of features found as significant in the univariate tests for Dataset 3
and the number of tests in which they were identified as such.

+ve Hypothesis Tests | Number of Features
1 359
2 279
3 97
4 87
5 49
6 31
7 21
8 40
9 25
10 21
11 10 14
12 3
13 1

Table 32 - A list of the features identified as potential biomarkers more than ten
univariate tests. A full version of this table is given as an output when using Biomarker
Hunter.

Feature Positive

Identifier Tests Count
4427 13
18970 12
2658 12
4607 12
1775 11
2760 11
2929 11
31924 11
3226 11
4485 11
4824 11
5839 11
6856 11
97 11
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3.5.2 Comparison of Univariate Techniques

Methods exist to validate these potential biomarkers from statistical analysis, such as multiple
reaction monitoring (MRM) (Anderson & Hunter, 2006) and Immunohistochemistry (IHC)
methods (Sullivan & Chung, 2008). These methods however are limited by the time and cost
bottlenecks that exist between the biomarker discovery and validation stages (Glaser, 2007).
Due to this the validation stages are often only conducted on those features that are more
likely to be responsible for the differences between the groups. Therefore researchers may

want to see how many features are identified in more than one test.

This section compares the univariate techniques to identify any relationships or correlations
between the results (i.e. the features that are identified as potential biomarker candidates).
These comparisons are shown using Venn diagrams. This is achieved by showing the number
of features identified as potential biomarker candidates using the various methods and the
number of features identified by both techniques (i.e. shown in the overlapping region). In
total, there were 1,023 unique features identified as potential markers by the univariate
statistical tests. The four univariate statistical methods gave complementary results (Figure
36). This shows that 134 features were identified as potential biomarker candidates by all
four univariate methods prior to the application of multiple testing corrections. With the
exception of the Kruskal-Wallis technique all the other techniques also identify unique
features as potential biomarker candidates that the other techniques do not, especially the two

pair-wise hypothesis tests (The Welch T-test and the Wilcoxon Tests).

Page | 106 © Cranfield University, 2011



‘Welch T-Test

(Parametric/
Pair-wise)
195
392 85

Wilcoxon 134 ANOVA
(Non Parametric/ (Parametric/

Pair-wise) Group-wise)

210 69 0 2

Kruskal Wallis
(Non Parametric/
Group-wise)

0

Figure 36 - A Venn diagram comparing the number of biomarkers identified from all
four univariate approaches.

Figure 37 compares the results from both the pair-wise techniques, i.e. the Welch T-tests and
the Wilcoxon Mann-Whitney univariate tests. The Venn diagram shows that 595 features
were identified as potential biomarker candidates by both techniques. These features may be
more likely to be of interest as potential biomarkers than the features identified in only one
test. Once again, this can only be determined following comparison of these features with a

list of actual, validated biomarkers.
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Figure 37 - A Venn diagram comparing the number of features identified by both the
pair-wise univariate techniques (i.e. the T-test and Wilcoxon test).

The Welch T-tests analysis identified 211 features as potential biomarkers, which were not
identified by the Wilcoxon. Similarly there were 210 features that were not identified by the
Welch T-test analysis. These results suggest there is good correlation between the two
methods; however there are differences in the techniques which allow the identification of
additional potential biomarkers for both techniques. This information can be useful in two
ways. It gives further confidence to the features that were identified in both techniques.
Additionally the identification of features as potential biomarkers in just one of the tests can
be useful when there are only a small number of total features identified as potential
biomarker candidates. When this is the case, it may be necessary to retain as many potential

biomarker candidates as possible.

Figure 38 compares the results from both the group-wise univariate techniques, i.e. the Welch
ANOVA and the Kruskal-Wallis univariate tests. This Venn diagram shows that 138 features
were identified as potential biomarkers by both techniques. These features may be more
likely to be of interest as potential biomarker candidates than the features identified in only

one test.
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Figure 38 - A Venn diagram comparing the number of features identified by both the
group-wise univariate techniques (i.e. the ANOVA and Kruskal-Wallis tests).

The Welch ANOVA analysis identified 83 features as potential biomarkers, which were not
identified by the Kruskal-Wallis tests. Similarly there were 65 features that were not
identified by the Kruskal-Wallis analysis. These results also display good correlation between
the two methods; while the differences in the techniques allow the identification of additional
features as potential biomarker candidates for both techniques.

Figure 39 compares the results from both the parametric univariate methods, i.e. the Welch
T-tests and the ANOVA univariate tests. The Venn diagram shows that 219 features were
identified as potential biomarkers by both techniques. These features may be more likely to
be of interest as potential biomarkers than the features identified in only one test.
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Figure 39 - A Venn diagram comparing the number of features identified by both the
parametric univariate techniques (i.e. the T-test and ANOVA tests).

The comparison shows the individual pair-wise univariate analysis identifies a relatively
large number of potential biomarkers which are not identified by Welch ANOVA analysis
(i.e. 587). There are only two features that were identified by the group-wise ANOVA
analysis which were not identified by the Welch T-test. It was expected that the pair-wise
analysis would identify a higher number of potential biomarkers. This is simply because there
was a large number of tests conducted (i.e. there are six pair-wise analyses for every group-
wise analysis). The majority of the features identified by the group-wise analysis should be
identified by the pair-wise tests as the p-values for the pair-wise tests will usually be lower.
This is because there is more confidence in these pair-wise comparisons in supporting the
alternative hypothesis for the univariate tests (i.e. there is a statistically significant difference
between the groups). In the pair-wise analysis only two groups are compared, so when
differences are found there is higher confidence in the conclusion, as opposed to when four

groups are compared.

A boxplot was created for the features that were identified as potential biomarkers using the
ANOVA group-wise analysis but not by the T-tests. However both of these features did not
contain sufficient data points to create boxplots. One of these features was 12361 for which
the boxplot is shown in Figure 40. This boxplot shows that data is sparse and the differences
between the groups are not as obvious as those observed earlier for high confidence
biomarkers. This boxplot suggests that those features identified as potential biomarkers by
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ANOVA, but not the Welch T-test, may not be features that warrant further study. However
these features cannot be dismissed as non-markers until these results are compared with the

list of features that are actual, validated biomarkers.

Tukey boxplot (including outliers) for PCI 12361

Se+05
|

L]

da+05
|
o]

Intensity
2e+05
|

Ze+05
|

Te+05
o]

Zroups

Figure 40 - A boxplot comparing the four groups of intensity data presented for feature
12361, which was identified as potential biomarker using the ANOVA group-wise
analysis but not by the T-tests.

Figure 41 compares the results from both the non-parametric univariate methods, i.e. the
univariate Wilcoxon and Kruskal-Wallis tests. The Venn diagram shows that 203 features
were identified as potential biomarkers by both techniques. These features may be more
likely to be of interest as potential biomarker candidates than the features identified in only
one test. As the non-parametric test compares the ranks of values as opposed to the actual

values there is no difference between the Kruskal-Wallis post-hoc analysis and the Wilcoxon
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Mann-Whitney pair-wise tests. There were an additional 602 features that were identified by
the pair-wise Wilcoxon analysis alone. As expected there were no features identified by the
Kruskal-Wallis analysis that were missed by the Wilcoxon tests. When a feature is identified
as a potential biomarker by the Kruskal-Wallis it is certain that at least one of the pair-wise

Wilcoxon tests will identify that feature as a potential biomarker.

Figure 41 - A Venn diagram comparing the number of features identified by both the
non-parametric univariate techniques (i.e. the Wilcoxon and Kruskal-Wallis tests).
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3.5.3 Conclusions from Initial Univariate Analysis

The results from the univariate analysis techniques identify potential biomarker candidates
with reasonably good correlation between the different types of analysis. This is shown by
the fact that a number of features have been identified as potential biomarkers by multiple
univariate tests. There is also a relatively good overlap of features identified by multiple
techniques as shown by the Venn diagrams in the previous section.

This initial univariate analysis however is limited by the fact that there is a large percentage
of missing values in the dataset. Dataset 3 has 40 samples and 94,727 features identified in
each sample meaning there are a total of 3,789,080 possible values. Of these 3,421,648
values are actually missing (i.e. over 90% missing values). This is not atypical of data from
these types of proteomic methods and the reasons for these missing values will be explained

and dealt with later in this thesis in Chapter 5.

Additionally the number of potential biomarkers is relatively high and the time and cost
constraints mean it may not always be possible to validate all these biomarkers. It is therefore
important to reduce the number of false positive identifications of features as potential
biomarker candidates. This is because the current number of potential biomarkers is too large
to justify validating them all, especially if a large number of them are thought to be false
positive results. This selection needs to be more refined. This leads to the need for multiple

testing corrections.

Whenever these statistical tests are conducted there is a 5% confidence level used. This
means there is a one in twenty chance (i.e. %5 chance) that the difference observed between
the groups is due to chance. Datasets from proteomic biomarker experiments are generally
large datasets and involve the analysis of a large number of peptides or proteins (features).
When the statistical tests are carried out in such a large number times there is an increased
probability of error. This theory suggests that out of the thousands of features identified as
potential biomarkers, 5% of these features may have been observed simply by chance.
Multiple testing correction methods exist to take this into consideration, and will be evaluated

in the next chapter along with the other data pre- and post-processing options.
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4 Improvements to the Statistical Analysis Workflow

Although the statistical analysis conducted in Chapter 3 identified a list of potential
biomarkers from Dataset 3, there remain unaddressed issues. There are existing methods of
data pre- and post-processing that can be respectively applied to the datasets and the results
of the statistical analysis. There may be technical variance due to the systematic errors
involved with proteomic techniques. This technique analyses each sample in the experiment
individually. Due to systematic error between LC-MS runs there may be technical variation
between the data from each sample. Methods such as Total Abundance Normalisation can be
used to account for this technical variation. Another option to average out technical variance
is to average the values obtained from the technical replicates. This chapter discusses both the

use of normalisation and the averaging of technical replicates to reduce technical variation.

Another issue with the univariate results is the large number of potential biomarkers
identified. Validation is a long and expensive process so it is not feasible to attempt to
validate thousands of potential markers, so there is a need to address this. However, it is
important that plausible markers are not ignored simply because of cost. It is of great
importance that the validation of biomarkers is based on the plausibility of the potential
marker as opposed to just consideration of the cost of validation. This chapter offers multiple
testing corrections as a solution to reduce the amount of false positive identifications of
features as potential biomarker candidates. This gives researchers more confidence in the

potential biomarkers outlined by Biomarker Hunter.

Biomarker Hunter offers both pre- and post-processing options. Prior to conducting statistical
analysis, the software offers methods for scaling, technical replicate averaging and missing
value imputation. Following the statistical hypothesis testing the software pipeline also offers
multiple testing correction options to control the error rates of these tests. These methods
have been researched and implemented in a pipeline in Biomarker Hunter. There are three
stages of analysis that comprise the pipeline which are: 1) Data Pre-Processing, 2) Statistical
Analysis and 3) Data Post-Processing. This chapter discusses the available methods of data
pre- and post-processing that will be made available using the Biomarker Hunter pipeline.
The effect that these processes have on the results from Biomarker Hunter will be evaluated
in order to identify the recommended method of evaluating potential biomarkers from
proteomic data. Although pre-processing also involves dealing with missing values; this will

be focused on later in Chapter 5.
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4.1

Data Pre-Processing

The raw data which obtained from quantitative biomarker experiments are usually unsuited

for the purpose of statistical analysis. This means that the raw data requires some pre-

preparation before it can be used for analysis. The issues with the raw data include:

Often biological data is not normally distributed, and a number of statistical tests
assume the data is normally distributed. Raw data is also affected by the problem of
variance which can distort the results obtained from any statistical tests. These issues
can be addressed using log transformation.

Systematic variations may obscure real biological changes between groups.

Most biomarker experiments involve the inclusion of technical replicates. This causes
the problem of technical bias if used at the expense of biological replicates (Dowsey
et al, 2010). If technical replicates are used it is essential that normalisation is carried
out, otherwise technical bias may eclipse the biological effects.

Due to the limitations of the proteomic tools, not all the features, present in these
samples, are identified in each sample by these tools. This is especially true for
features that are present in low abundance, and those with poor detectability. The
result of this is that a number of missing values may exist for each sample in the
dataset. Statistical techniques usually require, and work best with, complete datasets.
This issue can be addressed by estimating the values that are missing. There are a
number of techniques available to do this which will be discussed in detail in Chapter
5. It should be noted that as the number of estimated values in a dataset increases, the
statistical power of the tests is essentially decreased.

There are usually a number of outliers included in the data that require special
attention. Outliers are values that are grossly dissimilar from other comparable
observations (Bantscheff & Kuster, 2007). Outliers may be a true observation of a
special case peptide species such as post translational modifications (PTMs), or they
may be false readings. These can be visually inspected and excluded from any
statistical analysis but this can result in a loss of data.

Data may contain noise, which may be mistaken for a low abundance protein or

peptide; hence the inclusion of false positives in the data.

The two optional data pre-processing steps offered in Biomarker Hunter, that are discussed in

this section are: 1) Normalisation and 2) Averaging of technical replicates.
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4.1.1 Normalisation

Occasionally the data obtained has previously been normalised using log normalisation. If
this is the case it is necessary to specify this as it may have an effect on how subsequent
calculations are done. When logarithmic values are used, multiplication is achieved by adding

the values rather than the standard approach of multiplication (Brown, 2011).

This study involves the comparison of samples from different experiments, which may have
limited reproducibility due to differences in sample preparation and sample loading.
Additional issues in reproducibility are presented when using gel-based techniques due to
staining or image acquisition. These systematic variations may obscure real biological
changes between and within sample groups (i.e. Type | or Type Il errors). Therefore Total
Spot Normalisation (gels) or Total Intensity Normalisation (MS) may be used to reduce the

systematic variance, which may otherwise distort the biological differences between samples.

4.1.1.1 Available Methods for Normalisation of Technical Variance

Data pre-treatment methods convert the raw data to a different scale such as a relative or
logarithmic scale. Different data pre-treatment methods such as auto-scaling and range-
scaling greatly affect the outcome of the data analysis. This is because different pre-treatment
methods emphasise different aspects of the data. As well as all the other methods of pre-

treating the data, both these methods have their own advantages and disadvantages.

Auto-scaling is based on data dispersion. It uses the standard deviation as the scaling factor
so the mean-centred values are divided by the standard deviation. Range scaling uses
biological range as the scaling factor. The biological range can be described as the difference
between the minimum and maximum values reached in the experimentation. This is usually a
much higher value than the standard deviation. As a result of this the data is scaled down to a
greater degree. It clusters the data into tighter packed groups. The advantage of using auto-
scaling over range-scaling is that the standard deviation, which is used as the scaling factor,
accounts for all of the measurements rather than just two values as in range-scaling.

Therefore range-scaling is more sensitive to the presence of any outliers.

Total abundance normalisation has been employed as a normalisation technique specifically
for the purpose of dealing with the occurrence of systematic variation in both gel-based and

MS-based proteomic analysis (Berth et al, 2007). It is currently employed in the commercial
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Progenesis software range developed by Nonlinear Dynamics. For 2D gel experiments, this
involves dividing the volume of each spot by the total volume of all the spots in that sample.
This usually results in very small values so it is then multiplied by a scaling factor. This can
also be applied to MS experiments by dividing the intensity of each peak by the sum of all the
intensities in that sample and then multiplying this by a scaling factor. This normalisation
technique assumes that the changing values don’t account for a large proportion of the total
sums of values, and that methods that do not display technical variance such as DIGE are not

being used.
For 2D Gel experiments:

Volume of Spot n
Total Volume of All Spots

Normalised Volume = ( ) * Scaling Factor

For MS experiments:

Intensity of Peak n
Total Intensity of All Peaks

Normalised Intensity = ( > * Scaling Factor

4.1.1.2 Implementation of Normalisation in Biomarker Hunter

The pipeline’s normalisation offers the total abundance normalisation, created specifically for
this purpose, to scale the data. Auto-scaling and range-scaling are particularly good methods
but are generally more suited for multivariate techniques (Berg et al, 2006).Although auto-
scaling and range-scaling are potential options, following further literature searches, total
abundance normalisation emerged as the appropriate scaling method (Albertin et al, 2007). It
is currently the normalisation technique used in commercially available software used for 2D
gel electrophoresis experiments (Nonlinear, 2010). This uses the same formula as Total Spot

Normalisation.
Total Abundance Normalisation:

Abundance of feature n

Normalised Abundance = ( ) * Scaling (1,000,000)

Total abundance of all Features

4.1.1.3 Univariate Results Following Normalisation of Technical Variance

The use of total abundance normalisation on Dataset 3 was conducted using Biomarker
Hunter to observe the effects it has on the identification of potential biomarker candidates.

Following total abundance normalisation 3,127 features were identified as potential
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biomarkers using all the tests. A number of these features were identified in multiple tests and
it was found that using all the techniques 1,040 unique features are identified as potential
biomarker candidates. This is slightly more than the 1,024 unique potential biomarker
candidates identified when normalisation was not applied. Table 33 shows the number of
times a feature is identified as a potential biomarker alongside the number of features in each
category. It shows that 39 features were identified in ten or more univariate group
comparisons, and one feature was identified in fourteen univariate group comparisons. Prior
to normalisation 35 features were identified in ten or more statistical tests. A list of the
strong candidates for potential biomarkers (i.e. features identified in eleven or more statistical
tests) is shown in Table 34. This needs to be compared with a list of actual, validated
biomarkers to identify if normalisation has a positive impact on the quality of potential
biomarker candidates.

Table 33 - The comparison of positive hypothesis tests with and without normalisation
for Dataset 3.

With Normalisation No Normalisation
+ve +ve
Hypothesis Number of Hypothesis | Number of
Tests Features Tests Features

1 357 1 359

2 289 2 279

3 110 3 97

4 77 4 87

5 54 5 49

6 24 6 31

7 31 7 21

8 26 8 40

9 33 9 25
39 10 19 10 21

11 15 11 10

12 3 12 3

13 13 1

14
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Table 34 - A list of the features identified as potential biomarkers in eleven or more
univariate tests following normalisation for Dataset 3. A full version of this table is
given as an output when using Biomarker Hunter.

Positive
Feature Tests
Identifier Count
4427 14
6856 13
18970 12
4607 12
6641 12
10547 11
1722 11
1775 11
19450 11
2658 11
2760 11
2929 11
31924 11
3226 11
4485 11
4615 11
5839 11
6427 11
794 11
9954 11

This list is similar to the results presented prior to normalisation. To see the overlap of
features identified with and without normalisation a Venn diagram is presented in Figure 42.
This shows that 889 features were identified in both sets of statistical analysis. There were
also 151 features which were identified as a potential biomarker following normalisation,
which were not previously identified. It also shows that 134 of the original potential
biomarker list were not identified in this statistical analysis run. It was expected that the
normalisation would have an effect on the resultant biomarker candidates as the
normalisation adjusts the raw data to deal with the systematic error. The choice of whether to
use this normalisation option is mainly dependent on the nature of the data. If there is any
chance that the data may be subject to systematic error, then normalisation should defientely
be used. However if the technique accounts for this systematic error, such as DIGE, then this

option may be ignored.
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Figure 42 - A Venn diagram comparing the number of features identified in Dataset 3
prior to normalisation and after normalisation.
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4.1.2 Dealing with Technical Replicates
Technical replicates are produced by multiple labelling of the same sample as opposed to
biological replicates, which are actually different samples. These are explained in detail in

section 1.3.2.

4.1.2.1 Available Methods for Dealing with Technical Replicates

There are two options with regards to the management of technical replicates. These can
either be treated as individual samples or can be averaged prior to analysis. For comparative
purposes it is useful to see results from an averaged dataset as well as a non-averaged dataset,
so the user is presented with the option to average the technical replicates or leave them as

they are.

4.1.2.2 Implementation of Dealing with Technical Replicates in Biomarker Hunter

Ideally the technical replicates should not be averaged prior to analysis. This is because
averaging these samples results in the subsequent analysis losing substantial power.
Additionally, following manual inspection of the data there are many peptides detected in one
replicate and not the other. If the averaging option is used then the data, for each feature

(peptide or protein) is averaged using the following conditions:

e If each technical replicate of the sample has a value, the average (mean) is used as the
value representing both replicates

e If only one run of the sample has a value, the present value is used to represent both
replicates (i.e. no averaging)

e If both runs have missing values, a single missing (NA) value is used to represent
both replicates

4.1.2.3 Univariate Results Following Averaging of Technical Replicates

The effect of averaging technical replicates was observed on Dataset 3 using Biomarker
Hunter to observe the effects it has on the identification of potential biomarkers. Following
the averaging of technical replicates 2,481 features were identified as biomarkers using all the
tests. A number of these features were identified in multiple tests and it was found that using
all the techniques 959 unique features are identified as potential biomarkers. This is slightly
lower than the 1,024 unique potential biomarker candidates identified when the replicates

were not averaged.
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Table 35 shows the number of times a feature was identified as a potential biomarker
alongside the number of features in each category. It shows that 19 features were identified in
eight or more univariate group comparisons, out of which two features were identified in
eleven univariate group comparisons. A list of the strong candidates as potential biomarkers
(i.e. features identified in eight or more statistical tests) is shown in Table 36.

Table 35 - The comparison of positive hypothesis tests with and without averaging of
technical replicates for Dataset 3.

Averaging No Averaging
+ve +ve
Hypothesis Number of | Hypothesis | Number of
Tests Features Tests Features

1 273 1 359
2 337 2 279

3 151 3 97

4 71 4 87

5 43 5 49

6 36 6 31

7 29 7 21

1 9 8 12 8 40
9 5 9 25

10 0 10 21

11 2 11 10

12 3

13 1
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Table 36 - A list of the features identified as potential biomarkers in eleven or more
univariate tests following the averaging of technical replicates for Dataset 3. The full
table is given as an output when using Biomarker Hunter.
Positive
Feature Tests
Identifier | Count
7514 11
9843
196
2649
2931
334
8858
10240
1050
1417
256
373
6404
6840
8280
8317
8611
8885
8994

=
=

00 |00 |00 |00 |00 (OO [OO (0O |00 |00 |00 OO (O (O | | |©

To see the overlap of features identified with and without the averaging of technical
replicates, a Venn diagram is presented in Figure 43. This shows that only 132 of the features
were identified in both sets of statistical analysis. There were over 1,600 features which were
only identified as a potential biomarker in only one set of statistical analysis. This shows poor

correlation between these results and those prior to averaging of the replicates.
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Figure 43 - A Venn diagram comparing the number of features identified in Dataset 3
prior to the averaging of technical replicates and after the averaging of technical
replicates.

Looking at these results it shows that the averaging of replicates drastically changes the
identification of the potential biomarkers. As stated earlier, the averaging of technical
replicates causes a substantial loss in power of the statistical analysis. This is because the
inclusion of technical replicates allows the “averaging out” of technical variation (Ekefjard,
2010). Additionally when technical replicates are not averaged, the analysis includes
information of the technical variation in the experiement. This means that any protein
expression changes which are due to subtle differences in the experimental technique would
not be seen after averaging of these replicates (Krawetz, 2009). This averaging option is still
provided in the Biomarker Hunter pipeline, but it will not be used for the suggested strategy
for the identification of biomarkers suggested by this thesis. Unlike the other options there is
not good correlation between the two analysis runs. It would be of great interest to compare
results from these different techniques against a list of actual, validated markers to identify

whether averaging of technical replicates is actually a good option.
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4.2 Data Post-Processing

Once statistical analysis has been conducted on the data there is often a need to conduct post-
processing of the analysis results. When there are a large number of potential biomarker
candidates identified, it is important to ensure that these significant differences which have
been observed simply due to chance are removed from the list. This is especially the case for
datasets such as Dataset 3 (which was analysed in Chapter 3). For this data, thousands of
features were identified as significant potential biomarkers. Although there are a large
number of tests, allowing for more consideration being given to those features identified
multiple times, it may be possible that important biomarkers are lost in the large clutter of
features. This chapter investigates multiple testing corrections as a solution to reduce the
number of false negative occurrences and reduce the list of potential biomarkers by

attempting to reduce the number of false positive identifications of potential biomarkers.

4.2.1 Multiple Testing Correction

Statistical analysis of biological data rarely involves testing just a single hypothesis.
Biomarker studies typically rely on technigues that allow large numbers of proteins, peptides,
genes etc to be monitored in one experiment. The statistical hypothesis tests such as Welch’s
T-test, ANOVA or the Kruskal-Wallis return a p-value, which signifies the probability of the
null hypothesis being correct. The null hypotheses in all the statistical tests used in the
Biomarker Hunter pipeline assume that there is no difference between the means of the

groups being compared.

For any individual statistical test there is a pre-set probability of the inclusion of a Type |
error. These tests are vulnerable to Boole’s Inequality (Seneta, 2004), meaning that the
probability of at least one of the peptides in the experiment list being differentially expressed
is less than or equal to the sum of the probabilities of all the individual events. Using a
confidence interval of 0.05 (5%), about one out of twenty tests will typically produce a false

positive.

If a multiple number of tests (n) are conducted, each with a significance probability (), then

the probability that one of the tests is significant is:
<nXp

When the number of tests is greatly increased, to thousands for example, as in the

experiments conducted for biomarker discovery there is an implied occurrence of false
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positives (i.e. a rejection of the null hypothesis, in a case where it is actually true) or a “Type
I error”. Multiple testing corrections amend all the p-values from these statistical hypothesis
tests to allow for the occurrence of these false positives. The p-values for each peptide, or
protein, is corrected to account for the family-wise error rate and to maintain the overall error
rate equal to, or below the p-value cut-off used for the tests. A widespread problem,
encountered with computational statistical hypothesis testing, is how to approach multiple

testing corrections.

When applying Univariate hypothesis tests repeatedly there are additional issues presented.
When any statistically significant change in the protein volume is concluded, it is based on
the probability of observing that change. The chance always remains that any statistically
significant protein or peptide is only reported as significant due to natural variation. These are
examples of type I errors or “false positives”. The generally accepted significance level is
95% which means that results with less than 5% chance of being different due to natural
variation will be reported as significant. Because of the sheer number of variables analysed
the chance of false positives is greatly increased. This problem can be addressed through
algorithms which have been devised to adjust p-values based on the number of variables
involved in the analysis. These methods are referred to as multiple testing correction

methods.

The datasets from OBT biomarker experiments measure the presence of several thousand
peptides or proteins (i.e. 8,000 to around 90,000 PCls (Peptide Cluster Indexes) or MCls
(Molecular Cluster Indexes)) simultaneously across varying groups, which may indicate
disease, or varying treatments. So the statistical tests (e.g. T-test) are carried out on each
feature separately. So for example if the significance level is 0.05 signifying a 5% probability
that the null hypothesis has been falsely rejected, so when 100,000 tests are conducted 5,000
of these could potentially be false positives. When conducting 100 tests, there is a 99.4%
chance that at least one of the results is a false positive (Stark, 2011). Table 37 illustrates the
importance of implementing multiple testing corrections when carrying out multiple
comparisons, because we would like to minimise the inclusion of false positives not just for
individual tests but also for the collection of features being tested. It shows how the

probability of a false positive incidence is affected by an increase in the number of features.
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Table 37 - Rate of Occurrence of false positives with increasing number of statistical

tests. Adapted from Silicon-Genetics, 2003
Number of Probability of calling 1 or more
features False positive | false positives by chance (100(1-
tested (N) | incidence 0.95"))
1 1/20 5%
2 1/10 10%
20 1 64%
100 5 99.40%

4.2.1.1 Available Methods for Multiple Testing Correction (MTC)

All available methods of MTC available in the R stats package were investigated and
implemented in the pipeline. The Biomarker Hunter pipeline software offers five methods for
multiple testing corrections which will all be described in this chapter, outlining the benefits
and drawbacks of each method. This section will also compare the techniques to identify the
difference between the techniques. These methods are:

1. Bonferroni (Bland & Altman, 1995)

2. Holm (Holm, 1979)

3. Hochberg (Hochberg, 1988)

4. Hommel (Hommel, 1988)

5. Benjamini Hochberg (Benjamini et al, 1995)

42111 Bonferroni Correction Method

This method is based on the first-order Bonferroni inequality, which is a modification of the
Boole’s inequality (Bland & Altman, 1995). The Bonferroni inequality concludes that in any
given set of outcomes (p(1), p(2), p(3)....p(n)), the probability of their union (i.e. of the event
p(1) or p(2) or p(3) or p(n)) cannot be greater than the sum of their probabilities (Shaffer,
1995). It is a simpler, but more stringent method than the Holm approach (Dunnett &
Tamhane, 1991). The Bonferroni approach simply rejects any null hypotheses if the corrected
p-value, in this case obtained by multiplying the actual p-value by the total number of tests

conducted, is below the critical (cut-off) p-value.

P-value(Corrected) = P-value * Total Number of statistical tests(n)

P-value(Corrected) < 0.05 = SIGNIFICANT
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42112 Holm Correction Method

The Holm method is a modified, slightly less rigorous, version of the Bonferroni correction
and is also known as the Bonferroni Step-down correction method. It is a sequentially
rejective technique. The Holm method rejects the null hypothesis in cases only where the p-
value, and subsequently its corrected (lower) p-value is below the p-value cut off. The Holm
corrected p-values are obtained by:
A. Ranking the p-values for each individual PCI (or MCI) in ascending (small to large)
order.
B. Multiplying the smallest p-value (p(A)) by the total number of tests. P-values less
than the 0.05 (5%) cut-off point suggest the null hypothesis should be rejected.
P-value(A)(Corrected) = P-value(A) * Total Number of statistical tests(n)
P-value(A)(Corrected) < 0.05 = SIGNIFICANT
C. The next p-value (p(B)) is then multiplied by the total number of statistical tests
minus one.
P-value(B)(Corrected) = P-value * (n— 1)
P-value(B)(Corrected) < 0.05 = SIGNIFICANT
D. The third p-value (p(C)) in the ranked set is then multiplied by the total number of
statistical tests minus two.
P-value(C)(Corrected) = P-value * (n — 2)
P-value(C)(Corrected) < 0.05 = SIGNIFICANT
E. This routine is continued, decreasing the multiplying factor by one in each step, until
a FEATURE(Xx) is classified as not significant
P-value(x)(Corrected) > 0.05 = NOT SIGNIFICANT

The strength of the Holm method is that it is a statistically very powerful despite the values of
the unobservable parameters. This method does not assume independence of data, which is
useful especially when dealing with biomarker data. Often in biomarker experiments there is
a relation between the data. For example when dealing with peptides there is a relationship
between the intensities of the peptides which belong to the same protein. There may also be

relationships between proteins with regards to their function or up-down regulation.

This method returns a family-wise error rate comparable to that of the Bonferroni method.
The Holm method; however does not guarantee confidence levels less than those provided
using the original Bonferroni correction. As the p-value increases, the test gets progressively

less corrective; therefore the test becomes less conservative.

Page | 128 © Cranfield University, 2011



4.2.1.1.3 Hochberg Correction Method

This method is also known as the Simes-Hochberg correction method as it is based on the
Simes Inequality (Simes, 1986). The Hochberg method is a simpler but sharper correction
technique than the Holm correction method (Hochberg, 1988). Like the Holm method the
Hochberg approach is based on ordered p-values. Unlike the Holm method the Hochberg
method rejects all hypotheses with p-values less than or equal to the p-value cut-off point.
The Holm correction method stops checking through the ranked p-values as soon as the null
hypothesis has been rejected. The Hochberg correction works in reverse, starting first with
the larger p-values in the ranked list. The Hochberg corrected p-values are obtained by:

A. Ranking the p-values for each individual PCI (or MCI) in descending order.

B. Unless the highest p-value (p(1)) is less than the critical (cut-off) p-value, in which
case all the null hypotheses must be rejected, the correction starts with the second
highest value. The correction starts by multiplying this p-value by two. If this value is
less than the 0.05 (5%) cut-off point then the feature would be classed as significant.

P-value(2)(Corrected) = P-value(2) * 2
P-value(Corrected)(2) > 0.05 = NOT SIGNIFICANT

C. The next p-value (p(3)) is then multiplied by 3.

P-value(3)(Corrected) = P-value * 3
P-value(3)(Corrected) > 0.05 = NOT SIGNIFICANT

D. This routine is continued, increasing the multiplying factor by one in each step, until a

feature is classified as significant
P-value(Corrected) < 0.05 = SIGNIFICANT

The corrected p-values are uniformly lower than those produced by the Holm method. This

suggests the Hochberg step-up approach has more power than the Holm step-down approach.

The high power of the Hochberg method; however comes at the expense of having to assume
the p-values are all independent of each other (Walsh, 2004). This could be a cause for
concern for the biomarker data, especially if dealing with peptides. When using peptides
some features will not be independent of others as many will belong to the same protein, so
this must be taken in to consideration when choosing this correction method. When some of
the data is not independent it is better to use the Holm approach as it does not assume

independence of data.
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42114 Hommel Correction Method

As with the Hochberg approach the Hommel correction method is based on Simes Inequality.
It is more powerful and slightly more complicated than the Hochberg method (Shaffer, 1995).
This technique is also based on the ordered p- value procedure and like the Hochberg
approach starts with the largest p-value first. The Hommel method rejects all hypotheses in
which the corrected p-value is less than or equal to the critical value divided by k (w/k). The

value k can be calculated by:

Where: © = Critical p-value, n = total number of statistical tests
A. Ranking the p-values for each individual PCI (or MCI) in descending (large to small)
order.
B. For the highest p-value (p(1)) :i=1,j=1.
So if p(1) <0.05(w) then all the null hypotheses must be rejected suggesting that all the
features are significant biomarkers. If this is not the case then the next iteration of the
test is conducted.
C. For the next highest value (p(2)) :1=2,j=1,2.
If P(2) > 0.05*(1/2) then the next iteration of the test is conducted.
D. For the next p-value in the ranked list p(3):
If p(3) > 0.05*(1/3)
Then p(2) is retested to check whether p(2) > 0.05*(2/3)
E. These iterations are continued until a p-value is equal to or less than the critical value
multiplied by the multiplying factor (j/i). When this occurs the i + j values are used:
Corrected critical p-value cut-off = 0.05(m)/(i+])

F. All null hypotheses are rejected if their p-value is less than or equal to (n)/(it).

42115 Benjamini-Hochberg Correction Method

The correction methods described thus far have been based on ordered p-values. These
techniques provide a strong control over the family-wise error (FWE) rate. The less stringent
Benjamini-Hochberg approach aims instead to control the false discovery rate (FDR)
(Benjamini et al, 1995). The false discovery rate can be described as the fraction of false
positives throughout all the tests which are classed as significant (Walsh, 2004). Like the
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Simes-Hochberg correction, the Benjamini-Hochberg is a step-up procedure. This correction
technique is a relatively less conservative technique so is relatively more tolerant towards
false positives; however it also reduces the occurrence of false negatives (Type 1) errors (i.e.
not rejecting the null hypothesis when there is a significant difference between groups).
Benjamini-Hochberg corrected p-values can be obtained using the following approach:
A. Ranking the p-values for each individual feature in descending (large to small) order.
B. As with the Simes-Hochberg approach the largest p-value (p(1)) is left as it is
and the correction starts with the second largest p-value (p(2)). The second
largest p-value is multiplied by a multiplying factor, obtained by dividing the
total number of statistical tests conducted (n) by its rank in the list. If this
corrected p-value is less than the critical (cut-off) p-value (= = 0.05) then the
null hypothesis can be rejected.

Total Number of statistical tests(n)
Total Number of statistical tests(n) — 1

P-value(Corrected) < 0.05 = SIGNIFICANT

C. This sequence is continued for all the ranked p-values for example for the next

P-value(Corrected) = P-value *

p-value in the ranked list (p(3)).

Total Number of statistical tests(n)
Total Number of statistical tests(n) — 2

P-value(Corrected) < 0.05 = SIGNIFICANT

P-value(Corrected) = P-value *

As the rank increases, and the p-value decreases, the corrections become more stringent
similarly to the Bonferroni step-down approach. As the false discovery rate (FDR) approach
gives an error rate that is proportionate to the number of features it provides a good
alternative to family-wise error rates (FWR).

Compared to the first four methods, the Benjamini-Hochberg approach is relatively more
ideally suited to data from biomarker experiments where we are dealing with an extremely
large number of significance tests, due to the fact that it is a less conservative method. The
statistical hypothesis tests (i.e. ANOVA, Kruskal) reduce a large dataset to a significantly
smaller one. For some researchers analysing biomarker data, it may be a concern to ensure
that no true positives are removed from the significance list, even if this comes with the slight
inclusion of false positives (Shaffer, 1995). Usually however due to extreme validation costs

it is of utmost importance for researchers to reduce the occurrence of false positive
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identification of biomarkers. This suggests that MTC should be used but the Benjamini —

Hochberg is most ideal as it is less stringent.

4.2.1.2 Implementation of Multiple Testing Correction in Biomarker Hunter

The pipeline software allows the user to use any of the methods described in the previous
section to conduct multiple testing corrections. These were implemented using the p.adjust
function in the R stats package. As stated previously the Benjamini-Hochberg correction
approach is most ideally suited to data from biomarker experiments. These methods along
with the other correction approaches were conducted on Dataset 2 to compare the effects the
corrections have on the results. Table 38 shows the difference between the correction
approaches. The p-values for the Welch T-test comparing Group one against Group two were
corrected using the five different methods.

Table 38 - The effect of Multiple Testing Corrections on Dataset 2

Uncorrected| Bonferroni | B-Hochberg Holm Hochberg Hommel
No of PCls 8892 8892 8892 8892 8892 8892
No of statistical
tests conducted 5411 5411 5411 5411 5411 5411
No of significant
PCls 705 2 6 2 2 2

The Benjamini-Hochberg correction method retained more significant features than the other
approaches. This may have been due to the fact that the Benjamini-Hochberg is a less
stringent method and aims to protect the true-positive values. As the number of statistical
tests is significantly large it can be seen that to maintain a family-wise error rate the number
of significant markers is substantially reduced to a single digit. Upon examination of the
corrected datasets the two significant features (feature 3810 and feature 243) were common
through all five correction approaches. Four other features were also classed as significant
using the Benjamini-Hochberg approach (features: 1234, 3936, 4005, and 3324). As the
experiment involved study at the peptide level it is very possible that these identified features

may belong to the same protein.

This shows good correlation between the techniques as well as suggesting that for the types
of datasets being analysed the Benjamini-Hochberg may be the most ideal as it retains a

higher number of true positive statistical hypothesis tests.
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4.2.1.3 Univariate Results Following Multiple Testing Corrections

When the multiple testing correction methods were applied to Dataset 3 there were no
differences between the different correction methods. Unlike when multiple testing
corrections were applied to Dataset 2, all five methods of p-value correction returned the
same biomarkers. Following multiple testing correction a total of 281 features were identified
as biomarkers, of which 180 were unique. Compared to the uncorrected analysis, this list of
180 features is far more manageable than the list of over a thousand unique features. This
suggests that when there is time and cost constraints the multiple testing methods should be

implemented when there are a large number of potential biomarkers.

Table 39 shows the number of times a feature is identified as a biomarker alongside the
number of features in each category. It shows that one feature was identified in five
univariate group comparisons. As the multiple testing is only conducted on the p-values from
the original statistical analysis, all of the features identified after correction were identified in
the original analysis.

Table 39 - The comparison of positive hypothesis tests with and without multiple testing
corrections for Dataset 3.

MTC No MTC
+ve +ve
Hypothesis Number of Hypothesis | Number of
Tests Features Tests Features

1 102 1 359

2 57 2 279

3 20 3 97

4 0 4 87

5 1 5 49
6 31
7 21
8 40
9 25
10 21
11 10
12 3
13 1

A list of features identified in three or more statistical tests is shown in Table 40. The analysis
from this dataset suggests the method of correction used is not important. However the results
from Dataset 2 as discussed in the implementation of MTC, as well as the available literature
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suggest that the Benjamini-Hochberg algorithm is the most appropriate for this use (Shaffer,
1995).

Table 40 - A list of the features identified as potential biomarkers in three or more
univariate tests following Multiple Testing Correction for Dataset 3. A full version of
this table is given as an output when using Biomarker Hunter.

Positive
Tests
Count
540 5

12568

14297
1775

20955

23223
2760
2929

31924
3226
4262
4427
4485
4515
4824
5839
6144
8791
8936
97
9954

Feature
Identifier

WWW W WWWWW W W|W|WwWwwww| w|w|w

4.3  Conclusions for the Use of Data Processing

If there is the possibility of technical variance between samples then total abundance
normalisation should be applied prior to statistical analysis. Ideally technical replicates
should be treated as individual samples (i.e. not averaged). Following statistical analysis
MTC is strongly suggested as it is not justifiable to validate thousands of features, so false
positives should be avoided. Although there was no difference when these methods were
applied to Dataset 3, the results from Dataset 2 agree with the theory from the literature that
Benjamini-Hochberg approach may be more appropriate (Pascual et al, 2010). However; it is
impossible to determine whether the Benjamini-Hochberg is actually more appropriate

without comparing this list of markers with a list of actual, validated biomarkers.
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5 Evaluation of Solutions for Missing Values

One of the first main concerns when the datasets, provided by OBT were analysed were the
high number of missing values that were contained in the data. Dataset 2 had 64% of the
values missing and Dataset 3 had more than 90%. This is not atypical of proteomic datasets
and remains a big issue in proteomics (Albrecht et al, 2010). For the analysis of these datasets
it was important to first understand the reasons for the presence of missing values. From there
the next challenge was to create provisions in the created pipeline software to deal with these
missing values in an effective and appropriate manner, in order to provide accurate

conclusions without causing the data to be skewed.

After consulting various journal articles it was obvious that missing values is a widespread
issue encountered by many studies in the field (Vlahou, 2008) (F Li et al, 2011). It also
became clear that systematic approaches to dealing with these missing values are still lacking
(Sariyar et al, 2011). This chapter describes why missing values are so common in biomarker
experimental data. It then describes two of the main provisions that have been included in
Biomarker Hunter to help tackle these issues. The first solution offered is the commonly
applied technique of imputation of missing values, which is not restricted to biomarker
studies, but is also used in various other fields for statistical analysis. The second solution is
more problem-specific to the issue of missing values in label-free biomarker experiment data.
This clustering solution identifies those peptides that have not been matched correctly and
correlates their intensity values. Following the evaluation of the recommended strategy for
missing values combined with conclusions made in Chapters 3 and 4 a suggested strategy is
identified. This strategy and the results of analysis using this process are presented in section
5.3 of this chapter.

Firstly we must consider the causes of these missing values. As the number of features (i.e.
peptides, proteins or genes) is increased there is an associated higher problem of missing
values in the proteomic datasets. These missing values occur through the experimental
techniques used to obtain biomarker data. For example, when using 2D gel techniques, less
intense spots are more susceptible to missing values. These missing values may still be very
important with regards to regulation and signalling of the peptide or protein in question.
Sensitive MS techniques allow the identification of this low abundant class of proteins, but

are still prone to missing values for various reasons.
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Figure 44 - A graph showing the occurrence of features in Dataset 3 in each feature presence group
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Figure 44 shows the frequency of features with the possible feature presence levels for
Dataset 3. It can be seen over 33,000 of the features have a feature presence of one, meaning
that there are thirty nine missing values in each of these features. The graph also shows that
only a small percentage of features contain full or high feature presence.

All proteomic data contains missing values which may either be due to:

e The peptide or protein being present, but at a level below the limit of detection of the
mass spectrometers or other analytical methods. For these cases, there is an increased
error if the user imputes the missing values with a zero. A zero value would suggest
that the sample is not present at all, which is not the case.

e The occurrence of mismatching caused due to feature distortion. This happens when
values which belong to the same marker (e.g. peptide) are classed into two or more
different features. This may occur when values from the same marker fall outside the
stringent mass and retention time windows used by the clustering algorithms provided
by the mass-spectrometry providers. Mismatching may occur in both mass
spectroscopy and gel-based methods.

e Truly missing data. This refers to true zero values. This suggests that the feature
(protein or peptide) is not present in the sample being tested.

Additionally when gel-based techniques are used:
e Spots may be missing because of poor transfer from the first to second dimension.
e Another biological reason may be the shift of the protein to a different point in the

pl/molecular weight gel co-ordinate due to post translational modifications (PTMs).

It is of great importance to replace as many of these missing values with plausible values, a
process known as imputation, to avoid leading to false conclusions (Azuaje, 2005). Any
amount of missing data can cause significant effects on the conclusions made based on the
data. It is also necessary to distinguish those values that are truly missing as imputing these
values will cause a great bias in the dataset. There are two categories of missing values
(Little, 1987). Values may be missing at random (MAR), meaning the likelihood of a missing
feature may be determined by the observed data. The second category is those values that are
Missing Completely at Random (MCAR) which means the values are missing, independent

both of observable variables and of unobservable parameters of interest.

Page | 137 © Cranfield University, 2011



5.1 Selective Missing Value Imputation

Imputation involves the substitution of certain, plausible, values to replace missing data
points. It is a preferred method of pre-processing a dataset with missing data prior to
statistical analysis. In most biomarker discovery experiments the problem of missing values

cannot simply be dealt with (Aittokallio, 2010), and are sometimes simply ignored.

If the discarded cases form a representative and relatively small portion of the entire dataset,
then feature deletion may indeed be a reasonable approach. However, case deletion leads to
valid inferences in general only when missing data are missing completely at random in the
sense that the probabilities of response do not depend on any data values observed or missing.
In other words, case deletion implicitly assumes that the discarded cases are like a random
subsample. When the discarded cases differ systematically from the rest, estimates may be
seriously biased. Moreover, in multivariate problems, case deletion often results in a large

portion of the data being discarded and an unacceptable loss of power.

There have been methods published to deal with these missing values such as:
o Row-average method
o K-nearest neighbour (KNN)
o Singular Value Decomposition (SVD)
o Bayesian Principal Component Analysis (BPCA) missing value estimation
o Maximum Likelihood Algorithm

Whichever approach is used there needs to be consideration of the structure of the datasets

and the nature of the experiment.

With regards to univariate tests (such as ANOVA) there is an argument suggesting that
missing values can be ignored. However the reduced number of replicate values within

features leads to lower power in the statistical tests.

When conducting multivariate statistics, it is very important to deal with these missing values
correctly to be able to draw accurate and realistic conclusions as the missing values can skew
the dataset and lead to wrong conclusions. This is due to the increase in score error estimation

when too many missing values are present.
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5.1.1 Available Methods of Imputation
5.1.1.1 No Imputation

This simple but very crude approach to missing value treatment is to ignore the cases which
have a percentage of missing values above a desired threshold. This approach is appropriate
when the percentage of missing values is very low but analysis of the OBT datasets and
reference from previous experiments show that this is not usually the case in proteomic
biomarker experiments. If the percentage of missing values is high, there is a vast loss of

information and may introduce a bias.

5.1.1.2 Minimal Value Imputation (MIN)

This approach is also a simple and crude method which involves replacing the missing values
with zeroes. This is the method currently employed by all the commercially available image
analysis software (Albrecht et al, 2010). This approach works under the assumption that all
the missing values are due to the protein either being actually absent in the sample groups or
the proteins being below the detection level of the analysis tools. This method ignores the

prospect of missing values due to technical reasons.

This approach can be modified by replacing the missing values with a non-zero minimal
intensity value. One option for this includes using the global minimum intensity value of all
the present values (Almeida et al, 2005), however other variations of this imputation do exist.
This choice of imputation does not make a difference to the detection of statistically

significantly different peptides and proteins.

5.1.1.3 Average Imputation

This simple approach involves imputing the missing values with the average value of all the
present values for that peptide or protein. This can be either the row mean or the row median.
The assumption behind this method is that the abundances of proteins do not vary much
between different sample groups. This can be a problem as the assumption is not always true
and the method becomes more complicated as the percentage of missing values for the
protein or peptide is increased. This method deals with the missing values caused by both
biological and technical reasons. This method is more often used to compare the other
imputation methods rather than being used as an actual imputation technique (Jung et al,
2006).
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A variation of this method is to impute missing values with a median of the present values
within the sample group. This method is referred to as REPMED. This ignores the
assumption of the low variance in abundance between groups and is better suited to
proteomic biomarker studies. The limitation to this approach is that there needs to be a
minimum of three present values within the sample group for the relevant protein or peptide
in order to be able to calculate a median. This approach has not yet been applied to proteomic

data as this is not always the case with these datasets (Albrecht et al, 2010).

5.1.1.4 Multiple Imputation

Multiple Imputation (MI) is a Monte Carlo procedure in which the missing values are
replaced by m>1 simulated versions, where m is typically small (i.e. < 10). Each simulated
dataset is analysed and the results are combined to calculate estimates and confidence
intervals which incorporate the missing data uncertainty (Schafer, 1997). Due to advances in
computational methods and software, the MI procedure has become useful in the eye of
researchers in biomarker research, whose studies are often hindered due to the presence of
missing data. Unless the rate of missing information is extremely high, there is little
advantage to producing and analyzing more than a few imputed datasets. The imputed model
at best is an approximation; fortunately MI tends to be quite forgiving of departures from the
imputation model. If working with binary or ordered categorical variables, it is satisfactory to
impute under a normality assumption and then round off the continuous imputed values to the
nearest category. If the distribution of the variables are heavily skewed, these may be
normalised (e.g. by taking logarithms) then returned to their original scale after imputation.

5.1.1.5 K Nearest Neighbour (KNN)

This approach is often used for both proteomic and transcriptomic data. The assumption
behind this approach is the relationship between expression profiles of the values of certain
peptides or proteins (Albrecht et al, 2010). The missing values are imputed with a weighted
mean of the available values of the k most related values in this particular sample. The
relation is estimated using Euclidean distance. An optimal value of k is calculated empirically
for each dataset (Troyanskaya et al, 2001). The method is robust and sensitive, especially in
cases where the percentage of missing values is less than 20% for the particular peptide or
protein. It performs better than the average imputation techniques with regards to

deterioration of power when the missing value percentage is increased. This method however
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does not account for truly absent proteins. In these cases KNN imputation will cause artificial

values which may not represent the true biological nature of the data.

5.1.1.6 Bayesian Principal Component Analysis (BPCA)

This method assumes that missing values occur randomly and independent of other features.
This assumption is not often true for proteomic data therefore BPCA is not the most ideal

technique for proteomics.

5.1.1.7 Weighted Estimation Procedures

In some situations, good estimates can be obtained through weighted estimation methods. In
fully parametric models, maximum-likelihood estimates can be obtained from the incomplete
data by specialised numerical methods, such as the Estimation Maximisation (EM) algorithm.
Those procedures are more efficient than MI because they do not involve simulation. In most
cases one could perhaps derive a better statistical procedure than MI for any statistical
problem. However in most situations where the missing data is considered an annoyance
rather than the primary focal point, a simpler, approximate solution with good properties can
be preferable to one that is more efficient but problem-specific or difficult to implement.

5.1.2 Constraints to Missing Value Imputation

It should be taken into account that there is a greater degree of uncertainty, following
imputation, than if the imputed values had actually been observed. It is important that the
appropriate technique for imputation is used for the study as applying a non-suitable method
can be more harmful than if the missing values were left as they were. Incorrect imputation
leads to problems such as distorted estimates, standard errors and hypothesis tests (Little,
1987).

Real-life data very rarely conforms to such convenient models and even the very best case
scenario for imputed data is that the model is approximately true. This is especially the case
for the drug biomarker datasets provided by the sponsor company. As described earlier, these
datasets have more than half of the values missing. Imputing all of these values will seriously

skew the data as there are more imputed values than actual values in the model.
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5.1.3 Implementation of Imputation Methods in Biomarker Hunter
5.1.3.1 Choice of Imputation Method for Biomarker Hunter

The chosen imputation model needs to be compatible with the analyses to be performed on
the subsequent datasets. The imputation model should preserve the associations or

relationships among variables that will be the focus of later investigation.

For Biomarker Hunter the choice of imputation method was based on the results of a
comparative study of these techniques (Albrecht et al, 2010). This study compared results
using different imputation techniques to identify the most appropriate method to use for
proteomic biomarker data. This study involved evaluating the imputed datasets against the
original data with respect to:

e Root Mean Squared Error (RMSE)

e Sensitivity

e Specificity

e Precision

e Jaccard Index

e [F-measure

This study found that Minimal Value Imputation (MIN) produces the largest amount of errors
whereas the average imputation method, REPMED, was the best single method for the
imputation of partial datasets. This conclusion suggests that the majority of the missing
values are the result of technical reasons as opposed to the protein or peptide being actually
absent. Both Bayesian Principal Component Analysis (BPCA) and K-Nearest Neighbours
(KNN) approaches work well in cases of proteins or peptides with higher feature presence
(i.e. a lower number of missing spots). When these techniques are conducted on the entire

dataset there is a more error involved.

None of these methods individually give perfect results; however the best results are obtained
when a combination of these techniques are used dependent on the situation. The
combination of MIN and KNN gave the best results in this study (Albrecht et al, 2010).

For those proteins or peptides which have a low feature presence (i.e. below 26%) the best
imputation method is MIN. For those proteins and peptides with a high feature presence (i.e.
above 74%) KNN (with k=15) was seen to be the best approach. This study concluded that
there is no most effective method for those features with a feature presence between 26% and

74%, however the REPMED imputation technique resulted in the fewest errors for this group.
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5.1.3.2 Implementation of Imputation Method in R

In order to ensure the optimum method of imputation is applied to the dataset the Biomarker
Hunter software has the option for selective imputation. The method of imputation is
dependent on the percentage of missing values for each peptide (i.e. the feature presence for

each peptide).

If the user chooses the imputation option then no further actions are necessary, and
imputation will be applied to the dataset. If the clustering option, described in the following
section, is also used then clustering will take place prior to imputation. This is because
clustering aims to reduce the number of missing values rather than replace them with new

values, and therefore increase the feature presence of the peptides.

The feature presence (i.e. Percentage of non missing values) for each peptide is calculated
prior to imputation so these values are called upon for the imputation section of Biomarker
Hunter. The dataset is split into three smaller sections of peptide lists based on the feature
presence. This is illustrated in Figure 45 which shows that the peptides with a low feature
presence will undergo minimal value imputation (MIN). Those with a high feature presence
will undergo K-nearest neighbours’ imputation (KNN), and the remaining data will have
values imputed by the average imputation method (REPMED). The following three sections

describe how the datasets are affected depending on their feature presence.
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Figure 45 - An illustration of how a dataset may be split prior to imputation. Features
with a i) low feature presence undergo MIN imputation ii) high feature presence
undergo KNN and the rest use the REPMED technique.

51321 Data Section with Low Feature Presence

The section of the dataset that has a low feature presence (i.e. less than 25%) undergoes
Minimal Value Imputation (MIN). This is done in R by replacing all of these features with

Zero.

51.3.2.2 Data Section with High Feature Presence

The section of the dataset that has a high feature presence (i.e. larger than 75%) undergoes K-
nearest neighbours’ imputation (KNN). This is done in R using the impute.knn function. The
K Nearest Neighbour (KNN) imputation method is implemented using the R package
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“impute”. This package provides the function to impute missing values in incomplete

datasets using the nearest neighbour averaging algorithm (impute.knn).

5.1.3.2.3 Data Section with a Feature Presence between 26% and 74%

The section of the dataset that has a feature presence between 26% and 74% undergoes the
repeated median method (REPMED). The data is first split into its sample groups. Following
this a median value is calculated for each row (peptide) in each sample group. The missing
values for each peptide are then replaced with the median of values from its group. This is

illustrated in Figure 46.

Sample Groups

Peptide Control Sample Treatment Dose 2
3 5 s [ na | 10 10 | NA NA 20

Sample Groups

Peptide Control Sample Treatment Dose 2
3 5 | s | 75| 10 10| 15| 15 20

Figure 46 - A section of data before and after REPMED imputation

5.1.4 Univariate Results Following Missing Value Imputation

Selective imputation based of the feature presence was conducted to observe the effects it has
on the identification of potential biomarker candidates. Using all four univariate methods a
total of 1,394 features were identified as potential biomarkers following use of the clustering
algorithm. Many of these features occurred in multiple tests. A total of 403 unique features
were identified as potential biomarkers. This is significantly lower than the 1,024 unique

potential biomarker candidates identified when the missing value imputation was not applied.

Table 41 shows the number of times a feature is identified as a potential biomarker candidate.
It shows that 16 features were identified in ten or more univariate group comparisons. Prior to
missing value imputation 35 features were identified in ten or more statistical tests. Once
again this was expected as there are more features with a higher feature presence. When there
are too many missing values it may not be possible to conduct a statistical test. Because the
imputation techniques account for these missing values the tests would be conducted for

those features with an originally low feature presence.
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Table 41 - The comparison of positive hypothesis tests with and without missing value
imputation for Dataset 3.

Missing Values Imputed No Imputation
+ve +ve
Hypothesis Number of Hypothesis | Number of
Tests Features Tests Features
1 115 1 359
2 92 2 279
3 52 3 97
4 28 4 87
5 31 5 49
6 21 6 31
7 22 7 21
8 11 8 40
9 15 9 25
10 8 10 21
11 7 11 10
12 1 12 3
13 1

A list of the strong candidates for potential biomarkers (i.e. features identified in ten or more

statistical tests) following clustering is shown in Table 42.
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Table 42 - A list of the features identified as potential biomarkers in ten or more
univariate tests following the use of missing value imputation. A full version of this table
IS given as an output when using Biomarker Hunter.

Feature Positive Tests
Identifier Count
3062 12
1231 11
2325 11
2956 11
4607 11
5384 11
5688 11
10547 11
38 10
2485 10
3519 10
4902 10
5262 10
5752 10
8209 10
8936 10

To see the overlap of features identified with and without missing value imputation a Venn

diagram is presented in Figure 47. This shows that 218 features were identified in both sets of

statistical analysis. There were also 185 features which were identified as a potential

biomarker following missing value imputation, which were not previously identified. It also

shows that 985 of the original potential biomarker candidate list were not identified following

missing value imputation.
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Figure 47 - A Venn diagram comparing the number of features identified in Dataset 3
prior to missing value imputation and after imputation.

Looking at these results it shows that missing value imputation significantly changes the
number of potential biomarker candidates identified. As stated before the original dataset had
a high number (over 90%) of missing values. This means a large number of the values in the
dataset which has the missing data imputed are modelled values rather than real values. This
was expected to have a significant affect on the statistical analysis.

Feature 9838 was recognised as a feature which was not identified as a potential biomarker
prior to missing value imputation but was identified following missing value imputation. A
boxplot for this feature is presented in Figure 48.
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Figure 48 - A boxplot comparing the four groups of intensity data presented for feature
9838, which was not identified as a potential biomarker prior to missing value
imputation but was identified following missing value imputation.

This feature originally had 23 missing values out of 40. This means it falls into the category
of features which are imputed using the REPMED technique. The missing values are replaced
by a median value of the actual data in the group. The original boxplot does show slight

variation between samples and imputing the missing data may bring out this variation.

A reason for the lower number of features identified as potential biomarkers may have been
due to the fact that the original dataset had a large number of features (i.e. 84,487 feature)
that had a low feature presence (Table 43). The missing values in this group are replaced by

zero. This causes a restriction in the statistical analysis. Because a lot of these features
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contain a large number of zeroes the data becomes essentially constant between groups. This
means a t-test can not be conducted using this data, due to the limitations of the t.test function
in R. This function returns an error when the two groups of data being compared are constant.
Looking at Table 43 it can be seen that it will not be possible to conduct the univariate
statistical tests on a large number of features. This is responsible for the large number of
features that were not identified as potential biomarkers following missing value imputation.

Table 43 - A breakdown of features from Dataset 3 based on the feature presence. The
second column states the number of features in each group.

Imputation Number of | Feature

Method Features Presence

MIN

Imputation 84,487 Low (<25%)
Middle (25%-

REPMED 9,070 75%)

KNN 1,170 High (>75%)

The choice whether imputation should be used or not is not obvious, especially since there is
no list of actual, validated biomarkers to compare these results with. It is a useful tool for
identifying features which have a reasonable amount of actual values (i.e. above 50%). It
makes the variations in the data more apparent. However when there is a large number of
missing values the technique actually hinders the analysis of these features. Ideally data with
a low feature presence (i.e. below 25%) should be excluded from the analysis (Albrecht et al,
2010). This is a preferred solution as it is not really possible to make strong conclusions using
such little amounts of data. If statistical analysis is conducted on these features then ideally

missing value imputation should not be used on this portion of the data.
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5.2 Creation of a Clustering Algorithm to Effectively Reduce the

Amount of Missing Data

5.2.1 Why Imputation Isn’t Enough - The Problem

Although missing value imputation is commonly used and a useful tool in biomarker
discovery, there are limitations to what can be achieved with imputation alone. Although
Biomarker Hunter distinguishes between the qualities of the data and uses the appropriate
imputation method; the number of missing values to begin with is so great that imputation
alone would create a large degree of uncertainty that the imputed values represent the actual
values. Due to the high number of missing values that are typical of the datasets from
biomarker experiments, there is a need for a more intuitive, problem-specific solution to deal

with this issue.

For the scope of this project, there was not much need to deal with truly missing values
(biological missing values). Although these may also be important it is possible to conduct
statistical analysis by ignoring or removing these values prior to data analysis. However there
is a pressing issue to deal with the technical reasons for missing values. This is because

simply ignoring these values can lead to false conclusions.

As determined in Chapter 5.0.1 a major issue with these experiments is the features that may
be incorrectly matched during the mass spectrum or gel spotting stage of the experiment. This
occurs when a feature representing a peptide or protein is incorrectly identified. This can
occur due to a number of reasons which can be illustrated using Figure 49 as an example. If
the mass and retention time windows set in the peak selection or spot detection software are
less (i.e. more accurate) than the accuracy of the mass spectrometry instruments used for the
experiment. This results in cases where a feature (i.e. peak representing a peptide) found in a
particular sample is labelled as a different peptide (feature) in other samples. This may be
because it lies outside the mass/retention time window set by the feature detection software.

As illustrated in Figure 49, feature one (F1) lies outside the mass and retention time window
of feature two (F2), whereas feature three (F3) lies within the window. In some cases it may
be possible that features such as F1 are incorrectly classed as different features even though
they actually represent the same peptide. This occurs when the mass and retention time
window (circle in Figure 49) is less than the accuracy of the mass spectrometer used. It is this

problem that will be dealt with, in this section, using a clustering algorithm.
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Figure 49 - A chart plotting mass vs. retention time for a collection of features from
Dataset 3. The circle represents a mass and retention time window around Feature F2.
F3 lies within the mass and retention time window whereas F1 lies slightly outside this
window.

5.2.2 Method: Reducing the Missing Values by Identifying Mismatched
Features - The Solution

Re-clustering of features provides an alternative approach to imputation which is specific to
the biomarker experiments conducted by OBT. The aim was to create software based in R to
reduce the number of missing values, and subsequently implement this option in the R based

pipeline Biomarker Hunter.

This was achieved by searching for features which are likely to have been mismatched and
then combining the values of these features. The option goes through each feature (Primary
Feature) and firstly finds any features that are potential matches. The hypothesis underlying
this clustering approach is that some features appear as missing because the mass and
retention time windows are too stringent in relation to the accuracy of the analytical tools
used (Mass Spectrometers). This causes certain peptides or proteins to appear as two or more
features rather than one. This clustering option identifies features to cluster together based on:

e Mass and retention time windows

e Missing value Patterns

e Dealing with more than one potential match
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5.2.2.1 Mass and Retention Time Window

The potential matches must lie within the user defined mass and retention time window of the
primary feature. For each feature, the first task carried out by the algorithm is to identify all
other features that lie within the mass and retention time window. The accuracy of the
clustering (i.e. the size of the mass and retention time windows) can be set by the user.
Ideally this level should be set depending on the accuracy, or just slightly outside, the
accuracy of the mass spectrometer. This will allow any features that may actually relate to the
same peptide, as the primary feature, to be identified. Table 44 illustrates an example of a
potential match list, created following this step. It may be possible that a number of these
potential matches may not represent the primary feature so it is necessary to identify which of
the potential matches, truly represent the primary feature. This issue is dealt with using the
missing value pattern of the potential matches.

Table 44 - An example of a potential match list, including intensity values, for a primary
feature. This shows that features 265, 345 and 400 lie within the mass and RT window
of feature 1. NA represents missing values.

Feature # Sample 1-1 | Sample 1-2 | Sample 2-1

1 (Primary

Feature) 12.52 13.26 25.22

265 15.57 15.26 25.63 34.55 35.93
345 15.29 26.99 33.45 33.98
400 24.91 34.11 34.25

5.2.2.2 Missing Value Pattern

Once a list of potential matches has been created, the features that cannot possibly be a match
are eliminated from the list. This section of the algorithm ensures that features that definitely
do not relate to the same peptide are not clustered together. Using the example match list in
Table 44, it can clearly be seen that feature 265 does not represent the primary feature 1
because it does not have any missing values. Feature 345 also does not represent feature 1 as
the missing value pattern does not match (i.e. there is a present value for sample 1-1 in both
the pri