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ABSTRACT 

The thesis covers data fusion for aircraft navigation systems in distributed sensor 

systems. Data fusion methodologies are developed for the design, development, 

analysis and simulation of multisensor aircraft navigation systems. The problems of 

sensor failure detection and isolation (FDI), distributed data fusion algorithms and 

inertial state integrity monitoring in inertial network systems are studied.  

Various existing integrated navigation systems and Kalman filter architectures are 

reviewed and a new generalised multisensor data fusion model is presented for the 

design and development of multisensor navigation systems. Normalised navigation 

algorithms are described for data fusion filter design of inertial network systems.  

A normalised measurement model of skewed redundant inertial measurement units 

(SRIMU) is presented and performance criteria are developed to evaluate optimal 

configurations of SRIMUs in terms of the measurement accuracy and FDI capability. 

Novel sensor error compensation filters are designed for the correction of SRIMU 

measurement errors. Generalised likelihood ratio test (GLRT) methods are improved 

to detect various failure modes, including short time and sequential moving-window 

GLRT algorithms. 

State-identical and state-associated fusion algorithms are developed for two forms of 

distributed sensor network systems. In particular, innovative inertial network sensing 

models and inertial network fusion algorithms are developed to provide estimates of 

inertial vector states and similar node states. Fusion filter-based integrity monitoring 

algorithms are also presented to detect network sensor failures and to examine the 

consistency of node state estimates in the inertial network system.  

The FDI and data fusion algorithms developed in this thesis are tested and their 

performance is evaluated using a multisensor software simulation system developed 

during this study programme. The moving-window GLRT algorithms for optimal 

SRIMU configurations are shown to perform well and are also able to detect jump 

and drift failures in an inertial network system. It is concluded that the inertial 

network fusion algorithms could be used in a low-cost inertial network system and 

are capable of correctly estimating the inertial vector states and the node states. 
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GLOSSARY  

ADS   Air Data System 

AHRS  Attitude and Heading Reference System 

AAIM  Aircraft Autonomous Integrity Monitoring  

BIH   the Bureau International de l’Heure  

CTP   Conventional Terrestrial Pole   

DOF   Degree-Of-Freedom 

DF   Detection Function 

DR   Dead-Reckoning  

FDI   Failure Detection and Isolation  

GLRT  Generalised Likelihood Ratio Test 

GLONASS  Global Orbital Navigation Satellite System  

GNSS   Global Navigation Satellite Systems  

GPS    Global Positioning System 

IMA    Integrated Modular Avionics  

IMU    Inertial Measurement Unit 

INS   Inertial Navigation System 

IRS    Inertial Reference Systems  

LOP    Lines Of Position  

LOS    Lines Of Sight  

LRM   Line Replaceable Modules  

LRU   Line Replaceable Unit 

MSDF   Multi-Sensor Data Fusion  

NSIM   Navigation Solution Integrity Monitoring  

NQI    Normalised Quadratic Innovation 

NQR   Normalised Quadratic Residual 

MW-GLRT  Moving-Window GLRT 

PVAT   Position, Velocity, Attitude, and Time  

PR    Pseudorange 

PRR    Pseudorange Rate 
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SPRT   Sequential Probability Ratio Test  

SRIMU   Skewed Redundant Inertial Measurement Unit 

RAIM   Receiver Autonomous Integrity Monitoring  

RNP    Required Navigation Performance  

WGS-84   World Geodetic System of 1984  
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Chapte r  1  

1 INTRODUCTION 

1.1 Aircraft Navigation Sensors/Systems 

The purpose of aircraft navigation is to determine significant position, velocity, 

attitude, and time (PVAT) information of an aircraft with respect to reference frames. 

These PVAT parameters are referred as to the navigation states in this thesis.  

Aircraft navigational sensor systems, which measure the dynamic motion of an 

aircraft with reference to specific frames, provide continuous inertial data and other 

measurement information that is required by onboard avionics systems for the 

implementation of various functions, including aircraft flight control and guidance, 

navigation computation and attitude determination, flight management and display, 

local motion compensation and inertial system correction and alignment, as well as 

air traffic management. A navigational sensor measures quantities related to one or 

more elements of the navigation states. A set of navigational sensors, which is able to 

determine all the navigation states by using appropriate navigation algorithms, makes 

up a navigation system.  

An aircraft navigation system combines all the measurement information from 

the navigational sensor systems of an aircraft to determine the following parameters 

and information: 

• Kinematic parameters (accelerations and angular rates) 

• Navigation states 

• Trajectory and track parameters 
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• System health status information.  

The main navigation sensors/systems used by aircraft are summarised in Table 

1-1 from the literature survey. These aircraft navigation sensors/systems can be 

categorised as two types: self-contained navigation systems and external aiding 

navigation systems. The self-contained navigation systems perform the navigation 

functions independent of external signals. In contrast, the external aiding navigation 

systems implement the navigation functions through reception of signals from and/or 

transmission of signals to external systems. These two types of navigation systems 

are examined in the following subsections.  

Table 1-1 Aircraft Navigation Sensors/Systems 
System Sensors Coordinates Navigation 

Systems Subsystems Derived States Sensors Raw Data Raw 
Measurements 

INS, 
 
 
AHRS 

Position 
Velocity 
Acceleration 
Attitude 

Inertial sensors Accelerations 
and angular 
rates 

Inertial 
instrument 
frame 

Air Data 
System 

Mach  
Airspeed 
Pressure 
altitude  

Air data sensor, 
Baro-altimeter,  
Air speed 
sensor 

Static and 
dynamic 
pressures, air 
speed 

Air mass/wind 
reference 
frame 

Heading 
Indicator 

Heading Magnetic 
heading sensor 

Earth magnetic 
field 
components 

 

Radar 
Altimeter 

Height above 
ground 

Radar altimeter Range Radar antenna 
frame 

 
 
 
 
Self-
Contained 
Navigation 
Systems 

Doppler Radar Ground 
velocity 

Doppler radar Relative LOS 
range rate 

Radar antenna 
frame 

Space-Based 
Navigation 
Systems 

Position 
Velocity 
Time, Attitude 

GNSS receiver LOS range 
and range 
rate 

WGS84 
reference 
frame 

Ground-Based 
Navigation 
System 

Location  
Height  
Angles 

VOR, LORAN, 
VOR/DME, 
ILS 

Relative 
range and 
angle 

Relative 
reference 
frame 

 
 
 
External 
Aiding 
Navigation 
Systems Relative 

Navigation 
System 

Position 
Velocity 

MIDS (JTIDS) 
PLRS 
 

Relative 
range and 
range rate 

WGS-84 and 
Relative grid 
frame 

1.1.1 Self-Contained Navigation Systems 

A self-contained navigation system is a system that computes aircraft position, 

velocity and attitude relative to a reference frame by means of dead-reckoning (DR) 

techniques without reception of externally generated signals. Using DR techniques, 
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aircraft velocities are determined by integrating the measured aircraft accelerations 

from known initial velocities. Aircraft position is obtained by integrating the aircraft 

velocity from a known initial position. Typical DR procedure for a single axis case is 

illustrated in Figure 1.1 where all initial values are zero. Position and velocity errors 

caused by white noise sensor errors are shown in Figure 1.1(c). This DR procedure 

continuously accumulates sensor errors so that the navigation state errors grow over 

time and are unbounded unless they are constrained by aiding navigation systems. 

This characteristic is a vital limitation of all self-contained navigation systems.  
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Figure 1.1 Dead Reckoning Procedure 

The sensor systems applied for self-contained navigation systems are typically 

inertial sensor systems, air data sensor systems and Doppler radar. An air data system 

provides altitude with respect to mean sea level and true air speed. Doppler radar can 

measure aircraft velocity relative to the ground by transmitting a radar beam to and 

receiving the echo beam from the ground. But, Doppler radar signals are susceptible 

to interference from external signals or the environment. Doppler radar and air data 

system cannot provide all the navigation states, whereas an inertial system alone can 

determine all the navigation states.  

Two basic inertial mechanisations are used to implement an inertial navigation 

system (INS). The first method is known as a stable platform system where a set of 
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mutually orthogonal accelerometers is mounted on a gimballed gyro platform. The 

gyros sense the angular rate of the platform and control the gimbal servos so that the 

platform maintains a stable platform orientation with respect to a known reference 

frame irrespective of the aircraft rotation. The gimbal angles provide a direct readout 

of aircraft attitude angles. The accelerometer triad on the platform provides aircraft 

accelerations relative to the known reference frame. Integration of the accelerations 

can derive the velocity and position of an aircraft. The second method is referred to 

as strapdown inertial system where gyros and accelerometers are mounted on a rigid 

frame that is strapped down to an aircraft. The inertial sensors measure accelerations 

and angular rates of the aircraft relative to inertial space. The aircraft attitude angles 

are then derived by performing a so-called analytical platform algorithm, commonly 

known as the strapdown attitude determination algorithm. The accelerometer outputs 

are transformed to this analytical platform frame and are then integrated to obtain the 

velocity and position in a navigation reference frame.  

Although inertial systems exhibit some disadvantages of the dead reckoning 

method, their high dynamic characteristics and short-term measurement accuracy are 

ideal for aircraft attitude determination and flight control systems. In addition, other 

airborne avionics systems require inertial information to stabilise and compensate for 

local motion.  

1.1.2 External Aiding Navigation Systems 

An external aiding navigation system is a radio navigation system and consists 

of two parts: airborne subsystems and external signal source systems. An airborne 

subsystem is a signal-processing unit, which receives and processes the coded signals 

transmitted by external signal sources to facilitate position fixing. An external signal 

source system is typically a network of transmitters that transmit coded signals and 

can be further classified as ground-based radio navaid systems (e.g., VOR/DME, ILS 

and LORAN) and space-based navigation systems, also known as Global Navigation 

Satellite Systems (GNSS). Two communication modes are used in external aiding 

navigation systems: one-way and two-way modes. In the one-way communication 
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mode, an airborne subsystem passively receives signals and data from an external 

signal source system whereas in the two-way mode, an airborne subsystem actively 

transmits signals and receives replies from external signal sources. External aiding 

navigation systems are usually based on an algebraic geometry principle to determine 

the aircraft navigation states. The geometry is shaped by lines of sight (LOS) or lines 

of position (LOP) from external signal sources to an airborne receiver, as depicted in 

Figure 1.2(a) and (b). The coordinates of the points, which are the positions of the 

aircraft and external transmitters, are represented by a set of nonlinear or linear 

algebraic equations. The forms of and the constraints on the algebraic equations 

depend on the navigation mechanisms of external aiding navigation systems. 

Navigation mechanisms applied to external aiding navigation systems are 

primarily based on the timing/ranging techniques, angle measurement and Doppler 

techniques. The angle measuring technique measures the azimuth angle of an aircraft 

with respect to an external reference transmitter and is usually used in ground-based 

radio navaid systems. In other words, this method computes the direction of a radial 

line from the transmitter to the aircraft; that is, the coefficient of a linear algebraic 

equation, as illustrated in Figure 1.2 (b). Therefore, the position of an aircraft is the 

solution of a set of linear algebraic equations. Two transmitters provide a unique fix 

in angle measuring systems. As a result, the uncertainty of aircraft location caused by 

the measurement errors increase with distance from the aircraft to the transmitters, as 

shown in Figure 1.2(d). VOR/DME is a typical angle/range measurement navigation 

system.  

The Doppler positioning technique, which measures the rates of changes of the 

relative ranges along the signal LOS between an aircraft and external signal sources, 

was used in the first generation of GNSS, known as the Transit system. The Doppler 

technique can provide an accurate velocity measurement. However, the uncertainties 

of position solutions, caused by integrating the Doppler measurement errors, increase 

over time. For example, the positioning accuracy of the Transit system degraded with 

time. 

 

 



 
INTRODUCTION 
 

1.1 Aircraft Navigation Sensors/Systems 

 

 6 
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as the basis for the LOS range measurements. The elapsed time is the time difference 
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techniques have been applied to ground-based radio navigation systems and space-

based navigation systems, including LORAN and GPS. The LOP geometry of GPS is 

the surface of a sphere whereas the LORAN system is a location hyperbola. Hence, 

the position of an aircraft is computed in terms of the solution of nonlinear algebraic 

equations. 

In comparison with dead reckoning techniques, a significant advantage of the 

timing/ranging techniques is that the accuracy of the navigation systems based on the 

timing/ranging techniques does not degrade over time or distance because the 

navigation states are derived from a set of nonlinear algebraic equations rather than a 

set of integral equations. Moreover, the uncertainty of a position solution is restricted 

to a circle or hyperbola of location or the surface of a position sphere instead of the 

radial line in the angle measuring systems. The Doppler positioning technique can be 

also combined with the timing/ranging techniques used in GNSS navigation systems. 

Consequently, GNSS affords long-term stability of accuracy for the position and 

velocity solution. A GNSS receiver is inexpensive, small size and low power. It is 

these advantages that make GNSS an ideal external navigation system to aid all self-

contained navigation systems, particularly inertial systems. 

The accuracy of external aiding navigation systems is affected by the geometry 

of the positions of aircraft and external transmitters[1]. In space-based navigation 

systems, the radio ranging signals transmitted by satellites propagate through the 

atmosphere to airborne receivers, the signal dispersion and refraction caused by the 

ionosphere and troposphere introduce signal propagation path delays in the range 

measurements, as shown in Figure 1.2 (c). In addition, the uncertainty of satellite 

orbits, and satellite and receiver clock errors also introduce range measurement 

errors. As a result, the measured time difference is not perfect and the resultant range 

is known as the pseudorange. 

External aiding navigation systems and other self-contained navigation systems 

(such as Doppler radar) are generally used to aid inertial navigation systems. Such 

systems are referred to as navaid systems in this thesis. 
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1.1.3 Required Navigation Performance 

The concept of Required Navigation Performance (RNP) was established by 

the International Civil Aviation Organization (ICAO) to develop aircraft navigation 

standards for all phases of aircraft operations. In ICAO Document 9650, RNP is 

defined as a statement of the navigation performance accuracy, integrity, continuity 

and availability necessary for operations within a defined airspace. RNP can include 

both performance and functional requirements, which is indicated by the RNP type. 

The RNP types specify the minimum navigation performance accuracy required in an 

airspace. These standards are intended for system designers, manufacturers, and 

installers of avionics equipment, as well as service providers and users of the systems 

for global operations. Four primary parameters are used to define RNP requirements: 

accuracy, integrity, continuity and availability, and their definitions in this thesis are 

based on published descriptions[2][3][4][5].  

RNP accuracy is defined in terms of the total system error (TSE) with respect 

to the reference flight trajectory required for each phase of flight. The TSE comprises 

two error components: flight technical errors and navigation system errors. The 

accuracy requirement is for the TSE to remain within a normal performance region, 

under fault-free conditions, at least 95% of the time.   

RNP integrity is defined as a measure of the trust which can be placed on the 

correctness of the information supplied by a navigation system. Integrity includes the 

ability of a navigation system to provide timely and valid alerts to flight crew when 

the navigation system must not be used for its intended purpose. Integrity risk is the 

probability that an undetected failure results in the TSE exceeding the containment 

region.  

RNP continuity is the ability of a navigation system to perform navigation 

functions without interruption during a certain period of time. Continuity risk is the 

probability that a navigation system will be interrupted and will be unable to provide 

navigation information over the intended period of operation. More specially, 

continuity is the probability that the navigation system will be available for the 

duration of operation.  
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RNP availability is an indication of the ability of a navigation system to supply 

usable service within a specified coverage area, and is defined as the portion of time 

that reliable navigation information is presented to the flight crew. Availability is 

specified in terms of the probability of the navigation function being available at the 

beginning of the intended operation. 

RNP accuracy and integrity are achieved by developing innovative data fusion 

methods while RNP continuity and availability are satisfied by fault-tolerant design. 

In this thesis, fault tolerance is the ability of an aircraft navigation system to continue 

satisfactory operation in the presence of one or more hardware or software failures.  

The aim of this thesis is to investigate data fusion methodologies for the design 

and development of aircraft multisensor navigation systems in order to fulfil the RNP 

requirements. 

1.2 Multisensor Data Fusion  

1.2.1 The Concept of Multisensor Data Fusion 

Data fusion refers to the combination of data from a variety of sensors that are 

able to act in cooperation such that the total effect is greater than the sum of effects 

taken independently. The concept of multisensor data fusion (MSDF) was initially 

developed for military applications[6-8] and afterwards applied to civil industries[9-12], 

including battlefield surveillance, automatic multi-target tracking and recognition, 

guidance and control of autonomous vehicles and robotic systems. Traditionally, 

multisensor data fusion is considered as a data/information processing technology, 

covering a wide range of disciplines, for example, estimation and identification 

theory, control engineering, statistics and decision theory, signal processing and 

pattern recognition, artificial intelligence and knowledge engineering. Owing to the 

multidisciplinary nature of multisensor data fusion and a wide range of applications, 

researchers have described the concept of multisensor data fusion from diverse 

perspectives, focusing on either the description of functions to be completed or data 

processing methods used by multisensor data fusion systems. In order to improve 
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communications among researchers and system developers, the US Joint Directors of 

Laboratories (JDL) Data Fusion Working Group has developed a functional model of 

multisensor data fusion and defined multisensor data fusion as a multilevel, 

multifaceted process dealing with the automatic detection, association, correlation, 

estimation, and combination of data and information from single and multiple 

sources[7][9]. The JDL model and definition have been accepted by many data fusion 

researchers and primarily served for military applications, for example, command, 

control, communication, computer and intelligence (C4I) systems. Other application- 

oriented MSDF models[10][11], established by the US National Institute of Standard 

and Technology (NIST), are mostly used for industrial control systems and 

intelligent systems, such as robotic systems. The JDL and NIST models, as well as 

other models are summarised by Kokar and Kim[12], who have identified three major 

sources of misunderstanding about multisensor data fusion, including lack of precise 

methods and standards to represent multisensor data fusion architectures, low-level 

design solutions against the common practice of software engineering and definitions 

of multisensor data fusion. 

However, these proposed models are not directly applicable to the design of 

multisensor aircraft navigation systems because they ignore the consideration of 

selections of sensor systems and architectures that are the basis of fault tolerance of 

aircraft navigation systems. Moreover, the functional descriptions are not concerned 

with methods to fulfil the RNP requirements.  

1.2.2 Data Fusion for Aircraft Navigation Systems 

Traditionally, the terms integrated (integration), combined (combination) and 

hybridised (hybridisation) are used to describe multisensor-based aircraft navigation 

systems. Integration (or combination) of multiple independent navigation systems for 

aircraft navigation is referred to as fault-tolerant design[13] and the resultant system is 

known as a fault-tolerant navigation system. The integration of multiple cooperative 

sensors to form a navigation system is known as an integrated navigation system. 

These two forms of aircraft navigation systems have been developed since the 1970s. 
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More interests have also been given to both the development of fault-tolerant system 

architectures[14-23] and the improvement of integrated filter architectures and filtering 

algorithms[42-64]. However, the traditional fault-tolerant navigation systems are a 

static fault tolerance design where multiple navigation systems are structured in a 

federated architecture and the system fault detection is completed by use of simple 

weighted mean methods or majority voting methods. This traditional approach to 

design cannot effectively exploit the advantages of redundant sensor systems and a 

fault-tolerant system cannot be dynamically reconfigured by using redundant sensor 

systems.  

A recent approach is the use of distributed modular avionics architecture where 

multiple inertial sensor systems are located in several positions in an aircraft in order 

to increase survivability and provide the localised compensation for other airborne 

avionic systems[20][33]. This distributed architecture affords an enhanced level of fault 

tolerance by reconfiguration and sharing spare computing resources, which can be 

dynamically allocated to functioning sensor systems. 

The term multisensor data fusion used in aircraft navigation applications has 

appeared in recent years with the advent of  

• Low-cost, small-size and low-mass navigation sensors (e.g. optical gyros, 

MEMS inertial sensors and GNSS sensors),  

• High-speed, large memories and embedded microprocessors, and  

• Distributed and integrated modular avionics architectures.  

Significant advancements in the inertial sensor technologies and predictable 

improvements in the performance, low cost, small size and low mass of the new 

generation of inertial sensors will enable widespread use of inertial sensor networks 

integrated with navaid systems (especially GNSS) in many commercial and military 

aircraft systems. The use of an inertial network architecture not only improves the 

accuracy and fault tolerance of aircraft navigation systems, but also increases the 

survivability of the navigation system and provides local motion compensation and 

stabilisation for other avionic systems. The novel integration of emerging navigation 

sensor technologies and distributed modular avionics architectures based on high-

speed data buses and embedded microprocessors will change the traditional methods 
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used in the design and development of aircraft navigation systems.  

However, the literature survey undertaken in this thesis has not identified any 

rational definitions or comprehensive MSDF models, which can be used to guide 

researchers and engineers to develop aircraft multisensor navigation systems. For 

example, Kayton and Friend, Huddle and Brown[1], in the book Avionics Navigation 

System, describes multisensor navigation as a process of estimating the navigation 

variables of position, velocity, and attitude from a sequence of measurement from 

more than one navigation sensor. Obviously this definition implies development of 

various novel state estimate algorithms, but it does not clearly indicate how to design 

and develop an aircraft multisensor navigation system.  

This thesis treats multisensor data fusion as a system engineering methodology 

that can guide system developers, by using appropriate sensor allocations, failure 

detection and isolation techniques and data fusion algorithms, to design, develop and 

implement a highly reliable multisensor-based navigation system in order to obtain 

required navigation system performance in terms of accuracy, integrity, continuity 

and availability. This definition covers the whole system design process from system 

requirements to system architecture design. 

1.3 Aims 

As the existing multisensor data fusion models are either application-oriented 

intelligent systems or military C4I systems, it is proposed to develop a generalised 

MSDF model for aircraft navigation systems. This model will provide a framework 

for system engineers and researchers to design and develop multisensor navigation 

systems. 

A further motivation for this study is the emerging concepts and technologies 

in aviation, including seamless navigation/positioning and free flight concepts, and 

the applications of MEMS inertial technologies and integrated modular avionics 

architectures. A major development, which underpins the recent developments in 

navigation systems, is global navigation satellite systems (GNSS). These concepts 

and technologies will be used in future Air Traffic Management/Communication 
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Navigation Surveillance (ATM/CNS) systems. The core of these innovative concepts 

is the techniques for high precision positioning. It is expected that modern navigation 

systems, based on the fusion of various multiple redundant navigation sensors, can 

provide 10 degree-of-freedom (DOF) parameters in a 4-dimensional space, including 

time, position and velocity, and attitude values. In addition, techniques developed for 

the MSDF-based navigation systems can also be applied to the spacecraft industries 

and intelligent transportation systems.  

Recently, a great deal of interest has arisen in manufacturing processes that 

allow the monolithic integration of MEMS with driving, controlling, and signal 

processing electronics. With the development of MEMS inertial sensors and high-

speed and large memory microprocessor, complex data fusion algorithms and multi-

state sensor error dynamic models will be able to be implemented in a single 

microprocessor in a distributed integrated modular avionics architecture.  

This study also originated from an EU Framework 5 project, the SHINE (smart 

hybridised integrated navigation equipment) programme, which was to develop a 

low-cost redundant inertial/GNSS-based attitude integrated navigation system for 

aircraft. In this project, the author was responsible for performing the SHINE system 

safety analysis, evaluation of the different SRIMU configurations, and development 

and simulation of multi-model Kalman filtering algorithms and FDI algorithms for 

SHINE system. During my PhD study, these researches were further extended into 

the development of inertial network data fusion algorithms for wider applications of 

airborne distributed inertial systems. Most research results obtained from this PhD 

programme were delivered into the SHINE project.  

1.4 Research Objectives 

This thesis examines the problem of multisensor data fusion for aircraft 

navigation in distributed sensor network systems and investigates data fusion 

methodologies for the design, analysis, development and simulation of multisensor 

aircraft navigation systems. It is expected that such multisensor navigation systems 

can improve the system reliability and the navigation performance in terms of 
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accuracy, integrity, availability and continuity and enhance the fault tolerance of 

aircraft navigation systems by using FDI and integrity monitoring techniques. The 

specific objectives of the study programme are: 

• To gain a theoretical understanding of the problems of multisensor data fusion 

for aircraft navigation and to develop a generalised multisensor data fusion 

model for aircraft navigation systems.  

• To investigate methods for evaluation and analysis of various architectures of 

redundant sensor configurations and to develop error dynamic models for 

skewed redundant inertial measurement units (SRIMU). 

• To establish the normalised navigation and attitude determination equations of 

inertial reference systems and other navaid systems, and to analyse their error 

dynamics.  

• To develop methods for the detection and isolation of various sensor failures 

and for monitoring of the integrity of the navigation states and inertial vector 

state in inertial network systems in order to ensure the safety of multisensor 

aircraft navigation systems. 

• To develop innovative distributed data fusion algorithms in order to enhance 

the accuracy of the distributed inertial states and navigation states estimates. 

• To develop a simulation system for the evaluation of the performance of 

inertial sensors of varying quality in an inertial network system, and FDI and 

distributed data fusion filter algorithms developed in this thesis. 

• To undertake a series of case studies and simulations of sensor configurations. 

This thesis will contribute new understanding to the design methodologies used 

in the integration of distributed low cost sensors for aircraft navigation. The research 

programme will cover the development of software tools for multisensor data fusion 

and performance analysis, and provide insight into the effectiveness of these systems 

in the form of simulation models of sensor systems and navigation systems. 
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1.5 Outline of the Thesis 

Chapter 2 reviews traditional data fusion methods and architectures applied to 

integrated navigation systems, including various fault-tolerant navigation system 

architectures, data fusion filter architectures and filtering algorithms, sensor failure 

detection and isolation techniques and integrity monitoring methods. The advantages 

and disadvantages of these traditional methods and architectures are summarised and 

compared. Based on the literature survey, a generalised MSDF model is presented as 

a frame for development of multisensor aircraft navigation system in this thesis. 

Chapter 3 introduces the mathematical formulations of statistical estimation 

theory and hypothesis testing theory, which are required in this thesis to understand 

the development of multisensor data fusion algorithms for multisensor aircraft 

navigation systems. Estimation theory is a powerful mathematical tool that has been 

used in various engineering fields to accurately estimate the states of complex 

dynamic systems and to implement the most effective control of the systems. This 

chapter first introduces conventional Kalman filter algorithms, including linear and 

extended Kalman filters. The information form of the Kalman filter is then given in 

order to deduce various distributed data fusion filter algorithms.  

Statistical testing theory is an auxiliary tool that is used to further confirm the 

validity of sensor data and the estimated system states. This chapter also introduces 

Bayesian detection and Newman-Pearson detection problems and the statistics of the 

Kalman estimate errors and residuals (innovations). 

Chapter 4 first introduces various coordinate systems used in this thesis and 

evolution of the inertial technology, and examines the performance of different-grade 

inertial sensors. The major efforts of this chapter are to establish the normalised 

navigation equations of major navigation systems and to analyse their error dynamic 

models, including inertial systems and global navigation satellite systems (GNSS). 

These normalised navigation, attitude determination and error dynamic equations 

constitute the mathematical foundations to design, develop and simulate multisensor 

data fusion filters. 

Chapter 5 analyses and evaluates redundant sensor system configurations and 
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develops sensor-level data fusion methods. The main purpose of sensor-level data 

fusion is to provide highly reliable and accurate sensor data for subsequent system–

level data fusion modules and an ability to detect sensor failures and reconfigure 

SRIMU systems and inertial state vectors in sensor network systems in the event of 

sensors failures. Two detection methods are developed to improve the generalised 

likelihood ratio test (GLRT) method for monitoring sensor failures of different 

modes. This chapter also presents SRIMU error compensation filters to enhance the 

performance of the GLRT-based methods. This chapter provides the basis for the 

design of fault-tolerant navigation systems with highly reliable integrity. 

Chapter 6 addresses the problem of distributed sensor network systems and 

develops data fusion methods for distributed sensor network systems, including 

inertial measurement (data) algorithms, state fusion algorithms and inertial network 

integrity monitoring algorithms. For the first time, this chapter presents inertial 

network sensing models and develops dynamic relationships among the inertial 

network nodes. Two kinds of inertial sensor network architectures are identified in 

this chapter, each with two different communication modes. In the first kind of the 

distributed systems, all of the sensor systems directly or indirectly measure identical 

system states. In the second kind of distributed systems, different sensor subsystems 

observe their local states. However, all of the local system states are dynamically 

related though dynamic relationships. For these different distributed systems, four 

distributed data fusion filters are presented in this chapter. 

Chapter 7 develops a simulation system environment to test and evaluate the 

FDI and integrity monitoring algorithms, and the data fusion algorithms developed 

during this study programme. For this purpose, this chapter describes the overall 

architecture of this software simulation system and the sub-architectures of the 

inertial simulation system and the GPS simulation system. The results of simulation 

studies are presented in this chapter. 

Chapter 8 summarises the work of this thesis and provides final conclusions. 

Finally, areas of further work are recommended.  
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Chapte r  2  

2 MULTISENSOR DATA FUSION FOR AIRCRAFT 
NAVIGATION: OVERVIEW & METHODOLOGY  

2.1 Introduction 

This chapter reviews existing fault-tolerant navigation system architectures and 

data fusion methods for the development of multiple sensor navigation systems. In 

Section 2.2, conventional fault-tolerant architectures used for the design of aircraft 

navigation systems are outlined and briefly compared. The progression of various 

Kalman filter architectures and filtering algorithms employed in many integrated 

aircraft navigation systems are assessed and their advantages and disadvantages are 

summarised in Section 2.3. Section 2.4 examines the evolution of sensor failure 

detection and isolation (FDI) and integrity monitoring techniques, which are used in 

GNSS and inertial sensor systems. On the basis of the literature survey, Section 2.5 

presents a generalised multisensor data fusion model (MSDF), which will be used for 

the development of future aircraft multisensor navigation systems. 

2.2 Overview of Fault-Tolerant Navigation Systems 

Fault-tolerant navigation systems have been in use for over 30 years. The 

design methods incorporate fault-tolerant strategies and data fusion techniques to 

enhance the reliability and safety and also to improve the performance of aircraft 

navigation systems. During this development, three forms of redundancy have been 
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proposed: hardware redundancy, software redundancy and analytical redundancy. 

Figure 2.1 outlines the fault-tolerant design methods used in aircraft navigation. 

Hardware redundancy takes advantage of multiple navigation sensors/systems to 

achieve fault tolerance and to improve the performance of a navigation system. This 

approach is based on the fact that measurements from various sensor systems may be 

independent, redundant, complementary or cooperative. These different types of 

measurements can be fused by means of sensor data fusion algorithms so that the 

overall system performance is better than that each system can obtain independently. 

Hardware redundancy techniques have been widely applied to many avionics 

systems[21-23].  

Software redundancy makes use of different software versions to increase the 

safety and reliability of navigation solutions by avoiding possible errors caused by 

software design and computing failures. However, software redundancy cannot 

increase the accuracy of navigation solutions.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Hierarchical Structure of Fault-Tolerant Design Methods  
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Analytical redundancy is based on the knowledge of rotational kinematics and 

translational dynamics of an aircraft to enhance hardware redundancy[24], and is 

usually used to generate additional redundant information for the diagnosis of sensor/ 

system failures rather than the improvement of accuracy of navigation systems[25]. 

Therefore, the analytical redundancy is considered as a failure detection method in 

many practical systems.  

Hardware redundancy plays an essential role in the design of fault-tolerant 

navigation systems and the level of fault tolerance depends on both the architectures 

of hardware redundant systems and the data fusion methods implemented. Two types 

of hardware redundancy have been developed for the design of fault-tolerant aircraft 

navigation systems, system-level redundancy and sensor-level redundancy, which are 

described in the following subsections. 

2.2.1 System-Level Redundancy 

A system-level redundancy architecture is illustrated in Figure 2.2 where each 

INS in a triplex or quadruplex system must operate independently. It is also known 

as an independent system architecture because there is no data communication 

between these INSs. Each inertial system can also be integrated with other navaid 

systems to improve the navigation accuracy and to control the accumulation of 

inertial sensor errors with time. Fault-tolerant management checks the consistency of 

the outputs of all INSs to diagnose a failed inertial system, typically by using a 

majority-voting method or a weighted-mean method. In order to provide fail-

operational/fail-safe operation, the fault-tolerant navigation system must have at least 

three INSs. In other words, nine pairs of inertial sensors (accelerometers and gyros) 

are needed where each INS is a conventional orthogonal configuration.  

The main advantages of this architecture are that the design and integration are 

simple and that it does not need complex fault-tolerant techniques for diagnosis of 

system failures. However, if any one sensor in one INS fails, then this INS has to be 

removed from the fault-tolerant architecture. As a result, this architecture cannot 

exploit the benefits of redundant inertial sensors to dynamically reconfigure an 
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aircraft navigation system in the event of one INS failure.  

 

 

 

 

 

 

 

Figure 2.2 System-Level Redundancy Architecture 

This traditional redundant architecture is still used in many current military and 
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three independent INSs. Each navigation processor can combine the outputs of all 

IMUs with data from navaid systems to estimate the aircraft motion states, and to 

perform sensor failure detection and isolation, as well as navigation system 

reconfiguration. This IMU-level architecture significantly increases the level of fault 
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tolerance and effectively makes use of existing IMU equipment. But, the resultant 

fault-tolerant system is still expensive. Considerable efforts are being made to reduce 

volume, weight and cost. 

 

 
 

 

 

 

 

 

 

Figure 2.3 IMU-Level Redundancy Architecture 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Multisensor Redundancy Architecture 
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2.4 where the multisensor suite consists of a dodecahedron configuration. Six inertial 

sensors are installed perpendicular to the parallel faces of a regular dodecahedron. 

Outputs from the multisensor suite are sent to several redundant processors, which 

individually perform navigation and attitude computations, sensor FDI functions and 

navigation system reconfiguration.  

Multisensor redundancy is a cost-effective method that exploits the benefits of 

emerging inertial sensor technologies and high-speed embedded microprocessor 

systems. Multisensor technology provides the basis for the future generations of 

navigation systems. 

2.2.3 Distributed Redundant Architecture 

The distributed redundant architecture is a new fault-tolerant concept, which 

was developed with the introduction of distributed and integrated modular avionics 

architectures. For example, a current combat platform may have a total of twelve 

traditional IMUs of various quality providing the inertial state vector information 

required by avionics systems and weapon systems[33]. In this architecture, inertial 

sensor systems are mounted at several locations in an aircraft not only to meet the 

fault tolerance requirements of navigation systems but also to provide highly 

accurate local inertial data for other systems, for example, weapon system controls, 

radar stabilization and motion compensation. The concept of an inertial network used 

for aircraft avionics was initially proposed by Kelley, Carlson and Berning[32] in 1994 

and then further developed by Berning, Howe and Jenkins[33] in 1996 and by Kaiser, 

Beck and Berning[34] in 1998.  

However, the research published to date does not provide a systematic study of 

this inertial network architecture, specially in terms of data fusion methods, dynamic 

alignment and correction of distributed inertial sensor systems, and distributed sensor 

failure detection and isolation techniques. Therefore, there is a need for systematic 

investigation of data fusion methodologies in the design, development and simulation 

of fault-tolerant aircraft navigation system based on distributed inertial network 

architectures.  
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2.3 Data Fusion Filter Architectures 

Kalman filtering techniques have been developed for applications in aircraft 

navigation, control and guidance since the 1970s. During this period, various Kalman 

filter architectures and filtering algorithms have been proposed as prime data fusion 

methods for fusing multiple navigation sensors/systems in order to achieve the 

required navigation performance. The data fusion filter architectures currently used 

in aircraft integrated navigation systems can be categorised as four types: centralised, 

cascaded, federated and distributed data fusion architectures.  

2.3.1 Centralised Filter Architecture  

The centralised filter architecture is shown in Figure 2.5. Measurements or data 

from all navigation sensors/systems are processed in a central data fusion filter to 

obtain the accurate estimates of the navigation states. It is the most common filter 

design implemented in current integrated navigation systems, for example, INS/GPS/ 

Doppler integrated systems[36], Doppler/GPS integrated systems[37] and almost all 

tightly-coupled GPS/inertial systems[35][38][39] where raw GPS measurements and INS 

outputs are combined in a centralised filter to estimate the navigation state errors and 

sensor errors, including the GPS receiver clock errors, inertial sensor errors and baro-

altimeter errors.  

  Numerous covariance analysis methods and numerical computations of the 

standard and extended Kalman filters have been reported[40][41]. Theoretically, the 

centralised filter can obtain optimal estimates of the aircraft motion states. However, 

with the increasing numbers of sensor systems in aircraft, the filtering algorithms can 

be quite complex and the centralised filter computation can be time-consuming as a 

result of the large state dimension in the dynamic models of the filter. Accordingly, 

the centralised filter may not necessarily be a proper approach to the development of 

fault-tolerant multisensor navigation systems[49][62][67]. To overcome the weaknesses 

of the centralised filter, other filter architectures have been proposed in the recent 

years. 
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Figure 2.5 Centralised Data Fusion Architecture 

2.3.2 Cascaded Filter Architecture  

The cascaded filter architecture is depicted in Figure 2.6 where the outputs of 

one filter are used as inputs to a subsequent filter. The filter outputs include the 

estimates of the system states and their error covariances. This filter architecture has 

been especially proposed for integration of existing navigation systems that contain 

their own Kalman filters.  

 

 

 

 

 

 

 

Figure 2.6 Cascaded Data Fusion Architecture 
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and loosely coupled GPS/INS integrated navigation systems where the GPS-based 

navigation solutions derived by an GPS internal filter and INS data are combined in a 

separate cascaded filter external to the GPS receiver to estimate the navigation state 

errors and the inertial sensor errors. The GPS filter estimates the GPS receiver clock 

errors. However, the GPS filter is usually based on a simplified model and may not 

output computed error covariances. Consequently, the cascaded filter may not have 

access to covariance information. 

Schlee et al[42] develop a cascaded filtering algorithm to improve the accuracy 

of an existing GPS/inertial system, known as a master INS, which utilised an internal 

GPS filter to estimate the master INS navigation solutions and the GPS clock errors. 

This cascaded algorithm also provides transfer alignment between the master INS 

and a second inertial system. This study has shown that improvement in the accuracy 

of the master INS and the obtainable accuracy of the transfer alignment largely 

depend on the update rate of the cascaded filter. However, correlations of the state 

errors caused by the internal GPS filter are ignored in the measurement noise matrix 

of the cascaded filter. From Kalman filter theory, the non-diagonal elements of the 

state error covariance matrix of the GPS filter (which represent the correlations) can 

only be ignored if the filter contains highly accurate estimates of the navigation states 

and the values of non-diagonal elements are far less than the main diagonal elements. 

Otherwise, the performance of the cascaded filter may be degraded as a result of 

ignoring the correlation. 

Wade and Grewal[43] analyse the effect of this correlation on the accuracy of 

cascaded GPS/INS systems and their results show that the accuracy of the cascaded 

systems depends on the correlation matrix in many cases. When the state errors 

estimated by the internal GPS filter are closely correlated, the cascaded filter may 

incorrectly estimate the navigation state errors and the inertial sensor errors. Wade 

and Grewal further suggested adjusting the measurement noise matrix by using 

adaptive process noise in the cascaded filter. However, development of this adaptive 

process and identification of the measurement noise matrix are not reported.  

In order to improve the robustness of the cascaded filter to input conditions and 

adverse environments, Karatsinides[44] proposes two methods for dealing with the 
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GPS position biases and identifying the statistical values of the measurement noise 

for the cascaded filter. The GPS positioning solution contains bias resulting from 

satellite clock errors, ephemeris errors, ranging signal propagation delay and the 

geometry of satellites. Although this GPS position bias is unobservable and cannot 

be estimated in the GPS filter, it can influence the accuracy of cascaded GPS/INS 

systems through the error covariance matrix. The first method models the GPS 

position biases as a first-order Gauss-Markov process and then uses these biases as 

the consider-states of a Schmidt-Kalman filter. But, the part of the Schmidt-Kalman 

gain matrix related to the consider-states is set to zero in order to ignore the 

estimated consider-states. The second method computes the variances and 

covariances of the errors of the navigation states derived by the GPS filter using 

conventional computation equations of variance and covariances provided that the 

update rate of the cascaded filter is less than the GPS filter. 

The cascaded filter architecture is readily implemented by means of existing 

navigation systems and needs minimisation of required modifications for customised 

applications. In practice, most existing navigation systems do not output covariance 

data of the navigation state errors. Consequently, the cascaded filter is extremely 

dependent upon the methods that are used to estimate covariances of the primary 

filter and the performance of the primary filter. Moreover, tuning of the primary filter 

is of critical importance to the performance of the cascaded filter[43].  

2.3.3 Federated Filter Architecture  

The federated filter architecture was initially recommended by Carlson[46] for 

integrating multiple navigation sensor systems in order to provide a high level of 

fault tolerance and accuracy. This is actually a two-stage filtering architecture, as 

shown in Figure 2.7 where all parallel local filters combine their own sensor systems 

with a common reference system, usually an inertial navigation system, to obtain the 

local estimates of the system states. These local estimates are subsequently fused in a 

master filter to achieve the global estimations. By using a common reference system, 

all parallel filters have a common state vector. The federated filter is generally 
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designed on the basis of two different strategies[46][47]. In the first method, the local 

filters are designed independent of the global performance of the federated filter and 

estimate n sets of local state vectors and their associated covariances by using their 

own local measurements. These n sets of the local state estimates are then weighted 

by their error covariances to obtain the global state estimates. The second method is 

based on the global optimality of the federated filter and the local filters are derived 

from the global model of the federated filter and estimate n versions of the global 

states from local sensor measurements. These n versions of estimates are weighted 

by their error covariances to obtain the global optimality. The master filter is a 

weighted least-squares estimator. Furthermore, Carlson[48] developed a square-root 

form of the federated filtering algorithm to increase the computational precision and 

the numerical stability of the federated filter.  

 
 
 

 

 

 

 

 

 

 

 

 

Figure 2.7 Federated Data Fusion Architecture 
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Levy[50] uses dual state suboptimal analysis to model the true world state vector 

and develops covariance analysis algorithms for assessing the suboptimality of both 

the cascaded and the federated filters. The dual state contains the states of the first 

and second filters in the case of the cascaded filter (or the states of all parallel filters 

and the master filter in the case of the federated filter). Levy’s results have shown 

that the cascaded and federated filters are seldom optimal in comparison with the 

centralised Kalman filter. As the master filter updates become sparser, the actual 

performance of the federated filter degrades in comparison with the centralised filter. 

The federated filter is only optimal (or equivalent to the centralised filter) when the 

full global state is modelled in each local filter and the master filter is run at the 

update rate of the local filters.   

Tupysev[51] develops a federated filtering algorithm based on the  principles of 

state vector augmentation and the rejection of partial information. Unlike Carlson’s 

filter, the global state model that is used to derive the parallel local filters contains a 

common state vector plus individual local bias state vectors instead of all the states 

of the local filters. The local state is a subset of the global states.   

However, the use of a reference navigation system as a common information 

source of all local filters in the federated filter architecture means that common mode 

failures in the reference system can corrupt the performance of these filters. This 

influence can further degrade the level of fault tolerance and FDIR functions. This 

problem seems to have been ignored in current designs of federated integrated 

navigation systems. In addition, this federated filter architecture and corresponding 

filtering algorithms are not applicable to integration of distributed inertial sensor 

systems with navaid systems because there are no common system states in the 

distributed inertial sensor systems. 

The federated filter has been applied to several multisensor navigation systems, 

for example, GPS/INS/SAR/terrain aided navigation and tracking systems[52-54] and 

is sometimes referred to as the decentralised filter[55][56]. To avoid confusion, the term 

decentralised is used as a synonym of distributed in this thesis.  
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2.3.4 Distributed Filter Architecture  

The distributed filter architecture was originally developed for target tracking 

and identification where distributed sensor systems (possibly in different platforms) 

are combined in order to estimate and identify various moving targets in military 

applications[57]. Liggins et al[58] give a comprehensive survey of the distributed 

fusion architectures for target tracking. Distributed filtering techniques used for the 

design and development of fault-tolerant navigation systems have appeared since the 

1990s[55]. Different from the filter architectures described above, distributed filter 

architectures have no standard model. From the perspective of use of information, 

there are two main data fusion approaches to the design of distributed filters, known 

as measurement fusion and state fusion. In state fusion, the local states estimated by 

the local filters are fused in a central filter to obtain global estimations. By contrast, 

in measurement fusion, various subsets of all the sensor measurements are fused by 

means of a bank of Kalman filters to obtain multiple state estimation versions of the 

global system states, which are compared or weighted to obtain the more accurate 

global state estimation and to detect sensor or system failures. However, there may 

be no central data fusion in a fully distributed multisensor data fusion system. In fact, 

the distributed filter architecture offers the most flexible scheme in the design of 

multisensor navigation systems.  

Kerr[55] proposes a decentralised filtering structure which uses a voter/monitor 

method to check outputs of all local filters for failure detection, but the distributed 

filter algorithms developed for this structure are not explained in detail. In terms of 

the filter architecture, Kerr’s version is similar to the federated filter architecture 

given by Carlson[46]. The differences between them are the individual methods used 

for detection and isolation of subsystem failures. For example, Carlson’s filter uses 

filter residuals to detect sensor and subsystem failures whereas Kerr’s filter uses the 

voter/monitoring methods based on Gaussian confidence regions of the estimated 

states. However, some filtering algorithms, for example, Speyer’s parallel filtering 

algorithms[62] or others, may be used for this decentralised structure. Strictly, Kerr's 

structure is not a distributed filter architecture and it lacks systematic study on the 



 
OVERVIEW & METHODOLOGY 
 

2.3 Data Fusion Filter Architectures 
 

 30 

corresponding filtering algorithms.  

Brumback and Srinath[59] describe a distributed filtering mechanism. This is a 

hierarchical filtering architecture where the local filters fuse different subsets of all 

measurements for local state estimates and failure detection and isolation. A master 

filter combines the outputs of failure-free local filters to yield the global estimation. 

The local filters in the distributed filter architecture can have system models, which 

are different from the global model. The cascaded and federated filter algorithms are 

special cases of the distributed filter architectures. 

Several distributed filtering algorithms have been developed since the 1980s 

for the design of various distributed control systems, target tracking systems and 

navigation systems[60-69]. Speyer[60] designed a distributed filtering algorithm in 

which each of K local filters has its own local sensor measurements and the same 

state model. Each local filter computes the global estimate of the system state vector. 

The information shared between these local filters consists of the local estimates, the 

local error covariances, and an additional (locally computed) data-dependent term, 

which is a dynamic compensation to account for the correlation between the local 

estimates. Speyer’s filter is a fully distributed filtering architecture and has a high 

level of fault tolerance. However, by using the same state model, this filtering 

algorithm cannot be used in a distributed inertial sensor system where the local state 

vector is needed for specialised purposes, for example, local motion compensation.  

Willsky et al[61] consider a problem where two local filters have state models 

which are different from the global model. Each local filter processes its local 

measurements and a fusion algorithm (based on the global model) computes a 

dynamic correlation correction term, combining the local estimates to obtain the 

global estimate. A necessary and sufficient condition for recovering the global state 

from the local states is that a relationship must exist between the observation matrix 

of the global state model and that of the local state models. This relationship is 

explained as a static matrix transformation. In other words, the local state vector is a 

subset of components of the global state vector. This algorithm has been extended to 

the design of a multisensor navigation system[59]. However, these algorithms imply 

that the local and the global states are represented in the same coordinate system and 
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this is not necessarily true for distributed inertial sensor systems. 

Hashemipour et al[62] introduce decentralised Kalman filtering algorithms for 

three types of multisensor networks: sensors collected, time sequential measurements 

and a hybridisation of these two types. In Hashemipour’s filter, each local filter has 

the same state model as the central filter and the observation matrix of each local 

model corresponds to one sub-matrix of the observation matrix of the global model. 

Each local filter computes the global estimation and the local error covariance that 

are subsequently fused in a central filter to obtain the global optimal estimation. 

Accordingly, this filtering algorithm is similar to Speyer’s filter. But it uses the 

information form of the Kalman filter and does not need feedback from the central 

filter to the local filters. Although this algorithm can be used to solve target-tracking 

problems, it cannot be used for distributed multisensor navigation systems because 

the local subsystem states are different in a distributed inertial sensor system. 

Hong[63][64] introduces a distributed multisensor integration algorithm in which 

the local measurements, together with the previous global estimate obtained via the 

communication network, are locally processed to obtain the local state estimate and 

the local error covariance. These local estimates (state and covariance) are fused in a 

central filter to obtain the global estimate. Because the local state and covariance 

predictions are derived from the previous global estimates, the local filters have no 

the state models. However, the rotation matrixes and the translation transformations 

are introduced to establish the relationships between the local states and the global 

(central) state. Moreover, this algorithm was designed to minimise the uncertainties 

of these transformations. It should be noted that the same relationships are also used 

for measurement transformations from the local nodes to the central node. This is not 

necessarily true in distributed inertial sensor systems, especially when a nonlinear 

relationship exists between the measurements and the states. In comparison with 

Speyer’s filtering algorithm, this method simplifies the complexity of the distributed 

filtering algorithms. However, the local states greatly depend on the global states 

because this method lacks local dynamic models. 

Roy et al[65] proposes a square root filtering structure where parallel local filters 

have a smaller dimension than the global filter. Paik et al[66] develops a gain fusion 
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algorithm for decentralised parallel Kalman filters to obtain computation-efficient 

suboptimal estimation results. Raol et al[67] describe a decentralised square-root 

information filtering scheme where all information fusion is processed locally at each 

node and there is no central fusion. These algorithms improve the computational 

precision and numerical stability of the existing distributed filtering algorithms. 

A fully distributed filtering architecture and information fusion algorithm are 

developed, where no central data fusion centre is needed[68][69]. Each local filter has 

its own local system model and processes the local measurements and information 

assimilated from other filters to obtain a global estimate of the system state. 

However, there is still a key problem to be considered; the dynamic relation between 

the local states must be determined, especially if the local state models are different. 

Berg et al[70] describe the static relation between the local states and the global state 

by an approach similar to Speyer’s method[60].  

Multisensor data fusion for aircraft navigation aims at the improvements of the 

performance in terms of the three aspects: 

• Aircraft navigation system RNP parameters;  

• Fault tolerance of navigation system; and 

• Estimation of local motion states.  

The majority of previous developments have generally focused on the first two 

aspects. In other words, existing distributed filtering algorithms have preserved the 

global optimality of the navigation states, which is a desirable feature and serves as a 

benchmark for other avionic systems. However, these methods rarely consider the 

dynamics of the local subsystems and the dynamic relationships between the local 

subsystems. Some algorithms still require extensive computations of local and global 

inverse covariances. Very few studies have addressed estimation of the local states. 

In fact, distributed inertial sensor systems consisting of several IMUs mounted in an 

aircraft affords both redundant inertial measurement information and distributed 

inertial state vectors, which can be used both for aircraft navigation, guidance and 

control, and also for the implementation of local motion compensation functions. 

These IMUs measure local motion with reference to specific coordinate frames 

defined by their installation positions, and have individual error dynamics. Therefore, 
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the local states must be accurately estimated to determine the local dynamic motion. 

The development of distributed filtering algorithms can also be used to investigate 

methods for dynamic alignment and calibration of distributed IMUs. Problems 

related to these considerations have not been addressed in the open literature and this 

thesis addresses the solutions of these problems by developing innovative distributed 

data fusion filters algorithms. 

2.4 Multisensor Navigation System Integrity 

Multisensor aircraft navigation systems can be subject to unforeseen changes 

resulting from sensor failures, the uncertainty of system models and variations in the 

operating conditions, which can lead to the degradation of the overall navigation 

performance. Such changes are known as failures even if they may not represent 

actual failures of physical sensors or components. In order to ensure the reliability of 

an aircraft navigation system, the data fusion mechanism has to detect and isolate 

sensor or system failures from the navigation system and also monitor the integrity of 

the navigation states derived by the fusion filter. These two important procedures are 

usually known as sensor/system failure detection and isolation (FDI) and navigation 

solution integrity monitoring (NSIM). Both functions must check the consistency and 

availability of data. The FDI procedure assesses data from sensor systems and issues 

a confidence range of the sensor data. The NSIM procedure confirms the integrity of 

the navigation solutions and provides alarms and system status information to flight 

crew.  

A typical FDI or NISM algorithm has in general two objectives:  

• To detect the failures,  

• To isolate the failed sensors or components.  

In some cases, an additional objective may be included to estimate the failure 

signals. FDI and NISM procedures rely on redundant data provided by hardware and 

software and analytical redundancy to fulfil the above objectives. A representative 

FDI or NSIM procedure usually consists of three steps, as shown in Figure 2.8. The 

first step, the Residual Generator, processes redundant data to generate a decision 
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function (referred to as test statistic), which is a function of the data residual and a 

measure of the inconsistency of redundant data. Ideally, the decision function is 

independent of the true navigation states or measured states. To decrease the 

influence of noise on the decision function, a pre-processing filter may be used to 

enlarge the signal-to-noise ratio of the failure signals so that failure signals can be 

more easily detected and identified. The second step, the Statistical Test, establishes 

a decision threshold on the basis of certain criteria that are a measure of both the 

performance of the FDI/NISM algorithms and the accuracy of sensor measurements 

or the navigation states. The third step is a decision-making procedure that compares 

the test statistic with the decision threshold to verify if a sensor or component failure 

has occurred or if there are abnormalities in the navigation states or sensor data. 

Depending on the form of the decision functions, the statistical testing procedure can 

be performed by using Gaussian, Rayleigh, 2χ - or t -distribution statistical tests.  

 

 

 

 

Figure 2.8 A Typical FDI/NSIM Procedure 
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smaller magnitude failure signals. The snapshot technique has the advantage that it 

does not rely on any assumptions on how a data fusion filter attains its current state 

whereas the sequential technique can improve the FDI reliability because it uses 

history data of the system. 

2.5 Snapshot FDI Techniques 

Many snapshot FDI algorithms have been developed over the past decades and 

the majority of these methods are based on the parity vector/space techniques. Evans 

and Wilcox[71] introduce a test matrix method and Gilmore and Mckern[72]  present a 

parity equations comparison method. Both methods are used to detect and isolate 

failures of redundant inertial sensor systems in a dodecahedron configuration. The 

parity equations comparison tests a set of 15 parity equations each containing output 

values of four sensors while the test matrix method uses a 15x6-dimensional matrix 

with each row consisting of coefficients of one parity equation and performing a test 

on a different subset of four sensors. By minimising the maximum measurement 

residual magnitude, Potter and Deckert[73] develop a so-called minimax FDI 

algorithm for non-orthogonal redundant inertial systems in which any set of four 

sensors are tested and compared. Generally, these methods all need to compute and 

compare each parity equation and employ a least-squares estimator to estimate the 

measured states. Obviously, it becomes a time-expensive procedure for a large 

number of redundant sensors.  

Wilcox[74] gives comparisons of eight earlier FDI algorithms for strapdown 

redundant inertial systems in a dodecahedron configuration. The differences between 

these algorithms are in the approaches used to generate test signals. One method uses 

a Kalman-Bucy filter for failure correction while all the other algorithms compute 

the measured states by means of weighted least-squares estimators. However, these 

algorithms did not link the integrity of the navigation system to the performance of 

the FDI algorithms.  

To overcome the shortcomings of earlier FDI methods, generalised likelihood 

ratio test (GLRT) methods[75][76] have been introduced for the detection and isolation 
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of failures in redundant inertial sensor systems. The GLRT methods are based on the 

maximum likelihood estimate of residual magnitudes where the resultant test statistic 

is a function of the parity vector. One of the advantages of GLRT algorithms is that 

the performance of the FDI algorithms is related to the integrity performance of the 

navigation system and the failed signals can theoretically be estimated. However, the 

GLRT algorithms are not able to detect two simultaneous sensor failures. 

Hall et al[77] designed a 12-state Kalman filter to compensate the parity vector 

by eliminating the effects of normal sensor errors on test signals. This compensation 

technique enhances the effect of true failure signals on the resultant parity vector and 

improves the GLRT performance. However, after the parity space transformation, the 

filter state represents a combination of the sensor errors rather than physical sensor 

errors. In other words, the state estimates no longer correspond to physical sensor 

errors and consequently, the practical sensor errors cannot be dynamically corrected. 

Sturza[78][79] describes the parity vector approach to the detection of jump 

failures of skewed redundant inertial systems and GPS signals, as well as statistical 

methods for the determination of detection thresholds of RAIM and FDI algorithms. 

Brown and Sturza[80] further analysed the effect of geometry of the GPS satellites on 

the parity vector-based RAIM.  

Sturza and Brown[81] give two RAIM algorithms CFAR (constant false alarm 

rate) and CPOD (constant probability of detection) for GPS integrity monitoring. In 

the CFAR algorithm, the detection threshold is based on a constant false alarm rate. 

In the CPOD algorithm, the detection threshold varies in order to provide a constant 

missed alarm rate. Clearly, these methods are not suited to SRIMU configurations 

because the measured states and the navigation states are the same for GPS RAIM. 

For SRIMU FDI, the navigation states are derived from the measured states by 

solving a set of differential equations.  

The mathematical background of the RAIM methods is given by van Diggelen 

and Brown[82]. A number of GPS signal failure detection algorithms, known as 

receiver autonomous integrity monitoring (RAIM) methods, are based on the parity 

vector technique[83]. 
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These proposed parity vector-based FDI or RAIM algorithms can effectively 

detect jump failures of navigation sensor systems or GPS signals. However, they are 

not able to detect any soft failures arising from drifts or two or more simultaneous 

sensor failures. 

2.5.1 Sequential FDI Techniques 

Several sequential FDI algorithms have also been developed to detect both 

jump and time-drift failures in dynamic systems. Sequential FDI techniques can be 

classified as two types. One type directly uses the history data of the sensor outputs. 

Wald originally introduced a sequential probability ratio test (SPRT) algorithm to 

make a binary decision of one mode (degradation) against an alternative mode 

(normal). Chien and Adams[84] present an improved SPRT algorithm whose design 

criterion is based on the minimization of the mean detection time to detect system 

failures subject to constraints on the false alarm and missed alarm probabilities. The 

time minimization is implemented using positive feedback control of the likelihood 

function. It is also used for the detection of jump mode failures.  

The other type implicitly employs the history data of system outputs. This type 

of sequential FDI method is usually based on analytical redundancy techniques that 

require the development of dynamic models of detected systems and this FDI method 

is known as a model-based FDI method. Willsky and Jones[85] describe an improved 

GLRT method for detecting abrupt changes in linear dynamic systems by using the 

sequential system outputs. Willsky[86], Gertler[24] and Patton[25] summarise various 

FDI methods used in dynamic systems. The majority of these model-based FDI 

methods apply various GLRTs to test the Kalman residuals for the presence of sensor 

failures or abrupt change of system states. They may also detect system degradation 

but cannot detect time-drift sensor failures. From a survey of the literature, many 

existing sequential or model-based FDI algorithms are often used to detect jump 

failures. 

Kerr[87] proposes a method known as the two-confidence region comparison 

approach to failure detection. One confidence region is determined by the Kalman 
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predictor and is centred about the expected unfailed state and reflects the uncertainty 

of the system noise. The other confidence region is created by the Kalman estimator 

and is centred about the Kalman estimate. This region reflects the uncertainties of the 

system states and the measurement noise. A failure is detected by comparing these 

two confidence regions. As Kerr states in his paper, as long as the two confidence 

intervals overlap, the true state may be in both confidence intervals; however, when 

both confidence intervals are disjoint, the true state cannot be in both intervals 

simultaneously and a failure is declared. However, the increasing number of sensors 

makes the computation of failure thresholds very complex. In addition, because an 

identical system dynamic model is used in the state predictor and the state estimator, 

uncertainties of the filter dynamic model may cause false alarms. In the design of an 

INS/GNSS integrated filter, the filter dynamic model can be derived by disturbing 

the inertial navigation equation about the nominal navigation states. In this case, the 

sensor drift failures can contribute to errors in the nominal navigation states. This 

disturbance error further affects both the predictor and estimator. This effect may 

lead to missed alarms. Accordingly, this method does not apply to error dynamic 

models where the errors of the navigation states are used as the filter state rather than 

the navigation states.  

NSIM methods are based on sequential FDI techniques, which analyse the 

covariance matrix and residuals (or innovations) of the data fusion filter. The most 

direct method is to compare different versions of the navigation states estimated by a 

bank of Kalman filters. For example, Brenner[88] proposes a solution separation 

method for GPS/INS integrated system. In this method, a bank of Kalman filters is 

used to obtain both full-set solutions and sub-set solutions. The test statistic and the 

decision thresholds are determined on the basis of the horizontal separations between 

the full-set solution and sub-set solutions, and the Kalman filter covariance matrices. 

Diesel et al[89] give an autonomous integrity monitored extrapolation (AIME) 

algorithm used in the Litton GPS/IRS integrated system. AIME is an open control 

system using range differential measurements as the filter observables, which are the 

differences between the observed GPS pseudoranges and the computed ranges based 

on the predicted navigation states and the satellite positions. The difference between 
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the time-updated (predicted) state and the measurement-updated (estimated) state of 

a Kalman filter are used as the test statistic to monitor the navigation states. Hanlon 

and Maybeck[90] analyse the effects of mismodelled input matrix, output matrix and 

state transition matrix on the residuals resulting from a bank of Kalman filters, each 

using a different filter model to describe the same dynamic system. They also 

develop a hypothesis testing algorithm using these residuals to detect failure status of 

a flight control system and to estimate the true system model. Although this method 

has advantages in the design of a reliable flight control system, it cannot be used in 

distributed inertial sensor systems. However, this method may be suitable for the 

federated filter architecture or traditional multisensor-based navigation systems 

where the main purpose is to estimate the centralised navigation states. 

All of the published sensor FDI algorithms that have been located are capable 

of detecting hard sensor failures in clustered inertial sensor system architectures. 

Although some of these FDI algorithms can enhance the performance of sensor FDI, 

they cannot improve the accuracy of an SRIMU system. Earlier NSIM methods were 

developed for special GPS/INS integrated navigation systems with a centralised 

filtering architecture. However, they are not amenable to expansion and cannot be 

used in distributed inertial network systems. In this thesis, several improved FDI and 

NSIM methods are presented to detect the drift sensor failures and the navigation 

state abnormalities in distributed inertial network systems. The compensation filters 

are developed for the correction of SRIMU measurements.  

2.6 Multisensor Fusion Model for Navigation Systems 

Multisensor data fusion covers fault-tolerant design and data fusion methods. 

As identified in Chapter 1, the JPL MSDF model and other models do not apply to 

the development of distributed multisensor navigation systems. From the definition 

of multisensor data fusion given in Chapter 1, a multisensor data fusion model for 

aircraft navigation systems is a conceptualised framework in which sensor network 

topology architecture, data communication mechanism, system functions and related 

operational modes are defined. The data fusion methodologies are then developed to 
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implement the required system functions and operational modes. This thesis presents 

a generalised MSDF model for the design, analysis, development and simulation of 

multisensor aircraft navigation systems, as illustrated in Figure 2.9.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.9 Generalised MSDF Model for Aircraft Navigation Systems 

2.6.1 Sensor Topology Network 

The sensor topology network provides a hardware foundation for the design 

and development of multisensor navigation systems and describes distributions and 

allocations of various sensor systems in the network. The architecture of a sensor 

topology network is specified according to the system design requirements. A sensor 

network topology can be a serial, parallel or hybridised architecture; or a completely 

packaged, distributed network or combination of both. Parallel and distributed sensor 

network architectures are the most commonly used sensor topologies in modern 

aircraft. 

Optimisation of the topological architectures of a sensor network determines 

the optimal sensor system configurations and allocations in an aircraft navigation 

system. The allocations of sensor systems depend on the requirements of both the 

aircraft navigation system (e.g. survivability and fault tolerance) and other avionics 
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systems for the inertial and navigation states. For example, many avionics systems 

require highly reliable, continuous inertial data to implement individual functions, as 

stated in Section 1.1. Some inertial systems must be located close to specific avionics 

systems to provide the precise local motion states for stabilisation of specific 

avionics systems, such as weapon pointing systems and imaging radars.  

The data communication specifies the architecture of a communication 

network and the requirements for data buses in order to exchange data among 

individual sensor systems and to transmit data to other avionics systems. The data 

protocol and transfer speed must be selected so that the data communication network 

can meet the requirements that data fusion algorithms require from sensor data. 

The evaluation of technology obsolescence is a key to the mitigation of ageing 

technologies and to the application of emerging technologies to meet the long-term 

operational lifetime requirements for aircraft navigation systems. 

Data fusion methodologies can then be developed so that the resultant data 

fusion algorithms, in combination with a data communication network, can fuse 

various sensor data to achieve the required performance for aircraft navigation and 

other airborne applications.   

2.6.2 Sensor-Level Data Fusion 

Sensor-level data fusion is preliminary data fusion. It analyses and qualifies all 

sensor measurements to provide highly reliable sensor data for subsequent system-

level data fusion. It can also transmit health status information of all sensor systems 

to the sensor management. At this level, the following functions are performed:  

• Sensor corrections and compensations to obtain accurate sensor data;  

• Data alignment in time and space to ensure that associated measurements 

of all sensor systems are time-synchronised and common-coordinated;  

• Detection of sensor failures and isolation of failed sensors if necessary;  

• Reconfiguration of sensor systems based on certain sensor reconfiguration 

strategies.  

Sensor failure detection and isolation (FDI) is the core of this functional module. 
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2.6.3 System-Level Data Fusion 

System-level data fusion is the kernel of a multisensor data fusion system. It 

fuses data from sensors and subsystems in terms of optimised data fusion algorithms 

to estimate the required system states and to monitor the integrity of the estimated 

states by performing specific error covariance analysis and statistical tests. At this 

level, the following functions are undertaken:  

• State estimation. This function covers the design and development of both 

data fusion filter architectures on the basis of the topological architecture of 

sensor network and optimal data fusion algorithms suitable for the filter 

architectures;  

• Navigation solution integrity monitoring and system FDI. These functions 

are required in order to obtain the integrity of the navigation system. They 

are concerned with analysis and evaluation of the state error covariance and 

residual information of the data fusion filter;  

• Alignment and correction of inertial systems in distributed sensor network. 

This function is concerned with development of data fusion algorithms to 

dynamically align and correct distributed inertial systems. 

• Reconfiguration of system models. This function implements fault-tolerant 

design in a multisensor navigation system. It is provided to fulfil system 

reconfiguration strategies and operational modes.  

2.6.4 Sensor/System Management 

Sensor/system management performs three types of management functions: 

sensor network system management, data communication management and human-

machine interface management. According to the health status information from the 

sensor-level data fusion and system-level data fusion modules, and command inputs 

from the pilot, the sensor network system management determines the operational 

modes and reconfiguration strategies of the navigation system, and transmits the 

associated commands to the two data fusion modules. The sensor-level data fusion 
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module and the system-level data fusion module then separately reconfigure the 

sensor systems and navigation system to meet the required navigation performance 

and fault tolerance of the navigation system. Sensor/system management strategies 

are specific to the architecture of sensor network and fault tolerance requirements. 

Data communication management manages the data exchange among the 

nodes of the sensor network system according to the sensor/system reconfiguration 

strategies and external commands. Communication management strategies allow 

sensor systems to be added or failed sensor systems to be removed from the sensor 

network architecture without affecting the data communication architecture and 

operation of the complete system. Human-machine interface management provides a 

user-friendly interface for flight crew. 

In operation, the sensor/system management dynamically allocates tasks to the 

functionary sensor systems and software components to execute the required system 

functions. 

Investigations to be performed in this thesis will follow this generalised MSDF 

model. 

2.7 Summary  

This chapter has reviewed developments of fault-tolerant aircraft navigation 

systems and data fusion methods based on a wide range of literature survey. The 

main issues covered in this chapter are as follows: 

1. Review of three fault-tolerant navigation system architectures, which have 

been employed in aircraft navigation systems. 

2. Analysis and comparison of four forms of data fusion filter architectures, 

which are currently used in integrated aircraft navigation systems. 

3. Description of FDI and NSIM techniques applied to inertial sensor systems 

and GNSS.  

4. Development of a generalised multisensor data fusion model, which will be 

used to design and develop future aircraft multisensor navigation systems. 

5. Identification of several main problems existing in the design of current 
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multisensor fusion navigation systems, including detection of time-drift 

sensor/system failures, SRIMU error compensation, and multisensor data 

fusion methods and distributed state vector integrity monitoring strategies 

for distributed dynamic systems, especially inertial network systems. This 

PhD study will address the solutions of these problems.  
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Chapte r  3  

3 STATISTICAL ESTIMATION AND TESTING 
THEORIES 

3.1 Introduction 

This chapter introduces mathematical formulations on statistical estimation 

theory and hypothesis testing theory, which are required in this thesis to understand 

the development of multisensor data fusion algorithms. Estimation theory is a 

powerful mathematical tool, which has been used in various engineering fields to 

accurately estimate the states of complex dynamic systems and to implement the 

effective control of the systems. Statistical testing theory is an auxiliary tool that is 

used to further confirm the validity of sensor data and the estimated system states. In 

aerospace engineering, these theories have successfully applied to the development 

of aircraft guidance, navigation and control systems. Section 3.2 introduces the 

conventional Kalman filter algorithms and analyses the statistical characteristics of 

the Kalman filter. Section 3.3 gives the information filter and Section 3.4 describes 

statistical hypothesis testing methods. Finally, a summary is given in Section 3.5. 

3.2 The Kalman Filter 

3.2.1 Stochastic Process Model  

Since the Kalman filter was originally presented by R. E. Kalman, it has 

become a standard estimation method that is widely used in the development of 

navigation systems. In order to develop various forms of Kalman filter algorithms, 
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the dynamic model of a stochastic process (system) must be constructed in the form 

of state space representations. In this thesis, the Kalman filter is used as a state 

estimator and does not perform any control functions. Therefore, the control input to 

the system is not considered in the system model. 

The stochastic process model develops dynamic relations between the states of 

a stochastic process. It consists of a set of the first-order differential equations driven 

by random input noise, which describe the evolution of the stochastic system state in 

time. It can be represented in a generalised formulation in the continuous-time form 

as follows: 

00 )(         );(]),([]),([)( xxnxGxfx =+= ttttttt�  (3.1) 

where f  is an −n known function vector, t  denotes time, )(tx  is an −n system state 

vector at time t  with the initial value of 0x , )(tn  is an −q  additive process noise 

vector and ]),([ kk ttxG  is an qn ×  function matrix. The process noise )(tn  takes into 

account the perturbations to the system.  

The discrete-time form of this continuous-time system model is needed for the 

computer implementation of the Kalman filter and can be formulated as follows: 

0011 )(          );(]),([],),([)( xxnxGxfx =+= ++ tttttttt kkkkkkk  (3.2) 

where kt is the sampling time. 

The discrete-time process model can be deduced by integrating the continuous-

time process model between successive sampling times. The associated process noise 

and control input vectors must also be redefined to reflect the integration[41][91]. 

Hereafter, only the discrete-time process model will be considered in this thesis. 

For the stochastic process model, the Kalman filter assumes that the sequence 

of the process noise )( ktn  is a white Gaussian process with zero mean and known 

covariance, and is independent of the system state )( ktx . The sequence of the system 

states )( ktx  is a Gauss-Markov process. The initial system state )( 0tx  has known 

mean and covariance. Therefore, the following assumptions[91] are given: 

))(),(ˆ(~)( kkk ttt Pxx N  
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)(})](ˆ)()][(ˆ)({[ T
kkkkk ttttt Pxxxx =−−Ε  

))(,0(~)( kk tt Qn N  

kikik ttt δ)()]()([ T Qnn =Ε  

0)]()([ T =Ε ik tt xn  

where N  represents the Gaussian (normal) distribution, )(ˆ ktx is the estimate or mean 

value of )( ktx , )( ktP is the symmetric, positive semidefinite covariance matrix of the 

state errors, ][⋅Ε  denotes the expectation operator, )( ktQ is a covariance matrix of the 

process noise, which is positive semidefinite and kiδ  is the Kronecker delta function. 

3.2.2 Stochastic Measurement Model  

The stochastic measurement model develops the relations between the system 

states and physical quantities measured by the sensor systems. It can be represented 

in a generalised formulation in the discrete-time form as follows: 

)(]),([)( kkkk tttt wxhz +=  (3.3) 

where h  is an −m known function vector, and the vectors )( ktz and )( ktw  are an 

−m measurement vector of a sensor system and an −m additive measurement noise 

vector, respectively. The measurement noise accounts for effects of the measurement 

system errors on the measured physical quantities.  

For the stochastic measurement model, the Kalman filter assumes that )( ktz  is 

a Gaussian distributed random variable at each sampling time and the sequence of 

the noise )( ktw  is a white Gaussian process with zero mean and known covariance 

and is independent of )( ktn  and )( ktx , separately. The following assumptions[91] are 

then given: 

))(,0(~)( kk tt Rw N  

kikik ttt δ)()]()([ T Rww =Ε  

0)]()([ T =Ε ik tt xw  

0)]()([ T =Ε ik tt nw  
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where )( ktR is a positive definite covariance matrix of the measurement noise.  
However, in some stochastic processes and measurement systems, it may be 

not appropriate to represent both the process noise and the measurement noise by 

using a white Gaussian process. Hence, state augmentation techniques are frequently 

used to adjust the system model and the measurement model to fit the requirements 

of the Kalman filter[41][91]. 

3.2.3 Stochastic Estimation Model  

The Kalman filter estimates the state of a stochastic process using the process 

and measurement models with the assumptions given in Sections 3.2.1 and 3.2.2. 

Two estimates of the state are distinguished: the estimate of the state )( ktx , )(ˆ +
ktx , is 

a conditional estimate conditioned on the measurement history up to the current time 

kt , whereas the estimate of the state )( ktx , )(ˆ −
ktx , is an estimate conditioned on the 

measurement history up through the previous sample time 1−kt . )(ˆ −
ktx is known as the 

predicted state derived from the process model with the time update. The associated 

conditional mean and covariances are defined as follows: 

)}]({)([)(ˆ kkk ttt zxx Ε=+  

)}]({)([)(ˆ 1−
− Ε= kkk ttt zxx  

Defining the errors corresponding to these two estimates as 

)(ˆ)()(~ ++ −= kkk ttt xxx  

)(ˆ)()(~ −− −= kkk ttt xxx  

then the covariances of these errors can be defined as follows: 

})}({)](ˆ)()][(ˆ)({[)](~)(~[)( TT
kkkkkkkk tttttttt zxxxxxxP +++++ −−Ε=Ε=  

})}({)](ˆ)()][(ˆ)({[)](~)(~[)( 1
TT

−
−−−−− −−Ε=Ε= kkkkkkkk tttttttt zxxxxxxP  

The estimation process of the Kalman filter is illustrated in Figure 3.1 where 

the predicated state and the current measurement are combined by the Kalman filter 

to obtain the current state estimate. 
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Figure 3.1 The Estimation Process 

3.2.4 Linear Kalman Filter  

The linear Kalman filter is a standard Kalman filter applicable to linear 

stochastic processes. The Kalman filter models are formulated as follows: 

)()()(),()( 1111 −−−− +Φ= kkkkkk tttttt nGxx           (3.4) 

)()()()( kkkk tttt wxHz +=             (3.5) 

where Φ  is an nn ×  state transition matrix and H  is an nm ×  measurement matrix. 

The predicted state and measurement are computed as follows[41]: 

)(ˆ),()(ˆ 11
+
−−

− Φ= kkkk tttt xx             (3.6) 

)(ˆ)()(ˆ −− = kkk ttt xHz              (3.7) 

then the covariance of  the predicted state error is: 

})]()()(~),()][()()(~),({[         

})}({)](ˆ)()][(ˆ)({[         

)](~)(~[)(

T
11111111

1
T

T

−−
+
−−−−

+
−−

−
−−

−−−

+Φ+ΦΕ=

−−Ε=

Ε=

kkkkkkkkkk

kkkkk

kkk

tttttttttt

ttttt

ttt

nGxnGx

zxxxx

xxP

 
According to the assumptions given in Sections 3.2.1 and 3.2.2, the above equation 

can be simplified as follows:  

)()()(),()(),()( 1
T

111
T

11 −−−−
+
−−

− +ΦΦ= kkkkkkkkk ttttttttt GQGPP         (3.8) 

Defining the innovation )( ktr as 

)()(~)()(ˆ)()( kkkkkk tttttt wxHzzr +=−= −−           (3.9) 

then the covariance of the innovation is computed as: 

)( ktz  

)( −
ktx  )( +

ktx  Predict the State by 
using Process Model 

Measurement Model 

Kalman Filter 
Estimator 
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)()()()(        

)]()([)(
T

T

kkkk

kkk

tttt

ttt

RHPH

rrS

+=

Ε=
−

           (3.10) 

And the covariances of the innovation and predicted state error are  

)()()](~)([)( T
~

−− =Ε= kkkkk ttttt PHxrS xr            (3.11) 

)()()]()(~[)( TT
~ kkkkk ttttt HPrxS rx

−− =Ε=            (3.12) 

Therefore, )()( T
~~ kk tt xrrx SS =  

With the assumption that the prior state and measurement )(ˆ −
ktx  and )(ˆ −

ktz  are 

known, the current measurement )( ktz  can be used to update the prior state estimate 

in accordance with the following equation 

)()()(ˆ)(ˆ kkkk tttt rKxx += −+             (3.13) 

or      
)()()(ˆ)]()([         

)](ˆ)()[()(ˆ)(ˆ

kkkkk

kkkkk

ttttt

ttttt

zKxHKI

zzKxx

+−=

−+=
−

−+

           (3.14) 

where )( ktK  is  a blending factor to be determined. Then, the error covariance of the 

updated state estimate )(ˆ +
ktx , )( +

ktP , can be computed as follows: 

})]()()(~))][(()(~){[(         

})](ˆ)()][(ˆ)({[         

)](~)(~[)(

T

T

T

kkkkk

kkkk

kkk

ttttt

tttt

ttt

wKxKHIKwxKHI

xxxx

xxP

−−−−Ε=

−−Ε=

Ε=

−−

++

+++

 

Note that the a priori estimation error )(~ −
ktx is independent of the measurement noise 

)( ktw , therefore, 

)()()()()()()()()( TT
kkkkkkkk ttttttttt KRK]HK[I]PHK[IP +−−= −+  (3.15) 

An optimal blending factor )( ktK , which minimise the mean-square estimation error 

and is known as the Kalman gain, can be obtained by the optimisation of Eq. (3.15) 

as follows[41]  

)()()()( 1T
kkkk tttt −−= SHPK  (3.16) 

Expanding Eq. (3.15) and substituting Eq. (3.16) into the resultant equation leads to 

)()()()()( −−+ −= kkkkk ttttt PHKPP  (3.17) 

or      )()]()([)( −+ −= kkkk tttt PHKIP  (3.18) 
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or      )()()()()( T
kkkkk ttttt KSKPP −= −+  (3.19) 

These three expressions for )( +
ktP  fail to assure both the positive definiteness and 

symmetry of the error covariance update, and are valid only for the Kalman optimal 

gain. In contrast, Eq. (3.15), known as the Joseph form, can maintain the symmetry 

and the positive definiteness of the error covariance propagation and is valid for any 

value of gain.  

The mechanism of the standard Kalman filter algorithm is summarised in Table 

3-1. 

Table 3-1 Standard Kalman Filter Algorithms 

 

 

 

 

 

 

 

 
 
 

3.2.5 Extended Kalman Filter  

The extended Kalman filter is used to handle the estimation problems which 

occur in non-linear stochastic processes. A typical non-linear process model can be 

written in the form: 

)(]),([],),([)( 11111 −−−−− += kkkkkkk ttttttt nxGxfx  (3.20) 

)(]),([)( kkkk tttt wxhz +=  (3.21) 

where f  and h  are known non-linear functions. 

To apply the Kalman filter to estimation problems in a nonlinear process, these 

nonlinear models must be linearised. Two methods can be used to linearise nonlinear 

models. One method linearises the nonlinear models about some nominal trajectory 

in the state space, which is independent of the measurements. The nominal trajectory 

Step 1:  Initialisation 
00 )( PP =t ; 00 )(ˆ xx =t  

Step 2:  Time update (effect of dynamics) 
)(ˆ),()(ˆ 11

+
−−

− Φ= kkkk tttt xx  

)()()(),()(),()( 1
T

111
T

11 −−−−
+
−−

− +ΦΦ= kkkkkkkkk ttttttttt GQGPP  

Step 3: Measurement update (effect of measurement) 
)(ˆ)()()( −−= kkkk tttt xHzr , )()()()()( T

kkkkk ttttt RHPHS += −  

)()()()( 1T
kkkk tttt −−= SHPK  

)()()(ˆ)(ˆ kkkk tttt rKxx += −+ , )()()()()( −−+ −= kkkkk ttttt PHKPP  
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is pre-computable. The resultant filter is referred to as a linearised Kalman filter. The 

other method linearises the non-linear models about an estimated trajectory that is 

continuously updated by the state estimates resulting from the measurements. The 

filter is known as an extended Kalman filter.  

The predicted state and measurement are computed as 

],),(ˆ[)(ˆ 11 −
+
−

− = kkkk tttt xfx  (3.22) 

]),(ˆ[)(ˆ kkk ttt −− = xhz  (3.23) 

Consider the perturbation of the current state from the predicted state )(ˆ 1
+
−ktx . The 

system model in Eq. (3.20) can be approximated by expanding about )(ˆ 1
+
−ktx  as 

follows:  

)(]),([            

)(~],),(ˆ[],),(ˆ[)(

111

11111
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+
−

+
−−

+
−−

+
−

+
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kkk

kkkkkkkk

ttt

tttttttt

nxG

xxxfx
 (3.24) 

where the higher terms of the Taylor series expansion have been ignored and 
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)(ˆ)()(~
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− −= kkk ttt xxx  

Subtracting Eq. (3.22) from Eq. (3.24), the predicted state error is derived as follows: 

)(]),([)(~],),(ˆ[)(~
111111 −−

+
−

+
−−

+
−

− +Φ= kkkkkkkk tttttttt nxGxxx   (3.25) 

where 

)(ˆ)()(~ −− −= kkk ttt xxx  

From Eq.(3.25), the associated error covariance is computed as: 

]),([)(]),([              

],),(ˆ[)(],),(ˆ[)(

11
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ΦΦ=

kkkkk
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tttttttt

xGQxG

xPxP
  

Now consider the perturbation of the measurement model from the predicted 

state )(ˆ −
ktx . The measurement model in Eq. (3.21) can be approximated as follows: 

)()(~]),(ˆ[]),(ˆ[)( kkkkkkk ttttttt wxxHxhz ++≈ −−−  (3.26) 
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where the higher terms of the Taylor series expansion have been ignored and 
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Subtracting Eq. (3.23) from Eq. (3.26), the measurement innovation is given by 

)()(~]),(ˆ[)(ˆ)()( kkkkkkk ttttttt wxxHzzr +=−= −−−  (3.27) 

then the covariance of the measurement innovation is computed as: 

)(]),(ˆ[)(]),(ˆ[        

)]()([)(
T

T

kkkkkk

kkk

tttttt

ttt

RxHPxH

rrS

+=

Ε=
−−−

           (3.28) 

Applying the standard Kalman filter to the linearised models given in Eqs. (3.25) and 

(3.27), the measurement updates are computed by 

)()()(ˆ)(ˆ kkkk tttt rKxx += −+             (3.29) 

)(]),(ˆ[)()()( −−−+ −= kkkkkk tttttt PxHKPP           (3.30) 

where )( ktK is the Kalman filter gain matrix. 

)(]),(ˆ[)()( 1T
kkkkk ttttt −−−= SxHPK             (3.31) 

The extended Kalman filter algorithm is summarised in Table 3-2. 

In this thesis, the linear and extended Kalman filter algorithms are referred to 

as conventional Kalman filter algorithms. An iterative modular algorithm structure 

for the conventional Kalman filter algorithm is shown in Figure 3.2 where the three 

modules are initialisation, predictor and estimator. 

 

 

 

 

 

 

 

 



 
STATISTICAL ESTIMATION AND TESTING THEORIES 
 

3.2 The Kalman Filter 

 

 54 

Table 3-2 The Extended Kalman Filter Algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Conventional Kalman Filter Algorithm Structure 

Step 1:  Initialisation 
00 )( PP =t ; 00 )(ˆ xx =t  

Step 2:  Time update (effect of dynamics) 
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Step 3: Measurement update (effect of measurement) 
]),(ˆ[)()( kkkk tttt −−= xhzr  

)(]),(ˆ[)(]),(ˆ[)( T
kkkkkkk ttttttt RxHPxHS += −−−  

)(]),(ˆ[)()( 1T
kkkkk ttttt −−−= SxHPK  

)()()(ˆ)(ˆ kkkk tttt rKxx += −+  

)(]),(ˆ[)()()( −−−+ −= kkkkkk tttttt PxHKPP  
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)( ktz  
)(ˆ +

ktx  

Estimator:  
)()()(ˆ)(ˆ kkkk tttt rKxx += −+  

)()()()()( −−+ −= kkkkk ttttt PHKPP  
where 

)()()()( 1T
kkkk tttt −−= SHPK  

 
 

Predictor: 
)(ˆ),()(ˆ 11

+
−−

− Φ= kkkk tttt xx  

)()()(              
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1
T

11

1
T

11

−−−

−
+
−−

−

+

ΦΦ=

kkk

kkkkkk

ttt

tttttt

GQG

PP  

)(ˆ)()()( −−= kkkk tttt xHzr  

)()()()()( T
kkkkk ttttt RHPHS += −  

Initialisation: 
00 )( PP =t , 00 )(ˆ xx =t  
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3.2.6 Statistics of Kalman Estimation Errors and Residuals 

The conventional Kalman filter algorithm has been used as a standard means of 

optimal or near-optimal estimation of the states of a stochastic system. By examining 

the predictor and the estimator given in Figure 3.2, the filter algorithm also provides 

very useful statistical information that can be used to monitor both the convergence 

and the consistency of the filter estimation procedure. As illustrated in Figure 3.3, 

these statistics can be obtained by generating information at different stages of the 

filter algorithm.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3 Kalman Filter Outputs 

The outputs of the filter predictor )( ktr  and )( ktS  are the filter innovation and 

the filter innovation covariance, respectively. The outputs of the filter estimator )( +
ktr  

and )( +
ktS  are the filter residual and the filter residual covariance as follows:  

)()()()( ++ −= kkkk tttt xHzr   

)()()()()( T
kkkkk ttttt RHPHS += ++  

Theoretically, it has been shown that the filter innovation and residual processes[41] 
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are a zero-mean white Gaussian random process of the given covariance. This feature 

can be exploited in the analysis of the Kalman filter integrity for some practical 

purposes, for example, consistency checking of the measurement data, sensor failure 

detection and analysis of the filter divergence.  

Defining a normalised quadratic innovation function by the following terms 

)()()()( 1T
kkkk ttttNQI rSr −=  (3.32) 

then, the )( ktNQI  is a measure of the inconsistency of the measurement data or the 

filter innovation (residual) and is a 2χ -distributed random variable with m degrees of 

freedom where m  is the number of statistically independent measurements. Testing 

)( ktNQI  for consistency of the filter innovation can be used to detect sensor failure. 

The output of the filter estimator )( +
ktP  is a measure of the uncertainty of the 

filter state estimate )(ˆ +
ktx . The uncertainties along the different state space directions 

can be represented geometrically as follows: 

1)](ˆ)()[()](ˆ)([ 1T =−− ++−+
kkkkk ttttt xxPxx  (3.33) 

For a 2-dimensional state vector, it is given by an ellipse shown in Figure 3.4. 

 

 

 

 

 
 

 

 

 

Figure 3.4 The Ellipsoid of Estimate Uncertainty 

The axes of the ellipsoid are oriented along the singular directions of )( +
ktP . 

Applying the singular value decomposition to )( +
ktP , Eq.(3.33) can be rewritten in 

the following form. 
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1)](~)[()](~[ 11T1 =+−+−+
kkk

- ttt xUDxU  

where D  is a diagonal matrix containing the singular values of )( +
ktP , which are the 

lengths of the ellipsoid axes. The columns of U are singular vectors that indicate the 

singular directions and form the orthogonal basis in the state space. Small singular 

values correspond to directions in the state space with small uncertainties while large 

singular values indicate directions with large uncertainties. Convergence of the state 

estimate means that the ellipsoid shrinks in all directions. Therefore, analysis of the 

error covariance matrix )( +
ktP  is used to determine whether the estimation procedure 

is convergent or divergent. 

Defining a normalised error quadratic function as follows: 

)]()(ˆ)[()]()(ˆ[)( 1T
kkkkkk ttttttNEQ xxPxx −−= ++−+  (3.34) 

where )( ktx  is the true value of the system state )( ktx .  

)( ktNEQ  is a measure of the uncertainty of the filter state estimate and is a 

2χ -distributed random variable with n  degrees of freedom. Testing )( ktNEQ  for 

consistency of the state estimation enables abnormalities of the estimated system 

states to be detected. However, this test is only applicable to system simulation 

because )( ktx  has to be known. 

Defining )(ˆ)(ˆ)( +− −=∆ kkk ttt xxx , then )( ktx∆  is a zero-mean Gaussian random 

variable with the known covariance of )()()()( −
∆ = kkkk tttt PHKP x . When the system 

model is highly accurate, an improved NEQ  function is designed to check abnormal 

changes of the estimated system states as follows: 

)()()()( 1T
kkkk ttttINEQ xPx x ∆∆= +−

∆  (3.35) 

Analysis of the state error covariance matrix is used to determine if the Kalman 

filter converges, but is unable to verify if the Kalman filter converges to the correct 

value.  

From Figure 3.4, the accuracy of the error covariance matrix depends solely on 

the system model ( 0,, PQ� ) and the measurement model ( RH, ). In other words, the 

covariance recursion is independent of the actual measurements taken, and thus it can 
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be computed without knowledge of the realised measurement values. For this reason, 

)( −
ktP  and )( +

ktP  can be pre-computed before actual measurements are available. 

This pre-computability allows early design tradeoffs of expected estimation accuracy 

versus sensor system accuracy to be undertaken. Proper estimation accuracy can be 

evaluated by off line simulation of different sensor systems and system models until 

the error covariance analysis meets the required accuracy. 

3.2.7 Drawbacks of Kalman Filter 

The conventional Kalman filter algorithms, when implemented on a computer, 

may undergo computational inaccuracies owing to computer roundoff errors and the 

occurrence of very small values in the error covariance matrix. In particular, 

computational inaccuracies in the covariance matrix update procedure can cause the 

computed covariance matrix to become numerically inaccurate, resulting in a loss of 

symmetry and positive semi-definitiveness of the covariance matrix. These situations 

may lead to divergence and instability of the conventional Kalman filter.  

In order to overcome the computational inaccuracies in the conventional 

Kalman filter algorithms, many numerically accurate forms of the Kalman filter have 

been introduced, for example, various squared-root filters or the Potter filter[40][91]. 

These improved Kalman filter algorithms seek to propagate and update some 

factorisation of the error covariance matrix rather than the error covariance matrix 

itself. However, it should be noted that the Potter filter increases the computational 

accuracy of the error covariance matrix but loses the simplicity of the standard 

Kalman filter algorithm. 

3.3 The Information Filter 

Both the conventional Kalman and the Potter filters need an accurate estimate 

of the initial error covariance 0P . However, it may be impractical to obtain an 

accurate estimate of 0P  in some applications because there may be no a priori 

knowledge of the initial system states or the initial states available are inconsistent. 
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In addition, with the increase of the number of measurements, for example, the data 

fusion filters in distributed multiple sensor systems must execute matrix inverse 

operation on the innovation covariance, which may be time consuming particularly. 

In order to resolve such problems, an information form of the Kalman filter has been 

introduced. This information filter is an algebraically equivalent Kalman filter, but 

processes and propagates the inverse matrix or the inverse matrix square root of the 

error covariance. This form possesses several unique characteristics and is suited to 

problems where the measurement dimension is large or where there is no a priori 

knowledge of the initial system state (particularly allowing a startup procedure in the 

case of singular 0P ). 

3.3.1 The Linear Information Filter 

In the linear Kalman filter algorithm, the state update equation is given by  

)()()(ˆ)]()([)(ˆ kkkkkk tttttt zKxHKIx +−= −+           (3.36) 

Assuming )( −
ktP  is non-singular, Eq. (3.18) can be represented as  

)()()]()([ 1 −−+=− kkkk tttt PPHKI  (3.37) 

Substituting Eq. (3.37) into Eq. (3.36) and pre-multiplying the resultant expression 

by )(1 +−
ktP leads to  

)()()()(ˆ)()(ˆ)( 111
kkkkkkk ttttttt zKPxPxP +−−−−++− +=  (3.38) 

From Eqs. (3.10), (3.16) and (3.18), 

)()()()( 1T
kkkk tttt −+= RHPK  (3.39) 

Substituting Eq. (3.39) into Eq. (3.38) leads to 

)()()()(ˆ)()(ˆ)( 1T11
kkkkkkk ttttttt zRHxPxP −−−−++− +=  (3.40) 

This expression is known as the inverse covariance state update equation.  

From Eqs. (3.37) and (3.39), 

)()()()()( 1T11
kkkkk ttttt HRHPP −−−+− +=  (3.41) 

This expression is known as the inverse covariance update equation.  

From Eq. (3.8), the inverse of the a priori error covariance is given by 
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1
1

T
111

T
11

1 )]()()(),()(),([)( −
−−−−

+
−−

−− += kkkkkkkkk ttttttttt GQG�P�P  (3.42) 

Applying the matrix inversion lemma  
1T1T111T )()( −−−−− +−=+ YZXYZIXZZYXZ  

to the right side of Eq. (3.42) by identifying 

),()(),( 1
T

11 −
+
−−= kkkkk ttttt �P�Z ; )()( 11

T
−−= kk tt QGX ; )( 1

T
−= ktGY , 

it has been shown that[40]  

)()]()([)( 1
T1

kkkk tttt MG�IP −
−− −=  (3.43) 

where 

),()(),()( 11
1

1
T

kkkkkk tttttt −
+
−

−
−= �P�M  (3.44) 

1
1

1
11

T
1 )]()()()()[()()( −

−
−

−−− += kkkkkkk ttttttt QGMGGM�  (3.45) 

In the information filter, the a priori information state estimate )(ˆ −
kty , the a 

priori information matrix )( −
ktY , the information state )(ˆ +

kty , the information matrix 

)( +
ktY , the new information vector )( ktu  and the new information matrix )( ktU are 

defined as follows: 

)(ˆ)()(ˆ 1 −−−− = kkk ttt xPy  (3.46a) 

)()( 1 −−− = kk tt PY  (3.46b) 

)(ˆ)()(ˆ 1 ++−+ = kkk ttt xPy  (3.46c) 

)()( 1 +−+ = kk tt PY  (3.46d) 

)()()()( 1T
kkkk tttt zRHu −=  (3.46e) 

)()()()( 1T
kkkk tttt HRHU −=  (3.46f) 

From Eqs. (3.43), (3.46a) and (3.46c) 

)(ˆ),()]()([)(ˆ 11
T

1
T +

−−−
− −= kkkkkk tttttt y�G�Iy        (3.47a) 

Substituting Eqs. (3.46a), (3.46c) and (3.46e) into Eq. (3.40) leads to 

)()(ˆ)(ˆ kkk ttt uyy += −+           (3.47b) 

Substituting Eqs. (3.46b), (3.46d) and (3.46f) into Eq. (3.41) yields 

)()()( kkk ttt UYY += −+           (3.47c) 
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From Eq. (3.44), the inverse of the state transition matrix instead of the state 

transition matrix ),(),( 11
-1

kkkk tttt −− =��  has been introduced in the information 

filter. The information filter algorithm is summarised in Table 3-4. 

Table 3-3 The Information Filter Algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, the information filter simplifies the information update procedure 

but increases the computation complexity of the time update procedure. 

3.4 Statistical Hypothesis Test 

A failure occurring in a multisensor navigation system can be seen as a sudden 

change in one or more of the system parameters, system outputs, or sensor outputs. 

Such changes can be classified as: additive failures or non-additive failures. Additive 

failures produce a change in the mean of the sensor measurements or the navigation 

state outputs. Non-additive failures result in changes in covariance of either the state 

estimate errors or the sensor measurement noise, or in the system parameters caused 

by the uncertainties of the system models. These failures may cause the performance 

Step 1: Initialisation 
1

00 )( −= PY t ; 000 )()(ˆ xYy tt =  

Step 2: Time Update 

)(ˆ),()]()([)(ˆ 11
T

1
T +

−−−
− −= kkkkkk tttttt y�G�Iy  

)()]()([)( 1
T

kkkk tttt MG�IY −
− −=  

Step 3: Information Update 

)()()()( 1T
kkkk tttt zRHu −=  

)()(ˆ)(ˆ kkk ttt uyy += −+  

)()()()( 1T
kkkk tttt HRHU −=  

)()()( kkk ttt UYY += −+  

Step 4: State Recovery  

)(ˆ)()(ˆ 1 ++−+ = kkk ttt yYx  
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of an aircraft navigation system to be degraded and can even lead to catastrophic 

events. In order to guarantee the safety of aircraft system, statistical hypothesis tests 

are used to check for anomalies in the mean of the sensor measurements and the 

navigation states or abnormalities of the covariances of the state estimate errors or 

measurement noise. 

3.4.1 Hypothesis Test 

A hypothesis is tested for possible rejection on the assumption that it is true. 

The concept was originally introduced by R. A. Fisher. In failure detection problems 

considered in this thesis, the determination of valid navigation states reduces to two 

competitive claims/hypotheses; the null hypothesis 0H and the alternative hypothesis 

1H . The null hypothesis 0H  represents a statement that no failures have happened in 

the aircraft multisensor navigation system while the alternative hypothesis 1H  is a 

statement that failures have occurred in the system. Based on these two hypotheses, a 

test statistic is calculated from sensor or system data and its value is used to decide 

which of these two hypotheses should be rejected in the hypothesis test. The choice 

of a test statistic depends on the assumed probability model and the hypotheses under 

question. 

In a hypothesis test, two types of erroneous decisions may be made, known as 

type I error and type II error in statistical theory. A type I error occurs when the null 

hypothesis is rejected if it is in fact true; that is, 1H  is wrongly declared when 0H  is 

present. A type II error occurs when the null hypothesis is not rejected if it is in fact 

false, that is, 0H  is wrongly declared when 1H  is present.  

In this thesis and for navigation systems in general, the type I error is known as 

a false alarm whereas the type II error is known as a missed alarm. The performance 

of a hypothesis test procedure is usually measured in terms of several probability 

values related to these two errors as follows.  

The probability of a false alarm is denoted by FAP  and defined as follows:  
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γγ�
Ξ

==
1

)|()present | Declare( 001 dHpHHPPFA  (3.48) 

where γ  represents a test statistic, )(γp  is the probability density function of γ  and 

1Ξ  is called a rejection or critical region containing γ  under the hypothesis 1H . 

The probability of a missed alarm is denoted by MAP  and defined as:  

�
Ξ

==
0

)|()present | Declare( 110 γγ dHpHHPPMA  (3.49) 

where 0Ξ  is an acceptance region containing γ  under the hypothesis 0H . Moreover, 

Ξ=ΞΞ 10 �  is the full set of observations of γ  and Ο=ΞΞ 10 �  is the null set. 

The probability of detection is denoted by DP  and defined by 

MAD PdHpHHPP −=== �
Ξ

1  )|()present | Declare(
1

111 γγ  (3.50) 

Assume that a priori probabilities for each hypothesis 0H  and 1H  are )( 00 HP  

and )( 11 HP , then the probability of the hypothesis test error is given by 

MAFAE PPPPP 10 +=  (3.51) 

A good detection algorithm is usually designed to minimise average probability 

of the hypothesis test error given by Eq. (3.51). Because 0P  is far larger than 1P , a 

false alarm is often considered to be more serious in the design of multisensor 

aircraft navigation systems, and therefore more important to take evasive action, than 

a missed alarm. Consequently, a hypothesis test procedure should be adjusted to 

obtain a guaranteed 'low' probability of false alarm. A confidence interval, that is, the 

probability that a test statistic will fall within a given critical region, is normally used 

to indicate a range of the uncertainty of test results and is expressed as a certain 

percentage. The concept of confidence interval is more informative than the simple 

results of a hypothesis test.  

To find a range associated with a given confidence interval, a critical value is 

specified for a hypothesis test and is referred to as a threshold η  so that the 

probability of a false alarm can be computed as  

αη =)(FAP   (3.52) 
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where α  is called a significance level and is expressed as a percentage. The 

confidence level is then given by α−1 . The threshold for a hypothesis test depends 

on the significance level at which the test is carried out. 

The probability of a missed alarm error is usually unknown, but is symbolised 

by β  and written as 

β=MAP  (3.53) 

3.4.2 Bayesian Detection 

Bayesian detection methods are based on the minimisation of error probability 

in a hypothesis test, as given in Eq. (3.51). Let )1 ,0 ;1 ,0(  == jiCij  represent the 

risks of declaring iH  true when jH  is present. The Bayesian decision rule minimises 

the following Bayesian risk function (BRF). 

γγ dHpHPC

HHPHPCBRF

i j
jjij

j
i j

ijij

i

)|()(        

)present  Declare()(

1

0

1

0

1

0

1

0

		 �

		

= = Ξ

= =

=

=

 (3.54) 

Considering �
Ξ

== 1 ,0  ,1)|( idHp i γγ , Eq. (3.54) can be simplified as  

[ ] [ ]( ) γγγ dHpCCPHpCCPCPCPBRF �
Ξ

−−−++=
0

)|()()|()( 000100111011111100  (3.55) 

Minimising BRF  generates a likelihood ratio test (LRT) as follows[92] 

η
γ
γγλ =

−
−

<
>

=
)(
)(

)|(
)|(

)(
11011

00100

0

1

0

1

CCP
CCP

H

H

Hp
Hp

 (3.56) 

where )(γλ  is called the LRT function and η  is the threshold. Eq. (3.56) shows that 

the decision 1H  is made if )(γλ  is larger than η , otherwise the decision 0H  is made. 

The log form of LRT function, as given in Eq. (3.57), is often used to simplify the 

computation of LRT. 
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)log()](log[

0

1

ηγλ

H

H

<
>

 (3.57) 

Eq. (3.56) or (3.57) is known as the Bayesian detection rule and is widely used in 

many failure detection problems where the a priori probabilities )( 00 HP  and )( 11 HP  

are known. 

3.4.3 Neyman-Pearson Detection 

In some practical multisensor navigation systems, the a priori probabilities of 

two hypotheses may be unknown and the risk assignments are difficulty to estimate. 

These situations constrain the applications of Bayesian detection methods in sensor/ 

system failure detection problems. However, the constraints occurring in Bayesian 

detection do not take place in Neyman-Pearson detection methods. The objective of 

Neyman-Pearson detection is to maximise the probability of detection DP  for a given 

probability of false alarm FAP . In other words, Newman-Pearson detection can obtain 

the minimum probability of a missed alarm MAP  under the condition that the 

acceptable value of FAP  is less α . 

In failure detection problems, it is desirable to make both FAP  and MAP  as small 

as possible. Unfortunately, these are conflicting objectives. To obtain a tradeoff, a 

cost function F  is constructed by using Eqs. (3.48), (3.49 and (3.50) as follows:  

�
Ξ

−+−=

−+=

0

)]|()|([)1(    

)(

01 γγηγαη

αη

dHpHp

PPF FAMA

 (3.58) 

where 0≥η  is the Lagrange multiplier. 

Minimising the cost function and employing the LRT leads to the following 

hypothesis test[92]  
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η
γ
γγλ

0

1

0

1

)|(
)|(

)(

H

H

Hp
Hp

<
>

=  (3.59) 

Therefore, the threshold of this test is the Lagrange multiplier η , which is chosen to 

satisfy the given significance level α . 

αλλγγ
η

=== � �
Ξ

∞

1

)|()|( 00 dHpdHpPFA  (3.60) 

Eq. (3.59) is referred to as the Newman-Pearson detection rule and is applied to 

many failure detection problems where the a priori probabilities )( 00 HP  and )( 11 HP  

are difficulty to determine. 

From the above analysis, it is important to determine the forms of probability 

density function )(γp  under the two hypotheses, which are associated with the 

measure of the performance of a hypothesis test procedure. The probability density 

function is formulated on the basis of the statistical analysis of sensor measurement 

noise and residuals or the errors of the system state estimates.  

3.5 Summary 

This chapter has introduced mathematical fundamentals of the statistical 

estimation and hypothesis testing theories. The main activities covered include: 

1. Introduction of three forms of Kalman filtering techniques and algorithms, 

including the conventional Kalman filter and the information filter.  

2. Analysis of the statistical characteristics of Kalman filter estimation errors 

and residuals. 

3. Introduction of statistical hypothesis test methods, including Bayesian 

detection and Newman-Pearson detection methods. 
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Chapte r  4  

4 NAVIGATION EQUATIONS AND ERROR 
DYNAMICS 

4.1 Introduction 

This chapter develops navigation equations and system error dynamic models 

of several aircraft navigation systems, including inertial and main navigation aiding 

systems. These equations and models constitute the mathematical foundations to 

design, develop and simulate fault-tolerant multisensor aircraft navigation systems. 

Section 4.2 introduces various coordinate systems used in this thesis. Evolution 

of inertial sensor technologies and performance of different grade inertial sensors are 

highlighted in Section 4.3. In Section 4.4 inertial navigation equations are developed. 

Section 4.5 analyses the error dynamic models of inertial system. In Section 4.6 

normalised navigation equation equations of major navaid systems are developed. A 

summary of this chapter is given in Section 4.7. 

4.2 Coordinate Systems 

Coordinate systems are established to develop the navigation equations and to 

describe the dynamic motion of an aircraft. Aircraft navigation systems resolve the 

navigation equations to determine position, velocity, attitude and time (PVAT) 

information with respect to specific frames. Several reference coordinate systems are 

used in the development and design of multisensor fusion navigation systems to 

represent the navigation system states, aircraft kinematic parameters and navigation 
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sensor measurements. This section reviews the definitions of some commonly used 

reference frames and their relationships.  

Earth Centred Inertial (ECI) Frame )z,y,x( III  This frame has its origin at 

the centre of the Earth. Its axes are non-rotating relative to the inertial space. For 

aircraft navigation, the ECI frame is an approximation of the Newtonian inertial 

frame. The Ix  axis is in the Earth’s equatorial plane and points toward the vernal 

equinox. The Iz  axis is aligned with the Earth rotation axis. The Iy  axis completes 

the right-hand system.  
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Local Meridian 
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ze 
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Figure 4.1 Coordinate Systems 

Earth Centred Earth Fixed (ECEF) Frame )z,y,x( eee  This frame is fixed 

to and rotating with the Earth. The ECEF frame has its origin at the Earth’s centre of 

mass, as shown in Figure 4.1(a). This is a right-hand Cartesian coordinate system. 

The ez  axis is the Earth’s rotation axis and points towards the direction of the 

Conventional Terrestrial Pole (CTP) for polar motion, as defined by BIH on the basis 

of the coordinates adopted for the BIH stations[93]. The ex  axis lies in the Earth’s 

equatorial plane and points the intersection of the CTP’s equator and the reference 

meridian being the zero meridian defined by the BIH on the basis of the coordinates 
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adopted for the BIH stations. The ey axis realises the right-hand system. The World 

Geodetic System of 1984 (WGS-84) is a commonly used ECEF frame that defines 

the Earth model and the reference ellipsoid. Geodetic parameters of the WGS-84 

ellipsoid are summarised in Table A-1 of Appendix A. The position of aircraft above 

the surface of the Earth is defined in the ECEF frame by the geodetic coordinates. 

The WGS-84 coordinate system is used by global satellite navigation systems, 

for example, the Global Positioning System (GPS), to describe the satellite orbits. 

The coordinates of a point position in the WGS-84 frame can be expressed in the 

geodetic or Cartesian coordinates, and the transformation from geodetic coordinates 

to Cartesian coordinates is given by the following equations: 

)sin(*h]N*)1[(z

))sin(cos(*h)(Ny

)cos(*)cos(*h)(Nx

2e

e

e

ϕ
λϕ

λϕ

+−=
+=

+=

e

 (4.1) 

where )z,y,x( eee  are the Cartesian coordinates of a point position, ( , , )ϕ λ h  are 

the geodetic coordinates of the point position (latitude, longitude and height above 

the reference ellipsoid of the Earth), and N
R

e
=

− ∗
a

1 2 2sin ( )ϕ
 is the radius of 

curvature in the prime vertical. 

Navigation Frame )z,y,x( nnn  This frame is attached to the aircraft and has 

its origin at the aircraft centre of gravity, as shown in Figure 4.1(a)(b). The nz  axis 

points down perpendicular to the reference ellipsoid. The nx  and ny  axes lie in a 

plane tangent to the reference ellipsoid. Therefore, the navigation frame is a local 

level frame and a Cartesian coordinate system. 

This navigation frame is a north-slaved frame if the ex  axis points north and 

the ey  axis points east, and is generally referred to as a North-East-Down (NED) 

frame. It is known as the wander azimuth frame )z,y,x( www  if the nx - ny  plane is 

allowed to rotate freely about the nz  axis. The wander azimuth mechanisation 

permits the operation of an inertial system at latitudes close to the Polar Regions, 

avoiding the singularity associated with the north-slaved mechanisation. In this 
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thesis, inertial navigation equations are developed in the wander azimuth frame. The 

relationship between the wander azimuth frame and the NED frame is illustrated in 

Figure 4.2 and is formulated in Eq.(4.2), where α  is the wander azimuth angle, ψ  is 

the heading angle and wψ  is the heading angle of the wander frame. 
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Figure 4.2 Wander Azimuth Frame 

The location of the origin of the navigation frame is specified relative to the 

ECEF frame by the geodetic coordinates (λ, ϕ, h ). Aircraft velocity and attitude 

angles are defined with respect to the navigation frame. The transformation matrix 

between the NED and ECEF frames is known as the position direction cosine matrix 

(DCM) and can be obtained through a series of rotation transformations as follows:  

�
�
�

�

�

�
�
�

�

�

−−−
−

−−
=

)sin()sin()cos()cos()cos(
0)cos()sin(

)cos()sin()sin()cos()sin(
n
e

ϕλϕλϕ
λλ

ϕλϕλϕ
C  (4.3) 

Let w
eC  be the transformation matrix from the ECEF frame to the wander-azimuth 

frame, then 
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Body Frame )z,y,x( bbb  This frame is fixed to the aircraft and has its origin at 

the aircraft centre of gravity or mass, as shown in Figure 4.1(b). The bx  and bz  axes 

are in the plane of symmetry of the aircraft, where bx  points toward the nose of the 

aircraft and bz  axis points downward. The by  axis points down the starboard wing. 

The body frame is a Cartesian coordinate system. 

The orientation of the body frame relative to the navigation frame is specified 

by the Euler angles (rollφ , pitch � and yaw �), as shown in Figure 4.1(b). The 

transformation matrix between the body frame and the navigation frame is referred to 

as the attitude direction cosine matrix. The transformation from the body frame to the 

wander frame is formulated by a series of rotation transformations as follows: 
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The body frame is used to develop the aircraft equations of motion and for the 

attitude control and determination. Aircraft kinematic parameters are defined with 

reference to this frame. For example, the acceleration and angular rate information 

required by a flight control system or autopilot are normally represented in terms of 

the body frame. 

Instrument Frame )s,...,s,s,s( n321  This frame specifies the orientations of the 

“sensing axes” of a sensor system with respect to a reference frame (for example, the 

body or the navigation frame) and has its origin at the installation location of sensor 

system, as illustrated in Figure 4.1(c). For example, in inertial sensor systems, the 

sensing axes are the installation axes of the inertial sensors. If an inertial instrument 

frame is a Cartesian coordinate system, this inertial sensor system is an orthogonal 

configuration. In Doppler radar systems, the instrument frame is the radar antenna 

frame that defines the orientations of radar beams relative to a reference frame. In a 

radio navigation system, the ‘sensing axes’ are usually the directions of lines of sight 

(LOS) from receiver antenna to transmitters. 



 
NAVIGATION EQUATIONS AND ERROR DYNAMICS 
 

4.3 Inertial Sensor Technology 

 

 72 

The transformation matrix from an instrument frame to a reference frame (the 

body or navigation frame) is usually known as the design or measurement matrix of 

the navigational sensor system. Sensor measurements are represented in terms of the 

instrument coordinates.  

4.3 Inertial Sensor Technology 

4.3.1 Inertial Sensor System 

Inertial sensors are classified as gyroscopes and accelerometers. Gyroscopes 

are angular rate sensors while accelerometers are specific force sensors. The specific 

force is a combination of the gravitational forces or their projections and total inertial 

force acting on aircraft. Gyroscopes and accelerometers can be integrated into a case 

to form an inertial reference system (IRS), also known as an inertial measurement 

unit (IMU). An inertial reference system can measure all the kinematic parameters of 

an aircraft. Integration of an IMU system and a computer solving inertial navigation 

algorithms makes up an inertial navigation system (INS). In an INS, gyroscopes are 

used to maintain a stable reference platform or establish it by analytical means. The 

measurements from the accelerometers can be referenced to this reference frame for 

computation of the navigation states. Misalignments of the reference frame caused 

by gyro drifts couple the measured accelerations along each axis so that the distance 

error is the time-cubical dependence[94]. Consequently, gyroscope performance plays 

a critical role in the improvement of the accuracy of inertial navigation system and 

development of inertial sensor technology has focused on gyroscope technology. 

Inertial sensor systems, depending on the numbers of sensors and installations, 

can be classified as orthogonal or non-orthogonal configurations. Non-orthogonal 

configurations will be discussed in Chapter 5. For development of inertial navigation 

algorithms, it is assumed here that three accelerometers and three gyros are mounted 

in orthogonal triads and their input axes are aligned with the axes of the body frame. 

In this case, the IMU outputs are coordinated in the body frame. Strapdown inertial 

navigation algorithms will be developed in Section 4.4. 
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Inertial sensor systems, according to the accuracy requirements for different 

applications, can categorised as from low quality though tactical to navigation grade 

(high quality) shown in Table A-2 of Appendix A. The navigation-grade IMU can be 

alone used to implement an inertial navigation system with level of allowable errors 

for one-hour flight. The control grade IMU is generally used to provide inertial 

measurements for control systems. The tactical grade IMU can be applied for the 

attitude display and flight control and short-time navigation and guidance. When 

inertial sensor systems are combined with aiding navigation systems, for example, 

GNSS, the accuracy requirements for inertial sensors can be further relaxed from the 

navigational to low grades. Therefore, many emerging inertial sensor technologies 

can be used for the development of aircraft multisensor navigation systems[95][96]. 

4.3.2 Inertial Sensor Performance 

For navigation applications and the development of the inertial system error 

model in this thesis, the performance of inertial sensors are dominantly characterised 

by the following parameters. 

An inertial sensor provides an output signal in response to its input, either 

rotation or acceleration of aircraft. The scale factor is a transform factor that defines 

the ratio of the output signal to the input signal. Ideally, the scale factor is a constant 

and there exists a linear relationship between the sensor output and input. Owing to 

imperfections of the manufacturing and signal processing process, the linearity of 

scale factor may change over different input ranges. As a result, the scale factor may 

give different values for different input ranges or may have second or higher-order 

terms relating the output signal to input. This leads to the nonlinearity or instability 

of scale factor. Furthermore, a sensor may have a different scale factor for positive 

and negative inputs, known as scale factor asymmetry.  

Sensor bias is an offset of an inertial sensor when an output is detected for no 

input or input signal change. This bias may be different for positive and negative 

inputs and may be turn-on dependent. The uncertainty or instability of sensor bias is 

an important parameter in assessing the accuracy of sensor measurements. For a 
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gyroscope, the sensor output error caused by nonlinearity, instability or asymmetry 

of scale factor and sensor bias is known as the gyro drift. 

When inertial sensors are integrated in a case to form an inertial system, the 

input axis of each sensor should be aligned to its associated case reference axis. The 

angle between the input axis and its associated axis is defined as the input-axis 

misalignment.  

These performance parameters are common for all kinds of inertial sensors. 

But, because of diverse design principles and manufacturing procedures, individual 

sensors may have specific error sources. The main performance parameters of 

inertial sensors for aircraft navigation applications are summarised in Table A-2. 

4.3.3 Gyroscope Technology 

The evolution of gyroscope technologies covers three generations. The first 

generation is the traditional rigid rotor gyroscopes, which are distinguished as two 

classes: attitude gyros and rate gyros. Attitude gyros were based on the principle of 

conservation of angular momentum and were specially adapted to the stable platform 

systems. Rate gyros are principally based on the Newton’s second law and were used 

for strapdown navigation systems. Traditional rotor gyros have the highest accuracy 

but expensive cost and large volume. Physical implementations of various rotor 

gyroscopes can be mainly featured by the methods in which the maintenance of 

reference angular momentum of the rotor is achieved. This ranges from simple 

inexpensive flywheel design to highly accurate and complex design, for example, the 

floated integrating gyro and the electro-statically suspended gyro. Rotor gyros are the 

most mature in the development of gyroscope technology. The traditional rotor gyros 

are continually used in marine navigation applications, but have been replaced by 

optical gyroscopes for aircraft navigation applications. 

The second generation is the optical gyroscopes, which are based on the 

Sagnac effect[94][97]. The Sagnac effect is an optical phenomenon of the relativistic 

effect. In an optical gyroscope, two laser beams from the same laser source propagate 

around a closed path in opposite directions. If this closed path is rotating around its 
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rotation axis, these two beams will arrive at a detector at slightly different times 

because the optical path travelled by one beam along the direction of rotation 

becomes longer than the path travelled by the other beam. The angular rate of this 

closed path rotation can be measured by detecting the time difference between the 

two paths. Optical gyroscopes can be classified as two kinds of classes: the ring laser 

gyroscope (RLG) and the fibre optic gyroscope (FOG). Optical gyroscopes were 

developed for strapdown systems and have replaced the mechanical gyros in many 

applications. Optical gyroscopes have smaller volume, lower cost and wider dynamic 

rate range in comparison with mechanical gyros. 

In the RLG, two counter-propagating laser beams travel through a laser cavity 

with reflecting mirrors (resonant cavity). When the resonant cavity is rotating around 

its sensitive axis, these two waves resonate in the rotating cavity to generate the 

frequency shift, which is proportional to the angular rate of laser cavity rotation. A 

photodiode detector can detect this frequency shift in the form of interfering fringes 

to derive the angular rate. Current RLG sensors have reached to the performance of 

traditional rotor gyroscopes[97]. However, in order to attain such high measurement 

accuracy, a RLG needs a large volume to increase the length of the optical cavity. In 

addition, the RLG sensors are expensive.  

In the FOG, two counter-propagating lasers travel along a closed-loop optical 

fibre. When FOG is rotating around its sensitive axis, these two counter-propagating 

waves interfere with each other to induce the Sagnac phase (or frequency) shift that 

can be measured by a photo-detector to obtain the angular rate of FOG rotation. The 

FOG sensor has some desirable features, such as reduced weight. It is smaller than 

the RLG and significantly cheaper. However, FOG has lower sensitivity and current 

FOG technology cannot reach the performance of a RLG sensor. Sensors based on an 

interferometric FOG and a resonant FOG sensors have been developed for tactical, 

AHRS and aided navigation applications. Recent developments in optical gyroscope 

are concerned with integrated optic gyro (IOG), which is insensitive to environment 

effects and is relatively inexpensive.  

The third generation of gyroscope involves MicroElectroMechanical Systems 

(MEMS) inertial sensors. All MEMS-based gyroscopes make use of the Coriolis 
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principle[98]. MEMS inertial sensors have the smallest volume and cheapest cost but 

at present, their accuracy is less than optical gyros. MEMS gyros have been applied 

in the automobile industries and for guided munitions. With further development and 

maturation of MEMS sensor technologies, it is expected that MEMS gyros will 

achieve a performance of better than 1 deg/hr and will replace some optical gyros in 

many aerospace applications. For example, the current test results from the Charles 

Stark Draper Laboratory[99] have shown that the bias stability of MEMS gyro over 

small temperature ranges of 0.5oC has surpassed 10 deg/hr in tests lasting six hours, 

while the companion accelerometer demonstrates submilli-g performance.  

4.3.4 Accelerometer Technology 

The development of accelerometer technology can be classified by two types. 

The first type uses the principal of the force rebalance. For both translational proof-

mass and pendulous proof-mass accelerometers, the displacement of the proof-mass 

resulting from external force or acceleration is measured by a detector and the 

position of the mass is restored by closed-loop control. This displacement is a direct 

measure of the acceleration. This type of accelerometer has been used in most 

inertial navigation systems. 

The second type is based on the vibratory accelerometer, which senses 

acceleration by detecting transverse resonant frequency of a pendulous proof-mass. 

There are several different versions, including the vibrating string accelerometer, the 

vibrating beam accelerometer, the quartz resonator accelerometer and the integrated 

silicon accelerometers. This type of accelerometer has been used in aided inertial 

navigation systems but currently, cannot reach to the performance of the first type for 

inertial navigation systems. However, they offer the advantage of direct digital 

output, they consume relatively little power and they are more rugged.  

MEMS accelerometers have been based on both the force rebalance and the 

quartz resonator principle and several MEMS accelerometers are currently used in 

aided inertial navigation systems. The performance and trends of MEMS inertial 

sensors are briefly summarised in Table A-3 of Appendix A.  
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4.4 Inertial Navigation Equations 

This section develops the set of differential equations defining the navigation 

states, which are expressed in terms of the sensed accelerations and angular rates 

available from an IMU. The principal of inertial navigation is based on Newton’s 

second law of motion, which is valid in an inertial frame. Aircraft navigation 

however occurs in a terrestrial navigation frame. Therefore, the navigation states 

have to be referenced to the local geodetic coordinates and the navigation frames. In 

this thesis, the wander azimuth frame is used to represent the navigation frame for 

the reasons outlined in Section 4.1. 

4.4.1 Velocity Equations 

The velocity differential equations are derived on the basis of the Coriolis 

theorem. The physical interpretation of the Coriolis theorem is that the rate of change 

of a vector takes a different quantity when observed in two relative moving reference 

frames. In vector operator notation, the Coriolis theorem is written as[100] 

])([ A/B
BA

B
A u�uCu ×+=               (4.6) 

where u  is an arbitrary vector, A  and B  are two relative moving reference frames 

and A/B�  represents angular rate vector of rotation of B  relative to A .  

By applying the above relative motion equation to Newton’s second law, the 

velocity equation in the wander frame can be obtained.  

When an aircraft flies around the Earth, rotating again around the ECI frame, 

the aircraft velocity in the wander frame wv is defined in terms of the aircraft position 
er  in the rotating ECEF frame as follows: 

ew
e

w rCv �=  (4.7) 

Furthermore, the aircraft position er  in the ECEF frame is represented in terms of its 

corresponding position Ir  in the ECI frame as 
Ie

I
e rCr =                  (4.8) 

where e
IC  is the rotation transformation matrix from the ECI to ECEF frames.  
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The time derivatives of Eqs.(4.7) and (4.8) lead to 
ew

e
ww

e/w
ew

e
ew

e
w
e/w

ew
e

ew
e

w )()( rCv�rCrC�rCrCv ���������� +×−=+×−=+=  (4.9) 

Ie
I

II
I/e

e
I

Ie
I

Ie
I

e )( rCr�CrCrCr ���� +×−=+=   (4.10) 

where w
e/w�  is the angular rate vector of rotation of the wander frame relative to the 

ECEF frame in terms of the wander coordinates and I
I/e�  is the Earth’s rotation rate 

vector in the ECI coordinates. For aircraft navigation, I
I/e�  is assumed to be a 

constant. 

Again the time derivative of Eq. (4.10) is 
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Substituting Eqs. (4.7) and (4.10) into Eq. (4.11) results in  
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Substituting Eq. (4.12) into Eq. (4.9) leads to 
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where II
I/e

I
I/e ))(( r�� ××  is the centripetal acceleration caused by the Earth’s rotation 

and Ir��  is the inertial acceleration of aircraft.  

However, accelerometer does not directly measure the acceleration Ir��  rather 

than the specific force bf  coordinated in the body frame in a strapdown system. This 

specific force is a combination of both the inertial and gravitational accelerations:  
IIbI

b GrfC −= ��  (4.14) 

The total gravitational acceleration includes the local gravity component Ig  and the 

centripetal acceleration: 
II

I/e
I
I/e

II ))(( r��gG ××+=  (4.15) 

Substituting Eqs. (4.14) and (4.15) into Eq.(4.13) produces 
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Therefore, the velocity equation in the wander frame is given as follows: 
www

i/e
w
e/w

bw
b

w )](2)[( gv��fCv +×+×−=�  (4.16) 

where wbw
b ffC ≡  is the measured specific force vector coordinated in the wander 
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frame, ×�   is the skew-symmetric matrix of the vector � , wv  is the velocity vector 

of aircraft in terms of the wander coordinates, w
e/w�  is the transport rate vector of 

aircraft, w
I/e�  is the earth rate vector represented in the wander coordinates and wg  is 

the gravity vector. The expressions of wg and w
e/w�  are given in Appendix B. 

4.4.2 Attitude Equations 

In order to derive the velocity in Eq. (4.16), the attitude DCM w
bC  must first be 

determined so that the sensed specific force vector from an IMU can be referenced to 

the wander frame. From the transport equation given in Eq. (4.6), the differential 

equation of the attitude DCM w
bC  can be derived as follows[101]  

w
b

w
b/w

w
b )( C�C ×−=�  (4.17) 

where w
b/w�  is the angular rate vector of rotation of the wander frame relative to the 

body frame, coordinated in the wander azimuth frame. From the addition of angular 

velocities, w
b/w�  can be decomposed as follows:  
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Substituting Eq. (4.18) into Eq. (4.17) leads to  
w
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w
b )]()[()( C���CC ×+×−×=�          (4.19) 

where b
I/b�  is the measured body angular rate vector from a strapdown IMU.  

Eq. (4.19) is known as the attitude matrix differential equation. The attitude 

DCM establishes an analytical platform. From Eq. (4.16), the measurements from the 

accelerometers must be resolved in this analytical platform in order to derive the 

navigation states. Because w
bC  is a symmetric orthogonal matrix, at least six first-

order differential equations in Eq. (4.19) must be resolved to obtain the attitude 

DCM. To simplify the computation of the attitude DCM differential equation, a 

quaternion form of the attitude matrix differential equation is commonly used. The 

quaternion differential equation and the relationship between the quaternion and the 

attitude DCM elements are given in Appendix C. 
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4.4.3 Position Equations 

The differential equation of the position DCM can also be derived from the 

transport theorem as follows: 
w
e

w
e/w

w
e )( C�C ×−=�                (4.20) 

w
e/w�  is the transport rate of an aircraft and is given by Eq.(4.21). From an initial 

position DCM or position, Eq.(4.20) can be integrated to give the current position 

DCM. From Eq. (4.4), the geographic location of aircraft and the wander angle can 

be computed as follows: 
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The altitude of aircraft above the surface of the WGS-84 ellipsoid is obtained 

by integrating the vertical component of aircraft velocity zv  as follows: 

zvh �−=                (4.22) 

Therefore, Eqs. (4.16), (2.19) or (C.3) and (4.20) constitute the navigation algorithms 

of strapdown inertial navigation systems.  

The architecture of the strapdown inertial navigation algorithms is illustrated in 

Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Modular Navigation Algorithm Architecture 
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4.4.4 Disadvantages of Inertial Navigation Systems 

From the previous subsections, in order to integrate the velocity, the attitude 

DCM and the position DCM differential equations, initial values of the navigation 

states must be known accurately. Even though a high quality IMU can determine the 

initial attitude DCM by performing a so-called initial alignment procedure, initial 

velocity and position values have to be provided by other navigation aiding means. 

In addition, the integrating procedure will accumulate the navigation state errors 

caused by various sensor error sources. Accordingly, inertial navigation systems are 

generally aided by other aiding navigation systems.  

Initial alignment is a static ground alignment procedure and comprises two 

steps: coarse alignment and fine alignment. The coarse alignment makes use of the 

known properties of the Earth’s gravity and rotation at specific geographic locations 

to estimate the initial attitudes.  

Assume that an aircraft is at a known location, the Earth’s gravity and rotation 

at this known location point can be accurately computed in the wander frame as 

follows: 
ew

e
w gCg =               (4.23) 

e
I/e

w
e

w
I/e �C� =  (4.24) 

In this case, outputs from a strapdown IMU can be formulated as follows: 
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where b∇ is the total accelerometer measurement error vector and b∆ is the total gyro 

measurement error vector.  

Combining Eqs (4.25) and (4.26) gives  
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Eqs. (4.27a) and (4.27b) are known as the coarse alignment equation from which 

initial attitude DCM can be determined. The uncertainty of the coarse alignment is 
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approximated as 

[ ] [ ]Tb
I/e
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~
�f�g�gC ×∇+∆×∆∇×≈ −δ    (4.28) 

From Eq.(4.28), the accuracy of initial alignment totally depends on the performance 

of inertial sensors. A low quality IMU cannot obtain expected alignment accuracy. 

The fine alignment is based the fact that aircraft’s velocity with respect to the 

ground is zero at rest. The fine alignment usually uses a Kalman filter to refine the 

attitude DCM estimated by the coarse alignment. The observable for a fine alignment 

filter includes the velocity and the Earth rotation. 

However, the initial alignment procedure cannot be used for the alignment or 

correction of an in-flight INS. In order to correct the INS-driven navigation states 

and calibrate IMU sensor errors in-flight, inertial systems are usually combined with 

other aiding navigation systems using data fusion techniques. In the following 

section, dynamic error models of strapdown inertial navigation system will be 

established. The error models are used to analyse the initial alignment accuracy, and 

to design data fusion filters and fine alignment filters.  

4.5 Error Analysis of Inertial Navigation System 

Development of strapdown inertial navigation algorithms is based on detailed 

error analysis, which is a critical aspect in the design and development of various 

multisensor data fusion navigation systems. Error analysis is not only used to assess 

the accuracy of aircraft navigation systems and verify the performance of required 

inertial sensors, but is also used to determine the design requirements for integrated 

navigation filters and measurement requirements for aiding navigation systems in a 

multisensor navigation system. Error analysis is based on the derivation of error 

dynamic models of the navigation states. Dynamic models of the navigation state 

errors provide the mathematical foundation for navigation system failure detection 

and isolation, the implementation of an integrated navigation filter in a multisensor 

navigation system and the initial alignment and dynamic calibration of inertial 

systems. 

Two basic methods have been suggested in the literature to derive error models 
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of the navigation states for inertial navigation system: the Phi-angle error model (also 

referred to as the tilt errors) and the Psi-angle error model (also known as the attitude 

errors). Both models make use of a perturbation approach but the perturbations are 

performed with reference to different reference frames. The Phi-angle error model is 

derived from a linear perturbation of the navigation equations with respect to the true 

navigation frame while the Psi-angle error model is from a linear perturbation of the 

navigation equations in the computer frame. The computer frame is the navigation 

frame retained by the navigation system and has its origin at the computed position. 

The geometric relationships between the true navigation frame, the platform frame 

and the computer frame are illustrated in Figure 4.4, where the platform frame is an 

imaginary mathematical platform in a strapdown system and is determined by the 

computed DCM from the body frame to the estimate of the wander azimuth frame. 

 
 
 
 
 
 �� ∂+∂=∂ wφ  (4.29) 
 

Figure 4.4 Relation Between Three Frames 

Benson[102] proves the equivalence of the two error models using analytical 

methods and simulation. Goshen-Meskin and Bar-Itzhack[103] extend these methods 

and present a unified approach to the development of inertial navigation system error 

models. Scherzinger and Reid[104]  further introduce modified error models, which is   

based on  the computed velocity instead of the measured specific forces. However, 

this replacement may introduce large uncertainty into the error models’ parameters 

because the computed velocity contains accumulated sensor errors.  In this thesis, the 

error dynamic models are developed on the basis of perturbation with respect to the 

true wander navigation frame. However, the velocity error is selected to simplify the 

formulation of the error model. The representation of the Phi-angle errors has certain 

advantages for control of the navigation state errors because the estimated errors of 

the navigation states are directly related to the true navigation frame. 
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4.5.1 Velocity Error Equations 

In order to deduce the velocity error differential equation, assume that the 

angular position error �∂ , caused by uncertainty of the computed position DCM w
e

~C , 

and the tilt error φ∂ , caused by uncertainty of the computed attitude DCM w
b

~C , are 

known. The velocity obtained by integrating Eq. (4.16) can be represented in terms 

of the true velocity plus the velocity error term as follows: 
1ww )]([~ vvIv δθ +×∂−=  (4.30a) 

Let the measured specific force vector b~f  include the true specific force vector plus 

the total accelerometer measurement error b∇ , then the computed specific force 

vector in the wander frame can be expressed as 

)()]([
~~~ bbw

b
bw

b
w ∇+×∂−== fCIfCf φ   

Therefore,  

www )]([
~ ∇+×∂−≈ fIf φ  (4.30b) 

where w∇  is the total accelerometer error in the wander frame.  

The gravity vector is approximated as 
www~ ggg δ+=  (4.30c) 

where wgδ  is the variation of the gravity vector in terms of the wander frame. 

Substituting Eqs. (4.30a, b, c) into Eq. (4.16), the velocity error equation can be 

derived as follows: 
wwwww1w

I/e
w
e/w

1 )()](2)[( ∇+∂×+−+∂×+×+×−= θδφδδ gfgfv��v�  (4.31) 

This represents a simplified velocity error differential equation. The approximate 

expression of wgδ  is given in Appendix D. 

4.5.2 Position Error Equations 

The angular position error θ∂  is defined in terms of the computed position 

DCM w
e

~C  and the true position DCM w
eC as follows: 



 
NAVIGATION EQUATIONS AND ERROR DYNAMICS 
 

4.3 Inertial Sensor Technology 

 

 85 

w
e

w
e )]([

~ CIC ×∂−= θ  (4.32) 

It can be rewritten as  

w
e

w
e

w
e

~ CCC −=δ  (4.33a) 

w
e

w
e )( CC ×∂−= θδ  (4.33b) 

Let the latitude, longitude and wander angles be expressed in terms of their true 

values plus error terms as follows: 

δαααδϕϕϕδλλλ +=+=+=          ,~       ,
~

 (4.34) 

From Appendix D, the linear position error differential equation can be deduced as 

follows: 
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where the linear position errors are defined as 

δϕδϕδϕ h)R(h)(R anR +≈+=   

δλϕδλϕδλ )cos()hR()cos()hR( aeR +≈+=   

4.5.3 Attitude Error Equations 

Due to inertial sensor measurement and computation errors, the attitude DCM 

obtained by integrating Eq. (4.19) contains errors. This computed attitude DCM w
b

~C  

can be represented in terms of the true attitude DCM w
bC  as follows:  

w
b

w
b )]([

~ CIC ×∂−= φ  (4.36) 

where φ∂  is known as the tilt error vector. 

Let    w
b

w
b

w
b

~ CCC −=δ  (4.37a) 
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then w
b

w
b )( CC ×∂−= φδ  (4.37b) 

Differentiating Eqs. (4.37a) and (4.37b) yields 
w
b

w
b

w
b )()( CCC ��� ×∂−×∂−= φφδ  (4.38) 
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w
b/w
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b/w
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w
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w
b )(

~
)~(

~ C�C�CCC ×+×−=−= ���δ  (4.39) 

From Appendix E, the tilt error differential equation can be derived as follows: 
ww

I/e
w
e/w

w
e/w

w
I/e )()]()[( ∆−∂×++∂×+×−=∂ θδφφ �����  (4.40) 

Let the computed Euler angles be expressed in terms of their true values plus 

error terms as follows: 

www
~  ,

~
  ,

~ δψψψδθθθδφφφ +=+=+=  (4.41) 

From Appendix E, the attitude errors can be written in vector form as 
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where Euler_err
tiltT  is the transformation matrix from the tilt errors to the Euler errors.  

4.5.4 Inertial Sensor Error Models 

An inertial sensor system measures the kinematic parameters (6DOF angular 

velocities and linear accelerations) of aircraft motion, which are used in navigation 

algorithms, as described in Section 4.3, to obtain the navigation states. Ideally, the 

output of an inertial sensor should provide an exact measurement of its input, the 

measured kinematic parameter. In practice, the output of an inertial sensor will 

contain errors, including nonlinearity of scale factor, misalignment between sensor 

sensing axis and input axis, coupling effect between angular and linear motions, 

uncertainty of sensor system design itself (including uncertainty of sensor dynamic 

model), imperfect sensor signal detection and processing and measurement noise. In 

this thesis, separate model equations are defined for gyroscopes and accelerometers. 

These models define the mathematical relationship between the outputs of inertial 

sensors and the inputs, including applied acceleration, angular velocity and angular 



 
NAVIGATION EQUATIONS AND ERROR DYNAMICS 
 

4.3 Inertial Sensor Technology 

 

 87 

acceleration along the sensor reference axes. 

The generalised model equation of a gyro is defined as follows: 

∆Τ +∆+∆+∆+∆+∆+∆+=∆+= εωωωω )(AMisinSFRBininout T  (4.43) 

where   

outω  and inω  are the gyro output and input, respectively,  

B∆ is the gyro bias, or zero offset,  

R∆ is the gyro random drift rate, which may be caused by environmental and 

other external influences, such as disturbed torque in a mechanical gyro. 

SF∆ is the gyro scale factor error, caused by nonlinearity or instability resulting 

from the gyro scale factor.  

Mis∆ is a gyro misalignment-dependent error, caused by misalignment between 

the gyro input axis and its associated reference axis. 

A∆ is the acceleration-sensitive drift rate, which may include acceleration and 

acceleration-squared sensitivities. 

�∆ is a temperature-dependent gyro drift rate, and 

∆ε is gyro measurement noise. 

For different gyro sensors, some of the terms in Eq. (4.43) may be omitted. For 

example, laser gyros usually exhibit random walk in the gyro drift but it is not 

necessary to specify acceleration-sensitive drift. However, for mechanical gyros, 

gyro drift caused by acceleration sensitivity has to be considered. 

Accelerometer errors may arise from the angular motion and the acceleration 

motion of the aircraft, random bias, scale factor, dead zone, cross-axis sensitivity, 

temperature and other factors. A generalised model equation of an accelerometer is 

defined as 

∇+∇+∇+∇+∇+∆+∇+∇+=∇+ εTA�MisinSFRBinout fff      (4.44) 

where 

outf  and inf  are the output and input of an accelerometer, separately. 

B∇  is the accelerometer bias,  

R∇ is an accelerometer time-dependent random bias. The random bias is a 
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critical aspect of accelerometer performance. This bias must be estimated 

and corrected with a stochastic process in the integrated Kalman filter.  

SF∆ is the accelerometer scale factor error, 

Mis∇ is the accelerometer misalignment bias, caused by misalignment angle 

between the accelerometer input axis and its associated reference axis. 

�∇  is the accelerometer output bias, caused by angular motion of aircraft, 

A∇  is the acceleration-sensitive accelerometer bias, including cross-coupling 

effect and higher order acceleration-sensitive terms. 

T∇  is a temperature-dependent accelerometer bias, and 

∇ε  is the accelerometer measurement noise. 

Generally, the first four error terms of inertial sensors in Eqs. (4.43) and (4.44) are 

critical to inertial navigation system. These error terms need to be estimated and 

corrected in flight to improve the performance of aircraft navigation systems. 

4.6 Navaid Systems  

Although an inertial reference system can provide all the necessary information 

for computation of all the navigation states, it suffers from time-accumulated drift 

errors, as described in Section 4.4. Navaid systems generally supply only partial 

information on the navigation states. However, they exhibit a long-term stability and 

high positioning accuracy dependent on navaid systems. Therefore, the navigation 

states given by navaid systems can be used as constraints on some of the navigation 

states derived by INS.  

The measurement equations and navigation models of several navaid systems, 

for example, global navigation satellite system (GNSS) and Doppler radar systems, 

are developed in this section. An air data sensor system is used in aircraft systems for 

navigation and flight control. For example, the pressure altitude is widely used to aid 

the vertical channel of inertial navigation systems and to maintain vertical height. 

However, air data sensor systems will not be discussed in this thesis.  

GNSS is an all-weather, space-based radio navigation system providing global 
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coverage. There are at present three similar versions of GNSS: the US Global 

Positioning System (GPS), the Russian Global Orbital Navigation Satellite System 

(GLONASS) and the European Galileo satellite navigation system. These three 

satellite navigation systems are mainly distinguished by the satellite orbital planes, 

the number of operating satellites, representation of satellite orbit parameters, data 

modulation methods, frequency bands and signal structures. For example, GPS uses 

the code division multiple access (CDMA) technique whereas GLONASS uses the 

frequency division multiple access (FDMA). GPS has 24 operational satellites in six 

orbit planes around 20200 km above the Earth’s surface whereas the Galileo system 

will have 30 satellites in three orbit planes around 24000 km. GLONASS uses PZ-90 

coordinate frame whereas GPS uses the WGS-84 system. The GPS C/A-code rate is 

1.023 Mbit/s while GLONASS has a value of 0.511 Mbit/s.  

GNSS timing signals are very precisely defined pseudo random noise (PRN) 

codes, which are modulated on the satellite carrier signals together with the 

navigation message containing the satellite orbit parameters. GNSS satellites may 

broadcast different PRN codes on several carrier frequencies for different services. 

For example, GPS satellites broadcast the C/A-code on the L1 carrier (1575.42 MHz) 

for civilian standard positioning services and the P(Y)-code on both the L1 and L2 

(1227.60 MHz) carriers for military precise positioning services[83]. By offering dual 

frequencies as standard, Galileo will deliver higher real-time position accuracy than 

the current GPS or GLONASS positioning services. However, modernised GPS will 

offer a new L5 frequency and L2 civil signal to enhance civil and aviation services.  

These systems share the same positioning principle, that is, they all determine 

the position of a receiver by measuring time differences of timing signals travelling 

from GNSS satellites to the receiver. Therefore, the positioning and navigation 

equations developed in this section apply to all three GNSS systems. A GNSS 

receiver is designed to track and capture the satellite timing codes and to demodulate 

the navigation message in order to compute position. This method is known as the 

code-phase measurement. A GNSS receiver can also track and measure the phases of 

carrier signals transmitted by GNSS satellites, which are referred to as carrier phase 

measurement. 
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4.6.1 GNSS Observation Equations 

From the user’s perspective, GNSS satellites generate and broadcast a series of 

timing codes. These code signals propagate through the atmosphere in space to a user 

receiver. The receiver tracks and measures the time delays of these codes to estimate 

the time difference of the signal propagation. Let the time at which a GNSS satellite 

transmits its timing code signal be St and the time at which a GNSS receiver receives 

this timing code signal be Rt , then the time difference of this signal propagation is  

SR ttt −=∆  

Because the satellite and receiver clocks are not perfect, the receiver time Rt  and the 

satellite time St  will contain errors Rdt  and Sdt , respectively. Therefore, the above 

equation can be rewritten as: 

SRSRSSRR )()( dtdtttdttdttt −+−=+−+=∆  (4.45) 

Assume that the timing signals transmitted by GNSS satellites travel at the speed of 

light c , then the range between the satellite and receiver can be represented as 

SRSR )(r cdtcdtttctc −+−=∆≡  

or      SRr cdtcdt −+= ρ  (4.46) 

where ρ=− )( SR ttc  is the true distance between the GNSS satellite and receiver, 

Rcdt  is the range error caused by uncertainty of the receiver clock, Scdt  is the range 

error caused by the satellite clock error and r  is usually  known as the pseudorange 

measurement. 

Consider various signal propagation path delays, including the clock errors, 

satellite orbit errors and measurement noise. The model equation of the pseudorange 

measurement can be expressed as[83] 

rSRmptropionor ερρ +−+++++= cdtcdtdddd  (4.47) 

where 

ρd  is the range error caused by satellite orbit errors, 

ionod  is the range error caused by the ionospheric path delay, 
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tropd  is the range error caused by  the tropospheric path delay, 

mpd is the range error caused by multipath effects, reflecting surfaces around 

the GNSS receiver antenna. 

rε  is the measurement noise.  

If a GNSS receiver is able to track both the timing signals and the carrier signals, 

then carrier phase measurements can also be obtained. When the carrier signal 

transmitted by a satellite reaches a GNSS receiver, the relative motion between the 

satellite and the receiver causes a Doppler shift of the arrival carrier signal at the 

receiver side. If the receiver’s carrier phase tracking loop can lock onto the carrier 

signal, the receiver can continuously measure or count the Doppler shift, known as 

the Doppler count. Because the initial locking time is unknown, the initial Doppler 

count is unknown and is referred to as carrier phase integer ambiguity. The sum of 

the accumulated Doppler count and fractional phase measurement is the total carrier 

phase, which is an equivalent range measurement.  

The model equation of the carrier phase measurement can be represented as[83] 

ϕελρρλϕ +−+++−++= SRmptropiono cdtcdtdddNd  (4.48) 

where  

λϕ  is the equivalent pseudorange from a satellite to a receiver, 

ϕ  is the totally measured phase, 

λ  is the wavelength of measured carrier frequency, 

N  is the carrier phase integer ambiguity, which is a constant once the carrier 

signal is locked and tracked.  

ϕε  is the carrier phase measurement noise. 

Because the ionosphere causes the group speed of radio signals to be delayed and the 

phase speed of the radio signals to be advanced, the ionospheric delay ionod  is 

negative in Eq. (4.48) and positive in Eq. (4.47). 

Although the carrier phase measurement is potentially more accurate than the 

code phase measurement, the carrier phase integer ambiguity occurring in Eq. (4.48) 

is an inherent drawback in carrier tracking measurements. In order to benefit from 
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the high accuracy property of the carrier phase measurement, the integer ambiguity 

must be correctly resolved.  

The Doppler shift is a measure of the rate of change of the relative range 

between a GNSS satellite and a receiver along the line of sight. If the GNSS satellite 

velocities are known, then the instantaneous Doppler measurement can be used to 

determine the receiver velocity. The model equation of the Doppler measurement can 

be expressed as 

rSRmptropionor �
�������� ερρ +−+++++= tcdtcddddd  (4.49) 

where 

ϕλ �� =r  is the pseudorange rate, f∆=ϕ�  is the Doppler frequency shift. 

ρ�  is the true range rate along the line of sight between satellite and receiver, 

ρ�d  is the range rate error caused by satellite velocity errors, 

ionod�  is the range rate error caused by the ionosphere, 

tropd� is the range rate error caused by the troposphere, 

mpd�  is the range rate error caused by multipath effects, 

Rtcd�  is the range rate error caused by the receiver clock frequency drift, 

Stcd�  is the range rate error caused by the satellite clock frequency drift, and 

r�ε  is the Doppler measurement noise. 

Eqs. (4.47), (4.48 and (4.49) constitute the GNSS measurement model. Since GNSS 

satellite orbit parameters are precisely estimated by GNSS ground data processing 

centres and satellite system time is held by highly precise atomic clocks, these error 

terms can be neglected for navigation users.  

Two methods are used to reduce the error terms in the GNSS measurement 

equations. One method is to use an ionospheric and tropospheric delay models[83]. 

For example GPS generally broadcasts ionospheric correction parameters as a part of 

the navigation message. However, it is difficult to eliminate all the range errors 

caused by atmospheric path delays simply by use of these models[83].  

Another approach is to develop augmented GNSS systems. There are two kinds 

of augmentation systems: local and global augmentations. Local area augmentation 
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systems use differential GNSS[83] and pseudolite[105] techniques to correct the error 

terms in the GNSS measurements and to improve the integrity and availability of 

GNSS satellites in a local area. In a local area augmentation system, a reference 

station at a known location receives and processes its local GNSS observables to 

obtain the range and range rate corrections to each visible GNSS satellite, and then 

broadcasts these differential corrections and GNSS signal integrity information to 

near users. These users can utilise this correction information to correct their GNSS 

measurements. This differential GNSS technique can only cancel those common-

view error sources to both the reference station and the users, such as, satellite orbit 

and clock errors and atmospheric path delay errors. A pseudolite is a ground-based 

beacon at known location and transmits timing signals similar to GNSS satellites[105]. 

The pseudolite techniques can improve the availability of GNSS signals and the LOS 

geometry of user receivers within a specific region. Therefore, the local positioning 

accuracy and signal integrity are improved.  

There are three compatible versions of global augmentation system: the US 

wide area augmentation system (WAAS)[106], the European geostationary navigation 

overlay service (EGNOS) )[107] and the Japanese multifunctional transport satellite 

space-based augmentation system (MSAS) )[108]. All these systems are space-ground 

combined systems and broadcast the real-time clock, ephemeris and atmospheric 

correction parameters, augmented timing/ranging signals and integrity information of 

GNSS satellites signals. These correction parameters allow users to obtain accuracies 

approaching those of local-area differential GPS systems[108]. These spaced-based 

systems not only improve the accuracy of GNSS but also enhance the integrity, time 

availability and continuity of GNSS service[109][110].  

It should be noted that the local area augmentation systems are to mainly 

reduce the effects of the common-view error sources on the GNSS measurements. 

Therefore, the correction is local. However, the space-based augmentation systems 

directly reduce or remove the error sources. Their corrections are global because all 

GNSS users can use these corrections.  

In addition, the carrier phase measurements are generally used to smooth the 

pseudoranges to improve the accuracy of the pseudorange measurements.  
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4.6.2 GNSS Navigation Equations 

In order to develop GNSS navigation equations, assuming that the main error 

terms in Eqs. (4.47) and (4.49) have been properly corrected by use of the techniques 

mentioned as above. Therefore, the model equations of these GNSS measurements 

can be simplified in terms of range and range rate measurements, as follows: 

Range equivalent measurement: i
k

i
k

i vdtctt r)()(r +∗+= ρ  (4.50) 

Range rate equivalent measurement: i
k

i
k

i vtdctt r)()(r �
��� +∗+= ρ  (4.51) 

where rv is the range equivalent measurement noise, covering the measurement noise 

and all residual errors after the propagation path delay corrections; r�v  is the range 

rate equivalent measurement noise, including the receiver measurement noise and all 

residual rate errors after the propagation path delay corrections, and the superscript i  

represents an observed GNSS satellite. Hereafter, the subscript R  in the receiver 

clock error terms is omitted for simplifying representation.  

The true range iρ  in Eq. (4.50) is a nonlinear algebraic equation containing the 

unknown position of the receiver and the known position of the satellite i  as follows: 
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i ttttttt −+−+−=ρ  (4.52) 

where T]z,y,x[ iii is the position vector of the satellite i  in the ECEF frame at the 

signal transmission time ktS  and T]z,y,x[  is the position vector of GNSS receiver in 

ECEF coordinates at the signal reception time kt .  

The true range rate iρ�  in Eq. (4.51) is a projection of the relative velocity 

between the satellite and the receiver onto the line of sight along the GPS satellite i  

to the receiver. The range rate can be represented as: 
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ρ ++=  (4.53) 

where T]z,y,x[ iii ��� is the velocity vector of the satellite i  at time ktS  in terms of the 

ECEF coordinates and T]z,y,x[ ���  is the true velocity vector of receiver at time kt  in 

terms of the ECEF coordinates. Hereafter, the time symbols in round brackets will be 
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omitted to simplify the forms of the GNSS measurement equations. 

Two forms of GNSS navigation algorithms are commonly used. One is based 

on the least-squares method whereas the other uses Kalman filtering techniques. 

Both needs to linearise the GNSS measurement models about nominal points, i.e. the 

approximate position and velocity of a GNSS receiver.  

From Appendix F, the GNSS navigation equations can be represented in vector 

form as follows: 

rpGNSS �pHr += δδ  (4.54) 

rLOSVpGNSS �
�� �pHpHr ++= δδδ  (4.55) 

where 
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Eqs. (4.54) and (4.55) constitute the fundamental GNSS navigation algorithms. In the 

extended least-squares method, Eqs. (4.54) and (4.55) are directly solved to obtain 

the position and velocity states. In the Kalman filtering method, Eqs. (4.54) and 

(4.55) are used in the filter measurements and the aircraft motion or the inertial 

system error dynamics must be modelled. This thesis will investigate multisensor 

data fusion navigation systems using the Kalman filter approach and the dynamic 

models of inertial system errors developed in Section 4.4. 

From the least-squares estimation, the uncertainty of estimate of the GNSS-

based navigation state can be characterised by the inverse matrix [ ] 1

GNSS
T

GNSS )(
−

HH , 

which represents the geometry of visible GNSS satellites in space. The squared-root 

of the trace of this inverse matrix is usually known as the geometric dilution of 

precision (GDOP) factor. Apparently, GDOP changes with the number of observed 

GNSS satellites and their configurations. Minimising GDOP is generally used as a 

criterion to select optimal visible satellites. The GDOP is formulated in the ECEF 

frame as  

 [ ] ))((GDOP
1

GNSS
T

GNSS

−= HHtr  (4.56) 
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Transforming this inverse matrix from the ECEF frame to the NEU frame, the GDOP 

factor in the NEU frame can be formulated as 

[ ] [ ] ))(())((GDOP
1TT

GNSS
n
e

T
GNSS

n
e

e
n

1

GNSS
T

GNSS
n
e

n −− == HCHCCHHC trtr  (4.57) 

where n
eC  is the 4x4 transformation matrix from the ECEF frame to the NEU frame.  

Several other alternative DOP values used in evaluating satellite constellations are 

position dilution of precision (PDOP), horizontal dilution of precision (HDOP) and 

vertical dilution of precision (VDOP). The product of a DOP value and ranging error 

determines the corresponding position fix error[83]. 

Further investigations in GNSS applications[83][111-114] have shown that the use 

of differential carrier phase measurement techniques, based on three or four GNSS 

antennas, can obtain aircraft attitude information. This technique is usually known as 

GNSS-based attitude determination. The relative position vector between two GNSS 

antennas is referred to as the baseline. In the aircraft body frame, the orientation of 

this baseline is known very precisely. The phase difference between two antennas is 

an estimate of the projection of this baseline onto the line of sight to the observed 

satellite. This principle is illustrated in Figure 4.5 where the parallel carrier signals of 

the satellite i  arrive at the different antennas. Because the magnitude of this baseline 

is constant in any coordinate frames, taking the NEU navigation frame as a reference, 

the model for GNSS-based attitude determination can be represented as follows: 
i

jd
i
j

i
j

i
j �Nd −++= ϕλλϕ n/b

n
Tb )( sCb  (4.58) 

where 
i
jdλϕ  is the differential phase observation to 

the satellite i  from the baseline j , 

b
jb  is the known baseline j , represented 

in the body coordinates,  
i
jN  is the relative phase ambiguity of 

carrier frequency of the observed satellite 

i  with respective to the baseline j ,  

 

jb

in/s

i
jdλϕ

 
Figure 4.5 Baseline Measurements 
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ii e/n
e

n/ sCs = is the known LOS vector of the satellite i  coordinated in the NEU frame, 

b
nC  is the unknown attitude DCM and b

n
TbTn )()( Cbb jj = , and 

i
jd� −ϕ is the differential carrier phase measurement noise relative to the satellite i  

along the baseline j . 

For three baselines (J, K, L), where more than three GNSS satellites are visible, 

the model equation of the GNSS-based attitude determination can be rearranged in 

matrix form as follows:  

Φ++= dd �NSCB� λnb
nbl   (4.59) 

where 
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�  is the differential phase matrix, 
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N  is the relative ambiguity matrix, 

[ ]Tbbb
bl LKJ bbbB =  is the baseline matrix in terms of the body coordinates,  

[ ] T
LOS

n
e

n/n/3n/21n/ HCssssSn == m
�  is the known LOS DCM 

coordinated in the NEU frame, and 

Φd�  is the differential phase measurement noise matrix. 

Given that the relative ambiguity matrix N  has been resolved, two methods 

can be used to solve Eq. (4.59), depending on the configuration of the baseline 

vectors in the aircraft body frame. If these three baseline vectors are non-coplanar in 

the body frame, then an inverse of the baseline matrix blB  exists. By using least-

squares techniques, the attitude matrix can be computed as follows: 

[ ] 1TnnTn1
bl

b
n )()(

~ −−= SSS�BC d  (4.60) 

where �d  includes the resolved relative ambiguity matrix N . The inverse matrix 

[ ] 1Tnn )(
−SS  can be achieved by selecting appropriate GNSS satellites. GNSS attitude 
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algorithms based on this method are generally known as the direct attitude matrix 

determination algorithm.  

If the baseline vectors are coplanar, Eq. (4.59) is reduced to vector form as 

follows: 

jdjjjd −Φ++= �NSCb� λnb
n

Tb )(  (4.61) 

where ),,( LKJjd j =�  are the row vectors of the differential phase matrix �d , jN  

is the row vector of N  and jd −Φ�  is the row vector of Φd� . 

By independently resolving Eq. (4.61) for each row vector of �d , the baseline 

vectors can be obtained in terms of the navigation coordinates, as follows: 

[ ] bn
b

Tn1Tnnn )()(
~

jjj d bC�SSSb ≡= −
 (4.62) 

Combining any two baseline vectors given by Eq. (4.62) results in 

[ ] [ ]bbbbn
b

nnnn ~~~~
KJKJKJKJ bbbbCbbbb ×=×  (6.63) 

The attitude matrix is then given by 

[ ][ ] 1bbbbnnnnn
b

~~~~~ −××= KJKJKJKJ bbbbbbbbC  (4.64) 

Obviously, this method requires only two baselines. These two baseline vectors 

(resolved in the navigation coordinates) must first be determined, and then the 

attitude angles or the attitude matrix can be computed by using the estimates of these 

baselines. GNSS attitude algorithms based on this method are referred to as indirect 

attitude matrix determination algorithm or relative positioning attitude determination 

algorithm. Using this relative technique, a single baseline can be used to determine 

the heading and pitch angles of an aircraft if this single baseline is orientated along 

the aircraft body x-axis.  

Existing many GNSS attitude determination algorithms are generally based on 

one of these two fundamental methods. These algorithms may be distinguished by 

the computing methods used to resolve Eq. (4.59) and Eq. (4.61).  

Different from kinematic positioning where the baseline length is usually long 

and unknown and the integer ambiguity is searched in a relatively large search space, 

the baseline length in aircraft attitude determination problem is precisely known and 

very short (typically 1.0-2.0 meters). Consequently, the integer ambiguity search in 
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GNSS-based aircraft attitude determination is based on the known baseline length or 

antenna geometry and the ambiguity search space is smaller. Several least squares-

based integer ambiguity resolution techniques have been suggested for the attitude 

determination[83][113][115-118]. For any integer ambiguity resolution algorithm, a very 

important factor to be considered is the resolution time of each ambiguity algorithm, 

which is used to characterise how fast an ambiguity algorithm can obtain the correct 

value of integer ambiguity. Although the angular accuracy of a GNSS-based attitude 

determination algorithm is inversely proportional to the baseline length[83], the 

angular accuracy of the attitude solutions better than 0.50 (root-mean-square) has 

been achieved[83][119].  

4.6.3 Normalised Measurement Models 

The INS navigation state error models developed in Section 4.4 are represented 

in the navigation frame whereas the GNSS-based navigation state error models are 

coordinated in the ECEF frame. In order to develop data fusion filter, it is necessary 

to represent the states in these two kinds of models in a unified coordinate system. 

For aircraft navigation, the navigation frame is preferred as the reference frame.  

A. Normalised Range Difference Equation 

Rewriting Eq. (4.50) as 
i

k
i

k
i vdtctt rGNSS )()(r +⋅+= ρ  (4.65) 

From the INS-derived aircraft position, the computed range between the satellite i  

and aircraft i
INSr~ , corresponding to i

GNSSr , can be expressed as follows: 

2
T

2
T

2
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INSINS

)](z~)(z[)](y~)(y[)](x~)(x[            

)(r)()(r~

kk
i

kk
i

kk
i

k
i

k
i

k
i

tttttt

tdtt

−+−+−=

+= ρ
 (4.66) 

where T)](z~),(y~),(x~[ kkk ttt  is the INS-derived aircraft position in terms of the ECEF 

coordinates and )(rINS k
i td is the range error caused by uncertainty of the INS-derived 

position.  

Let the INS-derived position be expressed as follows: 
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zz)(z~  y,y)(y~  x,x)(x~ δδδ +=+=+= kkk ttt   

Linearising the squared-root term in Eq.(4.66) around this nominal point, id INSr  can 

be derived as follows: 

z
r~

)z~-(z-
y

r
)y~-(y-

x
r~

)x~-(x-
)(r

INSINSINS
INS δδδ

i

i

i

i

i

i

k
i td ++≈  (4.67) 

Differencing Eqs.(4.66) and (4.65) and comparing Eqs. (4.67) and (4.54) where i
0ρ  

and T
000 ]z,y,x[ are approximated by i

INSr~ and T]z~,y~,x~[ , respectively, the difference 

between the INS-derived and GNSS-measured ranges can be represented in vector 

form as follows: 

rLOSINSGNSS
~ �1pHrr ++−=− cdtδ  

In the NEU frame, this range difference equation is normalised as follows: 

r
ne

nLOSINSGNSS
~ �1pCHrr ++−=− cdtδ  (4.68) 

where [ ]TRR
n hδδλδϕδ =p  is the linear position error coordinated in the NEU frame. 

B. Normalised Range Rate Difference Equation 

The GNSS range rate equation can be rewritten as 

 i
k

i
k

i vtcdtt rGNSS )()(r �
��� ++= ρ  (4.69) 

The INS-derived range rate can be expressed as  
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i dtt

++=

+= ρ
 (4.70) 

where id INSr�  is the range rate error caused by uncertainty of the INS velocity solution 

and T]z~,y~,x~[ ��� is the aircraft velocity derived by the INS in the ECEF frame. 

Let the INS derived aircraft velocity ]z~,y~,x~[ ���  be expressed as follows: 

zz)(z~  ,yy)(y~  ,xx)(x~ ��������� δδδ +=+=+= kkk ttt   

Linearising Eq. (4.70) around this nominal point, id INSr�  is approximated as 
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Differencing Eqs.(4.70) and (4.69) and comparing Eqs. (4.71) and (4.55) where i
0ρ , 

T
000 ]z,y,x[  and T

000 ]z,y,x[ ��� are replaced by i
INSr~ , T]z~,y~,x~[  and T]z~,y~,x~[ ��� , 

respectively,  the range rate difference measurement equation is given in vector form 

as follows: 
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��� �1vCHpCHrr ++−−=− tcdδδ  (4.72) 

where e
wC  is the transformation from the wander frame to the ECEF frame and wvδ  

is the velocity error state in the wander frame. From Eq. (4.30a), wvδ  is represented 

as follows: 
1nv
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Therefore, the range rate difference equation can be normalised as follows: 

r
1e
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nv

p
e
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e
nLOSVINSGNSS )(

~
�

��� �1vCHpTCHCHrr ++−+−=− tcdδδ  (4.73) 

C. Normalised Relative Phase Difference Equation 

From (4.36), given the nominal matrix b
n0C , Eq. (4.58) can be rewritten as 

follows:  
i

jd
i
j

i
j

i
j �Nd −− ++×∂+= ϕλφλϕ n/b

n0
Tb

GNSS ][)( sICb  

or      i
jd

i
j

i
j

i
j

i
j �Nd −− ++×∂=− ϕλφλϕ n/b

n0
Tbn/b

n0
Tb

GNSS )()()( sCbsCb  

Defining i
j

i
jd n/b

n0
Tb

INS )( sCb=−λϕ , then i
jd INS−λϕ  is the INS-derived magnitude of the 
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projection of the baseline b
jb  onto the LOS in/s . 

i
jd

i
j

i
j

i
j

i
j �Ndd −−− ++×∂=− ϕλφλϕλϕ n/b

n0
Tb

INSGNSS )()( sCb  (4.74) 

It is obvious that Eq. (4.74) can be used to determine the initial relative phase integer 

ambiguity i
jN . Assume that the relative phase ambiguity is known, then the relative 

phase difference equation can be normalised as follows: 
i

jd
i

j
i
j

i
j �dd −−− +∂×−=− ϕφλϕλϕ )()( n/Tn

INSGNSS sb  (4.75) 

or      i
jdj

ii
j

i
j �dd −−− +∂×=− ϕφλϕλϕ )()( nTn/

INSGNSS bs  

where b
n0

TbTn )()( Cbb jj =  is the baseline vector in the navigation frame. 

When multiple satellites are observed with respect to one baseline, from Eq. 

(4.61), the relative phase difference equation for GNSS attitude determination can be 

written in vector form as follows: 

[ ] TnTnT
INSGNSS )()( jdjjj dd −Φ−− +∂×=− �bS�� φ  (4.76) 

where GNSS−jd�  and INS−jd�  are the GNSS measured and the INS computed row 

vectors of jd�  in Eq. (4.61), respectively.  

D. Normalised Position and Velocity Difference Equations 

If the GNSS-based navigation states are available, the normalised measurement 

equations for data fusion filter can be obtained as follows: 

The position difference equations are normalised as follows: 
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 (4.77) 

and the normalised velocity difference equation is  

GNSS-
1nv

p
n
GNSS

w
n

w
INS

~~
v�vpTvCv ++=− δδ  (4.78) 

In addition, normalised Doppler radar navigation equations are given in Appendix G. 

E. Normalised Attitude Difference Equation 

When attitude information is available from the GNSS attitude determination 
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or other aircraft sensor systems, the attitude difference equation can be normalised as 

follows: 

Att
Euler_err
tiltAidedINS �TEulerEuler +∂=− φ  (4.79) 

where AidedEuler are the Euler angles provided by GNSS-based attitude determination 

or other attitude measurement systems, INSEuler  are the Euler angles derived by the 

INS, Euler_err
tiltT  is given by Eq. (4.42) and Att�  is the attitude measurement noise. 

When a magnetic heading sensor is available, the corresponding measurement 

is as follows: 

MMzywxww ])sin())[cos(tan( �b +−∂−∂+∂−= φφψφψθδψ  (4.80) 

where Mb  is the magnetic heading deviation and Mυ  is the measurement noise. Mb  

can be modelled as the combination of a random constant and the first-order Markov 

process.  

4.7 Summary 

The aim of this Chapter has been to develop the navigation equations and error 

dynamic models of inertial systems and normalised measurement models of navaid 

systems, which are required to develop and simulate fault-tolerant, multisensor-based 

aircraft navigation systems. The following activities have been described in this 

Chapter:  

1. Mechanisation of the wander-azimuth strapdown inertial navigation 

equations, which allow aircraft to fly in the high latitude regions. 

2. Development of the error dynamic models for strapdown inertial system. 

These models are used not only for analysis and evaluation of the error 

behaviour of inertial systems, but more importantly, in the design and 

development of the data fusion filter developed in Chapter 6. These models 

also provide the basis of dynamic calibration and in-flight correction of 

inertial sensor systems.  

3. Presentation of the normalised measurement and navigation equations of 

GNSS. These normalised measurement models are used in the design of 
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multisensor data fusion filters. It should be noted that the normalisation of 

the sensor measurement equations can simplify the design of multisensor 

navigation systems and development of sensor/system failure detection and 

isolation algorithms. In particular, these different forms of normalised 

GNSS equations further explain how GNSS measurements are used in 

multisensor data fusion for GNSS/inertial hybridised navigation systems. 

4. Derivation of the error correction and control equations for the inertial 

sensor systems and the navigation states. 

These achievements provide the necessary background and fundamental theory 

for the design and development of multisensor-based aircraft navigation systems and 

also for the simulation and evaluation of different-grade inertial sensor systems in 

this thesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
SENSOR NETWORK TOPOLOGY AND FDI METHODS 
 

5.1 Introduction 

 105 

Chapte r  5  

5 SENSOR NETWORK TOPOLOGY AND FAILURE 
DETECTION METHODS 

5.1 Introduction 

This chapter introduces sensor system network topologies and develops sensor-

level data fusion methods. The main purposes of the sensor-level data fusion are to 

provide highly reliable and accurate sensor data for subsequent data fusion modules 

and also reconfigure sensor network systems if some sensors failed. These create the 

fundamentals for the design of fault-tolerant navigation systems and the achievement 

of reliability and integrity of aircraft navigation systems.  

Section 5.2 presents a distributed inertial network architecture and develops 

optimal redundant inertial system configurations in terms of measurement accuracy, 

reliability and failure detection capability. The error models and calibrations of 

skewed redundant IMU (SRIMU) systems are considered in Section 5.3. Section 5.4 

introduces the basic generalised likelihood ratio test (GLRT) method for the 

detection of sensor/system failures. SRIMU error compensation filters are developed 

to improve the performance of the basic GLRT methods in Section 5.5. Moving-

window detection methods are presented to enhance the capability of the GLRT 

methods for the detection of drift sensor failures in Section 5.6. A summary is given 

in Section 5.7. 
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5.2 Sensor System Network Topology 

Measurement information provided by various navigation sensor systems can 

be independent, redundant, complementary or cooperative. For example, gyroscope 

set and accelerometer set, each individually providing independent measurements, 

are integrated in an IMU to provide complementary and cooperative information that 

are used to derive the navigation states. Multiple IMUs then offer redundant inertial 

measurements. AHRS and Doppler radar together present cooperative information 

while GPS and IMU are complementary navigational sensor systems. By structuring 

different types (also known as dissimilar) of and redundant (also known as similar) 

navigation sensor systems in a rational sensor network topology, these various types 

of measurement information can be combined to achieve the required navigation 

performance and to provide the inertial vector state information required by other 

avionics systems. 

Sensor system network topology is a collection of various sensor systems and 

explains logical relationships and physical interconnections between these sensor 

systems. There are two typical avionics system architectures today widely used in 

civil and military aircraft of all types, known as the federated and integrated modular 

avionics (IMA) architectures[120-122]. The federated avionics systems have a topology 

architecture, as shown in Figure 5.1a where subsystems are encapsulated in various 

special-purpose hardware units, known as line replaceable units (LRU), to implement 

their individual avionic functions, such as navigation and flight control. These LRUs 

share the use of common data buses for data transmission between themselves. For 

example, ARINC 429 (single-transmitter multiple-receiver) and 629 (multiple access 

data bus) topology buses are usually used for the federated architecture. 

Although the federated architecture has its inherent fault tolerance, it does not 

efficiently make use of today’s powerful computer processing modules and needs to 

develop costly special-purpose hardware systems. With technology advancements in 

avionics integration and modularity designs of hardware and software systems, the 

concept of integrated modular avionics (IMA) has been presented for the purpose of 

developing more reliable and cost-effective, modular and highly integrated avionics 
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systems. Various IMA implementation architectures are described in ARINC 651, 

‘Design Guidance for Integrated Modular Avionics’. Instead of single-function black 

boxes (LRUs), an IMA cabinet contains several line replaceable modules (LRM) and 

avionics functions are implemented with common, programmable modules which are 

software-reconfigured to process many different LRU functions. Therefore, LRMs 

are shared resources for different avionics functions. Several IMA cabinets can be 

interconnected to sensor systems by high speed data buses to form a distributed 

system for performing all avionics functions on the aircraft. A typical IMA star 

topology is shown in Figure 5.1(b) where data transmission between IMAs is through 

switch units. Although ARINC 629 topology bus is used in some current IMA-based 

avionics systems, its main limitations are lower data rate and expensive components. 

Future IMA architecture will be based on faster commercial networking data buses, 

such as full duplex Ethernet (FDX). 

 

 

 

 

 

 

 

Figure 5.1 Avionics topology Architectures 

With the introduction of high speed avionics data buses and integrated modular 

avionics systems and the advent of low-cost, small-size, low-mass navigation 

sensors, high-speed and embedded microprocessors, it is feasible to install redundant 

inertial sensors in a single IMU box using a non-orthogonal configuration in order to 

improve the system reliability and to reduce the cost, size and mass of aircraft 

navigation systems. In this thesis, two forms of sensor network topologies used in the 

design of aircraft multisensor navigation systems are discussed as follows: 

• A distributed sensor system architecture 

• A clustered sensor system architecture  

(a) Federated Topology (b) Distributed Star Topology 
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In the distributed sensor system architecture topology, multiple sensor systems 

are spatially distributed at different locations in an aircraft for the implementation of 

different functions. This architecture topology is compatible with the new generation 

of avionics IMA and can enhance the fault tolerance and the survivability of aircraft 

navigation systems. 

In the clustered architecture topology, multiple inertial sensors are assembled 

into a single box to provide redundant inertial information. This architecture grants 

fault tolerance and is usually used to create redundant inertial measurement units. 

Multiple clustered sensor systems located at different locations in an aircraft form a 

distributed sensor network system.  

5.2.1 Distributed Sensor System Architecture 

Distributed sensor system architectures may have different topological forms 

dependent on the data flow control and communication between the nodes of sensor 

system networks. Individual data fusion filtering algorithms have to be developed to 

adapt to those diverse architectures, as identified in Sections 2.2 and 2.3.  

In this thesis, a distributed inertial network architecture is proposed, as shown 

in Figure 5.2 where each node represents an individual sensing place and consists of 

an IMU suite and an embedded microprocessor module. This architecture is a fully 

connected topology and allows multi-source sensor data to be fused at each network 

node. Each IMU suite can be integrated with other navaid systems. Each node is 

assumed to be in communication with others so that information from each node can 

be shared in the network architecture. The node located at the aircraft centre of 

gravity (cg) is a master node, also referred to as cg node, and others are local nodes, 

known as slave modes. The data fusion filter located at the cg (known as the cg filter) 

provides the navigation states and the cg inertial state vector while the data fusion 

filters located at slave nodes (known as the slave filters) provide the local inertial 

state vector information.  

Motivation to investigate this distributed inertial network architecture is based 

on two critical necessities; the inertial sensor system is an essential aircraft sensor 
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system that provides vital inertial information for all safety-critical avionic systems, 

including navigation system and flight control system. Additionally, fault tolerance 

of aircraft navigation system is primarily obtained from redundant inertial systems.  

 

 

 

 

(a) Fully Connected Topology 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Physical Interconnections 

Figure 5.2 Distributed Inertial Network Architecture 

This distributed inertial system network affords the following advantages: 

• Fault tolerance and robustness to sensor/system failures. Data fusion 

algorithms are designed so that the failure of any node or element of the 

node will not lead to the degradation of the performance of aircraft 

navigation system. Moreover, the degradation of the performance of the 

slave filter located at the failed node will be gradual. 

• Flexibility. It is easy to add and/or remove one or more sensor systems in 

and from the distributed system network. 

IMU Suite 
 
 
 
 
 
 

IMU Suite 
 
 

 
 
 
 

IMU Suite 
 
 
 
 
 
 

IMU Suite 
 
 

 
 
 
 

Microprocessor Microprocessor 

Microprocessor Microprocessor 



 
SENSOR NETWORK TOPOLOGY AND FDI METHODS 
 

5.2 Sensor System Network Topology 

 110 

• Highly reliable cg state estimation. The cg data fusion filter combines all 

local estimates and its own estimate to obtain the aircraft cg motion states, 

which are used to support aircraft navigation, flight control and guidance, 

and other functions that require the cg referenced data 

• Accurate local state estimation. Local data fusion filter located at each 

mode fuses all measurements from all healthy sensor systems to afford 

optimal estimates of the local states that are used to support the stabilisation 

of various avionics system platforms and local motion compensation.  

• Automatic alignment. Because information is shared at all nodes, the 

distributed data fusion filters can autonomously use the local estimates at a 

node of high quality IMU to dynamically correct and align low quality 

IMUs at other nodes. Therefore, traditional inertial system alignment 

algorithms, for example, fine alignments and transfer alignments, are no 

longer necessary in distributed inertial network systems. In traditional 

alignment methods, aircraft is usually requested to perform some specified 

manoeuvres, which can increase risk especially to military aircraft and 

pilots. The elimination of the traditional alignment procedures allows 

aircraft to perform free flight and manoeuvres.  

Distributed data fusion algorithms and their significant advantages will be 

discussed in Chapter 6. 

5.2.2 Clustered Sensor Topology 

The clustered sensor topology has different configurations. Two approaches to 

the configuration of a redundant IMU system have been suggested in the past[71][72]. 

One is an orthogonal configuration shown in Figure 5.3(a) where the sensing axes of 

redundant inertial sensors are orthogonal or parallel with respect to the body axes. 

The other uses a non-orthogonal configuration relative to the body axes shown in 

Figure 5.3(b), referred to as skewed redundant IMU (SRIMU) configurations. In the 

orthogonal configuration, the inertial measurement sensed by one sensor mounted on 

one axis is independent of other measurements sensed by other sensors mounted on 
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other axes. Therefore, the orthogonal IMU measurements are decoupled along the 

orthogonal axes. 

In a non-orthogonal configuration, the measurement sensed by one sensor can 

be decomposed into three components along the orthogonal axes, red dash arrows 

shown in Figure 5.3(b). Therefore, the measured states are coupled with each other in 

the SRIMU measurements. This nature allows fewer sensors to be used in an SRIMU 

configuration in order to achieve system performance equivalent to the orthogonal 

IMU system. Although the orthogonal IMU system is a conventional configuration, it 

is not the most efficient way to exploit the benefits of redundant sensor systems in a 

fault-tolerant navigation system. The orthogonal configuration has been used in 

traditional fault-tolerant navigation systems and also appears in multisensor fusion 

navigation systems with distributed sensor network to simplify the system design.  

 
 

 

 

 

 

 

 

Figure 5.3 Sensor Installation Orientation 

SRIMU systems can most effectively make use of redundant measurements 

provided by multiple sensors and have various configuration geometries dependent 

on the number of sensors. The typical configuration geometries are based on regular 

polyhedrons in order to simplify the engineering implementation. Several geometries 

commonly used in redundant sensor configurations are summarised in Table 5-1.  

Table 5-1 Polyhedrons in Redundant Sensor Configurations 

Polyhedron Number of Faces Min Number of Sensors 
for Redundancy 

Cube 6 ≥ 4 
Cone (Pyramid) ≥ 4 ≥ 4 
Dodecahedron 12 6 
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5.2.3 Criteria for Optimal SRIMU Configurations 

In an SRIMU configuration, the orientation of each instrument axis is defined 

by its azimuth and elevation angles with respect to an orthogonal reference frame, 

such as the body frame. Let each axis of the instrument frame be presented by a unit 

vector is  along the sensing direction of sensor i , the unit vector can be defined in the 

orthogonal reference frame by 

kjis )(ElAzElAzEl iiiiii sin)sin()cos()cos()cos( ++=  (5.1) 

where the bold symbols kji  and , are three unit vectors along the corresponding axes 

of the reference frame )z ,y,x( bbb , the superscript i  denotes a sensor and its sensing 

axis, iEl  and iAz  are the elevation and azimuth angles of the instrument axis i  with 

respect to the reference frame, as shown in Figure 5.3(b).  

Provided that an SRIMU system encloses n  sensors, identified by n , ,3 ,2 ,1 � , 

the failure-free measurement equations of the SRIMU system can be formulated as 

follows: 
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 (5.2a)  

or in vector form      �H�m +=   (5.2b)  

where zyx  and , ωωω  are three measured quantities, such as accelerations or angular 

rates in the body frame, im  is the measurement of sensor i  and iv  is a Gaussian white 

noise with a zero-mean value and standard deviation iσ . The symbol �presents the 

operation of dot product of two vectors. The matrix H  is known as the measurement 

or design matrix and describes the configuration of an SRIMU system. 

Applying a weighted least-squares estimator to Eq. (5.2b), the estimate of the 

measured state vector �̂  is given by 

mCWmHWH)(H�
b
instru

T1Tˆ == −  (5.3) 

where W  is the weight matrix and b
instruC  is referred to as the transformation matrix 
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from the inertial instrument frame to the body frame. 

Defining the estimate error vector ��� ˆ~ −= , then  

W�HWH)(H
W�HWH)(HWH�HWH)(H�

�H�WHWH)(H�

WmHWH)(H����

T1T

T1TT1T

T1T

T1T

−

−−

−

−

−=
−−=

+−=

−=−=

    

    

)(    

 ˆ~

  (5.4) 

Therefore, the estimate error is the normal distribution and the covariance matrix of 

the estimate errors according to the covariance transfer law is given by 
1TT1TT )(])ˆ)(ˆ[(E)~(Var −−=−−= WHWRWH(HHWH)H�����  (5.5) 

where )(E TvvR =  is the noise covariance matrix. 

To simplify the analysis of performance of an SRIMU configuration, assume 

that all of sensor noises are independent and that the standard deviation of the noise 

for each sensor measurement is identical vσ , and if the weight matrix W  is taken as 

the inverse of R , then the covariance matrix of the estimate error becomes 
1T2 )(()~(Var −−− == HHH)RH�

11T
vσ   (5.6a) 

or is represented by the following normalised form 

1
2 )(

)~(Var −==Σ HH� T

vσ
 (5.6b) 

The probability density function of the estimate error can be given by 

)
2
1

exp()2()( 12123
~ xxx −Τ−− Σ−Σ= πωf  

Then, the locus of the point x is determined by 

K=Σ−Τ xx 1  

This represents an error ellipsoid with a surface of constant likelihood. For any K, the 

volume of this ellipsoid is given by[123] 

Σ= π23

3
4

KV  

From the analysis above, the smaller the volume of this ellipsoid, the smaller the 

estimate errors, and the performance of navigation systems with various SRIMU 

configurations can be determined by Σ .  
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Defining a performance index (PI) as 

])[( 1T −=Σ= HHDetPI   (5.7) 

This equation can be used to determine the azimuth and elevation angles of each 

sensor to construct an optimal SRIMU configuration. If the square root of the trace of 

the normalised covariance matrix is selected as a criterion to optimise an SRIMU 

configuration, known as the geometric dilution of precision (GDOP), then  

])[( 1T −= HHtrGDOP   (5.8) 

On the basis of the criterion of minimum GDOP, Sturza[78] analyses the optimal 

installation angles for several cone configurations. However, this criterion cannot be 

applied to non-cone SRIMU configurations. To evaluate the optimal performance of 

non-cone SRIMU configurations, the estimate error variances of the measured states 

in the body frame from Eq. (5.4) can be formulated as follows. 

22

1

b
instru

2 ),()( j

n

j

jii σσ ω 	
=

= C ,   z y, x,=i   (5.9) 

Based on the assumption that all measurement noises have an identical variance 
22
jv σσ = , a normalised error variance is given by  

	
=

==
n

jv
N jii

1

2b
instru2

2
2 ),()( C

σ
σσ ω , z y, x,=i   (5.10) 

where ),(b
instru jiC  is the corresponding element of b

instruC . 

Accordingly, the criterion for determining the optimal SRIMU installation 

angles is based on the allocation of the uncertainty of SRIMU measurement to three 

orthogonal reference axes, usually the body axes. For example, to precisely sense 

aircraft motion along a specific body-axis direction, the criterion for minimising the 

corresponding )(iNσ  can be used to determine the SRIMU installation angles. To 

allocate the uncertainty of SRIMU measurement equally to three body axes, then the 

following criteria 

)z()y()x( NNN σσσ ==   (5.11) 

can be selected to determine the SRIMU installation angles. 

Based on these optimal criteria given in Eqs. (5.7) to (5.11), several SRIMU 

configurations shown in Figure 5.4 are evaluated and the results are summarised in 
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Tables 5-2 and 5-3. If one sensor in the 5-sensor cone configuration in Figure 5.4(c) 

is aligned with an orthogonal axis, Figure 5.4(c) will be degraded into the similar 

configuration shown in Figure 5.4(b). 

However, the above criteria cannot guarantee that sensor failure detection and 

isolation methods based on these optimal SRIMU configurations also have optimal 

performance. It will be revealed in the development of sensor failure detection and 

isolation methods that the initial installation azimuth angle of the first sensor in a 

symmetrical SRIMU configuration should not be zero. Accordingly, this requirement 

has to be considered as one restriction to construct a skewed redundant IMU system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Redundant Sensor Configurations 

Comparing the fourth and fifth columns of Tables 5-2 and 5-3, separately, if 

sensor failures occurred, optimal configurations many not obtain better measurement 

accuracy in comparison with a non-optimal configuration. Therefore, the selection of 

an SRIMU configuration is a tradeoff between failure detection performance and 

measurement accuracy under conditions of no sensor failures and sensor failures. 
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Table 5-2 Comparisons of Two 4-Sensor SRIMU Configurations 
Configuration  Accuracy of  

State Estimates 
Accuracy Degradation Az = El = 450 

 
Cube 

El = 35.26440 
Az = 450 

9129.0)( =iNσ  

z y, x,=i  

When any one on three 
orthogonal axes has failed, 

zy,x,  ,2361.2)( == iiNσ  

ijjN ≠=   ,0.1)(σ  

9354.0x)( =Nσ  

9354.0y)( =Nσ  

8660.0z)( =Nσ  

 
Cone 

El = 35.26440 

Az = any 

8660.0)( =iNσ  

z y, x,=i  

When any one has failed 
2247.1z)( =Nσ  

Dependent on which sensor,  
8660.0or  5.1x)( =Nσ  

5.1or  8660.0y)( =Nσ  

In the case of Az =450  
zy,x,  ,2247.1)( == iiNσ  

0.1x)( =Nσ  

0.1)y( =Nσ  

7071.0z)( =Nσ  

Table 5-3 Comparisons of Several 5-Sensor SRIMU Configurations 
Configuration Accuracy of State 

Estimates1 
Accuracy Degradation when 

any one has failed 
Azimuth =45° 

When any sensor on 
cone failed 

Cone 
El = 35.26440 

Az = any 

7746.0)( =iNσ  

z y, x,=i  

3416.1=DGOP  

Max 0954.1=Nσ  

Min 7746.0=Nσ  

6432.1=DGOP  

 

 
Cone + Spin2 
El = 24.09290 

Az = any 

7746.0)( =iNσ  

z y, x,=i  

3416.1z =DGOP  

Max 2248.1=Nσ  

Min 7746.0=Nσ  

6432.1=DGOP  

9874.0)x( =Nσ  

9874.0)y( =Nσ  

8660.0)z( =Nσ  

6432.1=DGOP  
 

Cone + x-Axis3 
El = 38.18760 

Az = any 

6688.0)x( =Nσ  

8996.0)y( =Nσ  

8087.0)z( =Nσ  

3823.1x =DGOP  

Dependent on the failed 
sensor 
Max 5582.1=Nσ  

Min 6688.0=Nσ  

Min 5076.1x =DGOP  

Max 0454.2x =DGOP  

7862.0)x( =Nσ  

1699.1)y( =Nσ  

0517.1)z( =Nσ  

7586.1x =DGOP  

 
Cone + y-Axis4 
El = 38.18760 

Az = any 

8996.0)x( =Nσ  

6688.0)y( =Nσ  

8087.0)z( =Nσ  

3823.1y =DGOP  

The same as above 1699.1)x( =Nσ  

7862.0)y( =Nσ  

0517.1)z( =Nσ  

7586.1y =DGOP  

                                                 
1 GDOP is also used to describe the geometry of redundant inertial sensor configurations as in satellite 
constellations. 
2 One of sensors is aligned with the spin axis of a cone configuration, or the z-axis of the body frame. 
3 One of sensors is aligned with the x-axis of the body frame. 
4 One of sensors is aligned with the y-axis of the body frame . 
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5.2.4 Reliability Analysis of SRIMU Configurations 

As stated in the above section, the use of SRIMU configurations can obtain the 

fault tolerance and reliability of aircraft navigation systems. To compare reliabilities 

of various configuration SRIMU systems, assume that all sensors are single degree-

of-freedom sensors and the failure rate λ  of each sensor is constant and identical for 

each type of inertial sensor. Then the reliability function of inertial sensor is given by 

R t e t( ) = −λ   (5.12) 

and the MTBF(mean time between failures) is defined as 

MTBF R t dt= =
∞

� ( )
0

1
λ

  (5.13) 

The reliability of the redundant sensor system is given by the following equation 

R t R t C R t R t C R t R tsensor
n

n
n n

n
n m n m m( ) [ ( )] [ ( )] [ ( )] ... [ ( )] [ ( )]= + − + + −− − − −1 1 1 1   (5.14) 

where  

C
n

n m mn
m =

−
!

( )! !
 

n is the number of sensors in the redundant configuration and m is the number of 

allowable failure sensors in the redundant system.  

Therefore, the reliability of an SRIMU system is given by 

)()()( tRtRtR AccelGyroSRIMU ⋅=  (5.15) 

For the orthogonal configuration in a conventional IMU, the reliability and MTBF 

are given by 
t

Gyro etR λ3
3 )( −

− =  

λ3
1

3 =−GyroMTBF  

For the configurations shown in Figure 5.5, the reliability figures and MTBF values 

are computed and normalised with respect to the GyroMTBF −3  value. The results are 

summarised in Table 5-4 where the reliability increases with the ratio. From 

inspection of Table 5-4, the reliability of an SRIMU configuration depends on the 

number of redundant sensors and the failure rate of sensor. The accuracy of SRIMU 
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measurements relies on the sensor installation configurations. 

In the dodecahedron configuration shown in Figure 5.5(g), each of six sensors 

is separately mounted along the axis of each pair of parallel faces. The configuration 

in Figure 5.5(h) is a combination of 3-sensor cone and 3-sensor cube configurations. 

 

 

 

 

 

 

  (a) 4-Sensor Cone     (b) 5-Sensor Cone  (c) 6-Sensor Cone 

Cone Configurations without One Cone Axis Sensor 

 

 

 

 

 

(d) 4-Sensor Cone  (e) 5-Sensor Cone  (f) 6-Sensor Cone  

Cone Configurations with One Cone Axis Sensor 

 

 

 

 

 

 

 
(g) Dodecahedron   (h) 3-Sensor Cone + 3-Sensor Cube 

Figure 5.5 SRIMU Configurations 
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Table 5-4 Reliabilities of Several SRIMU Configurations 
Sensor 

Configuration 
Elevation 

(deg) 
Azimuth 

(deg) 
MTBF Ratio PI Fault Tolerance5 

3-sensor orthogonal   

λ3
1

 
1   

4-Sensor Cube as in 
Figure 5.4(a) 

35.264 45 

λ12
7

 
1.75 0.7071 Fail Safe 

4-Sensor Cone as in 
Figure 5.5(a) 

35.264 45 
90 λ12

7
 

1.75 0.6495 
0.6495 

Fail Safe 

4-Sensor Cone as in 
Figure 5.5(d) 

19.472 120 

λ12
7

 
1.75 0.6495 Fail Safe 

5-Sensor Cone as in 
Figure 5.5(b) 

35.264 72 

λ60
47

 
2.35 0.4648 Fail Op/Fail Safe 

5-Sensor Cone as in 
Figure 5.5(e) 

24.092 90 

λ60
47

 
2.35 0.4648 Fail Op/Fail Safe 

6-Sensor Cone as in 
Figures 5.5(c), 
Anyone sensor failed, 
2 adjacent sensors failed, 
2 skipping sensors failed 

35.264 60 

λ60
57

 
2.86 0.3536 

 
0.5000 
0.9487 
0.7071 

Fail Op/Fail Op/Fail Safe 
 
Fail Op/Fail Safe 
Fail Safe 
Fail Safe 

6-Sensor Cone as in 
Figures 5.5(f), 
Anyone sensor failed, 
Any two sensors failed, 

26.564 72 

λ60
57

 
2.86 0.3536 

 
0.5000 
0.7906 

Fail Op/Fail Op/Fail Safe 
 
Fail Op/Fail Safe 
Fail Safe 

Dodecahedron as in 
Figures 5.5(g), 
One sensor failed, 
Any two sensors failed 

31.717 90 

λ60
57

 
2.86 0.3536 

 
0.5000 
0.7906 

Fail Op/Fail Op/Fail Safe 
 
Fail Op/Fail Safe 
Fail Safe 

6-Sensor Cube as in 
Figure 5.5(h), 
Anyone sensor failed, 
Any two sensors (in the 
same set) failed, 
Two sensors (in 
different sets) failed 

35.264 120 

λ60
57

 
2.86 0.3536 

 
0.5000- 
0.7071 

 
0.7071- 
1.2247 

Fail Op/Fail Op/Fail Safe 
 
Fail Op/Fail Safe 
Fail Safe 

 
Fail Safe 

5.3 SRIMU Calibration 

Consider the main sensor errors, including drifts, sensor misalignments and 

scalar factor errors, the compensated SRIMU measurement model corresponding to 

Eq. (5.2b) becomes  

�GmmS�H�m ++++= SFD  (5.16) 
                                                 
5 Fault tolerance in this table is characterised by Fail safe and Fail Operational. Fail safe means that 
the sensor system can issue alarm information and interrupts its work if one sensor has failed. Fail 
operational means that the sensor system continues its work even if one sensor has failed.  
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where D�  is an n -dimensional sensor drift vector, SFS  is an nn× -dimensional 

diagonal matrix, defining scale factor errors and G  is an nn× -dimensional matrix, 

containing sensor misalignments. These errors can be estimated and corrected by 

using external aiding measurements in a multisensor navigation system to improve 

the accuracy of the navigation system and also the performance of sensor failure 

detection and isolation functions. The misalignment matrix G , which has a well-

known formulation for the orthogonal sensor configuration, has to be redefined for 

an SRIMU configuration. 

The misalignments between the designed installation axis and the actual sensor 

sensing axis can be represented by two small disturbances of azimuth and elevation 

angles iAz
δ and iEl

δ , as shown in Figure 5.6 where is  and is~  are unit vectors along 

the designed and actual instrument axes. The practical installation angles are defined 

as follows: 

iEl
ii ElEl δ+= 0   (5.17) 

iAz
ii AzAz δ−= 0  (5.18)  

where iAz0 and iEl0  are the designed installation azimuth and elevation angles of the 

instrument axis i , respectively, as shown in Figure 5.3(b). 

 

 

 

 

 

 

 

 

 

Figure 5.6 Definitions of Sensor Misalignments 

Furthermore, the perturbation form of Eq. (5.2b), caused by sensor misalignments, 

can be expressed as  

by  

bx  

bz  
iAz

δ  

iEl
δ  

is  

is~  
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��HHmm +∆+=∆+ )(  (5.19) 

Therefore, 

H�m ∆=∆  (5.20) 

From Appendix H, the total SRIMU measurement error in the instrument frame is  

ElAzSFD
instru )(Diag)(Diag)Diag( ���m�� Σ+Π++=∆  (5.21) 

m�Cb
instru=Π , m	Cb

instru=Σ  

where )  ,( ElAzxx =�  are the misalignment angle vectors, SF�  is an n -dimensional 

scale factor error vector, )(mDiag  is a diagonal matrix consisting of the SRIMU 

measurement vector m , )(ΠDiag  is a diagonal matrix consisting of the vector Π  , 

()Diag  is a diagonal matrix consisting of its element, the elements of the matrix 	  

correspond to the coefficients of the elevation misalignments in 
∆  and the elements 

of �  are the coefficients of the azimuth misalignments in 
∆ . 

These SRIMU error terms are normally estimated by means of appropriate data 

fusion filters in multisensor navigation systems. As analysed in Section 4.3, however, 

the sensor error states are formulated in the navigation frame to simplify the system 

error models. For example, w∇  appearing in the velocity error model of Eq. (4.31) 

and w∆  in the tilt error model of Eq. (4.40) are described in the navigation frame. 

Accordingly, instru
�∆  has to be transferred into  n

�∆  as follows: 

ElAz �diagCC�DiagCC

�mCC�CC�

)()(             

)Diag(
b
instru

n
b

b
instru

n
b

SF
b
instru

n
bD

b
instru

n
b

n

Σ+Π+

+=∆
 (5.22) 

This equation can be used to determine the sub-matrixes of the system state transition 

matrix in data fusion filter, which are related to the SRIMU sensor error terms. Once 

the SRIMU sensor errors are estimated, Eq. (5.16) can also be used as the calibration 

equation to correct the SRIMU measurements. 

The main advantage of SRIMU configurations is that the minimum redundant 

sensors are needed in order to form a fault-tolerant navigation system, decreasing the 

size and weight of the SRIMU system. Fault tolerance can be achieved by the design 

of reliable failure detection isolation algorithms. FDI problems will be discussed in 

the following sections 
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5.4 Basic GLRT Method 

The generalised likelihood ratio test (GLRT) approach to the detection of jump 

change in linear systems is proposed by Willsky and Jones[85]. Since that, various 

improved versions of GLRT algorithms have been developed to detect measurement 

failures in GPS and SRIMU systems[75-80]. Basic GLRT method for SRIMU FDI is 

introduced as follows.  

From the SRIMU measurement model given by Eq. (5.2b) and the GNSS 

measurement model given by Eq. (4.54), these measurement equations, in normal 

operating conditions, can be unified into a normalised form as follows: 

�H�m +=  (5.23) 

where m  is an −n dimensional measurement vector, �  is a measured state vector 

and its dimension depends on the GNSS and SRIMU systems. For example, �  is a 

3-demensional vector for an SRIMU system and is a 4-dimensional vector for the 

GNSS, H  is an measurement matrix of proper dimensions, �  is an −n dimensional 

measurement noise with zero mean and covariance �R . The variances of all sensor 

measurement noises are hereafter assumed to be identical, that nn×= �R �

2
υσ . 

Because the number of measurements in an n-sensor SRIMU configuration is 

larger than the dimension of the measured state vector, these n measurements are 

linearly dependent. Without consideration of the measurement errors, there exists a 

set of scalars, at least one of which is non-zero, such that  

0P =	 i

n

i
i m    (5.24) 

Eq. (5.24) is generally known as a parity equation. There are 
)!3(!3

!
−n

n
 different 

parity equations although not all the parity equations are independent. The number of 

independent parity equations is equal to the number of redundant measurements. The 

matrix, consisting of the coefficients of n-3 linearly independent parity equations, is 

known as a parity matrix P . Therefore, Eq. (5.24) can be rewritten in matrix form as 

follows: 

0Pm =  (5.25) 
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The left-hand side of Eq. (5.25) is referred to as a parity vector and can be used to 

examine the consistency of the SRIMU measurements. 

From Eqs. (5.23) and (5.25), a parity matrix P  can be constructed to satisfy the 

following constraints: 

• 0PH =  

• P  has 3−n  linearly independent row vector. Therefore, the parity space is 

an orthogonal space. 

• IPP =T  to simplify the detection and isolation functions. This condition 

normalises each row of the parity matrix. 

• T1TT )( HHHH�PP −−= . The relationship is proved in Appendix I. 

Considering the normal measurement noise, the parity vector is 

P�P�PHxPmp =+==0  (5.26) 

This failure-free parity vector is a Gaussian white noise of zero mean and covariance 

as follows: 

T2T
p

T
00

0

][

0][

PPPPRRpp

�p

� υσ===

==

E

E
 (5.27) 

5.4.1 Detection Procedure 

Assume that sensor failure mode is a jump change with unknown sign and 

amplitude; the faulty SRIMU measurement equation can be modelled as follows:  

�bH�m ++=  (5.28) 

where b  is an n -dimensional failure vector and ib  is a nonzero element if the  i th 

sensor has failed, otherwise 0b =i . 

Therefore, the parity vector under failure conditions becomes 

0pPbP�Pbp +=+=f   (5.29) 

This failure parity vector is a Gaussian white noise of nonzero mean and the same 

covariance as the failure-free parity vector. Therefore,  
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T2T
p

T ][

][

PPPPRRpp

Pb�p

� υσ===

==

ff

f

E

E
 (5.30) 

From Eqs. (5.27) and (5.30),  the statistics of the parity vector p  is summarised as 

follows 

�
�
�

=
failure   :        ,

failure no:         ,0
][

1

0

H

H
E

�
p      

The probability density functions of the Gaussian distributed parity vector under 

these two hypotheses are given by  
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The log likelihood ratio for the two hypotheses is given by 
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The maximum likelihood estimate �̂  of �  is the value, which maximises )(pλ . 

Because two terms on the right-hand side of Eq. (5.31) are positive, the maximum 

value of )(pλ  occurs if and only if p� =ˆ . 

2

T
1T2T

max 2
)(

2
1

)(
υσ

σλ pppPPpp == −
v  (5.32) 

Therefore, the decision function for detection is defined as  

ppT=DFD  (5.33) 

Given a pre-specified detection threshold η , the detection decision can be stated as 

follows: 

• If  η>DFD , then sensor failures have occurred. 

• If  η≤DFD , then no sensor failures have occurred. 

However, when two or more sensor failures occur simultaneously, the failure parity 

vector can be represented as 

jjii bPbP ,, +=p  
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where i,P  and j,P  are the ith and jth  columns of the parity matrix P , respectively. The 

detection function takes the following form. 

ji,jijj,jiii

jiijii

DFD
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++=
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= pp

 

The first two items on the right-hand side of the above equation are positive. But the 

sign of the last item is uncertain because the signs and amplitudes of the failures are 

arbitrary. If the last item is positive, the test statistic generated through this detection 

function will increase and the detection decision may give a false alarm because of 

the accumulation of small biases in individual sensors. On the other hand, if the last 

item is negative, the inverse situation may lead to a missed detection. Therefore, this 

detection function cannot guarantee a reliable detection decision on sensor failures 

when two sensor failures happened simultaneously. In addition, if the noise level is 

close to the parity residual level, a sensor failure may also become undetectable from 

Eq. (5.32). These shortcomings have to be overcome in order to improve the 

performance of the GLRT algorithms. 

5.4.2 Isolation Procedure 

Failure isolation is to identify those failed sensors after the detection procedure 

has declared that sensor failures have occurred. As assumed in the above section, the 

failure parity vector is a nonzero mean Gaussian random variable and a unique 

nonzero element ib  is contained in the failure vector b  in Eq. (5.29). The associated 

likelihood function for the failure hypothesis is given by 

)]bP()()bP(
2
1

)(ln)b( ,
1T2T

1 iivi,ii KHf −−−== − pPPpp σλ  (5.34) 

Because the matrix TPP  is symmetric, the maximum likelihood estimate ib̂  of the 

failure magnitude ib  is 
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Substituting ib̂  into Eq. (5.34), the maximum likelihood value is given by 
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The first two terms in the left-hand side of Eq.(5.36) are constant for all sensors but 

the third term depends on the orientation of sensors. Therefore, the decision function 

for isolation is defined by  
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The isolation decision is made as follows: 

• If the i th  sensor has the maximum value of iDFI , then it is declared failed. 

From Eq. (5.35), this isolation procedure can also be used to estimate the failed 

sensor signals. The basic GLRT algorithm is illustrated in Figure 5.7. 

In summary, the GLRT detection function given by Eq. (5.33) is only used to 

detect a single sensor failure of a jump change and it cannot simultaneously detect 

two or more sensor failures. This detection function cannot unambitiously detect 

sensor failures when the measurement noise level is close to the parity residual level. 

In addition, the basic GLRT method cannot detect time-varying failures. 

From Eq. (5.16), when aircraft is experiencing a high dynamic or manoeuvring 

motion, the measurement errors caused by scale factor and sensor misalignments will 

contribute the sensor failures. Consequently, the product of the parity matrix and the 

measurement matrix is not zero but depends on the measured states. If these 

measurement errors are not compensated or corrected, false decisions may be made 

by the decision functions. 

Therefore, to improve the sensor FDI performance in terms of the probabilities 

of false alarm and missed alarm, it is necessary to develop innovative methods to 

compensate for normal sensor measurement errors and to obtain a sufficiently large 

failure signal-to-noise ratio before the detection procedure is performed. 
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Figure 5.7 Basic GLRT Algorithm Structure 

5.5 SRIMU Error Compensation Filter 

This section develops and designs SRIMU error compensation filters, which 

can be used to compensate for the measurement errors caused by normal sensor error 

sources. As a result, the performance of the basic GLRT algorithms and the accuracy 

of the SRIMU measurements can be improved. 

Yes 

No 

SRIMU Readings )(km  

Create Parity Matrix )(kP  

Parity vector generator 
)()()( kkk mPp =  

Detection: 

]
2

)()(
exp[

)2(
1

))((: 2

T

2/00
vv

m

kk
HkPH

σσπ
ppp −=  

]
2

))(())((
exp[

)2(
1

))((: 2

T

2/11
vv

m

kk
HkPH

σσπ
�p�pp −−−=  

Detection logic, GLRT test 

DTDFD <
>=     Tpp  

1H ? 

Isolation: parameter estimation 

},,2,1   ,
)(

max{
,

T
,

2T
, niDFI

ii

i
i �==

PP
pP

 

Estimate the 
measured states 

SRIMU Reconfiguration 
Modify H matrix 



 
SENSOR NETWORK TOPOLOGY AND FDI METHODS 
 

5.5 SRIMU Error Compensation Filter 

 128 

5.5.1 SRIMU Error Dynamics 

The generalised SRIMU measurement equation is rewritten as follows:  

�GmmS�H�m ++++= SFD  (5.38) 

In theory, the dynamics of these error sources given in the above equation can be 

modelled by a combination of random constant, random walk and exponentially 

correlated random processes[124]. The random constant process is used to model the 

SRIMU measurement errors caused by sensor long-term bias and misalignments. The 

first-order discrete Gauss-Markov process models the measurement errors caused by 

combination of the scale factor error and time-dependent sensor drifts. The random 

walk process models those short-term time-dependent errors. 

Therefore, for each sensor, the error terms given in Eq. (5.38) are modelled as 

follows:   
iiii
WTBD δδδδ ++=         

0B =iδ�           

ii
WW υδ =�          

iiii
TTTT υδβδ +−=�  

iiii
SFSFSFSF υδβδ +−=�        

0
Az

=iδ�   

0
El

=iδ�   

where the sensor drift Dδ  is decomposed into a constant bias error Bδ , a time-

dependent drift error Tδ  and a random walk process Wδ .  

From Eq. (5.22), three additional states are needed to relate the above sensor 

error states to the resultant navigation state errors. The three additional states are 

modeled as follows: 
n

�x ∆=�  (5.39) 

An SRIMU consists of two types of sensor set, accelerometer set and gyroscope set. 

Therefore, two SRIMU compensation filters are needed to separately compensate for 

the accelerometer and gyro sets. Combining the above sensor error dynamic models 
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and considering (5.22), the dynamic model of each SRIMU compensation filter can 

be formulated as follows: 

)()()1()1( kkkk wxx ++Φ=+   (5.40) 

where x  is a 36 +n -dimensional SRIMU error state vector, as explained above, )(kΦ  

is a state-transition matrix and it elements are determined by the coefficients of the 

above sensor error dynamic models, and )(kw is a white noise sequence of zero mean 

and variance )(kQ . 

Through combination of the SRIMU measurements, three forms of the SRIMU 

measurement residual equations can be developed as the observables of the SRIMU 

compensation filters, separately known as the least-squares measurement, the state-

free measurement and the parity vector residual equation. In addition, the aircraft 

velocity and attitude information can also be obtained from navaid systems, for 

example a multifunctional GNSS receiver or other IMUs located at other nodes in the 

distributed inertial network system. Therefore, two additional observable equations 

can be generated, known as the velocity and attitude residual equations, respectively. 

5.5.2 Least-Squares Residual Equation 

This method is based on the estimate of the measured state vector. Using a 

least-squares (LS) estimate given by Eq. (5.3), the LS residual vector is given by 

W�GmmS��Hmmmm +++=−=−=∆ SFDˆˆLS  (5.41) 

where T1T )( HHHHIW −−=  is a weighted matrix for the measurement noises and is 

introduced by the least-squares estimator. 

From Eqs. (5.21) and (5.41), the LS-based measurement residual equation is 

formulated as follows:  
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From Eq. (5.41), it should be noted that if the state estimates are based on failed 
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sensors, the estimate errors will contribute to the measurement residuals and may 

decrease the sensitivity of the detection function to actual sensor failures. 

5.5.3 State-Free Measurement Equation 

This method is based on the linear transformation to the SRIMU measurement 

equation given by Eq. (5.38).  

Defining T1TT )( HHHH�PPU −−==   

then U  is an nn× -dimensional symmetric, positive semi-definite matrix because the 

rank of PPT  is the same as the rank of P . Premultiplying the two sides of Eq. (5.38) 

by U , the state-free measurement equation is 

U�UGmmUSU�Umm +++==∆ SFDSF   (5.43) 

From Eq. (5.21), the above equation can be formulated as follows: 
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This formulation of the measurement equation eliminates errors caused by estimating 

the measured state vector. 

5.5.4 Parity Residual Equation 

The parity residual equation is derived by directly using the parity vector as the 

filter measurement. Performing a linear transformation to the SRIMU measurement 

vector from the measurement space to the parity space, then 

P�PGmmPSP�Pmp +++== SFD  (5.45) 

From Eq. (5.21), the above equation can be normalised as follows: 
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5.5.5 Velocity Residual Equation 

For the accelerometer error compensation filter, the velocity residual equation 

is driven on the basis of the difference between the SRIMU-driven velocity SRIMUv  

and the navaid-driven velocity or other SRIMU-driven velocity NAVAIDv . 

SRIMUNAVAIDv vvTv −≡δ  (5.47) 

where vT  is a velocity transformation matrix from other SRIMU node frame to the 

detected SRIMU frame.  

From Eqs. (5.22) and (5.39), the velocity residual equation is given by  

noise-v-NAVAIDv �xv +=δ  (5.48) 

where noise-v-NAVAID�  is the navaid-driven velocity solution noise. 

5.5.6 Attitude Residual Equation 

For the gyroscope error compensation filter, the attitude residual equation is 

generated by differencing the SRIMU-based attitude solution SRIMU�  and the navaid-

based attitude solution or other IMU-driven attitude solution NAVAID� . For example, a 

multifunctional GNSS receiver can output all of the navigation states. 

SRIMUNAVAID ��T� � −≡δ  (5.49) 

where �T  is an attitude transformation matrix from other SRIMU node frame to the 

detected SRIMU frame. 

From Eqs. (5.22) and (5.39), the attitude residual equation is given by  

noise-NAVAID −+= θθδ �x�  (5.50) 

where noise--GNSS θ�  is the navaid-driven attitude solution noise. 

It should be noted that relationships created in Eqs. (5.47) and (5.49) enable 

the inertial and navigation state information in a distributed sensor network system 

be shared at all network nodes. This information sharing technique enhances both the 

performance of local sensor FDI functions and the fault tolerance of the distributed 

multisensor navigation system. The transformations in Eq (5.47) and (5.49) can be a 
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unit matrix when the SRIMU error compensation filters are located at the cg node 

and the velocity and attitude residual equations are based on the GNSS navigation 

solutions. 

5.5.7 SRIMU Error Compensated FDI Algorithm Structure 

In the case of normal SRIMU operation, the compensation filters estimate the 

SRIMU errors, including gyro and accelerometer errors, and these error estimates are 

used to correct raw SRIMU measurements. The corrected SRIMU measurements are 

then fed into a sequential moving-window GLRT to detect sensor failures. A 

modular architecture for the improved FDI algorithms is shown in Figure 5.8.  

 

 

 

 

 

 

Figure 5.8 Modular Architecture of Improved FDI Algorithm 

5.6 Moving-Window GLRT Methods 

Traditionally, sequential FDI methods are based on the sequential probability 

ratio test (SPRT) developed by Wald, which use all the residual samples from the 

initial time to the current time. This detection method decreases the sensitivity to the 

detection of actual sensor failures as time progresses. A sequential moving-window 

GLRT (MW-GLRT) method is presented for detecting both jump and drift failures, 

which may degrade the performance of an SRIMU system. The structure of this 

moving-window GLRT is depicted in Figure 5.9. The parity residual vector or the 

measurement residual vector sequentially passes a first-in-first-out buffer of a length 

L , which generates a sequential test statistic. Failure detection is then performed by 

comparing this test statistic with a pre-specified threshold. 
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Figure 5.9 MW-GLRT Structure 

5.6.1 Sequential MW-GLRT Detection Procedure 

Consider that the normal SRIMU sensor errors have been largely corrected by 

means of the error compensation filters, the failed SRIMU measurement is modelled 

as follows: 

�dbH�m +++= )( kt  (5.51) 

where b  is a jump bias failure and )( ktd  is a random drift failure with unknown 

statistical characteristics. 

In this case, the failure detection is to check the maximum allowable jump bias 

failure and the maximum allowable drift rate failure. Considering the constraints on 

the parity matrix, and the statistical character of the parity vector, the parity vectors 

are a sequence of independent Gaussian random variables. A moving-window joint 

likelihood ratio function is given as follows: 

 

)}()](
2
1

)([{
1

          

))]}()([)]()([)()({
2

1
          

])1()1()([

])1()1()([
ln)(

T

1
2

T

1

T
2

0

1

iii

iiiiii

HLkkkf

HLkkkf
k

k

Lki

k

Lki

L

��p

�p�ppp

p,p,p
p,p,p

−=

−−−=

+−−
+−−

=

	

	

+−=

+−=

υ

υ

σ

σ

λ
�

�

 (5.52) 

Furthermore, 
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Two methods are used to define the sequential decision function for detection. 

One assumes a constant design value b�̂ of the parity vector average i�  within the L-

length window, which depends on the accuracy requirement to an SRIMU navigation 

system. The sequential detection function is then defined by  

)(kp         )1( +− Lkp  
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For each type of inertial sensors, the constant design value b�̂  is determined on 

the basis of the sensor statistics and allowable error, and has the sign of the moving 

window average value and an amplitude value as follows: 
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where t∆  is the sample interval of SRIMU outputs.  

Therefore, the change trend of )(Lkλ  is illustrated in Figure 5.10. 

 

 

 

 

 

 

 

 

Figure 5.10 Detection Function for A Constant Design Value of i�  

The detection rules are stated as follows: 

• If η≥)(kDFDL , then sensor failures have occurred.  

• If η<)(kDFDL , then no sensor failure has occurred. 

The other method defines the detection function on the basis of the maximum 

likelihood estimates of average of the sequential parity vectors. Assume the average 

value is an unknown constant �  within the L-length window; from Eq. (5.52), the 

estimate of � , �̂ , is given by 

)(Lkλ  

k  

η  

bb

L
�� ˆˆ

2
T  



 
SENSOR NETWORK TOPOLOGY AND FDI METHODS 
 

5.6 Moving-Window GLRT Methods 

 135 

	
+−=

=
k

Lki

i
L 1

)(
1ˆ p�  (5.55) 

The maximum likelihood ratio is 
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and the detection function is defined as 
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Therefore, the detection rules are stated as follows: 

• If η≥)(kDFDL , then failures occurred; 

• If η<)(kDFDL , then no failures occurred. 

The change trend of this detection function is illustrated in Figure 5.11. 

 

 

 

 

 

 

Figure 5.11 Detection Function based on Estimate of Window Average 

From Eqs. (5.54) and (5.56), this sequential detection is easily affected by the 

measurement noise and the detection performance may be degraded with the increase 

of the noise variance, especially in less accurate, low-cost SRIMU system. Improved 

sequential MW GLRT methods will be introduced to overcome the above problem in 

the following sections. 

5.6.2 Sequential-Averaged Method 

In order to reduce the effects of measurement noise on the sequential residual 

signals, it is necessary to pre-process the original parity vector sequences to generate 

a new parity vector. This new parity vector or residual signal is then used to detect 
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failures. A sequential averaged detection method is introduced in this section. This 

method sequentially averages the parity vector or residual signal sequences within a 

moving window. The sequential average value can be computed as follows:  
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 (5.58) 
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This sequential average is also a Gaussian distributed random variable. Its mean is 

the same as the original parity vector, that is,  
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Assuming the parity vector sequences are independent, 0)]()([ T =jiE pp  )( ji ≠ , so 

that the above equation can be simplified as follows: 
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 (5.59) 

Therefore, this sequential-averaged method reduces the variance of the measurement 

noise and can remove high-frequency noise and wild-values. It can also identify the 

feature of the drift failures. The size of window should be chosen so that the 

influence of the measurement noise on the failure detection procedure can be largely 

decreased. As a result, it enhances the sensitivity of the detection algorithm to true 

drift failures. 

The detection of allowable maximum rate of the drift failure is usually needed 

in order to afford highly reliable angular rate data for flight control systems and other 
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avionics systems. To detect the drift rate of the drift failure )( ktd  in Eq. (5.51), the 

averaged parity vector is sequentially differenced and the results are averaged within 

the moving-window of a length L as a decision function for the detection of drift rate 

failures as follows: 
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where )(kLs  represents an average rate of the drift failure within the window. 

The norm of )(kLs  is defined as the decision function for detection of drift rate 

failure )()( kkDFD LL s= .  Given a drift rate threshold Dη , then the detection rules 

are described as follows:  

1. If DL kDFD η≥)( , then drift rate failures have occurred, 

2. Otherwise, no drift rate failure happened. 

5.6.3 Sequential-Averaged MW-GLRT Methods 

This improved method is a combination of the sequential MW-GLRT method 

and the sequential-averaged detection. To simplify the mathematical equations, the 

sequential average value is computed by the following equation, 
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Combining Eqs.(5.52) and (5.61), the normalised sequential likelihood ratio of 

the sequential moving-window average can be formulated by  
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where b� is a constant design value dependent of the accuracy requirement for the 

SRIMU system. 

db Pb� =  
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where db  is a minimum SRIMU drift error, determined according to the accuracy 

requirement of an SRIMU system, and the sign of the elements of db  depends on the 

sign of the estimated measurement residuals. 

)]([)]([ d ksignksign mb ∆=  

Eq.(5.62) can be rewritten as follows 
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Because b�  has the sign of )(kp , the above equation can also be expressed as 
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monotonously incremental function. This makes the sensor drift be rapidly detected.  

Accordingly, the sequential decision rule is  

• If p)( ηλ ≥n , then sensor failures have occurred at the time tNLt ∆∗= * . 

• Otherwise, no sensor failure happened. 

where pη  is a sequential detection threshold which is based on the probabilities of 

missed detection and false alarm and 2
pp

1
ln ση

FA

MD

P
P−= .  

5.7 Summary 

This chapter introduced the topology architectures of sensor network systems, 

and developed methodologies for evaluation of various configurations of the skewed 

redundant inertial measurement units (SRIMUs) and for detection and isolation of 

sensor failures appearing in the SRIMUs. The main deliveries cover: 

1. Description of two forms of sensor system architectures: the distributed 

sensor system architecture and the clustered sensor system architecture. 
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2. Development of three criteria to evaluate optimal configurations of skewed 

redundant inertial systems in the clustered sensor system architecture, 

including minimum GDOP factor, identical variance errors along the three 

orthogonal body axes and optimal SRIMU FDI performance. Based on 

these criteria, coplanar sensor installations in SRIMUs should be avoided in 

order to obtain the maximum SRIMU FDI capability.  

3. Comparison of the performance of several SRIMU configurations, 

including their measurement accuracy and reliability. 

4. Development of the SRIMU error calibration algorithms for design of local 

Kalman filter and dynamic SRIMU error controls. 

5. Design of the SRIMU error compensation Kalman filters to improve the 

performance of the FDI algorithms and the accuracy of SRIMU systems.  

6. Development and improvement of the moving-window GLRT methods to 

detect three kinds of inertial sensor failure modes, including jump, time-

drift and drift rate failures.   
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Chapte r  6  

6 DISTRIBUTED DATA FUSION ALGORITHMS 

6.1 Introduction 

This chapter develops data fusion methodologies for distributed sensor network 

systems, including data fusion filter algorithms and integrity monitoring algorithms. 

Section 6.2 introduces general distributed fusion algorithms for several distributed 

sensor systems. Section 6.3 develops inertial network measurement models and also 

establishes dynamic relationships among inertial network nodes. Inertial network 

data fusion algorithms are developed in Section 6.4. Inertial network integrity 

monitoring algorithms are presented in Section 6.5. Finally, a summary is given in 

Section 6.6. 

6.2 Distributed Sensor Systems and Fusion Algorithms 

This section develops several forms of distributed fusion filter algorithms for 

differently distributed sensor systems. The dynamics of a distributed sensor network 

system can be described by one global dynamic model and N  local dynamic models 

where N  is the number of the nodes or the local sensor systems in a distributed 

sensor network system. Let the global system model be formulated as follows: 

)()()()()( 1111 −−−− += kkkkkk ttt,ttt wGx�x  (6.1) 

)()()()( kkkk tttt �xHz +=  (6.2) 

and the local system models be represented by   
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Nittt,ttt kikikikkiki ,,1     )()()()()( 1111 �=+= −−−− wBx�x  (6.3) 

Nitttt kikikiki ,,1                              )()()()( �=+= �xCz  (6.4) 

Because all the sensor systems are independent and their measurement noise is also 

independent of the measured quantities, the global measurement model given in Eq. 

(6.2) can be partitioned into the following block matrices or vectors.   

[ ]TTT
2

T
1 )()()()( kNkkk tttt zzzz �=  (6.5) 

[ ]TTT
2

T
1 )()()()( kNkkk tttt ���� �=  (6.6) 

[ ]TTT
2

T
1 )()()()( kNkkk tttt 



 �=  (6.7) 

[ ])()()()( 21 kNkkk tttblockdiagt RRRR �=  (6.8) 

where iR  is the covariance matrix of the measurement noise i� . 

The local system model is a practical dynamic model of a node or a local 

system in a distributed network system. The global system model can be either a true 

model of a practical distributed system or a virtual model, which is established in 

order to develop distributed data fusion algorithms. For example, in many target-

tracking systems, the global system models normally describe the dynamic motion of 

the tracked targets. In distributed control systems, a global system model may not 

exist although global optimisation is usually required. In an integrated aircraft 

navigation system with distributed sensor systems, the aircraft centre of gravity (cg) 

is a special location with respect to which many parameters or states used in aircraft 

navigation and flight control systems are defined. Therefore, the global system model 

of aircraft navigation system usually describes the dynamic motion of the aircraft 

centre of gravity and is approximated by the error dynamic model of an inertial 

system located at the cg. However, this is not necessarily true in a distributed inertial 

network system where each node has its own local dynamic model and a global 

model is not needed.  

In this thesis, the development of distributed data fusion filter algorithms is 

based on two principles. One is known as the global-to-local optimisation method 

and the other is referred to as the local-to-global optimisation method. In the global-

to-local optimisation method, the distributed local filters are designed on the basis of 
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optimisation of the global system model whereas in the local-to-global optimisation 

method, global optimisation is obtained by the optimisation of the local systems. 

Depending on the network communication modes and the characteristics of the 

node dynamic models, two classes of distributed fusion algorithms, referred to as 

state-identical distributed fusion algorithms and state-associated distributed fusion 

algorithms, are discussed in the following subsections. For each class of distributed 

fusion algorithm, several distributed fusion filters are developed for different sensor 

network systems. 

6.2.1 State-Identical Distributed Fusion Algorithms 

State-identical distributed fusion algorithms are developed for distributed 

sensor network systems where all the sensor systems are distributed but the observed 

object is identical. Depending on data communication modes among the network 

nodes, two types of distributed filter algorithms are analysed. The Type I algorithm is 

used for distributed systems using one-way communication, as shown in Figure 6.1 

where the arrows indicate the directions of data flow. The Type II algorithm applies 

to distributed systems using two-way communication, as shown in Figure 6.2. In 

both these distributed systems, all the sensor systems observe the same dynamic 

system. Therefore, all the local system models and the global system model are 

identical.  

The distributed network system model given by from Eqs. (6.1) to (6.4) can be 

simplified where the following assumptions apply: 

)()()( kkjki ttt xxx ≡=  

��� ≡= ji  

)()()( kkjki ttt GBB ≡=  

)()()( kkjki ttt www ≡=  

)()( kiki tt HC =  

By following Hashemipour’s work[62], the distributed filter algorithms are derived as 

follows.  
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Figure 6.1 State-Identical One-Way Model 

 

 

 

 

 

 

 

 

Figure 6.2 State-Identical Two-Way Model 

From the information form of the Kalman filter algorithm given in Chapter 3, 

the local estimates can be obtained and represented by the following forms: 

)(ˆ)()(ˆ 11
+
−−

− = kikkiki t,ttt x�x  (6.9) 

)()()(),()(),()( 1
T

111
T

11 −−−−
+
−−

− += kikikikkikikkiki ttttttttt BQB�P�P  (6.10) 

)()()()()( 111T −−+−− −= kikikikiki ttttt PPHRH  (6.11) 

)(ˆ)()(ˆ)()()()( 111T −−−++−− −= kikikikikikiki ttttttt xPxPzRH  (6.12) 

and the global time-update and measurement-update equations are as follows: 

)(ˆ)()(ˆ 11
+
−−

− = kkkk t,ttt x�x  (6.13) 

)()()(),()(),()( 1
T

111
T

11 −−−−
+
−−

− += kkkkkkkkk ttttttttt GQG�P�P  (6.14) 

)()()()(             

)()()()()(

1

1

T1

1T11

kiki

N

i
kik

kkkkk

tttt

ttttt

HRHP

HRHPP

−

=

−−

−−−+−

	+=

+=
 (6.15) 
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)()()()(ˆ)(                      

)()()()(ˆ)()(ˆ)(

1

1

T1

1T11

kikik

N

i
ikk

kkkkkkk

ttttt

ttttttt

zRHxP

zRHxPxP

−

=

−−−

−−−−++−

	+=

+=
 (6.16) 

Substituting Eq. (6.11) into Eq. (6.15) and Eq. (6.12) into Eq. (6.16) generates 

the following global update equations 

)]()([)()( 1

1

1-11 −−

=

+−−+− −+= 	 ki

N

i
kikk tttt PPPP  (6.17) 

	
=

−−−++−−−−++− −+=
N

i
kikikikikkkk tttttttt

1

1111 )](ˆ)()(ˆ)([)(ˆ)()(ˆ)( xPxPxPxP  (6.18) 

Eqs. (6.9) to (6.14), and (6.17) and (6.18) describe the Type I algorithm. In this 

algorithm, each parallel local filter only processes its own measurements in order to 

generate its local estimates. The global fusion filter assimilates all the local estimates 

to update the global estimate. Obviously, this algorithm has a simple structure. The 

main disadvantage of this algorithm is that the degradation of the local filter 

performance may critically affect the performance of the global fusion filter because 

the global estimate cannot be used to refresh the local estimates.  

For the two-way model shown in Figure 6.2, the time-update equations are 

given by Eqs. (6.13) and (6.14). Placing the global update equations (6.17) and (6.18) 

at each node yields  

)]()([)()( 1

1

1-11 −−

=

+−−+− −+= 	 ki

N

i
kikjkj tttt PPPP  (6.19) 

	
=

−−−++−−−−++− −+=
N

i
kikikikikjkjkjkj tttttttt

1

1111 )](ˆ)()(ˆ)([)(ˆ)()(ˆ)( xPxPxPxP  (6.20) 

Eqs. (6.9) and (6.12), and (6.19) to (6.20) constitute the Type II algorithm. In 

this algorithm, each local fusion filter updates its global estimate by assimilating the 

local estimates from the other local fusion filters. Accordingly, all the local estimates 

can be dynamically corrected by their global estimate updates. The Type II algorithm 

overcomes the disadvantage of the Type I algorithm and provides the redundant 

global state estimates. Therefore, this algorithm is a fault-tolerant fusion algorithm.  

In many practical examples of state-identical distributed sensor network 

systems, not all the sensor systems can observe the complete states of the same 
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dynamic system. Therefore, the local state is a subset of the global system state and 

the local filters are generally designed to be reduced-order. In such cases, the Type I 

and Type II algorithms given above must be modified.  

Let the local system states be abstracted from the global state as follows:  

)()( kiki tt xDx =  (6.21) 

where iD  is a one-way state abstraction matrix consisting of ones or zeros and each 

row of iD  has at most one non-zero element. 

From Eq. (6.4), a sub-matrix of the global measurement matrix is associated 

with a local measurement matrix by 

ikiki tt DCH )()( =  (6.22) 

From Eqs. (6.15) and (6.16), the global update equations are given by 

iki

N

i
kiikk tttt DPPDPP )]()([)()( 1

1

1T11 −−

=

+−−−+− −+= 	  (6.23) 

)](ˆ)()(ˆ)([)(ˆ)()(ˆ)( 1

1

1T11 −−−++

=

−−−−++− −+= 	 kikikik

N

i
iikkkk tttttttt xPxPDxPxP  (6.24) 

and the local estimates can be obtained as follows:   

)()()(),()(),( )( T
1

T
1 kikikikkikikkiki ttttttttt BQB�P�P += −

+
−

−  (6.25) 

)()()()()( 1T11
kikikikiki ttttt CRCPP −−−+− −=  (6.26) 

)(ˆ),()(ˆ 11
+
−−

− = kikkiki tttt x�x  (6.27) 

)()()()(ˆ)()(ˆ)( 1T11
kikikikikikiki ttttttt zRCxPxP −−−−++− −=  (6.28) 

Eqs. (6.23) to (6.28) constitute the modified Type I algorithm. 

To deduce the modified Type II algorithm, from Eq. (6.21), the relationship 

between the covariances of the local states and the covariance of the global state can 

be obtained as follows:  
T)()( ikiki tt DPDP =  (6.29) 

*1*T1 ])[(][)( ikiki tt DPDP −− =  (6.30) 

ikiik tt DPDP )()( 1T1 −− =  (6.31)  

where *
iD  is a Moore-Penrose inverse of iD  and ii DD =∗][ * . As the row dimension 
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of iD  is less than its column, 1TT* )( −= iiii DDDD .  

It should be noted that iD  is a one-way abstraction matrix and Eq. (6.31) cannot 

be used to restore the global covariance from a local covariance. However, if the 

purpose of the local fusion filter at each node is to update the local estimates, Eq. 

(6.31) will be valid.  

From Eqs. (6.21) and (6.31), the global system state at each network node can 

be represented by the following equation 

)(ˆ)()(ˆ)()(ˆ)( 1T1T1
kikiikikiikk tttttt xPDxDPDxP −−− ==  (6.32) 

Eq. (6.32) implies restoring the global version of the local estimate rather than the 

global estimate from the local estimate. 

Substituting Eq. (6.31) into Eq. (6.23) and Eq. (6.32) into Eq. (6.24) yields  

∗

=

−−+−∗−−+− 	 −−= ]}[)]()([{][)( )(
1

11TT11
ji

N

i
kiiiijkjkj tttt DDPDDPP  (6.33) 

Substituting Eq. (6.32) into Eq. (6.24) yields 

	
=

−−−++−∗

−−−++−

−−

=
N

i
kikikikiij

kjkjkjkj

tttt

tttt

1

11TT

11

)](ˆ)()(ˆ)([][                          

)(ˆ)()(ˆ)(

xPxPDD

xPxP
 (6.34) 

Eqs. (6.33) and (6.34) create the modified Type II algorithm. It must be noted that 

the modified Type II algorithm has no global fusion model and all the local fusion 

filters have their own fusion models. This is different from the Type II algorithm 

where a global fusion model can be used in all the local fusion filters. A constraint on 

the choice of the local fusion model is that the dimension of the states in the local 

fusion model must be equal to that of the states in the corresponding local state filter 

model. The modified Type II algorithm is suitable for applications where the local 

state estimate is more important than the global state estimate. 

The Type I and II algorithms and their modifications are widely used in target 

tracking and identification applications and can also be used to design and develop 

conventional aircraft integrated navigation systems where the main requirement is to 

determine the motion states of the aircraft centre of gravity. The traditional cascaded 

and federated filters are special examples of these distributed algorithms. However, a 
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common constraint applied to both algorithms is that all the local filters must have 

the same dynamic model. This limits the application of the Type I and II algorithms. 

6.2.2 State-Associated Distributed Fusion Algorithms 

State-associated distributed fusion algorithms are presented for distributed 

sensor network systems, as illustrated in Figures 6.3 and 6.4 where all the sensor 

systems are distributed and observe their local dynamic motion states. Therefore, all 

the local dynamic models may be different from each other and the global dynamic 

model. Similar to the analysis in Section 6.2.1, this subsection describes two kinds of 

sensor fusion algorithms. The Type IA algorithm is used for the distributed system 

shown in Figure 6.3 while the Type IIA algorithm applies to the distributed system in 

Figure 6.4. In Figure 6.3, all the local estimates are transferred to the global fusion 

filter whereas in Figure 6.4, each local fusion filter assimilates all the local filter 

outputs. 

 

 

 

 

 

 

Figure 6.3 State-Associated One-Way Model 

 

 

 

 

 

 

 

 

Figure 6.4 State-Associated Two-Way Model 
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In these distributed systems, the following assumptions apply. 

)()()( kkjki ttt xxx ≠≠  

)()()( kkjki ttt www ≠≠  

��� ≠≠ ji  

 )()()( kkjki ttt GBB ≠≠  

)()()( kikjki ttt HCC ≠≠  

However, some relationships must exist between the local states and the global 

state. Assuming the local states are restored from the combination of the elements of 

the global state, then Eq. (6.21) can be rewritten as follows 

)()( kiiki tt xDTx =  (6.35) 

where iT  is an invertible square matrix having the dimension consistent with the 

dimension  of the local state ix .  

Therefore, from Eq. (6.4), the local measurement matrix is given by 

iikiki tt DTCH )()( =  (6.36) 

From Eqs. (6.23), (6.24), (6.35) and (6.36), the global update equations of the global 

fusion filter are as follows: 

})]()([{)()( 1

1

1TT11
iiki

N

i
kiiikk tttt DTPPTDPP −−

=

+−−−+− −+= 	  (6.37) 

)](ˆ)()(ˆ)([)(ˆ)()(ˆ)( 1

1

1TT11 −−−−+

=

−−−−++− −+= 	 kikikik

N

i
iiikkkk tttttttt xPxPTDxPxP  (6.38) 

The global time-update equations and the local time-update equations are based on 

the standard information filter. The fusion algorithm based on Eqs. (6.37) and (6.38) 

is known as the Type IA algorithm. 

For the distributed system shown in Figure 6.4, from Eqs. (6.33), (6.34), (6.35), 

and (3.36), the Type IIA algorithm can be implemented as follows: 

1T

1

11TT1TT

11

][]}[)]()([{][][               

)( )(

−∗

=

−−+−−∗

−−+−

	 −−

=

iijj

N

j
kjkjjjii

kiki

tt

tt

TDDTPTDTD

PP
 (6.39)   
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=

−−−−+−−∗

−−−++−

−−

=
N

j
kjkjkjkjjjii

kikikiki

tttt

tttt

1

11TT1TT

11

)](ˆ)()(ˆ)([][][                          

)(ˆ)()(ˆ)(

xPxPTDTD

xPxP
 (6.40)  

At each network node, the local filter estimate equations are given by the standard 

information filter algorithms. If the number of the local states is the same as the 

global state, then ii ID =  and iT  represents a transformation between the local states 

and the global state. 

In comparison with the Type I and Type II algorithms, the Type IA and Type 

IIA algorithms are applicable to a wider range of distributed sensor systems. But they 

need to establish the transformation relationships between the local states and the 

global state. In many practical distributed sensor systems, this transformation iT  may 

be time varying )( ki tT . Therefore, it is very important to develop this dynamic 

transformation in applications of the Type IA and Type IIA algorithms.  

Comparing the Type I and Type IA algorithms with the Type II and Type IIA 

algorithms, the former needs to establish the global system model of the distributed 

sensor network system whereas the latter does not. From the viewpoint of fusion 

filter distributions, the Type I and Type IA algorithms can be also referred to as the 

centralised fusion filter algorithm and the Type II and Type IIA algorithms are 

known as the fully distributed fusion filter algorithm. 

The Type IA and Type IIA algorithms can be used to resolve the problems of 

distributed controls and estimations where the local state information is particularly 

needed for local system controls and stabilisations and also for estimation of the local 

motion states.  

In the following sections, a distributed inertial network system is presented as 

an example to explain the development of fully distributed fusion algorithms.  

6.3 Distributed Inertial Sensing Models 

A simplified version of the distributed inertial network system architecture 

shown in Figure 5.3 is illustrated in Figure 6.5 where three IMUs are located at 
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different positions in an aircraft. These IMUs independently measure individual local 

qualities, but the measured or estimated states are not completely independent due to 

the rigid structure of the aircraft and are dynamically associated with each other. The 

development of this dynamic relationship between the local states and the measured 

qualities can drastically utilise the inertial information provided by the inertial 

network to detect and isolate sensor/system failures, and to particularly implement 

dynamic calibration and transfer alignments between the various inertial systems. 

Consequently, this dynamic relationship can be used to improve the required 

navigation performance in terms of the RNP parameters and to greatly increase the 

fault tolerance of an aircraft navigation system. This dynamic relationship can be 

established by the development of the rotational and translational transformations 

between the node frames.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.5 Relationships among IMU Nodes 

In Figure 6.5, the IMU frames and the corresponding local reference frames are 

indicated. Let I  be the inertial reference frame cg is the master IMU node located at 

the aircraft centre of gravity and its local body frame; i  and j  represent the slave 

IMU nodes and their individual local body frames(in this thesis, the IMU frames are 

assumed to be aligned with the local body frames, otherwise, fixed transformations 

are needed to align these two frames). ⊥  denotes a translational transformation, for 
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example, j
i⊥  is the translation vector from nodes i  to j  T  represents a rotational 

transformation, for example, the transformation from i  to j  is denoted by j
iT . 

Exchanging the superscript and the subscript of a transformation represents the 

inverse of the transformation, for example i
j

j
i TT =−1)( . Let the local reference 

frames at the nodes of i , j  and cg  be denoted by iL , jL  and cgL , then the 

transformations from the local reference frames to the local body frames are given by 
i
LiT , j

L jT  and cg
LcgT . If the local level frames are used as the local reference frames, 

these rotation matrices indicate the orientations of the local body axes relative to the 

local reference frames. If one local reference frame is not the local-level frame, then 

its orientation should be known relative to the local-level frame. Because the local-

level frames are defined by the geographic locations of IMU nodes, their orientation 

differences caused by the translation vectors between these nodes can be ignored. 

Consequently, in this thesis it is assumed that the local-level frames located at all 

inertial network nodes are identical, that is cgij LLL == . 

Let the relative rotation of one IMU frame i  with respect to another frame j  

be ij /�  and its inverse rotation be ijji // �� −= . From the theory of multi-body 

rotation[100], the absolute angular velocity of each IMU frame in the inertial network 

system is the sum of the absolute angular velocity of the other IMU frame and the 

relative angular velocity between these two frames, and is generally written in the 

following form: 

icgcgi //I/I ��� +=  (6.41) 

jcgcgj //I/I ��� +=  (6.42) 

cgjjcg //I/I ��� +=  (6.43) 

The terms on the left side of the above equations are measured by the corresponding 

local IMUs. The rotational transformations among the local IMU (local body) frames 

depend on the relative angular velocities between these frames.   

Determination of the stationary and dynamic relationships among the network 

nodes is discussed in the following subsections. 
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6.3.1 Stationary Inertial Sensing Model 

In this method, the aircraft is assumed to be a completely rigid body to simplify 

the analysis. Based on this assumption, there is no relative rotation motion between 

the local node body frames. Therefore, the dynamic relationships between different 

IMU frames can be described by stationary rotation and translation transformations 

from one node frame to the other node frame. These transformations can be 

measured precisely and determined after the IMUs have been installed in an aircraft.  

When the local state x  is a rate vector, such as acceleration, velocity or angular 

velocity, a rotation matrix is used to complete the rotation transformation from one 

node frame to the other node frame as follows:  

j
i
ji x�x =  (6.44) 

If the local state is a displacement vector, a rotation matrix can be combined 

with a translation vector together to complete the transformation from one frame to 

the other frame as follows:   
i
jj

i
ji ⊥+= xTx  (6.45) 

When the local states are the Euler angles, the attitude matrix transformation 

from one frame to the other frame has the following form: 
j

L
i
j

i
L ji TTT =  (6.46) 

where the states ix  and jx  are expressed in their individual local frames and i
jT  and 

i
j⊥  are known as the rotation matrix and the translation vector, respectively. 

At an IMU node, the measured inertial states, accelerations and angular rates, 

are expressed in terms of the local body frames and the IMU outputs are represented 

in the inertial instrument frames. The transformation between the inertial instrument 

frame and the local body frame, for example, at the cg  node, is given by cg
imu cgH where 

the subscript cgimu  denotes the IMU instrument frame at the cg  node. The matrix 

cg
imu cgH  depends on the IMU configuration and can be dynamically reconfigured if the 

IMU is an SRIMU. From Eq. (5.2b), the measurement of the cg  IMU can be 

rewritten as  
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cg
imu
cgimu

cg

cg xHm =  (6.47) 

By the rotational transformations, the measurements provided by IMUs i  and j  can 

be represented in terms of the local body frame at the node cg  as follows: 

cg
i
cg

imu
ii

imu
iimu

ii

i xTHx
m ==  (6.48) 

cg
j

cg
imu
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imu
jimu

jj

j xTHxHm ==  (6.49) 

Eqs. (6.48) and (6.49) mean that the node cg  assimilates the inertial measurement 

information from the slave nodes i  and j . Therefore, the inertial measurement at the 

node cg  can be represented as 
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Similarly, the inertial measurements at the nodes i  and j  are as follows: 
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Eqs. (6.50), (6.51) and (6.52) imply that each node shares the same redundant inertial 

measurements even if all the IMUs are traditionally orthogonal systems. Therefore, 

the SRIMU FDI algorithms developed in Chapter 5 can be used directly to detect and 

isolate inertial sensor failures in an inertial network system. Various weighted least-

squares estimators can be used to estimate the inertial state. This procedure of data 

assimilation and least-squares estimation is referred to as inertial data fusion. The 

inertial data fusion procedure increases the measurement accuracy of each IMU and 

consequently improves the performance of the navigation system and the accuracy of 

the local state estimation.  
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One node estimates its local attitude matrix from the assimilated inertial 

measurements. From Eq. (6.46), it can also assimilate the attitude information from 

the other nodes using the following attitude matrices. 

At node i ,  

i
LiT  (6.53) 

j
L

i
j

i
L jj TTT =  (6.54) 

cg
L

i
cg

i
L cgcg TTT =  (6.55) 

At node j , 

j
L jT  (6.56) 

i
L

j
i

j
L ii TTT =  (6.57) 

cg
L

j
cg

j
L cgcg TTT =  (6.58) 

At node cg , 

cg
LcgT  (6.59) 

i
L

cg
i

cg
L ii TTT =  (6.60) 

j
L

cg
j

cg
L jj TTT =  (6.61) 

Therefore, the redundant attitude information at each node can be fused to increase 

the accuracy of the local attitude estimates. 

6.3.2 Dynamic Transformation Model 

Although the assumption of a rigid body aircraft can apply to a wide range of 

applications in aircraft navigation and control systems, this assumption may be 

invalid in many military aircraft navigation and control systems because high-speed 

flight and high dynamic manoeuvres can cause the aircraft body to flex with flight 

conditions. The rotational transformations given in the above section are no longer 

stationary but are time-varying dynamic matrices. If the flexible structure character 

of an aircraft is ignored, the above assimilation equations will introduce errors in the 
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rotation transformation �∆ , leading to larger errors in the estimates of the local 

states. Therefore, it is necessary to develop the dynamic relationships between the 

network nodes and to estimate these dynamic transformation matrices in flight. Two 

methods are presented in this thesis to determine these rotational transformations. 

One method establishes analytical models of the rotation matrices while the other 

method is an iterative processing method. In both methods, it is assumed that all 

initial transformation matrices are known. This assumption is reasonable because an 

initial transformation matrix can be approximated by a stationary transformation 

matrix, as given in Section 6.3.1. 

The iterative processing method for the determination of the transformation 

matrices is based on Eq. (6.46) where the local attitude matrices at the IMU nodes 

are obtained by invoking the inertial attitude determination algorithms. The dynamic 

transformation matrices are then estimated from the computed local attitude matrices. 

The architecture of this iterative algorithm is illustrated in Figure 6.6. 

 Because the dynamic change of a rotation matrix relative to its initial matrix 

occurs over a small dynamic range, the estimated transformation matrix k
j

iT̂  can be 

expressed by the combination of the previous estimated rotation matrix and a small 

angle displacement vector k
j
i� . Therefore, the estimated rotation matrix at the 

current time can be equivalently rewritten as  

)(ˆˆˆˆ
1 ×+== − k

j
ik

j
i

L
i

j
Lk

j
i

i

j �ITTTT  (6.62) 

This process is repeated until the norm of k
j
i�  is less than a specified value; the 

current transformation matrix can then be determined. 

From Figure 6.6, this iterative process is a time-consuming computation 

because each iteration must perform the inertial attitude determination algorithms for 

all the IMU nodes. The main advantage of this method is that the errors of the 

transformation matrix estimates are independent of the dynamic models of the 

transformation matrices. In addition, the inertial attitude determination algorithms 

play the role of a noise filter, which can reduce the effect of the IMU measurement 

noise on the rotation matrix estimates. However, uncertainties in the local attitude 
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matrix estimates will contribute to errors in the rotation matrix estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Iterative Computation of Rotation Matrices  

 To deduce the analytical dynamic models of the transformation matrices, the 

cg body frame is used as a reference frame for the relative rotation motion of all the 

other local frames and the measured angular velocities. Therefore, Eqs. (6.41) to 

(6.43) can be rewritten in the matrix form of the angular velocity vectors as follows: 
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where �  is the skew-symmetric matrix of the corresponding angular velocity vector 

� . The superscript cg  denotes that the angular velocity vectors are expressed in 

terms of the local cg body coordinates. 

From the attitude matrix differential equation given in Eq. (4.22), Eq. (6.63) 

can be written as 
cg
i

i
cgcg

cg
i TT�� �−= cg

/I/I  (6.66) 

Therefore 
i
cgi

cg
cg

i
cg T��T )( cg

/I/I −=�  (6.67) 

i
cg

i
i

cg
i

cg
i T�T� /I/I =  (6.68) 

Similarly, the differential equation of the rotation matrix j
cgT  is as follows: 

j
cgj

cg
cg

j
cg T��T )( cg

/I/I −=�  (6.69) 

j
cg

j
j

cg
j

cg
j T�T� /I/I =  (6.70) 

where cg
cg/I� , i

i/I�  and j
j/I�  are estimated from the IMU measurements at the nodes 

cg , i  and j , as given in Eq. (5.3). 

The rotation transformation matrix between j  and i  is then computed by the 

following equation. 
cg
j

i
cg

i
j TTT =  (6.71) 

Obviously, the dynamic models of the rotation transformations are non-linear 

matrix differential equations. The initial values of the matrix differential equations 

are given by the stationary transformations. These differential equations have to be 

iteratively resolved at the measurement time until the solutions become stable.  

In comparison with the iterative processing method, the main advantage of the 

analytical method is that the time-consuming iterative computation of complex 

inertial attitude determination algorithms at all the IMU nodes is avoided. However, 

because the IMU outputs are directly used to drive the rotation matrix differential 

equations, the IMU measurement errors and noise may affect the accuracy of the 

solution of the rotation matrices. As a result, data pre-processing filters are needed to 

eliminate abnormal IMU measurement noise. 
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6.4 Distributed Inertial Network Fusion Algorithms 

From Section 6.3, each node in the inertial network system can assimilate both 

the local measurements and the local estimates. Therefore, a two-stage data fusion 

strategy is presented to develop distributed data fusion filter algorithms. The first-

stage fusion processes the inertial network measurement at all the nodes to obtain the 

more accurate local inertial state vectors, known as distributed inertial measurement 

fusion. The second-stage fusion is to increase the accuracy of the local system state 

estimates at all the network nodes and to enhance the fault tolerance of the inertial 

network system, referred to as distributed state fusion. 

6.4.1 Distributed Inertial Data Fusion Algorithm 

Assume that all the local IMUs are independent of each other and their 

measurements have a Gaussian probability distribution. Then the errors of the local 

inertial state estimates are also a Gaussian distributed random vector from Eq. (5.4). 

Therefore, the probability density function of the local inertial state is 

)]ˆ()ˆ(
2
1

exp[
det)2(

1
)( 1

x
T

x
3

xxPxx
P

x −−−= −

π
p  (6.72) 

where x  is an 3-dimensional local inertial state vector, for example, the acceleration 

or angular rate vector, and xP is the covariance matrix of the error of the local inertial 

state estimate. From Eq. (5.5) 
T**1TT1T

x ][)( HRHHRH(HHH)HP == −−  (6.73) 

The objective of the inertial measurement fusion is to generate optimal estimates of 

all the local inertial states. Defining an optimisation criterion that maximises the 

following conditional probability  

)ˆ,ˆ,ˆ( cgjiP xxxx  

From the assumption that all the IMU measurements are independent, the 

conditional probability density function of the true local inertial state at each IMU 

node can be represented as follows:  
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)ˆ()ˆ()ˆ()()ˆ,ˆ,ˆ( cgjicgji ppppp xxxxxxxxxxx ==  (6.74) 

Applying the maximum likelihood estimator to Eq. (6.74) and considering Eqs. 

(6.50) to (6.52),  the inertial measurement fusion equations at each IMU node can be 

derived as follows:  
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Eqs. (6.75) or (6.76) and (6.77) are the inertial measurement fusion algorithm at each 

IMU node. Any other methods, for example various weighted least-squares methods, 

which are used to resolve Eqs. (6.50) to (6.52), can be classified as the inertial 

measurement fusion. It should be noted that the inertial measurement fusion is 

mainly used to provide highly reliable local inertial state estimates. However, its 

outputs can also aid FDI systems to detect and isolate inertial sensor failures. The 

inertial measurement fusion can be considered as a pre-processing procedure for the 

second-stage fusion. 

6.4.2 Distributed State Fusion Filter Algorithm 

The architecture of the state fusion filter algorithm at each node is illustrated in 

Figure 6.7 where the local Kalman filter uses the assimilated sensor measurements to 

estimate the local states. The local fusion filter combines the local estimate and the 

assimilated estimates from the nodes to update the local estimates. 

At each node of the inertial network system, the local Kalman filter model can 

be described as follows: 

)()()()()( 1111 −−−− += kJkJkJkkJkJ ttt,ttt wGx�x  (6.78) 

)()()()( kJkJkJkJ tttt �x
z +=  (6.79) 

where cgjiJ ,,=  denote the IMU nodes.  
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Figure 6.7 State Fusion Algorithm Architecture 

The navigation algorithms and the SRIMU error dynamic models developed in 

Chapter 4 can be applied to all the IMU nodes once the corresponding coordinate 

frames are specified. But, each local dynamic model describes its local state, which 

is different from the local states described by the other dynamic models. The local 

state Jx  can be decomposed into the local system state Jo,x  and the local sensor 

error state Js,x , that is 

[ ]TT
,

T
, JsJoJ xxx =  (6.80) 

All the local system states at the network nodes are referred to as the similar states. 

The dynamic matrices established in Section 6.3 provide the transformations among 

the similar states. 

Jz  can be decomposed into three sub-vectors as follows: 

[ ]TT
,

T
,

T
, JAJSJLJ zzzz =  (6.81) 

where JL,z  is the measurement vector provided by local navaid sensor systems, JS ,z  

is the measurement vector given by the commonly-shared navaid systems and JA,z  is 

the combination of all the inertial measurements assimilated from the IMU nodes. 

The normalised measurement models of several navaid systems have been developed 

in Section 4.6 and the normalised measurement models of redundant inertial sensor 

systems have been given in Section 5.5.  

Because these three forms of measurements are independent of each other, the 

terms in Eq. (6.79) can be decomposed into the following forms: 

Assimilated 
local estimates 

Local 
estimates  

Local 
estimate 
update 

Local 
Kalman 

Filter 

Local Fusion 
Filter 

Assimilate the shared 
navaid system outputs and 
the inertial measurements 

from the other nodes 

Assimilate the similar local 
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other nodes 



 
DISTRIBUTED DATA FUSION ALGORITHMS 
 

6.4 Distributed Inertial Network Fusion Algorithms  

 

 
 
 

161 

[ ]TT
,

T
,

T
, JAJSJLJ HHHH =  (6.82) 

[ ]TT
,

T
,

T
, JAJSJLJ ���� =  (6.83) 

),,( ,,, JAJSJLJ blockdiag RRRR =  (6.84) 

All the local Kalman filters process these three forms of the measurements to 

obtain the local estimates, including the local states and covariances, as follows:   

)()()(ˆ 11 −−
− = kJkkJkJ t,ttt x�x  (6.85) 
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where Jx̂  and JP  are the local estimates given by the local Kalman filter and Jx  and 

JP  are the estimate updates given by the local fusion filter. 

To update the locally estimated system states at each node using the similar 

state estimates assimilated from the other nodes, a state fusion filter is needed in each 

node. Defining a quadratic cost function at the node i  as follows: 

	
=

+−+ −−=
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ioJo
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i
JioJo

i
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1
,
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,, )ˆ()ˆ( xxTTPTxxT  (6.89) 

where +
Jo,x̂  is the local system state estimate given by the local Kalman filter, io,x  is 

the true local system state at i , Jo,P  is a sub-matrix of JP  and is associated with the 

local system state  and iJ  is a measure of the displacement of the local state from its 

true value.   

The state fusion filter is designed to minimise iJ . This is referred to as the 

minimum weighted mean square error criterion.   

Differentiating iJ  and setting the result to zero yields  
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In a similar fashion, the similar state update equations at the nodes j  and cg  can are 

given as follows: 
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Eqs. (6.90) to (6.95) form the distributed state fusion filter algorithm. By examining 

the above analysis, this distributed state fusion algorithm actually consists of two 

fusion procedures, the measurement fusion given by Eqs. (6.87) and (6.88) and the 

state fusion given by Eqs. (6.90) to (6.95).  The state fusion provides the redundancy 

of the similar system states. Therefore, this fusion method can greatly improve the 

fault tolerance of an inertial network system. 

From Eqs. (6.85) and (6.86), the outputs of each fusion filter are fed back to its 

corresponding local Kalman filter. This feedback operation implements the dynamic 

transfer alignments between the node IMUs and also allows the local Kalman filter to 

accurately estimate and calibrate its sensor error state. Consequently, this distributed 

state fusion algorithm provides the capability to perform the dynamic alignment and 

calibration of the inertial systems in an inertial network system. Therefore, traditional 

inertial system alignment algorithms, for example, fine and transfer alignments, are 

no longer necessary in inertial network systems. The traditional in-flight alignments 

generally require an aircraft to perform some specified manoeuvres, which may lead 

to enormous risk especially to military aircraft and pilots. The elimination of the 

traditional alignment procedures allows aircraft to execute free flight and arbitrary 

manoeuvres. 

6.5 Inertial Network Integrity Monitoring 

From the inertial network dynamic models given by Eqs (6.78) and (6.79), the 

failures in the inertial network system can be classified as sensor system failures and 
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local system state failures. From Eq. (6.81), the sensor system failures may result 

from the inertial sensor systems, the local navaid sensors and the commonly-shared 

navaid systems. Therefore, the purpose of inertial network integrity monitoring is to 

ensure all the local filters are able to provide the very reliable local system state 

estimates and to detect and isolate various sensor failures and the abnormal local 

system states from the inertial network system in a short time.  

In this thesis, two integrity monitoring strategies have been suggested to 

guarantee the integrity of the inertial network system, including the sensor-level FDI 

and the system-level integrity monitoring, as shown in Figure 2.9 of the generalised 

MSDF model. The sensor-level FDI methods have been developed in Chapter 5 and 

are initially used to detect and isolate the inertial sensor failures in skewed redundant 

configurations or the GNSS signal failures in the redundant GNSS measurements. 

These methods can be directly applied to the inertial assimilation equations given by 

Eqs. (5.50) to (5.52) to detect and isolate the distributed inertial sensor failures in the 

inertial network system. In addition, many other methods have been suggested in the 

recent years for detecting and isolating the GNSS signal failures, for example, 

receiver autonomous integrity monitoring (RAIM) methods and aircraft autonomous 

integrity monitoring (AAIM) methods[83]. However, these methods cannot guarantee 

that the system state estimates computed by the local Kalman filters are reliable.  

To verify the integrity of Kalman filters, several Kalman filter-based detection 

methods have been developed in the past. For example, a method, called multiple 

model adaptive filters, has been suggested where a bank of Kalman filters is used, 

each with a different model. The innovations of these filters are monitored and the 

conditional probability that each system model is correct is computed. This technique 

has the advantage of being able to provide reliable filter outputs and to isolate failed 

sensors and improper filter models. However, with the number of the filter states, the 

computations required by all the node processors may be time-consuming.  

Several failure detection filter methods[125-128] have also been suggested for the 

detection of actuator, plant and sensor failures in control systems. A detection filter is 

a full-order linear state-space observer. In detection filter design, the gain matrix 

must be chosen so that the residual vectors generated by certain actuator or sensor 
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failures can be projected to lines and planes in the measurement space and each 

potential failure has a different fixed direction. Accordingly, the detection filter gain 

is adjusted in order to identify the feature of failure signals, but not to minimise the 

mean square error of estimation, as is done in a Kalman estimator. In addition, many 

detection filters assume that dynamic systems are noise free. Application of detection 

filters to inertial network integrity monitoring noticeably increases the complexity of 

data fusion algorithms in the network system. Other model-following approaches 

require that one Kalman filter performs the usual tracking and estimation, and the 

other filters are used to detect the presence of specified (or previously characterised) 

failure modes. Based on the above analysis, all of these three methods of Kalman 

filter-based failure detection are inappropriate for inertial network systems because 

they significantly increase the computation load at each node.  

Therefore, in this section, easily implemented and real-time detection methods 

are developed not only to monitor the integrity of inertial network systems but also to 

reduce the computation load at the inertial network nodes. 

6.5.1 Inertial Network Failure Model  

As shown in the previous section, the local node system models in the inertial 

network system are described by the local IMU error dynamics. From the analysis in 

Chapter 4, if the inertial sensor failures occur, the local inertial navigation algorithms 

may produce abnormal similar system states, which further cause uncertainties of the 

state transition matrices of the local system models. If the navaid system failures 

occur, the local and commonly shared measurements may contain errors. Therefore, 

it can be assumed that the effect of the inertial sensor failures are considered as 

additional system state failures in the dynamic models whereas the navaid system 

failures are modelled as additional measurement failures in the measurement models 

of the local Kalman filters. Accordingly, a failure model of the Kalman filter at each 

node is established as follows:  

)()(),()()()( 1,1,,,1,1,, −−−− ++= kJokJoJJkkJokkJokJo tttt,ttt
o

wGf�x�x xxτ  (6.96) 

)(),()()()( ,,,,,, kJAidJAidJAidkkJokJAidkJAid ttttt �f�xHz ++= τ  (6.97) 
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where Jo,x  and JAid ,z  are the local system state and the navaid system measurement 

vectors at the node J , �  is a diagonal matrix of Kronecker functions, Jo ,xf  is a time-

variable local system state failure vector and JAid ,f  is a time-variable navaid system 

failure vector. This is a reduced-order filter model compared with the corresponding 

local filter. 

Because the effects of the inertial sensor failures have been considered in the 

system dynamic model, the inertial data assimilation equations are not contained in 

the measurement model. Furthermore, the coefficient matrices of this failure model 

are the sub-matrices of the coefficient matrices of the corresponding local Kalman 

filter. Therefore, the outputs of the local Kalman filters are directly used to generate 

failure detection functions without additional computations. 

Two efficient system-level methods are presented in this section to monitor the 

integrity of the inertial network system. One method is based on directly examining 

the consistency of the distributed state estimates whereas the other is to monitor the 

distributed filter innovations for detecting and even isolating the local navaid sensor 

failures and the commonly shared navaid systems failures.  

6.5.2 Distributed State Consistency Monitoring 

Assuming no sensor failures occur at any network node, then all the local 

similar system states must be consistent through the transformations among the local 

similar states. In the presence of any sensor system failures at one network node, this 

assumption will no longer be valid. Accordingly, the distributed state consistency 

monitoring method can employ combinations of the similar system state estimates 

computed by all the local filters to check the consistency of all the similar system 

states. Figure 6.8 shows the architecture of this integrity monitoring method. 

At each node, the redundant local similar state estimate Jo,x̂ ( kjiJ ,,= ) can be 

represented as follows: 

o,iJo
i
Jo,i x�xTx += ,ˆˆ  
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 (6.98) 

where x�  is the error of the local similar state estimate with the known covariance 

o,JP , as computed by the local Kalman filter.  

 

 

 

 

 

 

Figure 6.8 Architecture of State Consistency Monitoring 

To check the consistency of the distributed attitude states, the quaternion form 
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where i
JT  is the quaternion transformation matrix corresponding to j

JT .  

By structuring the redundant equations given in Eqs. (6.98) and (6.99), the 

problem of the distributed state consistency checking is similar to the sensor FDI 
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problem described in Chapter 5. Therefore, applying the FDI methods developed in 

Chapter 5 to the redundant state equations, the state failures of the local Kalman 

filters can be detected and isolated. This is a simple and efficient method to monitor 

the integrity of all the local Kalman filters in real time without considering the 

sources of failures. From Figure 6.8, this state consistency checking can be combined 

with the local state fusion algorithm. If one local Kalman filter is diagnosed to be 

invalid, its outputs will be isolated from its related local fusion filter and the local 

fusion filter will use assimilated estimates to reconfigure the local similar system 

states according to Eqs. (6.90) to (6.95). This method is mainly used to monitor the 

integrity of the similar system states in the inertial network system and detect local 

Kalman filter failures. It should be noted that this method of integrity monitoring is 

based on the assumption that all the transformation matrices among the similar states 

are correct.  

6.5.3 Distributed Filter Innovation Monitoring 

The navaid system failure JAid ,f  appearing in the failure measurement model of 

Eq. (6.97) contains the local navaid sensor failures and the commonly-shared navaid 

system failures. Any failures resulting from the commonly-shared navaid systems are 

common-mode to all the local Kalman filters because such failures influence all the 

local systems. A common-mode failure causes the estimates of all the local Kalman 

filters to diverge from their anticipated values. The distributed state consistency 

monitoring method above cannot faithfully detect the local system state failures 

caused by common-mode failures. However, from the analysis given in Section 

3.2.6, the Kalman filter innovation is independent of the actual measurements of the 

navaid systems. By monitoring the innovation generated by all the local Kalman 

filters, any failure caused by the local navaid sensors or the commonly shared navaid 

systems can be correctly detected.  

From Eqs. (6.96) and (6.97), the failure filter innovation at J can be derived as 

follows:  

JAidJAidkJJkkJokJkJf ttttt
o ,,,,,, ),(),()()()( f�f�Hrr xx ττ ++=   (6.100)  
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where the normal Kalman filter innovation )( ktr  is 

)()(~)( ,,, kJokJoJokJ ttt �xHr +=  (6.101)  
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Exploiting Eq. (6.100) for detection and isolation of the navaid system failures 

and monitoring the integrity of the local Kalman filters, two assumptions are made: 

• J,xτ ≠ JAid ,τ . That is, the time J,xτ  of the occurrence of system state failure 

is different from the time JAid ,τ  of the occurrence of the navaid system 

failure, or 

• Inertial sensor failures have been detected at the sensor-level FDI stage or 

by the inertial measurement fusion procedure. 

Based on the above assumptions, a normalised quadratic innovation function of 

fr  can be used as a test statistic to test the filter integrity, as given in Eq. (3.32).  

)()()()( ,
1T

, kJfkJkJfkJ ttttNQI rSr −=  (6.104) 

If JNQIk TtNQI ,)( ≥ , then failures have occurred. 

If NQIk TtNQI <)( , then no failure has taken place. 

An advantage of this NQI  testing is that its degree of freedom is equal to the 

number of the filter measurements. This means that the NQI  testing can verify each 

measurement of the navaid systems one by one. Therefore, it can isolate each failure 

occurring in the navaid system measurements, for example, GNSS signal failures or 

Doppler radar signal failures. The sequential moving-window methods introduced in 

Chapter 5 can be used to pre-process the filter innovation in order to increase the 
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reliability of NQI  testing. 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 Architecture of Distributed Filter Innovation Monitoring  

Without considering the above assumptions, from Eq. (6.100), the NQI  testing 

examines the combined effect of the navaid system failures and the system state 

failure on the filter performance. When both the system state failures and the navaid 

system failures simultaneously occur, NQI  testing only provides alarm information 

but cannot isolate the failed states or measurements. Therefore, the filter integrity 

monitoring should cooperate with sensor-level FDI procedures to ensure the integrity 

of an inertial network system. 

6.6 Summary 

This chapter has developed several distributed fusion algorithms for distributed 

multiple sensor navigation systems. The main activities covered include: 

1. Introduction of four forms of the distributed sensor systems for navigation 

applications and the corresponding fusion filter algorithms, including the 

state-identical and state-associated distributed sensor systems, both with 

one-way and two-way data communication modes. Four fusion algorithms 

cover Type I, Type II, Type A and Type IIA, respectively corresponding to 

the above four distributed sensor systems.  

2. Development of inertial network sensing models, including the stationary 
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inertial sensing model and the dynamic transformation model. 

3. Study of two distributed inertial network fusion algorithms, including the 

distributed inertial data fusion algorithm and the distributed state fusion 

filter algorithm. 

4. Introduction of two inertial network integrity monitoring algorithms, 

including the distributed state consistency monitoring algorithm and the 

distributed filter innovation monitoring algorithm. 
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Chapte r  7  

7 SIMULATION SYSTEM AND RESULTS 

7.1 Introduction 

This chapter develops a simulation system environment to test and evaluate the 

failure detection and isolation and integrity monitoring algorithms and the distributed 

data fusion algorithms developed in this thesis. Section 7.2 introduces the overall 

architecture of this software simulation system, the architectures of the SRIMU 

simulation system and the GPS simulation system, as well software development and 

evaluation strategies. The test results of MW-GLRT algorithms are given in Section 

7.3. Several case studies of distributed data fusion algorithms are presented in 

Section 7.4. The results of the simulation studies are summarised in Section 7.5. 

7.2 Simulation System Architecture 

The software simulation system is of a modular system architecture consisting 

of the sub-modules, as shown in Figure 7.1 where the shadowed modules represent 

the functions to be implemented at different nodes of the inertial network. The 

functions of several main sub-modules are summarised below: 

Trajectory Generator 

The Trajectory Generator module generates the true 6 DOF parameters (three 

cg accelerations and three cg angular rates expressed in aircraft body frame), known 

as the inertial state, and the true aircraft cg-referenced navigation state, including 

aircraft position, velocity and attitude. These true parameters are used as reference 
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values to evaluate the performance of the FDI and integrity monitoring algorithms, 

and the distributed data fusion algorithms. The aircraft dynamics is modelled by a set 

of ideal mathematical equations of the translational and angular motions without the 

consideration of the effects of any external disturbances on the aircraft motion. This 

assumption is rational because the outputs of this module, in this simulation system, 

are used only to drive other sensor system simulation modules rather than to design 

the aircraft control systems. In addition, because the specific force triad and the 

angular rate triad measured by the inertial sensors represent the driving forces of the 

translational and angular momentum equations of the aircraft, various disturbed 

aircraft motions can be equivalent to the inertial sensor system errors that are 

simulated in the inertial simulation system.  

SRIMU Evaluator 

This module evaluates the performance of individual redundant inertial system 

configurations in terms of the number of inertial sensors and specific criteria. Several 

criteria have been introduced in Chapter 5. This evaluator can evaluate up to 12 

SRIMU configurations consisting of 3 to 6 inertial sensors, respectively. The outputs 

of this evaluator are specified configurations, represented by design matrices, which 

are then used in the SRIMU simulator to simulate realistic SRIMU measurements 

together with an inertial sensor error simulation module. 

SRIMU Simulator 

This module simulates the realistic SRIMU measurements. The dimension of 

the simulated SRIMU measurement vector depends on the design matrices set up in 

the SRIMU Evaluator. The inertial sensor errors mainly result from five error 

sources: bias, time-dependent drift, misalignment, scale factor errors and noise. 

These error sources are modelled by the random constant process, the first-order 

Markov process, the random walk process and Gaussian white noise. Inertial sensor 

failure modes are also simulated in this module. Sensor failures are classified as hard 

failures and time-drift soft failures for the evaluation of the performance of FDI 

algorithms.  

To simulate an inertial network system, other local inertial states are derived 

from the inertial state at the aircraft cg node but take into account the dynamic 
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transformations between the local node frames and the cg node frame. The dynamic 

transformations are modelled by the sinusoidal functions of different cycles plus the 

transformation noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Simulation System Architecture 

SRIMU Navigator 

This module implements the inertial navigation computation and the dynamic 

SRIMU calibrations. At each inertial network node, this module completes similar 

computations but provides the local navigation states. The inertial navigation and 
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SRIMU calibration algorithms have been described in Chapter 4. The SRIMU FDI 

algorithms have been introduced in Chapter 5.  

GPS Simulation System 

The GPS simulation system consists of three sub-modules: GPS Measurement 

Simulator, GPS Navigator and GPS-based attitude simulator. The GPS Measurement 

Simulator generates the realistic GPS pseudorange and Doppler measurements. The 

dimension of the simulated GPS measurement vector depends on the true position of 

aircraft given by the Trajectory Generator. The GPS measurement errors come from 

several errors sources, including ionospheric and tropospheric delay errors, GPS 

satellite and receiver clock errors, selective availability (SA) errors (the SA has been 

turned off), satellite ephemeris errors and receiver measurement noise. The GPS 

navigator implements the GPS navigation computations.  

If a multifunctional GPS receiving system is available in the inertial network 

system, it can provide the GPS-based attitude information. The GPS-based attitude 

simulator (not shown in Figure 7.1) simulates the aircraft cg-referenced attitude 

solutions derived by the GPS-based attitude determination algorithm. Although the 

GPS-based attitude determination algorithms have been developed by the author, this 

simulator does not simulate the GPS carrier phase measurements or perform the 

GPS-based attitude computations.  

The multifunctional GPS receiver is a commonly-shared navaid sensor in the 

inertial network system. 

Other navaid sensor systems simulated in this thesis include an air data system, 

a magnetic heading sensor and a Doppler radar. These sensor systems are considered 

as the local sensors located at the cg node and are omitted from in Figure 7.1.  

7.2.1 Inertial Simulation System Architecture 

The inertial simulation system performs two main functions: generation of 

SRIMU measurements and computation of the navigation states. These two functions 

are performed by the SRIMU simulator and the SRIMU navigator.  

The architecture of the SRIMU simulator is illustrated in Figure 7.2 where the 
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modules framed by the dash-lines on the right and left sides are the inputs and the 

outputs to other modules. The SRIMU simulator also produces the true navigation 

state in addition to the generation of the realistic SRIMU measurements. The true 

state is used to test and evaluate the performance of the distributed data fusion 

algorithms. The test results can further determine what grades of inertial sensors 

should be used in the inertial network system to achieve the required navigation 

performance. The inertial sensor error sources and simulation parameters are given in 

Table J-1 of Appendix J. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 SRIMU Simulator Architecture 

The architecture of the SRIMU navigator located at the cg node is illustrated in 

Figure 7.3 where the modules framed by the dash-lines are the conventional coarse 

and fine alignment functions, and the vertical channel compensation of the inertial 

navigator, as described in Chapter 4. However, the other SRIMU navigators located 

at the other inertial network nodes do not have these three modules. The dynamic and 

transfer alignments of the SRIMUs in the inertial network system are completed by 

the distributed Kalman and fusion filters, as described in Chapter 6.  

From Figure 7.3, each SRIMU navigator consists of an inertial state estimator 
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and an inertial navigator. The inertial state estimator computes the measured local 

inertial state by using local SRIMU measurements and assimilating the other SRIMU 

measurements. The redundancy management reconfigures the design matrix based 

on the inertial sensor failure report from the FDI system. The accelerometer and gyro 

compensation modules dynamically correct the local SRIMU measurements by using 

the inertial sensor error estimates obtained from the local Kalman filter, as described 

in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 SRIMU Navigator Architecture 

The inertial navigator computes the local navigation state. The local state is 

also used to establish the local Kalman filter model. The inertial navigation algorithm 

has been introduced in Chapter 4, the SRIMU compensation algorithms have been 

developed in Chapter 5 and the inertial state estimator algorithm has been described 

in Chapters 5 and 6. 
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7.2.2 GPS Simulation System Architecture 

The architecture of the GPS simulation system is shown in Figure 7.4 where 

the GPS navigator outputs the GPS-derived aircraft position and velocity. The GPS 

navigator outputs are used to test and evaluate the distributed Kalman and fusion 

filters and to compare different GPS/INS integration mechanisms.  

 

 

 

 

 

 

 

Figure 7.4 GPS Simulator Architecture 

The GPS Measurement Simulator provides realistic GPS measurements, 

including pseudorange and Doppler (range rate) measurements, rather than deriving 

the actual GPS signals provided by an engineering GPS simulator. The simulated 

pseudoranges are obtained by a combination of the true geometric distances from the 

aircraft to visible satellites and the error terms of various error sources. The true 

geometric distances are computed from the true position of the aircraft and the 

positions of the visible GPS satellites. The visibility of GPS satellites is determined 
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relative to the aircraft local level frame. In this simulation study, the minimum 

elevation for signal acquisition is defined as five degrees. 

The simulated Doppler measurements are the aircraft to GPS satellites LOS 

range rates, which are the LOS projects of the velocity differences between the true 

velocity of the aircraft and the velocity of the visible satellites plus the range rate 
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The architecture of the GPS measurement simulation algorithm is illustrated in 

Figure J.1 of Appendix J where the GPS measurement error models were taken from 

The Johns Hopkins University Applied Physics Laboratory[3]. Main error sources and 
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simulation parameters are summarised in Table J-2 of Appendix J[3][83]. The ADS and 

the magnetic heading sensor are simulated according to the parameters shown in 

Table J-3 of Appendix J. 

7.2.3 Multisensor Fusion Simulation at Node cg  

The cg node local system is a vital subsystem in an inertial network system and 

provides the aircraft systems with the navigation states. The purpose of this 

simulation study is to evaluate the FDI and data fusion algorithms developed in this 

thesis. The Kalman filter located at the cg node has multiple operating modes. The 

architecture of the multi-mode filter algorithm is illustrated in Figure 7.6 where the 

inputs to the Inertial Navigation module include the SRIMU measurements, pressure 

altitude and the positions of visible GPS satellites. This module outputs the coarse 

estimates of the navigation states and the estimated GPS measurements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Multi-Mode Kalman Filter Architecture at the cg Node 
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outputs the raw SRIMU measurements for the inertial navigation computation and 

the SRIMU measurement residuals as the measurements of the multi-mode Kalman 

filter. The ADS and Heading Sensor System module provides pressure altitude 

compensation needed for the stabilisation of the vertical channel of the inertial 

system, and the heading and air speed measurements of the multi-mode Kalman 

filter. The Data Fusion module completes the following tasks: 

• Processes the raw sensor measurements to generate the normalised data for 

the multi-mode navigation filter,  

• Determines the operating mode according to the sensor health status reports 

from the SRIMU/FDI and GPS/RAIM modules, 

• Reconfigures the dynamic model and measurement model of the cg node 

local system, 

• Performs the local Kalman filter and the fusion filter algorithms to update 

the coarse estimates of the aircraft navigation states, 

• Corrects the cg node SRIMU errors in flight, 

• Monitors the abnormality of estimates of the local navigation states. 

The filter state vector is subdivided into two sub-vectors, known as the basic 

state error vector and the sensor error vector as follows: 
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The basic state error vector has a fixed dimension but the size of the sensor 

error vector changes with the numbers of SRIMU sensors and the number of aiding 
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sensors available. 

The filter measurement vector is formulated as follows and its size depends on 

available sensor systems. 
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From the error analysis of GNSS and inertial systems given in Chapter 4, the 

system noise covariance Q  and measurement noise covariance R  may change with 

each time or measurement update, however here they are assumed to be constant in 

order to avoid the real-time computation of these two matrices. The determination of 

R  is based on a prior statistical characteristics of the sensor measurement noises, 

which can be obtained by practically testing sensor systems. Rational selection of R  

should guarantee the robustness of the Kalman filter to the change of measurement 

noise. The standard deviations of the measurement noises of several navaid systems 

are summarised in Tables J-2 and J-3 in Appendix J, which are used to determine R  

in this simulation study. 

The determination of the system noise covariance Q  is generally more difficult 

as it cannot be determined by practically testing or directly observing the dynamic 

system. However, the uncertainties of the initial filter states, including the basic state 

error and sensor error, can be used as reference values for the selection of Q . Tables 

J-1 and J-4 in Appendix J give the initial uncertainties of the basic state errors and 

sensor errors.  

The dynamic reconfiguration of the cg node filter includes the filter state vector 

reconfiguration and the measurement vector reconfiguration. The cg node system 

compensation consists of the navigation state compensation and the SRIMU error 

compensation, as shown in Figure J.2 of Appendix.  

The operating modes of the multi-mode Kalman filter and the sensor systems 

used the cg node are listed in Table 7-1. The initial values of the navigation states are 

given in Table J-4 of Appendix J.   
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Table 7-1 Kalman Filter Operating Modes 
IMU ADS Heading 

Sensor 
GNSS 

Range 
GNSS 

Attitude 
KF Mode 

X X X X X All measurement available 
X X  X X Lost heading sensor 
X  X X X Lost ADS 
X   X X Lost ADS & heading sensor 
X X X X  Lost GPS attitude function 
X X X   No GPS signals 

7.2.4 Software Development and Evaluation 

This software simulation system is implemented by use of Matlab. Software 

development is based on the top-down design and bottom-up realisation strategies. In 

the top-down software design, all the software modules described in the previous 

sections are decomposed into several sub-modules according to the functions to be 

completed. In each sub-module, the main function is further decomposed into many 

sub-functions, each realising one or more relatively independent tasks. Accordingly, 

the top-down design generates software function trees (see in Figure 7.6). In contrast, 

the programming is based on the bottom-up strategy. The lowest-level sub-functions 

are first programmed, tested and integrated into the higher-level sub-functions. 

Higher-level sub-functions are then integrated and tested to form a sub-module. Data 

transfer between modules and functions uses actual parameters. Furthermore, all the 

navigation states and kinematic parameters are defined as the global variables which 

can be directly invoked in all modules and functions. 

 

 

 

 

 

 

 

Figure 7.6 Top-Down Software System Design 

The evaluation of the software system consists of the static and dynamic testing 

procedures. The static evaluation is also based on the bottom-up method. The lowest-

Top level software module 

Sub-module 1 Sub-module n 

Subfunction 1 Subfunction n 
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level subroutines are first tested and then sub-modules are tested. The bottom-up 

testing procedures verify if the subroutines or sub-modules can produce the expected 

outputs using pre-known static data as their inputs. For example, in order to test the 

SRIMU attitude determination module, an IMU is assumed to be fixed on a static 

platform with known orientation. The SRIMU then measures the components of the 

Earth’s rotation rate and gravity vectors. The use of these components as the input 

data of the attitude module can examine the correctness of the attitude computation. 

All the sub-modules and functions were tested using similar methods before they 

were integrated into the software simulation system.  

The dynamic evaluation is a system test procedure and is generally based on 

the predictability of the behaviour of the software simulation systems. For example, 

an inertial system shows the Schuler period of 84.4890 minutes. This feature can be 

used to test the correctness of the inertial simulation subsystem. If the Schuler period 

of the navigation states given by the inertial simulation software system differs from 

the theoretical Schuler value, then the sub-module and functions in the inertial 

software system must be re-evaluated using the static testing procedures. The GNSS 

positioning solutions normally have the maximum error thresholds if no GNSS signal 

failures occur. In order to evaluate the GNSS software simulation subsystem, the 

maximum error thresholds for the GNSS-derived position and velocity are assumed 

to be 200 m and 1 m/s. If the outputs of the GNSS software simulation subsystem 

exceed the specified thresholds, then all the sub-modules and functions in the GNSS 

software system will be re-evaluated by using the static testing procedures. 

The evaluation of the distributed data fusion filter software systems is a more 

complex procedure. Although the static testing procedures can assure the correctness 

of subroutines, the dynamic testing procedure cannot completely check the suitability 

of the fusion filter software systems because there are many uncertainties of sensor 

measurements. Therefore, the dynamic evaluation is mainly to examine the abnormal 

behaviours of the filter software systems from the perspective of the filter states. In 

normal operation, the filter states will change smoothly over time if the sensor signal 

failures have not been injected into its measurements. The designed true trajectory is 

used as a reference to test the correctness of the software simulation system. 
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7.3 MW-GLRT Algorithm Test Results 

This simulation study considers two cases for the evaluation of the MW-GLRT 

algorithms developed in Chapter 5, that is, SRIMU configurations consisting of four 

sensors and five sensors. The test procedure is illustrated in Figure 7.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Two-Step FDI Test Procedure  

In the 4-sensor configurations, the MW-GLRT algorithms are tested by 

detecting mid-value and drift failures. In the 5-sensor configurations, the MW-GLRT 

algorithms are evaluated by detecting, identifying and estimating large jump failures. 

The parameters for the design of the MW-GLRT algorithms are listed in Table J-6 of 

Appendix J. 

The simulation test results of the SRIMU error compensation filters are shown 

in Figures 7.8 and 7.9 where the SRIMU is based on a 4-sensor cube configuration. 

These simulation results show that the use of the SRIMU error compensation filters 

can slow down the degradation of the accuracy of the free SRIMU navigation 

system. As a result, this error compensation filter can be used to compensate for the 

absence of the navaid systems, for example, for interruptions and unavailability of 

GPS signals. 
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Figure 7.8 Attitude Errors without the SRIMU Filter 

Attitude Errors w Filter

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Time(second)

E
rr

or
(d

eg
re

e)

Roll Error
Pitch Error
Yaw Error

 
Figure 7.9 Attitude Errors with the SRIMU Filter 

In the following simulations, it will further be shown that combination of the 

local node fusion filters and the SRIMU error compensation filters in the inertial 

network system can greatly increase the integrity and accuracy of the navigation state 

estimates. 

The simulation test results of the MW-GLRT algorithms are shown in Figures 

7.10 to 7.14 for the 4-sensor-cube configuration where sensor drift failures and a 

mid-value failure occur. The results given in Figure 7.10 show the attitude errors 

caused by the effects of a mid-value gyro failure on the inertial attitude determination 

function. Although the gyro mid-value failure may not be detected by the short time 

MW-GLRT method, as shown in Figure 7.11, it can be detected by the sequential 

MW-GLRT method, as illustrated in Figure 7.12.  
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Figure 7.10 Attitude Errors in Present of a Mid-Value Gyro Failure 
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Figure 7.11 Gyro Detection Function Using Short Time MW-GLRT in 4-Sensor 

Cube6 
Sequential MW-GLRT Detection Function for Gyro Mid-Value failure
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Figure 7.12 Gyro Detection Function Using Sequential MW-GLRT in 4-Sensor 

Cube 

                                                 
6 In all figures, DF represents Detection Function and Td means detection Threshold. 
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The simulation test results of SRIMU drift failures are shown in Figures 7.13 

and 7.14 where the drift failure is undetectable using the MW-GLRT algorithm, but 

can be detected by the sequential MW-GLRT algorithm.  
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Figure 7.13 Gyro Drift Detection Function Using Short-Time MW-GLRT in 4-

Sensor Cube 
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Figure 7.14 Gyro Drift Detection Function Using Sequential MW-GLRT in 4-

Sensor Cube 

For the 5-sensor cone configuration, the simulation test results are shown in 

Figures 7.15 to 7.23 where the SRIMU system may experience jump failures, mid-

value failures and drift failures.  

Figures 7.15 to 7.17 show the case where one gyro has a mid-value failure and 

one accelerometer has a jump-step failure. The accelerometer jump failure is 

detected and identified by the MW-GLRT algorithm. Furthermore, the accelerometer 

failure signal is estimated and compensated in the SRIMU measurements, as shown 

in Figure 7.16, where the failure signal of the fault accelerometer is 0.02g and its 

estimate is 0.1928 m/s2.  

The mid-value gyro failure is detected by the sequential MW-GLRT, as shown 

ST MW-GLRT Detection Function for Gyro Drift Failure 
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in Figure 7.17 in comparison with Figure 7.15. 
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Figure 7.15 Gyro Detection Function Using Short-Time MW-GLRT in 5-Sensor 

Cone 
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Figure 7.16 Accelerometer Detection Function Using Short-Time MW-GLRT in 

5-Sensor Cone  
Sequential Detection Function for Gyro
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Figure 7.17 Gyro Detection Function Using Sequential MW-GLRT in 5-Sensor 

Cone 

Figures 7.18 to 7.20 show the case where two accelerometers (sensors 1 and 4 

ST MW-GLRT Detection Function for Gyro Mid-Value Failure 

ST MW-GLRT Detection Function for Accelerometer Jump Failure 

Sequential MW-GLRT Detection Function for Gyro Mid-Value Failure 
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shown in Figure 5.4(c)) have jump failures sequentially and one gyro has a mid-

value failure.  

From Figure 7.18, the mid-value gyro failure cannot be detected by the short-

time MW-GLRT algorithm, but can be detected by the sequential MW-GLRT 

algorithm, as shown in Figure 7.19. 

In Figure 7.20, the failure signal of accelerometer 1 is 0.006g and its estimate 

is 0.0711 m/s2. The failure signal of accelerometer 4 is 0.02g and the corresponding 

estimate is 0.1928 m/s2. 
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Figure 7.18 Gyro Detection Function Using Short-Time MW-GLRT in 5-Sensor 

Cone 
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Figure 7.19 Gyro Detection Function Using Sequential MW-GLRT in 5-Sensor 

Cone 
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Figure 7.20 Accelerometer Detection Function Using Short-Time MW-GLRT 

Figures 7.21 to 7.23 show the test results where both two accelerometers and 

two gyroscopes have jump failures. In Figure 7.21, gyro 2 has a failure signal of 0.04 

rad/s and the corresponding estimate is 0.040 rad/s.  

Gyro 4 has a failure signal of 0.002 rad/s and the estimate is 0.006 rad/s. 

Clearly, the estimate of the failure signal for gyro 4 is far from the true value. 

However, the error caused by the estimation can be detected by the sequential MW-

GLRT, as shown in Figure 7.22.  

In Figure 7.23, the failure signal of accelerometer 1 is 0.006g and its estimate 

is 0.0711 m/s2. Accelerometer 4 has a failure signal of 0.02g and its estimate is 

0.1928 m/s2. 
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Figure 7.21 Gyro Detection Function Using Short-Time MW-GLRT in 5-Sensor 

Cone 
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Figure 7.22 Gyro Detection Function Using Sequential MW-GLRT in 5-Sensor 

Cone 
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Figure 7.23 Accelerometer Detection Function Using Short-Time MW-GLRT in 

5-Sensor Cone 

Further simulations were performed for different SRIMU configurations 

consisting of 4 and 5 sensors. The simulation research results are summarised below: 

• Optimal SRIMU configurations are determined on the basis of a trade-off 

of the minimum GDOP factor, allocation of normalised variances of 

SRIMU measurement errors in orthogonal body axes and SRIMU FDI 

capability. Coplanar sensor installation should be avoided in order to obtain 

maximum FDI capability in terms of sensor configuration. 

• Two 4-sensor and four 5-sensor SRIMU configurations were also simulated 

in the occurrence of one sensor failure and their estimate accuracy and 

degradation performance were compared. The simulation results show that 

cone configurations in 4-sensor or 5-sensor SRIMUs can provide a better 
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estimate of the measured state and minimum degradation of performance 

for various SRIMU configurations for one sensor failure. 

• The simulation results have shown that SRIMU error compensation filters 

can improve the accuracy of an SRIMU system and the performance of FDI 

algorithms developed in this thesis. The degradation of an SRIMU system 

is reduced so that the navaid systems (for example, GNSS) have sufficient 

time and access to satellite signals to correct the SRIMU systems. 

• The short-time MW-GLRT algorithms can remove abnormal measurement 

noise and detect (and estimate) sensor hard failures. In the simulation, the 

detection threshold values were determined on the basis of the probability 

of a false alarm of 10-6 and the probability of a missed alarm of 10-5.  

• The sequential MW-GLRT algorithms can efficiently detect mid-value and 

drift failures, which degrade the accuracy of an SRIMU system without 

alarm.  

7.4 Distributed Data Fusion Filter Test Results 

The aim of this simulation study is to test and evaluate the node filters and the 

node state integrity monitoring algorithms that have been developed in Chapters 4 

and 6. In this simulation, the GNSS simulation module is assumed to provide the raw 

measurements and navigation state information at the rate of 1Hz, the inertial 

navigation module outputs attitude information at the rate of 50 Hz and the position 

and velocity at the rate of 1Hz and other navaid systems output at the rate of 1Hz. 

Several cases in Table 7-2 were simulated and the results are given in the following 

subsections.  

Table 7-2 Simulation Cases 
Simulation 
 Case 

SRIMU 
(Gyro Drift Rate) 

GNSS Information 
(PR, PRR & Attitudes) 

1A 1 0/h No interruption Case 1 
1B 1 0/h GNSS attitude available for maximum 6 minutes 
2A 10 0/h No interruption Case 2 
2B 10 0/h GNSS attitude interruption for maximum 6 minutes 

Case 3  40 0/h Slave node simulation 
Case 4  gyro failures GPS signal failures 
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The aircraft can perform arbitrary manoeuvres with a maximum acceleration of 

3.0g. In order to compare the simulation results, however, an identical true trajectory 

is designed for all the simulation cases. A typical true flight trajectory is shown from 

Figures 7.24 to 7.26. The true flight path is depicted in Figure 7.24 where the arrow 

represents the flight direction. Figures 7.25 is the true horizontal manoeuvres and 

Figure 7.26 is the true vertical manoeuvres. To evaluate the performance of the data 

fusion algorithms developed in this PhD study, the true trajectory is used as reference 

values to compare with the estimated states of the aircraft motion. Therefore, all the 

state errors are the differences between the true and estimated aircraft motion states. 
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Figure 7.24 True Flight Trajectory 
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Figure 7.25 True Aircraft Horizontal Manoeuvres 



 
SIMULATION SYSTEM AND RESULTS 
 

7.4 Distributed Data Fusion Filter Test Results 

 193 

 
Figure 7.26 True Aircraft Vertical Manoeuvres 

7.4.1 Simulation Results at cg Node  

In this simulation, the GNSS information available is summarised as follows: 

• GNSS pseudorange (PR) and pseudorange rate (PRR) measurements, 

• GNSS-based attitude information. 

For a gyro bias of 10/h, the simulation test results at the cg node are shown in 

Figures 7.27 to 7.35 where there is no GNSS signal interruption. In the following 

figures, the absolute errors, which are the differences between the true and estimated 

states, are used to describe the realistic state estimate errors whereas the standard 

deviations of the state estimate errors represent the accuracy of the state estimates.  
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Figure 7.27 The cg Node Attitude Errors in Case 1A  

Attitude Errors (compared with the true values) with Gyro Drift Rate of 10/h 



 
SIMULATION SYSTEM AND RESULTS 
 

7.4 Distributed Data Fusion Filter Test Results 

 194 

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 5 0 0 0 5 5 0 0 6 0 0 0 6 5 0 0 7 0 0 0 7 5 0 0
0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4
A t t i t u d e  E r r o r  S t d  D e v i a t i o n

T i m e ( s e c o n d )

1-
si

gm
a(

de
g)

R o l l
P i t c h
Y a w

 
Figure 7.28 The cg Node Attitude Error Standard Deviations in Case 1A  
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Figure 7.29 the cg Node Velocity Errors in Case 1A  
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Figure 7.30 The cg Node Velocity Error Standard Deviations in Case 1A 

Attitude Errors Std Deviations with Gyro Drift Rate of 10/h 

Velocity Errors (compared with the true values) with Gyro Drift Rate of 10/h 

Velocity Error Std Deviations with Gyro Drift Rate of 10/h 
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Figure 7.31 The cg Node Position Errors in Case 1A 

 

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 5 0 0 0 5 5 0 0 6 0 0 0 6 5 0 0 7 0 0 0 7 5 0 0
1

2

3

4

5

6

7

8

9

1 0
P o s i t i o n  E r r o r  S t d  D e v i a t i o n

T i m e ( s e c o n d )

1-
si

gm
a(

m
)

N - p o s i t i o n
E - p o s i t i o n
H e i g h t

 
Figure 7.32 The cg Node Position Error Standard Deviations in Case 1A 

5 . 9 4 5 . 9 4 5 5 . 9 5 5 . 9 5 5 5 . 9 6 5 . 9 6 5 5 . 9 7 5 . 9 7 5 5 . 9 8 5 . 9 8 5 5 . 9 9 5 . 9 9 5 6 6 . 0 0 5 6 . 0 1 6 . 0 1 5

x  1 0
5

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5
D O P  F a c t o r s  o f V i s i b l e  G P S  S a t e l l i t e s

T i m e ( G P S  w e e k  s e c o n d )

V
al

ue
 o

f D
O

P

G D O P
P D O P
H D O P
V D O P

 
Figure 7.33 DOP Factors in Case 1A 

Position Errors (compared with the true values) with Gyro Drift Rate of 10/h 

Position Error Std Deviations with Gyro Drift Rate of 10/h 
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Figure 7.34 Velocity Error Distribution, Figure 7.35 Position Error Distribution 

It should be noted that the changes of DOP factors are referenced to the GPS 

week time. However, the time scale lines in Figure 7.33 are completely corresponded 

to the time scale lines given in other figures. 

From Figures 7.29 to 7.33, and the parallel simulation results in Case 1B, it is 

observed that during the different simulation time intervals, the changes of the DOP 

factors significantly affect the error standard deviations of the navigation state 

estimates but have less effect on the realistic state estimates. The following suggestion 

may explain why abnormal changes of the visible satellite geometries have different 

effects on the state estimates than on their error covariances. These simulations show 

that the fusion filter acts as a low-pass filter that can remove the effects of poor 

GNSS geometries on the navigation state estimates. However, because the fusion 

filter does not select the optimal geometry of visible satellites but instead uses all the 

available GNSS measurements in order to monitor the fusion filter integrity, the poor 

GNSS geometry may raise the uncertainty of the error covariance estimates through 

the measurement matrix H. As a result, the covariance matrix could not be used as a 

sole means of monitoring the integrity of the fusion filter. It is necessary to further 

study the effects of the GNSS geometry on both the estimate accuracy and integrity 

of the fusion filter in the future research.  

The simulation results are shown in Figure 7.36 to 7.44 for the case where the 

GNSS attitude information is only available for a short time, for example from 100 to 
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350 seconds, 3500 to 3650 second and 5500 to 5650 seconds. 
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Figure 7.36 The cg Node Attitude Errors in Case 1B  
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Figure 7.37 The cg Node Attitude Error Standard Deviations in Case 1B 
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Figure 7.38 The cg Node Velocity Errors in Case 1B 
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Figure 7.39 The cg Node Velocity Error Standard Deviations in Case 1B 
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Figure 7.40 The cg Node Position Errors in Case 1B 
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Figure 7.41 The cg Node Position Error Standard Deviations in Case 1B 
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Figure 7.42 DOP Factors in Case 1B 
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Figure 7.43 Velocity Error Distribution, Figure 7.44 Position Error Distribution 

For a gyro bias of 100/h, the simulation results are given in Figures 7.45 to 7.53 

where the GNSS information is not interrupted. 
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Figure 7.45 The cg Node Attitude Errors in Case 2A 

Attitude Errors (compared with the true values) with Gyro Drift Rate of 100/h 
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Figure 7.46 The cg Node Attitude Error Standard Deviations in Case 2A 
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Figure 7.47 The cg Node Velocity Errors in Case 2A 
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Figure 7.48 The cg Node Velocity Error Standard Deviations in Case 2A   

Attitude Error Std Deviations with Gyro Drift Rate of 100/h 

Velocity Errors (compared with the true values) with Gyro Drift Rate of 100/h 

Velocity Error Std Deviations with Gyro Drift Rate of 100/h 
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Figure 7.49 The cg Node Position Errors in Case 2A 
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Figure 7.50 The cg Node Position Error Standard Deviations in Case 2A 
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Figure 7.51 DOP Factors in Case 2A 

Position Errors (compared with the true values) with Gyro Drift Rate of 100/h 

Position Error Std Deviations with Gyro Drift Rate of 100/h 
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Figure 7.52 Velocity Error Distribution, Figure 7.53 Position Error Distribution 

The simulation results are given in Figures 7.54 to 7.62 for the case where 

GNSS attitude information is interrupted from 600 to 950 second, 3500 to 3650 

seconds and 5500 to 5650 seconds,  
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Figure 7.54 The cg Node Attitude Errors in Case 2B 
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Figure 7.55 The cg Node Attitude Error Standard Deviations in Case 2B 
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Figure 7.56 The cg Node Velocity Errors in Case 2B  
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Figure 7.57 The cg Node Velocity Error Standard Deviations in Case 2B 
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Figure 7.58 The cg Node Position Errors in Case 2B 
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Figure 7.59 The cg Node Position Error Standard Deviations in Case 2B 
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Figure 7.60 DOP Factors in Case 2B 
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Figure 7.61 Velocity Error Distribution, Figure 7.62 Position Error Distribution 

Further simulation studies were performed for other SRIMU configurations, 

low quality inertial sensors and GNSS-based position and velocity information. The 

simulation results are summarised in Table 7-2. These simulation results have shown 
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that by fusion of low quality SRIMUs with raw GNSS measurements and GNSS-

based attitude information, the distributed data fusion filters algorithms developed in 

this thesis can determine satisfactory navigation states although GNSS attitude 

information is only available for a short time, typically 1-2 minutes. It has also 

shown that the requirement for the drift or bias performance of gyro sensors of up to 

400/h can be accommodated in a distributed inertial network systems. However, it 

should be noted that GNSS-based attitude information can significantly improve the 

accuracy of estimates of the attitude and velocity states. It is clear from these 

simulation results that the DOP factor has a significant effect on the accuracy of the 

estimates of aircraft position and velocity errors.  

Although use of GNSS-based position and velocity information may produce 

better estimates of the navigation states, these fusion methods have a significant 

disadvantage. If the number of visible satellites is less than four, then GNSS-based 

position and velocity is unavailable. GNSS attitude information alone cannot reduce 

the degradation of the navigation velocity state.   

Table 7-3 Summary of Simulation Results (gyro bias is 400/h) 
Error State 4-Cone (1σ) 

PR+PRR 

 

4-Cone (1σ) 

PR+PRR  

GNSS Att. 

Interruption  

4-Cone (1σ) 
PR 

 

4-Cone (1σ) 

PR,GNSS Att. 

Interruption 

 

4-Cube (1σ) 
PR+PRR  

5-Cone (1σ) 
PR+PRR 

 

φ, θ 
ψ 

<0.20 
<0.20 

0.20  - 0.40 

0.30 
<0.30 
<0.30 

0.250 - 0.70 

0.30 
<0.20 
<0.20 

<0.20 
<0.20 

Vn, Ve 
Vd 

0.25 – 0.4 m/s 
0.5 m/s 

0.25 - 0.4 m/s 
0.5 m/s 

0.6 m/s 
0.8 – 1.0 m/s 

0.6 – 0.7 m/s 
0.8 – 1.0 m/s 

0.25 - 0.4 m/s 
0.5 m/s 

0.2 – 0.4 m/s 
<0.5 m/s 

Horizontal 
Vertical 

1.5 - 2.5 m 
2 – 5 m 

1.5 – 2.5 m 
2 - 5 m 

2.5 - 3.0 m 
5 m 

2.5 - 3.0 m 
5 –8 m 

1.5 - 2.5 m 
2 – 5 m 

1.5 - 2.5 m 
2 – 5 m 

7.4.2 Simulation Results at Slave Nodes 

For the simulation of the data fusion filters at all slave modes, position velocity 

and attitude information is available from the cg node or multifunctional GNSS 

sensor. Figures 7.63 to 7.67 show the simulation results without aiding attitude 

information interruptions and with a gyro bias of up to 400/h.  

Although the accuracy of the velocity and attitude estimates at the slave node is 
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less than the estimates at the cg node, the accuracy of the navigation state estimates 

still satisfies the requirements of the navigation states and local motion compensation 

and other airborne avionics systems. 
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Figure 7.63 The Slave Node Attitude Errors in Case 3 

 

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 5 0 0 0 5 5 0 0 6 0 0 0 6 5 0 0 7 0 0 0 7 5 0 0
0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4
A t t i t u d e  E r r o r  S t d  D e v i a t i o n

T i m e ( s e c o n d )

1-
si

gm
a(

de
g)

R o l l
P i t c h
Y a w

 
Figure 7.64 The Slave Node Attitude Error Standard Deviations in Case 3 

Attitude Errors (compared with the true values) with Gyro Drift Rate of 400/h 

Attitude Error Std Deviations with Gyro Drift Rate of 400/h 
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Figure 7.65 The Slave Node Velocity Errors in Case 3 
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Figure 7.66 The Slave Node Velocity Error Standard Deviations in Case 3 
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Figure 7.67 Velocity Error Distribution at the Slave Node in Case 3 
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7.4.3 Data Fusion Filter Integrity Testing Results  

This simulation study tests the integrity of the distributed data fusion filters. 

Sensor failures have been inserted in the SRIMU and GNSS measurements. The 

statistical characteristics of two testing methods described in Sections 3.2 and 6.5 are 

examined and the simulation results are shown in Figures 7.68 to 7.76.  

Figures 7.68 to 7.70 shown the test results for the case where one gyro has a 

jump failure signal after 6000 seconds for 100 seconds and one accelerometer has a 

jump failure signal after 2000 seconds in a 4-gyro cone configuration. 

 
Figure 7.68 Attitude Errors at the cg Node in Case 4 

 
Figure 7.69 NQI for Attitude Innovation at the cg Node in Case 4 
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Figure 7.70 NQR for Attitude Residual at the cg Node in Case 4 

Figures 7.71 to 7.76 show the test results for the case where one of visible GPS 

satellites has a jump failure signal after 4000 seconds for 100 seconds. 

 
Figure 7.71 Velocity Errors at the cg Node in Case 4 

 
Figure 7.72 NQI for Range Rate Innovation at the cg Node in Case 4 
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Figure 7.73 NQR for Range Rate Residual at the cg Node in Case 4 

 
Figure 7.74 Position Errors at the cg Node in Case 4 

 

 

Figure 7.75 NQI for Range Innovation at the cg Node in Case 4 
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Figure 7.76 NQR for Range Residual at the cg Node in Case 4 

These simulation results show that the normalised quadratic innovation (NQI) 

function can successfully detect the measurement bias signals caused by GPS signal 

failures and the normalised error quadratic (NEQ) function can monitor the abnormal 

shifts of the navigation states, caused by large sensor drifts or uncertainties of the 

model parameters. 

The results obtained from these simulation researches are summarised below: 

• The DOP factor affects the accuracy of estimates of navigation state errors. 

Large DOP factors result in large error variances of the navigation states. 

When the GNSS pseudorange measurements are only used as the 

observables of the data fusion filter, the jump of GDOP will cause large 

estimate errors of the position and velocity, even abnormal velocity errors 

if the GDOP has a step jump exceeding one unit. These simulations have 

shown that the effect of GDOP factors on the estimate accuracy can be 

significantly reduced if GNSS pseudorange and Doppler measurements are 

used as the filter measurements. 

• Use of the GNSS PR or PR and PRR measurements with GNSS-based 

attitude information as the observables of the distributed data fusion filters 

can obtain similar attitude estimate accuracy but use of the GNSS PR and 

PRR information has the significant advantage in terms of control of 

velocity errors. Therefore, GNSS PRR information should be used to 

control system velocity errors. 
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• Up to 30-minute GNSS attitude interruption can be tolerated after the 

distributed data fusion filter has run for 10 minutes, depending on the 

performance of the gyro sensors. Maximum attitude error generally occurs 

in roll angle whereas errors in the pitch and yaw angles can be controlled 

by the velocity information. 

• The navigation performance of a 4-sensor cube configuration is similar to a 

4-sensor cone configuration. The 5-sensor cone has better attitude accuracy 

than 4-sensor configurations. The accuracy of attitude estimates in inertial 

network systems depend on the accuracy of the GNSS-based attitudes. The 

accuracy of the navigation velocity state largely depends on the accuracy of 

GNSS Doppler measurements. 

• The NQI and NQR methods can be used to monitor the distributed data 

fusion filter integrity. It is recommended that the distributed inertial 

network system should combine three failure detection functions: the short 

time MW GLRT, the sequential MW-GLT FDI and the distributed data 

fusion filter integrity monitoring to achieve adequate safety requirements. 

7.5 Summary 

This chapter described the software simulation system and a number of 

simulation studies. The main activities included: 

1. Development of a modularised multisensor software simulation system and 

description of its architecture and associated functions.  

2. Introduction of inertial simulation and GPS simulation systems and the 

architecture of multi-mode data fusion filters at network nodes. 

3. Performance analysis of numerous simulation studies to test and evaluate 

the methods and algorithms developed in this thesis. 
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Chapte r  8  

8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Introduction 

This chapter summarises the research undertaken in this thesis. Section 8.2 

highlights the major contributions of the thesis. The main conclusions obtained from 

the simulation studies are summarised in Section 8.3. Further research studies are 

discussed in Section 8.4.  

8.2 Contributions  

This thesis covers the development of multisensor data fusion methodologies 

for the design, development, analysis, and simulation of reliable fault-tolerant aircraft 

navigation systems. The use of the methods developed in this thesis and their 

applications to low-cost (low-quality) inertial network systems integrated with 

multifunctional GNSS sensors can afford benefits in the cost, size, weight, accuracy, 

reliability and integrity of aircraft navigation systems. These methods can also be 

used for the design of navigation and attitude determination systems for marine 

vessels and space vehicles. The major contributions made during this PhD study are 

summarised in the following sections.  

8.2.1 Multisensor Data Fusion Model 

The application of the recent RNP concept to the design of multisensor 
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navigation systems leads to a problem: how can multiple sensor systems and their 

measurements be combined to achieve the RNP requirements for aircraft navigation 

systems? The solution to this problem is based on multisensor data fusion 

technologies. 

1. An original generalised multisensor data fusion model was presented for 

the design of aircraft navigation systems. This model consists of four 

modules, each addressing specific aspects of the RNP requirements and 

implementing different functions to ensure that the RNP requirements of 

aircraft navigation systems can be satisfied. This model can be used to 

assist and guide navigation system engineers to develop reliable and 

accurate aircraft navigation systems and to reduce the development cycle 

and costs. 

2. The navigation and attitude determination equations of inertial systems and 

GNSS were normalised. It is shown in the development of the simulation 

software system that the normalised equations provide a convenient method 

for the design of data fusion filters for distributed inertial network systems. 

This normalisation can be used to provide a standardised development 

procedure for inertial/GNSS integrated systems.  

8.2.2 Sensor FDI and Network Integrity Methods 

Two important modifications to the traditional GLRT FDI methods are the 

MW-GLRT methods and sensor error compensation filters. A combination of sensor-

level and system-level FDI procedures can achieve high levels of reliability and 

integrity for distributed sensor network systems.  

1. In comparison with traditional GLRT methods, the sequential MW-GLRT 

methods exceed the performance of the previous methods in the detection 

of various sensor failures. The simulation studies show that the sequential 

methods provide improved detection performance and efficiency, for 

example, detection of drift sensor failures in a short time and compensation 

for normal SRIMU measurement errors.  



 
CONCLUSIONS AND RECOMMENDATIONS 
 

8.2 Contributions 

 215 

2. These improved algorithms are further extended by using the outputs of the 

distributed fusion filters to monitor the integrity of an inertial network 

system, including the inertial vector states and the similar node states in the 

inertial network system. The simulation studies also show that any jump 

and drift failures in distributed sensor systems can be successfully detected 

by the use of the inertial network integrity monitoring algorithms.  

3. In comparison with current integrity monitoring methods, which generally 

detect failure at the system level, the simulation studies have shown that the 

combination of sensor-level FDI and system-level integrity monitoring 

procedures greatly improves the integrity and fault tolerance of distributed 

sensor network systems. 

8.2.3 Distributed Data Fusion Algorithms 

Two forms of distributed sensor systems have been examined, focusing on 

distributed inertial network fusion algorithms. 

1. Two data fusion algorithms were developed for state-identical distributed 

sensor systems, known as the Type I and Type IA algorithms. This form of 

distributed systems covers the majority of current designs of integrated 

navigation systems. It is significant that these two algorithms can be used 

for the design of integrated navigation systems for space, air and land 

vehicles and also marine vessels. This method was used in the SHINE 

programme to develop a multi-mode hybridised navigation filter. 

2. Two data fusion algorithms were developed for state-associated distributed 

sensor network systems, known as the Type II and Type IIA algorithms. It 

is expected that this method can be used in the design of the next 

generations of aircraft navigation systems, particularly inertial network 

navigation systems for military aircraft. 

3. An inertial network sensing model was developed and two algorithms were 

described to determine the dynamic transformation matrices.  

4. Innovative distributed inertial network fusion algorithms were presented; 
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including distributed inertial data fusion algorithms and distributed state 

fusion algorithms. The simulation studies show that the inertial network 

fusion algorithms can significantly improve the accuracy of the estimations 

of the inertial vector states and similar node states in an inertial network 

system. Moreover, these algorithms are capable of performing dynamic 

alignment and calibration of inertial sensor systems in an inertial network 

system.  

8.2.4 Multisensor Simulation Environment 

A multisensor simulation system environment was developed to simulate GPS, 

skewed redundant inertial systems and other sensor systems. This simulation system 

has been used to test and evaluate the range of data fusion algorithms developed in 

this thesis for distributed sensor network systems. It was also used to evaluate the 

FDI algorithms and the multi-mode hybridised Kalman filter developed for the 

SHINE programme. This simulation system provided an extremely convenient tool 

for the design and development of multisensor navigation systems. 

8.3 Conclusions 

A wide range of simulation studies was performed during the course of this 

research study. The main simulation results are summarised below.   

8.3.1 SRIMU Configurations 

Several SRIMU configurations were evaluated and the following results were 

obtained: 

1. Optimal SRIMU configurations were determined on the basis of trade-off 

of the minimum GDOP factor, the allocation of normalised variances of 

measurement errors along orthogonal body axes and the FDI capability. 

Coplanar sensor installation should be avoided in order to obtain the 

maximum FDI capability. 
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2. Accuracies of measured state estimates and degradation of performance of 

two 4-sensor SRIMU configurations and four 5-sensor configurations were 

compared in the presence of several sensor failures. The full cone SRIMU 

configurations in 4-sensor or 5-sensor SRIMU systems are recommended 

because degradation of SRIMU performance for the cone configuration is 

minimised for the various configurations simulated in this thesis.  

8.3.2 FDI and Integrity Monitoring Algorithms 

The MW-GLRT FDI algorithms and the inertial network integrity monitoring 

algorithms were tested in the simulation environment and the main test results are 

summarised below. 

1. The short-time MW-GLRT method can eliminate abnormal measurement 

noise and detect sensor hard failures. Furthermore, the sequential MW-

GLRT algorithms can efficiently detect mid-value and drift failures (which 

may degrade the accuracy of the SRIMU systems) without generating an 

alarm.  

2. SRIMU error compensation filters can improve the accuracy of SRIMU 

systems and the performance of the MW-GLRT algorithms.  

3. A combination of inertial data assimilation algorithms with the MW-GLRT 

algorithms can detect various sensor failures in an inertial network system. 

The filter-based integrity monitoring algorithms can effectively monitor the 

integrity of the distributed data fusion filters. 

8.3.3 Distributed Inertial Network Fusion Algorithms 

The distributed inertial network fusion algorithms were tested during this study 

and the significant conclusions are summarised below.  

1. By applying distributed inertial network fusion algorithms to a low-cost 

inertial network system (low-cost inertial sensors are characterised by a 

gyro bias ranging from 100/h to 400/h in this thesis), the attitude states at 

the cg node were estimated at 0.2 degrees (one sigma) even though GNSS-
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based attitude information was unavailable for thirty minutes. The attitude 

states at slave nodes were estimated at 0.26 degrees (one sigma) even 

though gyros at the node have a bias of 400/h. These simulation studies 

imply that low-cost inertial network systems would be used in future 

avionics systems to replace high-quality inertial sensors and that SRIMU 

configurations would replace orthogonal configurations. 

2. Distributed inertial network fusion filters can dynamically correct and align 

SRIMU systems in an inertial network system. Therefore, the traditional 

inertial system alignment algorithms are no longer necessary in distributed 

inertial network systems, for example, the transfer and fine alignments that 

have been used to correct inertial system errors at initialisation and to in 

flight align low-accurate slave inertial systems to a high-accurate master 

inertial system. Traditional transfer alignments need an aircraft to perform 

specified manoeuvres, typically covering horizontal straight flight followed 

by an ‘S’ flight for up to ten minutes. The elimination of traditional 

alignment procedures allows an aircraft to perform manoeuvres without the 

consideration of the above constraints. This is particularly important for 

military aircraft where these constraints can increase the risk to aircraft and 

pilots.  

8.4 Future Work 

Although the main solutions to the problem of data fusion methodologies in the 

development of aircraft multisensor navigation systems have been addressed in this 

thesis, the author feels that further research is necessary in several areas. 

8.4.1 SRIMU Calibration and Error Dynamic Models 

In SRIMU configurations, inertial sensors are installed along skewed axes with 

respect to the orthogonal instrument frame axes. Such configurations results in gyros 

and accelerometers which are more sensitive to translational and rotational motion of 

an aircraft in comparison with an orthogonal IMU configuration. These coupling 
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relationships should be modelled in SRIMU error models. This thesis has mainly 

identified the misalignment angles in SRIMU configurations as sources of error. For 

that reason, one area of the future research should be directed to develop more 

comprehensive SRIMU error dynamic models. The author believes that this 

research will improve the performance of distributed inertial network fusion filters in 

terms of estimate accuracy and network integrity. 

From review of the literature, current research is rarely concerned with SRIMU 

calibration although the calibration of orthogonal IMUs has been standardised. It is 

recommended that another area of the future research should be development of 

SRIMU calibration algorithms. It is particularly important to SRIMU manufacturers 

and companies developing SRIMU-based integrated navigation systems. 

8.4.2 Distributed Data Fusion Problems 

Normalised GNSS attitude determination equations were developed during this 

study programme. If the author had had sufficient time, the normalised GNSS 

attitude determination equation would have been integrated into the measurement 

models of distributed fusion filters to evaluate the performance of real-time (on-the-

fly) kinematic GNSS/inertial network systems. In comparison with direct resolution 

of the GNSS attitude algorithm, the combination of the normalised GNSS attitude 

determination equation with inertial network dynamic models can provide benefits in 

terms of real-time carrier phase ambiguity resolution and GNSS attitude estimate 

accuracy. However, many current kinematic GPS/inertial integrated systems use a 

two-step estimation procedure. First, the GPS attitude determination equation is 

resolved to obtain the GPS-based attitude solution. Then, the GPS-based attitude 

solution is used as the observable of the integrated navigation filter. Therefore, 

further research should be directed to real-time kinematic GNSS/ inertial network 

systems. It is not necessary to seek for an integer solution of carrier phase ambiguity 

in such studies. Nevertheless certain criteria have to be developed to minimise a cost 

function of attitude errors.  

 Recent research shows that the fusion of imaging sensors and navigational 
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sensors can detect and locate obstacles in specific phases of flight. Fusion of real-

time images, navigation states and GIS database information can provide a vision 

capability that allows an aircraft to operate in harsh weather environments and may 

reduce controlled flight into terrain and approach-and-landing accidents. Therefore, 

further research in multisensor data fusion methodologies should be directed to 

develop comprehensive sensor fusion algorithms for flight safety, enhancement of 

synthetic vision systems, terrain obstacle avoidance and guidance and proximity 

ground warning systems, as well as aircraft navigation systems.  

8.4.3 Inertial Network Failure Detection 

Detection filter techniques have been used in many control systems for failure 

detection. It is likely that these methods could be used in distributed inertial network 

systems. Further research should be pointed to evaluate the usability and detection 

performance of failure detection filters in inertial network systems.  
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APPENDIX A 

Table A-1 WGS-84 Parameters 

Parameters Notation Value 
Semi-major axis 

aR  m 6378137  

Normalized C20 61016685.484 −×−  
Flattening (ellipticity) f  257223563.298/.1  
Semi-minor axis Rb  

m

fRR ab

 3142.6356752     

)1(

=
−=

 

Eccentricity squared 2e  
3

2

1036943799901.6    

)2(
−×=

−= ffe
 

Angular velocity of the Earth Ω  rad/s10292115.7 5−×  
The Earth’s gravitational constant GM 238 /sm 10418.3986004 ×  
Gravity at the equator 

0g  2s/m 780373.9  
Gravity formula constant 

1g  0.00193185138639 

Velocity of light C  sm / 299792458  

Table A-2 Inertial Sensor Performance Parameters 
Performance Requirements  Performance 

Parameters 
Unit 

Aided IRS 
(Control) 

AHRS 
(Tactical Grade) 

INS 
(Navigation Grade) 

Bias uncertainty h/0  10-40 1-10 0.005-0.01 

Scale factor 
stability 

ppm 100-500 100-500 5-50 

Misalignment arcsec 200 200 10 

G
yroscope Random noise Hzh //0  1-5 0.2-0.5 0.002-0.005 

Bias uncertainty gµ  2000 200-500 10-50 
Scale factor 
stability 

ppm 500-1000 500-1000 200 

Misalignment arcsec 200 200 10 

A
ccelerom

eter 

Random noise Hzg /µ  200-400 200-400 5-10 

Table A-3 Performance and Trends for MEMS-based Inertial Sensors 
Sensor/Performance Current State Trends 

Bias ( h/0 ) 100-200 1-10 

Scale factor (ppm)  500 100-200 

 
Gyros  

Noise floor ( Hzh //0 ) 10-60 1-10 

Bias ( gµ ) 500-1000 100-300 
 Scale factor (ppm) 50-100 10-30 

 
Accelerometers 

Random noise ( Hzg /µ ) 100-200 10-100 
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The magnitude of the gravity at the surface of the WGS-84 ellipsoid can be 

approximated by the following equation[105]: 
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and the variation of the gravity with aircraft altitude can be approximated by 
2

a

a
84-WGS hR

R
gg 
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In the wander frame, the direction of the gravity points downward along the axis wz . 

Therefore, the gravity vector can be represented as 
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Given an initial velocity, Eq. (4.16) can be integrated to obtain the current 

aircraft velocity in terms of the wander coordinates, which can be transformed into 

the NED frame by.  
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In the wander angle mechanization, the vertical component of the transport rate 
w

ze/w,�  is defined as zero 0�w
ze/w, ≡ , and the horizontal components are computed as 

follows: 
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where nR  and eR  are the radius of curvature along the lines of constant longitude 

and latitude, respectively.  
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Quaternion Differential Equation 

Given an initial attitude DCM, the integration of Eq. (4.19) gives the current 

attitude DCM w
bC . From Eq. (4.5), the Euler angles can be computed as follows: 
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From Figure 4.2, the true heading angle is computed as 

αψψ −= w      (C.2) 

To simplify the computation of the attitude DCM differential equation, the 

quaternion form of the attitude matrix differential equation is generally used and 

given as follows: 
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The relationship between the quaternion and the attitude matrix is represented as: 
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The attitude angles can be computed from the following identities: 
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Linear Position Error Equations 

The angular position error θ∂  is defined in terms of the computed position 

DCM w
e

~C  and the true position DCM w
eC as follows: 

w
e

w
e )]([

~ CIC ×∂−= θ  (D.1) 

It can be rewritten as  
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e

w
e

w
e

~ CCC −=δ  (D.2) 

w
e

w
e )( CC ×∂−= θδ  (D.3) 

Differentiating Eqs. (D.2) and (D.3) yields 
w
e

w
e

w
e )()( CCC ��� ×∂−×∂−= θθδ  (D.4) 
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Substituting Eq. (4.29) into Eq. (D.4), and Eq. (D.1) into Eq. (D.5) yields 
w
e

w
e/w

w
e )])(()[( C�C ××∂−×∂−= θθδ ��  (D.6) 

w
e

w
e/w

w
e/w

w
e/w

w
e )]())(~()~[( C���C ×−×∂×−×−= θδ �  (D.7) 

Equating Eqs. (D.6) and (D.7)  
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w
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w
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w
e/w ×∂×−××∂+×=×∂ θθδθ ����  (D.8) 

Assuming w
e/w

w
e/w

~�� ≈ , the vector form equivalent of Eq. (D.8) can be written as 

θδθ ∂×−=∂ )( e/w
w
e/w

w
���  (D.9) 

Eq.(D.9) is known as the angular position error equation. 

In order to correct the errors of the geodetic location (latitude and longitude), it 

is necessary to determine the relationship between the angular position error θ∂  and 

the location errors. Let the latitude, longitude and wander angles be expressed in 

terms of their true values plus error terms as follows: 

δαααδϕϕϕδλλλ +=+=+=          ,~       ,
~

 (D.10) 
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Substituting Eq.(D.10) into Eq. (4.4) and expanding elements of the resultant 

position DCM matrix w
e

~C produces 
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Expanding the right side of Eq. (D.1), the elements corresponding to the DCM can be 

obtained as follows: 
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Equating Eqs. (D.11a) and (D.12a), Eqs. (D.11b) and (D.12b), and Eqs.(D.11c) 

and (D.12c), respectively, the following equations relate the angular position errors 

to the latitude, longitude and wander angle errors. 

z)sin( θδλϕδα ∂−−=  (D.13a) 
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In vector form, these equations can be written as   
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where geo_err
ang_errT  is the transformation matrix from the angular position errors to the 

geodetic location errors. 
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In the wander mechanisation, the vertical component of angular position error zθ∂  

can be assumed to be zero. 

However, many aiding navigation systems use the linear position errors as the 

error states to develop the measurement equations. It is necessary to derive the linear 

position error equations of inertial system. 

The linear position errors are defined as 

δϕδϕδϕ h)R(h)(R anR +≈+=  (D.16) 
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and the relationship between the angular position errors and the linear position errors 

is given by 
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Expanding both sides of Eq. (4.29) and assuming 0�w
ze/w, = , the geodetic location 

differential equations are derived as follows: 
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Replacing h)(R n + and h)(R e +  in Eq. (4.21) by h)(R a + and then substituting the 

resultant Eq. (4.21) into Eqs. (D.19) and (D.20), the differential equations of the 
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linear position errors can be derived as follows:  
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From Eq. (4.39a), the rate of change of height is defined as 
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In vector form, the linear position error differential equation can be written as 
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From Eqs. (4.30c), (B.2) and (B.3) 
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and from Eqs.(D.18b, c) 
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Tilt Error Differential Equations  

This computed attitude DCM w
b

~C  can be represented in terms of the true 

attitude DCM w
bC  as follows:  
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where φ∂  is known as the tilt error vector. 
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In vector form, the above matrix equation can be equivalently represented as  
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Note that w
e

w
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~ CIC ×∂−= θ  in the above equation.  

Substituting Eq.(E.8) into Eq.(E.7) and the resultant Eq. (E.7) into Eq.(E.6) leads to 
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In order to correct the attitude angles, the relationship between the tilt errors 

and the Euler angle errors has to be determined. Let the computed Euler angles be 

expressed in terms of their true values plus error terms as follows: 
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~ δψψψδθθθδφφφ +=+=+=  (E.10) 

Substituting Eq. (E.10) into the left side of Eq. (E.1) and expanding both sides of the 

resultant equation, the following equations relate the tilt errors to the Euler errors. 
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where Euler_err
tiltT  is the transformation matrix from the tilt errors to the Euler errors, 
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GNSS Navigation Equations 

Given these nominal points at the time kt , T
000 ]z,y,[x and T

000 ]z,y,x[ ��� , Eqs. 

(4.50) and (4.51) can be linearised as follows: 

i
r

0

0

0

0

0

0
0

)z-(z-)y-(y-
x

)x-(x-
r)(r �cdtzyt

i

i

i

i

i

i
ii

k
i ++++=−≡ δ

ρ
δ

ρ
δ

ρ
ρδ  (F.1) 

i
i

i

i

i

i

i

i

i

i

i

i

i

k
i

�

tcdt

r
0

0

0

0

0

0

0

0

0

0

0

01
0

z
)z-z(

y
)y-y(

x
)x-x(

                            

z
)z-z(

y
)y-y(

x
)x-x(

-r)(r

�

������

�������

+
−

+
−

+
−

++
−

+
−

+
−

=≡

δ
ρ

δ
ρ

δ
ρ

δ
ρ

δ
ρ

δ
ρ

ρδ
 (F.2) 

where rv  and r�v  include the additional errors resulting from the linearisation, dt  and 

td�  are the unknown receiver clock phase and frequency errors, and T]z,y,x[ δδδ and 

T]z,y,x[ ��� δδδ are the unknown receiver position and velocity error vectors,  
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From Eqs. (F.1) and (F.2), at least four GNSS satellites must be observed 

concurrently in order to resolve three unknown position states, three velocity states 

and two receiver clock error states. Therefore, when more than four GNSS satellites 

are visible, the GNSS navigation equations can be rewritten in vector form as 

follows: 
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where 



 
 
 
 

APPENDIX F 

 

 F-2 

�
�

�
�
�

�
=

cdt

p
p

δ
δ p ,

�
�
�

�

�

�
�
�

�

�

=
z
y

x

δ
δ
δ

δp ,

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

mr

r
r

r

3

2

1

δ

δ
δ
δ

δ
�

r , 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

mr

r
r
r

3

2

1

�

�

�

�

�

�

δ

δ
δ
δ

δr

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

m
�

�

�

�

r

3
r

2
r

1
r

r

�

� , 

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

m
�

�

�

�

r

3
r

2
r

1
r

r

�

�

�

�

�

�

�  

[ ]1HH LOS

0

0

0

0

0

0

3
0

0
3

3
0

0
3

3
0

0
3

2
0

0
2

2
0

0
2

2
0

0
2

1
0

0
1

1
0

0
1

1
0

0
1

GNSS

1
)z-(z-)y-(y-)x-(x-

1
)z-(z-)y-(y-)x-(x-

1
)z-(z-)y-(y-)x-(x-

1
)z-(z-)y-(y-)x-(x-

=

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

=

m

m

m

m

m

m

ρρρ

ρρρ

ρρρ

ρρρ

����

 

i
i

i

i

i

i

i
e/

T

0

0

0

0

0

0 )z-(z-
,

)y-(y-
,

)x-(x-
s=�

�

�
�
�

�

ρρρ
is known as the direction cosine or the 

line of sight (LOS) vector of the satellite i  in terms of the ECEF coordinates and 
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APPENDIX G 

Doppler Radar Navigation System 

Doppler navigation system is an aircraft self-contained dead-reckoning system. 

A Doppler radar mounted underneath an aircraft can obtain the velocity vector of the 

aircraft relative to the ground by measuring the Doppler shifts of radar beam signals 

returned from the ground. A three-beam Janus Doppler radar system is illustrated in 

Figure G.1 with two forward-looking beams pointing to the right and left sides of 

airframe, respectively, and one beam looking backward. This radar system can 

measure three orthogonal components of aircraft velocity[1]. Two types of the 

Doppler radar mechanisations are used; one fixes the radar antenna array to the 

aircraft body frame, and one continuously stabilises the radar antenna array to the 

local horizontal by means of an attitude reference system. The airframe-fixed radar 

system resolves aircraft velocity in the body coordinates while the attitude stabilised 

radar system obtains aircraft velocity coordinated in the local horizontal frame.  

These two measurements can be formulated in the wander frame as follows 
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where b
DR

w
b

w vCv =  is the true velocity of aircraft and DR�  is the Doppler radar error 

vector.  

From Eqs. (4.30a) and (G.2), the velocity difference between the INS-derived 

and Doppler radar-derived velocities can be normalised as follows: 
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Therefore,  
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Figure G.1 Three-Beam Janus Doppler Radar Configuration 
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APPENDIX H 

SRIMU Error Equations 

Substituting Eqs. (5.17) and (5.18) into Eq. (5.2a) and using the first-order 

Taylor series expansion for each element of the design matrix H  result in  
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Therefore, 
∆  can be driven as follows 
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Observing the form of the above equation, 
∆  can be further represented as follows: 

��Diag	�DiagH )()( AzEl +=∆  (H.1) 

where ()Diag  is a diagonal matrix consisting of the elements of the elevation 

misalignment vector El�  or the azimuth misalignment vector Az� , the elements of the 

matrix 	  correspond to the coefficients of the elevation misalignments in the matrix 
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∆  and the elements of �  are the coefficients of the azimuth misalignments in 
∆ . 

Approximating the measured state vector �  in Eq. (5.20) by its estimate �̂  

given in Eq. (5.3), a generalised formulation of the measurement errors caused by the 

SRIMU misalignments can be expressed by  
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The SRIMU error terms given in Eq. (5.16) are represented in the instrument frames. 

From Eqs. (5.16), (H.1) and (H.2), the total SRIMU measurement error is 

ElAzSFD
instru )(Diag)(Diag)Diag( ���m�� Σ+Π++=∆  (H.3) 

m�Cb
instru=Π , m	Cb

instru=Σ  

where )  ,( ElAzxx =�  are the misalignment angle vectors, SF�  is an n -dimensional 

scale factor error vector, )(mDiag  is a diagonal matrix consisting of the SRIMU 

measurement vector m , )(ΠDiag  is a diagonal matrix consisting of the vector Π  

and )(ΣDiag  is a diagonal matrix consisting of the vector Σ . 
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From Eqs.(5.2b) and (5.26), a transformation from the measurement space to 

the measured state space and the parity space can be described by the following 

block matrix, 

{ }
�
�
�

�
�
�

��
�

�
�
�

�
�

−

SpaceVector Parity  The
Space State Measured The)(

Spacet Measuremen SRIMU The
T1T

P
HHH

 

or 

 m
P

HHH
p
�

�
�

�
�
�

�
=�

�

�
�
�

� − T1)(
 

The inverse of this matrix transforms the measured state space and the parity space to 

the measurement space. From the SRIMU measurement equation, H  is a sub-matrix 

of this inverse matrix, which determines the transformation from the measured state 

space to the measurement space. Let M  be a sub-matrix of this inverse matrix, 

which specifies the transformation from the parity space to the measurement space, 

then the following relationships are created.  

[ ] �
PM0

MHHH�
MH

P
HHH

≡�
�

�
�
�

�
=�

�

�
�
�

� −− T1TT1T )()(
 

and 

[ ] [ ] �MPHHHH
P

HHH
MH ≡+=�

�

�
�
�

� −
−

T1T
T1T

)(
)(

 

From the above two equations, the following matrix equations can be derived.  

0)( T1T =− MHHH   (I.1) 

3−= n�PM   (I.2)  

n�MPHHHH =+− T1T )(   (I.3) 

Because the matrix 1T )( −HH is non-singular, then from Eq.(I.1),  

0MH =T   (I.4) 

The problem is to derive a matrix M  that satisfies the conditions given in Eqs. (I.2) 
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and (I.4). If and only if TPM = , applying the following constraint conditions on P : 

0PH =  and IPP =T , then 

3
T

−≡= n�PPPM  

and  

0)( TTTT ≡== PHPHMH  

From Eq.(H.3) 
T1TT )( HHHH�PP −−=  

Let  
T1TT )( HHHH�PPU −−==   (I.5) 

then U  is an nn× -dimensional symmetric, positive semi-definite matrix because the 

rank of PPT  is the same as the rank of P . The upper triangular parity matrix P  with 

positive diagonal elements can be computed by the following algorithms∗. 

 11
2

11 UP =  

 0=ijP  for ij <  

 1111 / PUP jj =  for nj ,    ,3,2 �=  

 	
−

=

−=
1

1

22
i

k
kiiiii PUP  for 3,,3,2 −= ni �  

 iikj

i

k
kiijij PPPUP /)(

1

1
	

−

=

−=  for nijni ,,1  ;3,,3,2 �� +=−=  

 

                                                 
∗ Potter, J. E. and Suman, M.C., Thresholdless Redundancy Management With Arrays of Skewed 

Instruments, AGARD AG-224, 1977, pp. 15-1 to 15-25. 
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Table J-1 Inertial Sensor Simulation Parameters 
Sensor 

Parameters  
1 2 3 4 5 6 

Gyro drift time const 
(sec) 

480 470 465 475.5 590 480 

Gyro drift err (deg/hr) 0.74 0.7 0.69 0.71 0.65 0.63 
Gyro bias err (deg/hr)* 40|2.0 40|1.9 35|2.2 35|2.3 45|1.8 42|2.1 
Gyro SF err time const (sec) 280 260 270 260 300 265 
Gyro SF error (ppm) 50 50 50 50 50 50 
Gyro Az misalign err (arcsec) 4.3E+1 3.7E+1 3.8E+1 3.7E+1 3.7E+1 4.0E+1 
Gyro El misalign err (arcsec) 4.4E+1 3.8E+1 3.8E+1 3.8E+1 3.6E+1 4.5E+01 
Gyro noise (deg/sqrt(hr)) 0.71 0.7 0.78 0.72 0.68 0.71 
Accel drift time const (sec) 360 360 365 360.5 366 360 
Accel drift err (ug) 160 170 154 165 175 150 
Accel bias err (ug) 310 320 330 333 312 320 
Accel SF err time const (sec) 250 260 250 260 245 260 
Accel SF err(ppm) 400 415 420 410 420 405 
Accel Az misalign err (arcsec) 4.0E+1 4.8E+1 4.7E+1 4.38E+1 4.1E+1 4.0E+1 
Accel El misalign err (arcsec) 4.6E+1 4.7E+1 4.5E+1 4.2E+1 4.0E+1 4.68E+1 
Accel noise (ug/sqrt(hz) 100 100 105 100 102 110 

* The first column is a typical value of slave node sensor biases and the second column is a typical 
value of the cg node sensor biases. 

Table J-2 GPS Error Simulation Parameters 
 

Error Sources 
Standard  
Deviation 

Time Constant 
 (Second) 

Note 

Ephemeris error 3 (m) 1800  
Ionospheric error 3-7(5)(m) 1800 Rx location and SV elevation 

dependent 
Tropospheric error 1-5(2)(m) 3600 Rx height and SV elevation 

dependent 
Rx Clk Frq error 
Rx Clk Pha error 

0.2m/s  Random walk, equivalent 
range rate error, random drift 

Pseudorange noise 1-3  Rx dependent, white noise 
Doppler meas noise 0.1-0.3 m/s  Rx Dependent, white noise 
SA effect  33 180 Second-order Markov 
Simulated GNSS 
Attitude errors 

Roll and Pitch 0.250 

Yaw 0.20 
 White noise, dependent on 

PDOP 

Table J-3 ADS and Magnetic Heading Simulation Parameters 
Sensor/System 

Output 
Sensor Errors Standard Deviation 

(1-sigma) 
Note 

Scale factor error (%) 0.02 Random process 
Time delay error (s) 0.06 Random process 

 

Pressure Height 
Measurement noise (m) 2 White noise 

True Airspeed (TAS) Measurement noise (m/s) 0.5 Total TAS error 

Heading deviation (deg) 20 Random constant Magnetic Heading 
Heading variance (deg) 0.50 White noise 
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Table J-4 Initial Navigation State Error Parameters 
Parameter Initial Errors  Note 

L-Position Errors 
H-Position Error 

400m 
150m 

Met by GNSS positioning solution and 
pressure altitude 

Vn, Ve 
Vd 

1.0m/s 
0.5m/s 

Met by GNSS velocity solutions 

Attitude Errors 10 Met by GNSS-based attitude solution or 
inertial initial alignment 

 

Table J-5 Parameter for MW-GLRT Requirements  
Accelerometer 

Bias (g) 
Accelerometer 

Noise (mg) 
Gyro Drift  

(0/hr) 
Gyro Noise 

(0/s √Hz) 
Velocity 

Error 
Attitude 

Error 
2E-4 0.25 40 0.012 Max 12 knots 

for 2 minutes 
Max 20 for 
2 minutes 

Integrity Requirements: 
Probability of a false alarm is 10-6  
Probability of a missed alarm is 10-5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure J.1 GPS Measurement Simulation Algorithm Architecture 
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Figure J.2 System Compensation Architecture

 

SRIMU Sensor Compensation 

insta  

inst
�  

inst
�̂  

instâ  
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