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Abstract

The entrainment of oxide films into the bulk material has been shown to have a

detrimental effect on casting integrity. A number of mechanisms have been shown to

initiate the entrainment of oxide films, including: returning waves, plunging jets, bubble

trails and fountains. Therefore, the assessment of the casting system for these features

by the foundry engineer is critical in improving casting quality.

The use of computational fluid dynamics software packages, which are now widely

available to the foundry engineer, has allowed the foundry engineer to improve casting

system design by using qualitative parameters. Optimization software is now an

economically viable option for many foundries. However, optimization for casting

integrity requires a quantitative casting integrity assessment technique, which allows the

modeling and quantification of defects. Therefore, modeling and quantification of

defects is becoming an ever more important research area to allow the optimization

software manufacturers to meet the needs of industry.

The current methods found in published literature for the modeling of casting defects

have been described and critically reviewed, shedding light on the qualities and issues

currently associated with the present available methods. However it is clear that further

investigations and developments are still required to allow the accurate and efficient

modeling of casting defects. The topics of research relating to the modelling of casting

defects which require further investigation have been highlighted.

Introduction

With competition within the foundry industry becoming fiercer and customers

demanding higher quality components, shorter development times and more complex

geometry, the use of computational simulation has become essential to stay competitive

[1]. In recent times the economic viability and increased ease of use has encouraged

many larger foundries to use computational optimization software. The modeling of
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defects is essential to allow the optimization of casting systems for component integrity.

Optimization can only occur if “the right optimization criteria to formulate the objective

functions are available" [2]. Therefore, to optimise a casting system for casting

integrity, knowledge of defect formation, distribution and quantity is required. This is

the challenge facing modellers. As these optimization software such as

MAGMAfrontier [3] become more user friendly and the performance of computer

hardware increases the requirement for accurate and quantitative defect assessment

criteria will become even more acute.
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Many liquid metals form an oxide film upon their free surface due to the reaction with

the oxygen in the atmosphere. This extremely thin solid film, in the range of nm to μm 

in thickness, forms almost instantaneously and thickens with time. When the surface

oxide film is entrained into the bulk fluid the film may be broken up by turbulence flow

into numerous single entities known as oxide films. These oxide films act as a crack

initiation sites upon solidification. These films do not bond within the metallic structure

and are therefore weaknesses, which acts as an initiation sites for cracks to propagate

from. The entrainment of oxide films into the bulk fluid has been shown to have

detrimental effects on cast component integrity [4].

The direct modelling of the physics of the entrainment process is currently seen as

unrealistic giving the processes complexity and current computational power. The

modelling of a thin film in the order of μm in thickness on top of a volume of fluid 

yields significant modelling difficulties from the meshing perspective. If a single mesh

capable of resolving the μm thick film was utilized the runtimes for a casting fluid flow 

simulation would be many orders of magnitude above what is reasonable. Even using an

adaptive meshing technique, where by the mesh is dynamically modified during

simulation, allowing a finer mesh to be implemented for the film and a coarser mesh for

the bulk fluid, would be computationally expensive and outside of reasonable

simulation times as the adaptive meshing procedure would be computationally very

expensive.

Campbell‟s 2006 paper [5] summarised most of the methods researched for the

modeling of defect entrainment in castings thus far developed. Recent work has both

proposed new methods and further developed, and assessed, previously proposed

methods of modeling defects. This has given further insight onto this important topic.

A discussion of the currently available methods for assessing casting integrity both

quantitatively and qualitatively are discussed below.

It appears that Campbell‟s final, but possibly most important conclusion; “the use of

entrainment models to optimise filling systems designs for castings has huge

commercial potential that has so far being neglected by modellers” [5] has still not been

adequately heard as there appears that significant research is required in to this topic,

but few teams are presently active.

Many defect modeling topics relating to the casting process have been researched,

including solidification and thermal modelling (porosity), die/mould based modelling (

burn on, sand erosion, die soldering, die life prediction) and stress strain modelling (

distortion, hot tearing). However, in this paper only the modeling of filling related

defect assessment of the casting process is reviewed.
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Although work on modeling porosity is not reviewed here (one such review of porosity

modeling by Lee et al. can be found here [6]), it should be noted that published

research has shown porosity to be linked to oxide film defects [7], [8], [9],[10]. This

suggests that the accurate modeling of entrainment defects could potentially yield

benefits in the accurate modeling of porosity.

It should be remembered that the accurate modeling of entrainment also has the

potential to yield significant benefits in optimizing the manufacturing processes of

chemicals, paints, food and cosmetics, where entrainment of surface films or gasses is

often a process limiting parameter.

A variety of approaches into the methods of modeling of entrainment defects have been

investigated. These can be largely split into two groups, the discrete and the indiscrete

modeling of entrainment defects.

Indiscrete Modeling of Entrainment

Cumulative entrained free surface area

Work by both Lai et al [11] [12] and Sun et al [13] investigated using the difference in

free surface area to describe the magnitude of entrainment. Little is known of the work

by Sun et al. due to commercial sensitivities, although the authors reported positive

results using the technique.

The work by Lai et al. [12] takes the instantaneous free surface area and plots it against

time. This is then compared to the proposed instantaneous free surface area assuming

the mould had been filled in a tranquil manner, to allow the excess of free surface area

to be calculated. The work showed that the largest excess free surface area was during

pouring from the furnace into the crucible and from the crucible into the mould. This

highlights the fact that the quality of the metal entering the running system is of extreme

importance to casting integrity.

This technique [12], although easily understood and requiring minimal computational

power has one major drawback, namely; how to define the minimum free surface area

should the mould fill quiescently. For very simple geometries comparison between

differing geometries is possible, though time consuming. For complex geometries

however, this could prove near impossible. Therefore, this technique is unsuitable to

use for optimization except for instances where direct comparison can be made between

two or more models (i.e. for models of identical geometry). This technique gives no

distribution of defects but is felt to be nevertheless highly informative as it is a strong

indicator of which stage of mould filling is likely to generate the most significant

number of defects. The lack of ability to track the motion of the entrained defects also
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proved detrimental to the usefulness of this technique. To develop this technique an

efficient algorithm to calculate the minimum free surface area is required.

Vorticity

Both MAGMAsoft [14] and Flow-3D [15] have developed techniques to identify and

assess vortices within the bulk fluid during flow simulation of mould filling. This

function is also available in CFD post processing software such as Field View, CEI and

Tecplot. These analysis tools allow the vortex core location and axis and vortex

magnitude to be defined. The problem arises however in filtering of the data. The bulk

fluid flow in the casting scenario is usually in a highly turbulent regime, producing

many vortices, filtering the data to only show those relevant to free surface entrainment

can be highly problematic. The authors are currently unaware of any work which has

been undertaken relating vortex assessment using a computational model to defect

entrainment or casting integrity.

Cumulative Scalar Technique

A cumulative near surface scalar technique has been developed by a number of the

commercial casting software manufacturers [16-18]. The technique works by assuming

that oxide defects accumulate upon the fluids free surface at a constant rate; this oxide

accumulation is described by a scalar parameter. This scalar once entrained into the

bulk fluid at the free surface is allowed to gradually diffuse throughout the fluid and

advect with the flow of the bulk fluid. This allows a final defect probability to be

obtained. This is a simple and robust approach which neglects the physics involved in

bi-film entrainment. However, the approach has been shown to yield results in accord

with more sophisticated models and experimental data.

As stated by the Barkhudarov and Hirt [17], the cumulative scalar technique does have

some drawbacks in the casting scenario, namely:

 The adhesion of oxide film to mould walls is not accounted for.

 No oxide film strength is modelled

 No buoyancy of oxide film is modelled
 Without any experimental results the significance of the absolute values of the

scalar are meaningless. However the defect location patterns are still valid.

An almost identical technique is also utilised in smoothed particle hydrodynamics

(SPH) [19-21]. SPH is a technique whereby the bulk fluid is divided into a series of

discrete elements known as particles. These particles are then given properties and

allowed to move within the constraints of a set of governing equations. SPH is a
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gridless technique where the particles can move anywhere within the domain and

interact with each other following a set of defined physical rules. The cumulative scalar

technique operates in the same way as that described previously but with the exception

that the quantification is not constant, but defined by a relationship proposed by Backer

et al. [22]. This is to try and quantify the mass of oxide entrained.

It must be remembered that these scalars diffuse within the liquid (Figure 1) unlike bi-

film defects which remain as single entities unless torn. Therefore representing

individual defects as a scalar quantity is always going to be problematic as the

interactions between the defects, mould and liquid cannot be modelled.

MAGMAsoft Air Entrainment Model

An air entrainment model has been developed by MAGMAsoft as a mechanism to track

small air bubbles transported by the bulk flow. The model is made of two main

constituents; a venting model and an air entrapment model. The criteria MAGMAsoft

use to define the quantity and threshold of air entrainment at the free surface into the

bulk fluid is proprietary.

The venting model is the main mechanism for tracking air pockets; this tracks changes
in topology of air pockets and calculates their thermodynamic parameters. Using this,
the number of discrete air pockets and each pockets location is known, along with their
density, volume, mass, temperature and pressure. Air pocket can collide with other air
pockets and can merge or split. The venting (permanent moulds/dies) or permeability
(consumable moulds) of the mould is modelled to allow accurate modeling of vented
regions. The venting model can operate only on air pockets that are resolved by at least
several mesh elements.

Air entrapment is a model that enables tracking air pockets that are too small to be
tracked by the venting model. Air entrapment operates only on the air volume
transporting it with the bulk melt velocity field. The model is valid for small bubbles.
The air entrapment models give the user a contour map of air distribution within the
melt volume.

Alongside their main air entrainment model MAGMAsoft have also implemented in
their code, (although at the time of writing not all are available to customers) several
scalar quantities aimed at helping the foundry engineer assess the likelihood of
entrainment. These include flow length, material age, and wall contact time and are
defined below:

 Flow length – Distance the metal has flown since entering the cavity
 Material age – Length of time the material has been in the cavity
 Wall contact time – Length of time the material has been in contact with the wall
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Flow-3D Air Entrainment Model

Flow-3D have developed an algorithm to model the turbulent entrainment of air at a

free surface [23]. The model works by assessing whether the turbulent energy at the

free surface is enough to overcome the restraining effects of the surface tension and

gravity. If the magnitude of surface turbulence is able to overcome these restraining

effects then a series of equations are used to calculate a quantity of entrained air. This

air is then entrained into the fluid and allowed to advect, dissipate and escape at the free

surface. The bulking of the fluid with the volume of entrained air can be modelled.

The model has been validated on data collected by researchers in the hydraulic

engineering fields. The volume of air entrained experimentally at hydraulic jumps, spill

ways and plunging jets were used for validation of the model [23]. The accuracy of this

data however, now has to be questioned due to recent research findings. The model

does show an excellent correlation with the location of entrainment [23], even if the

questions can be raised about the magnitude of the entrained gas, thus still making it an

extremely valuable modeling tool.

Resent research in the hydraulic engineering field has shown that the scale of an

experiment has an effect on the entrainment threshold (critical condition upon which

entrainment commences), size and quantity of bubbles entrained. Traditionally, scaled

down models of large civil engineering structures have been used to assess the flow and

entrainment characteristics before construction commences. Recent work however,

demonstrates quantitatively that dynamic similarity cannot be achieved with either the

Fr or We numbers as has traditionally been assumed [24], [25], [26], [27], [28].

Results from Chanson show that small scale models, when compared to full scale,

underestimate the energy dissipation and entrain fewer bubbles of a greater size for

similar inflow conditions [26]. The entrainment threshold for a hydraulic jump has

been shown experimentally to lie over the huge range of Fr numbers of 1 to 4 [29], [30],

[28]. The effects of experimental conditions, i.e. inflow conditions and scale can now

account for this broad range of results [31]. For a plunging jet entrainment has been

shown to only occur when it is perturbed [32], [31]. Fluid jets with very high Reynolds

numbers can impinge on a volume of fluid without initiating entrainment so long as

their surface remains free of perturbations [33]. For a given jet velocity the volume of

air entrained is proportional to the jet disturbance [31]. It should be noted that all the

above research into dynamic similarity was undertaken using water and not liquid

metals.

Dimensionless Number Criteria

The use of dimensionless numbers has been previously proposed for use in assessment

of defect entrainment by Campbell [34] among others. Previous studies utilising the
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Weber Number (We) (ratio of surface tension to inertial pressure) [35] and Froude

Number (Fr) (ratio of gravitational pressure to inertial pressure) [35] include that of

Cuesta et al. [36-37] and Isawa [38] respectively. The use of dimensionless numbers

does not enable the tracking of defects. However, it does have the potential to allow the

quantification of entrainment. It must be remembered that the greatest limitations for

the use of dimensionless numbers for quantifying entrainment in casting systems is

firstly their inability to differentiate between the many types of entrainment

mechanisms, namely: plunging jets, fountains, bubble trails and colliding fluid fronts.

Secondly, they are not able to assess entrainment in all regions, especially in a mould

cavity of complex geometry, of the casting system.

Work by Isawa using the Froude number in the casting arena involved water modeling

in a supposedly impermeable mould showed a vena contracta forming at the sprue to

runner junction [38]. By calculating the dimensions of the volume of air present in this

vena contracta and the Fr number of the incoming flow, an empirical relationship was

then used to calculate the time a flow of that Fr number would take to remove the air in

the vena contracta. The results matched closely with the experimental data. It is not

clear whether this air was transported into the mould cavity by the hydraulic jump or

escaped through the mould walls. The permeability of the mould to air is questionable,

as the author states that after twenty-four hours of applying the surface coat, water

hardly penetrated the mould walls. The permeability of the mould walls to air was not

measured, and is therefore unknown. Isawa concludes that the higher the Fr number of

the system, the shorter the time for the disappearance of the ‘vena contracta’ and that

this is desirable for an optimised running system. It would appear that the author is thus

incorrectly recommending that the presence of a hydraulic jump, which is entraining

both air and oxide film into the bulk fluid is advantageous.

Hernandez-Ortega et al. [39] used a combination of both the Fr and Reynolds (Re)

numbers (ratio of viscous to inertial forces) to characterise the filling patterns of a

vertical rectangular die using low and medium pressure die casting. This work,

although not directly modeling defect entrainment, has shown both experimentally and

using modelling that the Fr and We numbers can be used to characterise the flow form

of water entering a vertical rectangular die. Four discrete flow forms were defined:

transition, mound, palm and shell in order of increasing probability of entrainment

occurring. This technique could be used to allow the foundry engineer to assess the

likelihood of entrainment by calculating the Fr and We numbers of the flow entering a

vertical rectangular die and see whether it is likely to be entraining. However further

research is required to validate the technique for liquid metals and more complex die

geometry.

Cuesta et al. investigated the influence of geometry n the critical velocity for free

surface entrainment of aluminium. Using a commercial CFD software, and validating

against previously published data, they modelled both round and rectangular cross
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section vertical in gates to assess the critical conditions at which free surface

entrainment is initiated. The flow conditions through the in gate were assessed using the

Weber number. This work suggested an entrainment threshold We number of 1.4 for the

entrainment of oxide in liquid aluminium in square inlet channels, which is higher than

the theoretical value of 1. The paper then goes on to propose the entrainment threshold

lying in the range of We number of 0.5 - 1.5 for all channel shapes, geometries and

materials. However, this work contains no experimental validation for these threshold

values. The main findings of the work were that both the size and shape of the in-gate

has an effect on the critical velocity at which entrainment will occur.

There are some questions over the work on the We number by Cuesta et al. which lead

the authors to question its validity. Firstly the choice of a contact angle of 10° between

the mould wall and liquid metal [36] seems unrealistic, it is widely acknowledged that a

value of approximately 160° is appropriate for most liquid metals. Secondly, Cuesta et

al. state that assessment of the conditions took place once the numerical modeling

“proved to be accurate enough”. However it is this author‟s opinion the models shown 

in the paper are in some cases inaccurate, Figure 2.

It seems that the use of dimensionless numbers for assessment of in-gate flows is an

area of research which requires a more detailed investigation.

Reilly et al. [40], [41], [42] have used dimensionless numbers to create criterion

functions with which to interrogate computational models for quantification of

entrainment. The Froude number [35] (ratio of gravitational to inertial forces), Weber

number [35] (ratio of surface tension to inertial forces) and Hsu number [43] (ratio of

inertial to gravitational and surface tension forces) were used for the assessment of

returning wave forms in horizontal runner bars.

A user customisation was programmed in Flow-3D to extract each of the dimensionless

numbers at a determined frequency from the runner bar of the model [44]. To enable

this to be achieved the flow regime was first characterised as one of four types as

described in Figure 3. Once characterised the appropriate assessment technique allowed

the extraction of the relevant velocities and length parameters to allow calculation of the

dimensionless numbers within the runner bar. Upon completion of the model the

instantaneous dimensionless number could be integrated with respect to time to

calculate a single quantitative „total damage‟ value for each model. This allows the 

quantitative comparison of running systems.

This technique was validated against experimental work. Four moulds were cast

containing tensile test specimens; two head heights (high and low), both with and

without reticulated foam filters. The integrity of each system was assessed using the

Weibull modulus [45]. The experimental procedure was modelled in Flow-3D, the
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models included the modeling of the pour. A mesh sensitivity study using a regular

Cartesian mesh of 2, 4 and 6 mm side lengths was also under taken [40], [42].

The experimental data gave Weibull moduli of 38, 32 and 8 respectively for the high

filter, low filter and low conditions [40], [42]. (the higher the Weibull modulus the

greater the integrity [46], [4]). The high condition mould created tensile specimens with

so great a degree of entrainment present (multiple visible bubble defects within the test

specimen) that tensile testing was deemed as inappropriate. Scanning Electron

Microscope (SEM) analysis was undertaken which showed the cause for specimen

failure was consistent with those associated with entrainment defects, namely: oxide

films, bubbles and micro-porosity [40], [42].

Examination and comparison of the experimental results and modelled results showed

that they were consistent with one another, showing the same flow types. However due

to being single phase flow it was not possible for the software to accurately model the

large numbers of bubbles seen in some experimental conditions.

The Fr and Hsu numbers were seen to correlate with the experimental data, whereas the

We number was not found to accurately predict casting quality. The We number

showed a large difference in magnitude between the filtered and unfiltered conditions

but incorrectly differentiated between the smaller order of magnitudes between the two

filtered conditions and the two unfiltered condition.

The Fr data was tested for mesh sensitivity and was found to correlate with

experimental data in the 2 and 4 mm mesh condition but not that of the 6 mm condition.

The Hsu data correlated with experimental data in the 4 and 6 mm mesh condition but

not that of the 2 mm condition. Analysis of the model suggested that this was indeed

due to the sensitivity of the model to mesh size rather than a sensitivity of the Fr or Hsu

criterion, i.e. the modelled flow was different in the different mesh sizes. This

sensitivity to mesh size does however severely limit the use of dimensionless numbers

for optimization purposes at this stage of development.

The ratio of inertial to gravitational forces (Fr number) appears to provide the best

representation of entrainment within the runner bar. The high energy flows usually

present within a runner bar often overcome the surface tension forces. An example of

fluid energy overcoming surface tension forces can be seen in flow structures including:

plunging jets, returning waves and rising jets. If the surface tension forces were

sufficiently great then there would be no entrainment even for the free surface profile of

a return wave as the surface tension would restrain the free surface preventing the

entrainment of air packets. Therefore, the ratio of inertial to surface tension forces (We

number) does not well represent the likelihood of entrainment in this scenario. It should

be remembered that the surface tension of water is approximately 10% that of liquid

aluminium.
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Whilst these results appear encouraging, the technique requires further developments;

these include the quantification of the entrainment threshold in liquid metal as opposed

to water, and establishment of a relationship between the dimensionless numbers and

degree of oxide entrainment. The effect of the changing surface tension with age of the

oxide file could also make defining the entrainment threshold problematic as it is likely

to be extremely sensitive to surface tension. The definition of these entrainment

thresholds may be possible by further developing the work of Pita et al. [47]. This work

has simulated the movement and breakup of a thin solid film in a volume of fluid and

as is discussed later in this review article. In this investigation the theoretical

entrainment threshold of 1 and the oxide entrainment rate being linearly proportional to

the dimensionless number was used. Work by Ohl et al. [33] and Chanson et al. [26],

[48], [27], [28], has shown that the magnitude of undulations upon the fluids surface

and the physical scale of the entraining phenomena greatly impact the magnitude of

entrainment. This makes it difficult therefore to quantify the magnitude of entrainment

without assessing these factors alongside the dimensionless number. However their

minimal computational overhead makes this technique attractive to industrial and

optimization applications should they gain further development to resolve these issues.

Multi-phase modeling

Bubble trails have been shown to be highly detrimental to casting integrity. The

accurate modeling of bubbles; their entrainment, advection and coalescence is an

important element of the modeling of casting entrainment. By modeling both the bulk

fluid and surrounding gas (two phase modeling) it has been possible to describe the

entrapment, advection and coalescence of bubbles within the melt [49], [50]. However

further development is still required before these codes are viable as commercial

software packages. Initial results show correlation of bubble motion, coalescence and

separation with experimental data. These software are, as expected, computationally

highly intensive when compared to single phase flow modeling due to the substantial

additional complexities of modeling the second phase. However, modeling both the

liquid and gas phase appears to be the only way to correctly model highly aerated flows.

It appears that currently the developers of two-phase-focused software are concentrating

on developing the flow modeling rather than the addition of models for the quantitative

modeling of casting defects. At the current time the authors are unaware of any two-

phase-focused software incorporating quantitative defect prediction models. However,

this does not mean that they have not been successfully validated [51] and applied

qualitatively in the application of defect prediction and process optimization [52].

The use of any two-phase flow software to quantify or track the defects produced by the

entrained gas has yet to be under taken, although the addition of one or more of the
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techniques described to model discrete defects within this paper has the potential to

yield good results.

Modeling of Discrete Defects

Methods have been developed to model the entrainment and advection of discrete

defects. This is obviously very challenging and usually requires greater computational

expense than the indiscrete methods described previously. However there are some

considerable advantages associated with this approach, namely: entrainment

mechanisms can often be identified and the final defect location can be obtained.

There are however some current issues which require further investigation. Many of the

techniques described below have had to make assumptions about: both physical

characteristics of the defects and their behaviour, critical entrainment thresholds and

interaction of defects with both mould materials and each other. It is often not the

practical modeling, but determining exactly what mechanism or physical situation to

model is the greatest challenge facing modellers. For this reason, modellers will have to

work closely with experimentalists for effective progress to be made within this field.

The models for predicting porosity to use in heterogeneous nucleation have thus far

concentrated on bubbles as sites for porosity formation. Further development of

discrete film entrainment techniques would investigate the possibility of modeling oxide

film defects as sites for porosity nucleation.

Many of the following techniques used to model discrete oxide film entrainment utilise

particles to represent entrained defects. This comes with some currently inherent issues,

often caused by not having understanding of the physical behaviours of oxide films in

the real world. Further research is required into the following topics, namely:

Many of the particle models within the software have had no experimental

validation. It is only current work by Griffith et al. [53], [54] which will allow

the possibility of accurately assessing a simulation software particle tracking

model. The particle-fluid coupling has only been assessed qualitatively thus far

[55].

The properties of oxide adhesion to mould walls is not fully understood.

Obviously, the adherence of oxides to mould walls can greatly affect the models

results. Carlson et al. undertook investigation [56] into the adherence of re-

oxidisation inclusions onto mould walls in steel. Based upon these qualitative

findings they allowed re-oxidisation inclusions to adhere to the mould walls in

their model. However, it is felt that the mould surface, mould material, velocity

(both magnitude and direction) and defect properties will all affect the defects

adherence to the mould wall. The coefficient of restitution used in the models

determines whether particles adhere to mould walls or rebound with an energy
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loss. There has been no conclusive research into the adhesion of oxide films to

mould walls; therefore, this assumption has no experimental validation. This

can obviously have a huge effect on the final location of defects.

Although many discrete particle entrainment techniques do define and track

entraining events they currently do not quantify the amount of entrained oxide.

It is incorrect to assume that the number of particles directly correlates with the

number of oxide films which would be created experimentally from the same

flow phenomena. Therefore, it is not possible to categorically state that the

number of particles entrained correlates with the area of quantity of oxide film

entrained and thus damage to the material. However, the greater the numbers of

defects present, the greater the probability of a highly damaging defect which

initiates failure being present. It is anticipated that future development of the

code could define the particle size as a function of the area of entrained oxide

film.

Oxide films are individually unique, varying in size, shape and density.

However, many models are not capable of modeling this. The particles are

commonly specified as spheres of either constant density and varying size, or

varying density and constant size. In the low energy flow fields found in the test

bars between filling of the mould and solidification, the buoyancy and drag force

of each particle will determine their final position. The use of spherical particles

and the generic properties to represent individually unique oxide films is

currently not able to be validated due to the lack of experimental data.

Agglomeration of entrainment defects is a difficult subject as to date no

experimental work has been published into the adhesion of oxide films to one

another. However, it is possible to interpret the networks of highly tangled

oxide films [34] and large dross defects [56] in published work as evidence for

the scenario that oxide films adhere to one another should two films collide.

Further detailed investigations are required to confirm this hypothesis. Work by

Carlson et al. [56] (dealing with re-oxidation rather than oxide film inclusions)

allowed particles to agglomerate as a way of easing the computational load and

to more accurately describe the characteristics of oxidisation inclusions in steel.

Experimental work has shown that when a filter is used there is the possibility of

the oxide films becoming shredded, thus becoming more numerous and smaller

[57], although this work is not conclusive. Currently this is not accounted for

the below models.

The changing the film‟s morphology (for example a large thin film becoming 
„screwed up‟, folded or creased) between its formation and its final form in the 

solidified material is not accounted for. The morphology of the particle will have



Page 14 of 25

an effect on its motion due to a change in drag forces; this affect is unaccounted

for in the current models.

Bubble Entrainment

A major omission from many casting software is the ability to model correctly the

entrainment of air into the bulk fluid during casting. Defects caused by the entrainment

of air into the bulk fluid include bubble trails, splash defects and entrapped bubbles.

Bubble trails are hollow cracks (tubes) which create leak paths through the casting [58],

[59], [60]. Entrapped bubbles (bubbles which do not escape from the bulk fluid) are

commonly incorrectly assumed to be created through the rejection of gas upon

solidification. If the bubble is near the surface it is assumed that it is the result of some

reaction with the mould or mould coating. Should a bubble breech the free surface of

the fluid during the filling of the cavity, small droplets may be produced which either

adhere to the mould walls or re-enter the melt, these are known as splash defects. These

fluid droplets have an oxide skin around them preventing recalescence with the melt.

The direct simulation of the bubble entrapment and subsequent effects of the bubble

have been avoided. Full physical modeling of bubble entrainment would require the

modeling of bubble entrapment, its advection including the drag forces placed on the

bubbles motion by its oxide trail the bubble trail and bubble agglomeration. However

the lack of knowledge of the film strength obviously complicated matters. Most

available commercial packages could describe the initial entrapment of gas or void

regions caused by macroscopic fluid flow scenarios, such as the „rising jet or fountain

effect‟, where a volume of air is encapsulated by the fluid. However, most of the

currently available casting software only consider the bulk fluid to be present in the

model (single phase modeling). A bubble can only be modelled if the bubble size is

greater than the size of a mesh cell. This obviously has a huge effect on the minimum

bubble size it is possible to model before simulation time becomes unjustifiable due to

the increase in computational time caused by the use of a fine mesh.

Although many commercial software codes have the ability to model bubbles with

pseudo two-phase flow as discussed by above, currently commercially available

software capable of modeling the two-phase flow (which is required to model large

scale bubble entrainment and detrainment effectively) for complex casting shapes often

struggle to meet the runtimes many industrial users demand.

The use of pseudo two-phase flow for permeable moulds can be highly problematic.

The entrapped air volumes can be specified as adiabatic and are initially trapped at

atmospheric pressure. For the case of sand moulds where it can be assumed that the

mould is permeable to gas within the mould cavity, the use of this method proves

difficult as it is not possible to specify a mould material permeable to the entrained gas

and atmospheric gas within the mould cavity. Instead vents have to be added, however

it is unreasonable to add vents to every mould cell. Therefore, gas pockets which are
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either entrapped against the mould walls or entrained within the fluid cannot be vented

through mould walls and are therefore often incorrectly trapped within the mould

volume (unless a pre-placed vent is present within the entrapped volume). This can

cause the flow fields to be incorrectly modelled and sometimes gives pressure

convergence issues. Obviously using the bubble model is not unrealistic for

impermeable dies where vents can be added in the same location as the real vents in the

die. The modelling of mould venting of consumable moulds such as sand and

investment moulds is a topic that would benefit from further research and development.

As yet the modeling of the bubble trail with all its intricacies has yet to be attempted.

This is most likely due to the perceived difficulty of even obtaining experimental data

on the physical properties of the bubble trail and creating a bubble trail model which has

practical use. It is highly likely that if bubble trails were to be modelled the extreme

computational expense would be too great to allow its introduction into commercial

software or to run casting models of even moderately complex geometries and scale.

Therefore, it is felt likely that other models approximating the bubble trail may be the

solution to this problem.

Single phase modeling software such as that used in the foundry industry are limited to

the size of mesh they can use due to the requirements for fast results [61]. These single

phase software require, at minimum a single cell devoid of fluid to be able to define a

bubble. Therefore to track small bubbles such as those entrained by a returning back

wave, an extremely fine mesh is required. This produces runtimes many magnitudes

longer than is acceptable in most industrial scenarios. Work by Ohnaka et al. has used

particles to represent and track entrained bubbles for the prediction of porosity [62],

[63], [64], [65]. This technique has been developed to remove the need to use

extremely small mesh element sizes to track small bubbles.

To allow the tracking of these small bubbles Ohnaka et al. developed a technique to

place particles when the void region becomes too small to be defined by the mesh.

These particles are then tracked and their final locations defined. These are then used to

define the location of heterogeneous nucleation sites for of gas porosity [62], [63], [64],

[65]. This technique is an adaptation of that developed previously by Tomiyama et al.
[66]. This allows the tracking of the bubbles without the computational expense of

small mesh cell sizes. They found the technique gave results which correlated well with

experimental results. However the technique was found to be extremely sensitive to the

particles buoyancy force (this is related to the particle density and size).
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Modeling of Oxides in Steels

A method based upon the formation of oxides from nuclei was used as a methodology

to model defects in steels. A team from Iowa University lead by Beckermann [67], [68]

introduced particles into the melt and allowed them to grow when upon the free surface.

The particles were either added to the incoming fluid stream, or placed upon the free

surface so as to give a minimum free surface particle density, i.e the number minimum

number of particles upon a free surface is defined by the user and code add particles if

required to achieve this value. When the particles are sub-surface, only their advection

is modelled, their growth is not permitted. The particle motion is tracked until

solidification and agglomeration of colliding particles (oxides) is permitted. The final

location of these particles and their size give probabilistic representation of the

likelihood of entrainment defects being present.

Carlson and Beckermann have further developed and undertaken validation work of this

steel inclusion modeling technique showing good correlation with a number of

experimental validations and has been successfully used in industrial applications [56].

They have created a very elegant and seemingly robust method of modeling oxide

inclusions in steels, and shown it to give reliable results in industrial applications.

Modeling the Folding Mechanism

This method, used by Lin et al and Dai et al [69], [70], [71], [72] models the

entrainment of bi-films through the folding of the free surface. It is therefore only able

to model certain entraining phenomena such as returning waves and folding surfaces.

The methodology used by both Lin and Dai is based upon placing particles on a fluid‟s

free surface to represent the oxide film. Particles are added if the surface is expanding,

and when a particle is added to the model then all particles are re-labelled. The particles

also have to be replaced onto the fluid‟s surface at every time step, should the free 

surface form have changed. This suggests that the technique may be computationally

intensive. These techniques have also only currently been applied in two dimensions,

currently expansion into three dimensions would severely complicate the programming

required and further increase the computational effort.

Lin assumes the oxide films to be present between neighbouring particles and calculates

the strain the film is under by tracking the movement of neighbouring particles. Should

the strain exceed the strength of the film, further particles are added as the film is

assumed to have torn and immediately new oxide film has been formed. The model is

able to assess the entrainment of air bubbles into the bulk liquid by surface turbulence.

Once a film is entrained in the bulk material the tracking points are no longer adjusted

to fit the free surface and it is assumed that there is no atmosphere for oxidisation within
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the bulk material. Therefore no new particles are added should the film break due to

excessive stress. The location and number of these entrained films are tracked.

Dai‟s approach varies slightly by assessing the surface normals of the films. Should 

they be pointing towards each other and their velocity vectors obey a predetermined

mathematical rule (meaning that the films would converge) then entrainment is deemed

to occur. This model was then compared to experimental data and deemed to be

qualitatively consistent.

One major drawback with this model is that it is currently only implemented on the

OFET 2D CFD (computational fluid dynamics) in house code. The authors are unaware

of any shape casting simulations undertaken with this software, presumably due to its

current 2D limitation.

The authors would like to make three comments on the work undertaken by Dai. Firstly

the code was validated by mechanical testing of samples cut from cast plates. It should

be noted that the samples were initially tested by subjecting them to a four-point bend

test. The broken samples were then subjected to a three point bend test [71]. Obviously

the results of the latter three point bend test have to be regarded with some caution, as

the effect of the initial test on the strength of the sample is not quantifiable. It is likely

that this initial test opened up crack initiation sites, potentially severely weakening the

samples.

Secondly it should be noted that the comparison of the down-sprues on both the vortex

and rectangular runner validation moulds are different [71]. The sprue inlets and pour

basins are identical on both, however the sprue exit is 75 mm2 on the rectangular runner

and 150 mm2 on the vortex runner. Using Campbell‟s design rules the maximum sprue 

exit area for a 175 mm tall sprue is 105 mm2 [34]. It can therefore be seen that the

rectangular runner has a choking sprue whilst the vortex runner‟s sprue is oversized.

This will mean that there is effectively a plunging jet occurring as the bottom of the

down-sprue until there is enough head height from within the casting cavity to back fill

the bottom of the down-sprue. Dai‟s work suggests that the oxide entrainment was by 

the folding of films within the casting volume, as was modelled. There is a large

probability however, that there were a significant number of young oxide films

introduced to the plate castings which were entrained in the down-sprue of the vortex

runner casting. This has not been accounted for in the model.

Thirdly, upon inspection of the models run using the OFET code the flow can be seen to

be perfectly symmetrical (Figure 4). It is known from real time x-ray results that this is

unrealistic, Figure 5 [73]. The reason for this flow behaviour is assumed that a pressure

boundary was applied to the bottom of the plate as an inlet condition as the 2D OFET

code was unable to model the running system. The validity of comparing the incorrect

computational models to the experimental data is therefore questionable.



Page 18 of 25

It should however be stressed that this method of modeling the entrainment of oxide

films through folding of the free surface does have merits, namely: quantifiable output

(number of particles in the model/ critical volume can be counted) the motion of the

defects can be modelled. However the authors feel that further investigations and

development are required to exploit its full potential.

Modeling of Oxide Entrainment

The work by Ohnaka et al. on modeling bubbles in single phase flow [64]was then

further extended to include the modeling of oxide entrainment in aluminium castings

[74]. Making the assumption that the aluminium surface which is exposed to the

atmosphere instantly forms an oxide film, the free surfaces are then assessed using

defined physical rules [75] to see if they collide, thus entraining oxide films. If

entrainment occurs, marker particles are placed to represent the entrained films. Their

advection within the flow is then calculated to define their final locations upon

solidification.

The number of entrained oxides per unit area is estimated as a function of collision

velocity and alloy composition the parameters of which were defined through

unpublished experimental work. The average surface area of the broken oxides is

estimated using a function of the collision surface area, the surface area of a broken

oxide and the number of entrapped oxides. The function means that at larger collision

velocities, more but smaller oxide films are entrained [74].

The judgment of a free surface collision is classified by assessment of the velocity

vectors, distances between particles and the time period. This methodology allows the

entrainment caused by fluid jets, bubbles, colliding fronts, impinging flows and return

waves to be modelled. Further validation with respect to the modeling of oxide defects

rather than that of porosity which has been so far undertaken [74] would give a greater

insight into this methods validity for the modeling of oxide film defects.

Oxide Film Entrainment Model (OFEM)

Research by Reilly et al. used a very similar methodology to that developed by Ohnaka

et al. [54], however the implementation varied due to factors associated with the

software. In this work an oxide film entrainment model was developed as a Flow-3D

customisation [76], [77]. The model assesses the velocity vectors, fraction of fluid at

both the beginning and end of a time step, orientation of the free surface normal and

surface area of free surface cells and defines entraining events by the use of Boolean

logic criteria. Once an entraining event has been detected a particle of determined size

and density is placed to represent the defect. The particles motion is then modelled.
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Upon solidification the particles within defined critical volume(s) or the whole casting

can be counted to allow quantitative analysis of the casting system.

The experimental work of Green and Campbell [4] was modelled in Flow-3D and the

OFEM applied [76], [77]. This work consisted of pouring moulds, both with and

without a 10 ppi reticulated foam filter at the bottom of the down-sprue. The test

specimens were then tensile tested. The results showed the filtered condition to give

test bars of greater integrity than that of the unfiltered condition; Weibull modulus [45]

of 37.7 and 19.7 respectively. The average number of particles in the gauge length of

the test specimens was compared to that of the Weibull modulus.

The modelled results agreed with those found experimentally. The filtered condition,

which was shown experimentally to be of greater integrity (Weibull modulus 37.7), had

an average 1458 particles in the gauge length, compared to an average of 1945 particles

for the unfiltered condition (Weibull modulus of 19.7). However, further investigations

to give a much larger data set and using a variety of running system designs which

emphasise different entraining flow phenomena are required for conclusive validation of

the technique.

The experimental results show the defects “easily identified as oxides”[4] to be the

failure mechanism of the test samples. Therefore it is known that the failure mechanism

is due to the entrainment mechanisms modelled by the OFEM rather than another

unaccounted for factor.

The incorporation and transport of particles within the liquid metal as reported in this

work is not unique. Algorithms for doing so having been described previously by Yang

et al. [78], [71] and Ohnaka et al. [64]. However, it is considered that this work is an

initial evaluation and quantitative validation of a promising technique for modelling

entrainment defects in shape casting. This is also a code targeted at optimization, and

thus incorporates quantitative assessment techniques of the final particle locations.

Modeling of Oxide Film Deformation

Work by Pita et al. [47] has modelled the transport and deformation of a single oxide

film within a fluid volume. Although this technique is currently not aimed at defect

entrainment prediction it is included as it has the possibility to be developed into a key

constituent in the development of accurate defect entrainment models. It is therefore

included here as it is felt to be of the upmost importance.

The technique has in two dimensions shown that it is possible to accurately model the

advection and large scale deformation of a solid film within a fluid, and the effect this

solid deformation has upon the fluid motion: i.e.coupling of a fluid and deformable thin

film.
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Pita et al. state that they aim to further develop this technique by simulating a more

realistic model and including a breakage criterion for the film, and solidification

elements (phase change and solute transport) [47]. The addition of the ability to model a

breaking film will allow the direct modelling of film entrainment for simple models.

With the present state of computational hardware it seems unlikely that this technique

can be applied to large scale castings in the near future due to the computational

intensity of modeling numerous films (which require the micro flow to be simulated)

alongside the macro flow and solidification. However, the technique may play an

important role in gaining insight into the physical behaviour of oxide films, of which

surprisingly little is definitively known.

The work shows promise for the applications in modeling the unfurling of oxide films

in castings, which is believed to be one of the mechanisms of porosity formation [34].

Thus far no evidence has been published to categorically prove or disprove Campbell‟s

theory. If this technique can be developed into a three dimensional model then the

possibility of modelling this phenomena will become a reality.

A significant step in the development of this technique would be the introduction of a

free surface within the model domain. If the film can be made to deform upon the free

surface and break then the possibility of modeling directly the breakup and entrainment

of the film will become a reality. Although it has to be expected that this would be

extremely computationally intensive, thus ruling out the possibility of full scale casting

simulation it would allow the determination of entrainment thresholds. The accuracy of

many current entrainment models is severely reduced as the entrainment thresholds are

not known. If simple models can be simulated to allow the definition of entrainment

thresholds for different entrainment phenomena, with assessed parameters including:

material properties, oxide age (thickness), fluid velocities and free surface topology then

the accuracy of many current entrainment modeling methods could be greatly improved.

The addition of these entrainment thresholds would solve one of the major questions in

entrainment modelling; under what conditions does entrainment commence?

The second significant difficulty, associated only with the discrete modelling of defects

is the correct modelling of advection and adherence properties. On this front the current

model by Pita et. al is a significant step to being able to assess the accuracy of the

current methodology of using spherical particles to represent entrained films which is

used by many of the discrete modelling techniques. Although once again challenging to

validate, a three dimensional model containing two or more films would allow the

assessment of the representation of thin films with spherical particles and the interaction

between two films when they collide. The ability to assess the deformation of the film

during advection within a flow and assess its velocity within a known flow field, will

aid the assessment of whether thin films tens to hundreds of μm in length and only μm 

in thickness within a fluid can be modelled as a continuum, or whether they have to be
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modelled individually with a drag coefficient which requires determining and may be

time dependent if the films morphology changes with time. The re-oxidisation inclusion

model [67], [68] currently allow the agglomeration of particles based upon qualitative

evidence, this also eases the computational load by reducing the number of particles

present within the model.

The ability to model a breaking film would potentially allow the assessment of film

dimensions for given flow parameters for a given entrainment phenomena. The use of

this data could be highly beneficial in improving the accuracy of discrete modelling

techniques.

The ability to mode 3D films would allow the modelling of bubble trails. These tube

like structures have thus far never been modelled but are widely believed to be highly

detrimental to casting integrity [58-60]. The ability to model these tubes would allow

insight into under what conditions the bubble trails are torn so as to try and understand

not only their formation but their behaviour under common casting conditions.

Although the development of the technique of modeling the deformation of an oxide

film has the possibility to be extremely powerful, it must be considered that validation

of these techniques will be extremely challenging. Oxide films are small, tens to

hundreds of μm in length and only μm in thickness, and invisible to the naked eye and 

still challenging to identify even with more sophisticated techniques such as using a

scanning electron microscope. It is suspected that a representative experiment rather

than an experiment using liquid metal or indirect qualitative evidence will be all that can

be achieved in respect to validation models using these techniques.

Summary

The modeling and quantification of defect entrainment in the casting scenario is in its

infancy and is an extremely difficult proposition due to a number of complex problems

which have to be addressed. One of the most difficult of these is not the actual

modeling of the defect but instead acquiring the knowledge of what to model. For

example: do oxide films agglomerate if they collide, do oxide films stick to the mould

surfaces and or under what conditions, what are the characteristics of oxide films

created through different entrainment mechanisms and how do oxide characteristics

affect the motion of defects within the melt? These problems require experimentalists to

work alongside modellers to make further progress in the modeling of entrainment

defects in castings.

However there are currently a range of techniques available to the modeller, as

summarised in Table 1, which providing their limitations are recognised may shed light

on the quantity, entrainment location and or final location of casting defects.
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Conclusions

In this article the published methods of modeling entrainment defects in metal castings

have been reviewed and the topics requiring further research have been highlighted. The

topic of modeling entrainment defects in casting has received little attention in recent

times despite its obvious commercial significance. The simulation of many phenomena

has not yet being undertaken due to the complexity and lack of physical understanding.

However, the modeling of defects has been shown to be achievable and advantageous.

One such example is the modeling of oxides in steels has been elegantly undertaken and

validated by Carlson et al [56, 67-68]. It is hard to see where to further develop this

model without new experimental evidence to giving further insight into the properties,

life cycles and behaviours of defects in steels.

The development of quantitative defect modeling techniques is difficult and complex,

but of great industrial significance, and therefore further research is urgently required.
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Figures Captions –

The Present State Of Modelling Entrainment Defects In The Casting Process

Reilly et al.

Figure 1 – Flow 3D Defect Tracking Scalar example. Diffusion of oxide scalar can clearly be

seen (Barkhudarov and Hirt, 1998).

Figure 2 – Modelling versus experimental results from Cuesta et al. Experimental results are

outlined in white, modelled results shaded in grey (Cuesta et al., 2006a, b). a) has a We number of

4.7 and b) 2.3

Figure 3 - Flow Type schematics for dimensionless number models. Where v is the velocity and l

is a length (Reilly 2010).

Figure 4 – Example of OFET 2D oxide tracking model used for validation of the technique
(Dai.X 2005).

Figure 5 – Real time x-ray example of flow in a cast plate (1995 benchmark test, 1.75 s ) (Sirrell
et al. 1995). This is the experimental data which was modeled by Dia et. al (as seen in Figure 4).

Table 1 – A summary of the benefits and limitations of the major defect modelling techniques
which have been explored.
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