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SUMMARY

The effects of distortion on the longitudinal stability
of swept wing airecraft at high speeds (sub-critical Mach numbers)
are considered on a quasi-static basis. The method employed is
based on the theory of Gates and Lyon1 but involves some extension

of this theory.

The treatment of wing distortion is considered in some
detail and the effects of built-in twist and camber and wing weight
are included using the so-called superposition method;. The
application of the analysis of Lyon and Ripley’ for investigating
fuselage, tail and control circuit distortion is suggested, but
means of modifying and simplifying this procedure where dessirable

are put forward.

The analysis is illustrated by means of a simple example
of o swept wing fighter aircraft for which wing, fuselage and cail
distortion effects are considersd, and the results are discussed
with reference to the individual and combined distortion effects

as well as the effect of compressibility,
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1. Introduction

The longitudinal stability of an aircraft is usually
considered in terms of 'static stability' (measured by the static
margins), 'manoeuvrability' (measured by the manceuvre margins)
and general dynamic stability. If the stability derivatives are
very little modified by frequency effects (i.e. they approximate
closely to the quasi-static values), then the static and manoeuvre
margins as normally defined can be related to the coefficients
E1 and C1 in the 'stability quartic' given by the usual small
displacement theory. The values of *the static and manoeuvre
margins then largely determine the characteristics of the phugoid
and short period oscillations.

When structural distortion effects are introduced, it is
again necessary to consider whether the motion of the aireraft (in
the long and short period oscillations) occurs under quasi-static
conditions, or whether the dynamics of the separate aircraft com-
ponents should be considered, introducing additional degrees of
freedom correspending to oscillations of individual components.

This question is discusszd in ref. 4 where it is poirted out that

if the frequency of the short period oscillation is of the same
order as the lowest natural frequency of any component (e.g. the
wing) the simple quasi-static approach is suspect. Once the quasi-
static approach is abandoned, however, the treatment of dynamic
stability when distortion effects are included becomes very difficult.5
The general treatment of the dynamic stability of a flexible aircraft
can be similar to that employed in flutter problems, =lthough the
difficulties arc enhanced by the fact that coupled oscillations of
wing, fuselage, tail, etc., are coubined with the overall vigid
body'motion of the aircraft. An attempt to formulate the equations
governing the motion of an aircraft with flexible fuselage and

wings is made in rcf., 5, and the problem is considered briefly in
ret. k.

In this report the 'quasi-static' approach only is
considered, as in refs. 1 and 2, By this method the equations
of motion for a rigid aircraft are used but the values of the
aerodynamic derivatives are modified to include distortion effects.

The basic theory is in essentials that of refs. 1 and 2
with certain modifications and extensions which it is believed will
permit of a more logical treatment of the effects of wing distortion
in cases where there is built-in twist or camber, and the treatment
also permits the ready inclusion of the effects of aircraft weight.
The conditions for the halance of aerodynamic, elastic:and inertia

forces are obtained by the superposition method of ref. 3, which

/it is considered ...
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it is considered has many advantages over other methods.

The analysis is illustrated by means of an example of
a high speed swept wing fighter, and the results of the analysis
are discussed in detail, This example presents a number of

features of general interest,

For compressibility effects on a rigid aircraft the
important parameter is the Mach number so that the variation of
true air speed must be conusidered. When the aircraft is flexible
however, the distortionsproduced by aerodynamic loading are
dependent on the equivalent air speed. In general, therefore,
we must consider the two parameters M and q = %QVQ. In this
report the suffix M indicates that a derivative is teken at
constant liach number (e.g.(ﬁCL/aa)M), and in such cases it is

also implied that q is constant.

The corrections for variations of inertia lozding due
to normal acceleration introduced in para. 4 are 'quasi-static’
j.e. it is assumed that the normal accelerations of all parts of
the sirecraft are the same as that of the C.G. and that the structure
is always in equilibrium under the applied aerodynamic and inertia
locding. This assumption is similar to the assumption that
frequency effects on the aerodynamic derivatives, etc. may be
neglected and will similarly become invalid when the short period

frequency is high.
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2. Wing distortion

Yhen considering longitudinal stability it is usual to
assume that the ailerons will remain in the neutral position when
the wing distorts. Distortion of the main wing structure only is
then considered. For most swept wings the loss of incidence due
to upward bending is greater than the increase due to twist (referred
to an ideal straight flexural axis), Thus wing distortion produces
a net loss of 1lift curve slope accompanied by forward movement of the

aerodynamic centre (see 2.2).

Then the quasi-static approach is used in obtaining stability
criteria and derivatives it is assumed that the structure is always
in equilibrium under the applied loading. The problem of treating
wing distortion is then basically that of solving for the 'aeroclastic

equilibrium' of a flexible lifting surface.

2.1. Solution of the aerocelastic eguilibrivm problem for a

flexible lifting surface

The problem of calculating the aerodynamic characteristics
of a flexible lifting swrface is one of some difficulty due to the
fact that distortion under load produces a change of load, liathe~
matically the problem takes the form of the solution of an integral

equation,

It is possible to solve the problem (using 'strip' theory)
by successive approximation (see ref. L) or by the method of semi-
rigid representation (refs. 4,8). These methods are well-known and
widely used. They suffer from the disadvantage that since 'strip'
theory must be used induced aerodynamic effects due to the distortion
itself are neglected; also with the semi-rigid method the accuracy
is reduced by the need for approximate representation of the distortion
mode, More recently the 'superposition' method has been put forward
(ref. 3)2and since it was felt that this method is in samne respects
superior to the above it has been adopted here. The following is
a brief description of it. The usual assumption of linearity

between loading and incidence is fundamental to the method.

At any point on the span of an elastic wing in equilibrium
under aerodynamic load, the final geometric incidence Oy will be

given by:

n

°p

where S

Py ¥ O

geonetric incidence of undistorted wing ('initial'

incidence)

ap = change of incidence due to distortion.

JIf G e

% The superposition method has also been developed independently at
Handley Page Ltd., but this work remains unpublished.



i

If i is known, the final loading is known and ¢, may
be calculated, giving G Thus the problenm is easily solveg
"backwards'. If a number of arbitrary 'final' incidence distrib-
utions ap, , %pos ete. are chosen and the corresponding 'initial’

incidence distributions ete, are so obtained, then any

i Ll v
given initial incidence distributions may be approximately repres-

ented by a linear combination of the arbitrary initial distributions.

Thus a = Aa o =B + GSUJ

T S%11 g%10 g e

In practice three or four such terms may be sufficient.

S,Csem.aﬂaﬁmdﬁmsoftm

parameter qAR, where AR is the rigid wing lift curve slope

The coefficients AS, B

allowing for compressibility effects.

But Agar, = Agqap, = Agon,

Bgor, = Bgapy = Bglms et
and therefore

ap = Op = ASQF1 + BSQFz + GSGFE B e

- (ASQE1 + BSGEZ - 03033 - ..‘)

so that ap = ASGF1 + BSQF2 + CSQFB P eww

and hence for the given initial incidence distribution, Qs the
final incidence distribution g and hence the final aerodynamic
characteristics can be cobtained. It will be seen that by means

of this method the aerodynamic and structural problems are separated

and may be considered independently.

This method is likely to yield more accurate results for
many problems than the other methods mentioned previously, due
moinly to the fact that induced aerodynamic effects due to distortion
are readily included and no sweeping assumptions need be made about
the mode of distortion . Once the calculations have been completed
for the arbitrary cases chosen, equilibrium conditions for any
combination of q and M are quite easily obtained. As with
other methods, some difficulty is encountered if the form of the

aerodynamic loading varies appreciably with Mach No. (see 5.2).

S2.2,  wve




2.2, Effects of wing distortion on the wing 1lift and pitching

moment contributions

2.2.1. Viing with zero built-in twist and camber;

distortions due to wing weight negzleected.

If the incidence of the wing (a) is defined as the angle
between the chord line of the wing and the direction of flight,

measured at the wing root, then we mayv write

1 . . !aCLaw
O, = Wwing lift coefficient =(\ o= gk Ao o @)
where cLaw = wing 1ift coefficient of flexible wing due to
(root) incidence a.
oC
A = wing 1ift curve slope (following ref. 1) =( BEQW)M

da

described above (see also ref. 3).

oC
It is possible to find (: %Gf) using the superposition method as
i

Similarly, taking moments about the rigid wing aerodynamic

centre, we may write

(ao W) @
C = —- a TR TR 2
Ty %, M

where C is the pitching moment coefficient corresponding to

mow
CMW and may also be found by the superposition method. Tor the
'rigid wing' cmw as defined above is of course zero, but with the

flexible wing there is a pitching moment about the rigid wing mean

aerodynamic centre (HOR) which is proportional to incidence i.e.

there is a movement of the wing acrodynamic centre given by

l:mnry:mm' aCLaw
_&HO = - a(L aCb ocou-oucnpno(B)

giving the mean aerodynamic centre of the flexible wing

HO=H0R+AHO. £

The wing p3itching moment coefficient about the aircraft C.G is then

c = .!';.O'.. (h"‘H) --aoctcaalOl(‘,-I-)
5. G. ;

and thz wing pitching moment coefficient about the new mean aero-

dynamic centre (HO) is zero

$.5. (cn ) = 0.
"o wing

2.2.,2, Y¥ing with built-in twist and camber; distortions

due to wing weight neglected.

Yhen the undistorted wing has twist or camber it is

/possible to
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possible to consider the effects of incidence, twist and camber

separately,

as in ref. 3, that

where

chw

and C

VWie then have, applying the principle of superposition
"oC
_ Law
CLW s (‘aa f) R CLOW g CLtW
= AG—' o+ CLWO l.llinllo-o.(5)

a = root incidence as defined in 2.2.1.

CL@W = 1lift coetficient due to root incidence o on
wing with zero built-in twist and no built-in
camber,

CLcw = 1lift coefficient on wing with zero root incidence
and zero built-in twist, but with built-in camber.

CLtw = 1lift coefficient on wing with zero root incidence
and zero bullt~in camber but with built-in twist.

CLwo ¥ CLGW * CLtw

aCme
/ol s (as before)
@

Ty D8y be found using the superposition method and

are functions of speed and liach No.

Thus (

aC ac
agﬂ % ( aimj =A =28 in 2.2.1.
M M

Also, the pitching moment coefficient about the rigid wing mean

aerodynamic centre is

where Cmﬂw ? Cmcw’ mtw

acmo;w
= b a + Cmcw B Cmtw

C are the pitching moment coefficients

corresponding to CLGW $ CLcmﬂ CLﬁW and hence

e

«Ca

Then

where

G Y

(ac
W
. O

=]
=9

{BC )
mew
% / u

aC_ acL %
- gﬁw % &8 In 2200,

da
acmaw
= o en % G + (h—HOR) Or e
mow T Cmtw ?
i
= Ao, lB ¢ O * (h-HoR)(Au,+cLWO)
- (cmo) b + AO«(h"'HO) s lll.tln-.o.l(G)
wing

/Where LI




where (Cmo) _ N PR (h - H c:R) Bl
wing
and H = Hp + Au_ .
This expression for C ig dif'ferent from that normally used

mw,
C.G,
in that CLW # Aa. It will be seen, however, that it is conven-

ient to express quantities in the form X + Yo where X and X

are functions of speed and lfach No, but not of incidence.

2,2,3, Ying with built-in twist and cambsr when distortions

due to wing weight are included

Following the method adopted in 2.2.2 we may write

o] o] aCLmv

CLW = A.G.. + CL‘WO + n an Iy{ .n-laanoooci(?)

where n-1 = 1/g x normel acceleration of aircraft (positive

CI_;% 2 upwards)

n = = , in flight for which the inclination
of the flight path to the horizontal
is small,

Can = 1lift coefficisnt on wing with zero root incidence,
zero built in twist and no built-in
camber, due to deflection of the wing
under its effective weight.

The affix © denotes the condition n =0, so that the effects of

wing weight are entirely contained in the last term.

aC

As with cho ete., gzw may be found using the superposition

nethod.

Similarly, taking moments about the rigid wing aerodynamic centre

we have y 5 j
f’ oC 1\ aC
% nehi o - mnw

mnw da. -«"I‘-I. mwo dn M

divenaeaté)

and about the C.G. we have

P A, O

\
C = l-——-——gzwj SO+ Goo + n( ‘g'?lwhi
eag il - e Bolw

g

30,
e} o Linw
(h - HdR)(A o+ C_ 0) +n (\ \

on / M
o 0y ,0 n
(Cmo) + (h - Ho) A% + (h - HO)An.n

Wj.ng .....-o-""(g)

+

(h - Hp)

]

/where ...
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fac fac, N
o ol o _ _ | __mow Law
where Ho = HdR + OH, iﬁHo 7 Li oa / aa‘)
. , I ;
& BGan n { Loy aCan\
A = , OB win] ~BE] A |

In practice the affix o could be dropped from A4°, ¢ , ¢°

b Lwo® “rwo
and (Cmo) without coufusion occurring.
~ wing
The effect on existing longitudinal stability theory of
using these more complicated expressions for CLW’ an is
considered in Bi. Bt

2.3. Effect or wing distortion on the downwash at the tail

The incidence of any point on the rigid tailplane is
given by

CLT’I =O‘«+T'|T-81

where e, = local downwash angle,

Hence, following the method employed in dealing with wing distortionm,

we could write
OOp = Ay (aemg) -2, e

due to tailplane incidence

h A _ aCLT
RS IR = Ta
c
B % root incidence of tailplane with zero wing downwash
.
T
e T T 0 H
R

downwash angle at tailplane root.

e
]

Values of Aia and A1e night then be found using the

superposition.method,= provided that the spanwise dovmwash distribution

were Known.

¥e could then write

Z1CIE = A, (o + Np = sR)

/due to ...

# This is strictly true only for an all-moving tailplane, see 3.2.
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due to incidence

where ER

e
S

%(ﬁj—z

and A1 = A1a

In practice, however, the downwash distribution is not uswally
known with any accuracy even for the rigid wing, and since it will
change slightly with speed due to wing distartion it will

not be possible to carry out a single aercelastic equilibrium
calculation for the tailplane applying io all speeds, In view

of these difficulties it seems acceptable to use a mean downwash
angle, the mean being weighted in favour of the regions of greatest
tailplane 1lift,

Since the downwash is produced by wing 1ift it is logical
to use an expression for the mean downwash angle € having the

saze form as the expression for Clmf

M

o BATE = = - -

Then E = & o B ¥E._ Ahfn n B OB R FE, .. (10)
where the 1ift distribution corresponding to A% produces a mean
dovmwash angle Ea’ the 1if't distribution corresponding to (‘.:IW0
produces a mean downwash angle Eo’ and the 1ift distribution

corresponding to nAn produces a mean downwash angle En .

The value of € will approximate to the value of ER

defined above, and we write

€rz8y = B o +E€p +E o,

so that the use of € does not necessarily imply an spproximation.

Since the 1ift distributions A% ete. nay be obtaeined by
using the superposition method, it is possible to obtain the dowmwash
distributions corresponding to these 1lift distributions by super-
position of the downwash distributions corresponding to the arbitrary
1lift distributions employed, This can, however, be a somewhat
involved process, anc in practice it may be acceptable to use
estimated values of éa etc., with semi-empirical corrections for the

effects of wing distortion.

The above expression for & is more complicated than the
usual expressions for downwash angle, and the effect of using it in

stability theory is considered in §@.

V. T
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3. Tuselage, control circuit and teil distortion

Distortion of the fuselage, tail and control circuits
modifies the tail 1ift and pitching moment contributions, and also
the elevator hinge moment. This has been considered in ref. 2,

where however compressibility effects have not been explicitly
considered.

Iyon and Ripley® write

OLT = A1 G - A2n + A3B
CH = BO + B1GTO + an + BEB
where Gpy = G+ Tp = £
Mpy = tail setting angle at zero windspeed ('built-in’
tail setting angle)
n, B are control angles equivalent to movements of

the pilot's controls an, B, of wef. 2) as is

Mo if a 'variable incidence' tailplane is used.

Alternatively, we may write

CLT = A1T G+ Agn + A5B

CH = B0 e B?TGT + an 4 B3B
where GT = a + nT - g
Np = true (root) tail-setting angle
aC
Ao o B
5l Gl O

= value of A,‘ when fuselage is z".T.‘:_:;:I.éL,x

and likewise

B = e

1T

3.1, Effect of fuselage inertia loading

The above expressions may be used to include the effects
of all distortion under purely aerodynamic loading, the values of
A1' A2 etec. being modified to take account of these effects. If

/the effect ...

¥ This applies to tailplanes of 'fixed' incidence - with a
'variable incidence' tailplane A1T is the value of A1 when

both fuselage and incidence control circuit are rigid.
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the effect of bending of the fuselage under its own weight is to
be included a slight modification of the expressions for CLT and
CH is necessary.

Suppose application of a (total) normal acceleration

of mng produces a net change of n.aqr/an. in the value of O«

3
o}
Th.en GLT = A1TGT + mﬁT-a_Z + -&27] +A3|B nan--uo-.(ﬂj)
where ag = true root tailplane incidence for n = O.

This may be written

o 90
CLT = CLT +nA-1Tan li-cona--c-c(’12)
and similarly
s)
o O
a ?'l'ncoit

= Bi+Bo., +71B —32 + B.n + BB K

o "1%0 1 3a 2 3 J

If application of ng produces a net change of tail setting angle
{SjnT, we have
bap O7p Bp

A
£
where éﬁﬂTi = change of N due to ng at zero windspeed
q = bov®
Ff = fuselage bending stiffness = doad on tail
change in Ip
Then
. Angs
2ty ® E,.q89
=
1 + ——————
Fe
Ay 4ng Mgy 1 \
and T = = = s Itlnolll.(.1£")
3 n n on |
q. ST j
b e
(aﬂ1T q+A 29 \
.- . j' ¢
_a_(_ai’l‘_)_ 51 a{'aa'r)_ BnTi‘ oM 1T1\ /ST*2
- ] ¥i ! . = i
da \dn o Mion on / T\ ka;
L. T/

e Y rm)

73
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%.2. Calculation of Aq, AQ ete., including distortion effects

The analysis of ref, 2 is adopted here but with certain

modifications and the inclusion of compressibility effects.

Fuselage distortion (aerodynamic loading)

Pormulae are deduced in ref. 2 for the ratios A1/h1,
r";z/a.2 allowing for fuselage distortion and these expressions may
be applied in general if s 85 ete. are interpreted as the
values of Aq, Az etec, when compressibility and all distortion

effects except fuselage distortion are included.

Tailplane-~elevator distortion

As pointed out in ref. 2, tailplane distartion and
elevator distortion cannot be considered separately since the two
are completely interdependsnt, For this reason it is not strictly
pussible to use the superposition method for the estimation of
distortion effects on the tailplane-elevator combination, In
ref. 3 a method of treating the 'flap-deflection' case is given
which uses the auperposition method, but this is based on the
assumption that the local flap angle is not changed by distortion
of the main surface or flap, co that the form of the spanwise
load distribution dve to the flap deflection remains the same at
all speeds. ‘hile this assunption may not lead to serious errors
when dealing with the wing-aileron combination (although it seens
dubious even in this case), it seems likely that it would lead to
appreciable errors if used for a tailplane and elevator. For
the treatment of the latter, therefore, the method of 'semi-rigid
representation’ as given in ref. Z would seem to be more suitable.
If the effects of tab distortion and elevator skin distortion can
be neglected (seec below), the effects of compressibility may be
introduced (by means of linearised theory corrections) to the
'strip' derivatives used, The corrections applied should be
those appropriate to the threce dimensional tail swrface, so that
the overall 1ift and hinge moment coefficients vary in the correct
way although changes in the form of the 1ift distribution due to
compressibility are ignored, as with the superposition method. It
is not possible to carry out the calculations in terms of a
'compressibility - distortion' parameter such as giy, (used in
the superposition method) since the aerodynamic coefficients 2y,
8ns 23 b1, b2, b3 are nct all modified by compressibility in
the same way. Tt is therefore strictly necessary to carry out
calculations for each combination of q and i within the

required range.

/Elevator tab ...
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Blevator tab and tab circuit distortion

In ref., 2 it is shown that if Cﬁ and 02 are small
(as they usually are), A;» Ay, B, and B, are almost unaffected
by tab distortion and AB’ B3 and 03 are modifiied by the factor
(K/K-C.D'.) where cg is the value of C5 when tab distortion is
ignored and K is proportional to (1/q) x tab stiffness. On
this basis the elevator angle to trim,and hence the stick fixed
static margin Kn ,is not erpreciably changed while the stick free
static margin Ké is slightly changed. Similarly the stick
fixed manoeuvre margin Hm is almost unaffected while the stick
free manoewvre nargin Hé is s8lightly changed. If the tab
circuit can be designed so that K is large compared with Cé
for all q, tab distortion effects are then obviously negligible.
If this cannot be done, tab distortion effects are easily included
by applying the above factor to AB, B3, 03, on the reascnable
assuniption that the secondary effects of tab distoriion on elevator

and tailplane distortion are negligible.

If power operated oontrols are fitted this type of

distortion does not, of course, arise,

Elevator skin distortion

The effect of elevator skin distortion is also considered
in ref. 2 where it is shown that distortion of the elevator skin,
caused by pressure diffeerences between the inside and outside of
3 slightly and B1,

3 to quite a large extent. The treatment is approximate,

the control surface, can modify A1, A, and A
32 and B
since skin distortion of a fabric or metal covered swface is not

proportional to load.

The curves in ref. 2 of panel deflection against load
show that for an unstiffened metal skin the rate of change of
deflection with load is small once the small initial deflection
required to take any load has been exceeded. If the skin is
applied with initial tension (as is normal practice) this small
initial dei'lection cun be ninimised. In view of this it seems
reasonable to ignore the effects of elevator skin distortion for
design purposes on the grounds that it should be nossible to
design the elevator so as to keep the skin distortion and its

effects =mall enough to be negligible,

The main effect of any skin distortion is to decrease
the stick free static and manceuvre margins, so that if powered
controls are used the effects are even less serious than with

manually operated controls.

/Elevator control ...
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Elevator control circuit distortion

The treatment of elevator control circuit distortion

given in ref, 2 can be applied in general if a a, ete. are

-1!

interpreted as the values of A,, A etc. when compressibility
=

1’
and all distortion effects except control circuit distortion are

included,

L. liodifications to existing longitudinal stability theory

When the new expressions of 8 2 and 3 for CLW’ me

etc. are used we have, in general.-

(o] -
= A y, - . -
CL = Ao #+ GLWD + nA + == 2~1 (a X g o & eo Ann W ﬂTo)
+ nA1T T5 AN +.a352 s Wheansniine B
» 1203, 0 r .
. = .0 pi# (cmo) o # (hHO)Aa+ (hHI;)n.
wing
{ o~ - -
- VG.G.?-A1(G - A €0 = 80 - An.n e+ nTo)
EBQT '}
s Y i > .
+n‘A'1Ta +t&2ﬂ+h36 [ B B A B (17)
&
where C.p = C__1 contribution from fuselage
To.c.= Sply/S8
fT = distance from tailplane mean aerodynemic centre

to aireraft C.G.

The other new symbols are defined in 82 and 3.

L.1., Static margin

In ref. 1

X { Zn)

n -\\Ef?-} &
ac,

= 0
R

an\
L .
K' = chJ

CH=O

& W
where CRdV = constant = by

i.e. in level flight n = 1 = constant.

I

/Following e
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Following ref. 1 the expression for Cm can be modified by the

introduction of a new tail-volume coefficient V'I." Thus, when
2t g
n
e R T S (h~H‘O’) (Op =0, =4 )+ (B-H)4,
wing
- F &Y . %
- [ o = = P - _
VTgﬂ,II % e)(CL Co o A)=¢ Ae *m
GRAT
d t.T =~
+A1T a +A2T]+1’L36j --ac.a-lol.o(“B)
7 -
. AC AC
where ET = . O
e 7
it % 5 PR
= oy T
spd Yo ettt BB T

On differentiating equation (18) with respect to Cp and making

use of the fact that -@-33 = 0, we finally obtain, as in ref. 1:-
Z&n \
K =-V,A,L dC
n =2 R sz 0

Similarly for the stick free case: - (n =1)

1
Gy = Cmf 3 (cmo)wipg + (h“HO) (CL - OLwo - An) + (h-Hg) An
fzlra-3) e oh et o)
A 7
EiC[T A k"
T 2
1T.§'_I1'+A36HBZB0(( . 0-0-;---.-00(19)
3
T 7
= AC g- _é_{-)-
where T, = . Bage gt T eE
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- 2
by = By~ B, %
Ajp = Byp - E’; Byp
A
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Le2, Manoeuvre lMargin

The manceuvre margin, Hn’ is given ?:)3;f

ORE

H ==
aC - u
L/M a

m

The second term is usually fairly small and decreases with increase

of altitude,

influenced by the value of (aC:/aC
Ty

Yhen n is variable we have

0
C, = Cp+ (cmo)  * (h-Ho) (cL - Cp o
wing

-VTg f—-—e)(C - A

d

A‘lTE—-ﬁ'n + AQ'I‘] - A3ﬁ

fw"xf..._.r

Differentiating (20) with respect to Gy,

fixed (i.e. m and B const.)

(=) -(3)

M

+ (hHO) \\1 -

Il
(ar*L /s (h~H )A

so that the value of the manceuvre margin is greatly

-4 .n) + (h-HY) A .n
n o 4

nn) — 8 > An g om + nToJ

ceaBeke e L0)

we have with stick

é_a)
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M
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¥ © 2% a4 © -
= an 2%
L %FN.?S Lo §0V2S
3 n\
GL = ‘nCL and (BC }
e L/I

With stick free we have
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J/The tail ...

x Note that £ =

centres # ET .

distance between tail and no-tail aerodynamic
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The tail contribution JCOLWSl .

c

y
2 p

\
;j is, spproximately,

Vv
- m— stick fixed
1

™

1

<il

and - stick free .

2

=

The wing contribution to m,1 is not necessarily negligible if
the wing is swept.

In the manocewre margin theory it is implicitly assumed
that mq is not appreciably changed by movement of the C.G.,
Thus in deriving the above expressions for tail contribution to
mq the tail moment arm used is the distance between the tail and
'no~tail' aerodynamic centres. This is not strictly correct
since the angular velocity g is about the C.G.

"hen the tailplaene is swept its centre section and tips
may be fairly large distances forward and aft of the mean tail

aerodynamic centre, so that more accurately

v
m = - 4+ m

:
%as1 <8 Ap

where m = contribution to mq due to rotation of tailplane

about its mean aerodynamic centre.

In general, however, m will be small,

4.3, Dynamic Stability - quasi-static theory

Dynamic stability and its relation to the static and
manoeuvre margins is discussed in ref, 1 where it is shown that
the slow divergence associated with Kﬁ'<:0 is less serious than
the rapid divergence or rapid unstable oscillation corresponding

to H <(0. This means that the value of (acn/acL) is of
- it
greater importance than the value of de/dCL . In this paragraph

we shall discuss the effects of distortion on the quasi~-static
longitudinal stability derivatives.

If distortion effects are included on a quasi-static
‘basis, the usual small-displacement equations of motion can be
used for the flexible aircraft, but the derivatives have to be
suitably modified.

Vie have, ignoring the thrust contributions, (see ref. 1)
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The largest contributions to mq and 1w, are normally
from the tail, and we have o

S A S

sy 80 e AL T 4 =yeler £ (25)
1w . 2(1+F) B8 1 a ? ‘q ~ my g ssasereae
(tail) (tail)

These expressions are approximete only and correspond to those
given in ref, 1. The wing contribution to I is normally very
smell at subsonic subcritical speeds, but the wing contribution
to m_ mnay be appreciable for a swept wing. An estimate of
mq(wing) may be obtained by the method that is described in
Appendix ITT,

The derivatives xq and Zq occur in the stability
equations divided by Hy and are then normally small enough to
be neglected.

Tf the distortions of the aircraft components are small
it seems reasonable to ignore distortion effects on the drag
derivatives, so that G, (BCD/aa.)M and (acD/aM)CL may be

estinmated for the rigid aircraft. It remains to determine

. o ; o}
(ac /go.)M e (acL/aH)a, (oCm/aa)M and (acm/ai..;;a in terms of A,
A1, H ete.

Differentiating the expression for CL given at the

beginning of this section (equation 16).-

BC.\ < e » A
LR L, a0 o __.'];5 = g - an\ e
(a 0‘3}1\5 = A" + An (a GJ.IH + 3 f‘:A1 1 €, Bn_‘
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/Therefore ...

= For the stick free case, 4, is replaced by Ii1 .
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it can be shown that (using 13).-
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and
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The value of B (initial value) %o be used in the above
will be given by equation (19) with Cm = 0, The initial value
of m may then be found from (18), again with Gm = 0. Equation
(16) then gives a. In the above it is assumed that ?C.G- is
constant i.e. that PT is constant. This is not strictly true
since in general the mean aerodynamic centre of the tuilplane will

move, but the error involved is probably small.
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Lk, Application of the theory

Static margins

Perhaps the simplest way of determining the static margins
is to use the formulae

¥ awit.d (-&—”—\)

n T 2 lLdo ¢
RC =0
24|
1 =_""" ’Q—_ﬂ_‘\
Kn VBKGCR,‘ L]
c =0
m
GH=O

The valuesof m and B to trim for a given value of CR % GL are
given by equatiors (18) and (19) with C, = 0. These values can
then be plotted against Cp (or M) and values of (dn/dGR)C 4o
and (dp/dC;), _ o, e then cbtained by grephical or %

2= 0

H
nunerical differentiation. This procedure is suggested in ref. 2,
and must involve some loss of accuracyy although since the trim
curves can be obtained by calculation’this loss can be minimised
by the use of a sufficiently large number of ordinates. Vhen the
trim curves are plotted against QR the high speed end of the
range becomes 'compressed' and the low speed end elongated, so
that it is probably better to plot control angles against Mach

numnber.
& A& ; 2 _
Then o = ZCR 3 » °Since QﬁM = constant.
de
Tt would be possible to find the value of 35; from the
relation

(0 E() & (3G
Wy - (acR)

This method, however, suffers from the disadvantage that values

oA oA
of Eﬁ%, Er% etc. must be cbtained by graphical differentiation

(in general) so that the loss of accuracy is likely to be greater

than that involved in finding %%— .
R

/In general ...
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In general we have

N
£ O = Cos ¥
g et ™1 Oy e
TT
- 0, = C, Siny¥y
ngZS D R e
where TN = component of thrust force normal to flight
direction
TT = component of thrust force in flight direction.
0, o angle between flight path and horizontal.

Thus in level flight CR = GL for TN 204 This
result is not, as is suggested in ref. 6, dependent upon the drag

being small compared with the 1ift.

Manoceuvre margins

The manoeuvre margins may be obtained by direct
substitution of wvalues for AO, A1

It is thus a simpler matter to obtain the manoeuvre margins than

" ete. in the equations of 4.2,
to obtain the static margins due to the absence of derivatives

with respect to forward speed in the expressions for the former

margins.

5. Miscellaneous refinements

5,1, Inclusion of effects of change of density with altitude
on stability

The effect of density variation with altitude on longi-
tudinal stebility is considered by Dr. Neumark in ref. 18, Only
the level flight condition is there considered, so that Cp = Cpe

Static and manoeuvre margins

Neumark gives:

A
e on() o ()
T AN ) T A N\’
L i L CL
’ vl Cu) [, _gf 1) u [P n}
K =={14+= H=] +1{1-= e :
0B w Jlx. /T 2 N/ 6 \TH,
S w L C
14 L
where L
g - Rﬁe
and R = gas constant for air, KG = lapse rate.

/The static ...
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The static margin (stick fixed or free) as defined by Gates and
Lyon in ref. 1 is K above (for Cp, = GR); Knﬁ is the
tgeneralised static margin' (stick fixed or free) which is
proportional to E1 the last term in the stability quintic when
density variation with height is included., However, the quantity
KnB is no longer a measure of the stick movement (or force) to

change speed.

3c
From the sbove formulae given K and (:352 (which
%

M
is found when calculating the manceuvre margin) K can be

nf
evaluated,

There are no effects of density veriations with altitude
on the manoeuvre margins.

Effect on stebility derivatives

Additional stability derivatives XB' zB are introduced
which are derived in full in ref. 18. These are, however,
functions of Cyp, acD/aM s Crs acL/aM and of quentities
unaffected by distortion so that they are readily determined.

5.2, Inclusion of effects of changes in the form of the wing

1ift distribution and movement of aerodynamic centre

due to compressibility

If distortion effects are to be included it is very
difficult to allow correctly for variations in the form of the
wing 1lift distribution or in the aerodynamic centre position of
the rigid wing. If they are functions of Mach number it is
strictly necessary to perform a complete set of calculations for
each combination of ¥ and q. To avoid the heavy labour of such
a procedure it is suggested that if the shift of aerodynamic
centre is no% very large then the aeroelastic equilibrium cal-
culations can be made first ignoring the shift of aerodynamic
‘centre. Then allowance for the shif't can be made without
correcting for the secondary distortion effects introduced. If
the movement of the serodynamic centre is large, however, it
might be advisable to perform calculations with a range of
representative positions, an interpolation procedure being

subsequently adopted.

If the tailplane aerodynamic centre shift is also

appreciable it may be necessary to modify the tail arm.

/8. s
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6. A simple example

As an example the hypothetiecal ajircraft illustrated in
Fig., 1 was considered. It has a wing of 450 sweep and aspect
ratio 3.81, and an 'all-moving' tailplane of similar planform to
the wing. TFor simplicity the structural characteristics of the
wing and tailplane were assumed to be similar, so that calculations
of 1lift curve slope etc. carried out for the flexible wing apply
also to the tailplane. Compressibility effects were allowed for
by applying linearised theory corrections to the wing and tail
1ift curve slopes, and also to an assumed value of Cmo introduced
into the calculations as an extra 'fuselage' pitching moment
contribution,=-the distorted wing has zero twist at all sections
and is of symmetrical section giving zero contribution to Cmo’
No other fuselage or thrust contributions to pitching moment or
1ift were includgd: Tail 1ift was included in the total C

il B 1’
[but wing weight effects were neglected.)
Distortion of the wing, fuselage and tailplane was faken
into account, but not control circuit distortion, and there is no
tab. This is consistent with a system of completely rigid power
operated controls, and hence the 'stick fixed' case only was

considered.

6,1, Calculation of 1lift and pitching moment coefficients

for the flexible wing and tailplane

' o0 0 i
Our first problem is to find values of A = = '
% Sy e

and iﬁHo for a suitable range of values of q(= %pVQ) and Mach
number. The wing is an example of the case considered in 2.2.1,

and hence the superposition method was used.

The method used was exactly as described in ref. 3, the

procedure being as follows. -

i) The method of Kuchemann? was employed to give (for
incompressible flow) the 1ift distributions corresponding to
incidence distributions o = Ny, &= nf, @ = nf, a = constant
= 1 radian on the rigid wing. g = y/,o /2). These 1ift

distributions were integrated graphically to give values of CLP/AR’

Cpy/Ags Crpfips COps/hp, where

i

C rigid wing 1ift coefficient per radian of incidence

IR
CL1 = rigid wing CI corresponding to a = Mys with
a = 1 radian at the tip
ik . n e i
CLE = rigid wing CL corresponding to o = Ny with

a = 1 radian at the tip

/CLB = e
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i

L3 rigid wing CL corresponding to a = n?, with

a = 1 radian at the tip,

1lift curve slope of rigid wing.

.

Tt was found that CL,R/AR = 1.0, cm/}xR = 0.435, cLz/hR = 0,264,
CLB/AR = 0,184,

ii) In stage (i) the Locus of aerodynamic centres was
obtained and hence the pitching moment distributions corresponding
o o= L nf etc. were plotted and integrated to give the
position of the mean aserodynamic centre of the rigid wing, and

the pitching moment coefficients about that point for the various

incidence distributions considered,

Then

C C c C

EEE = 0, Eil = - 0,0775, Kia = - 0,0730, Kfé = - 0.0675
where C R’ Cn"1 ete. are the pitching moment coefficients about

the rigid wing mean aerodynamic centre corresponding to CIR’ CL‘I ete,

iid) A relation between A’R and Mach number was cbtained
16

using the method due to Collingbourne.

iv) The 1ift distributions for the rigid wing were integrated
to give shear force and bending mdnent distribubions, it being
assumed initially that the wing had a straight flexural axis lying
along the 0.45 chord line. Torque distributions about this flexural

axis were also obtained.

v) Twist and slope distributions for the four cases were
obtained using assumed stiffness distributions, and these
distributions were then modified at the root in an attempt to
2ntroduce corrections corresponding roughly to the root constraint

effects on a swept wing.

vi) The elastic incidence changes of (v) were matched as
described in ref. 3 and in 2.1.1. to give the superposition

coefficients AS, BS’ CS for a range of values of qAR

vii) Using (iii) and (vi) a graph of A and ILHO against
7]
liach mmber was produced for the condition q/8@ =M, where
N

4 = value of q corresponding to meximm allowable E.A.S. (Fig.2).

Tn the above it was assumed that compressibility effects

" modified the two and three-dimensional 1ift curve slopes without

/appreciably ...
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appreciably modifying the form of the 1ift distribution, or the
position of the mean aerodynamic centre, of the rigid wing. The
relation referred to in (iii) connects two and three-dimensional
1lift curve slopes, so that when compressibility corrections are
applied to the aspect ratio, sweep angle and two dimensional slope,

the required relation beteen M and AR is obtained.

In (iv) and (v) it was first assumed that, with a

’ " = . bending stiffness
straight flexural axis at O,45c, the ratio tertionaT siittnois

was constant along the span, and that each stiffness varied as

the cube of the local chord. On the basis of information given
in R.A.B., Structurcs Reports 9 and 58 it was decided that a
representative value of the above ratio was 4.0, and that a
representative root torsional stiffness was given by

_2!\
S¥e @

; ; F
Twist per unit M i where 4, = Ilength of flexural axis.
. :f‘

torque at root

It is shown in ref. 19 that with a swept wing of
moderate aspect ratio and corventional construction, the concept
of an effective root may be used. The wing may be considered
to behave like an unswept wing outboard of this effective root,
but inboard of this the root restraint effects are predominant.
The information given in ref. 19 suggests that for a wing of 45°
sweep the effective root might be about 0.2 semi-span out from
the root. On this basis the twist and slope distributions were
modified as shown in Fig. 11. Since this modified the overall
values of twist and slope considerably the root stiffness used
we.s decreased from the value previously quoted, giving

siZ d
@)y = —5 -

Methods of calculating the rigid wing 1ift distributions
and the elastic distortions of swept wings are discussed in

Appendices I and II,

6.2. Introduction of fuselage distortion

Following the treatment in ref. 2, we have

A1T
A1 = s—
1+JA1Tq
where J = constant, inversely proportional to the fuselage

bending stiffness.
Using the A.P,970 fuselage bending stiffness criterion, with
M =0.8 and K = 0,12

J = gigi , where G corresponds to Vi,
q

/where ...
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where VD = 'maximum allowable diving speed'

Since the wing and tailplane are similar, A1T = A,

6.3. Trim curves

Trim curves for the example aircraft are shown in Figs.
3 and 4. Two sets were plotted, one corresponding to Cmo = 0
(zero fuselage contribution and zero wing contribution about

corrected aerodynamic centie) and the other to Cmo = - 2010

=
© Jﬁ =i

It was assumed for simplicity that Ea = 0,1 = constant,
and the relation

(taken as (Omo)fuse.’ mo)wing remaining zero).

1 o>

e 2 Oﬁmm( } i QO?E

L

=

was used, corresponding to W/S = 50 1b'/?t2 and c"1“:'12_‘:%3\{2 Weawd

Y = 1000 f.p.s.

Curves of Mo (tail setiing angle equivalent to move-
ment of pilot's control) against CL were produced for the rigid

aircraft and for the following cases of distortion. -

(i) Wing distortion only

(11) Puselage distortion only

(3i1) Tail distortion only

(iv) 'ing, fuselage and tail distortion.

6.3.1. Trim curves with Cmo =0

The curves are shown in Fig. 3, and it is clear that
the distortion and compressibility effects introduced have had
little effect on the slopes of the trim curves except at the

highest speeds. Let us consider these effects in turn.

The effect of compressibility in the absence of
distortion is to displace the trim curve a small amount which is
nearly constant for all values of CL. The curve, which is
linear and passes through the origin when no compressibility
effects are included, remains very nearly linear down to CL = 0.1.
Below this CL

positive i.e. a stabilising effect occurs. Ref. 6 predicts

the slope of the curve becomes slightly more

that for Cm0 = 0 the increment of elevator angle to *rim due
to compressibility is very nearly constant over the whole speed
range the approximation becaming less exact as lMach number

increases. This is in agreement with the present results.

/The distortion ...
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The distortion of the wing alone then produces a
negligible change in the trim curve. The reason for this appears
to be that the effect of the loss of 1ift curve slope due to
distortion (the wing tips bend upwards) is offset by the forward
movenent of the wing aerodynamic centre. Thus, for a given CL’
wing distortion makes it necessary to fly at a slightly higher
incidence so that for a given value of Mg the nose down tail
contribution is increased. This effect is almost exactly
cancelled by the extra nose-up moment resulting from the forward
movement of the wing aerodynamic centre, so that the wvalue of Nrp

to trim is unchanped,

Distortion of the fuselage alone produces a constant
increment of M to trim over the whole range, thus leaving the
slope unchanged. This is because with Cmo =0 and a fixed
C.G, position the tailplane load is constant over the whole speed

range,

Distortion of the tailplane alone also again produces
a constant increment of tail angle to trim and the reason for
this is again that the teil load is constant at all speeds. Since
the form of the 1ift distribution due to any given twist distribu-
tion of the tailplane is assumed independent of Mach nurber, the
twist due to a given overall load is the same at a2ll speeds and
hence the increment of tail-setting angle to trim arising from

twist is constant.

When all the distortion effects are combined the total
increment of Mg to trim is slightly creater than the algebraic
sun of the separate increments teken individually. This is

because wing distortion makes necessary a slight increase in

incidence for a given CL which, for a given N, » CAUSES an
increase in the tail load. "Then the tailplane and fuselage are

rigid this has little effect on g to trim since it is largely
cancelled by forward movement of the wing aerodynamic centre.

When the tailplane and fusalage are flexible, however, the increased
tail load causes extra tail and fusela,z distortion which in turn

require a small additional increment of Moo *

6.3.2. Trim curve with C = - gig;g
T10 f o

The curves are shown in Fig. 4 and it will be seen that
in this case distortion and compressibility effects have modified

the form of the trim curves considerably.

The effects of compressibility alone are very marked at

/fhe higher ...
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the higher lach. numbers considered. As the 1ift coefficient
decreases and the Mach number increases, Cmo becomes more and

more negative - i.e., the tail setting angle to trim out Cmo

becomes more and more negative, and at high speeds this contribution
to oo is large compared with that required to trim out the

other wing and tail pitching moment contributions. At low speeds
the reverse is the case, so that as speed increases, and the cmo
contribution becomes more dominant, the slope of the trim curve

becomes less negative, then gero, and finally positive.

The effect of wing distortion alone, however then makes
no further appreciable difference to the trim curve, as in the
case when Cmo = 0., Again, the forward movement of the wing
aerodynamic centre is offset by the increased nose down pitching

moment contribution due to the higher tail incidence as before.

Distortion of the fuselage alone makes the slope of the
trim curve more positive (destabilising), the effect increasing
with speed. The change in Cmo produces a change in tail load,
which becomes more and more negative (tail down) as the llach
nurber increases. As the speed increases the fuselage distortion
due to the increasingly negative tail load produces an increasingly
positive incidence of the tail and therefore an increasingly

negative increment of Mo is required to trim.

Tail distortion alone has a very similar effect to that
of fuselage distortion. The all-moving tail behaves like a wing,
unlike the usual tailplane-elevator combination. Thus a positive
tail load causes the tips of the tailplane to bend upwards,
producing a positive increment of o to trim, and conversely
for a negative tail load. The changes in Mg to trim are there-

fore in the same sense as those caused by fuselage bending.

It will be seen that the result of the combined distortion
effects at the highest speeds is slightly less than the algebraic
sun of the separate effects. This is because, as for Cmo =05
wing distortion causes a slight positive change in tail load which
in this case at high speeds reduces slightly the magnitude of the
tail load, which is negative being largely determined by Cmo'

Thus the fuselage and tail distortions are slightly reduced and
there is a small reduction in the overall (nmegative) inerement of

o due to distortion when the distortion effects are combined,

ks G
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6.4, BStick fixed static margin

For an aircraft fitted with an all-moving tailplane we

have
Mg
Kn = - VT A1 k—@) (fOI‘ CL = CR)
g =90
n
&nTo
Values of T were accordingly obtained from the trim
L
= c. =0
m
curves for the cases Cmo iyl Gmo = 2:012 .
\J‘I -Mz
6.1, C_ =0

The resulting curves of K  against o/§ for C, =0
are given in Fig. 5. Consider first the effects of compressibility.
It will be seen that the static margin increases slightly with
increase of Mach number, This 1s because (&nTO/ECL)C . is

m
very nearly constant except at the highest speeds whare it becomes
slightly more negative, whilst A1 is increased by compressibility.x
This result is in agreement with that predicted in ref., 6 for the
case Cmo = 0, VWhen Kn is positive in incompressible flow, the
restoring tail pitching moment due to a change of spesd and corres-
ponding change of incidence (CRV2 = constant) will exceed the
destabilising wing contribution, The difference betweecn these
contributions will be increased if both wing and tail 1ift curve
slopes are increased by campressibility in roughly the same ratio,

C remaini ZETO.
mo ng

Considering now the effects of distortion, we se= that
since wing distortion alone does not appreciably change the slope
of the trim curve or the value of VT or of A1 for the aircraft
considered, Kn is almost completely unaffected by wing distortion.

The effect of fuselage and tail distortion however is to
decrease the value of A1 CET still remains very nearly constant)
so that although for C‘-mO = 0 the trim curve slopes are not
appreciably modified by these effects, the value of Kn is
decreased progressively as q/& inereages compared with the wvalue
for the rigid aircraft.

In this example the loss of static mergin due to fuselage
distortion is greater than that due to tail distortion, and the

combined effects produce a meaximum loss of static margin of the

Jorder of ...

= VT is very nearly constant,
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order of 10 - 15 per cent at a Mach number of about 0.8.

0.015

il

Curves of K against o/d for the case when C_ = - 2010

\/ 1 --'I\.JI2

6. 2. €

are given in Fig. 6.

Here it will be seen that compressibility effects alone
produce a large loss of static margin at high Mach numbers. The
static margin, which at low M is approximately 0.10, becomes
zero at Q/a £ 0,5 ( % 0.7) and rapidly increases negatively at
higher speeds. This loss of Kn with increase of M is predicted
in ref. 6, where it is shown that the loss of K due to compress-

ibility depends on the value of @%EU/K ) . As shown above,
s M=0
the static margin is increased by compressibility for C__ = O by

an amount dependent on the low speed value of Kn. When cmo‘: 0
however, the value of dcmo/dCL is positive and increases rapidly
as M increases, producing an increasing loss of static margin.
These two effects are in opposition, but the latter is dominant
in this example. The loss of static mergin will depend on the

relative size of the two effects - i.e. on the value of (© O/K
mo’ n’y
Considering now distortion effects we will see that wing

distortion alone causes no appreciable change in Kn as in the

case Cmo = O and the reason is the same as in that case. Fuselage
and tail distortion however cause a reduction in .A1 and also make
the value of (anT /dCL) more positive (see Fig. 4) so that
6] £ . =0
m

they produce a large loss of Kn' This reduction in Kn. due to
fuselage and tail distortion is actually greater than with Cmo= 0,
but since here the reduction due to compressibility is very great,

the distortion effects appear less important.

6.5. Stick fixed manoeuvre margin

For this simple example the formula of 4.2 (equation 21)

becomes
m 2 O 1 %
'(*55", - - o)+ vp (3 - %)
L
M
\.il el & . -+ CLIgg
\# &/ ° Hy By ¢

The value of Hy was taken as 50. The wing contribution

t m sos
/O Lq
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to m, Gnqw) was estimated as describesd in Appendix III.

The resulting values of Hﬁ as functions of q/&‘ are

shown in Fig. 7.
Tt will be seen that compressibility alone produces a
loss of Hﬁ which steadily increases as M increases, and this

is in agreement with the results of the analysis of ref. 6.

We can see how this arises from the formula

1 0% Yy Sad
Mg W (h“Ho) * Vi (K A

M1 ¢
The effect of compressibility is to increase A1, A and mq.
The net result is a reduction in the second term, which is large
and an increase in the third term which is small.

As with the static margin, we find that wing distortion
alone has no effect on manceuvre margin for the example considered.
Wing distortion reduces the values of I-IO and A, so that both
the first and second terms in the above expression for Hm are

increased, the two changes however almost exactly cancel each other.

Both the fuselage and tail distortion effects on the
other hand leave HO unchanged but reduce A1 and mq so that
there is a resulting decrease of Hn which in this example, is

greater for fuselage distortion than for tail distortion.

The combined effect of wing, fuselage and tail distortion
is very nearly the algebraic sum of the effects taken separately.
This suggests that it might be possible to calculate the loss of
manoeuvre margin due to each and add the separate contributions,
but in fact this would take lcnger than the single calculation

for the combined effects.

To assers the error in Hﬁ due to using 7V instead
of’ VT (i.e. due to neglecting tail 1ift in obtaining GL) values
oi’ Hm were calculated using the formuls quoted above , but
substituting (1) T and (i) V for V,. The results

C.G, AC
are shown in Fig. 8, where the curve corresponding to the true
value of VT is also shown for comparison. Tt is interesting

to note that the error due to using ﬁgc instead of Vi

roughly twice that due to using vc.a. and that the error due to

using Vb.G' is roughly equal to the magnitude of the value of

mq/u1 (in this exampie).

is

L&l o
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6.6. Quasi-static stability derivatives

For an aircraft with all moving tail and no tab the
equations of 4.3 with stick fixed and taking Ea as constant
simplify to.-

aC) S :
L i) %
(a@lM = A+gr4A, (1 -Aa&)
[%y _ . at o ( o, an |
o, - *at ;:s 131\{ &+ Mg =R} = %.E}Tz
a
(60 aG \
m m L
[\ao.)M el ) CGEAG A"")!' (c (aa./M
3C 3G il
m mo aA s
(a M}a WEGE NSl (b)) - Aa 3 1' ¥, di
(oA :
i e W 8 ALeE éé-?
3 ¥ To 1%q J(

Values of a, Mp? e were calculated when determining the static

margin,

The longitudinal stability derivatives involve the above
partial derivatives (see para. 4.3). If it is assumed, as suggested
in para. 4.3, that the drag contributions are unaffected by distortion,
then the effects of distortion on the stability derivatives may be
demonstrated by evaluating (acL/aa)m, (acL/am)a, (ac rr./aG')M’ (ac m/am)a
with and without distortion effects. This was done for the aircraft
considered using the values of A, A1, Ho’ ete. previously calculated
and these partial derivatives are plotted against /4 (= ﬁ in this
case) in Figs, 9 and 10. Only the case Cmo = 0 is considered, and
curves are given for the rigid aircraft and for the aircraft with all
distortion effects included (wing, fuselage and tail distortion).

/ab
The derivative ( g

As might be expected, the curves describing the variation
of (acL/aa)M with q/a are very similar to those of A against
o/8. The tail contribution is of the order of 10 - 15 per cent
of the wing contribution, so that it is not negligible.

faC
The derivative L 3 )
M

The curves for (acm/aa)M were obtained from the values
of (acm/ac calculated when determining the manceuvre margin

and the values of{- J already derived.

/It will be ...
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d

very nearly constant over the wheole range, Since (8C_ I/ ac'L, 18
Ll I',‘I
decreased by increase of M (see 6.5) and (acL/aq,)Ilﬂ is increased

at the same time, the resultant change of (acm/ao.)m is small,
Distortion effects reduce both (3C rn/acL)M and (acl/ac.)M

ac
It will be seen that for the rigid aircraft m) is
M

speed 18 increased, so that (acm/aa)M decreases steadily with

increase of 1 for the flexible aircraft.

( acL)
The derivative T 4

Since (acL/ aM)a is a 'constant incidence'! derivative,

the expression for it contains terms of the type a % . The
magnitude of (acL/ BM)@ therefore depends on the rmgn:r.tudes of

oA ; .._.. 3
Cy Gy and i aaﬂ/am. For small values of q/q B ]éz small

but o changes rapidly, whilst for high values of /8 T
changes rapidly but « +then changes slowly. The net result is

(acl/am)a has a maximum value for moderate values of q/Q,

Distortion increases o and reduces %, the latter
effect is dominant and there is consequently a reduction in
(GCI/E}M)Q due to distortion which is nearly constant over the

whole range.

aC
The derivative ( 3 M;‘
We have dC_ c/ M = C_ =0, andfor the rigid aircraft

(h—Ho) is constant i.e. aHo/aM = 0, For the rigid aircraft,
therefore, the expression for (ac m/ ar.-I)a quoted above is reduced

to two terms, wviz.

A
2 N = o)
o5 BH) and Vg P Sre By ey Wy
b ot

The second term is small compared with the first (i.e. the wing

contribution is large compered with that from the tail) so that

we have
{EEIE ook (ul 3
\3H/ * ST

Since (h—HO) is constant, the form of the curve of
(acm/am)a for the rigid aircraft is very similar to that of
(UGL/ rl".-‘i)a, and thus

/".".fhen e



=38~

oH
When distortion effects are introduced, 5*%- is no
longer zero, and in fact the term (- Aa &Hd/ﬁﬂ) is dominant,
being large and positive. At low speeds, where o increases

rapidly as q/4 is reduced, this term causes a large increase in
(acm/am)c. At higher speeds the increase is somewhat less
although still considerable,

Effects of distortion on stability derivatives

Tor the aircraft considered, with Cmo = 0, we see that

distortion reduces (acL/aa)M, (acm/aa)M and (BCL/EM)a so that
., M and z, are decreased. The effects on Z, and m_ are
appreciable even at moderate speeds, but the effect on Z., will
be serious only at high M and low OL' Distortion increases
(acm/am)a so that m. is increased and this effect is most
marked at the lowest speeds. Tail contributions to mqf me will

be decreased by distortion since both A and A, are reduced.

1
On the assumption that drag derivatives are unchanged by distortion,

X, and xw will not be affected.

It must be emphasised that the above results apply only
to the aircraft considered and for the condition cmo = 0, and

one must be cautious in attempting to generalise from these results.

7. Concluding Remarks

It is clear that there is no intrinsic difficulty in
including distortion effects on longitudinal stability if frequency
effects are neglected. The amount of calculation involved may,
however, be considersble, especially if wing twist, camber and
weight effects have to be included. If, therefore, there is good
reason to believe that distortion effects are small (as they may
be on a fighter-type aircraft with high stiffnesses) a simple crude
assessment may be adequate. On a large bomber or transportaireraft,
however, for which load factors and hence stiffngsses are likely to
be lower, and which are likely to have higher aspect ratio wings,
it may be essential to make a detailed analysis of distortion
effects on the lines discussed. This is particularly true of the

'podded engine' layout used in conjunction with thin swept wings.

For the aircraft considered in 86 the results show that if

Cmo = 0 neither compressibility nor distortion effects modify
the static margin to any serious extent. When Cmo is negative,
however, both effects are heavily destabilising as far as the static
margin is concerned. It therefore seems advisable to give a high-
speed aircraft a layout which is as nearly symmetrical as possible
about the plane of the wings.
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APPENDIX T

CATCULATION OF AZRODYMAMIC TLOADING ON RIGID SWEPT WINGS

Several methods of calculating the 1ift distribution on
swept wings have been produced. Among these are those due to
Hulthoppg, Garnerjo Palkner, ‘.’Ieissinger,11 De Young,12 Kuchemann?
and.DiederichﬁB. Stanton Jones14 has derived empirical formulae
based on the results of Weissinger which enable 1ift distribution
to be calculated very rapidly for trapezoidal untwisted wings. None
of these methods includes thickness, viscosity or compressibility

effects.

0f the methods quoted above, those due to Falkner,
Multhopp and Garner might be described as '"lifting surface' theories
by means of which estimates of span and chordwise 1ift distributions,
1ift curve slope and aerodynamic centre locus position may be
obtained. A1l three methods require a considerable amount of
computation if the full advantagesof the 'lifting surface' method
are to be obtained,

The other methods quoted are mainly modifications of the
Prandtl 'lifting line' theory used for unswept wings and suffer from
the disadvantage that reliable estimates of the aerodynamic centre
locus position cannot be obtained. However, they require less
computation than the true lifting surface methods. The method of
Kuchemann is different from the others in that it uses assumed
chordwise 1ift distributions for the tip, approximately mid-span,
and root scctions, with distributions at the intermediate sections
based on an empirical interpolating relation. A modified version
of the flat plate 'loading law' is used. It is thus possible to
obtain an estimate of aerodynamic centre locus position, though the
estimate cannot be more accurate than the initial assumptions
involved, The method is, however, simple to apply and provides a
reasonably accurate estimate of the spanwise 1ift distribution, and

it was used in the example of 86 in this report.

/Appendix II ...
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APPENDIX II

CAICULATION OF DISTORTION OF SWEPT WING UNDER GIVEN
AFRODYNAMIC TOADING

The mode of distortion of a swept wing under load is
different from that of an unswept wing, due to the effects of the
oblique restraint at the root. Vhereas an unswept wing can be
treated as a simple cantilever beam in bending and as a tube in
torsion, if we accept the concept of a straight flexural axis, a
swept wing presents a more difficult problem and the flexural axis
concept cannot strictly be used. Near the root the wing tends to
bend about the root (streamwise) chord, due to the restraint, but
the outer portion of the wing behaves more like a straight wing
i.e. it bends about a line roughly normal to the leading and
trailing edges. Just outboard of the root there is a "transition’
between these two types of distortion, so that the overall mode of

distortion is complicated.

For the purpose of estimating deflections as required for
acroelastic calculations it is possible to use the simple beam theory
for a high aspect ratio swept wing. The root restraint effects are
confined to a small fraction of the semi-span when the aspect ratio
is high. The wing is then treated as a straight wing from the
structural point of view, but the slopes and twists are resolved
into the line of flight to give the incidence changes. There is
some ambiguity about the position of the effective root, and this
method can only be approximate. It is, however, quite widely used

and it is put forward in refs. 3, 20 and 21.

Experimental evidence (ref. 19) shows that as the aspect
ratio is decreased and sweep angle is increased this 'erfective
root' method ceases to yield useful results, because the region in
which root restraint effects are large now occupies a large fraction
of the semi-span. The deflections of quite a large portion of the
wing cannot then be estimated by this simple approach. s
possible to make a correction for moderate aspect ratios (ref 20)
but for low aspect ratios (or where root stress distributions are
required) it will be necessary to use a more refined approach.

The simple beam theory can be applied together with a 'self
equilibrating' stress system (ref. 22), and this method has been
used successfully in practice. lore exact methods have been put
forward (e.g. ref 23) but these are somewhat more complicated.
Once the simple beam theory is discarded the simple integrations
previously used to obtain deflections can no longer be used, and

matrix or some other methods must be employed in conjanction with

/influﬁnce v




"influence coefficients. A review of recent methods considered

inghe U.5.A, is given in vef, 24.

Finally, we mus. note that with a very low aspect ratio
- (delta) wing, there may be changes of camber which produce effects

of the same order of nagnitude as the twist effects.-

—— o

APPENDIX TIT

ZSTIMATION OF VING CONTRIBUTION TO mq

With a swept wing the wing contribution to mq may be
appreciable compared with the tail contribution. For the example

of 86 Moy VBS estimated as follows.

Following ref. 1, we obtain a change of manceuvre margin
for an increment of wing pitching moment /Z\C s arising from the

wing contribution to mq, given by

l:\H ___‘Q_.G,.M__il.qﬁg
Pocw osdBgon: oicl. §

O C.., 1s the pitching moment increment due to rotating the wing

with constant angular pitching velocity q., Suppose all the wing

™ 1ift to be generated at the quarter
e '{7;3“ y chord line, and that the wing is
X LS 1/k c.line rotating about the point A, distance
&tA _____\\a x, from the root quarter chord point
x {“\x . taken as the origin.
."“-_“““‘-“.“.1— 1
!
PRSI, G

The incidence change at the point (x,y) on the quarter chord

line due tc aq is then

q(x=x )

gx
The component -~ _fQ is constant along the span.

For the purpose in hand it is sufficient to neglect

/distortion ...
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distortion effects, i.e. we shall determine m__ for the rigid wing.

gx
The constant incidence change - — provides zero

7
pitching moment contributions about the rigid wing mean aerodynamic
centre, We need therefore consider only the incidence change
w3 alE, T
v A
This is an incidence distribution that increases linearly with

spanwise distance from the root.

From the calculations of (ii) in 86.1 for the case a=n,,
C
we have _1"11_ = - 0,0775 por radian incidence at tip. Hence it

follows that the pitching moment coefficient about the rigid wing

mean aerodynamic centre due to the rotation at angular velocity q is

Ac =

iy

7 j'j
0.0775 L. l’j@ Lg"?“)

In this case, }—3@ = 0.907.

y

Also g = 3 = -Iic—l-f- A
v 2;;1 A4
: ~ ‘g AN
i.e. nG‘L = 2;.1,1 (%V L
Therefore
R— K\Gmw = 0.0775 Ay x 0.907
2 = =
m nCL 2p.ﬂi
0.070 A
&= ‘R
2p1

The corresponding tail contritution is

VT A1

2p1

+

A 4 and _’a'R are of the same order, and VT = 0.3, so that in this

case mqw _= 25?/(._) m i

Lpail
Note that .:_{‘I,me is the pitching moment about the nean
aerodynanic centre and not the centre of gravity. This is, however,
consistent with the use of { instead of l’T in the formula:

zlaT = Séé and also with the assumption already made in 84.2 that

mqw is independent of C.7%. position.
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