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S U 	A RY 

The effects of distortion on the longitudinal stability 

of swept wing aircraft at high speeds (sub-critical :ach numbers) 

are considered on a quasi-static basis. The method employed is 

based on the theory of Gates and Lyon1 but involves some extension 

of this theory. 

The treatment of wing distortion is considered in some 

detail and the effects of built-in twist and camber and wing weight 

are included using the so-called superposition method3. 	The 

application of the analysis of Lyon and Ripley
2 for investigating 

fuselage, tail and control circuit distortion is suggested, but 

means of modifying and simplifying this procedure where desirable 

are put forward. 

The analysis is illustrated by means of a simple example 

of a swept wing fighter aircraft for which wing, fuselage and call 

distortion effects are considered, and the results are discussed 

with reference to the individual and combined distortion effects 

as well as the effect of compressibility. 
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1. Introduction 

The longitndinal stability of an aircraft is usually 

considered in terms of 'static stability' (measured by the static 

margins), 'manoeuvrability' (measured by the manoeuvre margins) 

and general dynamic stability. 	If the stability derivatives are 

very little modified by frequency effects (i.e. they approximate 

closely to the quasi-static values), then the static and manoeuvre 

margins as normally defined can be related to the coefficients 

E
1 and C1  in the 'stability quertici given by the usual small 

displacement theory. 	The values of t'le static and manoeuvre 

margins then largely determine the characteristics of the phugoid 

and short period oscillations. 

Then structural distortion effects are introduced, it is 

again necessary to consider whether the motion of the aircraft (in 

the long and short period oscillations) occurs under quasi-static 

conditions, or whether the dynamics of the separate aircraft com-

ponents should be considered, introducing additional degrees of 

freedom corresponding to oscillations of individual components. 

This question is discussed in ref. L. where it is poirted out that 

if the frequency of the short period oscillation is of the same 

order as the lowest natural frequency of any component (e.g. the 

wing) the simple nuasi-static approach is suspect. Once the quasi-

static approach is abandoned, however, the treatment of dynamic 

stability when distortion effects are included becomes very difficult.5  

The general treatment of the dynamic stability of a flexible aircraft 

can be similar to that employed in flutter problems, although the 

difficulties are enhanced by the fact that coupled oscillations of 

wing, fuselage, tail, etc., are combined with the overall 'rigid 

body'motion of the aircraft. An attempt to formulate the equations 

governing the motion of an aircraft with flexible fuselage and 

wings is made in rLf. 5, and the problem is considered briefly in 

ref. 4. 

In this report the 'quasi-static' approach only is 

considered, as in refs. I and 2. 	By this method the equations 

of motion for a rigid aircraft are used but the values of the 

aerodynamic derivatives are modified to include distortion effects. 

The basic theory is in essentials that of refs. 1 and 2 

with certain modifications and extensions which it is believed will 

permit of a more logical treatment of the effects of wing distortion 

in cases There there is built-in twist or camber, and the treatment 

also permits the ready inclusion of the effects of aircraft weight. 

The conditions for the 'palance of aerodynamic, elastic and inertia 

forces are obtained by the superposition method of ref'. 3, which 

	

/it is considered 	... 



it is considered has many advantages over other methods. 

The analysis is illustrated by means of an example of 

a high speed swept wing fighter, and the results of the analysis 

are discussed in detail. 	This example presents a number of 

features of general interest. 

For compressibility effects on a rigid aircraft the 

important parameter is the Mach number so that the variation of 

true air speed must be considered. When the aircraft is flexible 

however, the distortionsproduced by aerodynamic loading are 

dependent on the equivalent air speed. 	In general, therefore, 

we must consider the two parameters M and q = 5oV2  . In this 

report the suffix M indicates that a derivative is taken at 

constant Tqach number (e.g. (XL/8a)), and in such cases it is 

also implied that q is constant. 

The corrections for variations of inertia loading due 

to normal acceleration introduced in para. 4. are 'quasi-static' 

i.e. it is assumed that the normal accelerations of all parts of 

the aircraft are the same as that of the C.G. and that the structure 

is always in equilibrium under the applied aerodynamic and inertia 

loLding. This assumption is similar to the assumption that 

frequency effects on the aerodynamic derivatives, etc. may be 

neglected and will similarly become invalid when the short period 

frequency is high. 
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2. Wing distortion 

Men considering longitudinal stability it is usual to 

assume that the ailerons will remain in the neutral position when 

the wing distorts. Distortion of the main wing structure only is 

then considered. 	For most swept wings the loss of incidence due 

to upward bending is greater than the increase due to twist (referred 

to an ideal straight flexural axis). 	Thus wing distortion Produces 

a net loss of lift curve slope accompanied by forward move gent of the 

aerodynamic centre (see 2.2). 

'Then the quasi-static approach is used in obtaining stability 

criteria and derivatives it is assumed that the structure is al7ays 

in equilibrium under the applied loading. The problem of treating 

wing distortion is then basically that of solving for the 'aeroolastic 

equilibrium' of a flexible lifting surface. 

2.1. Solution of the aeroelastic equilibrium problem for a  

flexible liftin,s surface  

The problem of calculating the aerodynamic characteristics 

of a flexible lifting surface is one of some difficulty due to the 

fact that distortion under load produoes a change of load. TAthe-

matically the problem takes the form of the solution of an integral 

equation. 

It is possible to solve the problem (using 'strip' theory) 

by successive approximation (see ref. 4) or by the method of semi-

rigid representation (refs. 4,8). 	These methods are -yell-known and 

widely used. 	They suffer from the disadvantage that since 'strip' 

theory must be used induced aerodynamic effects due to the distortion 

itself are neglected; also with the semi-rigid method the accuracy 

is reduced by the need for approximate representation of the distortion 

mode. 	Tiore recently the /superposition' method has been put forward 

(ref. 3) and since it was felt that this method is in some respects 

superior to the above it has been adopted here. 	The followirg is 

a brief deLcription of it. The usual assumption of linearity 

between leading and incidence is fundamental to the method. 

At any point on the span of an elastic ring in equilibrium 

under aerodynamic load, the final geometric incidence Mr,  will be 

given by: 

ar, = a/  4- 0, 

where 	u/  = geometric incidence of undistorted wing ('initial' 

incidence) 

az  = change of incidence due to distortion. 

/If 

x The superposition method has also been developed independently at 
Handley Page Ltd., but this work remains unpublished. 
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If aF  is known, the final loading is known and 0.„ may 

be calculated, giving a
I. 	Thus the problem is easily solved 

'backwards'. If a number of arbitrary 'final' incidence distrib-

utions aFl ' aF2, etc. are chosen and the corresponding 'initial' 

incidence distributions aIP aI2, etc. are so obtained, then any 

given initial incidence distributions may be approximately repres-

ented by a linear combination of the arbitrary initial distributions. 

Thus 	c
I 
 = A

S
a 	+ 

BSa12 + CSal3 + 

In practice three or four such terms may be sufficient. 

The coefficients A
S' BS' CS  etc. are functions of the 

parameter q%, where AR  is the rigid wing lift curve slope 

allowing for compressibility effects. 

But ASaIl 
=A a,

l  Sa  1 --Ft 	S b 

BSaI2 = BSaF2 	BSa:Fi2 	etc. 

and therefore 

aF  - cL J  = Asari  + B
Sr  
a_
2 
 + C a_ S r3 

- (L,a- + BS h 
a,2  + 0 .61  

• • • 

so that aF 	 BSaF2 	CSaF3 • • • 

and hence for the given initial incidence distribution, el, the 

final incidence distribution aF, and hence the final aerodynamic 

characteristics can be obtained. 	It will be seen that by means 

of this method the aerodynamic and structural problems are separated 

and may be considered independently. 

This method is likely to yield more accurate results for 

many problems than the other methods mentioned previously, due 

mainly to the fact that induced aerodynamic effects due to distortion 

are readily included and no sweeping assumptions need be made about 

the mode of distortion . 	Once the calculations have been completed 

for the arbitrary cases chosen, equilibrium conditions for any 

combination of q and E are quite easily obtained. As with 

other methods, some difficulty is encountered if the form of the 

aerodynamic loading varies appreciably with Mach_ No. (see 5.2). 

/2.2. • • • 



2.2. Effects of wing distortion on the wing lift and pitching 

moment contributions 

2.2.1. Wing with zero built-in twist and camber; 

distortions  dinLazLaa,Eal&L/21-422. 

If the incidence of the wing (a) is defined as the angle 

between the chord line of the wing and the direction of flight, 

measured at the wring root, then we may write 
76C 

CLw = wing lift coefficient =
oa 	= Au ..(1) 

II 

where Claw = wing lift coefficient of flexible wing due to 

(root) incidence a. 

Low A = wing lift curve slope (following ref. 1) - /3C  

(8CLavi;\ 
It is possible to find 	 using the superposition method as 

-11,1 
described above (see alJo ref. 3). 

Similarly, taking moments about the rigid wing aerodynamic 

centre, we may write 

( C̀ricrvir) = - a 	 ( 2) 

14 

where C 	is the pitching moment coefficient corresponding to maw 
CLaw 

and may also be found by the superposition method. For the 

'rigid wing' Cmw  as defined above is of course zero, but with the 

flexible wing there is a pitching, moment about the rigid wing mean 

aerodynamic centre (Hod) rhich is proportional to incidence i.e. 

there is a movement of the wing aerodynamic centre given by 

H 	- !EMa acLaw 
as 

giving the mean aerodynamic centre of the flexible wing 

H
o 

= 11.0, o 
. 

, 	lip • • (3 ) 

The wing pitching moment coefficient about the aircraft C.G is then 

(h Ho) 

and tl-e wing pitching moment coefficient about the new mean aero-

dynamic centre (Ho) is zero 

i.e. m ) 	= 0 . 
o wing 

2.2.2. 'ring with built-in twist and camber. distortions 

due to wing weight neglected. 

'Then the undistorted wing has Lyrist or camber it is 

/possible to 

(4,) 
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possible to consider the effects of incidence, twist and camber 

separately. We then have, applying the principle of superposition 

as in ref. 3, that 

Law)
CLw 	 a + 0Law + CLtw  

= Aa + C
Lme 

where 	a = root incidence as defined in 2.2.1. 

CLaw = lift coefficient due to root incidence a on 

wing with zero built-in twist and no built-in 

camber, 

= lift coefficient on wing with zero root incidence CLcw 
and zero built-in twist, but with built-in camber. 

CLtw  = lift coefficient on wing with zero root incidence 

ana zero built-in. camber but With built-in twist. 

CLwo 
= CLcw  + C Ltw 

A 	
=CICLa7;.)  (as before) 

3a 	m  

C 	 L Low 
and  0_tw  may be found using the superposition method and 

are functions of speed and Each No. 

Thus 
ac
7  
( 	

ac
aa

,  
L -.-- 	--M) 	= A .7.3 in 2.2.1. 

31 
= 

uctv  /  / ld 

Also, the pitching moment coefficient about the rigid wing mean 

aerodynamic centre is 

80 
maw 0 	 a + C mw 

 + 0mtw aa 	 a 

where Caw ' maw'mtw,  
are the pitching moment coefficients 

corresponding to CLaw  , Came  Cuw  and hence 

(raC 	 3C 
mw) - ( 

T  as 	1‘ 	3a / 
x 	 / 

i.e. 6110 
= 

aC 	3CLa naw / 	w _ 	as in 27.2.1. 
do. i 	as 

Then 80 
maw 

0 
C.G. 	

.a + C 	+ Oa H ) C 
aM 	 mwo 	 OR Lw 

where C 	= 	 t ' mwo 	
C 
	+ mw  

i.e. 	0mw 	
= Aa.ilE

o 
+ C

riwn 
 + (h  H )(Aa + CLwo

) 
C.G. 

= (0 
mo
) 	+ Aa (h Ho) wing 
	 (6) 

/where 

(5) 



where mo  ) 
	= CMWO  + (h 

 - Hda) CIwo 
wing 

and H
o 

= H
oRo 

, 

This expression for 0 	is different from that normally used 
C.G." 

in that 0Lw 	
Aa. 	It will be seen, however, that it is conven- 

ient to exress quantities in the form X Ya where X and Y 

are functions of speed and a.ch NO. but not of incidence. 

2.2.3. rinq with built-in twist and camber when distortions 

due to wing weight are included 

Following the method adopted in 2.2.2 we may write 

/an 

C Lw 
= Aoa + Co  Lwo 	n 	an 	 (7) 

where 	n-1 = 1/g x normal acceleration of aircraft (positive 

upwards) 
C 
L2  
leIT2S 

i.e. 

zero built in twist and no built-in 

camber, due to deflection of the wing 

under its effective weight. 

The affix ° denotes the condition n = 0, so that the effects of 

wing weight are entirely contained in the last term. 
, 

nW Li 
As with Lyr  etc., 

do 

--717-- may be found using the superposition 

method. 

Similarly, taking moments about the rigid wing aerodynamic centre 

we have 

(8) 

and about the C.G. we have 

a 	
o 

maw .a + C n 
c 	\ 

G. = 
	aa,/ 11 	mwo 	K.  an  

Oa H ) (A°c+ Coo}°  	n 	Lnw) (h - 	) 
 an 

11 	
OR 

	

= (Crio)° 	 H°0) A°a 	(h - ITY01)An.n 
wing   .1.. (9) 

in flight for which the inclination 

of the flight path to the horizontal 

is small. 

CLrnr  = lift coefficient on wing with zero root incidence, 

Jac 	 r" 

	

MOM j

0 	

Co
O 	 ( mrrw' 

CliTtV = 	

a,  4. 	
MV 	

n 	
do 

	

../11 	 YPi 

/where ... 



= C. + 

A
ls 	

- ;— 
6 

eR 

aC LT 
T 
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❑ 

	

ao 
„0 

- 	
maw/ aCLuw where 	H

° 
= HoR 	L,n 	9:

o 

 

—770 --FT) 

A 	= i aa-r. -"rivr 

an  )11 	
6 Hn 	"mnYT acLnw 

0 	t 1  an 	an / 

En = E
oR 	0 + 	lin  . Ho 
  

In practice the of 	o could be dropped from A°, C0
o 

Lwo' mwo 

The effect on existing longitudinal stability theory of 

using these more complicated expressions for CLw' C
mw 	is 

C.G. considered in §4. 

2.3. Effect of  wing distortion on the downwash at the tail  

The incidence of any point on the rigid tailplane is 

given by 

aT 1 = a 
	Ti  - el 

where E
1 

= local downwash angle. 

Hence, following the method emnloyed in dealing with wing distortion, 

we could write 

A" C 
	= 

- A 
	+ ri

T 
) - A

l e  ER 4 	 1a 

duo to tailplane incidence 
acLT 

where 
AIR 	d uc 

a
c 

= root incidence of tailplane with zero wing downwash 

and (C
MO 

 )° 	without confusion occurring. 
wing 

aR  = downwash angle at tailplane root. 

Values of A1a 
and .A. 

s 
 night then be found using the 

"I 
superposition method,3" provided that the spanwise downwash distribution 

were known. 

're could then write 

CLT = AI (a  + 
Ti 
 - 711)  

/due to ... 

■••••••••• 

x This is strictly true only for an all-moving tailplane, see 3.2. 



due to incidence 

le where 	eR 
= eR ct 

and 	A1  = Ala 
In practice, however, the downwash distribution is not usually 

known with any accuracy even for the rigid wind, and since it will 

C:lange slightly with speed due to wing distortion it will 

not be possible to carry ouu a single aeroelastic equilibrium 

calculation for the tailplane applying to all speeds. 	In view 

of these difficulties it seems acceptable to use a mean downwash 

angle, the mean being weighted in favour of the regions of gredtest 

tailplane lift. 

Since the downwash is produced by wing lift it is logical 

to use an expression for the mean downwash angle 7 having the 

sale form as the expression for CLw.  

Then 
• o • E - = 	a ea A- Eo 

An e 

- 

= E + 6 
n
.

n 	a 	o 	n 	
(1 0) 

where the lift distribution corresponding to A°a produces a mean 

downwash angle ea, the lift distribution corresponding to CL
w
o 

produces a mean davnwash angle 20, and the lift distribution 

corresponding to nAn  produces a mean downwash angle Jr!  . 

The value of 7; will approximate to the value of 
 

defined above, and we write 

6 4.1.7  ER =C
aR 
 +6 	T e 

so that the use of E does not necessarily imply an approximation, 

Since the lift distributions ea etc, may 	obtained by 

using the superposition method, it is possible to obtain the damnwash 

distributions corresponding to these lift distributions by super-

position of the downwash distributions corresponding to the arbitrary 

lift distributions employed. 	This can, however, be a somewhat 

involved process, and in practice it may be acceptable to use 
- 

estimated values of ea 
etc. with semi-empirical corrections for the 

effects of wing distortion. 

The above expression for F.7. is more complicated than the 

uspnl  expressions for downwash angle, and the effect of using it in 

stability theory is considered in 64. 



rT = true (root) tail-setting angle 

A 	
3C LT 

IT - 	oiT  

= valueof A1 
when fuselage is rigid,X  
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3. Fuseia,F., control circuit  and toil distortion 

Distortion of the fuselage, tail and control circuits 

modifies the tail lift and pitching moment contributions, and also 

the elevator hinge moment. 	This has been considered in ref. 2, 

where however compressibility effects have not been explicitly 

considered. 

Lyon and Ripley2  write 

CLT = 1 aTo 	Ain 	A313  

CH  = Bo 	BiaTo 	B2r + B313 

where = a 
T 0 
	
To 

- e 
 

To 	tail setting angle at zero windspeed o 
tail setting angle) 

n, 	are control angles equivalent to movements of 

the pilot's controls (r1 
P 
 , 

P 
 of ref. 2) as is 

71To if a 'variable incidence' tailplane is used. 

Alternatively, we may write 

CLT = A1T aT 
	 A

3
p 

CH = Bo 	BlTaT B27) + B33  

where 
aT = " 71T - 8 

and likewise 	acH BIT  = 77;  . 

3.1. Effect of fuselage inertia loadinr,  

The above expressions may be used. to include the effects 

of all istortion under purely aerodynamic loading, the values of 

A11 A2 
etc. being modified to take account of these effects. If 

the effect  ... 

This applies to tailplanes of 'fixed.' incidence - with a 

'variable incidence' tailplane A1T 
is th,: value of Al 

when 

both fuselage and incidence control circuit are rigid, 



Then Jfi 
 

CLT = AlT4) 	11 1T a n 	 443°  
 (1 1  ) 

....... 	(1 2) 
o 	

3a,
I' 

	

CLT 	CLT LT 	LT 	nAlT a n 

AlT 
/Al

T  qS 

F
f 

and 
q ST  

AlT Ff  / 

.1aT 	ktrIT 	artTi 
a n = 	 On 

(13) 

the effect of bending of the fuselage under its own weight is to 

be included a slight modification of the expressions for CLT and  
CH is necessary. 

Suppose application of a (total) normal acceleration 

of ng produces a net change of n. a 	n in the value of o T.  

where aT = true root tailplane incidence for n = 0. 

This may be written 

and similarly 

	

CH 	C°  + nB 

	

H 	H 	IT a n 

aaT = B
o 
+ BiaTo 

+ nB IT 
	n + B2 

 + B a 	 3 j 

If application of ng produces a net change of tail setting angle 

6.nT, we have 

where 	
A7Ti = change of "T  due to ng at zero windspeed 

1 q = .ToV2  

F
f = fuselage bending stiffness - load on tail  

Then 
rn 
T i  

1T A
IT

q 
I + 	- 

-f 

faA 

aat  . 	a ; 	\ 	Ti 11,,  am • q ± "IT 121 I 	1 5 
/ 	I T 

a a 	n _ 0 ' a Yil 8 n = 	an 2 

+ A q3T 
IT Ff,/ 

(15) 

/3.2. 

change in 1T 
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3.2. Calculation of A
l' 

A
2 etc. including distortion effects 

The analysis of ref 2 is adopted here but with certain 

modifications and the inclusion of compressibility effects. 

Fuselage distortion (aerodynamic loading) 

Formulae are deduced in ref. 2 for the ratios Al/al, 

A.,/a
2  allowing for fuselage distortion and these expressions may  

be applied in general if 	a0  etc. are interpreted as the 

values of Ai, A2  etc. 	compressibility and all distortion 

effects except fuselage distortion are included. 

Tailplane-elevator distortion 

As pointed out in ref. 2, tailplane distortion and 

elevator distortion cannot be considered separately since the two 

are completely interdependent. For this reason it is not strictly 

possible to use the superposition method for the estimation of 

distortion effects on -the tailplane-elevator combination. 	In 

ref. 3 a method of treating the 'flap-deflection' case is given 

which uses the superposition method, but this is based on the 

assumption that the local flap angle is not changed by distortion 

of the main surface or flap, co that the form of the spanwise 

load distribution due to the flap deflection remains he same at 

all speeds. While this assumption may not lead to serious errors 

when dealing with the wing-aileron combination (although it seems 

dubious even in this case), it seems likely that it would lead to 

appreciable errors if used for a tailplane and elevator. 	For 

the treatment of the latter, therefore, the method of 'semi-rigid 

representation' as given in ref. 2 would seem to be more suitable. 

If the effects of tab distortion and elevator skin distortion can 

be neglected (see below), the effects of compressibility may be 

introduced (by means of linearised theory corrections) to the 

'strip' derivatives used. 	The corrections applied should be 

those appropriate to the three dimensional tail surface, so that 

the overall lift and hinge moment coefficients vary in the correct 

way although changes in the form of the lift distribution due to 

compressibility are ignored, as with the superposition method. It 

is not possible to carry out the calculations in terms of a 

'compressibility - distortion' parameter such as qLq (used in 

the superposition method) since the aerodynamic coefficients a1, 

a2,  a3, b b7, b3 
are net all modified by compressibility in 

the same way. 	It is therefore strictly necessary to carry out 

calculations for each combination of q and E within the 

required range. 

Paevator tab ... 
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Elevator tab and tab circuit distortion 

In ref. 2 it is shown that if C and 0
2 are small 1 

(as they usually are), A1 , A2, B and B
2 are almost unaffected 

by tab distortion and A3, B
3 

and 0
3 

are modified by the factor 

(K/K-04) where C'
3 
 is the value of C

3 
when tab distortion is 

 
ignored and K is proportional to (1/q) x tab stiffness. 	On 

this basis the elevator angle to trim, and hence the stick fixed 

static margin Kn  ,is not tpreciably changed while the stick free 

static margin K' is slightly changed. 	Similarly the stick 

fixed manoeuvre margin H
m is almost unaffected while the stick 

free manoeuvre margin Hr is slightly changed. If the tab 

circuit can be designed so that K is large compered. with C' 
3 

for all q, tab distortion effects are then obviously negligible. 

If this cannot be done, tab distortion effects are easily included 

by applying the above factor to A3, B
3'3' 

on the reasonable 

assumption that the secondary effects of tab distortion on elevator 

and tailplane distortion are negligible. 

If power operated controls are fitted this type of 

distortion does not, of course, arise. 

Elrvator skin distortion 

The effect of elevator skin distortion is also considered 

in ref. 2 where it is shown that distortion of the elevator skin, 

caused by pressure differences between the inside and outside of 

the control surface, can modify A,„ A9  and A
3 

slightly and B
I
, 

B2 and B
3 

to quite a large extent. The treatment is approximate, 

since skin distortion of a fabric or metal covered surface is not 

proportional to load. 

The curves in ref. 2 of panel deflection against load 

show that for an unstiffened metal skin the rate of change of 

deflection with load is small once the small initial deflection 

required to take any load has been exceeded. If the skin is 

applied with initial tension (as is normal practice) this snail 

initial deflection can be minimised. 	In view of this it seems 

reasonable to imore the effects of elevator skin distortion for 

design purposes on the grounds that it should be nossible to 

design the elevator so as to keep the skin distortion and its 

effects small enough to be negligible. 

The main effect of any skin distortion is to decrease 

the stick free static and manoeuvre margins, so that if powered 

controls are used the effects are even less serious than with 

manually operated controls. 

/levator control ... 
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Elevator control circuit distortion 

The treatment of elevator control circuit distortion 

given in ref. 2 can be applied in general if a1, a2 etc. are 

interpreted as the values of A1, A2  etc. when compressibility 

and all distortion effects except control circuit distortion are 

included. 

4.. 2:iodifications to existin7 12Esitudinal stallilLLLILLam 

Vhen the new expressions of § 2 and 3 for CLw' Cmw  

etc. are used we have, in general.- 

CL = A
oa + CLwo + nAn S  

+ — Al  (a - A c
ao 

- A
n En + To) 

+ nA 	 1-1 + A3 ? 
1T a n 	2 	0   (16) 

a,1 + A  

Cm 	Cmf 	(C 	
oxA 	(h o )-e) A 

mo
) 	 n.n wing 

- - 7 C.G.  t.A.1  (a - A
o  Ea

a. - co 
- A

n.n En + 1To
) 

	

+ nA 1T — +A2TI + A 
p   (17) 

e, 
aaT 
	 • 

where = C contribution from fuselage 
mf 	11-1 

	

C.G. 	sTip/s' 

= distance from tailplane mean aerodynamic centre 

to aircraft C.G. 

The other new symbols are defined in §2 and 3. 

4.1. Static margin 

In ref. 1 

ciCra 

	

inn 
 = 
	(Ica an  

= 0 
dC 

/ an 
K' - 

deR  
H = 0 

	

9 	 VT 

where 	CR
cV-  = constant = 7--  

i.e. in level flight n = I = constant. 

/Following ... 



and 
ST  

V. = VC. G. + (h-H0) 

where 	VT 
- 	T ' + X1 1 S 	- 6A  

A
2 = Al  - 	B 

 B2 1 

Follow7i ng ref. 1 the expression for C can be raodified by the 

introduction of a new tail-volume coefficient V
T
. 	Thus, when 

71 1, 

Cm = Cnf + (C, mo) 	+ (h-H°°) (.0L  - CLwo 
- A + (h-H)A . 	 rif 	o n wang 

1 	• 
- -v 	 _o 	_A 	

ec 	
A
n

;E.;
n 	

.ri
To T 'Li  1 k o 	a 	L 	 n 

I- 

+ A 	2 
1T 3 n — + A

2
n + A

3 
 p 

I 	 VAC AC 

ST-  

+ Al 7" ( Ao 	
ea) 

	  (18) 

T = where 
1 +F 

On differentiating equation (18) with respect to CR  and making 
dn use of the fact that 77.7 = 0, we finally obtain, as in ref. 1: - --R  

/an 
K
n = - VT A2"+- dC.R ) C= 0 

m 
 

Similarly for the stick free case: - (n = 1) 

O 
m  . amt., + (a )   . 	+ (h-H°0) (CL  CLwo  - An) + (h-Ho) A o) n wing 

\ 	 \ 	_ 	• 

	

_7 I ] , 	_ 6
j 

, 
L 	Imo 	n ) 	c 	n n - 0 	- A - e -A e +1 	I 

T. 	11 A 	ra / 	 To 1 
t. 	-a-  - 

	

aarn 	 11.,E  

	

+ .A.  •-" + p — -= B
o   (19) 1T a n -3 	B2  

Ar)  
- 	- A1T - A 	B 1T B2 1T 

A
2 = A3  - 82 3 

This yields similarly, 

K 	= - V 7  Id  13\.  
n 	T 3 VCR  ) 

as in ref. 1. 

/
CH= 

0 
C = 0 m 
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4.2. Manoeuvre Eargin 

The manoeuvre margin, 	is given by1 

	

ac,\ 	y 
. - ac 

	

Lill 	c 	-1 

The second term is usually fairly small and decreases with increase 

of altitude, so that the value of the manoeuvre margin is greatly 

influences by the value of (8an/OCL) 
2A 

When n is variable 7e have 

Cm = 	
) 	(h—H°) (CL a 	 n‘ 

	

An. 	(h-H0) An. n 

	

mo 	 o 	L 	Lwo wing 

	

- V .(. A 1 	e 

▪ 

	(CT  - CLwo 
- Ann) - E

a - An En. n 4- -7-1
To 

	

T 	1 

	

- L 	Ao 	a , 	__, 

	

( 	/ I _ 

	

aaT 	
'-. 

	

A A271 4.   (20) 

	

+ AIT a 	n + n ' 	 3
p 
 1 
J 

Differentiating (20) with respect to CL, we have with stick 

fixed (i.e. In and (3 const.) 

m 	mf ) 	/ 	it n 	 ,; n' 

	

1 aC  ) 	(3a ' 

	

+-.7—  / - \ 
7- , A. (h.-H°) ? 1 - A i 31" 1 	(h-Fin} 	(=...=) 

L. 	 i.,. 	n ‘, -'1,/m) 	o n acL 

	

11 	L/M 	 /1 

	

T 	- a 	 8C 	f ) 	A 12-22) \I- A 	aa'T  1T 8 n f3C._ 
L IL Li le 

- 
im  

	 (21 ) 

n ir 

	

If- ----- and C_ 	7 7--- 
CL - 72V 	L 2, 	O S 0 

C = na 	and (--- L Lo 	 CLo  
	 (22) 

3 n1- 

With stick free we have 

Elf)
a—E- 

 

ac in 

 3 CLL 
(h-H} 	1 A (L) ) 4 

n 3 
Ia 	 o)A n (3 k,,. 0 

LNG 	
L 	

L 

80 	 • 

1.1 	 11 

-17T t.1(o E - A C 1.11\ \\4. 	T  (! n) 
n ac_ ) 	.1T a n aci,  

,IyF 11  

	 (23) 

/The tail ... 

x Note that ,t = distance between tail and no-tail aerodynamic 

centres 7 tT  . 
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P\ 
The tail contribution to 	. " is, approximately, 

Pi  

stick fixed 

and 17TK1 ---- stick free . 
2 ul  

The wing contribution to m is not necessarily negligible if 

the wing is swept. 

In the manoeuvre margin theory it is implicitly assizied 

that m is not appreciably changed by mo7ement of the C.G. 

Thus in deriving the above expressions for tail contribution to 

m the tail moment arm used is the distance between the tail and 
9. 
'no-tail l  aerodynamic centres. 	This is not strictly correct 

since the angular velocity q is about the C.G. 

-hen the tailplane is swept its centre section and tips 

may be fairly large distances forward and aft of the mean tail 

aerodynamic centre, so that more accurately 

citai  1 

ETAi  

2u qT 

where
gT 
 = contribution to m due to rotation of tailplane 

about its mean aerodynamic centre. 

In general, however, mot  will be small. 
T 

 

4.3. Dynamic Stability - quasi-static thliga 

"Jr 14 
greater importance than the value of dCm/dCL  . In this paragraph 

we shall discuss the effects of distortion on the quasi-static 

longitudinal stability derivatives. 

If distortion effects are included on a quasi-static 

basis, the usual small-displacement equations of motion can be 

used for the flexible aircraft, but the derivatives have to be 

suitably modified. 

Dynamic stability and its relation to the static and 

manoeuvre margins is discussed in ref. 	where it is shown that 

the slow divergence associated with Kn  <0 is less serious than 

the rapid divergence or 1-pid unstable oscillation corresponding 

to HITI <ZO. 	This means that the value of (aCTIIPC ) 	is of 

have, ignoring the thrust contributions, ;see ref. I) 
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H j 	D: . 	 c  _1.1( aCL 	..) 

	

r 	,, 

xu = - CD - -2".  e7171 , 	z 	= — 
L 	2 k.a 1:: 

a 

	

lir 	. 

	

,... 	'a 	
u 

II  ;.. 	ac.,  

	

. 	
e 	i a , N \ i  

i i..) '1 m = — — -- i 	 1  j 
CL u 	2 	a H,/ 

a 	
Y 	2:W = .2 	L 	t., (77, I ) > ' 2Z,  

	

/ 2' C 	 ... 
1 C ( (:'■C NI 

ZW = - 7  I L7-a-.1 . + Cid 	raw = 2 	LI  ) 
ki 	 1,. 	■,, a a, i

11 
,.._... 

The largest contributions to m and m. are normally 
q 	w 

from the tail, and we have x  

.i.,  

	

o 	ST 
	

Sr, 

	

1. A 	L  p.m. 	- 

	

-1 Vir 	• 	2 (1+F) S "1 6a ' 	laq 7  - 77+7 S 
(tail) 	 (tail) 

These expressions are approximate only and correspond to those 

given in ref. 1. 	The wing contribution to m. is normally very 

small at subsonic subcritical speeds, but the wing contribution 

to m
q. 
 may be appreciable for a swept wing. An estimate of 

m (vring) may be obtained by the method that is described in 

Appendix III. 

The derivatives x
q. 
 and zq  occur in the stability 

equations divided by Ili  and are then normally small enough to 

be neglected. 

If the distortions of the aircraft components are small 

it seems reasonable to ignore distortion effects on the drag 

derivatives, so that CD, (OLD/aa)m  and (aC./aM)a  may be 

estimated for the rigid aircraft. 	It remains to determine 

(aCL/aa)I;i 	(ac
L

/a1.1-)
ct.' 

(aC /aa) and (aC /ali)
a. 

in terms of A
o, 

A1, o 
H

o 
' etc. 

Differentiating the expression for CL  given at the 

beginning of this section (equation 1 6).- 

	

iacii\ 	 s 	 . , 0 	, 	T ( , 	.0 - 	an\ 
= .h. + .ri. ( - 	4. ---•- ) A.

1 
1 .- 4 A. Ea - A (-- i E 

a a)1, 	,a a,' 
- 	14 	

S 	 n aa 14:  n 
, — 

	

+ k„..aa ) 	1T.  a /I ' i'.2 \ Oa; 
1,..t.i) A 	4.  , 0:_r )  

ill 	M 

ac• 	, 	) 

	

( arnTe\ \I 	_ 1/22.\ 
	= 0 	

_. 
assuming \.....737/14 - l,aaim  

	

an'l 	(2n \ fl aCL 	1 7'2►  

  (26) 

	

k,,TV 	= ► 761 .77,.. = C 	571,/ • -1.1 	,, 	I, 	. 	Id 	Lo • 	-M 
hi 

/Therefore • • • 

(25 ) 

z For the stick free case, Al  is replaced by Al  . 



-21 

Therefore 
A

o 	
- A° ea} ÷ A2  (E 

L  CC') 	1  
aim  

nn 	ST 
 

	

1 - 	- Al  aaT - 

	

Lc 
S CLo 	nn 	T a ni 

7ith stick fixed_ (- 1-1) = 0, so that ca. M 

... (27) 

OCL) 	 ,
o 	T , 0 - Ao-J

a
) , ( 

77 	stick fixed - 	
+ 7 2'.1  

N 	 AS
T  

acIT 1 4 

-C 
	T 1 1,1 1 Anon 

  _ A 1T a n  ' 	+ S C 	) 11,0 	Lo IL. 	 ... 

1,rith stick free (using 13). - 

Claa+a  = 	( 	, ea) ct ▪ a.) ( B2 	
e  An 

I 	1,0 - 	
an 
	 BlT aaT • 

2 	 n B
2 a n 

ac 	(B 	. 	B 	aaT ) 

	

, 
B
1 I, Ao 	1-1( 	1 , 	1T—  

a' 

▪ 

 -5
Lc 	a,/ B "n 	- B

2 
a n 

2 	 2 

giving 
S 

/ac 	 A° 	
m 171 	za  

M 	 - 	

) 

(-7-2 	stick free = 
A 
 

S  + T 1 	7. 	 a  T 

- 	 n 	 ; 0,Lo S  CLo t  A 	AiT a n 
 

Similarly 

(acL) 	aAo acLwo tan) , 	aAn 
a 	= a  (3111 4. 	ail 	+ k,,(311)1a  21.  n 	n  (3M 

—s 	(a A ea 
a e

a 
A

n 
n e

n 
÷

To
) a m 

o 	 ae Ao 	aFo aAn • 

1'1 - 	(am €G, 	Pr) 	8 M 	a TI* Ti En Anl 3M en fn 4-11 74) 1 

+ .6. 
, 	 an 
1T a n 	

a 	a'T) 	a 	aL1T aA2 da_ 

k„aldja+ n A1T a 	a n 	n

• 

 a n' 	+o 11 
aA3  

} A

• 

2 ant + a 21 C3.3 

assuming 
- 6 1 	- 	' 

a 

Since 
(ac an'‘ 	
\ L n  = CLo k_TE) = 7 	777

c. 	La 	a 

 

(30) 

 

and initially n = 1. 

ATith stick 

S 

(28)  

(29)  
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arr.,  
7ith stick fixed. (-7--) = 0, 

82/1 
a, 

so that finally 

 

olio ac 	aA 	s rap 
Lwo 	n 	T o

• 	

— 
aii 	am 	a 	+ S  ,e a M 	

11 	aa, 	
o 	n 

-j
a

+11
To

) a, 	+ 	+ 	

▪  

— \a- e - - 

 

(

OCT:\ 
a-171 stick fixed = 

• • 
o. 	o  a- c„ \  ac-0 	aAn  

+ A1 L°  UM ea +A  8/1/ 311 - aid e nAn a3.1 

aaT  aAIT A 	a (aati.:\ 	3A
2 	aA3  

+ a n 311 + --1T a mt. a 	+ am 	aM'5 

 

 

A
n 	

S
T 	1 

CLo 	Lo A 	A1T 74) + S •C 	1nn 

 

(31) 

i.'Tith stick free, it can be shown that (using 13).- 

aB 	aB
o 	

aBi CL_T-1) _ _ 1 	2 	1 	 o n 	 --- a 
 " - 	

- 
- B

2 a 	' B
2 	

a 	( 	"To " 	aa 6  0 "- 	en)  
a 

.t. 	-  

	

- o . 	de --1 	ae 	 aA 	. a..1 
+ B

1 
- a 	5-  + L'i..° 	2L'. 1  - ---9- - , 	

86 
n 	n 5- \ 

am 	a ' a /I j a Li 	n a m 	a ,:[ 	nj 

	

as -\ 	aB 	act_ 	B 	80 \ / 	. 	B 	au_ 
+B 	 Ti + 	1T 	 1 	L) 	n- 	1T 	T.) 

1T a hi 	ni 	OM 	n 	 C
Lo 	

11,1a, -1B
2 

en B
2 

an 

	 (32) 

and hence finally 

j'aCL \ 
/ stick free a 	.a 

o ac 	aAaA 	s ( aA 	. 	1  .... 	—' rik 	 n 	T ) 	1 	 h o 	7, 
a. 
 d.'' 

 + 	ail + ail + S ) a 71 a+11  To-  " eaa  - -o-  "nen,/ \. - 
- _ 	 — 

	

r o. 	ac — 86 o 	
dA . 	aen) 

Al( 
. aA — A() 	a, 	 n - 

+ A 
	

- a I -°- 6 +I i. --•-• -. 	- •-"•-• 6 - A --- a15 a 	a m 	a M 	a M n. n a II _ _ 

oaT  a 	 aA 3  A2  aBd 
1T 	-„_ 	8 	a'- T\ 	51';- 2 

+ a n " ail 4  "1T 3 II( a n) 4  a m 7' + 7—KfC3—B a mi 

A
n 

1 - c
Lo 

+ 	. 	n n 

 ST 	

1 (
7  A 	+ 2-11T  TT) 

S 	CLo 

(33) 
where 

aAl 	aAI 	A2 
aB

1 	
a.7.1 	T1Ti.1T 

am = at — B2 a11 7- amo am 	and 
aB

1T 	
al:1T 

a2  3A
2 

A
2 

aB2 .x &C.
2 

M.
3 

aA3 A2 aB3 
m 	8 IT, 	B,,  3 M /- a 	a m 	a m — B2  a m 	a 31 • 

Similarly 

ac 	 acmf) 
stick fixed = 	+ (h-H° o

as 	
0) A -- 

 

r 
L 	__n 

Lo ~
u1.41.  

C 	a  'im I 

- A0  e
a

) 

A 	- A 
C,G. 	1 n n 	1T a n 

	(30 

and ... 



	

If i 	mo win: 	 au°  ) 	aA i acIn'' 	 (ac \ 	a (c ) 
lk-a-ra) stick free = (---.ri4.. - 4- 	a 

 PST 	
' + a  (h-11o0) 

—
aal,A: - A° 	° + (h-Ho) n  

a 	 al /a 

	

a -13-  • 	. 	o a LI e' ll 

aHn  CgA1 ( 	
..) 

	

' 	17 	) 	, 0 -• 	- - A
n as Ti - C.G. A 3 II 'a  - zl. sac- 6o - An.-67n + TITO)  

1.,, 	. . ... _ 1-  aA  .L 	0 	a 	
aE 	aA . 	a€ 

	

at .. 	o 	 1 , 

+ A  V a 1. — 6  + A  TIT) TT! 57 n An a 1L1 . . 	
n - 	, 	n , 

E - 
1 	a 1 i 	a ...... 

5 A. 	ao„.., 1T 	T 	 a 	ac'.') 	K:2 	... ..,3 	A2  aBo  , 

÷ —am --a n + 1T a m TT) + a -1T • -'1  + '. IT 13  - B2.  a 171 l'r 
....,' 

. 
1 

	

f' ac f„ ii., trn., 	.ri 	• 	 a 	, 

	

+ — - 	,, i, (h-,, , + v 	[A E • 151. + .r7  :. 	---•-•-• i 
C

Lo 
k,a m.,  • n 	o 	C.G. _n n I 	1T a n 

and 

(--2a :12 ) stick free =
da 	+ (h-H°) A°  - a, 

	

	 C. G. IsI 

_ An 
a 

I (6°1) {I n 	 aa,T-12 
+ ) A + -7 	[T. A 7 - cLo 10 0, m 	- 0 n 	C.G. 1 n'n 

A
lT 3 n 

	 .. (35) 
Also 

o Eac,,f) 	a (c ),,,,4 	 3H 'i 
Ho}  aAo 	0 	0 I 

	

(3°111) stick fixed = -Tzt- + 	 ma°14" ng + a,  (h.o) 
aid  

- A a m  a mia  
a 

n 3H 3A 	 ( aA 	. 	 • i 	1 	0 - + (h-Ho) —1.2 
An 

	
- VC. 

i ,..- 	(a -A s
a
c. - E-

o
- A

n
E

Jaq
,v

'To
) 0 a IA 	n a 1.1 	G. ; a ki 

(.. 
...  

0. 	 3E ) 	ae 	aA . 	a-E.  • -1 aA - ,,0 a 	❑ 	n - _ A 	n i  + A1 	- a (.- 	E ± .t -5. — . ..,.• - ..=. 7 - 	, i  e ,,..am 	ci, 	a la.. 	0 2., 	a iv,. 	n 	naM 

3A 	3a,.„ 	 aaTA 	aA2 	iaA.. ') 
1T 	T 	 a + + A — — + r — + f3 .....v.. k 

	

am a n 	1T a 1.1 (a n ) 	' 3 .1'i 	a m t 
) 

	

...... 	. ( ac \ 	 aa,1-----i 1 	i 	L  + 7-1 TR i  ., An(h-Ha 	A. A., + A, 3 -2.  

	

0 ) + C. G.1 	1 	, I- u nj +, La \- 	. ja 	 ,....... ...,, 
	  (36) 

	  (37) 

The value of 13 (initial value) to be used in the above 

will be given by equation (19) with Cm  = C. The initial value 

of 11 may then be found from (18), again with Cm 
= C. Equation 

(16) then gives a. 	In the above it is assumed that 17 	is 
C. G. 

constant i.e. that f T 
is constant. 	This is not strictly true 

since in general the mean aerod.yn,amc centre of the tuilplane will 

move, but the error involved is probably small. 

/4. 4-• 	• • • 



4.4. Application of  the  theory 

Static margins  

Perhaps the simplest way of determining the static margins 

is to use the formulae 

Kn. = 	V
T2 ( 1-1  

C = 0 
In 

K' =
- 	 3 acR1  

C 	o 

C
H 

= 0 

The values of ri and 13 to trim for a given value ofCR  . CL  are 

given by equations (18) and (19) with C,n  = 0. These values can 

then be plotted against C
R 

(or M) and values of(ail/ 
C = 

and (cap/doR )
C = 0 are then obtained by graphical or 	ri 

Cm- 0 CH= 

 differentiation. 	This procedure is suggested in ref. 2, 

and must involve some loss of accuracy; although since the trim 

curves can be obtained by calculation1this loss can be minimised 

by the use of a sufficiently large number of ordinates. 	''.'hen the 

trim curves are plotted against CR  the high speed end of the 

range becomes 'compressed' and the low speed end. elongated, so 

that it is probably better to plot control angles against Mach 

number. 

Then 

relation 

drl 	= 	
P;7 	der 

dCR 	2C
R 	

since CR.M -  = constant. 

dC 
It would be possible to find the value of — from the dC

m  
R  

OC 	. 	 acR'\
IVI  

de 	a 	2R I-1 C 
r."1 	M 	 a . 	 M 	a, / 

Fp' 

This method, however, suffers from the disadvantage that values 
dA

l 	
112 

of —a m 	a m etc. :;lust be obtained by graphical differentiation 

(in general) so that the loss of accuracy is likely to be greater 
dfl 

than that involved in finding 	. dGR  

/In general ... 
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In general we have 

T
N  
2 	

= C
R Cos ye 7pV S 

TT 2 - CD = CR Sin ye 
 S 

where 	TN  = component of thrust force nonmal to flight 

direction 

TT 
= component of thrust force in flight direction. 

Ye 
= arviae between flight path and horizontal. 

Thus in level flight CR  = CL  for TN  = 0. This 

result is not, as is suggested in ref. 6, dependent upon the drag 

being small compared with the lift. 

Manoeuvre mar-rins 

The manoeuvre margins may be obtained by direct 

substitution of values for Ac  A1• etc. in the equations of 4.2. 

It is thus a sim-eler matter to obtain the manoeuvre margins than 

to obtain the static margins due to the absence of derivatives 

with respect to forward speed in the expressions for the former 

margins. 

5. Miscellaneous refinements 

5.1. Inclusion of effects of change of density -7ith altitude  

on stability  

The effect of density vari-Ltion with altitude on longi-

tudinal stability is considered by Dr. Newark in ref. 18. Only 

the level flight condition is there considered, so that CL  CR. 

Static ana manoeuvre margins  

Neumark gives: 

=  _ (7
at) \ 	/1)C

in  2)  + 7114,1,

L 

L i 

 
Ti 
	

......(1+ "1.L If Et + 11 	yu2 N-1 	M 	Cm) 
nf3 	 2 	N 	2CL 	d 

Tai 	
-JCL 

where 	N = 
g 0 

and 	R = gas constant for air, K0  = lapse rate. 

The static ... 
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The static margin (stick fixed or free) as defined by Gates and 

Lyon in ref. I is Kn above (for CL  = Ch); n 	the 

'generalised static margin' (stick fixed or free) which is 

proportional to E
1 the last term in the stability quintic when 

density variation with height is included. However, the quantity 

Kng  is no longer a measure of the stick movement (or force) to 

change speed. 
aCn\ 

From the above femulae given K
n 

and -"-) (which aC L 

is found when calculating the manoeuvre margin) K
hp 

can be 

evaluated. 

There are no effects of density variations with altitude 

on the manoeuvre margins. 

Effect on stability derivatives 

Additional stability derivatives xo, zo  are introduced 

which are derived in full in ref. 18. 	These are, however, 

functions of CD' nu/all CL'  aio /am and of quantities 

unaffected by distortion so that they are readily determined. 

5.2. Inclusion of effects of  changes in the form of the wing  

lift distribution and movement of aerodynamic centre  

due to compressibility 

If distortion effects are to be included it is very 

difficult to allow correctly for variations in the form of the 

wing lift distribution or in the aerodynamic centre position of 

the rigid wing. 	If they are functions of Mach number it is 

strictly necessary to perform a complete set of calculations for 

each combination of M  and q. To avoid the heavy labour of such 

a procedure it is sugriested that if the shift of aerodynamic 

centre is not very large then the aeroelastic equilibrium cal-

culations can be made first ignoring the shift of aerodynamic 

centre. Then allowance for the shift can be made without 

correcting for the secondary distortion effects introduced. If 

the movement of the aerodynamic centre is large, however, it 

might be advisable to perform calculations with a range of 

representative positions, an interpolation procedure being 

subsequently adopted. 

If the tailplane aerodynamic centre shift is also 

appreciable it may be necessary to modify the tail arm. 
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6. A simple example  

As an example the hypothetical aircraft illustrated in 

Fig. 1 was considered. 	It has a wing of 45°  sweep and aspect 

ratio 3.81, and an 'all-moving' tailplane of similar planform to 

the wing. For simplicity the structural characteristics of the 

wing and tailplane were assumed to be similar, so that calculations 

of lift curve slope etc. carried out for the flexible wing apply 

also to the tailplane. Compressibility effects were allowed for 

by applying lineariscd theory corrections to the wing and tail 

lift curve slopes, and also to an assumed value of Coo  introduced 

into the calculations as an extra 'fuselage' pitching moment 

contribution,-the distorted wing has zero twist at all sections 

and is of symmetrical section giving zero contribution to Cmo. 

No other fuselage or thrust contributions to pitching moment or 

lift were included. Tail lift was included in the total CL, 

but wingITight_effects were neglected.' 

Distortion of the win;g, fuselage and tailplane was taken 

into account, but not control circuit distortion, and there is no 

tab. This is consistent with a system of completely rigid power 

operated controls, and hence the 'stick fixed' case only was 

considered. 

6.1 . Calculation  of lift and _ptchin moment coefficients efficients 

for the flexible wing and tailplane 

C
8
c) (717) 

Our first problem is to find values of A = 	= 
a 	aa hi 

and /1.1.1
o 

for a suitable range of values of q(= i0V2) and Mach 

number. The wing is an example of the case considered in 2.2.1, 

and hence the superposition method was used. 

The method used was exactly as described in ref, 3, the 

procedure being as follows.- 

i) 	The method of Kuchemann7 was employed to give (for 

incompressible flow) the lift distributions corresponding to 
2 	3 

incidence distributions a. = 111 , a = 1, a = 	a = constant 

= 1 radian on the rigid wing. (Ti,= y/b/2). 	These lift 

distributions were integrated graphically to give values of C /AR  

CL1/AR' 

= rigid win; lift coefficient per radian of incidence 
LR 

0L1  = rigid wing CL  corresponding to a = 111 , with 

a = 1 radian at the tip 

= rigid wing CL  correspondin7, to o = 1
2 

with 

a = 1 radian at the tip 

CL2/AR, CL3/AR, where 
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C 	= rigid wing CI,  corresponding to a = 1.4, with 

a = 1 radian at the tip. 

AR  = lift curve slope of rigid wing. 

It was found that Cu/AR  = 1.0, CLi/A = c.435, °L2/AR = 0.264, 
ciyAR  = 0.184. 

ii) 	In stage (i) the locus of aerodynamic centres was 

obtained and hence the pitching moment distributions corresponding 

to a = 7-1
1' a = 11 etc. were plotted and integrated to give the 

position of the mean aerodynamic centre of the rigid wing, and 

the pitching moment coefficients about that point for the various 

incidence distributions considered. 

Then 

MR 
A

C 	
= 0, C

m1 	- 0.0775, 
C 

= 0.0730, -79  - 0.0675 

where Cr, C
w1 

etc. are the pitching moment coefficients about 

the rigid wing mean aerodynamic oentre corresponding to C ' 0_ etc. 

iii) A relation between AR  and Mach number was obtained 

using the method due to Collingbourne.16 

iv) The lift distributions for the ye'gid wing were integrated 

to give shear force and bending moment distributions, it being 

assumed initially that the wine; had a straie,ht flexural axis lying 

along the 0.45 chord line. Torque distributions about this flexural 

axis were also obtained. 

v) Twist and slope distributions for the four cases were 

obtained using assumed stiffness distributions, and these 

distributions were then modified at the root in an attempt to 

introduce corrections corresponding roughly to the root constraint 

effects on a swept wing, 

vi) The elastic incidence changes of (v) were matched as 

described in ref. 3 ani in 2.1.1. to give the superposition 

coefficients As, Be,, Cs  for a range of values of qLe. 

vii) Using (iii) and (vi) a graph of A and 8.110 against 

ilach number was produced for the condition q/t1 = M2, where 

= value of q corresponding to maximum allowable E.A.S. (Fig.2). 
In the above it was assumed that compressibility effects 

modified the two and three-dimensional lift curve slopes without 

/appreciably 
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appreciably modifying the form of the lift distribution, or the 

position of the mean aerodynamic centre, of the rigid wing. The 

relation referred to in (iii) connects two and three-dimensional 

lift curve slopes, so that when compressibility corrections are 

applied to the aspect ratio, sweep angle and two dimensional slope, 

the required relation been Ti and A19_  is obtained. 

In (iv) and (v) it was first assumed that, with a 

straight flexural axis at 1%45c, the ratio bending stiffness  torsional stiffness 
was constant along the span, and that each stiffness varied as 

the cube of the local chord. 	On the basis of information given 

in R.A.F. Structures Reports 9 and 58 it was decided that a 

representative value of the above ratio was 4.0, and that a 

representative root torsional stiffness was given by 
u2 ,r; 

Twist per unit = 6.6-  where 	= length of flexural axis. 

It is shown in ref. 19 that with a swept wing of 

moderate aspect ratio and conventional construction, the concept 

of an effective root may be used. 	The wing may be considered 

to behave like an unswept wing outboard of this effective root, 

but inboard of this the root restraint effects are predominant. 

The information given in ref', 19 suscests that for a wing of 45°  

sweep the effective root might be about 0.2 semi-span out from 

the root. On this basis the twist and slope distributions were 

modified as shown in Fig. 11. 	Since this modified the overall 

values of twist and slope considerably the root stiffness used 

was decreased from the value previously quoted, giving 
2 sr q ,f  

(CWR = 10 

Methods of calculating the rigid wing lift distributions 

and the elastic distortions of swept wings are discussed in 

Appendices I and II. 

6.2. Introduction of fuselage distortion 

Following the treatment in ref. 2, we have 

AIT  A
1 1+JA1T

q 

where 

	

	J = constant, inversely proportional to the fuselage 

bending stiffness. 

Using the A.P.970 fuselage bending stiffness criterion, with 

M = 0.8 and K = 0.12 

J . 0.05  where Si corresponds to VD, 
q

• 	̂ 

/Where • • • 

tnrque at root 
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where - = 'maximum allowable diving speed' VD   

Since the wing and tailplane are similar, AlT  = A. 

6.3. Trim curves  

Trim curves for the example aircraft are shown in Figs. 

3 and 4. 	Two sets were plotted, one corresponding to Cno  = 0 

(zero fuselage contribution and zero wing contribution about 

corrected aerodynamic centze) and the other to Cmo = 0.015 
 

-M
2 

(taken as 
(Crao)fuse.' (Crao)wins  remaining zero). 

It was assumed for simplicity that ea  = 0,1 = constant, 

and the relation 

CL 	0.0420 ( 	
0.04-20  

j q  

was used, corresponding to Vs = 50 lb./ft2  and i'= 2 powhere 

V = 1000 f.p.s. 

Curves of 1
To 

(tail set',,ing angle equivalent to move-

ment of pilot's control) against CL  were produced for the rigid 

aircraft and for the following cases of distortion. - 

(i) Wing distortion only 

(ii) Fuselage distortion only 

(iii) Tail distortion only 

(iv) 'ring, fuselage and tail distortion. 

6.3.1. Trim curves with Cmo  = 0 

The curves are shown in Fig. 3. and it is clear that 

the distortion and compressibility effects introduced have had 

little effect on the slopes of the trim curves except at the 

highest speeds. 	Let us consider these effects in turn. 

The effect of compressibility in the absence of 

distortion is to displace the trim curve a small amount which is 

nearly constant for all values of 	The The curve, which is 

linear and passes through the origin when no compressibility 

effects are included, remains very nearly linear down to CL  0.1. 

Below this CL  the slope of the curve becomes slightly more 

positive i.e. a stabilising effect occurs. 	Ref. 6 predicts 

that for C = 0 the increment of elevator angle to 'rim due 
mu 

to compressibility is very nearly constant over the whole speed 

range the approximation becoming less exact as Mach number 

increases. 	This is in agreement with the present results. 

/The distortion ... 
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The distortion of the wing alone then produces a 

negligible change in the trim curve. 	The reason for this appears 

to he that the effect of the loss of lift curve slope due to 

distortion (the 	tips bend. upwards) is offset by the forward 

movement of the wing aerodynamic centre. Thus, for a given CL, 

wing distortion makes it necessary to fly at a slightly higher 

incidence so that for a given value of TT  the nose down tail 

contribution is increased. This effect is aluost exactly 

cancelled by the extra nose-up moment resulting from the forward 

movement of the wing aerodynamic centre, so that the value of nT  

to trim is unchanged. 

Distortion of the fuselage alone produces a constant 

increment of 11T  to trim over the whole range, thus leaving the 

slope unchanged. This is because with C = ❑ and a fixed 
mo 

C.G. position the tailplane load is constant over the whole speed 

range. 

Distortion of the tailplane alone also again produces 

a constant increment aC tail angle to trim and the reason for 

this is again that the tail load is constant at all speeds. Since 

the form of the lift distribution due to any given twist distribu-

tion of the tailplane is assumed independent of Mach number, the 

twist due to a given overall load is the saae at all speeds and 

hence the increment of tail-setting angle to trim arising from 

twist is constant. 

viben all the distortion effects are combined the total 

increment of nTo 
to trim is slightly greater than the algebraic 

sum of the separate increments taken individually. This is 

because wing distortion makes necessary a slight increase in 

incidence for a given CL  which, for a given 120  , causes an 

increase in the tail load. Men the tailplane and fuselage are 

rigid this has little effect on -9,20  to trim since it is largely 

cancelled by forward movement of the wing aerodynamic centre. 

'Then the tailplane and fuselage are flexible, however, the increased 

tail load causes extra tail and fuselabe distortion which in turn 

require a small additional increment of 1To • 

6.3.2. Trim curve with 0 	= c=.212 
no / 	2 

V1 41 

The curves are shorn in Fig. 4 and it will be seen that 

in this case ditortion and compressibility effects have modified 

the form of the trim curves considerably. 

The effects of compressibility alone are very marked at 

/the higher .,. 
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the higher Mach. numbers considered. As the lift coefficient 

decreases and the Mach number increases, Cm  becomes more and 

more negative - i.e. the tail setting angle to trim out Cmc  

becomes more and more negative, and at high speeds this contribution 

to 1To is large compared with that required to trim out the 

other -.ring and tail pitching moment contributions, 	At low speeds 

the reverse is the case, so that as speed increases, and the Cmo  

contribution becomes more dominant, the slope of the trim curve 

becomes less negative, then zero, and finally positive. 

The effect of wing distortion alone, however then makes 

no further appreciable difference to the trim curve, as in the 

case when Cmo  = C. Again, the forward movement of the wing 

aerodynamic centre is offset by the increased nose down pitching 

moment contribution due to the higher tail incidence as before. 

Distortion of the fuselage alone makes the slope of the 

trim curve more positive (destabilising), the effect increasing 

with speed. The change in Cmc  produces a change in tail load, 

which becomes more and more negative (tail down) as the Mach 

number increases. As the speed increases the fuselage distortion 

due to the increasingly negative tail load produces an increasingly 

positive incidence of the tail and therefore an increasingly 

negative increment of 110  is required to trim. 

Tail distortion alone has a very similar effect to that 

of fuselage distortion. The all-moving tail behaves like a wing, 

unlike the usual tailplane-elevator combination. Thus a positive 

tail load causes the tips of the tailplane to bend upwards, 

producing a positive increment of TIT°  to trim, and conversely 

for a negative tail load. 	The changes in riTo  to trim are there- 

fore in the same sense as those caused by fuselage bending. 

It will be seen that the result of the combined distortion 

effects at the highest speeds is slightly less than the algebraic 

sum of the separate effects. 	This is because , as for Cmo = 0, 

wing distortion causes a slight positive change in tail load which 

in this case at high speeds reduces slightly the magnitude of the 

tail load, which is negative being largely determined by 0 . mo 
Thus the fuselage and tail distortions are slightly reduced and 

there is a small reduction in the overall (negative) increment of 

11To 
due to distortion when the distortion effects are combined. 

/6.4. 	... 
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6.4. Stick fixed static roar ,in 

For an aircraft fitted with an all-moving tailplane we 

have 

To K = - 	A 	 (for C
L 

= C
R
) 

T 1 	00L 
C = ❑ 

Values of 	were accordingly obtained from the trim 
dCL C = ❑ m  

_  
curves for the cases Cmo  = 0, Cmo 	

2 
  I-

.
1
015.

1a 

Cmo  = 0 

The resulting curves of K against clic/ for Cmo  = ❑ 

are given in Fig. 5. Consider first the effects of compressibility. 

It will be seen that the static margin increases slightly with 

increase of Mach number. This is because (dnT0ABL) 	is 
Cm = ❑ 

very nearly constant except at the highest speeds wh3re it becomes 

slightly more negative, whilst Al  is increased by compressibility.x  

This result is in agreement with that predicted in ref. 6 for the 

case Cmo = 0. Then Kn 
is positive in incompressible flow, the 

restoring tail pitching moment due to a change of speed and corres- 
t 	2 pending change of incidence kCe = constant) will exceed the 

destabilising wing contribution. 	The difference between these 

contributions will be increased if both wing and tail lift curve 

slopes are increased by compressibility in roughly the same ratio, 

ma remaining zero. 

Considering now the effects of distortion, we see that 

since wing distortion alone does not appreciably change the slope 

of the trim curve or the value of VT 
or of Al  for the aircraft 

considered, K
n 

is almost completely unaffected by wing distortion. 

The effect of fuselage and tail distortion however is to 

decrease the value of Al 
(V,T  still remains very nearly const-mt) 

so that although for C ma = ❑ the trim curve slopes are not 

appreciably modified by these effects, the value of Kn  is 

decreased progressively as 161/i increases compared with the value 

for the rigid aircraft. 

In this example the loss of static margin due to fuselage 

distortion is greater than that due to tail distortion, and the 

combined effects produce a maximum loss of static margin of the 

/order of ... 

T is very nearly constant. 
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order of 10 - 15 per cent at a Mach number of about 0,8. 

- 0:015 6.4.2. Cmo  = 

VII -I1 

Curves of Kn a'2"ainst  q/(17' for the case when C = - 0.015  mo 

are given in Fig. 6. 

Here it will be seen that compressibility effects alone 

produce a large loss of static margin at high Mach numbers. The 

static margin, which at low M is approximately 0.10, becomes 

zero at cl/q 0.5 (M 0.7) and rapidly increases negatively at 

higher speeds. 	This loss of Kn 
with increase of M is predicted 

in ref. 6, where it is shown that the loss of K due to compress- 

ibility depends on the value of (Cmon) 	As shown above, 
M=0 

the static margin is increased by compressibility for Cmo  = 0 by 

an amount dependent on the lom speed value of Kn. Then C
TO.0 
< 0 

however, the value of dCmo/dCL is positive and increases rapidly 

as H increases, producing an increasing loss of static margin. 

These two effects are in opposition, but the latter is dominant 

in this example. The loss of static margin will depend on the 

relative size of the two effects - i.e. on the value of (C 	) mo n 

6.5. Stick fixed manoeuvre margin 

For this simple example the formula of 4.2 (equatio:i 21) 

becomes 

/1 	- (acTri) 	(h-H.) 	vTki 	scj 

V„A _arrI 	T 	r 
211

1 	p1 	c 

The value of 	was taken as 50. The wing contribution 

/to m 

M=0 
Considering now distortion effects we will see that wing 

distortion alone causes no appreciable change in Kn  as in the 

case C = 0 and the reason is the same as in that case. Fuselage 
mo 

and tail distortion however cause a reduction in Al and also make 

the value of (anT  /dCL) 	more positive (see Fig. L) so that 
o 	C

m 
= 0 

they produce a large loss of K. 	This reduction in Kn due to 

fuselage and tail distortion is actually greater than 4ith Cmo= 0, 

but since here the reduction due to compressibility is very great, 

the distortion effects appear less important. 

and 
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to m
qw 

 ) was estimated as described in Appendix 

The resulting values of H:m as functions of qici' are 

shown in Fig. 7. 

It will be seen that compressibility alone produces a 

loss of Hm which steadily increases as 11 increases, ond this 

is in agreement with the results of the analysis of ref. 6. 

We can see how this arises from the formula 

= 	(h_Ho) 	VTAI 	- 
a 
 - r.1-12 

The effect of compressibility is to increase Al , A and m . 

The net result is a reduction in the second ter,„ which is large 

and an increase in the third to which is small. 

As with tfte static margin, we find that wing distortion 

alone has no effect on manoeuvre margin for the example considered. 

''ing distortion reduces the values of H
o 

and A, so that both 

the first and second terms in the above egression for Hm  are 

increased, the two changes however almost exactly cancel each other. 

Both the fuselage and tail distortion effects on the 

other hand leave H
o 

uncharged but reduce A
l 

and m so that 

there is a resulting decrease of H
17i 
 which in this example, is 

greater for fuselage distortion than for tail distortion. 

The combined effect of wing, fuselage and tail distortion 

is very nearly the algebraic sum of the effects taken separately. 

This suggests that it might be possible to calculate the loss of 

manoeuvre margin due to each and add the separate contributions, 

but in fact this would take longer than the single calculation 

for the combined effects. 

To assets the error in Hm due to using V instead 

of V
T 

(i.e. due to neglecting tail lift in obtaining CL) values 

H
m 

were calculated using the formula quoted above , but 

substitutLig (i) 
17C.G. 

 and (ii) VAC for V,. 	The results 

are shown in Fig. 8, where the curve corresponding to the true 

value of V
T 

is also shorn for comparison. 	Tt is interesting 

to note that the error due to using "CT-Ac  instead of VT  is 

roughly twice that due to using 17c.r.  and that the error due to 

using V
C. G. is roughly equal to the magnitude of the value of 

(in this example). p 
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6.6. (RI:Iasi-static stability derivatives 

For an aircraft with all moving tail and no tab the 

equations of 4.3 with stick fixed and taking ea  as constant 
simpljfy to.- 

ac 	S 
(a L 	= A 4- m sl  Al  (1 -Act) 

• aCL  L, 
" 711 

aA ST 1 aki 
`1717 (a+ TI T° 	) 	Aa  T a Pi a 

/ac 	 (acm t 	acL ) 

a `M.  
Et 	A (h-110) - 

VC.G.

I  Al (1 - Aed = 	) 771,  aC 

+  
(acm) 	ac ma 	8A 	 aH 
,a m., 	

ay, 	a 7,1 (h-Ho) - Act i 
 - 

C. C4-. 

raAl  

a re (0, 	11To - 	- A a 8i 

Values of a, limo, e were calculated when determining the static 

margin. 

The longitudinal stability derivatives involve the above 

partial derivatives (see para. 4,3). 	If it is assumed, as suggested 

in para. 24-3, that the drag contributions are unaffected by distortion, 

then the effects of distortion on the stability derivatives may be 

demonstrated by evaluating (acL/aa)M, (8qatl)a, (8Crpa)w  (8Cm/81/1)a 
with and without distortion effects. This was done for the aircraft 

considered using the values of A, A H
o' 

etc. previously calculated, 

and these partial derivatives are plotted against q/iT (= M in this 

case) in Figs. 9 and 10. 	Only the case Onn  = 0 is considered, and 

curves are given for the rigid aircraft and for the aircraft with all 

distortion effects included (wing, fuselage and tail distortion). 

(au \ 

The derivative  

As might be expected, the curves describing the variation 

uf (acL/3a)M with q/q are very similar to those of A against 

GA. 	The tail contribution is of the order of 10 - 15 per cent 

of the wing contribution, so that it is not negligible. 

acra) 
The derivative c a a TI  

The curves for (8Cra/8a)m  were obtained frail the values 

of (8Cm/aCL) calculated when determining the manoeuvre margin 
/1 OCT\ 

and the values of 	already derived. 

/It will be • • • 
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do \ 
It will be seen that for the rigid aircraft 	MI is ,a a/ 21 

very nearly constant over the whole range. 	Since (60 /ac ) is m M 
decreased by increase of H (see 6.5) and (aCT  /aa)m  is increased 

•   

at the same time, the resultant change of (6Cn1/aa), is small. 

Distortion effects reduce both (aCm/aCL) and (dCL/aa)m  as 

speed is increased, so that (3C11/3a)m  decreases steadily with 

increase of Li for the flexible aircraft. 

acL  
The derivative  

() 

Since (3CL/31,1)a  is a 'constant incidence' derivative, 

the expression for it contains terms of the type a a& . The 

magnitude of (acL/all)a therefore depends on the maglitudes of 

aril, 
	 A 3A 

a, aT  and — Lk /OIL For small values of q/q -- is small  - 	 am . 
but a changes rapidly, whilst for high values of 	

\ 8A q/q 
324 

changes rapidly but a then changes slowly. 	The net result is 

(ac1,/am)a has a maximum value for moderate values of q/q. 

Distortion increases a and reduces —
ah 
 ; • the latter 

effect is dominant and there is consequently a reduction in 

(aDijand)a due to distortion which is nearly constant over the 

whole range. 

OC 
The derivative  a rTla  

7e have acm0/am = C
mo 
 = 0, and for the rigid aircraft 

(h-H
o
) is constant i.e. &El

o
/OH = O. 	For the rigid aircraft, 

therefore, the expression for (aCriall)a  quoted above is reduced 

to two terms, viz. 

(3A1  aA a -all (h-Ho) 	and am 	 -7C. G. 1 3 M aTo - A  1a 31Vii'' • 

The second term is small compared with the first (i.e. the wing 

contribution is large con7ered with tat from the tail) so that 

we have 

aCm 	i3A  
a — (h-H) 

\a M, 	• 	3M 	o  
a 

Since (h-Ho
) is constant, the form of the curve of 

(aCm/aM)a 
for the rigid aircraft is very similar to that of 

(ac/am)a' and thus 

i 	 aco (&or) (h-H ) 	) M, \ 7.) i cc 	 ❑ \ NI/ a  

&hen ... 

a 



-38— 

ax o When distortion effects are introduced, 	is no a lgi 
longer zero, and in fact the term (- Act

o
/am) is dominant, 

being large and positive. 	it low speeds, where a. increases 

rapidly as q/i is reduced, this term causes a large increase in 

(acm/aK)a. At higher speeds the increase is somewhat less 
although still considerable. 

Effects of distortion on stability derivatives  

For the aircraft considered, with C = 0, we see that 
mo 

distortion reduces (8C/3a)
M'  (80 m /8a)1,1 and (acL  /au)a  so that  

zw  mw  and zu are decreased. The effects on zw  and m are 

appreciable even at moderate speeds, but the effect on zu  will 

be serious only at high h and low CL. Distortion increases 

(aC/81.1) 	so that mu is increased and this effect is most 

marked at the lowest speeds. 	Tail contributions to m, m. will 
q w 

be decreased by distortion since both A and Al  are reduced. 

On the assumption that drag derivatives are unchanged by distortion, 

xu and x will not be affected. 

It must be emphasised that the above results apply only 

to the aircraft considered and for the condition C = 0, and 
TAO 

one must be cautious in attempting to generalise from these results. 

7. Concluding Remarks  

It is clear that there is no intrinsic difficulty in 

including distortion effects on longitudinal stability if frequency 

effects are neglected. The amount of calculation involved may, 

however, be considerable, especially if ring twist, camber and 

weight effects have to be included. 	If, therefore, there is good 

reason to believe that distortion effects are small (as they may 

be on a fighter-type aircraft with high stiffnesses) a simple crude 

assessment may be adequate. 	On a large bomber or transporteircraft, 

however, for which load factors and hence stiffngsses are likely to 

be lower, and which are likely to have higher aspect ratio wings, 

it may be essential to make a detailed analysis of distortion 

effects on the lines discussed. 	This is particularly true of the 

'podded engine' layout used in conjunction with thin sweet wings. 

For the aircraft considered in §6 the results show that if 

Cmo = 
0 neither compressibility nor distortion effects modify 

the static margin to any serious extent. When Cmo 
 is negative, 

however, both effects arc heavily destabilising, as far as the static 

margin is concerned. 	It therefore seems advisable to give a high- 

speed aircraft a layout which is as nearly symmetrical as possible 

about the plane of the wings. 

/List of References 
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3A1 	OA
1T 

a M P 
etc. 	 4.3. 

C
Lo 

Overall lift coefficient based on wing area 
in steady level flight = WA-eV2S 	 4.2. 

2.2.1, 2.2.2. 
2. 2. 3. mcw"Crat-ye ranir 7.ring pitching moment coefficients 

corresponding to C,..c w'  C Ltw' CLnw° 

2.2.2. 
Wing pitching moment coefficient about 
flexible wing mean aeroaynamic centre 

Fuselage pitching moment coefficiert (based 
on wing area) 	 4. 

4. 1 . CR 	2, -6i3V 
'Resultant vertical force coefficient' 

4. 1 . 
ST 11 

A1 "§" 	e a ) 

List of .2Epols 

Defined in pera.  

A 	 Wing lift curve slope with compressibility 
and distortion effects included 	 2.2.1. 

Ap 	 Rigid wing lift curve slope When compress- 
ibility effects are included. 	 G. 1 . 

A° 	 Value of A for condition n = 0 (i.e. 
neglecting inertia loading) 	 2.2.3. 

A
n 	 = (ac  /3r1) 	

2.2.3. 

As,Bs,Cs 	Superposition coefficients 	 2.1.1. 

A Lo  A, ) 	Tail lift coefficient derivatives (Ref.1) 
11 	' 	when compressibility and all distortion 

27
1'2'

etc.\ 	effects are included 

A
IT'

B
;T 	Tail lift and hinge moment derivatives 

corresponding to true tail-setting 	 3 
111 	angle 	 4.1. 

Bo'B1'
B2'

B3 Tail hinge moment derivatives when compress- 
ibility and all distortion effects are included Refs. 1,2. 

c 	 Standard mean chord 

CLw 	
7ing lift coefficient 	 2.2.1,2,3. 

CLcw'CLtireCLnw 'ring lift coefficient increments due to 
built-in camber and twist and wing weight 

°Law 	Wing lift coefficient due to incidence only 

C, 
iRro 	

= C
Lcw 
 + CLtw 

Wing pitching moment coefficient about rigid 
raw wing mean aerodynamic centre 

Refs. 1,2. 

2.2.2, 2.2.3. 

2.2.1, 2. 2. 2. 

2.2.2. 

2.2.2. 

(01110) 
wing 
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S 
F 

Defined in para. 

4-. 1. 
T / ' 1 

1 	-S \ A-o - a 
s.   

2.2.1. Wing incidence measured at root a 

S
T 

Sc  

S
TT 

4-. 1. 1.1.0 

4-. C. G. 

4.. 1. V
T 

Sc 

V. 

= 1+F 

Tail 

Volume 

Coefficients 

T 
4-. . 1 . 
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H , H' 
m m 

H H°  
0 0 

Hn 
0 

H
oR 

K , K' 
n n 

Stick fixed, stick free manoeuvre margins 	Refs. 1,2. 

Value of h corresponding to position of 
(flexible) wing mean aeronamic centre of 
lift due to incidence only - affix o refers 
to n = 0. 

'Inertial aerodynamic centre' position 

Value of H
o for rigid wing 

Stick fixed, free static margins 

Distance from tail aerodynamic centre to  
wing aerodynamic centre (corresponding to H0

0  
) 

Distance from tail aerodynamic centre to C.G. 
of aircraft. 

= 	2 ; angular velocity in pitch 

e 
T 

q 

2.2.1, 2.2.2, 
2.2.3. 

2.2.3. 

2.2.1. 

Ref. 

4.2. 4.1. (by 
implication) 

aT' °To 
Tailplane root incidences corresponding 
to 1T, 1To 
	 3. 

Tab angle corresponding to movement of pilots 
trimmer control 
	

3. 

Mean downwash angle at tailplane 	 2.3. 

E  a 
Mean downwash angle at tailplane 
root incidence 

due to wing 
G. 3. 

eo  
lean downwash angle at tailplane 
to CLwo 

corresponding 
2.3. 

e
n 	

Mean downwash angle at tailplane due to 
distortion of wing under inertia loading 	2.3. 

ea 
	 = 

a /: °a 

n 
	

= en/In
. n. 

11 
	 Elevator argle corresponding to movement of 

control column 

1
To 	

Tail setting angle corresponding to setting on 
ground (if 'fixed') or to movement of pilots 
control (if 'variable') 

T 
	 True (root) tail setting angle 	 3. 

2.3. 

2.3. 

3. 

3. 



_43- 

APPEND a  I 

CALCULATION OF AJ-IRODYTILT.10 LOADING ON RIGID  S'.?.'EPT "TINGS  

Several methods of calculating the lift distribution on 

swept winF,s have been produced. Among these are those due to 

IdUlthopp, Garner,1 
0 
 Falimer, Teissinger,

11 
De Young,12 Kuchemann7 

and )iederich13. 	Stanton Jones
14 

has derived empirical formulae 

based on the results of .geissinger which enable lift distribution 

to be calculated very rapidly for trapezoidal untwisted wings. None 

of these methods includes thickness, viscosity or compressibility 

effects. 

Of the methods quoted above, those duo to Farmer, 

Kulthopp and Garner might be described as 'lifting surface' theories 

by means of which estimates of span and chordwise lift distributions, 

lift curve slope and aerodynamic centre locus position may be 

obtained. 	All three methods require a considerable amount of 

computation if the full advantagesof the 'lifting surface' method 

are to be obtained. 

The other methods quoted are mainly modifications of the 

Prandtl 'lifting line' theory used for unswept wings and suffer from 

the disadvantage that reliable estimates of the aerodynamic centre 

1-mus position cannot be obtained. However, they require less 

computation than the true lifting surface methods. The method of 

Kuchemann is different from the others in that it uses assumed 

chordwise lift distributions for the tip, approximately mid-span, 

and root sections, with distributions at the intermediate sections 

based on an empirical interpolating relation. A modified version 

of the flat plate 'loading law' is used. 	It is thus possible to 

obtain an estimate of aerodynamic centre locus position, though the 

estimate cannot be more accurate than the initial assumptions 

involved. The method is, however, simple to apply and provides a 

reasonably accurate estimate of the spanwlse lift distribution, and 

it was used in the example of §6 in this report. 
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APPENDIX II  

CALCULATION OF DISTORTION OF STEPT V O IG  UND,!;R GITEN 

/1.10LIMUAIC LOADING 

The mode of distortion of a swept sing under load is 

different from that of an unswept wing, due to the effects of the 

oblique restraint at the root. Whereas an unswept wing can be 

treated as a simple cantile-ier beam in bending and as a tube in 

torsion, if we accept the concept of a straight flexural axis, a 

swept wing presents a more difficult problem and the flexural axis 

concept cannot strictly be used. Near the root the wing tends to 

bend about the root (streamwisc) chord, due to the restraint, but 

the outer portion of the wing behaves more like a straiqht wing 

i.e. it bends about a line roughly normal to the leading and 

trailing edges 	Just outboard of the root there is a 'transition' 

between these two types of distortion, so that the overall mode of 

distortion is complicated. 

For the purpose of estimating deflections as required for 

aeroelastic calculations it is possible to use the simple beam theory 

for a high aspect ratio swept wing. The root restraint effects are 

confined to a small fraction of the semi-span when the aspect ratio 

is high, 	The wing is then treated as a straight wing from the 

structural point of view, but the slopes and twists are resolved 

into the line of flight to give the incidence changes. 	There is 

some ambiguity about the position of the effective root, and this 

method can only be approximate. 	It is, however, quite widely used 

and it is put forward in refs. 3, 20 and 21. 

Experimental evidence (ref. 19) shows that as the aspect 

ratio is decreased and sweep angle is increased this 'effective 

root' method ceases to yield useful results, because the region in 

which root restraint effects are large now occupies a large fraction 

of the semi-span. The deflections of quite a large portion of the 

wing cannot then be estimated by this simple approach. 	It is 

possible to make a correction for moderate aspect ratios (ref 20) 

but for low aspect ratios (or where root stress distributions arc 

required) it will be necessary to use a more refined approach. 

The simple beam theory can be applied together with a 'self 

equilibrating' stress system (ref, 22), and this method has been 

used successfully in practice. More exact methods have been put 

forward (e. g. ref 23) but these are somewhat more complicated. 

Once the simple beam theory is discarded the simple integrations 

previously used to obtain deflections can no longer be used, and 

matrix or some other methods must be employed in conj•inction with 

/influence 



influence coefficients. A review of recent methods considered 

in the U S.A. is given in ref. 24.. 

Finally, we ram'_ note that with a very low aspect ratio 

(delta) wing, there may be changes of camber which produce effects 

of the same order of magnitude as the twist effects. 

APPENDIX III 

3STERTION  OF 7T''''."; CON=UTION  TO in 

With a swept wing the wing, contribution to m may be 

appreciable compared with the tail contribution. 	For the example 

of §6 m 	was estimated as follows. qvir 

Following ref. 1, we obtain a change of manoeuvre margin 

for an increment of wing pitching moment LC , arising from the 
1114V 

wing contribution to ma, given by 

6c nqw  f. 
Lx.Hm nC 	

- 
L 

is the pitching moment increment due to rotating the wing CM  
with constant angular pitching velocity q. Suppose all the wing 

lift to be generated at the quarter 

chord line, and that the wing is 

rotating about the point A, distance 

x
o 

from the root quarter chord point 

taken as the origin. 

The incidence change at the point (x,y) on the quarter chord 

line due to a is then 

q (x-x ) 0 a 	v  

and. x = y tan 4-5°  = Y 

i. e.  
ci(Y—x.) 

' = 17--  • 

qx 
The component - v

o 
 is constant along the span. 

For the purpose in hand it is sufficient to neglect 

/distortion ... 
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distortion effects, i.e. we shall determinem 7  for the rigid wing. qxg   

The constant incidence change 	provides zero 

pitching moment contributions about the rigid wing mean aerodynamic 

centre. 7e need therefore consider only the incidence change 

22 
V - V ' 	' 

This is an incidence distribution that increases linearly with 

span rise distance from the root. 

From the calculations of (ii) in §6.1 for the case c=q1, 

we have 	= 0.0775 p.)r radian incidence at tip. 	Hence it 

follows that the pitching moment coefficient about the rigid wing 

mean aerodynaLlic centre due to the rotation at nnTnar velocity q is 

ZSC 	= - 0.0775 LR. 	v   

In this case, b/2,  = 0.907. 

nO, 
n7 	iJ 	V Also q == V 	2111  

C-  i.e. 	= 	2[1. ; 	] . 
L 	1 IjV ) 

Therefore 

0.0775 AR  x 0.907 
A H = 

A
raW  

m 	nCL 	 2111  

0.070 AR  

2L1  

The corresponding tail contritution is 

V
T 
A
l 

2[1i  

1\.1  and 	are of the same order, and VT  0.3, so that in this 

case in ; 253% m 
qu 	 qtail 

Note that L C 	is the pitching moment about the mean 

aerodynamic centre and not the centre of gravity. 	This is, however, 

consistent with the use of k instead of IfT  in the formula: 

naT  = 7r-- and also with the assumption already made in §4.2 that 

mqu 
is independent of C. q. position. 
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