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A new method using the cubic B-spline curves with nominal uniform knot set to parameterize the 
geometry is proposed to deal with shape optimization problems. In the method, the control points of the 
B-spline curves are set to be the design variables in the optimization scheme. A knot insertion 
algorithm has been introduced in order to keep the geometry unchanged whilst increasing the number 
of control points at the final optimization stage. The super-reduced idea and the mesh refinement are 
also employed to deal with the equality constraint and speed up the optimization process. The method 
is applied to two problems. The first is a 2-dimensional Poisson problem, and the second is an airfoil 
design problem. In both applications, the results show that the new method is much more efficient 
when compared with the traditional methods. In the airfoil design problem, the drag of the airfoil has 
been reduced significantly with much less function calls. 
 
Key words: Shape optimization, B-spline, knot-insertion, control points. 

 
 
INTRODUCTION 
 
Shape optimization problems or shape design problems 
can be regarded as a problem of finding a shape which 
can achieve a given performance while satisfying some 
constraints. There are two kinds of methods in 
optimization, one is gradient-based method, and the 
other is global method, such as the method based on the 
genetic algorithm (Holst and Pulliam, 2001; Wah and 
Chen, 2000). 

The global method is aimed to find the global optimum. 
Despite this advantage, the computational cost of this 
kind of method is usually very expensive because the 
numbers of the function calls are usually huge. The 
gradient-based method has the efficiency of finding a 
local optimum within a finite number of iterations. 

With gradient-based method, the gradient information is 
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necessary to minimize the objective function. In shape 
design problems, to obtain the gradient of the objective 
function with respect to the design variables, one usually 
needs the gradient of the state variables with respect to 
design variables, named sensitivity. Some well-known 
methods to compute the sensitivity are the finite 
difference method (Lee and Eyi, 1991; Lee and Eyi, 
1993), the complex variable method (Anderson and 
Nielsen, 2001), automatic differentiation (Bischof et al., 
1992; Bischof et al., 1997; Rostaining et al., 1993), 
sensitivity analysis (Borggaard and Burns, 1994; Burkardt 
and Gunzburger, 1995), and the adjoint method 
(Jameson, 1988; Jameson, 1995; Jacob, 1982; 
Pironneau, 1973; Pironneau, 1974; Ta'asan, 1995).  

Among these methods to compute the sensitivity, the 
adjoint method is particularly useful in the shape 
optimization where there is usually a large design space. 
In this method, the computational cost of computing the 
sensitivity  is   independent   of   the   number   of   design  



 
 
 
 
variable while dependent of numbers of constraints. 
Another good method sharing the same feature is the 
reverse mode of automatic differentiation. 

In this paper, a new method using the cubic B-spline 
curves with nominal uniform knot set to parameterize the 
geometry is proposed. The new optimization method is 
aimed at achieving quadratic convergence of Broyden–
Fletcher–Goldfarb–Shanno (BFGS)-based method and 
superior efficiency as shown in the later content. This 
would accelerate the optimization process and achieve 
the better efficiency while kept the accuracy unchanged. 
With the idea of using knot insertion and the B-spline 
parameterization, the initial number of control points can 
be decreased which potentially decrease the number of 
optimization iterations. Then the knot insertion algorithm 
is introduced in order to keep the geometry unchanged 
whilst increasing the number of control points at the late-
stage of optimization. The super-reduced idea and the 
mesh refinement are also employed to convert the 
constrained optimization problem into an unconstraint 
optimization problem and speed up the optimization 
process. Finally the optimum shape is found by the new 
method. 

One of the aims of the method proposed in this paper is 
to improve the efficiency and enlarge the search space at 
the final optimization stage in order to achieve a better 
value of the objective function efficiently. 
 

 
THE DESCRIPTION OF THE DEVELOPED METHOD 
 

To solve a general shape optimization problem, an optimisation 
scheme is necessary. The new method, a BFGS-based method, is 
used because of its quadratic convergence and better efficiency. 
The selection of the search direction and the update of approximate 

Hessian matrix follow the same rule as BFGS method (Fletcher, 
1987) do: 
 

Sk=-H(xk)
-1

g(xk)                                                  (1) 
 

T T
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                                  (2) 

 

where pk=xk+1-xk, qk=g(xk+1)-g(xk), and xk,gk denotes the point and 
the gradient at the k-th iteration, respectively. 

Using any gradient-based methods requires user to supply the 
design variables. In our case, B-spline is chosen to parameterize 
the shape, therefore the objective function becomes a function of 
the control points of the B-spline curves, denotes by F(α1,α2, …,αn), 
where α=(α1, α2,…,αn) is a set of  control points to describe the 

geometry boundary of spatial domain (  ). 
The number of control points, n for the initial shape can be 

chosen as less as possible. The method first uses the control points 
of B-splines as design variables to generate the shape. Based on 
the shape, the value of the objective function and the gradient are 
computed. The optimizer will repeat this process until a certain 
criteria is reached. The criteria is chosen as: 
 

k 1 k
F F


    

 
where η is a sufficient small value to demonstrate whether the value 
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is close to the optimum value. Once this criterion is met, the knot 
insertion algorithm and the mesh refinement start. The knot 
insertion algorithm (Farin, 2002) will insert numbers of knots to the 
current knot set and increase the corresponding numbers of control 
points while the geometry is kept unchanged. In that case, the 
numbers of control points are increased from n to m where m>n. 

Suppose  = ( 1 , 2 , …, n )  is the control points which defines 

the geometry before knot insertion, while 
 = (


1 ,


2  ,…, 


m ) 

is the control pints which defines the geometry after knot insertion. 
Then, the following equation is obtained: 

 


1 2
( ) ( )        m>n                   (3) 

 
The knot insertion algorithm does not change optimization because 
the objective function is a function of the geometry which is kept 
unchanged. 
 

1 2
F( ) F( )                        (4) 

 
Introducing knot insertion algorithm is the core idea of the new 
method. Besides this, the method includes the mesh refinement, 
super-reduced idea. These will be discussed in the following 
subsection. The procedure of using the new method will be 
described thereafter. Finally the advantages of the method will be 
addressed. 
 
 
Knot insertion algorithm 

 
A knot insertion algorithm (Farin, 2002) can allow user to insert a 
knot into a B-spline curve without changing its shape. After knot 
insertion, the B-spline evaluation (p(u)) function changes from 

 
n
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where k is the order, u is the parameter value, di is the i-th control 
points for the B-spline curve before knot insertion and di

1
 the i-th 

control points for the B-spline curve after knot insertion.The second 
knot set differs from the first one in having an additional knot 
inserted somewhere in the interval [uk, un+1 ]. 

If a knot û is to be inserted into the knot set, coinciding with the 
knot up+1 which may already have multiplicity s (if this does not 
occur in the knot sequence then s =0), and the new knot set is 

denoted as: 
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then the number of control point has to increase form n to n+1 as 
the number of the previous knot set increases from n+k to n+k+1. 
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Since B-spline has a local modification property, only some of the 
control points need to change by a linear interpolation of the 
previous control points; that is: 
 

1 1 1

i i i i i 1
d d (1 )d


         i=p+k+s+2, p-k+s+3, …, p       (8) 

 
where:

       1 1 1 1

i i i k i i i k 1 i
/ /

  
           . 

This is the core idea of the knot insertion algorithm. The details of 
the algorithm can be found in [8]. By repeating the knot insertion 
algorithm, the control points can be increased as required. 

The knot insertion algorithm allows the user add additional 
control points, i.e. design variables in optimization, to the B-spline 
curve without changing the geometry. Therefore, it is possible for 
the user to start the optimization iteration a few control points, and 
end with a large number of design variables to represent the 
geometry. 

The purpose of using knot insertion algorithm is to decrease the 
numbers of optimization iterations while obtaining a better value of 
the objective function.  

In shape optimization, how to represent the geometry is an 
important issue. Hicks, Henne, Vanderplaats (Hicks and Henne, 
1977; Hicks and Vanderplaats, 1977) use shape function to 
parameterize shape changes. Jameson employs the coordinates of 
every surface point as design variables, which makes a large 
design space. This approach removes the geometric model from 
the optimization loop; however, it may lead to discontinuities on 
gradient which can be eliminated by a smoothing technique. An 

example of choosing B-splines to parameterize the geometry is 
given by Anderson and Venkatakrishnan (1997). Once the shape is 
parameterized, the next issue is to discretize the geometry as 
shown in the next subsection. 
 
 
Mesh refinement 

 
The purpose of using mesh refinement is to make the optimizer do 

most of iterations on the coarse grid and less on the refined grid. To 
refine the mesh, there are basically two choices: namely local   
refinement, and global refinement. Since the global refinement may 
introduce inefficiency, local refinement is used in this paper. 

Now the questions are how coarse the initial mesh and how 
refine the final mesh should be. To answer the first question, let us 
recall the Taylor's expansion:  
 

T 2 T

k k k k k k k k k

1
F(x s ) F(x ) [g] s [s ] Hs

2
              (9) 

 
Where βk, a positive real number, is the step size in the search 
direction sk, g and H denotes the analytic gradient and analytic 
Hessian matrix respectively, sk=-H(xk)

-1
g(xk). 

In order to obtain a descent in the value of objective function, the 
following condition: [g]

T
·sk<0 can be adopted which is a sufficient 

condition, that is, if: 
 
[g]

T
·H(xk)

-1
g<=0 where g

h
=g(xk)                                         (10) 

 
Is satisfied, then it is guaranteed that the optimizer will be able to 
find a smaller than value than F(xk). 

In the above formula, g
h
 represents the approximated gradient in 

a mesh where the mesh size is h, and H(xk) is an approximated 

Hessian matrix by BFGS update, which is a positive definitely 
matrix and the initial approximation for such a matrix is usually the 
unit matrix. 

 
 
 
 
To answer the second question, one can use the error analysis to 
find out how the error (mainly discretization error) influences the 
value of F, or use the consist gradient theory (Mohammadi and 
Pironneau, 2001; Polak, 1984). In this paper, the error analysis is 
used.  
 
 
Super-reduced idea for computing gradients 
 
Shape optimization problem is usually a PDE-constrained 
optimization problem in CFD area with or without other constraints. 
For a shape optimization with one equality constraint, 
 

minF( , ( ))


     subject to c(α)=0                           (11) 

 
where α=[α1, α2,…,αn]

T
 is a column vector which consists of n 

numbers of design variables, Φ(α) represents the partial differential 
equation, and c(α) is the constraint. 

It is obvious that solving an unconstrained optimization problem 
is much easier than solving a corresponding constrained 
optimization problem. The super-reduced idea, see (Xie, 2002), is 

introduced to convert the constrained optimization problem into an 
unconstrained optimization problem. The idea is to solve the PDE 
constraint firstly in each optimization in order to reduce the 
aforementioned optimization system. The second step is to solve 
the other constraint to super reduce the system. 

In the new method, a design variable, say αi is chosen, and this 

design variable, that is: 
 
αi=E(α1, α2,…, αi-1, αi+1,…,αn)                          (12) 
 
where αi is a dependent design variable and all other design 

variables are independent. 
Therefore, the constrained optimization problem (Equation 11) 

becomes the following unconstrained optimization problem:  
 

1 2 i 1 i 1 n
minF( , , ..., , , ..., )

 


      

 T

1 2 i 1 i 1 n
[ , , ..., , , ..., ]

 
                    (13) 

 
provided that the partial differential equation is solved in each 
optimization iteration. 

The solution of the above system is equivalent to the solution of 
the Lagrange system stated below: 
 

1 2 n 1 1 2 n 1 1 2 n
minL( , , ..., , ) minF( , , ..., ) c( , , ..., )               (14) 

 
as long as the selected dependent variable is uniquely defined by 
other design variables. The mathematic proof for this argument is 
simple and given in Xu (2007). 

 
 
The procedure for the developed optimization method 

 
The procedure of the new method can be summarized as follows: 
(1) Start from the initial design point x0, the inverse matrix of 

approximated Hessian matrix, B0.  
(2) Evaluate the objective function, and evaluate/update the 
gradient. 
(3) Set the search direction sk=-Bkgk, Check the magnitude of the 
search direction sk to avoid a potentially self-intersected shape. Use 

the line search method to find the step size   and keep the 

constraint constant all the times. 



 
 
 
 

(4) Update the design point xk   xk+1. Evaluate the gradient at 

the new point xk+1. 

(5) Decide whether the mesh refinement and the knot insertion 
algorithm should be employed. 
(6) If the knot insertion algorithm is required, produce the new 

design point 


kX , compute the value of the objective function and 

the gradient. 
(7) Go back to step 2 if the termination criteria are not satisfied, 
otherwise output the result. 
 
 
The advantages of the developed optimization method 

 
The advantages of the developed optimization method are as 
follows: 

Using this method, an optimum shape with a good value of the 
objective function can be found efficiently. Generally using less 
design variables, the optimizer will also require less iteration to 
complete. However the value of the objective function obtained may 
not be very good, particularly in the case where the value of the 

objective function is sensitive to the shape change. On the other 
hand, using a large number of design variables, the optimizer may 
require a large number of iterations to find an optimum shape. The 
new method can find a good value of the objective function with 
fewer initial design variables and less iteration. 

The new method shares the quadratic convergence feature of the 
BFGS method. Furthermore, its efficiency for finding an optimum 
shape is better than the BFGS method as shown later. 

It makes the BFGS based methods possible for problems with a 
large number of design variables. Generally the BFGS method is 
not a good choice in this case because of its computational cost on 
the matrix operation. The new method will limit most of the matrix 
operations to those of small dimension.  
 
 
Application to 2-dimensional Poisson problem  
 

Problem description 

 
For the Poisson equation stated below 
 

2 1.0    in Ω                   (15) 

 
with the boundary condition  
 

Φ=0 on  , 

 
the purpose is to find an optimum shape to maximise the maximum 
value in the domain (Ω) : 
 

max


max


                          (16) 

 
subject to a geometric constraint: area of the domain, A(Ω) is a 
constant. 
After reorganizing, the objective function can be chosen as: 
 

F max


                         (17) 

 
 
Technique requirements 

 
To solve this problem, the items below are necessary: 
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Representation of the geometry 
 
Two cubic B-spline curves with nominal uniform knot set are chosen 
to parameterize the geometry. Therefore the objective function 
becomes a function of the control points and the control points 
become the design variables in this optimization scheme. 
 
 
Mesh generator 
 
A mesh generator can produce a mesh file for input geometry. The 
BAMG is chosen as the mesh generator (INRIA, BAMG v0.68, 
http://www-rocq1.inria.fr/gamma/cdrom/www/bamg/eng.htm, latest 

access time 20/05/2005). 
 
 
Poisson solver 
 
A PDE solver to solve the Poisson equation is needed. The solver 
in use is CRANDNS, which is a parallelized FORTRAN code 
(Becker and Thompson, 2005). 
 

 
Optimization scheme 
 
 
Geometry representation 
 
Two B-spline curves are chosen to parameterize the upper 
geometry and the lower geometry respectively. In the paper, the 
distance between the first and the last control point is fixed since 

otherwise, it is quite possible to get an open shape or self-
intersected shape. The expression for each of the two B-splines 
curves is given by the equation below: 
 

n

i i

i 1

y y N ,k(u)


   0 u 1                    (18) 

 
where yi is the i-th control point in the B-spline curve and the B-
spline basis function is defined as: 
 

Ni,1(u)=1 if 
i i 1

u u u

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Ni,1(u)=0 otherwise 
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 
  (19) 

 
Suppose the knot set below is chosen: 
 

kk
n k

1 2 3 n k
(0,0, ...,0, , , ..., ,1,1, ...,1)

n k 1 n k 1 n k 1 n k 1




        


 

 
which is a nominal uniform knot set. In this case, the area of the 
shape is given by the equation below: 
 

U L

1

U U

0

1

L L

0

A( ) A( ) A( )

A( ) (y (x))dx
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 

 





                                         (20) 



5700            Sci. Res. Essays 
 
 
 

 
. 
 

 (a) (b)  
 

Figure 1. Initial shapes. 

 
 
 
provided that the upper geometry Γ

U
 and the lower geometry Γ

L
 are 

not crossed. In the above equations, y
U
, y

L
 denote the upper curve 

and the lower curve respectively, A
U
, A

L
 denote the area of the 

upper part and the lower part, respectively. 
The derivative of the area with respect to the control points in the 

upper curve is given by the equation below:  
 

1

i 0

A
Ni,k(u)du

y




                      (21) 

 
If a cubic B-spline curve with nominal uniform knot set is used, the 
gradient of the area with respect to the control points in the upper 
B-spline curve is given by 
 

i 4 i

i

u uA

y 4







   i=1,2,…,n                          (22) 

 
For the control points in the lower B-spline curve, the partial 
direviative is given by: 

 

i 4 i

i

u uA

y 4




 


 i=1,2,…,n                          (23) 

 
and the area of the whole domain is stated as below:  
 

n m
j 4 ji 4 i

i j

i 1 j 1

u uu u
A (y ) (y )

4 4



 


                     (24) 

 
where n, m is the number of control points in the upper curve, and 
lower curve, respectively. 
 
 
The finite difference method to compute the super-reduced 

gradient 
 

The geometry   is a function of design variables, i.e., control  

points of the B-spline curves   (specifically  (y1,y2,…,yn) are the 

control points of the B-spline curves). The area of the domain 
needs to be fixed, which is obviously a linear constraint, see 
Equation 24. Therefore a clever choice is to move one of the control 
points in order to keep the area constant rather than deal with the 

linear constrained optimization problem. Now the problem is 
redefined as: 
 
F=F(y1,y2,…,yn-1)                              (25) 
 
with yn eliminated in each optimization iteration. 

The super-reduced gradient is computed by using the following 
finite difference method so that the constraint is kept unchanged: 
 

1 2 3 n1 2 i 1 i i 1 n

i

F(y ,y ,y ..., yF(y ,y , ..., y ,y ,y , ..., y )F

y

 
   

 
  

 i=1,2,…,n-1   (26) 

 

n

F
0

y





 

 

where δ is given by solving the following constraints: 
 
A(Ω(y1,y2,…,yi-1,yi+ε,yi+1,…,yn+δ))=k k is a constant 

 
 
RESULTS 
 
The developed method has been used for varying initial 
shapes, varying accuracy level placed on the magnitude 
of gradient vector, different number of control points, and 
different objective functions. In all cases tested, the 
solution converges, the optimum shape is found. 

Some optimum shapes are obtained without using the 
mesh refinement. One of them is hereby presented. The 
optimizer starts from the intial shape 1 (Figure 1.a). 

After 103 optimization iterations, it finds the optimum 
shape  (Figure 4)  and  the  optimal  value  of  the 
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Table 1. Results of shape optimization problem using mesh refinement. 
 

Type Starting guess Tolerance Its Value of F Final shape CPU (h) 

Without KI Figure 1a 2.5e-3 94 -0.062323 Figure 2a 2.7266 

With KI Figure 1a 2.5e-3 37 -0.062323 Figure 3a 0.82251 

Without KI Figure 1b 3.5e-3 48 -0.062280 Figure 2b 1.3596 

With KI Figure 1b 3.5e-3 18 -0.062302 Figure 3b 0.53511 

Without KI 4-star shape 4.5e-3 62 -0.062110 N/S 1.4697 

With KI 4-star shape 4.5e-3 33 -0.062072 N/S 0.70719 

 
 
  

(a) (b)  
 

Figure 2. Optimum shapes produced without using the knot insertion algorithm. 

 
 
 Figure 3. 

 
 (a) (b)  
 
Figure 3. Optimum shapes produced with the new method. 

 
 
 
objective function which is -0.062202.  

All the data in Table 1 are produced with mesh 
refinement integrated. In Table 1, it denotes the iteration 
numbers, KI is an abbreviation of knot insertion, N/S 
means not shown. 

For the different initial shapes as shown in Table 1 and 
pictures, the new method starts from 22 control points, 
and the initial mesh has about 3300 triangles. When the 
knot insertion algorithm is required, additional knots are 
uniformly inserted into the existing knot set, and the 
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Figure 4. Optimum shape for initial shape 1.a without using mesh 
refinement. 

 
 
 
number of control points becomes 40. When the mesh 
refinement starts, a fine mesh is produced. It has about 
13,000 triangles.  

The idea of the method is presented previously. There 
are different ways to fulfil the idea. For example, one can 
locally insert knot to achieve the requirements on the 
curvature instead of inserting knots uniformly.  

As shown in Table 1, with the knot insertion algorithm, 
the number of iterations has been decreased in various 
cases. In the tested cases, the current method saves 
CPU time by about 69.8, 60.6, and 51.9%, respectively. 
 
 
Comparing with BFGS 
 
The BFGS method is regarded as one of the best 
methods in optimization, hence, it is chosen for 
comparison with our newly developed method. The 
BFGS method used in the paper has been enhanced with 
the following modules: super-reduced idea, the geometry 
model, and the mesh refinement in order to deal with the 
constrained shape optimization problems. The 
convergence history comparison between the new 
method and the BFGS method is shown Figures 5 and 6 
where the initial shapes and the way of mesh refinement 
used are exactly the same in both methods. 

In Figure 6, the value of the objective function in the 7-
th iteration actually increases instead of decreases. This 
is because the shape is going to be self-intersected, and 
the algorithm produces a new point to replace it. 

Application for airfoil design 
 
The purpose of this application is to find optimum shapes 
to minimize the drag of transonic airfoils subject to some 
constraints of design conditions. The constraints are 
constraint for keeping the lift coefficient constant and 
constraint for keeping the maximum thickness constant; 
 
 
The geometry representation 
 
In this application, it follows Zhong and Qiao's work 
(Zhong and Qiao, 1994). In their work, the shape of the 
airfoil is formed by a base shape plus shape change 
where the shape change is parameterized by the 
coefficients times corresponding shape functions. 
Therefore, the shape of the airfoil is defined by the 
following equations. 
 

n

U ini i i

i 1

Y( ) Y( ) a f (X)


                               (27) 

 
m

L ini i i

i 1

Y( ) Y( ) b g (X)


                             (28) 

 
Where Y(ΓU), Y(ΓL) represent the y coordinates of the 
upper geometry and the lower geometry of the airfoil 
respectively, Y(Γini) is the y coordinates of the base airfoil,  
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Figure 5. Performance comparison with BFGS method (without using mesh 
refinement). 

 
 
 

 
 
Figure 6. Performance comparison with BFGS method (using mesh refinement). 

 
 
 
or initial airfoil, fi(X), gi(X) are shape functions. 

The shape functions are chosen based on Hicks and 
Vanderplaats's work (Hicks and Vanderplaats,  1977), 
and given by the following equations: 
 

i

i

n

i m X

X (1 X)
f (X)

e



                     i=1               (29) 

 
in2

i
f (X) sin ( X )             i=2,3,4,5             (30) 

 
in the design case of RAE2822.In the above equations, 
for i=1, m1=20,n1=0.25 is selected, and it's peak occurs at 
about 1.2% chord position. For i=2,3,4,5, ni=log 0.5/log Xi 
isused to place the peak at Xi, which occurs at 
0.2,0.4,0.6.0.8 respectively. In the design case of NACA 
0012, eight shape functions are chosen to represent the 
shape change, which will be described in more details 
later. 

For the new method, the shape changes are 
parameterized by cubic B-spline with a nominal uniform 
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Table 2. Performance comparison for the two methods in design 
case of RAE2822  
 

Optimization method Cd Initial Cd NFC CPUPFC 

EXTREM 0.0087 0.0116 599 0.22246 

New Method 0.0077 0.0116 177 0.22418 

 
 
 
knot set. The geometry of the airfoil is given by the 
following equation. 
 

n

U ini i i

i 1

Y( ) Y( ) P N (X)


                                   (31) 

 
m

L ini i i

i 1

Y( ) Y( ) Q N (X)


                            (32) 

 
where Pi, Qi are the control points of the B-spline and 
Ni(X) are the base functions of the B-spline. In these 2-
dimensional design cases, Pi, Qi can be regarded as the 
value of the y co-ordinates of the control points and the 
value of the x co-ordinates of the control points is the 
parameter. 
 
 
The flow solver and the optimization algorithm 
 
The transonic airfoil analysis code used in this paper is 
the NPUFOIL program developed by Qiao (Zhong and 
Qiao, 1994). The program is based on a combination of 
the full potential equation solver and the boundary layer 
flow analysis. The flow and the aerodynamic 
characteristics are computed via viscous/in viscid 
iteration. 

In Zhong's paper (Zhong and Qiao, 1994), the direct 
search EXTREM (Lee and Eyi, 1991) optimization 
method developed by Jacob is used. EXTREM method is 
also employed in this paper and the results obtained are 
compared with those achieved by using the new 
optimization algorithm presented in previous content in 
two different design cases in the following sections. One 
design case is based on using RAE 2822 as the initial 
airfoil, the other uses NACA 0012. 

 
 
RAE2822 
 
In this design case, the initial airfoil RAE2822 is chosen. 
The purpose is to get an optimum shape under the 
design conditions: Mach number Ma=0.75, and Reynolds 
number Re=2.0×10

6
 while the lift coefficient Cl is kept to 

be 0.7. 
By using the EXTREM method, the optimum solution of 

the shape coefficients is: 

a1=0.39521   a2=-0.26958   a3=-0.030086   a4=0.23385   
a5=0.20672 

For the new method, then the optimum solution of the 
control points is obtained as follows: 
P1=-0.29105 P2=-0.42379   P3=-0.48731  P4=-0.36079 
P5=-0.32293 P6=0.36791 
P7=0.30644 P8=0.091182 P9=0.081497.  
The performance comparison for the two methods is 
given in Table 2: 

From Table 2, we can see that using the EXTREM 
method, the drag coefficient is reduced by 25%, whereas 
using the new method, the drag coefficient is reduced by 
about 34%. Moreover, the new method uses only 177 
function calls while the EXTREM method requires 599 
function calls. The total CPU time used is reduced by 
around 70%. 

The comparison of the optimum shape and pressure 
distribution are shown in Figures 7 and 8, respectively. 
Figure 7 demonstrates the change of the geometry from 
the initial to the optimal and Figure 8 shows that the 
strength of the shock is very much weakened which 
results in a significant reduction in the shock wave drag. 
Hence the total drag is also reduced. 
 
 
NACA0012 
 
In this design case, the symmetric airfoil NACA0012 is 
chosen as the initial geometry. The lift coefficient Cl=0.5, 
Mach number Ma=0.77, and the Reynolds number 
Re=6.5×10

6
 are kept unchanged. When the EXTREM 

method is employed, 8 shape functions are used to 
parameterize the geometry whilst in the new optimization 
algorithm, five free control points are used to 
parameterize the geometry and at the late stage nine free 
control points is used to generate a desired geometry. 
The shape functions chosen are given by the following 
equations 
 

in4

i
f (X) sin ( )           i=1, 2, 3, 4, 5                (33) 

 
in4

i
f (X) sin ( (1 X) )    i=6, 7, 8                 (34) 

 
In the above equations, for i=1, 2, 3, 4, 5 ni=log 0.5/log Xi 
isused to place the peak at Xi, while ni are 0.06, 0.13, 0.2, 
0.4, 0.6 respectively. For i=6, 7, 8, assigning n6=n3, n7=n2, 
n8=n1 makes the peak occur at 0.8, 0.87, 0.94.  
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Figure 7. Initial and optimal geometry for RAE 2822. 

 
 
 

 
 
Figure 8. Initial and optimal pressure distribution for RAE 2822. 

 
 
 
By using the EXTREM method, the optimum solution of 
the shape coefficients is obtained as follows:  
a1=-0.045544   a2=-0.21081   a3=-0.10340   a4=0.16878   
a5=0.42756  
a6=1.6056        a7=0.74775     a8=0.79883 

For the new method, the geometry is first 
parameterized by five free control points, and finally it 
reaches the optimum solution which has nine free control 

points and the drag is reduced from 0.0182 to 0.0070.The 
optimum solution of the control point is: 
P1=-0.571028  P2=-0.70975  P3=-0.41511 P4=0.13373  
P5=0.78084  P6=1.3277 
P7=0.98959     P8=0.56642    P9=0.13606 
The performance comparison for the two methods is 
given by Table 3: 

In Table 3, NFC denotes number of function calls; 
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Table 3. Performance comparison for the two methods in design case of 
NACA0012.  
 

Optimization method Cd Iteration number NFC CPUPFC 

EXTREM 0.0070 N/A 408 0.22246 

New Method 0.0070 20 233 0.22418 

 
 
 

 
 
Figure 9. Initial and optimal geometry for NACA 0012. 

 
 
 

 
 
Figure10. Initial and optimal pressure distribution for NACA 0012. 

 
 
 
CPUPFC refers to the CPU time per function call. 

From Table 3, we can see that using the EXTREM 
method and the new method, the drag coefficient is 
reduced by about 62%. The same low drag coefficient is 
also achieved by using the new method. However using 

the new method only requires 233 function calls and it 
saves about 43 % total CPU time compared with the 
EXTREM method.  

The comparison of the optimum shape and pressure 
distribution are shown in Figures 9 and 10, respectively. 



 
 
 
 
Figure 10 shows that the shock strength is very much 
weakened which results in a significant reduction in the 
wave drag and consequently of the total drag of the 
airfoil. 
 
 
NOMENCLATURE  
 

Ω, spatial domain;  , boundary of spatial domain; F, 

the objective function; 
Fk, the value of the objective function at the k-th iteration; 
xk, the point at the k-th iteration; g, the gradient of the 
objective function with respect to design variables; sk, the 
search direction at the k-th iteration; Φ, state variable; H, 
Hessian matrix; H

-1
 B, the inverse matrix of Hessian 

matrix; di, the i-th control points in B-spline; yi, the y-
coordinate of the i-th control points in B-spline curve; ui, 
the i-th knot in the knot set of B-spline; α, the set of 

design variables before knot insertion, vector;   the set 

of design variables after knot insertion, vector; BFGS, 
Broyden–Fletcher–Goldfarb–Shanno. 
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