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Abstract

An Automatic Target Recognition (ATR) system is a sensor which is usually

able to recognize targets or objects based on gathered data. The application

of automatic target recognition technology is a critical element of robotic war-

fare. ATR systems are used in unmanned aerial vehicles and cruise missiles.

There are many systems which are able to collect data (e.g. radar sensor,

electro-optic sensor, infra-red devices) which are commonly used to collect

information and detect, recognise and classify potential targets. Despite sig-

nificant effort during the last decades, some problems in ATR systems have

not been solved yet.

This Ph.D. tried to understand the variation of the information content into

an ATR system and how to measure as well as how to preserve informa-

tion when it passes through the processing chain because they have not been

investigated properly yet. Moreover the investigation focused also on the

definition of class-separability in ATR system and on the definition of the

degree of separability. As a consequence, experiments have been performed

for understanding how to assess the degree of class-separability and how the

choice of the parameters of an ATR system can affect the final classifier per-

formance (i.e. selecting the most reliable as well as the most information
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preserving ones).

As results of the investigations of this thesis, some important results have

been obtained: Definition of the class-separability and of the degree of class-

separability (i.e. the requirements that a metric for class-separability has

to satisfy); definition of a new metric for assessing the degree of class-

separability; definition of the most important parameters which affect the

classifier performance or reduce/increase the degree of class-separability (i.e.

Signal to Clutter Ratio, Clutter models, effects of despeckling processing).

Particularly the definition of metrics for assessing the presence of artefacts

introduced by denoising algorithms, the ability of denoising algorithms in

preserving geometrical features of potential targets, the suitability of current

mathematical models at each stage of processing chain (especially for clutter

models in radar systems) and the measurement of variation of information

content through the processing chain are some of them most important issues

which have been investigated.
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answer of the second question maximizes its information content when it

helps the researchers in understanding the problem (i.e. answering ‘Why an

event happens?’).

The reason of viewing the scientific research in such a way can be summa-

Figure 1: How Teilhard de Chardin described the dual problem science and
faith.

rized as follows. In Figure 1 the model reported by Teilhard de Chardin in

‘Science and Christ ’ is shown. It represents how scientific research has in-

creased the knowledge of natural phenomena historically. As a consequence,

the scientific research introduced a materialist view of the world. Many au-

thors during history have already described this view of the world (e.g. Thales

of Miletus, Anaximenes, Anaximander, Democritus etc.) however this topic

is not concerned with this preface. The interesting issue shown in Figure 1

however is how the increasing of knowledge of the world by answering ‘How

a phenomenon happens’ makes more and more important answering to the
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question ‘Why this phenomenon happens?’, which contains more informa-

tion.

In scientific terms this dilemma can be translated by considering the dual

problem between Galilean and non-Galilean scientific methods. As known,

the classical scientific approach is based on hypothetic-deductive model and

it can be summarized as:

1. Use your experience: consider the problem and try to make sense of it.

2. Form a conjecture: try to state an explanation.

3. Deduct a prediction: Generalize the problem solution.

4. Test: check if your generalization is correct.

The question ‘How?’ hence is important in order to find a solution for a

problem, by basing it on the observations of the phenomena. As reported by

Prof. Fayerabend in ‘Against method ’, the Galilean scientific approach hence

tends to simplify too much the problem under investigation in terms of infor-

mation content, to be more precise, it tends to make problem investigation

more dependent on the observations. In practice Galilean scientific method

fails because it tends to generalize a solution of a problem by considering

just a finite number of observations.

As a consequence, what is the best method of research to generalize a prob-

lem solution? In my opinion, the best way of investigation is to answer the

‘Why’ question because it tends to generalise automatically the problem so-

lution. It indeed investigates the correlation between elements which create

problems instead of understanding only how those elements work.
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Finally, another important suggestion about the importance of answering

‘Why a phenomenon happens?’ is given by Prof. Roger Scruton. He has

reported in his book ‘An Intelligent Person’s Guide To Philosophy ’ that hu-

man beings are rational people, therefore they tend to answer automatically,

when something happens to them, to the question ‘Why?’, therefore it is

closer to human nature to answer this question in terms of ‘Why?’ instead

of answering to ‘How?’.

In conclusion the reasons of considering the ‘Why’ question instead of ‘How’

question can be summarised as follows: It is more natural to answer to the

‘Why’ question; ‘Why’ tends to generalise the problem solution automati-

cally and it has a bigger information content. That is why I considered the

mentioned guideline during my investigation.

Giovanni Marino
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Chapter 1

Introduction

1.1 Work overview

Classification is a very common task in human activities. People, objects

and animals are usually classified to be managed in a more efficient manner.

Historically, the introduction of automatic systems for managing and storing

information has made easier and faster the classification of huge quantities of

data. As a consequence, the interest of researchers in this topic has increased

the during last decades especially in safety critical systems (i.e. military

applications, medical systems, etc.), producing systems that perform fast

classification (termed Automatic Target Recognition (ATR)). For instance,

in military systems awareness of the presence of potential targets is of key

importance, therefore a correct classification can reduce reaction time and

collateral damage. In medical applications, however, identification of tumors

is a crucial skill which presents very strict requirements in terms of errors in

the detection process.

1
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Figure 1.1: Problem description: the main goal of an ATR system is to
‘build’ boundaries between equivalence classes of feature space, i.e. finding
the partition of the feature space (solid black line). Unfortunately this is not
possible, therefore a suboptimal solution has to be accepted (dashed red line).
The main goal of this thesis is to understand how to asses the minimum
error between borders (solid black line and dashed red line respectively), when
several systems are compared.

Generally speaking an ATR system can be considered as a sequence of tasks

which processes information collected by instruments (usually a sensor or a

set of sensors) in order to make a decision (as shown in Figure 1.1, i.e. find-

ing the optimal partition of feature space and in Figure 1.2, i.e. finding the

best mapping which is able to maximize the preserved information carried by

sampled data). It is therefore important to understand what an ATR system

should be able to do and what not. This thesis investigates the problem of

performance analysis of ATR systems. Therefore our attention focuses on

how information flow changes in an ATR signal processing chain.
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1.1.1 History and principles of Radar systems

Figure 1.2: ATR output: a generic ATR processing chain tends to reduce the
dimensionality of the feature space in order to allow the classifier to perform
a binary decision, thereby ATR system is theoretically able to map the feature
space in 1-D Euclidean space. In practice however the 1-D mapping is not
feasible because the optimal mapping is usually unknown.

A RADAR (‘RAdio Detection And Ranging ’) is an object-detection sys-

tem which uses electromagnetic waves, specifically radio waves, to determine

the range, altitude, direction, or speed of both moving and fixed objects

such as aircraft, ships, spacecraft, guided missiles, motor vehicles, weather

formations, and terrain. It has a transmitter that emits radio wave signals

in predetermined directions. If an object is present in the scene, the electro-

magnetic wave is reflected and/or scattered in many directions (radar signals
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are reflected especially well by materials of considerable electrical conductiv-

ity, especially: Most metals, sea water and land). The radar signals that are

reflected back towards the transmitter are detected by the sensor. Due to the

path attenuation, i.e. power interaction of radar signals with the illuminated

scene objects, the received signal is usually very weak, therefore it is usually

strengthened by the electronic amplifiers that all radar sets contain. The ‘re-

newed’ signal is hence processed in order to extract the information carried

by the electromagnetic wave. The modern uses of radar are highly diverse,

including air traffic control, radar astronomy, air-defense systems, antimissile

systems; nautical radars to locate landmarks and other ships; aircraft anti-

collision systems; ocean-surveillance systems, outer-space surveillance and

rendezvous systems; meteorological precipitation monitoring; altimetry and

flight-control systems; guided-missile target-locating systems; and ground-

penetrating radar for geological observations. Modern radar systems are

associated with digital signal processing and are capable of extracting ob-

jects from very high noise levels.

Historically (Raymond C. Watson in ‘Radar Origins Worldwide’ and Alan

Dower Blumlein in ‘The story of RADAR Development ’) radar has been de-

veloped by several engineers, scientists and inventors and in particular the

first studies had been performed by Heinrich Hertz in 1886 who showed that

radio waves could be reflected from solid objects. Later the German Christian

Huelsmeyer in 1904 was the first to use radio waves to detect ‘the presence of

distant metallic objects’ and the first who received a patent for his detector.

Despite this efforts, radar was not considered an important equipment for

commercial and military application.
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In August 1917 Nikola Tesla outlined a concept for primitive radar units,

but his brilliant ideas were not considered by industry. As unlucky as Tesla

were A. Hoyt Taylor and Leo C. Young, researchers working with the U.S.

Navy, who in 1922 discovered that when radio waves were broadcast at 60

MHz it was possible to determine the range and bearing of nearby ships in

the Potomac River. Despite Taylor’s suggestion that this method could be

used in darkness and low visibility, the Navy did not accept the idea.

From 1920 to 1940 the number of researchers and patents related to radar

technologies increased, but the research had been performed independently

and in great secrecy in several countries (e.g. Émile Girardeau in France,

P.K.Oschepkov in USSR, Robert M. Page in USA, Rudolf K ühnhold in

Germany and Robert A. Watson Watt in Great Britain). The British were

the first to fully exploit radar as a defense against aircraft attack. This

was spurred on by fears that Germany was developing ‘death rays’. The Air

Ministry asked British scientists in 1934 to investigate the possibility of prop-

agating electromagnetic energy and the likely effect. Following a study, they

concluded that a ‘death ray’ was impractical but that detection of aircraft

appeared feasible and Robert A. Watson Watt was able to create a prototype

(later patented) which was able to detect German aeroplanes.

The war expedited research to improve resolution, increase portability, and

extend the utility of radar, including complementary navigation systems like

Oboe used by the RAF’s Pathfinder. After the second world war (WWII)

have seen the use of radar in fields as diverse as air traffic control, weather

monitoring, astronomy, and road speed control.

During the 1950’s-1960’s the research was focused on Moving Target Indica-
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tion (MTI) radar which are able to discriminate the Doppler effects caused

by moving targets to detect target motion, while suppressing echoes from

stationary targets. Another important revolution in this period is the in-

troduction of Phased Array Antenna technology in which a series of small

transmitting elements operate collectively to enable dynamic formation of

the antenna beam pattern.

In the 1970s radar systems were converted to imaging radar by the introduc-

tion of ‘Synthetic Aperture Radar ’ (SAR). With the introduction of digital

processing techniques radars started having the ability of gathering high res-

olution ground images.

From the 1980s radar systems have improved their accuracy and they have

been used in more and more commercial applications (velocity estimator for

police forces, surveillance and recognition in military and non-military appli-

cation for instance).

1.1.2 ATR system description

Attempts to add target discrimination features to the radar functionality

have been made since the beginning of the radar era. The early experiments

[1] were performed in 1937. Resonant dipoles were added to friendly aircraft

so that their returns were distinctive from those of hostile aircraft. It was

realized that such a system would have limited use when several aircraft flew

in formation and focus shifted to using Secondary Surveillance Radar (SSR).

By placing a transponder on targets to be observed by the radar they be-

come ‘co-operative targets’ that transmit an enhanced version of the radar
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signal when illuminated that contains encoded information about their iden-

tity. Similar technology is used in both civilian and military applications,

although in military circles the technology is referred as Identify Friend or

Foe (IFF), and both suffer from the weakness that they require the target

to provide a truthful identity encoding.

Skolnik in [2] lists some radar principles and related phenomena that may be

utilized by a radar to permit ATR: High Range Resolution (HRR) in which

a one dimensional image of the target is produced and classified; Jet En-

gine Modulation (JEM) in which the characteristic frequency modulations

induced in the echo signal by jet engines are identified; Radar Cross Section

(RCS) fluctuation in which the angular variation of target’s reflectivity is

used as a discriminating feature; SAR whereby the motion of the radar plat-

form is used to synthesize a large aperture antenna permeating the formation

of a detailed terrain image in which targets can be recognized; Inverse Syn-

thetic Aperture Radar (ISAR) which is the dual problem of SAR, where the

target motion is used to synthesize the large antenna aperture.

Hence generally speaking, an ATR system consists of three main subsystems:

a transducer (usually a sensor), which captures a finite set of object features,

a signal processing unit, which processes the transducer signals in order to

extrapolate object features and a classifier, which discriminates the targets

of interest.

Unfortunately the described model is not feasible, therefore each described

task consists of more than one subsystem depending on the nature of the

ATR system (as shown in Figure 1.3 for a SAR/ATR system.). As for a

SAR/ATR system, its processing model consists of several tasks as depicted
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in Figure 1.4. It indeed performs a statistical test at each pixel; a test statis-

tic with a threshold is applied and makes a preliminary target-declaration

decision in order to reject most natural clutter. In practice Constant False

Alarm Rate (CFAR) (i.e. detection) compares each pixel with a threshold

in the following way:

(x− µc)

σc
> t if there is a target otherwise x is considered clutter or noise

(1.1)

(i.e. second order CFAR) where x is the intensity (power) under considera-

tion (test pixel), µc and σc are the estimates of the local clutter mean and

standard deviation respectively, and t is the threshold. The mean and the

standard deviation are computed from a local square annular region, often

surrounding the pixel of interest but far enough away from it to preclude the

possibility of a target of interest occupying both the test and a portion of the

annular region. Such a region is usually called Region Of Interest, (ROI)

and usually it consists of about 100 pixels.

The output of detection step should be a set of potential targets, which rep-

resent the input of the discrimination stage. The main goal of the discrim-

ination is to reject the residual natural clutter and most man-made clutter.

Discrimination is performed by setting up a multidimensional feature space

and the distance, in that space, between the feature vectors corresponding

to the observed ROI and to an image of the target-type of interest is used

to assess the likely class of the detected target. The most frequent features

used in the discrimination step are:

• Mass, as the number of pixels in the principal-object region P .
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Figure 1.3: SAR/ATR scheme: The nature of the sensor affects its own structure. Indeed the transducer outputs
(i.e. SAR images) are to be denoised firstly, and secondly a discrimination step is applied in order to separate the
potential target features from the background and identifies Region Of Interest (ROI). As a consequence the block
Denoising processing, corresponding to the signal processing unit of the ATR model consists of a denoising step and
a discrimination task.
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Figure 1.4: SAR/ATR processing scheme. The model is also applied to many
classification-recognition tasks.
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• Diameter is the length of the diagonal of the smallest rectangle that

encloses P .

• Rotational inertia is the normalized second mechanical moment about

the centre of the mass of P .

• Peak CFAR is the maximum value of the pixels within P .

• Mean CFAR is the average value of the pixels within P .

• Percent bright CFAR is the percentage of pixels in P that exceed a

certain value.

• Standard deviation is the standard deviation of the pixel values in the

Target-Sized Region T .

• Ranked fill ratio is the percentage of the power contained in the bright-

est 5% of the pixel in T.

• Fractal dimension, as described in [3]

The outcome of the discrimination stage results in a set of relatively small

image regions, termed chips, which are likely to contain targets. As a con-

sequence, they are fed into the classifiers, which perform the classification

step. In the literature many classifiers have been extensively analysed, such

as mean square error, (MSE) [4], or Hidden Markov Model, (HMM) [5],

for instance. Classifiers indeed combine the potential target features and as

result they label the object under investigation.
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1.2 Overview of applications

1.2.1 Introduction

ATR systems are widely applied in research and in industry. In this section

an introduction of the most important application of the classifier problem

will be given. As mentioned, classification is a very common task, therefore a

complete description of applications which use ATR algorithms is unfeasible.

In the next subsections an introduction of the sectors, where classification

algorithms can be applied, will be presented.

1.2.2 Defence systems

ATR is applied in many defence systems. Indeed surveillance and recognition

which are the most important tasks for every defence critical system can be

considered as classification problems between friends and foes and noise as

well as clutter.

Historically target recognition has been a common task in military applica-

tions. Uniforms, flags, standard etc. are the most common signs used by

armies to divide friends from foes. From WWII however with the introduc-

tions of new technological equipments (photography, Electro-Optic systems

used for remote sensing) some specialized people were hired and trained

by armies to detect what kind of targets were present in the Battle-space.

Nowadays however the huge amount of data recorded by more and more

sensors makes human-based target recognition unfeasible, therefore an auto-

matic, software- or hardware-based, approach is necessary. Hence, generally
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speaking, a sensor is adopted to acquire information from the scene and a

electronic ‘brain’ (i.e. a processor) is ‘trained’ in order to understand if a

threat is present in the observed scene. From a mathematical point of view,

target recognition can be considered as follows: First a sensor acquires a

finite numbers of feature of a potential target (e.g.Electro-Optical Cameras

are able to detect properties of the objects such as colour, the movements

etc., whereas radar systems are able to detect only the presence of a target

and possibly velocity. Nevertheless both classes of sensors are not able to

give information about the mass of the potential targets). Once that po-

tential targets features are detected, they are processed in order to separate

true targets from the rest (i.e. noise, man-made clutter, decoys, etc.) and

finally a classification is performed (i.e. what kind of target is present in the

observed scene). Compared with well trained personnel, automatic target

recognition is thereby faster.

Synthetic Aperture Radar images are considered as the input of this thesis,

nevertheless other kinds of sensors such as LIDAR, Electro-Optic systems,

etc., can also be considered as input sensors.

1.2.3 Biomedical Application

Biomedical applications are another very interesting sector of application of

Automatic target recognition. Lupo et al. in [6] summarized the proceedings

of the workshop ‘Tanks to Tumors’ with the purpose of exploring means for

exploiting the technological opportunities in the integration of image pro-
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(a) EEG

(b) ECG

Figure 1.5: Biomedical signals classifications
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cessing, data-base management and development as well as infrared sensor

technology for early detection of breast cancer. Another example of the

application of classifiers in biomedical applications can be related with clas-

sification of electroencephalograms (EEG), as depicted in Figure 1.5(a), and

electrocardiogram (ECG) signals, shown in Figure 1.5(b), but also ultra-

sound signals as well as ecography (Figure 1.6), mammography (Figure 1.7),

etc.. A very important difference between biomedical applications and mil-

itary systems consists of the trade-off between probability of detection and

probability of false alarm. As for military systems indeed strict requirements

have to be adopted for both probabilities, whereas biomedical application,

e.g. early detection of breast cancer, the requirements on Pfa (i.e. probabil-

ity of False Alarm) are weaker, whereas specification on Pd (probability of

detection) are more restrictive (i.e. if an error type II is performed, further

analysis can clarify the presence of the cancer, whereas a mis-detection of a

cancer has worse consequences).

1.2.4 Computer science

In computer science a scheduling algorithm (as shown in Figure 1.8) is the

method by which threads, processes or data flows are given access to some re-

source systems. The scheduling usually performed for load balancing (i.e. the

methodology to distribute workload across multiple computers) or achieve a

target quality of service. An Operating System (OS) usually classifies a pro-

cess according to some parameters such as priority, throughput (i.e. number

of processes that complete their execution per time unit), latency (total time
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Figure 1.6: Ecography example. Using ultrasound a non-ionizing and non-
invasive investigation can be performed. and an image can be created. By
detecting some image properties it is possible to determine the sex of the baby
or some malformations.

Figure 1.7: Mammography examples. In this case a tumor is not present,
nevertheless it is important to discriminate the presence of calcification from
the background in a not so bright images.
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between submission of a process and its completion). In practice these goals

often conflict, therefore a compromise is necessary. As a consequence of this

there are three distinct types of schedulers: Long-term, medium-term and

short-term and the names suggest the relative frequency with which these

functions are performed.

The main purposes of scheduling algorithms are to minimize resource star-

vation (i.e. avoiding deadlocks: a process is perpetually denied necessary

resources and it cannot be able to finish its task) and ensure fairness (i.e.

equal CPU time to each process) among parties utilizing resources. Hence

the scheduler deals with problem of deciding which of the outstanding re-

quests is to be allocated resources.

There are several kind of scheduling algorithms and the most common can

Figure 1.8: Scheduler scheme

be summarised as follows:

1. First In First Out (FIFO), it the simplest scheduling algorithm. As

clear from name, it queues processes in order that they arrive in the
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ready queue.

2. Shortest Remaining Time (SRT or SJF Short Job First), the scheduler

arranges processes with the least estimated time remaining to be next

in the queue. An advance knowledge or estimations about the time

required for a process is necessary.

3. Fixed Priority Pre-emptive Scheduling (FPPS), the OS assigns a fixed

priority rank to every process.

4. Round Robin. In this case a fixed time unit per process is fixed and

the OS cycles the processes.

5. Multilevel Queue Scheduling. This is used for situations in which pro-

cesses are easily divided into different groups.

How to choose a scheduling algorithm is one the most important issue in

designing a OS. Unfortunately, similarly to SAR/ATR system, there is no

universal criterion which is able to define which the best scheduling algorithm

is. Indeed by using a statistical model for processes, it is possible to compare

the performance of the schedulers in terms of ATR performance analysis.

1.2.5 Finance

Another result of WWII was Operational Research, which originated in the

efforts of military planners. After the war, the techniques (which consist of

statistics, optimization, probability theory, game theory, graph theory, deci-

sion analysis, mathematical modelling and simulation) began to be applied

widely to problems in business, industry and society.



CHAPTER 1. INTRODUCTION 19

During WWII operational research was defined as ‘a scientific method of

providing departments with a quantitative basis for decisions regarding the

operations under their control’, and nowadays it widely used in following

areas:

1. Critical path analysis in project management, identifying processes in

a complex project which affect the overall duration of the project.

2. Network optimization in telecommunication (in order to maintain qual-

ity of service during outages).

3. Routing, find the best route for Internet packet or determining the

routes of buses so that as few buses are needed as possible.

4. Automation/Robotics: Operational research is greatly important for

Robotics system design process.

5. Search theory (microeconomics), it studies buyers or sellers who cannot

instantly find a trading partner, and must therefore search for a partner

prior to transacting.

Decision making is also crucial in business company strategies, in order to de-

termine the most profitable set of actions. Quantitative analysis is a branch

of finance which uses numerical or quantitative techniques; systematic em-

pirical investigation of quantitative properties or phenomena and their rela-

tionships. Their target is to develop a mathematical model, a theory and/or

hypothesis pertaining to observed phenomena. Quantitative analysis is often

related to risk management, which is the identification, assessment and pri-

oritization of risks and also to investment management as well as derivatives
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pricing.

A method very common to measure the risk in finance is Value at Risk (VaR)

(see Figure 1.9), defined in [7] and adopted in order to quantify the risk of

loss on a specific portfolio of financial assets. In practice VaR defines the

maximum potential loss of a portfolio of financial instruments with a given

probability (i.e. confidence interval) over a certain horizon.

Despite the efforts of the researchers many issues on how to select the best

Figure 1.9: VaR example. An interesting problem is when two similar port-
folio have the same behaviour (i.e. they are overlapped) almost everywhere,
and how to determine which portfolio produces the minimum risk?. The curve
represents the hypothetical Profit-to-Loss probability (it has mean and stan-
dard deviation of unity). The blue area represents the 95% of total area of
the curve, whreas the red one to the left of the black line represents the 5%
of the total area under the curve. VaR is defined as a threshold value (i.e.
the black line) such that the probability that the mark-to-market loss (i.e. A
loss generated through an accounting entry rather than the actual sale of a
security) on the portfolio over the given time horizon exceeds the threshold
value.

portfolio are still unsolved. An classical alternative to VaR is the Modern
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Portfolio Theory [8], which models the return of an asset as an elliptically

distributed random variable, therefore the selection of the optimal portfolio

could be considered as a class-separability problem.

In conclusion all of the mentioned aspects of the financial markets can be

considered as decision/classification problems and the results of this thesis

could be helpful in order to estimate the performances of a financial product.

1.3 Hypothesis

The investigations have been performed in order to define a criterion and

framework to allow the comparison of the performance of ATR systems. The

studies focused on Synthetic Aperture Radar (SAR) ATR systems (SAR/

ATR), but the adopted criteria can be suitable for many different kinds of

sensors.

For our purposes, the most important processing tasks of an SAR/ATR sys-

tem have been simulated, in order to test and explore the comparison frame-

work.

Despite ATR systems having been introduced several decades ago, several

issues have not been resolved yet. Particularly the problem of predicting the

separability of potential target classes at what degree (i.e. the percentage of

correct classification of a class with respect to the others) is still unresolved.

Class-separability and the degree of class-separability are furthermore strictly

related to the information content variation through the ATR system pro-

cessing chain, therefore it is important to understand how ATR subsystem

parameter variation can affect the system performance in terms of class sep-
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arability. Hence, summarizing, we are interested in ‘how to quantify the

information content and its variation through the ATR processing chain and

to estimate the impact on the class-separability (i.e. assessing the degree of

separability)’.

1.4 Contribution of this study

As mentioned earlier the investigation is aimed at defining a criterion and

framework to compare the performance of ATR systems. As a consequence

several aspects of SAR/ATR systems have been investigated and the most

important innovations will be reported in the next subsections.

1.4.1 Advances in class-separability analysis

This thesis considers the problem of information flow and ATR separability.

Chapter 3 explains how the information content varies through the processing

chain. In Chapters 6 and 8 several SAR subsystems have been considered

and their parameters analysed. As a result the understanding of how the

parameters affect the system outcomes has been obtained. Furthermore the

optimal choice of subsystem parameters which maximize/preserve the infor-

mation content was investigated and therefore lead to the best possible clas-

sifier performance. Some problems related to image quality metrics and their

information content were considered, in particular the limits of the current

most popular image quality metrics have been analysed and new denoising-

metrics have been introduced. Moreover the importance of edge-preservation
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in ATR systems has been also investigated. In this case some studies on the

most popular edge preserving metrics have been performed and the results

have been analysed.

As for class-separability, new contributions have been introduced such as a

mathematical definition for class-separability and for the degree of separa-

bility. The metrics analysis for assessing the degree of separability between

classes and the most important required properties of a metric for estimation

of the degree of class-separability have been also performed. As consequence

a new metric for assessing the degree of class-separability has been defined

and tested (see Chapter 4 and 5).

1.4.2 Radar Cross Section data modelling simulation

Another important contribution of this thesis is SAR image generation test-

ing despeckling algorithms. Data modelling in SAR systems plays a very

important role, therefore the generation of synthetic SAR images could help

in terms of estimating system analysis. In Chapter 6 the simulator is de-

scribed and the most important limits of current simulation techniques for

K-distributed Clutter modelling are reported as well as their possible solu-

tions.

In particular Chapter 6 describes how Ward and Oliver’s K-distributed clut-

ter simulation techniques ([9] and [10]) fail when they are applied to simulate

SAR images because they are not able to preserve the statistical properties

of clutter RCS modelling (i.e. the mean value of image intensity is not equal

to the mean power of the underlying RCS as expected) were investigated.
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The results obtained by using Ward’s modified technique for SAR simulated

clutter images allowed us to generate an understanding of how to overcome

the above-mentioned problems.

Please note also that the studies on clutter modelling have produced some

useful considerations, well-known in radar community, about the asymptotic

values of statistical clutter PDFs, which could be used for CFAR applica-

tions. In section 8.3 it will be reported that Weibull model can be handled

easily compared with K-distribution clutter model because it can be con-

sidered as an upper/lower bound of K-distribution for sea and land clutter

respectively.

1.4.3 Extensions of techniques for ATR parameters anal-

ysis

Figure 1.10: Transformations classification: how operations in a processing
chain can be classified. How the information is preserved, distorted or deleted
by a processing subsystem.
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In order to determine the optimal choice of SAR/ATR parameters (for

each SAR/ATR subsystem, classified as reported in Figure 1.10) and in or-

der to understand how to quantify the information variation when sampled

data pass through an ATR subsystem, several approaches have been consid-

ered and their limits analysed in order to determine the optimal procedure

for assessing the information variation content in the SAR/ATR processing

chain. In Chapter 3 the several methods for assessing how the information

content changes through the processing chain will be described. In practice

the most interesting approaches for analysing data transforms are based on

differential geometry and Lie Groups and the Unscented Theory (UT)) (the

UT reported in Section 3.10.1 can be considered a promising approximation

of methods based on differential geometry, because it works properly with

the sampled data used to analyse signal processing and classifier systems.

Moreover the experiments performed allowed us to create a taxonomy for

the data transformations usually adopted in a SAR/ATR system. As shown

in Figure 1.10 transformations can be divided into two groups: Informa-

tion preserving and non-information preserving transformations. The first

group consists mainly of linear and non-linear 1-to-1 mapping (e.g. rotation,

translation, scaling functions as well as Fast Fourier Transform (FFT) or

sign preserving function, i.e. y=x3). The second group however consists of

functions which may perform a many-to-1 mapping such as:

• non-sign preserving function, i.e. y=x2, abs(·), etc.;

• Dimensionality reduction: PCA , ICA or non-full rank transformations,

etc.;
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• Asymptotic: tanh, thresholding/quantization (e.g. detection), etc.

In conclusion, a transformation can be considered information preserving if

it is a member of the first group which consists of invertible transforma-

tions, whereas the second group are non-information preserving and consists

of non-invertible functions, which lose information.

1.5 Compact thesis outline

In this section the structure of the thesis is reported.

In Chapter 2 a review ATR is be reported. In the chapter the most impor-

tant SAR/ATR applications are discussed as well as the literature review is

posted. The most significant experiments performed during the last decades

are described in order to stress the most important unsolved problems in

SAR/ATR technology. Moreover the literature review about ATR system

performance analysis is discussed too.

In Chapter 3 the theories of the topics discussed in this thesis are described,

in particular the principle of Bayes theory and pattern recognition theory

will be described. Moreover the introduction of the principle of differential

geometry, fractal geometry and information preserving analysis techniques

are reported.

The comparison of the most popular class-separability metrics is the main

topic of Chapter 4, where the most common methods adopted by researchers

for assessing the degree of class-separability are reported. Moreover in the

Chapter a new metric for the estimation of the degree of class-separability is
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introduced. In practice we are interested in defining a global criterion which

is able to predict if two different configurations of a SAR system produce

an equivalent error of classification or not. By analysing the processing and

classification chain, we would also understand which SAR/ATR system pro-

duces the best results.

Chapter 5 is focused on the performance of the new proposed metric for as-

sessing the degree of class-separability when the sample size varies.

Chapter 6 is addressed to test and analyse a set of metrics commonly used to

compare denoising algorithm performance in SAR systems in order to check

if they are able to satisfy all SAR/ATR despeckling requirements (i.e. re-

moving noise and preserve image features).

Chapter 7 is concerned with the analysis of despeckling algorithms when they

are applied to ATR problems.

In Chapter 8 another case study is considered. A Clutter model and its in-

formation content is analysed in order to understand how the information

changes at the detection step, which is a non-linear function.

In Chapter 9 A summary of previous Chapters as well as thesis conclusion

are reported.

1.6 Chapter Summary

In this Chapter the following topics have been discussed: First an introduc-

tion to classification problems has been given, then the thesis structure has

been introduced.
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As for ATR system applications in the SAR domain, firstly a brief descrip-

tion of the most advanced systems present in literature has been reported,

secondly a literature review of the most common methods adopted by re-

searchers for estimating ATR performance has been developed. Beside an

analysis of the most important deficiencies of the described methods has

been proposed as well.

Other problems related with the ATR performance problem, such as the

dimensionality reduction problem, feature extraction etc. have been intro-

duced by describing several sectors where classification is widely applied.

The problems introduced have allowed us to determine some problems which

need to be investigated. Indeed in the most popular ATR problems no

global critera to access classifier performance is suitable, therefore there is no

method to compare two systems in order to quantify their performances. In

practice the problem can be stated in the following way: given two different

systems (e.g two different SAR systems, two different threads or processes,

two portfolios, two Mammography systems), which one produces the better

results? Does the best method actually achieve the maximum performance

that is possible given the sensor to provide the source data? In practice,

hence, it is interesting to find, if there exits, a global metric which is able to

predict the degree of separability of two classes.

Despite the researchers’ efforts have increased during the last decades, few

have investigated in this direction, therefore no global method for the ATR

systems have been adopted and several times, naive and holistic/heuristic

methods have been adopted which are non-efficient [11]. Moreover a set of

problems/ambiguities is still present in the ATR community:
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1. There is no definition of degree of separability, but there exist many

methods which try to measure it.

2. Dimensionality reduction of the problem feature space, which intro-

duces more ambiguity in the classification step (i.e. loss of information

in practice).

3. How to perform the optimal feature extraction for a SAR/ATR sys-

tem, i.e. which are the most important parameters which affect the

classification performance.

These are the most important issues which this thesis try to answer in the

next Chapters.



Chapter 2

Overview of ATR problems

2.1 Introduction

This chapter introduces the most recent research in ATR systems, in order

to understand better the still open issues of the ATR problem (e.g. how to

design the signal processing chain through to class decision; how to compare

processing chain and classification stages solely; how to define maximum

possible performance; etc.). First a literature survey on ATR technologies

will be given, then a literature review on class-separability in ATR systems

will be reported.

2.2 Overview of ATR technologies

As described in Section 1.1 ATR systems are widely adopted by researchers

in order to make automated decisions. Face recognition, breast cancer early

detection and Melanoma discrimination are just some examples of ATR ap-

30
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plications. An interesting introduction on image classification and the most

important techniques for improving classification performance are given by

Lu and Weng in [12], whereas Zelnio in [13] gives a brief introduction on

ATR systems and examines the issues associated with evaluation of complex

decision-making systems by focusing on issues that surface in ATR systems.

A brief description of still open issues and obtained results of research are

given by Ratches in [14] (such as comparinson of classification algorithms,

processors and evaluation techniques).

Novak et al. in [4] , in [15], [22], [16], [17], [18], [19], [20] and [21] intro-

duced the main characteristics of SIAP metrics, which supports new sensor

platforms gathering wide area SAR stripmap and SAR spotlight imagery.

They evaluated the performance and summarized the results of several clas-

sifiers based on MSE (i.e. matching classifier) using imagery of 18 distinct

targets contained in the MSTAR data set. Moreover Novak studied the ef-

fects of the processing on the performance of a classifier in a quantitative

way also and no generalized method is defined for the estimation of the de-

gree of class-separability. One important conclusion remarked by their initial

studies was the ability to correct classify the independent tank targets (e.g.

T72) depended strongly on the training set. Beside they demonstrated that

interclass variability is a very important issue for matching classifier design.

Novak compared classifier results in terms of a Confusion Matrix [23]. Simi-

lar considerations can be reported for Karl’s work in [24] where the effects of

feature enhancement of images with respect to several classifiers are reported

(i.e. they presented an analysis demonstrating the impact of a non-quadratic

optimization-based SAR image formation technique on feature enhancement
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and ATR performance).

Novak was not the only researcher who investigated matching methods for ob-

ject classification in SAR images. Hummel in [144] summarized the progress

made in the course of the feature matching approach from the years 1995 to

2000 whereas Washburn et al in [145] focused on the description of the opti-

mal design parameters of the search algorithms for model-based SAR/ATR.

Bhanu ([25] and [26]) used however the model-base matching techniques for

recognition of articulated objects and showed that articulation-invariant fea-

tures can be used successfully for classifying articulated objects (actual and

occluded).

Ettinger et al. in [27] (as well as Keydel in [28]) developed a probabilistic

optimization approach, based on a matching algorithm, in order to solve a

challenging issue in model-based approaches: The difficulty in generating

accurate prediction of an electromagnetic signature and its variation in op-

erating sensing conditions.

Wolfson in [29] described the advantages of using a matching method based

on geometric hashing, especially in terms of data structures, because it is

inherently parallel, therefore fast to process.

Chiang et al. in [30] and [31] presented a Bayesian formalism for model based

classification and they investigated how parameters can affect classifier per-

formance in terms of average probability of correct classification as well as

average probability of error.

Fukunaga in [32], [33] and [34] reports several methods (i.e. bootstrap, hold-

out, leave-one-out, resubstitution and nonparametric methods) which can be

used to compare the classifiers performance and he also provided an analyt-
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ical investigation of the afore-mentioned criteria.

Mitchell et al. in [146] also considered model based ATR classifiers, but they

focused on the impact of various compression rates of model-catalog system,

i.e. target/signature database, (via signal vector quantization) on the classi-

fication performance, also in the case of scenario variation (i.e. presence of

noise and occlusion) for high-range resolution (HRR) and SAR data.

Daniell et al. in [35] introduced sub-band correlation filters (i.e. matched

spatial filters) as a feature-matching classifier.

Brown however in [147] examined the aspect dependence of SAR target clas-

sification and developed a Bayesian classification approach that exploits mul-

tiple incoherent views of a target, based on a Maximum Likelihood Classifier.

Suvorova et al. in [36] considered the Karhunen-Loeve transform with invari-

ance for an ATR classifier, Zhao et al. in [37] and Nilubol et al. [5] suggested

to use a different approach for the classifer. Indeed Zhao et al. adopted

the Support Vector Machine (SVM) for SAR/ATR, whereas Nilubol et al.

decided to use the HMM for feature matching.

Finally Jain et al. in [38] evaluated a large number of algorithms for the selec-

tion of feature subset for SAR/ATR systems and they show that sequential

forward floating selection [39] dominates the other algorithms which were

tested (e.g. Deterministic Solution, Genetic Algorithms, Neural Networks

etc.). Moreover they investigated on the danger of using feature selection in

small sample size situations.

O’Sullivan et al. in [40] and [41] decided to model the SAR signal with a

Gaussian model and used an approximated Bayes classifier.

As for Mahalanobis’ approach, [42] a multi-class SAR/ATR has been per-
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formed by using shift-invariant correlation filters.

Finally Bahnu et al. in [43] adopted an adaptive approach for ATR by per-

forming a feedback loop depending on Probability of Correct Identification

(PCI) and Probability of False Alarm (Pfa) requirements.

Please note that in this thesis synthetic data are used, as MSTAR data are

collected by sensors which are classified, therefore they are not suitable for

some experiments (e.g. despeckling algorithms analysis). Further informa-

tion about simulated data will be reported in section 6.4.

2.3 ATR features review

As mentioned in Chapter 1 several features are usually adopted to perform

the best classification, nevertheless this number is usually computed from

some geometrical and statistical properties of objects present in the scene.

This section gives a brief introduction of the most important investigations

performed by researchers in order to compute and understand how the pa-

rameters such as RCS of potential targets can be modeled in the optimal way

to maximize the performance of the classifier.

The studies can be grouped in four sets based on the idea which the re-

searchers considered. The first set consists of investigations into RCS and

scattering modeling; The second set is characterized by investigations per-

formed on scale models of potential targets, whereas the third model consists

of investigations on statistical target behaviour in SAR images. Finally the

last set is concerning with physical properties of targets for high-resolution
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radars.

As for the first group of investigations, Rosario in [44] investigated the ef-

fects of modifications in target signature in SAR images and he suggested

considering the target in terms of a spatially decomposed mode instead of

a single pixel because this approach provides some advantages in terms of

feature/signature stability instead of single pixel RCS modeling approaches.

Krogager in [45] however proposed a new decomposition of the complex radar

target scattering matrix in three components that provides a clearer picture

of the physical mechanisms behind the scattering and as a consequence a

clearer picture of the target itself.

Turner and Gerry et al. in [46] and [47] respectively considered the modelling

of RCS for its prediction. In the second group of articles the signature of

scale model RCS was investigated by using scaled models of targets of inter-

est as reported in [48], [49] and [50], whereas Blacknell (i.e. third group) in

[51] analysed the statistical behaviour of targets in synthetic aperture radar

images.

The most interesting approach for signature modelling and as a consequence

for feature extraction was introduced by Potter in [52] and Bhanu et al. in

[53]-[57], where the approach of scattering centers has been analysed. The

main advantage of this kind of analyses are that the data generated in high

frequency radar measurements by returns from isolated scattering centre such

as corners and flat plates are almost invariant to articulations and to small

changes of SAR parameters.
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2.4 ATR performances review

An introduction of the most common methods adopted by researchers in

order to estimate the classification accuracy is reported by Stehnam and

Congalton in [58], [59] (e.g. Error Matrices (i.e. Confusion Matrices), Class-

level accuracy measures etc.) and [60].

A very important aspect of the problem which has been partially considered

as well as investigated is to define the information content carried by sensors

in order to have good ATR performance and as a consequence defining the

information loss in all of the steps of a signal processing scheme as well as in

problem modelling. In order to solve the afore-mentioned problem, a classical

information theory approach has been adopted, as used by Horne in [61] (i.e.

adopting entropy, the amount of information obtained when the outcome is

observed), Briles [62] and Zelnio et al. in [11] and [63] respectively. Briles

extended the rate-distortion function, used to compare data compression

algorithms, to the Bayes rate-distortion function in order to associate the

Bayes risk to the distortion so that information-theoretic tools can be adopted

for statistical identification problems. Zelnio however tends to divide the

approach for estimating ATR system performances in two groups:

1. Techniques based on Pattern Space, which include the information the-

ory approach;

2. Extrapolation Techniques.

As for the techniques of the first group, they tend to address the relation-

ship of representations in object space to the corresponding representation in
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pattern space or signal observation space. As a consequence, any ‘change’ in

object space is related to a change ‘in distance’ between the observed signal

patterns so that a probability density function for the ‘distances’ can be in-

troduced to evaluate the performance of the system. In Techniques based on

Pattern Space approach, a very important role is played by some parameters

which affect the performance of the classifier heavily, termed variants. Hence,

in Techniques based on Pattern Space each target exemplar is associated with

a ‘noise sphere’ in pattern space with radius proportionally larger to account

for ambiguities. Alternatively the same variations might be viewed as target

variants as well so that each target occupies a larger pattern subspace, no

longer spherical. Extrapolation techniques however are based on statistical

inference. Zelnio reports that the most important difficulty in applying these

techniques of ATR system prediction lies in determining the ‘rate of growth’

of pattern space as more targets are added to the set.

Finally Zelnio remarks that techniques based on Shannon’s information the-

ory do not capture the essence of the target recognition problem, i.e. how

the SAR system parameters affect the classifiers.

Takkola in [64] used Mutual Information (MI), which describes the amount

of information that one random variable gives about a second random vari-

able. Assume a random variable Y , yi ∈ R
d representing feature vectors,

and a discrete-valued random variable C representing the class labels, with

samples as pairs {yi, c}. From a Shannon’s theory point of view, drawing one

sample of Y at random, the entropy or uncertainty of the class label, making
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use of Shannon’s definition, is expressed in terms of class prior probabilities:

H(C) = −
∑

c

P (c) log(P (c)). (2.1)

After having observed a feature vector y, the uncertainty of the class identity

is now the conditional entropy:

H(C|Y ) = −
∫

y

p(y)

(

∑

c

p(c|y) log(p(c|y))
)

dy. (2.2)

The amount by which the class uncertainty is reduced, after having observed

the feature vector y, is the MI , I(C, Y ) = H(C) − H(C|Y ), which can be

written as:

I(C, Y ) =
∑

c

∫

y

p(c, y) log
p(c, y)

P (c)p(y)
dy (2.3)

after applying the identities p(c, y) = p(c|y)p(y) and P (c) =
∫

y
p(c, y)dy. It

equals zero when p(c, y) = P (c)p(y), that is, when the joint density of C and

Y can be factored as a product of marginal densities, which is the condition

for independence.

The MI between class labels and transformed features is used as a crite-

rion for a method of learning discriminative feature transforms. Miller also

in [65] considered MI as information measurement, because independent of

the recognition system, in order to quantify both information gain due to

remote observation of the scene and the information loss due to signature

variability, the model mismatch can be quantitatively examined using the

Kullback-Leibler divergence. Kanaya however in [66] introduces a mathe-

matical function which conjoins the two key concepts of mutual information
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and Bayes risk and then some asymptotic theorems that verify an important

implication in the context of practical Bayesian decision-making are proven.

A different approach was considered by Miller in [67], who investigated the

information theoretic bounds of ATR performance. He adopted a statis-

tical approach because it provides a systematic framework for integrating

prior knowledge about the scene and targets and for fusing information from

multiple sensors by application of basic principles of statistical inference. He

adopted Chernoff and Kullback-Leibler distances ([32],[68]) to quantify sepa-

rability, because the Chernoff distance provides upper bounds and asymptotic

expressions for the probability of miss (Pmiss), probability of false alarm(Pfa)

and probability of error (Pe) in detection problems, whereas Kullback-Leibler

metric provides an expression for Pmiss for a fixed, small value Pfa. This

interesting approach does not satisfy same requirements such as the quantifi-

cation of information carried by sensor signals (i.e. target features analysis)

and does not provide any means to estimate information loss along a signal

processing scheme.

Another method for predicting an upper bound of ATR performance was

described and analysed by Boshra and Bhanu in [69] and [70]. It is also

characterized by a statistical approach because the features obtained by pro-

cessing sensor data are corrupted by distortion factors such as uncertainty,

occlusion and clutter. Unlike Miller’s investigation, Boshra was interested in

determining an upper bound on the probability of correct recognition, PRC,

of a given model view in the presence of data distortion. They thereby defined

a two step method, which works as follows:

1. By defining a Data-Distortion Model (i.e. a PDF of distortion for oc-
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clusion, clutter and uncertainty), Model Objects and a Transformation

Class (i.e. rotation/translation) the object similarity coefficient is com-

puted;

2. The computation of performance bound is computed by using object

similarity coefficient and the Data-Distortion-Model.

Other researchers, such as Grenander in [72] presented a method to predict

fundamental performance of template-based ATR for a given image noise

model using the Hilbert-Schmidt bound, which is characterized by perform-

ing a lower bound on the error of an other estimator. However Irving in

[73] described a formal method for predicting performance of SAR target

detection, based on statistical modelling of both data distortion factors and

model target views. Despite their results, both the approaches used in [72]

and in [73] are not suitable for our purpose because they are focused only on

classification algorithm performance and not on the parameters which affect

the performance.

Bhanu et al. in [74] however introduce a new criterion of prediction of per-

formance of an ATR system. It consists in adopting the Hausdorff distance

measure in order to estimate correctly the classification region borders. It

works as follows: first the system detects the scatter centers and the Major

axis is computed, then a matching model with a simulated target (based on

CAD examples) is performed and the outcome is sent to a Rank-order filter

using Haussdorf distance Measure. As a result a set of Rank-Ordered Hy-

potheses (ROH) which are used for the recognition is obtained.

Finally other methods such as Receiver Operating Curve (ROC) [75] and its
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area [1], Confusion matrix (the percentage over the sample size of misclassi-

fied objects) [22] have also been adopted. As for Smith’s works [76] and [1]

the evaluation of classification is measured in terms of:

• Probability of declaration Pd(i) for a particular input is defined as:

Pd(i) =
nc
∑

k=1

P (Out = k|In = i) (2.4)

(nc is the number of classes)therefore the overall probability of decla-

ration is equal to Pd = 1/nc
∑

k Pd(k).

• Probability of False Alarm: the rate at which declarations for known

classes are made when an input of unknown class is presented. It is

defined as:

Pfa =
1

nu

nu
∑

k

nc
∑

h

Pfa(k, h) (2.5)

where Pfa(i, j) is the probability that class Cj will be declared when

the input is of class Ui (nu is the number of test sample classes).

• Probability of Generalization: the ability of the classifier to label the

target correctly even when different configuration of the reference class

are considered. Therefore the overall generalization performance can

be estimated as:

Pgen =
1

nc′

nc
′

∑

i

Pgen(i) (2.6)

where nc
′

is the number of the classes, whereas is Pgen(i) =
∑

p P (Out =

Ci|In = C
(p)
i ).
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• Confusion matrix, reporting the number of object misclassified as a

different target;

• ROC and AUC analyses (as reported in [1]) which are the graph of Pd

vs Pfa and its underlying area respectively.

As for the ATR performance metric, a very interesting approach has been

introduced by Richards et al. in [77] base on the principle that confidence

metric has to satisfy the following requirements:

• Provide quantitative scores that are intuitive and informative in an

absolute sense;

• It should be adaptable to different ATR mission and provided in real

time along with the ATR declaration.

Similar investigations have been performed by Ross in [78].

Other investigation such as Asymptotic performance analysis ([79]) based

on Bayesian pattern-theoretic framework and Monte Carlo prediction [80],

which showed the trade-off between ATR performances and SAR resolution.

Unfortunately all above mentioned methods are unable to quantify how sep-

arated two or more classes are.

2.5 ATR literature review for the general prob-

lem

In this section other ATR systems are considered and a brief literature review

is reported.
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2.5.1 Computational performance

A very important issue, which has not been investigated fully yet, is the prob-

lem related to computational system performance for ATR systems. DeVore

et al. in [81] and [82] has investigated the necessary requirements of compu-

tational system performance for recognition systems performance. Moreover

they have also evaluated the performance of recognition systems in terms of

consumption of system resources.

2.5.2 Available ATR dataset overview

As for the generation/collection of the data which have been used in afore-

mentioned works, two approaches can be defined: Using synthetic data or

real data. As for synthetic data, there are many programs which are able

to create synthetic data from CAD models. Among them, the most impor-

tant are XPATCH, as reported in [56], and RESPECT, as defined in [46]

and validated by Blacknell et al. in [83] which usually use a CAD model (as

depicted in Figure 2.1) in order to predict the electromagnetic scattering of

an object. As for XPATCH, it uses a CAD model in order to generate image

chips of objects (articulated/non-articulated) at 360 azimuth angle (at 15◦

depression angle) such as tanks (e.g. T72, T80 and M1a1), SCUD missile

launcher. It is able to generate models with number of facets ranging from

5,345 to 32,954. As for RESPECT, it employs a shooting-bouncing-ray high

frequency physics model in order to determine the electromagnetic scattering

calculations from large complex bodies.
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(a) CAD model of a T72 (b) CAD model of a M1A1 (c) CAD model of a SCUD
LAUNCHER

Figure 2.1: Examples of model for XPATCH and RESPECT

As for the dataset from real SAR images, the most important one which is

available for researchers is the Moving and Stationary Target Acquisition and

Recognition (MSTAR) database, which is described in [84]-[88]. Despite it

is the biggest available database, simulated data have been preferred for two

reasons: Firstly, MSTAR parameters are classified (i.e. the number of looks

of the system is not available for the researchers, therefore any statistical

analysis for clutter models is impossible); Secondly, no certainty on the RCS

model (i.e. Gamma distribution) distribution is given.

Other authors used some real data for non-SAR images. Alexandrov, for

instance, considered in [89] a set of data collected with an on-shore surveil-

lance radar ‘NAYADA-3’ over the port Varna. Many images (no number

is reported) of three targets were collected by the sensor. In particular the

database consists of a 5,000t tanker, 13,800t and 38,000t cargo ships. Qiang

in [90] however used a set of radar returns from 8 classes of ships, but no

information is reported about them.
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2.5.3 Other subsystems and Multi-sensor data fusion

In this section a concise introduction of the research in multi-sensor applica-

tions in ATR systems and an overview of the research of ATR techniques in

HRR systems is explained.

Miller in [71] shown the simultaneous detection, tracking and recognition of

objects via data fused from multiple sensors. The variability of the infin-

ity of pose is accommodated via the actions of matrix Lie groups extending

the templates to individual instances. The variability of target number and

target identity is accommodated via the representation of scenes as unions

of templates of varying types, with the associated group transformations of

varying dimension. The remote sensing data is organized around both the

coarse scale associated with detection as provided by tracking and range

radars, along with fine scale associated with pose and identity supported

by high-resolution optical, forward looking infrared and delay-Doppler radar

images. A Bayesian approach is adopted in which prior distributions on tar-

get scenarios are constructed via dynamical models of the targets of interest.

These are combined with physics-based sensor models which define condi-

tional likelihoods for the coarse/fine scale sensor data given the underlying

scene. Inference via the Bayes posterior is organized around a random sam-

pling algorithm based on a jump-diffusion process. New objects are detected

and object identities are recognized through discrete jump moves through

parameter space, the algorithm exploring scenes of varying complexity as it

proceeds. Between jumps, the scale and rotation group transformations are

generated via continuous diffusions in order to smoothly deform templates
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into individual instances of objects.

Mishra in [91] describes his first investigation on the application of bistatic

SAR systems in ATR problems. In particular Mishra focuses his work on the

development of algorithms for bistatic-SAR image classification of ground

based targets and also examined the potential of bistatic radar for SAR clas-

sification.

As for other radar systems used for ATR, an interesting role is played by HRR

systems. Williams in [92] gives a summarized introduction of the method-

ologies about data and algorithm, simulated performance results and recom-

mendations for the classification of 1D HRR radar systems images.

Vespe et al. in [93] analysed the information content of the target signature

for HRR/ATR. The classification performance is evaluated using full-scale

2D inverse SAR images obtained from a stepped-frequency chirp modulation

radar system and corresponding sub-spectra of the target reflectivity function

forming lower resolution images at difference centre frequencies. The classifi-

cation performance as given by different combinations of RF frequencies are

also evaluated and compared with the coherent reconstruction from the full

bandwidth. Finally, the classification results are also computed using mul-

tiple aspects to sense the target. In this way, classification performance as

function of diversity space is examined. As for the metrics adopted in order

to evaluate the ATR performance, Vespe et al. adopted the probability of

correct classification, the probability of missing a target and as a consequence

the probability of declaration as well as probability of false alarm (2.5) and

probability of generalization (2.6). Additionally a new measure of perfor-

mance is introduced and it is termed as reliability. Reliability is defined as
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the degree of trustworthiness when the declaration is made for a particular

class j having input i. Thus the reliability of declaring a particular class k

is given by the degree of trustworthiness when the declaration is made for a

particular class k having input k (R(k)), hence the reliability of a classifier

Ravg is the overall degree of the classifier trustworthiness:

Ravg =
1

nc

nc
∑

k=1

R(k) =
1

nc

nc
∑

k=1

P (out = k|in = k)

P (out = k|in = l)
R(k) (2.7)

where nc is the number of classes.

The classification process typically requires a high probability of correct clas-

sification and reliability.

2.6 Summary

In this chapter an introduction of the current state of the art for ATR sys-

tems has been given. The result of the introduction of the previous works is

that the information content has been usually evaluated by considering the

end-to-end ATR system. Moreover no investigation on what the degree of

class-separability is and how to assess it have been performed. As a conse-

quence most of the investigations performed in order to understand how the

parameters of a system can affect the performance of the final system clas-

sifiers are accurate because they are effected by the ambiguities introduced

by the classifier itself. Moreover no investigation on the variation of the

information content has been performed, therefore the proposed parameter

settings could be unsuitable for our purposes of investigation.



Chapter 3

Theory background

3.1 Introduction

ATR systems have been studied for several decades and many different al-

gorithms have been developed. Despite these efforts, many issues are still

open such as information flow through the sensor, the definition of class-

separability and the corresponding degree of class-separability, for instance.

In this chapter an overview of the theoretical background of the thesis will

be reported. Firstly, an introduction about the Bayes theory and Bayes

classifiers is necessary in order to describe some assumptions about the in-

vestigation reported in the next chapters, then the important issues about

the information flow model will be introduced and the most important prob-

lem regarding class-separability will be analysed. Secondly some methods

for the analysis of information preservation will be described. In particular,

the chapter is concerned with the dependency of the information flow on

the sensor structure, describing and comparing some techniques which allow

48
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assessing the measure of the variation of information content through the

processing chain (i.e. how the sample set changes through the processing

chain) as well as how to measure the variation of content in terms of class-

separability (i.e. how to assess the degree of class-separability).

3.2 Bayes theory and Bayes classifier

Before analysing other aspects of this Ph.D problem, it is important to give an

introduction of Bayes theory, as mentioned in previous sections. As described

in [32] and [68], Bayes decision theory is one statistical approaches to the

problem of pattern recognition. Its most important assumption is that the

decision problem is posed in probabilistic terms. In a 2−class problem, for

instance, the most important parameters of Bayes decision theory can be

summarised as follows:

• ω denotes the state of nature (i.e. the tag which the samples can be

labelled with) and it can assume a two values ω1 or ω2.

• P (ωi) (i = 1, 2) is the a priori probability which reflect our prior knowl-

edge about the state of nature before it actually appears.

• p(x|ωi) (i = 1, 2) is termed state-conditional probability density function

for x, i.e. the probability of a data value x given a state of nature.

Suppose the above-mentioned quantities are known, by using the Bayes theo-

rem one can determine the value of another important parameter: a posteriori
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probability, P (ωj|x). Indeed this quantity can be defined as:

P (ωj|x) =
p(x|ωj)P (ωj)

p(x)
(3.1)

where:

p(x) =
2
∑

j=1

p(x|ωj)P (ωj) (3.2)

The corresponding decision rule is defined as:

P (ω1|x)
ω1

≷ P (ω2|x) = p(x|ω1)P (ω1)
ω1

≷ p(x|ω2)P (ω2) (3.3)

which labels data x as ω1 if P (ω1|x) > P (ω2|x) otherwise ω2.

Generally speaking, the decision rule 3.3 or other decision rules, produce

an error of misclassification (i.e. a data x is labeled as ω1 when it belongs

to class ω2). In order to evaluate the performance of a decision rule, it is

usual to calculate the probability of error, i.e. the probability that a sample

is assigned to the wrong class. As for a 2−class problem it is possible to

introduce an a posteriori error probability defined as:

P (error|x) =















P (ω1|x) if it is decided ω2

P (ω2|x) if it is decided ω1

(3.4)

As a consequence the average probability of error is given by:

P (error) =

∫ +∞

−∞
P (error, x)dx =

∫ +∞

−∞
P (error|x)p(x)dx (3.5)
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therefore if for every x, P (error|x) is as small as possible, the integral must

be as small as possible. Bayes rule, hence, gives the smallest probability

of error (as shown in Figure 3.1(a)). Indeed, if Figure 3.1(b) is considered

(where x = t is the value of x which satisfies the condition p(x|ω1)P (ω1) =

p(x|ω2)P (ω2) and t
′

is a bigger value), the value of error probability for x > t
′

is equal to C, whereas for x ≤ t
′

is equal to A + B +D, therefore the total

error area is equal to A+B +C +D, which is bigger than case t by D. The

same conclusion are valid if the threshold is shifted to the left.

In conclusion one can state that the Bayes decision is the best rule which can

be adopted because it minimizes the error of misclassification. Unfortunately

this kind of classifier is not feasible in practice because it needs the a priori

knowledge of classes (i.e. P (ωi) (i = 1, 2)) which usually are not available,

for this reason sub-optimal solutions are usually adopted. As a consequence

thereby we adopted the following assumption:‘The class-separability has to

be assessed before classification’ (termed Before Classification analysis, i.e.

BC analysis). Despite this assumption can be considered a disputed point,

we argue that the class-separability has to be performed before classification

because:

• classifier performance analysis has been already successfully investi-

gated and applied (e.g. ROC and AUC analysis, confusion matrix etc.

as described in the next sections), therefore class-separability investi-

gation would have been useless.

• The BC analysis is related only to the sensor parameters, therefore it

does not consider the ambiguity introduced by a sub-optimal classifier.
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• BC analysis can be interesting for two reasons: first it uses a single

and big set of samples (i.e. it is unnecessary to divide the samples

into training and testing sets); secondly, it helps classifier performance

analysis because it emphasizes the deficiencies of classifiers, helps re-

searchers in defining better training and testing sets (i.e. in terms of

feature skewness).

3.3 Information flow

Before describing the model it is important to consider the fact that a cru-

cial problem is related to the structure of the sensor that is gathering the

potential target features. Since this thesis is focused on SAR/ATR systems,

the information flow is modeled on SAR systems. Some key functions (e.g.

denoising, detection, classification etc.) are common to several ATR systems.

As discussed in the introduction, the hypothesis of this Ph.D. thesis is re-

lated to two issues: information flow definition and class-separability in ATR

systems.

For information flow, in literature ([32] and [68]) a general model of statisti-

cal pattern recognition systems can be represented as depicted in Figure 3.2.

The data, gathered by a sensor, are processed in order to reduce the noise,

to enhance some region of interest etc. Processed data are then fed up to

the next step which extracts the most important features and reduces the

samples dimensionality, so that the transformed data are finally elaborated

by a classifier which separates data in two or more classes.

This model is suitable for a very wide range of pattern recognition topics of
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Figure 3.2: Statistical pattern recognition model. It is a general model for
ATR systems and it is also independent of the structure of the sensor.It
represents an ATR systems as a dimensionality reduction problem (by using
some human knowledge), which performs a binary decision at the last step.

research, i.e. it is able to manage the most important issues of recognition

systems such as denoising, dimensionality reduction and definition of clas-

sification algorithms as well as their performance analysis separately, some

deficiencies are present. Firstly the generalization of the stages in Figure 3.2

tends to hide some characteristics of the analysed system which affect its

performance, i.e. SAR and mammography systems have two different digital

signal processing chains. Secondly, the reliability of features extracted from

a set of data gathered by a sensor depends on the sensor structures self, i.e.

the sensor architecture affects the information content of data and as a con-

sequence the information content of the potential target features. Moreover

some steps depicted in Figure 3.2 consist of several independent subsystems,

i.e. in SAR systems, before feature extraction, detection and discrimination

are necessary, as reported in Chapter 1. Hence the structure of the sensor

plays an important role in defining the statistical pattern recognition model,

therefore it has to be included as backbone into the information flow model.

As for the definition of the information flow model for a SAR/ATR system,
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Figure 3.3: Analysis model: a potential target can be considered as an
∞−dimension vector which contains all the information regarding it. Unfor-
tunately a generic sensor is able to collect just a small number of dimensions
containing information (i.e. SAR systems are able to collect information
regarding length, width for instance, but they are not able to detect informa-
tion such as targets colour, their temperature, etc.) therefore many object
features are lost. Moreover the amount of information lost could be increased
by each step reported in this picture. The goal of this model is to understand
what kind of outcome is obtained when the parameters change and to find the
optimal parameter set for the family of sensors under investigation.
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it has to be modelled as shown in Figure 3.3. As known indeed a SAR sensor

is able to gather a finite number of the potential target features, therefore a

SAR sensor selects a small number of the target characteristics which have to

be also discriminated among noise, natural and man-made clutter. Unfortu-

nately a complete feature space is generally of infinite dimensions, therefore

a SAR sensor performs an unwanted dimension reduction which produces

ambiguity and affects performance analysis.

Once the target signals have been gathered, they are processed and an image

is obtained. In order to discriminate a potential target from noise, natu-

ral and man made clutter, the image will be processed by three algorithms:

Despeckling algorithms which tend to remove the noise introduced by coher-

ent radar signal processing; Detection and discrimination which separate the

potential target features from natural and man-made clutter respectively. Fi-

nally a dimensionality reduction process is performed and a 2-class classifier

is used.

The model depicted in Figure 3.3 has several important advantages. First,

it emphasizes the most important steps of a SAR/ATR system. Particu-

larly it is able to identify all the ‘bottlenecks’ of the information flow (i.e.

points where the information content is reduced, such as at the sensor step

for instance). Secondly it aids the researchers in understanding which in-

puts are the most suitable for each step (i.e. the optimal results that each

step needs in order to produce the optimal results). The latter character-

istic of the model helps researchers in understanding which information is

deleted/removed during each step of processing chain.

The proposed scheme hence has been adopted for assessing performances of
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SAR/ATR systems. It has been used for understanding the end-to-end in-

formation flow (forward direction) and to select the optimal requirements in

the backward direction, i.e. in the forward direction it is possible to describe

how the information content varies whereas in backward direction the model

is able to stress what the optimal SAR/ATR parameters are necessary for a

correct target classification.

3.4 ATR separability problem

Prediction of separability of potential targets classes is another issue in

ATR systems, very important especially for safety critical systems such as

SAR/ATR systems.

Unfortunately despite ATR systems having been adopted since the 1960’s,

the definition of class-separability is still an open question. In the next sec-

tions therefore the analysis of all aspects of this issue will be analysed and a

literature review of the previous studies on the matter will be given.

3.4.1 Problem description

As mentioned in the previous section, the main purpose of this chapter is

to investigate what class-separability and degree of separability are and how

to measure the degree of separability (i.e. given that for classification ap-

plications, the probability of misclassification must be controlled). Before

analysing the criteria adopted for assessing the degree of separability, it is

important to emphasize the conditions which ensure class-separability. Two

classes are separated if they have no intersection, thereby a necessary con-
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dition for class-separability is that the error area (i.e. the overlapping area

between two classes) is equal to zero. In practice the above-mentioned re-

quirement is never satisfied (i.e. PDFs have usually a (−∞,+∞) domain),

therefore a high degree of separability when a false alarm rate associated

with classification problems is considered can be reached by minimizing the

Type II error area (i.e. fixed false alarm rate of a misclassified target-class

with respect to another one, the highest degree of separability is reached if

the maximum misclassification error of the considered class is less or equal

to a fixed false alarm rate).

3.5 Mathematical separability

Zelnio et al. in [11] described several problems in ATR systems. Among

them a crucial one is the proper interpretation of the variation of a partic-

ular target. They suggest to view the variations as target variants with the

interpretation that each target occupies a pattern subspace, i.e. each target

exemplar could be associated with a ‘noise sphere’ in pattern space. The

mentioned model is described mathematically by considering target pattern

subspaces as statistical self-affine fractal sets (i.e. each subset of a self-

affine set is a perfect copy of the whole, eventually translated, scaled and

rotated). In statistics, however, given a Gaussian distribution N(µ, σ), with

mean value µ and standard deviation σ for example, if two sets of samples

from this distribution are drawn and their sample mean and standard devi-

ation are computed, the two sets have to give the same values of the original

distribution, i.e. µ and σ, so that the statistical self-affininity is preserved.
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Fractal assumptions indeed allow us to manage properly some ATR issues

which have not been addressed yet: The definition of class-separability and

degree of separability.

A fractal is an object that is self-similar, i.e. it exhibits not-exactly the same

structure at all scales, but the same ‘type’ of structure must appear on all

scales. Fractals moreover are very common objects present in nature. The

fern depicted in Figure 3.4(a) is a classical example of a self-affine fractal,

because each part of its leaf is a scaled, translated and rotated copy of the

whole.

The world fractal has origin from Latin word fractus, meaning broken, and

(a) Fractal example (b) Non-separable example (c) Degree of separability

Figure 3.4: Fractal model for classification problem: Example of fractal ge-
ometry Figure 3.4(a); Non-separable case Figure 3.4(b): a non-empty inter-
section can be considered as a violation of self-similarity (small rectangle);
Degree of similarity Figure 3.4(c): maximum percentage of preserving self-
similarity. The difference between Figure 3.4(a) and Figure 3.4(c) is the
number of sub-leaves (less in the latter), i.e. the leaves in the large polygon
in Figure 3.4(b) have been removed.
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was adopted mathematically by Mandelbrot [94] to try to give a definition

of sets whose Hausdorff dimension is strictly greater than their topological

dimension [95]. Given indeed a n-dimensional Euclidean space, Rn, the fol-

lowing limit is defined as s-dimensional Hausdorff measure of a set F ⊂ R
n:

Hs(F ) = lim
δ→0

Hs
δ (F ). (3.6)

where:

Hs
δ (F ) = inf

{

+∞
∑

i=1

|Ui|s : {Ui} is a cover of F

}

with s, δ > 0. (3.7)

(|U | = sup {|x− y| : x, y ∈ U} is the diameter of U). Hence one looks at the

cover of F which minimizes the sum in (3.7) when δ → 0. As a consequence

the Hausdorff dimension is defined formally as:

dimH F = inf {s : Hs(F ) = 0} = sup {s : Hs(F ) = ∞} . (3.8)

In practice the Hausdorff dimension which is invariant for bi-Lischiptz trans-

formation [95] generalizes the notion of dimension of a real vector space, i.e.

the necessary number of independent parameters to pick out a point inside

the object, and relates the dimension to the concept of a metric. Hausdorff

dimension is very useful for describing fractals because this kind of object

usually has an integer topological dimension, but in terms of occupied space

it behaves as a higher dimensional space.

As described by Falconer in [96], a self-affine set E, which is by definition nec-

essary self-similar (but not vice-versa), has to satisfy the following condition:
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‘E is self-similar if and only if the intersection Hs(ψi(E)∩ψj(E)) = 0’, where

s is the Hausdorff dimension of E and Hs is the Hausdorff measure, whereas

ψi : R
n → R

n, i = 1, . . . ,m are contractive mappings on R
n with contraction

constant ri < 1. Hence, if two different target classes have some samples in

common, then the condition of statistical self-similarity is no-more satisfied,

thereby one can state that two different target classes are fully separated if

and only if they can be considered as two self affine fractals individually.

Graphically one can say that a class is separated from another if, as de-

Figure 3.5: Box counting limit example

picted in Figure 3.4(a), all its ‘leaves’ are whole. However, if two classes have

some common samples, the situation can be visualised as in Figure 3.4(b).

Indeed by removing the common points of two classes, one can see that the

necessary condition of self-affinity is no more ensured. As a consequence
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the degree of separability, as depicted in Figure 3.4(c), can be qualitatively

defined as the larger set containing self affine subsets (i.e. the percentage of

self-affine sub-leaves of the fern in Figure 3.4(c)). Mathematically, thereby,

the degree of separability of a class with respect to another is the largest

subset of samples which can be classified correctly. Hausdorff dimension

hence is a promising tool which allow to estimate the maximum number of

statistically self-affine subsets. By removing the common points of classes

and computing the Hausdorff dimension, the no-more statistically self-affine

subsets will have a different Hausdorff dimension value, therefore the degree

of separability can be defined as the percentage of elements which belong to

subsets with the same Hausdorff dimension, i.e. the maximum percentage of

correctly classified elements.

Box counting D is indeed a practical approach adopted for computing the

upper limit of Hausdorff dimension. Box counting dimensions of a compact

metric space X is a real number such that if n(ǫ) denotes the minimum

number of the open sets of diameter less than or equal to ǫ, then n(ǫ) is

proportional to ǫ−D as ǫ→ 0, therefore:

D = lim
ǫ→0+

lnN

ln ǫ
(3.9)

Nevertheless this approach has two main deficiencies: Firstly it is difficult

to be implemented; secondly it does not work with the sampled data, i.e. if

two subsets with a finite number of sample of the same class (as depicted

in Figure 3.5) are considered, the value of (3.9) is null, therefore it has no

sense. In conclusion, Hausdorff dimension has the advantage of being related
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indirectly to the error area (i.e. the intersection of two separated classes has

a null Hausdorff dimension), nevertheless it is not a reliable method.

In conclusion, the separability and the degree of separability are concepts

which have to be related to the misclassification area. Indeed, as reported in

Figure 3.6, two different projection functions (i.e. a linear and a non-linear

f(x), for instance) can transform the sample distributions in two different

ways, which can produce two different error areas, therefore the degree of

separability has to be able to detect the difference in error areas.

(a) Linear separation (b) Non-linear separation

(c) Linear separation projection (d) Non-linear separation projec-
tion

Figure 3.6: Separability problem: two different transformations (i.e. linear
and non-linear projection) can produce two different distributions, which have
two different error areas. The degree of separability therefore should be able to
assess the error area in order to detect the properties of a projection function
as reported in this picture.
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3.6 Introduction of the analysis of informa-

tion preservation

In Section 3.3 an information model flow for SAR/ATR systems is defined.

We also mentioned the fact that the model can be used in a forward direc-

tion to understand how information content varies through the digital signal

processing chain and in backward direction in order to select which param-

eters maximize/preserve information content in the digital signal procesing

chain. In practice the forward procedure is useful in order to understand

how a set of samples are mapped in feature space through the digital signal

processing chain, whereas the backward procedure is useful to understand,

given a known samples set, which information has been lost/distorted by the

processing chain.

Understanding how to estimate the information content variation through

the system processing chain is one of the main topic of this Chapter. Several

mathematical approaches thereby will be considered. First a general intro-

duction of the variation of information content problem will be given and

then an appropriate description of the most powerful methods will be re-

ported. Finally the analysis of the advantages/disadvantages and the limits

of each of them will be also discussed.

3.7 Variation information content problem

As described in section 3.3, the information flow model is a promising tool

in order to understand how information content varies through the process-
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ing chain. Unfortunately its structure is strongly related to the considered

structure, i.e. a SAR sensor in our case.

The information flow model allows us to understand how the forward pro-

cedure can provide a set of techniques which are able to determine how the

information content varies in processing chain. This set of techniques can

be applied on sampled data (drawn from a known/unknown distribution) or

on continuous targets PDFs . The main goal is to emphasize which informa-

tion is lost (e.g. some taget properties are lost), if unwanted information is

introduced (e.g. presence of artifacts in a denoised image) and how system

parameters can affect the information content (e.g. Signal-to-Clutter Ratio

(SCR) gives information on how spread is the sample distribution).

The backward procedure however consists of a set of techniques which are

able to determine which parameters are the most important in terms of pre-

serving information content/minimize information distortion. As in the case

of forward procedure a backward procedure can be applied to sampled data

sets or continuous PDFs , but with the main difference that many ATR sub-

systems transfer functions are non-linear or do not admit an inverse function,

therefore some further assumptions on the data are necessary (i.e. ideal out-

put answer for instance).

So far a theoretical description has been given, of how the information flow

can affect the information content investigation, now the description of some

common techniques which can be useful tools in order to estimate the infor-

mation content and its variation through the processing chain are reported.

In the following sections Principal Component Analysis, Bayesian Approaches

and geometrical methods will be described and their suitability for use within
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the forward/backward procedures will be discussed.

3.8 Principal Component Analysis

Principal Component Analysis (PCA) [97] is perhaps one of the oldest and

best known techniques in multivariate analysis and data mining. The main

purpose of PCA is to convert a set of observations of possibly correlated

variables into a set of uncorrelated variables called principal components

(PCs). PCA is performed by an orthogonal linear transformation which

transforms data to a new coordinate system such that the greatest variance

by any projection of data comes to lie on the first coordinate, then the second

greatest variance on the second coordinate etc.

The most important objectives of PCs can be summarized as follows:

• dimensionality reduction;

• feature selection;

• identification of groups of objects or outliers.

Because of its objectives, PCA is often used in solving problems related to

data compression, feature extraction, noise filtering, signal restoration and

classification. In image processing moreover PCs have been adopted for solv-

ing problems such as face and object recognition, tracking, detection and

background modeling [97]. PCA thereby could be useful in case of target

features selection for determining which potential target parameters are less

sensitive to the SAR/ATR processing chain and therefore selected as ‘infor-

mation carrier’ through the processing chain.
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As known, an orthogonal linear transformation is a linear combination of

orthogonal vectors, which preserves a symmetric inner product. In particu-

lar an orthogonal transformation preserves the length of vectors and angles

between vectors. A very interesting application of orthogonal linear trans-

formation is the linear map diagonalization which consists in finding a basis

of vectors V, if exists, with respect to which a linear map is represented by

a diagonal matrix. If diagonal matrix is also ordered, i.e. the largest value is

placed in the first column, the second greatest value is placed in the second

column etc., as reported in 3.10.

























σ1 0 0 · · · 0

0 σ2 · · · 0 0

... · · · . . . · · · ...

0 0 · · · σn−1 0

0 0 · · · 0 σn

























(3.10)

PCA is suitable for application to sampled data. Indeed PCA consists in

computing Eigenvectors and Eigenvalues of samples covariance matrix. A

widely used method to compute Eigenvalues and Eigenvectors is the Singular

Value Decomposition (SVD) [98]. SVD is a factorization of a matrix, defined

as:

M = UΣV −1 (3.11)

where U , V −1 are unitary matrices, whereas Σ is a diagonal matrix. Eigen-

values and Eigenvectors can be considered as a special case of SVD when

matrices are square.
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In practice the PCA consists of following steps:

1. Data organized in data matrix;

2. Data should be normalized before running PCA;

3. Compute the Eigenvectors and Eigenvalues;

4. Ordering the Eigenvectors by ordering the corresponding Eigenvalues

from the largest value to the smallest one.

Despite the large use of PCA, it presents some limits. Firstly PCA will per-

form a linear transformation that makes the data as uncorrelated as possible

and it works well for Gaussian data where the mean and covariance matrix

provide a complete description of measurements. Secondly, for non-Gaussian

distribution or multiple cluster distributions, a covariance matrix is not suf-

ficient to describe the distribution spread. Beside data could have extreme

outlying points that bias the PCA analysis. As for the information content

variation estimation through PCA, therefore, it is suitable if the samples are

drawn from a Gaussian distribution, in case of non-Gaussian distribution

PCA is not able to describe the shape of the sample distribution properly (in

practice PCA is not suitable because sample distributions in SAR/ATR are

usually non-Gaussian). Moreover in case of non-linear processing subsystem

(i.e. CFAR procedure), PCA could fail. Hence PCA is not suitable neither

as forward nor backward techniques. Nevertheless PCA may be used within

a signal processing chain especially if dimensionality reduction is used. Be-

side if covariance matrix is non-singular, PCA is an invertible procedure,
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i.e. PCA is an information preserving procedure when it is using during the

processing chain, as long as nonte of the smaller eigenvectors are removed.

3.8.1 Independent component analysis

As described in [97], another interesting technique is Independent Compo-

nent Analysis (ICA). ICA is a computational method for separating a multi-

variate signal into additive subcomponents supposing the mutual statistical

independence of the non-Gaussian source signals.

ICA finds the independent components (latent variables or sources) by max-

imizing the statistical independence of the estimated components. One may

choose one of many ways to define independence, and this choice governs the

form of the ICA algorithms. The two broadest definitions of independence

for ICA are [99]:

1. Minimization of Mutual Information (MI)

2. Maximization of non-Gaussianity

Typical algorithms for ICA use centering, whitening (usually with the eigen-

value decomposition), and dimensionality reduction as preprocessing steps

in order to simplify and reduce the complexity of the problem for the actual

iterative algorithm.

In general, ICA cannot identify the actual number of source signals, a uniquely

correct ordering of the source signals, nor the proper scaling (including sign)

of the source signals [100].

ICA is important to blind signal separation and has many practical appli-

cations. It is closely related to (or even a special case of) the search for a
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factorial code of the data, i.e., a new vector-valued representation of each

data vector such that it gets uniquely encoded by the resulting code vec-

tor (loss-free coding), but the code components are statistically independent

([99] and [100]).

3.9 Bayesian approach

Since more than a century, science has abandoned Laplace’s deterministic

vision and has fully accepted to use a random variable analysis to describe

system models especially in the case of incomplete knowledge of reality and

of the lack of information which forbids a perfect prediction of the future

[101]. This statistical approach consists in modelling collected data with

proper PDFs. As a consequence the variation of information content can

be evaluated by considering how the sample PDFs of different classes vary

through the information flow model.

A random variable transformation is a common task to perform an estimation

of the information content variation by using PDFs models. Suppose the

unidimensional case. Given a generic transformation ∈ C1(R), i.e. the set of

continuous differentiable function in R:

y = g(x) : R → R (3.12)

and let x be a random variable with PDF px(x), we want to compute the

py(y), i.e. the PDF of random variable y = g(x). As known, any random
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variable transformation has to satisfy the condition:

py(y)dy = px(x)dx (3.13)

i.e. the infinitesimal probability has to be the same for both random vari-

ables. From hypothesis of differentiable function for g(x), one can state:

dy = g
′

(x)dx (3.14)

therefore (3.13) can be written as:

py(y)g
′

(x)dx = px(x)dx⇔ py(y) =
px(x)

g′(x)
(3.15)

if g(x) is a monotonic decreasing function, (3.15) becomes:

py(y) = px(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

. (3.16)

Suppose to have an exponential random variable, for example:

px(x) = e−x (x ≥ 0) (3.17)

it is possible to compute the distribution when x is transformed by y =
√
x.

From (3.15) one can write:

py(y) =
px(x)

g′(x)

∣

∣

∣

∣

y=
√
x

=
e−x

1
2
√
x

∣

∣

∣

∣

∣

y=
√
x

=

= 2
√
xe−x

∣

∣

y=
√
x
= 2ye−y2 , y ≥ 0 (3.18)
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where g
′

(x) = 1
2
√
x
.

One of the most important deficiencies of the Bayesian approach is due the

fact some processing operations are not differentiable (e.g. detection), there-

fore a Bayesian approach can not handle it easily. Because of this more-

over information theory tools (Kullback-Leibler [102], MI metrics [103] etc.)

for assessing the information content variation and systems performance

comparison fail, because non-differentiable transformation do not allow to

compute the transformed PDF . Moreover non-one-to-one maps make the

transforms non-reversible, i.e. non information-preserving, the process of

PDF -transformation. Hence a Bayesian approach cannot be used as for-

ward/backward procedure for all processing sections.

3.10 Geometric methods

Geometric methods are a set of procedures based on the geometric properties

of distribution which tries to overcome the problems encountered with PCA

analysis and Bayesian approaches.

Differential geometry is a mathematical branch which uses techniques of dif-

ferential and integral calculus as well as linear and multi-linear algebra to

study problems in geometry and it is the basis of concepts such as differ-

entiable manifold widely used in Information Geometry [102]. Intuitively

a manifold is a ‘set with a coordinate system’ and it usually represents a

generalization of geometric objects such as smooth curves or surfaces in a

n-dimensional space. An example of a manifold is a set whose points are

probability distributions which is provided with a coordinate system.
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Let S be a manifold and ϕ : S → R
n be a coordinate system for S. Since ϕ

maps each point p in S to n real numbers ϕ(p) : [ξ1(p), . . . , ξn(p)] then each

ξi(p), i = 1, . . . , n can be considered as a function p → ξi(p), i = 1, . . . , n

which map a point p in the i-th coordinate, therefore the maps n ξi(p) : S →

R, i = 1, . . . , n are defined as the coordinate functions.

If another coordinate system ψ = [ρi] i = 1, . . . , n for S is considered, the

coordinate transformation from ϕ : [ξi] to ψ = [ρi] i = 1, . . . , n is the appli-

cation defined as:

ψ ◦ ϕ−1 :
[

ξ1, . . . , ξn
]

→
[

ρ1, . . . , ρn
]

. (3.19)

Formally the previous concepts are defined as follows: Let S be a set. If

there exists a set of coordinate systems A for S which satisfy:

1. Each element ϕ of A is a one-to-one mapping from S to some open

subset of R;

2. For all ϕ ∈ A, given any one-to-one mapping ψ from S to R
n, the

following holds:

ψ ∈ A⇔ ψ ◦ ϕ−1

is a C∞ diffeomorfism (i.e. (ψ ◦ ϕ−1)−1 is still C∞) (3.20)

S is termed an n− dimensional (C∞-differentiable) manifold.

Usually ϕ is called ‘chart ’, whereas ϕ−1 is defined parametrization and the

maximal set containing all the charts of a manifold is termed ‘atlas ’.

Differential Geometry is useful also for defining another powerful mathemat-
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ical tool for our purpose: Lie groups [104], [105], [106] and [107]. Lie groups

are often used in physics as a group of transformations acting on a manifold

S. Let {xi} be a chart of S, an r-parameter Lie group q of transformation is

a group of transformations of S defined as:

x
′(i) = f i(q1, . . . , qr; x1, . . . , xn) (x

′

= f(~q; ~x)) (3.21)

for which the function f i, (i = 1, . . . , n) are smooth function of r-parameters

qk, (k = 1, . . . , r) (assumed to be essential to determine the transformation).

Consider for instance the one-dimensional transformation:

x
′

= a · x, a 6= 0 (3.22)

if the product of two such operations is defined, i.e. x
′′

= b · x′

and x
′

= a · x

(a, b 6= 0), the following result is obtained:

x
′′

= a · x′

= ab · x (3.23)

By rewriting x
′′

= c · x, one can write:

c = a · b (3.24)

so the multiplication of two transformations is described by a function which

have the same form of (3.23). This operation is an Abelian group [104], be-

cause the product of transformation corresponds to the multiplication of real

numbers, therefore the transformation defined in (3.23) is a one-parameter
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Abelian Lie group. As a consequence of the definition of Lie groups and

differential geometry, one can consider set of samples and process it in order

to understand how their coordinates change in a feature space. It is clear

that Geometrical methods are suitable for analysis of both the forward and

backward procedure. Indeed by mapping the samples we can understand

how the information content changes through the processing chain, whereas

comparing the actual output with the ideal one, one can understand which

parameters convey the information. In practice Geometrical method can be

used to map sample into the feature space in order to analyse how the sample

sets change their topology into the feature space.

3.10.1 Approximation using Unscented Theory

Handling charts and atlas cannot be easy especially in a high dimensional

space because of complexity of the problem of managing the coordinates

transformations in a high dimensional features space.

A more convenient approach can be the unscented transformation. As de-

scribed by Julier and Uhlmann in [108], unscented theory is based on the

concept that it is easier to approximate a Gaussian distribution than it is to

approximate an arbitrary non-linear function or transformation.

As illustrated in Figure 3.7, a set of points, termed sigma points, are chosen

so that their mean and covariance matrix are x̄ and Px respectively. The

non-linear function is applied to each point in turn to yield a cloud of trans-

formed points and Pyy are the statistics of transformed points. The main

difference with respect to Monte Carlo simulation consists in the fact that
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Figure 3.7: Unscented Theory model

the samples are not drawn at random but rather according to a deterministic

algorithm. In practice the n-dimensional random variable x with mean x̄ and

covariance Pxx is approximated by 2n+ 1 weight points defined as:

X0 = x̄ w0 = k/(n+ k)

Xi = x̄+ (
√

(n+ k)Pxx)i wi = 1/(2(n+ k))

Xi+n = x̄− (
√

(n+ k)Pxx)i wi = 1/(2(n+ k))

(3.25)

where k ∈ R, (
√

(n+ k)Pxx)i is the i-th row or column of the matrix square

root of (n + k)Pxx and wi is the weight associated with the i-th point. The

algorithm can be summarized as follows:

1. yi = f [Xi] the transformation of sigma points;

2. computation of:

ȳ =
2n
∑

i=0

wiyi; (3.26)
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3. computation of covariance matrix Pyy:

Pyy =
2n
∑

i=0

wi {yi − ȳ} {yi − ȳ}T (3.27)

The most important properties of this approach are:

• Mean and covariance matrix of y are correct to the second order, be-

cause the corresponding values of x are correct.

• The parameter k provides an extra degree of freedom to ‘fine tune’ the

higher order moments of the approximation.

As for experiments, unscented transformation was compared with the lin-

earization of the function [109]:

x2 ≈ c0 + 2c1(x− x0) (3.28)

If the input is a bi-dimensional Gaussian distribution with mean value

µ = [10, 10] and an identity matrix as covariance matrix we can determine

the corresponding output value of the linearized function (3.28). If the Taylor

approximation is stopped at first order, we obtain as result a Gaussian with

unitary mean value and standard deviation.

By applying the mentioned algorithm and considering the ±3 × λi, where

λi (i = 1, 2) is the eigenvalue of matrix Pyy. As for the considered parameter

(sigma points (k = 1, n = 2 in (3.25)): X0 = [10, 10] X1 = [11.7321, 10] X2 =

[10, 11.7321] X3 = [8.2679, 10] X4 = [10, 8.2679]), whereas the corresponding

weights are: w0 = 0.3333, w1 = w2 = w3 = w4 = 0.1667), the percentage
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(b) Unscented Theory approximation

Figure 3.8: Unscented Transform examples

Method 1σ 2σ 3σ

Real Covariance Matrix 0.3920 0.8640 0.9870

Unscented approximation 0.4001 0.8720 0.98

Table 3.1: Percentage of samples within n − σi (n = 1, 2, 3, σi standard
deviation of i-th component, i.e. i = 1, 2) for real covariance matrix and
unscented theory approximation.

of sample which are inside the range of 3 − σ is reported in Table 3.1. The

mean value and the covariance matrix of the real transformed sample and the

approximation one are reported in (3.29) and (3.30) respectively and depicted

in Figure 3.8. Unscented Theory, in conclusion, is able to approximate the

Geometrical methods and it has the advantage of being faster (i.e. less time

consuming) than the application of the mathematical formalism.

Cov =







402.4125 −0.7128

−0.7128 401.8285







Mean = [101.0117, 101.0070] (3.29)
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Cov =







402 −1

−1 402







Mean = [101, 101] (3.30)

As for the linearization of non-linear transform (3.28) (i.e. y ≈ 2 · x), the

results can be summarized as a Gaussian distribution with mean value of

[20, 20] and a covariance matrix equal to 4 · I, where I is the Identity matrix,

which represents an huge error of approximation of the non-linear problem.

3.11 Summary

In Chapter 3 an overview of the theoretical background of the thesis has

been reported. Firstly an introduction to Bayes theory and Bayes classifier

has been given, then the main advantages of ‘before classification analysis’

have been reported. In order to analyse the variation of information content

through the processing chain an information flow model for ATR systems

has been described. The definition of an information flow model allowed us

to describe (generally and mathematically) the problem of class-separability

in ATR systems. Another important consequence of the definition of the

information flow model is the classification of the procedure for assessing the

ATR performances in forward and backward procedures. Finally a set of

mathematical techniques have been analysed in order to check their suitabil-

ity as method for assessing the variation of information content in an ATR

system. The most important techniques can be summarized as follows:
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• Principal Component Analysis;

• Independent Component Analysis;

• Bayesian Approach (i.e. random variable transformation);

• Geometric methods (Differential Geometry, Lie Groups and Unscented

Theory method).



Chapter 4

Metrics for degree of

separability

4.1 Introduction

The comparison of the most popular class-separability metrics is the main

topic of this chapter and the most common methods adopted by researchers

for assessing the degree of class-separability will be analysed. Firstly the suit-

ability of metrics which are based on the Covariance matrix will be analysed,

then the criteria based on information theory (i.e. Entropy/Kullback-Leibler

divergence), the methods based on thresholding and the graphical methods

based on thresholding (i.e. ROC and AUC) will be studied. Finally a new

metric will be introduced.

81
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4.2 Covariance based methods

4.2.1 Linear Discriminant Analysis

Linear Discriminant Analysis [32] (LDA) is a very common method for esti-

mating the degree of separability by considering scatter matrices of samples.

A within-class scatter matrix shows the scatter of samples around their class

mean values and it is defined as:

Sw =
L
∑

i=1

PiE
{

(X −Mi)(X −Mi)
T |ωi

}

=
L
∑

i=1

PiCi (4.1)

where L is the number of classes, Pi is the a priori class probability, E {·} is

the expectation operator, Mi the class mean value, ωi is the class label and

Ci the class covariance matrix. On the other hand a between class scatter

matrix is equal to:

Sb =
L
∑

i=1

PiE
{

(Mi −M0)(Mi −M0)
T |ωi

}

(4.2)

where M0 = E {X} =
∑L

i=1 PiMi. Finally mixture scatter matrix is the

covariance matrix of all samples regardless their class assignments:

Sm = E
{

(X −M0)(X −M0)
T
}

= Sw + Sb (4.3)

As for the LDA as separability metrics it should be able to reach a large

value when the between class scatter is larger or the within-class is smaller,

therefore some common criteria for assessing the degree of separability are:
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1. J1 = tr(S−1
2 S1);

2. J2 = ln
∣

∣S−1
2 S1

∣

∣ = ln |S1| − ln |S2|;

3. J3 =
trS1

trS2
.

where S1 and S2 are one of Sb, Sw and Sm, whereas tr(·) represents the ma-

trix trace.

The criterion is powerful for many reasons, such as it is suitable for being

computed on sampled data and it is indirectly related to error area. Its main

disadvantages are: 1) it depends on the a priori probability of ωi (i.e. Pi)

which is usually unknown; 2) it is only guaranteed for Gaussian distributed

samples; 3) it does not give any information on the error area, i.e. no guar-

antee that requirements on false alarm rate are satisfied.

4.2.2 Bhattaccharrya and Chernoff bounds

The Bhattaccharrya bound is a special case of the Chernoff bound ([32], [68])

defined in equations (4.5) and (4.4) respectively (Pj is a priori probability,

whereas pj(X) is the likelihood functions, j = 1, 2). Both of them define

an upper bound of error probability. For Normally distributed classes, the

corresponding distances (used for measuring the separability of classes) are

defined as in equations (4.6) and (4.7).

ǫtu = P t
1P

1−t
2

∫

pt1(X)p1−t
2 (X)dX for 0 ≤ t < 1 (4.4)

ǫ1/2u = P
1/2
1 P

1/2
2

∫

p
1/2
1 (X)p

1/2
2 (X)dX (4.5)
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µ(t) =
t(1− t)

2
(M1 −M2)

T [tΣ1 + (1− t)Σ2]
−1 (M1 −M2)+

+
1

2
ln

|tΣ1 + (1− t)Σ2|
|Σ1|t |Σ2|1−t (4.6)

µ(1/2) =
1

2
(M1 −M2)

T

(

Σ1 + Σ2

2

)−1

(M1 −M2)+

+
1

2
ln

∣

∣

Σ1+Σ2

2

∣

∣

√

|Σ1| |Σ2|
(4.7)

where Mj and Σj (for j = 1, 2) are the mean value and the covariance ma-

trices of the distributions.

4.2.3 Mahalanobis distance

Mahalanobis distance however is defined as:

d(~x,M) =
√

(~x−M)TΣ−1(~x−M) (4.8)

and it is used for determining the distance from the class distribution mean

value M weighted by the inverse of covariance matrix Σ. As a consequence

Mahalanobis distance is not symmetric. Moreover Mahalanobis distance in-

dicates how distant a sample from a mean value is, but it does not give any

information about if two classes are separated or not.

4.3 Kullback-Leibler divergence

Another common measurement of the difference of two classes is performed by

Kullback-Leibler divergence [102] (or relative entropy) defined for continuous
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Probability Density Function (PDF) as:

DKL(P1||P2) =

∫ +∞

−∞
p1(X) log

p1(X)

p2(X)
dX. (4.9)

where p1(X) and p2(X) are the two classes PDFs .

Moreover relative entropy can be easily computed only for exponential family

distributions (i.e. Gaussian, Exponential, Gamma etc. distributions).

4.4 Thresholding criteria description

In the previous section the concept of class-separability and the degree of

separability have been introduced. Now a set of potential metrics for assess-

ing the degree of separability can be analysed.

4.4.1 K-S threshold

The Kolmogorov Smirnov (K-S ) test [110] is usually adopted in statistics in

order to detect if two data populations have been drawn from the same distri-

bution. The test consists of determining the maximal distance in probability,

Dn (n, number of population samples as depicted in Figure 4.1(a)), between

the populations CDFs and comparing the selected distance with a threshold

Kα (found from the Kolmogorov distribution where α is the level of confi-

dence): if
√
nDn > Kα, then the null hypothesis of the sample being drawn

from the same distribution is rejected, otherwise it is accepted. Graphically,

as depicted in Figure 4.1(a) and Figure 4.1(c), K-S threshold (TKS) is hence
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the value of random value X such that the error of misclassification is min-

imized in the Bayesian sense. Beside ~TKS can be mathematically defined as

:

~TKS = max
~x∈Rn

{∫

~x≤f(~x)⊆Rn

p1(~x)d~x−
∫

~x≤f(~x)⊆Rn

p2(~x)d~x

}

⇔ ~TKS =

{

~x :
∂

∂xi
F1(x) =

∂

∂xi
F2(x)

}

, i=1,. . . ,n. (4.10)

where Fj(·), j = 1, 2 are the CDFs of the populations, whereas f(·) is the

generic surface which generalized the TKS in R
n. As for the last step in (4.10),

it is the result of first derivative of the argument of the max {·} condition.

4.4.2 Support Vector Threshold

A related measure is the Support Vector Threshold (TSV , adopted from SVM

[111] and as depicted in Figure 4.2), which is the hyperplane which ensures a

fixed value of the generalized error by maximizing the functional margin. In a

linear unidimensional case (very common in ATR/SAR systems) the optimal

TSV is equal to TKS. Indeed, as known for the linear case, the problem of

the optimal hyperplane is described as:

yi(w · xi − b) ≥ 1− ξi 1 ≤ i ≤ n (4.11)

where yi ∈ {−1, 1}ni=1 is the class label, xi is the i−th sample, w and b

are the parameter of the hyperplane which has to be estimated, C is an

arbitrary constant, whereas ξi > 0 is a slack variable which is a measure of
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Figure 4.1: Figure 4.1(a) represents the distance Dn and TKS respectively.
Error probability area: Definition Figure 4.1(b), whereas Figure 4.1(c) rep-
resents the fact that the value of error probability for x > t

′

is equal to C,
whereas for x ≤ t

′

is equal to A + B + D, therefore the total error area is
equal to A+ B + C +D, which is bigger than case t by D.
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Figure 4.2: SVM hyperplane example: SVM classifiers consists in comput-
ing a hyperplane which maximizes the margins (dotted lines). The Support
Vector Threshold (TSV ) is practically the same hyperplane, but its meaning is
different (i.e. SVM is related to the classification, whereas it is the hyperplane
which maximizes the class-separability).
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misclassification of data xi. The optimization problem is:

min
w,ξ

{

1

2
‖w‖2 + C

n
∑

i=1

ξi

}

(4.12)

In the one dimension case, equation (4.12) becomes:

min
ξ

{

n
∑

i=1

ξi

}

(4.13)

i.e. b is the threshold which minimizes the error of misclassification. In many

cases the linear SV hyperplane is an approximation which can have as good

performance as or worse than the real hyperplane.

4.4.3 ROC analysis

A ROC graph is a technique for visualizing, organizing and selecting classi-

fiers based on their performance. Fawcett in [112] gave several examples of

successful uses of this kind of techniques for visualizing the performance of

a classifier. Smith in et al. [76] considered ROC analysis for summarizing

the information gathered through probabilities of correct classification, Un-

known detection, declaration, false alarm and generalization. Smith et al. in

[76] considered the area under the ROC curve (AUC) as a criterion for max-

imizing the detection of land-mines. In some applications AUC is preferred

because it is able to produce a single number which is easier to be handled

(an example of ROC and AUC is reported in Figure 4.3).

By thresholding the generated sample of (4.17), (4.18) and (4.19) the be-
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Figure 4.3: Figure 4.3(a) represents ROC curve. Figure 4.3(b) represents
however the Area Under the Curve ROC.
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haviour of the ROC curve and corresponding AUC as class-separability met-

rics was analysed.

As for ROC analysis, the following parameters have been computed:

True positive rate =
Positive correctly classified

Total positives
=

TP

TP+FN
(4.14)

False positive rate =
Negative correctly classified

Total negatives
=

FP

FP+TN
(4.15)

where the TP, FN, FP and TN are depicted in Figure 4.4. However as for the
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Figure 4.4: Parameter definition of ROC curve.

computing of AUC of a ROC the trapezoidal rule has been adopted, which

is defined as:

∫ b

a

f(x)dx ≈ b− a

2N
(y0 + 2y1 + . . .+ 2yN−1 + yN) (4.16)

where N is the number of subintervals and yi, i = 1 . . . N the number of the

point of the function over which the integral is computed.
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4.5 Experiments and results

Several experiments have been performed in order to verify the condition

under which the separability is ensured and at which degree, therefore three

classes of samples (107 samples for each class) have been generated, drawn

from Exponential, Rayleigh and Gaussian distributions.

As for samples drawn from the Exponential distribution, they satisfy the

following conditions:

pE(x) = λe−λx, λ = 1

Mean value: 〈x〉 = λ−1 = 1

Variance:
〈

x2
〉

− 〈x〉2 = λ−2 = 1 (4.17)

As for the Rayleigh distribution however, the sample parameters are:

pR(x) =
x

σ2
R

e
x2

2σ2
R σR = 1

Mean value: 〈x〉 = σR

√

π

2
=

√

π

2

Variance:
〈

x2
〉

− 〈x〉2 = 4− π

2
σ2
R =

4− π

2
(4.18)

Finally, the Gaussian distribution is defined as:

pG(x) =
1

√

2πσ2
G

e
− (x−µG)2

2σ2
G (4.19)
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where µG = 5 is the mean value and σG = 1 is the standard deviation. In

the next subsections all the described techniques are analysed.

4.5.1 Kolmogorov Smirnov Threshold

As for TKS, it is the value of x corresponding at the intersection between

PDFs and it minimizes the error of overall misclassification. Indeed, as de-

picted in Figure 4.5 and Figure 4.6, if the TKS and its values TKS±ǫ, ǫ = 10%

of the TKS true value, are considered and the corresponding error of misclas-

sification as reported in Table 4.1 for Exponential-Gaussian case (E-G) are

computed, one can state that TKS minimizes the error of misclassification.

As for the separability, the same previous experiments by comparing the

Rayleigh distributed class with the Gaussian distributed one were considered

(as reported in Table 4.1, R-G case). By considering the two experiments,

one can affirm that a necessary condition for the separability of the two

classes is to ensure that error probability is minimized. Indeed the experi-

ments confirm that the smaller the error probability area is the smaller the

error of misclassification is obtained. In conclusion one can affirm that TKS

TKS TKS+ǫ TKS−ǫ
Error of misclassification E-G 0.0726 0.0799 0.0789

Error of misclassification R-G 0.0328 0.0418 0.0411

Table 4.1: Error of misclassification for TKS (TE−G
KS =2.9730 and

TR−G
KS =2.8964): The true value and error affected ones (ǫ = ±10%) are

used in order to estimate the error of misclassification. The true value of
TKS preduces the smallest error of misclassification.

is not suitable for our purposes because the error area cannot assessed.
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Figure 4.5: TKS experiment: comparison of the error of misclassification of
the true value and a threshold value affected by an error ǫ = ±10% if the true
value.
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Figure 4.6: TKS experiment: comparison of the error of misclassification of
the true value and a threshold value affected by an error ǫ = ±10% of the
true value.
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4.5.2 Kolmogorov Appropriate Prediction of Separa-

bility: KAPS

Figure 4.7: KAPS parameters description.

Since PDFs usually have an infinite domain (i.e. x ∈ (−∞,+∞)), there is

properly no condition of separability between classes, therefore a new quan-

tity, termed ‘Threshold of Marino-Hughes Threshold’ (TMHD), is defined

which determines the tolerated maximum value of the type I error (i.e. false

negative which occurs when null hypothesis is rejected when it is in fact

true):

TMHD = min
x∈R

{∫ +∞

x

p(ξ)dξ ≤ α

}

, with α ≪ 1. (4.20)

In our experiment α = 10−6 was set (as described in Table 4.2, which re-

ports the theoretical value and the corresponding number of false positive

samples).

As depicted in Figure 4.7 the TKS represents the value of the threshold
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Distribution Theoretical TMHD Simulated Type I Error

Exponential 13.8155 8× 10−7

Rayleigh 5.2565 10−6

Gaussian 9.7534 8× 10−7

Table 4.2: Marino-Hughes Distance for Exponential, Rayleigh and Gaussian
distributions: Simulated Type I Error is the percentage of 107 samples which
overcomes the value of TMHD.

which maximizes the correct classification of the ω1−class and at the same

time minimizes the misclassification of ω2−class, i.e. it maximizes the value

of the TPR and at the same time minimizes the largest value of FPR. More-

over the closer the TMHD and TKS are, the smaller the error area is, as a

consequence the distances corresponding to TMHD and TKS tend to be equal,

when TMHD = TKS.

In order to determine the value of degree of separability the following metric

was adopted [172]:

KAPS =
DKTS

DMHD

∈ (0,+∞) (4.21)

where DKTS is the distance between two classes CDFs corresponding at TKS

(i.e. the maximum one) and DMHD is the analogous distance corresponding

at TMHD. As a consequence of the definition, the separable case is proved

when KAPS is equal to 1.

4.5.3 ROC analysis

As for the experiments the results related to ROC analysis are reported in

Figure 4.8.
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AUC analysis was related to the previous experiments and also to consider-

ing a new experiment has been described where the Exponential distribution

parameters are chosen in order to have the same error area of R-G case, i.e.

λ = 1.4116 in (4.17). In this case, the ROC curves are reported in Figure 4.9,

whereas the AUCs values are reported in Table 4.3. It is clear that the ROC

analysis is difficult to interpret, whereas AUC produces ambiguities in terms

of AUC values interpretation, i.e. ‘bigger is better’ is not true (as demon-

strated comparing second and third line of Table 4.3), and because an area

under the curve could be the same for two different ROC curves which rep-

resent two different class-separability cases. Indeed ROC analysis and AUC

are not able to assess the relative position between TKS and TMHD, which is

an indirect estimation of error area. Moreover distribution shapes can affect

the performance of ROC analysis and AUC, especially the latter, because one

can obtain good results in terms of these metrics, despite the real scenario is

absolutely different, as clarified later.

Experiment AUC

E-G 0.9889

R-G 0.9986

E∗-G 0.9977

Table 4.3: Values of AUC

4.5.4 Bhattaccharrya, Chernoff distances and Kullback-

Leibler divergence

As for the Chernoff distance in equation (4.22) and (4.24) as well as the

Bhattaccharrya distance in equation (4.23) and (4.25), the investigations have



CHAPTER 4. METRICS FOR DEGREE OF SEPARABILITY 98

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

 

 

T
MHD

T
KS

(a) ROC curve E-G case

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

T
MHDT

KS

(b) ROC curve E-G case

Figure 4.8: Figure 4.8(a) represents ROC curve for class-separability in case
of Exponential and Gaussian classes distribution. Figure 4.8(b) represents
ROC curve for class-separability in case of Rayleigh and Gaussian classes
distribution.
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Figure 4.9: ROC analysis for same area distribution cases.

been performed by using MathematicaTM in order to find a closed form for

the integrals (4.4) and (4.5). As results the following formulas (Exponential-

Gaussian case and Rayleigh-Gaussian case respectively with parameters of

equations (4.17), (4.18) and (4.19)) were obtained:

∫ +∞

0

e−xs

√
2π
e−

(x−5)2(1−s)
2 dx =

[

e−
1
2
s( s

s−1
+10)erfi

(

s(x− 6)− x+ 5
√

(2)
√
s− 1

)

1

2
√
s− 1

]+∞

0

(4.22)

∫ +∞

0

e−
x
2

√
2π
e−

(x−5)2

4 dx = [0.0745285erf(0.5x− 2)]+∞
0 (4.23)
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∫ +∞

0

x
e−

x2s
2

√
2π

e−
(x−5)2(1−s)

2 dx =

[

1

2
√
2π
es(

25
2
−5x)− 1

2
(x−5)

(

5
√
2π(1− s)e

1
2
(5s+x−5)2erf

(

5s+ x− 5√
2

)

+ 2

)]+∞

0

(4.24)

∫ +∞

0

x
e−

x2

4

√
2π
e−

(x−5)2

4 dx =
[

0.055erf(0.707x− 1.767)− 0.0008ex(2.5−0.5x)
]+∞
0

(4.25)

Where erfi(·) is the complex error function, whereas erf(·) is the classical er-

ror function. Equations (4.4) and (4.5) for the non-Gaussian mixture cannot

be computed easily and the obtained results are not reliable (i.e. integrals

produce either undetermined expressions or values which are difficult to in-

terpret). Moreover these kind of metrics are not easy to compute numerically

when a finite number of samples drawn from an unknown distribution are

available. A similar conclusion is valid for Kullback-Leibler divergence. As

for the case of TKS, the previous methods fail in being able to take into

account of a restriction of the maximum tolerable error area.

4.5.5 Mahalanobis threshold

As defined in equation (4.8), Mahalanobis classifiers measure the Maha-

lanobis distance for each class and then select the minimum one. As a con-

sequence, the Mahalanobis thresholds, i.e. the value of x where equation

(4.8) for two classes (i.e. two different mean values and covariance matrix
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respectively) assume the same value, is obtained by:

d2(~x,M1) = (~x− ~M1)
TΣ−1

1 (~x− ~M1) = (~x− ~M2)
TΣ−1

2 (~x− ~M2) = d2(~x,M2)

(4.26)

The threshold for the unidimensional case for two population with the same

variance is equal to:

TMD =
M2 +M1

2
(4.27)

whereas in case of different variances the threshold is equal to:

TMD =
(M1

σ1
− M2

σ2
)±

√

(M1

σ1
− M2

σ2
)2 − (σ−1

1 − σ−1
2 )(M1

σ1
− M2

σ2
)

(σ−1
1 − σ−1

2 )
(4.28)

where σi and Mi, for i = 1, 2 are the standard deviations and mean values

respectively.

The first experiment has considered three Gaussian distributions N(2, 1),

N(5, 1) and N(5, 3) whose TKS between population 1 and population 2 as

well as population 1 and population 3 are T 1−2
KS = 3.5 and T 1−3

KS = 3.5582

respectively. The corresponding Mahalanobis distances are T 1−2
MD = 3.5 and

T 1−3
MD = 3.9019 respectively. The results confirm that the TKS = TMD just

in the case where the two Gaussian distributions have the same variance.

Indeed from (4.10) one can state that:

1√
2πσ

e
−(x−M1)

2

2σ2 =
1√
2πσ

e−
(x−M2)

2

2σ2 ⇔ x =
M1 +M2

2
(4.29)

which is equal to (4.27).

the second experiment is related to understanding how the distribution shapes
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affect the performances of the Mahalanobis thresholds. In this experiment

Exponential and Gaussian distributions with parameters described in (4.17)

and (4.19) and Rayleigh as well as Gaussian with parameters described in

(4.18) and (4.19) have been considered in order to check the behaviour of Ma-

halanobis distance in the case of different sample populations with the same

variance values (E-G case) and with different variance values (R-G case).

Comparing the results with values of Table 4.4, one can state that the Ma-

halanobis threshold is less efficient (i.e. it produces a bigger misclassification

error) and it depends more on the standard deviation of populations than

their mean values. Mahalanobis distance fails also in assessing the error.

ǫTMD
ǫTKS

TE−G
MD = 3 0.0726203 0.0725578

TR−G
MD = 2.8235 0.0333 0.0328

Table 4.4: Results of experiment between two populations drawn from differ-
ent probabilities with the same variance values (E-G case) and with different
variance values (R-G case). The error of misclassification is always smaller
for TKS (as reported in Table 4.1) than TMD.

4.5.6 KAPS

As for the experiments to validate the KAPS metrics, the experiments of

section 4.5.3 are considered and the results are reported in Table 4.5. In

Experiment KAPS

E −G 106

R−G 2.4253

E∗ −G 106

Table 4.5: Values of KAPS
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Figure 4.10: Experiment Exponential λ = 1 - Gaussian N(5, 1)
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Figure 4.11: Experiment Rayleigh σ = 1 - Gaussian N(5, 1)
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Figure 4.12: Experiment Exponential λ = 1.4116 - Gaussian N(5, 1)

Figure 4.10, Figure 4.11 and Figure 4.12 the three experiments are depicted.

As shown, despite experiments R-G and E∗-G have the same error areas, the

KAPS value emphasizes that in case of exponential distributions, the desired

maximum tolerated Type I error is reached if and only if almost the whole

ω2−class is misclassified as ω1−class, whereas the AUC values are almost

equal.

4.6 Summary

Chapter 4 focused on the comparison of the most popular class-separability

metrics. Firstly the suitability of metrics which are based on the Covari-

ance matrix have been analysed, then the criteria based on information the-

ory (i.e. Entropy/Kullback-Leibler divergence, Bhattaccharrya and Chernoff

distances), the methods based on thresholding (i.e. K-S threshold, Support
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Vector Threshold and Mahalanobis threshold) and the graphical methods

based on thresholding (i.e. ROC and AUC) have been studied. Finally

a new metric has been introduced (i.e. KAPS) which presents many ad-

vantages compared with previous metrics in order to assess the degree of

separability.



Chapter 5

Sample size effects

5.1 Introduction

In Chapter 4 the most common criteria adopted in pattern recognition for

predicting the degree of class-separability were analysed. We also introduced

a new criterion based on the Kolmogorov-Smirnov test which is important

because it is able to manage the separability when a constraint about the

maximum tolerated Type II error value is introduced. Kolmogorov appro-

priate prediction of separability is a criterion which is able to predict if two

classes are separated or not and at what degree. It is based on the idea that

the smaller the error area is, the more separated the classes are. As reported

KAPS is defined as in equation (4.21), i.e. the distance between classes CDFs

at TKS and TMHD threshold values.

The topic of this chapter is to understand how the value of the KAPS metric

varies as function of sample size. The methods used for assessing the per-

formance of metrics are order statistics analysis [113] and Monte Carlo [101]

106
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simulations.

5.2 Order Statistics analysis

Order statistics analysis [113] is a fundamental tool in non-parametric statis-

tics. It consists usually of computing the distribution of a sorted (in increas-

ing order) set of the realizations of a random variable. A classical example

of order statistics can be described as follows: Drawn n-samples independent

and identically distributed {x1, . . . , xn} from a distribution with PDF f(x)

and CDF F (x), find the distribution of the following random variables:

U = max {x1, . . . , xn} (5.1)

V = min {x1, . . . , xn} (5.2)

The problem of (5.1) can be solved easly by defining set of sample values as

follows:

AU = {U ≤ u} (the maximum is at most )u

= {x1 ≤ u} ∩ {x2 ≤ u} ∩ . . . ∩ {xn ≤ u} (5.3)

Therefore we obtain:

F (U) = Pr {U ≤ u} =
n
∏

i=1

Pr {xi ≤ u} = [F (u)]n (5.4)

f(U) =
d

du
[F (u)]n = nfx(u) [F (u)]

n−1 . (5.5)
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The problem defined in (5.2) can be solved in a similar way.

Our problem however is different. We are indeed interested in computing

the statistics of the j-th smallest value of the sample. Suppose that our xi,

i = 1, . . . , n is drawn from a continuous distribution with CDF Fx(x) and

PDF fx(x). The j-th order statistics is hence equal to:

Fx(j)
(x) = Pr

{

x(j) ≤ x̃
}

= {Exactly j samples of xi ≤ x̃}∪

∪{Exactly j + 1 samples of xi ≤ x̃} ∪ . . .∪

∪{Exactly n samples of xi ≤ x̃} =
n
∑

k=j

(

n

k

)

[Fx(x)]
j [1− Fx(x)]

n−j (5.6)

fx(j)
(x) =

n!

(j − 1)!(n− j)!
fx(x) [Fx(x)]

j−1 [1− Fx(x)]
n−j (5.7)

i.e. (5.6) gives us the probability that a sample is placed at position j when

a set of n-samples is ordered.

5.3 Monte Carlo simulation

The term ‘Monte Carlo’ was apparently first used by Ulam and von Neumann

[101] as a Los Alamos code word for the stochastic simulations they applied

to building better atomic bombs. The Monte Carlo method is an application

of the laws of probability and statistics to the natural sciences. The essence

of the method is to use various distributions of random numbers, each dis-

tribution reflecting a particular process in a sequence of processes such as

the diffusion of neutrons in various materials, to calculate samples that ap-
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proximate the real diffusion history. Statistical sampling had been known

for some time, but without computers the process of making the calculations

was so laborious that the method was seldom used unless the need was com-

pelling. The computer made the approach extremely useful for many physics

problems.

The spirit of Monte Carlo [101] is best conveyed by the example discussed

in a letter of von Neumann to Richtmyer. Consider a spherical core of fis-

sionable material surrounded by a shell of moderator material. Assume some

initial distribution of neutrons in space and in velocity but ignore radiative

and hydrodynamic effects. The idea is to now follow the development of a

large number of individual neutron chains as a consequence of scattering,

absorption, fission, and escape.

At each stage a sequence of decisions has to be made based on statistical

probabilities appropriate to the physical and geometric factors. The first two

decisions occur at time t = 0, when a neutron is selected to have a certain

velocity and a certain spatial position. The next decisions are the position of

the first collision and the nature of that collision. If it is determined that a

fission occurs, the number of emerging neutrons must be decided upon, and

each of these neutrons is eventually followed in the same fashion as the first.

If the collision is decreed to be a scattering, appropriate statistics are invoked

to determine the new momentum of the neutron. When the neutron crosses

a material boundary, the parameters and characteristics of the new medium

are taken into account. Thus, a genealogical history of an individual neutron

is developed. The process is repeated for other neutrons until a statistically

valid picture is generated.



CHAPTER 5. SAMPLE SIZE EFFECTS 110

As for Monte Carlo algorithms however, there exist many methods and they

are useful for simulating complex systems, especially systems with many cou-

pled degrees of freedom.

As for Monte Carlo method properties, they consists of the following pattern:

• Define a domain of possible inputs;

• Generate inputs randomly from a probability distribution over the do-

main;

• Perform a deterministic computation on the inputs;

• Aggregate the results.

From a more mathematical point view, consider a (possibly multidimen-

sional) random variable X having probability mass function or probability

density function fX(x) which is greater than zero on a set of values {X}

Then the expected value of a function g of X is:

E(g(X)) =
∑

x∈{X}
g(x)fX(x) (5.8)

Now, if we were to take an n-sample of X’s, (x1, . . . , xn) , and we computed

the mean of g(x) over the sample, then we would have the Monte Carlo

estimate of the (5.8):

g̃n(x) =
1

n

n
∑

i=1

g(xi) (5.9)

We could, alternatively, speak of the random variable

g̃n(X) =
1

n

n
∑

i=1

g(X) (5.10)
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which we call the Monte Carlo estimator of (5.8).

If E(g(X)), exists, then the weak law of large numbers tells us that for any

arbitrarily small ǫ:

lim
n→∞

P (|g̃n(X)− E(g(X))| ≥ ǫ) = 0 (5.11)

This tells us that as n gets large, then there is small probability that g̃(X)

deviates much from E(g(X)). For our purposes, the strong law of large

numbers says the same thing (the important part being that as long as n is

large enough, g̃n(x)) arising from a Monte Carlo experiment shall be close to

E(g(X)), as desired. Moreover g̃n(x) is unbiased for E(g(X)):

E(g̃n(x)) = E

(

1

n

n
∑

i=1

g(Xi)

)

=
1

n

n
∑

i=1

E(g(Xi) = E(g(X)). (5.12)

Therefore a Monte Carlo simulation becomes useful when one realizes that

very many quantities of interest may be cast as expectations.

5.4 Experiment description

The main goal of this Chapter is to determine the performance of the KAPS

metric as a function of sample size. Unfortunately two kinds of problems

have arisen: first, the computation of order statistics (5.6) and (5.7) is quite

hard in many cases, whereas Monte Carlo requires a high number of samples,

which is very time consuming. In order to solve both problems the following

criteria have been adopted: As for assessing values of TKS and DKS as func-

tion of samples, Monte Carlo analysis has been adopted, whereas for TMHD
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and DMHD an analytical study has been performed.

The experiment considered consists in computing the value of KAPS when

a set of m samples is considered (m = 10, 102 and 103). Firstly we com-

puted the order statistics PDF for i.i.d. samples drawn from an exponential

distribution:

n!

(j − 1)!(n− j)!
(1− e−x)j−1(e−x)n−j+1 (5.13)

Since for x =MHD, e−x ≪ 1, therefore (5.13) can be approximated as:

n− j + 1

n

[

(n+ 1)!

(j − 1)!(n− j + 1)!
xj−1(1− x)n−j+1

]

(5.14)

by considering the Taylor approximation, stopped at first order (i.e. f(x) =

f(a) + f
′

(a)(x − a)), of e−x. The term between bracket in (5.14) is a

Beta(j, n−j+2) distribution whose mean value and variance are respectively:

Ex =
n− j + 1

n

j

n+ 2
(5.15)

V arx ≤ n− j + 1

n

j(n− j + 2)

(n+ 1)2(n+ 3)
(5.16)

(5.17)

the inequality of (5.16) is valid because n−j+1
n

≤ 1 in (5.14). The behaviour

of the described quantities is reported in Figure 5.1, where the mean value

of (5.15) is reported as function of the order j, and Figure 5.2, where the

variance value of (5.16) is reported as function of the order j. Because of the

linear approximation, we are interested in the median value of j (i.e. we are

interested in computing the order statistics at the approximation point which
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is the median value of the approximated Beta distribution) which gives the

highest outcomes, as expected, therefore we can assess for j = n/2 the value

of the (5.16) (results for n = 10, 100, 1000): 2.7·10−3, 2.5·10−5 and 2.5·10−7.

Hence the good estimation of TMHD with sampled data is given by a number

of samples n ≥ 1000 because the corresponding variance value of the order

statistics is ≈ 10−7 . Moreover the corresponding variation of distance DMHD

is negligible (i.e. simulated value of DMHD for n = 10, 100, 1000: ≈ 10−6).

As for TKS value, the (5.14) is no more valid, therefore only a numerical
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Figure 5.1: Mean value behaviour of (5.15) as function of j and for n =
10, 100, 1000 number of samples. The linearized approximation of the order
statistics presents a local maximum at the median value as expected.

Monte Carlo simulation can be performed. As a consequence of 103 iterations
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Figure 5.2: Variance value behaviour of (5.16)as function of j and for n =
10, 100, 1000 number of samples. The value of variance is computed for
j = 5, 50, 500 in order to satisfy the linearized approximation assumptions,
i.e. the range over which the approximation is valid is centered around the
threshold value.
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of our simulations (approximated with a Gaussian) the results are reported in

Figure 5.3. Because the values of TMHD are predominant, the KAPS measure
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(a) TKS distribution, n = 10
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Figure 5.3: TKS distribution as function of the number of samples used to
compute the threshold. As expected, increasing the number of samples reduces
the variance of the measurements (i.e. σmeas. = 1.5, 0.8, 0.04, for n =
10, 100, 1000 number of samples).

is reliable when at least 1000 samples are used.

5.5 Summary

Performances of KAPS metric have been investigated in Chapter 5. The anal-

ysis consisted in understanding how many samples are necessary in order to
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get a reliable value of KAPS metric. The methods used for assessing the

KAPS reliability have been the order statistics and Monte Carlo algorithm.

Firstly a description of order statistics has been given and then an introduc-

tion of Monte Carlo methods have been described. Finally the results of the

simulations have been reported.



Chapter 6

Metrics in ATR/SAR systems

6.1 Introduction

In ATR/SAR systems a crucial step is due to denoising algorithms which

perform the task of removing noise from images and preserving the most im-

portant features (e.g. geometrical and statistical) of potential targets (Bhanu

et al. in [56]). Besides it is also important to avoid introducing distortion

which can affect the classifiers dramatically (i.e. artifacts), therefore it is

necessary to evaluate algorithm performance by using a ‘global’ criterion:

metric (i.e. a tool to assess the preservation of information during signal

processing).

Several methods have been introduced by researchers to evaluate SAR im-

ages ([2], [9], [114], [115]), but no complete investigation of their suitability

have been performed.

This chapter is addressed to test and analyse a set of metrics commonly used

to compare SAR system performance in order to check if they are able to

117
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satisfy all SAR/ATR despckling requirements (i.e. removing noise and pre-

serve image features). Moreover the adopted algorithms have been chosen in

order to remark what kind of information is lost and how to restore it, as the

‘forward-backward’ procedures stress.

To facilitate experimentation we have used synthetic data which are described

in section 6.4

6.2 SAR Image Quality Metrics

In SAR systems several methods have been adopted by researchers during

the last decades as Image Quality Metrics (IQMs), but the most important

can be summarized as follows:

• PSF: Point Spread Function ([2], [9], [114])

• SNR: Signal-to-Noise Ratio ([2], [114])

• PSNR: Peak Signal-to-Noise Ratio ([2])

• ISLR: Integrated SideLobe Ratio ([2])

• MNR: Multiplicative Noise Ratio ([2], [116])

• CR: Contrast Ratio ([2])

• MSE: Mean Squared Error ([115])

• ENL : Equivalent Number of Looks ([9])

The first six methods are unitary metrics. but they may be computed for a

single image, whereas MSE and ENL must always be calculated with respect
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to a reference image. Furthermore, as described by Skolnik in [2], PSF, SNR,

PSNR, ISLR are related to system performances (i.e. resolution, range etc.

etc.) and they can be used if the signal is known or modeled.

Two IQMs introduced by Skolnik for direct image comparison [2] are MNR

and CR. Multiplicative noise is proportional to the average scene intensity

of the system whose main contributors are:

1. Integrated SideLobe energy;

2. Range and azimuth ambiguity;

3. Digital noise.

As a consequence MNR is defined as the ratio between Non-Return-Area

(NRA) (i.e. noise-free parts of images such as calm lakes, metal slabs etc.)

and the image intensity in a relatively bright surrounding area. The suitabil-

ity of this criterion is related to the opportunity of finding such kinds of areas.

A similar consideration can be argued for CR which is defined by Skolnik in

[2] as the ratio between the average intensity of a typical bright region and

the intensity of an NRA ( if thermal noise is small compared with the signal,

then one can write: CR = 1/MNR). Another problem we encountered is

the difficulty of simulating these image areas because they produce nonsense

results.

Mean Squared Error (MSE) is one of the commonly used performance mea-

sures in image and signal processing. For an image on size N ×M pixels, it



CHAPTER 6. METRICS IN ATR/SAR SYSTEMS 120

can be defined as:

MSE =
1

MN

N−1
∑

n=0

M−1
∑

m=0

(x [n,m]− x̂ [n,m])2 (6.1)

where x [n,m] is the original image pixel, whereas x̂ [n,m] represents the

processed one. This metric assumes that the distortion is caused by only

additive, image independent noise. Unfortunately in SAR images a multi-

plicative model is used [9].

As described in [9], besides, because of the multiplicative nature of SAR im-

age noise, a natural proposal for a metric is to adopt the Equivalent Number

of Looks (ENL), defined as:

ENL =
(mean)2

variance
(6.2)

In the first generations of SAR systems, data were captured at low resolu-

tion so that objects [9], such as trees and houses, were much smaller than

a resolution cell. Contributions from RCS fluctuations were averaged out so

that no spatial variations or correlation effects were visible. The resultant

complex field PDF was then Gaussian, with Rayleigh amplitude and negative

exponential intensity PDFs, respectively. As a consequence in low resolution

data, the L-looks average intensity (average of L antenna sub-apertures or

pixels) obey a Gamma distribution with order parameter L, given by:

pI(I) =
1

Γ(L)

(

L

σ0

)L

IL−1eLI/σ0 , I ≥ 0 (6.3)
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(where I is the image intensity, Γ is the Gamma function and σ0 is the mean

value of RCS) which has moments:

〈Im〉 = Γ(m+ L)

Γ(L)

(σ0
L

)m

(6.4)

Note that equation (6.2) is derived directly by (6.4). Indeed L is the number

of looks of SAR images, therefore if the second moment of intensity and

its variance are computed by considering 〈I〉 = σ0 as mean value of image

intensity, one can write (by considering properties of the Gamma function:

Γ(z + 1) = zΓ(z)):
〈

I2
〉

=
L+ 1

L
σ2
0 (6.5)

〈

I2
〉

− 〈I〉2 = L+ 1

L
σ2
0 − σ2

0 =
σ2
0

L
(6.6)

the ratio defined in equation (6.2) the number of look L is obtained. This is

why ENL means Equivalent Number of Look.

An important characteristic of this metric is that it is equivalent to the

number of independent intensity values averaged per pixel. Furthermore

the averages of the ENL ratio are carried out in intensity over a uniformly

distributed target, otherwise the condition of Gamma distributed intensity

is not satisfied.

6.3 NVM : Normalized Variance Metric

Using high resolution SAR, the exponential distribution does not fit the

intensity distribution, therefore researchers have introduced several new dis-
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tribution models such as Weibull, Log-normal and K, because of their ability

to fit real data [9] (especially the last one). Indeed, under the assumption of

Gamma-distributed RCS (order parameter ν) and multilook speckle (order

parameter L), the intensity, I, has a K-distribution PDF, as defined in [9]:

P (I) =
2

Γ(L)Γ(ν)

(

Lν

〈I〉

)(L+ν)/2

×I(L+ν−2)/2Kν−L

[

2

(

νLI

〈I〉

)1/2
]

(6.7)

where L is the number of the looks, ν is the order parameter of RCS gamma

distribution, Γ is the Gamma function, K is the modified Bessel function of

second kind and 〈I〉 is the mean value of image intensity over an homogeneous

local region of the image.

By rewriting normalized variance of equation (6.7) (i.e. var(I)/ 〈I〉2 = 1/L+

1/ν+1/Lν, as defined in [9]) one can get straightforward a metric as follows

(termed Normalized Variance Metric, (NVM)):

L′ =
ν ′ + 1

var(I)

〈I〉2 ν
′ − 1

(6.8)

where L′ and ν ′ are the estimated values of the numbers of look and the

order parameter of RCS Gamma distribution respectively.

The most important advantage of this metric is to relate a parameter of the

SAR system (i.e. the number of looks L), which is known by the designer,

with statistical parameters that can be acquired by image processing. In

an ideal case a despeckling algorithm should be able to suppress noise and

preserve the image RCS values. As known indeed, despeckling and RCS are
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both approximated by a Gamma distribution as described in [9], thus it is

necessary to estimate the value of ν (given by var σ/ 〈σ〉2 = 1/ν) and by

the equation (6.8) compare it with the system number of looks. The more

accurate is the estimation of ν, the smaller should be the error between the

actual number of looks and the estimated one.

A very important problem is to simulate a set of 106 K-distributed SAR im-

ages (as the MSTAR data are classified and therefore they are not available

for assessing the suitability of despeckling metrics) in order to compute the

PDF distributions of the analysed metrics. Several methods are present in

the literature, such as [9] and [10] for instance, but they are not able to simu-

late all the statistical properties of a K-distribution (e.g. Oliver’s method in

[9] is not able to preserve the property that the mean value of RCS is equal

to the mean value of the K-distribution, whereas Ward’s algorithm in [10]

uses independent samples of unit power Rayleigh distributed noise). A very

interesting alternative is to formulate a K-distribution by what is termed the

product model, as described in [117].

By modelling RCS (σ) as a Gamma-distributed random variable σ with a

probability density function pσ(σ) as in (6.9) (where Γ(·) is the gamma func-

tion, µ = 〈σ〉 = σ0 is the mean, and ν is the order parameter as well as the

variance of σ is equal to µ2/ν), whereas L−look speckle random variable of

mean 〈z〉 = 1 with probability density function given by (6.10), the product

of random variables x = σz is K-distributed with a probability density func-

tion given by (6.7).
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pσ(σ) =
1

σ

(

νσ

µ

)ν
1

Γ(ν)
exp

(

−νσ
µ

)

(6.9)

pz(z) =
LLzL−1eLz

Γ(L)
(6.10)

As for our simulations, a single look radar system with a SAR Point Spread

Function (PSF), defined by 2-D sinc(x) filter, which produces a corre-

lated exponential distributed speckle and as a consequence a correlated K-

distributed set of images was considered. However the correlated Gamma-

distributed RCS was simulated by using the method described by Ward in

[10]. Indeed by generating a set of correlated Gaussian samples {y1} which

are non-linearly mapped into a Gamma distributed sample by solving the

following equation:

1√
2π

∫ y1

−∞
exp

[

−y
2

2

]

dy ≡
∫ σ1

−∞
bν
σν−1

Γ(ν)
exp [−bσ] (6.11)

(b = ν/µ is the scale parameter of the Gamma PDF of (6.9)) it is possible

to generate a Gamma-distributed image.

Finally a K-distributed image is created by multiplying the two variables in

(6.9) and (6.10) was abtained.

By considering a scale parameter b = ν/µ equal to 1 and usingMATLAB (TM)

tools, we computed a set of 1000, 100 by 100 pixels, correlated spatially

Gamma-distributed images for each ν = 2, 4, 6, 8, 10 (as depicted in Fig-

ure 6.1).

As described in Table 6.1 the Gamma-distributed images are simulated

with an accuracy of 10−10 which is appreciable for our targets. Similar re-
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(a) Gamma-distributed images PDF,
ν = 2
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(b) Gamma-distributed images PDF,
ν = 4
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(c) Gamma-distributed images PDF,
ν = 6
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(d) Gamma-distributed images PDF,
ν = 8
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ν = 10

Figure 6.1: Gamma-distributed images PDF: Simulated and theoretical.
Comparison of PDFs of simulated Gamma-distributed images and theoret-
ical Gamma-PDF for ν = 2, 4, 6, 8, 10.
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(a) K-distributed images PDF, ν = 2
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(b) K-distributed images PDF, ν = 4
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(c) K-distributed images PDF, ν = 6
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(d) K-distributed images PDF, ν = 8

0 20 40 60 80 100 120
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x

y=
p(

x)

K−distribution, ν=10 L=1

 

 
Theoretical
Simulated

(e) K-distributed images PDF, ν = 10

Figure 6.2: K-distributed images PDF: Simulated and theoretical. Compar-
ison of PDFs of simulated K-distributed images and theoretical K-PDF for
ν = 2, 4, 6, 8, 10 and single look (L = 1).
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ν 2 4 6 8 10

MSE 9.15 10−11 1.15 10−10 1.048 10−10 1.11 10−10 1.1 10−10

Table 6.1: Mean squared error of simulated Gamma-distribution with theo-
retical one (ν is the order parameter).

Order parameter ν = 2 ν = 4 ν = 6 ν = 8 ν = 10

〈σ〉 2.0002 3.9988 6.0033 8.0028 9.9991

〈σ〉2 /var(σ) 2.0029 4.0011 5.9869 8.0011 9.9893

Table 6.2: Mean value and normalized variance of simulated Gamma-
distributions. Because the shape parameters was set equal to one a mean
value equal to the order parameter as well as the inverse-normalized variance
should be obtained.

ν 2 4 6 8 10

MSE 4.27 10−9 1.72 10−9 6.45 10−10 5.5 10−10 4.3 10−10

Table 6.3: Mean squared error of simulated K-distribution with theoretical
one. Accuracy increases with order parameter (ν is the order parameter,
whereas the Number of Look L = 1)

ν 2 4 6 8 10

〈I〉 = 〈σ〉 2.0009 4.0001 6.0043 8.0036 9.9991

var(I)/ 〈I〉 2.0125 1.5107 1.3450 1.2604 1.2111

Table 6.4: Mean value and normalized variance of simulated K-distribution.
The normalized variance for a single look K-distributed is equal to 1 + 2/ν,
where ν is the order parameter of Gamma-distributed RCS (ν is the order
parameter, whereas the Number of Look L = 1)
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sults are shown in Table 6.3 for K-distributions (depicted in Figure 6.2). As

for Table 6.4, it represents the mean value of K-distribution which has to be

equal to the mean value of the Gamma-distributed RCS and the normalized

variance, defined as 1+2/ν for single look SAR images (where ν is the order

parameter of Gamma-distributed RCS). Comparing the results of Table 6.4

with results shown in Table 6.2, one can state that our simulation errors

are smaller than 1% (an example of K-distributed image is reported in Fig-

ure 6.3(a)).

6.4 Nature of experiments

The experiments are implemented in order to determine properties of the

following metrics: ENL , MSE and NVM . In practice they were implemented

in order to check if the described metrics are able to discriminate the accuracy

in RCS reconstruction of algorithms used for despeckling.

6.4.1 Algorithm description

Three algorithms were compared in order to estimate their performances in

terms of RCS reconstruction and edge preserving properties. Three algo-

rithms were analysed and their performances compared: Median filter, Bel-

trami flow and Gaussian filter. As for metrics comparison, only the Gaussian

filter and Beltrami flow were taken into account.
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Median filter

Median filter is a nonlinear digital filter technique for removing noise and

it is often used because, under certain conditions, it preserves edges while

removing noise [115]. The algorithm of the median filter consists of replacing

the pixel which is being analysed with the median of the neighboring entries.

For example, if one has the following 1-D vector x = [2.5 80.4 6.3 3.1] and

we use three cells window size, the median filter works as follows:

• y[1] =Median[2.5 2.5 80.4] = 2.5

• y[2] =Median[2.5 80.4 6.3] =Median[2.5 6.3 80.4] = 6.3

• y[3] =Median[80.4 6.3 3.1] =Median[3.1 6.3 80.4] = 6.3

• y[3] =Median[6.3 3.1 3.1] = 3.1

thus the output is y = [2.5 6.3 6.3 3.1]. Because there is no entry preceding

the first value, the latter is repeated, as with the last value, to obtain enough

entries to fill the window.

As for a 2-D algorithm, the median filter acts as follows: a n−by−n matrix is

converted in an n2-cells array sorted in increasing order and then the previous

algorithm is applied. In our simulation the median filter is implemented by

MATLABTM with the command medfilt2, with a window of 3−by−3 pixels,

was used (an example of a filtered image is reported in Figure 6.3(d)).
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Gaussian filter

As described in [115], a Gaussian filter is defined as:

h(m,n) =
1

2πs2
e−(m2+n2)/2s2 (6.12)

Equation (6.12) represent a 2-D convolution operator that is used to ‘blur ’

images and remove details and noise, which uses a kernel that represents

the shape of a Gaussian ((an example of a filtered image is reported in Fig-

ure 6.3(b))).

The Gaussian filter output is a ‘weighted average’ of the central pixel of the

filter window with its neighborhood (the filter window size depends on the

standard deviation s in equation (6.12)). Because of weighted spatial aver-

aging, the Gaussian filter provides a gentler smoothing and preserves edges

better than a similarly sized mean filter, where the window has an uniform

weighting.

Moreover researchers usually adopt the Gaussian as a smoothing filter be-

cause of its frequency response. Indeed Gaussian filter represents a bell-shape

response in the frequency domain, thereby it does not exhibit oscillations in

its frequency response, hence it is often used in the denoising step of edge

detection techniques (i.e. it does not introduce artefacts due to ripplesin the

frequency domain).

Beltrami flow

Kimmel et al. have introduced in [118], [119] and [120] a set of new denoising

algorithms, termed Beltrami flow, which are capable of excellent smoothing
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of images while preserving their visually important features (an example of

a filtered image is reported in Figure 6.3(c)).

An interesting approach consists in introducing a Gaussian kernel to imple-

ment vector-valued image regularization. This kernel enables the implemen-

tation of Beltrami flow by convolving the image with the kernel, as defined

in [124]:

K(u1, u2, ũ1, ũ2; t) =
H0

t
exp

(

−
d2g((u

1, u2), (ũ1, ũ2))

4t

)

(6.13)

where (u1, u2) and (ũ1, ũ2) are coordinates of two points on a manifold, d2g(·, ·)

represents the geodesic distance between two points on image manifold, H0

is a constant and t is the iteration step. As a consequence the update step

for jointly smoothing the manifold and the image painted on it is:

X i(u1, u2; t0 + t) =
∫ ∫

(ũ1,ũ2)∈N(u1,u2)

X i(ũ1, û2; t0)×K(u1, u2, ũ1, ũ2; t)dũ1dũ2 (6.14)

where X i ∈
{

X1, X2, . . . , XN
}

are the components of the images (i.e. Red,

Green and Blue for colour image), whereas N(u1, u2) is the neighborhood of

the point (ũ1, ũ2).

The difference between equation (6.12) and (6.14) consists in two different

systems of reference. As for equation (6.12) the output is the sum of the

neighboring points’ amplitude weighted according to their distance along the

coordinate axis. Beltrami flow however tends to smooth regular and flat re-

gions, where d2g(·, ·) tends to be equal to zero and as a consequence the kernel
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value is almost one , whereas it penalizes dramatically edge updates, where

the value of the kernel tends to zeros because d2g(·, ·) >> 1. Moreover, be-

cause of the nonlinearity of Beltrami flow (it depends on the original image),

it is impossible to use a global kernel, therefore Spira et al. in [124] suggest

to use the short-time kernel iteratively, therefore the number of iterations

has been set at 2. Beltrami has never been adopted as despeckling algorithm

by researchers, therefore it will be analysed as RCS filter reconstruction and

as edge preserving denoising algorithm.

6.5 Results

The experimental process can be described as follows:

1. A set of 106 100× 100 pixels spatially correlated K-distributed images

have been generated;

2. The images are filtered using either the Gaussian and Beltrami methods

in turn and the metric values are estimated (set the number of looks

equal to 1, for our case);

3. The histograms of the metrics are computed;

A set of example images are depicted in Figure 6.3: First the original images

is shown where others represent filtered examples (Gaussian filter and Bel-

trami flow outcomes respectively).

As for metric performances, results are depicted in Figures 6.4, 6.5, 6.6,

6.7 and 6.8, which represent the PDFs of metrics ENL , NVM and MSE

respectively. Since the test images sets consist of homogeneous images, the
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Figure 6.3: K-distributed images examples. A spatially correlated K-
distributed image (originated from a spatially correlated Gamma distributed
RCS, i.e. the underlying RCS consists of exponentially correlated samples, as
Ward’s MNTL model is reported in [10]), order parameter ν = 8 and single
look (L = 1) is generated (a) and then processed with algorithm the Gaussian
filter (b), Beltrami flow (c) and Median filter (d).
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results are interesting in order to demonstrate which algorithm removes more

speckle/reconstructs RCS in the best way. Reconstruction is important for

two reasons: First it is important to remove as much speckle as possible while

preserving images features (i.e. understanding which algorithm performs the

best RCS reconstruction and how the denoising/RCS reconstruction pro-

cess affects the Constant False Alarm (CFAR) detection performance for a

SAR/ATR system); Second it is also crucial to estimate how much the output

images are distorted by the denoising algorithm (i.e. quantifying the presence

of artifacts). From these perspectives, ENL and NVM can be considered as

dual. ENL indeed tends to quantify how much speckle is removed by the

denoising filters (i.e. how similar the distribution of the ratio images to the

order parameter of the Gamma-distributed speckle model is. Note that for

our simulation the number of looks L is equal to 1, therefore equation (6.10)

of the ratio image set becomes an exponential distribution). NVM numbers

can be interpreted however as an indirect estimation of the presence of arti-

facts.

By inspection of Figures 6.4, 6.5, 6.6, 6.7 and 6.8 it is also clear that ENL

produces a better separation of filter performance, whereas NVM and MSE

introduce a superposition which produces performance ambiguities (never-

theless the Mann−Whitney −Wilcoxon test (MWW) [133] confirms the

results depicted in Figure 6.4(b), 6.5(b), 6.6(b), 6.7(b) and 6.8(b), as re-

ported in Table 6.5: the Beltrami NVM PDFs are shifted to the right with

respect to the Gaussian NVM PDFs. Note that only values of NVM distri-

butions which are ≥ 10−6 have been considered). Moreover MSE computed

in linear space cannot give useful information because it is not related to any
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Order parameter NVMBelt<NVMGauss NVMBelt>NVMGauss

ν = 2 0.9999 1.3652e− 04

ν = 4 0.9973 0.0027

ν = 6 0.9945 0.0055

ν = 8 0.9952 0.0048

ν = 10 0.9642 0.0358

Table 6.5: MWW test results, the p-values for two cases (Population A <
Population B and Population A > Population B) of significance test (the null
hypothesis is rejected when the p-value is less than 0.05 or 0.01, corresponding
respectively to a 5% or 1% chance of rejecting the null hypothesis when it is
true - Type I error) are reported. No equal values in two columns means that
the distributions are different

model parameter (i.e. number of looks of the SAR system/other parameters

of speckle model for NVM and ENL respectively). A large value of MSE

indicates a large difference between images, but it may not be related to

reduction of speckle.

lim
ν→νtrue

NVM = L (6.15)

As defined in (6.2) and (6.15), an ideal algorithm should give the same result

for ENL and NVM (i.e. the actual number of looks L = 1 in our case),

therefore one can confirm that neither Beltrami flow nor the Gaussian filter

are able to remove correctly the speckle and to reconstruct the underlying

RCS in the samples images. Indeed by increasing the order parameter ν,

ENL tells us that for very noise-like images (ν = 2 which is very similar to

woodland distribution as reported in [9]) the Gaussian filter removes speckle

correctly and it reconstructs RCS PDF in the best way. However for the

other experiments, Beltrami flow seems to remove more correctly the speckle
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than the Gaussian filter, because the latter tends to smooth too much the

images, as expected.

In terms of NVM, the Gaussian filter introduce less distortion in RCS recon-

struction than an iterative algorithm such as Beltrami flow.

In conclusion it is suggested to use both NVM and ENL metrics to compare

algorithm performance and to estimate the presence of artifacts in the im-

ages which could affect the detection and classification steps of an SAR/ATR

system. Indeed ENL allows us to quantify how good the Gamma-distributed

speckle model is estimated, whereas NVM gives us the same information for

Gamma-distributed RCS.
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Figure 6.4: Metrics distributions for Gaussian filter and Beltrami flow when
applied to a K-distributed images set with ν = 2 and L = 1.
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(a) ENL metric distribution, ν = 4
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Figure 6.5: Metrics distributions for Gaussian filter and Beltrami flow when
applied to a K-distributed images set with ν = 4 and L = 1.

6.6 Summary

The main topic of Chapter 6 has been the analysis of the most important

image quality metrics for ATR/SAR systems. An introduction of the most

popular metrics adopted by researchers has been given and as a consequence

metrics suitability for ATR/SAR systems have been analysed. In order to

perform such an analysis some issues related to SAR images simulation have

been resolved. Moreover a set of algorithms for image denoising have been

described (i.e. the median filter, The Gaussian filter and Beltrami flow).
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Figure 6.6: Metrics distributions for Gaussian filter and Beltrami flow when
applied to a K-distributed images set with ν = 6 and L = 1.
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(a) ENL metric distribution, ν = 8
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(b) NVM metric distribution, ν = 8
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Figure 6.7: Metrics distributions for Gaussian filter and Beltrami flow when
applied to a K-distributed images set with ν = 8 and L = 1.
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(b) NVM metric distribution, ν = 10
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Figure 6.8: Metrics distributions for Gaussian filter and Beltrami flow when
applied to a K-distributed images set with ν = 10 and L = 1.
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Finally a new image quality metric (i.e. NVM) has been proposed because of

its advantage in estimating the presence of artefacts in filtered images/RCS

reconstruction filter output.



Chapter 7

Gaussian filter, Median filter

and Beltrami flow: Analysis

and comparison in ATR

systems

7.1 Introduction

One of the most important tasks in a SAR/ATR system is to remove correctly

the speckle from the images (i.e. removing the speckle and preserving target

features as well as avoid introducing artifacts). There are many algorithms

which have been adopted in the last decades as reported by Oliver in [9].

Recently a new set of algorithms has been developed by Spira et al. which

tend to satisfy most of the requirements of digital processing (i.e. denois-

ing/smoothing trade-off). These new algorithms have originated from studies

142
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of high energy physics and use an important mathematical instrument: The

Beltrami operator. It is proved by Spira et al. that Beltrami flow, described

in 6.4.1, is a generalization of many algorithms based on partial differential

equations (such as linear scale space, generalized Peona-Malik flows, mean

curvature flow etc. as described in [119]) and it seems to be able to perform

a good RCS reconstruction as well as preserves the edges. In this chapter

the Beltrami flow algorithm and Median filter are analysed, and their per-

formances are compared with the Gaussian filter which is the most popular

noise filter in image processing.

7.2 Problem description

In Automatic Target Recognition (ATR) feature preserving is a crucial re-

quirement in order to perform a correct classification. Hence despeckling

algorithms should be able to reduce the noise level, perform a correct RCS

reconstruction, preserve the edges and last, but not the least, not introduce

any kind of artifacts.

The metrics used to compare algorithm performances are grouped in two

sets: NVM as well as ENL , as defined in equation (6.2) and (6.8) as for de-

noising performance/RCS reconstruction and presence of artifacts, and edge

preserving metrics.

As for the edge preserving metrics, they consists of several criteria to esti-

mate how much the edges are preserved or distorted. In the literature, [115],

the most important methods to evaluate edge preservation are:

1. Edge position: how much the position of the edge is shifted by the
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despeckling algorithm;

2. Edge height: estimate the edge amplitude distortion introduced by the

algorithm;

3. Slope angle of the edge;

4. Spatial orientation on the edge introduced by the denoising algorithm.

7.3 Simulator description

By using the simulations performed in Chapter 6, a set of 1000, 100 by 100

pixels, K-distributed images was simulated.

However for testing of edge preserving metrics, a set of 1000, 100 by 100

pixels, K-distributed images with parameters L = 1 (number of look) and

ν = 8 (Gamma distributed RCS order parameter) was simulated and a square

of 20 by 20 pixels was placed at the centre of the images (as reported in

Figure 7.1(a) and 7.1(b)). In order to obtain a clear SAR image, the SCR of

this images was set to 5dB, as indicated by Skolnik in [2].

7.4 Experiment description and result anal-

ysis

Two sets of experiments have been performed in order to compare the per-

formance of despeckling algorithms: First the algorithms have been analysed

in terms of RCS filter reconstruction, then their edge-preserving properties



CHAPTER 7. DESPECKLING FILTERING 145

X

Y
Image with edges

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

500

1000

1500

2000

2500

(a) Image with edges, the red part rep-
resent a 20× 20 prevailing pixels

5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

X

Im
ag

e 
in

te
ns

ity

Edge profile

(b) Edge profile of simulated images
with edges

Figure 7.1: Examples of edge profile images: example of a simulated image
with edge 7.1(a); Corresponding edge profile 7.1(b).

have been evaluated.

7.4.1 RCS reconstruction filter performances

As for RCS filters reconstruction, the algorithms have been compared in

terms of ENL and NVM. Besides in order to check which metric performs

the most realistic result, the PDF have been computed from the filter output

and they have been compared in terms of MSE with the expected theoretical

one (i.e. the underlying Gamma-distributed RCS).

As for ENL and NVM values they are the mode of PDFs computed in chapter

6.

In Figure 7.2 and Figure 7.3 the outcomes of filters are depicted in terms of

PDFs (Gamma-distributed RCS and exponential distributed removed speckle

respectively). As for RCS reconstruction, it is clear that no filter is able

to estimate correctly the RCS, it is clear that no filter is able to estimate
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(b) RCS distribution filtered images,
ν = 4
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8

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

x

y=
p(

x)

Gamma distribution of filtered images,ν=10

 

 
Theoretical
Gaussian filter
Beltrami flow
Median filter

(d) RCS distribution filtered images,
ν = 10

Figure 7.2: Gamma distribution of filtered images, for ν = 2, 4, 8, 10
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Metric Beltrami flow Gaussian filter Median filter

NVM 1.666 1.367 0.9359

ENL 0.77 1.046 0.4080

Table 7.1: Metrics values of RCS reconstruction for filtered images, ν = 2

correctly the RCS PDF especially for low order parameter of the underlying

RCS. Moreover for ν = 2 the indirect measures tend to fail.

By comparing Figure 7.2(a) with values of Table 7.1 and 7.5, the minimum

of MSE is given by the Gaussian filter output despite the NVM values seems

to give the best result for the median filter. However ENL seems to be

unaffected by this kind of problem.

As for the other outputs NVM seems to be confirmed by MSE values of

Table 7.5. Indeed if the first lines of Tables 7.2-7.4 are considered and they

are compared with the last three line of Table 7.5, the minimum of NVM

corresponds to the minimum of MSE.

However if the second lines of Tables 7.1-7.4 is compared with Table 7.6 and

Figure 7.3 it is clear that Median filter, which presents a spike near to 1,

remove less correctly the speckle as confirmed by the ENL values. Moreover

the higher ENL values of the Gaussian filter with respect to Beltrami flow

confirms the property of ‘blurring’ of the Gaussian filter. In conclusion we

can confirm that generally both ENL and NVM reflect properties of PDFs

simulations (better than MSE).
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(a) Removed speckle PDF, L = 1 ν = 2
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(b) Removed speckle PDF, L = 1 ν = 4
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(c) Removed speckle PDF, L = 1 ν = 8
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(d) Removed speckle PDF, L = 1 ν = 10

Figure 7.3: Speckle distribution of filtered images, from original K-
distribution images with parameters equal to L = 1 ν = 2, 4, 8, 10

Metric Beltrami flow Gaussian filter Median filter

NVM 1.2951 1.0931 0.6125

ENL 0.9581 1.262 0.7821

Table 7.2: Metrics values of RCS reconstruction for filtered images, ν = 4

Metric Beltrami flow Gaussian filter Median filter

NVM 1.0991 0.9391 0.675

ENL 1.1121 1.4121 0.7545

Table 7.3: Metrics values of RCS reconstruction for filtered images, ν = 8

Metric Beltrami flow Gaussian filter Median filter

NVM 1.0471 0.9051 0.6752

ENL 1.1601 1.4481 0.6551

Table 7.4: Metrics values of RCS reconstruction for filtered images, ν = 10
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ν of simulated pΓ Beltrami flow Gaussian filter Median filter

ν = 2 1.2641e− 5 3.1411e− 6 6.5360e− 6

ν = 4 4.1016e− 6 2.7629e− 7 4.6143e− 6

ν = 8 8.3332e− 7 2.3925e− 7 3.9653e− 6

ν = 10 4.1451e− 7 4.3035e− 7 3.8160e− 6

Table 7.5: MSE between Gamma distributed filtered images and theoretical
one.

ν of simulated pΓ Beltrami flow Gaussian filter Median filter

ν = 2 1.6342e− 6 1.1386e− 6 1.6148e− 5

ν = 4 1.3052e− 6 1.8797e− 6 1.7146e− 5

ν = 8 1.5633e− 6 2.5771e− 6 1.7648e− 5

ν = 10 1.6923e− 6 2.7518e− 6 1.7754e− 5

Table 7.6: MSE of PDF of removed speckle with theoretical one.

7.4.2 Filter parameters analysis

Another important issue is to understand which parameters of algorithms af-

fect their performances and how. In this section the Gaussian filter, Beltrami

flow and Median filter are considered separately.

Gaussian filter parameters

As for Gaussian, two sets of investigation have been performed in order to

understand which parameter between filter variance and window size affects

more the algorithm performance. First PDFs for several filter with different

window sizes are applied (3−by−3, 5−by−5, 7−by−7, 9−by−9, 15−by−15),

but fixing the variance s2 of (6.12) to 1 were computed and then the same

analysis was performed with different window sizes and variances (i.e. s2

equal to 1, 2, 3, 4, 8).

As depicted in Figure 7.4 and Figure 7.5, fixing the filter variance s2 to



CHAPTER 7. DESPECKLING FILTERING 150

1 and changing the filter window size, the filtered images PDFs tend to be

estimated better with a large filter window size, whereas the removed speckle

PDFs are not estimated correctly. However if Figure 7.6 and Figure 7.7 are

considered, then the filtered images and removed speckle PDFs are very well

estimated for s = 1, 2, whereas for higher variances Gaussian filter does not

reconstruct RCS correctly. As for removed speckle (as shown in Figure 7.7),

increasing the order parameter ν (i.e. ν = 8, 10) of the underlying Gamma-

distributed RCS seems to be independent of filter variance s ≥ 2.

In conclusion one can state that the Gaussian filter behaviour depends more

on the filter variance than its window size.

Beltrami flow parameters

As for Beltrami flow, two parameters have been analysed:

1. The number of iterations, because the kernel has been applied itera-

tively;

2. Kernel size.

Figures 7.8(a), 7.9(a) and 7.10(a) represent the outcome PDFs of Beltrami

flow. Increasing the number of iterations produce more distortions in output

images. In practice, doubling the number of iterations (i.e. 2) increases the

value and the position (i.e. shifting to the right on x-axis) of PDF mode and

as a consequence reduce the tails of filtered RCS images (see MSE values in

Table 7.7).

As for the removed speckle (Figure 7.8(b), 7.9(b) and 7.10(b)), increasing

the number of iterations however produces better results as demonstrated in
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(a) RCS distribution filtered images, ν =
4

0 5 10 15 20
0

0.005

0.01

0.015

x

y=
p(

x)

RCS reconstruction with Gaussian filter with variance s=1

 

 
Original
Gaussian filter 3x3
Gaussian filter 5x5
Gaussian filter 7x7
Gaussian filter 9x9
Gaussian filter 15x15

(b) RCS distribution filtered images,
ν = 6
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(c) RCS distribution filtered images, ν =
8
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(d) RCS distribution filtered images,
ν = 10

Figure 7.4: Gamma distribution of filtered images estimated by Gaussian
filter with fixed variance s2 = 1 and different window size (3−by−3, 5−by−5,
7− by − 7, 9− by − 9, 15− by − 15), for ν = 4, 6, 8, 10
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(a) Removed speckle PDF, L = 1 ν = 4
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(b) Removed speckle PDF, L = 1 ν = 6
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(c) Removed speckle PDF, L = 1 ν = 8
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(d) Removed speckle PDF, L = 1 ν = 10

Figure 7.5: Speckle distribution of filtered images removed by Gaussian filter
with fixed variance s2 = 1 and different window size (3− by − 3, 5− by − 5,
7− by−7, 9− by−9, 15− by−15), from original K-distribution images with
parameters equal to L = 1ν = 4, 6, 8, 10
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(a) RCS distribution filtered images, ν =
4
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(b) RCS distribution filtered images,
ν = 6
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(c) RCS distribution filtered images, ν =
8
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(d) RCS distribution filtered images,
ν = 10

Figure 7.6: Gamma distribution of filtered images estimated by Gaussian
filter with different values for variance s2 and different window size (3−by−3,
5− by − 5, 7− by − 7, 9− by − 9, 15− by − 15), for ν = 4, 6, 8, 10
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(a) Removed speckle PDF, L = 1 ν = 4
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(b) Removed speckle PDF, L = 1 ν = 6
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(c) Removed speckle PDF, L = 1 ν = 8
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(d) Removed speckle PDF, L = 1 ν = 10

Figure 7.7: Speckle distribution of filtered images removed by Gaussian filter
with different values for variance s2 and different window size (3 − by − 3,
5− by− 5, 7− by− 7, 9− by− 9, 15− by− 15), from original K-distribution
images with parameters equal to L = 1 ν = 4, 6, 8, 10
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Table 7.8.

The second set of experiments consists of processing a set of K-distributed

images with Beltrami flow (number of iteration equal to 1) and the kernel

size equal to 7 − by − 7, 9 − by − 9, 11 − by − 11 pixels. The outcomes are

depicted in Figure 7.11 and 7.12 both RCS PDFs and speckle one are not

estimated correctly therefore algorithm performances are affected by both

parameters.
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(a) RCS reconstruction PDF with Beltrami flow
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(b) Removed speckle PDF by Beltrami flow

Figure 7.8: Beltrami flow outputs: comparison single iteration algorithm and
2 iterations algorithm. Original K-distributed images parameters: L = 1 and
ν = 2.

ν Beltrami flow 1 iteration Beltrami flow 2 iterations

ν = 2 1.5344e− 006 3.1671e− 006

ν = 6 3.1725e− 007 2.0522e− 006

ν = 10 2.3411e− 007 4.1451e− 007

Table 7.7: Beltrami flow: MSE between Gamma distributed filtered images
and theoretical one (ν is the order parameter of Gamma-distribution).
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(a) RCS reconstruction PDF with Beltrami flow
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(b) Removed speckle PDF by Beltrami flow

Figure 7.9: Beltrami flow outputs: comparison single iteration algorithm and
2 iterations algorithm. Original K-distributed images parameters: L = 1 and
ν = 6.
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(a) RCS reconstruction PDF with Beltrami flow
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(b) Removed speckle PDF by Beltrami flow

Figure 7.10: Beltrami flow outputs: comparison single iteration algorithm
and 2 iterations algorithm. Original K-distributed images parameters: L = 1
and ν = 10.
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ν Beltrami flow 1 iteration Beltrami flow 2 iterations

ν = 2 2.2603e− 007 4.3903e− 007

ν = 6 4.0975e− 008 3.8088e− 008

ν = 10 2.0068e− 007 1.9546e− 008

Table 7.8: Beltrami flow: MSE of PDF of removed speckle with theoretical
one (ν is the order parameter of Gamma-distribution).
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(a) RCS distribution filtered images, ν =
2
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(b) RCS distribution filtered images,
ν = 4
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(c) RCS distribution filtered images, ν =
8
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(d) RCS distribution filtered images,
ν = 10

Figure 7.11: Gamma distribution of filtered images estimated by Beltrami flow
single iteration and different window size (7−by−7, 9−by−9, 11−by−11),
for ν = 2, 4, 8, 10
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(a) Removed speckle PDF, L = 1 ν = 2
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(b) Removed speckle PDF, L = 1 ν = 4
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(c) Removed speckle PDF, L = 1 ν = 8
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(d) Removed speckle PDF, L = 1 ν = 10

Figure 7.12: Speckle distribution of filtered images removed by Beltrami flow
single iteration and different window size (7−by−7, 9−by−9, 11−by−11),
from original K-distribution images with parameters equal to L = 1 ν =
2, 4, 8, 10
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Median filter parameters

The only parameter which can affect Median filter performance is its window

size, therefore a set of experiments has been performed by varying the window

size of the median filter (i.e. 3−by−3, 5−by−5, 7−by−7 pixels). As depicted

in Figure 7.13 and 7.14, by increasing the window size the performances of

the denoising algorithm/RCS reconstruction filter improve slightly (i.e. RCS

PDF estimation is related by window size and order parameter ν, whereas the

removed speckle PDFs show a better estimation proportional to the window

size - spike amplitude reductions).

7.5 NVM vs ENL

As shown in the previous sections both ENL and NVM reflect properly RCS

filter reconstruction and denoising property accurately and they can be con-

sidered dual. In order to manage them correctly in a more efficient way, we

have been interested in studying the behaviour of their values as function of

order parameter of underlying Gamma-distributed RCS.

In order to manage the collected values, as shown in Figure 7.15, two quan-

tities were introduced, defined as following:

a = |L− ENL| (7.1)

b = |L−NVM | (7.2)

where L is the actual number of look, as a consequence of the definition of

(7.2) and (7.2), the best performances are given by the algorithm which
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(a) RCS distribution filtered images, ν =
4
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(b) RCS distribution filtered images,
ν = 6
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(c) RCS distribution filtered images, ν =
8
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(d) RCS distribution filtered images,
ν = 10

Figure 7.13: Gamma distribution of filtered images estimated by Median filter
with different window size (3−by−3, 5−by−5, 7−by−7), for ν = 4, 6, 8, 10



CHAPTER 7. DESPECKLING FILTERING 161

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

y=
p(

x)

Removed speckle with Median filter

 

 
Theoretical
Median filter 3x3
Median filter 5x5
Median filter 7x7

(a) Removed speckle PDF, L = 1 ν = 4
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(b) Removed speckle PDF, L = 1 ν = 6
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(c) Removed speckle PDF, L = 1 ν = 8
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(d) Removed speckle PDF, L = 1 ν = 10

Figure 7.14: Speckle distribution of filtered images removed by Median filter
with different window size (3−by−3, 5−by−5, 7−by−7), for ν = 4, 6, 8, 10
from original K-distribution images with parameters equal to L = 1 ν =
4, 6, 8, 10
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has coordinates (a, b) near to (0, 0). By excluding values for underlying
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Figure 7.15: NVM vs ENL: each point of graph has coordinate (a, b) defined
by (7.2) and (7.2).

Gamma-distributed RCS order parameter ν = 2 (which as proved in [9] rep-

resents a woodland scenario, therefore not important for our investigations,

i.e. SAR/ATR systems in GHz bandwidth), one can consider the opportunity

to combine both metrics values and compare the algorithms in term of this

quantities in order to estimate how correctly the speckle have been removed

and how the RCS has been reconstructed (i.e. estimation of the presence of

artifacts) well.
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7.6 Edge preserving properties

Another important requirment for despeckling algorithms is to preserve the

geometrical features of potential targets. Some very important features are

indeed related to the area of bright pixels of potential targets, therefore it is

important to understand how denoising algorithms are able to preserve edges

of images.

For all of the algorithms hence (Beltrami flow, Gaussian filter, and Median

filter) applied on a set of images as described in section 7.3, the preserving

edges properties have been analysed in terms of the following metrics [115]:

• Change of edge position;

• Height distortion;

• Slope angles;

• Spatial orientation of the edge.

A change in position occurs when there is a translation between edges of orig-

inal and filtered images. Note that there is no change in edge position if the

algorithm produce a symmetric shifting (e.g. Gaussian filter in Figure 7.17).

The distortion in edge height introduced by an algorithm is computed by

considering the following formula:

10 logE
{∣

∣(M̄or − M̄fltrd)
∣

∣

}

(7.3)

Where E {·} is the mean value, |·| is the absolute value as well as M̄or and

M̄fltrd are the mean values of the profile of the edges.
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Slope angle however is computed only for the left size of edges by considering

the formula:

m̂ = arctan
y2 − y1
x2 − x1

(7.4)

where y2 is maximum value of the edge y1 represent the position of the first

pixel of the edge. As a consequence, x2 and x1 are the abscissa corresponding

to y2 and y1 respectively.

Finally a spatial orientation occurs if there is an asymmetry in slope angle

and/or edge position of the two side of edge.

As for the Gaussian filter, two sets of experiments have been performed:

First the metrics have been computed by changing the window size and by

fixing the filter variance to 1 and then by changing the variance and as a

consequence the filter window size. This is important indeed to understand

which parameter has the biggest impact on the images edges.

In Figure 7.16 the results of first experiments are depicted. As for distortions

introduced by the filters note that no change in edge position and no spatial

orientation occurred. As for height and slope angle, as reported in Table

7.9, the slope angle tends to be independent of changes in filter window size,

where are height edge distortion are less than 30dB intensity units.

As for the outcomes of Gaussian filter with different variance values, the

Window size 3× 3 5× 5 7× 7 9× 9 15× 15

MAE (dB) 25.9273 28.4235 28.7022 28.7140 28.7142

S.A. (Deg) 89.3069 88.8371 1.5424 88.3730 88.3730

Table 7.9: Edge distortion and slope angle introduced by Gaussian filter, fixed
variance s2 = 1 and different window size (MAE is the Mean of Absolute
Error, whereas S.A. is the Slope Angle).
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Figure 7.16: Edge distortion introduced by Gaussian filtering. By increasing
the value of the filter window size, s2 = 1.

results are depicted in Figure 7.17 and in Table 7.10. Also in this case no

spatial orientation and edge shift occur, nevertheless the smoothing is bigger

than in the previous case, therefore the distortion of edge height and slope

angle are bigger than the previous case. As a consequence one can state that

the dependencies of the Gaussian filter output depends more on filter variance

than window size. As for Beltrami flow, two scenarios were analysed: First,

Window size 3× 3 5× 5 7× 7 9× 9 15× 15
s2 = 1 s2 = 2 s2 = 3 s2 = 4 s2 = 8

MAE (dB) 25.9273 32.3931 35.9446 38.4950 43.6093

S.A. (Deg) 89.3069 88.4532 88.2526 87.9604 85.9551

Table 7.10: Edge distortion introduced by Gaussian filter (MAE is the Mean
of Absolute Error, whereas S.A. is the Slope Angle).

checking the edge preserving properties in the case of the iterative algorithm

and then how the size of the window filter can affect the edge properties.

The results are depicted in Figure 7.18 and Figure 7.19. In both case one
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Figure 7.17: Edge distortion introduced by Gaussian filtering. By increasing
the value of the variance the distortions of edges in terms of their height and
slope angle increase.

can state that the number of iterations and filter window size do not affect in

any case the edge preserving properties (i.e. no distortions, position change,

slope angle and orientation changing), in case SCR ≥ 5dB.

Figure 7.18 and Figure 7.19 prove that Beltrami flow does not introduce any

distortion, any change of edge position and there is no spatial orientation on

the edge.

As for the median filter, the results are depicted in Figure 7.20. The window

size of the filter affect the results less than Gaussian filter, but much more

than Beltrami flow. As shown in Table 7.11, the Median filter introduced a

smaller distortion than the Gaussian filter, but slope angle values are very

similar to the Gaussian filter results.

Window size 3× 3 5× 5 7× 7

MAE (dB) 3.7503 8.4548 10.6811

S.A. (Deg) 89.3126 88.8542 88.3959

Table 7.11: Edge distortion introduced by Median filter.
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Figure 7.18: Beltrami flow: edge preserving properties in case of increasing
filter window sizes, 2 iterations.

20 30 40 50 60 70 80 90 100 110

50

100

150

200

250

300

 

 
Original
Beltrami flow 5 iterations
Beltrami flow 7 iterations
Beltrami flow 9 iterations
Beltrami flow 15 iterations

Figure 7.19: Beltrami flow: edge preserving properties in case of increasing
number of iterations, 3-by-3 pixels window filter.
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Figure 7.20: Median filter edge processing:Edge smoothing is slightly better
than Gaussian filter in terms of distortion and slope angle

7.7 Summary

In Chapter 7 the Gaussian filter, the median filter and Beltrami flow have

been analysed as despeckling algorithms. The analysis consisted in: firstly

assessing the distortions introduced by the algorithms as RCS reconstruc-

tion filter; secondly comparing the filtered results with the ENL and NVM

predicted values. Finally the most interesting edge preserving metrics have

been described and as a consequence the edge preserving properties of the

analysed algorithms have been reported.

It is worth pointing out that Beltrami flow preserves edges better than Gaus-

sian and Median filter, nevertheless Barbaresco’s work [148] argues that, from

a geometrical point of view, Beltrami flow tends to minimize the mean curva-

ture [130] of the edges, instead of protecting the principal curvature direction

properly ([131], [132] and [130]). Experiments confirm Barbaresco’s conclu-

sions.



Chapter 8

Detection analysis

8.1 Introduction

A SAR/ATR system usually consists of three main actions: detection, dis-

crimination and classification [2], [9] and [114]. First, the entire SAR image

is scanned for the target detection stage which requires at least knowledge

of the background clutter model. It yields a large number of false alarms

in addition to identifying potential targets, therefore it is very important to

perform a very effective and efficient detection process.

The outputs of the detection step are then passed to a discrimination stage,

which should be able to reject further false targets based on simple properties

of potential targets, including both geometrical and electromagnetic effects.

Once the detection and discrimination stages have rejected as much clutter

as possible, the final stage of an ATR scheme consists of target classification

using all the information in the data.

The presence of speckle noise in SAR images affects the discrimination of

169
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Figure 8.1: Exponential approximation of a Gamma-distribution (order pa-
rameter ν = 2). The idea is to approximate the Pfa area with a function
which is easier to manage in the integral in (8.1).

potential target features, therefore denoising algorithms are usually applied.

Moreover other operations, such as incoherent averaging, are performed in

order to improve the detection performance. All of the described operations

change the background clutter model (i.e. clutter probability density func-

tion, PDF), which is crucial for estimating detection process parameters.

Detection can be described in terms of probability of false alarm (Pfa,

also known as error type I) which represents the probability that the clut-

ter is considered erroneously a potential target by the detection subsystem,

defined as:

Pfa =

∫ ∞

t

p(x|B)dx (8.1)

where p(x|B) represents the probability that the pixel x is clutter given a

clutter model B. The performance of the detector is also described in terms

of probability of detection (Pd) which is defined as:

Pd =

∫ ∞

t

p(x|T )dx (8.2)
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where p(x|T ) is the likelihood function, i.e. the probability of a data value x

when the target is present.

Unfortunately these two quantities are conflicting, therefore an optimization

criterion has to be adopted to maximize the Pd with the constraint Pfa ≤ α

(with 0 ≤ α ≤ 1).

In radar systems the Neyman-Pearson test is usually considered as the best

criterion to overcome the optimization problem and to determine which hy-

pothesis is true (i.e. pixel x is a target or clutter respectively). It states that

the target is detected if:

p(x|T )
p(x|B)

> τNP (SNR) (8.3)

where SNR is the Signal-to-Noise Ratio.

The threshold τNP is usually selected to give a previously fixed value of

Pfa ≤ α [2] and it can be estimated from the available samples, therefore

the knowledge of the clutter model is crucial. Unfortunately in most cases a

closed form for the filtered clutter model is not available thereby suboptimal

solutions are adopted (e.g. Exponential or Gamma-distributed clutter model

[2] [9]).

Fortunately for Detection problems a global clutter model is not necessary,

but an approximation of the filtered clutter tails is sufficient because the Pfa

represents numerically the underlying area of the clutter model tail.

In this Chapter a novel mathematical approach is introduced to approximate

the data output from the denoising process. The idea, as depicted in Fig-

ure 8.1, can be summarized as follows: the filled area underlying the global
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clutter model (i.e. Gamma density function with order parameter ν = 2 and

scale parameter 1) has to be equal to the underlying area of the approximat-

ing function and the initial approximation point has to be equal for both the

models. Note that the approximating function should be a function which

allows us to compute the Neyman-Pearson threshold through (8.1) easily.

As for our experiments a two-parameters Constant False alarm Rate (CFAR,

which can be considered as a quantization process due to the thresholding

procedure, i.e. it is an asymptotic non-information preserving transformation

as reported in Figure 1.10) has been considered [9] and it has been applied

to image intensity. The target detection occurs when:

ĪT/ĪB − 1√
VB

> τNP (8.4)

where ĪT is the average target intensity, estimated over the ROI of m pixels,

whereas ĪB and
√
VB are the average intensity and normalized variance of

background respectively, estimated over the ROI of M pixels (as depicted in

Figure 8.2).

Several techniques have been developed in order to increase the perfor-

mances of CFAR subsystems and one of the most important is termed inco-

herent averaging [9] (under the assumption that the target spreads over as

many pixels in the ROI, i.e. targets detected in high resolution radar sys-

tems) which consists of averaging the targets pixels, in order to reduce the

speckle effects. As a consequence the single pixel target and multiples pixels

target scenarios have been investigated in order to understand which param-

eters are important in CFAR subsystems and how despeckling algorithms
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Figure 8.2: ROI example, the target is placed at the centre of the image,
whereas the contour represent the pixels over which IB and VB are estimated.

affect them.

8.2 Incoherent averaging

If a target subtends many pixels, CFAR conditions can be estimated over

more than a single pixel, as a consequence the performances of CFAR sub-

systems improve because the speckle effects are reduced.

Unfortunately no investigation have been produced in order to understand

how the clutter distribution changes when it is averaged over more than a

single pixel of the denoised SAR image (in Figure 8.3 it is reported a simu-

lated set of K-distributed SAR images was filtered with a Gaussian filter and

then the outcomes were averaged by considering 2 − by − 2 and 3 − by − 3

adjacent pixels sub-matrices respectively).

As depicted in Figure 8.1, incoherent averaging tends to make the distri-
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Figure 8.3: PDFs of output of Gaussian filter (applied to a K-distributed im-
ages set with ν = 8 and L = 1). The filtered image is averaged by considering
a subset of 2− by− 2 and 3− by− 3 adjacent pixels submatrices respectively.

butions of clutter narrower and at the same time it shifts the mode of the

distribution to the right since random variables are correlated. As a conse-

quence the output of a denoising filter is no more Gamma-distributed and

therefore a closed form for the clutter model in the Neyman-Paerson criterion

(8.3) is impossible .

From a mathematical point of view, Pfa, as defined in (8.1), represents
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Figure 8.4: Probability density functions of outcomes from despeckling and
incoherent averaging filters. The simulated data are compared with a global
clutter model: Gamma distribution ν = 8 and scale parameter b = 1.
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the area under the clutter-RCS tail, as depicted in Figure 8.1. From (6.9),

which represents the function of a Gamma-distribution, it is clear that for

high values of variable x, the exponential slope becomes prevailing, therefore

the tails can be approximated by an exponential function, which is easier to

manage in order to determine the value of the CFAR threshold.

How to determine such an exponential function? An easy approach is given

by considering a two parameter exponential function, defined as:

f(x; c1, c2) = c1 exp(−c2(x− x0)) (8.5)

where c1 and c2 are two parameters which have to be estimated by fixing

a value for variable x (set x0 = 2ν + 2, where ν is the order parameter of

Gamma-distribution which is to estimate) and by considering the following

constrains:

• c1 is chosen by satisfying the condition: f(x = x0; c1, c2) = px(x = x0)

in (6.9).

• c2 is chosen by satisfying the condition:
∫∞
x0
f(x; c1, c2)dx = P (x >=

x0) which states that the two underlying areas have to be equal.

As reported in Table 8.1, the proposed method is able to estimate the expo-

nential approximation and assure that the computed Pfa is smaller than the

expected one.

In conclusion, one is not interested in finding a function which is able to fit

accurately the whole PDF under analysis, but just its tail.
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ν Ts,10−6 Ts,10−9 P̂fa|T
s,10−6 P̂fa|T

s,10−9 MSEAppr.

ν = 2 17.3889 25.4483 5.1601 10−7 2.35 10−10 4.7078 10−11

ν = 4 22.6274 32.0640 3.29 10−7 7.1764 10−11 3.8744 10−11

ν = 6 26.7941 37.0489 3.23 10−7 5.4394 10−11 1.1873 10−11

ν = 8 30.4669 41.2720 3.6404 10−7 5.7712 10−11 3.0319 10−12

ν = 10 33.8663 45.0696 4.2527 10−7 7.0087 10−11 7.3809 10−13

Table 8.1: Exponential approximation values. Note that the thresholds
(columns 2 and 3) are computed by using the approximating function, whereas
the values of columns number 4 and 5 represent the values of Pfa of approx-
imated CDF corresponding to the thresholds reported in columns 2 and 3 (ν
is the order parameter).

8.3 Considerations on clutter models

In this Chapter the considered clutter models have been K and Weibull

distributions, but unfortunately their approximations with an exponential

distribution have failed. As for Weibull distribution indeed the cumulative

density function (CDF), because it is easier to handle than the corresponding

PDF) is defined as:

Pw(x) = 1− e−( x
λ
)k (8.6)

where λ > 0 is a real value, termed scale parameter, whereas k > 0 is

the shape parameter (real). If the Mclaurin series expansion [109] for the

exponential term of (8.6) and the exponential term of CDF of an exponential

distribution (i.e. Pexp(x) = 1 − eλx) are computed, it is easy to show that

the difference of two expansions is:

ed0x − ed1x
k

=
∞
∑

n=0

[

(d0)
n

n!
− (d1)

n

n!
x(k−1)n

]

xn (8.7)
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the term between brackets in (8.7) is always non-null (for non-trivial cases

k 6= 1) therefore an exponential function is not able to approximate the

Weibull distribution. Similar considerations are also valid for the K-distribution.

A modified Bessel function of second kind Ks(x) indeed has asymptotes at

[109]:

Ks(x) ≈
√

π

2x
e−x, x→ ∞ (8.8)

therefore an exponential approximation is not possible.

Another interesting interesting property of the clutter models considered is

reported in the following theorem:

Theorem 1 (Exponential upper bound) Let x be an Exponential distributed

random variable, if its mean value 〈x〉 ≥ 1 then the Exponential distribution

is an asymptotic upper bound for Weibull (for k > 1) and K clutter models,

i.e. it is valid the following inequality:

Exponential model ≥ K-model ≥ Weibull’s model (8.9)

Proof. Let us consider the equation (8.8) and the following ones:

p1(x) = k
xk−1

λk1
e
− xk

λk1 , k > 1 and λ1 > 0 (8.10)

p2(x) = λ2e
−λ2x, λ2 > 0 (8.11)
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To prove the theorem, compute the following limits:

lim
x→∞

p1(x)

p2(x)
= lim

x→∞

k xk−1

λk
1
e
− xk

λk1

λ2e−λ2x
(8.12)

lim
x→∞

√

π
2x
e−x

p2(x)
= lim

x→∞

√

π
2x
e−x

λ2e−λ2x
(8.13)

(8.12) is always equal to zero, whereas the limit in equation (8.13) is equal

to zero if and only if λ2 ≤ 1, i.e. the expected value of the Exponential

distribution (8.11) is ≥ 1. As for the inequality (8.9), it is sufficient to

compute the following limit:

lim
x→∞

k xk−1

λk
1
e
− xk

λk1

√

π
2x
e−x

= 0 always for k > 1 (8.14)

Corollary 2 If a Weibull distribution has shape parameter k < 1 and as-

sumption of Theorem 1 are preserved, then inequality (8.9) becomes:

Weibull’s model ≥ Exponential model ≥ K-model (8.15)

Proof. The proof is a consequence of (8.14) and (8.13).

8.4 Method description

Unfortunately SAR signal processing tends to change the statistics of the

background clutter model (as depicted in Figure 8.4) and in most cases the
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Windows size λ k MSE T3 T4 ǫ3 ǫ4
2× 2 4.2748 0.9370 10−10 33.6260 45.7100 10−4 10−7

4× 4 5.3647 1.4642 10−11 20.0806 24.4402 10−4 10−7

5× 5 5.2757 1.6121 10−11 17.4959 20.9140 10−4 10−5

Table 8.2: Weibull parameters approximation: ǫj (j = 3, 4) ensures that
at the threshold Tj the approximating CDF acts as an lower bound for the
approximated CDF

outcomes are not computationally feasible in a closed mathematical form.

Skolnik in [2] introduces the classical Swerling model II, whereas Oliver in [9]

suggests to use K-distribution clutter model and a Gamma approximation

for large number of looks L (i.e. the number of radar antenna sub-apertures);

Roy in [134] uses a K-distributed form of non-Gaussian clutter. Levanon in

[135], Anatassopoulos in [136] however use a global Weibull background clut-

ter model.

A local approach of approximating filtered clutter can be more efficient than

the classical approach of approximating the clutter distribution (i.e. as-

suming that outputs are Exponential or Gamma-distributed for instance). A

local approach can be made even easier if CDFs are considered. CDFs indeed

can be mathematically more manageable than PDFs . Hence, our problem

can be summarized as follows: ’Finding a function which approximates the

filtered outputs CDF so that the approximating CDF value corresponding to

the threshold is a lower bound for the value of the approximated CDF ’ [173].

Let (x0, y0) and (x1, y1) be two points of the CDF which is to be approximated

and consider, for example, the Weibull CDF:

Pfa = 1− Pr(x ≤ x) = 1− (1− e−( x
λ
)k) = e−( x

λ
)k (8.16)
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where Pr(x ≤ x) is the CDF, k is the scale parameter and λ is the shape

parameter of the Weibull clutter model.

The approximating CDF can be computed by solving:











(

x0

λ

)k
= − ln(1− y0)

(

x1

λ

)k
= − ln(1− y1)

(8.17)

which determines the values of the Weibull parameters k > 0 (scale) and

λ > 0 (shape).

As for the choice of the parameters of (8.17), they will be discussed in the

next sections.
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Figure 8.5: Example of global approximation (MSE= 0.0057): The Weibull
model (obtained by a filtered images set which has been incoherently averaged
with non-overlapped 2 by 2 pixels window) with parameters λ = 3.5370 k =
0.8677 (initial point x0 = 32) respectively and the processed images CDF.
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Figure 8.6: Example of local approximation (MSE≈ 10−12): The Weibull
model (obtained by a filtered images set which has been incoherently averaged
with non-overlapped 2 by 2 pixels window) with parameters λ = 3.5370 k =
0.8677 (initial point x0 = 32) respectively and the processed images CDF.

8.5 Results

A set of 1000, 100 by 100 pixels, SAR images have been simulated with a

clutter model defined by a K-distribution as follows [9]:

P (I) =
2

Γ(L)Γ(ν)

(

Lν

〈I〉

)(L+ν)/2

×I(L+ν−2)/2Kν−L

[

2

(

νLI

〈I〉

)1/2
]

(8.18)

where L = 1 is the number of images averaged (number of looks) ν = 8 is

the order parameter, 〈I〉 = 8 image intensity mean value, Γ(·) is the Gamma

Function, K is the modified Bessel Function of second kind. As for the

despeckling algorithm, Beltrami flow [124] (single iteration and window size

5 by 5) has been adopted. The despeckled images have been then averaged

over non-overlapped 2 by 2, 4 by 4 and 5 by 5 pixels windows. Finally the

CDFs have been computed.
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The computed CDF have been approximated by using (8.17) with following

Windows size T3 T3 (est.)

2× 2 32.8833 33.6260

4× 4 19.6820 20.0806

5× 5 17.1617 17.4959

Table 8.3: Comparison thresholds: The actual threshold is compared with the
estimated one for Pfa = 10−3 by using the local model (8.17)

parameters: x0 = 15 (y0 = CDF (x0)), whereas x1 is the first value of the

approximated CDF such that |CDF (x1)− 1| ≤ 10−4 (y1 = CDF (x1)).

An example is depicted in Figure 8.5 and Figure 8.6, which represent the

same solution seen globally and locally respectively.

The simulations are performed in order to compute the threshold for Pfa

equal to 10−3 and 10−4.

The parameters of approximating CDF are reported in Table 8.2: λ and

Windows size T4 T4 (est.)

2× 2 45.7246 45.7100

4× 4 24.4524 24.4402

5× 5 20.8721 20.9140

Table 8.4: Comparison thresholds: The actual threshold is compared with the
estimated one for Pfa = 10−4 by using the local model (8.17)

k are the parameters estimated through (8.17), whereas the Mean Squared

Error (MSE) between the approximating CDF and the approximated one is

computed from the initial point of approximation. T3 and T4 however are the

thresholds computed (for Pfa equal to 10−3 and 10−4 respectively) by using

equation (8.16):

Ts = λ [− lnPfa]
1
k (8.19)
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As reported in Table 8.3 and Table 8.4 the thresholds are better estimated

for small values of the Pfa.

The values of thresholds have been also tested by considering the frequency

(i.e. the percentage of pixels) of filtered and averaged images pixels, as pre-

viously described, which exceed them (No. of samples: 2.5 · 106 (2 × 2),

6.25 · 105 (4× 4) and 4 · 105 (5× 5) respectively). As reported in Table 8.5,

the value of the thresholds produces values of error type I smaller than the

original Pfa (PT3 and PT4 represent the probability of clutter pixels which

exceed the thresholds T3 and T4 respectively).

The local approximated clutter model has been compared by two global

Windows size PT3 PT4

2× 2 ≈ 10−4 ≈ 10−5

4× 4 ≈ 10−4 ≈ 10−5

5× 5 ≈ 10−4 ≈ 10−5

Table 8.5: Estimated Pfa by using a local approximated clutter model ap-
proach

clutter models: Exponential and Gamma clutter model (ν = 8 and scale

parameter 1) respectively.

As for the Exponential clutter model [9], the threshold is computed by con-

sidering:

Ts = −σc lnPfa (8.20)

where σc is the mean power of the clutter. The estimated thresholds are

reported in Table 8.6.

As for the Gamma-distribution clutter model [137], the thresholds are com-
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Windows size T3 T4
2× 2 64.9240 86.5654

4× 4 34.7892 46.3856

5× 5 26.5142 35.3522

Table 8.6: Estimated thresholds by using a global Exponential clutter model

Windows size PT3 PT4

2× 2 ≈ 10−6 < 10−6

4× 4 < 10−6 < 10−6

5× 5 < 10−6 < 10−6

Table 8.7: Estimated Pfa by using a global Exponential clutter model

puted by inverting numerically the following formula:

Pfa =
ν−1
∑

i=0

(x
θ
)i

i!
e(−

x
θ
) (8.21)

where ν = 8 and θ = 1 are the order parameter and scale parameter of the

Gamma-distribution respectively. As a consequence the threshold assume

values: T3 = 19.2104, T4 = 20.1830 respectively.

By comparing Table 8.5, Table 8.7 and Table 8.8 it is clear that the proposed

method is more efficient than other clutter models.

Windows size PT3 PT4

2× 2 ≈ 10−2 ≈ 10−3

4× 4 ≈ 10−4 ≈ 10−4

5× 5 ≈ 10−4 ≈ 10−5

Table 8.8: Estimated Pfa by using a global Gamma (ν = 8 and scale param-
eter 1) clutter model
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8.6 Analysis parameters

The parameters which have been chosen accurately are the points (x0, y0)

and (x1, y1). The method has been developed by considering x1 the first

value of the approximated CDF such that |CDF (x1)− 1| ≤ 10−4 (i.e. y1 =

CDF (x1)). The value of thresholds is insensitive to the value of the ini-

tial point which has been fixed to x0 = 2µ, i.e. µ is the mean value of the

data. Moreover we suggest to introduce two margins 0 < ηj < 10−8, j =

0, 1 (subtracted to the actual values yj) in order to obtain positive errors

ǫi = CDFi,ted − CDFi,ing (see last two columns of Table 8.2, for i = 3, 4).

Under this assumption a solution is always found and the estimated thresh-

olds shows that the corresponding estimated Pfa is always smaller than the

expected one.

8.7 Clutter attenuation

Another set of experiments in order to define which parameters affect detec-

tion step has been performed [171]. In this section how the Signal-to-Clutter

Ratio (SCR) affects performances of detection algorithm is considered. Since

incoherent averaging presents the problem of losing an huge amount of in-

formation (e.g. optimal threshold cannot be estimated, therefore some po-

tential target features can be accidentally removed and classification, as a

consequence, fails), other approaches more information preserving have been

investigated. One of them has been inherited and modified by mammogra-
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phy image processing. As reported in [138], by applying a sigmoid function

and fixing a threshold value it is possible to increase the contrast of a blurred

and darkness image. In our case, however we are interested in the dual prob-

lem: reduce the value of the clutter before detection, therefore we modify

the equation as:

O =











i if i > t

i− (i c
(1+e−i)

) if i ≤ t
(8.22)

where c is the percentage of intensity reduction (c = 0.9 in our case), i is the

intensity of the analysed pixel and t is a threshold (in out case Tc = µc+1σc

(i.e. µc is the intensity clutter mean value, whereas σc is the intensity clutter

standard deviation) of the clutter computed on an homogeneous clutter area).

As for the experiments, two possible scenarios were considered:

1. Exponential distributed single pixel target;

2. Exponential distributed extended pixel target:

• central pixel detection;

• corner pixel detection, as reported in Figure 8.7.

Moreover the detection after despeckling has been performed for the cases of

Gaussian and median filters as well as Beltrami flow. As for the detection

threshold for a set of K-distributed images (ν = 8, L = 1), the values are

reported in Table 8.1. In the case of an extended target, the previous set

of images was modified by introducing an exponential distributed squared

object (i.e. 10− by − 10 pixels) at the centre of the scene.

Figure 8.7(a) reports the probability of detection for an Exponential dis-
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(a) PD single pixel target comparison,
Pfa = 10−6
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(b) PD single pixel target for iterative
Beltrami flow, Pfa = 10−9
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(c) PD extended pixel target, central
pixel Pfa = 10−6
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(d) PD extended pixel target, corner
pixel Pfa = 10−6

Figure 8.7: Probability of detection for an exponential distributed single and
extended targets
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tributed single target. The results show thet the median filter tends to remove

any target independently of the SCR value, whereas Beltrami flow performs

better in terms of information preserving (i.e. it ‘removes’ less single targets

than the Gaussian filter).

In Figure 8.7(b) the effects of the numbers of iterations for Beltrami flow is

investigated and compared with the Gaussian filter. As reported Beltrami

performs better results than the Gaussian filter when the number of itera-

tions increase.

Figure 8.7(c) reports the results of the detection of the central pixel in an

Exponential distributed extended target when the clutter suppression is per-

formed. With respect the previous two images, clutter suppression improves

the results. Moreover the presence of a neighbor near the central pixel in-

creases the detection performance as well (i.e. in this case also the Median

filter is able to preserve information of the central pixel).

However in Figure 8.7(d) the situation become worse in the case of the detec-

tion of the corner pixel. Beltrami flow produces the best results, despite the

required SCR with respect to Figure 8.7(c) is bigger (i.e. Pfa ≤ 10−6), and

the results tend to confirm the edge preserving properties of the algorithm,

the Gaussian filter tends to smooth the edges more than Beltrami flow. As

for the Median filter, it tends to remove the information regarding the object

corners.
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8.8 Hough Transform correction

As reported in the previous section, some algorithms tend to introduce a

degree of distortion into SAR images which corrupted the geometrical and

statistical properties of the potential targets. In particular, the Gaussian

filter and Median filter tend to remove important information especially near

to the potential targets edges. In order to restore this kind of information,

some image transformation can be adopted. This section therefore explains

how a backward procedure can be used in order to preserve the information

of the samples.

Hough transform is a normal parametrization for lines [139], adopted as a

feature extraction techniques in image analysis, computer vision and digital

image processing. The classical Hough transform has been concerned with

the identification of lines in the image but it has been extended to identifying

objects of arbitrary shapes. As illustrated in Figure 8.8, this parametrization

specifies a straight line by the angle θ of its normal and its algebraic distance

ρ from the origin. The equation of the line corresponding to this geometry

is:

ρ = x cos θ + y sin θ (8.23)

If θ is restricted to the interval [ 0, π ), then the normal parameters for a

line are unique. It is therefore possible to associate uniquely each line of the

image a pair (ρ, θ). The (ρ, θ) plane is sometimes referred to as Hough space

for the set of straight lines in two dimensions. Equation (8.23) corresponds

hence to a sinusoidal curve in the (ρ, θ) plane, which is unique to a point

of the line. If the curves corresponding to two points are superimposed, the



CHAPTER 8. DETECTION ANALYSIS 190

Figure 8.8: Hough transform parameters

location in the Hough space where they cross corresponds to a line in the

original image space that passes through both points. Generally hence, a set

of points placed on the same line in the original image will produce sinusoids

which all cross parameters for that line. As a consequence the problem of

line detection can be converted in a problem of finding concurrent curves.

As for the implementation of the Hough transform, it consists in quan-

tizing the Hough parameter space (ρ, θ) into finite intervals stored in array,

called an accumulator. As the algorithm runs, each image point (xi, yi) is

transformed into a discretized (ρ, θ) curve and the accumulator cells which

lie along this curve are incremented. The resulting peaks in the accumulator

array represent strong evidence that a corresponding straight line exists in

the image, as reported in Figure 8.9 and the corresponding Hough transform

in Figure 8.10.

As for our purpose a simple line, as reported in Figure 8.11(a), and its cor-
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rupted version, as reported in Figure 8.11(b), were considered. The Hough

transform was considered and then from the Hough space the image was re-

stored, as reported in Figure 8.11(c). As shown, the Hough transform could

help in correcting the distortion introduced by a despeckling algorithm be-

fore detection processing. As for the correction of distortions introduced by
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Figure 8.11: Hough Transform correction for a line

despckling algorithms (e.g. median filter, which remove pixels at the corner

of the potential targets), the idea can be summarized as follows: firstly the

Hough Transform is computed at corner edges (i.e. one checks from Hough

space if a line is present for the first two rows and columns of the edge corner
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‘A’ in Figure 8.12) if the lines are present, then the corner is reconstructed

as an average of adjacent pixels.

In conclusion the proposed algorithm consists of four steps:

Figure 8.12: Hough Transform correction: Hough transform is used to eval-
uate the presence of Row 1 and 2 as well as Column 1 and 2. If the lines
are detected, then the pixel corner A (dashed) is computed as an average of
pixels B, C and D.

1. Hough transform is applied to the original images in order to determine

the presence of corners;

2. The Median filter is applied to the SAR images;

3. Hough transform correction is applied to the images (i.e. the intensity

of replaced pixels are an average of the neighbors);

4. CFAR algorithm is performed;
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In terms of detection, a CFAR algorithm and CFAR plus Hough transform

correction algorithm in terms of Pd (pixel at the corner) for a set of K-

distributed images (100 − by − 100 pixels) plus an Exponential distributed

squared object (20 − by − 20 pixels) placed at the centre of the scene were

compared. The results are reported in Figure 8.13. The comparison is be-

tween the median filter (corrected), Beltrami flow and the Gaussian filter

(uncorrected).
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Figure 8.13: Hough Transform correction: Probability of detection of the cor-
ner for a set of SAR images filtered with a Median filter. Result is compared
with Beltrami flow and Gaussian filter outcomes (uncorrected).

8.9 Summary

Chapter 8 analyses the most important issues of the detection step. Firstly

an introduction of detection processing has been given. Secondly, methods

for increasing the detection ability of an ATR/SAR system (i.e. Incoherent
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averaging and clutter attenuation) have been described. The analysis allowed

us to stress the most important parameters of detection step (i.e. SCR

and the clutter modelling). Moreover the analysis allowed us to understand

the importance of the models clutter tail and its effects on the detection of

potential targets features. Finally an example of backward function analysis

have been developed in order to solve an unwanted distortion introduced by

the median filter (i.e. Hough transform correction).



Chapter 9

Conclusions

9.1 Overview of chapters

In this Chapter the conclusion of the thesis are reported. Before writing

them, an overview of previous Chapters will be given and a Brief conclusion

will be reported.

9.1.1 Chapter 2

In Chapter 2 an introduction of the research on ATR systems has been re-

ported. Firstly a general introduction on image classification and the most

important techniques for improving classification performance have been in-

troduced, then the SAR/ATR literature survey was reported: Comparison

of ATR methods in SAR image classification (i.e. MSE, HMM, SVM and

non-linear classifiers); Survey on most important parameters which affect the

systems performances (i.e. investigations on different polarimetric techniques

applied to ATR problems, importance of class-skew, etc.); Introduction of

196
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several features (i.e. RCS) used in SAR/ATR systems and the most impor-

tant investigation on how the features affect performance of ATR systems as

well as their best representation (i.e. scattering centre); Methods for under-

standing how to measure the accuracy of the metrics for ATR performances

and the most important techniques used to assess them. Finally Compu-

tational performances for SAR/ATR systems as well as SAR/ATR datasets

and Multi-sensor data fusion have been briefly reported.

9.1.2 Chapter 3

In Chapter 3 an overview of the most important theoretical backgrounds of

the thesis has been reported. Firstly, an introduction to Bayes theory and

a Bayes classifiers has been reported, then the most important issues about

the information flow model have been introduced and the most important

problem about class-separability has been analysed. Secondly some methods

for the analysis of information preservation have been described. In particu-

lar, the chapter was concerned with the dependency of the information flow

on the sensor structure, describing and comparing some techniques which

allow assessing the measure of the variation of information content through

the processing chain (i.e. how the sample set changes through the processing

chain) as well as how to measure the variation content in terms of class-

separability (i.e. how to assess the degree of class-separability).

In this Chapter a model for information flow through the ATR/SAR sensor

has been also introduced. It has been useful in order to determine the lim-

its of subsystems and to estimate the variation of information content flow.
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Moreover the most popular metrics for assessing class-separability have been

investigated. Unfortunately most metrics failed when a constraint on the

maximum tolerated type II error is considered. As reported in Section 3.5

the Hausdorff dimension and statistical fractal model theoretically are suit-

able for estimating the degree of class-separability. Since indeed Hausdorff

dimension is related to the Lebesgue’s measure theory, it is a important

mathematical tool for assessing if the condition of class-separability is satis-

fied (i.e. the violation of value of Hausdorff dimension is the condition of non

separability of sample classes). Despite this approach is mathematically suit-

able, it fails when samples data are considered. Indeed the class skew (i.e.

varying, unequal occurrences of individual classes) for sampled data does

not produce a meaningful results (i.e. Housdorff dimension for set of point is

null). However the Hausdorff dimension problem allowed us to understand

better the class-separability problem, i.e. reducing error area increases class

separability. Hence a class separability metric requirements is to be able to

measure error area.

In this chapter an introduction of the most powerful techniques used to as-

sess the information content variation in ATR systems have been described.

Particularly PCA, PDF mapping and Differential Geometry approach have

been compared.

PCA has been considered not suitable because it is a linear method, therefore

it works properly for Gaussian distributed samples and for linear transfor-

mation which are variance property preserving (i.e. they do not change the

distribution properties). In case of non linear transformation however Kernel

Tricks are necessary (i.e. Kernel PCA). Moreover PCA method is based on
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a belief that large variances have important dynamics, i.e. large variances

have a high Signal-to-Noise Ratio, i.e. a high information content, despite

this requirement is often not satisfied by sample data (i.e. the sample set is

not able to represent the whole set property properly).

Another proposed criterion consists in considering the PDF of class-samples

and by transforming them through the information flow model compute the

resulting PDF. As for SAR systems, some processing steps (e.g. detection)

are not linear therefore computing non-linear computed PDF can be not fea-

sible.

A more reliable method is considering a set of samples points in a non-

Euclidean space and then transform them through the information flow model

by using properties of differential geometry and Lie groups. An approxima-

tion of this method can be performed by unscented theory which approx-

imately a generic transformed random variable distribution as a Gaussian

distribution. This method can be considered as an upper bound for our

problem analysis, i.e. the performance in the worst case design can be deter-

mined.

9.1.3 Chapter 4

The fourth chapter was arranged in order to report and compare the perfor-

mances of the most common methods used to estimate the degree of class-

separability. Moreover new methods have been considered as metrics for

assessing the degree of class-separability.

Covariance based methods show the disadvantage either being dependent on
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a priory probability of classes (i.e. LDA) or it is suitable for distributions

whose ‘shape’ is completely described by the covariance matrix (i.e. Gaus-

sian), besides it does not give any information on the error area, i.e. no

guarantee that requirements on false alarm rate are satisfied.

As for thresholding criteria, they are not able to assess any information

related to error area. Moreover some measures are not suitable for class-

separability estimation (i.e. their values are not able to determine if two

classes are separate and at what degree). Chernoff and Bhattaccharrya dis-

tances indeed give an upper bound for error area, but they are not suitable

for sampled data. Moreover they can be computed in a closed form only

for Gaussian distributed samples. Mahalanobis distance is suitable only for

Gaussian distributions as well, because it depends on the covariance matrix,

but it is not able to give any information about neither the class-separability

or the degree of class-separability. Moreover Mahalanobis distance in unidi-

mensional case for normally distributed samples is equal to the Kolmogorov-

Smirnov Threshold (TKS), which is the most reliable threshold among the

analysed ones.

The KAPS metric however is suitable especially for sampled data, it is inde-

pendent of sample distribution and it is related to maximum tolerated Type

II error. Compared with ROC analysis (which is difficult to interpret) and

AUC (which is not defined in a unique mode) indeed the KAPS metric is able

to emphasize the problem, often encountered in pattern recognition, reported

in Figure 4.10 and Figure 4.12, i.e. when the maximum tolerated Type II

error performance requirements are reached as provided ω2-class is classified

as ω1.
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9.1.4 Chapter 5

In this chapter the effects of sample size have been investigated. Since TMHD

is dependent on the number of samples, it is difficult to determine its variation

with respect to the number of samples considered, therefore its order statistics

analysis have been investigated. However as for the TKS value a Monte Carlo

simulation has been preformed, because its order statistic analysis was too

complicated to be performed. As demonstrated by results the KAPS value,

for Exponential and Gaussian example described by equations (4.17) and

(4.19) is independent of number of samples, nevertheless it is suggested to

use a number of samples of the order 103.

9.1.5 Chapter 6

In this Chapter which is the best metric for SAR/ATR systems denoising

step were investigated. Two common metrics adopted by researchers in im-

age processing were analysed in detail as well as the afore-mentioned metrics

with NVM as described in section 6.3 were compared.

MSE should be rejected because it is not able to give any useful information

on speckle reduction as it is dependent on the features of the image not de-

grading and therefore raising the MSE value, whereas ENL and NVM can

be considered as dual. They indeed give us information about reconstructed

RCS and removed speckle, which are often in contrast, therefore it is sug-

gested to use both of them contemporaneously in order to establish that no

artifacts were introduced or too much structure from the observed scene was

removed: ENL indeed ensures that the ratio between the filtered image and
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original one is Gamma-distributed, but unfortunately it does not ensure that

the RCS has been reconstructed in the correct way. Vice-versa NVM con-

firms that the Gamma-distributed RCS has been estimated correctly if its

value is equal to the actual number of looks, but it does not certify that the

speckle has been removed correctly.

Ideally an algorithm should give the same value for both metrics, i.e. the ac-

tual number of looks, to establish the correct separation of noise (i.e. speckle)

from actual RCS.

9.1.6 Chapter 7

This Chapter was addressed in order to compare the performances of three

algorithms (i.e. Gaussian filter, Median filter and Beltrami flow) used for

despeckling. They were analysed in terms of RCS reconstruction and as edge

preserving algorithms, because the features of SAR/ATR images are crucial

to perform a correct target classification.

First one can affirm that the ENL metric is more robust than the NVM with

respect to changing of RCS, despite the fact that it gives no information

about distortion in the output images. However the latter has shown that a

distant value from the actual number of look means that the tail of output

images PDF tend to zero faster than an algorithm which has a NVM value

near to L. This could be appreciable because in CFAR step clutter tail plays

an important role.

As for RCS filter reconstruction performances, no algorithm is able to esti-

mate correctly the RCS PDF.
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The Gaussian filter is a good despeckling algorithm especially for low order

parameter ν, whereas for higher order parameters the RCS reconstruction

depends on the filter variance and as a consequence on filter window size.

Beltrami flow however makes more evident the dual problem ENL/NVM be-

cause by increasing the number of iteration better denoising performances

are achieved, but at the same time the RCS distortion in output images

increases as well. The median filter tends to estimate better the RCS and

removed speckle PDFs by increasing the window size filter.

As for edge preserving properties, Beltrami performs the best results (in

terms of number of iterations and window size), followed by the median filter

which introduces less distortion in edge-height than the Gaussian filter. In

terms of slope angle it seems to be as good as the Gaussian filter.

The Gaussian filter produces the worst performance as preserving geometri-

cal features of potential targets because it tends to smooth the images too

much.

In conclusion the Beltrami flow seems to be the best candidate as a SAR/ATR

despeckling algorithm, because it performs the best trade-offs between a de-

speckling action and edge preserving. Beltrami was adopted by Barbaresco in

[148] as CFAR subsystem for Doppler and polarimetric data. In their articles

the authors argued that Beltrami cannot be considered an edge preserving

algorithm because, from a geometrical point of view, it tends to minimize

the mean curvature [130] of the edges, instead of computing the principal

curvature direction properly ([131], [132] and [130]). The performed exper-

iments confirmed the Barbaresco results, indeed edge preserving properties

are not numerically satisfied (i.e. Slope Angle of filtered edges is little less
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than 90◦, as expected). Moreover Beltrami flow performances depend on the

SCR value (i.e. for SCR≤ 1 dB the edges are considered as clutter, therefore

cancelled, whereas for SCR≥ 5 dB Beltrami flow can be considered an edge

preserving algorithm. As for 1 <SCR< 5 dB the algorithm tends to preserve

more and more the edges).

9.1.7 Chapter 8

This Chapter focused on the efficiency of an approximated local clutter

model. Three models have been investigated: a local approximation, Ex-

ponential and Gamma clutter model. The results confirm that a local ap-

proach can be considered more suitable than a global model in terms of the

detection threshold estimation as well as model fitting of the clutter tail.

As a consequence the information content of detection input can be pre-

served/emphasized better (e.g. estimation of SAR/ATR parameters for the

discrimination of potential targets such as Mass, Diameter, Rotational in-

ertia, Percent bright CFAR, Standard deviation etc. [9] can be evaluated

better) if an approximating local clutter model is adopted. In this Chapter

a Weibull model has been adopted, but also Gaussian and Log-normal CDFs

can be adopted as approximating the CDF if necessary.

As for the parameter selection at the detection stage, an important role in

object information preserving is played by SCR, nevertheless detection per-

formances are strictly related to the CFAR threshold (i.e. clutter model)

and to the Pfa requirements as well. Moreover the detection step has to

consider the distortion introduced by the despeckling algorithm and try to
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minimize them in order to preserve information/remove unwanted informa-

tion (i.e. Hough correction). Finally as for the clutter models, it has been

proved that Exponential distribution can be considered as an upper bound

for land clutter distributions (i.e. the Exponentially distributed clutter tail

is longer than Weibull and K-distributed ones), whereas Weibull represents

an upper bound in case of sea clutter.

9.2 Thesis Conclusion

In this thesis several aspects of the limits in SAR/ATR systems have been in-

vestigated. Firstly the condition under which the class-separability is ensured

have been investigated and how to assess the degree of class-separability. A

necessary condition for class-separability is that the error area defined in

Chapter 3 ideally has to be equal to zero. The investigation on the class-

separability produced a new metric for assessing the class-separability, de-

fined as KAPS , which is related to the error area minimization problem when

a constraint on the Type II error is considered. KAPS , hence, is suitable to

compare the performances of different signal processing chains for SAR/ATR

systems.

In Chapter 3 another problem has been analysed, indeed a new information

flow model has been introduced in order to assess how the information con-

tent changes through the processing chain. The most interesting approach is

given by the differential geometry and Lie groups, because a set of samples

can be mapped in the feature space so that their variation can be assessed

mathematically. As for dimensionality reduction, it can be considered as a
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non bi-Lipschitz mapping of the samples through the feature space, therefore

the geometrical method helps in understanding where the bottlenecks of in-

formation flow are located. Unfortunately no investigated methods are able

to perform properly a backward procedure for the selection of the optimal

parameters of each subsystem of a SAR/ equipment, therefore it is desirable

to compare qualitatively the outcomes of the subsystems with respect to the

ideal response in order to find the optimal subsystem parameters.

The advantages of the information flow model has been used in the case

studies, where a cascade of two subsystems has been considered. Indeed de-

noising processing and detection are strictly related, therefore the selection of

denoising parameters (i.e. the despeckling algorithm) can affect the perfor-

mances of the detection algorithm, in terms of the clutter model as reported

in Chapter 8. As reported in Chapter 7, however, the analysis of the outcomes

of filtered images, gave us important information regarding the information

content of SAR images (i.e. how the despeckling algorithm distorted the

input in terms of clutter modelling and edge preserving information, which

are very important parameters for detection and discrimination). Moreover

the comparison of the expected ideal output of the despeckling allowed the

researchers understanding which are the optimal criteria for the selection of

the denoising algorithm.

In conclusion, the thesis has been able to define the definition of class-separability

and of the degree of separability and as a consequence to understand which are

the conditions under which the separability is ensured. Moreover by defining

the forward and backward procedure analysis it is possible to define the param-

eters which play an important role in each subsystem of an ATR processing
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chain as well as to set the processing chain in order to preserve/maximize

the information content.
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Publications

G. Marino, E. J. Hughes, Information Content Variation In CFAR Process-

ing, Cranfield University Research Student Symposium, May 2011.

G. Marino, E. J. Hughes, Automatic Target Recognition in Synthetic Aper-

ture Radars, 9th Electro-Optics & Infrared Conference, Shrivenham, 4th/6th

July 2011.

G. Marino, E. J. Hughes, A novel mathematical approach for the problem

of CFAR clutter model approximation, 3rd Microwaves, Radar and Remote

Sensing Symposium, Kiev August 2011.

208



Bibliography

[1] Smith, G.E. Radar target micro-Doppler signature classification Doc-

toral thesis, University of London 2008.

[2] Merril Skolnik Introduction to radar systems 3rd edition McGraw-Hill

2001.

[3] Burl, M. C., G. J. Owirka and L. M. Novak Texture Discrimination in

Synthetic aperture Radar Imagery 23rd Asilomar Conf. Signals, Systems

and computer, Pacific Grove, CA, 1989, pp.399-404.

[4] L. M. Novak, Gregory J. Owirka The Automatic Target-Recognition Sys-

tem in SIAP The Lincoln Laboratory Journal, Vol.10, No. 2, 1997.

[5] Nilubol C. Mersereau R. M., Smith M.J.T. A SAR Target Classifier Us-

ing Radon Transforms and Hidden Markov Models DSP, Vol. 12, Issues

2-3, 2002.

[6] Paul J.L., Lupo J.C. From tanks to tumors Engineering in Medicine and

Biology Magazine, IEEE, Vol. 21, Issue 6, November 2002.

[7] P. Jorion Value at Risk: The New Benchmark for Managing Financial

Risk (3rd ed.) McGraw-Hill 2006.

209



BIBLIOGRAPHY 210

[8] H.M. Markowitz Portfolio Selection The Journal of Finance, March

1952.

[9] Chris Oliver Understanding Synthetic Aperture Radar Images Artech

House 1998.

[10] Tough, R. J. A. and K. D. Ward The generation of correlated K-

distributed noise DRA technical report DRA/CIS/CBC3/WP94001/2.0,

1994, DRA Malvern, St. Andrews Road, Malvern, Worcs.

[11] Zelnio E., Garber F. A characterization of ATR performance evaluation

Proc. of Signal Processing, Sensor Fusion and Target, SPIE, Vol. 2755,

1996.

[12] Lu D., Weng Q. A survey of image classification methods and tech-

niques for improving classification performance International Journal of

Remote Sensing Vol. 28, No. 5, March 2007.

[13] E. G. Zelnio Advanced decision-making systems in future avionics : au-

tomatic target recognition example Aerospace conference Proc. IEEE,

Vol. 1, 1998.

[14] J. A. Ratches, C. P. Walters, R. G. Buser, and B. D. Guenther Aided and

automatic target recognition based upon sensory inputs from image form-

ing systems IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.

19, No. 9, 1997.

[15] L. M. Novak State-of-art of SAR automatic target recognition IEEE In-

ternational radar conference, Alexandria, USA, 2000.



BIBLIOGRAPHY 211

[16] L. M. Novak, G. J. Owirka, and W. S. Brower An efficient multi-target

SAR ATR algorithm Asilomar 32, Vol. 1, p3-13, 1998.

[17] L. M. Novak, G. J. Owirka, and A. L. Weaver Automatic target recogni-

tion using enhanced resolution SAR data IEEE Trans AES, Vol. 35, No.

1, 1999.

[18] G. J. Owirka, S. M. Verbout and L. M. Novak Template-based SAR ATR

performance using different image enhancement techniques Algorithms

for SAR VI, SPIE Proc., Vol. 3721, p302-319, 1999.

[19] L. M. Novak, G. J. Orwirka, and C. M. Netishen Performance of a high-

resolution polarimetric SAR automatic target recognition system The

Lincoln Laboratory Journal, Vol. 6, pp11-24, 1993.

[20] L. M. Novak, M. C. Burl, W. W. Irving Optimal polarimetric processing

for enhanced target detection IEEE Trans AES, Vol. 29, pp234-244, 1993.

[21] R. D. Chaney, M. C. Burl, L. M. Novak On the performance of polari-

metric target detection algorithms IEEE International radar conference,

pp 520-525, 1990.

[22] L. M. Novak, G. J. Owirka, and W. S. Brower Performance of 10 and

20 target MSE classifier IEEE Trans AES, Vol. 36, No. 4, 2000.

[23] R. Kohavi, F. Poster Editorial for special issue on Application of Ma-

chine Learning and the knowledge Discovery Process Machine Learning,

Vol. 30, No. 2-3, 1998.



BIBLIOGRAPHY 212

[24] M. Cetin, W. C. Karl, and D. A. Castanon Feature enhancement and

ATR performance using non-quadratic optimization-based SAR imaging

IEEE Trans AES, Vol. 39, No. 4, 2003.

[25] J. S. Ahn, B. Bhanu Model-based recognition of articulated objects Pat-

tern Recognition Letters 23, pp 1019-1029, 2002.

[26] B. Bhanu, Y. Lin Stochastic models for recognition of occluded targets

Pattern Recognition 36, pp 2855-2873, 2003.

[27] G. J. Ettinger, G. A. Klanderman, W. M. Wells, W. E. L. Grimson A

probabilistic optimization approach to SAR feature matching Algorithms

for Synthetic Aperture Radar III, Proc. SPIE 2757, pp 318-329, 1996.

[28] E. R. Keydel, S. W. Lee Signature prediction for model-based Automatic

Target Recognition Algorithms for Synthetic Aperture Radar III, Proc

SPIE 2757, pp 306-317, 1996.

[29] H. J. Wolfson, I. Rigoutsos Geometric hashing : an overview IEEE Com-

putational science and engineering, Vol. 4, pp 10-21, 1997.

[30] H. Chiang, R. L. Moses, L. C. Potter Model-based classification of radar

images IEEE Trans Information Theory, Vol. 46, No 5, 2000.

[31] H. Chiang, R. L. Moses, L. C. Potter Model-based Bayesian feature

matching with application to synthetic aperture radar target recognition

Pattern Recognition 34, pp 1539-1553, 2001.

[32] Keinosuke Fukunaga Introduction to statistical pattern recognition 2nd

edition Academic Press Limited, 1990.



BIBLIOGRAPHY 213

[33] K. Fukunaga, R. R. Hayes Estimation of classifier performance IEEE

Trans Pattern Analysis and Machine Intelligence, Vol. 11, No. 10, 1989.

[34] K. Fukunaga, D. L. Kessell Nonparametric Bayes error estimation us-

ing unclassified samples IEEE Trans. Information Theory, IT-19, No. 4,

1973.

[35] C. Daniell, A. Mahalanobis, R. Goodman Object recognition in sub-band

transform-compressed images by use of correlation filtersApplied Optics,

Vol. 32, No. 32, 2003.

[36] S. Suvorova, J. Schroeder Automated target recognition using the

Karhunen-Loeve transform with invariance DSP, Vol. 12, pp 295-306,

2002.

[37] Q. Zhao, J.C. Principe Support Vector Machines for SAR Automatic

Target Recognition IEEE Trans. on Aerospace And Electronic Systems,

April 2001.

[38] A. Jain, D. Zongker Feature Selection: Evaluation, Application and

small Sample Performance IEEE Trans. on Pattern Analysis and ma-

chine intelligence, Vol. 19. No. 2, February 1997.

[39] P. Pudil, J. Novovicova, J. Kittler Floating Search Methods in Feature

Selection Pattern Recognition Letters, vol. 15, pp. 1,119-1,125, Novem-

ber 1994.



BIBLIOGRAPHY 214

[40] J. O’Sullivan, M.D. DeVore SAR ATR Performance Using a Condition-

ally Gaussian Model IEEE Tran. on Aerospace and Electronic Systems,

Vol. 37, No.1, January 2001.

[41] M. D. DeVore, J. A. OSullivan Performance complexity study of sev-

eral approaches to automatic target recognition from SAR images IEEE

Trans. AES, Vol. 38, No. 2, pp 632-648, 2000.

[42] A. Mahalanobis, V.A. Forman Multi-class SAR ATR using shift-

invariant correlation filters Pattern recognition, Vol. 27, Issue 4, April

1994.

[43] B. Bhanu, Y. Lin Adaptive Target Recognition Machine Vision and Ap-

plications, 2000.

[44] D. S. Rosario Managing within-class target variability in SAR imagery

with a target decomposition model IEEE Int. Conf. Image Processing,

Vol. 3, pp 935-938, 1996.

[45] E. Krogager New decomposition of the radar scattering matrix Electron-

ics Letters, Vol. 26, pp 1525-1527, 1990.

[46] D. Turner RESPECT: Rapid electromagnetic scattering predictor for ex-

tremely complex targets IEE Proc., Vol. 137, part F, No. 4, August 1990.

[47] M. J. Gerry, L. C. Potter, I. J. Gupta A parametric model for synthetic

aperture radar measurements IEEE Trans. Antennas and Propagation,

Vol. 47, No. 7, July 1999.



BIBLIOGRAPHY 215

[48] M. J. Coulombe, T. Horgan, J. Waldman, J. Neilson, S. Carter, W.

Nixon A 160 GHz polarimetric compact range for scale model RCS mea-

surement Proc. Antenna measurements and techniques association, pg

239, October 1996.

[49] R. H. Giles, H. J. Nielson, D. M. Healy Jr., T. Grayson, R. Williams,

W. Nixon Acquisition and analysis of X-band moving target signature

data using a 160 GHz compact range Proc. SPIE, Vol. 4379, ATR XI,

pp 289-299, April 2001.

[50] R. H Giles, W. T. Kersey, A. J. Gatesman, M. J. Coulombe, M. S.

McFarlin, R. Finley, W. Nixon A study of the X-band radar signature

characteristics for main battle tanks in operational environments Proc.

SPIE, Vol. 4718, pp 336-343, April 2002.

[51] D. Blacknell Statistical target behaviour in SAR images IEE Proc. Radar,

Sonar, and Navigation, Vol. 147, Issue 3, pp 143-148, 2000.

[52] L. C. Potter and R. L. Moses Attributed scattering centers for SAR ATR

IEEE Trans. Image Processing, Vol. 6, No. 4, 1997.

[53] B. Bhanu, G. Jones III Recognizing target variants and articulations

in synthetic aperture radar images Optical Engineering, Vol. 39, No. 3,

2000.

[54] G. Jones III, B. Bhanu Recognizing occluded objects in SAR images IEEE

Trans. AES, Vol. 37, No. 1, 2001.



BIBLIOGRAPHY 216

[55] G. Jones III, B. Bhanu Quasi-invariants for recognition of articulated

and non-standard objects in SAR images IEEE workshop on computer

vision beyond the visible spectrum, Fort Collins, CO, pp 88-97, 1999.

[56] G. Jones III, B. Bhanu Recognizing articulated objects in SAR images

Pattern recognition, Vol. 34, pp 469-485, 2001.

[57] G. Jones III, B. Bhanu Increasing the discrimination of synthetic aper-

ture radar recognition models, Optical Engineering, Vol. 41, No. 12, 2002.

[58] S. V. Stehman Selecting and interpreting measures of thematic classi-

fication accuracy Remote Sensing and Environment, Vol. 62, pp 77-89,

1997.

[59] R. G. Congalton A review of assessing the accuracy of classifications

of remotely sensed data Remote Sensing and Environment, Vol. 37, pp

35-46, 1991.

[60] D. E. Dudgeon ATR performance modeling and estimation, DSP, Vol.

10, pp 269-285, 2000.

[61] A. M. Horne An information theory for prediction of SAR Target classi-

fication performance Algorithms for synthetic Aperture Radar Imagery

VII, Edmund G. Zelnio Editor, Proc. of SPIE Vol. 4382, 2001.

[62] S. D. Briles Information-theoretic performance bounding of Bayesian

identifiers Automatic Object Recognition III, Proc. SPIE, Vol. 1960,

1993.



BIBLIOGRAPHY 217

[63] F. Garber, E. Zelnio On some simple estimates of ATR performance and

initial comparisons for a small data set, SPIE Algorithms for Synthetic

Aperture Radar IV, Proc. SPIE 3070, pp 150-161, 1997.

[64] K. Takkola Feature extraction by Non-parametric Mutual Information

Maximization, Journal of Machine learning research, Vol. 3, 2003.

[65] M. L. Cooper, M. I. Miller Information measures for object recognition

accommodating signature variability, IEEE Trans. Information Theory,

Vol. 46, No. 5, 2000.

[66] F. Kanaya, K. Nakagawa On the Practical Implication of Mutual In-

formation for statistical Decisioning, IEEE Trans. Information Theory,

Vol. 37, No.4, July 1991.

[67] M. I. Miller, P. Moulin, K. Ramchandran Information-theoretic bounds

on target recognition performance based on degraded image data IEEE

Trans. on Pattern Analysis and Machine Intelligence, Vol. 24, No.9,

September 2002.

[68] R. O. Duda Pattern recognition and scene analysis John Wiley & Sons,

1973.

[69] M. Boshra, B. Bhanu Predicting an upper bound on SAR ATR perfor-

mance IEEE Trans. AES, Vol. 37, No.3, July 2001.

[70] M. Boshra, B. Bhanu Predicting the performance of object recognition,

IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, No. 9,

2000.



BIBLIOGRAPHY 218

[71] M. I. Miller, U. Grenander, J. A. OSullivan, D. L. Snyder Automatic

target recognition organised via jump-diffusion algorithms IEEE Trans.

Image Processing, Vol. 6, No. 1, 1997.

[72] U. Grenander, M.I. Miller, A. Srivastava Hilbert-Schmidt lower bounds

for estimators on matrix Lie groups for ATR IEEE Trans. on Pattern

Analysis and Machine Intelligence, Vol. 20, No. 8, September 1998.

[73] W. Irving, R.B. Washburn, W. Grimson, L. Eric Bounding performance

of peak-based target detectors Algorithms for Synthetic Aperture Radar

Imagery IV, Edmund G. Zelnio Editor, Proceedings of SPIE Vol. 3070,

1997.

[74] B. Bhanu, J. H. Yi Target indexing in SAR images using scattering

centers ad the Hausdorff distance, Pattern Recogntion Letters, Vol. 17,

1996.

[75] Z. Knowles, D. Parker A Monte Carlo simulation based approach to

a priori performance prediction for target detection and recognition in

cluttered synthetic aperture radar imagery, Target Tracking 2004: Algo-

rithms and Applications, IEE.

[76] G.E. Smith, M. Vespe, K. Woodbridge, C.J. Baker Radar classification

evaluation, IEEE Radar Conference 2008.

[77] J. A. Richards, W. J. Bow, B. K. Bray An informative confidence metric

for ATR, Algorithms for SAR X, Proc. SPIE, Vol. 5095, pp 336-348,

2003.



BIBLIOGRAPHY 219

[78] T. D. Ross Confidence intervals for ATR performance metrics Algo-

rithms for Synthetic Aperture Radar Imagery VIII, Proc. SPIE, Vol.

4382, pp 318-329, 2001.

[79] U. Grenander, A. Srivastava, M. I. Miller Asymptotic performance anal-

ysis of Bayesian target recognition, IEEE Trans. Information Theory,

Vol. 46, No. 4, 2000.

[80] L. L. Horowitz, G. F. Brendel Fundamental SAR ATR performance pre-

dictions for design tradeoffs, SPIE Algorithms for Synthetic Aperture

Radar IV, Vol. 3070, 1997.

[81] M. D. Devore, J. A. OSullivan, R. D. Chamberlain, M. A. Franklin

Relantionships between computational system performance and recogni-

tion system performance, Automatic Target Recognition XI, Proc. SPIE

4379, pp 355-363, 2001.

[82] M. D. DeVore, R. Chamberlain, G. Engel, J. A. OSullivan, M. A.

Franklin Trade-offs between quality of results and resource consumption

in a recognition system, Proc. IEEE Conference on application specific

systems, architectures and processors, pp 391-402, 2002.

[83] D. Andre, D. Blacknell, J. Hare Generation and validation of a simulated

radar ground target database SET080, NATO conference, 2004.

[84] E. Keydel, W. Williams, R. Sieron, V. Rajlich, and S. Stanhope Rea-

soning support and uncertainty prediction in model-based vision SAR

ATR, Algorithms for Synthetic Aperture Radar VI, Proc. SPIE 3721,

pp 620-631, 1999.



BIBLIOGRAPHY 220

[85] B Bhanu and G Jones III Object recognition results using MSTAR syn-

thetic aperture radar data, Proc. IEEE workshop on computer vision

beyond the visible spectrum, Hilton Head, SC, pp 55-62, 2000.

[86] T. D. Ross, J. J. Bradley, L. J. Hudson, M. P. OConnor SAR ATR-

So Whats The Problem? An MSTAR Perspective, SPIE Algorithms for

SAR VI, Vol. 3721, pp 662-672, 1999.

[87] V. Velten, T. Ross, J. Mossing, S. Worrell, M. Bryant Standard SAR

ATR evaluation experiments using the MSTAR public release data set

Algorithms for Synthetic Aperture Radar V, Proc. SPIE 3370, pp 566-

573, 1998.

[88] T. D. Ross and J. C. Mossing The MSTAR evaluation methodology Al-

gorithms for Synthetic Aperture Radar VI, Vol. 3721, pp 705-713, 1999.

[89] C. Alexandrov, A. Draganov, N. KolevAn application of Automatic Tar-

get recognition in Marine Navigation, IEEE International Radar Con-

ference, 1995.

[90] F. Qiang, Y. Wenxian Automatic Target Recognition Based on Inco-

herent Radar Returns Proc. of the IEEE 1995 National Aerospace and

Electronics Conference, Vol.1, pp 123 - 128, 22-26 May 1995.

[91] A. K. Mishra, B. Mulgrew Ground target classification for airborne

bistatic Radar 1st EMRS DTC Technical Conference, Edinburgh 2004.



BIBLIOGRAPHY 221

[92] R. Williams, J. Westerkamp,Automatic target recognition of time critical

moving targets using 1D High Range Resolution (HRR) Radar, IEEE

AES Magazine, Vol. 15, Issue 4, pp 37-43, April 2000.

[93] M. Vespe, C.J. Baker, H.D. Griffiths Automatic target recognition using

multi-diversity radar IET Radar Sonar Navigation, Vol. 1, No. 6, pp

470-478, 2007.

[94] B.B. Mandelbrot Self-affine fractal and fractal dimension Physica

Scripta, Vol. 32, 1985.

[95] K.J. Falconer The geometry of fractal sets Cambridge University Press,

1985.

[96] K.J. Falconer Fractal geometry John Wiley & Sons, 1990.

[97] A. Cichocki, S. Amari Adaptive Blind Signal and Image Processing John

Wiley & Sons, 2003.

[98] D.C. Lay Linear Algebra and its Application, 2nd ed. Addison Wesley,

1996.

[99] P. Comon Independent Component Analysis: a new concept? Signal

Processing, Elsevier, Vol. 36, No.3 pp 287-314, 1994.

[100] A. Hyvärinen, E. Oja Independent Component Analysis: Algorithms

and Application Neural Networks, Vol. 13, No. 4-5, pp. 411-430, 2000.

[101] N. Metropolis The beginning of the Monte Carlo Method Los Alamos

Science, Special Issue, 1987.



BIBLIOGRAPHY 222

[102] S. Amari, H. Nagaoka Methods of information geometry Oxford Uni-

versity Press, 2000.

[103] R. E. Blahut Principle and practice of information theory Addison Wes-

ley Series in Electrical and computer engineering, 1987.

[104] M. Fecko Differential geometry and Lie groups for physicists Cambridge

University Press, 2006.

[105] W. Lederman, A. J. Weir Introduction to Group Theory, 2nd Ed. Ad-

dison Wesley Longman, 1996.

[106] J. A. De Azcrraga, J.M. Izquierdo Lie groups, Lie Algebras cohomology

and some application in physics Cambridge University Press, 1995.

[107] B. C. Hall Lie groups, Lie Algebras and representations. An Elementary

introduction Springer-Verlag Inc., 2004.

[108] S.J. Julier, J.K. Uhlmann Unscented filtering and nonlinear estimation,

Proc. of the IEEE, March 2004.

[109] M. Abramowitz, I. A. Stegun Handbook of mathematical Functions

Dover Publication INC., New York 1964.

[110] G. Fasano, A. Franceschini A multidimensional version of the Kol-

mogorov Smirnov test Monthly Notices of the Royal Astronomical Soci-

ety, Vol. 225 1987.

[111] C.J.C. Burge A Tutorial on Support Vector Machines for Pattern

Recognition Data Mining and Knowledge Discovery 1998.



BIBLIOGRAPHY 223

[112] T. Fawcett An introduction to ROC analysis Pattern Recognition Let-

ters, Vol. 27, Issue 8, pp 861-874, 2006.

[113] H. A. David, H. N. Nagaraja Order Statistics 3rd Edition John Wiley

& Sons, 2003.

[114] A. Hein Processing of SAR data Springer-Verlag Inc., 2004.

[115] A. Bolvik, J. Gibson Handbook of Image and Video Processing (Com-

munications, Networking and Multimedia) Academic Press, 2000.

[116] T. Crimmins The geometric filter for speckle reduction Applied Optics,

Vol. 24, No. 10, May 1985.

[117] N. J. Redding Estimating the Parameters of the K Distribution in the

Intensity Domain DSTO-TR-0839, July 1999.

[118] R. Kimmel, R. Malladi, N. Sochen Image processing via Beltrami op-

erator presented at the 3rd Asian Conf. Computer Vision, Hong Kong,

January 1998.

[119] N. Sochen, R. Kimmel, R. Malladi A general framework for low level

vision IEEE Trans. Image Processing, Vol. 7, No. 3, pp 310-318, March

1998.

[120] N. Sochen, R. Kimmel, R. Malladi From high energy physics to low

level vision LBNL Rep. 39243, Univ. California, Berkeley, Aug. 1996.

[121] A. M. PolyakovQuantum geometry of bosonic strings Physics Letters

B, 103(B), pp 207-210, 1981.



BIBLIOGRAPHY 224

[122] R.J. Dekker Speckle filtering in satellite SAR change detection imagery

International Journal of Remote sensing, 19:6, pp 1133-1146.

[123] E. KreyszingDifferential Geometry Dover Publications, Inc., New York

1991.

[124] A. Spira, R. KimmelA short-time Beltrami kernel for smoothing images

and manifolds IEEE Trans. Image Processing, Vol. 16, No. 6, pp. 1628-

1635, June 2007.

[125] N. Sochen, R. Kimmel, R. Malladi On the Geometry of Texture Pro-

ceedings of the 4th International conference on Mathematical Methods

for Curves and Surfaces, 1996.

[126] G. Xu Discrete Laplace-Beltrami operators and their convergence, Com-

puter Aided Geometric Design, Vol. 21 , Issue 8, pp. 767 - 784, October

2004.

[127] S. Osher Image Processing Based on Partial Differential Equations Pro-

ceedings of the International Conference on PDE-Based Image Process-

ing and Related Inverse Problems, CMA, Oslo, August 812, 2005.

[128] W. K. Pratt Digital image processing: PIKS inside, Third Edition John

Willey & Sons, 2001.

[129] G. Aubert, P. KornprobstMathematical Problems in Image Processing:

Partial Differential Equations and the Calculus of Variations Second

Edition Springer 2006.



BIBLIOGRAPHY 225

[130] W. Kühnel Differential Geometry: curves - surfaces - manifolds, Amer-

ican Mathematical Society, 2002.

[131] J. A. Thorpe Elementary topics in differential geometry Springer-

Verlag Inc., 1979.

[132] R.W. Sharpe Differential Geometry Springer-Verlag New York Inc.,

1996.

[133] G.W. Corder, D.I. Foreman Nonparametric Statistics for Non-

Statisticians: A Step-by-Step Approach John Willey & Sons, 2009.

[134] L.P. Roy, R.V.R Kumar Accurate K-distributed clutter model for scan-

ning radar application IET Radar Sonar Navigation, Vol. 4, Iss. 2, pp.

158-167, 2010.

[135] N. Levanon, M. Shor Order statistics CFAR for Weibull background

IEE Proc., Vol. 137. Pt. F, No. 3, June 1990.

[136] V. Anastassopoulos, G. A. Lampropoulos Optimal CFAR detection in

Weibull clutter, IEEE Trans. AES, Vol. 31, No. 1, January 1995.

[137] A. Papoulis Probability, Random Variables, and Stochastic Processes

McGraw-Hill Kogakusha, Tokyo, 9th edition 1965.

[138] N.Y. Hassan, N. Aakamatsu Contrast enhancement technique of dark

blurred image IJCSNS, Vol. 6, No. 2A, 2006.

[139] R. Duda, P. E. Hart Use of the Hough transformation to detect lines

and curves in pictures, Comm. ACM, Vol. 15, No. 1, pp. 11-15, 1972.



BIBLIOGRAPHY 226

[140] R. Gunn Steve Support Vector Machines for Classification and Regres-

sion Technical report, Faculty of Engineering, Science and Mathematics,

School of Electronics and Computer Science, May 1998.

[141] E. E. Osuna, R. Freund, F. Girossi Support Vector Machines: Train-

ing and Applications Massachussetts Institute of Technology - Artificial

Intelligence Laboratory, C.B.C.L Paper No. 144, March 1997

[142] C. Cortes, V. Vapnik Support-Vector Networks Journal of Machine

Learning, Vol. 20, 1995.

[143] L. M. Novak, S.D. Halversen, G. Owirka, M. Hiett Effects of polariza-

tion and resolution on SAR ATR IEEE Trans. AES, Vol. 33, pp 102-116,

1997.

[144] R. Hummel Model-based ATR using synthetic aperture radar, IEEE

Radar Conference, pp 856-886, 2000.

[145] J. Wissinger, R. Washburn, D. Morgan, C. Chong, N. Friedland, A.

Nowicki, R. Fung Search algorithms for model-based SAR ATR, Algo-

rithms for Synthetic Aperture Radar III, Proc. SPIE 2757, pp279-293,

1996.

[146] B. Ulug, S. C. Ahalt, and R. A. Mitchell Efficient ATR using compres-

sion IEEE Trans AES, Vol. 33, No. 4, 1997.

[147] M. Z. Brown Analysis of multiple-view Bayesian classification for SAR

ATR Algorithms for Synthetic Aperture Radar X, Proc. SPIE 5095, pp

265-274, 2003.



BIBLIOGRAPHY 227

[148] F. Barbaresco, N. Rivereau Diffusive CFAR & its extension for Doppler

and Polarimetric data IET International Conference on Radar Systems,

2007.

[149] J. P. Egan Signal Detection Theory And ROC Analysis Academic Press,

London 1975.

[150] T. Fawcett ROC Graphs: Notes and Practical Considerations for Data

Mining Researchers Technical Report HPL-2003-4, HP LAboratories,

Intelligent Enterprise Technologies Laboratory HP Laboratories, Palo

Alto.

[151] J. C. Mossing, T. D. Ross An evaluation of SAR ATR algorithm perfor-

mance sensitivity to MSTAR extended operating conditions Algorithms

for Synthetic Aperture Radar V, Proc. SPIE 3370, pp 554-565, 1998.

[152] J. Illingworth, J.V. Kittler A Survey of the Hough Transform Computer

vision, graphics and image processing, Vol. 44, pp 87-116, 1998.

[153] J. Illingworth, J.V. Kittler The Adaptive Hough Transform, IEEE

Transaction on Pattern Analysis and Machine Intelligence, September

1987.

[154] F. C. Morabito, G. Simone, A. Farina Automated lineament detection

in SAR images based on the joint use of wavelet and hough transforms

Proc. of 5th International Conference on Radar Systems, Brest, France

1999.



BIBLIOGRAPHY 228

[155] W. Haihui, W. Yanli, Z. Tongzhou Automated Detection in SAR Images

by Using Wavelet Filtering and Hough Transform Second International

Workshop on Education Technology and Computer Science, 2010.

[156] J. Cheng-li, J. Ke-feng, J. Yong-mei, K. Gang-yao Road Extraction from

High-Resolution SAR Imagery. Using Hough Transform Geoscience and

Remote Sensing Symposium, 2005.

[157] N. Kiryati, Y. Eldar a A. M. Bruckstein A probabilistic Hough trans-

form Pattern Recognition, Volume 24 Issue 4, 1991.

[158] D. Shaked , O. Yaron , N. Kiryati Deriving Stopping Rules for the

Probabilistic Hough Transform by Sequential Analysis Computer Vision

and Image Understanding 1996.

[159] A.D. Lanterman, J. A. O’Sullivan, M.I. MillerKullback-Leiber distances

for quantifying clutter and model Optical Engineering, Vol. 38, No. 2,

pp 2671-2674, December 1999.

[160] T.M. Cover, J. A. Thomas. Elements of Information Theory John Wi-

ley & Sons New York, 1991.

[161] F. Sadjadi Improved Terget Classification Using Optimum Polarimetric

SAR Signature, IEEE Trans. AES, Vol. 39, No. 1, January 2002.

[162] K. Arwini, C.T.J. Dodson Information Geometry: Near Random-

ness and Near Independence (Lecture Notes in Mathematics) Springler-

Verlang Inc., 2008.



BIBLIOGRAPHY 229

[163] M. B. Sechtin, L. M. Novak, M.C. Burl Algorithms for optimal process-

ing of polarimetric radar data Project report TT-73, MIT-Lincoln Lab.,

1989.

[164] A. W. Rihaczek, S. J. Hershkowitz Radar Resolution and Complex-

Image Analysis Norwood, MA, Artech House, 1996.

[165] B. Borden Radar Imaging of airborne targets Philadelphia: Institute of

Physics, 1999.

[166] I. Antipov Analysis of sea clutter data DSTO Electronic and Surveil-

lance Research Laboratory, DSTO-TR-0647, March 1998

[167] H.C. Chan Radar sea clutter at low grazing angles IEEE Proc., Vol.137,

Pt. F, No.2, April 1990.

[168] E. Jakeman, P.N. Pusey A model for non-Rayleigh sea echo, IEEE

Trans. On Antennas and Propagation, Vol. 24, No. 6, November 1970.

[169] T.P. Leonard, I. Antipov, K.D. Ward Comparison of radar sea clutter

models, IEE, No.490, Radar 2002, Edinburgh.

[170] C.J. Oliver Optimum texture estimators for SAR clutter Journal of

Physics: Applied Physics, Vol. 26, pp 1824-1835 , 1993.

[171] G. Marino, E. J. Hughes Information Content Variation In CFAR Pro-

cessing, Cranfield University Research Student Symposium, May 2011.

[172] G. Marino, E. J. Hughes Automatic Target Recognition in Synthetic

Aperture Radars, 9th Electro-Optics & Infrared Conference, Shriven-

ham, 4th/6th July 2011.



BIBLIOGRAPHY 230

[173] G. Marino, E. J. Hughes A novel mathematical approach for the prob-

lem of CFAR clutter model approximation, 3rd Microwaves, Radar and

Remote Sensing Symposium, Kiev August 2011.


