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Abstract

A new approach for process controllability analysis by using multiobjective

optimisation techniques is proposed. Within the approach, a set of perfor-

mance specifications, such as minimum control error and input effort with

closed-loop pole placement are represented as a set of linear matrix inequal-

ities (LMI). The solution to the LMI conditions can be identified as feasible

or infeasible. If the solution is feasible there is at least one controller that
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can make the closed-loop system satisfy all performance specifications simul-

taneously. Therefore, for the process plant, these performance specifications

are achievable. Otherwise, they are unachievable. There is a Pareto-optimal

set or a trade-off curve in the performance space to separate these two areas.

The paper shows that such trade-off curves can be used for process control-

lability analysis, and therefore, can be applied to control structure selection

problems.

1 Introduction

The issue of input-output controllability analysis has received increasing at-

tention for a few decades. Input-output controllability is the ability of a

plant to achieve acceptable control performance. Various tools and tech-

niques have been developed and are available in the literature to quantify

the inherent input-output controllability of a plant (Skogestad and Postleth-

waite, 1996). However most of these tools are mainly open-loop controllabil-

ity indices. Each individual index only addresses one aspect of process con-

trollability, which causes performance limitation, such as input constraints,

unstable poles and zeros. It is still an open area to predict performance lim-

itation jointly imposed by these factors. Nonlinear optimisation has been

used to predict performance limitation for a plant with input constraints

and unstable zeros (Cao et al., 1996). The minimum input usage required

to stabilize an unstable plant has been derived by Glover (1986) and recently

by Havre and Skogestad (2001). Åström (2000) presented some results for

performance limitations in SISO systems. For MIMO systems, the impact

of unstable poles and zeros on closed-loop sensitivity and complementary

sensitivity functions has been extensively studied by Chen (2000).
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In this paper, performance limitations are presented in trade-off curves,

which are used in process controllability analysis. Boyd and Barratt (1991)

have revealed that most control system design specifications are affine and

convex functions of the controller to be designed. The trade-off curves of

these functions have been calculated as Pareto-optimal performance set.

As summarised by Scherer et al. (1997), many control performance criteria

can be represented as a set of linear matrix inequalities (LMI)1 (Boyd et

al., 1994). These performance criteria include H∞ and H2 norms of certain

closed-loop transfer functions and pole placement regions. Using LMI, vari-

ous, even inconsistent performance requirements can be identified as feasible

and infeasible in the performance space. These two areas are separated by

the Pareto-optimal performance set. The Pareto-optimal performance set

gives a clear picture about what is the achievable performance of a pro-

cess control system and what kind of performance trade-off is necessary for

control design.

The paper is organized as follows. Section 2 introduces the multiobjec-

tive control design specifications used in this paper. Two types of Pareto-

optimal performance curves are designated for multiobjective controllability

analysis. These curves are solvable by off-the-shelf software with a small

modification. Section 3 provides a complete case study to show the usage of

these Pareto diagrams in control structure selection. The paper is concluded

in Section 4.

1A tutorial paper on LMI for chemical process control practitioners is available else-

where (VanAntwerp and Braatz, 2000).
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2 Multiobjective Process Controllability and LMI

2.1 Generalised control configuration

Control systems can be constructed in different ways, such as: feedback,

feedforward, cascade, partial and indirect control. The way a control sys-

tem constructed is referred to as control configuration. Control configuration

has a strong impact on the process controllability. For control structure se-

lection purpose, it is desirable to compare process controllability of different

control configurations. Therefore, a generalised control configuration shown

in Figure 1 is considered in the paper.

In Figure 1, the block P represents a general plant, whilst block K is

a controller. Signals, which link both blocks, are measured output, y and

manipulated input, u. The signal w represents exogenous inputs, such as

disturbances, references, noises and inputs from uncertainties, whilst the

exogenous output, z, is the control objective. Assume the transfer matrix,

P of the general plant is partitioned, according to the inputs and outputs,

as follows:

P =





Pzw Pzu

Pyw Pyu



 (1)

The state-space form of P is denoted as:

P =











AP BPw BPu

CPz

CPy

DPzw DPzu

DPyw DPyu











(2)

The control K has the state-space form:

K =





AK BK

CK DK



 (3)
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Then the closed-loop transfer function from the exogenous input, w to the

exogenous output, z is:

Tzw = Pzw + PzuK(I − PyuK)−1Pyw =





A B

C D



 (4)

where the closed-loop state-space matrices are:

A =





AP + BPuRDKCPy BPuRCK

BKCPy + BKDPyuRDKCPy AK + BKDPyuRCK



 (5)

B =





BPw + RDKDPyw

BKDPyw + BKDPyuRDKDPyw



 (6)

C =
(

CPz + DPzuRDKCPy DPzuRCK

)

(7)

D = DPzw + DPzuRDKDPyw (8)

where R = (I − DKDPyu)−1.

Most control configurations, for example those mentioned above, can

uniformly be represented in the generalised configuration. Thus, controlla-

bility analysis based on this generalised configuration can directly be applied

to control structure selection.

2.2 Performance Specification

Many control performance specifications can be expressed as the H∞ norm of

certain closed-loop transfer functions. Such functions could be the sensitivity

function, S, complementary sensitivity function, T , the input sensitivity

function, KS, or more generally, a closed-loop transfer function from w to

z, i.e. ‖Tzw‖∞. Since,

‖Tzw‖∞ = max
w

‖z‖2

‖w‖2

= max
‖w‖2=1

‖z‖2 (9)
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a performance specification to minimise ‖Tzw‖∞ is equivalent to minimise

the L2-norm of z at the worst case disturbance, w. Using the closed-

loop state-space matrices in equation (4), an H∞ performance condition,

‖Tzw‖∞ ≤ γ (a constant) can be represented in the LMI form as follows:











AT P + PA PB CT

BT P −γI DT

C D −γI











< 0, P > 0 (10)

In H∞ control design, a multiobjective performance specification is usually

treated as a mixed sensitivity design problem, such as mixed S-KS, or

mixed S-T objectives with suitable weighting functions. However, for the

controllability analysis purpose, the multiple H∞ norms are better to be

considered simultaneously as a multiobjective optimisation problem. The

multiobjective H∞ optimisation can be solved by recently developed LMI

techniques (Gahinet et al., 1995).

The H∞ norm is a system norm where input and output signals both

are in L2 space. For control error, this specification is more or less similar

to the traditional integral squared error (ISE) performance index. However,

to consider the effect of input constraints, it is better to limit the maximal

magnitude of the input within its constraints. Therefore, L∞ space is more

appropriate than L2 in describing the control-input signal, u. If disturbance

w ∈ L2 and input u ∈ L∞ , then the induced norm from w to u is the

generalised-H2 norm (Rotea, 1993; Scherer et al., 1997), denoted as ‖Tuw‖g:

‖Tuw‖g = max
w

‖u‖∞
‖w‖2

= max
‖w‖2=1

‖u‖∞ (11)

A performance specification to confine ‖Tuw‖g < β is equivalent to constrain

the magnitude of u less than β at the worst case disturbance, w. The LMI
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conditions for ‖Tuw‖g < β (a constant) are given by Scherer et al. (1997) as

follows:




AT P + PA PB

BT P −I



 < 0,





P CT

C βI



 > 0, D = 0 (12)

Transient response is always involved in performance requirements and

can often be achieved by forcing the closed-loop poles into a suitable region.

For example, the condition of all closed-loop poles on the left-half plane of

<(p) ≤ α (a negative constant), usually called α-stability condition, will

force the closed-loop transient response not slower than eαt, i.e. the larger

the negative value of α, the faster the closed-loop transient response. A

more general pole region shown in Figure 2 is denoted as S(α, r, θ):

S(α, r, θ) = {p | <(p) ≤ α, |p| ≤ r, tan(θ)<(p) ≤ −|=(p)|} (13)

In this region, α determines the response speed, θ specifies the minimal

damping coefficient of the response and r confines the controller to be well

defined (Chilali and Gahinet, 1996). The pole region, S(α, r, θ) is equivalent

to a set of LMI (Chilali and Gahinet, 1996),

S(α, r, θ) = R(L, M) = {p | L + pM + p̄MT < 0} (14)

Using matrices, L = {lij} and M = {mij}, the LMI conditions for the closed-

loop matrices to satisfy the pole region are (Chilali and Gahinet, 1996):

lijP + mijA
T P + mjiPA < 0, P > 0 (15)

The multiobjective optimisation problem to be considered in the paper

is as follows:

γ = minK ‖Tew‖∞

subject to: ‖Tuw‖g < β

p ∈ S(α, r, θ)

(16)
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where e is the unit-feedback control error. According to (9) and (11), prob-

lem (16) can be explained as that at worst case disturbance with ‖w‖2 = 1,

a controller K is to be designed to minimise the integral squared control

error (min ‖e‖2) subject to limited input magnitude (‖u‖∞ ≤ β) and de-

sired transient response shape (p ∈ S(α, r, θ)). This problem is ready to

be solved by using off-the-shelf software, for example, the MATLAB LMI

Control Toolbox (Gahinet et al., 1995). The MATLAB function, hinfmix

in the LMI toolbox, originally designed for mixed H2/H∞ problem has been

slightly modified for the generalised-H2 /H∞ problem in (16). Two multi-

objective Pareto diagrams, the minimum ‖Tuw‖g against α-stability and the

minimum ‖Tuw‖g against the minimum ‖Tew‖∞ are to be produced by re-

peatedly calling the modified MATLAB function. The former is to reveal

how large control effort is required corresponding to the response speed re-

quired whilst the latter gives a global picture what minimal control error is

achievable for certain limited input magnitude.

Problem (16) presents a general control design trade-off: minimise con-

trol error with minimal control effort. Traditionally, such a trade-off is solved

via a combined objective function with properly selected weights, e.g. the

Linear Quadratic Gaussian (LQG) problem and mixed sensitivity problem.

Separating these two performance requirements into objective function and

constraint as shown in (16) is more natural and closer to a practical situa-

tion. In addition, the LMI formulations in (10), (12) and (14) are convex.

Hence the solution of (16) is global optimal. Thus, index (16) is more suit-

able than traditional indices such as the LQG for controllability analysis to

reveal achievable performance limitation of a plant.
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3 Case Study

3.1 Two-CSTR Process

The approach for multiobjective controllability analysis is applied to a two-

CSTR process. The process is schematically shown in Figure 3. A full

description of the system and an eight-state model can be found in (Cao and

Biss, 1996). To focus on the control structure selection problem discussed

here, constant volume assumption is applied to the process, which leads to a

six-state model to be used in the paper. The control problem is to maintain

both tank temperatures at desired values in the presence of cooling-water

temperature fluctuations within ±10 [K], i.e. w = [Tcw1, Tcw2]
T . Three

possible control configurations to be considered are:

S1: u = [QI1, QI2]
T , two feed flowrates and y = [To1, To2]

T , two tank outlet

temperatures.

S2: u = [Qcw1, Qcw2]
T , two cooling-water flowrates and y is the same as S1.

S3: u is the same as S2, but y has two extra secondary measurements,

cooling-water outlet temperatures, i.e. y = [To1, To2, Tcwo1, Tcwo2]
T .

The input constraints are

0.05 ≤ QI1 + QI2 ≤ 0.8 [m3/s] (17)

0.05 ≤ Qcw1, Qcw2 ≤ 0.8 [m3/s] (18)

To cope with the constraints, QI1 and QI2 are converted to total flowrate,

Q and flowrate ratio, R, i.e.

Q = QI1 + QI2 (19)

R = QI2/Q (20)

9



The new constraints for Q and R are:

0.05 ≤ Q ≤ 0.8 [m3/s] (21)

0 ≤ R ≤ 1 (22)

For variable scaling, the manipulated variables are divided by the mini-

mum distance from their steady state value to their boundary. The distur-

bance variables are divided by 10 [K], whilst the output variables is divided

by 1 [K]. The final linearised model for configurations S1, S2 and S3 is

represented as:

ẋ = Ax + Biu + Ew

y = Cix
(23)

where Bi and Ci are B and C matrices for configurations Si, respectively.

The state-space matrices are:

A =



















−17.9751 −295.8655 0 0 0 0

0.0207 0.1889 0.0704 0 0 0

0 0.3879 −0.8000 0 0 0

0.0977 0 0 −18.0088 −295.8655 0

0 0.0617 0 0.0131 0.0433 0.0589

0 0 0 0 0.3787 −0.6220



















(24)

(

B1 B2 E
)

=



















17.8996 −13.7811 0 0 0 0

−0.0131 0.0101 0 0 0 0

0 0 −0.0294 0 0.0137 0

17.8636 17.8636 0 0 0 0

−0.0082 −0.0082 0 0 0 0

0 0 0 −0.0235 0 0.0081



















(25)

B3 = B2 (26)

C3 =









0 362.9950 0 0 0 0

0 0 0 0 362.9950 0

0 0 327.5600 0 0 0

0 0 0 0 0 335.4470









(27)

C1 = C2 = the first two rows of C3 (28)
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3.2 Controllability Index Analysis

The effect of input constraints is normally assessed by the minimum singular

value, which are 15.06 for S1 and 5.13 for S2 at steady state, i.e. S1 is

better than S2 in terms of input constraints. However, S3 has two secondary

measurements, thus this index cannot be directly applied.

On other hand, S1 is the only configuration, which has two unstable zeros

(10.33 and 10.31). Physically, this is because the effect of feed flowrate on

tank temperature has two opposite directions – positive via reaction and

negative because the feed is colder than the liquid in the tank. Therefore,

S2 and S3 are better than S1 in terms of unstable zeros. However, for overall

performance, it is difficult to judge which configuration is the best only based

on these open-loop controllability indices. Therefore, the multiobjective

controllability analysis approach described above is applied to this example.

3.3 Multiobjective Controllability Analysis

The multiobjective problem (16) is configured as follows for this particular

process: e the control error, i.e. the difference between the two outlet tem-

peratures, [To1, To2] and their setpoints; u the manipulated variables, i.e.

[QI1, QI2] for S1 and [Qcw1, Qcw2] for S2 and S3 respectively; w the distur-

bances, i.e. the cooling water inlet temperatures, [Tcw1, Tcw2]. The closed-

loop poles region is defined as r = 20 and θ = 77.6◦ (minimum closed-loop

damping coefficient about 0.215) with α fixed to −0.5 (maximum closed-loop

time constant about 2 [s]) or varying. To force zero error at steady-state,

an integrator is inserted into each error channel and will be merged into the

controller designed. Based on these conditions, the multiobjective Pareto

diagrams are produced and shown in Figure 4.
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In order to explain the controllability behaviour presented in Figure 4,

open-loop poles and zeros of all configurations are listed as follows:

poles: −17.8, −17.6, −0.84, −0.67, −0.13 −0.11

zeros of S1: 10.33, 10.31, −0.8, −0.62

zeros of S2: −18.01, −17.98

zeros of S3: none

Comparing open-loop poles with Figure 4 (a) shows that input magnitude

required for α-stability is depend on the location of the open-loop poles,

which are on the right of the α-line. The longer the distance of these poles

to the α-line, the larger the input magnitude required. However, the input

magnitude required is also dependent on the controllability of these poles.

To move a less controllable pole requires larger control effort. For S1, the

open-loop zeros of −0.8 and −0.62 is very close to open-loop poles, −0.84

and −0.67. Therefore, these two poles have less controllability in S1 than

the same poles in other configurations. This causes the sharp increase of

input magnitude required (‖Tuw‖g) of S1 when −α > 0.6 (see Figure 4 (a)

from α = −0.6 towards left).

The results also show that the achievable performance of S1 in terms

of ‖Tew‖∞ has a low bound about 0.003 (vertical part of the solid-line

in Figure 4 (b)). The lower bound is due to its unstable zeros, thus is

independent of input constraints.

However, S1 is still the best configuration when −α < 0.6 and ‖u‖∞ < 1

(i.e. ‖Tuw‖g < 1 in the figures). It is also shown that the nonsquare config-

uration, S3 does improve the controllability by introducing extra measure-

ments into configuration S2. It can achieve almost the same performance as

S1 within the input constraints (Figure 4 (b) at ‖Tuw‖g = 1) . If the input
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constraints were permitted to increase slightly, S3 would even be better than

S1. This observation is verified by the simulation results (see Figures 5).

3.4 Nonlinear Simulation

To verify the results obtained in multiobjective controllability analysis, a

simulation has been carried out on the original nonlinear model (Cao and

Biss, 1996). The controllers K1, K2 and K3 given in equations (29), (30) and

(31) are designed for control configurations S1, S2 and S3 respectively. These

controllers are calculated to achieve performance specification of ‖Tew‖∞ to

the level corresponding to ‖Tuw‖g = 1 in Figure 4(b). The actual maxi-

mal input magnitudes observed in the simulation match the ‖Tuw‖g values

predicted in Figure 4(b) (see Figure 6).

K1 =





AK1 BK1

CK1 DK1



 (29)

=



































−3.87 32.82 −7.04 1.26 0.88 −0.45 −32.88 2.62 0 0

−33.08 −11.05 0.31 5.43 −1.77 0.24 −45.92 −4.12 0 0

6.33 1.77 −7.12 26.06 −0.28 −1.71 7.23 −33.08 0 0

−0.68 −5.57 −25.98 −14.60 1.14 2.54 −4.06 −33.47 0 0

−0.94 −1.48 1.13 0.97 −0.90 −0.02 −3.62 1.88 0 0

0.34 0.91 1.41 2.59 −0.04 −0.94 1.64 3.39 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

−15.81 15.41 −18.02 14.26 0.93 −2.07 −46.17 −35.40 0 0

8.63 −16.65 −6.80 10.41 −1.64 −0.67 27.67 −31.41 0 0


































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K2 =





AK2 BK2

CK2 DK2



 (30)

=



































−0.32 −19.71 0.05 0.02 1.12 −0.01 −19.43 0.17 0 0

19.70 −10.39 0.19 0.05 5.75 −0.08 100.71 3.60 0 0

−0.05 −0.00 −0.52 11.78 −0.21 −1.59 −0.84 13.83 0 0

−0.09 0.05 −11.79 −10.06 0.18 6.40 −2.12 50.06 0 0

−1.12 5.75 0.03 −0.02 −8.98 0.04 −30.90 −1.44 0 0

0.03 −0.01 1.60 6.40 −0.09 −8.11 0.76 −18.69 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

6.79 35.24 −0.11 −0.87 −10.81 0.42 34.60 −0.22 0 0

0.21 0.96 −3.08 11.11 −0.44 −4.14 0.37 17.86 0 0



































K3 =





AK3 BK3

CK3 DK3



 (31)

=























−5.15 −0.56 −3.42 −0.33 −7.19 0 0 0.11 −0.65

−0.64 −0.61 −0.46 1.88 −0.89 0 0 −1.04 −0.13

−2.84 −0.43 −2.76 0.14 −2.91 0 0 0.03 0.98

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0.13 −0.75 −0.00 20.89 0.24 0 0 0 0

−1.60 −0.20 −0.68 0.01 13.17 0 0 0 0























The simulation results are shown in Figures 5 and 6. The figures clearly

indicate that the predictions made from multiobjective controllability analy-

sis are correct: S1 is the best configuration in terms of control accuracy and

response speed. By introducing secondary measurements, S3 can achieve

almost the same performance as S1. Due to the nonlinearity of the process,

in the case of negative disturbance, S3 is even better than S1. Comparing

input response of S2 and S3 in Figure 6, it is shown that the control ef-

fort required for disturbance rejection is slightly reduced by using secondary

measurements (Figure 6).

14



4 Conclusions

The proposed approach for multiobjective controllability analysis is able to

identify performance limitation imposed by multi-factors, such as unsta-

ble zeros and input constraints. It is also suitable for more sophisticated

configurations, such as nonsquare, cascade and two degrees-of-freedom con-

trol. The produced Pareto diagrams can be directly used for control design

trade-off. The generalised-H2 norm is better than H∞ norm to describe

input with input constraints. The enforced closed-loop pole region makes

the closed-loop time response more predictable.
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