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Abstract

Owing to the numerous benefits of process monitoring, the subject has attracted a
lot of attention in the last two decades. Process monitoring is an art of identifying
abnormal deviations in a process from the normal operating condition using various
techniques. Generally, the development of these monitoring techniques is geared to-
wards applying these techniques to industrial processes. In addition, most industrial
processes are dynamic and non-linear in nature. Therefore, in the development of
the monitoring algorithms, the dynamic as well as the non-linear properties of the
plant should be taken into consideration.

Process monitoring techniques like the Principal Component Analysis (PCA) and
Partial Least Squares (PLS) regression analysis were developed based on the assump-
tion that the process data is normally distributed. Nevertheless, this assumption
of normality is invalid for most industrial processes due to the non-linear nature of
these plants. For such processes, the distribution of the process variables in general
will be non-Gaussian, therefore making the widely applied PCA and PLS approaches
inappropriate for the monitoring of plants. To address this limitation of the PCA
and PLS for Dynamic processes, the Dynamic PCA (DPCA) and dynamic PLS
(DPLS) approaches were developed.

The challenge of efficiently monitoring process plants with dynamic and non-linear
characteristics is the motivation for this study. The overall aim of this study is to
develop process monitoring strategies that are able to take the dynamic and non-
linear properties of the plant into account. With these strategies, more efficient
performance monitoring of the plant can be achieved.

To address the challenge of efficiently monitoring process plants with both dynamic
and non-linear properties, in this work, existing multivariate monitoring techniques
like Dynamic Principal Component Analysis (DPCA), Dynamic Partial Least Square
Regression (DPLS) and the Canonical Variate Analysis (CVA) are extended us-
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ing Kernel Density Estimations (KDE) resulting in the novel DPCA with KDE,
DPLS with KDE and CVA with KDE techniques. In addition, another novel
approach, State Space Independent Component Analysis (SSICA) is devel-
oped to improve performance monitoring. Furthermore, the extended and developed
techniques in this work are evaluated using simulated data of the Tennessee East-
man Process (TEP) Plant and a waste water treatment plant. The TEP plant
is a complex dynamic and non-linear process that was developed by the Eastman
Chemical Company. The TEP plant is commonly employed in the process monitor-
ing community. For this reason, the TEP plant is a good platform for comparison
and is therefore, adopted for the evaluation of the various monitoring algorithms in
this work. Furthermore, the simulated waste water treatment plant, which has been
extensively used and is widely accepted as a benchmark to evaluate monitoring and
control strategies was also adopted to evaluate the monitoring methods in this work.

The techniques developed in this work are compared with some existing techniques
and are able to significantly improve the process monitoring performance over the
existing techniques.



Acknowledgments

I would like to thank my supervisor, Dr Yi Cao immensely for his constant guidance
and directions through this entire PhD project. The exposure I have gotten from
him during the my research period is far more than I ever imagined I would gather.
His continuous guidance has given birth to three refereed conference and journal
publications of very high standard.

It is also a pleasure to thank the many people who have contributed in various ways
to the completion of this PhD dream. Dr Meihong Wang has constructively criticised
my work from the start of this PhD to this point, making very useful suggestions to
me especially during my reviews. My gratitude also goes to Mrs Samantha Skears
for all the support I got from her during my time in the Process Systems Engineering
Group.

My colleagues past and present in the group have been really wonderful, encouraging
creativity and innovation. The broad range of knowledge and skills within the group
have positively influenced the research path in this PhD project.

Very special thanks to my husband George Iketubosin for all the support and un-
derstanding he has shown during this PhD programme. Without his support none
of this PhD dream would be true. I would also like to appreciate my baby Eliana
Iketubosin for being the best baby a studying mother can ever ask for.

My gratitude also goes to my parents, Mr and Mrs Nathan B. Odiowei for all the love,
support and sacrifices they have made through this PhD programme and indeed,
my entire life time. Also, I would like to thank my uncles Prof Steve Odi-Owei and
General Stanley Diriyai and their families for the great support I have gotten from
them all. My gratitude also goes to my cousin Inebimo for her constant phone calls
and support.

v



Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation for Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aim and Objectives of Study . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Work Done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Tennessee Eastman Process Plant . . . . . . . . . . . . . . . . 8

1.5.2 Activated Sludge Model No. 1 . . . . . . . . . . . . . . . . . . 8

1.6 Contributions of Study . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Survey 13

2.1 Process Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Knowledge-based Methods . . . . . . . . . . . . . . . . . . . . 16

vi



2.1.3 Data Driven Methods . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Multivariate Statistical Process Monitoring . . . . . . . . . . . . . . . 18

2.2.1 Static Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1.1 Principal Component Analysis . . . . . . . . . . . . 19

2.2.1.2 Principal Component Regression . . . . . . . . . . . 24

2.2.1.3 Partial Least Squares Regression . . . . . . . . . . . 25

2.2.2 Dynamic Methods . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2.1 Dynamic Principal Component Analysis . . . . . . . 29

2.2.2.2 Dynamic Partial Least Squares . . . . . . . . . . . . 31

2.2.2.3 Canonical Variate Analysis . . . . . . . . . . . . . . 33

2.2.3 Adaptive Methods . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.4 Methods for Non-linear Systems . . . . . . . . . . . . . . . . . 38

2.2.4.1 Kernel Principal Component Analysis . . . . . . . . 39

2.2.4.2 Independent Component Analysis . . . . . . . . . . . 42

2.2.4.3 Dynamic Independent Component Analysis . . . . . 48

2.2.4.4 Kernel Density Estimations . . . . . . . . . . . . . . 50

2.3 Summary of Case Studies . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Extended Dynamic Approaches using Kernel Density Estimations 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Dynamic Principal Component Analysis . . . . . . . . . . . . . . . . 58

3.3 Dynamic Partial Least Squares . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Partial Least Squares Regression . . . . . . . . . . . . . . . . 65

3.3.2 Nonlinear Iterative Partial Least Squares Algorithm . . . . . . 65



3.3.3 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Canonical Variate Analysis . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Upper Control Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Control Limit through Kernel Density Estimation . . . . . . . . . . . 82

3.6.1 DPCA with KDE . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6.2 DPLS with KDE . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6.3 CVA with KDE . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7 Tennessee Eastman Process Plant . . . . . . . . . . . . . . . . . . . . 87

3.7.1 Tennessee Eastman Process Variables . . . . . . . . . . . . . . 90

3.7.2 Tennessee Eastman Process Faults . . . . . . . . . . . . . . . 90

3.8 Monitoring Performance . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.9 Comparison of Monitoring Approaches . . . . . . . . . . . . . . . . . 94

3.9.1 Monitoring Performance of DPCA with KDE . . . . . . . . . 95

3.9.2 Monitoring Performance of DPLS with KDE . . . . . . . . . . 97

3.9.3 Monitoring Performance of CVA with KDE . . . . . . . . . . 98

3.9.4 Comparison of KDE Approaches . . . . . . . . . . . . . . . . 98

3.10 Chapter Summmary . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 State Space Independent Component Analysis 104

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 State Space Independent Component Analysis Algorithm . . . . . . . 107

4.2.1 Canonical Variate Analysis . . . . . . . . . . . . . . . . . . . . 107

4.2.2 State Space Independent Component Analysis . . . . . . . . . 111

4.3 Control Limit through Bounded KDE . . . . . . . . . . . . . . . . . . 114

4.4 Monitoring Performance of SSICA . . . . . . . . . . . . . . . . . . . . 117



4.5 Chapter Summmary . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Case Study 123

5.1 Waste Water Treatment Plant . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Activated Sludge Model No. 1 . . . . . . . . . . . . . . . . . . . . . . 124

5.2.1 Plant Configuration . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.2 Influent Characteristics . . . . . . . . . . . . . . . . . . . . . . 126

5.2.2.1 Dry Weather . . . . . . . . . . . . . . . . . . . . . . 126

5.2.2.2 Storm Weather . . . . . . . . . . . . . . . . . . . . . 129

5.2.2.3 Rain Weather . . . . . . . . . . . . . . . . . . . . . . 129

5.2.3 Fault Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.3.1 Fault A1 . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.3.2 Fault A2 . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.3.3 Fault A3 . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Monitoring Performance . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Comparison of Monitoring Approaches . . . . . . . . . . . . . . . . . 136

5.4.1 Monitoring Performance of DPCA with KDE . . . . . . . . . 136

5.4.2 Monitoring Performance of DPLS with KDE . . . . . . . . . . 138

5.4.3 Monitoring Performance of CVA with KDE . . . . . . . . . . 138

5.4.4 Monitoring Performance of SSICA . . . . . . . . . . . . . . . . 141

5.5 Chapter Summmary . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Conclusions and Future Work 144

6.1 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1.1 Outcomes of Work . . . . . . . . . . . . . . . . . . . . . . . . 145



6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

References 149



List of Figures

2.1 Decomposition of X . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Decomposition of a three-dimensional batch data matrix X . . . . . . 23

3.1 Graphical description of TEP plant . . . . . . . . . . . . . . . . . . . 89

3.2 Autocorrelation function of the summed squares of all measurements 93

3.3 Normalised singular values from the scaled hankel matrix . . . . . . . 94

3.4 Monitoring charts for Fault 9 . . . . . . . . . . . . . . . . . . . . . . 101

3.5 Latent Variable Distribution . . . . . . . . . . . . . . . . . . . . . . . 102

4.1 Flow chart of SSICA algorithm . . . . . . . . . . . . . . . . . . . . . 116

4.2 Comparison of fault detection along with the propagation of Fault 3 . 120

4.3 Comparison of fault detection along with the propagation of Fault 9 . 121

5.1 Layout of ASM1 plant . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Plot of dry weather variables . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Plot of storm weather variables . . . . . . . . . . . . . . . . . . . . . 128

5.4 Plot of rain weather variables . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Autocorrelation function of the summed squares of all measurements 134

5.6 Normalised singular values from the scaled hankel matrix . . . . . . . 135

5.7 Comparison of fault detection along with the propagation of Fault A3 142

xi



List of Tables

2.1 Brief description of case studies . . . . . . . . . . . . . . . . . . . . . 54

3.1 Tennesseee Eastman Process variables . . . . . . . . . . . . . . . . . . 91

3.2 Brief description of TEP plant faults . . . . . . . . . . . . . . . . . . 92

3.3 Reliability (%) comparison . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4 Detection delay (minute) comparison . . . . . . . . . . . . . . . . . . 96

4.1 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Physical dimensions of ASM1 plant . . . . . . . . . . . . . . . . . . . 125

5.2 ASM1 variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Monitoring variables for benchmark model . . . . . . . . . . . . . . . 131

5.4 Reliability comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.5 Detection delay comparison . . . . . . . . . . . . . . . . . . . . . . . 137

5.6 False alarm rates comparison . . . . . . . . . . . . . . . . . . . . . . . 138

xii



Chapter 1

Introduction

1.1 Background

The importance of improving process monitoring strategies is emphasised by the

ever increasing demand for better efficiency in the chemical, pharmaceutical, man-

ufacturing, food and waste water treatment industries to mention a few. Process

monitoring is a means of identifying variations in a process from the normal oper-

ating process. In addition, process monitoring is an important asset-management

technology to maintain high performance of automation systems in operating pro-

cesses. Process monitoring consists of detection and diagnosis. Detection involves

identifying abnormal deviations in a process from normal operating conditions while

diagnosis involves investigating the reason for the occurrence of the deviations in

the process. The major goal of process monitoring is to detect abnormal deviations

early and investigate the reason for the occurrence of such abnormal deviations.

Generally, process monitoring techniques involve two steps; the off-line training

and the on-line monitoring. The off-line training consist of developing models that

reflect the normal operating process and then from the estimated model, deriving a
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control limit which is able to determine the status of the monitored process. The

on-line monitoring involves estimating latent variables from the new data using the

model parameters determined in the off-line training step and then using the derived

control limit to determine whether the new process is ‘in-control’ or ‘out-of-control’.

Processes are said to be in control when the abnormal deviations mentioned above

are absent and said to be ‘out-of-control’ when abnormal deviations are present.

The success of a process monitoring technique depends greatly on;

• How accurately the developed model reflects the normal operating process

• The accuracy and appropriateness of the derived control limit.

A process monitoring model is a mathematical representation of a process. These

monitoring models can be statistical or mechanical models. The statistical models

are those models that are developed based on historical process data whereas the

mechanical models are established by physical and chemical reactions and depend

on detailed process information.

Most industrial processes have a large number of process variables that could be

auto-correlated and cross-correlated. For such processes, a mechanical model will

be time consuming and expensive to build. Statistical models on the other hand, do

not require detailed properties of the process and are not expensive to build. Owing

to these benefits of the statistical models, statistical models have been adopted in

this study. Furthermore, the control limit mentioned above can be defined as a ref-

erence mark that determines the ‘in-control’ or ‘out-of-control’ status of a monitored

process.
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1.2 Motivation for Study

Process monitoring approaches based on statistical models are referred to as Mul-

tivariate Statistical Process Monitoring (MSPM) techniques. These MSPM tech-

niques are a collection of useful tools for the early detection and diagnosis of abnor-

mal conditions in a process.

Amongst MSPM techniques, the PCA and PLS have been reported the most. Also,

the PCA and PLS techniques are static models that are inadequate for dynamic

processes. To address this limitation, dynamic extensions of the PCA and PLS

approaches known as dynamic PCA (DPCA) and dynamic PLS (DPLS) were de-

veloped [1, 2]. Nevertheless, the DPCA and DPLS are not the best approaches

for dynamic systems as they may not be able to capture some important dynamic

behaviours [3, 4]. Also, the latent variables extracted from the DPCA and DPLS

approaches are not guaranteed to yield accurate and minimal dynamic representa-

tions [3].

The Canonical Variate Analysis (CVA) on the other hand is reported to be an

efficient solution for dynamic processes [3, 4, 5, 6, 7]. The CVA is a linear dynamic

monitoring approach to estimate the minimum number of state variables, which is

reported to be more efficient than the DPCA and DPLS approaches [4].

Traditionally, the DPCA, DPLS and CVA approaches discussed above are generally

associated with the T 2 and Q metrics [1, 2, 3, 8, 9, 10, 11, 12]. Both metrics are

estimated based on the Gaussian assumption. However, most industrial plants are

non-linear, following a non-Gaussian distribution. For such non-linear processes,

the Gaussian assumption required by the T 2 and Q metrics is invalid. As a result,

the traditional DPCA, DPLS and CVA approaches are inappropriate for non-linear

processes and may not be able to correctly identify the underline faults.

In addition, the states obtained from the CVA are only de-correlated and not statis-
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tically independent. The problem can be addressed by employing the Independent

Component Analysis (ICA). The ICA technique recovers a few statistically inde-

pendent source signals known as the independent components (ICs) from collected

process measurements by assuming that these ICs are non-Gaussian. The ICA is

well suited to non-linear plants following a non-Gaussian distribution.

Also, most published ICA approaches have employed the static PCA in the pre-

processing stage for whitening. However, the PCA is not appropriate for dynamic

systems, consequently making the PCA associated ICA inappropriate for dynamic

systems. To address this limitation of the PCA associated ICA, the dynamic ICA

(DICA) was proposed in which the dynamic PCA is employed for the whitening

stage. Nevertheless, the performance of the DICA is still unsatisfactory.

The development of process monitoring techniques is geared towards applying these

techniques to industrial processes in order to improve process condition monitoring.

It is well known that most industrial processes to which these monitoring techniques

are applied are both dynamic and non-linear. This non-linearity makes the process

variables driven by noise and disturbances to follow a non-Gaussian distribution. In

practice to achieve efficient condition monitoring of industrial plants, the dynamic

and non-linear properties of the plants should be taken into consideration.

So far, monitoring techniques have been developed to address either the dynamic

or non-linear properties associated with most industrial plants. Furthermore, an

attempt has been made to simultaneously address the dynamic and non-linear issues

associated with industrial plants, however unsatisfactorily. This emphasises the

desperate demand for appropriate and efficient monitoring of industrial plants with

both dynamic and non-linear characteristics, which is the motivation for this work.
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1.3 Aim and Objectives of Study

The aim of this work is to improve process condition monitoring by developing

monitoring strategies that are able to simultaneously address the dynamic and non-

linear issues commonly associated with most industrial processes. Furthermore, the

objectives of this research include:

• Literature review on process monitoring approaches

• Undertake a study on Dynamic Principal Component Analysis (DPCA).

• Undertake a study on Dynamic Partial Least Squares (DPLS).

• Undertake a study on Canonical Variate Analysis (CVA).

• Carried out a study on Independent Component Analysis (ICA).

• Undertake a study on Dynamic Independent Component Analysis (DICA).

• Carried out extensive study on Kernel Density Estimations (KDE).

• Carried out a study on the Tenneessee Eastman Process (TEP) Plant.

• Carried out a study of a Waste Water Treatment Plant.

1.4 Work Done

The efficiencies of the traditional DPCA, DPLS and CVA approaches for dynamic

processes have been reported [1, 2, 3]. However, the association of these approaches

with control limits estimated based on the Gaussian assumption such as the Hotelling’s

T 2 and the Q metrics makes these approaches insufficient for non-linear processes.

One solution to the problem of monitoring non-Gaussian processes due to the non-

linearity of such processes is to directly estimate the probability density function
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(PDF) of the T 2 and Q metrics through the kernel density estimations (KDE) [13].

The KDE is a well established approach to estimate the PDF particularly for uni-

variate random processes [14]. Hence, the KDE is suitable for the T 2 and Q metrics

which are univariate although the underlying processes are multivariate.

In this work, to address the limitations of the DPCA, DPLS and CVA for non-linear

processes, all three approaches are extended by deriving more appropriate control

limits using kernel density estimations (KDE). The resulting development is the

novel DPCA with KDE, DPLS with KDE and CVA with KDE approaches. Fur-

thermore, all the proposed KDE approaches are applied to the Tenneessee Eastman

Process (TEP) Plant. Their monitoring performances are compared with those

of their non-KDE counterparts before comparing the novel approaches, one with

another. The improvement of the proposed approaches over their non-KDE coun-

terparts is also illustrated in this thesis. Amongst the KDE approaches developed

in this work, the CVA with KDE is able to significantly improve the monitoring

performance over the DPCA with KDE and the DPLS with KDE approaches.

Although the CVA with KDE technique was superior to the other approaches, the

state variables obtained from the CVA are only de-correlated but not statistically

independent, hence are not efficient enough for non-linear process monitoring. On

the contrary, the ICs extracted from the ICA approach are not only decorrelated

but are also statistically independent. Thus, the ICA [15, 16] is a possible solution

to the limitation of the CVA and is therefore considered in this work.

Conventionally, most of the reported studies on the ICA have utilised the PCA for

the whitening and dimension reduction in the pre-processing stage before employing

the ICA to extract the statistically independent components. In the pre-processing

stage the measurement variables are de-correlated by the whitening procedure and

then the process dimension reduced to minimize mathematical complexities. How-

ever, the use of the PCA in the pre-processing stage of the ICA makes such ICA
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approaches inappropriate for dynamic process monitoring due to the limitations of

the PCA for dynamic processes mentioned above. This means that although the

ICA approach is well suited for non-linear processes, it is unsuitable for dynamic

processes.

To address this limitation of the ICA for dynamic processes, a dynamic ICA (DICA)

method was developed where the DPCA was employed in the pre-processing stage for

whitening before applying the ICA for the extraction of the statistical independent

components from the principal components. The so called DICA approach is an

attempt to simultaneously address the dynamic and non-linear issues associated with

most real time processes. Nevertheless, the DICA like the DPCA is not the best

approach to capture dynamic behaviour from process measurements [3]. As a result,

the statistical advantage of the ICA is not fully exploited by the DICA, making the

monitoring of dynamic processes using the DICA technique still unsatisfactory.

To address the limitation of the ICA and DICA techniques mentioned above, an

efficient dynamic ICA-based process monitoring technique is developed in this work.

In the proposed ICA-based approach, the CVA which is reported to be the best

approach to capture dynamic behaviour is employed for the pre-processing stage of

the ICA to construct a state space before applying the ICA algorithm to extract the

independent components from the constructed state space, resulting in the new State

Space Independent Component Analysis (SSICA). The control limits of the proposed

SSICA approach are determined using the KDE. The proposed SSICA approach

is able to improve condition monitoring over the CVA and DICA approaches as

illustrated in this work.
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1.5 Case Studies

The algorithms developed and considered in this work are evaluated by applying

them to simulated data from the Tennessee Eastman Process (TEP) Plant and a

Waste Water Treatment Plant. Both case studies are briefly discussed below.

1.5.1 Tennessee Eastman Process Plant

The Tennessee Eastman Process (TEP) Plant is one of the case studies employed

in this work. It was created by the Eastman Chemical Company to provide a

realistic industrial process to evaluate control and monitoring strategies. The TEP

is based on a simulation of an actual industrial process that has been modified for

proprietary reasons. The choice of the TEP in this work is motivated by the fact that

the TEP plant has both dynamic and non-linear properties and is therefore a good

representation of most industrial processes. In addition, the TEP plant is commonly

employed in the process monitoring community. This makes it possible to compare

the algorithms developed in this work with already existing algorithms from other

published works. A detailed description of the TEP plant is also presented in this

thesis.

1.5.2 Activated Sludge Model No. 1

The Activated Sludge Model No.1 (ASM1) is a simulated waste water treatment

plant (WWTP) focusing on the biological treatment of a waste water treatment

process [17, 18]. The WWTP is non-linear in nature and subject to dynamic changes.

The ASM1 plant is chosen in this work for the evaluation of the developed algorithms

because of its dynamic and non-linear properties . Also, the ASM1 plant is accepted

as a standard in the monitoring community due to its extensive use [15, 17, 18, 19].
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1.6 Contributions of Study

From this work, some monitoring techniques have been developed that are able

to simultaneously take both the dynamic and non-linear properties of plants into

account. Four novel monitoring approaches have been developed while some existing

monitoring techniques are also considered. In addition, these techniques have been

applied to two simulated case studies which are the Tenneessee Eastman Process

Plant (TEP) and the Activated Sludge Model No. 1 (ASM1). The contributions

from this study are listed below;

• Developed a DPCA based approach that is adapted to non-linear plants using

the KDE resulting in the novel DPCA with KDE approach.

• Application of the novel DPCA with KDE approach to the TEP Plant.

• Developed a DPLS based approach that is adapted to non-linear plants using

the KDE resulting in the novel DPLS with KDE approach.

• Application of the novel DPLS with KDE approach to the TEP Plant.

• Developed a CVA based approach that is adapted to non-linear plants using

the KDE resulting in the novel CVA with KDE approach.

• Application of the novel CVA with KDE approach to the TEP plant

• Developed a novel State Space Independent Component Analysis (SSICA) for

an efficient monitoring of real-time plants with both dynamic and non-linear

properties.

• Application of the novel SSICA approach to the TEP plant

• Application of the novel SSICA approach to a Waste Water Treatment Plant.
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• Application of the existing DICA approach to a Waste Water Treatment Plant

for the purpose of comparison.

• Application of the novel DPCA with KDE approach to a Waste Water Treat-

ment Plant.

• Application of the novel DPLS with KDE approach to a Waste Water Treat-

ment Plant.

• Application of the novel CVA with KDE approach to a Waste Water Treatment

Plant.

1.7 Publications

Journal Publications

• P. Odiowei and Y. Cao (2009). Nonlinear Dynamic Process Monitoring us-

ing Canonical Variate Analysis and Kernel Density Estimations. IEEE Trans-

actions on Industrial Informations 6 (1), Pages 36 - 45.

• P. P. Odiowei and Y. Cao (2010). State Space Independent Component

Analysis for Nonlinear Dynamic Process Monitoring. Chemometrics Intelligent

Laboratory Systems, Volume 103, Issue 1, Pages 59 - 65.

Conference Publications

• P. P. Odiowei and Y. Cao (2008). Kernel Density enhanced PCA for Pro-

cess Monitoring of a Waste Water Treatment Plant (WWTP). 1st Postgraduate

Research Conference, 29th - 30th September, 2008, Dundee, United Kingdom.
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• P. P. Odiowei and Y. Cao (2009). Nonlinear Dynamic Process Monitor-

ing using Canonical Variate Analysis and Kernel Density Estimations. 10th

International Symposium on Process Systems Engineering - PSE09.

1.8 Thesis Outline

This thesis consists of six chapters and the content of each chapter is summarised

below.

Chapter 1: Introduction

This chapter presents a brief discussion on the background of this dissertation,

outlining the motivation for the study as well as the aim and objectives of this

research work.

Chapter 2: Literature Review

The fundamentals of process monitoring is discussed in this chapter. Also, a review

of literature relevant to the work is provided, highlighting the current status of

process monitoring.

Chapter 3: Extended Dynamic Approaches using Kernel Density Estima-

tions

In this chapter, the description of the novel KDE approaches developed in this work

is presented. Furthermore, the evaluation of these KDE approaches using the Ten-

nessee Eastman Process Plant is illustrated. Also, the developed KDE approaches

are compared with their non-KDE counter-parts to demonstrate their ability to
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improve condition monitoring over their non-KDE counter-parts.

Chapter 4: State Space Independent Component Analysis

A novel State Space Independent Component Analysis (SSICA) is developed with

the principles behind its development explained in this chapter. The proposed

SSICA is applied to the TEP plant to evaluate the technique. It is also compared

with the CVA and DICA methods, to demonstrate its ability to improve condition

monitoring over both approaches.

Chapter 5: A Case Study

AWaste Water Treatment Plant is adopted as a case study in this chapter. The KDE

approaches developed in this work are first applied to the Waste Water treatment

Plant and then their monitoring performances compared with those of their non-

KDE counter-parts. Furthermore, the proposed SSICA is also applied to the Waste

Water Treatment Plant and its monitoring performance compared with those of the

CVA and the DICA approaches. the monitoring performance of the SSICA is also

compared with those of the KDE approaches.

Chapter 6: Conclusions

This final chapter presents the conclusions and outlines recommendations the future

research.
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Chapter 2

Literature Survey

This chapter presents an overview of process monitoring with an up to date review

of literature relevant to this work. The history and the current status of process

monitoring are discussed along with some existing process monitoring approaches.

2.1 Process Monitoring

In the process industry, there is an increasing demand to satisfy stringent safety

and environmental regulations. Process operations that were considered acceptable

at one time may no longer be adequate. To satisfy these stringent regulations,

industrial processes are generally operated under closed-loop control. Generally,

process controllers are designed to maintain satisfactory operations by compensating

for the effect of disturbances and changes occurring in the process. However, there

are changes in the process which these controllers cannot handle adequately. These

changes can be detected early using process monitoring techniques.

Process monitoring is a means of detecting abnormal condition in a process. The
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major goal of process monitoring is to detect abnormal condition early and diag-

nose the reason for the occurrence of such abnormal condition. These abnormal

conditions are generally referred to as faults, which can occur due to changes in the

process parameters, equipment failure, process noise and disturbances. Moreover,

the presence of such faults in a process can affect the process operations and con-

sequently, the process outputs. In extreme cases, these faults could result in fatal

accidents involving the loss of lives. The recent Fukushima nuclear plant disaster

due to a radiation leak is an example of such accidents that can occur when process

operations go wrong. It is therefore, important to detect these faults early and diag-

nose the cause(s) of the faults in order to maintain safety during process operations.

The importance of process monitoring is further emphasised by its applications in

the chemical, manufacturing, pharmaceutical and food industries to mention a few.

Process monitoring was pioneered by Walter A. Shewart in the early 1920s and con-

sists of fault detection, fault identification, fault diagnosis and process recovery [20].

Fault detection is the act of investigating the presence or occurence of a fault while

fault identification is the identification of the variables that are most relevant to

diagnosing the fault. Furthermore, fault diagnosis is the investigation of the reason

for the occurence of the fault whereas process recovery also known as intervention

is the elimination of the fault.

Process monitoring measures can be characterised as being analytical, knowledge-

based or data-driven.

2.1.1 Analytical Methods

The analytical measures employ mathematical models often constructed from first

principles [21, 22, 23, 24]. Based on the process input and output variables from

the normal operating process, these analytical methods use detailed mathematical
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models to generate features like the residuals (r), parameter estimates (p̂) and state

estimates (x̂). Faults are then detected by comparing the features estimated from

the process observations with the features derived from the normal operating pro-

cess [25]. The analytical methods that use residuals are commonly known as the

analytical redundancy methods [21, 26]. These residuals are the difference between

the plant observations and the mathematical models [21, 27]. The residuals will be

zero in the absence of faults, disturbances, noise and/or modelling errors and will

be non-zero if faults, disturbances, noise and/or modelling errors are present [20].

Three ways of generating the residuals on which the analytical redundancy meth-

ods are based are parameter estimation [28, 29], observer-based design [30, 31] and

parity relations [21, 22].

• Parameter Estimation

In this approach, the residuals are the difference between the nominal model

parameters and the estimated model parameters [23, 24]. The model parame-

ters can be estimated using standard parameter estimation techniques [32, 33].

This method is only appropriate if the process faults are associated with

changes in the model parameters and appropriate mathematical models are

available [21]. A threshold can be constructed based on the nominal model

parameters to determine the presence of a fault while faults are detected based

on the deviations in the nominal model parameters and the estimated model

parameters. There is an indication of a fault if the changes in the estimated

model parameters is greater than the estimated threshold.

• Observers

The observer-based method is another way to generate residuals on which

analytical methods are based. The observer is a device that estimates inter-

nal states using the system inputs and outputs and the model of a system.

In this approach, the output of the system is estimated from the states or
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a subset of the states [21, 34]. Thereafter, the difference between the mea-

sured plant output and the estimated plant output known as the estimation

error [34] is employed as the vector of residuals [21, 30, 34]. Thresholds on the

residuals of the output variables can then be determined to detect abnormal

deviations [35]. However, the downside of this approach is that a detailed

mathematical model is required [21].

• Parity Relations

The parity relation is another popular method to generate residuals in which

the residual is generated solely from the observations [21]. This method checks

the consistency of the measurements with the mathematical equations of the

system. Also, a linear dynamic transformation can be carried out on the

parity relations so that the transformed residuals are appropriately employed

for detceting faults in dynamic systems [36].

The analytical approaches have the advantage of incorporating physical understand-

ing of the process into the process monitoring scheme. Nevertheless, the analytical

measures are applied to systems with a relatively small number of process vari-

ables [21, 22]. This is because detailed models are required for the analytical ap-

proaches to be efficient. These detailed models are expensive to obtain for processes

with a large number of variables. Hence, the use of analytical methods for most

industrial plants can result in complex mathematical computations.

2.1.2 Knowledge-based Methods

An alternative method for process monitoring is the knowledge-based methods.

These knowledge-based approaches use qualitative methods and are particularly

suitable for systems without detailed mathematical models. Also, they are based on

causal analysis [37, 38, 39], expert systems [40, 41, 42] and pattern recognition [43].
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Causal analysis employs the concept of causal modelling of fault-symptom relation-

ships whereas the expert systems are methods which imitate the reasoning behind

human problem solving. Pattern recognition methods which include artificial neural

network (ANN) and self organising maps, use the relationship between the data pat-

terns and fault classes without explicitly modelling the internal states or structure.

The ANN was developed in an attempt to mimic the computational structures of

the human brain. It is a non-linear mapping between the input and output, consist-

ing of interconnected neurons arranged in layers. One way to apply ANN for fault

diagnosis is to assign the input neurons to process variables and the output neurons

to fault indicators.

2.1.3 Data Driven Methods

Data driven methods of process monitoring are derived directly from the process

measurements. These methods involve the use of statistical methods known as Sta-

tistical Process Monitoring (SPM). Originally SPM univariate methods were applied

to monitor key product variables [44]. However, for most chemical and industrial

processes, the process variables are not independent because correlations exist be-

tween the process variables. In such a situation, the univariate methods are inad-

equate since they do not consider the relations between the process variables. To

address this limitation, the Multivariate Statistical Process Monitoring (MSPM)

approaches also known as projection methods were introduced [45].

The efficiency of the data driven measures is highly dependent on the quantity and

quality of the process data. This is not a problem for modern computer automated

industrial processes where sophisticated data collection systems collect process in-

formation and make these process data readily available.
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2.2 Multivariate Statistical Process Monitoring

The MSPM methods are statistically based approaches that were initially developed

for applications in chemometrics [46] and then extended to process monitoring [47,

48, 49]. The basic idea of the MSPM approach is that a high dimensional space

spanned by the process variables is projected onto an orthogonal space spanned by

variables known as latent variables. These latent variables are linear combinations

of the original variables. Generally, for most MSPM methods the first few latent

variables are sufficient to describe the variation of the process and are employed to

construct the monitoring model. Hence, the space spanned by these latent variables

is called the model space. The remaining latent variables not included in the model

space are assumed to be associated with noise and excluded to the residual space.

The MSPM methods have the advantage of being able to handle large numbers of

correlated process variables. Furthermore, the MSPM methods employ multivariate

charts that use the Hotelling’s T 2 statistic which is determined from the values of

estimated latent variables in the model space. The T 2 statistic is a measure of the

variation in the model space [50]. Several multivariate control charts based on the

T 2 metric have been proposed [51, 52] and reviewed [53]. Another commonly used

metric for MSPM methods is the Q metric also known as the Squared Prediction

Error (SPE). The SPE is the measure of variation in the residual space and is also

commonly employed for process monitoring [21, 54, 55].

The MSPM techniques are classified into the linear and non-linear methods. A

relationship between two variables is said to be linear if a plot of their values on

a co-ordinate system produces a straight line. The MSPM methods can also be

classified as static and dynamic methods. The static methods assume the condition

to be monitored is in steady state while the dynamic methods do not assume steady

state and therefore account for the changes that occur in processes. These static

and dynamic methods are discussed in the following sections.
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2.2.1 Static Methods

Generally, static monitoring approaches assume that the observations are time inde-

pendent, meaning that the past observation does not affect the present observation.

These methods are suitable for steady state operations and include the Principal

Component Analysis (PCA), Principal Component Regression (PCR) and Partial

Least Squares (PLS) to mention a few.

2.2.1.1 Principal Component Analysis

Amongst the static MSPM techniques, the PCA is most widely reported [44, 56].

The PCA was introduced by Pearson [57] in 1901 and developed by Hotelling in

1933 [58]. Pearson described the PCA as an approach to find the closest fit of

lines and planes to points in a space [57]. It was originally developed for chemical

measurements in chemometrics to describe the relationship between variables [59, 60]

before it was extended to process monitoring applications [44, 48, 61, 62, 63, 64].

The PCA decomposes the variation in a set of correlated process measurements to a

set of de-correlated latent variables known as principal components (PCs). The PCA

is scale dependent. Hence, it is important to scale or standardise the data to avoid

measurements with large magnitudes overshadowing important measurements with

small magnitudes. A graphical illustration of the PCA decomposition is presented

in Figure 2.1 The PCA involves analysing the eigen structure of the covariance

matrix of the data from the normal operating process for the estimation of the PCs.

Moreover, the PCA is suitable for the analysis of steady-state data with uncorrelated

measurements [1, 4, 65].

Consider a data matrix X with m observations and n variables. The PCA transfor-

mation can be presented as

X = TPT + E (2.1)
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Figure 2.1: Decomposition of X

where T is the score matrix, P is the loading matrix and E is the residual matrix [44,

65]. The loading vectors, i.e., the columns of matrix P are actually the eigen vectors

of the covariance of the data matrix X. Note, X has zero mean. The covariance

matrix and its eigen value decomposition are expressed below;

S =
1

m− 1
XTX = UVUT (2.2)

where m is the number of observations, U is the eigen-vector matrix and V is the

eigen-value matrix. The principal components are the projections of the original

variables along the directions determined by the eigen-vectors. In order to opti-

mally capture the variations in the data, only the first a eigen-vectors (p1, p2, ..., pa)

corresponding to the first a largest eigen-values of the covariance of X, where (a < n)

are retained in the PCA models. The remaining (n− a) eigen-vectors are excluded
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to the residual space. From the eigen-vectors in the model and residual spaces,

principal components can be derived for the model and residual spaces respectively.

The retained a PCs define the subspace with the greatest variability, which could

be described as the model space. The rest of the PCs not in the model space are

considered to be associated with noise and are excluded to the residual space. By

excluding the PCs that do not contribute significantly to the overall variation to the

residual space, the dimensionality of the process data is correspondingly reduced.

The PCA reconstructs the data matrix from the de-correlated PCs as

X̂ = T̂P̂T = XP̂P̂T (2.3)

where T̂ and P̂ are the score and loading matrices employed to estimate the retained

a PCs in the model space.

The variations in the model space can be determined using the Hotelling’s T 2 statis-

tic which is defined as

T 2 =
a∑
i=1

ti
Tσi
−2ti (2.4)

where σi2 is the estimated variance of the ith principal component, ti. However,

the T 2 will only detect variations in the model space but is unable to detect the

variations in the residual space. Hence, monitoring processes using the T 2 metric

alone may not be sufficient. The variations in the residual space can be detected

using the Squared Prediction Error (SPE) also known as the Q metric which is

defined as;

Q =
n∑
i=1

(xnew,i − x̂new,i)
2 (2.5)

where xnew,i is the ith measurement in the new data to be monitored and x̂new,i is

the estimated value of xnew,i.

Furthermore, from the estimated T 2 and Q values, the control limits for the T 2 met-
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ric [66] and that for the Q metric [67] can be determined. For each observation, the

process is considered normal if the T 2 value is less than or equal to its upper control

limit and the Q value is less than or equal to its upper control limit. On the other

hand, when either the T 2 value or the Q value is greater than their corresponding

control limits, it is considered as an indication of a fault.

MacGregor and Kourti [44] established a PCA model from normal operation data

and judged the behaviour of online processes against the PCA model in order to

detect deviations from the normal operating process. In their study, they applied

the PCA to a mineral processing plant, a continuous polymerisation plant and an

industrial batch polymerisation reactor, illustrating the efficiency of the PCA for

fault detection and diagnosis.

For most industrial processes, a large number of process variables are involved and

more than three PCs are often required to capture most of the variance. For such a

case, generally, there is a difficulty to represent the operating envelope. To address

this problem, Wang et al. [62] presented a PCA approach based on visualization us-

ing parallel co-ordinates, transforming the Euclidean space into parallel coordinates.

They proposed a method of visualising multiple PCs with the aim of displaying the

operative envelopes when three or more PCs are involved. Their approach was ap-

plied to the Manresa Waste Water Treatment Plant (WWTP) to demonstrate its

efficiency. Also, Wang and Cui [68] developed a strategy for fault detection and diag-

nosis based on the PCA to efficiently detect and diagnose sensor faults in centrifugal

chillers.

Furthermore, multi-way PCA (MPCA) has been proposed for monitoring batch and

semi-batch processes [69, 70]. The MPCA is an extension of the PCA to handle data

in three-dimensional arrays. The three dimensions arise from batch trajectories that

consist of batch runs (I), process variables (J) and time (K). The data from the batch

processes are organised into an array X of dimension (I x J x K). The basic idea
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of the MPCA is to unfold the three-dimensional batch data into a two-dimensional

data before applying PCA to the two-dimensional data. The unfolding of the three

dimensional data is illustrated in Figure 2.2. MPCA decomposes the array X into

2J

X

Batches

Variables x Times

Time (K)

Batches (I)

Variables (J)

Unfolding

I

KJkJJ 2J1

X

Figure 2.2: Decomposition of a three-dimensional batch data matrix X

the score and loading matrices in a similar way to the static PCA. Kosanovich et

al. [71] applied MPCA to an industrial batch process.

More recently, rather than using the Hotelling’s T 2 and Q metrics, the use of a

unified monitoring statistic as opposed the T 2 metric and the Q metric has been

developed. The T 2 metric and the Q metric have been combined algorithmically [72,

73]. Also, a probabilistic model was proposed to provide a single likelihood-based

statistic [74, 75, 76, 77]. A key advantage of these unified approaches is increased
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sensitivity.

Although the PCA is flexible with an expanding role for process monitoring, stan-

dard PCA has major short comings. In the development of the PCA model, the

following assumptions are made;

• The observations are time independent

• The observations follow a Gaussian distribution

Unfortunately, the assumption of time-independence made by the PCA may not be

valid for processes subject to dynamic disturbances. Consequently, the employment

of the PCA to monitor such dynamic processes will not be able to fully describe the

entire process variation [9]. For this reason, the PCA is not suitable for dynamic

processes [1, 4, 78, 79]. Furthermore, the assumption of normality may also be

invalid for most chemical processes where strong non-linearity makes variables driven

by noise and disturbances strongly non-Gaussian [4, 5].

2.2.1.2 Principal Component Regression

The PCR is another static linear MSPM method which is a simple extension of the

PCA [18, 80]. The PCR is a regression analysis that uses the PCA for the esimation

of the score matrix before employing the estimated score matrix to determine the

regression coefficient. The first step of the PCR is the PCA decomposition shown

in Equation (2.1) while the second step of the PCR is shown as

Y = TB (2.6)

where Y is the output matrix and B is the regression matrix. Using the regres-

sion matrix (B) and the score matrix (T) from the PCA decomposition, Y can be

predicted. Also, the accuracy of the predictions depend on the number of latent
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variables retained in the model space which is determined by the number of PCs

that give the best prediction of Y. Process monitoring using PCR follows the same

procedure as for PCA. Also, the decomposition of the data matrix (X) in the PCR

is done to maximise the captured variability. However, this is generally not opti-

mal for prediction purposes. The PLS on the other hand is a better tool for such

predictions and is discussed in the following section.

2.2.1.3 Partial Least Squares Regression

The PLS was developed by Herman Wold in 1966 [81] for econometrics although it

later gained its popularity in chemometrics [82] and then in process monitoring [47,

83, 84]. The PLS is a robust multivariate regression algorithm based on the PCA

approach of decomposing data matrices into latent variables. However, whilst the

PCA decomposes a solitary data block into PCs, the PLS involves the decomposition

of the independent variable (X) and the dependent variable (Y). The objective of the

PLS is to model X in a way that the information in Y can be accurately predicted.

The PLS achieves this by maximising the correlation between X and Y so that a

linear relationship can be developed between two sets of abstract variables. The

PLS decomposition of the X and Y matrices is shown below

X = TPT + E (2.7)

Y = UQT + F (2.8)

where T and P are the score and loading matrices for the independent variable

(X) while U and Q are the score and loading matrices for the dependent variable

(Y). The matrices E and F are the residuals for the independent and dependent

variables respectively. Like the PCA, the PLS requires the data to be scaled to

avoid super imposition of certain variables on other variables with relatively smaller
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values. Apart from decomposing the X and Y blocks, the PLS also consists of

connecting the latent variables that are extracted from the decomposition of the X

and Y blocks. This is the regression step and is shown in (2.9).

U = TB (2.9)

where B is the regression matrix which describes the inner relation between T

and U. In summary, the PLS can be described as a combination of an outer and

inner model. The outer model is concered with the decomposition of X and Y

blocks, while the inner model connects the latent variables that are extracted from

the decomposition of X and Y. A common application of the PLS is to select the

matrix (Y) to consist of the output variables while the matrix (X) consists of the

other process variables [21, 44, 49, 85]. As in the PCR method, the choice of the

number of latent variables to retain for process monitoring is important because

this affects the accuracy of the predictions. Generally, cross validation is the tool to

determine the appropriate number of latent variables to retain in the model space.

The PLS can be carried out using the Non-linear Iterative Partial Least Squares

(NIPALS) algorithm.

NIPALS is an algorithm for developing latent variables for the PCA or PLS. The

development of the NIPALS algorithm was initiated by H. Wold [81] and later ex-

tended by S. Wold [86]. NIPALS starts with some guessed starting vector so that

the estimated latent variables depend on the guessed starting vector. There are two

types of NIPALS methods to model the predicted block; the PLS1 and PLS2. Both

are very similar except that in PLS1 each predicted variable is modelled separately

and the PLS model is built from sequencially calculated dimensions while in PLS2

all the predicted variables are modelled simultaneously [21]. Generally, the results

from PLS1 and PLS2 are different particularly when there are several output vari-

ables [87]. The PLS2 is recommended for multivariate processes given the presence
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of autocorrelations and cross correlations between the process measurements. In

practice, the NIPALS algorithm gives more accurate results than the singular value

decomposition (SVD) of the covariance matrix [87]. However, the NIPALS algo-

rithm takes a longer time to calculate than the SVD covariance. The PLS has the

following advantages;

• Modelling multiple predictors(X) and responses(Y) [21].

• Handling multicollinearity in the predictors(X) [88].

• It is robust when noise is present in the data [89].

• Accurate and robust where high levels of correlations exist [88, 90].

Process monitoring using the PLS follows the same procedure as for the PCA and

PCR approaches. The PLS has been applied to process monitoring [47, 83, 84]

and reported as an efficient process monitoring tool [84]. The Hotelling’s T 2 and Q

metrics have been recommended for monitoring the PLS score and residual spaces

respectively [49]. Also, the unified monitoring approaches could be employed with

the PLS.

Hoskuldsson [90] reformulated the PLS as an eigenvalue/eigenvector problem, dif-

ferent from the formulation illustrated above [81]. Generally, the first latent variable

is the linear combination of X that will maximise the covariance between X and Y.

Also, the first PLS loading vector based on the reformulated PLS by Hoskuldsson [90]

is the first eigen vector of the sample covariance matrix XTYYTX. A likelihood

ratio test to determine the number of latent variables to retain in the model space

was then established. He also showed the structure of the PLS decompositions of X

and Y and the statistical aspects when it is used for model building.

Geladi and Kowalski [89] gave practical examples of the application of the PLS

algorithm with simulated data, illustrating interesting properties of the PLS algo-
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rithm by testing models and predictions to give a better understanding of the PLS

technique. They chose the PLS1 method, using the residuals after each dimension

for the estimation of the latent variables. The aim of their study was to present a

worked example and then investigate the influence of random noise, non-linearities

and interfering extra components on the process.

Lennox [91] proposed a novel application of the PLS for fault detection and diagnosis

using the Tennessee Eastman Process (TEP) Plant. He demonstrated the use of the

inner structure of the PLS model to provide information regarding the process and

employed the provided information for fault detection and diagnosis. Also, his PLS

algorithm was associated with three statistics; T 2, SPEx and SPEy. SPEx is the

square of the residual for the independent variables, x while SPEy is the square of

the residual for the dependent variables, y. Besides, his PLS algorithm was reported

to identify 12 of the 20 TEP faults suggested by Downs and Vogel [92].

Generally, the development of monitoring methods is geared towards applying these

methods to industrial processes. The methods discussed above are extended in

various ways to more efficiently monitor these industrial processes. Some extensions

of the static methods are discussed below.

2.2.2 Dynamic Methods

The static methods in their development assume that the observations are time in-

dependent, which means that each observation is not dependent on the previous

observation. However, for most chemical processes, this assumption of time inde-

pendence is invalid due to the dynamic nature of these processes. Consequently,

applying a static method to model dynamic processes will only reveal a linear static

approximation but does not effectively characterise process dynamics. To address

this limitation, lagged variables are introduced to model the dynamic relations [1, 2].
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The dynamic extensions of the linear methods are essentially the same as the static

linear methods except that in the extended dynamic approaches, the data matrix

is composed of time shifted vectors [1, 2, 78]. Moreover, these dynamic extensions

are reported to be more efficient than the static approaches for dynamic process

monitoring [1, 2]. The dynamic extensions of the PCA and PLS approaches are

discussed in the following sections.

2.2.2.1 Dynamic Principal Component Analysis

To address the limitation of the PCA due to the invalidity of the assumption of time

independence already discussed in section 2.2.1.1, the Dynamic Principal Compo-

nent Analysis (DPCA) was proposed [1]. The DPCA is an extension of the PCA for

dynamic processes. In this extended PCA approach, the auto-correlations as well

as the cross correlations between the process variables are taken into account by

augmenting each observation vector with the previous l observations and stacking

the data matrix as shown below

XA =



xt
T xt−1

T · · · xt−l
T

xt−1
T xt−2

T · · · xt−l−1
T

...
... . . . ...

xt+l−m
T xt+l−m−1

T · · · xt−m
T


(2.10)

where XA is the augmented data matrix and xt is an n-dimensional observation

vector at time instance t. The DPCA approach consists of applying the PCA on

the data matrix defined in Equation (2.10) Moreover, the DPCA is reported to be

more efficient than static PCA for monitoring dynamic processes [1, 78, 79].

Ku et al. [1] proposed the DPCA, where they applied PCA on lagged variables

using the well known time lag shift that is applied in system identification [4]. They

augmented each observation vector with the previous observations, constructing a
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data matrix in the form of the Hankel matrix illustrated in Equation (2.10) before

applying the static PCA to the constructed data matrix for the estimation of the

PCs. Their goal was to develop and utilize an easy to use DPCA model for the

construction of multivariate charts to monitor the model and residual spaces of

a dynamic process more efficiently. The PCs from the DPCA are employed in a

similar way as those from the PCA for process monitoring in the model and residual

spaces. Ku et al. [1] also examined the use of the DPCA for fault detection and

fault isolation. Their DPCA model was reported to outperform the static PCA in

detecting disturbances quicker.

Also, Lee et al. [19] proposed a method of dynamic sensor fault detection and iden-

tification using a DPCA based variable reconstruction for a Waste Water Treatment

Plant (WWTP) [93]. Their technique consists of building the DPCA model [1] and

then deriving the SVI (Sensor Validity Index) [64] of each measured variable using

the construction method. The derived SVI was able to identify the abnormal sensors

and their DPCA based approach was reported to be more efficient than the static

PCA based approach.

In addition, Mina and Verde [78] developed a DPCA model in a similar way to

Ku et al. [1] except that in their work, they also identified a set of nominal input-

output relations for the purpose of diagnosis. They estimated the actual means

of the input variables using exponentially weighted moving average (EWMA) and

then estimated the means of the output variables using the input means. The aim

of their study was to develop a DPCA model identifying the nominal input-output

relationships. Their algorithm was applied to an interconnected three-tank system

based on the Hotelling’s T 2 metric. Their proposed algorithm was reported to be

able to efficiently distinguish between normal changes in signals and deviations due

to the occurence of faults.

Tsung [79] proposed an integrated approach using the DPCA [1] and the minimax
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distance classifier which is an engineering model to simultaneously monitor and di-

agnose an automatic controlled process. Different from Ku et al. [1] who determined

the number of PCs to retain and the order of the system iteratively, Tsung [79] de-

termined the number of the PCs to retain and the order of the system from the

analytical model. Furthermore, the control limits associated with his DPCA model

was based on the Hotelling’s T 2 and Q metrics. For the purpose of diagnosis, the

author identified and isolated the root cause using the minimax distance classifier.

Moreover, this approach was applied to an automatic machining process to demon-

strate its efficiency and applicability.

Different from the DPCA approaches mentioned above, Srinivasan et al. [94] suggests

building a dynamic model for the PCs obtained from the static PCA technique.

Unfortunately, building a dynamic model for the PCs obtained from the static PCA

will not be sufficient because the residual space will still remain static. Also, the

employment of such a static residual space for the monitoring of dynamic process

could lead to inaccurate conclusions irrespective of the reported success associated

with process condition monitoring based on the residual space [1, 21, 67].

2.2.2.2 Dynamic Partial Least Squares

The PLS like the PCA is a static model that assumes that the observations are time

independent. This assumption may not be valid for most industrial processes due

to their dynamic nature, making the static PLS inappropriate and insufficient for

monitoring dynamic processes.

To address the limitation of the static PLS for dynamic processes, Komulainen et

al. [2] proposed the Dynamic PLS (DPLS) approach based on the Hotelling’s T 2

metric. In the DPLS approach, the auto and cross correlations between the process

variables are taken into account by incorporating time lags of the time series before
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applying the PLS. The time lags are incorporated by forming an augmented data

matrix as in Equation (2.10). The objective of their study was to develop an online

monitoring system for an industrial dearomatization process. A fault in the analysers

is a common disturbance in the dearomatization processes. In their work, data

was collected over a period of time to reflect the most frequently occurring faults.

Also, some computed variables were created, that captured the characteristics of the

dearomatization process. These computed variables were constructed from lagged

process measurements of the dearomatization process and then combined with the

process variables on the basis of the correlations between the 2 set of variables.

Thereafter, the PLS was applied to the combined variables and the different models

tested before selecting the best mode. The performance of the DPLS with and

without the computed variables was compared and it was reported that the DPLS

with the computed variables performed better than the DPLS without the computed

variables. In addition to being more efficient than the PLS, their approach correctly

classified changes in process parameters as normal states and gave an alarm for an

abnormal process state during the disturbance.

Lennox [91] extended the PLS to dynamic systems using the finite impulse response

(FIR) and auto-regressive with exogenous (ARX) models [1, 2] for fault detection,

diagnosis and isolation. His dynamic PLS aproach was applied to the TEP plant.

Similarly, Lee et al. [95] extended the PLS using the FIR and ARX [1, 2] inputs to

model a full-scale wastewater treatment plant in Korea. Their model was reported

to give an impressive prediction performance.

Dynamic models are reported to be more suited to continuous processes [2]. Nev-

ertheless, Fletcher et al. [96] adopted dynamic PLS (DPLS) for multi-way batch

modelling while Chen and Liu [97] developed a dynamic model of the PLS known

as the Batch DPLS (BDPLS) for on-line batch monitoring. The efficiency of both

approaches was also reported [96, 97].
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Although the DPCA and DPLS approaches discussed above are reported to improve

the condition monitoring over the static PCA and PLS approaches [2, 91, 95], the

latent variables extracted from the DPCA and DPLS approaches are not necessarily

the minimal dynamic representations [3, 4, 9]. On the other hand, state space

techniques like the Canonical Variate Analysis (CVA) have been reported to be the

best solution for dynamic processes [3, 4, 5, 6, 7, 98]. The CVA is discussed in the

following section.

2.2.2.3 Canonical Variate Analysis

Canonical Variate Analysis (CVA) is a linear dynamic dimension reduction technique

to estimate the minimum number of state variables for dynamic process monitoring.

CVA was first introduced by Hotelling [9, 99], adopted for use in dynamic systems

for a limited class of processes by Akaike [9, 100] and adapted to general linear

systems by Larimore [10, 100]. A basic concept introduced by Larimore in the CVA

is the past and future vectors of the process. For an observation at time k of inputs

and outputs, the past consists of past inputs and outputs occurring prior to time k

while the future consists of future inputs and outputs occurring after time k. The

past vector is defined in the same manner as the past matrix for autoregressive

with exogeneous variables modelling [4] while the future includes process values at

time k as well as the future values occurring after time k. Assume yk ∈ <mq, for

k = (1, 2, · · · , n) are process data collected under normal operating condition, the

past (yp,k) and future (yf ,k) vectors are defined as

yp,k =



yk−1

yk−2
...

yk−q


∈ <mq (2.11)
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yf,k =



yk

yk+1

...

yk+q−1


∈ <mq (2.12)

where mq is the length of the past and future vectors. The objective of CVA for pro-

cess monitoring is to derive a low-dimensional representation of the process data that

most accurately highlights the differences that exist between the normal operating

data and the process data to be monitored. The CVA achieves this by determin-

ing the past that has the most information for the prediction of the future and

then models a process by successively approximating the canonical variates. These

canonical variates are linear combinations of the past and future vectors. Like most

MSPM techniques, the first few canonical variates are adequate to describe the pro-

cess bahaviour and are retained in the model space, while the remaining canonical

variates are excluded to the residual space. The canonical variates in the model

space are known as the state variables and can be employed for process monitor-

ing [3, 7, 101]. The canonical variates in the residual space are also useful for process

monitoring [12]. Moreover, the superiorioty of the CVA over the DPCA and DPLS

techniques have been reported and demonstrated [4, 7, 101]. A detailed description

of the CVA is presented in chapter 3.

Larimore [99] adopted the CVA to address the problem of modelling with a re-

stricted order state space. Using the CVA, he optimally chose a number of linear

combinations of the past for the prediction of the future. He further proposed the

use of the Akaike Information Criterion (AIC) for the selection of the length of the

past vector for CVA modelling and suggested the development of an ARX model

for various model orders. The ARX model that minimised AIC defined the optimal

length of the past vector. In addition, his CVA computation was based on SVD.
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Also Negiz and Cinar [6] presented a study on CVA. Different from the study of

Larimore [99], they determined the length of the past window to be the maximum

significant lag after which the autocorrelation of the autoregressive model (AR)

residuals become statistically insignificant. In addition to the CVA, they employed

the PLS to develop another state space model and then compared the efficiencies

of monitoring using these two state space models. From their findings, the CVA

offerred a more robust tool for system identification in state space than the PLS

approach.

Norvalis et al. [9] developed a tool for monitoring and diagnosis that combined

canonical variate state space (CVSS) models with knowledge based systems (KBS).

Faults were detected using the CVSS models while diagnosis was based on the KBS.

Their technique was based on the Hotelling’s T 2 charts for fault detection and was

applied to a polymerisation reactor system. Also, contribution plots were employed

to determine the process variables that contributed the most to the out-of-control T 2

values [44]. The contribution of the process variables from past to the current state

variables was taken into account due to the dynamic nature of the plant considered

in their work. Moreover, the efficiency of their technique was illustrated.

Juan and Fei [12] adopted the statistical CVA method based on Hotelling’s T 2

charts and applied it to a chemical seperation process plant for fault detection.

Their technique focussed on canonical correlations using the past process outputs

only. In their CVA approach, the future data was predicted while the past data

was reconstructed. The results from their study illustrated a good performance of

the CVA model, showing that their technique was efficient in the presence of strong

autocorrelations and cross correlations. It was also demonstrated that the precision

of the CVA model improved with an increase in the length of the data employed for

the CVA analysis.

Chiang et al. [21] different from the studies of Norvalis et al. [9] and Juan and
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Fei [12], employed CVA to include the input and output variables for the estimation

of the state variable. Their CVA model was based on SVD and associated with the

Hotelling’s T 2 and Q metrics. Also, their CVA approach was applied to the Ten-

neessee Eastman Process (TEP) plant and the results from their approach compared

with those of the PCA and DPCA techniques also considered in their work. Based

on their work, the CVA clearly outperformed the PCA and DPCA techniques. The

superiority of their CVA approach over the PCA could be attributed to the fact that

the CVA takes the auto-correlations and cross correlations into account whereas the

static PCA does not. Also, the superiority of their CVA approach over the DPCA

could be atttributed to the fact that the CVA is a more appropriate way to capture

the dynamic behavior of plants than the DPCA [4, 10].

Simoglou et al. [10] presented a study in which they employed CVA and PLS to

determine and compare the states. In their CVA approach, they employed the past

vector consisting of inputs and outputs to determine the canonical variates [4, 21].

Different from all the works on CVA mentioned above, in the work of Simoglou et

al. [10], each input and output included in the past vector has a different number

of past values (lag). They demonstrated that building models where the number of

past inputs and outputs were optimised for each model enhanced process monitoring

performance.

The CVA is similar to the PLS in concept in that the CVA estimates linear combi-

nations of the past values of the systems inputs and/or outputs that are correlated

the most with linear combinations of the future values of the output of the pro-

cess [10]. However, a comparison of the CVA based approaches and the PLS based

approaches showed that the CVA based approaches are able to detect more fault

and more rapidly than the PLS based approaches [4, 10].
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2.2.3 Adaptive Methods

Most real-time industrial processes display a non-stationary behaviour. Process

operating conditions can change due to a shift in operating point, short term dis-

turbances or variations in parameters. The static approaches could interprete such

changes as faults because these static methods rely on the assumption that the pro-

cesses are stationary. Also, most industrial processes are time varying and static

methods are not adequate for such time-varying processes. One way to address the

time-varying and non-stationary problem is to use an adaptive model that does not

require switching or tuning during the process changes [102, 103, 104, 105]. The

initial model of the process can be updated to accommodate the time varying be-

haviour while detecing abnormal variations in the process. Wold [102] developed

an exponentially weighted moving average (EWMA) approach for the PCA and the

PLS. In the EWMA models, the more recent observations receive larger weighting

than earlier ones. To avoid unwarranted adaptation of the PCA/PLS model, he

proposed an approach in which the older PCA/PLS models are employed to deter-

mine the updated PCA/PLS models. Nevertheless, for the time-varying processes,

the older process models may not accurately represent current process variable re-

lationship so that utilising the older models to update the PCA/PLS may not be

very accurate [104].

In addition, the recursive PCA (RPCA) [102, 104, 106] and recursive PLS (RPLS) [107,

108] techniques are adaptive extensions of the PCA and PLS to solve the time-

varying and non-stationary problems using recursive means. The RPCA updates

a PCA model as new observations become available while the RPLS method up-

dates the PLS model when new observations are available. The recursive model can

be regarded as a linearisation of the system at the current operational point [18].

Qin [103] integrated a moving window approach into the Recursive PLS. In his ap-

proach a PLS model was identified on the basis of a data set that is within a selected
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window. However, the concern with his approach is that results from monitoring

could be different for different window sizes [108].

2.2.4 Methods for Non-linear Systems

Most monitoring methods like the PCA are generally based on the assumption that

the processes are linear. However, such methods are not appropriate for handling

industrial problems which exhibit non-linear behaviour [109, 110, 111]. It is therefore

necessary to extend the PCA to such non-linear processes in order to appropriately

monitor such non-linear systems. One way to address this problem is to employ non-

linear pre-treatment of the data if the relationship between the variables is known

to be non-linear [18]. This involves the use of the square or logarithmic value of the

variables [112]. Also the non-linear variants of the PCA have been developed and

employed for non-linear process monitoring [113, 114, 115]. Kramer [113] proposed

a non-linear PCA approach based on auto associative neural networks. However,

the network proposed by Kramer is difficult to train because it has five layers [116].

Besides, it is also difficult to determine the number of nodes in each layer. Dong and

McAvoy [111] proposed another non-linear PCA approach based on principal curves

and neural networks while Jia et al. [117] proposed a non-linear PCA method based

on an input-training neural network. Generally, these non-linear methods describe

the relation between original variables and the scores using non-linear functions

identified by a neural network as shown below

X = F(T) + E (2.13)

where T is the matrix of non-linear PCs, F is the non-linear function equivalent to

the loadings in linear PCA and E is the residual matrix. In recent years, a new

non-linear PCA approach known as the Kernel PCA (KPCA) has been developed
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to tackle the non-linear problem [115, 118, 119].

2.2.4.1 Kernel Principal Component Analysis

The Kernal PCA consists of mapping measurements from their original space into a

higher dimensional feature space via non-linear mapping before computing the PCs

in the feature space. The Kernel PCA was suggested by Scholkopf [115, 120]. The

major advantage of the KPCA over other non-linear PCA approaches mentioned

above is that it does not involve non-linear optimisation [115]. It requires only

linear algebra, making it as simple as the standard PCA. Also, due to its ability to

use different kernels, the KPCA can handle a wide range of non-linearities. Assume

a training data set X ∈ <m×n, each of the observations xi, i = 1, 2, · · · ,m is an

n-dimensional vector and can be mapped into an h dimensional feature space using

a mapping function φi = Φ(xi). The training data in the feature space can then be

represented as

χ = [φ1 φ2 · · ·φm]T . Note that χ has zero mean. The sample covariance (C) of

the data set in the feature space can be estimated as;

(m− 1)C = χTχ =
m∑
i=1

φiφi
T (2.14)

The KPCA in the feature space is equivalent to solving the following eigen-vector

equation

χTχν =
m∑
i=1

φiφi
Tν = λν (2.15)

Note that φi is not explicitly defined. The kernel trick which premultiplies Equation

(2.15) by χ is then applied below

χχTχν = λχν (2.16)
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Defining

K = χχT =


φ1

Tφ1 · · · φ1
Tφm

... . . . ...

φm
Tφ1 · · · φm

Tφm

 =


k(x1,x1) · · · k(x1,xm)

... . . . ...

k(xm,x1) · · · k(xm,xm)

 (2.17)

denoting

α = χν (2.18)

we have

Kα = λα (2.19)

where K is the kernel matrix while α and λ are an eigen-vector and eigen-value of

K respectively. To solve for ν in Equation (2.18), it is multiplied by χT

χTα = χTχν = λν (2.20)

this shows that ν is given by

ν = λ−1χTα (2.21)

In summary, to estimate the KPCA model, the eigen decomposition is first per-

formed as in Equation (2.19) to obtain λi and αi before deriving νi as in Equation

(2.21). From (2.21), νTi νi = λ−1, however, using a normalised ν (ν̃),

ν̃T ν̃ = 1 and ν̃ =
√
λν

The matrix of the l leading eigen-vectors are the KPCA principal loadings in the

feature space denoted as V = [ν̃1 ν̃2 · · · ν̃ l]. From Equation (2.21), V is related
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to the loading in the measurement space as

V =

[
λ
1/2
1 ν1 · · · λ1/2l ν l

]
= [λ

1/2
1 χTα1λ

−1
1 · · · λ1/2l χTαlλ

−1
l ]

= [λ
−1/2
1 χTα1 · · · λ−1/2l χTαl]

= Λ−1/2χTP (2.22)

where P = [α1 · · · αl] and Λ=diag[λ1 · · · λl] are the l eigen-vectors and eigen-

values of K, corresponding to the l largest eigen-values. For a given measurement

xk and its mapped vector φk = Φ(xk), the principal components are estimated as

tk = VTφk (2.23)

Equation (2.23) can be expressed as

tk = Λ−1/2PTχφk

= Λ−1/2PTk(xk) (2.24)

and

k(xk) = [φ1 φ2 · · · φm]Tφk

= [φT1φk φ
T
2φk · · · φTmφk]T

= [k(x1,xk) k(x2,xk) · · · k(xm,xk)]
T (2.25)

Having estimated the PCs from KPCA as in (2.24), The T 2 can be estimated as

shown in Equation (2.26).

T 2
kpca = (tk − t)TS−1(tk − t) (2.26)
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where tk are the scores of the new batch at time k, t is the mean of t and S is the

covariance of the score, t in the feature space. In addition, the Q metric can be

estimated as in (2.27) to (2.29).

ek = ṼTφk (2.27)

where Ṽ = [ν̃ l+1 · · · ν̃m]

Qkpca = eTk ek = φTk ṼṼTφk (2.28)

Since, the dimension of the feature space is not known, it is not possible to know

the number of residual components there. Hence, the loading matrix Ṽ cannot be

explicitly calculated. However, the product ṼṼT can be calculated as the projection

orthogonal to the principal component space, which is

Qkpca = φTk (I−VVT )φk = φTkφk − φTkVVTφk (2.29)

Another way to address the problem of monitoring non-linear processes is to em-

ploy the Independent Component Analysis (ICA). The ICA is well suited for non-

Gaussian processes [15, 121] and is discussed in the following section.

2.2.4.2 Independent Component Analysis

Independent Component Analysis (ICA) is a statistical approach for revealing hid-

den factors that underlie sets of process measurements. These process measurements

are generally dependent and may be combinations of latent variables that are not di-

rectly measured. The ICA was originally proposed to solve blind source separation

problems which consists of recovering independent source signals after they have
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been linearly mixed with an unknown mixing matrix. These independent source

signals are also known as independent components (ICs). The basic challenge of

the ICA is to estimate the ICs (S) and the mixing matrix (A) from the process

measurements without any knowledge of S or A. The ICs are assumed to be non-

Gaussian and mutually independent. In this instant, a set of variables are said to be

statistically independent from each other when the value of one variable cannot be

predicted given the value of another variable. The ICA technique can be described

as an optimising process of maximising the non-Gaussianity [121].

ICA Problem Definition

Assume we have m measured variables x1,x2, ...,xm that are given as linear com-

binations of n(≤ m) unknown ICs s1, s2, ..., sn. The relationship between the two

vectors is given by

x = As

x = [x1, x2, ..., xm]T

s = [s1, s2, ..., sn]T (2.30)

where A ∈ <m×n is the full rank mixing matrix. For a set of process data consisting

of N observations, the preceeding relationship can be rewritten as

X = AS

X ∈ <m×N

S ∈ <n×N (2.31)
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The objective of the ICA is to calculate a seperating matrix W ∈ <n×m so that the

components of the reconstructed data matrix Ŝ is given as

Ŝ = WX (2.32)

where Ŝ is the estimation of S. WhenW is the inverse of A, Ŝ is the best estimation

if n = m [122].

The ICA consists of a pre-processing step known as the whitening stage before

applying the ICA algorithm for the extraction of the ICs. In the whitening step, the

correlated measurements are linearly transformed into uncorrelated latent variables,

shown below.

Z = VX (2.33)

where Z is the whitened matrix and V is the linear transformation matrix. The PCA

is commonly employed for the whitening step of the ICA approach [15, 121, 123,

124]. Only some of the extracted ICs are retained in the model space for process

monitoring. The selection of the ICs for the model space is an important part

of the ICA. Selecting too many ICs will cause a magnification of noise and poor

process monitoring performance. Selecting a few dominant ICs has the following

advantages [15];

• Robust Performance

• Reduced mathematical complexity

Nevertheless, the ordering of the ICs is difficult and there is no standard criterion

to achieve this. The ICs can be ordered based on their non-Gaussianity [125]. Back

and Weigend [122] determined the component order based on the Lα norm (maximal

signal amplitude) of each IC. They multiplied the corresponding row of A with the

ICs to obtain the weighted ICs and then determined the dominant ICs to be those
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ICs with the largest maximal signal amplitudes. Lee et al. [15] adopted the Euclidean

norm in their study to determine the component order. Nonetheless, the Euclidean

norm has its limitations for the extraction and ordering of the dominant ICs as

demonstrated in the work of Lee et al. [126]. In practice, the data dimension could

be reduced by selecting a few rows of the demixing matrix based on the assumption

that the rows with the largest sum of squares have the greatest effect on the ICs

[15, 126, 127].

The ICA is sometimes considered to be an extension of the PCA [128]. However, the

objectives of the ICA are clearly different from those of the PCA. The PCA reduces

the dimension of the data by projecting the correlated process variables on a lower

set of uncorrelated (second order statistics) PCs while retaining most of the original

variance. The ICA on the other hand decomposes process measurements into sta-

tistically (high-order statistics) independent components of lower dimensions. The

PCA is only able to decorrelate variables, but not to make them independent. This

is because the PCA imposes independence up to the second order statistics informa-

tion (mean and variance) while constraining the direction vectors to be orthogonal.

The ICA on the other hand has no orthogonality constraint and involves higher-

order statistics [15, 124]. Therefore, the ICA is able to extract more statistically

useful information than the PCA [5, 15, 16] and therefore, gives better monitoring

results than the PCA based monitoring techniques. Several ICA approaches have

been developed which include ICA by maximization of non-Gaussianity, ICA by

maximum likelihood estimation, ICA by minimization of mutual information and

the fast fixed point algorithm for ICA (FASTICA) [129, 130].

Lee et al. [15] proposed the use of the ICA for continuous process monitoring. The

basic idea of their approach was to extract essential ICs that drive the process

and then combine them with process monitoring techniques. They employed the

Euclidean norm to sort out the rows of the demixing matrix in order to show only
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those ICs that cause dominant changes in the process. The Euclidean norm was

their choice for its simplicity and its efficiency in ICA monitoring. Three monitoring

metrics; Id2 for the dominant ICs, the Ie2 for the excluded ICs and the Q metric for

the residual space were determined and then KDE employed to derive the control

limit for all three statistics. Also, contribution plots were used for diagnosis of the

faults. To illustrate the efficiency of their approach, they applied their method to a

simple multivariate process example and a simulated waste water treatment plant.

Moreover, they demonstrated that the ICA solution extracts the original source

signal to a greater degree than the PCA.

Albazzaz and Wang [121] adopted the fast fixed-points (FASTICA) developed by

Hyvarinen and Oja [129]. Different from the study of Lee et al. [15], they employed

all the extracted ICs for process monitoring because they suggested that no single

IC was more important than another. Hence, in their study, the number of ICs was

determined by the number of PCs. In addition, they applied a box-cox transforma-

tion to change the non-Gaussian co-ordinates of the ICs to a Gaussian distribution

in order to justify the use of control limits estimated based on the Gaussian assump-

tion. Their approach was applied to the Manresa Waste Water Treatment Plant in

spain to demonstrate the efficiency.

Although the ICA has been reported to be efficient for monitoring non-linear pro-

cesses [15, 121], the ICA has its draw-backs.

• The ICA does not determine how many ICs to be extracted in order to establish

an optimal ICA model. The ICs are generally extracted to the dimension of

the given data or the dimension of the latent variables from the whitening

stage [121] and this can incure a high computational load.

• The extracted ICs are not ordered by their importance and there is no standard

criterion to order the ICs.
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• Finally, the random initialization of the demixing matrix in the whitened space

leads to different results in the ICA algorithm.

To address these three draw-backs of the ICA, Lee et al. [126] proposed a novel

multivariate statistical monitoring technique based on a modified ICA. The basic

idea of their aproach was to use the modified ICA for the extraction of the dominant

ICs from the normal operating process data and then combine them with statistical

process monitoring techniques. The objective of their modified ICA was to find a

demixing matrix such that the elements of the extracted independent component

vectors become as independent of each other as possible and are ordered by their

variances. The PCA was first employed for the estimation of the few dominant PCs

before updating the PCs using the FastICA algorithm. The ICs were then assumed

to have the same variance as the PCs from which they were updated and each IC

was ordered according to the variance of the ICs. In addition, the initialization in

the modified ICA is based on the assumption that extracted PCs are good initial

estimates of the ICs. This gives a consistent solution unlike the random initialization

based traditional ICA algorithm. Different from the challenge of finding a demixing

matrix in the traditional ICA, the challenge in the modified ICA is to find a matrix

which has fewer parameters to estimate as a result of its orthogonality. For their

modified ICA approach, the Hotelling’s T 2 and Q metrics were employed for fault

detection before contribution plots were constructed for diagnosis. Their approach

was applied to a simulated Waste Water Treatment Plant, the TEP plant as well

as a semiconductor etch process to demonstrate its superiority. The modified ICA

was reported to be able to extract a few dominant ICs, determine the order of the

ICs and give a consistent solution by avoiding random initialization. Moreover, the

proposed approach detects various faults more efficiently than the PCA.

Kano et al. [131] proposed an ICA based process monitoring technique and deviced

monitoring charts for each IC with the control limits estimated based on the average
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run length (ARL). In their ICA based approach, data from the normal operating

process was acquired and then normalised to zero mean and unit variance before

determining a seperating matrix which was employed to calculate the ICs as in

Equation (2.30). To demonstrate the feasibility of their approach, it was applied to

a simple four variable system and a continuous-stirred-tank-reactor (CSTR) process.

Also, their ICA approach was compared with the PCA and reported to detect faults

earlier than the PCA approach.

Traditionally, the ICA is first based on the PCA to decorrelate the process measure-

ments before applying the ICA algorithm for the extraction of the ICs [15, 16, 44,

62, 121, 132, 133, 134]. This allows the ICs to be interpreted by the simple geometry

of the PCA. However, the PCA because of its static nature is not appropriate for

dynamic processes. Consequently, the connection of the ICA with the static PCA

makes such ICA approaches equally inappropriate for the monitoring of dynamic

processes [5, 123, 127].

2.2.4.3 Dynamic Independent Component Analysis

To address the limitation of the traditional ICA for dynamic processes, the Dynamic

ICA (DICA) was proposed [123]. Lee et al. [123] extended the ICA method to

improve its monitoring performance for dynamic processes. Their DICA approach

was first based on the DPCA for the pre-processing stage before applying the ICA

for the extraction of the ICs. To demonstrate the efficiency of their DICA approach,

it was applied to a simple multivariate dynamic process as well as the TEP plant.

More importantly, their DICA approach was reported to be more efficient than the

traditional ICA approach.

Similar to the work of Lee et al [123], Stefatos and Hamza [127] developed a DICA

model [123] that they also applied to the TEP plant. In addition, they proposed
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a contribution plots that took the spatial correlation between the process measure-

ments and the serial correlation between observations into account. In their proposed

approach for diagnosis, they assumed that all observations found as outliers were

due to the same fault. Notwithstanding, when an outlying observation was a fault

on its own, diagnosis was done with respect to that outlying observation. Above all,

their approach was reported to be more efficient than the PCA, DPCA and tradi-

tional ICA schemes for fault detection and diagnosis. Also, their DICA algorithm

was reportedly able to accurately detect and isolate the root causes for all the TEP

faults.

Although the DICA is reported to be more efficient than the ICA for monitoring

dynamic processes [123, 127], still the DICA like the DPCA is not the best approach

to capture dynamic behaviour from process measurements [5]. As a result, the sta-

tistical advantage of the ICA is not fully exploited by the DICA and the performance

of the DICA for dynamic monitoring is still not satisfactory.

Apart from the ICA based approaches, all the other monitoring approaches discussed

above are generally associated with control limits derived based on the assumption

that the estimated latent variables have a Gaussian distribution [1, 2, 9]. However,

most industrial processes are non-linear, following a non-Gaussian distribution. For

such processes, the Gaussian assumption is invalid and control limits estimated based

on the Gaussian assumption may not be able to correctly identify the underlying

faults. As a result, control limits of the Hotelling’s T 2 and Q metrics both estimated

based on the Gaussian assumption are restrictive and inappropriate for such non-

linear industrial processes. One way to address the problem of monitoring such

non-linear processes is by directly estimating the underlying probability density

function (PDF) of the T 2 and Q metrics through the KDE to derive the correct

control limit [4, 5, 13, 135].
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2.2.4.4 Kernel Density Estimations

Kernel Density Estimations (KDE) is an efficient tool for the estimation of the prob-

ability density function of a process data. The KDE is easy to visualise conceptually

and has applications in econometrics, chemometrics and process monitoring. Gener-

ally, density estimation methods are classified into parametric and non-parametric

methods. The parametric methods are those that estimate the PDF with known

underlying distributions whereas the non-parametric methods are those that esti-

mate the PDF from the process data without a known underlying distributions. An

example of such non parametric methods is the KDE. The KDE basically involves

placing a kernel function with a probability mass equal to the inverse of the num-

ber of observations at each sampling point and then adding all the kernel functions

together to form a kernel density estimate as shown below.

p̂(x) =
1

Mh

M∑
k=1

K

(
x− xk
h

)
(2.34)

where xk, k = 1, 2, · · · ,M are samples of x, h is the bandwidth and K(·) is the

kernel function. Examples of kernel functions include the Gaussian kernels, Biweight

kernel, Triangular kernel and Epanechnikov kernel. In kernel density estimations,

the bandwidth selection is important because selecting a band-width too small will

result in the density estimator being too rough, a phenomenon known as under-

smoothed while selecting a band-width too big will result in the density estimator

being too flat. An efficient use of the KDE technique requires an optimal selection

of the band-width of the kernel. Several techniques have been proposed for data-

driven band-width selection [136]. However, there is no single universally accepted

approach to determine the band-width. The choice of the band-width is influenced

by the purpose for which the density estimate is to be used.

One choice for band-width selection is to plot several nominal operating regions and
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then select the estimate which is most similar to prior knowledge of the density. An-

other approach for band-width selection is the use of likelihood cross validation [13].

Also, the adoption of a rough estimation of the optimal band-width subject to

mimimizing the mean integrated square error is reportedly efficient [14, 137]. The

optimal bandwidth hopt is derived as

hopt = 1.06σN−1/5 (2.35)

where σ is the standard deviation and N is the number of observations [137].

Martin and Morris [13] proposed a novel approach for constructing control limits

based on the density of the process data with 99% confidence intervals. They referred

to the control limit derived based on their approach as the M2 metric. A likelihood

based confidence region was constructed using the non-parametric bootstrap. Their

approach was associated with the PCA and PLS methods. They combined tech-

niques of standard bootstrap and KDE to overcome the limitations of the T 2 and Q

metrics mentioned above. The band-width in their approach was selected using the

least squares cross validation. In addition to their proposed approach, they derived

control limits based on the Hotelling’s T 2 metric for comparison. Both methodolo-

gies were applied to a continuous polyethylene reactor and a polymerisation reactor

to demonstrate the efficiencies of both methodologies. In their work, some of the

faults were undetected using the T 2 control limits, demonstrating the inadequacy

of the Hotelling’s T 2 metric for processes where the process measurements are de-

pendent. Moreover, their M2 metric was reported to be more efficient than the T 2

metric.

Chen et al. [135] adopted several KDE methods associated with PCA to monitor a

gas melter process. The emphasis of their work was to demonstrate the efficiencies

of three different density estimators which were verified based on the misclassifica-

tion rates at given confidence intervals. The three density estimators were MISE
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(mean integrated square error), ADMISE (adaptive mean integrated square error)

and BAMISE (biased asymptotic mean integrated square error). They demonstrated

that the KDEs could obtain nonparametric empirical density function for more effi-

cient process monitoring. The control limits from the KDE detected the faults about

50 minutes earlier than the control limits from the parametric methods. Also, among

the three density estimators employed in their work, the BAMISE was reported to

be a more practical and efficient density estimator than the MISE and ADMISE.

Xiong et al. [128] extended the use of the PCA and ICA techniques using the KDE,

to improve condition monitoring performance. To extend the applicable range of

the PCA for non-linear processes, the PCA approach in their work was associated

with control limits estimated based on the KDE, an approach which they referred to

as PCA with KDE. Also, their proposed ICA approach was referred to as the ICA

with KDE. Both approaches as well as the PCA and ICA without KDE techniques

were applied to an industrial spheripol craft polypropylene catalyser reactor. Their

PCA with KDE and ICA with KDE techniques were reported to improve monitoring

precision over the PCA and ICA techniques without the KDE. However, the ICA

without KDE approach considered in their work for comparison was associated with

control limits estimated based the Gaussian assumption which is invalid due to the

non-Gaussianity of the extracted ICs. Thus, the ICA without KDE considered in

their work did not have appropriate control limits. This is expected to affect the

efficieny of their ICA without KDE approach [4]. A suggestion is that an ICA

approach with more appropriate control limits be employed in their work to form

an unbiased platform for comparison with their proposed ICA with KDE approach.

Also, Odiowei and Cao [138] enhanced a PCA based process monitoring using the

KDE. Their approach was applied to the Manresa Waste Water treatment plant

and reported to be more efficient than the Gaussian assumption based Hotelling’s

T 2 statistic.
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Jia et al. [117] developed a non-linear principal component analysis methodology

based upon the input-training neural network as an appropriate methodology to

handle the limitations of using static PCA for non-linear systems. In their study,

the KDE was employed to define the action and warning limits while a differential

contribution plot was derived to identify the potential sources of the process faults in

the non-linear situations. The efficiency of their technique was demonstrated using

an industrial fluidised bed reactor.
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Table 2.1: Brief description of case studies
Case study References Description
Semi Conductor
Etch Process

Lee et
al. [126].

A modified ICA approach was applied to a semi
conductor etch process. The process is dynamic
in nature. In their study, only the machine state
variables were considered for monitoring. The
process data is available.

Dearomatisation
Process

Komulainen
et al. [2]

The DPLS approach was applied to a real plant
data from the dearomatization unit of the For-
tum Naantali Refinery in Finland. The process
is dynamic, non-linear and continuous. Measure-
ments were selected for monitoring based on auto-
correlations and process knowledge. The process
data is not available.

Chemical Sepa-
ration Process

Juan and
Fei [12]

The CVA was applied to the data from a dynamic
real chemical separation process plant. The data
is unavailable.

Industrial
Sphericol Craft
Polypropylene
Catalyser

Xiong et
al. [128]

The PCA with KDE and ICA with KDE ap-
proaches were applied to data from an industrial
spheripol craft polypropylene catalyser reactor.
The process is dynamic. The data is not avail-
able.

Industrial Flu-
idised Bed Re-
actor

Jia et
al. [117]

Non-linear PCA was applied to data from an
industrial fluidised bed reactor. The reactor is
known to exhibit non-linear behaviour and is a
real plant without available data.

An Intercon-
nected three
tank System

Mina and
Verde [78]

A DPCA-based approach was applied to data
from a simulated interconnected three tank sys-
tem. The data from the three tank system is un-
available.

Tenneessee
Eastman Pro-
cess Plant

Lee et
al. [123]

DICA was applied to the TEP plant. The TEP
is a simulated plant with dynamic and non-linear
properties. The TEP data is available and can be
downloaded from http://brahms.scs.uiuc.edu

A Waste Wa-
ter Treatment
Benchmark
(ASM1 model)

Lee et al. [15] Applied the ICA to a simulated data obtained
from a waste water treatment plant. It is a dy-
namic and non-linear Process with model avail-
able at the website of the COST working group
(http://www.ensic.u-nancy.fr/COSTWWTP).

Polymerisation
Reactor

Norvalis et
al, [9]

Their proposed approach was employed to mon-
itor data from a simulated polymerization plant.
It is a dynamic and semi-batch process. The data
from this plant is not available.

A simple Multi-
variate Process

Lee et al. [15] The ICA was applied to a simple multivariate pro-
cess with equations available in the paper of Lee
et al. [15].

A Domestic
Waste Wa-
ter Treatment
Plant in Korea

Lee et al. [95] Non-linear DPLS was applied to the data from a
real waste water treatment plant in Korea. The
process has both dynamic and non-linear proper-
ties.
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2.3 Summary of Case Studies

Generally, monitoring methods are applied to case studies to illustrate their effi-

ciency. These case studies also create platforms to compare the efficiencies of various

monitoring approaches. Hence, the choice of a suitable case study is very impor-

tant. Unfortunately, finding such suitable case studies can be very challenging. To

address this challenge, in this section, a summary of all the case studies reviewed in

this chapter is presented in Table 2.1.

2.4 Conclusion

In this chapter a literature review report has been presented to explain the cur-

rent status of process monitoring. The original univariate monitoring methods have

been extended to multivariate processes. Furthermore, the multivariate monitoring

methods were also extended in different ways to account for various characteristics of

industrial processes. It is well known that chemical and industrial processes possess

both dynamic and non-linear properties. The dynamic property of chemical pro-

cesses was accounted for by extending some multivariate methods to their dynamic

counterparts [1, 2, 78]. In addition, the non-linear properties were addressed by

using various techniques [111, 113, 114, 115, 117]. These dynamic extensions as well

as the non-linear extensions have been reported to be able to improve monitoring

performance.

Nevertheless, to further improve the condition monitoring, both dynamic and non-

linear properties should be considered together. Hence, monitoring techniques that

can simultaneously account for the dynamic and non-linear properties are expected

to further improve the condition monitoring over those methods that account for

either of the properties alone.
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Chapter 3

Extended Dynamic Approaches using

Kernel Density Estimations

The development of three novel KDE-based algorihtms; DPCA with KDE, DPLS

with KDE and the CVA with KDE approaches is explained in this chapter. Also,

these algorithms are evaluated using the TEP plant and their monitoring perfor-

mances compared with their non-KDE counterparts as well as one with another.

3.1 Introduction

It is well known that most chemical and industrial processes exhibit dynamic and

non-linear properties. Static monitoring approaches like the PCA and the PLS

discussed in the previous chapter have been extended to DPCA [1] and DPLS [2]

respectively, in order to address the dynamic issues related to most chemical and

industrial processes. Moreover, the DPCA and DPLS approaches are reported to

be more efficient than the static PCA and PLS approaches for monitoring dynamic

processes. In addition to the DPCA and DPLS methods, the CVA [99] was also
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developed for dynamic process monitoring and reported for its efficiency [7, 101].

Although the DPCA, DPLS and CVA approaches are reported to be more efficient

than the static approaches for dynamic process monitoring, for simplicity, these

approaches are associated with control limits estimated based on the assumption

that the variation of data is Gaussian. Nevertheless, most chemical processes are

non-linear. For such processes, although the distribution of stochastic sources might

be Gaussian, such as measurement noises and normally distributed disturbance, the

variation of the process variables will be non-Gaussian. This means that for such

processes, the assumption of Gaussianity is invalid. Even more, the control limits

estimated based on the Gaussian assumption are unable to correctly identify the

underlying faults.

The problem of monitoring non-linear processes with non-Gaussian variations can be

addressed by directly estimating the underlying probability density function (PDF)

of the control chart using the kernel density estimations (KDE). Probability density

functions (PDFs) are useful engineering applications to describe distributions of

random processes [75, 135]. The KDE is a well established approach to estimate the

PDF without imposing a parametric model. The KDE is particularly suitable for

metrics with univariate representations such as the Hotelling’s T 2 and Q metrics [4].

In this chapter, three existing dynamic approaches (DPCA, DPLS and CVA) are

extended using the KDE to adapt them to non-linear systems. As a result of the

extensions in this chapter, three novel approaches; DPCA with KDE, DPLS with

KDE and CVA with KDE are developed. The objective of the work is to develop

monitoring approaches that are able to simultaneously address the dynamic as well

as the non-linear issues related to most chemical and industrial processes. Further-

more, these developed monitoring algorithms are evaluated using the TEP plant to

illustrate their efficiency in the monitoring of dynamic non-linear systems. In the

following sections, the DPCA, DPLS and CVA algorithms are described. Thereafter,
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the upper control limit and the KDE algorithm are also explained.

3.2 Dynamic Principal Component Analysis

Generally, for dynamic systems, the current values (yk) of the process measurements

are dependent on the past values (yk−i, i=1,2,··· ,m). Hence, it is important to identify

the relations between yk and yk−i. Ku and coworkers [1] were able to achieve this

with their proposed DPCA approach. The DPCA technique is basically the same

as the static PCA, except that the data matrix consists of time shifted vectors in

order to account for the auto-correlations and cross-correlations. This ability of

the DPCA to account for these correlations makes the DPCA technique a more

appropriate dynamic monitoring technique than the static PCA.

Assume a non-linear dynamic plant under consideration represented as follows;

yk = f(yk−1,yk−2, · · · ,yk−d) + vk (3.1)

where yk is the measurement vector, f(.) is an unknown non-linear function, d is

the number of lags and vk is the measurement noise vector. Equation (3.1) can be

linearised as

yk =
d∑
i=1

Aiyk−i + εk (3.2)

where Ai is an unknown matrix and εk is a modelling error partially due to the

underlying nonlinearity of the plant which has not been included in the linear model,

as well as associated with the measurement noise vector vk. Due to the unknown

nonlinearity, both yk and εk generally will be non-Gaussian although vk might be

normally distributed.

58



The matrix Y is defined as

Y =



yTk

yTk+1

...

yTm


(3.3)

Due to the linearization in (3.2), Y can be decomposed as shown in Equation (3.4)

Y = TPT + E (3.4)

where T is the score matrix consisting of the principal components (PCs), P is the

loading matrix and E is the residual matrix. Due to the nonlinearity, both the PCs

in T and the modelling errors in E are non-Gaussian.

Assume the data matrix Y taken from a dynamic system working under normal

conditions. Each column in Y represents an auto-correlated time series. To account

for these correlations, time lags are applied to each of the time series to form an

augmented data matrix with time shifted vectors (YA). The augmented data matrix

YA is constructed as shown below;

YA =



yt
T yt−1

T · · · yt−l
T

yt−1
T yt−2

T · · · yt−l−1
T

...
... . . . ...

yt+l−m
T yt+l−m−1

T · · · yt−m
T


(3.5)

where yt is the n-dimensional observation vector at time instance t. The DPCA

approach consists of applying the PCA on the augmented data matrix defined in

Equation (3.5). Moreover, the DPCA is reported to be more efficient than static

PCA for monitoring dynamic processes [1, 78, 79]. The augmented data matrix

YA is normalised to zero mean and unit variance before carrying out eigen-value
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decomposition to avoid variables with large values imposing superficial variability.

This normalisation is performed as shown in Equation (3.6)

Y∗Aj = (YAj − µyj)/Syj (3.6)

where Y∗Aj is the normalised vector of YAj which is the jth column of the augmented

data matrix YA, µyj is the mean of YAj and Syj is the standard deviation of YAj.

The covariance matrix (C) is estimated and then the eigen-value decomposition of

the covariance matrix obtained as shown.

C = YA
∗TYA

∗/(m− l) = VΛVT (3.7)

where m+1 is the number of observations, l is the number of lags, V is the matrix of

eigen-vectors and Λ is a diagonal matrix of eigen-values with a decreasing magnitude.

The DPCA model can be expressed in terms of the loading matrix consisting of

eigen-vectors corresponding to the a largest eigen-values.

Y∗A = TPT + E (3.8)

where T and E are the principal component and residual matrices respectively. The

PCs estimated from the eigen-vectors corresponding to the a largest eigen-values are

retained in the model space while those estimated from the remaining n− a eigen-

vectors are excluded to the residual space. This way, the DPCA is able to capture

the variations in the data while reducing the dimension and minimising the effect

of random noise. A Scree plot based on maximum variance [21] can be employed to

determine the number of principal components (PCs) to retain in the DPCA model

space.

From the retained a PCs in the model space, the Hotelling’s T 2 metric can be
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derived to determine whether or not the monitored process is in control. Given a

new observation vector defined as

yk,new =



yk

yk−1
...

yk−l


∈ <ml, ỹk,new = (yk,new − ȳ)S−1y (3.9)

where

ȳ = [µy1 µy2 · · · µy(l+1)n]T , Sy = diag[Sy1 Sy2 · · · Sy(l+1)n]T

and n is the number of measurements. The DPCA score can be estimated as

tnew = Pỹk,new (3.10)

Then, the T 2 calculated as in Equation (3.11).

T 2
dpca = tTnewS−1tnew (3.11)

where S = 1
m−1T

TT.

In addition, the PCs estimated from the eigen-vectors corresponding to the n − a

singular values can be monitored by using the Q statistic developed by Jackson and

Mudholkar [67] and defined in Equations (3.12) and (3.13) respectively.

e = (I−PPT )ỹk,new (3.12)

where e is the residual. The Q metric is estimated as in (3.13)

Qdpca = eTe (3.13)
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The T 2 and Q metrics estimated in (3.11) and (3.13) can be employed for process

monitoring.

3.3 Dynamic Partial Least Squares

In the PCA and DPCA based approaches, the PCs in the model spaces are expected

to retain most of the useful predictive data. However, these PCs may not contain

the discriminatory power required to diagnose faults. Fortunately, this is not the

case with the PLS and the PLS based approaches. Hence, in this work, a PLS based

approach, the DPLS is also considered.

Consider a non-linear dynamic plant under consideration represented as follows:

yk = f(yk−1, · · · ,yk−d, xk, xk−1, · · · ,xk−d) + vk (3.14)

f(.) is an unknown non-linear function while vk is a measurement noise vector.

Equation (3.14) can be linearised as

yk =
d∑
i=1

Aiyk−i +
d∑
i=0

Bixk−i + ηk (3.15)

where Ai and Bi are unknown matrices, while ηk is collective modelling error par-

tially due to the underlying nonlinearity of the plant which has not been included in

the linear model, as well as associated with the measurement noise vector vk. Due to

the unknown nonlinearity, the collective modelling error, ηk, as well as the measure-

ments, xk and yk will be non-Gaussian although vk might be normally distributed.

From Equation (3.15) above, let
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X =



xTk

xTk+1

...

xTm


,Y =



yTk

yTk+1

...

yTm



Due to the linearization in (3.15), the following linear decomposition can be assumed.

X = TPT + E

Y = UQT + F (3.16)

where T and U are score matrices, P and Q are loading matrices while E and F are

the residuals of X and Y respectively. The latent variables in T and U as well as

the modelling errors in E and F are non-Gaussian. Note, in this work, the standard

DPLS approach is extended to non-linear models.

Taking the historical data matrices X and Y for the independent and dependent

variables, the data matrices with time shifted vectors are constructed as shown in

(3.17) and (3.18).

XA =



xt
T xt−1

T · · · xt−l
T

xt−1
T xt−2

T · · · xt−l−1
T

...
... . . . ...

xt+l−m
T xt+l−m−1

T · · · xt−m
T


(3.17)
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YA =



yt
T yt−1

T · · · yt−l
T

yt−1
T yt−2

T · · · yt−l−1
T

...
... . . . ...

yt+l−m
T yt+l−m−1

T · · · yt−m
T


(3.18)

where XA and YA are the augmented data matrices for the independent and de-

pendent variables respectively, while xt and yt are the independent and dependent

observation vectors at time instance t.

The augmented data matrices XA and YA are normalised to zero mean and unit

variance to avoid variables with large values imposing superficial variability. The

normalisation of the augmented data matrix for the independent variables is shown

in (3.19).

X∗Aj = (XAj − µxj)/Sxj (3.19)

where X∗Aj is the normalised vector of XAj, which is the jth column of XA, µxj is

the mean of XAj and Sxj is the standard deviation of XAj. Also, the normalisation

of the augmented data matrix for the dependent variable is illustrated in (3.20).

Y∗Aj = (YAj − µyj)/Syj (3.20)

where Y∗Aj is the normalised vector of YAj, which is the jth column of YA, µyj is

the mean of YAj and Syj is the standard deviation of YAj.

The DPLS approach consists of applying the PLS on the augmented data matrices

constructed above. The PLS is described in the following section.
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3.3.1 Partial Least Squares Regression

Partial Least Squares (PLS) Regression is a predictive process monitoring technique

that involves two sets of variables; the predictor matrix (X) and the response matrix

(Y). In the PLS, the predictor matrix (X) is decomposed into a score matrix (T) and

a loading matrix (P) that are correlated with the response matrix (Y). Generally,

the score matrix (T) extracted from the decomposition of the predictor matrix

(X) is employed for the estimation of the score matrix (U) of the response matrix

(Y) while the score matrix (U) of the response matrix (Y) is further employed to

construct predictions for the responses. The score and loading matrices from the

decomposition of X and Y can be estimated using the NIPALS algorithm or the

singular value decomposition (SVD). However, in this study, the NIPALS algorithm

is adopted. The NIPALS algorithm is explained in the following section.

3.3.2 Nonlinear Iterative Partial Least Squares Algorithm

There are two NIPALS methods to model the predicted block; PLS1 and PLS2

methods. The PLS1 is similar in operation to the PLS2 except that for the PLS1

approach each predicted variable is modelled separately whereas all the predicted

variables are modelled simultaneously in the PLS2 approach [21]. Although the

PLS2 requires a longer computation time [21, 139], the PLS2 is adopted in this study

because of the simplicity of having to work with a single model. The predictor and

response matrices are decomposed as shown in Equations (3.21) and (3.22).

X = TPT (3.21)

Y = UQT (3.22)

In the PLS approach, the decomposition of X and Y is followed by a regression
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step where the PLS regresses the estimated Y score (U) to the X score (T) using

a regression matrix (B). The regression step is shown in (3.23).

U = TB (3.23)

The decomposition and regression steps result in the reconstruction of a new set of

predictor and response variables, Xnew and Ynew respectively.

For the reconstruction of Xnew and Ynew, a reduced set of estimated score variables

based on the retained latent variables is utilised. Moreover, the choice of latent

variables is very important to have a good prediction. This is because a retained

latent variable number too high will cause a magnification of noise and result in

poor process monitoring performance while a retained latent variable number too

low will result in the loss of some important process information. Cross validation is

an efficient tool to determine the number of latent variables to retain in the model

space [21].

PLS projects the row vectors of X and Y on to a reduced dimensional subspace,

spanned by the weight vector (wn) which is estimated as shown in Equation (3.24)

with wn scaled to unit length.

wn = XTun/||XTun|| (3.24)

From the weight vector (wn) estimated in Equation (3.24), the score vector (tn) for

X is estimated as shown in Equation (3.25).

tn = Xwn (3.25)

The loading and score vectors for the response Y are also estimated as shown in
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Equations (3.26) and (3.27).

qn = YT tn/||YT tn|| (3.26)

un = Yqn (3.27)

The score vectors are projections of the rows of the data blocks, X and Y onto

a dimensional subspace [140, 141]. The weight and score vectors are determined

iteratively till there is convergence and then the regression coefficient (bn) for the

training data is estimated as shown in Equation (3.28) below.

bn = tnTun/tnT tn (3.28)

Equation (3.28) is the performance of the linear regression between tn and bn to

produce the inner relationship. From the regression coefficient estimated in Equa-

tion (3.28), a new value of un (unnew) is estimated as shown in Equation (3.29)

unnew = tnbn (3.29)

εn = un − unnew (3.30)

εn = un − tnbn (3.31)

Equation (3.30) shows the estimation of the prediction error, εn can be represented

differently as in Equation (3.31) by substituting Equation (3.29) in Equation (3.30).

The loading matrix (P) in Equation (3.21) is the predictor loading matrix with the

columns (p) as the loading vectors. These predictor loading vectors are estimated

as

pn
T = tnTX||tnTX|| (3.32)
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Furthermore, the response loading vectors are estimated as

qn
T = unnewTY||unnewTY|| (3.33)

The loading vectors are the projections of the columns of X and Y onto a reduced

dimensional subspace [140]. The residuals are estimated by subtracting the variation

of the nth pair of score vectors from the X and Y matrices. This process is known as

deflation. The deflation process for X and Y matrices is shown in Equation (3.34)

and Equation (3.35) respectively.

En = X− tnp
T
n (3.34)

Fn = Y − unnewqn
T (3.35)

where En and Fn are the residual matrices estimated by subtracting the matrices

tnpn
T and unnewqTn from X and Y respectively. The matrices tnpn

T and unnewqTn

are component matrices that describe the underlying structure between the predic-

tor and response variables [141]. Using the component matrices in Equation (3.34)

and Equation (3.35), the original measured predictor and response variables can

be reconstructed as shown in Equation (3.36) and Equation (3.37). Hence, Equa-

tion (3.34) and Equation (3.35) now become Equation (3.36) and Equation (3.37)

respectively as shown below.

X = En + tnpn
T (3.36)

Y = Fn + unnewqn
T (3.37)

The vectors, tn, unnew, pn and qn are stored as columns of the matrices T, Unew,

P, and Q respectively.

In summary, the PLS can be described as a combination of two models, the outer

model concerned with the decomposition of X andY demonstrated in Equations (3.36)
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and (3.37) and the inner model which links the score and loading variables produced

by the decomposition of X and Y in Equations (3.32) and (3.33). In the present

study, the NIPALS algorithm described in Equation (3.24) to Equation (3.35) was

employed to estimate the score and loading vectors. In this work, the cross vali-

dation was employed to determine the number of latent variables to retain in the

model space.

3.3.3 Cross Validation

A major challenge of the PLS is to extract the optimum number of latent variables

required to accurately model the responses. The cross validation however, is reported

to be an efficient routine to achieve this goal [21]. Generally, cross validation involves

splitting the training data into the construction and validation sets. Different types

of cross validation methods include the Leave-one-out cross validation (LOO-CV),

the v-fold cross validation and the Leave-multiple-out cross validation (LMO-CV).

For the purpose of this thesis, the LMO-CV [21, 89] is adopted because the LOO-CV

has a greater tendency of causing over-fitting [141, 142].

A step by step procedure of the LMO-CV is presented below;

• Step 1: The cross validation procedure in this study involves dividing the

training data into subsets with each subset employed as a validation data set

while the remaining subsets form the construction data set.

• Step 2: The construction data is used to build a one latent variable model.

• Step 3: The validation set is used to validate the model formed in step 2.

• Step 4: With the predictions from the validation set, the PRESS (Prediction

Residual Sum of Squares) and RSMEV (Root Mean Square Prediction Error

for validation data set) are estimated.
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• Step 5: The procedure is repeated excluding each subset block only once.

• Step 6: The total PRESS for one latent variable is estimated by summing the

individual PRESS values for each subset block. The total RSMEV for one

latent variable is also estimated by summing the individual RSMEV values.

• Step 7: Step 1 to step 6 are repeated for 2, 3... min (n, m) latent variables,

obtaining a series of PRESS values, where n is the number of observations and

m is the number of process variables.

• Step 8: The number of latent variables that give the minimum value of both

PRESS and RSMEV is identified as the number of latent variables to retain

for the PLS analysis reported in this chapter.

In the cross validation process, two matrices Xtr and Ytr are involved for both the

construction and validation data sets [139, 143]. Xtr ∈ <m×n whereas Ytr ∈ <m×p,

wherem is the number of rows, n is the number of variables in the predictor variables

and p is the number of variables in the response variables. The validation data set

is of size d while the construction data is of size m− d. Hence, Xm−d and Ym−d for

the construction data sets are applied to the validation data set. Equation (3.38)

shows the estimation of the mean square prediction error for the construction data.

RSMEC =
√

Σ(Ym−d − zcon)2/m− d (3.38)

where Ym−d is the response variable in the construction data set, the subscript

(m− d) is the number of rows of the construction data set and zcon is the predicted

response of the construction data set. Using the validation data set, the mean square

prediction error is estimated as in Equation (3.39) while the prediction residual sum

of squares is estimated as shown in Equation (3.40).
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RSMEC =
√

Σ(Ym−d − zval)2/di (3.39)

PRESS = Σ(Ym−d − zval)2 (3.40)

where Ym−d is the response variable in the validation data set, the subscript m− d

represents the number of rows of the validation data sets and zval is the predicted

response of the validation data set. To estimate the appropriate number of latent

variables min (m,n), each validation set is eliminated from the training data block

just once to form the construction set from which the model is built. The PRESS

is actually the statistic for lack of prediction accuracy [89]. The eliminated subset

is then used as a validation set to validate the model. From the predictions based

on the validation set, PRESS and RSMEV are estimated for each subset from 1,2,...

min (m,n) latent variables. This process is repeated until each subset is removed

only once to form the construction set. To estimate the total PRESS and RSMEV

for one latent variable, the individual values of PRESS and RSMEV for each subset

(validation data) at one latent are summed. The same thing is done for 2 to min

(m,n) latent variables and the total PRESS and RSMEV for 2 to min (m,n) latent

variables also summed for each latent variable. The PRESS and RSMEV were

estimated for the normalised and non-normalised training data sets and the result

of cross validation from the PRESS and the RSMEV were very similar.

From the DPLS approach, two sets of latent variables are estimated for the indepen-

dent and dependent variables. Generally, it is the latent variables of the independent

variables that is employed to represent the DPLS model space. Also, from cross val-

idation analysis, a latent variables can be retained in the model space as illustrated

in Equation (3.25). From the latent variables in the model space, the T 2 metric can

be derived to determine whether or not the process is in control. For the purpose of
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process monitoring, a new observation vector can be defined as

yk,new =



yk

yk−1
...

yk−l


∈ <ml, ỹk,new = (yk,new − ȳ)S−1y (3.41)

where

ȳ = [µy1 µy2 · · · µy(l+1)n]T , Sy = diag[Sy1 Sy2 · · · Sy(l+1)n]T

and n is the number of measurements. The score for yk,new can be estimated as

tnew,k = Pỹk,new (3.42)

The T 2 metric is derived as shown in (3.43).

T 2
dpls = tTnew,kS

−1tnew,k (3.43)

where S = 1
m−1T

TT. In addition, the residual matrix E which is estimated as

shown in Equation (3.36) consists of residual vectors. These residual vectors can

be employed to estimate the Q metric to monitor the noise space. The Q metric is

estimated as shown in (3.44) and (3.45).

e = (I−PPT )ỹk,new (3.44)

where ynew,k is the new data to be monitored, while t and p are the score and

loading vectors respectively.

Qdpls = eTe (3.45)
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The T 2 and Q metrics estimated in Equations (3.43) and (3.45) can be employed

for process monitoring.

Although the DPCA and DPLS approaches described above are reported to be able

to improve the monitoring performance over the static PCA and PLS for dynamic

processes, the DPCA and DPLS methods are not the best approach to capture

the dynamic behaviour [3]. On the other hand, state space techniques like the

Canonical Variate Analysis (CVA) are reported to be the best solution for dynamic

processes [3, 4, 5, 6, 7]. Therefore, in this work, the CVA is also considered.

3.4 Canonical Variate Analysis

More recently, monitoring techniques based on Canonical Variate Analysis (CVA)

have been developed with control limits derived based on the Gaussian assump-

tion [9, 12, 21]. The CVA is a linear dimension reduction technique to estimate the

minimum number of state variables for dynamic process monitoring. Different from

the published works on the CVA, in this study, the CVA is extended to dynamic

non-linear systems by identifying state variables directly from the process measure-

ments and deriving appropriate control limits using the KDE for the detection of

abnormal conditions.

Assume the non-linear dynamic plant under consideration represented as follows;

xk+1 = f(xk) + wk

yk+1 = g(xk) + vk (3.46)

where xk ∈ <n and yk ∈ <m are state and measurement vectors respectively, f(·) and

g(·) are unknown non-linear functions, whereas wk and vk are plant disturbances

and measurement noise vectors respectively. It is clear that such an unknown non-
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linear dynamic system is generally difficult to deal with for monitoring. However,

at a stable normal operating point, the non-linear plant can be approximated by a

linear stochastic state space model as follows;

xk+1 = Axk + εk

yk = Cxk + ηk (3.47)

where A and C are unknown state and output matrices respectively. Due to the

unknown nonlinearity, the collective modelling errors, εk and ηk generally will be

non-Gaussian although wk and vk might be normally distributed processes.

Instead of dealing with the unknown non-linear system (3.46) directly, in this work,

the approximated linear state space model given in (3.47) is considered through the

standard CVA approach. Although the linear model (3.47) is easier to deal with

than the non-linear system (3.46), the collective errors εk and ηk have to be treated

as non-Gaussian processes. This leads to the direct PDF estimation of the associated

T 2 and Q metrics through the KDE approach explained in section 3.6.

In the CVA approach, firstly, the measurement vector yk is expanded by q past and

future measurements to give the past and future observation vectors yp,k and yf,k

respectively.

yp,k =



yk−1

yk−2
...

yk−q


∈ <mq, ỹp,k = yp,k − ȳp,k (3.48)

yf,k =



yk

yk+1

...

yk+q−1


∈ <mq, ỹf,k = yf,k − ȳf,k (3.49)
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where ȳp,k = 1
M−1

∑q+M
k=q+1 zkzk

T and ȳf,k are the sample means of yp,k and yf,k

respectively, and the products of mq represents the lengths of the past and future

observation vectors respectively. The length of the past and future observations

can be determined by checking the autocorrelation of the square sum of the process

variables such that the correlation can be neglected when the time distance is larger

than the number of lags determined.

These past and future observations are stochastic processes. Their sample-based

covariance and cross-covariance matrices can be estimated through the truncated

Hankel matrices as follows;

Σpp :=
1

M − 1

q+M∑
k=q+1

ỹp,kỹ
T
p,k =

1

M − 1
YpY

T
p (3.50)

Σff :=
1

M − 1

q+M∑
k=q+1

ỹf,kỹ
T
f,k =

1

M − 1
YfY

T
f (3.51)

Σfp :=
1

M − 1

q+M∑
k=q+1

ỹf,kỹ
T
p,k =

1

M − 1
YfY

T
p (3.52)

where Yp and Yf are past and future truncated M -column Hankel matrices respec-

tively, and defined as follows;

Yp =

[
ỹp,q+1 ỹp,q+2 · · · ỹp,q+M

]
∈ <mq×M (3.53)

Yf =

[
ỹf,q+1 ỹf,q+2 · · · ỹf,q+M

]
∈ <mq×M (3.54)

For a set of measurements with total N observations, the last element of yp,q+1 in

(3.48) is y1, whereas the last element of yf,q+M in (3.49) should be yN . Therefore,

the maximum number of columns of these Hankel matrices is

M = N − 2q + 1 (3.55)
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The CVA aims to find the best linear combinations, aT (ỹf,k) and bT (ỹp,k) of the

future and past observations so that the correlation between these combinations is

maximised. The correlation can be represented as follows:

ρfp(a,b) =
aTΣfpb

(aTΣffa)1/2(bTΣppb)1/2
(3.56)

Let u = Σff
−1/2a and v = Σpp

−1/2b. The optimization problem can be casted as:

maxu,v uT (Σff
−1/2ΣfpΣpp

−1/2)v

s.t. uTu = 1 (3.57)

vTv = 1

According to linear algebra theory, the solution, u and v are left and right singular

vectors of the scaled Hankel matrix, H = Σff
−1/2ΣfpΣpp

−1/2 and the maximal

correlation σ = maxa,b ρfp(a,b) is the corresponding singular value of H. If the

rank of the scaled Hankel matrix, H is r, then there are r non-zero singular values,

σi, i = 1, 2, · · · , r in the descending order and correspondingly r pairs of the left

and right singular vectors, ui and vi for i = 1, 2, · · · , r. Singular values and vectors

can be collected in the following matrix form of the singular value decomposition

(SVD) as proposed by Larimore [10, 99].

H := Σff
−1/2ΣfpΣpp

−1/2 = UDVT (3.58)
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where

U =

[
u1 u2 · · · ur

]
∈ <mq×r (3.59)

V =

[
v1 v2 · · · vr

]
∈ <mq×r (3.60)

D =



σ1 0 · · · 0

0 σ2 · · · 0

...
... . . . ...

0 0 · · · σr


∈ <r×r (3.61)

Furthermore, the canonical variates can be directly estimated from the past obser-

vation vector ỹp,k as illustrated in (3.62).

zk =



b1
T

b2
T

...

br
T


ỹpk =



v1
T

v2
T

...

vr
T


Σpp

−1/2ỹpk

= VTΣpp
−1/2ỹpk = Jỹpk (3.62)

where J = VTΣpp
−1/2 ∈ <r×mq is the transformation matrix, which transforms the

mq-dimensional past measurements to the r-dimensional canonical variates. These

canonical variates are normalised with a unit sample covariance.

1

M − 1

q+M∑
k=q+1

zkzk
T

= VTΣ−1/2pp

(
1

M − 1

q+M∑
k=q+1

ỹp,kỹ
T
p,k

)
Σpp

−1/2V

= VTΣpp
−1/2ΣppΣpp

−1/2V = VTV = I

From (3.62), the canonical variate space spanned by all the estimated canonical

variates can be separated into the state space and the residual space based on the
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order of the system. According to the magnitude of the singular values, the first a

dominant singular values are determined and the corresponding a canonical variates

retained as the state variables where a < r. In addition, the remaining (r − a)

canonical variates are said to be in the residual space. Equation (3.63) below shows

the entire canonical variate space (zk ∈ <r) spanned by the state variables (xk ∈ <a)

and the residual canonical variates (dk ∈ <r−a)

zk =

[
xk

T dk
T

]T
(3.63)

The state variables (xk) are a subset of the canonical variates (zk) estimated in

(3.62). Hence the state variable like the canonical variates is defined as a linear com-

bination of the past observation vector ỹp,k, xk = Jxỹp,k, where Jx = Vx
TΣpp

−1/2

with Vx consisting of the first a columns of V defined in (3.58). Like the canonical

variates, the state variables also have the unit covariance. Once the states of the sys-

tem are determined, the state and output matrices, A and C can then be estimated

through linear least squares regression. However, the determination of the state

and output matrices A and C are omitted from the rest of the thesis since these

matrices are not used in this work. Moreover, the state variables and the canonical

variates in the residual space can both be employed for process monitoring as will

be illustrated in this work.

Traditionally, it was assumed that εk and ηk in Equations (3.47) are normally dis-

tributed, as well as the state, measurement and residual vectors, xk, yk and ek since

a linear combination of multivariate Gaussian variables is also normally distributed.

For N samples of data, the number of samples of the states available is M , given in

(3.55). For the normally distributed a-dimensional state vector, x with M samples,

xk, k = 1, 2, · · · ,M . The T 2 statistic defined in (3.64) can be used to test whether
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the mean µ of x is at the desired target τ .

Tk
2 = (xk − τ)TS−1(xk − τ) (3.64)

where S is the estimated covariance of x. If µ = τ , then CT 2 ∼ F (a,M − a), where

C = (M−1)(M+1)a
M(M−a) . Equation (3.64) can be simplified as the state covariance matrix,

S = I. Furthermore, since the past and future observations, ỹp,k and ỹf,k have zero

means, the desired target for the state is τ = 0. With these simplifications in place,

the T 2 metric for the state space is represented in (3.65).

T 2
kcva = xk

Txk (3.65)

In addition, the Q metric is introduced for the CVA approach to test the signifi-

cance level of the prediction error represented in the scaled past observation space.

According to (3.62), the prediction error for the scaled past measurement and the

corresponding Q meric are then defined in (3.66) and (3.67) respectively.

ek = (I−VxV
T
x )Σ−1/2pp ỹp,k = Fỹp,k (3.66)

where F is the states excluded to the residual space.

Qkcva = ek
Tek (3.67)

Generally, statistical monitoring methods consist of first developing a statistical

model and then determining control limits based on monitoring metrics to judge

whether or not the processes are in control. The T 2 and Q metrics are the most

commonly employed metrics for process monitoring. The T 2 metric represents the

variations in the model space while the Q metric represents the variations in the

residual space. In this work, the T 2 and Q metrics have been derived for each of the
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DPCA, DPLS and CVA methods.

For the purpose of process monitoring, the T 2 metric requires a corresponding con-

trol limit, T 2
UCL to be derived and employed for the assessment of the process. In

the following section, a T 2 control limit is derived to correspond to the T 2
dpca, T 2

dpls

and T 2
kcva metrics derived for the DPCA, DPLS and CVA approaches. Similarly, the

Q metric requires a corresponding control limit to judge the status of the process.

In this work, a corresponding control limit for the Q metric is derived to corre-

spond to the Qdpca, Qdpls and Qkcva metrics derived for the DPCA, DPLS and CVA

approaches.

3.5 Upper Control Limits

In this section, upper control limits (UCL) are derived for the T 2 and Q metrics

under the normal distribution assumption. This is because the efficiency of a mon-

itoring approach greatly depends on the appropriateness of the control limit as will

be illustrated in later section of this work. This means that the condition monitoring

performance of the monitoring method can be enhanced by the use of an appropriate

control limit.

For the T 2 metric, if the latent variables are normally distributed, the corresponding

UCL T 2
UCL(α) for a significance level is derived as in (3.68).

TUCL
2(α) =

a(M − 1)2

M(M − a)
Fa,M−a(α) (3.68)

where Fu,v(α) is the critical value of the F -distribution with u and v degrees of

freedom for a significance level α. By comparing Tk2 against TUCL
2(α) in real-time,

an abnormal condition is then determined when Tk2 > TUCL(α).

Therefore, the systems (3.2), (3.15) and (3.47) can be monitored by plotting their
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corresponding Tk2 against time, k, along with a UCL, T 2
UCL(α) corresponding to a

significance level, α, that has the probability, P (Tk
2 > T 2

UCL(α)) = α.

Furthermore, given a level of significance, α, and based on the assumption of nor-

mality, the threshold, QUCL(α) of the Q-metric is estimated as shown below [67].

QUCL(α) = θ1

(
h0cα
√

2θ2
θ1

+ 1 +
θ2h0(h0 − 1)

θ1
2

) 1
h0

(3.69)

where θi =
∑r

j=n+1 λj
i, h0 = 1− 2θ1θ3

3θ2
2 and cα is the normal deviate corresponding to

(1− α) percentile. In (3.69), λj is the eigenvalue of the covariance of the measured

data. For the CVA error represented in (3.66), it should be the covariance of the

scaled past observations, Σ
−1/2
pp ỹp,k, i.e.

λj = λ

(
q+M∑
k=q+1

(Σpp
−1/2ỹp,k)(Σpp

−1/2ỹp,k)
T

)
= 1

j = 1, 2, · · · , r

Therefore, the calculation QUCL(α) can be simplified by letting θi = (r − a) and

h0 = 1/3 in (3.69). By comparing Qk against QUCL(α) in real-time, an abnormal

condition is determined when Qk > QUCL(α).

Unfortunately, both control limits derived in (3.68) and (3.69) are based on the

assumptions that the latent variables from the DPCA, DPLS and CVA approaches

as well as their prediction errors are Gaussian. However, when the collective mod-

elling errors of the systems (3.2), (3.15) and (3.47) are non-Gaussian processes, this

assumption is not valid. Hence, T 2
UCL(α) and QUCL(α) derived in (3.68) and (3.69)

can no longer be used as control limits for non-linear dynamic process monitoring.

One solution to this issue is to estimate the PDF directly for these T 2 and Q metrics

through a non-parametric approach [13, 135]. Amongst various PDF estimating

approaches, the kernel density estimation (KDE) approach [13, 135] is selected for
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this work. The KDE algorithm is discussed in the following section.

3.6 Control Limit through Kernel Density Estima-

tion

The KDE is a well established approach to estimate the PDF particularly for uni-

variate random processes [14]. Therefore, it is particularly suitable for the T 2 and

Q metrics which are univariate although the underlying processes are multivariate.

Assume x is a random variable and its density function is denoted by p(x). This

means that

P (x < b) =

∫ b

−∞
p(x)dx (3.70)

Therefore, by knowing p(x), an appropriate control limit can be determined for a

specific confidence bound, α using (3.70). The estimation of the probability density

function p̂(x) at point x through the kernel function, K(·) is defined as follows:

p̂(x) =
1

Mh

M∑
k=1

K

(
x− xk
h

)
(3.71)

where xk, k = 1, 2, · · · ,M are samples of x and h is the bandwidth. A rough

estimation of the optimal bandwidth hopt subject to minimising the approximation

of the mean integrated square error can be derived in (3.72), where σ is the standard

deviation [137].

hopt = 1.06σN−1/5 (3.72)

By replacing xk with the Tk2 metrics obtained in Equations (3.11), (3.43) and (3.65)

for the DPCA, DPLS and CVAmethods, the above KDE approach is able to estimate

the underlying PDFs of the T 2 metric. Also by replacing xk with the Qk metrics

obtained in Equations (3.13), (3.45) and (3.67) for the DPCA, DPLS and CVA

82



methods, the above KDE approach is also able to estimate the underlying PDFs of

the Q metric. The corresponding control limits, T 2
UCL(α) and QUCL(α) can then be

obtained from the PDFs of the T 2 and Q metrics for a given confidence bound, α

by solving the following equations respectively.

∫ T 2
UCL(α)

−∞
p(T 2)dT 2 = α∫ QUCL(α)

−∞
p(Q)dQ = α (3.73)

The T 2 and Q metrics are complementary. A fault may cause a significant deviation

in the state space but not necessary results in a similar level of significance in the

error space, vice versa. Therefore, in this work, a fault is then identified (Fk = 1) if

either T 2
k > T 2

UCL(α) or Qk > QUCL(α) conditions are satisfied, i.e.

Fk = (T 2
k > T 2

UCL(α))⊕ (Qk > QUCL(α)) (3.74)

where ⊕ represents a logical OR operation. By using the fault detection condition

(3.74), the monitoring performance becomes insensitive to the number of states, a

since any ignored variances in the T 2 metric by reducing n will be recovered by Q

metric.

By summarising the analysis presented in the previous sections, a new extension of

CVA using KDEs for non-linear dynamic process monitoring is proposed to identify

underlying faults subject to non-Gaussian processes. Similarly, by combining the

DPCA with the monitoring metrics and the KDE algorithms, another extension

of the DPCA, the novel DPCA with KDE is developed. In addition, the DPLS is

extended using the KDE algorithm, resulting in the novel DPLS with KDE approach.

The step by step procedure of these KDE approaches are presented in the following

sections.
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3.6.1 DPCA with KDE

In this section the DPCA is extended to non-linear systems using the KDE. The

proposed DPCA with KDE approach consists of first estimating PCs using the

standard DPCA before deriving appropriate control limits using the KDE.

DPCA with KDE Algorithm

1. Obtain the training data from the normal operating process

2. Construct the augmented data matrix as in Equation (3.5)

3. Normalise the augmented data matrix as in Equation (3.6)

4. Estimate the covariance matrix and perform singular value decomposition as

in Equation (3.7)

5. Estimate the PCs as in Equation (3.8) and determine the order to retain in

the model space, while excluding the rest to the residual space.

6. Estimate T 2 and Q metrics as in Equations (3.11) and (3.13)

7. Derive control limits using KDE as in Equation (3.73)

On-line Monitoring

1. Collect real-time monitoring data and apply normalisation or scaling as that

used in the modelling

2. Estimate the PCs by projecting the scaled data to be monitored onto the

loading matrix as in Equation (3.8)

3. Calculate the T 2 and Q metric as in Equations (3.11) and (3.13).

4. Use the determined KDE control limits to judge whether or not the process is

in control
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3.6.2 DPLS with KDE

The standard DPLS is extended to non-linear systems in this section. The proposed

DPLS with KDE consists of the standard DPLS and KDE approaches. The proce-

dure of the proposed DPLS with KDE is enumerated below.

DPLS with KDE Algorithm

1. Obtain the training data from the normal operating process and determine

the independent and dependent variables (X) and (Y) respectively.

2. Construct the augmented data matrices for the (X) and (Y) as in Equations

(3.17) and (3.18) respectively

3. Normalise the augmented data matrices as in Equations (3.19) and (3.20)

respectively

4. Estimate the score and loading matrices of (X) and (Y) as in Equations (3.24)

to (3.33)

5. Estimate the latent variables as in Equation (3.32)

6. Determine the number of latent variables to retain using cross validation

7. Estimate T 2 and Q metrics as in Equations (3.43) and (3.45)

8. Derive control limits using KDE as in Equation (3.73)

On-line Monitoring

1. Collect real-time monitoring data

2. Estimate the latent variables by projecting the monitoring data onto the weight

vector as in Equation (3.25)

3. Determine the T 2 and Q metrics as in Equation (3.43) and (3.45) respectively
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4. Use the determined KDE control limits to judge whether or not the process is

in control

3.6.3 CVA with KDE

The CVA with KDE consists of first of employing the CVA for the extraction of the

states and then deriving appropriate control limits using the KDE. The steps of the

proposed CVA with KDE are listed below.

CVA with KDE Algorithm

1. Obtain the training data from the normal operating process

2. Construct the past and future observation vectors as in Equations (3.48) and

(3.49).

3. Determine the maximum number of columns in the truncated hankel matrix

as in Equation ( 3.55)

4. Determine the past and future truncated hankel matrices as in Equations

( 3.53) and (3.54)

5. Estimate the scaled hankel matrix and perform the singular value decomposi-

tion as in Equation ( 3.58)

6. Estimate the canonical variates as in Equation ( 3.62)

7. Separate the estimated canonical variates into the state and residual spaces

based on the order of the system as in Equation ( 3.63)

8. Estimate T 2 and Q metrics as in Equations (3.64) and (3.67)

9. Derive control limits using KDE as in Equation (3.73)

On-line Monitoring
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1. Collect real-time monitoring data

2. Determine the past and future observation vectors as in Equations ( 3.48) and

(3.49)

3. Derive the canonical variates for the state and residual spaces

4. Determine T 2 and Q metrics from the esimated canonical variates based on

the monitored data

5. Use the determined KDE control limits to judge whether or not the process is

in control

All three KDE-based approaches developed in this work are applied to the Ten-

neessee Easman Process Plant, which is described in the following section.

3.7 Tennessee Eastman Process Plant

Ideally, monitoring techniques should be applied to real industrial plants. Unfor-

tunately, such plants are not readily accessible. As a result, most research work in

process monitoring is based on computer simulation of industrial processes. For this

reason, the monitoring algorithms developed in this work are evaluated using the

Tennessee Eastman Process (TEP) plant.

The TEP process is a large dimensional, non-linear process with unknown mathe-

matical representation as the simulation is intentionally distributed as an undocu-

mented FORTRAN program [92]. It was originally created by the Eastman chemical

Company to provide a realistic industrial process for the evaluation of process mon-

itoring approaches. The TEP plant [92] has 5 main units which are the reactor,

condenser, separator, stripper and compressor [21, 92]. Streams of the plant con-

sists of 8 components; A, B, C, D, E, F, G and H. Components A, B and C are
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gaseous reactants which were fed to the reactor to form products G and H. The TEP

data used for this work consists of two blocks; the training and test data blocks.

Each block has 21 data sets corresponding to the normal operation (Fault 0) and

20 fault operations (Fault 1 - Fault 20). The sampling time for most of the process

variables in the TEP plant is 3 minutes. A total of 52 measurements are collected

for each data set of length, N = 960 representing 48-hour operation with a sampling

rate of 3 minutes. However, 19 of the 52 measurements, 14 of them sampled at 6

minute interval and 5 of them sampled in every 15 minutes, have not been included

in the DPCA and CVA studies due to the measurement time delay. Nevertheless,

these variables were employed as the response variables for the work on DPLS. Dif-

ferent from the work reported by Chiang [21], 11 manipulated variables are treated

the same as other measured variables because under feedback control, these vari-

ables are not independent any more. The simulation time of each operation run

in the test data block is 48 hours and the various faults are introduced only after

8 hours. This means that for each of the faults, the process is in-control for the

first 8 simulation hours before the process gets out of control at the introduction

of the fault. All 20 faults have been studied in this work. Also in this work, the

normal operating process data will be referred to as the training data. The test data

block is based on a simulation of a real-time industrial process where the operating

conditions, components and kinetics are modified for proprietary reasons. Further-

more, the analysis in this research work is based on the test data blocks alone. Also,

a graphical presentation of the TEP plant is given below with the 5 main units

high-lighted.

The gaseous reactant A is fed to the reactor through stream 1 while gaseous reactants

A and C along with the inert B are fed to the reactor through stream 4. Also, gaseous

reactants D and E are fed to the reactor through streams 2 and 3 respectively. The

reactions that take place in the reactor result in the formation of the liquid products

G and H, whereas F is the by-product. The TEP reactions are shown below;
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Figure 3.1: Graphical description of TEP plant

A(g) + C(g) +D(g)→ G(liq)

A(g) + C(g) + E(g)→ H(liq)

A(g) + E(g)→ F (liq)

3D(g)→ 2F (liq) (3.75)

The product from the reactor is cooled through a condenser before it is fed to a

vapour-liquid separator. The vapour from the separator is then recycled to the feed

via the compressor. Also, some of the recycle stream is purged via stream 9 to avoid

the inert and by-product from accummulating in the process. The condensed com-
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ponents from the separator in stream 10 is pumped to the stripper. In the stripper,

stream 4 strips the remaining reactants from stream 10, that are combined with the

recycle stream through stream 5. Generally, for fault detection and identification

problems [4, 5], the TEP plant is considered under a closed-loop control as described

in [92].

3.7.1 Tennessee Eastman Process Variables

The TEP variables mentioned above are described in Table 3.1. However, only 11 of

the 12 manipulated variables (MVs) and the 41 measured variables are described in

Table 3.1 because the agitator speed which is supposed to be the 12th manipulated

variable is not actually manipulated.

3.7.2 Tennessee Eastman Process Faults

The TEP plant has 21 scenarios corresponding to Faults 0− 20, with Fault 0 being

the data simulated at normal operating condition (no fault) and Faults 1 - 20 corre-

sponding to data sets from the simulated fault processes, each with a specified fault

as listed in Table 3.2.

3.8 Monitoring Performance

The monitoring performance in this study is assessed based on the percentage relia-

bility which is defined as the percentage of the samples outside the control limits [144]

within the last 40 hour faulty operation. Hence a monitoring technique is said to

be better than another technique if the percentage reliability of this technique is

numerically higher than the percentage reliability of another. Also, the monitoring
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Table 3.1: Tennesseee Eastman Process variables
ID Description ID Description
x1 A Feed (Stream 1) x27 Component E (Stream 6)
x2 D Feed (Stream 2) x28 Component F (Stream 6)
x3 E Feed (Stream 3) x29 Component A (Stream 9)
x4 Total Feed (Stream 4) x30 Component B (Stream 9)
x5 Recycle Flow (Stream 8) x31 Component C (Stream 9)
x6 Reactor Feed Rate (Stream 6) x32 Component D (Stream 9)
x7 Reactor Pressure x33 Component E (Stream 9)
x8 Reactor Level x34 Component F (Stream 9)
x9 Reactor Temperature x35 Component G (Stream 9)
x10 Purge Rate (Stream 9) x36 Component H (Stream 9)
x11 Product Separator Temperature x37 Component D (Stream 11)
x12 Product Separator Level x38 Component E (Stream 11)
x13 Product Separator Pressure x39 Component F (Stream 11)
x14 Product Separator Underflow

(Stream 10)
x40 Component G (Stream 11)

x15 Stripper Level x41 Component H (Stream 11)
x16 Stripper Pressure x42 MV to D Feed Flow (Stream 2)
x17 Stripper Underflow (Stream 11) x43 MV to E Feed Flow (Stream 3)
x18 Stripper Temperature x44 MV to A Feed Flow (Stream 1)
x19 Stripper Steam Flow x45 MV to Total Feed Flow (Stream 4)
x20 Compressor Work x46 Compressor Recycle Valve
x21 Reactor Cooling Water Outlet

Temperature
x47 Purge Valve (Stream 9)

x22 Separator Cooling Water Outlet
Temperature

x48 MV to Separator Pot Liquid Flow (Stream 10)

x23 Component A (Stream 6) x49 MV to Stripper Liquid Product Flow (Stream 11)
x24 Component B (Stream 6) x50 Stripper Steam Valve
x25 Component C (Stream 6) x51 MV to Reactor Cooling Water Flow
x26 Component D (Stream 6) x52 MV to Condenser Cooling Water Flow

91



Table 3.2: Brief description of TEP plant faults
Fault Description Type

1 A/C Feed Ratio, B Composition Constant (Stream 4) Step
2 An increase in B while A/C Feed ratio is constant (stream 4) Step
3 D Feed Temperature (Stream 2) Step
4 Reactor Cooling Water Inlet Temperature Step
5 Condenser Cooling Water Inlet Temperature Step
6 A loss in Feed A (stream 1) Step
7 C Header Pressure Loss - Reader Availability (Stream 4) Step
8 A,B,C Feed Composition (Stream 4) Random variation
9 D Feed Temperature (Stream 2) Random variation
10 C Feed Temperature (Stream 4) Random variation
11 Reactor Cooling Water Inlet Temperature Random variation
12 Condenser Cooling Water Inlet Temperature Random variation
13 Reaction Kinetics Slow drift
14 Reaction Cooling Water Valve Sticking
15 Condenser Cooling Water Valve Sticking
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown

performance is assessed by the detection delay which is the time period it takes

to detect a fault after the introduction of the fault. The false alarm rate was also

investigated although it has not been reported because all the KDE associated ap-

proaches discussed in this chapter had zero false alarm rates. The 99% confidence

interval is adopted in this study.

The variability of the training data is characterised by the extracted canonical vari-

ate state space model. Firstly, the number of time lags for past and future observa-

tions is determined from the autocorrelation function of the summed squares of all

measurements as shown in Figure 3.2 against ±5% confidence bounds. The auto-

correlation function indicates that the maximum number of significant lags in this

study is 16. Hence both p and f are set to 16. The length of the past and future

observations (mq) is 528 according to (3.48) and (3.49). The number of columns of

the truncated Hankel matrices according to (3.55) is M = 929. The singular value

decomposition is then performed on the scaled Hankel matrix as in (3.58).
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Figure 3.2: Autocorrelation function of the summed squares of all measurements

Several ways have been suggested to determine the order (a) of the system for

CVA based approaches amongst which the dominant singular values [3, 21] and the

Akaike Information Criterion (AIC) are most widely adopted. The former method

was adopted in this study to determine the order of the system. The singular

values from the scaled Hankel were normalised to have the values ranging between

0 and 1 and then the order determined based on the dominant normalised singular

values. For the TEP case study, it is noticed that the singular values of the scaled

Hankel matrix H in (3.58) decrease slowly. If a is determined from these singular

values, it will be unrealistically large as indicated in Figure 3.3, which shows the

normalised sum of squares of residual singular values against the number of states.

As mentioned already, the value of a is not sensitive to monitoring performance

for this work due to the fault detection condition (3.74) adopted. Hence, a more

realistic number of singular values, a = 26 represented by circles in Figure 3.3 is

93



0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normalised Singular Values

N
o
rm

a
lis

e
d

S
in

g
u
la

r
V

a
lu

e
s

Number of States

Figure 3.3: Normalised singular values from the scaled hankel matrix

employed to represent the model space. Also, to make a fair comparison of the

proposed KDE-based approaches developed in this chapter one with another as well

as with their non-KDE counterparts, the number of lag and the order to determine

the dimension of the latent variables are the same for all the approaches developed

and considered in this chapter. In addition, the monitoring criterion is also the same

for the developed KDE-based approaches as well as their non-KDE counterparts.

3.9 Comparison of Monitoring Approaches

In this section, the monitoring performances of the approaches considered in this

chapter are presented. The reliabilities of all KDE and non-KDE approaches con-

sidered in this chapter are presented in Table 3.3 while their detection delays are

presented in Table 3.4.
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Table 3.3: Reliability (%) comparison
Fault IDsCVA

with
KDE

CVA DPCA
with
KDE

DPCA DPLS
with
KDE

DPLS

1 99.75 99.75 99.38 99.25 99.25 99.25
2 99.5 98.5 98 97.88 98.13 98
3 73.03 37.2 0 0 0.2497 0
4 99.88 99.88 99.88 99.88 99.88 99.88
5 99.88 99.88 29.09 27.84 28.21 26.47
6 99.88 99.88 99.88 99.88 99.88 99.88
7 99.88 99.88 99.88 99.88 99.88 99.88
8 99.88 98.75 97.25 97.13 97 97
9 92.26 75.28 0.2497 0 0.2497 0
10 96.63 96.25 39.08 28.21 36.83 29.46
11 99.38 99.38 99.88 98.63 97.88 97.75
12 99.5 99.5 98.13 98.13 98 98
13 96.13 96.13 95.01 95.01 94.76 94.76
14 99.88 99.75 99.75 99.75 99.75 99.75
15 99.5 99.5 0.1248 0 0.1248 0
16 99.13 99.13 35.83 26.22 26.97 21.6
17 98.13 98.13 97.75 97.75 97.75 97.75
18 99.25 99.25 98.63 98.5 98.63 98.5
19 99.88 99.88 90.51 87.02 84.64 79.28
20 97.63 97.25 79.15 76.9 73.91 71.41

Furthermore, the monitoring performances of each KDE approach is compared with

its non-KDE counterpart and then all the KDE approaches are also compared.

3.9.1 Monitoring Performance of DPCA with KDE

In this section, the proposed DPCA with KDE and the traditional DPCA are both

applied to the simulated TEP data. To make a fair comparison of both approaches,

the order to determine the principal components are the same. In this work, 26 PCs

were retained in the model space, while the maximum number of significant lags

was 16.

The results presented in Table 3.3 above show that for 12 of the TEP faults (1, 2, 5,
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Table 3.4: Detection delay (minute) comparison
Fault IDsCVA

with
KDE

CVA DPCA
with
KDE

DPCA DPLS
with
KDE

DPLS

1 9 9 18 21 21 21
2 15 15 51 54 48 51
3 15 39 - - 1125 -
4 6 6 6 6 6 6
5 6 6 12 12 12 12
6 6 6 6 6 6 6
7 6 6 6 6 6 6
8 30 33 69 72 75 75
9 33 45 2115 - 1125 -
10 84 93 210 210 219 219
11 18 18 24 24 24 24
12 15 15 48 48 51 51
13 96 96 123 123 129 129
14 6 9 9 9 9 9
15 15 15 1140 - 1125 -
16 24 24 111 111 216 219
17 48 48 57 57 57 57
18 21 21 36 39 36 42
19 6 6 36 39 36 42
20 60 69 120 123 123 123

8, 9, 10, 11, 15, 16, 18, 19 and 20), the proposed DPCA with KDE is able to detect

more of the fault than the traditional DPCA while for the remaining 8 faults (3, 4,

6, 7, 12, 13, 14 and 17) the detections by both approaches are equal. Furthermore,

for 6 of the TEP faults (1, 2, 8, 18, 19 and 20) the DPCA with KDE is able to

slightly improve the monitoring performance over the traditional DPCA while for

2 faults (9 and 15), the improvement of the DPCA with KDE over the traditional

DPCA in terms of detection delay is significant. Also, for the remaining 12 faults (3,

4, 5, 6, 7, 10, 11, 12, 13, 14, 16 and 17), both approaches achieved equal detection

delays.

The efficiency of the proposed DPCA with KDE over the traditional DPCA is due to

the fact that the DPCA with KDE takes the non-linearity of the plant into account
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which the traditional DPCA does not do. Also, the superiority of the DPCA with

KDE over the traditional DPCA is emphasised for faults that are non-linear in

nature. This means that for linear faults, the proposed DPCA with KDE approach

may not demonstrate advantages over the traditional DPCA. This explains why the

performance of the DPCA with KDE is the same as the traditional DPCA, for some

of the TEP faults. Furthermore, the DPCA with KDE approach and the traditional

DPCA both have zero false alarm rates for all the TEP faults employed in this study.

3.9.2 Monitoring Performance of DPLS with KDE

In this section, the proposed DPLS with KDE and the traditional DPLS i.e. with

control limits derived based on the Gaussian assumption are both applied to the

TEP data. To make a fair comparison for both approaches, the same measurements

were selected as the predictor and response variables based on their sampling rates.

33 of the 52 TEP measurements with a sampling rate of 3 minutes were selected as

the predictor variables while the remaining 19 measurements, 14 of them sampled at

6 minutes interval and 5 of them sampled at 15 minutes interval were employed as

the response variables. Also, 26 latent variables were selected for the model spaces

of both approaches.

For 11 of the faults (2, 3, 5, 9, 10, 11, 15, 16, 18, 19 and 20), the DPLS with

KDE approach has a better reliability than the traditional DPLS while for the

remaining 9 faults (1, 4, 6, 7, 8, 12, 13, 14 and 17), the reliabilities of both approaches

considered in this section are the same. Furthermore, for 4 of the faults (2, 16, 18

and 19), the DPLS with KDE is able to slightly improve the detection delay while

the improvement in detcetion delay is significant for 3 faults (3, 9 and 15). Also,

the DPLS with KDE and the traditional DPLS have equal detection delays for the

remaining 9 faults (1, 4, 6, 7, 8, 12, 13, 14 and 17). The superiority of the DPLS

with KDE over the traditional DPLS is emphasised for faults that are non-linear in
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nature. This explains why the performance of the DPLS with KDE is the same as

the traditional DPLS, for some of the TEP faults. Both approaches have zero false

alarm rates for all twenty TEP faults employed in the current work.

3.9.3 Monitoring Performance of CVA with KDE

In this section, the CVA with KDE and traditional CVA are both applied to the

TEP data. The results presented in Table 3.3 above show that for 7 of the faults

(2, 3, 8, 9, 10, 14 and 20), the proposed CVA with KDE has higher reliabilities than

the traditional CVA, while for the remaining 13 faults (1, 4, 5, 6, 7, 11, 12, 13, 15,

16, 17, 18 and 19) the reliabilities of both approaches considered in this section are

equal. Moreover, the CVA with KDE has lower detection delays for 6 of the faults

(3, 8, 9, 10, 14 and 20), while for the remaining 14 faults (1, 2, 4, 5, 6, 7, 11, 12,

13, 15, 16, 17, 18 and 19), both approaches considered in this section have equal

detection delays. In addition, both approaches considered in this section have zero

false alarm rates for all twenty faults employed in this work. The proposed CVA

with KDE is able to improve the monitoring performance over the traditional CVA.

Moreover, the superiority of the proposed CVA with KDE over the traditional CVA

is particularly emphasised for those faults (3, 9 and 15) that are generally difficult

to detect by most monitoring techniques.

3.9.4 Comparison of KDE Approaches

In this section, the monitoring performances of the KDE approaches developed in

this chapter are compared. To make a fair comparison amongst the KDE approaches,

the number of lags and the order to determine the dimension of the latent variables

are the same for all the KDE approaches. The CVA with KDE is able to improve

the reliability for 17 of the faults (1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
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19 and 20) over the DPCA with KDE while for the remaining 3 faults (4, 6 and 7)

the reliability of the DPCA with KDE is the same as that of the CVA with KDE.

In addition, in terms of detection delays, the CVA with KDE is also able to improve

the monitoring performance over the DPCA with KDE. For 17 of the faults (1, 2, 3,

5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20), the CVA with KDE is able to

detect the faults earlier than the DPCA with KDE while for the remaining 3 faults

(4, 6 and 7), the detection delays of the CVA with KDE and the DPCA with KDE

are the same.

The CVA with KDE is also able to improve monitoring performance over the DPLS

with KDE in terms of reliabilities. For 17 of the faults (1, 2, 3, 5, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19 and 20), the CVA with KDE has a better reliability than

the DPCA with KDE while for the remaining 3 faults (4, 6 and 7), the reliability of

the CVA with KDE is the same as that of the DPCA with KDE. In addition, the

CVA with KDE is able to detect the faults earlier than the DPLS with KDE for 17

faults (1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20), while for the

remaining 3 faults, the detection delays of the CVA with KDE is the same as that

of the DPLS with KDE.

The results show that the DPCA with KDE has a better reliability over the DPLS

with KDE for 9 faults (5, 8, 10, 11, 12, 13, 16, 19 and 20) while for 3 of the faults (1,

2 and 3), the DPLS with KDE has a better reliability than the DPCA with KDE.

For the remaining 8 faults the reliabilities of the DPCA with KDE and the DPLS

with KDE are the same. For 7 of the faults (1, 8, 10, 12, 13, 16 and 20), the DPCA

with KDE is able to detect the faults earlier than the DPLS with KDE, while for 4

of the faults (2, 3, 9 and 15), the DPLS with KDE is able to detect the faults earlier

than the DPCA with KDE. The detection delays of the DPCA with KDE and the

DPLS with KDE are the same for 9 faults (4, 5, 6, 7, 11, 14, 17, 18 and 19).

For most of the faults considered in this work, the CVA with KDE outperformed the

99



DPCA with KDE and DPLS with KDE approaches. The superiority of the CVA

with KDE is particularly emphasised for faults such as 3, 9 and 15, that are difficult

to monitor by most monitoring algorithms.

To further illustrate the superiority of the proposed CVA with KDE, the T 2 and

Q monitoring charts of all the proposed approaches for Fault 9 are presented in

Figure 3.4. In Figure 3.4, sub-figures in the left column and the right column are

for the T 2 and Q charts respectively; whilst the first, second and third rows are

for CVA, DPCA and DPLS approaches respectively. Upper control limits obtained

based on the Gaussian assumption are represented as dash-dot lines, whilst the

UCLs determined by the KDE approach are shown in dashed lines.
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Figure 3.4: Monitoring charts for Fault 9

Figure 3.4 clearly indicates that only the CVA model is able to reveal the difference

in dynamic behaviour between the normal operation and the operation with Fault

9. This is because the CVA approach is a better way than the DPCA and DPLS

approaches to capture dynamic behaviours [3, 4, 5]. Both T 2 andQmetrics produced

by the DPCA and the DPLS approaches have no identifiable difference between the

normal and faulty operations. Furthermore, the CVA with KDE approach gives

tighter UCLs for both metrics resulting in a higher percentage of reliability and
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earlier fault detection than the traditional CVA approach.

To further justify the employment of the control limits derived using the KDE in

this work, the distribution of some of the derived latent variables are illustrated in

Figure 3.5.
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Figure 3.5: Latent Variable Distribution

The KDE is an appropriate solution for non-Gaussian distributions such as that of

the latent variables illustrated in Figure 3.5.
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3.10 Chapter Summmary

In this chapter, three dynamic approaches are extended to non-linear systems us-

ing the KDE resulting in the development of the novel DPCA with KDE, DPLS

with KDE and CVA with KDE approaches. A detailed description of all three ap-

proaches as well as the existing approaches on which they are based is presented. To

demonstrate the efficiency of the novel approaches developed in this chapter, these

approaches are applied to the TEP plant. A description of the TEP plant is also

presented in this chapter. The monitoring performance of the developed techniques

are first compared with their non-KDE counterparts and then compared one with

another.

Generally, the KDE approaches developed in this chapter are able to improve the

monitoring performance over their non-KDE counterparts for most of the TEP faults

employed. Nonetheless, the monitoring performance of the CVA with KDE is better

than the monitoring performance of the DPCA with KDE and the DPLS with KDE

as well as their non-KDE counterparts. Although the monitoring performance of

the CVA with KDE is not significantly better than that of the CVA for some of

the faults, the monitoring performance of the CVA with KDE is significantly better

than that of the CVA without KDE for faults that are particularly difficult to detect

by most monitoring algorithms.

The employment of the KDE with the existing DPCA, DPLS and CVA approaches,

allows these approaches to address the non-linear issues associated with most indus-

trial plants in addition to their ability to adddress dynamic issues.
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Chapter 4

State Space Independent Component

Analysis

The current chapter presents a detailed discussion of a novel state space independent

component analysis (SSICA) technique developed in this work. The proposed SSICA

approach is evaluated by applying it to the TEP plant. Furthermore, the monitoring

performance of the proposed SSICA is compared with those of the existing dynamic

ICA (DICA) and CVA approaches.

4.1 Introduction

The CVA technique discussed in the previous chapter is an efficient dynamic process

monitoring tool as discussed already [4, 7, 101]. However, the CVA is generally a

linear approach not appropriate for non-linear systems. For this reason in this

work, the CVA is extended to non-linear systems using the KDE as explained in

the previous chapter. Also, it was demonstrated in the previous chapter that the

CVA with KDE approach developed in this work is able to improve the monitoring
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performance over the existing CVA with control limits derived based on the Gaussian

assumption as well as the DPCA and DPLS based approaches. However, the states

obtained from the CVA are only de-correlated and not statistically independent.

A solution to the problem of monitoring non-linear systems is the Independent

Component Analysis (ICA) [15, 16, 132]. The ICA technique recovers a few statisti-

cally independent source signals from collected process measurements by assuming

that these independent signals are non-Gaussian. A set of variables are said to be

statistically independent from each other when the value of one variable cannot be

predicted by giving the value of another variable. The measured variables in process

systems are in general not independent but are combinations of several independent

sources that are not directly measured. Furthermore, the ICA can be employed

for the identification of these independent sources. To identify the unmeasured ICs

from measurements, the ICA algorithm involves a pre-processing stage known as

the whitening stage to eliminate the cross correlation between the process variables

before extracting the independent components [15, 16, 19, 121, 123, 132, 133, 134].

Conventionally, most published ICA studies have utilised the PCA for whitening and

dimension reduction in the pre-processing stage [15, 16, 121]. This allows the ICs to

be interpreted by the simple geometry of the PCA [19]. However, the connection of

the ICA with PCA makes such ICA approaches not appropriate for dynamic process

monitoring due to the static nature of the PCA.

To address this limitation of the ICA for dynamic processes, Lee et al. [123] extended

the ICA methods and proposed the dynamic ICA (DICA) approach to improve the

monitoring performance. In the so called DICA approach, a dynamic extension of

the PCA (DPCA) is applied to an augmented data set to account for the auto-

correlations in the pre-processing stage before extracting the ICs from the decom-

posed PCs. However, the DICA, like the DPCA, is not the best approach to capture

the dynamic behaviour from process measurements [3]. As a result, the statistical
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advantage of the ICA is not fully exploited by the DICA and the performance of

the DICA in dynamic process monitoring is still not satisfactory as to be illustrated

in this work.

Nevertheless, the state-space models like the Canonical Variate Analysis (CVA) on

the other hand are reported to be efficient tools for dynamic process monitoring [3,

4, 6, 10, 12, 21, 99]. The CVA is a dimension reduction technique that is based

on state variables and is well suited for auto-correlated and cross-correlated process

measurements. This makes the CVA based approaches a better choice than the PCA

based approaches for dynamic process monitoring.

To derive an efficient tool for non-linear dynamic process monitoring, in this study,

the CVA, rather than the PCA, is proposed as the pre-processing tool to associate

with the ICA resulting in a novel State Space Independent Component Analysis

(SSICA) approach. In the proposed SSICA approach, the CVA is adopted as a di-

mension reduction tool to construct a state space and perform the dynamic whiten-

ing in the pre-processing stage before applying the ICA to the constructed state

space in order to identify the statistically independent components. The SSICA

approach is developed for non-linear dynamic process monitoring and applied to the

Tennessee Eastman Process Plant as a case study.

Moreover, it is demonstrated that generally, the proposed SSICA is able to improve

the process monitoring performance over the existing DICA technique, which is

reported to be an improvement of the traditional ICA [15, 127]. Also, the overall

performance of the proposed SSICA is better than the CVA, which was reported to

be an efficient dynamic monitoring tool [3, 4, 6, 10, 12, 21, 99]. The performance

improvements of the SSICA over the DICA and the CVA include an increase in

detection reliability and a decrease in both detection delay and false alarms.
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4.2 State Space Independent Component Analysis

Algorithm

The development of process monitoring techniques is geared towards applying these

techniques to industrial processes in order to improve process performance moni-

toring. It is well known that most industrial processes to which the monitoring

techniques are applied are dynamic and non-linear. The SSICA approach is de-

veloped to deal with such processes. Firstly, from a general non-linear dynamic

system, a linearized state space model can be constructed from normal operation

data through the CVA. The non-Gaussian collective modelling errors are then ex-

tracted as statistically independent components through the SSICA. The obtained

state space independent components together with the residuals are used for pro-

cess monitoring by comparing the upper control limits estimated through the KDE

approach. These algorithms are described in details as follows.

4.2.1 Canonical Variate Analysis

Consider a non-linear dynamic plant represented as:

xk+1 = f(xk) + wk

yk = g(xk) + vk (4.1)

where xk ∈ <n and yk ∈ <m are state and measurement vectors respectively, f(·) and

g(·) are unknown non-linear functions, whereas wk and vk are plant disturbances

and measurement noise vectors respectively. Clearly, it is difficult to monitor such

unknown non-linear dynamic systems directly. Fortunately, under normal operation

conditions, the plant in Equation (4.1) can be approximated by a linear stochastic
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state space model as:

xk+1 = Axk + εk

yk = Cxk + ηk (4.2)

where A and C are unknown state and output matrices respectively, whereas εk

and ηk are collective modelling errors partially due to the underlying nonlinearity of

the plant, which has not been included in the linear model, and partially associated

with process disturbance and measurement noise, wk and vk respectively. Note,

as a result of the nonlinearity of the physical plant represented in Equation (4.1),

the collective modelling errors, εk and ηk in Equation (4.2) generally will be non-

Gaussian although wk and vk might be normally distributed.

To monitor the linear dynamic process represented in (4.2) without knowing matrices

A and C, the CVA is employed to extract the state variables xk from process

measurements, yk. The CVA is based on the so called subspace identification, where

the process measurements are stacked to form the past and future spaces through

the past, yp,k and future, yf,k observations defined as follows.

yp,k =



yk−1

yk−2
...

yk−q


∈ <mq, ỹp,k = yp,k − ȳp,k (4.3)

yf,k =



yk

yk+1

...

yk+q−1


∈ <mq, ỹf,k = yf,k − ȳf,k (4.4)
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where the first subscripts of yp,k and yf,k indicate either the past (p) or the future

(f) observations, respectively, whilst the second subscripts stand for the reference

sampling point, where the past and future observations are defined. The sample

means of the past and future observations are represented as ȳp,k and ȳf,k respec-

tively, whilst ỹp,k and ỹf,k are pre-processed past and future observations with zero

means.

The past and future truncated Hankel matrices Yp and Yf are then defined in

Equation (4.5) and Equation (4.6) respectively.

Yp =

[
ỹp,(q+1) ỹp,(q+2) · · · ỹp,(q+M)

]
∈ <mq×M (4.5)

Yf =

[
ỹf,(q+1) ỹf,(q+2) · · · ỹf,(q+M)

]
∈ <mq×M (4.6)

From the Hankel matrices defined above, the covariance of the past, future and

cross-covariance matrices are estimated as follows:

Σpp = E(ỹpkỹ
T
pk) = YpY

T
p (M − 1)−1 (4.7)

Σff = E(ỹfkỹ
T
fk) = YfY

T
f (M − 1)−1 (4.8)

Σfp = E(ỹfkỹ
T
pk) = YfY

T
p (M − 1)−1 (4.9)

The goal of the CVA is to find the best linear combinations, aT ỹfk and bT ỹpk of the

future and past observations so that the correlation between these combinations is

maximised. The correlation can be represented as:

ρfp(a,b) =
aTΣfpb

(aTΣffa)1/2(bTΣppb)1/2
(4.10)
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Let u = Σ
−1/2
ff a and v = Σ

−1/2
pp b. The optimization problem can be casted as:

maxu,v uT (Σ
−1/2
ff ΣfpΣ

−1/2
pp )v

s.t. uTu = 1 (4.11)

vTv = 1

The solution of this problem can be obtained through the SVD on the scaled Hankel

matrix, H as indicated in Equation (4.12).

H = Σ
−1/2
ff ΣfpΣ

−1/2
pp = UΣVT (4.12)

where U =

[
u1 u2 · · · umq

]
∈ <mq×mq, V =

[
v1 v2 · · · vmq

]
∈ <mq×mq

Σ =



σ1 0 · · · 0

0 σ2 · · · 0

... . . . ...

0 0 · · · σmq


∈ <mq×mq

From Equation (4.12) above, the canonical variate, zk ∈ <mq based on the past

measurements can be derived as in Equation (4.13).

zk =



b1
T

b2
T

...

bTmq


ỹp,k =



v1
T

v2
T

...

vTmq


Σ−1/2pp ỹp,k = VTΣ−1/2pp ỹp,k = Jỹp,k (4.13)

where J = VTΣpp
−1/2 ∈ <mq×mq is the transformation matrix, which transforms

the mq-dimensional past measurements to the mq-dimensional canonical variate

space. The canonical variate estimated in (4.13) can be separated into the state and
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residual spaces based on the order of the system, a. According to the magnitude

of the singular values, the first a dominant singular values are determined and the

corresponding a elements of the canonical variate retained as the state variables

where a < mq. In addition, the remaining (mq − a) elements of the canonical

variate are said to be in the residual space. Equation (4.14) below shows the entire

canonical variate space (zk ∈ <mq) is spanned by the state variables (xk ∈ <a) and

the residuals (dk ∈ <mq−a), both of which are subsets of the canonical variate, zk.

zk =

[
xk

T dk
T

]T
(4.14)

The previous chapter showed that the state variables, xk obtained through CVA pro-

vides a tool better than directly using the past or future observations to monitor the

dynamic systems in (4.1). However, as shown in (4.2), the states are combinations of

statistically independent non-Gaussian sources. To make process monitoring more

efficient, identifying these sources from the states is desired. The corresponding

algorithm is to be developed in the next section.

4.2.2 State Space Independent Component Analysis

According to Equation (4.2), xk can be expressed as a linear combination of the

initial state, x0 and the collective modelling errors, εj, for j = 0, 1, . . . , k − 1.

xk = Akx0 +
k−1∑
j=0

Ajεk−1−j (4.15)

Equation (4.15) indicates that if x0 and εj, j = 0, . . . , k− 1 are mixtures of m(≤ n)

unknown independent components, sj ∈ <m, for j = 0, · · · , k − 1, then the states,

xk, for k = 1, . . .M are also linear combinations of these unknown independent

111



components. More specifically, the relationship can be expressed as follows.

X = BxSx (4.16)

where X =

[
x1 · · · xM

]
∈ <a×M is the state matrix, Bx =

[
b1 · · · bm

]
∈

<a×m is an unknown mixing matrix, and Sx =

[
sx,0 . . . sx,M−1

]
∈ <m×M is un-

known independent component matrix. The SSICA aims to estimate both mixing

matrix, Bx and independent component matrix, Sx, from the state matrix, X ob-

tained through the CVA described above.

The problem can be solved through an existing ICA algorithm, such as the Fas-

tICA [145] to find a de-mixing matrix, W such that the rows of the estimated

independent component matrix,

Ŝx = WxX (4.17)

are as independent of each other as possible. Based on the “non-Gaussian repre-

sents independence” principle [145], the de-mixing matrix as well as the independent

component matrix are obtained through iterative optimizations to maximize certain

non-Gaussian criteria.

The ICA can be applied to the residual space spanned by dk. The independent

component matrix in the residual space is obtained by applying the ICA algorithm

to the residual matrix, D as follows.

Ŝd = WdD (4.18)

where D =

[
d1 · · · dM

]
∈ <(mq−a)×M .

The ICA based process monitoring is frequently associated with the Mahalanobis
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distance I2, also known as the D-statistic [15, 123, 134]. The I2 metric is the sum

of the squared independent components extracted from the ICA algorithm.

I2x,k = ŝTx,kŝx,k (4.19)

I2d,k = ŝTd,kŝd,k (4.20)

where ŝx,k and ŝd,k are the k-th columns of Ŝx and Ŝd, respectively. The M I2x,k

and I2d,k values for k = 1, . . . ,M are then used to derived the upper control limits,

I2x,UCL(α) and I2d,UCL(α) using the bounded KDE algorithm described in the next

section. It is worthy to note that the KDE employed in the SSICA approach in this

chapter is bounded and different from the KDE of the CVA with KDE approach in

the previous chapter.

For online monitoring, the ICs of the state and residual spaces is calculated from

the new measurements, ỹnewp,k using the transformation matrix, J =

[
JTx JTd

]T
and

the de-mixing matrices, Wx and Wd respectively.

ŝnewx,k = WxJxỹ
new
p,k (4.21)

ŝnewd,k = WdJdỹ
new
p,k (4.22)

The corresponding I2 metrics for the new measurements are then obtained as follows.

I2,newx,k = (ŝnewx,k )T ŝnewx,k (4.23)

I2,newd,k = (ŝnewd,k )T ŝnewd,k (4.24)

A fault condition is then detected by the proposed SSICA if either I2 metric is larger

than the corresponding UCL.
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4.3 Control Limit through Bounded KDE

The ICs are not Gaussian. Therefore, the UCL for the I2 metric cannot be derived

analytically. The kernel density estimation (KDE) is a well established approach to

estimate the PDF of random processes [13, 14, 16]. Hence, it is a natural selection

using the KDE to determine the UCL [4]. Considering both I2 metrics are positive,

a KDE algorithm with lower bound support is adopted in this work to estimate the

UCL.

Let y > 0 be the random variable under consideration. Firstly, the bounded y is

converted into unbounded x by defining x = ln(y). Then, the density function p(x)

can be estimated by the normal KDE algorithm. Finally, the density function of y

is p(ln(y))/y as derived in (4.25).

P (y < b) = P (x < ln(b)) =

∫ ln(b)

−∞
p(x)dx =

∫ b

0

p(ln(y))
1

y
dy (4.25)

Therefore, by knowing p(x), an appropriate control limit can be determined for a

specific confidence bound, α using Equation (4.25). The estimation of the probability

density function p̂(x) at point x through the kernel function, K(·) is defined as

follows

p̂(x) =
1

Mh

M∑
k=1

K

(
x− xk
h

)
. (4.26)

where xk, k = 1, 2, · · · ,M are samples of x and h is the bandwidth. To avoid

selecting a band-width too small or too big, an optimal band-width hopt described

in the previous chapter is adopted in a similar manner as the CVA with KDE

approach

To use both I2x and I2d metrics together, the joint distribution of these two metrics

has to be considered. In general, the joint probability of two random variables, x
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and y is defined as follows.

P (x < a, y < b) =

∫ a

−∞

∫ b

−∞
p(x, y)dxdy (4.27)

However, for the SSICA and the DICA, I2x and I2d are independent. Hence,

P (x < a, y < b) = P (x < a)P (y < b) (4.28)

Equation (4.28) can also be approximately applied to T 2 and Q metrics for the CVA

because x and d in (4.14) are uncorrelated. This means the joint PDF estimation

can be simplified by two univariate PDF estimations.

By replacing xk in Equation (4.26) with I2x,k and I2d,k obtained in (4.19) and (4.20)

respectively, the above KDE approach is able to estimate the underlying PDFs of

the I2x and I2d metrics. The corresponding control limits, I2x,UCL(α) and I2d,UCL(α)

can then be obtained from the PDFs of the I2x and I2d metrics for a given confidence

level, α by solving the following equations respectively.

∫ I2x,UCL(α)

0

p(ln(I2x))

I2x
dI2x

∫ I2d,UCL(α)

0

p(ln(I2d))

I2d
dI2d = α (4.29)∫ I2x,UCL(α)

0

p(ln(I2x))

I2x
dI2x =

√
α (4.30)∫ I2d,UCL(α)

0

p(ln(I2d))

I2d
dI2d =

√
α (4.31)

In this work, a fault is then identified (Fk = 1) if either I2,newx,k > I2xUCL(α) or

I2,newx,d > I2dUCL(α) conditions are satisfied, i.e.

Fk = (I2,newx,k > I2x,UCL(α))⊕ (I2,newd,k > I2d,UCL(α)) (4.32)
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where ⊕ represents a logical “OR” operation.

A graphical summary of the SSICA algorithm is presented in Figure 4.1.

Historical Data: Collect normal operating
process data.

Pre-processing stage: Use CVA for whitening in
the pre-processing stage, estimating the
transformation matrix (J) and then constructing
the state space.

Determination of model space: Using the
correlations as explained in chapter 4, determine
the model and residual spaces.

Collect Real-time Monitoring Data:
This is the data that should be
monitored to determine the presence
of a fault.

Estimate the I2 metric for new
measurements for the model and
residual spaces:
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Estimation of Residual ICs: Estimate the ICs
for the residual space as shown below.
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model and residual spaces
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Estimate the ICs: For online
monitoring, the ICs of the state and
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Figure 4.1: Flow chart of SSICA algorithm
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4.4 Monitoring Performance of SSICA

The proposed SSICA technique developed in this chapter is applied to data from

the TEP plant to illustrate its efficiency. Details of the TEP plant are described

in the previous chapter. The SSICA is assessed using the percentage reliabilities,

detecion delays and false alarm rates. The monitoring performance of the proposed

SSICA is compared with that of the DICA as well as the CVA to demonstrate the

improvement by performing ICA on the state space obtained by the CVA.

For the pre-processing CVA described above, the number of state variables to retain

in the dominant space is normally determined by the dominant singular values from

the scaled Hankel matrix H in Equation (4.31). However, applying the CVA to the

TEP case study showed that using the dominant singular values left an unrealisti-

cally large number of state variables in the dominant space. Hence a more realistic

number of state variables 28 were retained in the dominant space so that 28 state

variables were retained from the pre-processing stage of CVA. To make a fair com-

parison with the proposed SSICA, in the DICA, equal number of latent variables

were retained in the dominant spaces while the rest of the latent variables spanned

the excluded spaces. The percentage reliability and the detection delay of all twenty

TEP faults for the proposed SSICA technique is compared with that of the CVA

and DICA techniques and presented in Table 4.1. The corresponding false alarm

rate of all faults is 0.6849% for the DICA and 0% for both the CVA and the SSICA

techniques.

The superiority of the SSICA over the CVA and DICA techniques is demonstrated

in Table 4.1. For 10 of the 20 faults (2, 3, 8, 9, 10, 13, 15, 16, 17 and 20), the SSICA

is able to improve the monitoring performance over the existing DICA technique

in both reliability and detection delay, while for the rest 10 faults (1, 4, 5, 6, 7,

11, 12, 14, 18 and 19), the SSICA maintains the same performance as the DICA
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Table 4.1: Performance comparison
Fault Reliability (%) Detection Delay (minute)

SSICA CVA DICA SSICA CVA DICA
1 99.75 99.75 99.75 9 9 9
2 99.63 99.63 99.50 12 12 15
3 73.03 70.04 19.48 15 21 21
4 99.88 99.88 99.88 6 6 6
5 99.88 99.88 99.88 6 6 6
6 99.88 99.88 99.88 6 6 6
7 99.88 99.88 99.88 6 6 6
8 99.00 98.88 98.75 18 30 33
9 91.64 90.01 46.82 18 39 48
10 96.75 96.38 96.13 18 90 96
11 99.38 99.38 99.38 18 18 18
12 99.50 99.50 99.50 15 15 15
13 96.25 96.13 96.13 18 96 96
14 99.88 99.88 99.88 6 6 6
15 99.63 99.63 99.50 12 12 15
16 99.38 99.38 99.25 18 18 21
17 98.38 98.25 98.13 18 45 48
18 99.25 99.25 99.25 21 21 21
19 99.88 99.88 99.88 6 6 6
20 97.63 97.50 97.13 18 63 72

approach. In addition, the SSICA is able to achieve reduced false alarm rates than

the DICA for all the TEP faults. In terms of percentage reliability, the improvement

of the SSICA over the DICA is significant (> 0.5%) for 4 of the faults (3, 9, 10 and

20). Particularly, for faults 3 and 9, the improvement is extremely significant, over

40%. Meanwhile, the SSICA is able to reduce the detection delay significantly (> 10

minutes) for 6 faults (8, 9, 10, 13, 17 and 20). More specifically, applying the SSICA

to faults 10 and 13 resulted in over one hour reduction in the detection delay.

In comparison between the SSICA and CVA, the performance of the SSICA is better

than that of the CVA for 7 faults (3, 8, 9 10, 13, 17 and 20) in both the reliability

and the detection delay, whereas the performance criteria of the remaining 13 faults

(1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 18 and 19) are the same for both methods. In the

reliability, the improvement on 2 faults (3 and 9) are significant (over 1%). Also,
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significant improvements in the detection delay (> 10 minutes) are observed for 6

faults (8, 9, 10, 13, 17 and 20), for two of which (10 and 13), the improvements are

over one hour.

To appreciate the capability of the SSICA, fault detection by these three methods

along with fault propagation is further analysed for Faults 3 and 9. Both Faults 3

and 9 relate to the temperature of D feed (stream 2), one for step change (Fault 3)

and another for random variations (Fault 9). These faults directly result in small

deviations in the reactor cooling water outlet temperature, which can be easily

corrected by the closed-loop control system by manipulating the cooling water flow.

Therefore, both faults are generally difficult to be detected by most monitoring

approaches [5].

Figure 4.2 shows a comparison of the fault detection along with the propagation

of Fault 3 for the SSICA (a), CVA (b) and DICA (c) techniques, using Fk derived

from Equation (4.32), whilst Figure 4.3 shows the fault detection along with the

propagated Fault 9 process for these three techniques.

It is for such faults as Faults 3 and 9 that the superiority of the proposed SSICA

technique over the CVA and particularly the DICA techniques is most outstanding

as illustrated in Figures 4.2 and 4.3. The performance of the SSICA is better than

that of the CVA and DICA techniques for both Faults 3 and 9. Particularly, it is

clear that for both faults the SSICA is able to show a significant improvement of fault

detection over the DICA technique within a few hours of the early stage of fault

propagation. The improvement in the early fault propagation stage is important

since it will give more time for operators to deal with the detected fault.

Although the DICA, also referred to as the ICA with delays is reported to be a

more efficient dynamic monitoring tool than the traditional ICA [15], the proposed

SSICA technique is able to significantly improve the monitoring performance over
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Figure 4.2: Comparison of fault detection along with the propagation of Fault 3

the DICA technique for most of the TEP faults considered in this work. This is

because the pre-processing stage of the SSICA is based on the CVA, which is a more

appropriate and more efficient dynamic monitoring tool than the DPCA on which

the DICA technique is first based on. Furthermore, the efficiency of the SSICA over

the CVA is owed to the fact that the SSICA is more suitable than the CVA to deal

with non-Gaussian process measurement, separating the original sources to a greater

degree than the CVA technique. Moreover, note that the results illustrated above

demonstrate that there were no faults for which either the CVA or DICA techniques

outperformed the proposed SSICA technique.

It is worth to note that the CVA approach adopted for comparison with the proposed

SSICA is able to cope with certain level of non-linearities due to its association with

the KDE for the determination of the UCL [4]. Moreover, the superiority of the
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Figure 4.3: Comparison of fault detection along with the propagation of Fault 9

CVA over the DICA indicates that the dynamic issue has more impact on the fault

detection performance than the non-linearity for the TEP process. This might be

due to the feedback control, which widely propagates the transient response caused

by a fault, as well as restricts the variations caused by a fault to relatively small

level. This restriction on variation causes some faults to be difficult to detect without

taking into account the correlations in time. Meanwhile, the effect of non-linearity

on fault responses is also restricted so that the CVA with KDE approach is able to

detect most faults adequately. This may also be the reason why the performance of

the SSICA and the CVA is very close for most of the TEP faults.
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4.5 Chapter Summmary

In this chapter, the existing ICA approach which is well suited to non-linear pro-

cesses is extended to dynamic processes using the CVA resulting in the novel SSICA

approach. The proposed SSICA consists of employing the CVA for the construction

of the state space in the pre-processing stage before using the ICA for the extraction

of the ICs from the constructed state space and then employing the KDE to derive

appropriate control limits. To demonstrate the efficiency of the proposed SSICA, it

is applied to the TEP plant. Moreover, a comparison of the monitoring performance

of the SSICA with that of the CVA and DICA methods demonstrates the superiority

of the proposed SSICA over both methods. This is because in the developement of

the SSICA technique, the dynamic and non-linear properties commonly associated

with most chemical processes are both taken into account. The DICA also takes

the dynamic and non-linear properties into account, although unsatisfactorily. The

CVA method on the other hand, only takes the dynamic properties into account.
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Chapter 5

Case Study

This chapter describes a case study based on the ASM1 model of a Waste Water

Treatment Plant (WWTP). Evaluation of all the monitoring algorithms developed

in this work using the ASM1 model is illustrated. The KDE associated approaches

are first evaluated and then compared with their non-KDE counterparts before a

comparison of the KDE approaches is presented. Furthermore, the SSICA is eval-

uated using the ASM1 model and then a comparison of the results from the SSICA

approach with those of the DPCA with KDE, DPLS with KDE, CVA with KDE and

the DICA is presented.

5.1 Waste Water Treatment Plant

In the last few decades, waste water treatment has become an industry of high

complexity due to the increasing requirements on the efficiency of the effluent water

quality. Waste water treatment plants are large non-linear plants subject to dynamic

changes. The major goal of waste water treatment plants is to remove pollutants

from waste waters and recover the water quality. This recovery is based on physical,

chemical and biological treatment processes. However, the biological treatment part
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is considered for this case study.

The biological treatment consists of micro organisms like bacteria, unicellular and

multi-cellular life forms that grow by feeding on the organic pollutants in the waste

water. Also, the biological treatment aims to have only a certain amount of micro

organisms in the process. This is achieved in an activated sludge (AS) reactor by

separating the sludge from the water phase in a sedimentation unit and returning

it to the biological reactor as recycled sludge. The excess sludge from the process

is then removed and treated in a sludge treatment process which both stabilises

and de-waters the sludge. This stabilised sludge can then be used as a fertiliser.

However, sludge treatment is not discussed any further in this thesis because it is

beyond the scope of this work.

The idea to develop a simulation benchmark for wastewater treatment plants was

given birth to in the mid 1990s. The benchmark was developed in parallel by

the European Cooperation in Science and Technology (COST) Actions 682/624

and the first IAWQ (International Association on Water Quality) Task Group on

Respiratory-based Control of the Activated Sludge process [17]. Their goal was

to develop a description of the organic carbon and nitrogen removal involving the

nitrification and denitrification processes. In addition a mathematical representation

simulating the behaviour of the bio-reactor was supposed to be created. The task

group published their final result as the IAWQ Activated Sludge Model No. 1

(ASM1) in 1987 [17]. Moreover, this benchmark has been widely applied and is also

employed in this work. The ASM1 model is described in the following section.

5.2 Activated Sludge Model No. 1

The ASM1 is a reference model for bioreactor in waste water treatment plants [17].

It is designed to treat an average flow of 20, 000m3/day of waste water with an
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average chemical oxygen demand (COD) concentration of 300mg/l. The COD is a

measure of the amount of organic compounds in water.

5.2.1 Plant Configuration

The ASM1 plant consists of five reactors and a ten layer secondary settling tank

which serves as a sedimentation unit. The first two reactors are anoxic while the last

three are aerobic. Also, the reactors in the ASM1 plant are modelled as completely

mixed models. A layout of the ASM1 plant is shown in Figure 5.1.
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Figure 5.1: Layout of ASM1 plant

In addition, the physical dimensions of the plant are presented in Table 5.1.

Table 5.1: Physical dimensions of ASM1 plant
Description Type

Anoxic Reactors 1000m3

Aerobic Reactors 1333m3

Sedimentation Unit 6000m3

Flow rate of internal recycle stream from tank 5 to tank 1 55338m3/day
Flow rate of sludge recycle stream from bottom of settler to tank 1 18446m3/day

Average influent flow rate 18446m3/day

The ASM1 model is based on the activated sludge process (ASP), in which biological

reactions occur in the presence of oxygen while settled sludge is partly recycled into

the reactor to enhance the ability of the biological reactor. This work is based on

the modified ASM1 model with the feedforward-feedback control strategy developed

in the work of Wang [17].
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5.2.2 Influent Characteristics

Three influent scenarios represented by three data files were developed by a working

group on the benchmarking of WWTP, COST 624, which are dry weather, storm

weather and rain weather [15]. Each of the files contains influent data for 14 days in

15-minute intervals, with 96 samples taken in each day. Therefore, for the 14 days

represented in the influent data, 1345 samples also known as observations were taken.

The influent scenarios were developed to mimic real waste water characteristics

typical for a plant of the chosen size. In each reactor, the variables included in the

ASM1 are listed in Table 5.2.

Table 5.2: ASM1 variables
Symbol Variable

SI Inert organic matter
SS Readily biodegradable substrate
XI Particulate inert organic matter
XS Slowly biodegradable substrate

XB,H Active heterotrophic biomass
XB,A Active autotrophic biomass
XP Particulate product from biomass decay
SO Dissolved oxygen

SNO Nitrate and nitrite nitrogen
SNH Ammonia nitrogen
SND Biodegradable organic nitrogen
XND Particulate biodegradable organic nitrogen
SALK Alkalinity

5.2.2.1 Dry Weather

The dry weather data displays a daily pattern corresponding to that of a dry weather

for 14 days. Hence, there is no major upset or disturbance present in this data

set. The influent flow, soluble and particulate loadings from the dry weather file is

depicted in Figure 5.2.
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Figure 5.2: Plot of dry weather variables
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Figure 5.3: Plot of storm weather variables
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5.2.2.2 Storm Weather

The storm weather on the other hand has two major disturbances. The influent flow

as well as the soluble and particulate loadings from the storm weather file are all

shown in Figure 5.3. The first disturbance which occurs at the end of the 8th day is

a short storm involving a rain event lasting for 3 hours. The influent flow reaches up

to 3 times the average dry weather and the particulate pollutant loading increases

up to 4 times the average dry weather loading as illustrated in Figure 5.3. As a

result of the increased flow in the influent, there is a flush-out. This means that

particulate matter present in the sewer system is flushed out due to the increase in

the flow rate. The second disturbance in the storm data occurs at the start of the

11th day and involves a rain event lasting for 15 hours where the influent flow and

the soluble pollutant loading is similar to that of the first disturbance. However,

the particulate loading in the second disturbance is reduced to half the average

dry weather loading because it is assumed that the sewers have been washed from

the rain event in the first disturbance. As a result, the particulate matter is diluted

resulting in low influent concentrations. During both disturbances in the storm data,

the soluble compounds are diluted as illustrated towards the end of the 8th day and

the 11th day as in the plot of the concentrations of Ss, Snh and Snd. In addition, the

average influent flow rate during both disturbances increases from 20,000m3/day to

60,000m3/day3 as in the plot of the storm weather inluent flow rate in Figure 5.3.

5.2.2.3 Rain Weather

The rain weather data has a prolonged period of rain, where the rain starts on the

8th day and diminishes on the 10th day. The influent flow, soluble and particulate

loadings from the rain weather file is depicted in Figure 5.4. The effect of the

prolonged rain between the 8th and the 11th days is clearly shown in Figure 5.4. As

a result of the prolonged rain, there is an increase in the influent flow rate while both
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soluble and particulate matters are diluted as depicted in the plots of the soluble

and particulate concentrations in Figure 5.4.
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5.2.3 Fault Scenarios

The training model in this work is based on a 14-day normal operating period of

the dry weather. Generally, process monitoring involves the development of a model

from the normal operating process and then employing the developed model to

monitor on-line processes to determine the presence of a fault. For the purpose

of this work, three fault scenarios (Faults A1, A2 and A3) are simulated and eval-

uated. These fault scenarios involve different types of disturbances that could be

encountered in a real waste water treatment plant.

The fault scenarios in this work were created by varying the values of some of the

variables of the ASM1 model in its normal operating mode. Also, the created faults

involve internal disturbances [15], which are variations caused by changes within the

process that affect the process behaviour. For each of the fault scenarios created,

the plant is operated in its normal mode for the first 7 days, before the various faults

are introduced on the 8th day of the operation. These introduced faults are then

allowed to remain in the process till the end of the process.

Among the many variables used in the benchmark, 6 were selected to build the

monitoring system because they are important variables in the real waste water

treatment plant systems [15]. The 6 measurements employed to build the monitoring

system in this work are listed in Table 5.3;

Table 5.3: Monitoring variables for benchmark model
Symbol Variable
Qin Influent flow rate
DO Dissolved Oxygen in the fifth reactor
CODe Chemical oxygen demand
SNHe Influent ammonium concentration
BODe Biological oxygen demand
KLa5 oxygen transfer coefficient (reactor 5)

The nominal and fault data sets have 1345 observations and the 6 variables listed in

Table 5.3 above. Generally, most changes in the biological process of the WWTP are
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slow. Therefore, in this work, when faults are introduced, these faults are allowed

to carry on till the end of the simulation process to allow the full impact of the fault

to be felt in the process. The three fault scenarios created in this work are briefly

described in the following sections.

5.2.3.1 Fault A1

Fault A1 involves a step decrease in the autotrophic growth rate. The autotrophic

bacteria use inorganic carbon as their carbon source to bring about nitrification,

which is the conversion of ammonia to nitrite and nitrate in the presence of sufficient

air. The nitrate is then reduced to nitrogen gas in the absence of oxygen in the

denitrification process and then released to the atmosphere. Generally, waste water

treatment plants aim to remove nitrogen in order to improve the water quality.

Hence, the nitrification rate is an important parameter in waste water treatment

plants. As a result of the introduction of this fault, nitrification is inhibited and

consequently, the nitrification rate which quantifies how quickly nitrification occurs

is also affected. In the ASM1 model, the nominal value of the autotrophic growth

rate is 0.5. In the Fault A1 scenario, the autotrophic growth rate is changed on the

8th day to 0.2 and allowed to remain at that value for the rest of the simulation

process.

5.2.3.2 Fault A2

This fault involves a step decrease in the ammonification rate on the 8th day from

0.05m3/(gCODday) to 0.02m3/(gCODday) till the end of the process simulation.

Ammonification is the conversion of nitrogen to ammonia while how quickly am-

monification occurs is the ammonification rate. As a result of this fault, there is a

decrease in the conversion of the nitrogen to ammonia. This results in more nitro-
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gen in the water than required, which adversely affects the water quality. Faults

that involve a change in the ammonification rate are generally well detected because

the rate of conversion of nitrogen in waste water treatment plants has a significant

effect on the growth of the micro-organisms and other aspects of the waste water

treatment process.

5.2.3.3 Fault A3

Fault A3 involves a step change in the heterotrophic growth rate. The heterotrophic

bacteria in the ASM1 use organic carbon as their carbon source to bring about de-

nitrification, which is the reduction of the nitrate from the nitrification process to

nitrogen gas. In the ASM1 model, the nominal value of the heterotrophic growth

rate is 4. In the Fault A3 scenario, the heterotrophic growth rate is doubled on

the 8th day and allowed to remain at that value for the remaining duration of the

simulation process. This fault is a change in the biological kinetic parameters which

generally results in a small change in the output variables. Faults of this kind are

generally more difficult to detect by majority of monitoring algorithms.

5.3 Monitoring Performance

The ASM1 model described above is further employed for the evaluation of all

the monitoring methods developed in this work. The monitoring performance in

this work is assessed based on the percentage reliability which is defined as the

percentage of the samples outside the control limits [144] within the last 8 hour

faulty operation. Hence a monitoring technique is said to be better than another

technique if the percentage reliability of this technique is numerically higher than

the percentage reliability of another. Two other parameters employed to assess the

monitoring methods in this chapter are the detection delays and the false alarm
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rates. The detection delay is the time period it takes to detect a fault after the

introduction of the fault while the false alarm rates is the amount of non-fault

operations that are mis-detected as fault operations by the monitoring algorithms.

The percentage reliabilities, detection delays and false alarm rates are the criteria

for the assessment of the monitoring methods in this chapter. The 99% confidence

interval is also adopted in this work. The evaluation of the developed monitoring

algorithms in this chapter is similar to those in the previous chapters. To evaluate

the monitoring methods in this chapter, the number of time lags for past and future

observations is first determined from the autocorrelation function of the summed

squares of all measurements as shown in Figure 5.5 against ±5% confidence bounds.
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Figure 5.5: Autocorrelation function of the summed squares of all measurements

The autocorrelation function in Figure 5.5 above indicates that the maximum num-

ber of significant lags is 13. Hence the past vector (p) and the future vector (f)
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are both set to 13. Also, the length of the past and future observations (mq) is 78

according to Equations (3.48) and (3.49). The number of columns of the truncated

Hankel matrices according to (3.55) is M = 1320. To determine the order (a) of the

system, the singular value decomposition is performed on the scaled Hankel matrix

as in (3.58). The singular values obtained from the singular value decomposition

of the scaled Hankel are normalised to have their values ranging between 0 and 1.

Thereafter, the order of the system is determined based on the dominant normalised

singular values. Normalised singular values ranging between the values of 0.1 − 1

are considered dominant while normalised singular values with values less than 0.1

are considered not to be dominant. In the work reported in this chapter, there are

26 dominant singular values represented by the circles as illustrated in Figure 5.6.
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Figure 5.6: Normalised singular values from the scaled hankel matrix

Hence, in this work, a = 26. Sometimes, a fault may cause a significant deviation

in the model space but not necessarily result in a similar level of significance in the
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residual space, vice versa. Therefore, in the work in this chapter, a fault is identified

(Fk = 1) if either T 2
k > T 2

UCL(α) or Qk > QUCL(α) conditions are satisfied. This

fault detection condition has the advantage of being more sensitive than employing

either the T 2 or the Q metric alone. Also, by using this fault detection condition,

the monitoring performance becomes insensitive to the number of states (a), since

any ignored variances in the T 2 metric by reducing a will be recovered by Q metric.

In the following sections the monitoring performance of all the methods developed

in this work are presented. Firstly, the KDE approaches are evaluated using the

data produced by the ASM1 model and then compared with their non-KDE coun-

terparts. The monitoring performance of the KDE approaches are also compared

one with another. Furthermore, the SSICA is evaluated using the same data and its

monitoring performance compared with those of the KDE approaches as well as the

DICA approach. To make a fair comparison of the approaches considered in this

chapter, equal number of latent variables are retained in the model spaces while the

rest of the latent variables span the excluded spaces. In addition, equal number of

lags for p and f are employed for all the approaches in this chapter.

5.4 Comparison of Monitoring Approaches

In this section, the reliabilities, detection delays and the false alarm rates of the mon-

itoring approaches are presented in Table 5.4, Table 5.5 and Table 5.6 respectively.

5.4.1 Monitoring Performance of DPCA with KDE

In this section, the proposed DPCA with KDE is applied to the data from a waste

water treatment plant. To illustrate the efficiency of the DPCA with KDE over
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Table 5.4: Reliability comparison
Fault Reliability (%)

CVA
with
KDE

CVA DPCA
with
KDE

DPCA DPLS
with
KDE

DPLS SSICA DICA

A1 88.34 76.28 88.04 73.16 88.19 75.28 91.10 87.73
A2 88.65 76.53 88.34 73.28 87.88 75.28 91.41 88.04
A3 75.46 74.66 61.2 48.81 72.55 71.04 85.89 34.51

Table 5.5: Detection delay comparison
Fault Detection Delay (min)

CVA
with
KDE

CVA DPCA
with
KDE

DPCA DPLS
with
KDE

DPLS SSICA DICA

A1 285 2505 360 2601 465 1140 270 1215
A2 285 2505 360 2610 465 1140 270 1235
A3 285 2505 360 2601 465 1140 270 1230

the traditional DPCA, their monitoring performances are compared. The results

in Table 5.4 show that, in terms of percentage reliability, the improvement of the

DPCA with KDE over the traditional DPCA is significant (> 14%) for the 3 faults

employed. Meanwhile, the DPCA with KDE is also able to reduce the detection

delay significantly (> 37 hours) for all 3 faults. This is very important in process

monitoring because detecting the faults early is a major goal of process monitoring

as this advantage gives operators more time to deal with the situation early in order

to ensure safe operating processes. From the results illustrated in Table 5.6, the

DPCA with KDE has a higher false alarm rates (0.06%)than the traditional DPCA

for the 3 faults employed. This is because the DPCA with KDE has a tighter control

limit with a greater chance of false alarm rates.
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Table 5.6: False alarm rates comparison
Fault False Alarm Rate (%)

CVA
with
KDE

CVA DPCA
with
KDE

DPCA DPLS
with
KDE

DPLS SSICA DICA

A1 2.199 1.268 2.786 2.724 2.199 2.002 2.199 0
A2 2.199 1.268 2.786 2.724 2.199 2.002 2.199 0
A3 2.199 1.268 2.786 2.724 2.199 2.002 2.199 0

5.4.2 Monitoring Performance of DPLS with KDE

In this section, the monitoring performance of the DPLS with KDE is compared with

the traditional DPLS. For the DPLS analysis in this section, the Chemical oxygen

demand (CODe) and the Biological oxygen demand (BODe) were selected as the

response variables while the predictor variables consisted of the Influent flow rate

(Qin), Dissolved oxygen in the fifth tank (DO), Influent ammonium concentration

(SNHe) and the oxgen transfer coefficient in the fifth reactor (KLa5). As illustrated

in Table 5.4, the improvement of the DPLS with KDE over the traditional DPLS is

significant (> 1.5%) for all the faults employed. In addition, the DPLS with KDE

is able to detect the faults significantly earlier (> 11.25 hours) than the traditional

DPLS as shown in Table 5.5. Nevertheless, Table 5.6 shows that the DPLS with

KDE has a higher false alarm rates (0.2%)than the traditional DPLS for the 3 faults

employed. This is because the DPLS with KDE has a tighter control limit with a

greater chance of false alarm rates.

5.4.3 Monitoring Performance of CVA with KDE

In this section, the monitoring performance of the CVA with KDE is compared with

that of the traditional CVA. The results illustrated in Table 5.4 show that for all

the faults employed, the reliabilities of the CVA with KDE is higher (> 0.8%) than

the reliabilities of the CVA without KDE. Also, it is shown in Table 5.5 that for
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all the faults, the proposed CVA with KDE is able to detect the faults earlier (37

hours) than the CVA without KDE. The superiority of the CVA with KDE over

the CVA without can be attributed to the suitability and appropriateness of the

control limit derived using the KDE for plants exhibiting nonlinearity. Nonetheless,

the CVA with KDE is unable to improve the false alarm rates over the traditional

CVA. This is because the control limit of the CVA with KDE is tighter than that of

the traditional CVA, causing the CVA with KDE to have a higher false alarm rate

than the traditional CVA.

Clearly, the KDE approaches are able to significantly improve the monitoring per-

formance over the their non-KDE counterparts in terms of reliability and detection

delays. This improvement is due to the ability of the KDE associated approaches

to account for the non-Gaussianity of the plants that may be due to non-linearity,

which the non-KDE approaches do not account for. However, the KDE approaches

developed in this work are unable to improve the false alarm rates. This is because

using the KDE, the UCL is reduced which results in a higher chance of false alarm

rates.

It is illustrated in Table 5.4, Table 5.5 and Table 5.6 that generally, the CVA with

KDE is superior to the DPCA with KDE and the DPLS with KDE approaches also

developed in this work. From Table 5.4, the reliabilities of the CVA with KDE are

higher than those of the DPCA with KDE for all faults. Also, the CVA with KDE

has higher reliabilities than the DPLS with KDE for all faults. This is because the

CVA is a better dynamic monitoring tool than the DPCA and DPLS approaches.

The CVA is able to capture those dynamic behaviours that may not be captured

by the DPCA and DPLS approaches. This way, the CVA with KDE does not only

address the issues of non-Gaussianity which could be due to the non-linearity of the

plant but also deals efficiently with the dynamic issues associated with industrial

plants. For Faults A1 and A3, the DPLS with KDE has higher reliabilities than
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the DPCA with KDE while for the remaining fault (A2), the DPCA with KDE

performed better than the DPLS with KDE in terms of reliabilities.

The illustrations in Table 5.5 show that the CVA with KDE is able to detect all 3

faults earlier (> 1 hours) than the DPCA with KDE. In addition, the CVA with

KDE is also able to improve significantly (3 hours) the monitoring performance in

terms of detection delay over the DPLS with KDE for all the faults. Although

all the KDE approaches address the issue of nonlinearity of the plant in a similar

way, the CVA based approach deals with dynamic issues better than the DPCA and

DPLS based approaches. Hence, the ability of the CVA with KDE to detect the

faults earlier than the DPCA with KDE and the DPLS with KDE is due to the

fact that the CVA is a better dynamic monitoring tool than the DPCA and DPLS

approaches. Meanwhile, the DPCA with KDE is able to detect the faults earlier

(1.75 hours) than the DPLS with KDE for all 3 faults.

Table 5.6 shows that the false alarm rates of the CVA with KDE are lower than

those of the DPCA with KDE for all 3 faults. However, the false alarm rates of

the CVA with KDE and those of the DPLS with KDE are exactly the same for all

the faults. Also, the DPLS with KDE is able to improve (> 0.6%) the monitoring

performance over the DPCA with KDE in terms of the false alarm rates for all of

the faults.

In summary, the evaluation of the KDE associated approaches using the data simu-

lated from the ASM1 model shows that the KDE approaches are able to improve the

monitoring peformance over their non-KDE counterparts, based on the parameters

employed in this work to assess the performance of the monitoring techniques.
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5.4.4 Monitoring Performance of SSICA

The SSICA approach is evaluated using simulated data from the ASM1 model. The

proposed SSICA is first based on the CVA to construct the state space before ap-

plying the ICA to extract the state space independent components. To demonstrate

the improvement by performing ICA on the state space obtained by the CVA, the

SSICA is compared with the CVA. The DICA [123, 127] is a dynamic extension

of the ICA with similar objectives as the proposed SSICA approach. Therefore, in

this work, the SSICA is also compared with the DICA to illustrate its efficiency. In

addition, the SSICA is compared with the KDE approaches.

The reliabilities illustrated in Table (5.4) show that the SSICA is able to improve

the monitoring performance in terms of the reliability over all the other methods for

all the faults employed in this work. The improvement of the SSICA over the other

methods is significant (> 2.76%). The SSICA is able to significantly improve the

reliabilities over the DICA approach. The efficiency of the SSICA over the DICA is

particularly emphasised for the Fault A3 process as illustrated. The superiority of

the SSICA over the DICA is due to the fact that the SSICA is based first on the

CVA which is a more appropriate dynamic monitoring tool than the DPCA [3, 4]

on which the DICA is first based in the pre-processing stage. The SSICA also has

higher reliabilities than the CVA with KDE, DPCA with KDE and the DPLS with

KDE methods for all 3 faults. Particularly, the improvement of the SSICA over the

KDE associated approaches is significant for Fault A3. To illustrate this significant

improvement of the SSICA over the other methods for Fault A3, a comparison of

the fault detection along with the propagation of Fault A3 for all the techniques is

presented in Figure 5.7.
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Figure 5.7: Comparison of fault detection along with the propagation of Fault A3

Furthermore, the results illustrated in Table 5.5 show that the SSICA is able to

improve the monitoring performance in terms of detection delays over the CVA

with KDE, DICA and DPLS with KDE methods for all the faults. Also, the SSICA

is able to detect the faults earlier than the DPCA with KDE for all faults.

From Table 5.6, the false alarm rate of the DICA is lower than the false alarm rates

of the other methods considered in this chapter. This is because the DICA is not as

sensitive as the SSICA or the KDE approaches developed in this work. Furthermore,

the insensitivity of the DICA approach can be attributed to the the use of the DPCA

for the pre-processing stage of the DICA. Meanwhile, the false alarm rates of the

SSICA are the same as those of the CVA with KDE and DPLS with KDE for all of

the faults. In addition, the false alarm rates of the SSICA are lower (> 0.59%) than
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those of the DPCA with KDE for all the faults.

5.5 Chapter Summmary

In this chapter, a detailed description of the ASM1 model is presented. Three fault

scenarios are created based on the ASM1 model to evaluate the monitoring methods

developed in this work. Also, a comparison of the monitoring performance of the

methods developed in this work is presented. Generally, the CVA with KDE, DPCA

with KDE and the DPLS with KDE approaches are able to improve the monitoring

performance over their non-KDE counterparts based on the criteria employed in this

work for the assessment of the monitoring methods. Among the KDE approaches,

the CVA with KDE outperformed the DPCA with KDE and the DPLS with KDE

approaches. In this chapter also, the SSICA is compared with the KDE associated

approaches. The results show that the SSICA is able to further improve the moni-

toring performance over the KDE associated approaches. In addition, the SSICA is

compared with the DICA. Moreover, the performance of the SSICA is superior to

that of the DICA approach. Figures and Tables have been employed to illustrate

these results in this chapter.

143



Chapter 6

Conclusions and Future Work

This chapter presents a summary of the conclusions drawn from this work and con-

cludes with a discussion of recommendations for future research.

6.1 Summary of Thesis

The work performed in this thesis can be divided into three parts:

• A literature review on process monitoring and various process monitoring

methods

• Development of novel monitoring approaches

• Evaluation of the developed monitoring approaches using simulated industrial

plants
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6.1.1 Outcomes of Work

In this work, various monitoring techniques were developed and evaluated. Dynamic

methods like the DPCA, DPLS and the CVA are extended to non-linear systems

using the kernel density estimations. The resulting techniques are the novel DPCA

with KDE, DPLS with KDE and the CVA with KDE. The KDE approaches were

first evaluated by applying them to the Tenneessee Eastman Process Plant. The

percentage reliability, detection delays and the false alarm rates are the parameters

employed to assess the efficiency of the monitoring methods. The KDE approaches

were compared with their non-KDE counterparts to illustrate the improvement in

the condition monitoring performance of the KDE approaches over their non-KDE

counter-parts. Generally, the KDE approaches developed in this work were able to

improve the condition monitoring over their non-KDE counterparts. However, there

were some cases for which the performance of the KDE approaches were the same

as that of their non-KDE counter-parts. This could be because the efficiency of

the KDE approaches over their non-KDE counter-parts is due to the fact that the

KDE approaches take the non-Gaussian distributions which may be caused by the

nonlinearity of the plant into account which the non-KDE approaches do not do.

Also, the superiority of the KDE approaches is emphasised for faults that are non-

linear in nature. Hence, for linear faults, the KDE approaches may not demonstrate

advantages over their non-KDE counter-parts. Moreover, it is important to note

that there was no case for which a non-KDE approach performed better than a

KDE approach in this work.

Furthermore, the KDE approaches developed in this work were also compared one

with another. The DPCA with KDE outperformed the DPLS with KDE for some

faults, while for the remaining faults, the performance of the DPLS with KDE was

better than that of the DPCA with KDE. Amongst the KDE approaches, the CVA

with KDE was superior to the DPCA with KDE and the DPLS with KDE ap-
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proaches for some faults while for the remaining faults, the performance of the CVA

with KDE is the same as those of the DPCA with KDE and the DPLS with KDE.

The performance of all the KDE approaches are the same for those faults that are

easily detected by most monitoring methods. However, for faults that are difficult to

detect by most monitoring methods, the performance of the CVA with KDE is sig-

nificantly better and particularly emphasised. Note that there was no case for which

the CVA with KDE was outperformed by any of the other two KDE approaches.

This is because the CVA is a better tool to capture dynamic behaviour than the

DPCA and DPLS approaches. In addition, all the KDE approaches developed in

this work had zero false alarm rates for all the TEP faults employed in this work.

In this work also, a novel State Space Independent Component Analysis (SSICA)

was developed. The proposed SSICA extends the ICA to dynamic systems thereby

addressing the limitations of the ICA for dynamic systems. In the proposed SSICA

approach, the CVA is first employed for the construction of the state space in the

pre-processing stage before applying the ICA algorithm to the constructed state

space for the extraction of the non-Gaussian ICs and then employing the KDE for

the the derivation of appropriate and efficient control limits.

To evaluate the proposed SSICA approach, it was also applied to the TEP plant.

Furthermore, to demonstrate the improvement of the proposed SSICA over the

CVA, the monitoring performance of the SSICA is compared with that of the CVA.

In addition, the performance of the proposed SSICA is compared with that of the

DICA because both methods have similar objectives. For some of the faults, the

performance of the SSICA is better than those of the DICA and CVA approaches

although the significance of improvement over the CVA was not as high as that over

the DICA. However, the performance of the SSICA was the same as those of the

CVA and DICA approaches for the remaining faults. Moreover, it is important to

note that all the TEP faults employed in this work, there is no fault for which the

146



CVA or DICA approaches performed better than the proposed SSICA in terms of

reliability or detection delays. In addition, the SSICA was also able to reduce the

false alarm rates over the CVA and DICA methods. The advantages of the SSICA

over the DICA is attributed to the fact that the proposed SSICA is first based on the

CVA which is a better dynamic tool than the DPCA on which the DICA approach

is based. Furthermore, the efficiency of the proposed SSICA over the CVA is owed

to the fact that the SSICA is more suited than the CVA to deal with non-Gaussian

process measurements, separating the original sources to a greater degree than the

CVA technique.

The KDE approaches were also applied to a simulated WWTP to demonstrate their

efficiency. For the fault scenarios employed in this work, the KDE approaches were

able to improve the the monitoring performance over their non-KDE counter-parts.

Also, the CVA with KDE was able to further improve the monitoring performance

over the DPCA with KDE and DPLS with KDE methods for all the WWTP faults

employed in this work.

In summary, the KDE approaches were developed in this work to be able to si-

multaneously address the dynamic and non-linear issues commonly associated with

most industrial plant. Moreover, these KDE approaches are able to improve the

monitoring performance over the traditional non-KDE approaches. Also, the pro-

posed SSICA is an efficient attempt to extend the ICA to dynamic systems, thereby

accounting for the dynamic properties as well as the non-linearity of most industrial.

6.2 Future Work

There are a number of recommendations for further research to enhance the quality

of the research work described in this thesis.
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• Process monitoring consists of fault detection and diagnosis. So far, the work

in this research has been on fault detection with no work done on diagnosis.

Therefore, it is recommended in future to do diagnosis based on the novel

approaches developed in this work for fault detection. Existing methods for

diagnosis can be employed with the methods developed in this work.

• Like most CVA-based approaches, the CVA with KDE approach employed

in this work is developed using the past vector. However, the future vector

could also be employed for the development of the CVA model. Therefore, it

is recommended to build a CVA model based on the future vector rather than

the past vector as is done in the current work.

• In the current work, the SSICA is based on the FASTICA which performs the

random initialisation of the demixing matrix in the whitened space. This ran-

dom initialisation can result in different results in the ICA algorithm. Hence

it is recommended in this work to employ the estimated states from the CVA

for the determination of the demixing matrix.

• Non-linear models are another possible way to improve the monitoring of non-

linear plants. Hence, a non-linear extension of the proposed SSICA is expected

to improve the monitoring perfromance over the proposed SSICA.
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