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SUMMARY  

The method of oblique co-ordinates(1) is used to 

analyse the problem associated with the strength and 

deformation of a uniform, rectangular, two-cell swept 

box beam having ribs parallel to the line of flight. 

The case of loading by constant couples is considered, 

but no account of root effects is taken. 

The ribs are assumed to be continuously 

distributed, the rib boom area, together with the 

stringer area, being distributed over the skins. 

A degree of flexibility is all' wed to the rib webs. 

Results are presented in the form of cross 

sectional rotations and stress resultants. 
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FOTATION 

Oxyz 

OXYz 

rain_ system of oblique Cartesian Coordinates 

Auxiliary system of oblique coordinates 

Aij,A! j 	(i=1,2,3, j=1,2,3) Matrix inversions for rear 
and froiiG skins respectively. 

A, . (i=102,3) Areas of rear, main and frontspar booms 
respectively. 

Z.: A = Al + A2 + A3 

AR2 	R A v  

A52 	s A!  

a
R2 	R a!  

a52 	s a!  

b 

C1 j.. 

c 

Rib boom areas in rear and front cells respectively 

Stringer areas 	in 	It 	11 	11 	It 	 II 

It 	 It Rib pitch in 

It 	 11 Stringer pitch 

Half depth of box in direction of z axis. 

Coefficients used in expression of rates of section 
rotation. 

Half width of box in direction of y axis 

c1 2  c2 	Width of rear and front cells respectively 

E 	 Young's Modulus of Elasticity 

	

auk 	f 

	

. 	a-kn. 	i 	SI 	aul 6V), 

	

i , 	, 	= 	:, 	le 	a- 	; ' 

	

ax / 	 . , yy ay ! 	xyz 	+ ax 	ay; 	' x'x=  ax); 	eyy ( E e x= 	 = , Ty' I 

	

, 	
e 
 

io' 1-7-t + 22n; Strain components referred to axes Oxy; in 

	

xy ax 	ay) rear and front cells respectively. 

G = 2(1E+ cr)  Shear Modulus 

K. ij 

(L1, Mi) 	Oblique components of couple, axes OXY. 

(p, q, r) 	Oblique components of rotation about axes Oxyz. 

( P1 2 gi)  

Rates of oblique components of rotation 

Sy S t 	Shear stress resultants in rear and front cells 
respectively. 

S. (i=1,2,3) Shear flows in rear, main, and front-spar webs 
respectively 

T '  

T22 T 

Direct stress resultants in x direction in the rear 
and front cells respectively. 

Direct stress resultants in y direction in rear 
and front cells respectively. 

/ t9  *0.00.0 

Coefficients used in expression of stress resultants. 



t, t' 	Skin thicknesses of rear and front cells respectively 

ti  (i=1,2,3) Thickness of rear, main and front spar webs 
respectively 

U9 U' 	Displacements of rear and front cell skins in 
x direction 

u, (i=1,2,3) Displacements of rear, main and front spar webs 
in x direction 

V, V' 	Displacements of rear and front cell skins in 
y direction 

(i=1,2,3) Displacements of rear, main and front spar webs 
in z direction 

"RO 

(x, Y, z) 

a 

Displacements of rib web on y axis in z direction 

Components of force, axes Oxyz 

Angle between Ox and Oy axes 

Distortion of section in rear and front cells 
respectively 

f 	' 61 ai  
Constants in equations for distortion of section 

. 	I 
'29  

FY 	 Terms used in expression of coefficients 

Cif , Kij 

P. 

Poisson's Patio 

g 
	 Warping of section in rear and front cells 

respectively 

Constants in equations for warping of section 
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1. INTRODUCTION 

The method used in this analysis is essentially that 

developed by Hemp in Part 3 of his work(1) on the application 
of oblique coordinate',  to swept wing structures. 	Fig. I shows 

the construction of the box and the notation used. 

The sweep back angle is (,t/2 	and the box is 

defined by a set of oblique axes Oxyz. An auxiliary set of 

oblique axes OXYz are also used. 	The upper and lower surfaces 

are given by z = ± b respectively, and they are assumed to be 

reinforced by closely spaced stringers parallel to the x axles  

and closely spaced ribs Parallel to the y axis. 	The skin 

thickness in the rear cell is t, the rib boom area ARs  rib 

pitch aR, stringer area As, and stringer pitch as. 	The 

comparable dimensions in the front cell are t's  AR, al!z, A and 

as respectively. 	The rear spar web is defined by y = c and 

has thickness tis  the mainspar web by y = (c c1 ) and has 

thickness t2, whilst the front spar is given by y = - c, and 

has thickness t
3
. 	 The areas of the rear, main, and front spar 

booms are Al' A2 and A3 
respectively. 

Where the spar and rib webs are capable of carrying 

end loads, their effective area is considered to be included 

in the appropriate boom area, the webs themselves being assumed 

to carry only shear loads. All the materials have a Young's 

Modulus of E, and Poisson Ratio cy. . 	The rib webs are 

considered to be rigidly connected to the spar webs, but are 

allowed a limited flexibility in themselves. 

The effect of root constraint is not investigated, and 

the box is considered to be loaded by constant couples. 

2. ThEORY  
Assume a linear variation of the rotation of the box 

with x. 

Rotation component about x axis 

Rotation component about y axis 

A = P x 1 

q  = ql x  

) 

/ The warping 



L. 

The warping and distortion of a cross section of the 

box are assumed to be linear in y 

Warping:- 	Rear Cell:- 	w = wl Y + w2 

Front Cell:- 	w 	= Y + w' 2 

Similarly distortion:- 	 = - 1 Y + t) 

1 	+ 	2 

Using Eqs (1) to (3), the displacements become:- 

For the Skins:- 	U = q1 x b sina + w(Y) 

U'= qix b sina + w' (y) 

V = - pi x b 	(y) 

- p1  x b sina, + 	(y) 

For the Spar Webs:- 	u1 	= qi x.z sina + (w)y=c. 173- 

z u2 = qi x.z sina + 	(w)y.(c-c,).  b 

000 

000 

se* 

(2)  

(3)  

(4) 

 

(5)  

(C) 

u3  = qi x.z sina + ( w')y=_c. 

The displacement in the z direction, of the rib 

webs, on the centreline of the box is given by Ref. I 

Eqs. (94) and (98) as 

(wR)  y=0 
x2 e • xx • 2b 

Hence:- 	w1 = pl x c sina - e • xx 2b 

w2  = pi x(c-ci )sina e xx • 1- 2b 

x2  w3  = - pi x c sina exx• 2b 

/ Eqs. ....... 
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(9) 

	

exx ' = 
Al

l  71 	Al SI 

	

1 -1 	3 
e' , A' m' + A' S' yy 	21-1 	23 

= 41 T1 + A33S' 

.'o exx = Al1T1 	A135  

eyy  = A2iTi  + A23S 

exy  = A31T1 + A33S 

5 

Eqs. (4) to (7) are used to obtain the strains in 

the skins. 

au e
XX 	3X 

= 	= 	b sing, 

e  = 2K _ 
YY 	aY 	' 

av 	813. 
— 

_
p b sina + wi 0 	T7 4- ay 	1 xy 

The box is loaded by constant couples 

• 
• • X = Y = 	0 

The Stress Resultants are restricted. 

e l  = q b sina xx 	1 

YY 	
(8) e 	L 

ex 	 -p1 sina + co.,U 

T1' and T are functions of y only 

T2 and T2 are zero 

S 	and 5' are constant 

Compatibility of warping at the mainspar requires:-- 

I 
w  1 (e  - el ) +w2 = 	( e 	el ) 	'1 2 

to 	 (w

- ' 2) 1 (c 
=to4 + 	-  c )  

Using Eqs. (8) and (9):- 

gib sina = AliTI 	Al 35= .41Ti 	A138 ' 

A21T1 	A23S - 41 - 417-4 	Abs' 	= 
-pi b sina = A31T1  + A33S 	wi  = A31 T1 	A33S' -(01 

/ Using oc•ydbe 

or rewriting:- 
(1 o) 



Using the stress-strain relation for the spar webs:- 

Si = Gti Paz a---x 

S1 = Gt1 i.1 .(L p c sing + 	c   b 	
2  ;. 

..: 

S2 = Gt2   , 	(c-c1  )sin a + 
w1 (c-c1 ) 

.  
b 

(-CO 'c + w') , S
3 

= Gt3  -plc sing + 	1 	2  . 
b 	i 

Equilibrium of the spar flange joints reouires that:- 

si  + S 

S3  - S' 

= 0 

= 0 .. • (13) 

S 	S2 - S' = 0 

	

Eq. (13) implies that:- Si  + S + 	= 	= 0 2 	3 	2b 

For overall equilibrium:- 

L1 	2bc = 2b S 	2bc S
3 	

2b(cci  - 	2b Sc1  + S' c2 

and using Eq. (13):- 

Li  
= -c 	c 413 	1 	23  

.1- CO 

(12) 

or:- 	S' 	S 

S 
	

S.  

c1 	1 
c2 - 4bc2  

c2 	L1 
c
1 	4bci  

= 2bE(EA)(q1b sing) + 2b(T1 c1  + T4 c2)... (15) 

where 5'14. = A + A2 + A3 

/ Substituting 



Substituting from Eq. (13) into Eq. (12):- 

(—w4 c + (.o) 
- 	p

1  s
ing + Gt

3
c 	 be 

Gt2(c-c1 

(S - S') - plsina + cool.1() c(::1c).1 ; wr-

_s 	(w1 c + w2) 
P1  sin a + --- be Gt1

c-- 

(16) 

Eqs. (16) and (10) give w2  and w2 

bc(c-c1) 	(S-S') 	S w 
2 	G c1 t ( c-c1 ) 	tl c 

bc(c-c1) 	
St wy 

2 	G 02 	c-c1 	t3c 

Using Eqs. (11) and (16):- 

Sb = Gt1 c 	
A31  Ti  + A33  S 	2w1 	--t 

	

and 51:12 - 3 A'1  T4 T1  + At 3 St  - 2w1 	
(4' 	c — Gt

3
c  

Elimination of col  and w4 from Eq. (18) by using Eq. (10) yields:- 

t I 	1 1 	3 3 	1 

S 1 = A3t TT +  A
3
i sf— 	A33S4'21 c(c—c1) 	w 

c c )-2ci 
c—ci  

	

b 1S t 	 1-(c-c1  )+2c ' 

(19) 

Substitution from the first pair of. Eqs. (11) into Eq. (15) and 

elimination between the resulting two eruations gives :- 

	

r 	 -1 

1-i z 	 1] (2b - EA13  J 	1  

	

rA.S)I A l 	7L+c +c2A11! 

	

, 	, 	 M 
T -1c,„A43S t -A13S)+Al. 

	

v 	 . 1 	 : (20) 

i 	1 	13 	13 	11 2b 	'1 	
.,.h. S il /Ai  ...,,i i zi.t1.+ci f  -Fcailli) 1"----  I c (A S-Al  S ' )+A 	(--I-1  - E/ 1 	-, 	f 1 1  I , 'OA 	L-• t 	1  

L  

/ Using 
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Using Eqs. (17) and (19) and rearranging:- 

2bc 	b  
A31 T1

- A31  Ti 	SIA.)..)  + Gt2.c1 c2 + Gt1c1 

2bc 	b + 	+ Gt2c1 c2 	Gt3c2! 21 

*ye (21) 

Eqs. (20) and (21) give:-- 

,.A1A31 c1 

 

+ A2 
1 ( c2  + At11 - E PA) t  

A11 1 	LA + c1 
, 

+ A11  c2 

1:Ay3/  c2  + 412( + 	E ZA) 

1 A11 	1 EA + c1  + A11c2 

11 
41Al l  i•EA" 27,A ++ X111  2b 

2bc b _ c, 
33 Gt 2

c
1

c
2 1-  Gt i c i  

!cA; 2bc + 
I 	_)3 Gt 2c1c2 Gt3c2 

..e (22) 

Eqs. (22) and (14) enable 5, St to be found and thence 

T1 9  T. from Eq. (20) 

co.1 and co i  follow from Eqs. (17) and (18):- 

f _ _ILL _ ., 	bS 	S 	At 
t 	b r A t  Tt  

wl - 2 	' 2Gt2c2 + 2 "33 - 	
l 

Gc )t + 2' 3 	- J 

	

A31T
1 bS t 	St 	- b 	

„...1 
' --- 1 	1 )-- w 	 + l = 	2 	+ 2Gt2c1 	2 A33 	act  .t1 + t2 1 

L. 

From Eqs. (23) and (11):- 

P 	 1 ' 
, 	clp 	cosec a l 	 1 	, 	b i 'I 4.  1 	bS'  i 1  
-F1 = dx - 	210 	!1 A31T1 + S ' 

: 
3 -r 

Gci ' t2 	tl 1 	Gt2ci  1 
\ . 

	

_ la 	coseca  1 	 i 	 SOO 

CI  1 - . d -X 	b 	1A11 T1 + A13 S!i 
 
I 

	

I._ 	 ■ 

i 
The displacements can be found using Eqs. (24)9 (23) and (17). 

The strains follow from Eq. (9) 

( 2 3 ) 

( 24) 

/ 3. 
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3. RESULTS  

"11 = - K11  L1  + K12 M1 1   

S = K21 L1 + K22 M1 

S1 = K31 L1 + K32 M1 

S2 = K41 L1 + 1(42 
M

1 

S
3 

= K
51 
 L1 + K52 M1 

131 = 	= C11 L1 + C1 2M1 d.x  

Where:- 

=x1 i L1  + K12  

=L +x22 21 L1 	22 1 

k( 25) 

_ C L + C IVT 

	

(1 	- 1 	dx 	21 1 	2211 

t. 

/ 
K11 = 1 0 (A13  - 	3  JO + Al 3A:11 1.1 E. A:3  /.4b 

All 
K12 - c2 	• 2 - Al  (c2  + EA11  fA) 	3c /  

3 	 2b 

=7. 	C (A 	X 	 + At 	A 	E 4
-"1  
–4 	/1-1-10 4 

Kl 1 	1 	3 	 3 11 

C 	• 	 All 
K 	 ;At (c + EA 	) + A 

	

11 - 	A13 	 2b 12  

c2 IL" 
K22 = 213 fe 

22 	21)%'s 

c2 /. 
K

31 - 14-be 	 K32 = 	-2677 

•-"(ci + 02 ) 
K

41 
= 	 K42 	213 :r-/ s  bE 

01';  
K52 	ato:e 

• " cosec  
C11 - 8b2 e 	it _ 

ri 

(ki 3 [1  - A13 131 A t 1  pE•E:1. 

b 	..P1... 	kal_i!, 

	

-1-1 A33 - T- + 	t 	i el  , ti 	2 J I 

coseca  i > 
1 

c2 1 
C12 = C21 - 132 	All - e I )' I A13  

c42 1 
coseca 

210" 	
i c22 = ---5--  11 A' 11 + 1.;e 

= Duca 

2136-;,',2 	13 	1  

= 	17)  j K51  

(26) 

(27) 



1 K = 31 	8bc K41 = 0 	IC - 51 	8bc 

- 10 - 

= 	EA11 1A + c 	+ A11 c2 

= A31 A11  - 41  Ail  
b(ci+c2) 

14 	 EA) - A 	 b 	• 1  : 	1 

	

A3lAilc2 + Al.T(c1 + AllEe 	33 	Gt2c1  c2 	a-t3c2  . 

b(c1+c2) 	,  
;, = 1 A31A31  ci  + 4 (c2  + AI 1E. A) - A33 	Gt c c 	

b  ; i 

2 1 2 	Gti  ci 	! 

1 

) 
(28) 

Li.. SPECIAL CASE  

Two Equal Cells 

t1  = t2  = t3  = tw  Cl = C2  = C t = t t  

(Equal cells with constant web and skin thicknesses) 

'A E. LA 144  

= 	13 	 + M 	2b(2c + EA . i!A) 1 	/4.0 	1f 	 11 	• 

S = 3 ?  

S1  = S = 1 	3 	8bc 

S2 = 0 

A13E.  1 	 1  
x11 = 8bc 	(2c+A1  E 	 K12 - 2b(2c+A1  E 

L1 
K21 = 	 K22 = ° 

e 	AC2 + 1 

Ll  

L1  
(29) 

(30) 

K32 - K42 = K52 = 



2 Al 3E coseca 	( -1-1-cr-) 	A.35  C11 - 8bc 	1 Et w 	 1 1 
c 	2b 	2b(2c+A E. 2.A) 

oer Cf1) 012 = 21 - 	
4b2(2c+A 4.1]A) 

coseca A11  022 = 2b2(2c+A11E.27A) 

0 

coseca A13 

8 = 2 c = 2p,c 

= 2A11c + A
2 1 E.)'A 1 

5. DISCUSSION 

It can be seen from Eqs (26), that there is a 

contribution to the oblique shear stress from the "bending 

couple" M1° 	This contribution is dependent upon the value of 

Y9 and it can be shown that 	itself is dependent upon the 

relative values of AR' aR, and t in the two cells. 

For the case of constant rib pitch, with the ratio 

of the rib boom area to skin thickness the same in both cells, 

AR T7Fr  , the value of is zero. Under these "e° aRt 

conditions, there is no oblique shear stress due to M1. 

The results for the special case of two equal cells 

with constant web and skin thicknesses given in Eqs (29) to 

(32), are directly comparable to the single cell results, 

Eqs (78), (83) and (100) of Ref. 1. 

Complete analysis of the box beam subjected to 

constant couples is achieved by using the above results in 

conjunction with the relevant parts of Ref. 1 	3.20 
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