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SUMMARY 

Using a new approach to the theoretical study of 
thin-walled cylinders with discrete reinforcing members 
developed in this paper s  the problem of general instability 
of such structures is solved with more than usual 
generality. The principal stages are indicated which lead 
to the characteristic equation of the general problem in 
the form of a determinant of order three times the number 
of reinforcing members, i.e. stringers or rings. 	The 
less general problem of distributed stringers and discrete 
rings is solved completely and it is shown that for the 
case of one ring at the middle of the cylinder, buckling 
with axial symmetry' s  the characteristic equation can be 
reduced to a very simple closed form. 

The method of solution, developed below s  must not 
onlY be judged in its relation to the problem under 
consideration. 	It will be found to be fundamental to the 
theory of plates and shells in the sense that most problems 
having an exact solution for the case of the homogeneous 
structure, can now likewise be solved in the presence of 
reinforcing members. 
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NOTATION 

a 	 Radius of cylinder 

Arbitrary coefficients amn p h 	cmn 

d n 9 fn 2  gn 	Arbitrary coefficients in basic solution 

h 	 Skin thickness 

Effective skin thickness for the case of 
distributed stringers. 

See (2.1.4) 

Length of cylinder 

Summation variables 

Longitudinal circumferential, radial 
displacements. 

Cylindrical coordinates 

Position of ring 

Position of stringer 

Area of cross section of ring 

Young's modulus 

IR  

Ix 

Second moments 	ring section 
of area of 	distributed stringers per 

unit length of circumference 

It 
R o4 

h2 

12a2 

x - v
2

) 

a2h 

11 :P v  "di C3 f 9  Pd. ' Y fP Yd 	(See 2.2.7) 
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mica 

r. 9 1+ 
	

See (3.2. 4 ) 

n 
2 

v 	 Poisson's ratio 

0 
Nx (1 - v 2 ) 

Eh 

Magnitude of discontinuous change of function ut x.-x, 

See (2.2.7) 

= kx  + v 2 (1 - kx ) 

Direct stress resultant in x direction 

0 f 
‘ A2 /  Of order 1/A 2  

Radial shear stress resultant 

Kronecker's delta 
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I. INTRODUCTION 

The use of structures with thin skins and reinforcing 
stringers and ribs is due to two factors c  the desire to save 
weig1-  and the desire to save material. 	While the latter aim 

arisen during the last few years, causing their use 
In all types of construction, the former has been the guiding 
principle of aeronautical engineering over since man made his 
first flight in a machine heavier than air. 

Great difficulties have been experienced in subjecting 
such structures to an exact theoretical analysis. 	A 
considerable amount of work has been done on the stability 
problems of discretely reinforced rectangular plates, using 
energy methods. 	This work is described in some detail in 
Ref,l, and one of the principal exponents of this approach in 
England is H.L. Cox who has published a number of papers on 
the subject (e.g. Ref.G). 	But this method leads always to 
an infinite system of simultaneous linear equations, and very 
often a great deal of ingenuity is required to reduce these to 
a closed expression. 

To the author's knowledge, all attempts to solve 
stability and other problems in reinforced shell theory have 
been based on initial, very approximate, assumptions, and even 
then have led to such involved calculations that it is often 
very difficult, even for the specialist, to follow the 
reasoning and to grasp the physical meaning of the final 
results (e.g. Ref. 2-4). 

The method of this report seems to avoid many of these 
disadvantages, and in some sense will be seen to be equivalent 
to the energy method, since results, obtained by it, probably 
could also be deduced in a round about manner by that method. 
Its strength lies with the fact that it has a simple physical 
interpretation. 	Its application is by no means restricted 
to the problem under consideration, nor, as a matter of fact, to 
problems of stability. 	The present paper deals only with 
the application of the method to the problem of general 
instability of shells. 	It is hoped that it will justify the 
claims made here, and it is the intention of the author to 
support these statements in the near future by a more 
comprehensive report, giving the solution of other important 
problems in the theory of plates and shells. 



1.1 	Statement of the Problem 

The problem of elastic instability is one of the most 
important of the theory of elasticity, and its nature is 
explained in most relevant text books. 	For this reason, no 
attempt will be made here to describe it in detail. 	As in the 
later work, emphasis will be on the part played by the 
reinforcing members. 

Consider a stressed skin structure with ribs and 
stringers firmly attached to it in such a way that the elastic 
axes of the reinforcements lie in the middle plane of the skin. 
While this assumption is not essential, it will be made hare 
for the sake of simplicity, the modifications arising from its 
removal being obvious. 	It is known from the theory of 
structures that, if such a structure deforms, certain of the 
stress-resultants undergo discontinuous changes at the reinforcing 
members. 	From the point of view of the skin, these 
discontinuous changes manifest themselves in local pressures 
and shears. On the other hand, from the point of view of the 
stringer, they can be conceived as loading on the member causing 
its deformation. 	While the reinforcing members are of finite 
width in practice, it is most convenient in theoretical work 
to idealize them into lines. 	As a result of this step, the 
pressures and shears, mentioned above, become infinite, since 
the line of contact is devoid of area. 

After these remarks, the problem under consideration 
may be fo•lnulated as follows: "To  find tho characteristic  
equation for the determination of critical loads of_a_cylinder  
with thin skin, subject to localized infinite pressures and 
shears,_ which depend on the deformation of the shell and the  
stiffness of the reinforcing members. 

1.2 General Discussion of the Method of Solution 

A certain amount of hesitation may be shown at first 
at the idea of introducing infinite pressures. On the other 
hand, in many other branches of mathematical physics such 
localized infinities have been used for many years in the 
form of line sources. 	The method of solution, to be used here, 
thus will be seen to be based on a concept which, to the 
author's knowledge, has been little used in the theory of 
structures although it occurs in a disguised manner, for 
example, in Ref.5 in the solution of the problem of a plate 
loaded over a portion of its surface. But it has been arrived 
at in an arbitrary manner and the solution used there (lees 
not by itself satisfy the differential equation. 

What may be termed the source solution of the theory 
of thin plates, will here be shown to fully satisfy the 
differential equation under loads, peculiar to the presence 
of discrete reinforcing members. 	Due to the indeterminateness 
of the pressures, as in the case of sources, for example, in 
aerodynamic theory, the source or basic solution will contain 
one arbitrary constant, or sets of arbitrary constants, which 
therefore can be used to satisfy the "internal" boundary 
conditions at the stringers or rings. 

/ In the 



In the case of stability problems these conditions lead to 
a homogeneous system of linear equations in the above mentioned 
constants, and the condition for the existence of non-zero 
values of these constants rresent- the reouired characteristic 
equation. 

Finally, one short remark will be made with regard to 
the mathematical character of these source solutions. It will 
be shown later on, that these solutions are in actual fact 
combinations of the complementary functions and the particular 
integrals of the non-homogeneous differential equations, which 
follow from the ordinary stability equations after introduction 
of the earlier stated type of loading. 	The solutions, which 
are in the form of Fourier series, contain a "singular" part in 
that in the present problem their first or third derivatives 
with respect to the coordinate at right angles to the stringer 
or rib are discontinuous. 	The "singular" part, which is of the 
form used by S. Timoshenko in Ref.5 is easily separated from 
the basic solution, and the remaining part can then be shown 
to be "regular". It is for this reason that the term basic 
solution has been preferred to that of source solution, because 
the latter term is normally used for solutions which are purely 
singular. 

1.3 	Assumptions  

Some of the assumptions to be stated here have been 
referred to earlier, others will be introduced during the actual 
analysis. 	Nevertheless it will be worthwhile to state them 
here in full. They are:- 

A.1 	Thin shell theory is applicable. 

A.2 	The elastic axes of stringers and ribs lie in the 
middle plane of the skin. 

A.3 	Stringers and ribs have no torsional stiffness and 
may be idealized into lines. 

A. 4 The free edges are simply supported. 

When dealing with the simplified shell theory, based 
on distributed stringers, the following additional assumptions 
will be required: 

A.5 	The stringers are so closely spaced that each 
circumferential wave in the buckled state contains 
several stringers. 

A.6 The stringers add effective area to the skin only 
as far as the longitudinal direct stress flexural 
stiffness and radial shear stress are concerned. 

A.7 	The skin lacks torsional, flexural and shear 
stiffness and the circumferential displacements are 
small as compared with those in radial direction. 

A.8 The rings have no stiffness for deformation out of 
their plane. 

(The last four conditions arc discussed in detail in Ref.3) 

/ As far 	..... 
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As far as A.4 is concerned, this condition will be 
seen to be automatically satisfied. 	However, it will be 
suggested here that the edge conditions may be varied in a 
manner which is very close to practical conditions, and which 
it would be very difficult to achieve without the help of 
the basic solutions. 	In fact, by choosing the length of 
the theoretical cylinder somewhat larger and by introducing 
very stiff rings in the vicinity of one or both ends of the 
theoretical cylinder in such a way that either the distance 
between the stiff rings or between one simply supported end 
and the stiff ring is equal to the length of the actual 
cylinder, one could solve the problem for the case of clamped 
ends. 	The choice of the stiffness of the artificially 
introduced rings would thus give the means of varying the 
degree of clamping. 	However, it is not proposed to 
investigate this point further in this report, and A.4 will 
hold throughout the subsequent work. 

2. 	DEDUCTION OF THE BASIC SOLUTIONS  

In order to save space, the relevant differential 
equations and boundary conditions will be stated here without 
deduction. 	In the case of the general problem they may be 
found in section 84 of Ref.1, while for the case of the 
simplified problem they are essentially contained in Ref.3. 
As far as possible, the notation used agrees with that of 
Ref.l. 

2.1 	The General Case of a Circular Cylinder  

The most general stability equations for the case 
of a thin walled homogeneous cylinder in compression are: 

9 
a - 1.1 	v

2v .. »Ow, 1 - v a 2
u 

aaxdO a Ox dx
2 + 2 	 2 8 2 862 - 

0 

1 + v a2u 	a (1 - v)  d2v3
2
v 	Ow ........-  

2 	3x30 + 	2 	
Ox2 4.  9.802 

... a 
ae + 

9  

	

8' v 	a3vr 	8 + a 	, + 	+ a --75w 	
A

2 + a(1 - v) ' v2 .1 
 

	

- agi a
2
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where 
cos 

COS 

—7 

These erzzations represent the .. c onditions of equilibrium in 
the longitudinal, circumferential and. radial directions 
respectively at each point of the shell. 	"Is mentioned in the 
Introduction, these equations wil tfe solved for the case, 
when infinite pressures and shears act either along a circle 
at a station x i (case of a ring) or along a generator, 

specified by e (case of a stringer). 	This loading condiion 

will be produced by introducing on the right hand sides of 
these equations the following sets of loading functions: 

sin E2  k cos M21 77  l 2 m 	 f. d cos -- nrril`Xi  nO 

n;CI m=1 ni 	
2 	sin ml--Lx  

 

 

". 

ne 	
mix. 

MX 
• f sin— sin-
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 sin— .L1 (2.1.2) 

for the case of a ring, 
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— i— 	
. mir.x 	ne 

m d . 	k cos- 

	

2 	2 	 •fr 	n 	2 .=1 rni  

7-- 	f 	 nei • ne 	(2.1.3) sin . sir --- Sln -- 
rai 	 2 	2 n01 m=1 

for the case of a stringer, 

GC7 

MA 
1113[X. 	cos 

k = oos 	4.  
m 	-,--' 1 -m2 

	

nei 	cos-- nrc 
2 k

n 
= cos— + ----- 

2 	 2 '1 ri 

m ;...• 2 

n 2 

have been chosen in such a way that the cosine and sin series used in 
(2,1 2) and (2 1 3) are completely equivalent 	(See also section 2.3) 

It is easily verified that these loading functions 
have the required properties, since the relevant parts of the 
Fourier series converge to zero in a conventional(Aboa) Sense 
for all values of x or 0 in the range 0 xf, f or D e 2i t 
except when x = xi , e e i , the series becoming infinite there. 

In order to solve the differential equations (2.1.1) 
with the loading systems (2.1.2) or (2.1.3), substitute for 
the displacements the following series: 
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s" 
u = /)  

n=0 m=1 

7-  V = 
n=0 m=1 

c, 

c"" 
V7 = L 

n=0 

• n a 	sin -- ccs 
mn 	2 

bmn  cos 11 	
m/7.x 

	

sin 	 (2.1.5) 

• n 	raTcx 
mn sin 

 2 
— sin 

which after sone intermediate calculations reduce the differential 
equations to the following system of equations for the determination 
of the arbitrary constants of (2. 1 . 5) 
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for the case of a ring 

(2. 1. 6) 

for the case of a stringer 

of equations vanishes for critical 
correspond to the buckling of the 

ni 
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mi 	2 

of this system 
of 0 ;  which 

homogeneous cylinder ;  since 

= 0 

is the characteristic equation of the homogeneous problem. 
Hence (2.1.6) will normally have finite solutions for the a m; 
bmn; cmn • 	The solutions (2.1.5) with the appropriate values 

of the constant coefficients are the basic solutions of this 
problem. 
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2.2 The  Simplified Theory of a Circular Cylinder with 
D11:,bributed Stringcxfl. 

Using A.5 to A.7 of section 1.3 9  the differential 
equations take in this case the following form: 

K 3 -2  u 	1 + v a2v 	1 - v a 2u 	V aTff = 0 
ax2 2a axae 	2 a2 a9 2 	a ax 

1 + v a 2u + a ' 	
v ) a2v 	avi 	a2v  

0 	 (2.2.1) 2 	axae 	2 axe 	aae 	0.80 2 

au 
II  fax 

av 	w 
3.80 - a 

a3 3  a4w = 

ax4  

The two stress resultants, affected_ by A.6 and used in deducing (2. 2. 1 ) 
are now given by 

NX 
hE I  au 

v -  
2 I" ax  

lav + 	k7.1 	w)j 9  Qx  -E1 33w--- 
x ax3 

(2.2,2) 

The equations (2.2.1) are the conditions of equilibrium for an 
orthotropic shell. Using A,8, the loading system for the case of 
one ring be 
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(2. 2.24 

and proceeding in the same manner as in the general case one arrives 
at the system of equations 

(2. 2.5) 
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Again, the vanishing of the determinant of this system gives 
the characteristic equation for the homogeneous orthotropic 
cylinder. Assuming the critical loads of the cylinder with 
a ring to be different from those of the homogeneous shell i, 
one finds from (2.2.5) 

1 11170C . a1 = Id .a
d 
 + f a siri---- 

mn 	- 	ni f- 

anx. 
sin 1 

= d  i÷v (ot„,2 )) 2_ 
ni 2 	 2 ) rON 
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	2 
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ni 2 t 
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n 1 

i 	 rj7C5Ci °ran = 	 , sin-- = --.1:-'--- id 
' 	f.: 	L■ 	. 

- Xn 	' 
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n 	- Pct.7M + K 	n A VI. 
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Thus, similarly to (7.1.5) one has in this case the basic solutions 

r 
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n=0 m=1 d 

 ni  a
d 
 + f ni f in---- sin n 0 oosliI7--cx  
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Z— 	a_.1 13  1- 	
raitx., 

	

n=0 ra=i 	d 	Of, 	
. ranx 

r- 	
cos n sirr--- (2. 2.8) 

W  = 	[ dni  Yd.  + 	 sid17—x  sin n 0 
n=0 m=1 

These solutions will be used in section 3. to obtain the 
characteristic equation for the critical loads. 	However, 
the understanding of the work of that section will be greatly 
helped by the short discussion of the properties of the basic 
solutions, which is given in the next section. 
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2.3 	Discussion of the Properties of the Basic Solutions  

It is obvious from the form of the solutions, deduced 
above, that they satisfy the assumption of simply supported 
edges. 	So there remains only to show that these solutions 
are complete, that their relevant derivatives are 
discontinuous and that they are otherwise "regular" 

It is seen from (2.2.6) and (2.2.7) that 

b i - 2 clni 1 	fni 	 6N 
i_ v 	C)(1/X4) 	C 	 = Ok1h ) mn mn 	19,A4 

bi n 	= o(lbt 2 ) ra 

while 

o 	= o(i/A
4 ) 9 	mn (2.3.1) 

(2.3.2) 

Thus the first and third derivatives of v and w with respect 
to x are discontinuous at x i , since A = mica and 

I;er: 

	

r17.X • 	
4.71a 

0 4  X X
i '> 1 sirr-11  COs 	zz e  1117CX for 	 (2.3.3) 

X 
727 7  

1 

If denotes the magnitude of the discontinuities, it is seen 
that 

	

2 	3 A /ay 1 	 f 1 	7C4 

	

1-v 	e 	 P ni x=c. 	 20 

The expressions (2.3.2) show, that, as far as the 
differential equations (2.2.1) are concerned, the remainders 
of the basic solutions are regular in x. 	Similar arguments 
can be applied to the other derivatives of u, v, w which occur 
in the differential equations, and it can be shown in this 
manner that the discontinuities, indicated above, are the 
only ones of sufficiently low order to be of interest hero. 
Further, since the basic solutions contain regular as well 
as singular parts they will be complete, and by a suitable 
uniqueness theorem they are the only solutions, as they 
satisfy the boundary conditions. 	This latter point will 
become yet more obvious in the next section dealing with the 
deduction of the characteristic eauation and the "internal" 
boundary conditions. 
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3. THE CHARACTERISTIC EQUATION FOR THE SIEPLIFIED THEORY 

It has been shown in section 2.3 that the basic 
solutions (2.2.8) Ipossess analytical properties ;  which will be 
required in the process of satisfying the "internal" boundary 
conditions. 	As indicated in the Introduction, these conditions 
lead to a homogeneous system of equations for the determination 
of the dpi and fni . 	Since there are only two sets of such 

constants for each ring, it will be expected that the 
characteristic determinant in the present case will be of 
order 2g, where g is the number of rings. 

3.1 	Circular  Cylinder with Several Rings  

The relevant boundary conditions at the rings are 
discussed in detail in Refs. 3 and 4. They are: 

I
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1 
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{4 662  6
2 f 

 toe vi 4' AR as a6v8 
xc 

h 	 av)= 2 -77-v`\adO ax • 
x=i  

where the left hand sides are the elastic forces in the ring 
which have to be in equilibrium with the external loading, 
from the point of view of the ring, represented by the terms 
on the right hand sides. 

If there is more than one ring, the appropriate 
expressions for the displacements may be obtained by adding 
several of the basic solutions (2.2.8). 	Substituting the 
composite solutions, thus obtained into (3.1.1) and using 
(2.3.4) one finds the following determinants' condition for 
the existence of non-zero values of the d pi and fni 

i. 	I 72+ 	.r.,  
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2 (1-9 2 ) 	k 	m=1 	' 	a 
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1,. f+nyf ).2; sin- sin--12  
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1 MX 
A'Rl (n2penyd)jsin-7- sin-FE 

= 0 	(3 1 2) 
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By (2.2.6) the coefficients under the sum signs above are 

1.1)-1-yr 

▪ 

 n3 of, 	An4  1.1 2 v fx xii.+ n2 (n2-1  )+ A 2fic 	) + v  (1+2 v 	n2 
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• A2 1:1 r- K  2 	v n2 
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• n
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iv 
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(3.1. 3) 

where 'Ari is given by (2.2.7) 

Equation (3.1.2) is the final expression for the 
determination of the critical loads. 	Inspectio14 of the 
coefficients (3.1.3) s  remembering that A,n 	C(A° ) shows that 

the last two are of order -2 while the first two are of order 

-4. Depending on the magnitude of n o  it will normally be 
sufficient to retain only a few terms of these series. However ; 

 the numerical application of this equation should be the 
object of a separate investigation s  and it will be satisfactory 
at present s  that the series involved converge. 	In the 
following section ;  one special case will be studied in greater 
detail and it will be shown that for axially symmetrical 
buckling a closed expression can be obtained. 

3.2 	C linder with one ring at the centre. Axially symmetric 
buckling  

In this case (3.1.2) reduces to: 

4 -T x 	r 	4_ 	 •• 	4_ 	, if._ I-Erz  (n yen3  pf )+11.1 (npf+yf ). ! sin 2  rim ; 	yen3  13 a) 	(ni3ey d.).: • 
2e- i3 	m=1 	 2 m=1 

2 sin ran 
2 

rj 

( 

3 	2  

	

yf-i-n 	)+Ail (n2 p +ny ) 1  Sill '17C 	 +> ,_ , 

	

(n3y 
d 

 4.n2p )f " m=1 	 2 	2 (1-9 2 ) ra=1  

-1-AA(n2penya lsill2  mn 
2 

/ This 	 

= 0 
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This equation is still rather complicated and because of the 
complexity of the coefficients (3.1.3) no attempt will be made 
to sum the series here. 	However, in the case of axially 
symmetrical buckling, i.e. when n = 0 ;  a closed expression is 
easily obtained, as will now be shown but unfortunately this 
case is of little practical importance. 

	

For n = 09 	(3.2.1) becomes, using (2.2.3), (2.2.6) 
and (2.2.7) 

sin
? rim 

	

-Ix" 	 2 M7 	 a` 
24- 

yf  1.11.:4-  K 	2  
,>3 	 .‘• ---; \24-.- 	)K+K-- v 21 - 

	

p 	m=1 	 '3  (1 -v 2  ) 	m=1 

Summing the series, using the relation 

- 

	  _ 	. 	 7r. tan --.= 
° 	(2m + 1 ) 2 - 2 	2g 

which holds for all complex values of 	9 except for 
= + 1, ± 3, etc. one finds finally 

(3. 2. 2) 

41 
if 2 	2 	r) 	 2 	/ 	 T.  tan 	 +-1- I-K2  tan 	-K2 , 	 = 1/1 2 	 7C  

70 3 

(3.2.3) 

where 

1K 	lk a6h 	 2 	  
x 	 L Nxa  

k.=  4 	= I KI 	= 2p = 	4/4/2 	+ 1  ± 3, • • • 	(3. 2. 4-) 
x 

Since N is positive for compression and all other 
quantitiis are positive, all the roots will be real provided 
2 , 2 i

.e. 

2 k h 
x 	x 
7I  > K 4E x  

(3.2.5) 
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L1. 	CONCLUSIONS  

Using special solutions of the stability equations 
the problem of general instability of circular cylinders 
can be solved exactly and, in the general case, when there 
are only rings or stringers present, the characteristic 
equation for the critical loads will be a determinant of 
order three times the number of reinforcing members. 

On the basis of a simplified shell theory, requiring 
assumptions additional to those of the theory of thin shells, 
the complete solution of the problem of a cylinder with 
distributed stringers and discrete rings has been obtained. 
In this case the order of the determinantal equation for the 
critical loads is twice the number of rings. Special 
consideration has been given to the case of a cylinder 
with one ring at the centre and a closed expression has been 
deduced for the case of axially symmetrical buckling. 

The method of solution of problems of thin walled 
structures with stringers and rings, developed in this 
report s  is equally applicable to problems, other than those 
of elastic stability. 	Its advantage lies with the fact 
that it does not lead to systems of equations with 
infinitely many unknowns. Since it is based on types of 
solutions of the equilibrium or stability equations which 
appear to be inherent to the case of plates or shells, 
reinforced by discrete members, it may well be said that 
these solutions may be conceived as a suggestion towards the 
use of such reinforcements. 
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