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SUMMARY

Using a new approach to the theoretical study of
thin-walled cylinders with discrete reinforcing members
developed in this paper, the problem of general instability
of such structures is solved with more than usual
generalityo. The principal stages are indicated which lead
to the characteristic equation of the general problem in
the form of a determinant of order three times the number
of reinforcing members, i.e. stringers or rings. The
less general problem of distributed stringers and discrete
rings is solved completely and it is shown that for the
case of one ring at the middle of the cylinder, buckling
with axial symmetry, the characteristic equation can be
reduced to a very simple closed forme

The method of solution, developed below, must not
only be judged in its relation to the problem under
consideration. It will be found to be fundamental to the
theory of plates and shells in the sense that most problems
having an exact solution for the case of the homogeneous
structure, can now likewise be solved in the presence of
reinforcing members.
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NOTATION

Radius of cylinder

Arbitrary coefficlents
Arbitrary coefficients in basic solution

Skin thickness

Effective skin thickness for the case of
distributed stringers.

See (2.1.4)

Length of cylinder
Summation variables

Longitudinal, circumferential, radial
displacements.

Cylindrical coordinates

Position of ring

Position of stringer
Area of cross section of ring
Young's modulus

Second moments { ring section
of area of i

Opp U*ds Bfi 5(19 Yf: Yd (See 2-2-7)

7 SRIRE i

distributed stringefs per
unit length of circumference



Ko W See (3<2.4)

p = &

v Poisson's ratio

> NXUE; §2)

£§()x=xi Magnitude of discontinuous change of function ut X=X,
Sin See (2+42¢7)

K = k_+ ;:2(1 o W

Nx Direct stress resultant in x direction
0(:%) Of order 1/x°

-Qx Radial shear stress resultant
) Kronecker's delta
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INTRODUCTION

The use of structures with thin skins and reinforecing
stringers and ribs is due to two factorsy the desire to save
weight and the desire to save material. While the latter aim
hag Loly arisen during the last few years, causing their use
in al. types of constructiony, the former has been the guiding
principle of aeronautical engincering ever since man made his
Tirst flight in a machine heavier than aire.

Great difficulties have been experienced in subjecting
such structures to an exact theoretical analysis. A
considerable amount of work has been done on the stability
problems of discretely reinforccd rectangular plates; using
energy methodse. This work is described in some detail in
Refs1, and one of the principal exponents of this approach in
England is HeLe Cox who has published a number of papers on
the subject (eoge Refeb). But this method leads always to
an infinite system of simultaneous linear equations, and very
often a great deal of ingenuity is required to reduce these to
a closed expressione

To the author's knowledge, all attempts to solve
stability and other problems in reinforced shell theory have
been based on initial, very approximate, assumptions, and even
then have led to such involved calculations that it is often
very difficult, even for the specialist, to follow the
reasoning and to grasp the physical meaning of the final
results (ee.ge Refe 2-4).

The method of this report secems to avoid many of these
disadvantages, and in some sense will be seen to be equivalent
to the energy method, since results, obtained by it; probably
could also be deduced in a round about manner by that method.
Its strength lies with the fact that it has a simple physical
interpretation. Its application is by no means restricted
to the problem under consideration, norn as a matter of fact, to
problems of stability. The present papcr deals only with
the application of the method to the problem of general
instability of shells. It is hoped that 1t will justify the
claims made here, and it is the intention of the author to
support these statements in the near future by a more
comprehensive report, giving the solution of other important
problems in the theory of plates and shellse

/ 1el cencces



1.1 . Statement of the Problem

The problem of elastic instability is one of the most
important of the theory of elasticity, and its nature is
explained in most relevant text books. For this reason, no
attempt will be made here to describe it in detail. As in the
later work, emphasis will be on the part played by the
reinforcing members.

Consider a stressed skin structure with ribs and
stringers firmly attached to it in such a way that the elastic
axes of the reinforcements lie in the middle plane of the skin.
While this assumption is not essential; it will be made here
for the sake of simplicity, the modifications arising from its
removal being obvious. It is known from the theory of
structures that, if such a structure deforms, certain of the
stress-resultants undergo discontinuous changes at the reinforcing
members. Prom the point of view of the skin, these
discontinuous changes manifest themselves in local pressures
and shears. On the other hand, from the point of view of the
stringer, they can be conceived as loading on the member causing
its deformation. While the reinforcing members are of finite
width in practicey, it is most convenient in theoretical work
to 1dealize them into linese As a result of this step, the
pressures and shears, mentioned above, become infinite, since
the line of contact is devoid of area.

After these remarks, the problem under consideration
may be formulated as follows: "To find the characteristic
equation for the determination of critical loads of a cylinder
with thin skin, subject to localized infinite pressures and
shears, which depend on the deformation of the shell and the
stiffness of the reinforcing members.

12 General Discussion of the Method of Solution

A certain amount of hesitation may be shown at first
at the idea of introducing infinite pressures.s On the other
hand, in many other branches of mathematical physics such
localized infinities have been used for many yesrs in the
form of line sources. The method of solutiony, to be used here,
thus will be seen to be based on a concept which, to the
author's knowledge, has been little used in the theory of
structures although it occurs in a disguised manner, for
example, in Ref.bh in the solution of the problem of a plate
loaded over a portion of its surfacec. But it has been arriwved
at in an arbitrary manner and the solution used there does
not by itself satisfy the differential equation.

What may be termed the source solution of the theory
of thin plates, will here be shown to fully satisfy the
differential equation under loads, peculiar to the presence
of discrete reinforcing members. Due to the indeterminateness
of the pressures, as in the case of sources, for example, in
aerodynamic theory, the source or basic solution will contain
one arbitrary constant, or sets of arbitrary constants, which
therefore can be used to satisfy the "internal" boundary
conditions at the stringers or rings.

/ In the esoes



In the case of stability problems these conditions lead to

a homogeneous system of linear equations in the above mentioned
constants, and the condition for the existence of non-zero
values of these constants presents the required characteristic
equatione

Finally, one short remark will be made with regard to
the mathematical character of these source solutions. It will
be shown later on, that these solutions are in actual fact
combinations of the complementary functions and the particular
integrals of the non-~homogeneous differential equations, which
follow from the ordinary stability equations after introduction
of the earlier stated type of loading. The solutions, which
are in the form of Fourier series, contain a "singular" part in
that in the present problem their first or third derivatives
with respect to the coordinate at right angles to the stringer
or rib are discontinuouse. The "singular" part, which is of the
form used by S. Timoshenko in Ref.5 is easily separated from
the basic solution, and the remaining part can then be shown
to be "regular'"s It is for this reason that the term basic
solution has been preferred to that of source solution, because
the latter term is normally used for solutions which are purely
singular.

T Assumptions

Some of the assumptions to be stated here have been
referrcd to earlier, others will be introduced during the actual
analysise. Nevertheless it will be worthwhile to state them
here in full. They are:-

Ao Thin shell theory is applicable.

Ae2 The elastic axes of stringers and ribs lie in the
middle plane of the skin.

Ae3 Stringers and ribs have no torsional stiffness and
may be idealized into lines.

Aelt  The free edges are simply supported.

When dealing with the simplified shell theory, based
on distributed stringers, the following additional assumptions
will be required:

LoD The stringers are so closely spaced that each
circumferential wave in the buckled state contains
several stringers.

Le6  The stringers add effective area to the skin only
as far as the longitudinal direct stress flexural
stiffness and radial shear stress are concernede

Le7 The skin lacks torsional, flexural and shear
stiffness and the circumferential displacements are
small as compared with those in radial direction.

A8 The rings have no stiffness for deformation out of
their plane. .

(The last four conditions are discussed in detail in Ref.3)

/ A8 TED secssene
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As far as A.l4 is concerned, this condition will be
seen to be automatically satisfied. However, it will Dbe
suggested here that the edge conditions may be varied in a
manner which is very close to practical conditions, and which
it would be very difficult to achieve without the help of
the basic solutionse. In fact, by choosing the length of
the theoretical cylinder somewhat larger and by introducing
very stiff rings in the vicinity of one or both ends of the
theoretical cylinder in such a way that either the distance
between the stiff rings or between one simply supported end
and the stiff ring is equal to the length of the actual
cylinder, one could solve the problem for the case of clamped
endse. The choice of the stiffness of the artificially
introduced rings would thus give the means of varying the
degree of clampinge However, it is not proposed to
investigate this point further in this report, and A.4 will
hold throughout the subsequent worke.

DEDUCTION OF THE BASIC SOLUTIONS

In order to save space, the relevant differential
equations and boundary conditions will be stated here without
deductione. In the case of the general problem they may be
found in section 84 of Refel, while for the case of the
simplified problem they are essentially contained in Ref.3.
As far as possible, the notation used agrees with that of
Refele

241 The General Case of a Circular Cylinder

The most general stability equations for the case
of a thin walled homogeneous cylinder in compression are:

62u+1+v 0y B ol 3u & U
axz 2 £80x060 a ox 2 a2ae2
1+v_§_2_1_i_+ a(l - v) 3% 5 3y il o
2 dxa6 2 ax2 a662 a0b
oo O % 3 2 2
1 ¢
+a,5-§—z-§+§-—£3-+a agw +a(1 =) g—%i-aﬁg—t = 0 (2.1.1)
‘adb adf 9x“06 ax~ ox
agazw du . ov W
- —_—F VTm 4 mmm - = -
ax2 ox aob a
_a?av3+(2_v)a 52V+a5§{+9-£4+2a—-2—%!=0
‘adb ox 06 ox a0b Ix“00°"
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These e¢:ations represent the conditions of equilibrium in

the lonsitudinal, circumferential and radial directions
respectively at each point of the shell. As mentioned in the
Introduction, these equations wil". be solved for the case,
when infinite pressures and shears act either along a circle
at a station x; (case of a ring) or along a generator,

specified by 64 (case of a stringer). This loading condivion

will be produced by introducing on the right hand sides of
tnese equations the following sets of loading functions:

one Y o B
= g
jl /. g,y sin B i on BEE Y/ / a. cos?® s oy, DX
B et TS 5 0 ST C 1 g (G o e TR T ¢
%:‘ s nb Xy MK
) ' f , sin sin—= sin—— (2,4.2)
i i n-j_ 2 2 »
n=0 m=i ~ "
for the case of a ring,
. 6 {; o
il 4 nbd, b
fj e 81 cos@ sin--é}- sin%el g B e -t sine= k r:.:)a%g 5
n=0 m=1 - n=0 m=1 € 'n

LA [ F )

¥ X nd, no
; 7 £ 4 sin—= sins= siny (2.4.3)
n=0 m=t ™ L

for the case of a stringer,

where I e x mRxX, c:o_s-r:..:,i _
| o8 T= + E k = ocos 4 S—— mz 2
‘e m el
k1 = .‘I‘ g 1 ~m : (2.1-14-)
i X nmw
G e % N nBi cos~
k = cos=r= {4 weeie nos 2
n 2 2
1=-n

have been chosen in such a way that the cosine and sin series used in
(2.1 2) and (2 1 3) are completely equivalent (See also section 2.3)

It is easily verified that these loading functions
have the required properties, since the relevant parts of the
Fourier series converge to zero in a conventional(Atel) Sense
for all values of X or 6 in the range O£ x s € or 0< 6 £2x
except when %X = X9 0= ei, the series becoming infinite there.

In order to solve the differential equations (2e1e1)

with the loading systems (2¢1.2) or (2.1.3), substitute for
the displacements the following series:

J B®  sessse



w »
b, } - mrx
T I S amn sin - cos ?—
n=0 m=1 =
P [} 56
v = 5” ;- b cos Bl sin 2EE (2.1.5)
LS SRS S nn 2 ﬁ a .
n:O m=
Bl ¢
o N
no 5. TORCK
w=/ A . sin - sin -1.’_
n=0 m=1 -

vhich after some intermediate calculations reduce the differential
equations to the following system of equations for the determination
of the arbitrary constants of (2.1.5)

»

’\-2_'_1%_2_“2 il i X\

goA v

1 + v A= \
Loak o gy, u2+ a(1-v) 2%+ @;12- 3-% wo+ Oal-l(}‘-z-i' u2) b

2 2 mn
\ B o 21} T
v A pi1 + o p (2 - v)X | 1=XFra (M 4p ) o
&ni km
- '5-
dni sin—= for the case of a ring
. .
3 ¢
’ mn ) N nei
o { &ni s 2
mn L
dmi kn for the case of a stringer
né
; i
fmi sin—3

The determinant of this system of equations vanishes for critical
loads, lees values of @, which correspond to the buckling of the
homogeneous cylinder, since

&(}s“) = 0

is the characteristic equation of the homogeneous probleme.
Hence (2.1¢6) will normally have finite solutions for the &’

bome Cpne The solutions (2.1.5) with the appropriate values
of the constant coefficients are the basic solutions of this
problem.

/2.2 fsoe B o000
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282 The Simplified Theory of a Circular Cylinder with
Digtributed Stringers.

Using Ae5 to Ae7 of section 1.3, the differential
equations take in this case the following form:

0
0 u 1 4 9 dy 1 -
Reed & "= maw b g

v oW
~ e =V
ox a 08 =

2

]

9 a7 a(j—v)azv oW +av

3 = * 0 (2.2.1)

The two stress resultants, affected by A.6 and used in deducing (2.2.1)
are now given by

hit r Ju y 0V 1 ij
N = i — L = (—— - Vf)} . Q - -EI — (2. 2. 2)
x i v' ox a ‘06 x % ax3
where 9
5 Ix(‘l -y ) ( " )

The equations (2.2.1) are the conditions of equilibrium for an
orthotropic shell, Using A.8, the loading system for the case of
one ring becones

el > = Ui

oo inde _ . nnx, —
5 e, ds sin—?-]; cosnd sin—=, /_ fni sin—= sin nb sinm——

n=0 m=1 ks na n=0 n=1 < e

(2.2.4)

and proceeding in the same mnanner as in the general case one arrives
at the systen of equations

. ad : - y-

IK A 1-2-— n? 1—;-3 n A v A a;n = 0
i Y
[ 1ty =y 2. 2 i . TONX
| 5 1 A + n n bmn ani sin - 16
‘ o

5 nRx.
oy n 1ap)rg?] | ot P, sip—=
i ; 3 mn . ni 4

(2.2.5)
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Again, the vanishing of the determinant of this system gives
the characteristic equation for the homogeneous orthotropic
cylindere. Assuming the critical loads of the cylinder with
a ring to be different from those of the homogeneous shell,
one finds from (2.2.5)

- mx
_\ o sin l. S Og o
i = . %53 L ' '_;l'_\i i e ﬁ_:‘;’_;v }\
amn = [dnio,d-l- fniaﬂs:l.u Z = Bre ’-dni- 5 (Qf B) )>. Al
I8 | lups®h |
- fni 5 (R =Y (~ |
ey ,
i Y - (e 2 1=y 2 g2y g3
b = {d B+ f 4B *( sin AN idnii(K) 50 )(‘I+B.x. B2 )my X |
(1Y 22 a2 A=y 2¢h 1
+ fni""‘é-"\))! (K A+ > n /i 1'1”-1
sin g
e mnx T 1 5
£ 7 } i e I, {20+ A A=y 21
e =4 yYqt fniﬁfjsiu-t v Bgx 0r v - B =0
o
FAmV rsde. by e V42 2%
* £ s &A% n)+ E-v) 20"}
(2.2.6)
where
< i
1 - % —
b, ={p%- ARG ©F)+ 022 )i + 20 - )] N (2.2.7)
Thus, similarly to (2.1,5) one has in this case the basic solutions
- <
Ty g g i nx
st Rt 'dni ag + fni Gp- sin—-e-.-—- sin n 6 cos 3
<~ - i
v=_/_’_.2 (o, B, +f, B, sir—= cos n 0 sinfEX (2.2.8)
ni *d ni P 7 -
. n=0 m=1 -

=
-
4

=

]
™

™M

7

1 iy ) X
" rdn:'. Yd + fn:l Yf}: sin-—g- airr-; sinn ©

o

These solutions will be used in section 3. to obtaln the
characteristic equation for the critical loadse. However,
the understanding of the work of that section will be greatly
helped by the short discussion of the properties of the basilc
solutions, which is given in the next section.

£ BB ansore
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2e¢3 Discussion of the Properties of the Basic Solutions

It is obvious from the form of the solutions, deduced
above, that they satisfy the assumption of simply supported
edges. So there remains only to show that these solutions
are complete; that their relevant derivatives are
discontinuous and that they are otherwise "regular"

It is seen from (2.26) and (2.2.7) that

bt = O(A®) ¢ B » OlHM) (Be541)
while '
- £
o~ i %i = 6(1/x) » of, - ﬁ—i% = 0(1/4%) (203.2)

Thus the first and third derivatives of v and w with respect
to x are discontinuous at x,, since A =mra and

e
1

. -%TEJ—C Oex4x :
Db e delE. e ' (2.3:3)
n=1 ) "e £ 1 (1_x) = X 40

5 ‘é" xi_xm E

If & denotos the magnitude of the discontinuities, it is seen
that

2 5 L
o i3 AL oW & it A
a"ax)xmci =T ‘i £ 7 ( 'gczzxi B fni ot B3k}

The expressions (2.3.2) show, that, as far as the
differential equations (2.2.1) are concerned, the remainders
of the basic solutions are regular in X Similar arguments
can be applied to the other derivatives of u, vy, w which occur
in the differential equations, and it can be shown in this
manner that the discontinuities, indicated above, are the
only ones of sufficiently low order to be of interest here.
Further, since the basic solutions contain regular as well
as singular parts they will be complete, and by a suitable
uniqueness theorem they are the only solutions, as they
satisfy the boundary conditions. This latter point will
become yet more obvious in the next section dealing with the
deduction of the characteristic equation and the "“internal"
boundary conditionse.

e olsut
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35« THE CHARACTERISTIC EQUATION FOR THE SIMPLIFIED THEORY
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It has been shown in section 2.3 that the basic
solutions (2.2.8) possess analytical properties, which will be
required in the process of satisfying the "internal" boundary

conditionse.

As indicated in the Introduction, these conditions

lead to a homogeneous system of equations for the determination

of the dni and fni'

constants for each ring, it will be expected that the
characteristic determinant in the present case will be of

order 2g; where g 1s the number

3e1

of ringse

Circular Cylinder with Several Rings

The relevant boundary conditions at the rings are

discussed in detaill in Refs. 3 and L.
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="Ixié(§§%)

h -(Bu _a;_r)
=T 20wy) {“,aae * %,
X=X

1

XK, £ TG R T o8 - TRl

Since there are only two sets of such

(3.1.1)
,8)

where the left hand sides are the elastic forces in the ring

which have to be in equilibrium

with the external loading,

from the point of view of the ring, represented by the terms

on the right hand sides.

If there is more than one ring, the appropriate
expressions for the displacements may be obtained by adding

geveral of the basic solutions (2.2.8).
composlte solutions, thus obtained into

Substituting the
(3e1¢1) and using

(2+3el4) one finds the following determinantal condition for
the exlstence of non~zero values of the dni and fni'

&}
6+.Z

P 3k 3 i
1j m=1LIhi(h Yo + B Bf) P l

T mnx mnse
+ Afili (n,Bfwf)J sirr—-g-:-"- .=:,:i.1'1--_é-'I1 i

L ’ Ye + nzﬁf) > I

e 1 mRx. ‘nmxj
+ ARI,<n Bf+mrf)_5 sim = sin ~ - I

__,_.__{ o

&

EE h; Gﬁ'r +:JB) *
m=1'.i d d
K

o
& Afli (nﬂd-n- Yd)j sin-';:- sip—

vmmpres s —— — e —m——

ticy

mmac
K

e

2

~h © 5 , 3 2
6, + 2. [ I! (nPy.+ n“B.) + |
2(1my?) 1E T ot g 88, E
) 9 1 My WX,
' | a . b
+ Alp, (7B rny )} sim o eS|
!
s 0 (5.1.2)
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By (2.2.6) the coefficients under the sum signs above are

b L=y . i 2
n‘,""rf + njﬁf = i—-[%ilml" (n -‘I)E-&- A [K(n -1) + v(li-‘i - nz)“l
An
G Pl 2
Uﬁf + Yo =QT —-‘,-Z—[K}('-vn]
n
oo 4Pp o 21 [:2{)2 (vl 1+v - 0+ L2002+ 82607 152°) (X% (kD)
nBy +¥ =—3ka2 222 (e Az;ﬁ) +v1=-‘-’
& & Mn .
(3.1.3)
where éln is given by (2.2.7)

determination of the critical loads.
coefficients (3+1.3), remembering that &0

Equation (3.1.2) is the final expression for the
Inspectiog of the
0(A°) shows that

g

the last two are of order X

while the first two are of order

A8 Depending on the magnitude of n, it will normally be
sufficient to retain only a few terms of these series.

the numerical application of this equation shoul

d be the

However,

object of a separate investigation, and it will be satisfactory

at present, that the series involved converge.

In the

following section, one special case will be studied in greater
detall and it will be shown that for axially symmetrical
buckling a closed expression can be obtained.

32 Cylinder with one ring at the centre. Axially symmetric
buckling
In this case (3.1.2) reduces to:
s -

..Ix'K g iy 3 ’ ! 5 & !

3 d L ! Ié (n Yf"’n Gf)"’AR (anWf). sin mr ; e IR (n Yd"'n Bd)+AR (nsawd)
2£-B m=1 ' 2

. s:i.'n2 mr

2

\’ﬁ"

4_ fIR(n ¥t Bf)+AR n Bf-i-m'f)J sin? ﬂ;\'.

- bt +> [IRnY nﬁd)+

2 (1=y°) 1=

+AI'{ (nzB gty dﬂ sin’ %

|

i
|
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This equation is still rather complicated and because of the
complexity of the coefficients (3¢1.3) no attempt will be made
to sum the series here. However, in the case of axially
symmetrical buckling, i.ee when n = 0, a closed expression is
easily obtained, as will now be shown} but unfortunately this
case is of little practical importances.

For n = 0, (3.2.1) becomes, using (2.2:3), (2+2+6)
and (2+2.7)

. - e . 2
Ix‘ﬂ + r:‘-‘m ,." ! Y Sin2 E e ‘1 hﬂ + ‘;R K \_ "“ S ln 2 C
2998 T £ . S D TR

Summing the series, using the relation

P

t 1 T e
P = == tan == (3.2.2)
-y (om + 1)2 - é2 b%

which holds for all complex values of £ 5 except for
=441, + 3, etce one finds finally

"3_1 "“\/f - /""j"‘ -1 tan \/‘;ﬂ' ‘&"' w-v{.@ & tan —j‘,-—a‘w i
(3.2.3)
where
g Na2 I--—--——-
K ’ ?=2ﬁ= v JVE | K¥+1, +3, ... (3.2.4)
Since is positive for compression and all other

quantltlgs are positive, all the roots will be real provided

yzkﬁg,iﬁu

N:;az k h .
> = ~h (3.2.5)
4321:: X
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CONCLUSI ONS

Using special solutions of the stability equations
the problem of general instability of circular cylinders
can be solved exactly and, in the general case, when there
are only rings or stringers present, the characteristic
equation for the critical loads will be a determinant of
order three times the number of reinforcing members.

On the basis of a simplified shell theory, requiring
assumptions additional to those of the theory of thin shells,
the complete solution of the problem of a cylinder with
distributed stringers and discrete rings has been obtained.
In this case the order of the determinantal equation for the
critical loads 1s twice the number of ringse. Special
consideration has been given to the case of a cylinder
with one ring at the centre and a closed expression has been
deduced for the case of axially symmetrical bucklinge

The method of solution of problems of thin walled
structures with stringers and rings, developed in this
report, 1ls equally applicable to problems, other than those
of elastic stability. Its advantage lies with the fact
that it does not lead to systems of equations with
infinitely many unknowns. Since it is based on types of
solutions of the equilibrium or stability equations which
appear to be inherent to the case of plates or shells,
reinforced by discrete members, it may well be said that
these solutions may be conceived as a suggestion towards the
use of such reinforcements.
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