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The stability derivatives of a delta wing 

of small aspect ratio, mounted on a cylindrical body 

with a slender pointed head, are derived by con-

sidering the flow in planes perpendicular to the 

body axis to be uninfluenced by Lhe chan7e in the 

streamwise component of the air velocity (the so-called 

'slender body' theory). 

The results are tabulated, and the variations 

of the derivatives with the ratio of body diameter to 

wing span are shown in the form of graphs. 
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NOTATION (see also Figure 1) 

A 	Wing gross aspect ratio 	 b2/S). 

Longitudinal force coefficient (. X/ip U2S) 
forward along body axis. 

Side force coefficient 
in starboard direction, 

p U 2 S) 

Normal force coefficient 
downwards. 

Rolling moment coefficient 

Pitching moment coefficient 

Yawing moment coefficient 

Complex potential, with 9) 	0 as real part. 
Gross wing area. 

Velocity components of body relative to air 
along x, y and z axes. 

Longitudinal force on surface ahead of plane 
x = constant. 

Side force on surface ahead of plane x . constant. 

Normal force on surface ahead of plane x = constant. 

Body radius. 

Maximum body radias. 

Maximum gross wing span. 

Gross wing chord on centre line. 

Geometric mean chord of wing. 

(pressure - free stream pi assure 	p U
2

. 

Length of curved head of body ahead of plane x = 

Distance between shoulder of body head and wing 
apex on centre line. 

Differ once in air pressure between upper and lower 
surfaces of wing or body along the line x . constant, 
y = constant. 

Rate of roll 

Rate of pitch 	of body-wing combination. 

Rate of yaw. J 
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Notation  (contd. ) 

Local wing gross semi-span. 

Maximum gross semi-span (= 

Velocity components of air along x, y and z axes 
relative to body. 

System of orthogonal coordinates, origin at wing 

apex on centre line, x-axis backwards along 

body axis, y-axis to starboard in plane of wing, 

and z-axis normal (upwards) to i-jane of wing. 

(R0x) Polar cylindrical coordinates (y = R cos 6, z = R sin 0). 

Distance of geometric centroid of body head in 
front of shoulder (x = -4 	h. 

Volume of body head in front of shoulder (x=1 -V4-h7ca
2

. 

a 	Incidence of body wing combination to main stream. 

cue 	Effective incidence of a plane x = constant (= W/U). 

a1.J 	
plo/2U. 

a q 	= cc/U, 

ar 	= rb/2U. 

Angle of yaw. 

Pe 	Effective angle of yaw of a plane x = constant 
(= -V/U). 

= y 	iz. 

Distance of arbitrary reference point downstream 
of origin. 

Air density. 

Potential due to incidence and sideslip in plane 
x . constant. 

0 	Potential due to roll in plane x = constant. 

Stream function. 

Primed symbols denote reference to wind axes (not 
body axes) - see Figure 2. 

Suffix B denotes values on body surface. 

Suffix W denotes values on wing surface. 

The term 'gross wins' applies to that plan form 
produced by extending the lines of the leading 
and trailing edges to meet, on the centre-line. 
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1. Intronction 

A large nrliaper of reports have recently been 
nnblished, dealYag with the flow past slender wings 
and wing-body combinations, using the assumption that 
the flow may adequately be described by neglecting its 
variation in the stream direction. 	This approach was 
apparently originated by Munk in studying the aero- 
dynamics of slender airships 1 . 	R.T. Jones extended 

2 it to the calculation of the lift of triangular wings  
of small aspect rr,tio, and more recently Ribner applied 
the method to the study of the stability derivatives cf 
such wings3 . 	Munk's work on bodies has been extended 
by various investigators46  and, in particular, Spreiter6 

 has considered slender wing-body combinations. 

The object of this note is to apply the 
method to the calculation of the stabili 4a: derivatives 
of a slender wing-body combination, having a triangular 
wing mounted on the cylindrical portion of a body with 
a pointed nose (of arbitrary shape) 	No attempt is 
made to examine the flow behind the wing trailing sdge. 
Figure 1 is a diagram of the layout explaining the 
notation which we shall employ. 

After the work was completed it became known 
that part had already been considered by American 
authors - in particular, the damping-in-roll estimation 7,3. 

however, the present treatment has been left as a com- 
plete survey so that its reference value is not impaired. 
Sufficient discussion is given in each paragraph to 
enable the general lines of the calculation to be fol-
lowed. 

To simplify the presentation of the work, we 
deal separately with 

(i) the forces and moments on the triangular wing 
mounted on a cylindrical body (i.e. downstream 
of a lateral plane corresponding to the wing 
leading edge at the body junction); 

(ii) the forces and moments on the body upstream 
of the wing. 

The first calculations are said to relate to a 'Wing 
on Cylindrical Body' and the second to a 'Cylindrical 
Body with Pointed Nose'. 	The forces and moments from 
each are, cf course, additive. 

The body axis is assumed to lie in the plane 
of the wing (taken to be of zero thickness) and at an 
incidence (a radians) to the direction of undisturbed 
motion. 	The stability derivatives are referred to 
body axes, as shown in Figure 1, except where other-
wise stated. 



2. The Potential of  the Flow about  a Wing-Body  Combination  

If u, v and w are the velocity components of 
the air relative to the body in the direction of the 
x, y and z axes respectively (see Figure 1); and if 
in a chosen lateral plane the apparent components of 
the free-stream velocity at infinity (relative to these 
axes fixed in the body) are U, -V and Vh then we define 
the effective sideslip angle as 

	

ae = W/U 	and 	Pe = -11/U ' 

These quantities are assumed to be small, as also are 
(u-U), v, w. 	According to Bernoulli's Theorem the 
pressure coefficient is then given by 

	

2 	, 
= - 	tyi-U) - 	(v-V) + 	_W)1 

where, in addition to the usual term (u-tfl, the terms 
of lowest order in a e  and e  have also been retained. 
Although these are, strictly speaking, of second order, 
they nevertheless yield solutions of the lowest order 
in certain circumstances - as will later be apparent -
where the derivatives required are due to sideslip or 
roll, for example, but vary also in proportion to a. 

If the flow is irrotational, we may define a 
perturbation potential function 9, such that 

y . u-u, 	
fly 

= v- v, and q = w 

where the suffices denote partial differentiations. 

I is the assumption of the 'sle -nder body' 
theory, upon which our results will be based, that 
this potential function satisfies the equation 

( 2 . 1) 

+ Cr 	=a.   (2.2) 
zz 

In the present instance, we are considering 
the flow due to a body-wing combinf7tion, whose section 
in any transverse 1)lar.:3 (x = constant) is a combination 
of a circle afid e. straight line. 	Spreiter 6  has given 
the potential which satisfies equation (2.2) together 
with the boundary condition (i) that the flow is tan-
gential to the surface and (ii) that the velocity at 
infinity is given by v = 0 and 	= Ua; and Heaslet and 
Lomax8 have calculated that due to a rotation of the 
body-wing combination about the body axis. 	Unfortunate- 
ly, the latter treatment contains one or two important 
typographical errors, and so - to avoid possible con-
fusion - and for the sake of completeness, both this 
and the other potential functions are derived 
independently in Appendices I and II. 

The potential function to which we shall 
most often refer is that due to a combination of 



The value of this derivative on the wing body com-
bination may be found most simply from the separate 
expressions for the surface potential on the wing 
and the body 

, 

sgn(z)uae 	s 	+-17 ) - Y ( 1 +7 ) 
+ u 
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upwash Uae  and sidewash U5 e : it is given by 

sgn(z)
Ua 	

1(1+921 )R 2 cos 20+ 0 2 (1+13-1 
 / 

R4 	 84- 

	

r 	 4 2 
+/ I R (1+7)+ 2a 4cos 40 s ( 1 + 14.  ) 

a8 
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4 	o4  2 - 2s 2  (14-) (1+-F)R cos 2d 1, 
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a2  - U0. 7
y 
 - Uae z, 

 

(2.3) 

 

where 
y +iz 	R e 

sgn z = Viz! 

a = body radius 

s ---. semi wing-span. 

From (2.1), the pressure coefficient may be written 

(i op   = 	fax .0 a 9 	) 
' Pe U. 4-  'le ax ).  

The variation of (Pwith x is implicit in the variation 
of the geometry of the surface, i.e. 

do  3 	dpe a 	da 	ds a 	 a 
ax 	dx as 	dx as 	dx ame 	dx aPe  • 

where the suffices W and 'B' refer to conditions 
at the wing and body surfaces respectively. 



3. The Derivatives due to Incidence  

3.1. Wing on cylindrical body  

For a wing-body combination at incidence a 
and at zero sideslip, the pressure difference be-
tween the upper and lower surfaces may be found from 
equations (2.31 and (2.4), putting a e  = a and p e  = O. 

3V 
Since q7 is an odd function of z, and -- is an even az 
function, it follows that the pressure differenceLp 
is given by 

2- aT 

2pu2 =r(5x) upper surface 

where Ap = (p) ulTper surface - (p) lower surface' 

But, from (2.5), performing the necessary differen-
tiations we find that, since a = a o (a constant), 

/ 	4\  
c4) 	d s iao 	ds 	

ao  \ 	27 a , 

x.)wm  dx 	= ax 	

a 
sgn (z )Ua 1 - ° 	+77- 	

s
Y--1 + 

s4/ 	 y 4 „  

	

4\ 	a 2\ 2  

094,\  ds a(0\•

a ao 
2 

ox i  dxasi = s sgn(z)Ua oll ----.) 1+-7) 4Y_ 
• B \ s . , s  

( 3 . 1 ) 

and these expressions enable us to describe the 
variation of //\,  p/q p u2 . 

The longitudinal distiibution of normal 
force is given by the integral 

1 a, a 	
Cs 	 I  OZ 	 \ d1 ----dr--)  

di. pU 	1 2  , 	y + J 	1 - 2 	-1 
L 0 \PIJ  /B 	

a 771:1U 
o \-' 	Vi ---i 

Using (3. 1) we may then perform the 
integrations, and recalling the identity 

20  arosin 1 - 02 
2 + aresin 1 +o 1 +02 - 

the final e..7.;:pression may be simplified m  to 
'?• 

ax = 	27. apU s 77  OZ 
	U2 

ds 
 

s 	• 

 

( 3 . 3) 

 

Hence, integrating with respect to x from x = a c c/s o 

 to x = c (the body-wing junction to the wing trailing 

mThe definition of all coefficients used here will 
be found in the list of symbols on p. 1. 



edge), we find that 

8C, 

8a - 	(1  - 02 ) 2 

 

(3 11.) 

 

where o . a o  /s o , the ratio of body diameter to wing span. 

The pitching moment coefficient about the 
point (E 9 0,0) is given by 

ac 

'Yoe 

dC 
) 	z 

c' .dx dx 

 

( 3. 5) 

 

so that using (3.3) and integrating 

B M a° 27c — 	A (1 - 4o 3 	_3(34 ) 2  au — 	3 	 ' 	c as 

   

   

The side force and the rolling and yawing 
moments are all zero since, from (2.3) and (2.4), ce 
(and so c ) is an even function of y, 

80 	ac 	acti  i.e. 	Y = _ n  8a 	au 	Ga (3, 7 ) 

The longitudinal force - in the direction of 
the x-axis, which is also the body axis-is due only 
to the diEtribution of suction along the wing leading 
edge, there being no resolved component of the normal 
pressures in this direction (since it is evidently in 
the plane of the wing). 	This suction force may be 
estimated if we note that its component in the direction 
of the y-axis may be found from the flow in the trans-
verse plane x . constant. 	This is a side force 
(outwards from the wing) per unit length of amount 

where 

Y w F_ 	p I Y1 2  

dH Av  _4 
(v_v ■ 7 vc, 

	

at 	= 0  

as 

	

and 	H = (i)  

	 (3. 8 ) 

 

 

y 	iz 

 

and where 	is the value of 	corresponding to the 
wing leadir edge. 	In fact, H is the complex 
Potential and /  in kopendix I, its value due to a 
uniform upwash Ua is shown to be 

2N.2 	a 2 \,2  
s 	- o. . s j  

The real part of this expression appears in ( • 3)• 



Thus 

dIl 	 ( a 4 \ 

aZ = - 1-u a 	:1.  -747/1  

	

/ 7 a 4 	 1 

	

--4 7. ium if 	-9L, , ik ; s)2 

Ai 	
-,.. 	s 	I 0 

In (3.8), with Y_, (3  = s, we find that 

	

s ! 	a0117  Y 1= Ua / 	‘, 1 - 
s 

9 

as 	+ s. 

2 \ 2 	■ 	2 \2-'  a 
	/ 
	a 

_F.__ i _ ,,s  ± o o 

whence 

+„2 2 Y = - 7 pu a s a 0 

 4') 

s4 > 

 

(3.9 ) 

  

This is the resolved part of a force normal to the 
leading edge, and it follows that its component in 
the x-direction is X where 

dX 	ds 
dx 	dx 	I ' 

Hence X is obtained by integrating IY1 with respect 
to s and the contribution from both half-wings gives 

7cA 2 Cx 	
a (1 - 0 2 ) 2 	-1 -

z 

i.e. 

acx 	acz 
as 	a  aa 

 

(3. 10) 

 

3.2. Cylindrical body with pointed nose  

The relevant potential may be formed from 
(2.3) if we put s = a where now a must be treated as 
a variable with x: thus, if ae  = a and Re = 0 (i. e. 
there is an upwash due to the body incidence but no 
sideslip), then from (2.3) 

99 .--_.- u aa 2  sin 0/R .   (3. 11 ) 

This is an odd function of z whereas aqVaz is an 
even function, so that from (2.4), the pressure 
difference between the upper and lower surfaces is 
Lip where 

ZIT)  
"2 	U 

`pax  P u 	• /upper surface , 
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Differentiating V' from (3.11) and putting R = a, it then 
follows that 

	

rl a  da 	y_ 
1 	2 	dx 	2 

P
n 	

a  

where da/d.x is an arbitrary function of x, describing 
the nose shape. 

Since 
0E1  

dZ 	2  
T7 	P U 	 .2 ) 

❑
:7  

0 0 	P 

we find ^n performing the integration that 

dZ 	 da - 27cc.tpU 2  a dx 	 dx 

so that integrating from x = 	h) to x = Ge 
(from the nose to the body-wing junction), and 
noting that 

CC 

a 	dx 

	

da 	 a  2 

	

 dx 	2 0 

we find 

ac s 	TTA 2 
- 2 

(3.12) 

(3. 1 3) 

The pitching moment coefficient about the 
point (.,0 1 0) is given by 

,c1c 

GiCz  dx Cm = 2 	 dx c 
(3.15) 

i. e. from (3.13) , if we integrate by parts we find 

a cm _ 	87t 

aa 	W  Sc 
(3: a o2  

1 
C 	27c 

-(.e+h) 

2 	2r, 
BC z w.adX 	T ir 

But since 'xa. 2  is the cross-sectional area of the 
body, i.f 	h is the volume of -the head of the 
body (i.e. ahead of the plane x 	.t), then 
evidently 

'
P+ 	1-1) 

"IC A 0 c 	I 	C 

ac, 
as 

 

(3.16 ) 

 

For a conical head SR = 1/3, and for a slender 
ogive 	= 8/15, approximately. 
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From symmetry, the side force and the rolling 
and yawing moments are all zero, 

ac 	ac 	3C 
i . e. 	- —I-1- = as 	act 	as = o.   (3.17) 

Finally, the longitudinal force is obtained 
from the suction over the nose, caused by the ac-
celeration of the flow normal to the axis of the body, 
i.e. in planes x = constant. 	The excess velocity at 
the surface relative to the body is obtained from 
(3.8) as equal to 2Uct cos 0, whence it follows that 
there is a component of pressure in the plane 
x = constant, equal to 

p U2 a 2 (1 - 4 cos 2 0 ) 

	

on the body surface. 	This must, in fact, be the 
resolved part of a pressure acting normally to the 
body surface which is (if the body is slender) to the 
first order of approximation exactly as given above. 
It follows that the resolved component of the normal 
pressures in the direction of the x-axis contribute 
to a longitudinal farce given by the integral 

ra o  p.27c 
X 	- pU2 a2 I  

	

 j 	a (1 - 4 cos26 )d6 da, 
0 JO 

whence, as for the body-wing combination, 

Cx  = 11.- A o 2 a
2 

= - 	Cz  a 

e. 

acx 	acz 
as = - a  3a ' 

 

(3. 18) 

 

This result is, of course, fundamental and has been 
demonstrated, quite generally, by Ward9  for all body 
shapes. 

4. The Derivatives due to  Pitching 

4.1. Wing on cylindrical body 

If there is an angular velocity of pitch q 
about the line x = E, z = 0, then the effective 
incidence of the flow relative to the body in any 
plane x . constant is given by 

( 	 ) 

q_ ae  = a +
x -  

where a is the angle of attack. 	Since, for a wing 
on a cylindrical body, a = a o , a constant, we have 



in (2.4) for p u  

2 (ds a 	aae  act:,  2, ). cp 	 8s 4  dx @ae 	a e az /  

The value of aY/3ae  follows from (2.5), 
very simply, and since the term involving Waz is 
an even function of z, the pressure difference .ap 
between the upper and lower surfaces is given from 
(L. 1) by 

13:) 	= 	Lh/  ds 	'!0  

(iPU2) 	
U' dx as 	u 

le  upper surface 

Thus, the pressure difference caused by pitching is 

u 

	

` (x21-c) 	(16'  2) -  1771 	dx a ±s . 2 pu upper surface 

s  at.9 
a u2

11 e I- upper surface 
U a 

where the operator 3/aa is here meant to imply con-
ditions duo to incidence alone as described in 
paragraph 3; and using equations (2,5) and (3.1) 
we may describe the variation of 

due to pitch, 
\7pU 

The longitudinal distribution of normal 
force is given by (3.2) so that from equations (2.5), 
(3.1) and (4.2) we find on integration -chat 

d 	 7C 	, 
a 	a 

0 	0 I 	Es d i aCz) 	2 
dx 	- 1 U 	

t 	
75-  ff 73EV,-57- 1 PU  

	

s 	s 	' 

Or. 3 ) 

	

Thus, integrating from x = 	to x = c, we find 
that 

a c z
aC z 

= 	- 62 - 0 3 
+ 0

12
1 

C as 5a
(1 

 

(4. ) 

 

Again, the pitching moment coefficient is 
given by the integral expressed in (3.5), and from 
(L.. 3) on evaluation this gives 

acm 7cAo 	2 21_ 04 = = 3 	0 - 
2 	3 	3 	T  3a  

X2

2 aCz 

e  iac 	ac \I 4 e 	o 

	

n a ) _ LL,Qc, 	_ az _ a)  
as d 	E=0  

• • • • (4. 5 ) 
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The side force, and the yawing and rolling moments 
are all zero, since Y"' (and so c ) is an even function 
of y, i.e. 

ac 	ac 	aC 

	

n 	 D . 
ao, 	aa- g_ 	g_ 	q_ 

 

( 4.6 ) 

 

The longitudinal force is derived exactly 
as in paragraph 3. 1 .on p.6 , except that in the expression 
for the sideways component of the suction foxce on the 
wing leading edge 2given in equation (3.9), 	has to be 
substituted for a , and is a function of x according to 
equation (4.1). 	It therefore follows that if X is the 
longitudinal component of the suction force 

a 4'\ d ax 	u2 	 o ) ds 
dx aq 	aL=..0 i s 	- s 	dx ' 

whence by comparison with equations (3.3) and (3.5), 
it follows that in the limit as q -4 ❑ , the contribution 
from both half wings gives 

acx 	aCm 
aa 	aa. 

 

(4. 7) 

 

4.2. Cylindrical body with pointed nose  

The effective incidence ae of any plane 
section of the body is given as in equation (4.1), 
and from (2.3) we have, therefore 

Ua e a 2  sin 0/R 

where this expression is equivalent to (3.11) if 
ae = a simply. 	Since we may now write s = a, and 
treat a as a variable with x, it follows that the 
pressure coefficient is 

2 fda ac* 	dme as = _ 	 a  
p 	U 	aa 	dx Dae 	-e az )' 

(4. 8 ) 

Also, the function cf.)  is odd in z whereas Was is an 
even function of z so that the pressure difference 

- 	( da aP 	
da 

 e aq".) 
,2 	U' dx as 	dx aaejp 

upper surface 

or from (4- 8 ), 
2. 

pU
2 

sin 0 d 	) (a
e
a 

a 	dx i  

Thus substituting in (3.12) and integrating we have 
for the normal force: 

dZ 	 d(aea2) 

axy — pU 2 
dx 

 

(4. 9) 

 

- a general expression of which (3.13) is a particular 
case. 
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Whence, from (4.1), integrating from x 	_(+h) to 
x 	ac, we may calculate 

 

ac s A ci 3 	2" C z 
act 	 c as 

 

(4. 10 ) 

 

Again, with the pitching moment coefficient given as 
in (3.15) we may use (4.9) to show that 

  

cc 	 ac 2 ) z 1 n a 7 I 	 c sa a 
d - 

  

acm 	Sic 
57— 	Sc 

2 2 00  c 
ac 

as ) 
=0 

   

DC z 

c

▪ 

 2 	as • 

If rh is the distance of the centrcid of the (solid) 
nose ahead of the shoulder at x = - 4 then 

,-e _ 	(e  +h. 	2 clx 

7t a 2 dx 
(e+h) 

(e+h ) 7ca 2xdx 

- 	h 7. a o 
 

so that we may write 

ac m 	2 i 2r 2h2 + 22.h.e+e) 2E (acz 	acilA 

.0 
Apt a

2  L c`  
c 2  

\aa 	as 

2 ac 
2 as 

 

(4. 11 ) 

 

The value of r for a cone is 1/4, whereas for a 
slender ogive we find that r = 5/16 approximately. 

From symmetry, it follows that 

acn 
aa 	8a 

and the longitudinal force is derived exactly as 

pressure distribution on the nose due to the upwash 
in paragrapii 3.2 on p. 8. , except that now the normal 

is given by 
9 

PO ae
2 
 ( 1  

1 	.2 	- 4 cos A), 

where, of course, a, is a function , of x. 	Hence, 
the resolved parts Of the normal pressure in the 
direction of the x-axis contribute to a longitudinal 



2 co  \ 
I = - sgn(z)U array 	 Y 

(a 2
99\ 	— sgn(z)U 4 Zi l \axay/B - 	 st\  

a 	' 2 ( 	a Lt.  
2 	 ) sL7 	s 	y / 

2 \ 2  a o 
2 	4Y

2 
s 

(5. 3 ) 

— 114- — 

force given by the integral 

, s ac 	 p 	

14. 

2,2x
da  X = - .(317 2  i 	ae

2 
 a dx -- dx ) (1 - cos 2Oda 

J -(-e+h) 	
1.1 0 

so that as q 	0, 

d ax 	2 	x_ `111L-2_1 
dx 5-(7. 	7t  P U a —T—: dx 

whence by comparison with equations (3.13) and (3.15) 
we find 

acx 	aCm  

_ 
 a 	
a 

as u,
cl 

 

( 4. 1 3 ) 

 

5. The Derivatives  due to  Sideslip  

5.1. Wing on cylindrical body  

We consider now a wing-body combination, 
at incidence, sideslipping with uniform velocity - V 
so that the angle of sideslip is p. 	Evidently, then 
ae  = a and 0e  = 0 for all planes x = constant, and so 
from (2.1) if a = a o , a constant 

21 ds 1E 	aio 
op 	 as 4- 	a z a 	- 641' 

The contribution to the pressure distribution due to 
sideslip alone is found from 

ac 2rds a 2(P  

	

+ a ra
2 V 	a 2 c  )-1 

ap 	
_ 

u dx apas 	'opaz 	aaay 

  

( 5 . ) 

  

where we have given the limiting value of the 

expression 0 g for 0 	O. 

Now, from (2.3), 
2 

= 	ua o2 y/ (y2  + z 2 ), so that a (49  - 0. ap 	 apas .. (5.2) 

whereas, after differentiation, we find for a = a , 
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Frr.9.1 (5.2) and (5,3) it follows that although 
in (5. 1) the terms 

a 2 Cv\! 
ao 	 TaaY/ 

 

(5. 4 ) 

 

are odd funrAi ,:, ns of z, t!- .cy are also odd functions of y. 
Also, the s-utL7n foi, ce V the wing leading edge 
(arising from the singularity there in the potential 
function) is influenced only by the upwash Ua e , and 
so is unaffectd by sidewash. 	Hence the only effect 
of sidewash is to cause a rolling moment but no other 
force or moment, i.e. 

acx 	ac 	ac 	acre 	acn 
a 	ao 	ap 	ap 	T7— 	u .  

 

(5. 5) 

 

No rolling moment can, however, be contributed by the 
pressure distribtion upon the body, so that the 
rolling moment is from (5.1), (5.2) and (5.3), 

,s 
al

= 2 P 

(ac 

	

U 2 fc 	Ja dx 	 y dy. 

ac ja 
\-a-p upper surface 

69 %.\  
/. 

	

But a{ 	from (5. 2) , so that from 0.4-) \apazi 

re 	o s 

1-U 	dx 	I  ( 32 	y dy. 	 (5.6) 
ao 
a(3 	ss 	 u aciay/ 

ocic 	 z,0+ 

Using (5.3) and performing the first integration with 
respect to y, we find 

2\  4 a 

	

Ct 	2a dx rs° 	-a
_L IC 

3 
 Tea 	a 	 2
( a

0
2 

ao = 	 s ds 	o - 	2 	TA_ 	\-1 	
s
2 \  

, 	2\ 2( 	a 	I\ S 

	

+ 
6 	o 
2 VI + ----) arcsin 	 ., 2 \ 	 2

- El ids 
s 	 s +a zj 

and upon further integration we may calculate finally 

ac 

	

1, 	g,f( 	4 	3 4\ 	(1 6 2  3 4) 	
2a \ 

- - 	+ 3  a - 0 - , 1 + 0 - 0 . arcsin (---) ap 	 i 	.2t  _ 

0 

0 

+ -2 
7C 

- o
2 
 ) a.  (1 -

8 
 - 0

3  
7C 

r 
-(.','n 

1 +0 _1 
\ 20 . 	, 1  

5.2. Cylindrical body with  pointed nose 

The derivatives due to sideslip for a body 
alone are, of course, analogous to those due to 
incidence and accordingly, we may immediately write 
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down - using equations (3.14), (3.16) and (3. 1 7) 

00 z 	ac 	acs, _ 
7f7 	ap 	° 

ac 	a0 y  = 	z 	7QA 2 
A 	

am = - 2 ap  

  

	 (5. 8 ) 

  

   

ac 

#aPn = 	
02 ?+C2h 	2E Cu 

Ac ap 

Similarly, from (3.18), 

acx 	acz  

ap = R aa 

   

but this gives in the limiting condition of 13 	0 

 

acX TT- = 0. 

  

(5.9) 

  

6. The Derivatives due to Yaw  

If yawing occurs about the point (E,0,0) 
with angular velocity r, the longitudinal velocity 
at a point (x,y,z) is (U - ry) and the sideslip 
velocity is - r(x - E). 	We shall assume that the 
pressure coefficient at a point (x,y,z) for the 
yawing wing is the same as the pressure coefficient 
for a non-yawing wing in a free stream of velocity U, 
sideslipping with velocity - r(x - E). 	We shall 
neglect the variation in longitudinal velocity at 
spanwise stations off the centre line of the body, 
since this is evidently negligible if the body and 
wing plan form is indeed slender, as assumed. 	This 
is the same assumption as implicit in the treatment 
of pitching, (paragraph 4), where the longitudinal 
velocity was taken as U everywhere. 	Thus, putting 

‘ 1-a- ) and 	ae = a,,13e. A ar 	c 

we find from equation (2.4) 

2 [ace 4ar tx„L ) aq; 
ap 	ax 	- A' 	c I a5 -I- a  az 

whence, for a, -40, we have correct to the first 
order in a, I  

ac 	rf 	 i 	 ,.., 	
\1  ____p _ 	8 , x - 	a 2

iC2 	(a2  40 	a`V.  \ 1 	1 @ 4P1. 
Oar 	LTA 	c .- 71373ce 	- a  .,aaay - akaz d .4-  a af3 eS . 

	 (6.1) 

In this report we are considering only the 
effects that arise in isentropic and inviscid flow. 
In practice, of course, the differential change in 
profile drag of the two half  wings, resulting from 
yaw, will contribute a yawing moment; in fact, this 
might well be the most important effect, but despte 
this it will not be considered here. 
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6.1. Wing_on cyll.ndrical body 

Of those terms that are contained in the 
expression for ac p/aar , all have at cne time or the 
other already been obtained, thus 

(i) the term a 2.73(3x was shown to be zero by eqn.(5.2);and 
.whereas 8 2 r/a0az is zero on the wing, it 
is non-zero on the body - where, however, 
as an odd function of both y and z it 
contributes nothing to the resultant forces 
and moments. 	Thus, both these terms may 
be neglected. 

(ii) The term involving a 2Waaay is expanded in 
equation (5.3) where - as an odd function 
of y and z it contributes to a rolling 
moment on the wing surface, but not, of 
course, on the body surface. 

(iii) The term aWape  is given in (5.2) as an odd 
function of y and as an even function of z. 
Accordingly, this contributes to a side force 
on the body and a yawing moment. 

To sum up, (ii) gives rise to a rolling moment 
and (iii) to a yawing moment and side force. 	There are 
no other additional forces or moments due to yaw; this 
includes also the longitudinal force contributed by leading 
edge suction, which, inasmuch as it depends only on the 
upwash Ua, is uninfluenced by yaw. 	Thus 

ac, 	acm  acx La 

= 0. 3a 	 aa ar 

 

(6.2) 

 

The side force, as we have just seen, is derived from 
the pressure distribution 

ac 
13 	8 	ac/ 

act,r 
_ 

 tiAc "e 

i.e. 
ac p 	Sao 

2 
 

aar 	A c R" 
• 

from (5,2), as 	applied to the body. 	Hence 

, 

ay 	16  Q 	ric 	a ° 
 — 	A c 	 f 	a 2 - z 	dz . aa,r 

 
° 

o-c 	11 0 

Performing the integrations it follows that 

ac 
Y 	2 7. o 2  (1 - a). 

aar 

The yawing moment is similarly given by 

a 
16 013 2 	fx 	r 	f 9 

A c 	 c 	
x • a o 	z' dz, d• 

') 0c 	 j 

-,c 

(6.3) 
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whence again quite simply we may calculate 

aCn laC 2.  0  L 2 11 _ 02 4. A 
c \aa 

2 E. 	y'\ 
A 	 ) 	 ,* 

 

as 	 r 

 

(6.4) 

 

In (ii) above, it was shown that the rolling 
moment arises from the terms in the pressure distribution - 

_ 
+ aar 	UA 	c ) aaay 

as applied to the wing surface. 	Thus, by comparison 
with (5.6), it will be seen that the rolling moment is 
given by 

a1, = 
aar 

2 p U2 [
c 

dx 	( acD  
Joe 	Ja laar)111pper surface  

dy, 

i. e. 

act 	 as 
y dy + k ri3  

voc 	

t • = 	 J 	Y )  
k  dx 	(ilr 

aar 	s 3 	J
a 
	fz=0-1- 

The first integration is exactly the same as 
that required for (5.6) and the second, with respect to 
x, yields the expression 

- 
2 	3 	1+4  CC% 	,x at 20 	 , c 

 2 

	

+ .-- (1 -70 +6 ,o )- 	arcsinP-2  
u" 

= —/7  1 	 f) 
r 	 •sl 

+ 624: arccot o 804 --- 1(o) 
a 

E Ct --- 
A c 30 

  

 

(6. 5) 

 

    

where's I(o) =j 1  arccot t dt. t 

6.2. Cylindrical body with  pointed  nose 

The derivatives due to yaw for a body alone 
are, of course, analogous to those due to pitch, and 
we may accordingly write down - using equations (4.10), 

NThe value of I(o) may most easily be Aomputed by a 
series expansions thus, if 

 
' = 62/1 +e we find 

03 +  o32 11+  8.32 	Ly4i ¶2 
2 (o) 	a .fin  —o -0.9160 + - 

3
2 

5
2 L 

7 	72.92  

81:11.J 28  -3. 
2 22 7 .9 .11 
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(4. 11 ) and (4.12) - 

acz 	acm 	ac, 

3ar 	.6ar 	a( Lr  
0 

3C _ 	= 
- 1 

a Cm 	3 	2 E ac 
aa 	Aaa 

_ 
" 	A 67-  r 

8Cn1 ac 	
7C0 

0 • 	 2 
4- 	,, 21 ''h + 2c7h  + C. 	 . 

$ 
T-- 	— ar A2 a aq 	A 	 c2 

ac 2 E. ' 	r ) 
A c ,pc r 	ap 

acy  

Ac2 a0 • 

(6.6) 

Similarly, from (4- 1 3) 

ac acn 
aa; = " a - 

 but since 0 = 0 

acx 
aa = 0  

r 

 

(6.7 ) 

 

7. The Derivatives due to a LonEitudinalaapalin2ELlg:  

If U is charged from U to U + dU, keeping the 
upwash constant, a will be altered to a - a dU/U. 	Also, 
the pressure everywhere will be increased in the propor- 
Lion U + dU: U. 	Evidently then 

ac 	acac z  
U au 	a --- as 	e 

(7. 1 ) 
acm 	ac 

mU 	= a — as 	, 

whereas all the other derivatives vanish, i.e. 

ac 	acac_ 	ac 	ac _ 	n = O. 
TU—  = 	57J 	 - 

 

(7. 2) 

 

These results are valid either for the wing 
on a cylindrical body, or for the cylindrical body 
with a pointed nose. 
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8, The Derivatives due to Roll 

Obviously, a rolling motion has no effect on 
a body alone, and we shall therefore consider only the 
combination of wing mounted on cylindrical body. 

The potential 0, in any plane x . constant, 
induced by a rolling motion with angular velocity p, 
of a wing-body combination is derived in Appendix I. 
This potential satisfies the condition that on the 
surface of a wing, the upwash is 

oz  - p y 

 

(8 1 ) 

 

The value of the surface notential is (as 
given in equation (D) of the Appendix I) 

1 2 	/ 2ao s 	( 	aJ2  
(0)w  = sgn (z ) Er 1 + — arccos 	2 	2 I 1,y + y - 

\!l o +s ' 

  

1 a 4 	7 a 2.\\2 
_,_ 	i + _.2 ,,,2 it i 	o, 	) 	x  _ 
m  4 / .n '' \ 	c i 
Y 	 Y 

ci)
4  

2 ( s 	+
a 

 
S 

X argtanh 

(0) B  = sgn(z) 

4- -1  a 4 	 a 

	

2a ys /s2  (1 + 	Y 2 (1 + 	) I o 	 s 	 Y4 

	

(y2 
-r°L 

 ,„ 
c 	 o 

2 	(s2 _ a  2 
 

/ 2a s 
+ — arccos 	

2 
	2 ) y s 2 	a o • (1 + 	- 4,y 2 • 

a o + s7 	 s 

2 2 

a 2 ? 
a
o s s 0+ 22---) -4Y-  7 1 , 2 	1  L 2 - 2yiao -y2  ••• 	a. c)  -y2 	 s  )argcoth 

y (s 2 — a 02 ) 

	 (8.2) 

Equation (2.4) gives, as before, the pressure 
coefficient whose component due to roll is (in the 
absence of sideslip) 

ac = 	2 
ap 	Up ax + a az , 

 

(8.3) 

 

From (8.2) it will be seen that a0/ax is an odd 
function of both y and z, whereas from (8.1) a0/az 
is an odd function of y only. 	The normal force 
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and pitching moment are therefore zero, i.e. 

acz 	acm 
ac7 - 37 	°' 

 

(8.4) 

 

The rolling moment is derived only from the 
term involving 30/3x in (8.3) since the other term does 
not contribute to a difference of pressure between the 
upper 
at the 

al _ 
3p 

The 

and lower 
wing 

4 P U 

surfaces of the wing, 	i.e. 	since 	(0) /N = 
leading edge, 

S 	r n 	 ps 
C ii-po 	

,
U 	-57.(0)

X=C 

(  
0 

dy. 
P 

integral 

	

y dy t 	 dx = - 

	

i 	ax 	, ao 	,Z.S 	z=u+ 	 ,ao 	z=0+ s o 

may be evaluated using equation (8.2) and 
yields the answer 

al 	P 	U sQ f l 2a 
= 	 2 	( 1 -o 2 2 ) + 1- a (1-a 2 	2  ) (1 --60 + a4 ) (Lc  + arccos 

ap 	 2 	1+0-  

2 4 	+arccos 2a 
2  

2 	 1 	
\ 	I ( 1 	0 	( -

2 
_ 04,x 	 2a +arccos 	 ± 

1+0 -Fa 

6Ltt\t t2 1 1/02 

ti 	1 
	20 2 	 dt  \ 04 	6.,rgtanh! 

1 	 I_ 1  -° 	(t 	1) 	- 

But 

,'1 /02  , 	A 1+_,,t_t, ..1 _, , 2 	 04  \ 	2 

i dt hi  . \ 	argtanh 20 2 /k  ' (3'- 	/ 
Lkii 	1...1-0 	(t + 1) 	_, 

I t 

\1/02 

2 	1+t 	dt  

1+0
2 1 	t  = _ 

	

vi 	i ii +04\ .t  - t  2 
, 	

- 1 
 2 / , 0 	: 

21 	a 	 20 

	

= 	-- -,arccos ac 	1+a2 * 1+a2 

Hence, substituting this value for the definite 
integral in the above expression for aVap, we have 
after some rearrangement - on using the identity - 

2 arccot a = f + arccos 20 2 ) 



- 22 - 

the final expression )2  

b ,I 	87 1 (1+o2 ) 4 (arccot 0) 2 - lc24 +20(1 -0 2 )(04 -60 2 +1) X 

	

arccot a 	02 (1-0 2 ) 2I 

In evaluating the side and longitudinal force 
we must now consider the suction along the wing leading 
edge, which now is not distributed symmetrically about 
the body - being larger on one side than the other. 
The outwards force is derived as given in (3.8), but 
now H is the complex potential corresponding to the 
real potential 0  + ce, 0  being that part due to roll 
and 'P being that part due to incidence. 	Evidently in 
(3.8), since ?,z  = 0, 

1111 
dnz=0 = Wy ) 	(?y) w  i (07) 

•-■ tUu 

where, from (8.2), 
, 
4 	4-'Cl— 	

n . c 

	

/ S — a 0 11 1 + 	arccos 2 	2a s 	( 	a 
rim cz , = 	 0 + o 
Y  
	, 	

a 
1 1 	--7 	--f

+ 
 a-1 	-75- 

'4-I s 	Y 
)vli 	- sgn(z) ,1

1 s 2  - 	4' y LL.. 	
7c 

O  s 	\ _ 	.c.3 

2 	2\ 

+ o =1. 	 2) 	( 7c 2 	s 

	

N,s + a o 	- i 

. and from (2.5), if 0 e = 0 and a9. 
 = a, 

/s4------a-41  
= ; sgn(z) 112  / 	

o 
2 9 

k
. 
 , s2 - .  

whilst, from (8.1), it follows that O z  is finite on 
the wing surface. 	Hence the singularity in dH/dZ 
at the leading edge is such that in (3.8), 

r----4 
y 	- sgn(z) .Ua

2 
 I A f, - 

a
o 

a14- 
I(sgn y) 

4 j  

(8 r. • 

rim (y7) 
y4 s Y 'w 

r/ a 2 ' \ 
+ ---)arc.cot Ps 	1 	° 2 .1.17 

a 2a 	2 	2 

s + a o
2 

s - a 
AS s2 

and so we find that, if Y is the side force at the 
leading edg, the increment due to roll is 

a  4v 
o s 2 	

o
- a 2_! 

P 
a o 2a 

	

I: 	A 	 0 	41 	a o 4-  pt.].  a s2,' - 	-t,, + 	; arccot, 

	

ap 	2 	 \ s 	
2 l• 

s 	 7's s 2 + a 

(8 . 6) 

This is equivalent to equation (20) of Ref.8, with which 
it agrees, although the numerical calculation of this 
reference appears in error, as well as some of the other 
equations used in the discussion. 
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The sign is the same for 57- L 0, because the increment 
has the same direction on both sides - adding to the 
suction on the starboard side (y > 0) and decreasing 
it on the port side. 	There is thus no resultant 
longitudinal force, i.e. 

30x 
as 0 

 

(8.7) 

 

but there is a resultant side force due to this 
asymmetric distribution which is given by 

,s 
(aY ds 21) 	dx 	2 lay, 	 t dx ( Q  (alr 	

\PP 
oc ' 	 a 

0 

(8.8) 

where aY/ap is obtained from (8.6). 	However, in 
addition to this there is a contribution from the 
body to the side force which is due to the pressure 
distribution described in (8.3) as caused by the 
term 00/az - which is an odd function of y. 	In 
fact, on the body surface, since (War) B  . 0, 

(!) - cos a  i2n 
'/B 	a 	f)(3 o v 

a 2  \2  1 a 2- y2 	 ,a 2 	r D y 	8
Y
2
- 

a 2 	
1 + o 2 	

o 	 --0 / 	1 arccot: 
a 
22 	7C 	

p 
,^ 

/ 1 S 	)) 4y2  

2 	2 I 2 	21  
, 2a 	(s - a )1a - y 

0 N 0  
+ a 2 - 2y + 7,:: 

I  	 -1 

/s2 ( 1  + _72a o 2  )2 -4y2 
N 	\ s 

r" 	a 
2 \

2 

<< a o s 
I  s 	2  / - 43r

21  
( 

—27  

	

- 	yam/ -yargcoth 	  
 y (s2 - a

o
n 

s / 

and, from (8.3), the side force on the body is 

c c a
0(, 0( \ 

- )4pu a 	ax 	t.' 2= 1 dz. 
, az) 

	

ce 	0 	B 

= 



a 

_ - 2 ,/ 	
a o 
	s  

2 
0 

 \ 	 7ao2 y 
1_ 	2 s  2 ' 

- 24 - 

Substituting for ayif/az, and performing the integration 
with respect to z, this becomeS 

2_s_LU2_,2 dx 3

s

a
22— 

14 - 14-  arccos 	 1 
- 

a 

2  
r s o r 	 2  2a o s 	a ,41 

2 	da 
a o 

ao +8 

2 \2 ' e , 1 	ao 	a 2 
1 

	

- 47 a o s --) yli---7--1,1 	2 
s 	\ 	s 

iarccos 
2a s 

d 2 	2 	s. s +a 

(3.9) 

This contribution from the body must now be added to 
that from the wing, given by equations (8.6) and (8.8). 
The integration with respect to s canriot then be 
evaluated formally, and it appears easiest to derive 
the value by numerical methods. 	Accordingly we write 

r,1 /a a c 
Li. a c 3 	f (t) dt   (8. 10) 

where using equations (8.6), (8.8) and (8,9) we may 
show that, on changing the parameter of integration. 
to R

o
/SE- t, we have 

Li.  
f(t) 	“t2- 	

2t  
+ -2 arccos 	+ 1  —)+ t

2 1 

4 	t  ( 	 t 2 	At ,2 + 12 

(t-+1
2t 

	

	 + 
- 	

arccos 	 1 
1 +t 	W 	..J 

1 	2 	2, 	8 	2t 	1 .k 2 	2t 
-E (t -117(1- 17)+ t  + 	—2) arccos 

1 -4-"G ‘lj 

	 (8. 11 ) 

Ike may notice that for a--) 0, the integral tends to 
ac -7 	2 7r. 1 --3- 	i.e. for 	= 0, we have Ta 	' c. 

0 

Similarly, also, the yawing moment may be 
evaluated, for 

occ acn asCu  \ x - d -x = 
3a 	b 	\ c . dx 3 a 

u o 	 p 

or since, in (8.10), we may put a = a 0/s and regard it 

gap 
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ac 
a s a function of x describing thevariation ofwith x, 
we find that 	 aa 

acn 	8a 
aa 	- A 

1/0 ac 
t f (t) at + 	ea  

2 

P 

 

( 8.12) 

 

where f(t) is given, as before, in (8.11) as a function 
of t. 

ac 
We may now calculate that as 0 -40, 

P 
if we make E = C. 	This completes our discussion of 
the derivatives. 

9. Stability Derivatives relative to Wind Axes 

To avoid confusion we shall write the forces, 
moments and velocities relative to wind axes, as shown 
in Figure 2, as primed symbols. 	The relation of these 
to the previously used system may Le obtained quite 
simply from the geometry: 	and we list the transformation 
formulae below 

X' = X + a Z 1 1  = 1 + a, n 

'V = Y rnt .= m 

Z ' = Z - a X n' = n - al, 

OU' = 3U 	aU8c, Op' = Op + aO r 

V' = -U Cl' = q 

= 	U6 a - a3 U Or' = Or - ma p. 

Since U t E U correct to order a - , we may 
write 

t 	 T — t V' 	t 	lArt 	Db 	a  _ 	 c  t 	',rip P' = — — , % = — Y a' =Li 	u 	p 	2U ' q - U ' -r - 2U • 

Then the derivatives relative to wind axes 
may be expressed in terms of those relative to the 
body axes, as - 

a 	_a_L  a a 	 a 	a 	rr a — 
au' - au m u as ' ap' 	ai3 	= 	-CI u aa , 	act 	au 

a 	a 	a 	a 	a 	a 	a 	a a am
P 

--- 
am' 	am

P 

+ 	
aar 	aat 	aa 	am' 	

oar 
ci 

C T  = C
x 	

c 	c 	c 	c z , = c z  - a Cx  

C 	= 	a On , Cm
, = C 	Cn = Cn - a On.

t 
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More particularly, taking account of zero 
derivatives, Table I lists the stability derivatives 
relative to wind axes of the body-wing combination 
here considered in terms of those relative to body 
axes. 	Here it should be noted that although strictly 

	

la' actac 
	acn 

r 	aar 
- a 3a 	act,. 

and 

OCn 	acn 	a Ct 	acn „ 

aa' 	3a-  - 	- Oar 

ac, 
the term 

as 
 is small compared with the others, since 

it is of order A whereas the others are of order 1/A —
A, the aspect ratio, being by inference, a small 
quantity if the theory is valid. 

10. Presentation of  Results  

The results are summarised in Tables II-IV 
and in Figures 3-17. 	Table V is an index to the 
figures. 

In the Tables II and III, the stability 
derivatives referred to body axes, with the wing apex 
on the centre-line as reference point, are given for: 

(i) a triangular wing alone, 

(ii) a body with a pointed conical nose. 

In Table IV, those terms which have to be added to 
those for E 	0, to account for the choice of an 
arbitrary reference ?point at (E,0,0), are given. 

In the fires 5-13, the variation of these 
stability derivatives with (body diameter/wing span) 
ratio - again if referred to body axes, with wing apex 
as reference point - is shown for the non-zero deriva-
tives. 	A complete list of where the variation of each 
particular derivative may be found is given in Table V. 

The relevant results if wind axes are used 
may be obtained from Table I. 	In the figures the 
variation of these derivatives with respect to (body 
diameter/Wingspan) ratio is included where appropriate, 
and only in four cases (Pigs. 1L-17) is there any 
variation of these different from those with respect 
to body 
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APPENDIXI 

Construction of the Potential due  to 

Incidence and Sideslip  

We require the potential due to upwash and 
sideslip in any transverse plane, x = constant, about 
a body-wing combination; the surface contours in any 
such = y + iz plane will be a circle radius a and a 
straight line extending outwards from the surface of 
the circle to a distance s from the origin, along the 
horizontal y-axis. 	This contour is mapped conformally 
by the transformation 

2 a = 	izt 

on the 4t-plane by a straight line joining the points 
2 

Yt = -(s 	
a 
	 = 0. 	The complex potential of the 

flow about such a line due to upwash Uct e  and sideslip 
U0e  is then simply, 

2 2 
H = - USe; + i U a,8  , ; - (s + -s  ) 

 

so that in terms of 

2 	 2\2 	/ 2 a a
2 

H = - U0e 	+ -a-) + U 	/1(," + 	1  s + 
s 

The velocit y potential due to upwash may be found by 
squaring the term 

a 2 
H + U(3 6 	77), 

substituting Y = R(cos 6 + i sin 6), separating real 
and imaginary parts and solving for the real part of H. 
The result is given in equation (2.3) of the text - and 
in ref. 6 - where the expression for (pis adjusted to 
give zero velocity at R =o0 according to definition. 
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APPENDIX II 

Construction of the Potential due to  Roll 

We shall here outline briefly a method by 
which the potential in any (y,z) plane due to a 
rolling motion of the body-wing combination may be 
obtained. 

then if 
	Let 	y 	iz 	and 	= yt 	izt, 

2 

= 	7: 
	

(A) 

the circular wing +body combination in the (y,z) plane 
becomes a straight line z t 	 4. 0 for 0 	ly t  I 	s+ aLis 

— 

in the (y t ,z t ) plane. 	In particular, the circular 

body transforms into tnat part of the line z„ = 0 
where 0 A- lyt i 	2a. 

The complex potential we require in the (y,z) 
plane is such that the upwash w on the wing surface is 
-py, where p is the angular velocity of roll, since 
this cancels the effect of the upwash py induced by 
rolling. 

= .„t; 	-2 2\ 	° 
Thus the stream function 'Iris a constant -I' 

on the circle, and is given by 	, pof -a ) 
on the wing surface. 	The stream function is un- 
changed by the transformation, so that in the (y t ,z t ) 
plane, the upwash required on the line z t  is zero 
for 0t5:- yt ! 15, 2a, and is 

2 

	

7 	 y, -2a 2
"7 

- 1#. 	
P yt 
	(sgn y)  tIa 	wt  I say yt i 2 	2' 

Y t -a  
(B) 

for 	2a. 4 I y t 	s + 	= 2k, say. 

Let us assume that the complex potential 
of the flow which satisfies these boundary conditions 
along the line z, = 0 is given by a line distribution 
of vortices suchthat the complex potential is 

n+1 
7̀  ki f(t) In (-- 	t) dt . 2k 

-1 

Then, on the line z t  = 0, if (yt/2k) = n, 

c l 
f(t1 ,t 

't 	25z 1 	-!7-t 
0-1 

where vt and wt are respectively the sidewash (on the 
upper surface) and upwash along the line z t  = 0. 

a 2  

vt 	2 = f (n ) 	and -1-  



pk 2 arecos a 

a 2 

k 2  in 
TI

2  

a 	-fl

• 

 2 
-  

- 30 

The expression for w t  is 
that we have to solve the integral 
The solution is 

already known so 
equation for f(t). 

   

y +1 Nib .41 2 wt 	) 
- 

- 
f( t) - 2  A 

    

where A is a constant; that is, from (B) 

f (t) - 

/-2-1 
 2 	 1 — 

LA+ 

2pk 	 2 	+ 
2 

tt 
7C .1 1 — t 	 a/k 

a 2/2 k 2 	7 
adi

2  - a 2/k 2 / 

7C p k A 	+ arcc

- 

os 
2 ■ 	2 

-t  

2 
+ t 

k 	• 	2 
i-t 

a 2 1 
 a il - t 2 

 

k 
t 11 - 2- + 1-c- 

1 n 	_ - 
t i 	a2'  a / ----M"  , .1- 	1 - t 

1 	ii-N 'N 	k 2 - 

2k  

2 	a  
( t 	--2-  1 

+ 71 /V 	 2 	 j .  

\A!a

2 
t 2/ 

The value of the constant At 
-potential 0 is equal at y t  = 
dition of symmetry, but 

is now chosen so that the 
2k, since this is a con- 

0 Yt 
z t=0+ 
	vt 	2 f (ri 

and so 

0
1 2 t=° 4-  

= k 	f (TO 
0 -.1 

Performing the integration and selecting the value 
of A' accordingly, from 0), 

(C) 

k`.  

0 1 t=0 + 
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But from (A), 

a 	2a 2  
Yt I Zt.u+ 

2a cos d 4 2a. 

Hence, the potential on the surface in the 
(y,z) plane is given by 

n 	2\ 
1 	arccosi 	2 110T  P{r 2  
L 	7  1/4 	

/ 	2as  \ f 	 ( 	\ 	2 fA  a 
( 	= (sgn z)-7 1 +

I 
-1 -7 

to 	
7/ 

s/ + s 	 , y 

h A 

2 2 I
, 	2 	2 f 

+
r  a4  \ 	2 / 	\ 

2as 	r 1 — -y i1 + 
4 ,\/ 	s /4 / 

+ 7  y 	--7a)argtanhi 	 1 y 	 2 2 I  2 2 (y +a )s -a ) 

(0 )B = (sgn z 
( 

2 
 2as

2 1 
is 2 / 	a 2 

+a arccos( 	 / k I 	— 4y - 2y/a2  y- 

1 

2 - 
2 

ras 2 	1 ) /s 2 (1 + 9 	 ( 
s 	III — (a 2 -y2 )argcoth 	 

L 	s 2 
- a ‘ ) 

(D) 

It will be noticed that if a = s, (i.e. if 
there is no wing) the potential due to roll is, of course, 
zero. 	On the other hand, if a . 0 (i.e. there is no 
body) 

(0) 	(sgn z) P Y; 3
2 

- Y2  , 

which is the result obtained from the statement of the 
potential due to the rotation of a flat plate - as a 
particular example of the potential due to the rotation 
of an elliptic cylinder - given, for example, by Lamb 
(Hydrodynamics,  Arts. 71, 72). 
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TABLE 	V 

Index to  Figures  

Explanation: The figures in which will be found a graph 
showing the variation with (body diameter/wing span) 
ratio of each of the stability derivatives are enumerated 
below. 	The figures in brackets refer only to the sta- 
bility derivatives with respect to wind axes, and the 
others are with respect to body axes. 

Derivative of .,_ 
----..goefficient 

...„__ 

with resp:cqr--] 
C 
x 

C 
Y 

Cz C 
t 

Cm Cn 

U zero (3) 3 (3) 4 (4) 

0 zero 7 (7) zero 

a 3 	(3) 3 (3) 4 (4) 

cc 
p 

12 OLO 11 (11) 13 	(15) 

a
q  

4 (16) 5 (5) 6 (6) 

ar  (9) 8 (17) 10 (10) 
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