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SUHMARY (

The stability derivatives of a delta wing
of small aspect ratio, mounted on a cylindrical body
with a slender pointed head, are derived by con-
sidering the flow in planes perpendicular to the
body axis to be uninfluenced by che chance in the
streamwise commonent of the air velocity (the so-called
'slender body' theory).

The results are tabulated, and the variations
of the derivatives with the ratio of body diameter to

wing span are shown in the form of graphs.
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NOTATION (see also Figure 1)
Wing gross aspect ratio - 'J"(x bz/S).

Longitudinal force coefficient (= X/%¢)U28)
forward along body axis.

Side force coefficient (= Y/% o U°S)
in starboard direction.
Normal force coefficient (= 2/30 UQS)
downwards.
Rolling moment coefficient (= moment/%mgUQSb).
Pitching moment coefficient (= moment/%p Ust).
Yawing moment coefficient (= mument/%FJUQSb).

Complex potential, with ¢ + & as rsal part.

Gross wing area.

Velocity components of body relative to air
along x, y and z axes.

Longitudinal force on surface ahead of plane
X = constant.
Side force on surface ahead of plane x = consitant.
Normal force on surface ahead of plane X = constant,
Body radius.
Maximum body radius.
Maximum gross wing span.
Gross wing chord on centre line.
Geometric mean chord of wing.
(pressure - free stream plessure)/%;302.
Length of curved head of body ahead of plane X = wﬂ

Distance bhetween shoulder of body head and wing
apex on centre line.

Difference in air pressure between upper and lower
surfaces of wing or body along the line X = constant,
¥y = constant.

Rate of roll )
Rate of pitch g' of body-wing combination.

Rate of yaw. J



Notation (contd.)

8 Local wing gross semi-span.

5, Maximum gross semi-span (= Db ).

u

v Velocity components of air along X, y and z axes

relative to body.

apex on centre line; x-axis backwards along

body axis, y-axis to starboard in plane of wing,

X ’l System of orthogonal coordinates; origin at wing
J and z-axis normal (upwards) to pliane of wing.

(R;9,x) Polar cylindrical coordinates (y = R cos 6, z = R sin 0).

i Distance of geometric centroid of body head in
front of shoulder (x = -4£) = h.
2

&) Volume of body head in front of shoulder (x::e£)+-hxao.
a Incidence of body wing combination to main stream.

Gy Effective incidence of a plane x = constant (= W/U).

o = pb/2U.

a = ac/U.

" 15/

a, = ¥vb/2U,

B Angle of yaw.

B Effective angle of yaw of & plane X = constant

e =

= -V/U).

L =y + iz,

3 Distance of arbitrary reference point downstream

ol origin.
Air density.

Potential due to incidence and sideslip in plane
X = constant.

Potential due to roll in plane x = constant.

+ ®m "8 ©

Stream function.

Primed symbols denote reference to wind axes (not
body axes) - see Figure 2.

suffix B denotes values on body surface.
Suffix W denotes values on wing surface.
The term 'gross wing' anplies to that plan form

produced by extending the lines of the leading
and trailing edges to meet, on the centre-line.



1. Introduction

_ A large nvnber of reports have recently been
published, dealing with the flow past slender wings
and wing-body combinations, using the assumption that
the.flgw may adequately be described by neglecting its
variation in the stream direction. This approach was
apparently originated by Munk in studying the aero-

@ynamics of slender airships . R.T. Jones extended

it to the calculation of the 1ift of triangular Wing52
of small aspect ratio, and more recently Ribner applied
the method_to the study of the stability derivatives of

such wings~. Munk's work on bodies has been extended

by variogs investigatorsu’5 and, in particular, Spreiter
has considered slender wing-body combinations.

The object of this note is to apply the
method to the calculation of the stabili*. derivatives
of a slender wing-body combination, having a triasngular
wing mounted on the cylindrical portion of a body with
8 pointed nose (of arbitrary shape) No attempt is
made to examine the flow behind the wing trailing sdge.
Figure 1 is a diagram of the layout explaining the
notation which we shall employ.

After the work was completed it became known
that part had already been considered by Americen 7,8
authors - in particular, the damping-in-roll estimation'’"™;
however, the present treatment has been left as a com-
plete survey so that its reference value is not impaired.
Sufficient discussion is given in each paragraph to
enable the general lines of the calculation to be fol-
lowed.

To simplify the presentation of the work, we
deal separately with

(i) the forces and moments on the triangular wing
mounted on a cylindrical body (i.e. downstream
of a lateral plane corresponding to the wing
leading edge at the body junction);

(ii) the forces and moments on the body upstream
of the wing.

The first calculations are said to relate to a 'Wing
on Cylindrical Body' and the second to a 'Cylindrical
Body with Pointed Nose'. The forces and moments Trom
each are, cof course, additive.

The body axis is assumed to lie in the plane
of the wing (taken to be of zero thickness) and at an
incidence (o radians) to the directicn of undisturbed
motion. The stability derivatives are referred to
body axes, as shown in Figure 1, except where other-
wise stated.
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2. The Potential of the Flow about a Wing=-Body Combination

If u, v and w are the velocity components of
the air relative to the body in the direction of the
X, y and z axes respectively (see Figure 1); and if
in a chosen lateral plene the apparent components of
the free-stream velocity at infinity (relative to these
axes fixed in the body) are U, -V and W: then we define
the effective sideslip angle as

ag = w/U and Be = /8.

These quantities are assumed to be small, as also are
(=U), vs W According to Bernoulli's Theorem the
pressure coefficient is then given by

2 I 2 i
ey = - 2| 0)-8, (v-V) 4oy (w..v.)], e (201)
where, in addition to the usual term (u-U), the terms

of lowest order in ag, and Bg have also been retained.
Although these are, sirictly speaking, of second order,

they nevertheless yield solutions of the lowest order

in certain circumstances - as will later be apparent -
where the derivatives required are due to sideslip or

roll, for example, but vary also in proportion to a.

If the flow is irrotational, we may define a
perturbation potential function ¢ such that

¢, =u-U, Wi o il and @, = w-W,

where the suffices denote partial differentiations.

I% is the assumption of the 'slender body'
theory, upon which our results will be based, that
this potential function satisfies the equation

Q‘fﬂ__ -+ ??'_, o O. R (2-2)
R 42

In the present instance, we are considering
the flow due to a body-wing combinmtion, whose section
in any transverse plars (x = constant) is a combination
of a circle and 2 giraight line. Spreitev6 has given
the potential which satisfies equation (2.2) together
with the boundary condition (i) that the flow is tan-
gential to the surface and (ii) that the velocity at
infinity is given by v = 0 and v = Ua; and Heaslet and
Lomax® have calculated that due to a rotation of the
body-wing combination about the body axis. Unfortunate-
1y, the latter treatment contains one or two important
typographical errors, and so - to aveid possible con-
fusion - and for the sake of completeness, both this
and the other potential functions are derived
independently in Appendices I and II.

The potential function to which we shall
most often refer is that due to a combination of



B
O

upwa sh Uae and sidewash UBe:

it is given by

(F: Bgvlf"’) U_Ee_ ] (-1+§~_E)R2 o 2 &L"]
n (2 qﬁiﬂ 1*_ " cos 26 + 8 (1+;E)

where

¥y +1iz

sgn 2z

a

S

N

= Re
z/|z|

1l

il

\ 8 Ly 2
Y, 8 b4 TN -
+ /IR (1+—x)+ 2a 5) 1
/[: Ra) cos 46 +8( +;E)

2g° (14— i)(1 R cos 2%]J

b UO..eZ, ----- . (2. 3,)

body radius

= semi wing-span.

From (2.1); the pressure coefficient may be written

Hgheig (mf -

ohd

Be 3y * @

BV)
€ 0z

The variation of ¥ with x is implicit in the variation
of the geometry of the surface; i.e.

_ Ga 2

o)
3% o

= 3x 2a

ds

da

e 0

= dBe (5]

o)
dx 2s tax

aae ax aBe

The value of this derivative on the wing body com-
bination may be found most simply from the separate
expressions for the surface potential on the wing

and the body

i z ElLI' _2 aLI'H a2
(?ﬁw = sgn(z)UcLe J“s (1+;E)._3 (if;E?j + UB, S

fl

Py

sgn(z)Uae

a\

2 2
S (1+——)
a®

e

2 e
- Yy i--Uo,e’ja ~y° +UB, V]

e

where the suffices 'W' and 'B' refer to conditions
at the wing and body surfaces respectively.
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3. The Derivatives due to Incidence

L, e N

equations (2.3) and (2.4), putting a,

Wing on cylindrical body

For a wing-body combination at incidence a
and at zero sideslip, the pressure difference be-
tween the upper and lower surfaces may be found from
O

Since % is an odd function of 2z, and

0 and Be =

Y |
-y B an even
ga ="

function, it follows that the pressure differencellp

is gi

where

ven by

4D

!
|

pU

LDop

—5 =

- “a0F
U "0X’ypper surface

?

(p)upper surface ~ (p)lower surface’

But, from (2.5), performing the necessary differen-
a, (a constant),

tiations we find that,

(69

(e
\9X jp

sl..s.fgf)_slg
X kaqvg_ ax
Qg(af)_ga

X \98/p dx

since a

4 aoh‘) [ aoLL
sgn(z)Umki—;ﬂ; \j+~s—}_|_—

"3

a

sgn(z)Uat1-

)
-
oM

and these expressions enable us to describe the
variation of Ap/+ pU=2.

az _
dx

The longitudinal distribution of normal
force is given by the integral

a

oU2 JOR\

Oy

AP
zpU

2

) dy +

a-'B

Using (3.1) we may then perform the
integrations, and recalling the identity

.
arcsin

1+0

.

g
2

. 20
+ arcsin

1+0

2

X
2

the final expression may be simplified® to

Hence, integrating with respect to x from x

To x

az
ax

-2xapU 8

2 ds

dx

’s

8

)

, hﬁ }
2
_2—2-{/14.?19'.—)
g5\ gv/ L
s 2 2 l
/ a 2
Ly
{\1ng ) p 52 "
saiite vl
a;]i. consds (300)
..... A58
= aoc/sO

¢ (the body-wing junction to the wing trailing

¥rhe definition of all coefficients used here will

be found in the list of symbols on p. 1.



edge), we find that

s W A0

where ¢ = ao/s ; the ratio cf bedy diameter to wing
gpan. 2

The pitching moment coefficient about the
point (E,0,0) is given by

aC

Cp =2 | % -5 —2ax L

Y oc

so that using (3.3) ard integrating

1M 2% 6
W:—"‘BLA(‘i—lc +30!+) -"E‘E"‘""‘“"n ...---(3’.0)

OJ

The side fcrce and the rolling and yawing
moments are all zero since, from (2.3) and (2.4), ¢
(and so CI) is an even function of y,

5 - acy = acn - aC—L o) (3 7)
aa’ aGJ aGJ " . 8 *® s o6 @ (3

The longitudinal force - in the direction of
the x-8xis, which is also the body axis-is due only
to the distribution of suction along the wing leading
edge, there'being no resolved component of the normsal
pressures in this direction (since it is evidently in
the plane of the wing). This suction force may be
estimated if we note that its component in the dlrectlon
of the y-axis may be found from the flow in the trans-
verse plane X = constant. Thisg is a side force
(outwards from the wing) per unit length of amount

v=%xolv]® o8] | KE g 0]

where E
& - E{F__ T e ‘{»-m..(a.e)
Y=y + ig and Hz(P-%i'L{"Jl

and where ¥ _ 1is the value of Z corresponding to the
wing leading edge. In fact, H is the complex
potential and, in Avpendix I, its value due to a
uniform upwash Ua is shown to De
! 1
/ 2\F2 ( aoz \:?
ol e 7 (R WAk ke

The real part of this expression appears in (R.3)5



Thus

i

1]
03]
=
@
Hh
H-
=
Q
'_—f.
e o
jas)
ps

In (3.8), with %

/ EY
/8l o) '
v = UQA/ 2 \1 - "Tf;} ;

whence 5

This is the resolved part of a force normal to the
leading edge, and it follows that its component in
the x-direction is X where

& = =l

Hence X is obtained by integrating |Y| with respect
to s and the contribution from both half-wings gives

RA 2 B.g
C, = T (1 =« 6°) = = %—Cza4
l.e.
aC 2C
x-—- —-ﬂ.-z . L -
s = ke caave el B0 19)

3.2. Cylindrical body with pointed nose

The relevant potential may be formed from
(2.3) if we put s = a where now a must be treated as
a variable with x: thus, if ag = o and Bg = 0 (i.e.
there is an upwash due to the body incidence but no
sideslip), then from (2.3)

@ = Uaa® sin 6/R . vounae (Ba¥1)

This is an odd function of z whereas 3%¥/0z is an
even function, so that from (2.4), the pressure
difference between the upper and lower surfaces is
£p where

LOp _ _ Lo

2 U X
zoU N /upper surface
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Differentiating ¢ from (3.11) end putting R = a, it then
follows that

Bn-sgf-
pU

where da/dx is an arbitrary function of x, describing
the nose shape.

Since

az o " f BAp X
2 - v J {-ﬁf-P—-) IREEIES (o A e (3.12)
L]

we find on performing the integration that

a8 2 _ds ;
a’i = - 27EG;DU adx " e v (5- 13)
gso that integrating from x = -(£ + h) to x = Ge

(from the nose to the body-w1ng junction), and
noting that

e d
a 3% g% = -%aoz
- (£+n)
we find

aC

Z ®A 2
Tt = -—i'i"' - "R 01.
aa ] g | (3 h)

The pitching moment coefficient about the
point (£,0,0) is given by

0
C _21 (E""'-‘) dC d.x ..I!ll(3l15)
m % c dx i
J - (£+n)

i.e. from (3.13), if we integrate by parts we find

~OC
aC s oC
mo oo Bk gy B 1 2 L2 &
ag = Be (e, oc - QW‘J . "adx) - S8 == .
- (£+n)

But since maz is the cross-sectional area of the
body, ii'§2ﬁ30211 is the volume of the head of the

body (i.e. ahéad of the plane x = -4), then
evidently

BC G 3 BC
e ;e 2(}ii;ﬁ;ﬁ L2k e - Y
aa‘ = T A 9] C ) . . . (3 )

For a conical head & = 1/3, and for a slender
ogive 52 = 8/15, approximately.
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From symmetry, the side force and the rolling
and yawing moments are all zero,

aC aC oC
5 B R i )
1.8, gob = = s B L (3:17)

Finally, the longitudinal force is obtained
from the suction over the nose, caused by the ac-
celeration of the flow normal to the axis of the body,
i.e. in planes x = constant. The excess velocity at
the surface relative to the body is obtained from
(3.8) as equal to 2Ua cos 6, whence it follows that
there is a component of pressure in the plane
X = constant, equal to

%pU2 o (1 < i cosze)

on the body surfacs. This must, in fact, be the
resolved part of a pressure acting normally to the
body surface which is (if the body is slender) to the
first order of approximation exactly as given above.
It follows that the resolved component of the normal
pressures in the direction of the x-axis contribute
to a longitudinal force given by the integral

&g faQ‘fE
X= - %13U20? J‘ J a(1 - 4 cosze)de da,
0 @)

whence, as for the body-wing combination,

» =5A02a2=—%c Qs

X L Z
l.€.
aC aC
A z
Bo = e o JidhEsn (3.18)

This result is, of course, fundamental and has been
demonstrated, quite generally, by Wara? for all body
shapes.

The Derivatives due to Pitching

L.1. Wing on cylindrical body

If there is an angular velocity of pitch g
about the line x = £, 2 = O, then the effective
incidence of the flow relative to the body in any
plane x = constant is given by

a., = o + (75—%—§) q g bl e 1)

]

where o is the angle of attack. Since, flor a wing

on a cylindrical body, a = a,s 8 constant, we have
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in (2.4) for By = O

i

i da
C { di B8 ax aae ‘e %)

The value of 3%¥/dae follows from (2.5),
very simply, and since the term involving 3%/0z is
an even function of z, the pressure difference Ap
be tween the upper and lower surfaces is given from

(4e1) vy
R (B, S g
U\ dx 38 ) (10 ) .
& upper surface

Thus, the pressure difference caused by pitching is

o (Lo _ .%_.Ex_ ) &8 3¢, q:-:|
\ < X g8
Ugpu/ U a, : upper surface
s tadbs b 20 Ea [ op_
RRaigr [u 08 " C{)]- i 8&\1 U2
e upper surface zpU /

=X .0

where the operator 9/da is here meant to imply con-
ditions due to incidence alone as described in
paragraph 3; and using equations (2.5) and (3.1)
we may describe the variation of
{ééﬂﬁ) due to piltch.
\2pU"

. The longitudinal distribution of normal
force is given by (3.2) so that from egquations (2.5),
(3.1) and (4.2) we find on integration that

| TN p L !
g— Q-FZ-\—' ! = 82 ’f-" = --—-—-ao ....a-—-—-o ’ 4 E—S— Q..i _,_acz.. \ DUQ -
dx\aq/  ~{ U 2R B /T 20 &X\Ga A
tttttt (L‘.‘ 3)
Thus, integrating from x = oc to X = ¢, we find
that
oC | oC
. __z = - 'KA(1 —02— 03 4 Gh‘!‘) -2 E '"_'E' . TR N (Al_l.a L;.)
aaq c. 0a

Again, the pitching moment coefficient is
given by the integral expressed in (3.5), and from
(4.3) on evaluation this gives

oC ’ faC 0C
m Ty RiaRiod ok oB b g BB B
—— e e (a0 « =0 20 O )= =
2 3C
- E _Z o 8 & & 0 L]
+ L_l.__2 5T - . (L. 5)
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The side force, and the yawing and rolling moments
are all zero, since ¢ (and so c_) is an even function
of ¥» 1.8, P

Q)
Q

aC oC

I
3
I
o
i
O

[}
£
No!
@
Q
Q
@
Q
e
~—
i
(5))

The longitudinal force is derived exactly
as in paragraph 3.1.onp.6, except that in the expression
for the sideways component of the suction force on the

wing leading edge_given in egquation (3.9), a,~ has to be
substituted for o, and is a function of X according to
equation (4.1). It therefore follows that if X is the
longitudinal component of the suction force
LL\
a
a4 ox X-E o_jds
dx 3q CRY a“(\U *8(1 ";E_) ax ’

whence by comparison with equations (3.3) and (3.5);,
it follows that in the limit as q — 0, the contribution
from both half wings gives

oC aC
_a a‘x [ — - a——-o-am llllll (L#l 7 )
q

L.2. Cylindrical body with pointed nose

The effective incidence o_ of any plane
section of the body is given as in e€quation (4.1),
and from (2.3) we have, therefore

® = Ua_a® sin /R a0 BB
where this expression is equivalent to (3.11) if
a, = o simply. Since we may now write s = a, and

treat a as a variable with x;, it follows that the
pressure coefficient is '

da,
c=-2 da 29 . - eat?_l_aa_fe).
§o) dx 9a dx da e 02

Also, the function ¥ is odd in z whereas 9%/2y is an
even function of z so that the pressure difference

L6 . _b(gge, oo )
1.7 dx da dx Baej
2P upper surface

or from (4.8),

2
ASp = L4 eln @ E}aea )
5 = -

a ax

Thus substituting in (3.12) and integrating we have
for the normal force:
2
az g Gsa) 3
E{'=-’EQU s ———" s ek

- a general expression of which (3.13) is a particular
case,
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Whence, from (.1), integrating from x = -@+h) to
X = gc, we may calculste
0C ! aC
2 s o Z
aaq—"'ﬂAD "_‘(;aaq, . ooo-ni(LI.t10)

%gain, with the pitching moment coefficient given as
in (3.15) we may use (4.9) to show that

0C / L i0C ac \
S B N mipeoy 4 Xepda) ol Sy n
90,y T T s l“aao o ﬂiJ ¢ & CeElaTs kaa T B )

- £+n) 4 L

If T'h is the distance of the centrcid of the (solid)
nose ahead of the shoulder at x = -4, then

o-£ 5 il
: -J (£+x%)xa“dx _‘F ﬂaexdx
Th » _(-E.J-h) v —(JE-Fh) = ‘E
-4 —QhﬂtaZ
j\ % afdx % 0
- E+n)
so that we may write
] i
oC, 0/ 2 20QRn%+ 2Qnd+g3 2¢(3C; 0
-é—-—m-A'rcc (c + )_~-———+-—--
a 2 /s C \oa aa.|
q c a E=0
2 190
LET "z
+ 2 a(L . ..lIII(L‘.ﬂ11)
c
The value of L' for a cone is 1/4, whereas for &
slender ogive we find that T = 5/16 approximately.
From symmetry, it follows that
oC oC oC
5’&“;2 == ‘é‘aﬁ = aat b= O 0|nuot(l.f-n12)
a a q

and the longitudinel force is derived exactly as

in paragraph 3.2 on p.8., except that now the normal
pressure distribution on the nose due to the upwash
is given Dby

)
= pU2a82(1 - L4 cos™®),
where, of course, o_ is a function‘of X. Hence,

the resolved parts Sf the normal pressure in the
direction of the x-axis contribute to a longitudinal
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force given by the integral

n0C 2%
2 2_ da 2
X = - $pU o, 2 Fx dx J (1 -4 cos®0)de
0

-(£+n)

so that as g - 0,

2
49X _ 2 (_—_a d(a%)
dx 8q xpla U ) ax

whence by comparison with equations (3.13) and (3.15)
we find
acx

3
%q

@
Q
=

I
S
@
d
o~
5
S
W
S

The Derivatives due to Sideslip

5.1. Wing on cylindrical body

We consider now a wing-body combination,
at incidence, sideslipping with uniform velocity - V
so that the angle of sideslip is B. Evidently, then
ag = a and Be = B for all planes X = constant, and so
from (2.1) if a = a_, & constant

__2f[asep, o0 _, 2@
¢ = - 0| x Gs tagzz - P 8%]’

The contribution to the pressure distribution due to
sideslip alone is found from

2| as 8¢ [a%¢ 359
- §| @ apas t * \apoz " aa’é}'):l """ (5.1)

where we have given the limiting value of the

ac
ap

’

expression B %g for B — 0.

Now, from (2.3),

2 2 2
%g = - Ua yp/(y + 2" ), so that 335 - Owvins {He B)

whereas, after differentiation, we find for a = a _,
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Frem (5.2) and (5.3) it follows that although
in (5.1) the terms

ac () ;-r‘i,' 2 ”.
___E :—i; E,:._-'f._ = 0 ?’I \l e e s e (50 Ll-)
38 ~ " U \3Paz ~ daay/

are odd functiongs of z, they are also odd functions of y.

Also, the suciion force at the wing leading edge
(arising from the singularity there in the potential
function) is influenced only by the upwash Ugg, and
so is unaffectz=d by sidewash. Hence the only effect
of sidewash is to cause a rolling moment but no other
force or moment, i.e.

aC aC ac aC aC
X ¥ Z 0 L,
el el - ahl - aled T 0. 0 B (5.5)

No rolling moment can, however, be contributed by the
pressure distribution upon the body, so that the
rolling moment is from (5.1), (5.2) end (5.3),

ne 5 rac._\
_&' = 2 2 3 (-—-R‘l db,..
P - B W€ /yupper surface r
oc a upper s
0
22\
But { 5===) = 0, from (5.2), so that from (5.4)
\3B0z
w
acC pc ,r"S )
— % _ Lo | 1 ({2
a - SS i dx"l U (\adaay,/ y d-.Y- .aoul-(5.6)
Vo a z=0+

Using (5.3) and performing the first integration with
respect to ¥, we Lind

¥ o8, ' 2sds
38 ~ " Ss @

=t / 2
o a
X o) % s
1_ — - O 1 o ....._
BJ‘ [Saol\ 52 J L|. ( )
a
o
2f g .2
s o 8- =8
+ T[\'] B 5 )arcsin Sy 2‘|ds

and upon further integration we may calculate finally

)
ﬁcl - ﬂ—f[ﬁ . 403_ 30’4) " 71?(1 B 602_ BOL‘)arcsin ( 202>

= 0
o e ,
+ £ 01 _02)-203%3:1 {“’g )J sl (5.5

\2()' ¥,

5.2. Cylindrical body with pointed nose

The derivatives due to sideslip for a body
alone are, of course, analogous to those due to
incidence and accordingly, we may immediately write
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down - using equations (3.14), (3.16)
BCZ . acm ) BCL o
oB 9B ~ 3B
2C aC
x—zz—zz_ﬁ02
0B oa 2
- RN Bitw. SRR £.7.1 N
OB 0. e ) c

Similarly; from (3.18),

BCX BCZ

26, PET 2

but this gives in the limiting conditi

6. The Derivatives due to Yaw

If yawing occurs about the p
with angular velocity r, the longitudi
at a point (x,¥,2) is (U - ry) and the
velocity is - r(x - E). We shall ass

and (3.17)

-

i, (5.8)
8oy
Ac 8[3 e

on of B —3 0,

-----

Oint (E,,0,0)

nal velocity
sldeslip

ume that the

pressure coefficient at a point (x,ysz) for the
yawing wing is the same as the pressure coefficient
for a non-yawing wing in a free stream of velocity Us

sideslipping with velocity - r(x - E).
neglect the variation in longitudinal
spanwise stations off the centre line
since this is evidently negligible if
wing plan form is indeed slender, as a
is the same assumption as implicit in
of pitching, (paragraph 4), where the
velocity was taken as U everywhere.
4
}{..§
Be % a, & S ) and

7

Os

we find from eguation (2.4)

2 [oe , Mo (222) 2
Oy ™ U[BK+A c)ay+“‘

whence, for ar‘—)O, we have correct to
order in a.,

We shall
velocity at
of the body,
the body and
ssumed. This
the treatment
longitudinal
Thus, putting

s

¥
2z

the first

o ﬂ.@..frx-a)[a% _ o2 22eY], 10e)
4, UA'L\ ¢ /| 3P ox a0y ~ 8B0%/ c 3B,
: P, 5.y

In this report we are considering only the
effects that arise in isentropic and inviscid flow.
In practice, of course, the differential change in

profile drag of the two half wings, re
yaw, will contribute a yawing moment;

gulting from
in fact, this

might well be the most important effect, but despite

this it will not be considered here.
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6.1. Wing on cylindrical body

Of' those terms that are contained in the
expression for 3c /aar, all have at cne time or the
other already been obtained, thus

(1) the term a2ﬁyaaax was shown to be zero by egn.(5.2);and

whereas 92%/3Baz is zero on the wing, it

is non-zero on the body - where, however,

as an odd function of both y and z it

contributes nothing to the resultant forces

and moments. Thus, both these terms may

be neglected.

(11) The term involving aQ?Vaaay is expanded in
equation (5.3) where - as an odd function
of y and z it contributes to a rolling
moment on the wing surface, but not, of
course, on the body surface.

(1ii) The term 3%/0Be¢ is given in (5.2) as an odd
function of y and as an even function of z.
Accordingly, this contributes to a side force
on the body and a yawing moment.

To sum up, (ii) gives rise to a rolling moment
and (iii) to a yawing moment and side force. There are
no other additional forces or moments due to yawy; this
includes also the longitudinal force contributed by leading
edge suction, which, inasmuch as it depends only on the
upwash Ua, is uninfluenced by yaw. Thus

BCZ acm an
aa = aQ‘ = aa =O. il.l.l(6.2)
r n :

The side force, as we have just seen, is derived from
the pressure distribution

acnz s o s
90,  UAc 3B, " °

2
de 8a "y
aa' = - 2 "i" - -
» AcR

from (5.2), as applied to the body. Hence

! o pe ar:
gi = 1§A°U ax a 2- 22 d=
i = 6

Performing the integrations it follows that

oC
=L = 2%0°(1 « a). S

aar

The yawing moment is similarly given by

2 Fc 0 gy
v oc JO
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whence again quite simply we may calculate

aC ' aC
W PE 2 g, .2 F p
- _-BCLI, = -0 (1 ~0%) + 2 :\\a&r). N (6. 4)

In (ii) above, it was shown that the rolling
moment arises from the terms in the pressure distribution -

EiE y o &a fﬁ_:_é) _QEE L,

a, ~UA\ ¢ /aady

as applied to the wing surface. Thus, by comparison
with (5.6), it will be seen that the rolling moment is
given by v

X gl pe g8,
s oc 8. A I‘-ﬂ'upper surface
1 L e.
aC ® : . e
P SR G T J i Q_fl) yay + 58 4.
da, o3 Ucc : aoU 000Y /gty g

The first integration is exactly the same as
that required for (5.6) and the second, with respect to
X, yields the expression

ac y 2
;- — K& 1+2_0(1 _7024.603)_ 1+40 " arcsinf 20
da, A x L 1402

6ot 8okt i £ %%
+ Ao ar0cot O s Fp I(U{] + f = i ssens (645)

Y
where™ I (o) =j % arccot t dt.
o

6.2. Cylindrical body with pointed nose

The derivatives due to yaw for a body alone
are, of course, analogous to those due to pitch, and
we may accordingly write down - using equations (4.10),

Erhe value of I(c) may most easilg be gomputed by a
/1+0

series expansion: thus; if 7= 0 we find
3 i
I(O) m£&1-009160+0—j~03+9—£ ‘|+_8'_é T+ 801&1 12
2 (o] 32 52 72 72 92

_+§;ll§2§ w3+...}
22, 92,11
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(4o 11) and (4.12) -

) 1
?—CEE b= -a& = i.c_‘:l’ — 0
aar ,aar aar
i s o b W . i
E}(I.P Aﬁo.q A0C D >
i 8Cy - _‘I__acm . xo° {02 2T'Cn” + 28nd + -Bg)
CEN da.q O o
+islga )l *iTE
L] . L] (6. 6)
Similarly, from (4.13)
acx By acn
= 2
amr 28
but gipnce B.=.0
aC
X
Pr——— = O. 000'00(6.7)
aar

7. The Derivatives due to a Longitudinal Change in Speed

If U is changed from U to U + dU, keeping the
upwash constant, a will be altered to a - « au/u. Also,
the pressure everywhere will be increased in the propor-
tion U + 4Un U. Evidently then

aC g ]
I ek & @i_.:'?'. ;
U da L
! « (7.1)
ou L da o
whereas all the other derivatives vanish, i.e.
oC 9C.. aC aC
__2.{.. S _»i —*-Il= )
aU "—au aU a 0‘ L (?t2)

These results are valid either for the wing
on & cylindrical body, or for the cylindrical body
with a pointed nose.
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8. The Derivatives due to Roll

Obviously, a rolling motion has no effect on
a body alone, and we shall therefore consider only the
conbination of wing mounted on cylindrical body.

The potential @, in any plane x = constant,
induced by a rolling motion with angular velocity p»
of a wing-body combination is derived in Appendix I.

This potential satisfies the condition that on the
surface of a wing, the upwash is

g, = =-DpY. sl L

The value of the surface potential is (as
given in equation (D) of the Appendix I)

3 2
@)y = sen(z) E ]:H% arccos/ i >—|

8.+S

. / L"“l / 32'\2
2( 8o 21 89 2 2 0
1 — Y 1 —— - ¥ 1] - e
/S e \*yu)“x (1

L .
> 2 % 2 S OI ‘
2 1 drag J = (14-—3— )
a_ys [s (1 + ; ) . _

L
|

X argtanh
Z 2 2 2
" +a ) (s5-87) =
- -
= 238
s 28 _8 \ | 4
2 8 0 2 o A 2
(Q’)B = sgn(z) %%E + = arccos { __a 2+ 32>l ¥is {1 +—2 -

a s‘/s \1+—) ™
- 2.‘)’/&15-&2 l-"‘(a ~ argcoth[ - j

TS
. (8.2)

Equation (2.4) gives, as before, the pressure
coefficient whose component due to roll is (in the
absence of sideslip)

c !
L pTanbl iy <)/
e Upl._g'i'a.az)

— i 591%8 (8. 3)

From (8.2) it will be seen that 87/3x is an odd
function of both y and z, whereas from (8.1) 3a@/az
is an odd function of y only. The normal force
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and pitching moment are therefore zero, i.e.

acz aC

. e g T = O‘ ......(8.1},)
aap aap

The rolling moment is derived only from the
term involving a@/ax in (8.3) since the other term does
not contribute to a difference of pressure between the
upper and lower surfaces of the wing, i.e. since (g)wz=o
at the wing leading edge,

N
0
—2%=-£LLPUJ ydyj ( ) LLLPU V(@) geo @
8 bao z=0+
0

The integral may be evaluated using equation (8.2) and
yields the answer

3%, pU s} 2 ,, 22 2 & g 20
R +0°(1-06°) + 20(1-0)(1=- 60" +0 )(§+arccosW52)
2
- 0”%(%-+arccos 202)+ %(14—02)LL (%-&arccos 202)
1+0 1+0
1/0° J““’ It - 42 )
+ ou'j % argtanh 20 - at ¢.
1 (t + 1) :
But #
/ hY
1/0° ~ /{“g )t-tz-‘l -
\
%5 argta 202«.. g %}
1 1-0 (t + 1) {
\1/02
" 2 j 1+t at
s’ g t =
140% 4 (1+Uh\*t_ iy
\o® 7/
R SHEEY. {arccos 20 1.
140° 30 1402 4

Hence, substituting this value for the definite
integral in the above expression for 81/8p, Wwe have
after some rearrangement - on using the identity -

2 groecobt 0 = % + arccos

b
1+02-
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the final expressionEE

aC
é..a& = - %E {(1""02),4(81‘0001'3 0)2_ ’EQOLI-'F 20(;;_02) (0)4_- 602+ 1) x
P

2
¥ arccot O + 02(1-02) .} ..... (8.5)

In evaluating the side and longitudinal force
we must now consider the suction along the wing leading
edge, which now is not distributed symmetrically about
the body - being larger on one side than the other.

The outwards force is derived ss given in (3.8), but
now H is the complex notential corresponding to the
real potential ¢ + ¢, ¢ being that part due to roll

and ¥ being that part due to incidence. Evidently in
(3.8), since ¥, = 0,
dH .
= - -1
= P @Byl + Wydy - 10,

where, from (8.2),

R e T T
1lim D /Su = aou {q- 2 8B {f a02
= - sgn(z e 1+ = arccos 11 + -5
Y“’“_"S(gy) g ()LI',J 82—572{__} T a02+32_\ 82,"'
2P 2 9
aff - % N Sl
i Ly 2 o b 2/ s |
S ¥ 3
. and from (2.5), if B, = 0 and a, = as
lwﬁf____ﬂj
lim (@) = ¥ sgn(z) Ja 1'3 o
) = 5] 5
yate Ny 8 ] &2 - 5

whilst, from (8.1), it follows that g, is finite on

the wing surface. Hence the singularity in 4di/dy
at the leading edge is such that in (3.8),

UBSERERRT|
3| at
Y = - sgn(z).Ua = 1--71— {Fsgn y)
NZ 8

7 o™ a 24 2

E.S_..!f il - B« B

+ 2Ua[\1+ IQ)arccot . i 5 A

N 8 s° + a

and so we find that, if Y is the side force at the
leading edge, the increment due to roll is

P 2 2 o

4 au\ A i a 28 8 -8
oY yis 2/ o 1 24 o | 0 0 0 l
e = = pUas {1~ ;‘—\'!+~—5,-;arccot—-h+ .
op 2 \ s]'l' / L.'J: o= s T 8 S2 +a02 J
‘...I.(8.6)

Frhis is equivalent to equation (20) of Ref.8, with which
it agrees, although the numerical calculation of this
reference appears in error, as well as some of the other
equations used in the discussion.
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The sign is the same for y 2 0, because the increment
has the same direction on both sides - adding to the
suction on the starboard side (y » 0) and decreasing

it on the port side. There is thus no resultant
longitudinal force, i.e.

BCX

—% = 0 i
aap

but there is a resultant side force due to this
asymmetric distribution which is given by

© ey ax [0 fay
R = _J'S f__ cccccc .8
2pj (\ap) dx = 2p dsj ‘\ap) ds (8.8)
oc a
0
where 3Y/3p is obtained from (8.6). However, in

addition to this there is a contribution from the
body to the side force which is due to the pressure
distribution described in (8.3) as caused by the
term 8@/9z - which is an odd function of y. In
fact, on the body surface, since (3g/ar)g = O;

(%Q) _ cos 6 {Qg\
02 B - a 36!:

on X
{ ]
il ‘ AV s A | 2 2
. a ! a =%y a .
= E% {Byz- s 14--%— l/ S R = arccot —9}
8" L s / af & Y g \8 /
B L1 mame -~ Ly
\. /
R VG
.- Bol (8"~ A iR ¥

¥ - 2 e ¢ puiman

/ 2{ % 2

h!EB 1+ 5 - Ly

8
2 ¥
& { aoz\ 2]
a s/fs l1+-———} - Ly
z .2 8 gt g

_by /ao-y argcoth | — 5 5 |
P I8 y(s® - a)") L

and, from (8.3), the side force on the body is

\© =y
- LpUa {| dx ‘\ (—g—g)B dz.
voge VYO O



- 2l -

Substituting for 2@/ez, and performing the integration
with respect to z, this becomes

g el bl 2\l . =
2pUap dx Olxa [® *+ 85 ", g 288 a0{+
=TT A8 | WY a2 Py SpotueE B LR/
a Uaot, “ S i 3 ™ 8.0-!-8," —1
2 2\2
+a3s:1-i(-)-\}—1 282(1—3%—-\;
B N ai® o BE P g¢ J/
/ B8 10 G 955 ' )
- 1 a 33!14¢39~ ;{1_ —%— Earr'cos 2 Lds
bx L &7\ = x} & e
0.J
& p % & 3 B (8-9)

This contribution from the body must now be added to
that from the wing, given by equations (8.6) and (8.8).
The integration with respect to s cannot then Dbe
evaluated formally, and it appears easiest to derive

the value by numerical methods. Accordingly we write
3C _ 1/
=L = bao? \ £(t) at s venms Vil 40)
P d o

where using equations (8.6), (8.8) and (8.9) we may
show that, on changing the parameter of integration
to ao/% = t, we have

2 7
\1!(.1_'_1__)_'_%{._”13 -1 !

& L .2

Plt) = E{(tz— —1-‘-2—)!_@ +52€ arccos 2‘02 o
i &

146/ t

o A4l : . 30
t 741 / 2t
_( 2: ) {j..; i?rccos :;t2}_1+ ﬁ}

S

g oot Ta Vg 408 Uan, gWe ot
+ 7(t -1)L—(1- —)+ T v (1+ t2> arccogs — J.

8 i tz 1+t2
s e kG 11 )
Vie may notice that for o-» 0, the integral tends to
% ig ; i.e. for ¢ = 0, we have ggi =5 na.

Similarly, also, the yawing moment may be
evaluated, for

n‘OC P
ol 2l iX-E)é_{i?_\dX
3a. o O ax .3
1 Jo D

or since, in (8.10), we may put 0 = ao/s and regard it
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ac
as a function of x describing thevariation of gwi with x,

we find that %o
“1/0
aC " o) B
n._"&a i . ek y
8{:(, - - A a I tf(b) dt +A c ("é’a‘" ll.ll.(8.12)
P A N

where f(t) is given, as before, in (8.11) as a function
of t.

oC
We may now calculate that as 0-30, EEE_’"T_A%
o]
if we make & = O. This completes our discussion of
the derivatives.

Stability Derivatives relative to Wind Axses

To avoid confusion we shall write the forces,
moments and velocities relative to wind axes, as shown
in Figure 2, as primed symbols. The relation of these
to the previously used systsm may be obtained quite
simply from the geometry: and we list the transformation
formulae below

X! = X +aZ o = 1 +an

it = Y ; m' =

Z': m B e aX n'! = nead
aU' = 86U 4+ aUbda 6p' = O&p + adr
VY =-UB gl v . g

W' = Uda=-adl &r' = @&r - aobd p.

0
Since U'= U correct to order a s we may
write

' 1 h 1E r'b
B‘“'% “'"%’“ﬁ“zu’aézu’“%:m'
Then the derivatives relative to wind axes

may be expressed in terms of those relative to the
body axes, as -

5] e a 9 _ G, . - e . 8
o T Wt Y It e eian
&, 3 ) 2 0 o a)
] = + 0.| g 9 t = L} ] e --Cl
aap amp a%? aa a aaq aa Bar aap
Cx, = Cx + Q Cz ’ Cy' = Cy ’ Cz' = GZ - Q CX
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More particularly, taking account of zero
derivatives, Table I lists the stability derivatives
relative to wind axes of the body-wing combination
here considered in terms of those relative to body
axes. Here it should be noted that although strictly

G
ac?’. :ac?v_a’ac,,f A,
aaP aar aap aar
and
88y’ -9BCy aC, aC,
- Rt . g R gl
P D =

aC -
the term 53; is small compared with the others, since
it is of order A whereas the others are of order 1/A -

A, the aspect ratio, being by inference, a small
guantity if the theory is wvalid.

Presentation of Results

The results are summarised in Tables II-IV
and in Figures 3-17. Table V is an index to the
figures.

In the Tables II and III;, the stability
derivatives referred to body axes, with the wing apex
on the ecentre-line as reference point, are given for:

(i) a triangular wing alone,
(ii) a body with a pointed conical nose.

In Table IV, those terms which have to be added to
those for € = 0, to account for the choice of an
arbitrary reference point at (£,0,0), are given.

In the figures 5-13, the variation of these
stebility derivatives with (body diameter/wing span)
ratio - again if referred to body axes, with wing apex
as reference point - is shown for the non-zero deriva-
tives. A complete list of where the variation of each
particular derivative may be found is given in Table V.

The relevant results if wind axes are used
may be obtained from Table I. In the figures the
variation of these derivatives with respect to (body
diameter/wingspan) ratio is included where appropriate;
and only in four cases (Figs. 14-17) is there any
variation of these different from those with respect
to body axss.
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APPENDIX I

Construction of the Potential due to

Incidence and Sideslip

We require the potential due to upwash and
sideslip in any transverse plane, X = constant, about
a body-wing combination; the surface contours in any
such £ = y + iz plane will be a circle radius g and a
straight line extending outwards from the surface of
the circle to a distance s from the origin, along the
horizontal y-axis. This contour is mapped conformally
by the transformation

a2

Z,t=%+izt=2;+-z-'

on the Qrplane by a straight line joining the points

¥, = i(s + %T)’ Zy = 0. The complex potential of the

flow about such a line due to upwash Uag and sideslip
UBe is then simply,

2.
H = - UBZ% + anejgtz - (+%)

so that in terms of Z,

2 g 2\2
H= - UB, (z;+%) + ane“/(ng?Z—) -(s +.5£..).

The velocity potential due to upwash may be found by
squaring the term 5

H+UB, (2+5)

substituting £ = R(cos 6 + i sin 6), separating real
and imaginary parts and solving for the real part of H.
The result is given in equation (2.3) of the text - and
in ref. 6 - where the expression for ¢ is adjusted to
give zero velocity at R =eo according to definition.
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APPENDIZE  .IL

Gonstruction of the Potential due to Roll

We shall here outline brisefly a method by
which the potential in any (y,z) plane due to a

rolling motion of the body-wing combination may be
obtained.

Let £ =y 4+ 1z and zt = yt + izt,
then if
2

a
2, = £+5% d%08 gy

the circular wing +body combination in the (y,z) plane
becomes a straight line z, = 0 for 0 & |y, | € s+a/s

in the (yt,zt) plane. In particular, the circular

body transforms into tnat part of the line z; = O
where 0 £ |y, | € 2a. :

The complex potential we require in the (y,2)
plane is such that the upwash w on the wing surface is
- pys where p is the angular velocity of roll, since
this cancels the effect of the upwash py induced by
rolling.

Thus the stream function YWis a constant ¥
on the circle, and is given by ¥ =73 + ip (y2-a2)
on the wing surface. The stream function is un-
changed by the transformation, so that in the (yt,zt)
nlane, the upwash required on the line Zy is zero
for O £ Iytl £ 2a, and is

2
Y. =28,
# lgyt - %Pl-.vt + (sgn yy) _:_“_"Tz:'.‘ = Wy, say

Tor 2a £ IytI.: BN e 2k, say.

Let us assume that the complex potential
of the flow which satisfies these boundary conditions
along the line z, = 0 is given by a line distribution
of vortices such’that the complex potential is

+1 -
ki : e
?j £(t) 1n (5% - t) at.
"

Then, on the line z, = 0, if (y,/2k) = u,
i‘\+1

' 1 £
vtz-é-f(n) and Wt:"_QEJ e
-1

where Vi and w, are respectively the sidewash (on the

(
upper surface) and upwash along the line Z, = 0,
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The expression for wy is already known soO
that we have to solve the integral equation for f(t).

The solution is
- A+
J‘l—n wt(q _!

£(t) = “—“%:::w[' j - dn |
ac,/*:-tz oy e A

where A is a constant; that is, from (B)

1 ""_"",')7

—

e e ) ‘
A+ 2pk&} kq+ = .
"»'EF\/‘l —t a/kr! ffrl‘z -a2/k2

£(t)

2 k
]

= %pk . (%-l-aPCCOS %) f__ <4 Inf :
i -t2 J1-t2 bl Gl t®

i g

2
-t2 _ & - 1
5 _R 2k (0)
2 o J LI 2 L]
a“ 2

The value of the constant A' is now chcsen so that the
potential ¢ is equal at y, = + 2k, since this is a con-
dition of symmetry, but

. il
gyt "'v-t'“ Ef(Q)’
ztzo+
and so
|
Q"tho-l- = kj m1f(n) d’\"..

Performing the integration and selecting the value
of A' accordingly, from (C),

o e 5 i
o £ 8y, 2 8 Lol
ﬁlz -0+ = Pk {(‘I-l—1t arccos ) ,[1-n" - qﬂz( 5 -
t Nk
2 ) -
8 a 2
N~ % Tl/ﬁ-l-cg+g}1—ﬂ
+ 1n : S
x
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But from (4),
a2
V4 =y +=— 2 2a
' Zt=0+ ¥

it

2a cos 6 4 2a.

Ciy

Hence, the potential on the surface in the
(v52) plane is given by
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It will be noticed that if a = s, (i.e. if
there is no wing) the potential due to roll is, of course,
Zero. On the other hand, if a = 0 (i.e. there is no
body)

B L~
2 2
() = 2(sgn Z)m’,\/s -y

which is the result obtained from the statement of the
potential due to the rotation of a flat plate - as a
particular example of the potential due to the rotation
of an elliptic cylinder - given, for example, by Lamb
(Hydrodypamics, Arte,. 715 T2)
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Stability Derivatives of Delta Wing (fixed body axes with reference point at wing apex).

ffomwwdmawqm of
Scqefficient
f..rvlr...).:’- O
with respect to~__
a 2%A a
U 0 0 -5 0 0 - 0 0
B8 0 [} 0 - 0 a, 0 0
3
RA TA 27A
a 5 T, 0 - 0 e 0
2 A i
0 - 0 - =q
QU 0 ) a 35 Y
27A AA
a ——— - e EEISSE
q 3 a 0 A 0 5 0
| s 0 0 0 .w a 0 0




- Um sy
e wfqu gm 7 @ O 0 0%z 0 I
L e Z ;m &
0 i S ity W /8 0 ovx | o0 Y f-. J ovy 5,
rm 239U U | 2T ¥ ¢ A .m g/
O 0 0 O 0 0 md
9 é <
0 —— | _bY% 0 — 0 - D
AQ .mw+m‘v z moﬁp modsb
\llﬂwtl oYY 0 0 : Q ¢
\ut+d)2 OV
- a7 Im.ol OVY 4 omé 0 0 n
f~7ﬂ+w. G c
oF~gosadsoa UM
u w .

o X

JUSTOTII2QD
Jo mbﬁvm>ﬂmm@r

“(Xode BUIM 318 2UT0d 5oUSI56J6d UFTA So6XE6 ApOq DOXTJ)

9SO TBOTUOD Y3TM Apod TBOTJIPUTTAD JO S9ATIBATJISQ L£3TTT(BIS

11

I

€3
a
mi

|._|~m.l

<g|
=




TABLE v
Additional Term in Expression of Stability Derivatives expressed in Tables IT and III, if body axes are
taken with reference point distance £ aft of the wing apex
Addition to _ !
~. derivative of
i ? PR
z!mmnwwpowmﬁﬁ
fff;ff. oUH ow om oﬁ oa ow
with respect to-
aC
2E 2
U 0 0 O O ey M.@. 0
2C
. 28 ¥
g 0 0 0 0 0 8 57
= ]
aC
n
a 0 0 0 0 _ 28 _z 0
¢ da
aC
i o Y
2] —
a, 0 0 0 0 0 T
P
£\
oF moun oF mom o @om @ca Mmm mOm
a + == ——= 0 - —= = 0 |= —2lo—= 4 E 2t 0]
a c oa ST ¢ Noa o 2 3a
a =5 T
J.—
C ¢ B i Cc
2 2 g 90, 2 gf90; 8GN ) g2 905
b XC 3B v % Le\Ga, *58 /) 1.2 7 9B
N Yy u\wmno -




— — amw - e

Index to Figures

Explanation: The figures in which will be found a graph
showing the variation with (body diameter/wing span)
ratio of each of the stability derivatives are enumerated
below. The figures in brackets refer only to the sta-
bility derivatives with respect to wind axes, and the
others are with respect to body axes.

;perivative of
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\ﬂ\\““bxﬁ Cx Cy CZ Ct Gm Cn
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U zero (3) 3 (3) Lo(4)

B ZETo 7 7 Z6ro

a 3 43) 3 (3) 4 (L)

@ 12 (1) 1 (1) 13 (15)

Gy L (16) 5 & 6 (6)
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o | 9 (9) | 8 (17) 10 (10)
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FIG, I. NOTATION USED IN ANALYSIS,
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DIRECTION OF

UNDISTURBED 1,- 2’
FLIGHT §

N.B. LINEAR & ANGULAR
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BODY RELATIVE TO THE AIR.

FIG.2. NOTATION FOR WIND AXES,

(SEE_PARA.9 & TABLE 1))
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FIG. 5. VARIATION OF NORMAL FORCE DUE TO PITCH WITH
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(ORIGIN AT WING APEX ON CENTRE LINE)
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FIG. 11 VARIATION OF ROLLING MOMENT DUE TO ROLL WITH
BODY DIAMETER FOR DELTA WING ON A CYLINDRICAL BODY
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