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Abstract

This report documents the signal analysis procedures developed at Cran-
field University for ground based entomological radars. The radars use a nutat-
ing vertical beam, allowing target (individual insect) position and radar cross-
section (RCS) parameters to be measured

The model accounts for non-circular beam cross-sections and assumes a three
parameter target RCS model. An iterative maximum-likelihood algorithm is
used, and uses the model and system noise data to provide quantitative measures
of the model’s goodness of fit to the data and of parameter uncertainties as well
as the best fit solution parameters.

Successful applications of the algorithm to both radar calibration and insect
monitoring are illustrated with field observations using the USDA/Cranfield
ground-based entomological radar system. The results show good performance
for the analysis method, but do not exploit its full potential because the noise
model is only approximate.
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Notation

a antenna radius
a vector of model parameters
ADC analogue to digital converter
b beam deviation factor
c radar system constant (signal for the calibration sphere

on axis at the reference range)
d antenna diameter
DN digital number (e.g. the ADC output value)
E electric field strength
f antenna focal length
F (θ, φ) antenna response function
gi beam cross-section parameters (i = 1, 2)
I field intensity in radar beam (one-way)
J1() first order Bessel function of the first kind
k radar system constant in the Radar Equation
p radar system signal (log receiver assumed)
Pr received power at the radar
Pr0 received power at the radar for reference target
q beam shape coordinate (= sin θ/λ)
R slant range distance from radar to target
R0 slant range to reference target
S0−4 Fourier signal integrals used to obtain first guess for solution
t time
u angular velocity component along x axis
v angular velocity component along y axis
x angular position coordinate of target (= X/R)
x0 x0 = x(t = 0)
X (linear) position coordinate of target wrt nutation axes
X0 position coordinate at t = 0
y angular position coordinate of target (= Y/R)
y0 y0 = y(t = 0)
Y (linear) position coordinate of target wrt nutation axes
Y0 position coordinate at t = 0

Table 1: Symbols (Roman) used in the report.

ix



α azimuth of beam centre around nutation axis
α0 beam centre azimuth at t = 0
β phase angle in target scattering matrix
γi beam width along principal axes of elliptical cross-section (i = 1, 2)
δ dipole eccentricity in antenna (radius of eccentric motion)
ε ratio of principal cross-sections in target scattering matrix
λ wavelength (of the radio frequency radiation)
ρ polarisation direction in nutation axes (parallel to electric field)
ρ0 polarisation direction at t = 0
ρr polarisation angle relative to target orientation
ρr0 ρr at t = 0
θ target radial angular displacement from beam axis (beam coordinates)
θ1/2 one-way half-power beam radius
θ′ beam centre angular displacement from nutation axis
θ′′ target radial angular displacement from nutation axis
φ target azimuth around beam axis
φ′ angular offset between principal axis of beam cross-section and radius

from nutation axis to beam axis
φ′′ target azimuth around nutation axis
σ target radar cross-section
σ measurement uncertainty (noise), which may depend on signal power
σxx target radar cross-section for transmit and receive

polarisations parallel to body axis
σ0 radar cross-section of reference target (e.g. steel sphere)
χ (insect) target orientation about nutation axis
χ2 statistic used to determine the quality of the fit between the model and the data
χ2

0 χ2 when the “model” is just the mean signal. χ2
0 is a reference value with which

the model χ2 can be compared.
ψ target azimuth about nutation axis relative to beam centre (= φ′′ − α)
ω nutation (and polarisation) angular velocity

Table 2: Symbols (Greek) used in the report.
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Chapter 1

Introduction

Ground based radars have been used for over 25 years to monitor insect flight.
Early scanning radars gave dramatic information about insect migration, but
were unable to identify individual targets because their position in the radar
beam, and thus their absolute radar backscatter cross-section (RCS), could not
be measured. Vertically-looking radars using a nutating beam (the beam is
offset slightly from the vertical and rotates around the vertical axis) provide
the information required to measure absolute position and RCS for individual
targets, opening new possibilities in radar entomology. The nutating beam
method has been used in radar entomology for a number of years by research
groups based in the UK, Australia and the USA [1].

A good model of the radar system is needed for effective data analysis able
to extract the information available from the measurements. In particular, the
aim is to measure the trajectory of the insects (position, heading, velocity,
orientation) and radar cross-section. The system model and solution algorithm
described here account for non-circular beam cross-sections and use a three
parameter target RCS model. This RCS model is suitable for targets with a
plane of symmetry which includes the viewing direction - as is the case for an
insect flying horizontally and viewed from vertically below (or above).

The model has several possible applications:

• Routine data analysis

• System calibration

• System design

The first two applications are the main subject of this report. System design
is also an important application because having a good model allows the effect
on performance of varying system parameters to be studied quantitatively.

A maximum likelihood solution method is used. This has the advantages of

1. quantifying the goodness of fit of the model to the data,

2. if the fit is good enough then the best fit solution parameters are obtained,

3. quantitative parameter uncertainty covariances are calculated.
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Standard non-linear optimisation routines can be used to find the solution.
The report covers the analytical model developed at Cranfield, its incorpo-

ration into a maximum likelihood solution algorithm, and some example appli-
cations. Chapter 2 documents the analytical model which takes account of the
radar beam geometry and the target’s radar cross-section. Chapter 3 discusses
how this model can be incorporated into a maximum likelihood algorithm to
estimate model parameters given radar measurements (and their uncertainties).
Chapter 4 illustrates the method with examples of results obtained from exper-
iments performed in November 1988 with the US Department of Agriculture.
The final chapter briefly discusses the main features of the method and its use
in radar entomology.
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Chapter 2

Model of the Radar System

A model of a nutating beam entomological radar has been developed. The
model has three main elements:

1. the standard radar equation,

2. the beam geometry

3. the insect radar cross-section

Each of these elements is described in turn and then all are combined to
develop the complete model. The next chapter describes how the model is used
to analyse measured signals, and the solution algorithm used to estimate model
parameters.

2.1 The Radar Equation

The radar equation for point targets, which gives the returned power (Pr) in
terms of the target’s radar cross-section (σ), the beam cross-section function
(F (θ, φ), where θ, φ describe the target’s position in the beam in terms of the
radial and azimuthal angles respectively), the target’s range (R), and a constant
(k) depending on the radar transceiver’s characteristics is

Pr = k
σF 4(θ, φ)

R4
(2.1)

To avoid the difficulty of measuring k directly, Equation 2.1 can be rewritten
in terms of the power received (Pr0) from a target of known radar cross-section
(σ0) at at known range (R0) on the beam axis (F = 1).

Pr

Pr0
=

σF 4(θ, φ)R4
0

σ0R4
(2.2)

For the nutating beam system modelled here (Figure 2.1), the beam shape
function and radar cross-section are described in detail using the following mod-
els.

3



Polarization

Antenna

y

x

Beam

Figure 2.1: Elliptical radar beam geometry and the related offset dipole position
(shown by the rectangular waveguide cross-section) at t = 0.

2.2 Beam Shape Function

A model of the beam shape is required to predict the incident field at the target’s
position and to calculate the fraction of the scattered power collected by the
receiving antenna. For a monostatic system, the same function describes both
these processes.

2.2.1 The Gaussian Approximation for the Beam Shape

An exact solution of the electric field amplitude for a uniformly illuminated
circular (or elliptical) aperture involves Bessel functions. Bessel functions are
less convenient to use than alternatives such as the Gaussian, and so the beam
is modelled as Gaussian with an elliptical cross-section. A Gaussian is a good
approximation to the exact beam shape for a circular aperture given by the
usual Bessel function expansion (Table 2.1), but is appropriate for the main
lobe only. Note that the values derived here apply to a circular aperture. These
results can be generalised to an elliptical cross-section as is done below.

The far field electric field vector for a uniformly-illuminated circular aperture
of radius a (diameter d = 2a), with radiation of wavelength λ, at angle θ to the

4
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x

Figure 2.2: Target position relative to the beam axes and fixed system axes.
Note that the radial displacements (θ, θ′, θ′′) are expressed as angles by dividing
by the target range.

beam axis is given by [2]

E(θ) = E0
2J1(x)

x
(2.3)

where x = 2πaq = πdq = πd sin θ/λ, and J1(x) is the first order Bessel
function of the first kind. The corresponding Gaussian approximation for a
circular aperture uses a single beam-width parameter γ:

E′(θ) = E0e
−θ2/γ2

(2.4)

These two models are usually related by choosing γ such that the one-way
half peak intensity beamwidths are equal. Thus

I(θ1/2)
I0

=
(

E(θ1/2)
E0

)2

(2.5)

= 0.5

=
(

2J1(x1/2)
x1/2

)2

(2.6)

This can be solved numerically, giving x1/2 = 1.61634, and then

θ1/2 = sin−1

(
x1/2

λ

πd

)
(2.7)
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Angle off-axis Bessel Gaussian Discrepancy Remarks
θ θ I/I0 I/I0 Gaussian Gaussian

- Bessel ÷ Bessel
rad deg (absolute) (dB)

0.008 0.50 0.939 0.936 -0.003 -0.02
0.017 1.00 0.775 0.767 -0.008 -0.04
0.027 1.62 0.500 0.500 0.000 0.00 half-power point
0.032 1.88 0.381 0.390 0.009 0.10 0.1 dB error
0.033 1.92 0.365 0.376 0.010 0.12 1% absolute error
0.044 2.59 0.134 0.169 0.035 1.00 1 dB error
0.065 3.83 0 0.020 0.020 ∞ first null

Table 2.1: Limits of validity of the Gaussian beam model. The corresponding
off-axis angles are evaluated for a circular aperture of diameter 0.6 m and radar
frequency of 9.4 GHz (γ = 0.04646 rad).

For the Gaussian model

I ′(θ1/2)
I0

=
(

E′(θ1/2)
E0

)2

(2.8)

= 0.5
= e−2θ2

1/2/γ2

(2.9)

Thus

γ =

√
2

ln 2
θ1/2 (2.10)

=

√
2

ln 2
sin−1

(
x1/2

λ

πd

)
(2.11)

Table 2.1 shows how far away from the beam axis the Gaussian approxima-
tion may be taken to be valid using various criteria.

2.2.2 Beam Shape Model using the Gaussian Approxima-
tion

The beam shape function (F ) based on the Gaussian approximation gives the
one-way amplitude variation of the electric field relative to its strength on the
beam axis.

F (θ, φ) = exp
[
−

(
p2

γ2
1

+
q2

γ2
2

)]
(2.12)

= exp
[
−

(
(θ cos φ)2

γ2
1

+
(θ sin φ)2

γ2
2

)]
(2.13)

= exp
[
−θ2

(
γ2
1 + γ2

2

2γ2
1γ2

2

+
γ2
2 − γ2

1

2γ2
1γ2

2

cos 2φ

)]
(2.14)

= exp
[−θ2 (g1 + g2 cos 2φ)

]
(2.15)
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where

g1 =
γ2
1 + γ2

2

2γ2
1γ2

2

(2.16)

g2 =
γ2
2 − γ2

1

2γ2
1γ2

2

(2.17)

and

γ2
1 =

1
g1 + g2

(2.18)

γ2
2 =

1
g1 − g2

(2.19)

γ1, γ2 are the beamwidths along axes 1 and 2 of the elliptical beam cross-
section (Figure 2.2). Equation 2.11 shows how the wavelength of the radiation
and the aperture diameter are related to γ for a uniformly illuminated circular
aperture. This provides a good first guess for the values of γ1, γ2.

The cosine and sine rules applied to Figure 2.2 give θ2 and cos 2φ in terms
of the angles in a fixed frame of reference:

θ2 = θ′2 − 2θ′θ′′ cos ψ + θ′′2 (2.20)
θ′′

sin(φ′ + π − φ)
=

θ′

sin(φ− φ′ − ψ)
(2.21)

θ′′ sin(φ− φ′ − ψ) = θ′sin(φ− φ′) (2.22)
sin φ [θ′ cos φ′ − θ′′ cos(φ′ + ψ)] = cos φ [θ′ sin φ′ − θ′′ sin(φ′ + ψ)](2.23)

cos 2φ =
θ′2 cos 2φ′ − 2θ′θ′′ cos(2φ′ + ψ) + θ′′2 cos 2(φ′ + ψ)

θ′2 − 2θ′θ′′ cosψ + θ′′2
(2.24)

where

α = α0 + ωt (2.25)
ψ = φ′′ − α (2.26)

= φ′′ − α0 − ωt (2.27)

Hence the beam shape function is

F = F (θ′, φ′, θ′′, φ′′, α0, ω; t)

= exp



−g1(θ′2 − 2θ′θ′′ cos ψ + θ′′2)

−g2

(
θ′2 cos 2φ′ − 2θ′θ′′ cos(2φ′ + ψ)
+θ′′2 cos 2(φ′ + ψ)

)

 (2.28)

ln F = −θ′2(g1 + g2 cos 2φ′)
+2θ′θ′′ (g1 cosψ + g2 cos(2φ′ + ψ))
−θ′′2 (g1 + g2 cos 2(φ′ + ψ)) (2.29)

= −4θ′2(g1 + g2 cos 2φ′)− 4θ′′2g1

+8θ′θ′′ cos ωt [g1 cos(φ′′ − α0) + g2 cos(2φ′ + φ′′ − α0)]
+8θ′θ′′ sin ωt [g1 sin(φ′′ − α0) + g2 sin(2φ′ + φ′′ − α0)]
−4θ′′2 cos 2ωtg2 cos 2(φ′ + φ′′ − α0)
−4θ′′2 sin 2ωtg2 sin 2(φ′ + φ′′ − α0) (2.30)

7



The target’s position and velocity are described in fixed Cartesian axes,
where X and Y are the target’s position in absolute units, by

x = X/R

= x0 + ut (2.31)
= θ′′ cosφ′′ (2.32)

y = Y/R

= y0 + vt (2.33)
= θ′′ sinφ′′ (2.34)

thus

θ′′ =
√

x2 + y2 (2.35)
φ′′ = tan−1 y/x (2.36)

The signs of x and y are used to determine the correct quadrant for φ′′, i.e.
if x < 0 then add π to the value of φ′′ to translate it from the original range
(−π/2 ≤ φ′′ ≤ π/2) given by the function tan−1.

Note that equations 2.31 and 2.33 could easily be extended to include accel-
eration terms.

2.2.3 Beam Deviation Factor

The beam shape model requires the angular offset of the beam axis from the
rotation axis (θ′). This is difficult to measure accurately in practice, but it is
feasible to measure the antenna eccentricity (δ, side-to-side motion 2δ) in the
reflector (focal length f). A beam deviation factor (b) is defined which relates
these two offsets [3]

b =
θ′

δ/f
(2.37)

b is a function of the reflector’s focal length to diameter ratio (f/d), and is
approximately 0.76 for a reflector with f/d = 0.25 (as is the case for the data
used later in this report).

2.3 Target Radar Cross-Section

The target is assumed to have a plane of symmetry including the line of sight
from the radar antenna to the target, and is thus modelled using a diagonalised
form of the scattering matrix. This assumption is reasonable for radars viewing
vertically, but not in general for off-vertical view directions. Figure 2.3 shows
the geometry used to determine the target’s RCS polarization dependence.

σ = |(cos ρr, sin ρr)
( √

σxx 0
0 ε

√
σxxeiβ

)(
cos ρr

sin ρr

)
|2 (2.38)

= σxx

(
cos4 ρr + 2ε cos β cos2 ρr sin2 ρr + ε2 sin4 ρr

)
(2.39)

=
σxx

4

[
1 + 2ε cos β + ε2 + 2 cos 2ρr(1− ε2)

+ cos2 2ρr(1− 2ε cos β + ε2)

]
(2.40)

8



Orientation

Polarization

y

x

Figure 2.3: Target relative polarization ρr and the absolute orientation χ. The
absolute polarization is ρ = ρr + χ.

=
σxx

8

[
3(1 + ε2) + 2ε cos β + 4(1− ε2) cos 2ρr

+(1− 2ε cosβ + ε2) cos 4ρr

]
(2.41)

where the polarisation angle is given by

ρ = ρ0 + ωt (2.42)
= ρr + χ (2.43)

ρr = ρ0 + ωt− χ (2.44)
= ρr0 + ωt (2.45)

Note that there are thus three parameters (σxx, ε, β) which describe the
target’s RCS (plus a parameter corresponding to the target’s orientation relative
to the polarisation direction at t = 0). Of these parameters, σxx is always
positive. Solutions can be found such that ε lies between 0 and 1 (by forcing
σxx to correspond to the strongest scattering orientation although this may not
be parallel to an insect’s body axis; in practice an assumption like this has to be
made to obtain unambiguous results). The solution algorithm presented here
does not limit ε to be less than 1, although this restriction can easily be applied
to the raw results to remove any ambiguity (the orientation angle ρr0 changes
by π/2 to compensate). β lies between 0 and 180◦(a fully polarimetric radar
would allow β to be measured between 0 and 360◦).

9



2.4 Complete System Model

The complete system model is obtained by combining the expressions for the
beam shape and target RCS with Equation 2.2. The signal (p) is taken to be
the natural log of the power ratio since this partially simplifies the analysis (the
Gaussian beam shape becomes quadratic, but the RCS now has a ln term) and
also because it better represents the output of radar receivers with a logarith-
mic output amplifier. Such receivers have a wide dynamic range and are thus
appropriate for radar systems designed to cope with targets of different sizes at
a large span of ranges, which is generally the case in radar entomology.

p(t) = ln
(

Pr

Pr0

)
(2.46)

= ln
(

σF 4R4
0

σ0R4

)
(2.47)

= ln
(

σ

σ0

)
+ 4 ln

(
R0

R

)
+ 4 lnF (2.48)

= ln
(

σxx

σ0

)
+ 4 ln

(
R0

R

)

+ ln
(
cos4 ρr + 2ε cosβ cos2 ρr sin2 ρr + ε2 sin4 ρr

)

+4



−θ′2(g1 + g2 cos 2φ′)
+2θ′θ′′ (g1 cos ψ + g2 cos(2φ′ + ψ))
−θ′′2 (g1 + g2 cos 2(φ′ + ψ))


 (2.49)

= c + ln
(
cos4 ρr + 2ε cosβ cos2 ρr sin2 ρr + ε2 sin4 ρr

)

−4θ′2(g1 + g2 cos 2φ′) + 8θ′θ′′ (g1 cosψ + g2 cos(2φ′ + ψ))
−4θ′′2 (g1 + g2 cos 2(φ′ + ψ)) (2.50)

where

c = ln
(

σxx

σ0

)
+ 4 ln

(
R0

R

)
(2.51)

The Gaussian beam approximation gives direct trigonometrical expressions
for the beam shape terms when the signal is expressed as the logarithm of
the power (as here), but all the other terms (including RCS parameters) are
contained as logarithm values. The model is difficult (perhaps impossible) to
invert analytically but relatively straightforward to invert numerically. Note
that the signal variation due to position in the beam is likely to be stronger
than that due to polarisation in general - position parameters will therefore
often be easier to measure than RCS parameters.
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Chapter 3

Solution Algorithm

The system model developed in the previous chapter is used to analyse measured
signals from a nutating beam entomological radar. The model’s parameters are
adjusted using a standard non-linear optimisation algorithm to fit the model
to the measured data. The goodness-of-fit between model and data, the best-
fit model parameters and their covariances are the values calculated by the
optimisation algorithm, and allow the insect’s trajectory and radar cross-section
parameters to be measured.

There are two main applications of the solution algorithm (system calibra-
tion and routine insect population monitoring) which are discussed in the next
section. Implementation of the optimisation algorithm is described in the second
section.

3.1 Applications of the Model

The complete system model has 14 parameters (Table 3.1), and can be used
either to calibrate the system using a target with a known RCS (i.e. to measure
those system parameters which are not easy to measure directly), or to measure
the trajectory and RCS of an unknown target (e.g. general field experiments
studying insect migration). Table 3.1 shows which parameters are fixed (i.e.
assumed to be known a priori) and which are freed (to be found by model
inversion) for the two cases of system calibration and routine insect monitoring.

When the model is to be inverted to estimate system parameters from mea-
sured data it is important to understand the model’s characteristics. Since both
the beam nutation and polarisation rotation are at the same frequency, signals
due to both these effects may occur at the same frequencies (the fundamen-
tal (ω) and its harmonics), and the solution algorithm may have difficulty in
distinguishing these two effects. For this reason, the model is appropriate for
either calibrating the beam parameters using a known target, or for measuring
the RCS and trajectory of an unknown target using a calibrated system, but is
not suitable for attempting both simultaneously. Note that the constants σxx

and R cannot be distinguished by the model and are treated as one combined
variable c.
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Parameter System Field Remark
No. Symbol Calibration Operation

1 c Range and σxx

2 x0 Angular position at t = 0
3 y0

4 u Angular velocity
5 v
6 ε set, = 1 RCS parameters
7 β set, = 0
8 θ′ set set Beam offset
9 φ′ set Beam orientation

10 g1 set Beam shape parameters
11 g2 set
12 ρr0 set, = 0 Polarisation angle at t = 0

minus the target orientation
13 α0 set set Beam centre azimuth at t = 0
14 ω set set Nutation rate

Table 3.1: Model parameters free for different applications. (g1 may be mea-
sured more reliably from the variation of the mean signal level during a beam
transect with a known target than by direct model inversion.)

3.2 Implementing the Solution Algorithm

The model is non-linear and so an iterative algorithm is used to find the solution
giving the best fit between the measured data and the model. The solution
algorithm used at Cranfield is based on a maximum likelihood algorithm [4],
which requires two types information in addition to the basic model described
above, these are (1) the model partial derivatives with respect to the model
parameters, and (2) a good first guess at the final solution. These are described
in the following subsections.

3.2.1 Model Partial Derivatives

Using the notation of [4] the model parameters are the components of a 14
component vector a.

∂p

∂a1
=

∂p

∂c

= 1 (3.1)
∂p

∂a2
=

∂p

∂x0

=
∂p

∂θ′′
∂θ′′

∂x0
+

∂p

∂ψ

∂ψ

∂φ′′
∂φ′′

∂x0
(3.2)

∂p

∂a3
=

∂p

∂y0

=
∂p

∂θ′′
∂θ′′

∂y0
+

∂p

∂ψ

∂ψ

∂φ′′
∂φ′′

∂y0
(3.3)
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∂p

∂a4
=

∂p

∂u

=
∂p

∂θ′′
∂θ′′

∂u
+

∂p

∂ψ

∂ψ

∂φ′′
∂φ′′

∂u
(3.4)

∂p

∂a5
=

∂p

∂v

=
∂p

∂θ′′
∂θ′′

∂v
+

∂p

∂ψ

∂ψ

∂φ′′
∂φ′′

∂v
(3.5)

∂p

∂a6
=

∂p

∂ε

= 2
cosβ cos2 ρr sin2 ρr + ε sin4 ρr

cos4 ρr + 2ε cos β cos2 ρr sin2 ρr + ε2 sin4 ρr

(3.6)

∂p

∂a7
=

∂p

∂β

= −2
ε sinβ cos2 ρr sin2 ρr

cos4 ρr + 2ε cos β cos2 ρr sin2 ρr + ε2 sin4 ρr

(3.7)

∂p

∂a8
=

∂p

∂θ′

= −8.10−3g1 [θ′ − θ′′ cos ψ]
−8.10−3g2 [θ′ cos 2φ′ − θ′′ cos(2φ′ + ψ)] (3.8)

∂p

∂a9
=

∂p

∂φ′

= 8g2

[
θ′2 sin 2φ′ − 2θ′θ′′ sin(2φ′ + ψ) + θ′′2 sin 2(φ′ + ψ)

]
(3.9)

∂p

∂a10
=

∂p

∂g1

= −4θ′2 + 8θ′θ′′ cosψ − 4θ′′2 (3.10)
∂p

∂a11
=

∂p

∂g2

= −4θ′2 cos 2φ′ + 8θ′θ′′ cos(2φ′ + ψ)− 4θ′′2 cos 2(φ′ + ψ) (3.11)
∂p

∂a12
=

∂p

∂ρr0

=
∂p

∂ρr

∂ρr

∂ρr0

=
∂p

∂ρr

= − sin 2ρr
1− ε2 + cos 2ρr(1− 2ε cos β + ε2)

cos4 ρr + 2ε cosβ cos2 ρr sin2 ρr + ε2 sin4 ρr

(3.12)

∂p

∂a13
=

∂p

∂α0

=
∂p

∂ψ

∂ψ

∂α0

= − ∂p

∂ψ

= −8θ′′ {θ′′g2 sin 2(φ′ + ψ)− θ′ [g1 sin ψ + g2 sin(2φ′ + ψ)]}(3.13)

13



∂p

∂a14
=

∂p

∂ω

=
∂p

∂ρr

∂ρr

∂ω
+

∂p

∂ψ

∂ψ

∂ω

= t

[
∂p

∂ρr
− ∂p

∂ψ

]

= t

[
∂p

∂a12
+

∂p

∂a13

]
(3.14)

where

∂p

∂θ′′
= 8θ′ [g1 cosψ + g2 cos(2φ′ + ψ)]

−8θ′′ [g1 + g2 cos 2(φ′ + ψ)] (3.15)
∂p

∂ψ
= −8θ′θ′′ [g1 sin ψ + g2 sin(2φ′ + ψ)] + 8θ′′2g2 sin 2(φ′ + ψ) (3.16)

∂ψ

∂φ′′
= 1 (3.17)

∂θ′′

∂x0
=

∂θ′′

∂x

= 10−3 x

θ′′
(3.18)

∂θ′′

∂y0
=

∂θ′′

∂y

= 10−3 y

θ′′
(3.19)

∂θ′′

∂u
= 10−3 xt

θ′′
(3.20)

∂θ′′

∂v
= 10−3 yt

θ′′
(3.21)

∂φ′′

∂x0
=

∂φ′′

∂x

= 10−3−y

θ′′2
(3.22)

∂φ′′

∂y0
=

∂φ′′

∂y

= 10−3 x

θ′′2
(3.23)

∂φ′′

∂u
= 10−3−yt

θ′′2
(3.24)

∂φ′′

∂v
= 10−3 xt

θ′′2
(3.25)

Also

∂p

∂γ1
=

∂p

∂g1

∂g1

∂γ1
+

∂p

∂g2

∂g2

∂γ1

=
4
γ3
1

[
θ′2(1 + cos 2φ′) + θ′′2(1 + cos 2(φ′ + ψ))
−2θ′θ′′(cos ψ + cos(2φ′ + ψ))

]
(3.26)
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∂p

∂γ2
=

∂p

∂g1

∂g1

∂γ2
+

∂p

∂g2

∂g2

∂γ2

=
4
γ3
2

[
θ′2(1− cos 2φ′) + θ′′2(1− cos 2(φ′ + ψ))
−2θ′θ′′(cos ψ − cos(2φ′ + ψ))

]
(3.27)

using Equations 3.10, 3.11 and the following relationships

∂g1

∂γ1
=

−1
γ3
1

(3.28)

∂g1

∂γ2
=

−1
γ3
2

(3.29)

∂g2

∂γ1
=

−1
γ3
1

(3.30)

∂g2

∂γ2
=

1
γ3
2

(3.31)

3.2.2 First-Guess Values

Iterative solution methods must generally be initialised with good first-guesses
of the desired solution if the solution is to be efficient and to avoid secondary
minima. Table 3.2 lists the first-guesses used in the current solution algorithm.
If some parameters are known a priori (for example from a previous calibration)
then these values override the first-guess values.

The beam and trajectory parameters can be initialised using a quasi-static
version of the system model assuming the target is a reflecting sphere (so that
polarisation-dependent terms can be ignored). Equation 2.30 gives the parame-
ters which can be measured directly this way using standard harmonic compo-
nents of the signal. The following harmonic integrals (sums when implemented
digitally) are used to provide estimates of the beam and trajectory parameters.

S0 =
∫

N rotations
p dt (3.32)

S1 =
∫

N rotations
p cosωt dt (3.33)

S2 =
∫

N rotations
p sinωt dt (3.34)

S3 =
∫

N rotations
p cos 2ωt dt (3.35)

S4 =
∫

N rotations
p sin 2ωt dt (3.36)

Comparing these integrals with the harmonic terms of Equation 2.30 for the
simplified quasi-static model gives:

S0 = constant− 4g1θ
′′2 (3.37)

S1 = 4θ′θ′′ [g1 cos(φ′′ − α0) + g2 cos(2φ′ + φ′′ − α0)] (3.38)
S2 = 4θ′θ′′ [g1 sin(φ′′ − α0) + g2 sin(2φ′ + φ′′ − α0)] (3.39)
S3 = −2θ′′2g2 cos 2(φ′ + φ′′ − α0) (3.40)
S4 = −2θ′′2g2 sin 2(φ′ + φ′′ − α0) (3.41)
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(Note that if the target moves uniformly across the beam, and slowly enough
for the quasi-static model to apply, then S0 depends quadratically on θ′′. This
can be used to measure g1 in a suitable calibration experiment.)

Thus first-guess values using this simplified quasi-static model are:

θ′′ =

√
S2

1 + S2
2

4θ′g1
(assuming g1 À g2) (3.42)

φ′′ = α0 + tan−1(S2/S1) (3.43)

g2 =

√
S2

3 + S2
4

S2
1 + S2

2

4θ′2g2
1 (3.44)

φ′ =
1
2

tan−1

(−S4/(2g2θ
′′2)

−S3/(2g2θ′′2)

)
− (φ′′ − α0) (3.45)

Values for x0 and y0 follow from the values for θ′′ and φ′′, and u, v are both
taken to be zero.

The target RCS parameters are guessed using values which are typical of
the expected targets and which avoid points in the model where gradients tend
to zero or infinity. If the beam parameters are known it is possible to obtain
improved estimates of the RCS parameters using an iterative procedure, but this
adds significantly to the complexity of the algorithm for deriving the first-guess
values, and should not significantly affect the accuracy of the final solution.

3.2.3 Achieving a Practical Implementation

The above equations can be implemented directly as indicated [4] but may not
work satisfactorily due to the nature of the numerical solution. The following
steps have been found to give a relatively robust solution algorithm.

1. The magnitudes of the partial derivatives of the model with respect to
its parameters should not differ too greatly from each other (to give a
better posed problem for numerical solution). To help this, the parameter
units need not be standard SI units; in this case the angular positions and
speeds have been expressed using mrad rather than rad.

2. Matrix inversion routines are required at several stages of the solution.
Singular value decomposition (SVD) methods are used (implemented in
double precision) at Cranfield and give a robust algorithm able to test for
(and warn against) near singular cases (indicating inadequate measure-
ments for the parameter estimation being attempted).

3.3 Interpreting χ2

The χ2 statistic calculated using the solution algorithm has the great advantage
that it can be interpreted quantitatively [4] (if the measurement noise σi is
properly calibrated). An additional statistic against which χ2 can be compared
is χ2

0, which is defined using the (weighted) mean of the signal as the model
“fitted” to the data.
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Parameter First Guess Remarks
No. Symbol Unit Quantity

1 c none ln(σxx

σ0
) + 4 ln(R0

R ) measure R, guess σxx according to
local conditions

2 x0 mrad x at t = 0 use simplified quasi-static model
3 y0 mrad y at t = 0 use simplified quasi-static model
4 u mrad s−1 target angular velocity (x) use simplified quasi-static model
5 v mrad s−1 target angular velocity (y) use simplified quasi-static model
6 ε none

√
σyy/σxx 0.8 (arbitrary choice)

7 β rad target RCS relative phase 0.2 (arbitrary choice)
8 θ′ rad beam offset (radial) antenna measurement / beam

deviation factor
9 φ′ rad beam offset (azimuth) from quasi-static model (check

against antenna measurement)
10 g1 rad−2 ∼mean beam diameter Use nominal beamwidth of aperture

γ1 = γ2 from equation 2.11
or calibrate (Eq. 3.32)

11 g2 rad−2 ∼beam ellipticity from quasi-static model
12 ρr0 rad ρr − χ at t = 0 antenna measurement at antenna

head-up position
13 α0 rad α at t = 0 define α0 = 0 at head-up position
14 ω rad s−1 nutation rate 10 rev s−1 = 20π rad s−1; Cranfield

/ USDA system measures signal at
fixed angular steps (2π/256 rad)
so that ω is not a parameter

Table 3.2: First-Guess Values used in the solution algorithm (t = 0 is defined
here as time at the “head-up” position).

χ2
0 =

∑(
yi − y

σi

)2

(3.46)

where

y =

∑ yi

σi∑
1
σi

(3.47)

If the signal is strong then χ2 and χ2
0 should differ significantly (because the

model fits the data much better than a simple average), but if noise dominates
then χ2 and χ2

0 will differ only by the difference in the number of degrees of
freedom between the mean (1 degree of freedom) and the model.

In practice these statistics are useful either to improve understanding of the
measurement noise (mis-calibration of the noise model will be revealed by un-
expected values of χ2), or to give quantitative information about the goodness-
of-fit of the model to the data and the signal-to-noise ratio of the data.
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Chapter 4

Demonstration Results

Examples of results using the analysis methods described above are given in this
section to illustrate their capability when applied to real data. The results are
not presented as fully calibrated measurements but only to illustrate application
of the model and algorithms described in earlier chapters.

Note that the analysis has been performed using a system model with 12
parameters, not the full 14 parameters given in the previous chapters (because
the rotation rate ω is taken to be constant and the position coordinates are
relative to dipole position at t = 0, i.e. α0 = 0 can be assumed). The data
have all been analysed in sections of 512 readings, i.e. 0.2 s of data, or 2 dipole
revolutions. Neighbouring points are 0.1 s apart, and thus have half their data
in common.

4.1 Field Experiments (November 1988)

Field experiments using the U.S. Department of Agriculture (USDA) X-band
entomological radar with nutating beam and the Cranfield signal acquisition
unit took place in November 1988 [5]. Two types of measurement were made:
(1) radar system calibrations using a steel sphere of known RCS, and (2) routine
insect monitoring with the beam pointing vertically upwards.

The radar wavelength is 3.2 cm (X-band), its pulse repetition frequency is
2560 Hz, and the antenna is an offset Cutler feed rotating at 10 Hz in a circular
reflector of diameter 0.6 m.

The signal acquisition unit uses a manual range control and data are recorded
using a microcomputer (Apple II) with 12-bit ADC inputs able to record for
4.8 s (48 antenna revolutions). These data have been transferred to standard PC
format for analysis. In all the cases presented here the data have been analysed
in sections of 0.2 s duration (i.e. 2 dipole revolutions). Longer or shorter periods
could be used, but it is recommended that at least one revolution is used to give
a complete span of measurements.

4.1.1 Pre-processing of the Raw Data

The available data are stored as DN values corresponding to the ADC output.
These data need to be converted into power ratio units to obtain p(t). In
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addition to p, corresponding values of t and σ(p) also need to be provided. For
the Cranfield / USDA system, the independent variable is nutation angle rather
than time (ωt = n.2π/256 rad), and ω is no longer a system parameter. Angle
is converted directly to time assuming a dipole rotation rate of exactly 10 Hz.

4.1.2 System Noise Model

A noise model had to be developed to estimate σ(p). The model used assumes
the noise level is a function of the signal level. The model was based on the
measured data by subjectively fitting a model to the observed standard deviation
variation with mean signal level for short data windows, and then calculating
σ(p) using this model for each record based on the apparent power measured.
With more extensive operating experience it should be possible (and would be
desireable) to develop a more comprehensive and validated noise model.

The noise model used for the results presented here was satisfactory for
demonstrating application of the algorithms but was not accurate enough for
quantitative interpretation of the goodness of fit measure (or the parameter
error covariances). If anything, the goodness of fit measure obtained can be
used to improve the noise model to give more typical results (i.e. the χ2 value
for the fit of the model to the data should be approximately equal to the number
of degrees of freedom). Similarly, the error covariances are not correct, although
their general magitudes and relative values are good.

Figure 4.8 shows the χ2 achieved using the current noise model. If the model
were correct then the fitted value would be approximately 500 (the number of
degrees of freedom of the data less the number of degrees of freedom of the
model). These results suggest that the actual measurement noise is smaller
than modelled for small signals and larger than modelled for large signals.

4.2 Radar System Calibration

The principal objective of the system calibration experiments was to measure
relevant beam parameters (e.g. g1, g2). A steel sphere was used as the radar
target, suspended part way along the tether line of a helium-filled balloon. Using
the motorised antenna mount, the radar beam was scanned across the target in
both elevation and azimuth. The data presented are from signal recorded for a
transect referred to as RD34 for which the raw data are relatively strong.

Beam shape parameters were measured from the variation of mean power
with scan angle (g1, equation 3.37) and by model inversion (g2, φ

′). Examples
of raw and analysed data are shown in figures 4.1 to 4.6. The target locus is
measured well. The scatter in beam parameter estimates is broader than the
maximum likelihood covariance estimates (equivalent standard deviations ap-
proximately ± 0.83◦for a[9] = φ′, ±3.9 for a[11] = g2) and is probably due to
side-lobe interference (the target was only just above elevations clearly contami-
nated by ground clutter). If g1 is attempted to be estimated by model inversion
then the equations are almost degenerate (only θ′ sets the angular scale size)
and poor results are obtained.

20



4.3 Field Observations

Although not part of a coordinated field campaign, the radar was set for routine
data collection with the beam vertical to record data for a set of real (almost
certainly insect) targets. The data presented are from signal recorded as file
RD17. The signal strength is reasonable for the first 2.5 s but then the target
appears to have left the beam.

Figures 4.7 to 4.13 show the results for one of the targets observed. The
locus appears to be measured accurately for the first 2.5 s (while the signal
strength is good). The radial excursion at ∼1.0 s corresponds well with the
dip in signal power. The target RCS parameters measured during the period
of closest approach (t = 1.5 − 2.0 s) are relatively stable and could be used to
classify the target or estimate its mass (using σxx). Figure 4.10 shows that the
target passed through the edge of the beam, and thus its position parameters
are not easy to estimate accurately. The results suggest that orientation may
be easier to measure than position since the scatter in Figure 4.13 is relatively
low (especially if the ambiguity which couples ε and ρr0 is resolved).

Figure 4.1: RD34 signal trace (raw and with moderate filtering to show the
main features). The signal is expressed in natural log units of the power. 256
data points are recorded per dipole revolution (0.1 s).
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Figure 4.2: RD34 mean power. The envelope should be parabolic for a uniform
sweep of the beam across the target (the dashed line shows a best-fit parabola
for the main part of the trace used to estimate the beam width parameter g1).
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Figure 4.3: RD34 target constant. Variations are probably due to sidelobe
interference or to slight changes in range.

23



Figure 4.4: RD34 estimated target locus. 1 mrad is equivalent to 0.43 m (target
range = 430 m); the beam centre is displaced 13.4 mrad from the coordinate
origin. Times of measured positions are shown for t = 0.5− 3.5 s.
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Figure 4.5: RD34 beam ellipticity parameter g2 estimated at various times
through the signal.

Figure 4.6: RD34 beam azimuth parameter φ′ estimated at various times
through the trace.
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Figure 4.7: RD17 signal (raw and with moderate filtering to show the main
features). The signal is expressed in natural log units of the power. 256 data
points are recorded per dipole revolution (0.1 s).
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Figure 4.8: RD17 χ2 for the fitted model. The model was fitted using data for
0.2 s (two dipole revolutions) and repeated at 0.1 s steps; adjacent points thus
have 1 revolution of data in common.

Figure 4.9: RD17 target constant estimated as a function of time.
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Figure 4.10: RD17 estimated target locus. The beam centre locus is shown by
the dashed arc, and the times at which positions were recorded are noted for
t = 0.5 − 2.5 s. 1 mrad is approximately 0.60 m in lateral distance (range is
about 600 m).
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Figure 4.11: RD17 target radar cross-section parameter ε estimated from the
recorded signal. The fluctuations around ε = 1 correlate with apparent changes
in orientation ρr0 as expected.

Figure 4.12: RD17 target radar cross-section parameter β (degrees) estimated
at various times during the sample.

29



Figure 4.13: RD17 target orientation ρr0 (degrees) estimated from the recorded
signal. Note the bimodal distribution (which correlates with changes in ε).
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Chapter 5

Discussion and Conclusions

Developing the radar system model, implementing it and the solution algorithm
on a microcomputer, and then applying it to real field data has been a valuable
exercise. The following sections consider the most significant features of the
project.

5.1 Discussion

The results suggest that the model and solution methods can be applied prac-
tically and can provide useful results. The direct results presented here clearly
have to be interpreted carefully. The quantification of goodness-of-fit and of the
random noise induced parameter uncertainties make the identification of biases
and systematic errors (e.g. side-lobe interference) relatively unambiguous, even
in this example with a poor system noise model, which is a significant strength.

A major source of error with the system used to obtain the field data is the
radar system’s sensitivity to target range. This is because the transmitted radar
pulse does not have a flat power profile and the signal acquisition uses sample-
hold devices which sample the “instantaneous” signal (a peak detector with a
flat range response within a controllable range gate would avoid this difficulty).
Much of the apparent variation in target parameters is assumed to be due to
this range sensitivity.

The beam shape parameters are inadequately measured using the current
data. Side-lobe interference is the most plausible explanation of the observed
scatter, especially its apparently systematic variation (e.g. Fig. 4.5). The target
parameters are, if anything, more convincing (possibly because the vertical beam
orientation is less prone to side-lobe interference). There is a clear correlation
between the signal strength (Fig. 4.7) and position (Fig. 4.10), and parameters
estimated during the period of closest approach to beam centre (t = 1.5− 2.0s)
are relatively stable. Given the measured target range of 598 m, the system
constant of 3.1± 0.2 for the reference target (R0 = 430 m, σxx = 2.51cm2), the
apparent target value of σxx is 3.8cm2. This corresponds to an insect of mass
approximately 1 g [6].

The model has wider use than the data analysis demonstrated here. An
example application is as a parametric model allowing the radar system design
to be optimised for specific purposes.
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5.2 Conclusions

This report presents a model applicable to current nutating beam entomolog-
ical radars. The model is relatively comprehensive (and includes non-circular
beam cross-section, target RCS described by three parameters, and (linear) tar-
get velocity). An implementation of the model to allow parameter estimation
from measured data for either (1) system calibration, or (2) insect monitoring,
is described. The method is demonstrated on actual radar data collected in
field experiments for the U.S. Department of Agriculture, and shows promising
results.

Particular strengths of the method are (1) the sophistication of the under-
lying model, and (2) the solution algorithm’s ability to quantify goodness-of-fit
and the parameter errors. Further work is required to develop methods of auto-
matically processing the direct results (e.g. identifying data portions giving the
most reliable parameter estimates) to enable routine insect monitoring. It is also
clear that increasing the power of the data analysis places greater demands on
the quality of the calibration of the radar system (i.e. an accurate system noise
model is required). These are achievable objectives and it is feasible to consider
an automated insect monitoring system based on the techniques described here.
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Appendix A

Data Processing of the
Cranfield / USDA
Experiments

The experiment organisation and data collection as far as obtaining data files
on an Apple II microcomputer are described in a contractor report [5] available
from the authors. These data have been transferred to a PC compatible micro-
computer (using a standard serial communications link, transferring the files as
a string of ASCII characters) for the analysis presented here.

The main data processing and analysis stages are

• Collect radar data (program GBR1.1bgs running on the Apple II).

• Transfer raw data as ASCII files (printed by program GBR1.1bgs) over a
serial communication link between computers.

• Convert the raw data (received as digital number values from the ADC
output) to the format required by the maximum likelihood model fitting
program (conversion performed by program filtrec.exe).

• Analyse the correctly formatted data (analysis performed by program
mfitgbr.exe).

An example of the raw data digital number (DN) values from the ADC as
received by the PC is given in Table A.1, and the same data are shown in Table
A.2 converted ready for analysis.

A.1 System Calibration

The conversion from DN to voltage (accounting for ADC scaling and the sample-
hold gain, etc.) is given by

V = 2.714DN/255 (gives voltage in V) (A.1)

The calibration is approximately 10.6 mV per DN.
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The calibration of the radar receiver signal (p, the natural logarithm of the
signal power (P ) in units of a reference power level Pref near the system noise
level) as a function of receiver video voltage (V, volts) is

p = 0.1 ln 10(30.2529
√

V − 8.8978) for V ≤ 0.3432V (A.2)

= 0.1 ln 10(21.3446
√

V − 3.6789) for V > 0.3432V (A.3)

(The factor 0.1 ln 10 converts the calibration from decibels to the natural
logarithm value.)

A.2 System Noise Model Used

The noise model giving absolute (not ln) signal noise (in units of the reference
power level Pref ) as a function of the radar video output voltage (V ) is

σ(V ) = 0.3 for V ≤ 0 (A.4)
= 0.3 + 0.7V/0.3 for 0 < V ≤ 0.3V (A.5)
= 1.0 for 0.3V ≤ V (A.6)

This absolute noise level is converted to the equivalent ln value by calculating
the signal level P (V ) = exp p(V ) and the noise level σ(V ) for a given signal
voltage, and then calculating the value δp = ln(1 + σ/P ).

Results presented in this report suggest that this noise model is too large
for low signals and too small for large signals.
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GBR88 raw data, rd17 From data file #9:rd17, records 0 to 47
rev angle SH0 SH1 check sum

0 0 22 7 29
0 1 22 7 29
0 2 23 9 32
0 3 22 3 25
0 4 22 3 25
0 5 22 11 33
0 6 21 6 27
0 7 21 2 23
0 8 23 2 25
0 9 23 5 28
0 10 23 6 29
0 11 22 8 30
0 12 23 6 29
0 13 24 9 33
0 14 23 7 30
0 15 23 6 29

Table A.1: A sample of the raw ASCII data transferred from Apple II to PC for
file RD17 (data for the first 16 signals recorded by each sample-hold are shown).
The columns are dipole revolution number, dipole rotation (counts from 0 to 255
over one revolution), ADC reading for the two sample-holds, and a check-sum
(the total of the two sample-hold readings).
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0.0000 1.3220 0.2035
0.0245 1.3220 0.2035
0.0491 1.3977 0.1950
0.0736 1.3220 0.2035
0.0982 1.3220 0.2035
0.1227 1.3220 0.2035
0.1473 1.2445 0.2124
0.1718 1.2445 0.2124
0.1963 1.3977 0.1950
0.2209 1.3977 0.1950
0.2454 1.3977 0.1950
0.2700 1.3220 0.2035
0.2945 1.3977 0.1950
0.3191 1.4719 0.1870
0.3436 1.3977 0.1950
0.3682 1.3977 0.1950

Table A.2: Signal from the first sample-hold (SH0) of the first 16 records of
file RD17.txt (as in Table A.1) converted ready for input to mfitgbr.exe. The
columns are dipole angle (radians), signal (ln(P/Pref)) and estimated uncer-
tainty for the signal.
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Appendix B

Data Analysis Cases

Two particular sets of recorded data have been analysed to generate the results
presented in this report. The cases are referred as RD17 and RD34 (being the
17th and 34th data traces recorded in the Cranfield / USDA field experiments).

The parameter settings used to obtain the results in these two cases are given
in Tables B.1 and B.2. RD34 is a beam profile calibration transect and RD17
contains signal recorded for an unknown target which is probably an insect of
mass approximately 1 g.

Note that in both these cases the data analysis model has only 12 parameters,
not the full 14 described earlier in the report (for the Cranfield / USDA system
the dipole rotation rate is fixed and the position coordinates are relative to the
head-up direction, i.e. α0 = 0).
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Parameter number Remark
1 Parameter free
2 Parameter free
3 Parameter free
4 Parameter free
5 Parameter free
6 Parameter free
7 Parameter free
8 θ′ = 0.01344 rad
9 φ′ = 1.5708 rad

10 g1 = 380 rad−2

11 g2 = 85 rad−2

12 Parameter free

Table B.1: The model parameter values used to obtain results from file
RD17z.txt.

Parameter number Remark
1 Parameter free
2 Parameter free
3 Parameter free
4 Parameter free
5 Parameter free
6 ε = 1.0
7 β = 0.0
8 θ′ = 0.01344 rad
9 Parameter free

10 g1 = 380 rad−2

11 Parameter free
12 ρr0 = 0

Table B.2: The model parameter values used to obtain results from file
RD34z.txt.
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