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ABSTRACT

The diversity of alkB-related alkane hydroxylase sequences and the relationship between alkB

gene expres- sion and the hydrocarbon contamination level have been investigated in the

chronically polluted Etang-de-Berre sediments. For this purpose, these sediments were main-

tained in microcosms and submitted to a controlled oil input miming an oil spill. New

degenerated PCR primers targeting alkB-related alkane hydroxylase sequences were designed

to explore the diversity and the expression of these genes using terminal restriction fragment

length polymorphism fingerprinting and gene library analyses. Induction of alkB genes was

detected immediately after oil addition and their expression detected only during 2 days,

although the n-alkane degradation was observed throughout the 14 days of incubation. The

alkB gene expression within triplicate microcosms was heterogeneous probably due to the

low level of alkB transcripts. Moreover, the alkB gene expression of dominant OTUs has

been observed in unoiled microcosms indicating that the expression of this gene cannot be

directly related to the oil contamination. Although the dominant alkB genes and transcripts

detected were closely related to the alkB of Marinobacter aquaeolei isolated from an oil-

producing well, and to alkB genes related to the obligate alkanotroph Alcanivorax borkumen-

sis, no clear relationship between the oil contamination and the expression of the alkB genes

could be established. This finding suggests that in such coastal environments, alkB gene

expression is not a function relevant enough to monitor bacterial response to oil

contamination.
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Introduction

Aliphatic alkanes are produced by geochemical processes as a consequence of vegetal

material decay (Hornafius et al. 1999; Seewald 2003) and by living organism activities

throughout the biosphere (Widdel and Rabus 2001). Besides, human processes involving

petroleum extraction, transport, or processing lead to release extensively alkanes in the

environment. Thus, most of terrestrial or aquatic bacteria fit out systems to cope with alkanes

(Sariaslani and Omer 1992; van Beilen et al. 2001) where even some bacterial species have

been characterized as obligate alkanotrophs such as Alcanivorax borkumensis and

Thalassolituus oleivorans (Yakimov et al. 1998, 2004).

Several key enzymes have been identified in the bacterial alkane oxidation processes

including alkane hydroxylase such as cytochrome P450 (Sariaslani and Omer 1992) and AlkB

(van Beilen et al. 1994), dioxygenases (Maeng et al. 1996) or methane monooxygenases

(Lieberman and Rosenzweig 2004). AlkB alkane hydroxylase systems, first described in

Pseudomonas putida GPo1 (Kok et al. 1989; van Beilen et al. 1994), are highly widespread in

nature with more than 250 AlkB homologues identified in at least 45 bacterial species (Smits

et al. 1999; van Beilen et al. 2002, 2003; van Beilen and Funhoff 2007; Wang et al. 2010a).

Some genera such as Rhodococcus, Alcanivorax, and Pseudomonas have been described

carrying multiple, quite divergent, alkB genes, suggesting that each gene product could be

respon- sible for the oxidation of different alkane molecules in the same strain (van Beilen et

al. 2003; van Beilen and Funhoff 2007). Thus, alkB genes have been considered as bacterial

functional markers to monitor the bioremediation capacities of petroleum-polluted

environments. Many studies described presence, dispersion, and diversity of alkB genes in

natural environment or in oil-degrading bacteria isolated from aquatic ecosystems to assess

the hydrocarbon degradation capabilities of natural bacteria (Kuhn et al. 2009; Hamamura et

al. 2008; Heiss-Blanquet et al. 2005; Sei et al. 2003; Wang et al. 2010a, b). However, besides
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petroleum compounds, algae, plants as well as other non-biogenic resources contribute to the

alkane input in natural aquatic environ- ments. Thus, whether alkB gene dispersion, diversity,

and expression within complex bacterial communities could be associated specifically to

petroleum contamination or to the whole hydrocarbon contents of their environment remains

unclear.

Polymerase chain reaction (PCR) primers and DNA probes targeting alkB genes have been

developed (Whyte et al. 1996; Smits et al. 1999; Kloos et al. 2006) to detect alkB genotypes

from various environments. However, the lack of specificity of these probes does not allow

the screening of alkB diversity within complex ecosystems by fingerprint molecular

techniques (Vomberg and Klinner 2000; Whyte et al. 1996, 2002). As well, several primers

were designed to target specific lineages of alkB genes including known alkane-oxidizing

Pseudomonas spp., Acinetobacter spp., and Rhodococcus (Hamamura et al. 2008; Heiss-

Blanquet et al. 2005). Nevertheless, they restrict the investigation to the targeted bacterial

groups. In the current study, new primers were designed in order to detect a broader range of

alkB lineages, enhancing primer specificity to the known phylogenetically distinct alkB

sequences. These new degenerated primers were used to: (1) investigate the diversity of the

alkB genes inhabiting the long-term oil- contaminated Etang-de-Berre sediments and (2)

character- ize their expression when submitted to a control oil input (performed on microcosm

experiments). Because a gene marker should respond specifically to the targeted pollutant

(here, petroleum-derived aliphatic hydrocarbons), we ex- amined the alkB gene expression

during the early stage after the contamination, when the physiological adaptation of the

community’s members occurs (Païssé et al. 2010). The expression of the whole alkane

hydroxylase gene pool was followed by fingerprinting method (terminal restriction fragment

length polymorphism (T-RFLP)) and cDNA library analysis. Exploring the alkane

hydroxylase gene diversity and expression capacity occurring in response to an oil input will
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help to improve our knowledge on the ecosystem functioning.

Material and methods

Microbial mat sampling and microcosm set-up

Contaminated subsurface sediments were collected from a retention basin located in the Berre

lagoon collecting hydrocarbon-contaminated water from a petrochemical industry

(43°29'05''N; 5°11'17''E). This basin, used as a plant treatment since several decades,

presented high amount of hydrocarbons trapped in sediment (Païssé et al. 2008). Subsurface

sediments were sampled in October 2005 from station 1 of the retention basin which is

immediately adjacent to the pollution input (Païssé et al. 2008). A fraction of homogenized

sediments (0.5 g) were directly frozen in liquid nitrogen and stored at −80 °C prior to in situ

diversity analysis of the alkB hydroxylase genes.

Fresh sediments were placed in microcosms as previously described (Païssé et al. 2010).

Briefly, after a weathering step of 5 weeks, 40% of wet sediments were incubated in sterile

synthetic water (SSW) at salinity of 20 PSU with (274± 28 mg) or without Vic Bilh petroleum

constituting respec- tively the biotic oiled condition, (B+OIL) and the biotic control (B−OIL).

An abiotic oiled control was also set up containing SSW, sterile Fontainebleau sand, and Vic

Bilh petroleum. Triplicate microcosms were maintained 14 days under 150 rpm horizontal

agitation at room temperature and day light (Païssé et al. 2010). Slurry sediments were

collectedat0,1,2,3,6,12,and24handthen2,3,4,5, 7, 9, 12, and 14 days. For each sampling, three

microcosms were sacrificed for microbiological analyses.

In situ and microcosm hydrocarbon compounds analysis
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The aliphatic fraction remaining in microcosms was analyzed in triplicates at the beginning (0

hour), the middle (7 days) and the end of the experiment (14 days). The microcosms were

directly placed to -80°C for hydrocarbon extraction. Briefly, sediment samples (2 g) were

chemically dried with 2 g of anhydrous sodium sulfate (Na2SO4) and extracted with 6 mL of

hexane : dichloromethane (1 : 1). After centrifugation (5897 g for 20 min), extracts were

cleaned on SupelcleanTM solid-phase extraction (SPE) tubes as recommended by the

manufacturer (SPE Supelclean EnviTM-18, Supelco Bellefonte). Extracts were diluted 10

times for GC analysis. Aliphatic hydrocarbons were identified and quantified with GC-MS

using a ThermoTrace GC gas chromatograph coupled with a Thermo Trace DSQs mass

spectrometer as described previously (Païssé et al., 2008). The recovery percentage of the

extraction method used for sediment was 85%. The variation of the reproducibility of

extraction and quantification of samples were determined by successive extractions and

injections (n = 6) of the same sample and estimated to be ~8%.

DNA/RNA extraction and cDNA synthesis

2 ml of slurry were subsampled and then centrifuged (8 000 g) for 5 min at 4°C. The pellet

was immediately frozen in liquid nitrogen and conserved at -80°C prior to DNA/RNA

extraction. Total nucleic acid were extracted from frozen pellets using the FastRNA Pro Soil-

Direct kit (Q-Biogen) following manufacturer’s instructions after a first step of lysis (three

times for 1 min at 30 Hz) in a bead beater (TissueLyser, Qiagen) and without a matrix RNA

purification step. Nucleic acid pellets were suspended in 100 µl sterile water and analysed in

1.2% formaldehyde agarose gel. All extracts were aliquoted and stored at -80°C until further

processing. All molecular analyses except libraries were performed in triplicates.
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0.5 µg of DNase-treated RNA were reverse transcribed with Moloney murine leukemia virus

reverse transcriptase (M-MLV RT, USB Corporation) as previously described (Païssé et al.,

in press). RT products were used immediately for PCR amplifications and the remaining

products were stored at -20°C. Possible DNA contamination of RNA templates was

monitored by PCR amplification of aliquots of RNA without reverse transcription step. No

DNA was detected in these reactions.

Design of PCR primers

Sets of primers were designed in order to amplify specifically alkane hydroxylase sequences

by PCR from complex environmental sample. Degenerated primers were manually designed.

A first alignment of 42 translated alkane hydroxylase sequences was performed to identify the

conserved amino acid regions. alkB and alkM sequences used for the alignment belong to the

four groups of alkane hydroxylase described by Heiss-Blanquet et al. (2005): Rhodococcus

group which includes species belonging to Rhodococcus, Burkholderia, Nocardioides,

Prauserella and Mycobacterium (accession number sequences: AJ301866, AJ301867,

AJ301868, AJ297269, AJ401611, AJ300339, Z95121, AJ300338, AJ301870, AJ301871,

AJ009586, AJ301873, AJ301869, AJ301877, AJ301876, AJ301875, AJ301874, AF350429,

AJ009587, AJ293344, AJ293306), Pseudomonas group 1, including some species of

Pseudomonas, Marinobacter, Alcanivorax and Thalassolituus genera (accession number

sequences: CP000514, AJ233397, AJ250560, AY034587, AJ245436, AJ295164, AJ431700),

Pseudomonas group 2 including other Pseudomonas species (accession number sequences:

AJ009579, AF090329, AJ311787, AJ311786, AJ009581, AJ009580), and the Acinetobacter

group which includes only Acinetobacter strains (accession number sequences: AB049411,

AJ009582, AJ002316, AB049410, AJ009584, J233398, AJ009585). A second nucleotide
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alignment of the same sequences was done to define the degeneration level of designed

primers.

Three forward (AlkB1F, 5’-CAYGARYTGGGYCAYAAR-3’; AlkB2F, 5’-

CAYGARYTGGGYCAYAA-3’; AlkB3F, 5’-TAYGGNCAYTTCTWYRTYGAGCA-3’ and

three reverse (AlkB1R, 5’-AACTAYNTYGARCAYTACGG-3’; AlkB2R, 5’-

CAYTCSGAYCAYCAYGCGAATYC-3’; AlkB3R, 5’-GAYCAYCAYGCGAATYC-3’)

primers were designed.

PCR, T-RFLP analysis and library construction

PCR using different primer combinations was carried out using genomic DNA extract of the

alkane-degrading strain Marinobacter hydrocarbonoclasticus SP17 (ATCC 49840). PCR (50

µl) was performed by using a reaction mixture of 200 µM each dNTP, 1.5 mM MgCl2, 1 U of

Taq polymerase (Eurobio), 1X PCR Buffer (Eurobio) and 0.2 µM each primer. The

amplification was performed in a PTC-200 thermocycler as follow: initial denaturing step (5

min at 94°C), 35 cycles including denaturing (45s at 94°C), annealing (45s at independent

tested temperature from 50 to 60°C) and elongation (1 min at 72°C), and a final elongation of

10 min at 72°C. Primer sets giving specific amplifications were then used to amplify genomic

DNA from Etang-de-Berre sediment samples. As no amplification was obtained, a nested-

PCR was developed in order to explore the diversity and the expression of alkane hydroxylase

gene in in situ and microcosm samples. A touchdown PCR program was necessary at the first

round of amplification using AlkB3F-AlkB3R primer set to obtain specific and high intensity

amplicons at the second round of PCR. Touchdown program was performed as follow: initial

denaturing step (5 min at 94°C), 10 cycles of touchdown including denaturing (45s at 94°C),

annealing (45s from 60°C to 50°C, -1°C per cycle) and elongation (1 min at 72°C), 25 more

cycles with annealing step of 45s at 50°C, and a final elongation of 10 min at 72°C. The
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second round of amplification was done using the primer set AlkB3F-AlkB2R in the same

conditions without touchdown gradient and at 50°C of an annealing temperature. For T-RFLP

analysis, labelled primers were used in the second round of amplification (AlkB3F-FAM and

AlkB2R-HEX). T-RFLP was carried out as previously described (Païssé et al., 2008) using

Sau3AI (Promega) and AvaII (New England Biolabs) separately. These enzymes were chosen

after in silico enzymatic restriction (Genamics expression v1.1 software) of alkane

hydroxylase sequences available in the databanks.

Clone libraries were carried out with unlabelled PCR products from in situ DNA and 6H

B+OIL cDNA samples and cloned in Escherichia coli TOP10F’ (Invitrogen Inc.) using the

pCR2.1 Topo TA cloning kit (Invitrogen Inc.). 86 and 44 clones were selected randomly and

their inserts were amplified using M13 primers (Eurogentec) surrounding the cloning site.

The amplicons were analyzed by RFLP (Restriction Fragment Length Polymorphism) with

Sau3AI and AvaII in the same conditions used for T-RFLP. One clone representative of each

profile was sequenced and the phylogenetic analysis was conducted as previously described

by Païssé et al. (2008). Corresponding amino acid sequence was obtained by using the free

FastPCR software version 3.8.82 (www.biocenter.helsinki.fi/bi/Programs/fastpcr.htm). The

CHAO1 non-parametric estimator of richness was calculated considering that sequences with

> 82% identity (cut-off value) assigned to the same OPF (Schloss and Handelsman, 2008).

Results

Hydrocarbon compounds distribution

The initial total petroleum hydrocarbons (TPH) concentration in the B-oil slurries (in-situ

condition) was 5 mg kg-1d.w sediment and the, aliphatic fraction was only representing 3% of

the TPH. In contrast, the aliphatic fraction in the spiked Vic Bihl crude oil slurries (B+oil)

was dominant (75% of TPH) with mainly n-alkanes ranging from C10 to C20 (90% of the
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aliphatic fraction) had (Païssé et al., 2010). After 7 and 14 days of incubation, the total

extractable alkanes in B+OIL slurries were reduced to 31 and 58% respectively of their initial

amount.

Design of alkane hydroxylase primer set

In order to explore the diversity and the expression of alkane hydroxylase genes in the

slurries, new primers were designed since the available primers (Smits et al., 1999; Whyte et

al., 1996) were unable to amplify alkB gene either from Marinobacter hydrocarbonoclasticus

SP17 genome or the Etang-de-Berre sediment metagenome.

The amino acid sequence alignment of 42 alkane hydroxylases showed distinct conserved

regions including three histidine residues and NYXEHYG[L/M] motifs. Four of the six

primers (AlkB1F, AllkB2F, AlkB2R, AlkB3R) were designed from amino acid region

previously selected by Smits et al. (1999) and Whyte et al. (1996). The length and the

degeneracy of these primers were reexamined to deal between diversity and specificity in

order to amplify alkB sequences (Figure 1). All the primer set combinations (including the

already available and the newly designed) were tested by direct PCR amplification using

DNA from Marinobacter hydrocarbonoclasticus SP17 (Table 1). Specific amplification was

obtained when using AlkB1F-AlkB1R, AlkB2F-AlkB1R, AlkB3F-AlkB1R, AlkB3F-AlkB2R

and AlkB3F-AlkB3R primer pairs. Nevertheless, no amplification could be obtained when

using these primer pairs with DNA from complex environmental matrix such as Etang-de-

Berre sediment. In order to amplify alk gene from these sediments and slurries, a nested PCR

was applied.

While most of the combinations gave good amplification, the primer set AlkB3F-

Alk3R combined with AlkB3F-Alk2R gave the most efficient amplification and were used for

the diversity and expression analysis. These primers provide a final amplification product of

477 bp (Table 1).
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Alkane hydroxylase genes inhabiting oil contaminated sediments

The diversity of alkane hydroxylase genes was analyzed in sediments of oil retention basin

from Etang-de-Berre. RFLP analysis of 88 clones identified 26 profiles. Sequence analysis of

one representative clone sequence from each profile defined 7 Operational Protein Families

(OPF) based on the cut-off of 18% difference between sequences (Figure 3). No unspecific

amplification was observed. Coverage estimator evaluated at 9 ± 2 the richness diversity of

alkane hydroxylase within this sediment. All the AlkB sequences detected in these sediments

were related to sequences belonging to Gamma- and Alphaproteobacteria. 79% of alkane

hydroxylase sequences were related to cluster A (Figure 3) and presented high identity with

the AlkB sequence of Marinobacter aquaeolei VT8. This dominant OPF matched within the

group Pseudomonas 1 defined by Heiss-Blanquet et al. (2005). 14% of the library presented

high identity with AlkB of Oceanicaulis alexandrii and Kondriimonas gwangyangensis

(cluster B). Clones affiliated to AlkB of Parvularcula bermudensis, Moritella sp., or to

uncultured bacteria were represented by one or two sequences (clusters C to J) and could not

be associated to any of the four groups defined by Heiss-Blanquet et al. (2005). Moreover,

these sequences presented low sequence homology (less than 70%) with known sequences

(Figure 3).

Alkane hydroxylase genes expressed in oil contaminated slurry

The alkane hydroxylase genes expressed in microcosm experiment in response to crude oil

contamination was examined by T-RFLP and clone library analyses. The detection of

transcripts by nested PCR indicated that the alkB genes were expressed immediately after the

addition of oil in the B+OIL condition until 2 days (Table 2). Nevertheless, the expression
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was never detected in all three replicates. The absence or the low level of expression might be

explained by the absence of alkB transcripts detection in some replicates during these two

days. The alkB expression was occasionally detected in the unoiled control.

T-RFLP analysis allowed to distinguish between 3 and 5 dominant OTUs depending on the T-

RF end analyzed and the restriction enzyme used. The main expressed OTUs were nearly the

same for all the samples (oiled and unoiled condition) showing that alkB expression was not

strictly representative of oil spike (Figure 2). Nevertheless, the number of OTUs in oiled

condition was higher than within unoiled slurries (Figure 2). DNA analysis of the Etang de

Berre sediments showed higher number of OTUs than those expressed in the slurries but, in

most of the cases, the dominant OTUs were identical (Figure 2). In order to identify the

dominant OTUs expressed, 44 clones from alkB clone library of the 6h B+OIL sample were

analyzed by RFLP. The phylogenetic analysis of amino acid sequences indicated that all the

sequences detected expressed in slurry were affiliated to the clusters A and B, the same

groups found dominant in the Etang de Berre sediment (Figure 3). 65.9% of the 6h B+OIL

clones analyzed were related to AlkB of Marinobacter aquaeolei VT8, 25% to Oceanicaulis

alexandrii and Kordriimonas gwangyangensis and 9.1% to Alcanivorax borkumensis.

Whereas sequences of AlkB 6h B+OIL related to Marinobacter aquaeolei, Oceanicaulis

alexandrii and Kordriimonas gwangyangensis were also detected in sediments, sequences

related to Alcanivorax borkumensis were not. The in silico digestion of these sequences and

the comparison with T-RFLP data confirmed the high dominance of bacteria showing alkB

related to Marinobacter aquaeolei, Oceanicaulis alexandrii and Kordriimonas

gwangyangensis. Nevertheless, OTUs related to Alcanivorax sequences could not be

identified in the T-RFLP analysis suggesting that they were expressed at a lower level.
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Discussion

In this study, we have developed degenerate PCR primers targeting alkB-related alkane

hydroxylase sequences in order to explore the presence, the diversity and the expression of

these genes in complex bacterial communities. Many primer sets were described for the

amplification of alkB genes, targeting either the whole (Smits et al., 1999; Whyte et al., 1996)

or specific bacterial groups (Hamamura et al., 2008; Heiss-Blanquet et al., 2005; Sei et al.,

2003). Nevertheless, as already observed (Vomberg and Klinner, 2000; Whyte et al., 1996;

Whyte et al., 2002), the general primers led to unspecific amplification with our samples, and

thus, were unsuitable for use in molecular fingerprinting techniques. The group-specific

primers did not show this bias, but the number of primers sets to be used (between 3 and 9,

depending on the authors) highly increases the cost and the time of the analysis. A balance

between high level of degeneracy and high specificity had to be obtained for efficient primers.

The newly designed primers allowed to amplify specifically alkB gene from Etang-de-Berre

oil contaminated sediments and the PCR products were suitable for T-RFLP analysis.

Using our primer sets, most of the detected genes and transcripts belonged to AlkB

Pseudomonas 1 group described by Heiss-Blanquet et al. (2005). Genes related to this group

are frequently found abundant in soils and soils microcosms (Heiss-Blanquet et al., 2005;

Hamamura et al., 2008) and were dominant in sea water microcosms contaminated with crude

oil (Sei et al., 2003). By the MPN-PCR techniques, Sei and coll. (2003) found that the

number of copies of Pseudomonas group alkB genes were between 2 and 5 log higher than the

other alkB groups. Considering that the sediments of Berre lagoon are mainly inhabited by

gram-negative bacteria (Navarrete et al., 2004), it is not surprising that the other alkB groups

could not be detected. Moreover, even it is usually conceded that the experimental setting

leads in a selection of some bacterial populations (Grötszchel et al., 2002; Païssé et al, 2010),
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the expression of the main alkB genes carried by the in situ bacteria within slurry indicate that

the alkB containing bacteria were not submit to method selection pressure.

The expression of alkB genes started immediately after the oil spike to the slurries and

persisted during two days, even though n-alkanes degradation persisted during the 14 days of

incubation. Indeed, more than 65 % of aliphatic compounds remained at 7 days of incubation.

Moreover, the expression was heterogeneous. alkB expression was never detected in the three

replicates of the same sample suggesting that the expression level of alkB was probably near

and sometimes below the detection limit. This observation suggests that the n-alkane

degradation may involve the expression of other genes besides alkB. Moreover, we also

detected alkB expression in uncontaminated slurries, suggesting that the presence and/or the

expression of this gene cannot be directly related to the spiked pollution. The broad substrate

specificity of alk gene products (e.g. biogenic alkanes) may explain the lack of specificity in

the contamination response. Vic Bihl petroleum is mainly composed by n-alkanes, but there

are many other alkanes in the Etang de Berre sediments originating from other sources

including those produced by living organism activities throughout the biosphere (Widdel and

Rabbus, 2001). Some microorganisms (plant, algae, bacteria) are able to synthesize medium

and long-chain n-alcanes (Han and Calvin, 1969) leading to significant increase in n-alkanes

concentration in aquatic environments (Berdié et al., 1995). For example, the contributions

from terrestrial vegetation, particularly Sphagnum moss, appear to dominate the distribution

of n-alkanes in waters of a dystrophic lake (Berdié et al., 1995). With regard to biogenic

inputs of organic matter, terrestrial biogenic sources seem generally to predominate in the

Etang de Berre lagoon sediments according to the observed n-alkane to isoprenoid abundance

ratios (Jacquot et al., 1999). Moreover, previous studies detecting the alkB genes in both

pristine and polluted environments showed the difficulties to associate the presence of alkB

gene detection with the capacity of alkane removal. Kuhn et al. (2009) also found higher alkB
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diversity in pristine environments than in contaminated. In the other hand, Palmroth et al.

(2007) could not detect the presence of this gene in oil contaminated soils suggesting that

other genes may be involved in alkane degradation. Indeed, a double mutant of Alcanivorax

borkumensis SK12 defective in both alkB1 and alkB2 was still able to grow on medium-chain

n-alkanes, indicating that genes other than alkB1 and alkB2 are also involved in n-alkane

hydroxylation (Hara et al., 2004).

This ecosystem is of great interest for exploring the response of the bacterial

community to a stress produced by crude oil pollution, since the sediments of the retention

basin were exposed for several decades to chronic oil pollution. The bacterial community

inhabiting the subsurface sediment from the Etang-de-Berre retention basin is particularly

well adapted to, and depends on, the oil contamination (Païssé et al., 2008; Païssé et al.,

2010). As a consequence, the bacterial community inhabiting these sediments presents

important capacities to cope with petroleum. Indeed, the dominant alkB genes detected were

closed to the alkB of Marinobacter aquaeolei isolated from an oil-producing well (Márquez

and Ventosa, 2005; Stan-Lotter, 1999). Interestingly, alkB genes related to Alcanivorax

borkumensis, which has been described as an obligate alkanotroph (Yakimov et al., 1998),

was detected abundant in the mRNA of the microcosms but was undetectable in the sediments

DNA. The bloom of Alcanivorax genera in response to oil contamination has been already

mentioned (Head et al., 2006). Nevertheless, we did not find a clear relationship between the

oil contamination and the expression of the alkB genes. In our environment, alkB is revealed

to be a bad indicator of the response to the pollution. alkB presence and diversity are

frequently used as indicator for investigations concerning the petroleum and the alkane

degradation, nevertheless, other enzymes may be involved in the alkane activation such as the

cytochrome P450 (Van Beilen et al., 2006). This study lead us to conclude that alkB gene
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presence, diversity and expression are not specific enough or directly relevant for

investigating oil contamination or bacterial community adaptation to oil.
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Table 1: Validation of designed primer sets by alkB gene amplification from complex

environmental matrix. All the primer sets used were previously selected by alkB gene

amplification from the DNA of Marinobacter hydrocarbonoclasticus SP17 strain. The

amplicon size referred to the alkB gene sequence of Pseudomonas putida OCT plasmid

(AJ245436). - no amplification; + low amplification; ++ moderate amplification and +++ high

amplification.

Primer set used in
first round of PCR

Primer set used in
second round of PCR

Amplicons
size (bp)

Amplification yield

AlkB1F-AlkB1R AlkB2F-AlkB1R 414 ++
AlkB3F-AlkB1R 344 -

AlkB2F-AlkB1R AlkB3F-AlkB1R 344 +
AlkB3F-AlkB2R AlkB3F-AlkB1R 344 ++
AlkB3F-AlkB3R AlkB3F-AlkB1R 344 ++

AlkB3F-AlkB2R 477 +++
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Table 2: Detection by RT-PCR of the alkB mRNA in unoiled (B-OIL) and oiled (B+OIL)

microcosms. RT-PCR was performed with the AlkB3F-AlkB3R and AlkB3F-AlkB2R primer

sets. + and - indicate respectively detection or absence of detection of alkB transcripts in

slurry sample.

Condition replicate 0h 1h 2h 3h 6h 12h 24h 2d 3d 4d 5d 7d 9d 12d 14d

B-OIL

microcosm

A - - - - - - - - - - - - - - -

B - - - + - - - - - - - - - - -

C + - - - + - - - - - - - - - -

B+OIL

microcosm

A - - - + + + + + - - - - - - -

B + + + - + - - + - - - - - - -

C + - + - - - - - - - - - - - -
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Figures

Figure 1: Representation of the relative abundance of T-RFs corresponding to alkB genes and

transcripts detected in in situ and in 6H B+OIL samples. The analyses were based on 5’-end

Sau3A1 T-RFLP patterns.

Figure 2: Amino acid (A) and nucleotide (B) positions of designed primers on alkB and alkM

sequences. Others primers developed by Smits et al. (1999) and Whyte et al. (1996) are also

represented on the pattern.

Figure 3: Phylogenetic tree based on the alignment of deduced amino acid sequences (121

amino acids) of amplified alkB genes from the Etang-de-Berre sediment and alkB transcripts

of microcosms. All amplified products were obtained by half-nested PCR (AlkB3F-AlkB3R

follow by AlkB3F-Alk2R). The numbers in parenthesis closed to the sequence name indicate

the percentage of clones in the corresponding library. The numbers on the right of the tree

indicate the percentage of identity between all the amplified sequences in the group delimited

by bracket. The scale bar corresponds to 0.05 substitutions per amino acid position.

Percentages of 1000 bootstrap re-sampling that supported the branching orders in each

analysis are shown above or near the relevant nodes
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