CRANFIEID

Aerofoil theory for swallow tail wings of small
aspect ratio

-by-
A. Robinson, M.Sc., Ph.D., A.F.R.Ae.S.
\qquad

SUHIARY

A method is developed for the calculation of the aerodynamic forces acting on a 'swallow tail' wing of swall aspect ratio. Lift, induced drag, and aerodynamic centre position of simple swallow tail wings (Fig.1(b)) are computed as an application. For a given incidence, lift and induced drag are, within the limits of the theory, proportional to aspect ratio and independent of speed. The chordwise lift distribution rises linearly from zero at the apex, drops rapidly in the region of the root chord trailing edge, and then decreases gently to zero.

1. Introduction and discussion of results.

In a remarkable paper published some years ago (ref.1), R.T.Jones put forward a theory for low aspect ratio pointed wings at a.ll speeds, both below and above the speed of sound. The theory was based on the idea, due to Irunk (ref.2), that the induced velocity field set up by a slender moving body in a transonic plane, is essentially two-dimensional. In spite of the simplification involved in this idea, the results of ref. 1 were borne out in a striking manner, both by relatively more exact theories and by experiment. The theory was extended by H.S. Ribner (ref.3) to permit the calculation of the stability derivatives of low aspect ratio wings. It has also been used for the calculation of the effect of controls of different types by J. Deyoung (ref.4) and M.D. Hodges (ref.5). G.N. Nard has applied an equivalent method to problems of wing body interference at supersonic speeds in a paper which also includes a rigorous justification of tho basic assumption mentioned above for the case under consideration (ref.6).

In the present paper, we are concerned with the calculation of the aerodynamic forces acting on small aspect ratio 'swallow tail' wings such as depicted in Figs. 1 (a) and 1 (b). It is assumed that the outline of the wing planform varies monotonically from a pointed nose to pointed tips (i.e. $\frac{d y}{d x}<0$ along ABC in Fig. 1 (a) and $\frac{d y}{d x}>0$ along AFE). This case is outside the scope of tho methods which are given in the papers mentioned above although for one particular planform, a solution for a mathematically equivalent problem is described in ref. 7 .

Numerical results have been calculated for the case of a 'sinple swallow tail' wing (Fig.1(b)). The results depend on two parameters, (i) the aspect ratio, $(\text { span })^{2} /$ area, or in fact the ratio of any two typical lateral and longitudinal dimensions, and (ii) the ratio $\mathrm{c} / \mathrm{c}_{\mathrm{o}}$, whore c_{o} is the root chord of the wing, and c is the longitudinal coordinate of the tips, measured from the apex (Fig.2). As in the case of the delta wing (ref.1) it is found that the aerodynamic forces acting on the wing, for given air density, speed, orea, incidence, and for given ratio c/co are actually proportional to the aspect ratio so that the results can be represented as functions of the ratio c / c_{0} only.

Figs. $4(\mathrm{a})$ and $4(\mathrm{~b})$ show the chordvise lift distribution, i.e. the pressure difference integrated in spanvise direction for a given chord position, for two values of the parameter $\mathrm{c} / \mathrm{c}_{0}$. It will be secn that there is a discontinuity in the
chordwise lift distribution (and indeed of the pressure) across the coordinatc of the wing root trailing edge. Although such discontinuities may ocour also under the conditions of ref.1, they are inpossible in a real fluid, but they reflect a rapid variation of the pressure in the region under consideration.

Figs. 5, 6 and 7 show the lift curve slope, the position of the aerodynainic centre, and the induced drag coefficient respectively, as functions of the parameter c / c_{0}. The numerical values used for their construction are given in Table I below. (In that table, A donotes the aspect ratio, and h denotes the distance of the aerodynamic centre from the wing apex in fractions of the chord c).

	TABLE I		
c / c_{0}	$\frac{d C_{I}}{d a} / A$	h	$A \frac{C_{i}}{C_{I}^{2}}$
1.0	1.571	0.667	0.317 .3
1.5	1.012	0.555	0.3379
2.0	0.739	0.504	0.3836

2. Analysis

Te toke the origin at the apoz of the wing, with the x-axis parallel to the diraction of fllow, the y-axis pointing to starboard, and the z-axis pointing upwards, so that the coordinate system is right-handed. Let Φ be the total velocity potential and ϕ the induced velocity potential so that $\Phi=V x+\phi$, where V is the Iree strean velocity, Te denote the induced velosity components by $u, v_{2} w_{2}, u=\frac{\partial \phi}{\partial x}, v=\frac{\partial \phi}{\partial y}$, $W=\frac{\partial \phi}{\partial z}$, so that the totel longitudinal velocity equals $V+u$. By Bernoulli's equation, the pressure difference at a point of the aerofoil, Δp, is related to the longitudinal induced velocity by
(1) $\Delta p=-2 p T / i=-2 p T \frac{\partial \phi}{\partial x}$
where ρ is the ain density. In accordance with tho introduction, the partial aifferentiol quation for \varnothing is taken as
(2) $\quad \frac{\partial^{2} \phi}{\partial y^{2}} \div \frac{\partial^{2} \phi}{\partial z^{2}}=u$

The boundary condition e.t the aerofoil is
(3) $W=\frac{\partial \not \partial}{\partial z}=-T a$

1. Introduction and discussion of results.

In a remarkable paper published some years ago (ref.1), R.T. Jones put forward a theory for low aspect ratio pointed wings at all speeds, both below and above the speed of sound. The theory was based on the idea, due to Hunk (ref.2), that the induced velocity field set up by a slender moving body in a transonic plane, is essentially two-dimensional. In spite of the simplification involved in this idea, the results of ref. 1 were borne out in a striking manner, both by relatively more exact theories and by experiment. The theory was extended by H.S. Ribner (ref.3) to permit the calculation of the stability derivatives of low aspect ratio wings. It has also been used for the calculation of the effect of controls of different types by J. Deyoung (ref.4) and M.D. Hodges (ref.5). G.N. Ward has applied an equivalent method to problems of wing body interference at supersonic speeds in a paper which also includes a rigorous justification of tho basic assumption mentioned above for the case under consideration (ref.6).

In the present paper, we are concerned with the calculation of the aerodynamic forces acting on small aspect ratio 'swallow tail' wings such as depicted in Figs.1 (a) and 1(b). It is assumed that the outline of the wing planform varies monotonically from a pointed nose to pointed tips (i.e. $\frac{d y}{d x}<0$ along $A B C$ in $\mathbb{F i g} .1$ (a) and $\frac{d y}{d x}>0$ along AFE). This case is outside the scope of tho methods which are given in the papers mentioned above although for one particular planform, a solution for a mathematically equivalent problem is described in ref. 7.

Numerical results have been calculated for the case of a 'simple swallow tail' wing (Fig.1(b)). The results depend on two parametors, (i) the aspect ratio, $(\text { span })^{2} /$ area, or in fact the ratio of any two typical lateral and longitudinal dimensions, and (ii) the ratio $\mathrm{c} / \mathrm{c}_{\mathrm{o}}$, whore c_{o} is the root chord of the wing, and c is the longitudinal coordinate of the tips, measured from the apex (Fig.2). As in the case of the delta wing (ref.1) it is found that the aerodynamic forces acting on the wing, for given air density, speed, orea, incidence, and for given ratio $\mathrm{c} / \mathrm{c}_{\mathrm{o}}$ are actually proportional to the aspect ratio so that the results can be represented as functions of the ratio $\mathrm{c} / \mathrm{c}_{0}$ only.

Figs. $4(\mathrm{a})$ and $4(\mathrm{~b})$ show the chordvise lift distribution, i.e. the pressure difference integrated in spanwise direction for a given chord position, for two values of the parameter $\mathrm{c} / \mathrm{c}_{0}$. It will be seen that there is a discontinuity in the
where a is the local incidence, positive in the nose-up sense. We shall consider only the case of a flat wing, $\alpha=$ const.

We write $y= \pm a= \pm a(x)$ for the spanvisc coordinates of the leading edges, $0 \leqslant x \leqslant c$, and $y= \pm b= \pm b(x)$ for the spanwise coordinates of the trailing edges, $c_{0} \leqslant x \leqslant c$, so that $\mathrm{a}(0)=\mathrm{b}\left(\mathrm{c}_{0}\right)=0, \quad \mathrm{a}(\mathrm{c})=\mathrm{b}(\mathrm{c})$. We also introduce the complex variable $\eta=y+i z$, so that \varnothing may be regarded as a function of the two variables x and $\eta, \varnothing=\varnothing(x, \eta)$. \varnothing may be Written as the real pert of a complex function of x and η, which is an analytic function of η.

In addition to satisfying Equation (2) and the boundary condition (3), \varnothing must be such that Δp, and hence $\frac{\partial \phi}{\partial x}$, vanish at the trailing edges of the aerofoil (Joukowski-condition), while these quantities may become infinito at the leading edge. Finally, since the aerofoil does not penetrate any transverse plane $x=$ const. <0, it follows that \varnothing must be constant, and may be assumed to vanish for such x. All these conditions suggest that \varnothing can be represented in the form

where R denotes the roal part of a complox number as usual, and A is a real function of its argument, which romains to be determined. In fact, differentiating (4) with respect to x and putting $\eta=y$, we soe that at the aerofoil
(5)

$$
u=\frac{\partial \phi}{\partial x}= \begin{cases}\frac{A(x)}{\sqrt{[a(x)]^{2}-y^{2}}} & \text { for } 0<x<c_{0} \\ \frac{A(x) \sqrt{\frac{y^{2}-[b(x)]^{2}}{[a(x)]^{2}-y^{2}}}}{} \text { for } c_{0}<x<c\end{cases}
$$

/This ...

This shows that the pressure difference becomes infinite at the leading edges and vanishes at the trailing edges, in accordance with the Joukowski condition.

To find the normal induced velocity, we have to differentiate (4) with respect to 2 . And, since for any analytic function $f(\eta)$,

$$
\frac{\partial}{\partial z} \mathbb{R} f(\eta)=R \frac{\partial f(\eta)}{\partial z}=R\left[i \frac{\partial f(\eta)}{\partial(i z)}\right]=R\left[i \frac{\partial f(\eta)}{\partial \eta}\right]=-\mathscr{S}_{f^{\prime}}(\eta)
$$

where g denotes the (real) coefficient of the imaginary part of a. complex number, as usual, we obtain
(6) $\frac{\partial \phi}{\partial z}=$

$$
\begin{aligned}
& 0 \\
& \left\{\begin{array}{l}
-g\left[\frac{\partial}{\partial \eta} \int_{0}^{x} \frac{A(t)}{\sqrt{[a(t)]^{2}-\eta^{2}}}\right. \\
-g\left[\frac{\partial}{\partial \eta} \int_{0}^{c} \frac{A(t)}{\sqrt{[a(t)]^{2}-\eta^{2}}}\right.
\end{array}\right. \\
& \text { for } x<0 \\
& \text { for } 0<x<c \\
& {\left[-g\left[\frac{\partial}{\partial \eta} \int_{0}^{c_{0}} \frac{A(t)}{\sqrt{[a(t)]^{2}-\eta^{2}}} d t+\frac{\partial}{\partial \eta} \int_{c_{0}}^{x} A(t) \sqrt{\frac{\eta^{2}-\left[b_{0}(t)\right]^{2}}{[a(t)]^{2}-\eta^{2}}} d t\right]\right.}
\end{aligned}
$$

We now have to determine $A(t)$ from the condition that

$$
\begin{aligned}
& \lim _{\eta \rightarrow y} \int_{0}^{\partial \eta} \int_{0}^{x} \frac{\Delta(t)}{\left[a(+,)^{2}-\eta^{2}\right.} d t \\
& \lim _{\eta \rightarrow y} \sqrt{ }\left[\frac{\partial}{\partial n} \int_{0}^{\infty} \frac{A(t)}{[a(t)]^{2}-n^{2}} d t+\frac{\partial}{\partial \eta} \int_{0}^{2} A(t) \sqrt{\frac{\eta^{2}-\left[\frac{b}{2}(t)\right]^{2}}{[a(t)]^{2}-\eta^{2}}} d t\right]=V a \\
& \begin{cases}\text { for } & 0<x<c_{0} \\
\text { for } & c_{0}<x<c\end{cases}
\end{aligned}
$$

(7)
for any point $(x, y, 0)$ on the aerofoil. We notice that

$$
\lim _{\eta \rightarrow y} g^{\frac{\partial}{\partial \eta}} \frac{1}{\sqrt{[a(x)]^{2}-\eta^{2}}}=\lim _{\eta \rightarrow y} \int_{\frac{\partial}{\partial \eta}}^{\frac{\eta^{2}-[b}{[a(x)]^{2}-\eta^{2}}} \frac{\sqrt{[a}}{[x}=0
$$

at all points ($x, y, 0$) or the aerofoil, so that by (6) the
normal induced velocity is constant along the chords of the aerofoil for any choice of $A(t)$. Its magnitude is detemined entirely by the values of the integrals in (6) ahead of, and in the region of, the leading edge.

It is easy to show that the first equation in (7) is satisfied by

$$
\text { (8) } A(t)=-V a \quad a(t) a^{\prime}(t) \text {, }
$$

$0<t<c_{0}$

In fact
$\int_{0}^{x}\left[-V a a(t) a^{\prime}(t)\right] \frac{d t}{\sqrt{[a(t)]^{2}-\eta^{2}}}=-V a\left[\sqrt{[a(t)]^{2}-\eta^{2}}\right]_{t=0}^{t=x}=V a\left[i \eta-\sqrt{[a(x)]^{2}-\eta^{2}}\right]$ and so, for points $(x, y, 0)$ on the aerofoil,

$$
\lim _{\eta \rightarrow y} g \frac{\partial}{\partial \eta} \int_{0}^{x}\left[-\operatorname{Va} a(t) a^{\prime}(t)\right] \frac{\partial t}{\sqrt{[a(t)]^{2}-\eta^{2}}}=V a J\left[i-\frac{y}{\left.\sqrt{[a(x)]^{2}-y^{2}}\right]}=V \alpha\right.
$$

as required.
It will be seen that the solution implied by (8) agrees with ref.1. for the particular case considered there.

The left hand side of the second equation in (7) now becomes, with the specified value of $A(t)$ for $0<t<c_{0}$,
$\lim _{\eta \rightarrow y} \eta\left[\frac{\partial}{\partial \eta} \int_{0}^{x}\left[-V a a(t) a^{\prime}(t)\right] \frac{d t}{\sqrt{[a(t)]^{2}-\eta^{2}}}+\frac{\partial}{\partial \eta} \int_{c_{0}}^{x} A(t) \sqrt{\frac{\eta^{2}-[b(t)]^{2}}{[a(t)]^{2}-\eta^{2}}} d t\right]$
$\left.=\lim _{\eta \rightarrow y} \operatorname{Vag} g i-\frac{\eta}{\sqrt{\left[a\left(c_{0}\right)\right]^{2}-\eta^{2}}}\right]+\lim _{\eta \rightarrow Y} g\left[\frac{\partial}{\partial \eta} \int_{c_{0}}^{\alpha} A(t) \sqrt{\frac{\eta^{2}-[b(t)]^{2}}{[a(t)]^{2}-\eta^{2}}} d t\right]$
$=V a+\frac{V a y}{\sqrt{y^{2}-\left[a\left(c_{0}\right)\right]^{2}}}+\lim _{\eta \rightarrow y} g\left[\frac{\partial}{\partial \eta} \int_{c_{0}}^{x} A(t) \sqrt{\frac{\eta^{2}-[b(t)]^{2}}{[a(t)]^{2}-\eta^{2}}} d t\right]$
where we confine oursclves to points of the acrofoil for which $y>a\left(c_{0}\right)$. The condition for $A(t), \quad c_{0}<t<c$, now becomes
(9) $\lim _{\eta \rightarrow y}\left[g \frac{\partial}{\partial \eta} \int_{c_{0}}^{\mu} A(t) \sqrt{\frac{\eta^{2}-[b(t)]^{2}}{[a(t)]^{2}-\eta^{2}}} d t\right]=-V_{0} \frac{y}{\sqrt{y^{2}-\left[a\left(c_{0}\right)\right]^{2}}}$
for points $(x, y, 0)$ of the aerofoil such that $x>c_{0}, y>a\left(c_{0}\right)$.

We may modify the left-hand side of (9) slightly by replacing $\frac{\partial}{\partial \eta}$ by $\frac{\partial}{\partial y}$, since $\eta=y+i z$. Integrating with respect to y on both sides of (9) we then obtain on alternative condition for $A(t)$, viz.

$$
\text { (10) } \lim _{n \rightarrow y} \int_{c_{0}}^{x} A(t) \sqrt{\frac{n^{2}-[b(t)]^{2}}{[a(t)]^{2}-\eta^{2}}} d t=-V a \sqrt{y^{2}-\left[a\left(c_{0}\right)\right]^{2}}+\text { const. }
$$

In fact, a solution of (10) for any value of the constant on the right hand side would lead to a solution of (9), but the considaeration of the limiting case $x \rightarrow c_{0}, y \rightarrow a\left(c_{0}\right)$, shows that we must take 0 as the appropriate value of the constant. We may now let η tend to y (ie. let z tend to 0) on the left hand side of (10) before integration, and then let ($x, y, 0$) tend to the leading edge so that x and y arc linked by the relation $y=a(x)$. Then

$$
\begin{aligned}
g \int_{0_{0}}^{\mathrm{x}} A(t) \sqrt{\frac{\mathrm{x}^{2}-\left[b_{0}(t)\right]^{2}}{[a(t)]^{2}-y^{2}}} d t & =\iint_{0_{0}}^{\mathrm{x}} A(t) \sqrt{\frac{[a(x)]^{2}-[b(t)]^{2}}{[a(t)]^{2}-[a(x)]^{2}}} d t \\
& =-\int_{0_{0}^{x}}^{A(t) \sqrt{\frac{[a(x)]^{2}-[b(t)]^{2}}{[a(x)]^{2}-[a(t)]^{2}}} d t}
\end{aligned}
$$

so that (10) becomes
(11)

$$
\int_{c_{0}}^{\infty} A(t) \sqrt{\frac{[a(x)]^{2}-[b(t)]^{2}}{[a(x)]^{2}-[a(t)]^{2}}} d t=V a \sqrt{[a(x)]^{2}-a_{0}^{2}}
$$

Where $a_{0}=a\left(c_{0}\right)$. This is an integral equation of Volterra's type. The following simple numerical method for its solution avoids any difficulty which might be caused by the fact that the integral on the left hand side of (11) becomes infinite at the upper limit of the integral.

$$
\text { For any } x, x^{\prime}, x^{\prime \prime}, c_{0} \leqslant x^{\prime}<x^{\prime \prime} \leqslant x \leqslant c \text {, we have, by a }
$$ moan value theorem of the integral calculus

$$
\text { (12) } \int_{x^{\prime}}^{x^{\prime \prime}} A(t) \sqrt{\frac{[a(x)]^{2}-[b(t)]^{2}}{[a(x)]^{2}-[a(t)]^{2}}} d t=\int_{x^{\prime}}^{x^{\prime \prime}} \frac{A(t)}{a^{\prime}(t)} \sqrt{[a(x)]^{2}-[b(t)]^{2}}
$$

$$
\frac{a^{\prime}(t) d t}{\sqrt{[a(x)]^{2}-[a(t)]^{2}}}
$$

$$
=\frac{A(\xi)}{a^{\prime}(\xi)} \sqrt{[a(x)]^{2}-[b(\xi)]^{2}} \int_{x^{\prime} \sqrt{[a(x)]^{2}-[a(t)]^{2}}}^{x^{\prime \prime}} \frac{a^{\prime}(t) d t}{\left[a^{\prime}(\xi)\right.} \sqrt{[a(x)]^{2}-[b(\xi)]^{2}}
$$

$$
\left[\sin ^{-1} \frac{a\left(x^{\prime \prime}\right)}{a(x)}-\sin ^{-1} \frac{a\left(x^{\prime}\right)}{a(x)}\right]
$$

where ξ is some intermediate value between x^{\prime} and $x^{\prime \prime}$. We shall accept the approximation that ξ is midway between x^{\prime} and $x^{\prime \prime}$, $\xi=\frac{1}{2}\left(x^{\prime}+x^{\prime \prime}\right)$.

To solve (11), we divide the interval $\left\langle c_{0}, c\right\rangle$ into m equal sub-intervals, $\left\langle c_{0}=x_{0}, x_{1}\right\rangle,\left\langle x_{1}, x_{2}\right\rangle, \ldots,\left\langle x_{m-1}\right.$, $\left.x_{m}=c\right\rangle$. We then satisfy (11) for $x=x_{1}, x=x_{2}, \ldots, x=x_{m}$, evaluating the integral on the left hand side approximately by applying (12) to all the sub-intervals in $\left\langle c_{0}, x\right\rangle$. In this way we obtain the following triangular systom of m linear equations for the unknowns $A_{k}=A\left(\xi_{k}\right), \xi_{k}=\frac{1}{2}\left(x_{k}+x_{k-1}\right), k=1,2, \ldots, m$.

$$
\begin{gather*}
\sum_{k=1}^{n} \frac{1}{a^{1}\left(\xi_{k}\right)}\left\{\sqrt{\left[a\left(x_{n}\right)\right]^{2}-\left[b\left(\xi_{k}\right)\right]^{2}}\left[\sin ^{-1} \frac{a\left(x_{k}\right)}{a\left(x_{n}\right)}-\sin ^{-1} \frac{a\left(x_{k-1}\right)}{a\left(x_{n}\right)}\right]\right\} A_{k}= \tag{13}\\
V a \sqrt{\left[a\left(x_{n}\right)\right]^{2}-a_{0}^{2}}, n=1,2, \ldots, m
\end{gather*}
$$

For a si le swallow-tail wing (Fig. $1(\mathrm{~b})$), $\mathrm{a}^{\prime}(\mathrm{x})=$ const. $=\frac{a_{0}}{c_{0}}=\tan \gamma$, where $\gamma(t)$ is the semi apex angle of the wing. Hence, putting $B(t)=\frac{A(t)}{V a \tan \gamma}, B_{k}=A_{k} / V a$ tan γ, we obtain the system of equations
(14)

$$
\begin{array}{r}
\sum_{k=1}^{n}\left\{\sqrt{\left[a\left(x_{n}\right)\right]^{2}-\left[b\left(s_{x}\right)\right]^{2}\left[\sin ^{-1} \frac{a\left(x_{k}\right)}{a\left(x_{n}\right)}-\sin ^{-1} \frac{a\left(x_{k-1}\right)}{a\left(x_{n}\right)}\right] \beta_{k}=\sqrt{\left[a\left(x_{n}\right)\right]^{2}-a_{0}^{2}}}\right. \\
n=1,2, \ldots, m
\end{array}
$$

For the calculations on which Figs. 4-6 are based, $\left\langle c_{o}, c\right\rangle$ was divided into five sub-intervals, $m=5$. To obtain an idea of the accuracy of the solution, similar calculations were made for $m=3$, and $m=4$, for a value of $\frac{c}{c}=2$. The resuits are shown in Fig. 3, from which it appears thà.t there is good agreement between the quantities obtained for $\mathrm{m}=4$ and $\mathrm{m}=5$, while the calculations based on $\mathrm{m}=3$ are inadequate.

Where are other ways of applying the above mean value theorem. For example, instead of (12), we might have used the following formula -

$$
\text { (15) } \int_{x_{1}}^{x^{\prime \prime}} A(t) / \frac{[a(x)]^{2}-[b(t)]^{2}}{[a(x)]^{2}-[a(t)]^{2}} a t=\int_{x^{\prime \prime}}^{x^{\prime \prime}} \frac{A(t)}{a(t) a^{\prime}(t)} \sqrt{[a(x)]^{2}-[0(t)]^{2}} \frac{a(t) a^{\prime}(t) d t}{[a(x)]^{2}-[a(t)]^{2}}
$$

$$
=\frac{A(\xi)}{a(\xi) a^{\prime}(\xi)} \sqrt{[a(x)]^{2}-[b(\xi)]^{2}} \int_{x^{\prime} \sqrt{[a(x)]^{2}-[a(t)]^{2}}}^{\frac{a(t) a^{\prime}(t) d t}{\sqrt{\prime \prime}}}
$$

$$
=\frac{A(\xi)}{a(\xi) a^{\prime}(\xi)} \sqrt{[a(x)]^{2}-[b(\xi)]^{2}}\left[\sqrt{[a(x)]^{2}-\left[a\left(x^{\prime}\right)\right]^{2}}-\sqrt{[a(x)]^{2}-\left[a\left(x^{\prime \prime}\right)\right]^{2}}\right]
$$

where ξ is again some intermediate value between x^{\prime} and $x^{\prime \prime}$, but of course not necessarily the same as before. (15) can readily be used to find the exact value of $A\left(c_{0}+0\right)$, i.e. the limiting value of $A(t)$ as t tends to c_{0} from above. Putting $x^{\prime}=c_{0}$ and $x^{\prime \prime}=x$ in (15) and substituting the result on the left hand side of (11), we obtain

But $a\left(c_{0}\right)=a_{0}$ and so

$$
A(\xi)=V a \frac{a(\xi) a^{\prime}(\xi)}{\sqrt{[a(x)]^{2}-[\xi(\xi)]^{2}}}
$$

Now let x tend to c_{0} from above. Then ξ tends to c_{o} also, and so in the limit

$$
\begin{equation*}
A\left(c_{0}+0\right)=\operatorname{Va} a^{\prime}\left(c_{0}\right) \tag{16}
\end{equation*}
$$

The corresponding value for $B\left(c_{0}+0\right)$ is

$$
\begin{equation*}
B\left(c_{0}+0\right)=1 \tag{17}
\end{equation*}
$$

Still considering the simple swallow tail wing let $\lambda=\frac{\mathrm{c-c}}{\mathrm{c}_{0}}$. It is of interest to determine the limiting form of the integral equation (11) as λ tends to 0 . We introduce the non-dimensional variable s by $x=(1+\lambda s) c_{0}$.
Then

$$
a(x)=a\left(c_{0}\right) \frac{x}{c_{0}}=a_{0}\left(1+\lambda_{s}\right), b(x)=a_{0}(1+\lambda)_{s}
$$

so that (11) becomes
(18) $\lambda \int_{0}^{s} A^{*}(\sigma) \sqrt{\frac{(1+\lambda s)^{2}-(1+\lambda)^{2} \sigma^{2}}{(1+\lambda s)^{2}-(1+\lambda \sigma)^{2}}} \quad d \sigma=V \alpha \tan \gamma \sqrt{\left(1+\lambda_{s}\right)^{2}-1}$

Where we have put $t=(1+\lambda \sigma) c_{0}, A^{*}(\sigma)=A(t)=A\left((1+\lambda \sigma) c_{0}\right)$.
For small λ, equation (18) tends to the form

$$
\begin{equation*}
\int_{0}^{S} A^{*}(\sigma) \sqrt{\frac{1-\sigma^{2}}{S-\sigma}} d \sigma=2 V \alpha \tan \gamma \sqrt{\mathrm{~s}} \tag{19}
\end{equation*}
$$

and we may verify directly that this equation is satisfied by

$$
\begin{equation*}
A^{*}(\sigma)=\frac{V a \cdot \tan x}{\sqrt{1-\sigma^{2}}} \tag{20}
\end{equation*}
$$

On the other hand, for $\lambda \rightarrow \infty$, equation (18) becomes
(21) $\int_{0}^{\mathrm{S}} \mathrm{A}(\sigma) \mathrm{d} \sigma=\mathrm{Va} \tan \gamma \mathrm{s}$
which is solved by

$$
\begin{equation*}
A(\sigma)=V \alpha \tan \gamma \tag{22}
\end{equation*}
$$

3. Calculation of aerodynamic forces

Having computed the function $A(x)$, we are in a position to determine the aerodynamic forces which act on the wing. By (1) and (5), the pressure difference at a point ($x, y, 0$) of the aerofoil is given by

The lift per unit chord is given by
(24) $\quad \ell(x)=\int_{-a(x)}^{a(x)} \Delta p d y \quad$,
for $0<x<c_{0}$. Thus, in that case
$f(x)=-2 \rho V \int_{-a(x)}^{a(x)} \frac{A(x) d x}{[a(x)]^{2}-y^{2}}=-2 \rho \operatorname{VA}(x)\left[\sin ^{-1} \frac{y}{a(x)}\right]_{-a(x)}^{a(x)}=-2 \pi \rho \operatorname{VA}(x)$
Or, taking into account (8),

$$
\begin{equation*}
\ell(x)=2 \pi \rho V^{2} \alpha a(x) a^{\prime}(x), \tag{25}
\end{equation*}
$$

$$
0<x<c_{0}
$$

On the other hand, for $c_{0}<x<c$,
$\ell(x)=\int_{-a(x)}^{1-b(x)} \Delta p d y+\int_{b(x)}^{a(x)} \Delta p d y=2 \int_{b(x)}^{a(x)} \Delta p d y=-4 p V A(x) \int_{b(x)}^{a(x)} \sqrt{\frac{y^{2}-[b(x)]^{2}}{[a(x)]^{2}-y^{2}}} d y$
Let $k^{\prime}=\frac{b(x)}{a(x)}, \quad k=\sqrt{1-k^{\prime 2}}$, and introduce the variable β by

$$
y=a(x) d n(\beta, k)
$$

where $\mathrm{dn}(\beta, \mathrm{k})$ is the familiar Jacobian elliptic function. Then

$$
y^{2}-[b(x)]^{2}=a(x) k^{2} \mathrm{cn}^{2}(\beta, k),[a(x)]^{2}-y^{2}=a(x) k^{2} \operatorname{sn}^{2}(\beta, k)
$$

and $\quad d y=-a(x) \quad k^{2} \operatorname{sn}(\beta, k) \quad$ on (β, k)

$$
\begin{aligned}
\int_{b(x)}^{a(x)} \sqrt{\frac{y^{2}-[b(x)]^{2}}{[a(x)]^{2}-y^{2}}} d y=-a(x) k^{2} \int_{0}^{K} \operatorname{cn}^{2}(\beta, k) d ; \beta & =-a(x)\left[E(k)-k^{\prime 2} K(k)\right] \\
& =-a(x)\left[E\left(\sqrt{\left.1-\left(\frac{b}{a}\right)^{2}\right)}\right)-\left(\frac{b}{a}\right)^{2} K\left(\sqrt{1-\left(\frac{b}{a}\right)^{2}}\right)\right]
\end{aligned}
$$

so that the expression for $\ell(x)$ becomes

$$
\begin{equation*}
\ell(x)=4 \rho \mathrm{VA}(x) \quad a(x)\left[\mathbb{E}\left(\sqrt{1-\left(\frac{b}{a}\right)^{2}}\right)-\left(\frac{b}{a}\right)^{2} \mathbb{K}\left(\sqrt{1-\left(\frac{b}{a}\right)^{2}}\right)\right] \tag{26}
\end{equation*}
$$

For the case of a simple swallow tail wing we have
$A(x)=V a \tan \gamma B(x)$, and so

$$
\begin{equation*}
f(x)=4 p V^{2} \alpha a(x) \tan \gamma B(x)\left[E\left(\sqrt{1-\left(\frac{b}{a}\right)^{2}}\right)-\left(\frac{b}{a}\right)^{2} K\left(\sqrt{1-\left(\frac{b}{a}\right)^{2}}\right)\right] \tag{27}
\end{equation*}
$$

For $x=\xi_{k}$, wo take B to be given by $B\left(\xi_{k}\right)=B_{k}$, as determined from (14). Thus

$$
\begin{equation*}
\ell\left(\xi_{k}\right)=4 \rho V^{2} a \quad a(x) \tan \gamma B_{k}\left[\mathbb{E}\left(\sqrt{1-\left(\frac{b}{a}\right)^{2}}\right)-\left(\frac{b}{a}\right)^{2} K\left(\sqrt{1-\left(\frac{b}{a}\right)^{2}}\right)\right] \tag{28}
\end{equation*}
$$

The total lift, I, is given by
(29)

$$
\begin{aligned}
& I=\int_{0}^{c} f(x) d x=I_{f}+I_{r}, \text { say, where } \\
& I_{f}=\int_{0}^{c} f(x) d x, \quad I_{r}=\int_{c_{0}}^{c} f(x) d x
\end{aligned}
$$

Integrating (25), we obtain immediately

$$
\begin{equation*}
I_{\rho}=\pi \rho T^{2}{ }_{a}\left[a\left(c_{0}\right)\right]^{2}=\pi p v^{2} a_{0}^{2}{ }_{0} \tag{30}
\end{equation*}
$$

in agreement with ref. 1. On the other hand, I_{f} must be obtained by numerical integration, and in view of the preceeding analysis the use of the following simple formula seems appropriate.

$$
\begin{align*}
I_{r}= & \frac{c-c}{m} \sum_{k=1}^{m} f\left(\xi_{k}\right)=\frac{4 \rho V^{2} c_{0} \tan \gamma\left(c-c_{0}\right)}{m} \sum_{k=1}^{m} a\left(\xi_{k}\right) B_{k} \tag{31}\\
& \left\{\mathbb{E}\left(\sqrt{1-\left[\frac{b\left(\xi_{k}\right.}{a\left(\xi_{k}\right)}\right]^{2}}\right]-\left[\frac{b\left(\xi_{k}\right)}{a\left(\xi_{k}\right)}\right]^{2} K\left(\sqrt{1-\left[\frac{b\left(\xi_{k}\right)}{a\left(\xi_{k}\right)}\right]^{2}}\right)\right\}
\end{align*}
$$

The pitching moment round the apex, M, is given by
(32)

$$
\begin{aligned}
& I I=\int_{0}^{e} x f(x) d x=M_{f}+M_{r} \\
& M_{f}=\int_{0}^{e} x \ell(x) d x \quad M_{r}=\int_{c_{0}}^{c} x \ell(x) d x
\end{aligned}
$$

Thus, for the case of a simple swallow tail wing,

$$
\begin{equation*}
M_{f}=\int_{0}^{c} x \cdot 2 \pi p V^{2} \alpha \tan ^{2} \gamma x d x=\frac{2 \pi}{3} p \cdot V^{2} \alpha \tan ^{2} \gamma \tag{33}
\end{equation*}
$$

while a numerical formula for M_{r} is

$$
\begin{equation*}
M_{r}=\frac{c-c_{0}}{m} \sum_{k=1}^{m} \xi_{k} \ell\left(\xi_{k}\right) \tag{34}
\end{equation*}
$$

$$
\begin{aligned}
&=\frac{4 \rho v^{2} \alpha \tan \gamma\left(c-c_{o}\right)}{m} \sum_{k=1}^{m} \xi_{k} a\left(\xi_{k}\right) B_{k}\left\{E\left(\sqrt{1-\left[\frac{b\left(\xi_{k}\right)}{a\left(\xi_{k}\right)}\right]^{2}}\right)-\left[\frac{b\left(\xi_{k}\right)}{a\left(\xi_{k}\right)}\right]^{2}\right. \\
&\left.K\left(\sqrt{1-\left[\frac{b\left(\xi_{k}\right)}{a\left(\xi_{k}\right)}\right]}\right)\right\}
\end{aligned}
$$

The distance of the aerodynamic centre from the apox of the aerofoil is then given by $d=M / L$.

Finally we establish a formula for the induced drag of the acrofoil, $D_{i} . \quad D_{i}$ is the difference between the surface pressure drag $D_{p}=L a$ and the forward suction force D_{s} exerted on the leading odges of the wing.

$$
\begin{equation*}
D_{i}=D_{p}-D_{s}=I a-D_{s} \tag{35}
\end{equation*}
$$

To calculate D_{S} we surround the leading edges of the wing by small cylindrical surfaces S as given by the equation

$$
\begin{equation*}
\underline{I}=\underline{\underline{g}}(\xi, \theta)=\xi \underline{\underline{1}}+(\pm 2(\xi)+\varepsilon \cos \theta) \underline{i}+\varepsilon \sin \theta) \underline{\underline{k}} \tag{36}
\end{equation*}
$$

where ε is a small positive quantity, and the limits of variation of ξ and θ are $0 \leqslant \xi \leqslant c, \quad 0 \leqslant \theta \leqslant 2 \pi$. By the momentum theorem the force exerted by the air on the portions of the wing Which are inside S, $\underset{(E)}{ }(\varepsilon)$ say, is given by

$$
\begin{equation*}
E(\varepsilon)=-\int_{S} p d S-p \int_{S} q(q d S) \tag{37}
\end{equation*}
$$

where p is the pressure, q is the velocity vector, $q=$ $(V+u) \underline{i}+v_{\underline{2}}+\nabla \underline{k}$, and $\underline{d S}$ is the directed surface element pointing outwards from the surface. Thus $\underline{d S}=\left(\coprod_{\theta} \Lambda x_{\xi}\right) d \theta d \%$, so that (37) may be replaced by

$$
\begin{equation*}
E(\varepsilon)=-\int_{S} p\left(\underline{r}_{\theta} \wedge \underline{r}_{5}\right) d \theta d \int_{S}-p \int_{S}\left(\underline{q}\left(\underline{r}_{\theta} \wedge \underline{r}_{\xi}\right)\right) d \theta d i_{j} \tag{38}
\end{equation*}
$$

where + or - are to be taken in the expression for \pm_{j}, as given by (36), on starboard and port respectively. We have $\underline{x}_{\theta} \Lambda \underline{\underline{E}}_{\underline{\xi}}=(-\varepsilon \sin \theta \underline{j}+\varepsilon \cos \theta \underline{k}) \wedge\left(\underline{i} \pm a^{\prime}(\xi) \underline{j}\right)= \pm a^{\prime}(\xi) \varepsilon \cos \theta \underline{\underline{i}}+\varepsilon \sin \theta \underline{k}$ Thus, we obtain for the longitudinal component $D(\varepsilon)$ of $\mathbb{E}(\varepsilon)$, in which we are chiefly interested,
(39) $D(\varepsilon)=\mp \int_{S} p a^{\prime}(\xi) \cos \theta \varepsilon d \theta d \xi-p \int_{S} u\left(\pm u a^{\prime}(\xi) \cos 0+v \cos \theta\right.$

$$
+w \sin \theta) \varepsilon d i \theta d \xi
$$

To continue, wo require formulae which express the infinitesimal behaviour of tho velocity components in the neighbourhood of the loading odgos. Confining ourselves to starboard wo sec that equation (4) yields, for fixed $x=\xi$ and small ε,

or

$$
\begin{equation*}
u=-\frac{A(\xi)}{\sqrt{2 a(\xi)}} \frac{1}{\sqrt{\varepsilon}} \sin \frac{\theta}{2}+o\left(\frac{1}{\sqrt{\varepsilon}}\right) \text { for } 0<\zeta<c_{0} \tag{4,0}
\end{equation*}
$$

and similarly

Again, the unbounded components of V and ∇
depend only on the value of the integrands near the upper limit $x=\xi$ of the integrals in (4). Thus, we may replace these integrals by

for $0<\xi<c_{0}$ and $c_{0}<\xi<c$, respectively. Integrating with respect to t, and then differentiating with respect to η, we obtain the following expressions for v and w

$$
\text { (42) } v=-\frac{A(\xi)}{a(\xi) a^{\prime}(\xi)} R \frac{n}{\sqrt{\left[(\xi]^{2}-n^{2}\right.}}+0\left(\frac{1}{\sqrt{\varepsilon}}\right)=\frac{A(\xi)}{a^{\prime}(\xi) \sqrt{2 a(\xi)}} \frac{1}{\sqrt{\varepsilon}} \sin \frac{\theta}{2}+o\left(\frac{1}{\sqrt{\varepsilon}}\right)
$$

for $0<\xi<c_{0}$, since $n=a(\xi)+\sigma^{i \theta}$, as before. For the sane case,
(43) $\nabla=\frac{A(\xi)}{a(\xi) a^{\prime}(\xi)} Y \frac{n}{\sqrt{[(\xi)]^{2}-n^{2}}}+o\left(\frac{1}{\sqrt{\varepsilon}}\right)=-\frac{A(\xi)}{a^{\prime}(\xi) \sqrt{2 a(\xi)}} \frac{1}{\sqrt{\varepsilon}} \cos \frac{\theta}{2}+0\left(\frac{1}{\sqrt{\varepsilon}}\right)$

Similarly, for $\mathrm{c}_{0}<\mathrm{B}<\mathrm{c}$
(44) $v=\frac{A(5)}{a^{\prime}(5) \sqrt{2 a(5)}}$
$\sqrt{[2(6)]^{2}-\left[\frac{b}{b}(5)\right]^{2}} \frac{1}{\sqrt{8}} \sin \frac{\theta}{2}+0\left(\frac{1}{\sqrt{6}}\right)$

$$
\nabla=-\frac{A(\xi)}{a^{\prime}(\xi) \sqrt{2 a(\xi)}} \sqrt{[E(\xi)]^{2}-\left[\overline{[}(\xi]^{2}\right.} \frac{1}{\sqrt{E}} \cos \frac{\theta}{2}+0\left(\frac{1}{\sqrt{\varepsilon}}\right)
$$

We may summarise (40) - (44) in the following formulae

$$
\begin{gather*}
u=-G(\xi) \frac{1}{\sqrt{\varepsilon}} \sin \frac{\theta}{2}+o\left(\frac{1}{\sqrt{\varepsilon}}\right) \quad v=\frac{G(\zeta)}{a^{\prime}(\xi)} \frac{1}{\sqrt{\varepsilon}} \sin \cdot \frac{\theta}{2}+o\left(\frac{1}{\sqrt{\varepsilon}}\right) \tag{4.5}\\
\nabla=-\frac{G(\xi)}{a^{\prime}(\xi)} \sqrt{\sqrt{\varepsilon}} \cos \frac{\theta}{2}+o\left(\frac{1}{\sqrt{\varepsilon}}\right)
\end{gather*}
$$

where
(46) $G(\xi)$

$$
G(\xi)= \begin{cases}\frac{A(\xi)}{\sqrt{2 a(\xi)}} & \text { for } 0<\xi<c \\ \frac{A(\xi)}{\sqrt{2 a(\xi)}} \sqrt{[\xi(\xi)]^{2}-[b(\xi)]^{2}} & \text { for } c_{0}<\xi<c\end{cases}
$$

By Bernoulli's equation

$$
p=P+\frac{1}{2} \rho\left[\mathrm{~V}^{2}-(V+u)^{2}-v^{2}-w^{2}\right]
$$

Where P is the pressure at infinity, and so

$$
\begin{equation*}
p=-\frac{1}{2} p[G(\xi)]^{2}\left(\sin ^{2} \frac{\theta}{2}+\frac{1}{\left[a^{\prime}(\xi)\right]^{2}}\right) \frac{1}{\varepsilon}+0\left(\frac{1}{\varepsilon}\right) \tag{47}
\end{equation*}
$$

Substituting the values of u, v, v , and p from (45)
and (47) in (39), and taking into account the contributions from both port and starboard, we obtain
$D(\varepsilon)=2 \rho \int_{0}^{C}[\xi(\xi)]^{2} d \int_{-\pi}^{\pi} \frac{1}{2}\left(\sin ^{2} \frac{\theta}{2}+\frac{1}{\left[a^{\prime}(\xi)\right]^{2}}\right) a^{\prime}(\xi) \cos \theta$
$+\sin \frac{\theta}{2}\left(-a^{\prime}(\xi) \sin \frac{\theta}{2} \cos \theta+\frac{1}{a^{\prime}(\xi)} \sin \frac{\theta}{2} \cos \theta-\frac{1}{a^{\prime}(\xi)} \cos \frac{\theta}{2} \sin \theta\right) d \theta+0(1)$
$=2 p \int_{0}^{c}[\xi(\xi)]^{2} a^{\prime}(\xi) d \int_{-\pi}^{\pi}\left(-\frac{1}{2} \sin ^{2} \frac{\theta}{2} \cos \theta-\frac{1}{\left[a^{\prime}(\xi)\right]^{2}} \sin ^{2} \frac{\theta}{2}\right) d \theta+0(1)$
Integrating
(4.8)

$$
D(\varepsilon)=2 \pi \rho \int_{0}^{c} \frac{[G(\xi)]^{2}}{a^{\prime}(\xi)}\left(\left[\frac{a^{\prime}(\xi)}{2}\right]^{2}-1\right) d d^{\prime}+o(1)
$$

The suction force D_{S} as dofinod above equals $\left(\begin{array}{l}-\lim _{\varepsilon \rightarrow 0} D(\varepsilon)\end{array}\right)$.
Also, since we are dealing with the limiting case of wings of small aspect ratio, Wo may assume that $\left[a^{\prime}(\xi)\right]^{2}$ is small compared with

1. (For a simple swallow tail wing $a^{\prime}(\xi)=\tan \gamma$ is proportional
to the aspect ratio, for given $\mathrm{c} / \mathrm{c}_{0}$.)
Hence
(4.9)

$$
D_{\mathrm{s}}=2 \pi p \int_{0}^{c} \frac{[G(\xi)]^{2}}{a^{\prime}(\xi)} d \xi
$$

For a simple swallow tail wing, the formula becomes
(50) $D_{S}=\frac{1}{2} \pi \rho V^{2} a_{0}^{2} a_{0}^{2}+\pi \rho V^{2} a^{2} \tan \gamma \int_{C_{0}}^{c}[B(\xi)]^{2} \frac{[a(\xi)]^{2}-[b(j)]^{2}}{a(\xi)} d \xi$

For the special case of a delta wing, the value of the induced drag obtained with the aid of this formula agrees with the result given in rof.1. For the general case, the second intogral in (50) can be evaluated numerically, as before.

IIO.

1. R.T. Jones
2. M.I. ILunk
3. H.S. Ribnor
4.
5. M. D. Hodges
6. G.N. Ward

Title, etc.

Properties of low-aspect-ratio pointed wings at speeds bolow and above the speod of sound. N.A.C.A. Roport INo. 835, 1946.

The acrodynewic forces on airship hulls, N.A.C.A.Roport ITo.184, 1924.

The stability derivatives of low-aspect-ratio triangular vings at subsonic and supersonic speeds. IT.A.C.A. Technical Note No.1423, 1947.

Spanwise loading for wings and control surfaces of low aspect ratio. Ni.A.C.A.Tochnical Note ITo. 2011, 1950.

Nose controls on Delta wings. College of Aeronautics thosis, 1950. (Unpublished).

Supersonic flow past slender pointed bodies. Quartorly Journal of liechanics and Appliod llathomatics, vol.II, 1949, pp. 75-97.

Linearised compressible flow theory for sonic flight specds. N.A.C.A. I'echnical Note ITo.1824, 1949.

FIG 1

FIG 2 DIMENSIONS OF STARBOARD WING

FIG 3 CONVERGENCE OF NUMERICAL APRROXIMATIONS

```
COLLEGE OF AERONAUTICS
```

REFPOFT No 41

(a) $c / c_{0}=1.5$

(b) $\quad c / c_{0}=2.0$

FIG 4 CHORDWISE LIFT DISTRIBUTICN

FIG 5 VAFIATION OF BIFT CUFVE SLOOPE

