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A method is developed for the calculation of the aero-

dynamic forces acting on a 'swallow tail' wing of small aspect 

ratio. Lift, induced drag, and aerodynamic centre position of 

sim4e swallow tail wings (Fig.1(b)) are computed as an applica-

tion. For a given incidence, lift and induced drag are, within 

the limits of the theory, proportional to aspect ratio and inde-

pendent of speed. The chordwise lift distribution rises linearly 

from zero at the apex, drops rapidly in the region of the root 

chord trailing edge, and then decreases gently to zero. 
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1. Introduction  and discussion of results. 

In a remarkable paper published same years ago (ref.1), 

R.T.Jones put forward a theory for low aspect ratio pointed wings 

at all speeds, both below and above the speed of sound. The 

theory was based on the idea, due to Hunk (ref.2), that the in-

duced velocity field set up by a slender moving body in a trans-

onic plane, is essentially two-dimensional. 	In spite of the 

simplification involved in this idea, the results of ref.1 were 

borne out in a striking manner, both by relatively more exact 

theories and by experiment. The theory was extended by 

H.S. Ribner (ref.3) to permit the calculation of the stability 

derivatives of low aspect ratio wings. It has also been used 

for the calculation of the effect of controls of different types 

by J. Deyoung (ref. 4) and 11.D. Hodges (ref.5). 	G.N. - ard has 

applied an equivalent method to problems of wing body interfer-

ence at supersonic speeds in a paper which also includes a 

rigorous justification of the basic assumption mentioned above 

for the case under consideration (ref.6). 

In the present paper, we are concerned with the calcu-

lation of the aerodynaLlic forces acting on small aspect ratio 

'swallow tail' wings such as depicted in Figs.1(a) and 1(b). 

It is assumed that the outline of the wing planfom varies mono-

tonically 	a pointed nose to pointed tips (i.e. 	4:0 along dx 
ABCinFig.1(a)and-> qL 0 along AYE). This case is outside dx 
the scope of the methods which are given in the papers mentioned 

above although for one particular planform, a solution for a 

mathematically equivalent problem is described in ref.7. 

Numerical results have been calculated for the case 

of a 1 4nple swallow tail' wing (Pig.1(b)). The results depend 
2 

on two parameters, (i) the aspect ratio, (span)/area, or in fact 

the ratio of any two typical lateral and longitudinal dimensions, 

and (ii) the ratio q/co, where co is the root chord of the wing, 

and c is the longitudinal coordinate of the tips, measured from 

the apex (Fig.2). As in the case of the delta wing (ref.1) it 

is found that the aerodynamic forces acting on the wing, for 

given air density, speed, area, incidence, and for given ratio 

c/c
o are actually proportional to the aspect ratio so that the 

results can be represented as functions of the ratio c/co  only. 

Figs. 4(a) and 4(b) show the chordwise lift distribu-

tion, i.e. the pressure difference integrated in spanwise dir-

ection for a given chord position, for two values of the parameter 

c/c
o

. 	It will be seen that there is a discontinuity in the 
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chordwise lift distribution (and indeed of the pressure) across 

the coordinate of the wing root trailing edge. Although such 

discontinuities may occi r-. also under the conditions of ref.1, 

they are iupoa,ci''3e 	a 	fluid, 	but they reflect a rapid 

variation of the pressure in the region under consideration. 

Figs. 5, 6 and 7 show the lift curve slope, the posi-

tion of the aerodynamic cenre, and the induced drag coefficient 

respectively, as functions of the parameter c/c o. The numerical 

values used for their construction are given in Table T below. 

(In that table, A. den-teL -hhe aspect ratio, and h denotes the 

distance of the aerodymnic centre from the wing apex in frac-

tions of the chord c). 

TABLE 

2. Analysis  

7e take the origin at the ape:: of the wing, with the 

x-axis parallel to the te-Jction of flow, the y-axis pointing to 

starboard, and the z-axis 1,ointing upwards, so that the coord-

inate system is right-handed. 	'met 	be the total velocity 

potential and 	)1() induee'd 7eleeiy potential so that 

Vx + 0 , theee V io he free stream velocity. ',re  denote 

the induced velocity components by e, v, W; 	= 
lax , v = ay 

a0 
2  

If = 	: so that the totel ?ongitud:inal velocity equals V u. az  
By Bernoulli's equation, the pressure difference at a point of 

the aerofoil,ap, is related to the longitudinal induced velocity 

by 

(1) LIP = 2 ff,T%:. = - 2 pi! 30 3x 

where p is the air density. 	in accordance with the introduc- 

tion, the partial differentinl equatim for 0 is taken as 

(2) 2  — 
3n- 

The boundary condiien at the verofofl is 

( 3 ) 
= 

az 

/Where ... 
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o is the root chord of the wing, 

and c is the longitudinal coordinate of the tips, measured from 

the apex (Fig.2). 	As in the case of the delta wing (ref.1) it 

is found that the aerodynamic forces acting on the wing, for 

given air density, speed, area, incidence, and for given ratio 

c/c are actually proportional to the aspect ratio so that the 

results can be represented as functions of the ratio c/c o  only. 
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ection for a given chord position, for two values of the parameter 

c/c • 	It will be seen that there is a discontinuity in the 
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where a is the local incidence, positive in the nose-up sense. 

We shall consider only the case of a flat wing, a = °Gnat. 

We write y = 4- a = ± a(x) for the spanwise coordi-

nates of the leading edges, 05,:x1F: c0  and y = b = b(x) for 

the spanwise coordinates of the trailing edges, c 0c1x15c, so 

that a(o) = b(c o
) = 0, a(c) = b(c). 	-le also introduce the 

complex variable 	= y iz, so that 0 may be regarded as a 

function of the two variables x and 1, 0 = 0(x,71). 0 may be 
written as the real part of a complex function of x and n, which 
is an analytic function of 1. 

In addition to satisfying Equation (2) and the boundary 

condition (3), 0 must be such that LS p, and hence -.; , vanish 

at the trailing edges of the aerofoil (Doukowski-condition), 

while these quantities may become infinite at the leading edge. 

Finally, since the aerofoil does not penetrate any transverse 

plane x = const.c0, it follows that 0 must be constant, and 

may be assumed to vanish for such x. All these conditions 

suggest that 0 can be represented in the form 

r 	 for x<0 

(4) 0(x,-ri) 

tlX 
AC 
 -1 9 	 9  ()Act) j — 1- dt 

for Oc- xc- co  

 

-'o0 
A(t) •) 	- fb(t)] 2 

dt  clt
0 4 ( .0] 2 1,1 2 

c
o 	

a (t ii 	yi 2 

for co4c xo 

where 	denotes the real part of a complex number as usual, 

and A is a real function of its argument, which remains to be 

determined. 	In fact. differentiating (1) with respect to x 

and putting T1 = y, 	sac that at the aerofoil 

A(  

j(x)] 	y2  ra  

(5) u = 	= ax 

for 0<xce 

for c ,cx<0 m 2 y2 
A 

This ... 



	

Lra 
	A(t 	y 

ari 

	

a 	r‘c 
• o 	A(t) 	ct 

ra(t)J
2 
 - 172  

0 	 for 	0 

for Oc" x 4C-c
o 

.1 11 2_ 	6 (tv  2 at  
[a. (-I 2  -1 2  

(7) 

- -e 

This shows that the pressure difference becomes infinite 

at the leading edges and vanishes at the trailing edges, in accord-

ance with the Joukowoki condition. 

To find. the normal induced_ velocity, -ve have to differ-

entiate (4.) with respect to z. And, since for any analytic 

function f (1), 

-3-7 r eri) 	4)-11 	orzr. 	ael-11 
where 	denotes the (real) coefficient of the imaginary part of 

a complex number, as usual, Cie obtain 

for c
o
< xc'c 

`le now have to determine 	(t) from the condition that 

x 

	

lim 	8 	
A ( 46)  -51'71 	 dt 

	

ri y 	
oNlia( 4)J - 

ro  	3 A (t ti 2 E (t1 2at 	 i  

ti lE(t):1 2  - ri2 	
odi 	ra  ( t )] 2 .41 2 

If or 0 - x<c
o 

for cow x.co 

for any point (x,y,0) on the aerofoil. We notice that 

	 - 	g 1,7 	(„1  2 1,1 2 
71-V 	A(.

) 

 2 11 2 

at all points (x, y, 0) or the aerofoil, so that by (6) the 

/norma.1 
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normal induced velocity is constant along the chords of the aero-

foil for any  choice of A(t). 	Its magnitude is determined en- 

tirely by the values of the integrals in (6) ahead of, and in 

the region of, the leading edge. 

It is easy to sho7r that the first equation in (7) is 

satisfied by 

(8) 	A(t) 	V(7, a(t) a' (t) , 0‹,tc:co 

In fact 

x 	it=:c 

L Va a(t) a'4 	at' 	- - vaka (-0] 2-1-12 t=0 
= Va fl -,41:a (xj 2 T1 d 

So 	 ill-a (t)] 2-712  

and so, for points (x,y,0) on the aerofoil, 

lima 
11-53r 

Va a(t) a' (a_dt 	/AI; - 	 = Va, 

:1/E(t)] 2-12 	L A(x)) 2-3r2  

 

as required. 

It will be seen that the solution implied by (8) agrees with 

ref.'!. for the particular case considered there. 

The left hand side of the second equation in (7) now 

becomes, with the specified value of A(t) for 04::t<c 0 , 

i- 

ll.. 9 
y 

 

x 

	

Va a(t) a' (t .")1 	at 	 

	

J 	 1- 	A(t) 
vq1(q/ 2_,n 2 

V co 

1
2__. , i 	 2 at] 

Ea  (.03 2 _ n 2 
0 

 

lim 

I/E. (co)] 2-112  
+ lin FL r A(t) 

co 
—I -  Cb(01 2  at  

ta  ( t ).] 2 - ,1 2 

,) 	1  
Va Y  = Va 	 lim (1 : 	(t) 	- rb ( t)] - 

 dt 
n 	— Yi 	 Pt)] 2  - 71 2  

V Y, la (c. )1 2 	r,-3Y 	
co - 

where we confine ourselves to points of the aerofoil for which 

y>a(c). The condition for A(t), c
o
<t<c, now becomes 

, Va 

- peg 
' 	 for points (x,y,0) of the aerofoil such that x>  c o, y>a(c0). 

/73 may ... 
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a 
7e may modify the left-hand side of (9) slightly by replacing & n  

a 
by -67 , since 	= y + iz. 	Integrating with respect to y on 
both sides of (9) we then obtain an alternative condition for 

.ZL(t), 	viz. 

7143r 
(10 

LJ c o  

In fact, a solution of (10) for any value of the constant on the 

right hand side would lead to a solution of (9), but the consid-

eration of the limitins case m--}co, y-4a(c0), shows that we 

must take 0 as the appropriate .value of the constant. 7Te may 

now let I tend to y (i.e. let z tend to 0) on the left 

hand side of (10) before integration, and then let (x,y,0) tend 

to the loading edge so that x and y arc linked by the 

relation 

fa.j 2 - [b (t) 2.  at  
[a (t)] 2  -Ca (x)] 2  

r_ 
LL'a  2  ti- 	

2 dt 2 La ( t )] 	2 

so that (10) becomes 

evc  
r 

( -1 ) 	A yt) = Vc, 	(x)] 	ao  dt 
(x)]  -ra(t 2  

	

whore an = a(co
). 	This is an integral equation of Volterra's type. 

The following simple numerical method for its solution avoids 

any difficulty which might be caused by the fact that the integral 

on the left hand side of (11) becomes infinite at the upper limit 

of the integral. 

	

For any 	x', x" , c 4: 1e4:: X 114: 	we have, by a 

mean value theorem of the integral calculus 

11 

7  (12) 	 L-0-(Y)] 	
nXif 

PXD ra(t 	L „I a' (t) 	\I‘c)-12 
	2 - rb  (0] 

	

L(t)/ 	- 2 	
A(t)  

	

\I/1E4-43 E (tD 	2 

& (x)] 2-  ED4 2  a' (t) at  

	

(x11 2_ E4 	 2 a l  WV ..(x ) 3 __E,(03 2 A(g)  /177-71--------  

Pn71  V  sin -1 
 a(xl  

- 	
a(x) 

oonst. 

y = a(x). 	Then 

y 	(t)3 2 
A (t) 	

2 	
at 	A(t) 

co 

A (t) 

L.. co  

ram 	y 

1 c
o 
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where C is some intermediate value between x' and x". Ye shall 

accept the approximation that ;, is midway between :z' and x" 0  

C = i(x' 	x"). 

To solve (11), we divide the interval <0o c> into m 

equal sub-intervals, 4:co  = xo , 

xm  = c). 	-.7e then satisfy (11) for x = x 1 , x = x2,..., x = xm, 

evaluating the integral on the left hand side approximately by 

applying (12) to all the sub-intervals in <c o, x>. In this 

way we obtain the following triangular system of ra linear equa- 

tions for the unknowns Ak  = A( k), air  = *(xk 	xk_/ ), k = 1,2,...,m. 

1 
ib (CO] 2  in 	a(xl)  

777 	*4ak  = 

Va\i/ra(xn g 
 2 	2 ao n = 1, 2, ...,m 

Hence, putting B (t) = 
A(t)  

' 
Bk = 	Va tan y, we obtain the 

_ For a siaala swallow-tail wing (Fig.1 (b)), a' (x) = const. a 
= c = tan y, where 	is the semi apex angle of the wing. 

Va, tan y 
system of equations 

a(xk) 
Aa(xn)] 2-rb(ax)] 2  ...sin-1  —r--r - sin f a kx n =4 

  

) 

2 2 
-a 

n = 1 2 	m 

For the calculations on which Figs. 4-6 are based, 

o 
c> was divided into five sub-intervals, m = 5. To obtain 

an idea of the accuracy of the solution, similar calculations were 

made for m = 3, and m = 4, for a value of --- = 2. 	The results 

arc shown in Fig.3, from which it appears thRt there is good 

agreement between the quantities obtained for m = 4 and In = 5, 
while the calculations based on m = 3 are inadequate. 

There are other ways of applying the above mean value 

theorem. For example, instead of (12), we might have used the 

following formula - 

2 
/ 	 f  (15) 	A(t) 

x 	&.(x)] 2- EN] 2 	" 
v1  

r, I  2 r  

a(t)al (-t)N1

/

1:4.\x9 -1:3(t)I aAt)at(t)at _  

E (x)] 2_ (t)] ` 

o 

A 	ita  (x)j 2_ E.)  (LA a(t)a r (t)dt  

a(5)a' M N/ 	 V[a. (x)] 24a (t )32 

A ea)  Ai (4 [b 	2 	(x):1 2- Fx 	-1-E(x)J2-E(:- , i)3 
aWa l  



(14.?,.6s)2...(1+-,,ssy91 da 
= Va tan 4-1- -21s) 2 - 1 

(1+ ?Ns) 2- (14:?‘ a) 2  
(6) /1 d 11'1 ( ) 
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where E is again sonic intermediate value between x' and x" 
but of course not necessarily the same as before. 	(15) can 

readily be used to find the exact value of A(c o  0), i.e. the 

limiting value of A(t) as t tends to c o  from above. Putting 

x l  = co 
and x" x in (15) and substituting the result on the 

left hand side of (11), we obtain 

	 h(x)32-4b. (0] 1{ -,;(4-12-6.(cA2 = ValEa(x)1 2- a20  
(L) 

But a(c
o) = ao and so 

= Va a(')"  
im. (xli 2_ [b  @1 2 

Now let x tend to c
o from above. Then to tends to c o  also, 

and so in the limit 

(1 6) 	A(co  I. 0) = Va a' (co ) 

The corresponding value for B(c o  0) is 

(17) B (c
o 

+ 0) = 
c-c 

Still considering the simple swallow tail wing let X= co 
It is of interest to determine the limiting form of the inteo.ral 

equation (11) as X tends to 0. We introduce the non-aimen-

sional variable s by x = (1 +?h, s) c 0 . 

Then 

a(x) = a(c o c ) 	= ao  (1 +X s) 	b(x) = ao  (1 + 1N)s 
0 

so that (11) becomes 

where we have put t = (1+Na)c0  , A* (a) = A(t) = A((14\a)c) . 

For small ?\, equation (18) tends to the form 

(18) Aek 
(a) 	: 

 02 

s 	= 2Va tan y vs 

and we may verify directly that this equation is satisfied by 

(19) A*(0.)  = Va tans 

- 

/On the ... 
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On the other hand, for X -44>o, equation (18) becomes 

(21) A(a)de" = Va tan y s 

which is solved by 

(22) A(o) = Vs, tan y 

3. Calculation of aerod  nauiic farces 

Having computed the function 11(x), m are in a position 

to determine the aerodynamic forces which act on the wing. By 

(1) and (5), the pressure difference at a point (x, y, o) of the 

aerofoil is given by 

 

- 20.  --A  
Gcg 2  - y2  

for 0< x< c
o 

(24) b P 

  

- 2pVA(x) 
[b (x)1 2  

[a (x)} 2_ y2 
for c

o<x<c. 

The lift per unit chord is given by 

na(x) 

(24.) 	4)(x) = 	ID aY 
-a(x) 

for 0<x<co. Thus, in that case 

-- 	C. (x) 	 (27.) 

(x) = - 2,_,-, 	,,,.(.). 

	- - 2,,A(x) k,i_i .....r_ry 
2 ( alx) 	t \ = - 

27.pVA (X) 

-0, (X),A. :.,`0.1 - y2 	 -akxi 

Or, taking into account (8), 

(25) 	 27pV2a a(x) a' (x) , 	0<x(c 	. 

On the other hand, for c o< x<c, 

	

-b(x) 	r%a(x) 	 (x) 

,e(x) = 	p dy + 	LS p ay = 2 	zo  dy = - 4pVA (x) 

	

u -a (X) 	u b (x) 	t, b (x) 

Let k' = b(xi k 	- k' c- 	and introduce the variable p a (x 
by 

y = a(x) do ( .1:3,k) 

/Where ... 



where is the familiar Jacobian elliptic function. Then 

y2 ,_Eb (x  2 	a (x) k 2 cri2(_,,k) 
	[a(x)J 

 2_ y2 	a(x) k 2 sn2( 0, 0k ) 

and 	dy = 	a(x) k 2  an(f.,k) cn([3,k) 

Hence 

(x) 

( ) p(x) 2-y2 dy = - a (x)k 2 '11(on ') (;r:, k) 	- a(x) [E (k) - k' 2K (kg b  la 	
17._=_Eb(,)1 

 
I, o 

= --a(x) E(ii -(0 2)- (0)
2 

so that the eNpression for 

(x)  LE  (11 	 (1.;321 (1:14 

For the case of a simple swallow tail wing we have 

A(x) = Va tan y B (1z), and so 

/2) 
(27) 	tx) = 4.pV 2a a(x) tan y B(x) E 1 -(h) 

\.% 	a  

For x = t;k  , we take B to be given by B 

as determined from (1/0. Thus 

,e (x ) becomes 

( 26) 
	

(x) = 4pVA(x) 

= 

(28) 1:1(k) = 4pV2a, a(x) tan yBk (../1 

The total lift, L, is given by 

pc 

(29) L = 	dl: = L 1. + Lr, say, where o 

L f, = 	,e(x). x ) W.  

Integrating (25), we obtain immediately 

(30) 
_2 	2 	77.2 a-a 7.• 	pv 	Fa (c Lf =  

in agreement with ref. 1. 	On the other hand, L
f must be 

obtained by numerical integration, and in view of the preceeding 

analysis the use of the following simple foriaula seems appropriate 

/ (31) 



c-c 
O  

r 
= t - 

k=1 
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( 31 ) 

The pitching moment round the apex, 11, is given by 

(32) 	id = 	x 41(x) dx = f 

0 

se o 

f 
= 	x ,((x) dx = 	x -e(x) dx 

c
o 

Thus, for the case of a staple swallow tail wing, 

(3 3 ) 

c
o 

= 	x. 27criT
2

a, tan2
y x dx = 	p V

2
0, tan2

y 

0 

while a numerical formula for h is 
r 

( 34) 
c-c 

0 =  
r 	m 

410V
2
a, tan y (c-c o ) 	 

k= k 
a(Ck) B 

The distance of the aerodynamic centre from the apex of 

the aerofoil is then given by a = H/L. 

Finally we establish a formula for the induced drag of 

the aerofoil, Di. Di  is the difference between the surface 

pressure drag D = La and the forward suction force Ds 
exerted on the loading edges of the wing. 

(35 ) D. = D -D = La D 1 	p 	s 	s 

To calculate D
s 

we surround the loading edges of the 

wing by small cylindrical surfaces S as given by the equation 

(36) 	r = r ( 1 0) = 	i + 	a(0 + c cos e) 	E sin 0) k 

/Whore ... 
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where e is a snail positive quantity, and the limits of varia-

tion of C and 0 are 0.13.  <c , 0:S7 0 1; 2w. By the momentum 
theorem the force exerted by the air on the portions of the wing 

which are inside S, F(e) say, is given by 

(37) F(s) = 	p dS 	p 	2 	s) 

where p is the pressure, a is the velocity vector, g = 

(V+u)i + 	+ w k, and da is the directed surface element 

pointing outwards from the surface. 	Thus dS = (re /1 	ao 

so that (37) may be replaced by 

(38) E(c) . - pCKeAr) do a„ — p 	s.(g, (12, 0 Ax:.))do d 

7, C 

where + or - are to be taken in the expression for + , 

as given by (36), on starboard and port respectively. - Te have 

.r 0 k4. = (-c sin 61 + c cos 0 k)/‘ (+ a' (C)1) = + a' (je cos ei + e sin 0 k 

Thus, we obtain for the longitudinal component D(8) of F(8), in 

which we aro chiefly interested, 

1 (39) D(c) = ; 	p a' (j cos 0 8 de di;-p 	u(+ ua' (j cos C +v cos e 

+ w sin e) s ao 

To continue, ';.-c require formulae which express the 

infinitesimal behaviour of the velocity components in the neigh-

bourhood of the loading edges. Confining ourselves to star-

board we see that equation (4) yields, for fixed x = and small c, 

S 

+ o()_-e-) 

A(0 	1 	0 	1 u 	 — sin 7 o -) for OZ c
o fr-7  

and similarly 

(41) u A(L)  _ 
127 

2.. 	2 I sin 0 + o( 1 ) for c<C<c 

 

Again, the unbounded components of v and w 

/depend • 

or 

(40) 
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depend. only on the value of the integranLls -,aua• the upper Iii it 

x = r, of the inteals in (4.). 	Thus, Vie may replace these 

integrals by 

r 
a(0 0- 1  () ,[a(t)j2-12 

    

at and “i-1,2z/a(LA24s,,02  aL12 L.,  at  
a' (C) 	Jr ( t}]2 

for 04,E 4.co and co
<L;<c, respectively. InteTating with 

respect to t, and then differentiatin: with' respect to 	Ire 

obtain the follo-Ang expressions for v and w 

(4.2) v=- 
ALL.  (R 

a{ )a'() 	
o( 1) = 	 1  sin + c(1) 

(3 -T1 	 u j7673. j; 	2 	
plc 

for 0.< -4. <co, since i = a() 	so
le

, as before. For the same case, 

(43 ) Ti = 	
g 	 

a (Z;)8. 1 	‘ka (0] 2 

	

Oc- 	

A(, ) 	1 

) 

	

6 	a' (c,)127.7„) ■

T cos 

Similarly, for co< Cc 

(), ) v = A 
	Am] 	2-6; /..1 2 1 sin a.— s n 

a (an:7. E, 

A(k:,) 
= (L;),./..._2au  jE(:,] 2-1ID(12 1  cos ° + °V) 2 

'. -Te may s unmar is o (4.0) - (WO in the following f orptvillz%: 

( (4.5) u = - G( ) 1 	2 	1  
Nr2: 	

l..1 1  sin + o 1  
a' (:-.,)16 	

, sin 	+ o 	 --■,r 

p-(;) 6 
a , (0 	2 o( vi = 	 — cos + 

P-ALL" 

127.() 

A() 	E (0.1 2- [13 (rA 2  

4,12TZT 
By Bernoulli's equation 

(46) G(;) 

f o :2 0< 	c 

for co<S, 

p 	+ z  p+u ET2- (V)- v
2 

- vt9 

where P is the pressure at infinity, and so 

4-7) 



a2 a2 
npV2 a2 	 1 2 D -0 2- 5 (i.jf (50) D

s 
= IltoV 2  tan y 	[ /  

a(0 c
o 

-1 5- 

(47) 	P= - 	
2 ( . n  2 e + i 	) 

+ o 
1 

:i-  p [Gq si - -, - 0 2 	 8 
--' 

Substituting the values of u, v, w, and p from (45) 

and (47) in (39), and taking into account the contributions from 

both port and starboard, we obtain 

D(c) 

7. 

fj(A 2dZ 	sin2  2- 4-, 	 ,7.- '(u) cos e  
--F. 

0 	 0 	0 	 0 • + sin - -a 	sIn - cos 0 + ---- sin - cos 8 - 	cos - sin 8 ae 0 (1 ) 
2 

a'(0 	 at  (0 

7.. 

(4.]  a' U dE; (: 4 sin - cos 8 	 sin 2  _ 	- 

	

2 	dO + 0 (1) 0...) 
= 2 	

2 0 

0 	 -.E. 	 E2 (A 

Intesrating 

2 

(48) D(e ) 	fILIE [41 	+ 00) 
a' (L;) 	- (j o 

The suction force D
s 

as define d above e quals 	lim D (e ) 

Also, since no are dealing with the limiting case of wings of small 

aspect ratio, 7o may assume that C.' (;}] 2  is small compared with 

1. (For a simrlo swallow tail wins a' 	= tan y is proportional 

to the aspect ratio, for given c/c o .) 

Hence 
cika2 

(49)  D = 27.p 

L., 0  

For a simple swallow tail wins, the formula becomes 

For the special case of a delta wing, the value of the induced 

drag obtained with the aid of this formula agrees with the 

result given in ref.i. 	For the general case, the sJcond in- 

tegral in (50) can be evaluated numerically, as before. 
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