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SUNMNARY

A method is developed for the calculation of +he asro-
dynamic forces acting on a 'swallow tail' wing of small aspect
ratio. Lift, induced drag, and aerodynamic centre position of
simple swallow tail wings (Fig.1(b)) are computed as an applica-
tion. For a given incidence, 1lift and induced drag are, within

the limits of the theory, proportional to aspect ratio and inde-

pendent of speed, The chordwise 1ift distribution rises linearly
I from zero at the'apex, drops rapidly in the region of the root

| chord trailing edge, and then decreases zently to zero.
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1+ Introduction and discussion of results.

In a remarkesble paper published some years ago (ref.1),
R,T,Jones put forward a theory for low aspect ratio pointed wings
at all speeds, both below and above the speed of sound., The
theory was based on the idea, due to Munk (ref.E), that the in-
duced velocity field set up by a slender moving body in a trans-
onic plane, is essentially two-dimensional. In spite of the
simplification involved in this idea, the results of ref.1 were
borne out in a striking manner, both by relatively more exact
theories and by experiment. The theory was extended by
H.S. Ribner (ref.3) to permit the calculation of the stability !
derivatives of low aspect ratio wings. It has also heen used
for the calculation of the effect of controls of different types
by J. Deyoung (ref.4) and 1i,D. Hodges (ref.5). G.N. Tard has
applied an equivalent method to problems of wing body interfer- i
ence at supersonic speeds in a paper which also includes a
rigorous justification of the basic assumption mentioncd above

for the case under consideration (ref.6).

In the present paper, we are concerned wiih the calcu-

lation of the aerodynamic forces acting on small aspect ratio

'swallow tail' wings such as depicted in Figs.1(a) and 1(b).

It is assumed that the outline of the wing planform varics mono-
tonically from a pointed nose to pointed tips (1.6.';K‘:() along
ABC in Pig.41(a) and _;Z:>,3 along AFE), This case is outside
the scope of the methods which are given in the papers mentioncd
above although for one particuler planform, a solution for a

mathematically equivalent problem is described in ref.7.

Numerical resuits have been calculated for the case
of a 'simple swallow teil' wing (Fig.1(b)). The results depend
on two parametcrs, (1) the aspect ratio, (sp an)/arca, or in fact
the ratio of any two typical lateral and longitudinal dimensions,
and (ii) the ratio q/co, where e, is the root chord of the wing,
and ¢ is the longitudinal coordinate of the tips, measured from
the apex (Fig.2). As in the case of the delta wing (ref.1) it
is found that the aerodynamic forces acting on the wing, for
given air density, speed, area, incidence, and for given ratio
q/co are actually proportional to the aspect ratio so that the

results can be represented as functions of the ratio c/cO only.,
Figs. 4(a) and 4(b) show the chordwise 1ift distribu-

tion, i.e., the pressure difference integrated in spanwise dir-

ection for a given chord position, for two values of the parameter

q/co. It will be secn that there is a discontinuity in the
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rdwise 1lift distribution (and indeed of the pressure) across
aborﬂinate of the wing root trailing edge. Although such
ntinuities may occur also under the conditions of ref. o

¥ are impossible in a meal fluid, but they reflect a rapid

variation of the pressure in the region under considerstion.

Figs. 5, 6 and 7 show the 1ift curve slope, the posi-
tion of the aerodynamic cenire, and the induced drag coefficient
respectively, as functions of the parameter q/co. The numerical
values used for their construction are given in Table I below.
(In that table, A denctes the aspect ratio, and h denotes the
distance of the aerodynsmic centre from the wing apex in frac-
tions of the chord c).

TABIE T

acp CDi
e/c ——— N h L =
* o da 02
5
1.0 14571 0.667 0.3173
145 1,012 0.555 0. 3379
2,0 05739 0. 504 0.3836

2. Analysis

Te teke the origin at the apex of the wing, with the
x-axis parallel to the dirzction of flow, the y-axis pointing to
starboard, and the z-axis pointing upwards, so that the coord-
inate system is righi~handed. Tet _i be the total velocity
potential ard @ the induced veleocily votential so that
i = Vx+ @, whewre V in the free stream velocity, e denote
the %nduced velocity components by wu, v, w, u = %g y ¥ gy 3
W=g3, s 80 that the totel longitudinal velocity equals V + u.
By Bernoulli's equation, the pressure Gifference at a point of
the aerofoil, Ap, is related to the lonsitudinal induced velocity
by

Vil - 2 _ajq
(1) Ap = - 207 = - 207 52

where p is the air density. In accordance with thc introduc-

tion, the partial differentisl aquation for @ is taken as

(2) ﬁLjé * jﬁiﬁ = U

The boundary condibion &t the scrofoil is

/vhere ...
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where a is the local incidence, positive in the nosc-up sense,

Wle shall consider only the case of a flat wing, a = cons

nates of the leading O x=ec, and y =
the spanwise coordinates of the trailing edges,

3 \ i g . 5
that a(o) fco) =0, alc) = “.:'ch). e also introduce
complex variable T =y + iz, so that ¢ may be
of the two variables x and 7, fﬂ = ,Ef'k:;, ".‘[) ’ £ may be

as the real part of a complex function of x and m, which

is an analytic function of 1.
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while these quantities may become infinitc at the leading e
Finally, since the aerofoil docs not penetrate any transverse
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‘ El?hizs_s_hmvs that the pressure difference becomes infinite
leading edges and vanishes at the trailing edges, in accord-
- with the Joukowski condition.

To find the normal induced velocity, we have to differ-
entiate (J.,.) with respect to z. And, since for any analytic
function £(n),

LR - R R [ 2] Rl 2] gy,

‘where 9 denotes the (resl) coefficient of the imaginary part of

a complex number, as usual, we obtain

0 for z<0

- R ; AL e G for O oo
g al"l J: E}.('t)] A T'Ir % o
] -‘ Pco A(%) 2 772
_qle o av e & a(e) /2=l o
WJ o ra(‘s)]g - 'n2 ) 5Tlu c [a.(t)] ’ _ﬂ2

for co< x<'c

Ve now have to determine A(%) from the condition that

I
Lim ﬂ%ﬁ ,—_,.,.(32-_._* at
. o]
Tl_}y " O\/[FL{‘*»’;:! S 1_12

)

= Vo

s [Fo A(%) 3 rA
1in 93 e At
n-3y aﬂJo AC) an.J -3

for OT:{Q‘CO
for cN x<C

for any point (x,y,0) on the aerofoil. We notice that

2
PR - L
N -y I_El(")] 2 N 1_}2 N~y Ei-(X)] - 'T'].£
at all points (x, ¥y, 0) or the aerofoil, so that by (6) the

/normal. ...
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normal induced velocity is constent along the chords of the aero-

Ite magnitude is deternined en-

foil for any choice of A(%).
and in

tirely by the values of the integrals in (6) ahead of,

the region of, the leading edge.
It is easy to show the
satisfied by

O<t<e,

In fact

f[— o a(t) a.,;-,___u_u________m’" | = v in /B -n!

L
- r T

/(e (4)] 2n?

(x,7,0) on the aerofoil,

and so, for points

I
-
‘P

lim g F Va a(t) a' (%) _,:_._S_E::_.: = \T:r.g =
Yot

Tj~3 o
y tJ o /L’lg't

It will be seen that the solution implied by (8) agrecs with

F.1. for the particular case considered there.
The left hand side of

becomes, with the specified valus of A(%) for 0LtLe
' o

S,
\a{

I X x
£+ 2 - - 2
; 5 d

o o I # 2
12 n° : w/ [@{tx] -1
o

= 1lim dt

3

ts of the acrofoil for which

confine oursclves to poin

e we
g L} P ~AraT F Ay Fyma ji Fa R - 5 S A
y>ra (CO) . The condition for Al ) P OG""' e, now hecomes

2 1\ (t &
[9 ) 1im g S A l s 74 / —E'Li at = - Vg, = Al
e V B 7
17 e :_1 I -1 2 ]
5 S [ale )] 2

acrofoil such that x>c v ale
= bo, v} ( O)'

o

for points (x,7,0) of the
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Wle may modify the left-hand side of (9) slightly by replacing 5
by %—' , since M =y + iz. Integrating with respect to y on
both sides of (9) we then obtain an alternative conditlion for

A(t viz.

2 = *
(10) 1im ‘“5] / rj()J dt = - Vo \/y'; - ]_a{co)jz + const.
=3y . [2.(¢)]

1 4

In fact, a solution of (’JO for any valuc of the constant on the

do

right hand side would lead to a =olution of

(9
eration of the limiting case x'?co, y—-;)a(co), vs that we

), but the consid-
must take O asg the appropriate value of the constant. Te may
now let m tend to ¥y (i.e. let z tend to 0) on the left

hand side of (10) beforc integration, and then let (x,y,0) tend

to the leading edge so that x and y arc linked by the

relation y = a(x). Then

T

ful
o o
1

" ~ 0y
ﬂ [ A(t) 2 [1‘.(,.)! ; A(%) Gl : = [;b ) f
Je E (b)_; - J S [a Kt}] -la (x):l 2

- - (t)/ 2()” Ju (s
g?-[a<

so that (10) becomes

‘ 7
(11) j A(i/ \_L Lb(th_ dt:"-.f,;‘.’\/@(x)jg_

E&)° -B®))°

2

where a, = a(cD). This is an integral cquation of Volterra's type.
The following simple numerical mncthod for its solution avoilds
any difficulty which might be caused by the fact that the integral
i g i X o ; i v
on the left hand side of (11) becomes infinite at the upper limit
of the integral.
e [ R w11 . 1 i | S el A RGBT )
For any x, ', ', C’oé X X' £ xLc, Wwe have, by a
mean value theorem of the integral caleulus
.ﬂ,_fl — e e
_ i (¥ [
(1n) . / .[" ~)] LL \5)] it 41 \t} (
s at = L \-‘z" F) JG)]
!
g x \/ L'v \—-)J “’ ( -J (

F
a'lE ,ﬂt

B

V&) ~E~(t)} :

/"@-Y”
A(E A2 Ea2 | a'(t)at A(E) /_ : "D
- Wty RENSBE) | SRR 8, JRen* B’
}:'\/E.(:/;Z? - EL(t\‘ 3




i

where £ is some intermediate value between x' and x". e shall

- accept the approximetion that £ is midway between x' and x" ,
.'- &; = i‘(x’ + x"),

To solve (11), we divide the interval <c o °> into m

equal sub-intervals, z:co = X x1>, LZyy FpPpeen, KX fe?

= ¢>, Ve then satisfy (11) for x = Xgs X = Xpypeeny, X =X,

evaluating the integral on the left hand side approximately by
applying (12) to all the sub-intervals in <oy, x>. In this

way we obtain the following triangular system of m lincar equa-
tions for the unknowns A'k = A(é;k), &y ="'g(x.k + X’k—‘l)’ X e 458500040

a a(
(13) Z‘T_Y S, ] [ean ("'k w]j
W, oT Ly !

For a si.jle swallow-tail wing (Fig ‘t(b)), '(x) = const.

a
= == = tan Y, where vy is the semi apex angle of the wing.
.- . A(t)
Hence, putting B(t) = s B = A].C/Va tan v, we obtain the

Vo, tan L'
system of equations

(14.) %‘rj ,/[a(xnﬂ 2—[13 (La‘?] 2 !_s:i.n:J ;xi))-  phn % z‘k =/ E(Xn)] 2-‘-ac2)

- n

n= 1,2,0-.,111

For the calculations on which Pigs. L~6 are based,
(co, c>‘ was divided into five sub~intervals, m = 5, To obtain
an idea of the accuracy of the solution, similar calculations were
made form = 3, and m = 4, for a valus of g—- & 2y The results
are shown in Fig.3, from which it appears th2t there is cood
agreement between the quantitiecs obtained for m = 4 and m = b,

while the calculations based on m = 3 are inadequate.

There are other ways of applying the above mean value
theorem. For example, instead of (12), we might have used the

Tollowing formula -

(15) | A(t) {:L% EEB}—Q f&-tw/@(xﬂz_[{)(t)]? a(t)a'(t)as
Xy x! E'(x)]2 : ‘t)]

=01
™

_.A_@i)_ JEE]-hb@]? | el (a
) '(55 :”"\/E‘(xﬂ 2-[&(’0):’2

LG RN/ A%, -[b@]z[/;g(x)]?—@(x'ng~JIE<X>J2-[ 'ix"Dz]

5&)3- (a)
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where & is again some intermediate value between x' and x" ,
but of course not necessarily the same as before. (15) can
readily be used to find the exact value of A(oo + 0), i.é., the
limiting value of A(t) as + tends to Cq from above. Putting
x' =¢_ and x" =x in (15) and substituting the result on the

(o]
left hand side of (11), we obtain

AL — /R - B VBB - T/ BT

AE) = Vo a(®)a! ()
JEE) %[

Now let x tend to B from above. Then & tends to 0 also,

and so in the 1imit

(16) A(co +0) = Vg a' (co)

The corresponding value for B(co +0) is

(17) B(co+ 0) = 1
0~=0
Still considering the simple swallow tail wing let )\ = = ¥
o

It is of interest to determine the limiting form of the integral

eqguation (11) as >\ tends to O, We introduce the non-dimen-
sional variable s by x= (1 + N\ s)c
Then

c o
o}

a(x) = a(co) £ 2 a_ (1 +>\s) " b(x) = ao (‘I +7\)s

so that ‘I“l becomes

8) o 14 28) 2= (14 N) °c® e 92
(1 J (cr)‘/(“}\ —(H?\G) do = Va tan v /(1+Ns) 1

vhere we have put = (1+7\cr)co , A*(0) =A%) = A((‘I+?\c‘)c9 ,

For small )\, equation (18) tends to the form

(19) *(o) = Vo tanyvE

5.11

and we may verify directly that this equation is satisfied by

(20) A®*(o) = Yo tany

o

1

/On the ...
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On the other hand, for N —» oo, cquation (18) becomes
s

(21) A(o)do = Va tan v s
o}

which is solved by

(22) A(o) = Vo tan v

3, Calculation of aerodynamic forces

Having computcd the function A(x), we ere in a position
to determine the aerodynamic forces which act on the wing. By
(1) and (5), the pressure differcnce at a point (x, y, o) of the

aerofoil is given by

- 2pV A(x) for 0<x<c,

K/E"(X)Jg -5

2 - 2
- 2pVA(x) y = b&)] for co{xCC.

2 2
&)] -y
The 1if't per unit chord is given by
e (x)
(24) £(x) =J Ap dy s
-a (x)

for O(x(fco. Thus, in that case

i (:{) i a(::}
Flx) = - 2pv AGDEx | L o () ,_sin'}t y :' = - 2npVA (x)

2 (x) /B - 52 r

Or, taking into account (8),

(25) JP(:{) - 2*:cpif20.- alx) a'(x) , 0K x<e, .

On the other hand, for ¢ < %<,

na (x) a (x) a(x) /3 e
Ap dy + Ap dy =2 A\p dy = - 4pVA(x) I -.[bngﬂz dy
U b(x) b (x) b(x [ )]y

P
i & N - 1 . i
s  k=¥1-%k'", and introducc the variable g

/1-?11@1*@ “es
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where dn(B,k) is the familiar Jacobian elliptic function. Then

3”2“5(")] “eal@ ¥ en’(ay) , E‘*-(X)]Z" y° = alx) x® a0 (k)

and dy = - a(x) K sn(B,k) en(p,k)

on”(5,k) @ = - a(x) [ -k’zK(k)]

< -al) = m)@f K(1.. .,

so that the expression for »{;(xl becomes
(26) f(x) = LoVA(x) a(x) E(\:’*I _(lr'i)a_ (1;:)2 K(J‘I —(—%}2)

For the case of a simple swallow tail wing we have
A(x) = Vo tan vy B(x), and so

(27) L) = 4% a(x) ta.n v B(x) E(\A ~(—§-)2 9 (-E)QKC,.M - (’—2—)2)

For x = E’k s Wwe take B to be given by B(Lal) =R
as determined from (‘14). Thus

(28)  H(g) = 1% alx) tany B E(‘“ (b)?)(h)g K(‘” @)d)

The total 1lift, L, dis given by

k’

C
' (29) L = ﬂg(x)d.r = Lo+ L, say, where

0

I, =J(PO‘EJ(X}6X , I =I Jx)ax

Integrating (25) ; We obtain immediately

2 2 2 @
(30) Ly = nfla E(GOU = ®pV aa

in agrecment with ref, 1., On the other hand, L, must be
obtained by numerical integration, and in view of the preccecding

analysis the use of the following simple formula scems appropriate

FERY e
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C=C Zm 4p’V2c¢ tan v (o—c ) ;ﬁl
O 22 i O - ; o
(31) Lr - T 1’ 1&‘..»12{) = i ) - a‘(‘ﬂlc) Bk

-
b ({"1:)

1 = .
mk)

; / b, J]° [b(;;k) :

The pitching moment round the apex, 1, is given by

(52) U= f X ’P(X)Cbc = I‘.Zf + Ial.r
(o]

I, =J . Lx)ax L x Plx)ax

o C
o]

|

Thus, for the casc of a simple swallow tail wing,

C
(33) M, = ox. Eﬂpvzm tanzy‘ x dx = 32-75 plfzq tanzy
: o)
while a numerical formula for 1':[r is
. Cme
(34) No= =2 %_;:;kf (&)

-
4pV2cr, tan v (c—co) = 3 . b(fik) i ’D(E‘;k .
i m Zc:lc a(%lc) Bieq B~ alg, ) 2 (&)

The distance of the acrodynamic centre from the apex of
the aerofoil is then given by 4 = /L.,

Finally we establish a formmula for the induced drag of
the acrofoil, Di. Di is the differcnce between the surface
pressurc drag Dp = La and the forward suction forece DS

exerted on the leading cdges of the wing.

= - - = (], ==
(35) D, HDP D, =La DB

To calculate Ds we surround the leading edges of the

wing by small cylindrical surfaccs S as given by the equation

(36) £=x(0) =i+ (tal®) +eocos6) j+esin0) k

/ WHCYE aen
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To continue, wc requirc formulae which express the
infinitesimal behaviour of the velocity components in the ncigh-
bourhood of the lcading cdges. Confining oursclves to star-

board we sce that equation QL yiclds, for fixecd x =& and small &

ey

6ol bl . 0 AE) R AE)
_m.nmu A r\mﬁﬁmvumamﬁ?.u + & oxp Qov.s._m J-2a(5)e cxp (i6)

or

(40) u = -

) o l&mr/\ﬂ mom “_ (M... m?.m; OQ.VH,% c L ELC

Again, the unbounded componcnts of v and w

/depend . .,
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where e is a amall positive quantity, and the limits of varia-
tion of £ and 9 are OE.E;:';SG, 05_:'65;2';?. By the momentim
thecorem the force exertcd by the air on the portions of the wing

which are inside 3, E(a) say, is given by

(37) Fle) =-|pds-p| g (qas)

5 5
where p is the pressurc, g dis the velocity vector, g =
(V#u)i + v + wk, and d3 is the dirccted surface clement
pointing outwards from the surface. Thus 43 = (re/\ rv) de dg
so that (37) may be replaccd by

(38) Fle) = - p(_x_'e/\_rq;) do a - p g_(g (;a!\;_g))de &
5 5
where + or = are to be taken in the cxpression for -
as given by (36) » on starboard and port respcctively. . Tlc have

-:EG”‘E%; = (-e sin 8j + € cos © 15_)/\(33 &’ (é;')_‘l) = i‘. a' (&)e cos i + e sin 0 k

Thus, we obtain for the longitudinel componcnt D(e) of E(e), in

which we are chiefly intercsted,

(39) D(e) = ;j p a'(Z) cos 0 & o dz-p | uls va'(y) cos 0 +v cos 6
5 S

+ w sin 0) e a0 A

To continue, wc rcquire formulae which express the
infinitesimal behaviour of the velocity componcnts in the ncigh-
bourhood of the lcading cdges. Confining oursclves to star-

board we scc that cquation (i) yiclds, for fixed x =£ and small e

Ag) RA—2E)

A(E) ) ’
,,’Ex(&, \/E(bj E(a) + & Cxp (18)]2 \/-Qa(é;)e cxp (i6)
al &
)

(L;.O) us= = A %) . sin-@-+o(l for O < c
2a (&) vE ) JE) %

or

and similarly

(41) \/zf__ﬁ‘L\/f(Q] ED(JJ 1 51n-+ oG)for c L ELe

Again, the unbounded components of v and w

/depend ..
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depend only on the valuc of the integrands near the upper liait
x = & of the intcgrals in (J.;.). Thus, we may replace these
integrals by

ﬁj A(E) a.(t_)g,_(t_)_ it skl -A(E)\/E(EJJZ-E(QDQ a(t)a' (6) .,

a(g)a' (&) E(+)] ? a(z) a'(g) JE(T)]?—_F

for 0LE {co and co<i_-.,‘ <c, rcspectively., Integrating with
respect to t, and then differentiating with' respect to M, we

obtain the following expressions for v and w

A(g)

42) v = - R 8 sin g+ o
a(g)a' (&) = (2] n? ( Jgan ; OQ)

- ; ; i6
for O<¢,(co, since M = a(g) + ge™ » a8 before, For the same case,

(13) “a@)t) Ej@m - G) -—-Q:/JF) ucos-m(/_)

Similarly, for c< E<o

y o A E 108k
(1) - JE<>J B@]* Lewng (f)

W= - AL) La(a -— 5*21 s-Q ()
2t () S/oa () B e

e may sumarise (40) - (44) in the following formrluc

N ¥as]

U5) u=-c) x atn ~?: & o( 1) W 5 gl 1 a4
- Ve, cat (L)

G)
s 2 e

S

where Ag&'] i Gt
"o ECce
V2a.(8) &

2O BT for ot
J2a (&) )

By Bernoulli's equation

o .
p=P+3 p Ilf”-(Vﬂl)d - v2 - sz

where P is the pressure at infinity, and so

(16) e(®) =

D) e
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TN . L A0 IS PR L)
@ reet o B (e o) oo )
B &)
Substituting the values of wu, v, w, and p from (45)
and (iﬂ) in (39), and taking into account the contributions from

both port and starboard, we obtain

D(e) = 2 G(5) 2{31; ]_7 s:i.n2 -E- 4 ‘ . A ‘&t (Ef,) co
PJ:E ] f_.;._ ( 2 [a’ (L;)J._

@

& sln% (-—a' (LD) gin % cos O + sin % cos 6 = ! cos -,?- sin Eade - 0(1)
s ¥ (= Y. o £
a (t:) a (‘::)

c
= 2p E}(%,)Jg a! ((_.,) dg (—«g sin” -S: cos@--—l——é sin2 g) ag «+ 0(1)
0

Integrating

C

2 e ;
(48) D(e) = 2xp E——)-]—G'(() (f’“—zgé)] - 1>c1(= +0o(1)

The suction force D_  as defined above equalsf - lim D(GD.
(=3
E=3 0

Also, since we are dealing with the limiting case of wings of small

(0]

aspect ratio, wc may assumc that El' (E)]g is small comparcd wilth
1. (For a simgle swallow tail wing a' () = tany is proportional
to the aspcct ratio, for given o/c:o.)
Hence

2
49) DS & 2% %%* dg

For a simple swallow tail wing, the formuls bocomes

o]

c
(50) D% - —;—«npvz ai 0,2 + 'JtpV2 c.2 tan ¥ E&(u)] 2

C
o}

the valuc of the induced

drag obtaincd with the aid of this formula agrecs with the

F'or the special casc of a delta wing

o

result given in ref.1. TFor the general casc, the sccond in-

tegral in (50) can  be evaluated numerically, as before.,

= 0000 000===~
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