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ABSTRACT 

G-quadruplexes (G4-DNA) are a class of secondary structures formed from 

Guanine rich sequences. In recent years these structures have been implicated 

in both telomere maintenance and oncogene expression, and have been shown 

to be abundant in upstream promoter regions and at telomeric ends. 

The mutagenic properties of oxidative stress on DNA have been widely studied, 

as has the association with carcinogenesis. The oxidation of deoxyguanosine to 

8-oxo-2’deoxyguanosine (8-oxo-dG) is the most common result when DNA is 

under oxidative stress and as such, the G-rich sequences that form G-

quadruplexes can be viewed as potential “hot-spots” for DNA oxidation. We 

propose that oxidation may destabilise the G-quadruplex structure, leading to its 

unfolding into the duplex structure, affecting gene expression. This would imply 

a possible mechanism by which oxidation may impact on oncogene expression. 

This project used both in silico and in vitro methods to observe the effect of 

oxidation on the G-quadruplex structure and the consequences in oncogene 

expression, using two biologically relevant G-quadruplex structures, those found 

in the promoter regions of the proto-oncogenes c-Myc and c-Kit as proof of 

concept. 

Molecular dynamics (MD) simulations were performed (isothermic, isobaric 

500ns unrestrained simulation in explicit solvent and counterions) on the c-Kit 

and c-Myc G-quadruplex structures with and without 8-oxo-dG incorporated into 

the central tetrad. FRET experiments were performed on these same 

structures, observing the conformation of sequences known to form G-

quadruplexes under near physiological conditions and subjected to oxidative 

stress, through Fenton chemistry. Gene expression data analyses were also 

performed to evaluate the prevalence of different G-quadruplex forming motifs 

(GQMs) in genes affected by oxidation. 
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Although no relevant information was gained from the FRET experiments, the 

MD results constitute the longest simulations of this type performed on the c-

Myc and c-Kit G-quadruplex structures published to date and predict the high 

stability of these structures under normal physiological conditions. They also 

clearly demonstrate a destabilising effect of oxidation on G-quadruplex 

structures, with the extent of the effect dependent on the structure oxidised.  

Furthermore, gene expression data analysis showed that genes whose 

expression is significantly altered when subjected to oxidative stress are 

statisticallymore likely to contain a GQM than the remainder of the genome, 

through the use of significance testing. 

These findings demonstrate a differential effect of oxidation on G-quadruplexes, 

likely dependent on other known characteristics affecting G4 stability such as 

loop length and sequence. Results also point towards this mechanism affecting 

gene expression. This is suggestive of a novel route for oxidation mediated 

carcinogenesis, through upregulation of oncogene expression or possibly 

downregulation of tumour suppression genes.  

 

Keywords:  

G-quadruplexes; Oxidative Stress; oncogene expression; Carcinogenesis; c-

Myc; c-Kit. 
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1 Literature Review 

1.1 Introduction to G-Quadruplexes  

The recognition that DNA sequences rich in Guanine form stable structures has 

its origins 50 years prior to the Watson-Crick double helical structure (1). In 1910, 

Bang reported that highly concentrated solutions of Guanosine monophosphate 

(GMP) formed a gel (cited in (2) (3) & (4)). Gellert and co-workers (3) expanded 

on this by inferring that the aforementioned phenomenon was due to helix 

formation by the Guanosine nucleotides. The authors used X-ray 

crystallographic data to demonstrate that GMP self-associated into a tetrameric 

arrangement described as a G-quartet. 

This paper demonstrated what has become known as G-quadruplexes (G4-

DNA; G4). These refer to four-stranded nucleic acids formed by the association 

of four guanine bases to form a G-tetrad; these tetrads then associate vertically 

to form G-quadruplexes and are linked together by several loops, dependent on 

the number and orientation of the strands (5) (Fig. 1-1). 

 

Figure 1-1: Chemical representation of a G-tetrad (left); and schematic representation of a G-
quadruplex consisting of three G-tetrads (right)

 (5)
. 
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This phenomenon was thought of for many years as an exasperating artefact of 

GMP and similar solutions or as a futile intellectual challenge (6) in fact, the 

intractability of Guanosine derivatives in the laboratory is notorious, and is 

supported by a list of at least 30 Guanosine derivatives that form a gel in 

aqueous solution (reviewed in (4)). However, since the 1960s, the tendency for 

guanine-rich oligonucleotides to form polymers based on the association of 

these nucleotides into quartets and of these quartets into quadruplexes has 

been widely studied (2). The emerging evidence of G-quadruplex structures in 

vivo and the association with several key biological processes in humans, 

demonstrate the importance of these structures. 

Studies have also shown that the self-association of G4-DNA is an important 

phenomenon in other organisms, being present in the form of crystalline plates 

in specific surface cells, known as guanocytes, of certain spiders which can be 

retracted to instantly change the spider's colour (7). Guanine crystals are also 

found in the eyes of certain deep-sea fish and are used to focus light to the 

photoreceptors (8). 

These structures have also emerged as an important object of study in 

nanotechnology and supramolecular chemistry (9) (discussed in section 1.3). 

This chapter will present the background information required to understand 

and interpret subsequent chapters. A summary of the unique properties of G-

quadruplex structures, their biological relevance, applications and uses will be 

discussed. Chemical and ligand-based modification of G4-DNA will also be 

discussed, highlighting the work carried out in the field of oxidation of G-

quadruplexes. This chapter will also present the different methods used to 

investigate G-quadruplexes and will conclude with the aim and objectives of this 

project. 
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1.1.1 G-Quadruplex Structures 

The basic unit of G4-DNA is the G-tetrad, consisting of four guanines in a co-

planar arrangement held together by eight Hoogsteen Hydrogen bonds (10) (11) 

(12) (Fig. 1-1). 

Hoogsteen base pairing differs from the traditional Watson-Crick base pairing in 

the atoms involved in Hydrogen bonding and in the number of Hydrogen bonds 

between the nucleotides (13)(Fig. 1-2). 

These Hoogsteen Hydrogen bonds were first observed in crystal structures of 

monomeric Adenine and Thymine base derivatives (14) and, in the case of G-G 

base pairing, consist of Hydrogen bonds between the N7 and O6 of one face 

and the N2 and N1 of another face (10) (12) (Fig. 1-2). As such, these Guanine 

bases are simultaneously Hydrogen bond donors and acceptors (10) (11).  

 

Figure 1-2: Comparison of Watson-Crick base pairing (G-C) and Hoogsteen base pairing (G-G). 

The lack of a third Hydrogen bond between two guanines involved in Hoogsteen 

base pairing could lead to a conclusion that these are less stable than bases 

involved in Watson-Crick base pairing. However the fact that, in G-tetrads, 

Hoogsteen base pairing occurs between four nucleotides, with a total of eight 

Hydrogen bonds and that the energy of these bonds is increased from 0.22 eV 

in B-DNA to 0.42 eV in G-quadruplexes, explains why these Guanine-rich 

sequences are capable of forming stable secondary structures (4). 
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G-tetrads associate vertically to form secondary structures - G-Quadruplexes 

(15); these consist of two to five G-tetrads formed by four strands 

(tetramolecular), two strands (bimolecular), or one strand (unimolecular or 

intramolecular) (16).  

Guanines (as all other nucleotides), reduce the area of the hydrophobic 

nucleobase exposed to the natural polar environment of the cell, by associating 

and stacking. In G-quadruplexes this stacking contributes substantially to 

stability (17). However, due to the displacement of electrons caused by the 

attraction of the tetrads, G-quadruplexes are neither perfectly symmetric nor 

planar (10). 

The association of tetrads in the G-quadruplex structure is an additional source 

of stability as the increase in the number of tetrads is associated with an 

increase of the association rate constant by a factor of 10 when comparing a 

two tetrad complex to a three tetrad complex (17). 

The G-quadruplex structure is further stabilised by a network of water molecules 

present in various grooves, ordered around Hydrogen bond donors and 

acceptors (N7, O6, N2 and N1) and interacting with these (18). 

The ionic environment of G4-DNA is also important to stability. Due to the 

arrangement of the tetrads, the O6 atoms are orientated towards the centre, 

forming a negatively charged central channel. Furthermore, the space between 

two adjacent tetrads is lined by four O6 atoms from one tetrad and four O6 

atoms from the tetrad below or above it (19). This cavity located between tetrads 

must be neutralised with a cation. The nature of the cation used has a dramatic 

effect on conformation and stability of the quadruplex (20). It has been shown 

that monovalent cations, such as sodium, potassium and lithium, amongst 

others, have the most stabilising effect on intramolecular G-quadruplexes. 

Within these cations, the order, in terms of stabilising effect, in decreasing value 

is Na+ > K+ > Li+  (21) (11) (22). This is potentially due to potassium having the ideal 

characteristics to effectively coordinate the carboxyl Oxygen atoms, positioned 
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dead centre of the cavity (10) (19). Due the enhanced stability offered by K+ ions, 

both in vitro experiments and in silico simulations of G-quadruplex structures 

are generally performed using this cation. 

Bioinformatics analysis of the Human genome (NCBI build 36), have identified a 

total of 379,000 sequences capable of forming G-quadruplexes, i.e. G-

Quadruplex forming Motifs (GQMs) (23) (24). This, in itself, is not significant as it is 

a third less than would be expected by chance and may even suggest that there 

may be evolutionary pressures against G-quadruplex formation (25). However 

what is significant is that the vast majority of GQMs are located at telomere 

ends and in upstream promoter regions of genes (24) (26).  

Tetramolecular quadruplexes (those that form from the association of four 

strands) can adopt five different structures with differences in strand orientation 

and associated loops and glycosidic torsional angles of the guanines involved in 

tetrad formation (Fig. 1-3). As, independently of strand orientation, the 

Guanosines involved in tetrad formation must maintain the same orientation to 

form Hoogsteen hydrogen bonds with the adjacent Guanosines, they either 

form syn or anti glycosidic angles with the backbone (27). The following figure 

denotes the simplest topologies that a G-quadruplex can form, by the self-

association of four strands each containing a run of three Guanosines (10). 
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Figure 1-3: Schematic representations of the different structures tetramolecular G-
quadruplexes can adopt, denoting strand polarity and associated glycosidic torsional angles of 
the guanines. Adapted from 

(10)
. 

Bimolecular G4-DNA can also adopt five different conformations and are formed 

by the association of two strands that each contain two runs of four consecutive 

guanines. Figure 1-4 denotes the conformations a bimolecular complex can 

adopt when two strands, each with four consecutive guanines, self-associate.  

 

Figure 1-4: Schematic representations of the different structures bimolecular G-quadruplexes 
can adopt, denoting strand polarity and associated glycosidic torsional angles of the Guanines. 
Adapted from 

(10)
. 
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a 

Of particular interest for this project are the unimolecular/intramolecular G-

quadruplexes, i.e. those formed by the self-association of one strand. These are 

ubiquitously found in upstream promoter regions that are associated with gene 

regulation (26) (29). Sequences capable of forming intramolecular G-quadruplex 

structures contain, necessarily, runs of three consecutive guanines interspersed 

with a variable number of nucleotides (up to seven), corresponding to the loops 

(23) (24) (26). This property was exploited by Huppert & Balasubramanian (2005) (24) 

to formulate a motif that represents sequences capable of forming 

intramolecular G-quadruplexes (Fig. 1-5). It should be noted that both the 

template and complementary strands containing GQMs can form G-

quadruplexes, with equivalent consequences (30).  

 
 

G3+N1-7G3+N1-7G3+N1-7G3+ 

 

C3+N1-7C3+N1-7C3+N1-7C3+ 

Figure 1-5: G-Quadruplex motif as used by Zhang and co-workers
 (31)

 (left) and example of a 
unimolecular G-Quadruplex (right). 

Note: N = any nucleotide. Colours of the nucleotides in the motif correspond to 

the colours of the strands in the structure on the right. 

Using this motif, which identifies G-quadruplex forming motifs on both the 

template (Fig. 1-5a), and complementary strand (Fig 1-5b), an online database 

has been constructed, listing potentially G-quadruplex regulated genes, i.e. 

genes which contain a G-quadruplex motif upstream of one or more promoters 

(31). This database, named Greglist (database of G-Quadruplex Regulated 

Genes (http://tubic.tju.edu.cn/greglist/)), lists 10,277 Human genes with 

promoter GQMs within 1000 base pairs of the transcription start site (TSS) 

corresponding to 32.6% of all genes. This database also calculated an average 

b 
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of almost 2 (1.93) GQMs per gene with an average length of the GQMs of 

approximately 30 (29.19±13.57). 

However, it should be noted that more defined, i.e. more specific algorithms 

may yield more useful information on the relative distribution of different classes 

of G-quadruplex structures in upstream promoter regions (32). To this end, a 

recent study by Todd and Neidle (2011) (33) has used bioinformatics analysis of 

the Human genome to categorise GQMs and to map their distribution. 

Furthermore, the research group of Jean-Louis Mergny are currently working on 

a new algorithm for detecting GQMs which reduces both the false positives and 

false negatives observed using the standard algorithm (results not published). 

The association between G-Quadruplexes and gene regulation will be 

discussed in section 1.1.2. 

Unimolecular G4-DNA can adopt a variety of different structures, dependant on 

strand orientation and associated loops and glycosidic torsional angles of the 

Guanosines involved in tetrad formation (10). 

 

Figure 1-6: Different topologies adopted by unimolecular G-quadruplexes. Adapted from (10). 

Note: L=lateral loop; E=External (double chain reversal) loop; D=diagonal loop; 

*=any form of loop. 
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As can be observed in Figure 1-6, the topologies adopted by unimolecular 

complexes are more varied and complex than those adopted by bi- and 

tetramolecular quadruplexes. This is due to the additional linking nucleotides in 

the loops (34). 

As with bimolecular complexes, these structures have acquired a vulgar 

terminology based on the loops: chair denotes a structure with only lateral loops 

(Fig. 1-6a), basket denotes a structure with lateral and diagonal loops (Fig. 1b) 

and dog-eared denotes a chair conformation with one double chain reversal 

loop (Fig. 1-6d). 

The conformations are highly dependent on the length of the loop sequences; 

short loop sequences will prevent diagonal loops but can accommodate both 

lateral and external loops. As such, shorter loop lengths predispose G4-DNA to 

form parallel stranded structures (35) (36). 

Comparing the relative stability of tetra-, bi- and intramolecular quadruplexes is 

not a simple task, principally due to the different molecularities associated with 

the different structures (10). However several studies (22) (37) (38) (39) have 

contributed to the conclusion that tetramolecular structures are the most stable 

form of G-Quadruplex and intramolecular structures are the least stable, with 

bimolecular complexes having intermediate stability. It has also been shown 

that parallel conformations are more stable than antiparallel conformations (40).  

Thus, simplistically, an all parallel tetramolecular structure is the most stable of 

form G4-DNA and intramolecular structures tend to be the least stable. However 

it should be noted that the conformations presented in this section are simplistic 

models, with in vivo G-quadruplexes presenting a far more varied range of 

conformations. Furthermore, specific phenomena that affect the stability of 

promoter G-quadruplexes will be discussed in section 1.1.3. 
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1.1.2 Biological Relevance of G-Quadruplexes 

When considering the function of G-quadruplexes in biology, it is important to 

consider the stability of these structures in a cellular environment. In contrast to 

many other DNA secondary structures observed in vitro (41), G4-DNA is generally 

stable, with melting temperatures frequently observed in intramolecular G-

quadruplexes of over 37°C under near physiological conditions (36) (42) (43). 

As stated previously, bioinformatics analysis has identified a large amount 

GQMs at telomeric ends and in upstream promoter regions. A lot of evidence 

has accumulated, through mainly in vitro methods, on the structure and function 

of G4-DNA in the human genome (44) (45). In recent years, in vivo evidence has 

also been accumulating, pertaining to the stability, structure and function of 

these structures at telomeric ends (46) and in upstream promoter regions (32).  

1.1.2a Telomeric G-Quadruplexes  

Human telomeric DNA, located at the end of chromosomes, consists of several 

thousand bases with a high proportion of Guanosines, with tandem repeats of a 

5’-TTAGGG-3’ motif, which is a GQM. It terminates in a single-stranded DNA 

overhang of approximately 200 nucleotides, which, containing GQMs can fold 

into a variety of different G-quadruplex structures (44) (47). These ends also tend 

to attach specific DNA-binding proteins, such as hPOT1, forming a complex 

which holds the telomeric ends stable and protects them from chromosomal 

fusions and DNA damage responses. If this complex is disassembled however, 

these telomeric ends are recognised as DNA damage and the cell undergoes 

activation of DNA repair pathway and apoptosis (48).  

Another important phenomenon is that of base adding by the hTERT 

component of telomerase, a ribonucleoprotein complex responsible for 

maintaining telomere length by adding more bases to the receding telomeric 

tail. This phenomenon evades cellular senescence and death and telomerase 

activity is widely associated with cancer and its function is now considered as a 

good anticancer strategy as cancer cells tend to have shorter telomeric lengths 
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and will therefore require more active telomerase function to survive (15) (49). 

Indeed, 85% of the most common cancers present increased telomerase 

activity (50). 

Telomeric G4-DNA, when in a folded conformation, prevents telomerase from 

adding bases to the tail. It has been found that many known telomerase 

inhibitors are, in fact, G4-DNA ligands which stabilise the folded structure which 

when applied cause cellular apoptosis, suggesting a possible role as 

therapeutic agents (51). Unresolved G-quadruplex structures will also inhibit the 

transcription of these sequences, whose product is involved in chromatin 

organisation at the telomere, furthering the importance of G-quadruplexes and 

ligands that bind to them (15). 

In addition, G-quadruplex structures at the end of telomeres have also been 

shown to increase genomic instability by intervening normal recognition of 

telomerase-associated proteins with their targets (52) (53) (54). 

In vivo evidence for telomeric G-quadruplexes is largely based on investigations 

into deficiencies in the RecQ family of DNA helicases, specifically WRN and 

BLM, whose deficiencies cause Werner’s and Bloom’s syndromes, respectively 

(55).  

The RecQ family of helicases are essential for maintaining genomic integrity 

and mutations in these enzymes are associated with elevated predisposition to 

cancer and premature ageing (56) (57) (58).  

WRN helicase plays a critical role in repairing damaged DNA, acting as both 

helicase and exonuclease. It is thought that WRN unwinds DNA and removes 

abnormal DNA structures that have been generated, maintaining genome 

structure and stability. This protein has also been shown to play a role in 

transcription and replication (57) (58). WRN helicase has also been associated 

with telomere maintenance and stability, including in the transcription of 

telomeric-repeat-containing RNA (46). Werner syndrome (WS) is characterised 

by premature aging, with a variety of associated maladies, including an 
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increased incidence of various cancers (59). This has been demonstrated as due 

to the loss of WRN helicases, which causes global alterations in expression 

analogous to the ageing process (60).  

BLM helicase also plays a role in replication, transcription and in maintaining 

genome stability and structure. However, the role of BLM in maintaining 

genome stability differs from that of WRN; BLM also plays a role in suppressing 

chromatid exchanges, such as translocations (58) (61), by resolving double strand 

breaks. Bloom syndrome (BS) is characterised by immunological and 

developmental abnormalities as well as an increased incidence in the majority 

of forms of cancer (62).  

WRN and BLM have also both been demonstrated to preferentially unwind G-

quadruplexes and it has been suggested that this is due to the RQC domain 

that these helicases contain (55). 

A study by Johnson and co-workers (2010) (55), demonstrated that there was a 

significant association between genes upregulated in WS or BS cells and genes 

with GQMs. The authors came to the conclusion that the RecQ helicases WRN 

and BLM regulate transcription by resolving G-quadruplex structures. The 

authors further hypothesised that upregulation might be due to the quadruplex 

structures being located in repressor binding sites as such, nucleosomes, for 

example, which bind to duplex DNA would be excluded in the presence of an 

unresolved G4-DNA structure, increasing transcription. However it should be 

noted that despite the global trend, several proto-oncogenes that had previously 

been found to be downregulated in the presence of G-quadruplexes were also 

found to be downregulated in WS and BS cells, such as c-Myc and c-Kit. 

Although this project concentrates on G-quadruplexes in upstream promoter 

regions, it is important to recognise the importance of these structures in 

telomere maintenance and function. The findings in this report can be 

generalised, to some extent, to G-quadruplexes in telomeric regions. 
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1.1.2b G-Quadruplexes in Upstream Promoter Regions  

The phenotype, that is to say, the biochemical characteristics of a cell is 

determined by the genotype, i.e. the genetic information stored in the form of 

DNA. According to the “central dogma of molecular biology” (63), this 

transformation of information occurs by transcription of DNA to RNA and then 

translation of RNA to proteins. 

Transcription involves the synthesis of an RNA strand, complementary to the 

DNA strand, from which it originates, by the DNA-dependent RNA polymerase 

II. As stated previously, according to Greglist (31), 32.6% of genes in the Human 

genome contain GQMs in their upstream promoter regions. Furthermore, the 

GQMs found within these regions demonstrate a strong positional bias towards 

the transcriptional start site (TSS) (26) (29). These characteristics are analogous to 

those observed in traditional transcription factor binding sites (64). Indeed, 

bioinformatics analyses have demonstrated that GQMs in upstream promoter 

regions can, in some cases, be close to (65) or even overlap with (66) traditional 

transcription factor binding sites. Suggesting a possible mechanism by which 

GQMs may play a role in transcription factor binding. Studies have investigated 

several promoter regions of genes that contain GQMs, demonstrating that, for 

instance, the promoter regions of c-Myc (67), BCL2 (68) and c-Kit (69) form stable 

G-quadruplex structures.  

An important aspect to consider when investigating G-quadruplexes present 

within the genome is their stability, as these structures will be subjected to a 

variety of different factors which will affect their stability. 

In the telomere, the single stranded overhang enables the formation of the G-

quadruplex structure. However, G4-DNA within the genome must always 

compete with the duplex or B-DNA form. These two forms therefore exist in an 

equilibrium that is sensitive to a variety of external factors. 

When considering the formation of these structures within contiguous B-DNA, 

one must also take into account the effect of flanking bases, as DNA G-
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quadruplexes in promoter regions will be flanked by numerous bases. However 

the majority of in vitro evidence of the formation of G-quadruplexes is in short 

sequences with few, if any, flanking bases. A study by Arora and co-workers 

(2009) (70), describes the intuitive effect of the number of flanking bases on 

duplex/quadruplex competition in the c-Kit promoter G-quadruplex, with the 

number of flanking bases proportionate to a decrease in the stability of G-

quadruplexes favouring, therefore, the duplex form. 

For quadruplexes to form in this unfavourable environment, a variety of 

phenomena are thought to play a role in promoting the formation of these 

structures. One such factor thought to play a role in the formation of G-

quadruplexes from B-DNA is the phenomenon of DNA Breathing. This process 

is a transient conformational fluctuation that involves the local denaturation of 

double stranded DNA to form a bubble of a few tens of base pairs within the 

chromosome (71) (72), possibly supported by single strand binding proteins (72). 

DNA breathing is thought to play a role in several physiological processes such 

as the initiation of transcription and replication (73). It is therefore a possibility 

that this phenomenon plays a role in the formation of G-quadruplexes in 

promoter regions. 

It is also important to note that the C rich, complementary strand to GQMs are 

often prone to the formation of a quadruplex structure themselves, the i-motif.  It 

is thought that during G-quadruplex folding, the complementary strand also 

folds into the i-motif structure, in some cases, possibly increasing the stability of 

the G-quadruplex structure. Although some evidence exists that these 

structures are biologically active, the evidence is scarcer than with the G-

quadruplex, possibly due to the i-motif’s reduced stability a physiological pH 

compared with G4-DNA (74) (75). 

In vitro investigations into quadruplex structures are mainly performed in dilute 

solutions with low concentrations of DNA. This precludes the effects of 

molecular crowding that occur within a cell, as biomolecules must function in the 

presence of high concentrations of other biomolecules. Investigations into the 
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effects of molecular crowding (76) (77) (78) (79) (80) have shown that this phenomenon 

has substantial effects on the conformation and stability of G-quadruplexes, with 

the molecular crowding agents increasing the stability of the G-quadruplex 

structure and/or decreasing the stability of the duplex structure. 

Another important determinant of the stability of G-quadruplexes in promoter 

regions and, therefore, an important factor in the quadruplex/duplex equilibrium 

is loop length; with longer loop lengths (81) associated with decreased stability of 

the quadruplex structure and increased stability of the duplex form. Loop 

sequence is also suspected to be a determinant of stability, however there is no 

clear rule as to which nucleotide is preferred (82) (83) (84). 

Perhaps the most important and most studied factor that affects the stability of 

the G-quadruplex structure is the effect of stabilising and destabilising agents, 

such as proteins and small molecules. Investigations into the use of synthetic 

agents will be discussed more fully in section 1.2.1; however there are a 

number of naturally occurring molecules that interact with G4-DNA, with direct 

consequences on their stability. 

In vivo evidence for the formation of G4-DNA in upstream promoter regions 

originates from investigations into loss-of-function mutations in the Fanconi 

anaemia complementation group J (FANCJ) family of DNA helicases which 

provided a direct link between GQMs and genomic instability (85) (86). These 

distinct helicases were found to be of high importance for the stability of G-

tracts in the genome. This was first detected in C. elegans; as worms defective 

in DOG-1, the FANCJ orthologue, presented an increased incidence of 

deletions in regions of the genome with runs of consecutive Guanosines (87) (88), 

and when sequences that contained GQMs were inserted into the genome, 

these were removed in worms defective in DOG-1 (89). 

FANCJ helicases have been associated with Fanconi anaemia (FA), which is a 

heritable cancer-susceptibility disorder that is characterised by sensitivity to 

DNA-crosslinking agents (90). A study by London and co-workers (2008) (91), 
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demonstrated the importance of FANCJ helicases in the unwinding of G-

quadruplexes through in cellulo investigations on cell lines lacking FANCJ 

helicases, which suffer a large number of deletions at GQM sites. Additionally, 

these authors used in vitro studies to demonstrate that FANCJ preferentially 

unwinds G-quadruplexes over B-form DNA, suggesting that FANCJ helicase 

has an important role in resolving folded DNA G-quadruplexes that, if not 

resolved, will result in deletions of these sequences in the genome. 

Furthermore, a study by Cogoi and co-workers (2008) (92), demonstrated that 

three nuclear proteins, hnRNP-A1, Ku70 and PARP-1, bind to the G-quadruplex 

structure of k-RAS, suggesting a possible role of these nucleoproteins in G-

quadruplex associated transcriptional control. A further study by this research 

group (93) demonstrated that hnRNP-A1 also binds to the G-quadruplex 

structures in the c-kit promoter. The authors also showed that hnRNP-A1 

unfolds the G-quadruplex in k-RAS, increasing transcription by converting the 

structure to the duplex form. 

More recently, studies on Pif1 helicase in yeast and human cells have shown 

that this helicase preferentially unwinds G-quadruplexes and cells deficient in 

this helicase show a slowed replication and stimulated DNA strand breaks (94) 

(95). Pif1’s role in unwinding has also been shown to play an important role in in 

preventing G-quadruplex associated genomic instability (96) 

Furthermore, it has also been shown that nuclease hypersensitive sites, which 

are indicative of non-duplex DNA structure, in the human genome, that is to say 

sequences highly susceptible to deletions from nucleases, have a high 

prevalence of G-quadruplexes (approximately 230 times higher) than the rest of 

the genome (26). The nuclease hypersensitive element III (NHE III) found 

upstream of the proto-oncogene c-Myc, is an example of a sequence containing 

GQMs and susceptible to nuclease deletions (67).  

There are several models that describe how G-quadruplexes could control gene 

activity; one is that expounded by Johnson and co-workers (2010) (55) 
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(described in the previous section), in which unresolved G-quadruplex 

structures upregulate transcription by excluding repressors. Another model has 

been associated with a large number of proto-oncogenes, including c-Myc; in 

this model, the presence of an unresolved G-quadruplex structure silences the 

gene by impeding transcription (Fig. 1-7). 

 
Figure 1-7: Model for the regulation of gene expression by G-quadruplexes in upstream 
promoter regions. Adapted from (26). 

Another model for G-quadruplex–associated regulation of transcription was 

demonstrated in vivo by Hershman and co-workers (2008) (97) in S. cerevisiae. 

These authors demonstrated a model that can be considered a hybrid of the 

previous two models described; using a highly selective G-quadruplex ligand, 

N-methyl mesoporphyrin IX (NMM), which stabilises the structure and 

compared the expression of genes with GQMs in the open reading frame (ORF) 

or upstream promoter region with and without treatment with NMM. They also 

proceeded to compare GQM location and histone occupancy.  

These authors hypothesised that when G-quadruplexes occur in the promoter 

region upstream of the TSS, they exclude the action of histones, which bind to 

B-DNA and thus upregulating transcription. However, if unresolved 

quadruplexes occur after the TSS, i.e. within the open reading frame (ORF), the 

structures impede the transcription complex from progressing, thus 

downregulating transcription. 

As stated previously, G-quadruplex forming sequences are present in a large 

number promoters of genes such as retinoblastoma susceptibility (98), diabetes 
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susceptibility (99), vascular endothelial growth factor (VEGF) (100) and fragile X 

mental retardation genes (101) (102) (103) and this includes those of many proto-

oncogenes (104), with many of these forming stable G-quadruplexes in vitro, such 

as c-Myc (67), BCL-2 (68), c-Kit2 (69), RET (105) and k-Ras (106), amongst many 

others. It appears likely that these structures play a role in the activation of 

proto-oncogenes to oncogenes by increasing their expression, when unfolded. 

This suggests a possible role of G-quadruplexes in oncogene regulation. This 

topic has been extensively studied. A review by Brooks and co-workers (2010) 

(32) categorised several well-known oncogenes with G-quadruplexes in the 

promoter region in accordance with the “hallmarks of cancer” (107) (Fig. 1-8). 

 

Figure 1-8: Oncogene associated G-quadruplexes categorised in accordance with the 
"hallmarks of cancer"

 (107)
. Adapted from (32). 

Note: although not represented, the authors also identify c-Kit as being 

associated with self-sufficiency (32). 

As can be observed from the above figure, these quadruplexes present very 

distinct conformations, making them potential drug targets for anticancer 

therapy (108) (109).   

Of special interest to this project is the association of G-quadruplex structures 

with c-Kit and c-Myc expression; these are discussed in the following sections. 
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G-Quadruplex Mediated Regulation of c-Myc Transcription 

The result of c-Myc expression is a protein which functions as a critical 

transcription factor that regulates the expression of several genes associated 

with cellular proliferation, differentiation and apoptosis (110) (111). Its expression is 

tightly controlled and the association between alterations in the regulation and a 

significant number of human cancers is well documented (110) (112). This, in 

conjunction with the relatively short half-life of the protein product (113), make c-

Myc transcriptional control an attractive target for anticancer 

chemotherapeutics. The activation of this proto-oncogene is a complex 

mechanism involving multiple promoters and transcription start sites and can 

arise from a variety of different mechanisms, including by simple upregulation of 

transcription (113).  

An important element in c-Myc activation is the previously mentioned NHE III 

which plays a role in allowing access to the promoter by chromatin structure 

alteration (114), being responsible for between 75 to 85% of c-Myc transcription 

(115) (116).  

NHE III is a C rich, 27 base pair long sequence and is located approximately 

100 bps upstream of the P1 promoter (113). It has been demonstrated that the 

complementary strand, which is G rich, is capable of forming a variety of 

different G-quadruplex structures at near physiological conditions (28) (117) (118) 

(119). This variety is due to the NHE III sequence containing five runs of three or 

four contiguous guanines separated by a single A or T. However the most 

convincing evidence has demonstrated two parallel-stranded G-quadruplex 

structures within the c-Myc NHE III region (67) (120); one formed by four 3’-end G-

tracts is the kinetically favoured structure, while the thermodynamically favoured 

structure is that formed by two 3’ – and 5’-end G-tracts, with a 6 nucleotide 

central loop. The former structure has been determined by NMR spectroscopy 

(67) (Fig. 1-9). 
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Figure 1-9: Schematic Representation of the G-quadruplex structure found in the NHE III of c-
Myc. Adapted From (67). 

Note: to accurately determine the structure, two G-T mutations at positions 14 

and 23 were performed to avoid a mixture of loop isomers. 

The c-Myc G-quadruplex structure represented in Figure 1-9 is characterised by 

three G-tetrads (top tetrad: G9, G13, G18, G22; central tetrad: G8, G12, G17, 

G21; bottom tetrad: G7, G11, G16, G20). These tetrads are formed by four 

parallel DNA strands, linked by three double-chain reversal side loops, two of 

which are single nucleotide loops (T10 and T19) and one which is a double 

nucleotide loop (T14, T15) (67).  

The NHE III region has been shown to repress transcription of c-Myc when in a 

non-canonical state (121). This was then shown to be due to G-quadruplex 

formation by the use of a G4-DNA binding ligand, TMPyP4, which stabilised the 

G-quadruplex in the NHE III region and decreased c-Myc expression (122). On 

the other hand, NM32-H2, a metastases suppressor protein has been shown to 

resolve the G-quadruplex structure, leading to c-Myc activation (123). 

The wide research into the mechanism for NHE III silencing of c-Myc 

transcription led to the formulation of a model that describes the way in which 

the NHE III G-quadruplex can control transcription (118).  
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The chair G-quadruplex structure, represented in Figure 1-10, is known as the 

paranemic form, which is not transcriptionally active. This can be converted into 

the transcriptionally active form by the action of NM23-H2. The cationic 

porphyrin derivative TMPyP4 however, stabilises the G-quadruplex, silencing 

expression of c-Myc (118) (124). This occurs due to the inability of transcription 

factors such as cellular nucleic acid binding protein (CNBP) and heterogeneous 

ribonucleoprotein K (hnRNPK) to bind to the NHE region when it is in the G-

quadruplex form, thus preventing transcription (113). 

 

Figure 1-10: Model for the activation and repression of c-Myc expression by stabilisation of a G-
quadruplex structure within the NHE III region with the use of ligands. Adapted from (118). 

This general model, although not representative of the global trend (55), is 

ubiquitous within G-quadruplex regulation of oncogene expression, such as c-

Kit (69), c-Myc (67) and k-Ras (106).  

The role of G4-DNA in both telomere maintenance and gene regulation is still 

relatively novel, with in vivo and in cellulo evidence in human cells only being 

demonstrated in the last few years. These structures are also an attractive 

target for anticancer chemotherapeutics as many ligands specifically target G-

quadruplexes over canonical DNA. This substantial interest has led to a very 

good characterisation of the biological and biophysical aspects of this structure. 

And it was this and the fact that the c-Myc oncogene is associated with 
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oxidative stress that led to this structure being chosen to be studied in this 

project. 

G-Quadruplex Mediated Regulation of c-Kit Transcription 

The c-Kit proto-oncogene encodes a tyrosine-protein kinase, also known as 

CD117, which regulates key signal transduction cascades associated with cell 

survival, proliferation and differentiation. However, the overexpression of this 

gene is also believed to be associated with the self sufficiency of cancer cells, 

increased in a variety of cancers (32).  

The promoter region of this proto-oncogene is a G-rich sequence capable of 

forming at least two G-quadruplex structures (125) (69). However within these, the 

most interesting structure is an unprecedented scaffold in which a Guanine 

thought to be part of the loop sequence is involved in tetrad formation (125), 

named c-Kit87up, formed from the sequence 

GGGAGGGCGCTGGGAGGAGGG.  

Figure 1-11 represents the NMR elucidation of this structure. This structure was 

selected to be studied in this project due to its structural uniqueness, the fact 

that it has been well studied and that it presents longer loop sequences than the 

c-Myc G-quadruplex. 

 
Figure 1-11: Schematic representation of the c-Kit87up G4 structure. Adapted from (125). 

The c-Kit G-quadruplex structure represented in this figure consists of three 

tetrads (from top to bottom: G2, G6, G10, G13; G3, G7, G21, G14; G4, G8, 

G22, G15), with all guanines in the anti conformation. This structure contains 
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four loops; two of which are single nucleotide double-chain reversal loops (A5 

and C9); one double nucleotide loop (C11, T12) which links two adjacent 

corners (G10 and G13); and one 5 nucleotide long loop (A16, G17, G18, A19, 

G20) which extends to the G15 on the bottom tetrad and twists to enable the 

positioning of G21 and G22 into the central and bottom tetrads, respectively 

(125). 

The model of regulation of this quadruplex has been determined to be identical 

to that of the c-Myc G-quadruplex, discussed in the previous section, as the use 

of G-quadruplex stabilising ligands downregulate c-Kit expression (126). 

Bioinformatics analysis and molecular dynamics simulations have been used to 

suggest that this structure is unique amongst promoter G-quadruplexes (within 

100 bp of a TSS) (127). This, in conjunction with the association with a wide 

variety of tumours, makes the c-Kit87up promoter G-quadruplex an attractive 

target for anticancer chemotherapeutics. Currently, a large effort has been 

placed on the development of small molecules that target the c-Kit G-

quadruplexes. An example of this is the selective down-regulation of c-Kit 

expression in human gastric carcinoma cells by a G-quadruplex binding ligand 

(128). 

1.1.2c RNA Quadruplexes 

G-quadruplex structures have also been demonstrated to form from RNA 

sequences. Indeed, the vast majority of RNA G-quadruplexes have been shown 

to have greater stability in the presence of potassium than their DNA 

counterparts (129). Quadruplex forming mRNAs have been demonstrated as 

intervening in gene expression in both prokaryotes and eukaryotes (130) (131) (132) 

(133) (134) and in telomere maintenance (135), with greater incidence in non-

translating regions (136). 

The principal process by which RNA quadruplexes intervene in expression has 

been demonstrated by several research groups; by Joachimi and co-workers 

(2009), in a variety of mRNAs (129) by Kumari and co-workers (2010) (131), in k-
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Ras mRNA and by Shahid and co-workers (2010) (137), in BCL-2 mRNA. These 

research groups described a model in which unresolved G-quadruplex 

structures contained within mRNAs impede ribosomal interaction thus impeding 

translation. This hypothesis was strengthened by in vivo investigations into 

translation of fragile X mRNA which was increased by the use of G-quadruplex 

destabilising proteins (103). 

However it has also been shown that, in some cases, G-quadruplexes play a 

role in alternative splicing events during transcription. Two examples, both 

relevant in in carcinogenesis, are the GQM in intron 3 of TP53, which modulates 

the splicing of intron 2, inducing the expression of distinct p53 isoforms (138); and 

the GQM in the hTERT gene which, when folded, induces the expression of an 

inactive form of the transcript, downregulating telomerase (139).  

As with DNA G-quadruplexes, RNA G-quadruplexes have been associated with 

oncogene expression, examples being G-quadruplex formed in the 5’ UTR of 

the BCL-2 mRNA (140) and n-Ras mRNA (131). Indicating that the RNA quadruplex 

structure could also be an attractive target for anticancer chemotherapeutics (27). 

1.2 Modification of G-Quadruplexes  

1.2.1 Ligand-G-Quadruplex Interactions 

The association of G-quadruplexes in both upstream promoter regions and at 

telomeric ends with a wide variety of different biological processes, including 

cancinogenesis make these structures attractive therapeutic targets (108). In 

addition, the ubiquity of different ligands that preferentially bind to G4-DNA 

structures over canonical DNA has led to a plethora of research into different G-

quadruplex ligands and their effects on these structures (141).  

The stabilisation of G4-DNA occurs principally through π-π stacking and 

electrostatic interaction of, in most cases, a flat aromatic molecule with the 

folded G-quadruplex structure. This generally occurs through external stacking 

on one of the terminal G-tetrads. This structural feature represents a key 
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difference between the G-quadruplex structure and B-DNA and enables the 

differential interaction with these structures (142).  

Although the interactions between G-quadruplexes and ligands are far less 

understood than those between B-DNA and ligands, it is known that 

“successful” ligands contain a large aromatic surface and are positively charged 

(141). However, other types of G-quadruplex ligands are also under investigation 

based on modified biomolecules such as short peptide nucleic acids (PNA) 

sequences that have been used to target the c-Kit87up G-quadruplex structure 

(143). 

The majority of current anticancer chemotherapeutic agents target DNA and 

although some positive clinical outcomes have been observed in a select few, 

the benefits are counterbalanced by high toxicity and rapidly acquired 

resistance mechanisms (108). G-quadruplex targeting agents provide an 

alternative route for anticancer therapy due to the high potential for differential 

molecular recognition by G-quadruplex specific ligands (54) (141). 

The use of quadruplex ligands in telomerase inhibition of cancer cells, with the 

desired consequence of senescence and apoptosis has shown promising 

results (108) (144). BRACO-19, RHPS4, telomestatin and quindoline derivatives, for 

example, have all been demonstrated to stabilise G-quadruplexes in telomeres 

and induce cellular senescence and apoptosis. Several mechanisms are 

thought to be involved in this phenomenon, including the displacement of 

hPOT1 and subsequent activation of DNA repair pathways including the p53, 

ATM and p16INK4a pathways (145) (146) (147) (148). 

Although the majority of the extensive research in recent years has been into G-

quadruplex ligands at telomeres, the study of promoter G-quadruplexes and 

their potential role in gene regulation has led to investigations into the use of 

G4-DNA binding agents to differentially regulate transcriptional activity of 

disease-related genes, particularly of proto-oncogenes (108). 
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Studies of ligand interactions with the G-quadruplex structure in the NHE III 

upstream of c-Myc are the most prevalent. The cationic porphyrin derivative 

TMPyP4 (118) and berbine derivatives (149) have been demonstrated, for instance, 

to bind to and stabilise this G-quadruplex structure, reducing transcriptional 

activity. Studies on the two G-quadruplex structures that form in the core 

promoter of c-kit have demonstrated that an iso-alloxazine molecule reduces 

transcriptional activity of this oncogene (150).  

One G-quadruplex-targeting small-molecule drug (Quarfloxin) binds to G-

quadruplex structures in ribosomal DNA (rDNA), preventing the formation of the 

Nucleolin/rDNA G-quadruplex complex, preventing, therefore, transcription to 

ribosomal RNA (rRNA), which is critical in many cancer cells, inducing 

apoptosis (151) (152). Quarfloxin has recently completed phase II clinical trials 

(results not published) to determine the safety and efficacy of this compound in 

the treatment of carcinoid/neuroendocrine tumours.  

The formation of G-quadruplexes in mRNA and their association with RNA 

regulation is also an attractive therapeutic target (153). However, thus far there 

has been little interest, when compared to DNA G-quadruplex targets. 

These findings all support the notion that the differential binding of small 

molecules to G4-DNA alters stability and can even induce the formation of these 

structures, with consequences in telomere maintenance and gene expression. 

This field has opened up a potential new avenue for anticancer 

chemotherapeutics through both the induction of senescence and apoptosis in 

cancer cells and the regulation of oncogene expression through the use of G-

quadruplex ligands at telomeric ends and in upstream promoter regions.  

Although the use of G-quadruplex ligands is outside of the scope of this project, 

it nonetheless highlights the importance of these structures and their potential in 

as chemotherapeutic targets. 
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1.2.2 Modification to G-Quadruplex Nucleotides 

Investigations into the modification of nucleic acids are well established and in 

vivo evidence for these alterations is ubiquitous. These have been 

demonstrated as crucial in many biological processes, and have been strongly 

associated with a variety of detrimental physiological processes, including 

carcinogenesis. 

The involvement of G-quadruplex structures in these processes and diseases 

has led to interest in the effects of modifications that occur naturally in DNA on 

the structure and stability of G-quadruplexes. Furthermore, from a chemical 

perspective, the modification of G4-DNA is a potential avenue to discover and 

create complexes with potential for use in supramolecular chemistry and 

nanotechnology (9). 

1.2.2a Base Substitutions 

Changes to the genomic sequence by one or more nucleotides are known as 

mutations and these are associated with a plethora of different diseases 

through many different processes.  

Investigations into the effect of base substitutions on the structure and stability 

of G4-DNA have revealed that quartets can be formed not only from the 

association of Guanines (G*G*G*G), but also from the association of Adenines 

(A*A*A*A), Guanines and Cytosines (G*C*G*C) and Adenines and Thymidines 

(A*T*A*T). Furthermore, pentads, hexads, heptads and octads have also been 

detected in DNA quadruplexes (154) (155) (156) (157) (158) (159) (160) . Adenine (161), Uracil 

(162) and mixed Guanosine and Cytosine (163) quartets have also been identified 

in RNA quadruplexes. 

These findings point to high versatility of quadruplexes to accommodate a wide 

variety of different quartets. However, it should be noted that quadruplexes with 

non-G-quartets present lower stability. This is thought to be due to the fact that 
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only one Hoogsteen Hydrogen bond is observed between most of these 

quartets (164).  

A study by Lee and Kim (2009) (165) on base substitution in human telomeric 

quadruplexes revealed that the degree of destabilisation depends on the 

position of the mutated nucleotide within the G-quadruplex. Demonstrating that 

a G-T mutation in the central quartet induces a different conformation, with 

decreased stability at near physiological conditions. Whereas G-T mutations in 

a terminal quartet induces a variety of different conformations with a less 

pronounced effect on stability. 

Mutations in the G4-DNA region involved in insulin transcription destabilise the 

structure, leading to diminished transcriptional activity (166). Mutations in the c-

Myc promoter have also been shown to destabilise the G-quadruplex structure 

in this region, leading to over-expression of this oncogene (167). 

Furthermore, a study by Halder and co-workers (2004) (168) determined that a C 

to T mutation in the C-rich (sense) strand of the NHE III region of the c-Myc 

oncogene promoter increases the stability of the duplex form, unfolding the 

quadruplex. This is thought to be due to the destabilising the i-motif which, as 

stated before, is a contributing factor to G-quadruplex stability. 

Synthetically modified nucleotides such as locked nucleic acids (LNA) and 

peptide nucleic acids (PNA) have also been demonstrated to form G-

quadruplexes in vitro (164), with thermal stabilities comparable to the DNA 

analogues, although conformational distinctions have been observed (169) (170) 

(171). These novel structures may have potential applications as design elements 

in nanoscale assemblies (169). 

1.2.2b Chemical Modification of G-Quadruplexes 

A study by Mekmaysy and co-workers (2008) (172) demonstrated that the 

methylation of Guanosines involved in tetrad formation at the O6 atom not only 

decreases stability but can induce alterations to the conformation of the folded 
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structure. These authors presented results analogous to those of Lee and co-

workers (165), as methylation of Guanines involved in the central tetrad induces a 

more pronounced decrease in stability than methylation of Guanines involved in 

one of the terminal tetrads. This is possibly due to the central guanines affecting 

both adjacent tetrads through base stacking, as well as possibly affecting the 

central cations (173). Modifications to a Thymine contained in the loop sequence 

also destabilise the quadruplex structure (174). 

This has important biological consequences as methylation is one of the most 

common form of epigenetic alteration and abnormally low or high levels of 

methylation (hypomethylation and hypermethylation, respectively) are 

associated with changes in gene expression and genomic instability, observed 

in the development of numerous cancers (reviewed in (175) (176)). 

The association of G-quadruplexes and CpG methylation has been well studied, 

which, when occurring in the G-quadruplex appears to destabilise the structure 

(26) (177). Furthermore, a bioinformatics study performed by De and Michor (2011) 

(178) demonstrated the enrichment of GQMs at DNA breakpoints associated with 

somatic copy-number alterations, which are themselves sites of abnormal 

hypomethylation. They proposed that abnormal hypomethylation in regions 

enriched for G-quadruplexes acts as a mutation inducer in carcinogenesis. 

The effects of a large number of other chemical modifications have been 

studied, including of methylation, oxidation and addition of bromide at the 8’ 

Carbon, amongst many other modifications (173) (179) (180). 

These studies, performed by Jean-Louis Mergny’s research group, 

demonstrated again an influence of the position of the modification on the effect 

on stability.  

The authors concluded that the vast majority of substitutions are extremely 

detrimental to quadruplex stability, with unmodified Guanines forming the most 

stable tetrads, and therefore the most stable quadruplexes. They also confirmed 
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that alterations to guanines in the central tetrad had a more deleterious impact 

on stability than in any other position. 

However, these authors also demonstrated that the 8-oxo-guanine and 8-

methyl-guanine accelerate the formation of the quadruplex when located on the 

5’ side and that alterations to Guanines that do not directly influence the 

Hoogsteen Hydrogen bonding (such as modifications to the 8’ Carbon) were 

well tolerated and could effectively replace Guanines. 

It should however be noted that these studies were carried out in vitro on a 

synthetic all parallel tetramolecular G-quadruplex, not known to form in vivo and 

that has been demonstrated to be more robust and stable than intramolecular 

quadruplexes (164). 

Systematic analyses of the effect of chemical modifications give insights in to 

the energetic, kinetics and dynamics of quadruplex folding and are an 

indispensable avenue for shedding light on some of the subtle features of the 

formation and stabilisation of these structures. 

1.2.2c Oxidative Stress 

Approximately 1-4% of oxygen used in aerobic respiration is released into the 

cell in the form of incompletely reduced reactive oxygen species (ROS) (181). 

These naturally occurring oxidants, which are also generated from exogenous 

environmental factors (182), lead to endogenous oxidative DNA damage, which is 

implicated in a wide variety of detrimental physiological effects including cancer 

and aging (183) (184) (185) (186), as well as changes in gene expression, aimed at 

preventing cellular demise (187). 

The biomarker used to detect DNA oxidation is 8-hydroxy-2’-deoxyguanosine or 

8-oxo-7,8-dihydro-2’deoxyguanosine (8-oxo-dG), as this is the most commonly 

observed oxidised nucleotide and has been observed in aged organisms and 

cells, as well as in a number of diseases including neurodegeneration, cardiac 

disease and cancer (183) (185) (188) (186) (189).   
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The presence of oxidised guanine in the genome is a mutagenic phenomenon 

as 8-oxo-dG preferentially pairs with Adenine through Hoogsteen Hydrogen 

bonding over Cytosine with conventional Watson-Crick Hydrogen Bonding (190) 

and is considered to be a genuine threat to the integrity of the genome (183).  

The cellular response to oxidative stress is a complex and multifaceted process 

involving a large number of gene products, and is as yet, poorly understood. At 

the biophysical level, the incorporation of 8-oxo-dG appears to destabilise the 

duplex to modest extent and even forming a characteristic bend, facilitating the 

binding of glycosylases (191), such as oxo-guanine DNA glycosylase (OGG1). 

This glycosylase initiates the base excision repair (BER) pathway, the major 

repair mechanism to combat the threat from 8-oxo-dG and repress the 

mutagenic process. This pathway excises one of the nucleotides involved in the 

mispair (185) (192) (193). However, incorporation of oxidised guanine has been 

shown to, in some cases, cause DNA strand breaks, and even apoptosis (194). 

However a host of other gene products have also been found to be affected by 

high levels of ROS, as part of a multitude of different pathways, aimed at 

adapting to or resisting the stress and repairing or removing damaged 

molecules and even apoptosis (reviewed in (195)). 

In terms of the association of DNA oxidation and carcinogenesis, the mutagenic 

properties of this process are associated with various stages of tumour 

progression; the mutations may be within the coding region of the DNA, leading 

to a dysfunctional or even absent protein product, which, in the case of tumour 

suppression proteins, may increase the chances of developing cancer (196) (197); 

the mutations may also occur within the promoter region of genes associated 

with cancer, affecting transcription by either upregulation or downregulation (198) 

(199). 

Furthermore, studies have demonstrated that oxidative stress alters gene 

expression at a global level in both Prokaryotes and Eukaryotes (200) (201) (202) (203). 

This has been hypothesised to occur indirectly by interfering with physiological 
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signals (hormones, cytokines, etc.) and/or by interfering with the environmental 

stimuli pathway (physical parameters, xenobiotics, etc.) (196) (204).  

The p53 repair pathway has been demonstrated to be associated with many of 

the alterations in the transcriptome (187), with eleven p53-regulated genes 

induced by oxidative stress (205).  Interleukins 2 and 6 show converse responses 

to oxidative stress, with IL-2 being repressed (196) and IL-6 being induced (205).  

The overexpression of c-Myc, a crucial gene involved in transcription regulation, 

has been shown to induce genomic instability (206) (207) and has been 

demonstrated to over-express in the presence of hydrogen peroxide in mouse, 

rabbit and human cell lines (208) (209) (210) (211). The pathway by which this gene 

over-expresses has been shown to occur through Src-linked signal 

transduction, which is induced in the presence of hydrogen peroxide (212).  

Several studies have also pointed towards Myc over-expression inducing 

oxidative stress (207) (213) (214) (215). Indeed, c-Myc over-expression has been 

shown to generate sufficient ROS to induce DNA strand breaks, activate the 

p53 pathway and reduce clonogenicity, however apoptosis is not induced (207). 

The exact mechanism by which Myc expression induces the generation of ROS 

is unknown, however it is clear that c-Myc induces the expression of a number 

of genes involved in intermediary metabolism, and ROS may result from 

biochemical imbalances generated from the irregular expression of the many c-

Myc target genes’ products (216). 

c-Myc has also been demonstrated as determining redox balance, through the 

regulation of γ-glutamyl-cystein synthetase (γ-GCS) which, in turn, catalyses 

glutathione (GSH), a leading molecule mediating redox balance. Exposure to 

Hydrogen peroxide enhances c-Myc recruitment to γ-GCS, as part of the cell’s 

response to oxidative stress (217).  

The over-expression of several Myc proteins, including c-Myc has also been 

demonstrated to decrease the ability of Human cells to reduce peroxide and 

hydroperoxides (218).  
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G-Quadruplexes and Oxidative Stress 

As Guanine is the most vulnerable nucleobase to oxidation, the G-rich 

sequences that form quadruplexes are likely to be “hot-spots” for oxidative 

damage. This could have implications for the involvement of G-quadruplexes 

with gene regulation as well as their viability as anti-cancer targets.  

However, current information on the effect of oxidative stress on the G-

quadruplex structure is largely based on chemical studies on parallel 

tetramolecular G-quadruplexes in vitro (179) (180). A study by Huang and co-

workers (2009) (219) observed that the G4-DNA structure appeared to offer 

protection to the Guanines from oxidation when compared to duplex DNA.  

Conversely, studies on anti-parallel bimolecular and tetramolecular G-

quadruplexes have demonstrated preferential oxidative damage to Guanines in 

a Quadruplex structure over those in a duplex structure (220) (221) (222) (223).  

These discrepancies may indicate, in the opinion of the author, that the more 

stable the structure, the less susceptible the Guanines are to oxidation. 

Furthermore, these differences could also be caused by the decreased 

accessibility of the Guanines in the G-quadruplex structures when in the anti 

conformation as opposed to the syn conformation when in a tetramolecular 

quadruplex. 

However these studies have arguably little biological relevance to G-

quadruplex-regulated gene expression, as the structures studied are not known 

to form in the promoter regions of genes and are more stable than the more 

common unimolecular quadruplexes.  

To the knowledge of the authors, the only investigations into the effect of 

oxidation on G-quadruplexes from a biological perspective have been in 

telomeres. These studies (222) (224), found that the G-quadruplex structure in 

telomeres is particularly sensitive to oxidation, when compared to B-DNA  and 

hypothesise that this would lead to telomere shortening. However neither make 

reference to the effect of oxidation on the stability of the structure, nor to the 
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possibility that the BER pathway may excise the oxidised nucleotide, which 

would likely preclude the formation of the quadruplex structure. 

Generation and Detection of Reactive Oxygen Species 

To artificially induce oxidative stress in cellulo and in vivo, a variety of ROS can 

be generated, including singlet oxygen, hydroxyl radicals, superoxide, 

hydroperoxides and peroxides. Another method, commonly used to study the 

effect of oxidative stress on nucleic acids, is the use of Fenton’s reagent, a 

solution of hydrogen peroxide and ferrous Iron(II) which produces hydroxyl 

radicals and anions by the following reaction: 

Fe2+ + H2O2 → Fe3+ + OH· + OH− 

The hydroxyl radical, in particular, is highly reactive and, consequently, has a 

half-life of approximately 2 ns in aqueous solution and diffusion radius of only 

about 20 A (225).  

Fenton’s reaction has been used to observe the effect of oxidative stress in 

DNA, observing that this reaction can induce single and double strand breaks 

(226) and cross-link lesions (227).  

To detect oxidative stress, one may detect the presence of ROS, by using 

reagents which will react specifically with one or more ROS, producing a 

detectable product. One may also detect the presence of ROS by detecting 

their effects. As mentioned earlier, guanine oxidation is by far the most common 

oxidation in DNA thus, an appropriate method could be to detect the presence 

of 8-oxo-dG by the use of specific antibodies. 

In summary, oxidative stress is a significant phenomenon, associated with a 

variety of adverse physiological effects. The effect of oxidation on G-

quadruplexes is still not fully understood and our understanding currently relies 

on the in vitro study of sometimes biologically irrelevant structures. The study of 

the effects of oxidation on intramolecular quadruplexes could increase the 
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understanding of the mechanism of the global changes to gene expression 

observed in oxidative stress. 

1.3 Applications and Uses of G-quadruplexes in 

Supramolecular Chemistry and Nanotechnology 

Aside from their importance in many biological processes and their potential use 

as targets for anticancer chemotherapeutics, the unique properties of G-

quadruplexes and their constituents, G-quartets, have also been investigated 

for their exploitation in the fields of supramolecular chemistry and 

nanotechnology (9). 

The formation of ordered structures by molecular self-assembly has been 

pursued as a potential strategy to develop biomaterials for nanotechnology 

applications (228) (229). G-quadruplex DNA, with the ability to form Hydrogen 

bonds with both its complementary pair and its twin, enhances their potential to 

form useful nanostructures. G4-DNA  has been used as a system to create 

large, self-assembling superstructures stabilised by the G-quartets, with self-

complementary 5’ and 3’ ends, known as G-wires (230) (Fig. 1-11).  

 

Figure 1-12: Proposed model for a G-wire. Adapted from (230). 

These nanostructures can have a length of up to tens of micrometres (231) with a 

diameter of 2.5 nm and is dependent, as G-quadruplex formation, on the 

presence of Na+, K+ and/or Mg2+ and are resistant to denaturation (164). G-wires 

have also been shown to be easily functionalised opening up a vast array of 

possibilities of these structures (232), including the creation of molecular 

electronic technologies through the incorporation of a switch, sensitive to 

external stimuli (233). 
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Another important field for the application of the G-quadruplex structure is in the 

creation of biosensors (9).  A G4-DNA structure (thrombin binding aptamer, TBA) 

has been shown to selectively bind to the protease thrombin, inhibiting the 

formation of fibrin clots (234) (235).  

The high affinity and differential stability in the presence of different ions also 

make G4-DNA structure an attractive prospect as potential ion channels and as 

possible detectors and quantifiers of ion concentration. A biomimetic Potassium 

responsive nano-channel capable of determining the concentration of 

Potassium has been created using a G-quadruplex, using the conformational 

changes that occur in the structure in response to ion concentration (236).   

The potential of these structures in nanotechnology and supramolecular 

chemistry is remarkable. Other applications include their use as DNAzymes for 

colorimetric detection of cocaine (237), their use in the optical detection of 

proteins (238) amongst many other applications. 

1.4 Methods to determine presence of and characterise G-

quadruplexes 

The presence of G4-DNA structures in nucleic acid sequences has been 

inferred by the presence of a GQM, as discussed previously. However a 

combined biophysical and structural methods approach, using ultra violet (UV) 

melting analysis and circular dichroism (CD) spectroscopy as well as X-ray 

crystallography and nuclear magnetic resonance (NMR) spectroscopy has 

become indispensable in the investigations into G-quadruplex structure and 

function (239).  

In vitro methods for characterising G-quadruplexes are well established and 

have been ubiquitously used since the 1960s to investigate the physico-

chemical properties of these structures. 

These include UV melting experiments, in which the melting of DNA is 

monitored at increasing temperatures for a hyperchromatic shift at 295 nm, a 
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maximum for G-quadruplex motifs (240). This method allows thermodynamic 

measurements to be obtained from unimolecular and bimolecular quadruplexes 

but is somewhat ineffective when measuring tetramolecular quadruplexes (10). 

CD spectroscopy has also been used, which compares structures to known 

structural motifs to determine quadruplex topology (241) (242). Carefully controlled 

polyacrylamide gel electrophoresis (PAGE) can also be useful in the 

identification of folded motifs against unfolded single stranded DNA (10). 

The most potent methods for elucidating the structure of these complexes have 

been NMR (243) and X-ray crystallography (244). These methods can directly and 

fully determine the structure of G-quadruplexes and have enabled the structural 

determination of a plethora of these structures, including telomeric (245) (246) and 

gene regulation-associated (67) (68) (69) G-quadruplexes. 

1.4.1 Fluorescence Resonance Energy Transfer 

Of particular interest to this project is the use of Fluorescent (or Forster’s) 

Resonance Energy Transfer (FRET) to directly study the conformational of G-

quadruplex forming sequences. FRET consists of the measurement of the non-

radioactive energy transfer between two dye molecules, termed donor and 

acceptor, which can be used to report on the intervening distance (within 10-80 

Å) and can be estimated by the use of specific formulae (247). Simply put, when 

the acceptor dye emits fluorescence, this is detected and indicative of a 

decrease in inter-dye distance. Thus the distance between two molecules or the 

dynamic conformation of a molecule can be detected via FRET.  

This technique may also use a fluorophore/quencher pair, in which at close 

distance, the emitting fluorescence from the fluorophore is absorbed by the 

quencher. In this case, and discounting all other factors, the fluorescence can 

be seen as proportional to the distance between the fluorophore and quencher. 

In terms of the G-quadruplex structure, a variant of FRET, termed single 

molecule FRET (smFRET) that observes FRET between a single donor and 

acceptor (248), has been used as both a method to detect the formation of G-
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quadruplexes and to gain insight into the folding process (249) (250). Figure 1-12 is 

an example of the application of this method to the study of the G-quadruplex 

structure that occurs in the promoter region of the proto-oncogene c-Kit (251). 

 

Figure 1-13: Schematic representation of the smFRET experiment carried out by Shirude and 
co-workers (2007)

 (251)
. 

The above figure shows a dual-labelled double stranded system containing the 

GQM sequence and its complementary strand with flanking sequences. Donor 

(Cy3) and acceptor (Cy5) fluorophores were incorporated on opposite strands, 

flanking the GQM. The formation of the G-quadruplex would reduce the 

separation of the fluorophores, leading to an increase in FRET, whereas in the 

absence of quadruplex formation, FRET would maintain a lower value (251). 

Although smFRET is the predominant fluorescent technique used to investigate 

G-quadruplexes, ensemble FRET, that is to say, the observation of FRET in a 

solution with numerous donors and acceptors has been used to observe the 

kinetics of G-quadruplexes (252). 

1.4.2 Molecular Dynamics Simulations of G-Quadruplex Structures 

Molecular modelling is the science and art of model building and computation to 

study molecular structure and function. It encompasses a range of different 

techniques, including in silico techniques, ranging from ab initio to empirical 

model building (253).  



 

39 

 

The field of biomolecular modelling started in the 1960s, gaining momentum in 

the 1980s and is now advancing rapidly with the advent of more powerful 

platforms, higher resolution instruments, the creation of genomic and structure 

databases as well as improvements in the molecular modelling software, i.e., 

better force field algorithms and computer graphics (254). 

Although in silico molecular modelling techniques cannot substitute empirical 

data, they have been used successfully as complementary methods to empirical 

data; aiding in the interpretation and validation of these results (255). 

There are various methods employed for the in silico study of molecules; these 

include both statistical methods (such as the Monte Carlo method (256)) and 

quantum mechanical methods, such as energy minimisations (EM) and 

classical molecular dynamics (MD). Recently, hybrid statistical/quantum 

mechanical simulations have become widely used thanks to increased 

computational resources; replica exchange molecular dynamics (REMD) is one 

such method. 

The molecular mechanics method, also called force field method or energy 

minimisation (EM) is a theoretical method based on the use of a force field. This 

force field is an algorithm that corresponds to parameter sets and the functional 

form used to describe the potential energy of a system of atoms (253). 

These methods calculate the potential energy of a system as a function of the 

nuclear positions, and attempts to generate the coordinates that correspond to 

the minimum potential energy. They are iterative descent series methods in 

which the atomic coordinates are modified in each iteration in order to decrease 

the potential energy of the system (256). This method has the advantage of 

requiring far less computational time than other methods (253). However its major 

disadvantage is that it is generally unable to find the global energy minimum of 

molecules of significant complexity, finding only the local minimum, closest to 

the starting set of coordinates (256). 
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There are many force field algorithms that may be used in molecular modelling, 

which vary mainly in accordance with the molecules and/or systems they were 

developed to investigate. A subset of algorithms was developed specifically for 

use on the AMBER molecular dynamics package and is primarily used to study 

biopolymers, such as nucleic acids (257) (258) (259) (260) (261). These AMBER force 

field algorithms were subsequently adapted for use in most other molecular 

modelling platforms. 

Molecular Dynamics is a method of studying the motions and the 

conformational space of molecular systems by use of classical Newtonian laws 

of motion (Table 1-2)  given a potential energy function and its associated force 

field (256).  

Table 1-1: Newtonian laws of motion 

1 
A body continues to move in a straight line at  

constant velocity unless a force acts upon it. 

2 Force equals the rate of change of momentum 

3 To every action there is an equal and opposite reaction 

In essence, this method represents the computer approach to statistical 

mechanics, used to estimate equilibrium and dynamic information on analytes 

that are either too complex, or have such a brief lifespan so as to make 

structure determination by empirical methods inaccurate, or even unviable (254).  

Such a method is of high importance as even high resolution X-ray 

crystallographic data is only a “freeze-view” of a certain molecule, fostering an 

erroneously static and rigid view of molecules, albeit that this has improved over 

recent years with refinement methods (262). However in nature, these molecules 

are in constant motion, interacting with their environment and amongst 

themselves (254).  

In practical terms this method is far more valuable than molecular mechanics 

since it allows the system to reach the global minimum, as opposed to the 

closest local minimum as in MM (256). 
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In terms of the use of MD for modelling nucleic acids, this method has become 

ever more important with the rising importance of precise knowledge of not only 

nucleic acid structure, but also their interactions amongst themselves and with a 

variety of other molecules (262). 

Molecular dynamics simulations of G-quadruplexes have been particularly 

useful at elucidating some of the subtle features of these structures, including 

the conformation of the loops (263), stability (264) (265), interactions with ligands (266) 

(267) (268) (269) and the role of cations (270) (271). 

A comprehensive review by Sponer & Spackova (2007) (272), discusses the 

advantages and disadvantages of the use of molecular dynamics simulations to 

study quadruplex nucleic acids, concluding that quadruplex simulation studies 

provide unique insights into the properties of G4-DNA.  

It should be noted that despite this, the current methodology and/or technology 

do not enable the simulation of the folding pathway of G-quadruplexes, although 

a recent study claimed to have discovered a new unfolding pathway for a 

parallel G-quadruplex structure, no empirical data was used to corroborate this 

statement (273). 

There are many software packages designed for molecular modelling, each 

distinct with different advantages and disadvantages. These include AMBER 

Molecular Dynamics Software Package, currently in version 11 (274), SYBYL™ 

Expert Molecular Modelling Environment, currently in version 7.3 (275), 

MacroModel Molecular Modelling Platform (276) and GROMACS Molecular 

Dynamics Package, whose version 4.5.3 (277), was used to perform all molecular 

modelling simulations presented in this report. 

GROMACS in an open source engine, designed to perform molecular dynamics 

simulations and energy minimisation. It’s main advantages are summarised in 

the slogan “Fast, Flexible, Free”; it is highly parallelisable, indeed, it is the base 

of the Folding@Home project, it is also highly flexible as it is able to perform 

most mainstream functions in molecular modelling and enables both users and 
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developers to adapt the algorithms according to convenience or improved 

knowledge. 

The software was primarily designed for the study of biochemical molecules 

such as proteins, lipids and nucleic acids: large and complex molecules that 

involve both short range and long range interactions. Its efficiency at calculating 

non-bonded interactions is particularly appealing, as these tend to be the most 

computationally expensive part of a system during a molecular dynamics 

simulation (278). 

GROMACS achieves this, in part, through the implementation of particle mesh 

Ewald (PME) summation of long range forces. Ewald summation is a method 

for computing the interaction energies of periodic systems, originally developed 

for use in theoretical physics it is now the standard for calculating long range 

forces that interact via an inverse square force law, as is the case of 

electrostatic interactions. 

In molecular dynamics, PME calculates the direct-space interactions within a 

user defined radius using a modification of Coulomb’s Law and in reciprocal 

space using a Fourier transform, building a “mesh” of charges, interpolated onto 

a grid using Gaussian charge distributions. This charge interpolation is what is 

used to calculate and incorporate long-range forces into the non-bonded 

interactions in a simulated system. The estimation of reciprocal forces through 

this method as opposed to conventional direct measurement methods increases 

the efficiency of this calculation, requiring far less computational overhead (279) 

(280). 

Another, important aspect to the GROMACS package, is, as mentioned before, 

its flexibility, achieved through the sheer breadth of programs that comprise the 

package, allowing, amongst other things, the MD, EM, and mixed QM/classical 

simulation of a wide variety of systems independent of equilibrium, allows the 

rapid generation of solvents consisting of various different molecules. 
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1.4.3 Gene Expression Data Analyses 

As described in section 1.1.1, bioinformatics analyses have a played an 

important role in the understanding of the functions and implications of G-

quadruplexes. There is an enormous variety of bioinformatics analyses that can 

be performed to investigate hypotheses pertaining to the location and effect of 

motifs on gene expression. 

However due to the structural diversity observed in G-quadruplexes, predicting 

the likelihood of a given sequence to form in vivo is not a simple matter, 

principally due to chromatin factors, such as proteins and helicases that can 

stabilise or unwind these structures (reviewed in (281)). 

Having said this, current methods can be used to identify motifs with the 

potential to form G-quadruplexes; for instance, gene expression data of cells 

subjected to a carcinogen can be analysed for the presence of the general G-

quadruplex motif, developed by Huppert and Balasubramanian. If the genes 

affected by this carcinogen present a statistically significant increase in the 

presence of potential G-quadruplexes forming motifs, when compared to the 

prevalence across the entire genome, it is likely that G-quadruplexes play a 

regulatory role in these genes, and that the chosen carcinogen affects 

expression levels by affecting the G-quadruplex structure. The result of such 

analyses can help to support results achieved through other experimental 

methods. 
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1.5 Aims and Objectives  

G-quadruplexes have been shown to play a role in transcription regulation of 

certain genes, amongst other biological processes. Several oncogenes, 

including c-Myc and c-Kit, have been demonstrated as being subject to G-

quadruplex regulation of expression. The effect of oxidative stress on G-

quadruplexes is not fully understood, however considering the GQM consists of 

runs of consecutive Guanines, which are particularly susceptible to oxidation, it 

is reasonable to assume that oxidative stress may have an adverse effect on G-

quadruplex structure, with consequences on gene expression. 

The aim of this project is to investigate a possible novel route for oxidation 

mediated oncogenesis through investigating the effect of reactive oxygen 

species on the stability of G-Quadruplexes and the consequences on gene 

expression using both in vitro and in silico methods.  

The proposed mechanism by which this would occur would be as follows:  

- Oxidation modifies deoxyguanosine to 8-oxo-dG; 

- This modification destabilises the G-quadruplex structures found in 

upstream promoter regions of oncogenes; 

- This destabilisation causes the unfolding of the quadruplex to the duplex 

form; 

- In this form, transcription is unimpeded, causing an upregulation of these 

oncogenes; 

- The increased expression of these oncogenes would lead to or 

predispose a cell to become cancerous.  

This aim will be achieved through the following objectives: 

Studying whether reactive oxygen species destabilise the G-quadruplex 

structure in vitro using a FRET based assay and Fenton chemistry to observe 

the effect of oxidative stress on the conformation of an oligonucleotide known to 

fold into a G-quadruplex at near physiological conditions; 
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Modelling the effect of 8-hydroxy-2-deoxyguanosine substitutions on the 

stability of G-Quadruplexes in silico through 500 nanosecond classical 

molecular dynamics simulations comparing the oxidised and non-oxidised G-

quadruplex structures of the promoter regions of c-Kit and c-Myc; 

Analysis of gene expression data to investigate the effect of oxidation on the 

expression of genes suspected to be regulated by G-quadruplexes, using gene 

expression data of cells subjected to oxidation and evaluating the prevalence of 

G-quadruplex forming motifs in genes whose expression is significantly altered 

when subjected to oxidation. 
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2 Experimental section  

2.1 Fluorescence Resonance Energy Transfer 

As described previously, FRET is a fluorescence intensity-based measurement 

technique, using a donor and acceptor fluorophore.  

The FRET assays in this project were initially attempted on a Thermo Fischer 

Scientific Varioskan® Flash spectral scanner, however it was established that 

the instrument was not appropriate for the intended experiment, as it was not 

possible to determine whether the oligonucleotide under investigation was in the 

folded G-quadruplex state or in any other conformation; nor was it possible to 

determine any alteration in the conformation through observation of the FRET 

values. This was determined to be due to the lack of precision at low 

concentrations of the sample oligonucleotide. 

Due to inability to determine the origin of the fluorescence as being due to the 

folding/unfolding of the G-quadruplex structure, and that the Varioskan® Flash 

spectral scanner proved inefficient at detecting fluorescence at the 

concentrations desired, the decision was made to attempt to perform the 

experiments in the Quiagen® Rotor-Gene Q qPCR machine.  

This instrument uses a rotary format which spins all samples at 3000 rpm and 

enables detection in specific channels ranging from UV to infrared wavelengths. 

For the intended experiment this instrument has the advantage of using small 

volumes (approximately 20ul) has a very accurate thermal cycler and absence 

of well-to-well light contamination.as well as being very sensitive, in that the limit 

of detection is very low, as the instrument can reliably detect down to a copy 

number of ten, when performing PCR experiments. 

The experiments were performed using 1 second cycles with fluorescence 

being measured in all samples using three channels (table 2-1). 
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Table 2-1: Fluorescence measurement channels used in all experiments on the Rotor Gene Q 
PCR machine. 

Channel Excitation 
Wavelength  

Emission 
Wavelength 

Cy3 530nm 555nm 

Cy5 625nm 660nm 

Cy3-Cy5 FRET 530nm 660nm 

Although numerous experiments were run in this instrument, only a few 

examples will be described, in which all the most salient observations can be 

made. Data, descriptive statistics and graphs of all experiments performed can 

be found in the Appendix DVD. 

The following experiment (figures 2-1 and 2-2) is a representative example of 

the initial experiments aimed at determining the conformation of the nucleotide 

and controlling the shift between unfolded and folded G-quadruplex states. 

This experiment involved observing FRET, Cy3 and Cy5 fluorescence at 25 C, 

in samples with and without 100 mM KCl and with and without complementary 

sequence.  

Performing experiments with and without 100 mM KCl were intended to 

establish a significant increase in fluorescence in the presence of KCl, thus 

establish K+ dependent FRET, a characteristic used to determine the presence 

of a G-quadruplex. 

The experiment was also adapted to use the complementary sequence to the 

GQM (Figure 2-1) as a method of unfolding the quadruplex in a predictable 

manner, to monitor the decrease in FRET. 

GQM 5’ - [Cy3]TATGGTGAGGGTGGGTAGGGTGGGTAAGGTGG[Cy5] - 3’ 

Comp 3’ – ATACCACTCCCACCCATCCCACCCATTCCACC – 5’ 

Figure 2-1: Sequence of the synthesized c-Myc GQM and complementary sequence used in 
the FRET Assays. 
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2.1.1 Determination of Presence of c-Myc G-Quadruplex Structure 

Due to the problems encountered in the previous instrument, the decision was 

made to include a temperature ramping step. This would enable the 

identification of the origin of fluorescence as that of a stable secondary structure 

(be it a G-quadruplex or any other DNA secondary structure, as well as any 

GQM dimers) within the oligonucleotide. It was expected that by raising the 

temperature, FRET would be reduced due to destabilisation of the quadruplex 

structure at high temperatures.  

The experiment was performed therefore, with and without 100 mM KCl and 

with and without excess (5 µM) complementary DNA. The thermocycler was set 

to run at 25°C for 45 cycles, and the temperature was then raised to 90°C and 

held there for 45 cycles and cooled to 25°C and held for 45 cycles. 

 

Figure 2-2: FRET values observing effect of concentrations of complementary sequence and 
KCL, plotted against temperature. 

Immediately noticeable from Figure 2-2, when comparing with the results 

obtained from the Varioskan spectral scanner (see digital Appendix), is the 

precision of repeated fluorescence readings at constant temperature.  

Within the first 45 cycles at 25 C, fluorescence in all four tubes show a 

logarithmic descente curve, with an increase towards the end. As temperature 

increases from 25°C to 90 C, fluorescence in all four tubes approaches 0 RFUs 

and remains there throught the next 45 cycles at 90 C. As temperature 
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decreases from 90 C back down to 25°C , fluorescence in all four tubes 

increases and continues to increase throught the 45 cycles at 25°C .  

When observing the effect of K+ concentration on FRET, it can clearly be seen 

that both samples without potassium have a reduced fluorescence throughout 

the experiment when compared to the two samples with 100 mM KCl.  

When observing the effect of complementary sequence on FRET, no 

discernable difference can be seen when comparing samples with and without 5 

µM of complementary sequence. 

As a control measure for this experiment, the Cy5 flurescence values were 

analysed (figure 2-3). 

 

Figure 2-3: Cy5 fluorescence values observing effect of concentrations of complementary 
sequence and KCL, plotted against temperature. 

In general terms, figure 2-3, shows Cy5 fluorescence values with similar 

behaviour throughout the experiment, to the FRET values observed in figure 2-

2, with fluorescence of all four samples staying at 100 RFUs for the first 45 

cycles at 25°C , the falling sharply to 20 RFUs when temperature is increased to 

90°C  and rising again to 100 RFUs when the sample is cooled back to 25°C . 

However no significant difference can be observed between samples with and 

without 100 mM KCL or 5 µM of complementary sequence. 

This experiment therefore revealed that that FRET reduced with an increase in 

temperature; however, when observing Cy3 and Cy5 fluorescence, these were 
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also reduced by the same factor. As such, the temperature denaturing step was 

considered inappropriate, and removed. 

Observing the effect of complementary sequences however, showed that the G-

quadruplex formed was remarkably stable, as in the near physiological 

conditions previously described (100 mM KCl, 10mM Sodium Cacodylate at pH 

7.4) fluorescence was not substantially affected by the addition of 

complementary DNA. 

2.1.2 Initial Oxidation Experiments 

The next group of experiments, of which figure 2-4 is a representative example, 

aimed to test the effect of oxidation on the G-quadruplex structure; samples 

were run in parallel with and without the corresponding complementary 

sequence in the same conditions described above, although taking into account 

the observations made in the previous experiments, fluorescence readings were 

taken only at 25°C , and the cycles at this temperature were increased from 45 

to 60. The temperature ramping step was maintained, however no readings 

were performed during its execution. 

 

Figure 2-4: FRET values observing the effect of H2O2 concentration. 

Observing figure 2-4, in the first section, fluorescence values for the samples 1 

and 2 ([H2O2] = 0 and 1µM, respectively), fluorescence fluctuates and appears 

to stabilise at values similar to those of samples 3 and 4 ([H2O2] = 100 and 

1000µM, respectively). After the thermal denaturing step, fluorescence in all 
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four samples decreases in a proportionate manner to H2O2 concentration. As a 

control measure, Cy3 and Cy5 fluorescence were also measured; figure 2-13 

denotes Cy5 fluorescence values for this experiment. 

 

Figure 2-5: Cy5 fluorescence values observing the effect of H2O2 concentration. 

Results in figure 2-5 are broadly similar to those in figure 2-4, with samples 1 

and 2 fluctuating in the first 60 cycles and appearing to stabilise at similar 

values to samples 3 and 4; and samples decreasing in proportion to H2O2 

concentration after the thermal denaturing step. The most prominent difference 

was that after the denaturing step, in samples 1 and 2, Cy5 values coincide 

whereas FRET values for these samples differed slightly with a mean difference 

of 0.38 RFUs. 

In general terms, the experiment was unable to detect changes in the G-

quadruplex structure at low Hydrogen peroxide concentrations and high 

concentrations lead to a rapid and irreversible decrease in Cy5 fluorescence. 

These results, combined with the inability to induce formation of duplex DNA 

indicated that the c-Myc G-quadruplex structure was extremely stable, this 

theory was given credence by a study by Kumar and co-workers (2008) (282), 

which demonstrated that quadruplexes with short loop lengths (as is the case of 

c-Myc) tend to be more stable than those with longer loop lengths.  

This also led to a change in the direction of the project. Considering a possible 

differential stability of different G-quadruplexes, this would likely lead to a 
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differential effect of oxidation on different G4 structures. This could even include 

the possibility of the quadruplex form being favoured by oxidation. This 

hypothesis was added credence by studies by Mergny and co-workers (2007) 

(180), who observed accelerated formation of an artificial tetramolecular G-

quadruplex structure, under certain conditions, when 8-oxo-dG was 

incorporated. 

It was therefore decided that experiments aimed at studying in more detail 

quadruplex/duplex competition should be performed on a sequence known to 

favour the duplex form at near physiological conditions. 

2.1.3 Determination of Presence of c-Kit G-Quadruplex Structure 

For this purpose, a different G-quadruplex structure was selected to study the 

effect of oxidation. The GQM found in the upstream promoter region of the 

proto-oncogene c-Kit was used, as this structure has been elucidated through 

NMR spectroscopy (125) and the thermodynamic competition with duplex DNA 

has also been studied (70). The GQM and complementary sequences used are 

represented in Figure 2-5, these oligonucleotides were synthesised by Thermo 

Fisher Scientific (UK). 

Two oligonucleotides were synthesised, with 8 and 12 flanking bases of the 

GQM (figure 2-6). The duplex/quadruplex competition of these two sequences 

has been studied (70), and revealed that the duplex form is favoured when the 

complementary sequence is present in equimolar concentrations.  

ckit8 5’-[Cy3]CGCGCAGAGGGAGGGCGCTGGGAGGAGGGGCTGCTGC[Cy5]-3’ 

Comp8 3’-GCGCGTCTCCCTCCCGCGACCCTCCTCCCCGACGACG-5’ 

ckit12 5’-[Cy3]CCGGCGCGCAGAGGGAGGGCGCTGGGAGGAGGGGCTGCTGCTCGC[Cy5]-3’ 

Comp12 3’-GCGAGCAGCAGCCCCTCCTCCCAGCGCCCTCCCTCTGCGCGCCGG-5’ 

Figure 2-6: Sequence of the synthesized c-Kit GQMs and complementary sequences used in 
the FRET Assays. 

Using these sequences, experiments were performed using similar parameters 

to those used previously: tubes were filled with 1 µM c-Kit GQM with 10 mM 

Sodium Cacodylate at pH 7.4. The baseline temperature was altered to 37°C , 
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as this is physiologically relevant, and preliminary results indicated that 

fluorescence levels were stable at this temperature. 

Although c-Kit GQM containing oligonucleotides were synthesised with 8 and 12 

flanking bases, only experiments related to the 8-flanked GQM will be 

described, as these presented more accurate results. Results for the 12 flanked 

GQM and all other omitted experiments can be found in the Appendix DVD. 

Due to the spike in fluorescence observed in the first few readings after the 

temperature ramping, this step was removed. This appeared to have little effect 

on the correlation previously described. As such, the temperature ramping step 

was considered unnecessary and all subsequent experiments were performed 

at a constant temperature of 37°C . 

As with the c-Myc GQM, it was important to establish K+ dependent FRET, for 

this reason an experiment was run at 37°C  for 100  1 second cycles (figures 2-

7 and 2-8), with two samples: one with 100 mM KCL (green) and one without 

KCl (pink). Note that data for the first 10 cycles is not show as mixing occurred 

during this time and the fluorescence values are not representative. 

 

Figure 2-7: FRET values observing the effect of 100 mM KCL. 

As can be observed from figure 2-7, fluorescence is stable in both samples over 

the 90 cycles and there is a clear increase to fluorescence (difference in means 

of 5.9 RFUs) when the sample is in the presence of 100 mM KCL.  As a control 

measure, Cy3 and Cy5 fluorescence were also measured and the data is 

plotted in figure 2-8. 
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Figure 2-8: Cy5 (top) and Cy3 (bottom) fluorescence values observing the effect of 100 mM 
KCL. 

Observing Cy5 fluorescence in figure 2-8, the fluorescence values are very 

similar, to the point that they almost coincide throughout the last 60 cycles; 

whereas Cy3 fluorescence values are markedly different between samples, with 

the sample without KCl having a higher fluorescence than the sample with 100 

mM KCl. 

The following experiment was devised to establish annealing curves for the 

GQM with its complementary sequence. The instrument was set to run at 37°C  

for 30 cycles to establish a baseline fluorescence level for all three channels 

(FRET, Cy5 and Cy3) and then the complementary oligonucleotide was added 

to samples 2, 3 and 4 in varying concentrations (0.5, 1 and 10 µM) and reading 

for all three channels were taken for 200 cycles (Figures 2-9, 2-10 and 2-11). 
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Figure 2-9: FRET values observing the effect of cDNA concentration. 

In figure 2-9, a reduction in fluorescence is clearly observable in the three 

samples in which complementary oligonucleotide was added, with a steep 

descent in proportion to the concentration of complement, whereas the sample 

without complementary oligonucleotide added maintains an approximately 

constant fluorescence. Another noticeable change is that all four samples, at 

the start of the second section appear to have increased fluorescence in the 

first readings, with the sample without complementary oligonucleotide 

maintaining a higher fluorescence than observed in the first section. 

 

Figure 2-10: Cy5 fluorescence values observing the effect of cDNA concentration. 

As can be observed from figure 2-10, fluorescence is relatively constant 

throughout the experiment, with the exception of an increase in the first few 

cycles of each section, this lead to fluorescence in the second section being 

increased in all four samples when compared to the first section. 
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Figure 2-11: Cy3 fluorescence values observing the effect of cDNA concentration. 

Figure 2-11 describes an almost mirror image of values of Cy3 fluorescence 

when compared to FRET; fluorescence increases in a proportionate manner to 

the concentration of complementary sequence. However, whereas in the 

logarithmic descent in FRET samples 2 (0.5 µM cDNA) and 3 (1 µM cDNA) are 

clearly differentiated, in the exponential raise in Cy3 fluorescence of these two 

samples appear to be less differentiated. It should also be noted that the 

fluorescence levels of sample 1 (0 cDNA) are raised in the second section, 

when compared to the initial section.  

To eliminate the contribution of an increase in optical density to the decrease in 

FRET when complementary oligonucleotide is added, control sequences were 

utilised. These sequences were selected to not form stable duplexes with the c-

Kit GQM used or form dimers or any stable secondary structure (figure 2-12). 

Ctrl8 5'- CTATCCTATTTGATTCTTATCGTTCGCTCGGTTGTTT -3' 

Ctrl12 5'- TCGCCTATCCTATTTGATTCTTATCGTTCGCTCGGTTGTTTGTAT -3' 

Figure 2-12: Sequence of the synthesized c-Kit control complementary sequences used in the 
FRET Assays. 

Furthermore, to increase the precision of the experiment, the concentration of 

GQM used was doubled to 2 µM. This was intended to reduce the influence of 

very small variations in concentrations that are inevitable in a method that 

involves manual pipetting. Concentrations of the complementary sequence and 

Hydrogen peroxide were adjusted accordingly. 
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2.1.4 Optimised Experiments 

2.1.1a First optimised Experiment 

The preliminary optimised method was performed on the samples presented in 

table 2-2. All experiments were performed in 100 mM KCl and all tubes were 

filled with 10 mM Sodium Cacodylate (pH 7.4) to a total volume of 20 µl at 37°C. 

Table 2-2: Samples used in optimised protocol. 

 GQM 
used 

GQM 
concentration 

H2O2 concentration Complementary 
sequence used 

C1 Ckit8 2 µM 0 - 
C2 Ckit12 2 µM 0 - 

1 Ckit8 2 µM 0 Ctrl8 (2 µM) 

2 Ckit8 2 µM 0 Comp8 (2 µM) 

3 Ckit8 2 µM 2 µM Ctrl8 (2 µM) 

4 Ckit8 2 µM 2 µM Comp8 (2 µM) 

5 Ckit8 2 µM 20 µM Ctrl8 (2 µM) 

6 Ckit8 2 µM 20 µM Comp8 (2 µM) 

7 Ckit8 2 µM 2000 µM (2 mM) Ctrl8 (2 µM) 

8 Ckit8 2 µM 2000 µM (2 mM) Comp8 (2 µM) 

9 Ckit8 2 µM 200.000 µM (0.2 M) Ctrl8 (2 µM) 

10 Ckit8 2 µM 200.000 µM (0.2 M) Comp8 (2 µM) 

11 Ckit8 2 µM 2.000.000 µM (0.2 M) Ctrl8 (2 µM) 

12 Ckit8 2 µM 2.000.000 µM (0.2 M) Comp8 (2 µM) 

13 Ckit12 2 µM 0 Ctrl12 (2 µM) 

14 Ckit12 2 µM 0 Comp12 (2 µM) 

15 Ckit12 2 µM 2 µM Ctrl12 (2 µM) 

16 Ckit12 2 µM 2 µM Comp12 (2 µM) 

17 Ckit12 2 µM 20 µM Ctrl12 (2 µM) 

18 Ckit12 2 µM 20 µM Comp12 (2 µM) 

19 Ckit12 2 µM 2000 µM (2 mM) Ctrl12 (2 µM) 

20 Ckit12 2 µM 2000 µM (2 mM) Comp12 (2 µM) 

21 Ckit12 2 µM 200.000 µM (0.2 M) Ctrl12 (2 µM) 

22 Ckit12 2 µM 200.000 µM (0.2 M) Comp12 (2 µM) 

23 Ckit12 2 µM 2.000.000 µM (0.2 M) Ctrl12 (2 µM) 

24 Ckit12 2 µM 2.000.000 µM (0.2 M) Comp12 (2 µM) 

To directly visualise the effect of the addition of both the complementary 

sequence and Hydrogen peroxide, 3 separate runs were performed: the first 

serving to establish the baseline fluorescence in the presence of the G-
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quadruplex structure; the second to observe the effect of H2O2; and the third to 

observe the effect of complementary sequence. 

The protocol was as followed: 

1. Samples were prepared by adding to each tube: 

a. 4 µl of 10 µM solutions of the ckit8 and ckit12 solutions 

b. 2 µl of a 1 M solution of KCl 

c. 6 µl of 10 mM Sodium Cacodylate (pH 7.4) 

2. Tubes were placed in the Rotor-gene Q PCR machine and were run 

under the following conditions: 

a. 100 cycles of 1 second at 37°C  with fluorescence detection after 

each cycle in the following channels: 

Channel Excitation 
Wavelength  

Emission 
Wavelength 

Cy3 530nm 555nm 

Cy5 625nm 660nm 

Cy3-Cy5 FRET 530nm 660nm 

3. The tubes were removed from the instrument. 

4. Hydrogen peroxide was added to the tubes to achieve the concentrations 

described in table 2-2. All concentrations were achieved using 4 µl of 

H2O2 solutions. To maintain equal volume in all samples, 4 µl of water 

was added to the samples to which H2O2 was not added. Care was taken 

to pipette the solutions onto the side of the tubes, without being in 

contact with the rest of the solution; the rotation of the samples within the 

instrument will mix the solution before the first reading. 

5. The tubes were placed in the instrument, which was set to same 

conditions as in step 2. 
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6. Tubes were again removed from the instrument. 

7. The complementary sequences were added to achieve the 

concentrations described in table 2-2. Concentrations were achieved 

using 4ul of 10 µM solutions. To maintain equal volume in all samples, 4 

µl of Sodium Cacodylate was added to the samples to which 

complementary oligonucleotide was not added. The same care was 

taken when pipetting as in step 4. 

8. The tubes were placed in the instrument, which was set to same 

conditions as in steps 2 and 5. 

9. Fluorescence data from the instrument was then analysed, as described 

throughout this section. 

Figures 2-13 to 2-16 represent the results achieved using the above protocol. 

However, samples using the 12 flanked GQM are not shown as they proved to 

be less accurate, these can be consulted in the Appendix DVD. It should be 

noted that the first 10 data points in the first section were omitted, as mixing 

occurred during this period and FRET values were not representative. 

 

Figure 2-13: FRET values observing effect of Hydrogen peroxide and complementary 
oligonucleotide concentration.  
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As can be observed from figure 2-13, this method showed a relatively good 

precision during the first section, as all samples are within approximately 2 

RFUs of each other. At the start of the second and third sections, as observed 

in other experiments, fluorescence in all samples experiences a shift; in this 

case, the shift is toward a lower fluorescence value. During the second section 

(when H2O2 was added at different concentrations), samples with 200mM or 2 

M H2O2 decreased (samples 9-12), whereas samples with 0, 2 µM, 20 µM and 2 

mM (samples 1-8) stayed constant throughout the section.  

During the third section (in which complementary sequence and control 

sequence was added), those samples in which complementary oligonucleotide 

was added decreased sharply, whereas samples to which control sequence 

was added remained far more stable in general. The exception being the 

samples to which control sequence was added as well as 200 mM and 2 M 

H2O2 (samples 9 and 11) was added, which decreased a moderate amount, 

although not as steeply as those samples to which complementary sequence 

was added. 

To eliminate other intervening factors, such as temperature fluctuations, the 

controls were normalised to a straight line at their average point and all other 

samples were adjusted, point-by-point by the same values as those required to 

produce a constant fluorescence for the control sample. 

As can be observed from figure 2-14, before normalisation, fluorescence values 

are disparate from the start and throughout the experiment. In the second 

section, samples to which 200 mM or 2 M H2O2 was added experienced a 

reduction in fluorescence, whereas the other samples remained constant. In the 

third section these same samples also decreased substantially whereas the 

remaining samples remained fairly constant.  

After the samples were normalised to the control (sample 1: 0 H2O2 with control 

sequence), results were largely similar, with better differentiation between 

samples with 200 mM and 2 M H2O2 and the remaining samples. 
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Figure 2-14: Cy5 fluorescence values observing effect of Hydrogen peroxide and 
complementary oligonucleotide concentration raw data (above) and data normalised to control 
values (sample 1) (below). 

As can be observed from figure 2-15, results reflect an almost mirror image to 

FRET results, with section one presenting similar, stable values for all the 

samples (with the exception of sample 9, which although stable, presented 

higher fluorescence values). During section two, fluorescence levels of samples 

9, 10, 11 and 12 (samples with 200 mM and 2 M H2O2 added) showed 

significant increases. In the third section, samples with complementary 

sequence showed increased fluorescence as did samples 9 and 11.  

 

Figure 2-15: Cy3 fluorescence values observing effect of Hydrogen peroxide and 
complementary oligonucleotide concentration raw data. 
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Figure 2-16 displays the treated FRET data. Data treatment involves 

normalisation with respect to the control (as described previously) and, to 

discount interfering factors that affect FRET by decreasing the fluorescence 

detected by Cy5, any change in Cy5 fluorescence was taken into account by 

increasing the FRET value by the same percentage value as the Cy5 

fluorescence decreased, and vice-versa. 

 

Figure 2-16: FRET values observing effect of Hydrogen peroxide and complementary 
oligonucleotide concentration, normalised to control and Cy5 fluorescence. 

Figure 2-16 represents the same results as shown in figure 2-15, with the data 

normalised with respect to the control sample (1) and discounting the change in 

Cy5 fluorescence from the values detected. 

Using this data analysis, results can be seen to be constant throughout sections 

1 and 2; whilst in the third section; samples with complementary sequence 

added experienced a decrease in fluorescence. 

2.1.1b Second optimised experiment 

The fully optimised method, including the specific induction of Fenton’s reaction, 

by adding not only H2O2, but also FeCl2 and ascorbic acid, was then performed. 

To ensure none of the components of this reaction would interfere with 

fluorescence, controls were performed, isolating each of the components to 

observe their effect on FRET values observed, as well as “production” samples, 
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in accordance with table 2-3, observing the effect of each of the components of 

Fenton’s reaction on fluorescence (Figures 2-17 and 2-18). 

Table 2-3: Samples used in experiment evaluating effect of Fenton's reaction components. 

 
GQM 
conc

. 

KCl 
conc. 

H2O2 conc. 
FeCl2 
conc. 

Ascorbic 
Acid conc. 

Comp. 
sequence 

conc. 

1 - 100 mM 300 µM 20 µM 50 µM 0 

2 - 100 mM 300 µM 20 µM 50 µM 2 µM 
3 2 µM 0 300 µM 20 µM 50 µM 0 
4 2 µM 0 300 µM 20 µM 50 µM 2 µM 

5 2 µM 0 0 0 0 0 
6 2 µM 0 0 0 0 2 µM 
7 2 µM 100 mM 300 µM 0 0 0 
8 2 µM 100 mM 300 µM 0 0 2 µM 
9 2 µM 100 mM 0 20 µM 0 0 
10 2 µM 100 mM 0 20 µM 0 2 µM 
11 2 µM 100 mM 0 0 50 µM 0 
12 2 µM 100 mM 0 0 50 µM 2 µM 
13 2 µM 100 mM 300 µM 20 µM 0 0 
14 2 µM 100 mM 300 µM 20 µM 0 2 µM 
15 2 µM 100 mM 0 20 µM 50 µM 0 
16 2 µM 100 mM 0 20 µM 50 µM 2 µM 
17 2 µM 100 mM 300 µM 20 µM 50 µM 0 
18 2 µM 100 mM 300 µM 20 µM 50 µM 2 µM 
19 2 µM 100 mM 300 µM 20 µM 50 µM 0 
20 2 µM 100 mM 300 µM 20 µM 50 µM 2 µM 

Ctrl 2 µM 100 mM 0 0 0 0 
Ctrl2 2 µM 100 mM 0 0 0 2 µM 

The protocol used was identical to the previously described optimised method, 

differing only in the constituents of each tube. FeCl2 and Ascorbic acid were 

added prior to the first reading. 

Utilising the samples indicated in table 2-3, yielded fluorescence results 

presented in Figures 2-17 and 2-18. As with previous experiments, only the 

most relevant data is represented here, to consult the full data sets, please refer 

to the Appendix DVD. 

 As can be observed from figure 2-17, neither method of inducing oxidation 

(performed after read 100) affected fluorescence values at these 

concentrations, and there is no apparent difference between the use of Fenton’s 

reaction (used in samples 17 and18) and H2O2 alone (samples 7 and 8). 

However, when observing section 3, both oxidation methods appeared to hinder 
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binding to the complementary oligonucleotide, producing more tenuous 

hybridisation curves than the control. The decrease in fluorescence observed at 

the beginning of each new section is a characteristic that is noticed in every 

experiment performed with this method including controls, caused by variations 

in temperature and the inevitable loss of fluorescence that occurs over time. 

 

Figure 2-17: FRET values comparing the effect of H2O2 and Fenton's reaction. 

Figure 2-18 represents the FRET values observing the effect of FeCl2 and 

Ascorbic acid on Fluorescence, when compared to a control. Figure 2-18 shows 

that neither FeCl2 nor ascorbic acid (added at read 100) have an observable 

effect on fluorescence values. However, as in the samples represented in figure 

2-18, the samples with FeCl2 or ascorbic acid show an attenuated hybridisation 

curve. 

 

Figure 2-18: FRET values observing the effect of ascorbic acid and FeCl2 on fluorescence. 
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The components used in this experiment were therefore deemed to be suitable 

to observe the effect of oxidation. However the concentrations used in this 

experiment were deemed to be insufficient to induce oxidation under the 

conditions of the developed method.  

2.1.1c Third optimised experiment 

Figures 2-19 to 2-22 represent an experiment in which a series of higher 

concentrations were used, based on a study on Guanine oxidation by White and 

co-workers (2003) (283), this experiment was aimed at revealing the threshold for 

oxidation affecting fluorescence, as well as to establish whether a correlation 

could be made between H2O2 concentration and the hybridisation curve incline. 

This experiment was devised using the samples described in table 2-5, yielding 

results presented in figures 2-19 to 2-22. 

Table 2-4: Samples used in oxidation threshold experiment. 

 
GQM 
conc. 

KCl 
conc. 

H2O2 conc. 
FeCl2 
conc. 

Ascorbic 
Acid conc. 

Comp. 
sequence 

conc. 

1 2 µM 100 mM 0 0 0 0 
2 2 µM 100 mM 0 0 0 2 µM 
3 2 µM 100 mM 0 150 µM 50 µM 0 
4 2 µM 100 mM 0 150 µM 50 µM 2 µM 
5 2 µM 100 mM 10 mM 150 µM 50 µM 0 
6 2 µM 100 mM 10 mM 150 µM 50 µM 2 µM 
7 2 µM 100 mM 20 mM 150 µM 50 µM 0 
8 2 µM 100 mM 20 mM 150 µM 50 µM 2 µM 
9 2 µM 100 mM 30 mM 150 µM 50 µM 0 
10 2 µM 100 mM 30 mM 150 µM 50 µM 2 µM 
11 2 µM 100 mM 40 mM 150 µM 50 µM 0 
12 2 µM 100 mM 40 mM 150 µM 50 µM 2 µM 
13 2 µM 100 mM 50 mM 150 µM 50 µM 0 
14 2 µM 100 mM 50 mM 150 µM 50 µM 2 µM 
15 2 µM 100 mM 60 mM 150 µM 50 µM 0 
16 2 µM 100 mM 60 mM 150 µM 50 µM 2 µM 
17 2 µM 100 mM 70 mM 150 µM 50 µM 0 
18 2 µM 100 mM 70 mM 150 µM 50 µM 2 µM 
19 2 µM 100 mM 80 mM 150 µM 50 µM 0 
20 2 µM 100 mM 80 mM 150 µM 50 µM 2 µM 
21 2 µM 100 mM 90 mM 150 µM 50 µM 0 
22 2 µM 100 mM 90 mM 150 µM 50 µM 2 µM 
23 2 µM 100 mM 100 mM 150 µM 50 µM 0 
24 2 µM 100 mM 100 mM 150 µM 50 µM 2 µM 
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Using these samples, the experiment was run under the same conditions as 

previously described. Figure 2-19 shows the FRET values for the experiment, 

with the data treated in the same way as in the first optimised experiment (pp. 

74). Data represented in figure 2-19 has been fitted as described on page 74. 

The first 20 data points of section 1 have also been omitted as mixing occurred 

during this time and fluorescence values are not representative. Within the 

legend, the concentrations shown are those of H2O2 in the sample. 

 

Figure 2-19: FRET values observing effect Fenton’s reagent using different concentrations of 
Hydrogen peroxide. 

As can be observed from figure 2-19, the FRET values observed decrease in 

direct proportion to the concentration of Hydrogen peroxide used. This 

hypothesis was tested by using Pearson’s product moment correlation 

coefficient to study the effect of the independent variable “concentration of 

Hydrogen Peroxide” with the dependent variable “decrease in fluorescence over 

section 2”; results revealed a strong negative correlation (-0.786) between the 

concentration of H2O2 and the variation in FRET values over section 2. 

Observing section 3, it is apparent that all samples to which Hydrogen peroxide 

was added (before section 2) continued to decrease, albeit at a slower rate. 
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Samples to which equimolar concentrations of complementary DNA was added, 

showed the characteristic hybridisation curve however due to the lower starting 

point for samples containing Hydrogen peroxide, these showed a more 

attenuated incline. 

As with previous experiments both Cy5 (figure 2-20) and Cy3 (figure 2-21) 

fluorescence values were collected and analysed. 

 

 

Figure 2-20: Cy5 fluorescence values for oxidation threshold experiment raw data (above) and 
data normalised to control values (below). 

Figure 2-20 denotes the variation in Cy5 fluorescence over the course of the 

experiment; as can be observed the trend in sections 1 and 2 (up to read 180) 

are remarkably similar to those observed in the FRET values. In section 3, any 
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decrease noticed was in proportion to the H2O2 concentration, the presence of 

complementary oligonucleotide had no effect. 

Figure 2-21 denotes the Cy3 raw data values, these were, as with previous 

experiments, an approximate mirror image of the FRET values observed, with 

fluorescence increasing with increasing concentrations of H2O2.  

 

Figure 2-21: Cy3 raw data values from oxidation threshold experiment. 

As with the first optimised method (pp. 77), figure 2-22 denotes a far different 

picture of the FRET values, when the variation in Cy5 fluorescence is 

discounted; In section 1, all samples coincide, in section 2 however, whereas 

with the raw data all fluorescence values decreased to some extent, when 

treated as described, all samples except one (60 mM with complement) ether 

remain stable, or increase over time. In section 3, the samples to which 

complementary oligonucleotide was added decrease, and the samples to which 

no complementary oligonucleotide was added remain stable. 
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Figure 2-22: FRET values from the oxidation threshold experiment, normalised to control and 
Cy5 fluorescence. 

2.2 Molecular Modelling 

All production Molecular Dynamics simulations were performed on a 

Dell/Alienware workstation with 2.66Ghz Intel core i7 processor (4 core HT), 

12Gb RAM and 2Tb HDD running CentOS Linux 5.4 and an HP XC-3000 

supercomputer: Infiniband interconnect; 2 login nodes each with 3.2Ghz Intel 

Xeon 8 core processors,  shared 64Gb RAM and 3Tb file-store; plus 872 

processor cores across 218 HP DL140 G3 compute nodes each with dual Intel 

"Woodcrest" 5160 Xeon dual core processors, 8Gb of shared RAM per node 

and dedicated 33Tb file-store (Astral). Optimisation was performed on the 

Dell/Alienware workstation, a Dell laptop with 1.7 GHz Intel core i7 processor (4 

core HT), 12Gb RAM and 750Gb HDD running Ubuntu Linux 10.10 and 4 x RM 

workstations clustered with Rocks Linux over 100Mbps Ethernet each with 

3.2Ghz Intel Pentium 4HT processors, 2Gb RAM and 320Gb HDD. 

GROMACS Molecular Dynamics Suite 4.5.3 (277) single precision was used, in 

both the optimisation and production runs.  

To perform the Molecular modelling, a PERL script was used to automatically 

perform all the separate commands in a specific sequence, to execute molecule 
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preparation, equilibration, and production MD simulations and, to a lesser 

extent, analysis of results.  

To perform adequate simulations of the G-quadruplexes, an extensive 

optimisation was undertaken. This optimisation can be generally divided into 

two different, yet equally important parts; optimisation of the script, which 

dictated the different programs used and the general flow of the equilibration 

and production simulations, and optimisation of the simulation parameters: a 

fine tuning of the parameters of all of the MD and EM simulations to ensure 

valid results. 

2.2.1 Optimisation of Molecular Modelling Protocol and Parameters 

A script was used to open and use all the different programs that constitute the 

GROMACS package, in a precise order. The script was originally written by Dr 

Lee Larcombe and used for protein modelling. The initial optimisation of this 

script was based on a thorough review of the literature, which revealed the 

general steps recommended for large-scale modelling of biomolecules, 

presented in the following scheme.  

 

Figure 2-23: Molecular Modelling Overview Flow Chart. 

A consistent problem encountered during the first weeks of optimisation was file 

errors due to inappropriately named files, different programs of the GROMACS 

package not receiving the correct input files and syntax errors. This was 
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overcome by implementing a consistent and simple naming system, facilitating 

the transition between programs and assuring the correct files are used and/or 

updated on each step. 

Hereafter, the optimisation of each of the three steps: Molecule Preparation, 

Equilibration Protocol and Production Simulation will be described. 

2.2.1a Molecule Preparation 

For reasons described in section 2.1, the G-quadruplex structure files PDB ID 

1XAV (67) and PDB ID 2O3M (125) were taken from the Research Collaboratory 

for Structural Bioinformatics (RSCB) Protein Data Bank (PDB). These are the 

structures of G-quadruplexes in the NHE III region of c-Myc, and in the 

promoter region of c-Kit, respectively. These are both intramolecular 

quadruplexes with three guanine tetrads. They differ in the length and sequence 

of the loops, and will be discussed in detail in later chapters. These structures 

have several features which make them attractive choices for this project: they 

are biologically relevant; they have both been well studied; and their disparity in 

loop length and sequence indicate a possible difference in stability between the 

two.  

The B-DNA analogues were created using the same sequence as the PDB G-

quadruplex structures (Table 2-5), using AMBER Tools NAB module. 

Table 2-5: Sequences for the c-Myc and c-Kit B-DNA molecules. 

c-Myc 
5’-TGA GGG TGG TAG GGT GGG TAA-3’ 

3’-ACT CCC  ACC  ATC CCA CCC  ATT-5’ 

 

c-Kit 

5’-AGG GAG GGC GCT GGG AGG AGG G-3’ 

3’-TCC  CTC  CCG CGA CCC TCC  TCC C-5’ 

Molecule preparation consisted of structure editing, counterionisation, and 

solvation. Due to the easy-to-use GUI of SYBYL and our familiarity with its 
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structure editing features, this platform was planned to be used to perform this 

step. 

However initial tests proved that this platform is inappropriate when working in 

the .pdb and .gro file formats (used by GROMACS), as alterations made within 

SYBYL and saved in the .pdb file format, were distorted when opened in any 

other molecular viewing software.  

For this reason, UCSF CHIMERA 1.5.3 (284) and the GROMACS package were 

selected to perform molecule preparation. The use of flanking sequences was 

revealed to be flawed as the computational time would be increased 

exponentially and the benefits to biological accuracy would have been negligible 

due to the inherent shortcomings of MD force fields.  

To simulate the effect of oxidation, all structures were duplicated and to these 

duplicate structures, one 8-oxo-dG nucleotide was incorporated into the 

structures. This was performed on a Guanine in the central tetrad of both G-

quadruplexes: G7 in c-Myc and G9 in c-Kit; and on the corresponding guanine 

in the B-DNA analogues. Details of the incorporation and force field 

modifications performed to accommodate the oxidised nucleotides are 

described in section 2.2.2b. 

Two aspects determined to be crucial to a stable system were counterions and 

mixed solvent. The counterions would be potassium cations that would 

neutralise the negatively charged backbone and the mixed solvent (NaCl of KCl 

salt) would approximate the system to real life situations and also restricts the 

movement of molecules caused by electrostatic forces, when compared to pure 

water. 

Mixed solvation was initially achieved using CHIMERA to generate a .gro file 

with NaCl which was added to the structure file using genbox. Water was then 

added to the system. Although this achieved the desired result in terms of 

quantity, there were several disadvantages: the structure file added the atoms 

randomly, without consideration for the other ions that are added – leading to an 
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unstable environment that requires rigorous equilibration. The other 

disadvantage was practical, using genbox required the use of a series of extra 

files and commands in the script which is awkward when performing 

optimisation and dealing with several “draft-runs” a day. 

Counterionisation is a requirement for accurate molecular dynamics simulations 

of nucleic acids. This was first attempted, using CHIMERA, by manually placing 

the positive counterions (potassium) 6 Å away from each phosphorous group. 

However this strategy produced an unstable system, likely due to the repulsive 

electrostatic forces between the counterions as well as the central potassium 

ions.  

Counterionisation and mixed solvation were then achieved using genion. This 

program is part of the GROMACS package and is used after solvation in water 

and replaces random water molecules within the system and has the advantage 

of enabling the user to define the minimum distance between ions as well as the 

desired final net charge and the ionic concentration.  

The structures were then solvated in approximately 11000 TIP3P water 

molecules using genbox with 70 Å by 70 Å by 70 Å periodic boundary 

conditions (PBC) for the G-quadruplex structures and in a Triclinic box with PBC 

at least 10 Å away from the solute for the B-DNA molecules; and then 

counterionised with 19 K+ ions to neutralise the molecule and another 20 K+ and 

Cl- atoms were added to the system to achieve a final Salt concentration of 100 

mM and a net neutral charge. 

2.2.1b Equilibration Protocol and Production Simulations 

The equilibration protocol is an important process, consisting of several EM and 

MD simulations designed to assure that any unnatural restraints resulting either 

from the original solute molecule or from the solvation and addition of ions, are 

resolved before the production molecular dynamics simulations are performed.  
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There is no standard equilibration protocol; it depends largely on the system 

under study, the software used and the parameters used in the production 

simulation.  

The initial equilibration protocol consisted of simply an EM followed by a short 

MD simulation. This was used to test the effectiveness of the script and the 

transition between separate simulations. Once this script was shown to function, 

it was expanded in accordance with the equilibration protocol presented by 

Haider and Neidle (2010) (285), which consisted of a total of five energy 

minimisations and three molecular dynamics simulations. Although this is a 

valid protocol, it is designed for use with the AMBER software package with 

several impracticalities when using GROMACS. As such a protocol was devised 

taking into consideration several papers on G-quadruplex MD simulations with 

GROMACS, consisting of two energy minimisations and three molecular 

dynamics simulations, in accordance with the parameters stated in the digital 

Appendix. The parameters used in the equilibration protocol were also 

subjected to a rigorous optimisation process. Going from an initial, crude 

equilibration, to one with positional restraints, accurate indexing groups (for 

temperature and pressure coupling), positional restraints and appropriate centre 

of mass motion removal. 

This was subsequently validated to be an adequate equilibration. An overview 

of the equilibration protocol is presented in Fig. 2-24. 
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Figure 2-24: Overview Flow Chart of the Equilibration Protocol 

The first two steps consist of an initial 5000 step minimisation and 200 ps MD 

simulation with the G-quadruplex restrained. These are both intended to allow 

the water and counterions to equilibrate, while restraining the G-quadruplex to 

prevent structural alterations, which may occur due to the brusque movements 

of the solvent atoms. The EM will resolve the volatile electrostatic interactions 

and the MD will then allow the movement of solvent and ions to resolve the 

other, weaker interactions.  

The system was then subjected to a further 2000 step minimisation (EQ3) 

without restraints and 300 ps MD simulation without restraints with temperature 

rising from 100 K to 310 K (EQ4), augmenting 75 K every 50 ps. These steps 

are intended to equilibrate the entire system by resolving the electrostatic 

interactions between the G-quadruplex and the surrounding solvent and ions 

and then slowly heating the system from 100 K to the desired production run 

temperature of 310 K to slowly increase the movement of the atoms in the 

EQ1 

• 5000 step Steepest Descent EM 

• G-quadruplex restrained 

EQ2 

• 200 ps MD Simulation 

• G-quadruplex restrained, 300K 

EQ3 

• 2000 step Steepest Descent EM 

• Unrestrained 

EQ4 

• 200 ps MD Simulation 

• Unrestrained, heated from 100K to 310K 

MD 

• 2 ns MD Simulation 

• Unrestrained, 310K with angular motion removal EQ5 

• 100 ns MD Simulation 

• Unrestrained, 310K 
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system, to better resolve the constraints that may be present in either the 

original PDB structure or in the solvated and counterionised system. 

The final equilibration step was run with the same parameters as the production 

run (below), differing only in the length of the simulation (2 ns) and centre of 

mass motion removal which, in this case, was angular. This step has the dual 

purpose of attenuating the angular momentum of the G-quadruplex and 

resolving any residual constraints remaining in the system. 

The parameters involved in particle interactions were constant throughout the 

equilibration and test production runs, with the exception of Fourier grid spacing 

which was increased to 0.12 Å in the production simulations to improve 

efficiency as described in the following section (Table 2-6). 

Table 2-6: Particle Interaction Parameters Used. 

ns_type =  grid 

Pbc =  xyz 

coulombtype = PME 

Rlist = 1 

Rcoulomb =  1 

rvdw = 1 

Fourierspacing = 0.1178 

pme_order = 4 

ewald_rtol = 1e-5 

Vdwtype = Cut-off 

The run output control was adapted for each step, to give approximately 100 

snapshots for each of the equilibration steps and the production simulation was 

set to write out every 10 ps. Table 2-7 describes the principal parameters used 

in the production MD simulations. 
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Table 2-7: Summary of the parameters used in the production simulation runs. Descriptions 
taken from GROMACS online manual (http://manual.GROMACS.org/) 

Parameter Value Description 

dt 0.002 Time step (2 fs) 
Nsteps 250.000.000 Length of simulation (500 ns) 

comm_mode Angular Mode for centre of mass motion removal 
(translational and rotational) 

comm_grps DNA Water_and_Ions Groups to remove centre of mass motion 
nstcomm 10 Frequency to remove centre of mass motion 

   

tcoupl Berendsen Temperature coupling (weak coupling to a 
Berendsen Thermostat) 

tc_grps DNA Water_and_Ions groups to couple separately to thermostat 
tau_t 0.1 0.1 Time constant for coupling each group to the 

thermostat 
ref_t 310 310 Reference temperature for each group 

   

pcoupl Berendsen Pressure coupling (weak coupling to a 
Berendsen Barostat) 

pcoupltype Isotropic Barostat to function uniformly in all directions 
tau_p 1 Time constant for coupling (1 ps) 

compressibility 4.5e-5 Rate of volume change in response to 
pressure (bar) 

ref_p 1 Reference pressure for coupling ( 1 bar) 
refcoord_scaling All The reference coordinates are scaled with 

the scaling matrix of the pressure coupling 
   

gen_vel No Do not generate velocities at start-up  
   

constraints All-bonds Convert all bonds to constraints 
constraint_algorithm LINCS LINear Constraint Solver. An algorithm which 

is highly parallelisable 
lincs_order 4 Highest order in the expansion of the 

constraint coupling matrix 
lincs_iter 1 Number of iterations to correct for rotational 

lengthening in LINCS 

The script used for the results presented in this thesis, as well as the full list of 

parameters for molecule preparation, equilibration protocol and production 

simulations can be found in the digital Appendix.  

2.2.1c Parallelisation and Processing Performance Optimisation 

Molecule preparation and equilibration was performed on the Dell/Alienware 

machine previously described. This protocol took approximately 8 hours to 

complete, using all 8 available threads. The largest step was EQ5, a 2 ns MD 

simulation which generally took approximately 3 hours at 16.5 GFlops. The 

processing performance values for each step in molecule preparation and 

equilibration for normal c-Myc can be viewed in the digital Appendix, as can the 

values for the simulations described below. 
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To perform the production molecular dynamics simulation on the Astral 

supercomputer, the script was first tested on the RM cluster described 

previously. Although the simulation was successful, the processing performance 

was only 4.3 GFlops, which yielded 1.86 ns/day. 

Dr Lee Larcombe and Dr Les Oswald then proceeded to compile GROMACS 

4.5.3 in double precision on the Astral supercomputer. An initial 10 ns test was 

performed on the c-Myc G-quadruplex using 32 cores. This test revealed 

identical results to those performed on the Dell/Alienware machine. However, 

the simulation had a processing performance of 70 GFlops, and was able to 

simulate 30 ns/day. However, although this processing performance is over 4 

times better than achieved on the Dell/Alienware machine, it was still 

considered and was only able to simulate 30 ns/day.  

To improve speed, the decision was made to perform the simulation in 

GROMACS 4.5.3 single precision on the Astral supercomputer. This could 

potentially reduce accuracy, however a study by Gruber and co-workers (2011) 

(286) describes how any benefit from the use of double precision GROMACS is 

outweighed by the “noise” produced in simulations at temperatures over 300 K. 

The script was then adapted to improve the parallelisation of the simulation. 

This involved an increase in the PME grid size to 0.12 nm2 and a reduction of 

the centre of mass motion removal frequency to every 10 steps. 

These alterations produced an significant increase to the processing 

performance of the MD simulations. By performing this optimised simulation on 

96 cores, 140 GFlops, which produces approximately 60 ns/day, was the 

minimum performance achieved in any simulation.  
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2.2.2 Force Field Optimisation 

2.2.2a Porting AMBER parm99 BSC0 parameters 

In 2007, Perez and colleagues (287) modified the standard parm99 force field to 

correct the misrepresented alpha (O5’ - P) and gamma (C4’-C5’) conformers, 

which led to artefacts in the DNA backbone in long (>10 ns) MD simulations. 

This parm99 BSC0 force field algorithm (available from 

http://mmb.pcb.ub.es/PARMBSC0/) proved to be very successful and is 

currently the principal force-field used for simulation DNA in the AMBER MD 

software package.  

Although GROMACS 4.5.3 does not support this modification, these parameters 

were ported by the author, as they were considered indispensable for accurate 

representation of the G-quadruplex structure during the intended simulation 

time.  

Reparameterising the alpha and gamma torsions involved modifying the 

dihedral angles and charge thresholds on the C4’ to C5’ and O5’ and P bonds, 

as well as creating a new atom type for the C5’ atom to avoid the unintentional 

reparameterisation of protein molecules.  

The fact that the AMBER software utilises different units from the GROMACS 

software required the conversion of these units, as well as taking into account 

several peculiarities in the porting process from AMBER to GROMACS, 

especially the fact that AMBER force fields within GROMACS are unable to 

differentiate between proper and improper dihedral angles – treating all dihedral 

angles as improper. 

An explicit list of the alterations form the AMBER99sb force field can be found in 

the digital Appendix. 

To validate the port, the altered force field files have been sent to Dr. Eric Sorin, 

the main contributor of previous AMBER force-field ports to GROMACS.  
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As an internal validation method, 400 ns MD simulations were performed on 

both G-quadruplex DNA (PDB ID: 1XAV (67)) and the corresponding duplex DNA 

molecule, with the unmodified AMBER99sb force field parameters, which were 

then compared to the trajectories obtained with the AMBER99 ParmBSC0 

parameters. 

All .pdb files and data analysis graphs are contained within the Digital Appendix. 

The analysis of these simulations showed that with the 99sb force field, after 

approximately 100 ns the B-DNA molecule showed substantial distortions, with 

increased average root mean square fluctuation (RMSF) (2.87 Å) (a measure of 

the fluctuation of each residue over the course of the simulation) and loss of 

Hydrogen bonding. However, when the same molecule was simulated with the 

BSC0 force field, results were vastly improved; the distortions observed in the 

backbone in the previous simulation (average RMSF of 2.47 Å) were not 

noticed as the molecule retained a near perfect double helical structure. End 

fraying and modest DNA bending were observed, however to a far less extent 

than in the previous simulation. No substantial difference was noticed in 

Hydrogen bonding nor all-atom RMSD between the two B-DNA molecules, 

however the results obtained from RMSF and the macroscopic evaluations 

performed indicated that the parmBSC0 parameters were superior. 

With respect to the simulations performed on the G-quadruplex structure, 

results were less conclusive. Both showed good stability, as confirmed by the 

low average RMSD values, however the structure simulated under 99sb 

parameters appeared to fluctuate substantially more than the structure 

simulated under BSC0 parameters, which was confirmed by a higher RMSF 

value in almost every residue (averages of 1.38 and 1.10 for the 99sb and 

BSC0 parameters, respectively), with more pronounced differences in the loops, 

for the structure simulated under 99sb parameters. 
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2.2.2b Modifications performed for Simulation of Oxidised Guanine 

To simulate the effect of oxidation on G-quadruplex structures, a series of 

simulations were performed on structures containing one or more 8-oxo-2’-

deoxyguanosine residues in the place of Deoxyguanine residues. This was first 

achieved by simply altering the H8 atom, bonded to C8 to an oxygen atom (O8). 

This was useful in that it was a simple modification and was used to familiarise 

the author with the intricacies of adding a modified residue to the GROMACS 

force fields.  

However this proved to be an oversimplified alteration which did not account for 

the change in electronegativity and charge threshold caused when 

deoxyguanosine is oxidised to 8-oxo-2’-deoxyguanosine. Appropriate 

parameters were found from the Bryce Group at the University of Manchester 

(http://www.pharmacy.manchester.ac.uk/bryce/AMBER) and ported to 

GROMACS (an explicit list of the modifications can be found in the digital 

Appendix). 

The alterations to the pdb structure file were performed using UCSF CHIMERA 

1.5.2 (284), by replacing the Hydrogen atom (H8) found at C8 and by adding a 

Hydrogen atom H7 to the Nitrogen atom at position 7 (N7) (Fig. 2-25).  

  

Figure 2-25: Comparison of unmodified Deoxyguanosine (left) and 8-oxo-dG (right). 

These alterations were, in conjunction with the modified force field parameters, 

considered sufficient to accurately represent an 8-oxo-2’deoxyguanosine 

residue and the B-DNA duplexes and G-quadruplexes in which they are 

incorporated. As both the representation of the DNA as a whole and the 8-oxo-
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2’deoxyguanosine residue would be represented using the most current and 

industry standard parameters. 

2.2.3 Analysis of Results 

Analysis of the MD simulations consisted of macroscopic visualisation of the 

structures over the course of the simulation using UCSF CHIMERA 1.5.3 (284) 

and analysis of the data produced by several GROMACS tools. 

The GROMACS tools used to generate data and a summary of their use is 

described in table 2-8. 

Table 2-8: GROMACS tools used to generate data on the MD simulations. 

Tool Description 

g_rms 
Calculates the Root Mean Squared Deviation (RMSD) of the solute (DNA) over 

the course of the simulation 

g_energy 
Calculates several parameters to describe the energy of the system over the 

course of the simulation, such as potential and kinetic energy, density and 
volume.  

g_rmsf Calculates the RMSD of each atom at the end of the simulation  

g_hbond 
Calculates the number and properties of the Hydrogen bonds present in the 

system over the course of the simulation 

g_sas Calculates the solvent accessible surface area 

To specifically study the stability of the tetrads, without taking into account 

movement of the loops, index files were created using make_ndx with groups 

specifying the guanines involved in tetrad formation. This enabled the 

observation of the specific RMSD of the tetrads, as well as the number of 

Hoogsteen Hydrogen bonds present in the tetrads. This same process was 

used to calculate the RMSD of the B-DNA without the influence the end-fraying 

artefact. 

To observe any change in the angles in the DNA backbone, g_angle was used 

on a group consisting of the atoms of the DNA backbone, created using 

make_ndx. 

Graphs were plotted and basic descriptive statistics were calculated using 

Microsoft® Excel 2010. 
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To further explore the results obtained from the MD simulations, Principal 

component analysis (PCA), was used. This is a multivariate analysis method 

that identifies large scale collective motions of atoms and therefore separates 

significant motions from background thermodynamic fluctuations (288). This 

analysis provides eigenvectors (principal components) corresponding to 

directions of motion and often, a large proportion of the motility of the analysed 

molecule can be explained by a few eigenvectors with high eigenvalues. 

The displayed results relate to the optimised MD simulations performed on the 

Astral supercomputer. GROMACS input files for all simulations performed, 

including equilibration and molecule preparation can be found in the Appendix 

DVD, as can .pdb structure files for all the images shown in this section.  

2.2.4 Simulations Performed on c-Kit G-quadruplex Structures 

As described previously, four 500 nanosecond molecular dynamics simulations 

were performed on the c-Kit motif; comparing the normal sequence with a 

sequence with an oxidised guanine incorporated, in both the duplex and 

quadruplex structures. 

Macroscopic analysis was performed using Chimera® 1.5.3 and consisted of 

viewing the entire trajectory of each simulation, as well as selecting 

representative snapshots of the simulation. To select these, the clustering 

module in Chimera was used. This program is based on the NMRCLUST 

clustering algorithm developed by Kelley and co-workers (1996) (289). This 

method of clustering does not involve setting an RMSD threshold for clusters, 

but utilises its algorithm to define clusters of conformationally related 

subfamilies, based on the entire data set. 

Due to the inherent difficulties in visualising three dimensional structures in two 

dimensions, the reader is directed to consult the Appendix DVD to visualise all 

relevant .pdb structure files of the snapshots figures presented here. 
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Figure 2-26 describes the trajectory over the course of the simulation, 

presenting the most prevalent cluster for every 100 ns of the 500 ns simulation; 

direct visualisation of these clusters and the animation of the trajectory, 

revealed very little change over the course of the simulation. In this all further 

representations of the Molecular Dynamics simulations, the oxidised nucleotide 

is presented as white and blue, with all atoms represented, as opposed to the 

non-oxidised nucleotides, all of which are presented as blue rectangular 

objects. 

Tetrad stacking remained stable throughout, as Guanine orientation of those 

involved in tetrad formation and the distances between these nucleotides. 

With respect to the loops, the nucleotides in single nucleotide loops (A5 and 

C9), the double nucleotide loop (C11 T12) and the long five nucleotide loop 

(A16 G17 G18 A19 G20) showed a high amount of movement; twisting around 

the sugar base and rotating around the backbone. It should be noted, however, 

that although these nucleotides displayed a lot of movement, the backbone of 

these loops remained in a similar position throughout the simulation and did not 

cause the quadruplex structure to distort in any way. 

Due to the unprecedented conformation this motif forms, the 3’ tail is involved in 

tetrad formation, decreasing the flexibility of this tail. However the 5’ tail, 

consisting of only 1 nucleotide (A1), appeared to stack, through π-π 

interactions, on top of the tetrads.  
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Figure 2-26: Representative snapshots of the cluster analysis of the non-oxidised c-Kit G-
quadruplex. Top left: Cluster of 194 frames representative of the first 100ns; Top centre: Cluster 
of 99 frames representative of the second 100ns; Top right: Cluster of 256 frames 
representative of the third 100ns; Bottom left Cluster of 119 frames representative of the fourth 
100ns; Bottom right: Cluster of 291 frames representative of the last 100ns. 

Figures 2-27 describes the representative snapshots of the 500 ns simulation of 

the oxidised c-Kit G-quadruplex structure, that is to say, the structure to which 

8-oxo-dG was incorporated in the central tetrad at the G9 position. 

In terms of the loops and tails of the oxidised c-Kit G-quadruplex structure, the 

only discernible difference from the non-oxidised form was that over the course 

of the simulation, the long loop showed greater fluctuation, tending to move 

away from the oxidised nucleotide.  

However in terms of the central tetrads, there were discernible changes over 

the course of the simulation; at around 200 ns the oxidised Guanine, within the 

central tetrad, started to twist in relation to the other guanines and this distortion 

spread to the Guanines directly above and below the oxidised Guanine (G6 and 

G8). At the same time, these Guanines were moving away from the remaining 

tetrads. 
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Figure 2-27: Representative snapshots of the cluster analysis of the oxidised c-Kit G-
quadruplex. Top left: Cluster of 223 frames representative of the first 100ns; Top centre: Cluster 
of 108 frames representative of the second 100ns; Top right: Cluster of 448 frames 
representative of the third 100ns; Bottom left Cluster of 119 frames representative of the fourth 
100ns; Bottom right: Cluster of 139 frames representative of the last 100ns.. 

This distortion became more apparent over the course of the simulation and, as 

can be observed in figure 2-28. This image represents a focused snapshot of 

just the Guanines involved in tetrad formation, with the 8-oxo-dG residue 

represented as a predominantly white nucleotide. The distortion appears to 

affect both the stacking of the tetrads and the likelihood of Hoogsteen Hydrogen 

bonds forming between the distorted Guanines and the remaining Guanines. 

 

Figure 2-28: Focused snapshot of the Guanines involved in tetrad formation in the final 
conformation of the oxidised c-Kit G-quadruplex. 
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The following figures represent the data analysis preformed to enable the 

comparison between the oxidised and non-oxidised forms of the c-Kit G-

quadruplex, to help interpret the full effect of oxidation on this structure. 

As can be observed in the RMSD plot in figure 2-29, the results are in general 

agreement with the macroscopic evaluations performed; the non-oxidised 

structure remains relatively stable, with an average RMSD of 0.178nm. 

However, during the final part of the simulation, the structure appears to be 

destabilising to some extent, evidenced by the rise in RMSD to an average of 

0.218 nm in the final 100 ns.  

Also in agreement with the macroscopic evaluations, the RMSD values of the 

oxidised c-Kit structure were on average higher (0.207 nm) and an increase in 

RMSD was noted from 200 ns and became more pronounced throughout the 

simulation, with an RMSD for the final 100 ns of the simulation of 0.268 nm. 

Figure 2-29: Root mean square deviation (RMSD) comparison of c-Kit G-quadruplex structures 
with and without 8-oxo-dG incorporated. 

Observing the RMSD of only the guanines involved in tetrad formation, 

presented in figure 2-30, the difference between the oxidised and non-oxidised 

structures is more apparent than in figure 2-29.  

For the first 100 ns, the oxidised structure presents a higher RMSD than the 

non-oxidised form. For the next 200 ns the structures are indistinguishable and 

at around 300 ns, the RMSD of the oxidised form increases and continues to 
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increase up to approximately 0.2 nm, whereas the non-oxidised structure 

remains at a constant RMSD of approximately 0.1 nm. 

The average RMSD values for the central tetrads (0.105 nm and 0.149 nm for 

the non-oxidised and oxidised structures, respectively) are lower than those 

observed for the entire structure.  

 

Figure 2-30: Root mean square deviation (RMSD) comparison of the Guanines involved in 
tetrad formation in the c-Kit G-quadruplex structures with and without 8-oxo-dG incorporated. 

Figure 2-31 presents the root mean square fluctuation (RMSF) values of the two 

c-Kit G-quadruplex structures. RMSF is a measure of the movement of the 

structure, plotted per residue. This allows the determination of the origin of 

movements detected using RMSD. Observing this graph, and relating the 

residue numbers to nucleotides in the G-quadruplex, inferences can be made 

on the stability of the different parts of the structure. 

In general terms, the RMSF values agree with the previous data accrued; the 

highest values are observed in the residues that correspond to the loops, 

however the long loop (A16 G17 G18 A19 G20) shows a more pronounced 

fluctuation in RMSD in the oxidised quadruplex than in the non-oxidised form. 

With respect to the tetrads, the guanines involved in their formation (G2 G3 G4 

G6 G7 G8 G10 G13 G14 G15 G21 G22) presented lower values than the loops, 

and the oxidised G-quadruplex presented generally higher values than the non-

oxidised form, especially in the oxidised guanine and those directly above and 

below it (G6 G7 G8). 
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Figure 2-31: Root mean square fluctuation (RMSF) comparison of c-Kit G-quadruplex 
structures with and without 8-oxo-dG incorporated. 

Figure 2-32 denotes the calculation of the number of Hydrogen bonds present 

between the Guanines involved in tetrad formation over the course of the 

simulations of both the oxidised and non-oxidised forms of the c-Kit G-

quadruplex. Observing this graph, there are some immediate observations that 

can be made; the average number of hydrogen bonds in the non-oxidised 

structure is approximately 24, whereas the oxidised version has an average of 

approximately 20 hydrogen bonds. Furthermore the number of hydrogen bonds 

in the oxidised structure varies to form an almost mirror image of the focused 

tetrad RMSD graph, with a decrease in the first 100 ns, then coinciding with the 

non-oxidised structure for the next 200 ns, at which point the number of 

Hydrogen bonds decreases again, to approximately 16 and stabilises at this 

level until the end of the simulation. 

 

Figure 2-32: Comparison of the number of Hoogsteen Hydrogen bonds in the c-Kit G-
quadruplex structures with and without 8-oxo-dG. 

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22R
o

o
t 

M
e

an
 S

q
u

ar
e

 F
lu

ct
u

at
io

n
 

(n
m

) 

Residue c-Kit O7 c-Kit

0

5

10

15

20

25

30

100 200 300 400 500

N
u

m
b

e
r 

o
f 

H
yd

ro
ge

n
 b

o
n

d
s 

Time (ns) Ckit Hoogstein O7 Ckit Hoogstein



 

90 

 

To evaluate changes in the topology, the solvent accessible surface area 

(SASA) of each residue was calculated for both structures (Fig. 2-33). 

As can be observed from figure 2-41, the loop regions (A5, C9, C11 and around 

G18) present a higher SASA than the tetrads. In terms of the differences 

between the structures, they appear largely similar, with only slight differences 

in residues G2, G3 and G4 (involved in tetrad formation) and a larger difference 

at the oxidised Guanine G7. 

 

Figure 2-33: Solvent accessible surface area of each residue in the non-oxidised and oxidised 
c-Kit G-quadruplex Structures. 

Principal component analysis (PCA) was also performed to identify any 

significant motions within the molecules. Figures 2-34, 2-35 and 2-36 represent 

the results of PCA on both the oxidised and non-oxidised c-Kit G-quadruplex 

structures. 

Figure 2-34 shows the percentage of motility explained by eigenvalues of the 

eigenvectors; it plots the eigenvalues corresponding to the first (and, therefore, 

most significant) 50 eigenvectors presented as a percentage of the eigenvalues 

for the total eigenvectors and as a cumulative percentage.  This analysis 

describes that the first 3 eigenvectors account for a more than half of the 

motility of the oxidised c-Kit G-quadruplex structure (approximately 53%) but 

account for a smaller proportion of the non-oxidised c-Kit G-quadruplex 

structure (approximately 42%).  
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Figure 2-34: Graph plotting percentage of motility explained by eigenvalues against 
eigenvectors (principal components) of non-oxidised and oxidised c-Kit G-quadruplex structure 
and cumulative percentage. 

Figures 2-35 and 2-36 represent the extreme structures and RMSF values of 

the first two eigenvectors of the non-oxidised and oxidised c-Kit G-quadruplex 

structures. The extreme structures are the most distant projections of the 

structure along the eigenvector. In Figure 2-35, the first eigenvector, 

representing the most significant motion of the non-oxidised structure 

corresponds to slight fluctuations in the loops with the most significant motion 

being in the Cytosine in the double nucleotide loop (C11) which rotated around 

the backbone, towards the tetrads. The second eigenvector of the same 

structure shows represents the movement of the remaining loop nucleotides, 

which were to a smaller extent (maximum 0.193 nm, compared to 0.499 nm in 

the first eigenvector). 
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Figure 2-35: Extreme structures and RMSF values of the first (top) and second (bottom) 
eigenvectors of the non-oxidised c-Kit G-quadruplex. 

When observing the oxidised c-Kit G-quadruplex structure (Figure 2-36), the 

structures pertaining to the first two eigenvectors support the previous 

observations made; both eigenvectors corresponded to the same effects 

(although to a greater extent in the first eigenvector). The main distortion was 

observed in the G-tetrads, with the oxidised lesion and the Guanines directly 

above and below it twisting and moving away from the remaining Guanines in 

the tetrads. Smaller movements of the loop nucleotides were also observed, in 

directions away from the oxidised lesion. 
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Figure 2-36: Extreme structures and RMSF values of the first (top) and second (bottom) 
eigenvectors of the oxidised c-Kit G-quadruplex. 

2.2.5 Simulations Performed on c-Kit B-DNA Structures 

To complement the simulations performed on the c-Kit G-quadruplexes, MD 

simulations under the same conditions were performed on the same sequence 

in the B-DNA form, with and without 8-oxo-dG incorporated into the 9 position. 

Figure 2-37 represents snapshots of most prevalent clusters in each 100 ns of 

the entire simulation of the non-oxidised c-Kit B-DNA molecule. Throughout the 

simulation performed on this molecule, fluctuations were observed in the 

backbone (bending) and fraying of the 5’ and 3’ ends of the molecule. However, 

in general, the molecule remained remarkably stable and there were no 

discernible differences between the snapshots representing each 100 ns of the 

simulation Base stacking and the orientation of the nucleotides also remained 

stable throughout the simulation. 
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Figure 2-37: Representative snapshots of the cluster analysis of the non-oxidised c-Kit B-DNA 
molecule. Top left: Cluster of 81 frames representative of the first 100ns; Top right: Cluster of 
136 frames representative of the second 100ns; Centre left: Cluster of 92 frames representative 
of the third 100ns; Centre right: Cluster of 49 frames representative of the fourth 100ns; Bottom: 
Cluster of 75 frames representative of the last 100ns. 

Figure 2-38 represents snapshots of most prevalent clusters in each 100 ns of 

the entire simulation of the oxidised c-Kit B-DNA molecule and figure 2-39 

represents a focused snapshot of the base pairing between the oxidised 

nucleotide and its complementary base. Throughout the 500ns simulation, the 

same observations were made in terms of the backbone bending, stable base 

stacking and pairing and end fraying. The only discernible difference was an 

increase in flexibility of the molecule, leading to an increase in bending from the 

oxidised nucleotide (G7). 
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Figure 2-38: Representative snapshots of the cluster analysis of the oxidised c-Kit B-DNA 
molecule. Top left: Cluster of 178 frames representative of the first 100ns; Top right: Cluster of 
98 frames representative of the second 100ns; Centre left: Cluster of 85 frames representative 
of the third 100ns; Centre right: Cluster of 87 frames representative of the fourth 100ns; Bottom: 
Cluster of 146 frames representative of the last 100ns. 

 

Figure 2-39: Focused snapshot of the base pairing/orientation of the oxidised Guanine and its 
complementary Cytosine at the end of the simulation. 

The following figures represent the data analysis performed and comparisons 

performed on the oxidised and non-oxidised c-Kit B-DNA molecules. Observing 

figure 2-40, results are concordant with the macroscopic evaluations, RMSD 

values between oxidised and non-oxidised B-DNA molecules are very similar, 

with the oxidised structure presenting only slightly higher values (averages of 

0.298 nm and 0.315 nm for non-oxidised and oxidised B-DNA molecules, 

respectively) and dispersion (standard deviations of 0.067 nm and 0.077 nm for 

non-oxidised and oxidised B-DNA molecules, respectively). Both molecules 



 

96 

 

appear to be equilibrated and stable, with no discernible shifts in RMSD values, 

nor any apparent incline. 

 

Figure 2-40: Root mean square deviation (RMSD) comparison of c-Kit B-DNA structures with 
and without 8-oxo-dG incorporated. 

Observing the RMSF values plotted in figure 2-41, the results appear 

concordant with the accrued data; the terminal ends, present a higher RMSF 

value than the rest of the molecule. Between the two molecules, the most 

discernible differences are also observed at the terminal ends; at the 3’ end of 

the sense strand and 5’ end of the antisense strand of the molecules, where the 

non-oxidised structure presents a higher value, indicating more pronounced 

fraying. The reverse is apparent at the 5’ end of the sense strand and 3’end of 

the antisense strands of the two molecules, with the oxidised structure 

presenting higher RMSD values than the non-oxidised structure. 

 

Figure 2-41: Root mean square fluctuation (RMSF) comparison of c-Kit B-DNA structures with 
and without 8-oxo-dG incorporated. 
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The Hydrogen bonding data presented in figure 2-42 supports previous data in 

that the number of Hydrogen bonds remains stable over time in both molecules 

(standard deviations of 0.184 nm and 0.181 nm for the non-oxidised and 

oxidised molecules) and structures appear to have very similar stabilities, with 

average Hydrogen bond number of 54 for both the non-oxidised and oxidised 

molecules. 

 

Figure 2-42: Comparison of the number of Hydrogen bonds in the c-Kit B-DNA structures with 
and without 8-oxo-dG. 

In terms of the solvent accessible surface area (figure 2-43), there was no 

visible difference between the two molecules; both were generally low (around 2 

nm2) with spikes at the 5’ and 3’ ends. 

 

Figure 2-43: Solvent accessible surface area of the non-oxidised and oxidised c-Kit B-DNA 
molecules. 

Principal component analysis (PCA) was also performed to identify any 
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the results of PCA on both the oxidised and non-oxidised c-Kit B-DNA 

molecules. 

The analysis of the percentage of motility explained by eigenvalues of the 

eigenvectors (Fig. 2-44) describes that the non-oxidised and oxidised structures 

showed very similar results, with the first 3 eigenvectors accounting for a large 

proportion of the motility of both B-DNA molecules (approximately 58% in the 

non-oxidised molecule and 60% in the oxidised molecule). 

 

Figure 2-44: Graph plotting percentage of motility explained by eigenvalues against 
eigenvectors (principal components) of non-oxidised and oxidised c-Kit B-DNA molecule and 
cumulative percentage. 

Figures 2-45 and 2-46 represent the extreme structures and RMSF values of 

the first two eigenvectors of the non-oxidised and oxidised c-Kit B-DNA 

molecules. In Figure 2-45, the first two eigenvectors of the non-oxidised c-Kit B-

DNA molecule are almost perfect mirror images of each other; both show high 

fluctuation at the 5’ and 3’ ends of the double stranded molecule however in the 

first eigenvector, the antisense strand appears to twist further around the sense 

strand, producing a more “bent” molecule, and also increasing the RMSD in the 

antisense strand. Whereas in the second eigenvector, the opposite is true, the 

sense strand appears to twist and present higher RMSD values. 

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ei
ge

n
va

lu
e

 (
%

) 

Eigenvector Index 
c-Kit BDNA c-Kit BDNA Cumulative O7 c-Kit BDNA O7 c-Kit BDNA Cumulative



 

99 

 

 

 

Figure 2-45: Extreme structures and RMSF values of the first (left) and second (right) 
eigenvectors of the non-oxidised c-Kit B-DNA molecule. 

When observing the oxidised c-Kit B-DNA molecule (Figure 2-46), the 

structures pertaining to the first two eigenvectors are similar to those observed 

for the non-oxidised structures. Both show the same phenomena 

macroscopically and no discernible difference was noted. In terms of the RMSF 

data, the differences noted were attributed to fluctuations occurring at different 

points in the molecule, with the same overall result for the structure. 

 

 

Figure 2-46: Extreme structures and RMSF values of the first (left) and second (right) 
eigenvectors of the oxidised c-Kit B-DNA Molecule. 
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2.2.6 Simulations Performed on c-Myc G-Quadruplex Structures  

To observe the effect of oxidation on the c-Myc G-quadruplex and to perform 

comparisons between this structure and that of the c-Kit G-quadruplex, the 

same simulations and analyses were performed as described in section 2.2.4. 

Observing figure 2-47, in terms of the overall structure, the non-oxidised c-Myc 

G-quadruplex remains relatively stable. However there appears to be a 

“compression” of the structure, in a perpendicular orientation to the tetrads, 

leading to a more “propeller” type quadruplex structure. 

In terms of the loops, these remained very stable, with little fluctuation over the 

course of the simulation. The 5’ (T1 G2 A3) and 3’ (T20 A21 A22) tails 

fluctuated during the initial 100 nanoseconds of the simulation, however at this 

point they appeared to be forming π- π interactions with both the upper and 

lower tetrads, through T1 and A22 and stabilised at these positions, reducing 

the appearance of the overall size and making the structure appear more 

“compressed”. 

In terms of the G-tetrads, these remained stable throughout the simulation, 

appearing to retain the π- π stacking with the adjacent tetrad(s) and each 

guanine, although fluctuating, did not appear to lose its orientation in relation to 

the remaining guanines in the G-tetrad. 
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Figure 2-47: Representative snapshots of the cluster analysis of the non-oxidised c-Myc G-
quadruplex. Top left: Cluster of 166 frames representative of the first 100ns; Top centre: Cluster 
of 312 frames representative of the second 100ns; Top right: Cluster of 243 frames 
representative of the third 100ns; Bottom left Cluster of 249 frames representative of the fourth 
100ns; Bottom right: Cluster of 158 frames representative of the last 100ns. 

Overall, the oxidised c-Myc G-quadruplex structure presented in figure 2-48, 

remains stable throughout the 500 ns simulation. However there are some 

subtle differences with the non-oxidised structure. 

In terms of the three loops, the first single nucleotide loop (T7) appears to 

greatly fluctuate and throughout the simulation appears to rotate outwards, 

increasing the distance from the oxidised guanine (G9). This same 

phenomenon is observed in the double nucleotide loop (T11 and A12). The 

remaining single nucleotide loop (T16) does not suffer prom this phenomenon. 

And, the 5’ (T1 G2 A3) and 3’ (T20 A21 A22) tails were not able to form the 

stacking to the same extent observed in the previous simulation, resulting in 

continuously fluctuating tails throughout the course of the simulation although it 

should be noted that by the end of the simulation, A22 appeared to have formed 

a stable stacking interaction with the upper tetrad. 

In terms of the G-tetrads, these remained relatively stable, maintaining 

orientation and stacking. However, the all the guanines involved in tetrad 

formation appeared to twist, subtly, although maintaining stacking and likely 

Hoogsteen hydrogen bonding 
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Figure 2-48: Representative snapshots of the cluster analysis of the oxidised c-Myc G-
quadruplex. Top left: Cluster of 133 frames representative of the first 100ns; Top centre: Cluster 
of 216 frames representative of the second 100ns; Top right: Cluster of 168 frames 
representative of the third 100ns; Bottom left Cluster of 158 frames representative of the fourth 
100ns; Bottom right: Cluster of 134 frames representative of the last 100ns. 

Figures 2-49 to 2-56 present the summary of the comparisons performed 

between the non-oxidised and oxidised forms of the c-Myc G-quadruplex 

structure. 

As can be observed in figure 2-49, the RMSD of the two c-Myc G-quadruplex 

structures over time, reveals a more substantial difference; whereas the non-

oxidised form remains fairly constant at an average of 0.282 nm (standard 

deviation of 0.023 nm) the RMSD values of the oxidised structure vary far more, 

fluctuating between values similar to those of the non-oxidised structure and 

lower within the first 100 ns (with an average of 0.236 nm) for this part of the 

simulation). After which point the RMSD values continually rise and stay above 

the non-oxidised structure with an average of 0.329 nm for the final 100 

nanoseconds. 
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Figure 2-49: Root mean square deviation (RMSD) comparison of c-Myc G-quadruplex 
structures with and without 8-oxo-dG incorporated. 

The focused RMSD of the G-tetrads (figure 2-50) shows that these remained far 

more stable that the rest of the molecule, and similarly to the general RMSD, 

the oxidised structures presented higher values (with averages of 0.122 nm and 

0.142 nm for the non-oxidised and oxidised forms, respectively). Furthermore, 

the graph denotes similar tendencies for both structures; with the non-oxidised 

structure remaining stable throughout the simulation (with a standard deviation 

of only 0.014 nm) and the oxidised version increasing to higher RMSD than the 

non-oxidised structure after around 100ns, to an average of 0.148 nm for the 

final 400 ns. However, the focused RMSD of the oxidised structure showed to 

be far more stable throughout the simulation after 100ns with a standard 

deviation of only 0.017 nm for this portion of the simulation. 

 

Figure 2-50: Root mean square deviation (RMSD) comparison of the Guanines involved in 
tetrad formation in the c-Myc G-quadruplex structures with and without 8-oxo-dG incorporated. 
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The RMSF values presented in figure 2-51 are in agreement with the previous 

results; both structures present higher values at the tails and loops, and the 

differences between the structures is more pronounced in these loops and the 

5’ tail.. The oxidised structure presents a massive increase in the 5’ tail and in 

the T7 single nucleotide loop and the double (T11 A12) nucleotide loop. The 

RMSF values of both structures for the oxidised Guanine (G9) are remarkably 

similar. 

 

Figure 2-51: Root mean square fluctuation (RMSF) comparison of the c-Myc G-quadruplex 
structures with and without 8-oxo-dG incorporated. 

Hydrogen bonding data of the G-tetrads of the two c-Myc G-quadruplex 

structures, presented in figure 2-52 is concordant with the focused G-tetrad 

RMSD; both structures presenting an average Hydrogen bond number of 24 for 

the first 100 ns, after which point the oxidised guanine appears to lose a 

Hydrogen bond, with an average over the last 400 ns of the simulation of 23, 

whereas the non-oxidised structure remains at a constant average of 24. 

 

Figure 2-52: Comparison of the number of Hydrogen bonds in the c-Myc G-quadruplex 
structures with and without 8-oxo-dG. 
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Observing the SASA plots for the two structures (figure 2-53), it is apparent that 

there are discernible differences between the two structures. The G-tetrads 

present low values (approximately 1.5 nm2) and the loops present higher values 

(up to 3 nm2). The differences between the two structures are only apparent in 

the Guanines involved in tetrad formation (G4, G5, G6, G8, G9, G10, G13, G14, 

G15, G17, G18 and G19); where the oxidised structure presents generally 

higher values, indicating a greater surface area. 

 

Figure 2-53: Solvent accessible surface area of the non-oxidised and oxidised c-Myc G-
quadruplex structures. 

PCA was also performed to identify any significant motions within the 

molecules. Figures 2-54, 2-55 and 2-56 represent the results of PCA on both 

the oxidised and non-oxidised c-Myc G-quadruplex structures. 

Figure 2-54 shows the percentage of motility explained by the eigenvalues of 

the eigenvectors.  This analysis describes that the first 3 eigenvectors account 

for a larger proportion of the motility of the oxidised and c-Myc G-quadruplex 

structure (approximately 52%) than of the non-oxidised c-Myc G-quadruplex 

structure (approximately 40%).  
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Figure 2-54: Graph plotting percentage of motility explained by eigenvalues against 
eigenvectors (principal components) of the non-oxidised and oxidised c-Myc G-quadruplex 
structure and cumulative percentage. 

Figures 2-55 and 2-56 represent the extreme structures and RMSF values of 

the first two eigenvectors of the non-oxidised and oxidised c-Myc G-quadruplex 

structures. Within figure 2-55, the first eigenvector, representing the most 

significant motion of the non-oxidised structure corresponds to the fluctuation of 

the 3’ tail of the structure, towards the final conformation previously observed, 

with T20 and A22 stacking on top of the upper tetrad. G2 was the only other 

residue to suffer significant motion, twisting slightly, without significantly 

affecting the backbone. The second eigenvector of the same structure shows 

represents the movement of the 5’ tail, which fluctuated to a conformation which 

should enable the establishment of stacking interactions with the lower tetrad. 
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Figure 2-55: Extreme structures and RMSF values of the first (top) and second (bottom) 
eigenvectors of the non-oxidised c-Myc G-quadruplex. 

When observing the oxidised c-Myc G-quadruplex structure (Figure 2-56), the 

structures pertaining to the first eigenvector corresponds to distortions in the 5’ 

tail and loop sequences, with high amounts of movement observed in T11 and 

A12 in the double nucleotide loop, which twisted outward, away from the 

oxidised lesion. The second eigenvector represents similar alterations in the 5’ 

tail (although to a lesser extent) and to the T7 loop nucleotide, which again 

twisted outward, away from the oxidised Guanine. 
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Figure 2-56: Extreme structures and RMSF values of the first (top) and second (bottom) 
eigenvectors of the oxidised c-Myc G-quadruplex. 

2.2.7 Simulations Performed on c-Myc B-DNA Structures  

As with the c-Kit G-quadruplex motif, the B-DNA form of the c-Myc G-

quadruplex motif was also simulated with and without incorporation of 8-oxo-

dG. 

Figures 2-57 presents the most prevalent clusters observed for every 100 ns 

over the entire simulation of the non-oxidised c-Myc G-quadruplex motif. As can 

be observed from these figures, the structure remained largely stable; no 

discernible changes were observed throughout the course of the simulation, 

apart from end fraying and bending.  

  

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22R
o

o
t 

M
ea

n
 S

q
u

ar
e 

Fl
u

ct
u

at
io

n
 

(n
m

) 

Residue 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

R
o

o
t 

M
ea

n
 S

q
u

ar
e 

Fl
u

ct
u

at
io

n
 

(n
m

) 

Residue 



 

109 

 

 

 

 

Figure 2-57: Representative snapshots of the cluster analysis of the non-oxidised c-Myc B-DNA 
molecule. Top left: Cluster of 59 frames representative of the first 100ns; Top right: Cluster of 
114 frames representative of the second 100ns; Centre left: Cluster of 77 frames representative 
of the third 100ns; Centre right: Cluster of 130 frames representative of the fourth 100ns; 
Bottom: Cluster of 95 frames representative of the last 100ns. 

Figures 2-58 represents the same cluster analysis, performed on the oxidised c-

Myc B-DNA molecule. Throughout the 500ns simulation, the same observations 

were made in terms of the backbone, base stacking and pairing and end 

fraying, however the bending observed was more pronounced. 

 

Figure 2-58: Representative snapshots of the cluster analysis of the non-oxidised c-Myc B-DNA 
molecule. Top left: Cluster of 164 frames representative of the first 100ns; Top right: Cluster of 
97 frames representative of the second 100ns; Centre left: Cluster of 73 frames representative 
of the third 100ns; Centre right: Cluster of 96 frames representative of the fourth 100ns; Bottom: 
Cluster of 133 frames representative of the last 100ns. 
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Figures 2-59 to 2-65 represent the data analysis performed and comparisons 

performed on the oxidised and non-oxidised c-Myc B-DNA molecules. 

Observing figure 2-59, results corroborate the macroscopic evaluations, RMSD 

values of the oxidised molecule where higher than those of the non-oxidised 

structure throughout the simulation (averages of 0.338 nm and 0.433 nm for 

non-oxidised and oxidised B-DNA molecules, respectively). Both molecules 

appear to be equilibrated and stable, with no discernible shifts in RMSD values 

after the first few nanoseconds, nor any apparent incline. 

 

Figure 2-59: Root mean square deviation (RMSD) comparison of c-Myc B-DNA structures with 
and without 8-oxo-dG incorporated. 

Observing the RMSF values plotted in figure 2-60, the results appear 

concordant with the accrued data; the terminal ends present a higher RMSF 

value than the rest of the molecule. Between the two molecules, the most 

discernible differences are observed at the 3’ terminal ends of the sense 

strands and the 5’ terminal ends of the antisense strands, where the non-

oxidised structure presents a higher value, indicating more pronounced fraying. 

This situation is reversed at the other terminal end (5’ terminal ends of the 

sense strands and 3’ terminal ends of the antisense strands) which present 

higher RMSD values for the oxidised structure. 
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Figure 2-60: Root mean square fluctuation (RMSF) comparison of c-Myc B-DNA structures with 
and without 8-oxo-dG incorporated. 

The Hydrogen bonding data presented in figure 2-61 supports previous data in 

that the number of Hydrogen bonds remains stable over time in both molecules 

(standard deviations of approximately 2 for both molecules) and structures 

appear to have very similar stabilities, with average Hydrogen bond number of 

56 for both the non-oxidised and oxidised molecules. 

 

Figure 2-61: Comparison of the number of Hydrogen bonds in the c-Myc B-DNA structures with 
and without 8-oxo-dG. 

In terms of the solvent accessible surface area (figure 2-62), this analysis 

showed the most pronounced differences between the non-oxidised and 

oxidised structures of the c-Myc B-DNA molecule. As expected by the previous 

data, the highest levels of SASA are observed at the 5’ and 3’ ends. Substantial 

differences were observed in several stretches along the molecule; in general, 

the oxidised molecule showed a lower SASA at these nucleotides than the non-

oxidised molecule. 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

R
o

o
t 

M
e

an
 S

q
u

ar
e

 F
lu

ct
u

at
io

n
 

(n
m

) 

Residue c-Myc BDNA sense O9 c-Myc BDNA sense c-Myc BDNA antisense O9 c-Myc BDNA antisense

0

10

20

30

40

50

60

70

100 200 300 400 500

N
u

m
b

e
r 

o
f 

H
yd

ro
ge

n
 b

o
n

d
s 

Time (ns) cmyc BDNA O9 cmyc BDNA



 

112 

 

 

Figure 2-62: Solvent accessible surface area of the non-oxidised and oxidised c-Myc B-DNA 
molecules. 

Principal component analysis (PCA) was also performed to identify any 

significant motions within the molecules. Figures 2-63, 2-64 and 2-65 represent 

the results of PCA on both the oxidised and non-oxidised c-Myc B-DNA 

molecules. 

The analysis of the percentage of motility explained by eigenvalues of the 

eigenvectors (Fig. 2-63) describes that the non-oxidised and oxidised structures 

showed very similar results, with the first 3 eigenvectors accounting for 

approximately the same proportion of the motility of both B-DNA molecules 

(approximately 57%). 

 

Figure 2-63: Graph plotting percentage of motility explained by eigenvalues against 
eigenvectors (principal components) of non-oxidised and oxidised c-Myc B-DNA molecule and 
cumulative percentage. 
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Figures 2-64 and 2-65 represent the extreme structures and RMSF values of 

the first two eigenvectors of the non-oxidised and oxidised c-Myc B-DNA 

molecules. In figure 2-64, the first two eigenvectors of the non-oxidised c-Myc 

B-DNA molecule are almost perfect mirror images of each other; both show 

high fluctuation at the 5’ and 3’ ends of the double stranded molecule however 

in the first eigenvector, the sense strand appears to twist further around the 

sense strand, producing a more “bent” molecule, and also increasing the RMSD 

in the sense strand. Whereas in the second eigenvector, the opposite is true, 

the antisense strand appears to twist and present higher RMSD values. 

 

 

Figure 2-64: Extreme structures and RMSF values of the first (left) and second (right) 
eigenvectors of the non-oxidised c-Myc B-DNA molecule. 

When observing the oxidised c-Myc B-DNA molecule (Figure 2-73), the 

structures pertaining to the first two eigenvectors show similar results to those 

observed for the non-oxidised structures. The only difference being that in the 

first eigenvector represents a high fluctuation in the 3’ end of the antisense 

strand. 
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Figure 2-65: Extreme structures and RMSF values of the first (left) and second (right) 
eigenvectors of the oxidised c-Myc B-DNA Molecule. 

2.3 Gene Expression Data Analyses 

To shed light on the possible extent and implications of our findings in c-Kit and 

c-Myc, several bioinformatics analyses were designed and interpreted by the 

author and the code was written by Dr Lee Larcombe. These experiments 

aimed to establish: 

1) The prevalence of c-Kit and c-Myc similar motifs in upstream promoter 

regions, UTR and ORF of human genes; 

2) Whether the type of G-quadruplex motif has an influence in the extent of 

the effect on gene expression in helicase deficient cells; 

3) whether genes whose expression is significantly altered by oxidation are 

more likely to contain G-quadruplex motifs; 

4) whether the type and/or location of the G-quadruplex motif present has 

an influence in the extent of the effect on gene expression when 

oxidised; 

To establish these points, three separate analyses were devised. The following 

is a summary of the methods used and results obtained, including statistical 
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treatment used. All work was undertaken on a Dell Alienware Aurora 

workstation; 2.66 GHz Intel core i7, 12 GB RAM, 2Tb HDD running x86_64 

CentOS 5 GNU/Linux OS 2.6.18. All PERL and R scripts are available in the 

Digital Appendix. 

Genome data was retrieved from the Ensembl resource (290) (GRCh37 release 

63 – www.ensembl.org). The BioMart (291) custom data selection interface was 

used to generate PERL code, which was subsequently incorporated into scripts 

(PERL 5.8.8 – www.cpan.org) to obtain specific parts of the total resource 

required for the in-house database. 2000bp of the 5’ flank and the gene 

sequence (including 5’ & 3’ UTR) were retrieved and exported to FASTA text 

files for subsequent processing. 

A simple database schema was designed using MySQL 5.0.77 

(www.mysql.com), and the FASTA-formatted genome data imported into the 

relevant tables using PERL scripts.  The initial evaluation of the genome for the 

presence of G4 motifs: c-Kit1, c-Kit2, c-Kit87up, c-Myc, and the general motif 

(table 2-9); was performed using the Regular Expression-based search features 

of SQL. Genes including these motifs in the 5’ UTR, flank and gene sequences 

were counted.  

The general motif was determined by Huppert and Balasubramanian (24) and is 

the one currently used to assess the prevalence of GQMs in gene expression 

data analyses in the G-quadruplex field. To assess the prevalence of c-Kit like 

structures, three motifs were used, termed c-Kit1, c-Kit2 and c-Kit87up. The c-

Kit1 and the c-Kit87up motifs are essentially the same sequence, however c-

Kit1 defines the guanines “traditionally” expected to participate in tetrad 

formation and the c-Kit87up motif defines the guanines determined to be 

involved in tetrad formation by Phan and co-workers (125). The c-Kit2 motif refers 

to the G-quadruplex in the c-Kit promoter region whose structure was elucidated 

by Kuryavyi and co-workers (69). With respect to the c-Myc G-quadruplex, only 

one motif was investigated: the “wild type” c-Myc motif used to elucidate the 

http://www.ensembl.org/
http://www.cpan.org/
http://www.mysql.com/
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structure by Ambrus and co-workers, although it should be noted that this NMR 

structure was determined from a mutated sequence to avoid polymorphisms (67). 

These motifs were then incorporated into a PERL script to automate the 

retrieval of genes from the database containing these motifs in their 5’ UTR, 

flank and gene regions. The script accepts a list of Human Genome 

Nomenclature Committee (www.genenames.org) standard gene symbols as 

input. These lists were obtained from experimental datasets reported in the 

literature (55) (202) as described in subsequent sections. 

Table 2-9: G-quadruplex motifs used in bioinformatics studies. 

Motif definition Motif sequence 

General motif 
G(3-5)N(1-7)G(3-5)N(1-7)G(3-5)N(1-7)G(3-5) 
C(3-5)N(1-7)C(3-5)N(1-7)C(3-5)N(1-7)C(3-5) 

c-Kit1 
G3N1G3N4G3N4G3 

C3N1C3N4C3N4C3 

c-Kit2 
G3N1G3N5G3N2G3 
C3N1C3N5C3N2C3 

c-Kit87up 
G3N1G3N1G1N2G3N5G2 

C3N1C3N1C1N2C3N5C2 

c-Myc  
G3N1G4N1G3N1G4 
C3N1C4N1C3N1C4 

2.3.1 Analysis of the Prevalence of c-Myc and c-Kit Similar Motifs in 

Genic Regions of the Human Genome 

To ascertain the prevalence of these motifs in the Human genome, as well as to 

establish the base line prevalence for use in subsequent analyses, the motifs 

under investigation were checked against the ORF and upstream promoter 

region (2000 bases from TSS) of the Human Genome. 

Table 2-10 displays the results of this analysis. The values presented are the 

total number of genes fulfilling the specified conditions, with the percentages of 

the total number of genes (24,717) in parentheses. 

  

http://www.genenames.org/
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Table 2-10: Number and percentage of the different GQMs found in the different locations in the 
Gene. 

 General motif c-Kit1 c-Kit2 c-Kit87up c-Myc 

Upstream 
promoter region 

10,451 
(42.28%) 

975 
(3.94%) 

995  
(4.03%) 

962 
(3.89%) 

206 
(0.83%) 

ORF 
17,396  

(70.38%) 
4,600 

(18.61%) 
3,328 

(13.46%) 
4,288 

(17.35%) 
726 

(2.94%) 

Genic region 
19.029 

(76.99%) 
5295 

(21.42%) 
4069 

(16.46%) 
4,978 

(20.14%) 
920  

(3.72%) 

The above table describes a high number of genes with the general motif in the 

genic region (76.99%), as calculated by adding those found in the upstream 

promoter region and in the ORF, removing any duplicate entries found. The 

majority of these were found in the ORF with a large proportion of genes found 

to have a GQM in the upstream promoter region, also having one or more 

present in the ORF. 

In terms of the c-Kit and c-Myc motifs, in general, the prevalence of c-Kit > c-

Myc motifs, and, within the different c-Kit motifs, c-kit87up > c-Kit1 > c-Kit2 

motif. All four of these motifs followed the general motif in terms of proportion in 

the different locations, with the most prevalent location being the ORF. 

2.3.2 Analysis of Expression Profiles of Cells Subjected to 

Oxidation for the Presence of GQMs 

To ascertain more information about the effect of oxidation on G-quadruplex 

regulated genes, a gene expression analysis of Cells under oxidative stress 

was compared with the Helicase deficient cell results.  

This data set was obtained from Briede and co-worker’s (2010) (202) global gene 

expression analysis of Caco-2 cells, studying the response to Hydroxyl and 

superoxide induced oxidative stress. The authors used both H2O2 and 

Menadione to study the effect of oxidation. Three lists of genes were obtained 

from the supplementary material (available at http://toxsci.oxfordjournals.org 

/content/114/2/193/suppl/DC1), relating to genes significantly affected by H2O2 

treatment, Menadione treatment and genes significantly affected by both 

oxidising agents were used as input for the PERL script described previously, 
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with these lists being cross-referenced with the lists of genes with the different 

types of G-quadruplexes present. 

To assess the significance of these results, the total number of genes observed 

to have each motif in each location were compared through a Chi2 test with one 

degree of freedom to the totals expected to be observed, considering the results 

obtained using the entire genome (Table 2-10). 

To analyse the data the null hypothesis (H0) was determined as “there is no 

significant difference between the observed and expected results” and the 

alternate hypothesis (Ha) was determined as “there is a significant difference 

between the observed and expected results”. 

The Chi-squared test with one degree of freedom is a variant of the Chi-squared 

test which uses Yates’ correction to reduce the χ2
calculated value. This variant was 

used to ensure the significance of the results obtained, as these can be 

overestimated when sample sizes are small with Chi-squared test. Equation 2-1 

shows the formula used to obtain the χ2
calculated value: 

Equation 2-1: Equation used to obtain χ
2
calculated value for all gene expression data analysis 

results. 

              ∑[
(|                 |     ) 

        
] 

 
Utilising the results obtained from this equation, χ2

calculated values were 

compared to the χ2
critical values, which with one degree of freedom and a 

significance of 0.05 is 3.841. 

If χ2
calculated > χ2

critical then the null hypothesis is rejected indicating that there is a 

significant difference between the expected and observed results. 

Tables 2-11 to 2-13 represent the results of the analysis performed on the gene 

expression data of cells subjected to oxidation. Results labelled in green denote 

a significantly higher number of GQMs observed than expected (χ2
calc>3.841 
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and observed number of genes positive for GQM is greater than expected 

number of genes positive for GQM); results labelled in red denote a significantly 

lower number of GQMs observed than expected (χ2
calc>3.841 and observed 

number of genes positive for GQM is less than expected number of genes 

positive for GQM) and results labelled in grey indicate that there was no 

significant difference between the observed and expected results (χ2
calc<3.841). 

This significance test is not appropriate if the expected value is less than 5, as 

such, occasions in which this occurs are labelled NA. All calculations were 

performed using Microsoft® Excel®. 

Results represented in Tables 2-11, 2-12 and 2-13, overall, describe no 

significant enrichment observed in any of the gene lists. The exceptions being 

enrichment in the general motif in the ORF in cells treated by both Menadione 

and H2O2 and ckit87up in the Flank region in cells treated with Menadione. 

Furthermore, there were significantly less GQMs observed than expected in the 

H2O2 dataset (general motif in the entire genic region) and in the Menadione 

dataset (general motif in the entire genic region and c-Kit1 in the ORF). 
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Table 2-11: Gene expression data analysis of genes significantly affected by both H2O2 and Menadione treatment. 

 

General motif c-Kit1 c-Kit2 c-Myc c-Kit87up 
Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc 

Flank 
Observed 137 160  

1.65 

13 284  
0.05 

12 285  
0.02 

4 293  
NA 

17 280  
2.20 Expected 125.5 171.4 11.7 285.2 11.9 285.0 2.4 294.52 11.55 285.4 

ORF 
Observed 226 71  

4.38 

55 242  
0.00 

42 255  
0.07 

8 289  
0.01 

54 243  
0.09 Expected 209.0 87.96 55.2 241.7 39.9 257.0 8.7 288.27 51.52 245.4 

Gene 
Observed 234 63  

0.45 

64 233  
0.00 

51 246  
0.06 

12 285  
0.02 

67 230  
0.94 Expected 228.6 68.3 63.62 233.3 48.8 248.1 11.04 285.95 59.8 237.1 

 

Table 2-12: Gene expression data analysis of genes significantly affected by H2O2 treatment. 

 

General motif c-Kit1 c-Kit2 c-Myc c-Kit87up 
Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc 

Flank 
Observed 547.00 798.0  

1.37 

52.00 1293.0  
0.01 

60.00 1285.0  
0.55 

11.00 1334.0  
0.01 

53.0 1292  
0.00 Expected 568.70 776.3 53.06 1291.9 54.14 1290.8 11.21 1333.7 52.3 1292 

ORF 

Observed 928.00 417.0 
 

1.17 

251.00 1094.0 
 

0.00 

196.00 1149.0 
 

1.32 

36.00 1309.0 
 

0.24 

241.0 1104 
 

0.27 Expected 946.62 398.4 250.31 1094.6 181.10 1163.9 39.51 1305.4 233.3 
1111.

6 

Gene 
Observed 973.00 372.0  

16.12 

286.00 1059.0  
0.01 

241.00 1104.0  
1.98 

45.00 1300.0  
0.42 

279.0 1066  
0.27 Expected 1035.5 309.5 288.13 1056.8 221.36 1123.6 50.01 1294.9 270.8 1074 
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Table 2-13: Gene expression data analysis of genes significantly affected by Menadione treatment. 

 

General motif c-Kit1 c-Kit2 c-Myc c-Kit87up 
Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc 

Flank 
Observed 383.00 547.0  

0.42 

46.00 884.00  
2.20 

39.00 891.00  
0.03 

9.00 921.00  
0.07 

49.00 881.0  
4.35 Expected 393.23 536.7 36.69 893.31 37.44 892.56 7.75 922.25 36.20 893.8 

ORF 
Observed 648.00 282.0  

0.19 

149.00 781.00  
3.95 

122.00 808.00  
0.07 

29.00 901.00  
0.05 

150.0 780.0  
0.88 Expected 654.54 275.4 173.08 756.92 125.22 804.78 27.32 902.68 161.3 768.6 

Gene 
Observed 678.00 252.0  

8.53 

182.00 748.00  
1.79 

148.00 782.00  
0.16 

38.00 892.00  
0.26 

185.0 745.0  
0.02 Expected 715.98 214.0 199.23 730.77 153.06 776.94 34.58 895.42 187.3 742.7 
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This was the complete antithesis of what was expected and led to the formation 

of the hypothesis that it would make sense, in a biological context, for G-

quadruplexes to not be involved in the regulation of genes involved in DNA 

damage repair as, if G-quadruplexes were destabilised through DNA damage, 

cells would be unable to repair themselves. 

To investigate this hypothesis, the same analysis was performed on the most 

prevalent clusters in terms of ontology as defined by the authors, excluding any 

genes involved in DNA damage repair. This produced two lists of genes, one for 

each of the clusters found to be significantly affected by H2O2 (with 558 genes) 

and Menadione treatment (with 277 genes). These lists were then cross-

referenced against the lists of genes with the different GQMs in the Flank, ORF 

and in the entire genic region. 

Significance was analysed and tables constructed using the same methods 

previously described. 

Tables 2-14 and 2-15 describe the results for the genes affected by H2O2 and 

Menadione treatment, respectively. As can be observed, this analysis generally 

showed more enrichment of GQMs. The general motif was enriched in all 

locations in both datasets. The c-Kit motifs showed different results for the H2O2 

and Menadione datasets; in the H2O2 dataset, both c-Kit1 and c-Kit2 were 

enriched in the ORF but not in the Flank and the c-kit87up motif was enriched in 

both. However, in the Menadione dataset, the c-Kit1 motif and the c-kit87up 

motif were enriched in all locations and the c-Kit2 motif was not enriched in any 

location. 

In terms of the c-Myc motif, the prevalence was insufficient to attribute statistical 

significance to the results in the upstream promoter region, but was sufficient in 

the ORF and entire genic region datasets; with no enrichment detected in the 

H2O2 dataset but detected in the Menadione dataset. 
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Table 2-14: Gene expression data analysis of gene clusters not involved in DNA damage repair significantly affected by H2O2 treatment. 

 

General motif c-Kit1 c-Kit2 c-Myc c-Kit87up 
Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc 

Flank 
Observed 302.00 256  

31.57 

30.00 528.00  
2.65 

31.00 527.00  
3.00 

9.00 549.00  
NA 

33.00 525.0  
5.57 Expected 235.94 322.1 22.01 535.99 22.46 535.54 4.65 553.35 21.72 536.2 

ORF 
Observed 496.00 62.00  

90.81 

140.00 418.00  
15.04 

116.00 442.00  
25.07 

17.00 541.00  
0.00 

139.0 419.0  
21.73 Expected 392.72 165.2 103.85 454.15 75.13 482.87 16.39 541.61 96.80 461.2 

Gene 
Observed 520.00 38.00  

81.77 

163.00 395.00  
19.65 

141.00 417.00  
30.87 

25.00 533.00  
0.71 

161.0 397.0  
25.80 Expected 429.59 128.4 119.54 438.46 91.84 466.16 20.75 537.25 112.3 445.6 

 

Table 2-15: Gene expression data analysis of gene clusters not involved in DNA damage repair significantly affected by Menadione treatment. 

 

General motif c-Kit1 c-Kit2 c-Myc c-Kit87up 
Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc Positive Negative χ 2
calc Positive Negative χ 2

calc 

Flank 
Observed 160.00 117.0  

26.57 

21.00 256.00  
8.73 

15.00 262.00  
1.05 

5.00 272.00  
NA 

25.00 252  
18.16 Expected 117.12 159.9 10.93 266.07 11.15 265.85 2.31 274.69 10.78 266.2 

ORF 
Observed 251.00 26.00  

53.43 

66.00 211.00  
4.64 

47.00 230.00  
2.62 

15.00 262.00  
5.13 

67.00 210  
8.57 Expected 194.95 82.05 51.55 225.45 37.30 239.70 8.14 268.86 48.06 228.9 

Gene 
Observed 259.00 18.00  

41.71 

81.00 196.00  
9.60 

58.00 219.00  
3.72 

20.00 257.00  
8.54 

84.00 193  
17.24 Expected 213.26 63.74 59.34 217.66 45.59 231.41 10.30 266.70 55.79 221.2 
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3 Discussion 

This chapter is divided into sections corresponding to each of the techniques 

used which aim to discuss the results and to critically evaluate the methodology 

used.  A further chapter attempts to present the implications of the work 

produced in this thesis. 

3.1 Fluorescence Resonance Energy Transfer Experiments 

3.1.1 Overview of results 

Overall, the FRET experiments performed over the course of this project fell 

short of fully achieving the objective of definitively describing the effect of 

oxidation on the conformation of G-quadruplex structures in vitro. However, the 

FRET experiments did reveal some important information, and a new 

methodology for the verification of G-quadruplexes was developed. 

The experiments performed on the Varioskan spectral scanner showed poor 

results, due to a lack of sensitivity at the desired concentrations of fluorophores. 

Therefore this present section will focus on discussing and contextualising the 

results obtained from the Rotor-gene Q PCR machine. 

These experiments showed a clear difference between c-Myc and c-Kit samples 

run with and without KCl, this KCl dependent FRET is a hallmark of G-

quadruplex formation and was considered indicative of the presence of these 

structures (249). 

However, with regards to observing hybridisation dynamics with the 

complementary strands, experiments performed on the c-Myc structure were 

not able to observe a hybridisation curve, indicating that the FRET observed 

was either not due to the presence of a G-quadruplex, or the excess 

complementary strand concentrations used were unable to force the 

quadruplex/duplex equilibrium towards the duplex state. Due to the KCl and pH 

dependent FRET observed (data not shown); it was considered that the method 
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was detecting a G-quadruplex structure. Further reading of the literature 

revealed that although hybridisation curves had been observed in the c-Myc G-

quadruplex structure in smFRET with 200x excess complementary sequence 

(292) which is far higher than the 5x excess used, other studies had shown that in 

the conditions used, the c-Myc G-quadruplex structure was remarkably stable, 

even at very high temperatures (>70 °C) (293). Furthermore, the smFRET 

experiments used a long 3’ tail, to which a complementary strand was already 

attached, which would favour the duplex formation (251) (292). 

The experiments performed on the c-Kit G-quadruplex structure successfully 

observed KCl dependent FRET and hybridisation with the complementary 

sequence, in a manner proportionate to the complementary oligonucleotide 

concentration.  

Furthermore, studies into the sequence of this structure showed no stable 

secondary structure or self-dimer using Primer3 v.0.4.0 (available from 

http://frodo.wi.mit.edu/primer3/). It was concluded, therefore, that the only 

possible explanation for the FRET values observed was a G-quadruplex 

structure.  

From these results we can conclude that under near physiological conditions, 

the c-Myc G-quadruplex structure is more stable than the c-Kit G-quadruplex 

structure. This is to be expected as the c-Kit structure shows significantly more 

loop nucleotides and therefore longer loops than the c-Myc structure, which is 

known to be a determinant to stability (81). 

However these results were only noted in the c-Kit oligonucleotide containing 8 

flanking bases at the 5’ and 3’ ends. The results pertaining to the c-Kit GQM 

with 12 flanking bases were not presented in this thesis as they showed high 

fluctuations in FRET values, as evidenced by high standard deviation values 

during various experiments. This was thought to be due to the fluctuations in the 

single stranded ends that would of course be more pronounced in an 

oligonucleotide with longer flanks. 
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With regards to the oxidation experiments, as will be discussed in section 3.1.2, 

the selection of fluorophores limited the usefulness of the information gained 

from these experiments at high (> 1 mM) H2O2 concentrations. However, 

experiments performed at concentrations of Fenton’s reaction at physiologically 

relevant concentrations (approximately 300 µM H2O2, 20 µM FeCl2 and 50 µM 

Ascorbic acid) showed no significant variation in the FRET values of the c-Kit G-

quadruplex motif. Furthermore, when observing Hybridisation curves, no 

substantial differences were observed that could be attributed to the oxidation 

levels. 

This could be for one of three reasons, which will be discussed individually: 

either the G-quadruplex and its competition with the duplex structure are not 

affected by oxidation; or the method was unable to accurately simulate the 

effects of DNA oxidative stress, i.e. Fenton’s reaction was unable to transform 

Guanine to 8-oxo-dG; or the method was not sensitive enough to observe the 

subtle effects caused by oxidation of G-quadruplexes. 

It appears unlikely that the duplex-quadruplex equilibrium is not affected by 

oxidation both through previous evidence accumulated by Gros and co-workers 

(180) on 8’ substitutions on Guanines and through the evidence observed in the in 

silico experiments.  

It is equally unlikely that the experiment was unable to produce 8-oxo-dG as the 

concentrations used were, in some cases, far superior to those considered to 

be physiologically relevant. Even in cases where as much as much as 100 mM 

H2O2 was used, once the data had been normalised to discount the effect of 

oxidation on the fluorophores, no correlation could be made between H2O2 

concentration and decrease in fluorescence or changes in the hybridisation 

curve. Furthermore, studies have shown that concentrations far lower than 

those used are sufficient to induce the transformation of Guanine to 8-oxo-dG 

(283). 
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The most likely explanation of the results is that the method was not sensitive 

enough to detect the effects of oxidation on the G-quadruplex and its 

competition with the duplex form. This is possible as these effects would likely 

be subtle, and their effect may not be destructive enough to impede the 

formation of G-quadruplexes. However, in a sensitive and complex environment 

such as in a cell, this subtle effect could be sufficient to favour the duplex form, 

to the detriment the G-quadruplex structure. Furthermore, the technique 

developed used relatively high (1 – 2 µM) concentrations of the oligonucleotide 

containing a GQM. This factor could imitate the effect of molecular crowding, 

increasing the stability of the G-quadruplex structure (76) (77), counteracting any 

destabilising effect of oxidation. 

3.1.2 Critical Appraisal of Materials and Methods 

This project aimed to investigate the effect of G-quadruplex oxidation using in 

vitro techniques, as it was desirable to obtain in vitro results to support data 

obtained using the in silico techniques.  

To achieve this, a variety of biophysical methods are available, including CD 

and UV spectroscopy and FRET and structural analyses such as NMR and 

AFM. 

Amongst these, FRET was selected as the most appropriate method, for 

various reasons; it had been widely used in this field (including on the c-Myc 

and c-Kit G-quadruplexes (251) (292)); the method could be performed using 

instruments present at the facilities in Cranfield Health; was relatively simple 

and inexpensive; and would produce all the information required to achieve our 

objectives. 

FRET, as stated before, has been widely used in the investigation of the 

biophysical properties of G-quadruplexes, however the majority of these studies 

utilise the more sensitive single molecule FRET technique (smFRET) as 

opposed to ensemble FRET, as was used in this project. 
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Despite the clear advantages of smFRET, the instrumentation required was not 

available at the facilities at Cranfield University. Additionally, it was intended 

that the current ensemble FRET methods could be adapted to produce a novel 

technique for investigating G-quadruplex stability under different conditions, 

using instrumentation present in all molecular biology laboratories.  

The most widely used FRET method for studying G-quadruplex stability is 

described by Balasubramanian and co-workers (251) (292), involving the use of 

three ssDNA stands, two of which are labelled (described in Chapter 1, pp. 56).  

However, this method was not considered appropriate for this project, for 

several reasons, firstly, it involved the use of three strands using smFRET and, 

when using ensemble FRET, this would add to the complexity and likelihood of 

intra- or inter-strand dimers, especially at the relatively high concentrations (1 – 

2 µM), influencing the results. 

Furthermore, it was intended to obtain information on the relative stability of 

normal G-quadruplexes vs. G-quadruplexes under oxidative stress, with the 

simplest way of achieving this being to use a melting curve. With the three 

strand method, this would be complicated as an increase in temperature would 

denature the dsDNA, reducing FRET, without observing the effect on the G-

quadruplex structure. 

For the above reasons, the G-quadruplex motifs used were dual end labelled 

with both the donor fluorophore (at the 5’ end) and the acceptor fluorophore (at 

the 3’ end). 

The solution used to mimic near physiological conditions was identical to that 

used in the aforementioned smFRET experiment performed on the c-Myc G4 

(292). It consisted of 10 mM Sodium cacodylate which would act as a buffer, 

maintaining a constant, physiological pH of 7.4, and 100mM KCl to ensure near 

physiological levels of K+, necessary for the formation of G-quadruplexes. 
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As stated previously, a temperature step was used to observe the unfolding 

kinetics of the G-quadruplex structure and to compare it to the oxidised 

structure. However, the fluorophores selected, Cy3 and Cy5, were found to be 

thermolabile, with their fluorescence reducing significantly above 40°C . 

Reviewing the literature, it was observed that Cyanine dyes, such as Cy3 and 

Cy5 are extremely thermo-labile, showing a 70% reduction in their quantum 

yield at 65°C  (294). This was unexpected as there are various, current examples 

of temperature melting studies using these dyes (295), and even one study using 

Cy3 and Cy5 dyes to observe the effect of temperature on G-quadruplexes (252) 

which are, in fact, flawed.  

Both instruments utilised to assess FRET had the required specifications to do 

so, however, after the results obtained from the Varioskan Flash Spectral 

Scanner (see digital Appendix), this instrument was determined to be 

inadequate at accurately measuring fluorescence at the desired concentrations. 

The Rotor-Gene Q PCR machine, on the other hand, was able to overcome this 

flaw but did not have the advantage of automatic dispensers; as such the 

method had to be adapted to enable the addition of reagents without affecting 

fluorescence levels. 

This, ultimately, led to the use of a 3 part method in which the base-line or 

normal fluorescence values were taken 100 times, then the tubes were 

removed instantly and, protecting the tubes from light, the oxidation reagents 

were added to the walls of the tubes, without contacting the initial solution. After 

which the tubes were place back into the instrument and another 100 readings 

were taken. The same procedure was then applied to adding the 

complementary sequences. 

This was intended to ensure that any alteration in the fluorescence levels could 

be attributed to changes to the G-quadruplex structure, and not to prolonged 

exposure to light or air. This method also ensured that the reagents would only 
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be mixed when the instrument started to spin, at which point measurements 

were taken. 

The greatest inconvenience to the use of this equipment is the use of relative 

fluorescence units (RFUs), as these are individual to each experiment and are 

hard to correlate to energetic values, and therefore to physical parameters such 

as the distance between the fluorophores, without the use of a calibration curve, 

which would have been prohibitively expensive. 

Nevertheless, although the absolute values observed in different experiments 

could not be compared, results within the same experiment can. For this reason 

each experiment had up to 24 samples, corresponding to duplicate runs of 

samples with varying concentrations of components. 

With respect to the oxidation experiments performed using Fenton's reaction to 

create ROSs to induce the transformation of one or more Guanines within the 

GQM to 8-oxo-dG, experiments were performed at a wide range of 

concentrations and with various controls, to be certain that the methodology 

would detect any change in the G-quadruplex structure due to oxidation, if 

possible. 

To this end, control samples were analysed, containing, in most cases, all but 

one reagent, to assure that said reagent was not incorrectly influencing the 

results. This analysis that neither FeCl2 nor Ascorbic Acid affected fluorescence 

levels in the absence of H2O2. Additionally the effect of H2O2 is exacerbated in 

the presence of FeCl2 and Ascorbic Acid, indicative of Fenton Chemistry. 

A wide range of concentrations, from 30 µM to 1 M H2O2 with varying 

concentrations of the other components was used. This range was used as, at 

concentrations considered to be physiologically relevant, no alteration to the 

FRET values was observed. As such higher concentrations were used to 

attempt to establish the levels at which FRET values were altered through 

changes in the G-quadruplex structure caused by oxidation. However when 

concentrations were increased to the milimolar range, the individual 



 

131 

 

fluorescence of Cy3 and Cy5 were reduced significantly and this was factored 

in, no changes to the FRET values was observed.  

In summary, the intended ensemble FRET methodology developed was an 

ineffective tool relative to the study of the effect of chemical modifications on the 

G-quadruplex structure.  

The results obtained do not however, invalidate the methodology for future use 

in this field; it was shown to be a simple and relatively inexpensive method of 

detecting the presence of G-quadruplexes and monitoring the hybridisation to 

its complementary strand using instruments present in all molecular biology 

laboratories. 

Furthermore, the fact that the method does not appear to be suitable to detect 

the presumably subtle alterations caused by chemical modifications does not 

preclude the method from being used in other investigations, such as the use of 

stabilising or destabilising G-quadruplex ligands, as these have been shown to 

work in cellulo and as such would have a substantial enough effect to be 

detected by the FRET method developed.  

The only major inconvenience of this is the expense of dual labelled 

oligonucleotides. However, in laboratories without sophisticated instruments 

aimed at structural/biophysical elucidation of biomolecules, this method is a 

viable option for the detection or verification of G-quadruplexes. 

3.2 Molecular Dynamics Simulations 

3.2.1 Overview of Results 

The results obtained from the MD simulations achieved the objective of 

modelling the effect of 8-oxo-dG over a 500 ns MD simulation and formed the 

theoretical basis on which to base our hypothesis of the association of 

oxidation, quadruplexes and carcinogenesis. This section aims to contextualise 

these results, paying specific attention to the biological relevance. 
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In relation to the stabilities of the non-oxidised G-quadruplexes, these appear 

remarkably stable, with little or no fluctuation in the central tetrads, although the 

RMSD values for the whole structure are relatively high, when considering the 

size of the structure. The loops of both the c-Myc and c-Kit structures did 

fluctuate, but this was not considered to be a sign of low stability and their 

contribution to the overall RMSD was negligible. When comparing the loops in 

the two structures, their fluctuation appeared to be directly proportional to the 

length of the loop in question, as expected. The largest contributions to RMSD 

were, by far, from the 5’ and 3’ tails and, as these tails are not representative of 

flanking regions of G4s within the chromosome, their contribution can be 

disregarded. These results, aside from indicating stable structures, under the 

conditions used, indicate that the equilibration protocol was correctly performed, 

and this was corroborated by observing data relating to the energetic properties 

of the structures (data shown in Appendix DVD). 

When observing the oxidised c-Kit G-quadruplex structure, there are obvious 

differences with the non-oxidised structure. Again, the contributions of the 5’ 

and 3’ tails were not considered relevant in a biological context.  

The loops, in general, behave similarly to the non-oxidised structure; however 

the loop nucleotides closest to the oxidised lesion twisted outward, away from 

the 8-oxo-dG nucleotide. This is likely due to a localised pocket of increased 

potential energy around the oxidised nucleotide, caused by the unfavourable 

electrostatic interactions between the oxidised sugar base and the surrounding 

bases. To resolve this increased potential energy, the distance between the 

oxidised nucleotide and those around it, is increased. This movement is, of 

course, more easily performed in nucleotides with less attractive forces 

maintaining them in place, hence why the loop nucleotides twist outwards. 

When observing the Guanines involved in tetrad formation, these also suffered 

substantial distortions; the oxidised lesion, as well as the guanines above and 

below it (contiguous nucleotides on the same strand), appeared to twist and 

move outwards from the remainder of the tetrad, as if the backbone was being 
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pulled away. These distortions are likely to be caused by the same mechanism 

of resolving the increased potential energy in this area; the electrostatic 

repulsion between the 8-oxo-dG and the remainder of the Guanines was 

sufficient to counteract the stacking and hydrogen bonds which act as 

attractive/stabilising forces. The repulsion was likely exacerbated by the 

presence of the central, positively charged cations. Furthermore the oxidised 

guanine twisted into a non-planar arrangement, this caused unfavourable 

electrostatic interactions between the oxidised lesion and the upper and lower 

Guanine. This was compensated for by these guanines also twisting, enabling 

stacking between the three guanines. 

Overall, the effect of oxidation clearly destabilised the c-Kit G-quadruplex 

structure, both Hoogsteen Hydrogen bonding and tetrad stacking are affected 

which would severely affect stability.  

When considering the macroscopic evaluation and data analysis of the c-Myc 

G-quadruplex, this structure also suffered distortions due to oxidation, although, 

overall, these were not to the same extent as observed in the c-Kit G4. 

The loop nucleotides suffered similar distortions as observed in the c-Kit G4, 

twisting away from the oxidised lesion. However, in the case of the c-Myc G4, 

the repulsive forces induced by unfavourable electrostatic interactions around 

the oxidised Guanine were insufficient to cause any guanine, or group of 

contiguous Guanines, to be “repulsed” from their original position, which 

allowed Hoogsteen Hydrogen bonding to not be greatly affected. However, 

there was some distortion, which took the form of slight twisting of the oxidised 

guanine into a non-planar arrangement. As the Guanine is still involved in tetrad 

formation, all the other Guanines involved in tetrad formation also appeared to 

twist, to resolve the unfavourable electrostatic interactions. 

Furthermore, it was interesting to note that although the solvent accessible 

surface area (SASA) was not altered substantially in the c-Kit G4, the c-Myc G4 

showed a substantial increase in SASA when oxidised. This would have 
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implications in facilitating the interaction with both naturally occurring G4 

interacting proteins and artificial G4 ligands. 

Taken altogether, these results show that oxidation destabilises the G-

quadruplex structure, however the extent of the destabilisation is not uniform 

amongst different G4 structures. It seems likely that known factors such as loop 

length play a role in attenuating the effect of oxidation, as longer loop lengths do 

not restrict the movement of the Guanines to the same extent as shorter loop 

lengths do, thereby maintaining Hoogsteen Hydrogen bonding. However it does 

appear that the stabilising forces contributed by the stacking interactions could 

be weakened by the twisting of nucleotides, independent of loop length. 

In a biological context, as these structures exist in an equilibrium with the 

duplex form, even the less extensive destabilisation observed in the c-Myc 

structure could be sufficient to shift the equilibrium towards the duplex structure. 

To shed further light on the effect of oxidation on the duplex/quadruplex 

equilibrium, 500 ns simulations were also performed on duplex B-DNA 

molecules with the same sequences as the quadruplex structures as well as 

these same molecules with 8-oxo-dG incorporated into the same positions as in 

the G4 structure.  

The non-oxidised c-Kit and c-Myc B-DNA molecules were both considered to be 

stable, when considering the trajectories and data analysis results, with the 

most significant movements being end fraying and DNA bending, two 

phenomena known to occur in both in vivo and in vitro investigations of duplex 

DNA. 

When observing the oxidised B-DNA molecules, there was no substantial 

difference with the non-oxidised molecules attributable to oxidation. This implies 

that oxidation destabilises G4 structures and does not destabilise B-DNA, 

further confirming the Hypothesis that DNA oxidative stress shifts the 

duplex/quadruplex equilibrium towards the duplex state. 
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3.2.2 Critical Appraisal of Materials and Methods 

The GROMACS molecular modelling software package used was, as expected, 

appropriate for the purposes of this project. The flexibility of the software, 

allowing not only to fine tune every parameter of the simulation and even to 

modify force field parameters as well as the speed of simulations and ability to 

scale up when using the Astral supercomputer enabled this project to produce 

some of the longest simulations on DNA molecules performed to date and, at 

the time of writing, the longest simulations ever performed on the c-Myc and c-

Kit G-quadruplex structures. 

The flexibility and transparency of the system allowed the author to, with 

relatively little experience with the GROMACS package, implement force field 

parameters not available within the distributed package. 

This refers to the AMBER Parm99BSC0 parameters which, as stated before, 

are the standard parameters used to simulate nucleic acid simulations, since 

their development in 2007 (287) and implementation in the AMBER software 

package. As GROMACS is traditionally used to simulate protein dynamics, the 

force field has not been, thus far, ported to the GROMACS system. However, 

aside from the desire to perform the most accurate simulations possible, as with 

the FRET experiments, we sought to be able to perform our simulations using 

tools available to most, if not all, research groups interested in investigating G-

quadruplexes. As such, we thought it an important objective to implement these 

parameters in the open source GROMACS system. 

For these parameters to be used with confidence, and to become a force field 

distributed with the GROMACS package, they must be extensively validated, 

which usually involves the use of customised scripts to perform numerous 

simulations in both the AMBER and GROMACS software suites to compare the 

results. However AMBER package was not purchased and so it was assumed 

that, for the purposes of this project, performing simulations of the c-Myc G-

quadruplex structure and corresponding B-DNA molecule using the 
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Parm99BSC0 parameters and comparing them to the previous standard force 

field, Parm99SB, would sufficiently validate the force field.  

This analysis showed that the new force field was superior at simulating the 

DNA backbone of both B-DNA and G-quadruplexes, when compared to the 

previous standard, Parm99sb parameters. This led to pronounced differences in 

the B-DNA structure after approximately 100 ns, with the 99sb parameters 

inducing artificial distortions over the entire molecule. This was expected as the 

parmBSC0 parameters were chosen due to the improvement in the simulation 

of alpha and gamma conformers, enabling the more accurate simulation of 

DNA. 

However, in terms of the G-quadruplex structure, the differences were less 

pronounced. The only substantial differences noted were in the loop regions, 

which fluctuated far more in the simulation performed under 99sb parameters. 

Although this may not be hugely detrimental to stability, it is important to 

perform simulations as accurately as possible, and it is likely that the unusual c-

Kit conformation which includes long loops, shown in this project to be less 

stable and more susceptible to destabilisation, would be affected by the less 

accurate 99sb parameters to a greater extent than the c-Myc G-quadruplex. 

The use of these force field parameters, combined with the implementation of a 

new nucleotide residue specifically designed to simulate 8-oxo-dG and the 

inbuilt algorithms used to calculate atomic interactions, of which Particle Mesh 

Ewald stands out, enabled this project to produce the most accurate 

representations of both oxidised and non-oxidised G-quadruplex structures 

feasible. 

The G-quadruplex structures used as proof of concept were the oncogenic 

promoter G-quadruplexes found in c-Myc and c-Kit. The former was selected as 

it is the most extensively studied promoter G-quadruplex and has been shown 

to affect expression and has been used in FRET experiments. The latter was 

chosen to contrast with the c-Myc G4, as the in vitro experiments had 
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suggested it would be too stable to be affected by oxidation. It was apt as a 

contrast as it had longer loops, a proven determinant of G4 stability, it was also 

chosen as it had also been widely studied, showed an effect on expression and 

was such an unusual structure, when compared to the more traditional c-Myc 

structure. These structures were considered, therefore, apt as models for proof 

of concept of the hypothesis. 

To investigate the hypothesis, an oxidised G-quadruplex had to be constructed; 

to do this, the author chose to replace one of the Guanines involved in the 

formation of the central tetrad. This method was selected as the work performed 

by Gros and co-workers (180) had demonstrated that 8’ Carbon modifications 

were more deleterious to G-quadruplex stability when they occurred in these 

Guanines.  

As stated previously, this was, indeed, shown as deleterious to stability in our 

simulations. However to accurately characterise the effect of oxidation, a 

complete study, examining the effect of 8-oxo-dG incorporation at every 

Guanine position in each of the G-quadruplexes would have been desirable. 

Furthermore, although 8-oxo-dG is the standard nucleotide modification used to 

simulate oxidative DNA damage, the comparison with 2,6-diamino-4-hydroxy-5-

formamidopyrimidine (FapydG) would also have been desirable. However, time 

constraints made this approach impractical and the method used was designed 

to ensure that if oxidation damages a Guanine involved in central tetrad 

formation, the structure is affected. 

Accurate simulations of complex biomolecules require careful consideration of 

both the environment (i.e. solvent) and equilibration before proceeding to the 

“production” simulations. 

Simulation systems were, in all instances, set up so that the solute was never 

closer than 1 nm from the periodic boundaries. Although this increased 

computational time as it introduced a large number of solvent molecules, it was 
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thought necessary to impede periodic images affecting the dynamics of the 

solute. 

G-quadruplexes require cations for stability, as discussed in Chapter 1, 

therefore a mixed solvent consisting of water and an appropriate ion was 

required. The ion that has been determined to be more favourable to G4 

stability and the most widely used in in vitro studies of these structures is 

potassium. For this reason, potassium was selected for use in both the FRET 

and molecular modelling experiments. However, when introducing potassium 

cations into the simulation system, literature pertaining to novel parameters of 

this ion was not taken into consideration. These parameters generally use 

reduced ion radii (263) as the standard AMBER/GROMACS potassium radius is 

too large for the central cavity of G-quadruplex structures, leading sometimes to 

instability and even to expulsion of the ion. These observations were not 

observed in the simulations of non-oxidised G-quadruplexes and were 

therefore, in hindsight, not considered to be vital to produce accurate 

simulations. 

To enable more direct comparisons between the results of the molecular 

modelling studies and the in vitro experiments, it was decided that the solvent 

used in the simulations should depict the solvent used in the FRET 

experiments. For this reason, solvation was performed in an ionic environment 

of 100 mM KCl, to a net neutral total charge, in water. This was considered to 

be an appropriate solvent environment for the study of these structures. 

The equilibration protocol was designed to release any artificial constraints and 

resolve all the unfavourable interactions prior to performing the production 

simulations that would be used to analyse the effect of oxidation. The 

equilibration had five steps, the first two were designed to resolve the major 

electrostatic interactions (using energy minimisation) and the less powerful 

interactions (short MD simulation) in the solvent, by keeping the G-quadruplex 

restrained. The second two steps aimed to resolve the major electrostatic 

interactions and less powerful interactions between the solvent and the G-
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quadruplex as well as to start resolving any unfavourable interactions within the 

solute. The final step was aimed at resolving any residual unfavourable 

interactions, principally within the G-quadruplex by a relatively long (2 ns) MD 

simulation. 

This methodology was considered sound, but, in hindsight, a longer MD 

simulation at the last step would have been desirable, to ensure equilibration 

prior to the production simulations, as some simulations showed evidence of 

possibly not being equilibrated until after 100 ns of the production simulation. 

With respect to the simulation parameters used, as stated in the experimental 

section, these were based on a standard protocol designed for the study of G-

quadruplexes using the AMBER software package, and adapting it for use in 

the GROMACS system, taking into consideration the available literature on the 

use of GROMACS to study these structures. 

The parameters used to perform the simulations can be broadly divided into 3 

groups: processing and output control, control of physical conditions and control 

of particle interactions. 

The processing and output control parameters were standard and not thought to 

influence the results in any way, and the parameters used are those considered 

to be the standard ones to be used in MD simulations. The only parameter that 

requires justification is the length of the simulation. As stated before, this project 

produced extremely long simulations, in comparison to current literature; 

however it would have been desirable to achieve simulations on the 

microsecond timescale as the kinetics of G-quadruplexes, like most bio-

macromolecules, is on this timescale. Simulations on this timescale were, 

however, impractical, owing to the computational time required, combined with 

the numerous technical faults that occurred in the supercomputing facilities at 

Cranfield. Furthermore, the longer the simulation time, the more inevitable it is 

that the accumulation of artefacts implicit in MD simulations will affect the 

results. The simulation time of 500 ns was thus considered to be a good 
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compromise, whilst still pushing the boundaries of what has been done in this 

field. Furthermore, this time scale proved to be sufficient to visualise a 

difference between oxidised and non-oxidised structures. However it is possible 

that results would have been different, given a longer simulation time. 

The control of physical conditions was also considered to be fit for purpose, with 

most of these being standard parameters used in simulations of bio-

macromolecules. The one deviation from standard parameters was the 

temperature, which was set to 310 K (37°C ) to simulate physiological 

conditions and those of the FRET experiments. This was important as 

temperature is a determinant of stability in these structures and it was important 

to be able to, as much as possible, assess the results in a biological context. 

The control of particle interactions is by far, the most intricate and complex 

group of parameters and where several judgements had to be made, that may 

or may not have detrimentally affected the results. These parameters included 

the constraint algorithm used and associated conditions, the electrostatic and 

long range interaction types and associated conditions and the van der Waals 

conditions. This last one was kept at the default values, with no evident reason 

to alter them. 

The selection of the constraint algorithm however, was not straight forward. The 

LINear Constraint Solver (LINCS) constraint algorithm was used. This algorithm 

is more stable and faster than the alternative SHAKE algorithm; however it does 

not work with angle constraints. To compensate for this, the maximum rotation 

allowed for a bond in any step was set to 30°, if any bond rotated more than 

this, a warning would be printed in the log. As this was not noted in any 

production simulation, the constraint algorithm was considered appropriate. All 

other parameters associated with constraints were maintained at the default 

values. 

The electrostatic interactions were set to use PME to calculate these forces. 

PME is a computationally efficient method that enables the simulation of large 
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molecules with long range interactions by creating a grid or mesh in the 

simulation and separating the short range interactions from the long range ones 

and calculating the former in real space and the latter in Fourier space, with little 

loss of accuracy. The grid dimensions were set to 1.2 Å, this could have been 

shortened to improve accuracy, however this would have been impractical in 

the long (500 ns) simulations and the dimensions used were considered to be 

apt. All other parameters associated with these interactions were maintained at 

the default values. 

Although care was taken to select the most appropriate parameters for our 

system, current opinions of the exact parameter set to be used are unclear and 

sometimes contradictory. As such we cannot guarantee that the simulations 

performed are perfect representations of the G-quadruplex structures. 

Furthermore, recent investigations in quantum biology (296) (297)
 highlight the role 

of non-trivial quantum effects in complex biological systems, such as DNA. The 

papers demonstrate that electrostatic and dispersion forces are equally 

important to maintain the structure of DNA molecules. This implies that accurate 

molecular models, with the physical, structural and functional properties of DNA 

are at present unattainable. This highlights the fact that molecular models can 

only ever be, even at the best of times, an approximation to reality and should 

be treated as such. 

However, taking this into account, the methodology of performing simulations 

on both oxidised and non-oxidised structures allows us to disregard any 

artefacts introduced to the system, as all structures were treated with the exact 

same parameters. It should also be made clear that perfectly simulating these 

structures to extract biophysical information was not objective of this work; the 

objective was to be able to relate the simulations performed to a biological 

context, which was, as much as possible, successful. 
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The analysis performed on the production simulations was comprehensive and 

designed to extract any and all information relevant to the stability and/or 

function of these structures in a biological context.  

However, it was a significant oversight by the authors not to include the 

calculation of free energy values. This would have been extremely useful in the 

comparison of stabilities but, as it was not included in the parameters of the 

production MD simulations, it was impossible to calculate free energy values, 

without repeating the entire simulation. 

3.3 Gene Expression Data Analyses  

3.3.1 Overview of Results 

The Gene expression data analyses performed were not designed to be 

conclusive in their own right, but shed light on the association of G-

quadruplexes and oxidation, in cells. Broadly speaking, these results achieved 

the desired objective of elucidating the association between oxidation of G-

quadruplexes and gene expression. 

The initial estimation of the numbers of GQMs in the genome revealed far 

greater numbers than expected. In the case of the general motif, this was 

previously estimated to be present in the promoter region of approximately 33% 

of genes (31), however our estimation revealed this motif to be present in the 

upstream promoter region of 42.28% of genes. This discrepancy is due to the 

previous study having considered a promoter region of only 1000 base pairs 

(bp) upstream of the TSS, whereas we considered 2000 base pairs upstream of 

the TSS to be relevant to gene regulation. 

There was also a large discrepancy between the values obtained for the c-

Kit87up motif and available literature. A study by Todd and co-workers (2007) 

(127), demonstrated that sequences similar to this motif were exceptionally rare 

and not found within 100 bp of a TSS within the genome. However, our results 
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showed this motif to be present in the 2000 bp upstream of a TSS in 

approximately 4% of genes, a substantial number.  

It is debatable as to how large the region upstream of the TSS is relevant to 

regulation of transcription, however, the fact that G-quadruplexes are suspected 

to be involved in a variety of processes that can affect transcription, such as 

histone occupancy, transcription factor binding and interference with DNA 

dependent RNA polymerase progress (32) (97) (106) (177) (298)  (299), it is probable that 

G-quadruplexes in regions up to 2000 bp upstream of the TSS might affect 

gene expression. Additionally, the presence of GQMs in the open reading frame 

is suspected to effect transcription and splicing (66) (300) (301) (302). 

It is interesting to note the difference in prevalence of the different motifs 

analysed in the upstream promoter region. These differences are, in the most 

part, due to more rigid constraints on some of the motifs, i.e. some motifs, have 

a greater proportion of their nucleotides defined to be a G, which would 

decrease the possible permutations, and therefore, decrease the occurrence of 

these motifs. This is very apparent went observing the difference between c-

Myc and c-Kit motifs, as the former has less loop nucleotides, reducing 

prevalence. 

There is also a clear increase in the prevalence of every motif in the ORF, when 

compared to the upstream promoter region. This is, at least in part, due to the 

greater length of the ORF, which includes 5’ and 3’ UTRs introns and exons. 

Although drawing definitive conclusions as to the distribution of prevalence of 

the different motifs from these estimations is unviable, the principal reason for 

performing this analysis is to establish the prevalence of each motif in each 

location, to then access the significance of the prevalence observed in 

subsequent analyses. 

With respect to the analyses of gene expression in cells subjected to oxidation, 

the initial analysis for the presence of GQMs revealed, with only 2 exceptions 

no statistically significant enrichment of any motif in any location. In fact, some 
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motifs were significantly under-represented in some locations. This was not 

expected as, even if there was no correlation between GQMs and susceptibility 

to oxidation, under-representation would not be expected. Upon reflection, it 

became apparent that, in a biological context, it is intuitive that genes involved 

in DNA damage repair should not be as susceptible to DNA damage 

themselves, as this would undermine the cell’s repair mechanisms, impeding 

survival. This logic led to the belief that genes involved in DNA damage repair 

would be less likely than other genes to be regulated by G-quadruplexes, which 

we theorise to be susceptible to DNA damage.  

To investigate this, the significant ontology clusters, calculated by the authors of 

the paper were used to select all genes that were significantly altered and 

whose ontology is not involved in DNA damage repair. The analysis of these 

genes revealed that GQMs were enriched.  

Results for both Menadione and H2O2 treatment were broadly similar, with the 

only major difference being that the c-Myc motif was enriched in the ORF and 

entire genic region in the Menadione dataset, and not in the H2O2 dataset. This 

could imply that, as Menadione tends to produce superoxide anions (O2
·-) and 

H2O2 tends to produce hydroxyl radicals (HO·), that the type of ROS is a 

determinant of the effect on G-quadruplex structure and consequent 

expression. 

These results, taken as a whole, suggest that the presence of a GQM in any 

part of a gene not involved in DNA damage repair, increase the susceptibility of 

this gene to being affected by oxidation. This supports our hypothesis that G-

quadruplexes are destabilised by oxidation, which leads to altered gene 

expression levels. 

Furthermore, results could also imply that, due to the lower stability of the c-Kit 

G-quadruplex, this structure is more susceptible to oxidation and is destabilised 

in the presence of either superoxide or hydroxyl radicals, whereas the more 

stable c-Myc G4 is only susceptible to the presence of superoxide anions. 
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3.3.2 Critical Appraisal of Materials and Methods 

The gene expression data analyses (GEDA) performed revealed potentially 

interesting and somewhat controversial results, requiring a thorough inspection 

of the methodology used. 

The motifs utilised in these analysis were apt for purpose as, taken together, 

they can be used to establish differences and similarities between the 

prevalence of any GQM (using the general motif) the c-Myc motif (using both 

the wild type and mutated motif) and the c-Kit motif (using the previously 

described 2 motifs corresponding to the c-Kit87up G-quadruplex and the c-Kit2 

G-quadruplex). 

As no study had been published at the time of performing these analyses on the 

classification of G-quadruplex structures, this was the most accurate way of 

estimating the prevalence of motifs similar to the c-Kit and c-Myc motifs. 

However, a recent study by Todd and Neidle (2011) (33) use in silico techniques 

to perform this classification and would have been a superlatively useful tool for 

our study. Any future study attempting to establish a differential effect of 

oxidation on G-quadruplexes should use the results described in this paper. 

The paper studying the effect of oxidation was an apt choice as it performed a 

global gene expression evaluation, analysing two different ROS and so was a 

good starting point from which to attempt to extract data on the effect of 

oxidation on G-quadruplexes. 

The statistical significance test selected, Chi-squared test with one degree of 

freedom is one of many tests which could have been used in this situation. 

However this one was selected as it is perfectly tailored for datasets with only 

two outcomes (GQM present/not present) in which you know the expected 

numbers by chance (using the prevalence across the genome, presented in 

table 2-17, pp. 150) and where the datasets are relatively small. This last 

variable can influence other tests such as fisher’s exact test and other Chi-
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squared tests by inducing an overestimation of the significance of a difference 

detected in small groups; Yates’ correction counteracts this overestimation, 

leading to a greater certainty of when a parameter presents a significant 

difference, it is, in reality, a truly significant difference. 

3.4 General Overview of Biological Implications  

Taken together, the results presented in this project point towards oxidative 

DNA damage destabilising G-quadruplexes, with direct effects on gene 

expression. 

The molecular dynamics simulations clearly show an effect of oxidation in both 

the c-Kit and c-Myc structures, and the gene expression data analysis allow us 

to speculate on the effect this destabilisation would have on gene expression. 

We propose that the destabilisation of G-quadruplexes in the upstream 

promoter regions (and possibly in the ORF) alters gene expression. The two 

structures used as proof of concept (c-Myc and c-Kit) both support this 

hypothesis by being destabilised by oxidation and their motifs being enriched, 

under certain conditions, in datasets of genes affected by oxidation. 

This project presents a novel route for the association of oxidative DNA damage 

and carcinogenesis. As so many known proto-oncogenes present G-

quadruplexes in their upstream promoter regions, including the two studied in 

this work, it appears likely that the increase in expression levels caused by 

destabilisation of G-quadruplexes would increase the likelihood of developing 

cancer. 

This association is further strengthened by the presence of G-quadruplexes in 

the upstream promoter regions of proto-oncogenes associated with all six 

hallmarks of cancer. 

Furthermore, it appears that the extent of the effect of oxidation is dependent on 

G4 structure, as c-Myc and c-Kit motifs present different sensitivities to 
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oxidation, both from the MD simulations and the analysis of expression data in 

cells subjected to oxidative stress. 

This would also have implications in oncogene expression and could explain the 

strong association between the expression of some oncogenes and oxidative 

stress and not others. 

A thorough review of literature has also revealed several studies which support 

the findings presented in this work. 

Benzoyl peroxide, a ROS generator, for instance, has been shown to oxidise 

Guanine double and triple repeats sequences site specifically in dsDNA, with 

effects on regulation of tumour suppression genes and oncogene expression 

(303). 

Additionally, the results explain the observation that the G-quadruplex selective 

RecQ helicases WRN and BLM preferentially unwind quadruplex substrates 

containing 8-oxo-dG lesions (304), as a G-quadruplex structure destabilised by 

oxidative stress is likely to be more susceptible to unwinding. 

In terms of the implications in telomeric G-quadruplexes, one must take into 

account that these results may be specific only to promoter G4s, as telomeric 

G-quadruplexes have a different structure and are subjected to different forces.  

However, it is possible that these G4s are also affected by oxidation. This would 

have the opposite effect of the G-quadruplex stabilising ligands targeted at the 

telomeres. These ligands, of which telomestatin is a prime example, bind to 

telomeric G-quadruplexes and impede telomerase activity, eventually leading to 

senescence in cancer cells. In the case of oxidation, as G4s would be 

destabilised, this would facilitate the binding of telomerase and the ability of 

cancer cells to maintain telomere lengths, delaying senescence. 

Furthermore a study by Cysewski and Czelen (2010) (305) which investigated the 

effect of oxidation on the complexation of telomeric repeat binding factor 1 

(TRF1) with a GQM telomeric repeat unit (although, no mention of G-

quadruplexes was made in the study) observed that oxidation of this repeat 
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sensitised it to TRF1 binding. As TRF1 binding is associated with telomerase 

inhibition, this would enhance the link between oxidation destabilising the G-

quadruplex structure, leading to telomere shortening.  

Another study has shown that stabilisation of telomeric G-quadruplexes induces 

the dissociation of TRF2 from telomeres, leading to telomere shortening in the 

absence of telomerase (306). With this knowledge, analysing the study by 

Cysewski and Czelen, suggests the possibility that oxidation may destabilise 

the telomeric G-quadruplex structure, which would facilitate the formation of 

protein-DNA complexes. The consequence could be that in cancer cells, where 

TRF1 and TRF2 are often downregulated and telomerase is often upregulated, 

oxidation could exacerbate carcinogenesis, or play a role in establishing 

immortality.  

The destabilisation of G-quadruplexes by oxidation, as stated before, would 

shift the quadruplex/duplex equilibrium. However this may be only a transient 

phenomenon or even a phenomenon that only mildly affects the equilibrium and 

consequent gene regulation. On the other hand, when taking into account the 

composite DNA damage repair mechanism, of which base excision repair 

(BER) is the principal component, it seems likely that the consequences of 

quadruplex oxidation may be more permanent, as the BER mechanism would 

remove the oxidised guanine which would, most likely impede the reformation of 

the quadruplex structure. This would lead to more permanent changes in 

expression profiles in cells subjected to oxidation and might also lead to more 

permanent effects in telomeres. 
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4 Conclusions & Further Work  

This project aimed to investigate the hypothesis that oxidative stress 

destabilises G-quadruplex structures, leading to changes in expression levels of 

proto-oncogenes, which may be associated with carcinogenesis, through the 

use of FRET bases experiments, MD simulations and Gene expression data 

analyses. 

The FRET based methodology developed was successful at verifying the 

presence of G-quadruplex structures and their unfolding in the presence of their 

complementary strand. However the methodology was unsuccessful at 

detecting any change in FRET under conditions of oxidative stress that could be 

associated with changes in G-quadruplex structures, and thus failed to achieve 

the intended objective of providing in vitro evidence of a change in G4 

conformation due to oxidation. 

The MD simulations proved to be successful at identifying substantial 

alterations to the G-quadruplex structure when simulating oxidised structures 

vs. non-oxidised structures that were interpreted as destabilising effects, 

therefore fulfilling the desired objective of observing the effects of oxidation 

during these simulations. 

The molecular modelling methodology used was also successful, producing 

both an automated script with all simulations necessary for studying large DNA 

molecules as well as the Parm99BSC0 GROMACS port, currently undergoing 

validation for distribution with the GROMACS package. 

The gene expression data analyses, although by no means conclusive in itself, 

achieved the objective of shedding light on the effect of G4 oxidation on gene 

expression and supports the hypothesis. This was implied by the enrichment of 

G-quadruplexes in the upstream promoter region and/or open reading frame in 

genes affected by oxidation that are not involved in DNA damage repair.  
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We therefore conclude that, overall, the aim of this project, to investigate a 

novel route for the association of oxidative stress and carcinogenesis was 

achieved. However, we were not able to support the hypothesis with conclusive 

in vitro work. We propose that the mechanism by which oxidation of G-

quadruplexes is involved in carcinogenesis is as described below: 

- As the most common effect of DNA oxidative damage is the oxidation of 

deoxyguanosine to 8-oxo-dG (307), this nucleotide would be expected to 

occur in the G-rich sequences that form G-quadruplexes, indeed 

guanines forming part of G-quadruplexes have been shown to be more 

susceptible to oxidation than guanines in the B-DNA duplex; 

- Our results have shown that the incorporation of only one 8-oxo-dG into 

the central tetrad of two oncogenic promoter G4s has a detrimental effect 

on stability, through MD simulations; 

- In a biological context, even slight changes to stability would likely shift 

the duplex/quadruplex equilibrium, towards the formation of the duplex 

structure. Furthermore, it appears likely that, at some point, BER would 

remove the oxidised Guanine, impeding the reformation of the 

quadruplex; 

- Studies (55) (308) (309)  have shown that numerous GQMs act as repressors 

of gene expression when in the folded form and that the unfolding of 

these structures causes upregulation of the corresponding genes; 

- The overexpression of these oncogenes would lead to, or predispose a 

cell to become cancerous. 

Although the results suggest this mechanism to be true, further work should be 

performed not only to prove this hypothesis in a biological context, but also to 

further examine the relationship between G-quadruplexes, oxidation and 

cancer. 
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Further work in the short term should concentrate on further proving the 

hypothesis using in vitro and in cellulo methods, as well as improving and 

furthering the in silico methodologies to yield more information about this 

phenomenon.  

As an initial verification of the effect of oxidation, it would be relevant to perform 

native PAGE experiments, comparing the migration of quadruplexes subjected 

to oxidation with quadruplexes not subjected to oxidation. This method has 

been previously used to purify and to verify the presence of quadruplexes, and 

a detailed protocol is available (310). 

However the most important objective to be fulfilled is to investigate the effects 

of oxidation on the G-quadruplex structure and consequent expression in 

human cells. 

The simplest way of performing this study would be to select a non-cancerous 

human cell line and utilise Fenton chemistry to simulate oxidative stress in a 

subset of these cells and then evaluate the expression levels of several proto-

oncogenes (including c-Myc and c-Kit) and tumour suppressor genes in these 

cells and compare it to a control subset of cells.  

A more comprehensive way to perform this study would be complemented by 

calibration experiments involving the use unspecific G-quadruplex stabilising 

and destabilising agents and cross referencing the genes (and, in particular, 

proto-oncogenes) affected by these agents with the list of genes with a GQM in 

their promoter region or ORF. The results of this could be used to identify key 

genes to study for the effect of oxidation, as described above, as well as 

facilitate the inference of the effect of oxidation on G-quadruplex structures. 

The MD simulations should be improved upon by performing these same 

studies and including free energy calculations and, depending on the availability 

of computing facilities, examining the effect of both 8-oxo-dG and FapydG 

incorporation in each Guanine involved in tetrad or loop formation. It would also 

be interesting to perform these simulations over, at least, one µs. 
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There is also scope to utilise some of the methodologies developed to study 

other chemical modifications, such as DNA methylation. 

The MD methodology, including simulations performed, the equilibration 

protocol and the force field port developed could be used to examine the effect 

of methylated Guanine residues on the stability of G-quadruplexes. 

The FRET methodology developed could also be a viable option to investigate 

the effect of methylation on GQMs in vitro. This would likely be more successful 

than the use of this method to investigate the effect of methylation as there is no 

reason to believe that the fluorophores would be affected by methylation. 

Additionally, this chemical modification has been shown to substantially affect 

G4 stability (172) (173) and be associated with G-quadruplex function (178). 

It is logical to assume, and indeed a study by Kawai and co-workers (2005) (222) 

has made the link between oxidation at the telomeres and G-quadruplexes. The 

aforementioned mechanism of favouring the binding of telomerase in cancerous 

cells would be an interesting hypothesis to investigate. This would require, 

however, a different set of experiments to prove this hypothesis. 
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6 APPENDICES 

Due to the large amount of data produced by the different techniques used, a 

digital appendix was created on a companion DVD which includes all relevant 

results not disclosed in this thesis, as well as .pdb structure files and 

abbreviated trajectory files to enable 3D visualisation of all the MD results 

referred to in this work, as well as all PERL scripts used. For the readers’ 

convenience, the appendices are ordered into folders corresponding to the 

sections and sub-sections present in this thesis. 


