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SUMMARY 

The object of this report is two-fold. 	On 
the mathematical side it seeks to illustrate the use of 
oblique coordinates in applications to Elasticity and 
Structure Theory. 	On the practical side it seeks to 
Provide methods by which designers can solve problems of 
stress distribution and deflection for the case of swept-
back wing structures, whose ribs lie parallel to the 
direction of flight. 

The report is divided into three parts. 
In Part I the mathematical basis is developed. 
Formulae are derived which express the fundamental 
concepts and relations of Geometry, Kinetics, Statics 
and Plane Elasticity in terms of vector components in 
oblique coordinates, 	In Part II, the results obtained 
in Part I are applied to a uniform, symmetrical, 
rectangular section, swept-back box. 	A complete theory 
of stress distribution and deflections is obtained for 
the case of loading by 'normal' forces and couples 
applied to the ends of the box. 	Some consideration is 
also given to problems of constraint against warping. 
In Part III the main results of Part II are generalised 
to cover the case of a more representative wing struc- 
ture. 	This represents an extension of the usual 
Engineer's Theory of Bending and Torsion to cover the 
case of swept-back wings with ribs parallel to the 
flight direction. 	Practical procedures based upon 
this extension are laid down for stress distribution 
and deflection calculations. 	These will have the 
same validity for swept-back wings, as the usual design 
approximations have for the unswept case. 

Forces whose directions and couples where planes are 
normal to the plane of sweep-back 
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Definition of the Symbols Employed 

Geometry. 	Dimensions 

0('(,y,z) Main system of oblique Cartesian Coordinates (see Fig.1) 

0(X,Y,z) Auxiliary system of oblique coordinates 	(see Fig.1) 

a 	Angle between the axes Ox, Oy. 

(x,y,z) 	Coordinates of a point referred to axes O(x,y,z) 

i,j,k,ii ,j1 

	

	Unit vectors in the directions Ox, Oy, Oz, OX, OY 

respectively. 

r 	Position vector 

ds 	Length of vectord—r 
6 	Angle between dF and i 

dS 	Length of the material element ar after strain 

1 	Length of a plate or box measured x-wise 

Half width of a plate or box measured y-wise 

b 	Half depth of a box measured z-wise or, in particular, 

the half depth of the spar y 

b' 	Half depth of the spar y 

;"(Sr) 	Ordinate of the skin line 

Mean value of 	over width - c < y c. 

t 	 Thickness of the skins 

tw 	Thickness of the spar webs or in particular, 

thickness of the web y = c 

tW 	Thickness of the web y = - 

tR 	Thickness of a diaphragm rib 

A 	Section area of spar flange or in particular, section 

area of flanges at y = c. 

A' 	Section area of flanges at y = - c 

As 	Section area of stringer 

AR 	Section area of rib flange 

as 	Stringer pitch measured parallel to the ribs 

aR 	Rib pitch measured parallel to the stringers 

= tR/aR  

Parameter defining the point of action of a certain 

shear stress distribution in a box. (see equation (143)) 

Parameter defining a torque axis for use in the 

calculation of twist (see equation (159)) 

Kinematics  

Displacement vector 

(u,v,w) 	Oblique components of u 

U = u + v cos a 

V = u cos a + v 

p 	Rotation vector 

/(p,q,r) 	Oblique 



(p,q,r) 	Oblique components of p or in particular, components 

of rib rotation. 

C,C1 ,C2  Constants defining a rigid body movement in a plane 

(see equation 17) 

VR  WR 	Components of rib displacement in the plane of the 

rib in y and z directions respectively. 

wRo 	= (v/R)y=o 
K1  ,K2 	Arbitrary constants occuring in expression for 

wRo (equation (65)Y 

uwlww jComponents of web displacement in directions x and 

4,1q, J z respectively. 	Undashed:- y = c 	dashed:- y = -c. 

W 	Rigid body translation of a rib in z-direction. 

Defined as W = wRo in Part II and W = (ww+wW2 

in Part III 
TAT 	 'Additional deflection due to shearing' .(see § 3.3(5)). 

Warping displacement function (eo./118)) or warping 

displacement itself (equation 131) 

w1  ,w2 	Functions of y occuring in expression for w 

(equation 132) 

Section distortion function (equation 118) or 

section distortion displacement itself. (equation 131) 

	

4S,1 0.6 	Functions of y occuring in expression for A 

(equation 132) 

p1  ,p2 	Constants in expression for p (equation 132) 

g-19q2 	Constants in expression for q (equation 132) 

Y 	'Shear Deflection' constant occuring in expression 

for W (equation 132) 

e 	Strain in arbitrary direction 

xxsq 	xy Strain components in oblique coordinate_ system yy 
0(x,y). 

e Pe 	Strain components in rectangular coordinate YY xY 
system 0(x,Y) 

	

1.531 	Rotation of an element dr. 
Statics  

7 	Force vector 

(X,Y,Z) 	Oblique components of F. 	Also in Parts IT, 

Z is used as resultant z-wire force across a 

section of a box. 

(L,M,N) 	Oblique components of a couple - axis 0(x,y,z) 

(L1 ,M1) 	Oblique components of a couple - axis 0(X,Y). 	Used 

also as resultant couple acting across a section 

of a box. 

T1 ,T2,S(=S1=S2) 	
Stress resultants in a plate refered to 

Oblique axes 0(x,y) 	(see Fig. 3) 

0 	 Stress function. (see equation 22) 	_ 
/T ,T 
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T1,T2'E 	Stress resultants in a plate refered to axes 
0(x,Y) (see Fig. 4) 

1 ",T',T",ST,S" 	Functions of y occuring in expressions  
for T1 ,T2,S in equation (37) 

Shear per unit length in the ribs, estimated per 

unit span (x-wise} 

Sww ,S I 	Shear per unit length in the webs y = c, y 	- c 

respectively. 

Couple component (oblique) about an X--wise axis through 

a point y 	z = o on a cross-section of a box 

(equation 145) 

L1 	Ditto about axis through y +c, z = o (equation 159). 
Elasticity. 	Influence Coefficients 

E 	 Young s Modulus 

a 	Poisson's Ratio 

aij 	Matrix relating stress resultants and strains 

(equation 24) 

(aii)p 	Part of aij  arising from the plate (equation 27) 

(aij)R 	Part of aij  arising from the reinforcing members 

(equation 28) 

A. 	Matrix inverse to aij (equation 31) 

a
1113 =

ET.33 	Specialcombinationsofaij (equation 120) 

Cif  Matrix relating rates of rotation of the ribs with 

the couple transmitted in a box (see equation 99, 
100, 157, 158, 160 and 161) 

C13 	Constant in formula for P1 (equation 157) 

I 	 'Second Moment of Area' for a swept box (equation 142) 

Miscellaneous Parameters and Constants  

Ai(i=0,1,2,3,4) 	
constants in expressions for linearly varying 

stresses in a plate. (see equation (40) and § 2.4) 

Constant defining the rate of die-away of a special 

stress system (see equations 44, 47) 

Sequence of values of 1.1c defined by equation (111+) 

Ai(i=1,2,3,4) 	Values of 4  satisfying equation 0.6) 

B(1=021,2,3,4) Arbitrary constants in equations 43, 47. 

Bii(i,j = 0,1,2,3,4) Coefficients of the linear equations for B. 

(See equations 108, 109, 110, 111, 112, 113) 

) Cofactors of BL0 in the determinant IBij  . 
C. 	Sequence of arbitrary constants (equations 116, 117) 

.p.„Q.(i.1,2,3) 	Constants relating rates of rib rotation to 
Couple transmittel and section warping .(eq: 125,126),. 

Denominator in expressions for Pi, Qi  (eq. (126)) 

R1 'R2' 	Constants in the warping equation 127. (see 128) 

/Part I. 
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Part I. 	Generalities and Applications to Problems of 

Two-Dimensional Elasticity 

1.1. 	Geometry 

The frame of reference used in this report is a 
system of oblique Cartesian coordinates. 	This system is 
s own in Fig. 1. 	The basic axes are 0(x,y,z). 	The angle 
x y has magnitude a. 	The axis Oz is at right angles to the 
plane x0y, and is such that a rotation which brings Ox into the 
position Oy is right-handed about Oz. 	Use is also made of 
auxiliary axes O(X,Y) lying in the plane x0y and such that 
0(X,y,z) and 0(x,Yz) form systems of right-handed rectangular 
cartesian axes, 

It is convenient to introduce unit vectors 
i,j,k,ii,j1  lying in the directions Ox,Oy,Oz,OX,OY respectively. 
These quantities satisfy, as is easily shown, the following 
relations. - 

i1 	cosec a - j cot a 	
(1 ) 

- i cot a + j cosec a 

.2 
1 = k = cos a, 	j.k = k.i = 0 (2) 

ixi = jxj = kxk = 0 

ixj k sin a, jxk = 9 kxi = j1 / 

The position vector r of a point with coordinates 
(x,y,z) may be written.- 

r = xi + yj + zk 

If the length of the differential vector dr be denoted by ds, 
we find from (4) and (2).- 

2 ds = dr
2 
 = (dx i + dy j + dz k)

2 
 = dx

2
+ dy

2
+ dz

2
+ 2dxdy cos a 

The vector dr is a unit vector. 	For the special 
ds 

case in which this vector lies in the plane Oxy (i.e. when 
dz/ds = 0) and is inclined at an angle e to the axis Ox, we 
find for the components dx, IL the formulae.- 

ds ds 

dx = sin(a-0), 	IL = sin e 
ds 	sin a 	ds 	sin a 

The relations (6) may be established using (2) and the formulae 

= cos 6 and j.d/7  = cos(a-6), or by a simple trigonometrical 
ds 	 ds 

calculation. 

1.2. 	Kinematics  

Any vector may be expressed, as in (4), as_a linear 
combination of i,j,k. The displacement of a point u and the 
rotation about an axis p may be written.- 

(3)  

(4)  

(5)  

(6)  

- 



u = ui + vj + wk , 
(7) 

73 = pi + qj + rk ... 

The combinations (u,v,w) and (p,q,r) may be termed the 
'components' of the vectors in the axes 0(x,y,z), but care 
must be exercised to avoid applying formulae a-pplicable only to 
rectangular axes to these quantities. 	The lengths of vectors 
are given by formulae like (5). 	The component u is not the 
projection of u in the direction 04 this last is given by 
u + v cos a. _ If the axis of p passes through C, then_the 
displacement u induced at a point with position vector r is 
given by.-_ 	_ _ 

u = pxr 	 (8) 

Substituting from (4), (7) into (8) and making use of (3), (1) 
we find.- 

U = u + v cos a = (qz 	ry) sin a 

V = u cos a + v = (rx - pz) sin a 	 (9) 

w = (py - qx) sin a 

where U, V are the 'projections' of u in the directions Ox, Cy 
res-2ectively. 

In the remaining portions of this paragraph we shall 
restrict our attention to positions and displacements in the 
plane xOy. 	Use will be made of our previous notation, with the 
understanding that z components, such as w, z etc., arc taken 
equal to zero, 

If the plane x0y is subjected to a displacement 
u(x,y), a point at r will move to r + u. 	The length of an 
element dr will change to dS where, 

ds2 = dr2, dS2 = (dr + d7)2 	 (10) 

Neglecting terms of second order in the displacement we find 
for the strain e in the element dr the formulae.- 

e = 	 -- 
dS
2
- ds

2 
dr du 

2ds2 ds de 

Substituting from (4), (7) (with z . w = 0) and using (2) we 
find. - 	 2 	 2 

G  '-7. eXX(In + 
e) 2+ 

ds 	
+ e 	(i x  (x In 

57. ds dsi 

where 
exx 	ax -yy -- ay' -xy 	3 	' aY 
. 	

7 
) 

au, , 	av , 	3V ,. D 
= 7c 	

U 

U = u+vcosa, 	V=ucosa+v 

The quantities e , e 	end e may be termed 'components of A 	 xy 
strain', since the complete deformation is defined in terms of 
them. 	The formulae in the second line of (12) are familiar, 
but it must be noticed that U, V are not the true displacement 
components. 

The direct strain eyy, in the direction OY may be 
obtained from (12), by making use of (6) with S = 7t/2. 
We find.- e  

e 	= exx  cc
2eu a + 6

yy 
cosec

2 
 --a 	6xy cot 	cosec a YY 	 (13) 

•••■ 

(12) 

and 

/The rotation 	 
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The rotation G of an element di is given (see Fig.2) by 
the formula.- 

dv 
sin(ads 

	

	 ds -8) 	du sin e 

Using (14), (12) and (6) we can show that the shear strain 
exy associated with the directions Ox, OY is given by- 

e 	. (t!') 	- (61 	= - 2e cota + e 	cosec a 	(15) 

	

xY 	6=0 	0=7c/2 	 xy 

When the strain components satisfy a compatibility relation.- 

32e
IZ 82 (exx) 	8 (e  - 

2 
5.7",d 	 (16) 

- —1—  ± 
axay 	ay 	ax 

the second line of (12) may be solved for the displacements 

	

U, V. 	The I complementory function' for this integration is a 
'rigid body motion'.-m  

	

U . Cy + Ci , 	V = - Cx + C2  

where C, Ci p C2  are arbitary constants. 	The results 
(16), (17) are identical with those for rectangular coordinates 
and the usual proofs apply. 

1.3. 	Statics 

A force 7 may be written, 

7 . xi 	Yj + Zk 
	

(18) 

If this force acts at the point r, its moment about the origin 0 
is r x F. 	Using ( 4) (18) (3) and (1) we find, 

F x F = L1  i.1 M1  j1 Nk = Li + Mj + Nk 
where 

	

L1  = yZ - zY 	M, = zX 	xZ N = (xY-yX) sin a ( (19) 

and 
L = L1 cosec a - M1 cot a M = -L1 cob a + M1 CDSCC a 

The conditions for equilibrium of a system of forces are 
E,F = o$ 	rxF = o. 	Reference to (18), (19) shows that these 
may be written.- 

	

X =Y = 	= 0 
(2o) 

E(yZ - zY) =.(zX - xZ) = (xY - yX) = 0 

These equations have the same form as for rectangular axes. 

Turning now to two-dimensional _questions, we define 
the stress resultants T1  S 	T2 and S2 for a plate. 
These are the oblique components of forces per unit length, 
acting across normal sections parallel to axes Ox and Oys  
situated in the middle surface of the plate. 	The sign 
convention for these forces is shown in Fig. 3. 	Consider an 
element of the plate (dx, dy). 	The forces acting upon it are 
shown in rig. 3. 	The forces on the edges are determined by 
the stress resultants; the body force is given by (Xi + Yj)dxdy. 
Application of the rules of (20) gives us the following 

/differential ... 
N A translation u = cosec2a !:(c1 - c2  cos O. + (c2- ci cosa)j.S 

And n ,,otation 9-bout 0, 5 	Ok cosec 	(sed(9)). 

= (14) 

(1 7) 
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differential equations of equilibrium.- 

aTi 	as2  
ax 	x = o 

as1 	
aT2 

ax 	57- Y  = ° 

S1  = S2  = S (say) 

The similarity with the equations in rectangular coordinates' 
will be noticed. 	If X = Y = 0 we can satisfy (21) by 
introducing a stress function0 such that, 

, T2  = a 
	

S = - a20 	 (22) 
ax 	 axay 

It_is convenient also to introduce stress 
resultants T 	T2, S refered to axes 0(x,Y). 1 ' 2' 	 The sae cif 
of these is shown in Fig. 4. 	The relations between the 
an-barred and barred stress resultants may easily be shown to 
be. - 

T1 = T1  sina + T2 cos a cot a - 2S cos a 

T2  = T2  cosec a 
	 (23) 

S = S - 72 cot a. 

1.4. 	Stress - Strain Relations 

In § 1.2 we studied a system of plane strain refered 
to oblique axes 0(x,y). 	We now interpret these results as 
refering to the mean strain across the thickness of a uniform 
plate. 	Such a state of strain in a plate will give rise 
to stresses and stress resultants and in § 1.3 we studied the 
properties of these forces when refered to our oblique axes. 	If 
the material of our plate is elastic and obeys the Generalised 
Hooke's Law, then the stress resultants T1, T and S will be 
related to the strain components ex_x  9 eyy and2 exy by homogenous 
linear equations of the form.- 

T = P 	e 	+a 	e 	+ae 1 	-11 xx 	12 yy 	13 xy 

T2 = a21 exx + a22 eyy + a23 exy 
	 (24) 

S = a31 eXX 	a32  eyy  + a33  Cxy  

where as we shall show later, 

aij = aji 
	 (25) 

For the special case in which the plate is isotropic with 
thickness t, Young's Modulus E and Poisson's Ratio a, known 
theory applied to the rectangular axes 0(x,Y) gives.- 

T"1 = Et 	 Et (eXX + a eYTY
), T2 = 	(eyy  --1-- o e XX)I 

--------2—  
(1-0

2
) 	 (10 	 (26) 

2(1+0) x' 	 ,) 

Et  S - 	e v  

/Substitution .... 

ti 

(21) 

T1 	a 
ay 
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Substitution from (26) in (23) expresses Ti, T2, S in terms 
of e

xx 
 e ,exY ' Use of (13), (15) throws our relations into 

the form (24) and so determines the a.. for the isotropic plate. 
Denoting these results by (a. .)p  we flAd.- ij  

(a..) = 	Et  .cosec a. ij p 
(1-02) 

1, 	cos
2
a+csin

2 
 ap- cos a 

cos
2
a + osin

2 
 a, 	1 	- cos a 

- cos a , 	- cos a, 	1+cos
2
a-osin a 

. 2 

2 

(27) 

Tn the case where the plate is reinforced by closely 
spaced stringers of s ection area A at a pitch a running 
parallel to Ox, and by closely spaged ribs of soRtion area AR  
at a pitch aR  running parallel to oyI, then, if the material of 
the reinforcements has modulus E, loads of magnitudes respectively 
EAs exx and EAR eyy will appear in the stringers and ribs. 

Distributing the stringers and ribs continuously we generate 
stress resultants T1 = EAs exx/as and T2 = EAR eyy/aR and 

so for a reinforced plate we must add to (27) the matrix (a..) R given by. - 

/ EA /a 

	

/ 	s s 

R
/aR 	

(28) 
(aij)R = 

The complete matrix for a plate reinforced in the directions 
Ox, Oy is thus.- 

	

aid = (aij)p  + (aij)R 	 (29) 

The equations (24) may be solved for exx, eyy, exy  yielding.- 

eXX = A11T1 + A12T2 + A13S 

eyy  = A21T1  + A22T2  + A23S 

exy = A31T1 + A32T2 + A33S 

where,  
//a22 a 	a  

	

33- 	23 3l  23' 	 a-aa  aa- 21 33  aa $ a 21 32 31 22 1 
ij 	a441 	 a12a31-a11a32 A. = 	a,,a32-a,2a33  

4"-"\a12a 23-aa. 22 13- al3a2l-alla23, all  

Compatibility Relation for the Stress Resultants 

The strain components must satisfy (16). 
from (30) that the stress resultants must satisfy.- 

(.1 	_2 	2 	, 	2 	T  

	

+ A21 	- 21 —7 31 — 1 
' ay  ax 	axay I 

+ (A12 a
2 

+ A,2 a
2 	2 

- A32  a 	)T2  --7 	2  
ay 	ax 	axay 

It follows 

(30 ) 

(31) 

a22-a 2 

\ 
+(A13 _a2.._ + A23 1

2._ 
 - A33 2 

2___ Is 
ay 	ax 	axay 

0 	(32) 

/In the 

as  and aR  art measured parallel to Oy and Ox respectively. 



In the case where a stress function 0 exists we can substitute 
from (22) into /32) obtaining.- 

A22 o 	2A, 840 	4. .2Al2  43 	 )3
4 	- 2A13 x, 	18  

4, 	, 

ax 	ax3ay 	 ax oy 2 axay3 	ay 
(33) 

1.6. 	Application to Certain Plate Problems  

The theories of displacement, strain and stress devel-
oped in the previous sections are particularly applicable to 
plates whose boundaries consist of parallelograms. 	Let us 
therefore turn our attention to a plate whose edges lie along 
the lines x = o$  x = 1, y = +0. (Fig. 5) 

W e shall not seek here to solve problems with given 
boundary conditions, but following the 'inverse' method of 
St. Venant, shall impose certain restrictions on the stress 
distribution and examine the consequences. 	However, with an 
eye on applications to wingd, we shall restrict our discussion 
to solutions which satisfy.- 

T2  = 0 when y 	+ c 
	

(34) 

Let us begin with the simplest of all cases in which the 
stress resultants are constant.m 	Equation (34) then implies 
that T9  = 0 everywhere. 	The edges x = 0,1 are loaded 
by unirorm T1  and S, while the edges y = 4 o are loaded by 
a uniform S. 	Writing T2  . a in (30) we find the following 
formulae for the constant strain components.- 

exx = 2111 T1  + A13S 

eyy = 21T1 + A23S 	 (35) 

exy = A31T1 + A33
S 

The displacements follow from (12). 	The complementary function 
for this integration is given by (17). 	We thus f ind.- 

Fl 

 

= eXX.x + (exy  + C)y + C1  

V = eyy.y Cx + C2 

As a second example let us consider another case in 
which X = Y = 0 and assume that the stress resultants vary 
linearly with x. 	We write 

T1  = x T' + T"1 ' T2 	2 	2 = x T 1  + T"'  S = x S' + S" 

(37)  

where T1, T1, T7), T"), S' and S" are functions of y. 
Substitueinein r21)-with X = Y = 0 and using (34) we easily 
show that, 

Ti =La" 	T' 	T" = S' = 0 1 	dy 	2 	2 

/Substituting from (37) 666 

This satisfies (34) and implies X = Y = 0 by (21). 

(36) 

(38)  
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Substituting from (37) and using (38) we find that.- 
A13 , _2 T1 = - 	 + A3y + A4  
11 

(39) 
S n  = 2 212Y

2 
+ Al Y + Ao 

where 	= 0,1,2,3,4) are arbitrary constants. 	Substituting 

from (38) , (39) into (37) we obtain, 

Ti  = - A2(xy + A13 y
2
) - Ai x + A3y + A 

11 

j 	(4o) 

Substituting in (30) and using (12) we find the following 
expressions for (U,V). 

U = Ao(t i3x + A33y) + A4(A11x + A31  y) 

+ A 	1.1 x2  + Al3xy  + - 2-11 	 (1121 + A33) y
2 

+ A3(A11xy  + 	A 	
2 

1 	) 
2  31y 2 

ii 

iAllx 
2y-2A13xy

2 
 +(1/3)(2A 21 -  7:7, 	3) 	+(CY-1-C1) 	(41) 

 2 
V = Ao.A23y + A4 4121Y 	Al (-1113x2- A21 xY 	i A Y  

, 
+ iA3(-Aiix

2 
+ A21Y

2 
 ) 

	

2 	 A21A13 + A2{ 	3  (1/1Aiix-3A2ixY --+(1/3)(2A23-
1 1 

) 
	

( - Ox+ C2) 

(42) 

As a third and last example, let us consider a case 
where the stress decrease exponentially from the root x W  o 
(i.e. vary as e-µX, where the real part of 4 is positive;) 
For the sake of possible applications to the box structures 
of Part II, we introduce a body force.- 

X = 0, 	Y = - Boe-P'x 	 (43) 

where Bo 
is a constant, which may be a complex nuMber, 

A particular solution of equations (21) and (32) is easily shown 
to be 

A 

	

T2 	'Ix 
22 - 

	

2 	Boe T
1 
 = 0, S - 

B -4x 
=  (44) 

The displacements corresponding to (44) follow from (30) and (12) 
We find.- 

U = 
A221 aiii 	 A22' 
	-7 

al3 	Bo o e-4x  y 	V =   Bo e-P.x 	(45) 
77 

22 iDi 4 

/where use 	 

T2 = 0 
/ 	2 

S = 7A2y + A1 y + Ao  
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where use has been made of the 
cofactors of IA.iji  are given 

complementary function we make 

varies as e4(Ay-x)
9  we find t 

algebraic theorem that the 
by aii/laiil . 	To obtain a 

use of (33). 	Assuming that 

hat 
0 

A11 X4  + 2A13 A3 + (2A12 + A
33

) I\ 
2 
+ 2A4 + A22 = 0 (46) 

Denoting the roots of (46) byi=1,2,3,4) 
solution of (33) in the form.- 1  

we find a 

0 = e (47) 
1 

where B. are arbitrary constants (complex numbers). 

The stress resultants follow from (22).- 

2 -4x7 
Tl  = e 4_BiAi2Eµ aiy  T2 =

2e p,x71Qep,iy 

S = 42e-4x 7: B.  )‘.04Aiy c_ 
The corresponding deflections are found to 	 - 

i. 

 

U = 	 .e4)\iYVA 	+ A ) + Cy + Ci  
1 	 11 	• 	13+ 

V = -0,x7Bi ep. 	
P 

iy/ 12  A21+ .A 
A 	

1 A 23+ A22) i Cx + C2 J 
(49) 

solution we Imposing the condition 
find.- 

,z.not  

(34) upon our complete 

ge
_a11c 

1. 	= - 3  
_21 B0 	 (50 

4 A22 

which gives two equations for the constants Bi. 	The 

imposition of further boundary conditions at y = + c would 
enable the solution to be completed. This development is 
reserved until the theory of Part II is formulated. 

/Part II. 



Part 11 	Applications to Simple Swept Back  Box Structures 

2.1. 	Descrion of a Simplified Structure. 	Notation 

In part II we shall apply the results developed in 
Part I to the study of stress distribution and deflection 
problems for a uniform swept box. 	Such a simplified structure, 
while not reproducing all the characteristics of an actual 
wing structure, will reveal those properties peculiar to 
sweep back. 

The stov.cture to be considered is a uniform rectangular 
section box swept back through an angle 'T/2 - cu. (see Fig.6) 
Reference axes 0(x,y,z), of the kind defined in g 1.1, are so 
disposed that the faces of the box are given by y = +c, z = + b 
and the ends by x = op x = 1. 	The faces z = + b are termed 
'skins'. 	They have thickness t and are reinforced by x-wise 
closely spaced stringers of sectionarea A and y-wise pitch as p 
and by y-wise closely spaced rib booms of 'section   area Au  and 
x-wise pitch au. 	The faces y = ± c are termed 'spar wets'. 
They have thickness t and are assumed to carry only shear 
stresses. 	Such dire& load carrying capacity as they may possess 
will be assumed integrated with the 'spar flanges', which run 
along the four edges of the box and have a cross sectional 
area A. 	The corresponding rib booms on the skins 2 = + b 
are joined by 'rib webs' thickness tu , which are assumed to 
carry only shear stresses. 	These rib webs are of course 
rigidly attached to the spar webs. 	The materials of all the 
components are assumed to have Young's Modulus E and Poisson's 
Ratio o. 

2.2. 	Theory of  the  Simplified Structure 

We shall limit ourselves in what follows to cases 
in which the displacements occuring in the skins z = + b are 
equal and opposite to one another. 	The notation applied to 
plates in Part I will here be applied to the 'skin' z = b. 
Corresponding values of displacements and stresses for z = -b, 
can then be obtained by reversal of sign. 

Let us begin by considering the rib webs. 	These 
are to be treated as continuously distrfbued in t he x direction. 
The 'thickness' of ribs within an element dx will thus be 
TR.dx where, 

-6 = tR/aR 	 (51) 

The shear per unit length carried by the rib web, within dx 
will be written Sudx where S is a function of x only. 	The y 
and z components tf displaceffient in the plane of the rib webs 
will be denoted by e  and vp  respectively. 	These definitions 

are illustrated in Fig. 7. 	The relation between SR andt he 
displacements is clearly.- 

S 
El 	avR  awR  

R 
= 

2(1+0) 	az 	ay 
(52) 

The kinematics of a 'pure shear carrying plate' are not well 

LI,
defined. We shall therefore in the interests of simplicity, 
assume that w is independent of z, thus attributing a limited 
rigidity to tie ribs. 	Experience with the theory of unswent 

/boxes suggests 	 
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boxes suggests that this restriction is not of any real 
significance. 	Differentiation of (52) with respect to z 
then shows that v is a linear function of z. and so, remembering 
that Lrib displace ents must conform with those in the skins at 
z = ± b, we find.- 

vR  = Vz/b 	 (53) 

Equations (52) and (53) then yield.- 

W
R 
 = 2(1+o)SPy- 15 jV dy wRo 	 (54) I Y 

where wRo 	( ) swR'y.o is a function of x. 

We turn now tot he spar webs considering first of 
all the surface y = c. 	The x and z wise displacement components 
in the plane of the spar will be written u and w respectively. 
Conformity with the rib displacements implieS.- 

ww 	(wR) y=c 
	

(55) 
The component w is thus independent of z and so, just as in 
the case of therib webs, we deduce that uw  is linear in z 
and thus is given by.- 

uw = (U) 	. z 	 (56) y=c T  
since spar web displacements must agree with those inthe 
skins at z = + b. 	The shear per unit length in the spar web 
will be written Sw and is related to uw and ww by.- 

S
= Et (auw + awW) 

w 	2(14-0) az 	ax = 	 --- 
	

(57) 

The notation for the spar web is illustrated in Fig. 8. Sw  is 
a function of x only and its variation is brought about by the 
shear S2  applied by the ribs. 	Equilibrium of an element dz dx 
yields tie equation.- 

dSw - SR = 0 	 (58) 

dx 

Substituting from (54) into (55) and from (55), (56) into (57) 
into (58) we find.- 

c 2 
d

2
SR 	

,..., S
R 	[1 rui) 1 ca vdy d2 '1 

	

R R 	R 	 wRo  . 0 7- - 	+ 	 -- -.7 3-7 + dx2 dx 	et 	2c(1 +o) b ax 	o 3x w 	 y=c o  
( 59) 

We shall denote corresponding quantities for the surface y = -c, 
by the same symbols as for y = co  but with a dash added 
i.e. 11,,, w' and SW). ( 	 The equations corresponding to (55) - 

(59) are. - w 	w 

w' - (wR ) y.-c 

ul 	(u ) 	
. z yr,.-c To- 

(6o) 

(61) 

/NI  
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Et 	w (au' 	aw 
S' - 	w   2(1+o) az + ax 

(62) 

as' 
+ SR 	0 	 (63) 

- d2S 	3- 	Frr 	1 faU 1 	1 -. av R 	R , 	R 	 d2w 	, /p,\ 

	

-7 + 	OR  + 	 -
_d1 	y + 	 - u yow.) 

dx 	ctW - 	2c(1+o) b(ax) 	b 	dx 	dx y=-c - 	 o 	 .... 

Transforming (59) and (64) we obtain the following equations for 
wRo and SR in terms of the displacements in the skin z = b.- 

-c 	x 

Ro = I (.1 Vdy + (Vdy)- 2b  
1 S(U) y=c  +(U)  y=-c  Sdx + Ki x + K2 	(65) 71, 

0 

d
2
SR 	7# 	 if 

c 
a
2
v 	 (66) 

- 	- 	I 	--7c1Y 	 —) 
dx 	ct 	4bc(1+o), • ax 	(,ax y=c 	y=-c) 

where K1 K2 are arbitrary constants. 

The equations governing the behaviour of the skin z = b 
have already been develoned in Part I. 	The external force 
(X,Y) arises in this case from shear flows SR  applied by the 
ribs. 	We have in fact.- 

X = 0, 	Y = - SR 
	 (67) 

The boundary conditions at the edges y = + c can be obtained 
by considering the equilibrium of elements dx of the spar 
flanges. 	The balance of y - components gives.- 

= (T ) 	0, 	 (68) 2y=+ 

The x-wise balance of forces is shown in Fig. 9. 	We thus find.- 

SW + (S)y=c = Emiciae \ (axxx 

Jy=c 

S' - (S) 	= EACcxx) 
ax y=-c 

Formulae for S ww p ST in terms :f U,V,SR and wRo 
were obtained 

implicitly during the derivation of (59) (64). 	These may be 
expressed as 

	

Sw + S' = 	Etw  K, 

771+o) 

/SW - S,= w 

dx 

(69)  

(70)  

( 7 1) 



Stir)
c  

 2b 	S dy Ll  = 2be(Sw  -c 

NI = 21DKO,(u ) 	+ (e 	 2b J L 1 	 xx y=c 	xx-y,c) 

and 

-c 
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w 	w 	2(1+0) 	(0-0y=c-  ("-T) 	 - 	-7 S 	St = 	
Etw 	1 	 4(1+o)c dSR 	I 	av 

(3, 

y.-c EiR 	dx 	b' ax -c 

EtwK1 (S)y=c-  (S)Sr 	
= EA 	(e 	_ 

1 =-c dx1- xx
) 
 y-c 	(exx)y=-0 	2(1+o) 	(73) 

(S)y=c+ (S) 	= EA d ( - exx')  y=c-(exx)y,-c) 
dx 

- Et
w 	
 (U) 

Y=c 	, 
-(U)y,_c 	4(1+o)c dSR 	1 	av ) 2(1+o) L   + 	iR E 	dx 	b 	ax dv  

The mathematical problem presented by our swept box is thus 
reduced to a plate problem of the type studied in Part I where 
the 'body force' Y = - S is given by equation (66) and the 
boundary conditions at tilt edges y = + c are given by (68) 
(73) and (74). 

Finally let us write formulae for the static 
resultant of the forces acting across a section with coordinate 
x. 	These reduce t.o a force Z.k at the centre of the section 
(x,o,o) and a couple L1. i1  A M1. j1 where. - 

1 Z - 2b(Sw  + S) = 	• 	 1+o) 

(72T 
where use has been made of (65). 	Our boundary conditions 
(69) and (70) can then be written.- 

(74) 

EbtwK 
(75) 

It is to be remarked that we hnve found it convenient to use 
the oblique axes OX, OY for defining the couple. 	If it is 
desired to write the couple Li + Mj using the axes Ox, Oy, 
then the necessary transformation is given in (19). 

2.3. 	Simple Loading Conditions.- (1) Constant Couple. 

We now apply the results of the first example in 
plate theory of § 1.6 to a problem of sweat boxes. 	The constant 
stresses T I and S of this example will be assumed to be acting 
in the skin z = b. 	The corresponding strains and deflections 
are given in equations (35) and (36). 	The body force Y = - SD  
is zero in this case. 	Substituting S = 0 and the values of SR 
U, V given in (36) into (66), we find this equation identically 
satisfied. 	Since S and e 	are constant equation (73) shows 
that K1  = 0 and so by (75)xInat Z = O. 	

Equation (74) shows that, 

1 	b(l+o)  C 	e 	- 	 (77) 4 xy 	EtWc 

Equations (69) and (79) shows that, 

/SW 
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Sw 	- S, 	S' = S 

Assuming for simplicity that U = V = 0 when x = y = o 
and that wRo = o, when x = o we find from (65) that, 

= - 	xx .x 
2 

wRo 2b 

Using (53), (54), (55), (56), (6o) and (61) we find, 

vR = (eyy.y. 	Cx)z/b 

e 
wR = - 21

XX.x2 	C + 	xy J (8o) 

11
W 
 1 

/ 

= 	
XX 

.x ± (e xy  + C)c z/b 14)  

ww
2 exx 2 	Cc 	a c YY = - --- X + x b 	2b w11117) 	2b 

The magnitudes of the stress resultants T1  and S follows from 
(76). 	We find.- 

T = 1 

M + EAA 1 	_11 Li 
2c  
E A 4bc(1+ 	-A  ..._ 11 ) 

c 

(83) 

1 3 = 	7E7 

The formulae developed in this paragraph together with (35), 
(36) solve the stress distribution and deflection problems 
for the case where our simplified swept box is loaded by 
constant couples. 

2.4. 	Simple Loading Conditions.- (2) Bending by a z-wire force. 

We now apply the results of our second example of 
§ 1.6 to our swept box. 	The stress resultants for the face 
z = b are assumed given by equation (40). 	The deflections 
for this face are then given by (41) and (42). 	Since Y = 0 
for this solution we have S = 0 as in § 2.3. 	Substituting 
from (41) and (42) into (667 we find that SR = 0 implies.- 

, AA, A
lA2 = 0' A3 = 2 _12 A 

2 All 

	 (84) 

(78)  

(79)  

(81)  

(82)  

/Substituting from (30.). .... 



3 Al 
Z(1-x y) 

All 	 M1 	3 - T1 = 

4bc1 	EAAll 	4b 11-EAA11 	2 A11 1 
c 	 t- 

A lx-4A3lly - z A11x24A13xy 

4bci1+ EAA11.1 

2 	
- 1 

4(A21 A33 - A11 

S , 

I +EAA1  

V , 
4bcp+EAA1 

c 
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Substituting from (30), (40) into (73) and recalling (75) 
we find.- 

Al  

  

4bc  :‘)1 	EAA11) 

3-7i 

Substituting from (30), (40), (41), (42) into (74) and 
recalling (84) we find.- 

C =- fb(l+a)  + 1.11)  A - A31  k Etwc 	2 / o 	2 	' 

Equations (69) (70) and (75) give.- 

S w 
_ Z - A st 	- 	+ 

0 
W sr  

If we assume that our force Z is located along the line 
x = 1, y = o i.e. applied centrally at the top rib, we find 
by (19) that .- 

L1 = 0, 	M1 = 	
Z(1-x) 
	

(88) 

Substituting in (76) and using (88), (85) we find that .- 

A = 0, A4  = Afe 	 (89)  

Substituting from (84), (85), (86), (89) in (40), (41), (42) 
and (87) we find.- 

(85)  

(86)  

(87)  

1 - ,

12A311x + A211y - 4A13x
2 - A21 xy 

44(A23 - 7 -21  
3 A 	) y2 

1  A11 	I 

SW  = S' = Z/41:1 
	 (92 ) 

/Where in (91) 
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Where in (91) we have assumed U = V = 0 when x = y = o. 
The equations (90) show that the conditions at the tip x = 1 
are not exactly those corresponding to 'freedom', even from 
direct stress. 	For our solution to be valid equal and 
opposing couples must be applied to the faces z = + b by loads 
normal to the rib x = 1, not to mention linearly varying shear 
loads applied parallel to this rib. 	However, the effects of 
this self-equilibrating system will die away as one proceeds 
along the span and so our solution may be considered practically 
valid at (say) a distance 2c from the end. 

Substituting in (65) we find assuming wRO 	0  when 

r 4c(1+0)(1+ EAA11) 7A. 
= 11x2 	1 2b x C1-7 	

Et 
xi + 	 Ro 4bc 

4  c2 (2A21 	A33 - 3 Ate) 
	

(93) 
2b 	 A11 

The remaining deflections can be written down using (53), (54), 
(55), (56), (60) and (61), but since the formulae are lengthy 
we shall not give them here. 

2.5. 	Analysis of the Deflections for the Simple Loading 

Conditions  

The deflections at any plane section (coordinate x) 
of our box may be analysed into the sum of a translation, 
a rotation, a warping from the plane and a distortion in the 
plane of section. 	Let us consider a translation Wk and a 
rotation pi + qj, where W,p and q are functions of x. 	These 
will produce displacements at our section given by.- 

U 	ciz sin a, 	V = - pz sin a, 	W = W + py sin a 	( 94) 

Where use has been made of (9) and the rotation has been 
located at (x,o,o). 	For this one equation U,V have a 'general' 
significance as in (9) and are not confined to z = b: 
Comparison of the first of (94) with (56) and (61) suggests the 
identification 

(u) 	+ (u) 
Y=c 	V=-c 

a sin a. 

Comparison of the second of (94) with (53) suggests.- 

- (Terms of  V independent of y)  
P =  

b sin a 

Comparison of the third of (94) with (54) gives.- 

W = wRO 

and (96) again. 	The term in (54) containing SR  does not 

/occur in (53) .... 

X = 0, 

w 

(95)  

(96)  

(97)  
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does not occur in (53) and gives a shear strain not a rotation. 
We shall adopt the definitions (95), (96) and (97) for -0,q and T. 
Other definitions are possible, but the differences are bound 
up with questions of 'shear deflection' and 'root conditions', 
with which we are not particularly concerned here. 

Let us now apply OUT formulae to the case of loading 
by a couple analysed in § 2.3. 	Substituting from (36) with 
C1 = C2 = 0 and (79) we find, 

p= 	 , 	q = 
Cx cosec a 	e  • x cosec a 	axx 2 (98)  x  

b 	
, 	W = - 2H-7- x 	1,, ,.a, ) 

Substituting from (77), (35) and finally (83) we find the 
following relations.- 

dx = C11
L1 + C12M1 

(99) 
- d cosec a 

dx 
= C21L1 dx 	

C22M1 ) 

where, 
2 

1 

	

cosec 	 )1.  (1+0) A33 	EAA1  
C11 1 	8bc 	Et c 	2b 

 
2bc(1+ EAA )j 11 

Ai  COS6C a 
C12 = C21 = 	 EAA .‘ 8b2c(1+ 	11  ) 

A11 cosec a 

C22 
b
2c(1 + E AA11) 

c 
(100) 

The relations (99) generalise the usual curvature - bending 
moment and twist-torque relations valid for an unswept box 
(beam). 

The remaining terms in the deflection formulae can be 
analysed into firstly a 'linear warping', 

U = (exy ,  + C)y, 	V = 0 

(101) 

± (exy 	C)cz/lo 

and a 'cross sectional distortion'.- 

U = 0, 	V = e .y 
YY 

VR  = eyy.yz/b, 	wR  = - eyy.y2
/2b 

1 

The warping, which consists of spanwise displacement, depends 
upon both L and Mi. 	The cross-sectional distortion consists 
of an lanti6lasticl bending of the ribs. 

We turn now to the analysis of the deflections for 
the case of z-wise loading at the tip, dealt with in § 2.4. 

/Substituting from .... 
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Substituting from (91) into (95), (96) recalling (93), (97) and 
(100) we find, 

IR  = - C12 	 d2w 	la 

	

z(1-x), 	-- cosec a = 	= - 22Z(1x) 	(103) dx 	 dx 	 dx 

Recalling (88) we see that the relations (99) are valid for 

	

this case as well: 	The remaining displacement terms can 
be analysed into firstly a 'linear warping'.- 

A M y 31 1  U = 	 V W0 
8bc(1+ 	E AAll  ) 

secondly, a 'parabolic warping'.- 

U \ (A21 4.  8bc(14 EAA11) 

2 
3 AA y2) 	( 

2 A11  

    

V = 0 

and finally a cross sectional distortion.- 

Z A23- 3 A21 A13.  
A21 M1 	 ll 	2y 2  'a  3  U = o, V - 
4bc(14. EAA11) 8bc(14- EAA11) 

(105)  

(106)  

The formula (101) when expressed in terms of Ml(with L = o) 
agrees with (104 . 	Similarly (102) agrees with the first 
term of (106). 	The warping of (105) is analogous to that 
occuring in unswept boxes and will give rise to a theory of 
'shear lag', just as the linear warping will give rise to a 
theory of 'end constraint' similar to that arising in the case 
of the torsion of unswept boxes. 

2.6. 	Internal Systems of Stress  

The third example of 6 1.6 may be used to construct 
systems of stress for which the static resultant on a cross 
section is zero. 	We take as displacements in the surface 
z = b the sum of the expressions given in equations (45) and 
(49), where the constants B., which occur in these, are 
limited by the relations (509. 	Equations (43) and (67) show 
that 

SR = Boe (107)  

Our assumed solution must satisfy (66), (73) (with Kl  = o by (75) 
and (74). 	Making the necessary substitutions, we find, 
incidentally, that the constant C of (49) is zero. 	The three 
remaining equations together with (50) form a homogeneous 
setoflinearequationsinthefiveconstants13.(j=o,1,2,3,4). 
These equations may be written 

=B B... 
ij 	0 	

(108) 

/there the 	 

(1014) 
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where the equations for i = o,1, are obtained from (50) by 
addition and subtraction, the equation for i = 2 is from 
(66), that for i = 3 from (73) and that for i = 4 from (74). 
The constants Bij  are given by .- 

Boo = 0, 	Bob
• 
 a . = sinh 	y‘s.. 

3
c 	(j=1,2,,,+) 	(109) 

A
23  

B
10 	3 	' - - 	Rtj 	' 

u = cosh 	A .c (j=1 y 29 39 4) 	(110) ,  
'3-22 

a11c 	2bc(1+o) 2 
B, 	 +   
	) 2o 	

A221 aiA 	k 	et 

, 
	=a  2 1122 

Aj 	
,
1- _

..1 _ A  
1)2i 	''4 	. 2 	X 3  . 	

13 
• 

_ 	■2.% l A 3) sinh .c 	0=1,2,3,4) 

	

B30 - 
	. 	, 
"221-iir 

	

B3j. 	=A  A . sinh ..  3  + 'J 2(A  A 11 + AjAl 

utc 	1 	Et  ca  

	

11  = 	w 	 w 11 

()bi„ l. .14 -YR 	21+0 	,4:21a31 

Al2) cosh ai\jc 

(j-'=. 1 9 2,3,4) (112) 

)1 cosh 	A .c - 4j 	.  
Et a 
E 	2 

2b(1+3){ 

,)  
"-1 3 - 	123 	22122 

f‘j 

2.1..2Ab (1+0-  )s2, ( 	+ ~ ~'~13 + 	) 

W 

sinh 
'
LX.c 
• 3i/ 

Eqmtions (108) are satisfied by non-zero B
i 
if .- 

Bio l = 0 

Equation (114) is a transcendental equation for 	It is 
very complex as inspection of (109) - (113) shows. 	The 
mathematical examination of its roots is therefore out of the 
question, but physical intuition, base upon experience with 
unswept boxes, suggests the existence Of an infinite sequence 
of roots with nositive real parts, which may be written.- 

 
I.I.  = - / 	y 4 	U 9 

C 	1 	2 ' 3 

 

(115) 

 

/They can of 	 

(114) 
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They can of course be calculated numerically in a special 
case. The solution of the first four equations of (108) 
gives the ratio between the B.. 
We may write 

B. = c
4 j  

p.(4) (116) 

where Cri,  is an arbitary complex constant and pj(4) are the 

cofactors of 134i  in the determinant of (114). 

A 'general' internal system may be obtained by 
summation of our results with respect to p, over the sequence 
(115). 	The resulting displacements Up V for the surface z = b 
may be written.- 

a1o
()  

p.X.y 	2, 

2

- 	 .(LL)e 	j • (4.Aii+X.A +112) 	c 

- 	22 ij A 	a..1p, 	:1=1 	 , 

(1 17) 

J. 

It must be understood in (117) that the real parts of the 
expressions given are to be taken. 

The solution (117) could be used to remove the 
'warping' and 'section distortion', from the simple solutions 
analysed in § 2.5, at one particular section (say) x = o. 
However another difficulty arises here, because the constants 
C
4 
 cannot be obtained by the upal harmonic analysis. 

Multiplication of (117) by e-Mj3r  and operating 	)dy yields 
-c 

an infinite set of equations for the C i: 	An alternative 
process might begin by limiting the exIansions (117) to a finite 
number of terms and then proceed by choosing the C to remove 
the warping at a finite number of points on the section. 

The processes sketched above are very complex and 
hardly practicable. 	Recourse must doubtless be made to 
approximate methods of calculation to handle problems of 
constraint against warping for swept back wings. 

2.7. 	1,pproximate Calculation of Root Constraint for the  

Case of Loading by a Constant Couple 

The general methods of 5 2.6. are hardly feasible 
for design calculations. 	However, an approximate calculation 
is possible if certain restrictions are made as to the 
deformation possibilities. 	We assume that the section of the 
box can only warp and distort in its plane according to the 
pattern defined in equations (101) and (102), that is, in 
the same way as occurs when a constant couple is transmitted, 
with no restraint at the ends. 	Other modes of deformation 
of the section cannot occur, in particular the rib webs are 
rigid in shen.r (tR--)oa). 	The deformation of the skins and 
spar webs is then given by. - 

/U = qb 	 



2 5 - 

U = qb sin a + w y/c 

pb sin a + y 

qz sin a t wz/b 

W 1  
V 
• 

A  
W pc sin a - C

2 
 / 2b 

(118) 

where, p,q,W,w, 6 are functions of x. 	Making the supposition 
that T, = o the stress resultants follow from (118). 	We find 

T1  = 
.- 

	

t

Z( a13/2 	711-4-2)b sin 	+ a13 

	

dx 	dx 
+IL a 	+ 	diN y 

1 	1 3 
dx 	dx 

- 	1 9 (1 	) T2 = 0 
a3.(1) ,? 	f131 dw 	di5►, .7 Sg. 110  sin a + 	 

S  = 	 +733ft 	̀431 dx' 	 c dx 	9'33 dx .+- 

where 	
2 	 a2 

al2 	
al2a23 

22  all = a ll - a22 a3l= a13- a22 a33- a33'  a22 

and 

Sw ( 	Et 	do 
±- so  - 	(.)Ts 	a 	a - 	c sin 	+ q sin 	+ - dx 1E7 -  dx 2b, 

(121) 
Equations (12), (24), (57), (62) and (118) have been used in the 
derivation of (119) (120) and (121). 	Writing Z = 0 in (75) we 
find from (121).- 

(12o 

d.W w da c 

dWc
2 

q sin a + 7,7  - 
dx 

 2177 

Substituting in (76) we find.- 

0 	 (122) 

L1  

Etc 
= 4bc sin a 

777-0) 

I) 
 

dp 
ba J -- 33) dx - 4b

2 
 ca31  sin a. 

dq 

dx 

CEtwe 
+ /4(2(1+G) ba33)  w 

(123) 
do 	, 	- 	 IR-  M = 41)2sin a. (cEl 1 + EA) dx 	4b2  ca13 sin a. dx 

410713w 

Substituting in (69) and (70) we find.- 

ate; a31  
dx 

= EAb sin a. 
kix 

Ftw  c 

21+0)-  ba
33.

1 sin 
dp 	 dq 

a' dx ba31  sin a. dx 

Etw3) w = EA 
2b (1+0) c 1 

/Solution 

d2w 

—2 
dx 

(124.) 



R 2M1  + R 2  
(127) 

ba
3 

+ b7.31Q,3 

(R1L1 	R2m1) = 2 	(1  - e-13x) (129) 
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Solution 

where, 

of 

	

(123) for In, la 	yields. 
dx 	dx 

P11,1 	
+ P 2M 	+P 	w 

2 	1 	• 3 

Q1 L
1 	

+ Q
2

M
1 

+ Q
3

w 

4b
2
sin a (c711  + EL 

- 

(125) 
dx 

dx 

P1 

P 2 

LI.b
2

c 
-
a31 	

sin a 
= 

Q 1 

= 

Q 2 

16b
2
sin a ._2 cEtwc 
	D  bca13  (7177 - 

4bc sin a ' Et c 

D 4,7177 ba33 

16Et b
2 c2 a

1 
 sin a 

ba33 4  (ca11 +EL)] 

(126) 

    

D(i+o) 

/Etwe 
D = 16b3c sin2a 	 (2(1+o) + ba

33 
(ca11 +E.A) -bca 2  

13 

Substitution from (125) into the second of (124) yields.- 

where,  

d
2w --g  - 

dx 

R1 -- 

R 2 = 

2 0 w 

sin a 

- 1"L  1 

, Et
W

e 

EA .,2(1+0) 

w
c sin at.  

EA 1+0 

132 = 	- L71..71_0  
sin. a (Etwc _ _ 2 

EL 	
ba 'P + ba-  Q + 

33) 3 	31 3 	EA 2b (1+o) 

1 [ Et
w 	+ c 

L solution of (127) which vanishes/   at x = o and remains finite 
as x--)-*0 is.- 

- ba33iP2 + ba31q 	 (128) 

7 7 

The first of (124.) gives assuming 	= o for x = o.- 

EAbQ sin a 	a 31  r 
(130) 

a33c 

The remaining unknowns are easily found. 	p. q. follow from 
(125) 9  W from (122) and the stress resultants from (119) and (121) 
The solution found solves the problem of 'root constraint' for 
a 'long' swept box loaded by any couple at the tip. 	It may be 
applied with the usual approximation to other cases of loading. 
The method used here may be extended to deal with the -parabolic 
warping of (10q) and so yield an approximate solution of the 
shear lag problem for the swept box. 

/Part III. 	• ..  
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Part III Applications to Swept Back Wing Structures  

3.1. 	Generalisation of the Engineeririg21222 d,  

Torsion  to Include  the  Case of Swept Back Wing Structures  

The intention of the present section is to generalise 
the solutions obtained in Part II for the simple cases of 
loading (0 2.3, § 2.4, § 2.5), to cover the case of a uniform 
swept box, whose section bears a closer resemblance to an actual 
wing structure, than that considered previously. 	The box 
to which we shall now devote attention is shown in Fig. 10. 
The section has unequal spars, that at y = c has thickness tw  
and depth 2b, while that at y = -c has L;uri-ebwL,I,„11iig dimensions 
t' and 2b'. 	The skins are identical in both geometry and 
elasticity and so the section is symmetrical about the y-axis. 
The skins may be curved, but the development below is restricted 
to the case where d4/dy is small,*  where e, (y) is the ordinate. 
This will ensure that the angle a between the stringers and 
the rib-skin intersections may be treated as constant  over 
the skin surfaces. 	The flanges of the spars y = 	c will have 
section areas A and A' respectively. 

The notation for displacements, strains, stress 
resultants etc. will be the same as in Part II. 	However, in 
the case of the curved skins, displacements etc. will be 
treated as cc curing 'in the surface'. 	For example V will 
represent a displacement parallel to the tangent of the curve 
of cross section. 

We make the following assumptions with regard to 
displacements.- 

1. 	Each section x = x moves as a rigid body with 
displacement Tic and rotation pi 	qj. 17,p,o are functions of x, 
the last two being quadratic and the first cubic. 

G. 	 The section is warped from the plane by a displacement 
which is linear in x. 	In the skins we have J = co1(y).x w, (y) 
and the warping in the spar webs is linear in z. 	By a suitable 
definition of q we may assume that the rotation of linear 
elements of the two spar webs to be equal and opposite. 

3. 	The section is distorted in the plane in such a way 
that SR = 0 and that V = 61 ‘ • y) x +40(y). 

Reference to § 2.5, in particular to equations (104), (105) and 
(106) shows that our assumptions are sufficiently general to 
deal with the loading cases and the simple box treated there. 
Putting our assumptions into mathematical form, we can write.- 

/U = q S sin a 

 

- This implies that b - 	/Lc is small 

 

  

\s._ . 	..• i 

.. 	 ., 

ssol lc\ -' 
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U = 	sin a + 

V 	- 13( 	ig') sin a + W 	+A 

u = qz sin a + (w) 	. z/b 

ww = W + pc sin a 

u' = qz sin a + (w) 	. z/b' y=-c 

w' = W - pc sin a 

(131) 

where, 
2  p = pi x + 7p2x 

i  
q = qi x + -21.2x 2 

W = Yx x2(g1 + 3q2x)sin a 	 (132) 

w =wx+ w2  2 

= x + 

The quantities p 	q 	q2, , p2, 	) 	Y are constants, while wi , w2, 
&I ,A2  are functions of 	The terms in (1,31)•involv'tng-ix.,q are 

obtained gib; an application of (9). 	Those involving 1:1)  dy 
in the formula for V represent the tangential component of those 
parts of wD  which express rigid body motions (see Fig.11). 
The remaining 	of the portions of w o, are included in 4. 
The definition of W in (131) is (w + w')/27 which will differ 
from that used in § 2.5 equation ( 7), ffy a term which 
depends upon the cross sectional distortion and so will be 
linear in x. 	This difference will therefore not affect the 
relation between W and q given in (99) and (103). 	This 
relation has been adopted here and used to derive the formula 
for W in (132). 	From equations (12) and (131) we find for the 
strains in the skins.- 

e
xx 

= (q
1 (712x ) 4 sin a + w1 

( 1  33 ) 
(D-  ,. exy 	 a = 	(pi  + p2x)(>.; - y 	) sin a + Y 	+ 	+ 	x1 dw  a- 	 uy 

It follows that the stress resultants T and S are linear in x 
and so assuming in accordance with the Findings of Part II 
that T2 = o and SR  = ❑ we find from (21) writing 
X= Y= T2 = 0 that.- 

dS T1 = - x — + (T ) d.y 	1 x=❑ 

T2 = 0 

S = S(y) 

/Equation (30) then 	 
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Equation (30) then gives.- 

dS 
exx = A11(-x 77 	(Tox=0)1. Al 3S

exy  = A31  (-x 	(Tox.„.0)4- A33S 

Comparing (133) and (135) we deduce using (134).- 

	

(qi  + q2x) sin a 	(wi)v_ A„ 	 p,sina 
T l  = 	  A11 	

A 	' --c
11 	

.(S) 

	

- All 	y=-c 	A11 

	

A„ 	sin a $ 
dy + 	 + 2(p2 	

A11 
	A 

• 1  

	

11 	l 
-c 

( 3 5 ) 

q2  sin a 
S = (S)y=_c  A11 

dy 

-c 

(136 

w1  = (w1 ) 	...c+ (2p2  + 	' 
71 

q,) sin a 	dy - p2  sin a(p_; + eb 
`' 	11 	 -c 

dw 2 	 c3_ 	 de, 
41  + 7.- . A31 (To x„_04. A33s + pl(L; - y 7z7) sin a - Y 77 

Substituting from (133) and (136) in (69) and (70) 
(with A' written for A) we find.- 

Sw = - (S) 	+ q2  sin a (-,-,
c7  + EAb) 	) y=-c 	

"11 	 C 
( S'w = (S)Y=-c + EA'b'q2  sin a 

(1 37) 

c 

	

- 	( 
= c_ 

	

) ) 	dy (1 38) c_c  

Substituting from (131), (132) in (57) and (62) (with t' 
written for t ) we find expressions for S , S' which mall be 
compared withw (137) yielding.- 	

w w 
 

(w1

b

) Y1a = _ (w4) . 	 _.1_.Y=-c = - plc  sin a  b' 

	

(1+a) 1 	1 	 (1+a)q2sin a EAb 	EA'b' 	2ci 'k 
Y = - 7(7 - 7)(S) 

w 	w 	y=-c+ 	E 	'T--.  + t' 	77-7Ey w 	w 	1 1 NV / 
/ 
1 (139) 

(1+0) 	EAb 	EA'b' 	2 

	

E  q2  sin dc.T-- 	t  i 
4.  

w 	
+ A

11
tw) 

/where in the 	 

y 

wfiere, 

(1+0) 
(W2)Y=C 	(W2)5T=-0 	 / I 	I 	/, 

b' 	- 	p1  csina 	E tw + - 	 t' 	y=-c 



Lai (144) 
rzi + 	31  L1  1 ,/ 

EI sin a 

c y 

yx'2dy (y). 	)dy cly 
CAl 	 1 	1 ' 

-c 0 

El 

2E(1t2_Ai _c12\+  2 
cA11 
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where in the last equation we have made use of the anti-symmetric 
nature of the warning in the spar webs (cf. assumption t2) 
given above). 	Substituting now from the third of (136) into 
the first of (139) we find.- 

A31  
p2 - 2A11 g2 

The formal 
obtained above conta 

and (5)_ . 	Equat 
are exa'egible in t 
three and hence the 
equations of overall 
these require modifi 
find easily that.- 

se for T 	Sp S 7  y SI ((136), (137)) 
in the uiknown onsYants ql  q2, P2 (w1)y„.0  
ions ,(139), (140) show that two of them 
erms of the remaining three. 	These last 
stresses can be determined by use of 
equilibrium like (75) and (76). 	However, 

cation for the present structure. 	We 

C dX, Z = 2b8yr  + 211 IS + 2 	S 	dy ay -c 

c 	d7' L1  = 2bcS w  - 2becS' + 2 .S yS7- - 	S r,Sdy 
-c 	uy 	_c  

c 
M = 2bEA(e ) 1 	 + 2bTEAI( 	) 	c+ 2 j al  dy 	j xx y.c 	• €3xxy=- -0 

where allowance has been made for the z-wise components of 
Skin shear S dY . 

dY 

(141)  

Substituting from (136) and (1 37) into 0 41) and 
making use of (139) and (140) we find after some transformation.- 

g2 	ET sin a 

where c 
= 2(Ab

2 
+ A l b

,  
	3 22 	 r  

EA
11 -c

)  (142)  

0 

(s)y=_c 	- 	-- 	j 	dY 
L1  

8cF.: 	87 	EIAll  

where 

(14o) 

-c 

It is to be remarked that Z and L are constant in our solution, 
whereas M1  is linear in x. 	It 	assumed in (144) that Z is 
applied at x = 1 and hence that M/  is given by the expression 
in (88). 

Formulae for the stress resultants can now be 

/obtained. 



Li  S . - 
8c5:1,7  

where 

and 

f'l = 

= 

Li  

eXX T1 A11  

where 
'l\ 

obtained. 	Substituting from (142), (143), (144), (139) and 
(140) in the formulae of (136) we find.- 

y Z 
dY --  -, 

EIA11 
 o 
•   

- 10Z 

A 
- 	11 s 	 ---. 

A11  
) 

A7A  
+ -2-=  (Sy L 2 	- - 	,-, All  

XX EI  
e= 

(145)  

(146)  

I 

I 

) 

A l b TZ 
dy + 

(147) 
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Substituting in (137) we find.- 

	

fi 	Z 	 AbZ 
SW  = , ay  + 

	

13c, 	EIA1  40
1  

S' 
El  

80L; 	EIA 11_0  

The point y = ric, z = o on a section x = x may be termed the 
'shear centre' at the section. 	It may be remarked that ,1 = o 
when there is symmetry about the z axis. 	The torque L4  
about an axis through the shear centre may be termed the 'Bathe 
Torque' and is seen to be reacted by a uniform shear flow given 
by the usual Bathe formula. 

We turn now to the calculation of the deflections, 
Combination of (137) with the second of (139) gives.- 

(11-(7) ( 
t
w 	w, 

w 	
) 

The quantity Y can then be obtained using (147). 	It is equal 
to the mean shear strain in the two spar webs and so the term 
in W(eq.(138))- 'Yx' is the 'shear deflection'. 	The 
calculation of the rotations requires a knowledge of pi , which 
we have not found as yet. 	To determine p1  we must a)Asider the 
deformations of the ribs. 	The rib displacements are 
calculated upon the supposition that S = o and that wn  is a 
function of y only (cf. d 2.2). 	We find by (52) that 

dwR  
= w (y) 	 (149) VR  = 	z dy r 

w  R 	R 

The displacement V at the skin is given by.- 

V = 	 °'R (IT  = 	4, a 	
. 

	

dK 	(wm 

-dy 
Recalling (60) we find.- 

Y WR 	w'W 	i , V 

- = 0 	 (151) 

	

b'' i 	2 4Y 
-c 

/Substituting 	 

Y = (148) 

( 1  50 ) 
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Substituting from (131) in (151 we find.- 

Yil 
wR  py sin a + W - r f —2 dy 

-c 

and 
2  dfl = 

-c 	 -c 

1152) 

(153)  

Now the strain e 	in the curved skin can be calculated in two 
ways. 	Firstly 7

,
om 	displacements V and _* 

by .a well known formula and secondly from equatio
R
n (3❑). 	We 

thus find.- 

av 	d2  
eYY = ay — vrR Tr,7 = A21T1 	A235  

Substituting from (131), (152), (145) and (146) and equating 
coefficients of x in the resulting formulae we find.- 

8'41 	1
2
4 cAl a 	A21 

aY 	dy 
- 77 	= A11  EI 

The remaining terms of our identity give an equation fori.12, 
which we do not write here. 	The solution of (155) which 
satisfies (153) is, 

2 z  f 
nr- 1 (Y 	F c ) F 2 	2 

1 	Al l ET  r 

The quantity pi  can now be calculated. 	Opeaating on (136) with 

J ( ) dy and using (156), (145) and (146) we find an expression 
-c 	( 

for (w2)y=c 	(w2)y=..c +Y(b.-b ) 	This quantity can also be 

obtained from (139) using (142) and (145). 	Eauating the two 
results we find for pi.- 

P1 	Cl1L1 	012". 	013Z 	, where 
n,2 cosec af(1+0)(b/tw  + bit'w) 	3  - A13/1,11) 

C11 - 87c 	I 	2EZc EI
2 

	 + 
A11 

= 

	

0  7 	 - 
?;2 

	

1j 	16 

cosec 	5 (1-t21(12-+ 12L 	(1133 - 2 
	

) Ec 	 k..tw   

cosec  a 
1.19  

IL In all strictness wR  vR dy, but the inclusion of the second 

tc.rm only introduces terms of the order neglected here. 

(154)  

(155)  

(156)  

n 31  cosec a 
C12- 	2A11E1 

157) 
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cosec a(14-o ----- 
24Ai
-.

l EI Ec 
b 

ay - 
w 0 

b' 
t' j 
w-C 

Y dy EA (Ab
2 
A'b' 

11k,t 	

- 

t' 
w w 

2 

(157) 
2 

(_33.  A - A /A ) 13 	11  
2c SY cl;K 	c 	dy 	S y 

-c 

)  
(A21 	

'I A   	%   C 
--  :1.. .L-.1•-0. 1 1   ) 	y  

+ r., dy 1 c 
-c 	.1 

Using (140), (142) and (157) we then find.- 

IR C I I L1 	C12 M1 dx 

where 	L1
A   = L1 - riNc Z 

and 	11 	= - 013/c011 	j 
A 	 ' 	f 

Using (144), (142) and (132) we find.- 

2  1N d .. --7  cosec a = 12  
dx 	 dx 

where, 	021 = C12 

and 
	

C22 = cosec a /EI 

(158)  

(159)  

(160)  

(161 

C21L1 + C.2  M 2 1 

The formular(158) and (160) have the same form as (99) and it 
can be shown that the constants Cij of (157) and (161) reduce 

to the forms given in (100) when the Droner specialisation is 
introduced. 	The difference in the new formulae lies in the 
introduction of L7 in (158). 	L! is the moment about a line 

x y = 1 c. 	The intersection of this line with a rib wise 
section (coordinate x) may be termed the 'centre for twist' at 
that section 

The aim set at the beginning of this section has no% 
been accomplished. 	Formulae for stresses and deflections 
have been obtained for the case of a uniform swept wing 
structure loaded by 'normal' forces and couples at the ends. 
This represents a generalisation of the usual Bending-cum-Batho 
formula which are• used by aircraft engineers to obtain a first 
approximation to the behaviour of unswept wings. 

3.2. 	Procedure for Practical  Stress Analysis  

Consider now an actual swept back wing structure 
having two straight spars, skins reinforced by stringers and 
ribs parallel to the 'direction of flight'. 	(See Fig. 12) 
The wing possesses a small amount of taper and the dimensions 
of the structure vary in a gradual manner along the span. 	The 
existance of a plane of symmetry intersecting the spar webs 
will be assumed. 	If no such plane exists in reality, then the 
actual top and bottom surfaces should be replaced by fictitious 

/surfaces having 	 
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surfaces having ordinates and geometry which are mean values of 
the real quantities for the two surfaces. 	This plane of 
symmetry will be taken as the x,y plane of a coordinate system. 
The y-axis will be taken parallel to the ribs the x-axis will 
intersect the traces of the ribs on the x,y plane at their 
mid points and the z-axis will be normal: to the-  7.,y plane. 
Attention will be directed in what follows to a single rib-
wise section with coordinate x. 	The geometry of this section 
and of the various structural elements at this section, will 
be described by the symbols used in 15 3.1. and illustrated in 
Fig. 10. 	It will be assumed that the wing is loaded by forces 
acting in a z-wise direction and by couples whose axes lie 
in the x,y plane. 

The procedure for estimation of the stresses at 
section x may be outlined as follows:- 

1, 	Tabulabion of the values of the following quantities 
at this section:- 

If any of these, apart from ,r„ vary across the section, then 
mean values should be taken. 	Allowance for the bending 

. stiffness of the spar and rib webs should be made by augmenting 
the areas A,A' and AR. 

2. Calculation of sundry constants for the section:- 

As ii ) p (equation (27)), (aio)R  (equation (28)), as 

ail  (equation (29)), the 	
(a

i 	 Ail  (equation (131)), 

c  7 (equation (138)), J 2 	5 dyy, 	yv,
2 
 dy, 	(y),Y,(yi)dy,dy, 

-c 	-c 	-c 

I (equation (14.2)) 	1(equation (143)). 

3. Calculation of the resultant static action across the 
section: - 

Z 	sum of z-wise forces acting at points outboard of section. 
This acts at the centre of the section (y=o). 

L1  ,M1 Oblique components, refered to axes 0(X,Y) (see Fig.1) 
of the sum of the moments, about the centre of the 
section, of all forces and couples acting at places 
out board of the section. 	These may be calculated 
using the formulae of equation (19). 	If the external 
foroes are denoted by Zi  and act at (xi, yi) we may 
write:- 

1 
L1 = ; yiZi 	 (x. - x)Z1  

1 
where the summations is with respect to i over 

all the points xi  such that x 1 xi 	1 (where x = 1 

is the tip). 	Any'couples' must be replaced by forces 
before inclusion in these formulae. 

/Tl 
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L1 	X-wise component of moment about y = ric (see equation 
(145))• 

4. Calculation of the Stress Resultants:-

S Shear per unit length (oblique component) in skins 
(see equation (145)). 

T1 	Tension per unit length (oblique component) in skins. (see equation (146)). 

The remaining component T2  is zero. 

SW yS1:1 Shear per unit length in spar webs (see equation (142)) 

The shear per unit length in the rib webs SR  is zero, 
except of course for effects due to local loads applied 
to the ribs. 

5. Calculation of the stresses in the various components:- 

E eXX Stress in the stringers. 	e 	has already been found in 
the calculation of T (equatioXX  n (146)). 

E(eXX)y=i-c Stresses in the spar flanges. 

The loads in the spar flanges and the tensions in the 
stringer-skin combination (T per unit length) will have 
normal shear components if tAe wing structure is 
tapered. 	Corrections of the type, usually introduced 
in the stress analysis of unswept wings, can be introduced 
here to allow for the 'shear carried by end load', if it 
is felt to be worthwhile. 

E e 	Stress in the rib flanges. 	This is given by (30). 	We  
deY find, eyy  = A21T1  + A23S. 

Strain components in the skin (oblique axes). 
exx$ eyy$ exy 

exx eyy have already been found. 	exy  follows from 

equation (30):- 	exy  = A31T1 	A33S 

e xx yeYY eXY 	Strain components in the skin (rectangular axes 

0(x,Y). 	eXX has been calculated. 	eyy, exy  follow 

using equations (13) and (15). 

Ti/t, 72/t, F7/t Stress components in the skin (rectangular 

axes 0(x,Y). 

These follow from equation (26). 

s /t 	s l/t i 
W W 	W 

Shear stresses in the spar webs. 

This completes the analysis of the stresses at a 
section of the wing. 	For a complete stress analysis these 
calculations must, of course, be repeated at a number of 
sections. 	The solution given will be in error near the tip, 
near large concentrated loads and at the root, but these errors 
are present in the customary application of the beam theory 
to unswept wings. 	A sufficiently accurate estimate of these 

/errors .... 
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errors may be obtained by idealising the wing structure and 
treating it as a uniform doubly symmetric rectangular section 
box and applying the methods developed in § 2.7. 	The warping 
equation (127) found there is so similar to that for an unswept 
box that the outline given in § 2.7 should be an adequate basis 
for application. 

Procedure for  Deflection Calculations  

The procedure given here for the calculation of 
deflections will be based upon the same assumptions with regard 
to the wing structure as the procedure for stress analysis 
of 14 3.2. 	The calculations described must be carried out 
at a reasonable number of sections of the wing so t hat numerical 
integrations to obtain actual deflections and rotations can be 
carried out. 

1. Calculation of Section Constants sue,plementary to those 

of R 3.2. (2) 

j 	dy,, 	Y 	a 	y r dy. -c 	-c 

C11' C12 = G21' 013' C22' 	Formulae for these constants are given 

in equations (157), (161). 

(see equation (159). 

2. Calculation of a special couple component supplementary 

	

, 	• 

to § 3.2 (3). 

X-wise component of moment about y = 9 c (see equation 
(159)). 

3. Calculation of Rates of Section Rotation. 

dW cosec a 	These quantities follow by 
dx dx 	dx 

equations (158) 'Ind (160). 

4. Calculation of the Deflections and the Rotations 

p,q 

	

	These follow by integration of the expressions found in (3). 
This rotation is about an axis passing through the centre 
of the :secticisA#y 	z 	O) 

p sin aDecrease in 'incidence' of a rib section. 

This follows by integration of an expression found in (3). 
If the root is 'fixed' we may write W = dW = o at 

	

the root. 	 dx 
However see (5) below in this connection. 

5. Calculation of the 'Deflection due to Shear'. 

Y' 	This is the 'rate of shear deflection' and is given 
by equation (148). 	In § 3.1. it was a constant and 

equal to () 	(see (132)). dx x=o 	 In general it will be 

variable. 
/Ws  The 	 
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W s 	The 'additional deflection due to shearing'. 	This is 

dW 
= Y. dx 

Ws must be added to W to obtain the 'total' mean spar 

deflection. 	This prodedure will give the correct root 
conditions for the total deflection W + W. 

This completes our analysis of deflections. 	No 
account has been given of the calculation of section warping 
and distortion, since this is of little 'practical importance. 
Rough estimates of these effects can however be made using the 
simplified structure of Part II (see equations (101), (102) 
(104),(105) and (106)). 

obtained by integrating.- 
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