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The object of this report is two-fold. On
the mathematical side it seeks to illustrate the use of
oblique coordinates in applications to Elasticity and
Structure Theory. On the practical side it seeks to
provide methods by which designers can solve problems of
stress distribution and deflection for the case of swept-
back wing structures, whose ribs lie parallel to the
direction of flighi.

The report is divided into three parts.
In Part I the mathematical basis is developed.
Formulae are derived which express the fundamental
concepts and relations of Geometry, Kinetics, Statics
and Plane Elasticity in terms of vector components in
oblique coordinates. In Part II, the results obtained
in Part I are applied to a uniform, symmetrical,
rectangular section, swept-back box. A complete theory
of stress distribution and deflections is obtained for
the case of loading by 'normal' forces and couples®
applied to the ends of the box. Some consideration is
also given to problems of constraint against waroing.
In Part III the main results of Part II are generalised
to cover the case of a more representative wing struc-
ture, This represents an extension of the usual
Engineer's Theory of Bending and Torsion to cover the
case of swept-back wings with ribs parallel to the

flight direction. Practical procedures based upon
this extension are laid down for stress distribution
and deflection calculations. These will have the

same validity for swept-back wings, as the usual design
approximations have for the unswept case,

3 . :
Forces whose directions and couples where planes are
normal to the plane of sweep-back s,
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Definition of the Symbols Employed

Geometry. Dimensions

O0(tsys2) Main system of oblique Cartesian Coordinates (see Fig.1)
0(X;Y,z) Auxiliary system of obligue coordinates (see Fig.1)

a

Angle between the axes 0x; Oy.

(xs7,8) Coordinates of a point referred to axes O(X;ys2)
igjykgi1yj1 Unit vectors in the directions 0x, Oy, 0z, O0X, OY

r

respectively.

Position vector

ds Length of vector dr

6 Angle between 4AF aid 3

as Length of the material element @y after strain

1 Length of a plate or box measured X-wise

c Half width of a plate or box measured y-wise

b Half depth of a box measured z-wise or, in particular,
the half depth of the spar y = ¢

b! Half depth of the snmar y = - ¢

() Ordinate of the skin line

E Mean value of ¥ over width - c&£y<c.

t Thickness of the skins

tw Thickness of the spar webs or in particular,
thickness of the web y = ¢

tw' Thickness of the web y = - ¢

tR Thickness of a diaphragm rib
Section area of gpar flange or in particular; section
area of flanges at y = c.

4t Section area of flanges at y = - ¢

AS Section area of stringer

AR Section area of rib flange

ag Stringer npitch measured varallel to the ribs

ap Rib pitch measured parallel to the stringers

e~ tR/aR

M Parameter defining the point of action of a certain
shear stress distribution in a box. (see equation (143))

q* Parameter defining a torque axis for use in the
calculation of twist (see equation (159))

Kinematics

u Displacement wvector

(us,vyw) Oblique components of u

U = u + v ecos o

Vo= U eos g N

5 Rotation wvector

/[{psasr) Obligue ....
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Oblique components of p or in particular, components
of rib rotation.

Constants defining a rigid body movement in a plane
(see equation 17)

Components of rib displscement in the plane of the
rib in y and z directions respectively,

("R) o

Arbitrary constants occuring inexpression for

WRo (equation (65))

Components of web displacement in directions x and

z resvectively. Undashedi- y = ¢ ;, dashed!- ¥y = =c.

Rigid body translation of a rib in z-direction.
Defined as W = WRo in Part II and W = (Wy+wy) /2
in Part III

'Additional deflection due to shearing' (see B 3,3(s)),
Warping displacement function (eq./118)) or warping
displacement itself (equation 131)

Functions of y occuring in expression for
(equation 132)

Seéction distortion function (equation 118) or
séction distortion displacement itself. (equation 134}
Functions of y occuring in exoression for A
(equation 132)

Constents in expression for p (equation 132)
Constants in exoression for q (equation 132)
'Shear Deflection' constant occuring in gexpression
for W (equation 132)

Strain in arbitmry direction

Strain components in oblique coordinate system
0 (%s7).

Strain components in rectangular coordinate

system O(x,Y)

Rotation of an element dp.

Statics

F Force vector

(X:Y,2) Obligue components of 7. Also in Parts II, III,
Z 1s used as resultant z-wire force across a
scction of a box.

(LsM,N)  Oblique components of a couple - axis 0(X,y,z)

(L19M1) Oblique components of a couple - axis 0(X,Y). Used
also as regultant couple acting across a section
ol g hox.

T19T298(251=82) Stress resultants in a plate refered to
obligue axes O(x,y) (see Fig. 3)

7 Stress function. (see equation 22)
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51,52,5 Stress resultants in a plate refered to axes
0(x,Y) (see Fig. 4)

Ti,T:,Té,TEgS'BSﬂ Functions of y occuring in expressions
for T19T298 in equation (37)

SR Shear per unit length in the ribs, estimated per
unit span (x-wise)

SW,S& Shear per unit length in the webs ¥y = ¢, ¥ = - ¢
respectively.

f1 Couple component (obligue) about an X-wise axis through
a point y = q¢, 2z = 0 on a cross-section of a box
(equation 145)

Lf Ditto about axis through y = q+c, z = o (equation 159),

Elasticity. Influence Coefficients

Youngts Modulus
Poisson's Ratio

aij Matrix relating stress resultants and strains
(equation 24)

(aij)p Part of 85 4 arising from the plate (equation 27)

aij)R Part of 25 4 arising from the reinforcing members

(equation 28)

fij oy %gtrix inverse to 25 4 (equation 31)

8149843 = Bz41833 Specizl combinations of a, (equation 120)

Cij' Matrix relating rates of rotation of the ribs with
the couple transmitted in a box (see equation 99,
100, 157, 158, 160 and 161)

Cy3 Constant in formula for P, (equation 157)

I 'Second lMoment of Area' for a swept box (equation 142)

Miscellaneous Parameters and Constants

Ai(i=091,293,4) constants in expressions for linearly varying
stresses in a plate. (see equation (40) and B 2.4)

v Constant defining the rate of die-away of & special
stress system (see equations 44, 47)

U Sequence of wvalues of pc defined by equation(11u)

‘Ai(i=1,2939u) Values of }\ satisfying equation QG)
Bi(i=0,1,2,3,u) Arbitrary constants in equetions 4%, 47. .

Bij

By( )
CLL

D

R1 PRz.PB

(i, = 051,2,3,4) Coefficients of the linear equations for B,

»233) Constants relating rates of rib rotation to

i
(See equations 108, 109, 110, 111, 112, 113)

Cofactors of th in the determinant lBi' |.
Sequence of arbitrary constants (equations 116, 117)

Couple transmitted and section wapning (eq. 125,126},
Denominator in expressions for P,, Q, (eq. (126))

Constants in the warping equation 127. (see 128)
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Part I. Generalities and Applications to Problems of

Two-Dimensional Elasticity

Aot Geometry

The frame of reference used in this report is a
gystem of oblique Cartesian coordinates. This system is
sgown in FPig., 1. The basgic axes are O(X,¥,%). The angle
x0y has magnitude a. The axis 0z is at right angles to the
plane x0y, and is such that a rotation which brings O0x into the
position Oy is right-handed about 0z. Use is also made of
auxiliary axes O(X,Y) lying in the plane xOy and such that
0(X;y,2) and 0(x,Yz) form systems of right-handed rectangular
cartesian axes,

It is convenient to introduce unit yectors
i,j,k,iq,j1 1ying in the directions 0x,0y,0z,0X,0Y respectively.
These quantities satisfy, as is easily shown, the following
relations, -

i, = 1 cosec a ~ j cot a / ,

. : ! it
Jg = = 1 cot o+ J cosec o )

12 = j2 &= k2 = i3 i.j = COS s Jekk = ki l'= 0 (2]
ixi = jxj = kxk = O ]

f (3)

ixj =2 k s8in ¢, Jxk = i1, kxl = j1 5

The position vector T of a point with coordinates
(x,¥52) may be written.-

T = xi+yj+ zk (4)

If the length of the differential veotor dr be denoted by ds,
we find from (4) and (2).-

i . ~ B . 2
d52 = dr2 = (dxi + dy j + dz k)d = dx2+ dy  + dzz+ 2dxdy cos a
The vector dr is 2 unit vector. For the special (5)
as
case in which this vector lies in the plane Oxy (i.e. when
dz/ds = 0) and is inclined at an angle 6 to the axis 0x, we
find for the components dx, dy the formulae.-
ds ds
_C_l_}_g = Sil’lg&,—e); Q_Y_ 2 ab1 6 (6)
ds sin a ds sin a

The relations (6) may be established using (2) and the formulae

i.@i = cos 6 and j.4r = cos(a-8), or by a simple trigonometrical
ds ds
calculation,

ey Kinematics

Any vector may be expressed; as ir (4), as_a linear
combination of i,j;k. _The displacement of a point u and the
rotation about an axis p may be written.-

/8 avivs
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uli + vj + wk }
o~ j (7)
pi + qj + rk

The combinations (u,v,w) and (p;q,r) may be termed the
'components' of the vectors in the axes 0(x;y¥y,2); but care
must be exercised to avoid applying formulae avplicable only to

o
[l

rectangular axes to these quantities. The lengths of vectors
are given by formulae like (5). The component u 1is not the

projection of u in the direction O0x) this last is given by
U+ Vv cos a. _ If the axis of p passes through 0, then_the

displacement u induced at a point with position vector r is
given by.-_

u = 'pX; (8)
Substituting from (4), (7) into (8) and making use of (3), (1)
we find. - &

U = u+veosa = (qz - ry) sin a E

V = unecosa+¥%¥ = (rx - p2) 8in a (9)

w = (py - gqx) sin a J

where U, V are the 'projections' of U in the directions Ox, Oy
resnectively,

In the remaining portions of this paragraph we shall
restrict our attention to positions and displacements in the
plane x0y. Use will be made of our previous notation; with the
understanding that 2z components; such as w,; 2 etc.; are taken
egqual to zero.

e If the plane x0y 1is subjected to a displacement
u(x,y), a point at- r will move to r + u. The length of an
element dr will change to d4dS where,

d6° = 4B, @3° = (dr + dﬁ)2 (10)
Neglecting terms of second order in the displacement we find
for the strain € in the element dr the formulac.-

. . 885 @  aF &
2ds° ds ds Sl
Substituting from (4), (7) (with z = w = 0) and using (2) we
e =8 ax + e___fdyy + e ( ax dy\
Xx(ds} yy(ag N ds ds) }
L
where I b ke B9 oo AR g (12)
“zx. T~ @8z “yy 2y’ "y T 8% 7
and U =2 w4+ v cos dy V=ucos a+ Vv

The guantities Cyxs € v and €,y Mmay be termed 'components of
strain', since the complete deformation is defined in terms of
them, The formulae in the second line of (12) are familiar,
but it must be noticed that U, V are not the true displacement
components.

The direct strain e« in the direction 0Y may be
obtained from (12), by making use of (6) with 6 = wn/2,
We find.- o

2 2 9
GYY = exx cot o + ny cosec q - ny cot a cosec a (13)

/The I‘Otation TEEE]
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The rotation zﬁBVof an element dr is given (see Fig.2) by
the formula, -

55?’ &2 %% sin(a-6) - %% gin 6 (14)

Using (14), (12) and (6) we can show that the shear strain
Sy associated with the directions 0x,; 0Y is given by.-

B = ) (aﬁjezﬂ/g = - 2e,,00t a + e, cosec a (15)
When the strain components satisfy a compatibility relation.-
2 2 2
8 ey B e L2 (egy) (16)
= 2
Xy ay ax2

the second line of (12) may be solved for the displacements
U, V. The 'complementory function' for this integration is a
'rigid body motion'.-%

U=0Cy + 01, V=«0x + Co (17)

where C,; C,» 02 are arbitarj constants. The results
(16)5 (17) dre fdentical with those for rectangular coordinates
and the usual proofs anply.

145 Statics

A force F may be written,
F=Xi+7Yj+ Zk (18)

If this force acts at the point r, its moment about the origin O
is r x F. Using (4) (18) (3) and (1) we find,

TxF=1L,i, +MJ, + N =L+ Mj + Nk /
where }

Ly =92 -2¥ My =2X - xZ2 N = (x¥-yX) sina { (19)
and 5

1i = L1 cosec q - M1 cot o M = --L1 cot a + M1 coBee a

The conditions for equilibrium of a system of forces are
TF =0, &rxF = o. Reference to (18), (19) shows that these
may be written.-

e

X =%Y =272 = 0 )
E(¥2 - 2Y) =%(2X - xZ) =Z(xY - yX) =0 )
These equations have the same form as for rectangular axes,

Turning now to two~dimensional gquestions, we define
the stress resultants T,, S., T, and 5, for a plate.
These are the oblique components®of forfes ver unit length,
acting across normal sections parallel to axes 0x and Oy

situated in the middle surface of the plate. The sign

convention for these forces is shown in Fig, 3. Consider an
element of the plate (dx, dy). The forces acting upon it are
shown in Fig. 3. The forces on the edges are determined by

the stress resultants) the body force is given by (Xi + Yj)dxay.
Application of the rules of (20) gives us the following

© 7 Jdifferential ...
¥ A translation u = cosec®a ¢(e, = c, cos a)i + (eo- c1cosa)j$
and a rotation about 0, » = - Ck cosec g, (sec(9) ).,
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differential equations of equilibrium, -

a3 iy

1 2z
9x T @y tE=0 [
93 3T A |
1 2 ]
3x tay +tY¥=o ’ (21)
8y = 85, = 8 (say) Jf
! The similarity with the equations in rectangular coordinates
; will be noticed. If X =Y =0 we can satisfy (21) by

introducing a stress function@ such that,

e 2 2
T1:d%y Tzzagy S g (2.'))

2 ~
oy X axay

@b

It_is convenient also to introduce stress
resultants T,, T,;, S refered to axes G{Z4T )« The specification
of these is shown“in Fig., 4. The relations between the
un-barred and barred stress resultants may easily be shown to
be. - o

T1 = Tysin o + T, cos o cot o - 25 cos «

f

a i (23)

cot a ]
J

]
=1

Q

T, = T, cose

)

0]

D = 5

Yu it Stress -« Strain Relations

In 8 1.2 we studied a system of plane strain refered
to oblique axes 0(x,y). We now interpret these results as
refering to the mean strain across the t hickness of a uniform
plate, Such a state of strain in a plate will give rise
to stresses and stress resultants and in 8 1. 3 we studied the
properties of these forces when refered to our oblique axes. T
! the material of our plate is elastic and obeys the Generalised
Hooke's Law, then the stress resultants T1; T, and S will be
related to the strain components e.__, € and e by homogenous

linear equations of the form.- = L il
T4 % B4q Cxx * B4p Ogy * 843 8y )
To = 8py € . + 8y, Sy T A5y B, > (24)
l
5 = a51 By ¥ a32 7 + 833 bxy Uﬁ
where ag we shall show later,
839 = 84y (25)

For the special case in which the plate is isotropiec with
thickness t, Young's Modulus E and Poisson's Ratio 0, known
theory applied to the rectangular axes 0(x,Y) gives,-

= B i - Bt , B
r, = (epq *+ O UYYJy Ty = (8yy *+ © exx)}
e s By Lo
(1-09) (1=07) 5(46)
Et {
S = € }
2(1+0) XY ¥

/Substitution ..e..
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Substitution from (Z6) in (23) expresses T,; T,, S in terms
Of €y45 Cyys €yw. Use of (13), (15) throws our relations into

the form (24) and so determines the a,. for the isotropic plate.
Denoting these results by (aij)p we £ifd. -

2 o
1, cos a+0s8in a,;- cos a
Bt . 2 P
(a,.) = ——= cosecoa. cos“a + osin”a, 1 - co8s a
D ) 2 L
C o)l S S ~ COS Qs 1+cos a=gsin o
2
(27)

In the case where the plate is reinforced by closely
spaced stringers of sectionarea A_ at a pitch a running
parallel to 0x,; and by closely Spaged ribs of sc8tion area A
at a pitch a, running parallel to Oy%, then, if the material of
the reinforcements has modulus E, loads of magnitudes respectively
EAS €.y 8nd EAR eyy will appear in the stringers and ribs.

Distributing the stringers and ribs continuously we generate
stress resultants Ty == BA, exx/aS and T, = EA, ny/aR and

s0 for a reinforced plate we must add to (27) the matrix (ai')R

given by.- i
7 LAS/aS o o)

(aij)R & \\ 0 Edp/an O (28)

0

(8] 0O
b

The complete matrix for a plate reinforced in the directions
B¥x, Oy 15 thug.-

By =By # Byl (29)
The equations (24) may be solved for & ex? eyy, . yielding. -

eXX = ﬁ11T1 o+ R12T2 + A138 ﬁ

A A L

Cyy = AoqTy + ApoTo + A5y8 J (30)

eXy = A3111 + 532T2 + 3538 »
where, 2 _32 PRI T 3,

1 22733 "23’ 23°317721733" "21°327"31°22

L =

i3 iaijr 813%307840%33284 48558735 ETT e (31)
=

E‘l 9- —aqﬁa_ ] . : c -
12723 T84 3 513a21 a11323, 844800 840 P

1e¢ 50 Compatibility Relation for the Stress Resultants

The strain components must satisfy (16). It follows
from (30) that the stress resultants must satisfy.-

(p}

oy 0X axXoy
2 2 ; 2 2 N o 5
+ {'1113 '@—ﬁ + J'LEB a - il ABS _@____ )S = O (31’_)
\ F 2 3
3 oy 9x aXoy |

/In the

a and ap are measured parallel to Oy and Ox respectively,
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In the case where a stress function @ exists we can substitute
from (22) into /5 ) obtaining. -

4 z{ : u%
L o a_% - 25‘&“3 + (2.:.\.,]2 4+ ,:133)8 2— 21.1138 L+1—;_1_1_%
ax ox ay 90X ay axoy
(33)

10, Application to Certain Plate Problems

The theories of displacement, strain and stress devel-
oped in the previous sections are particularly applicable to
plates whose boundaries consist of parallelograms. Let us
therefore turn our attention to a plate whose edges lie along
the 1lines x = 03 X = 1, ¥ = %c. (Flg. B)

W e shall not seek here to solve problems with given
boundary conditions, but follcwing the 'inverse' method of
St. Venant; shall impose certain restrictions on the stress
distribution and examine the consegquences. However, with an
eye on applications to wings, we shall restrict our discussion
to solutions which satisfy.-

T, = O when y = +c¢ (34)

Let us begin with tho simplest of all cases in which the
stress resultﬁnts are constant. Equation (34) then implies
that T, = 0 everywhere. The edgcs X = 031 are loaded
by unirorm T, and S, while the edges y = # ¢ are loaded by
a uniform S. Writing T, = o in (30) we find the following
formulae for the constant strain components. -

-y

T, <+

Cxx = Aq917%9

A13S
eyy = A21T1 - ;’&235 (35)
exy = A31T1 + ABBS

The displacements follow from (12). The complementory function
for this integration is given by (17). We thus f ind. -

Us o .5+ (6. +C)y + 0

XX Xy 1

| (36)
V.= eyy.y - OX + C2 ; _j

As & second example let us consider ancther case in
which X = Y = 0 and assume that the stress resultants vary
linearly with x. We write

Ty = % T

y y + Tq, T2 = % Bl & T, 8 =ixis

2

where T!, T“ ”é T“, 8' and 8" are functions of Y.
Substltuﬂlng in (21) “9ith X = Y = O and using (34) we easily
show that,

/Substituting from (37) «es

*

This satisfies (34) and implies X =Y = 0 by (21).
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Substituting from (37) and using (38) we find that. -
A
]

e IS g e : -
T1 &= A11 2y + MBy + Au
(39)

2
" » 1
8% = < AoY  + AT + AO

.1

where Ai(i = 0,152,3,4) are arbitrary constants, Substituting
from (38), (39) into (37) we obtain,

Ts = = Ax(xy + A¢3 y2) - A.X #+ AY 4 45,
] 2 i 1 3 Ly /
g ) {

Ty =0 [ (4o)
S = %A2y2 + AT + A )

Substituting in (30) and using (12) we find the following
expressions for (U,V).

U = AO(A13X - ABBy) - Aq(Ajﬁx . A31y) )
f { i 2 \ A A\ =3 \'!’

-t

+ A3(£11xy + % Az ¥ 22

-
“11

2
- nA11X y—QA1

e

+ Ap Xy 4—3/’3,;(—1;2,i + & 33) +(Oy+C ) (41)

£,

>+

2
V = A .4;233?' =+ iLLj. fihjy + A 1 (—A 6}; - jq;_ﬂ‘]Xy B ’2 j_\sz )
2 2
* Pﬁs( hyyX° + Apy¥)
AssA
r l" _21 "Jé 3

(42)

As a third and last example, let us consider a case
where the stress decrease exponentially from the root x = o
(i.e. vary as e™™X, where the real part of u is positive!)
For the sake of possible applications to the box structures
of Part II, we introduce a body force.-

X=0, T&~pehs (43)
where BO is a constant, which may be a complex number,

A particular solution of eguations (21) and (32) is easily shown

to be
A B
i L =X R - 5
Py =8, By = MAQQBOG ; S=-3 (L)
The displacements corresponding to (44) follow from (30) and (12)
We find.-
Bmw _ Sqa 8 mE R LR et )
Aool8:s] u? L 8.4 8
22]213] w 22|%13| w
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where use has been made of the algebrzic theorem that the
cofactors of |A13| are given by aij/1aij . To obtain a

complementary function we make use of (33). Assuming that @
varies as eu(Ay'X)g we find that

L!' s 5 2 ~
Ay AT 2A13 )\3 + (Phio + AB) N+ ¢A33}‘\ + Asp =0 (46)

Denoting the roots of (46) by A, (i=1,2,3,4) we find a
solution of (33) in the form.-

”
A e-gx:'f“ Bie#AfY (47)

= Attt

T
where Bi are arbitrary constants (complex nunbers).

The stress resultants follow from (22).-

2 =X 2 J.:‘t TS A ALY
T, =u'e ;,’_uBlf‘l I, T, = p'e ﬁ_Bief‘ -

. ) (48)

- =k X Y oMLY
S =ue _ZBi?"i(’
The corresponding deflections are found to be.-
¢ T s TR 4 |
U = - ue™ ") By6 MI (N8, 4+ NAga+ Ayp) + Oy + 0y 7
> (u9)
e _ux Bl ¢ﬁ1y 2 ! "

Y o= i l ¥ (.fl\ M.21+ f\i!&23+ _$L22) - Cx + C2

Imposing the condition (34) upon our complete solution we
find, -

. A0 A
ZE« .e”)‘ic -~ ?B.e““‘j\lc SRR < E (50
X A o A 0
W=Roo
which gives two equations for the constants B.. The

imposition of further boundary conditions at y = + ¢ would
enable the solution to be completed. This development is
reserved until the theory of Part II 1is formulated.

/Part IT., ssses
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Part I1 Applications to Simple Swept Back Box Structures

el Descripcion of a Simplified Structure. Notation

In part IT we shall apply the results developed in
Part I to the study of stress distribution snd deflection
problems for a uniform swept box. Such a simplified structure;
while not reproducing all the characteristics of an actual
wing structure, will reveal those properties peculiar to
sweep back.

The structure to be considered is a uniform rectangular
section box swept back through an angle x/2 - a. (see Fig.6)
Reference axes O0(X,y,2), of the kind defined in 8 1.1, are so
disposed that the faces of the box are given by ¥y = +¢c, 2 = + Db
and the ends by x = 0, & = 1, The faces 2z = + b are termed
'skins'?, They have thickness t and are reinforced by x-wise
closely spaced stringers of sectionarea A_ and y-wise pitech a_,
and by y-wise closely spaced rib booms of Section area A. and
x~-wise pitch a,. The faces y = + ¢ are termed 'spar webs!,

They have thickness t_ and are assumed to carry only shear
stresses. Such diredy load carrying capacity as they may possess
will be assumed integrated with the 'spar flanges', which run
along the four edges of the box and have a cross sectional
area A. The corresponding rib booms on the skins Z = + Db
are joined by 'rib webs' thickness t,, which are assumed to
carry only shear stresses, These rib webs are of course
rigidly attached to the spar webs. The materials of all the
components are assumed to have Young's Modulus E and Poisson's
Ratio o.

By e Theory of the Simplified Structure

We shall 1limit ourselves in what follows to cases
in which the displacements occuring in the skins z = + b are
equal and opposite to one another. The notation apvlied to
plates in Part I will here be applied to the 'skin' z = b.
Corresponding values of displacements and stresses for z = =-b,
can then be obtained by reversal of sign.

Let us begin by considering the rib webs. These .
are to be treated as continuously distribuied int he x direction.
The 'thickness' of ribs within an element dx will thus be
?ﬁdx where,

?/R R tR/aR (51)

The shear per unit length carried by the rib web, within dx
will be written S_,dx where S_ is a function of x only. The y
and z components Of displacement in the plane of the rib webs
will be denoted by %P and nP respectively. These definitions
are illustrated in Fig. 7. The relation between SR and t he
displacements is clearly.-

E

Yo O, oW
By = —t ( 8, B ) (52)
R 2(140) 32 oy

The kinematics of a ‘pure shear carrying plate'! are not well
defined. We shall therefore in the interests of simplicity,
assume that w, is independent of gz, thus attributing a limited
rigidity to t%ﬁ ribs., Experience with the theory of unsweont

/boxes sUgREStS vosee
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boxes suggests that this restriction is not of any real
significance, Differentiation of (52) with respect to z

then shows that v_ is & linear function of Z. and s0, remembering
thattrib'displaceﬁents must conform with those in the skins at

Z = + b, we find, -

VR = VZ/b (53)
Equations (52) and (53) then yield, -
2 I
W, = (1+0)8p y - % 3V dy » W, (54)
L 5

where wp = (WR)y:o is a function of x.

We turn now tot he spar webs considering first of
all the surface y = c. The x and z wise displacement components
in the plane of the spar will be written u_ and w respectively.
Conformity with the rib displacements impl¥ege- "

w_o= (w

w = (R, (55)
The component w_ is thus independent of z and so, just as in
the case of the"rib webs, we deduce that o is linear in =z
and thus is given by.-

u, = (U)y:c' % (56)
since spar web displacements must agree with those inthe
skins at z = + D, The shear per unit length in the spar web

will be writteén S, and is related to u, and w_ by.-

EtW (auW aww)

w -~ 2(T+o)l 3z * 3x

nu

S

(57)

The notation for the spar web is illustrated in Fig, O S, is

a function of x only and its variation is brought about by the
shear 8, applied by the ribs. Equilibrium of an element dz dx
yields tﬁe equation. -

as, - 8, = 0 (58)

dx

substituting from (54) into (55) and from (55), (56) into (57)
into (58) we find. -

2 i s - c.2 2 1
e R _ 1(3?) 1,53 Vay, I ¥pol=0 |
_"-g— — ""L_‘ 2 2
dx ct 2c(1+0) |blox Cn b o dx J |
(59)
We shall denote corresponding quantities for the surface y = -c,

by the same symbols ag for Yy = Cy but with a dash added
i.e. uis wioand 81). The equations corresponding to (55) =~
59) are.-

(60)

W‘fu’ i (WR)}'z—C

W J==C ‘% (é1)

1 =
/SW = TR
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g b 5ty wﬁv+_aww) (62)
W 2(140) \ 2z 9x
as'!
E—ﬂ +8, = 0 (63)
-
o o) |
- dQSR ] iy 1,00 1 19 3 d%wp ()
—t + 2§+ —2 | —~J - = | —may + =5=|= 0
ax ct_ * 2c(1+40) jblax b ax ax

W =—C
J 0]

Transforming (59) and (64) we obtain the following equations for

LS and SR in terms of the displacements in the skin 2 = b, -

(& -C x
W 4 Vdy + (vay)- 1 {§(u)__ +(U)._ dx + K,x + K, (65)
Ro = Zb(£ } ) o gi( = y==0) 2 5

y=c L
O 1
2 -
dESR ?% ET% i = 32v frous sou } ] (66)
- B = Ay =if == P L3
D R Y [ == 0 ) (
dx ety 4b0(|+0)iic ox LNBES . NOX y:“%}j

where Kﬁy K2 are arbitrary constants. '

The equations governing the behaviour of the skin z = b
have already been develoned in Part I. The external force
(X;Y) arises in this case from shear flows SR applied by the
ribs. We have in fact. - '

=i o bl (67)

The boundary conditions at the edges y = + ¢ can be obtained
by considering the equilibrium of elements dx of the spar
flanges. The balance of y - components gives.-

\Ep)yuys = D (68)

The x-wise balance of forcesg is shown in Bl o, We thus find.-

Sy * CS)y:c - Eﬂ<aexij (639)
3% /oo
rae %
8t w (8. = E/ XX (70)
W Y==C 5;*“) Y

Formulae for S_, 8 in terms of UsV,5, and wp - were obtained
v

implicitly during the derivation of (59) (64). These may be
expressed as

1 (71)

| SR
/S“}_"‘ SW-—- RN
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o Bty | 17, _ 4(1+o)c dsy 1 { v :_I
S = 8! = - e s (B)._ = (1) b e _ =\ — dy
W w £ ( ®) | R y=c V==Cc } }:rfR ax 'b--,_<J3 4% I
’ : o A8y

where use has been made of (65). Our boundary conditions

(69) and (70) can then be written, -

Et_K

4 Y, o T 1
8)_m ) =BA A §(e. ).+ (e ). l-—22

y=C ym=0 dx & RET =R R y“'%} 2(1+0) (73)
- o _mr g ( .
(8) n (”)y:_c e ﬁ—}(exy’y—c (GXT)"~«cﬁ

dx -
i ¥ w (1 J 9] :
- By !(U)y"c (J)Y:—C + Hio)e ! 1 { EE oh (74)
2(T+oY | 5 BYp, ox "B & Y]

The mathematical problem presented by our swept box is thus
reduced to a plate problem of the tyne studied in Part I where
the 'body force' Y = Sp 1s given by equation (66) and the
boundary conditions at th% edges y = + c are given by (68)

(73) and (74).

Finally let us write f ormulae for the static
resultant of the forces acting across a section with coordinate
X These reduce 1o a force 2.k at the centre of the section
(x;050) and a couple L,.i, A M,.J,

2 1 | 1 {
where. -
Ebt_K
g e Bh(E. o §1) = i (75)
W W (1+0

-:—13’1@. 5

T

(76)

L g

M, = ZbBA4(e e_) ] {2 &y,
M 2b A.J Xx)y:c + xx’y:-c}+ Eb*Q y ¥ .

It is to be remarked that we heve found it convenient to use
the oblique axes O0X;, 0Y for defining the couple. G il v s P
desired to write the couple Li + MJj using the axes 0x; 0y,
then the necessary transformation is given in (19).

2 A% Simple Loading Conditions.- (1) Constant Couple.

We now anply the results of fhc_firsf example in

plate theory of & 1.6 to a problem of swent boxes. The constant
stresses T, and S of this example will bu agsumed to be acting
in the skiﬂ = B The “uwr qoondlnr strains and deflections
are given in mquﬁtions (35) and (36). The body force Y = - S;,
is zero in this case. Sih tituting S, = 0 and the values of

1 s

‘given in ( ) into (66), we find Bhis equation identically
Since S and e are constant equation (73) shows

that K1 = 0 and so by (75)*Fhat z = o. Equation (74) shows that,

P b(1+0) «
W P Sy Pt C = (77)

Equations (69) and (7@) shows that,




=B

= - 8, 8! = 8 (78)

W W

Assuming for simplicity that U =V = 0 when X =y = 0
and that w = 0, when x = o we find from (65) that,

Ro
Wpoy = = XX X (79)
Zb

Using (53), (54), (55)s (56), (60) and (61) we find,

v, = (e, .y ~ Cx)z/b

R yy /
& & '
T “¥x 2 o] VY. . 2 E :
Wp = - X+ § XY - 'y ) (60)
HW} { I - :
gid = A eX (bxy + C)e fz/b (81)
W) L
W.. "N
V " C >
- S (82)
ol 2b - Db 20

")

5]

ultants T, and 8 follows from

The magnitudes of the stress res Ty

(76). We find. -

4]

M+ EAA *
sl 2¢ ' /
A iy = E .\':l
1 Ube(1+ B4 Agq ) |
L4/ f'.
| (83)

2 |

_ . !

3 = - 8bo ;r‘

The formulae developed in this paragraph together with (35);
(36) solve the stress distribution and deflection problems
for the case where our simplified swept box is loaded by
constant couples.

2tk Simple Loading Conditions.- (2) Bending by a z-wire force.

We now apply the results of our second example of
8 1.6 to our swept box. The stress resultants for the face

z = b are assumed given by equation (40). The deflections

for this face are then given by (41) and (42). Since ¥ = O
=0 . . g i -

for this solution we have S, = 0O as in B 2, 3. Substituting

from (41) and (42) into (66) we find that S, = O implies.-

e Lo
AQ = 0 4.-13 = . _2: A’]? £y (8”—)
1

/Substituting from (30} «...
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Substituting from (30), (40) into (73) and recalling (75)

we find, -
A1 = L= rz i S (85)
hbe 41 + DAB4 ¢
- c _j
Substituting from (30), (40), (41), (42) into (74) and
recalling (84) we find.-
= o folisg) = 433 Azq p
5 fEth B ) g =g 4 (56)
Equations (69) (70) and (75) give.-
S =
W
b oo I A (87)
TS
W

If we assume that our force Z is located along the line
X =1, ¥y =0 1i.e. applied centrally at the top rib, we find
by (19) that .-

L, =0, M, == Z(1-x) (88)

Substituting in (76) and using (88), (85) we find that .-
by =0, &) = s d (89)

8

Substituting from (84), (85), (86), (89) in (4O), (41), (42)
and (87) we find, -

Z(l-x 2 h13 y) .
=T A M 3 .2
i, R S
Ube & 1 + EAA f L;bc{1+EAA ! & e
W ? 11 11
' t‘ S c J >
} (50)
e § p )
LLbcz‘H Eﬁﬂﬁj
= J
e, % ’n 1x+5A5,1y = % Ay X =LA, Xy 0
{ 4 , 3 Ayzy 2
e s +-")(J'L{‘\1 + 1'L33 o 2 J{‘L )}T
11
- (91)
z 1.”. A 1 \ 2 o n
¥V = 5 '27:1.3_113{ + £L21 ly - HA,] Z’X rk21xy

Ll-b c { 1+EAA

; __cmi

g, = 8! = Z/ib (92)

/Where in (91) .eees




Where in (91) we have assumed U =V =0 when X = y = o,

The equations (90) show that the conditions at the tip x = 1

are not exactly those corresponding to 'freedom'; even from
direct stress. For our solution to be valid equal and
opposing couples must be applied to the faces z = + b by loads
normal to the rib x = 1, not to mention linearly varying shear
loads applied parallel to this rib. However,; the effects of
this self-equilibrating system will die away as one proceeds
along the span and so our solution may be considered practically
valid at (say) a distance 2¢ from the end.

Substituting in (65) we find assuming Wpy = O when
X = Oy
) 1 4
- - che(1+a) (1+ EAA11)
"po = v AR " sz(l—%—x)+ =
® 4bc§1+ oo | (! 2b - Et
c - ¥

-

4 -~

no
MJ

The remaining deflections can be written down using (53), (54),
(55)s (56), (60) and (61), but since the formulae are lengthy
we shall not give them here,

24 B Analysis of the Deflections for the Simple Loading

Conditions

The deflections at any plane section (coordinate x)
of our box may be analysed into the sum of a translation,
a rotation, a warping from the plane and a distortion in the
plane of section. Let us consider a translation Wk and a
rotation pi + gJj, where ¥,p and q are functions of x. These
wlll produce displacements at our section given by.-

U=qzsina; V=-pzsina, w=W+ py sin a (94)

Where use has been made of (9) and the rotation has been
located at (x,050). For this one equation U,V have a 'general'
significance as in (9) and are not confined to z = b!
Comparison of the first of (94) with (56) and (61) suggests the
identification

q = Dyee * Oyece (95)
Zb sin a

]

Comparison of the second of (9%4) with (53) suggests.-

(Terms_of V_independent of y) | (96)

b sin o
Comparison of the third of (94) with (s54) gives.-
W o= 9
and (96) again., The term in (54) containing Sy does not

Joceur in (53) csse



does not occur in (53) and gives a shear strain not a rotation.
We shall adopt the deflnltlonﬂ (95)s (96) and (97) for p,q and W,
Other definitions are possible; but the differences are bound
up with questions of 'shear deflection' and 'root conditions',
with which we are not particularly concerned here.

Let us now apply our formulae to the case of loading

by a couple analysed in 8 2.3, Substituting from (%6) with
C)] = C2 = (\)] Brld (?9} we find;
_ Cx cosec q _ e..s: X cosec aq p ey 2
p = 3 5 q = XX = y W=-5=x (98)

Substituting from (77), (35) and finally (83) we find the
following relations. -

o _ g
dx B C,i;}L,{ 4 L_)‘,l'zh.ll)l g
a“w d { (99)
T =pcoseca = 8 = ¢, L, + Ol
ax*“ ax 2
where, . : : |
_ cosec g} (1+0) Az EAA %
C'i'f = 8he b Tt TS, e '}3__ ]
[ Be "~ Tho(i+ FAR 1)j {;
C i
\
A, zcosec a S (100)
C = G = — o . ;
12 21 802 (1+ AL 1) i
C 1
A11 cosec a '
C = —
G pe (1 + EAR44) |
B /

o

The relations (99) generalise the usual curvature - bending
st=-t

moment and twi orque relations valid for an unswept box
(b E/ flm) (]

The remaining terms in the deflection formulae can be
analysed into firstly a 'linear warping'.-

U = (ey, +C)ys V=0 ';

U { (101)
- i J

k- (dxy + C)ez/b /

.”_‘;
n‘I’

and a 'cross sectional distortion'.

U = (___\l ) 1\37 = 2 ¥

(102)

|

r-’
Al o {

— e o« TBID ] = - e ¥ 2t
v 57t 705 o €y ¥ /2b j

The warning, which consists of spanwise displacement; depends
upon botn Ly and 1 1° The cross-sectional distortion consists
of a ﬂtlpiaoLLc bending of the ribs.

We turn now to the analysis of the deflections for
the case of z-wise loading at the tip, dealt with in B 2,14,

/ Llhat1+ltj_1t) iT‘OITl L



Substituting from (91) into (95), (96) recalling (93), (97) and
(100) we find,

%
&R 012Z(1-X), - Q:% cosec a = 3 = - Cp0Z (1-x) (103)
dx dx dx -

Recalling (88) we see that the relations (99) are velid for

this case as well! The remaining dlsnlabcment terms can

be analysed into firstly a 'ljnear warping'

Az My |
U - EA,‘ [ V = 0 (10{4)
8be (1+_7711)
c

ondly, a 'parabolic warping'

2
Z 3 A - 3
" R 5 2 2 /
U -es (A21 + A33 - Y(e™ = ¥7) {
8bc(1+ EAA,,) : 2 A
i1 11 )
c (
) (105)
VvV = o o
and finally a cross sectional distortion. -
e 3 daytig)
.‘q.r) l'l'q. y 2 .elx_ " I
U2 By T = e AP (106)
4be (1+ mﬁnll) 8be (1+ g“d11)
c c

The formula (101) when expressed in terms of M, (with L, = o)
agrees with (104). Similarly (102) agrees Wl%h the first
term of (106). The warping of (105) is analogous to that
occuring in unswept boxes and will give rise to a theory of
'shear lag', just as the linear warping will give rise to a
theory of 'end constraint' similar to that arising in the case
of the torsion of unswept boxes.

2.5, nternal Systems of Stress

The third example of 8 4.6 may be used to construct
systems of stress for which the qtatic resultant on & cross
section is zero. We take as displacements in thg surface
z = b the gum of the expressions given in equations (45) and
(49), where the constants B,, which occur in these, are
limitea by the relations (507. Equations (43) and (67) show
that

s n s 8

— A o= S, o
R o]

2

Our assumed solution must satisfy (56),

and (74). Making the necessary substit

incidentally, that the constant C of (49) is zero. The three
0

)
¢

form a hun**uLuung
-+

remaining equations together with (50
constants (1_J51;d Zslk).

set of linear equations in the five
These eguations may be written

4

By.Be = D 108
Z By 4B 0 (108)
]

=0

/where the ...,




D%

where the equations for i = 0,1, are obtained from (50) by
addition and subtraction; thc equation for i = 2 is from
(66); that for i = 3 from (73) and that for i = 4 from (7).
The constants Bij are given by .-

Boo = 0, Boj = sinh qujC (3=1,2595,4) (109)
323 " : : o ; .
Byg = e cosn;¢;{j0 (J=15253,4) (1109
b A e
; e
a. .0 2be(1+0) 17 o
By = 1? + (—E - u9) B
Apzlalgi EYg ct, /
111
o gffeal Soe 32 1
Bo; "¢(;j + Aj‘A13AJ'-H1X3“”m1*x g (31“’3j?
a
BBO —_ —‘15 hIJ
.'.'rl.r- a- } r
¢2i 13,FL f
qf_
U ) 2,)2 ) ' f
B33 = %@Aj 51nh.xﬁjc + i (Ajﬂ11 % A3ﬁ13+ “12)cosh ijc i
(12152,3:4) } (112)
7 5

gtwc 1 Et caJlJJ

\I

1

"’.I-I'O ) 0 - ” | ! ” ;
’)’R 9 _(1+J)b;;22181j14 /

- ¢2 )’g cosh u /\.C

= Aé A A - lr A o i
Bl 911 * A3 = e - et \

5,
2 : ]
2u Ab (1+0= 2, . g i : ]
(x]n,},i 4 .}\JJ;‘]} 7 .(5.12) J sinh ,._..}\.C

t ' 3)//

=
[ 5
.

=

W

Equations (108) are satisfied by non-zero Bj if .-

| B13| 0 (114)
Equation (114) is a transcendental equation for u. It is
very complex as inspection of (109) - (113) shows. The

mathematical examination of its roots is t herefore out of the
question, but physical intuition, based upon experience with
unswept boxes; suggests the existence of an infinite sequence
of roots with positive real parts, which may be written.-

1

8
c

(-'i'a|$ 1429 .»LBs ----...) (.1.15)

/They can of ccess
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They can of course be calculated numerically in a special
case, The solution of the first four equations of (108)
gives the ratio between the B..
We may write J

By = G, By(w) (116)

where Cw is an arbitary complex constant and B.(u) are the

cofactors of Buj in the determinant of (114).

A 'general' internal system may be obtained by
summation of ocur resulte with respect to p over the sequence

(115). The resulting displacements U, V for the surface z = b
may be written. -

i I ~

¥ 2,38, (1) ‘
U =Z Gue o e i éﬁ (u)e u“h J (}kanﬂw\ A13+l ) |+ C,J
b » A22|aiai (Lﬂ )i
% 7
at a,,8,(w) (h) u ;]y 2 ,
s =:§::GMG o o E{;—l——— ;3“21+ A jhzs * Aol +cp
" hop|ay 5|u® el A

It must be understood in (117) that the real parts of the
expressions given are to be taken,

The solution (117) could be used to remove the
'warping' and 'section distortion'; from the simple solutions
analysed in B 2,5, at one particular section (say) x = o.
However another difficulty arises here, because the constants
C“ cannot be obtained by the usual harmonic unalycls.

Multiplication of (117) by e *H y and operating 5( Ydy yields

an infinite set of equations for the C An altcrn1tlve
process might begin by limiting the cx%an sions (117) to a finite
number of terms and then proceed by choosing the C, to remove
the warping at a finite number of points on the scBtion.

The processes sketched sbove are very compleXx and
hﬂrdly practicable, Recourse must doubtless be made to
approximate methods of calculation to handle problems of
constraint against warping for swept back wings.

2t Lporoximate Calculation of Root Constraint for the

Case of Loading by a Constant Couple

The general methods of 8 2,6. are hardly feasible
for design calculations. However, an approximate calculation
is possible if certain restrictions are made as to the
deformation possibilities. We assume that the section of the
box can only warp and distort in its plane according to the
pattern defined in equations (101) and (102), that is, in
the same way as occurs when a constant couple is transmitted,
with no restraint at the ends. Other modes of deformation

of the section cannot occur, in particular the rib webs are
" pigid in shear (t,P® ). The deformation of the skins and
spar webs is then given by.-

/U = q_boitill




= gb sin a + w y/c

U
V = - pb sina + Ay
U
3: gz sin a + wz/b

1!
W

(118)

Wy
W : 2
er= W+ pe sin a - 8 c“/2p
W,

where, p,a,W,w, A are functions of x. Making the supvosition
that T, = o the stress resultants follow from (118). We find

- G = y
g R = % 4 - Lo ; 5 )]
T, = (- 853D + u11gg)b sin a + 313w£+{a¢1 dw + 8,, 4 (Y]
{, dX dJ\. j __j b ey e i
e 4 e dx ax { /
4 { 'y
:
Ty = 0 a e b (119)
ekt Bike o 9370 ¢ 3831 dw , = 44/
. @ z( '333x t 9313x)P Sina + — {(f7 e ax * 233 axtvy
- w A F
where £ 2 d
~ 12~ - %42%23 - B
=a,, = a a - — Boop= Boyq=
¥ 11 = Ess 18 CETTE TR T A (120
and
Sw | gt § ao AW w ap e“|
E = E(T:E) it Ix © sin o + g sin a + Ei-iﬁ_- ax 55&
S% ’ \ (12?
Equations (12), (24), (57), (62) and (118) have been used in the
derivation of (119) (120) and (121).  Writing Z = O in (75) we
find from (121),-
: 2
- dW _ a4 ¢ >
18na+ 5 -3 o & (122)
Substituting in (76) we find.-
| : | Bige ~ }dp VR : .
L, = 4bc sin a.; 37 70) + h133j 3x - 4P cagy sin o T /
L
(Et_c 52 \
'L{-E} W L Lw ff
- {' 1+0) 33’; (
2 1 (423)
1 il 2‘ F B 4+ RBA .@.g ! : o aq E—‘Q- }
M, = 4pTsin &.(cuiq- EA) = - 4 ca,z sin a. Fo ‘

+ 4b213w H//
i

Substituting in (69) and (70) ws fi

2 )
E i ‘Q“(h =+ -55 c '[1-{1 = BAb Sil’l 1o/ '_9' f
L 35 4 & /
= dx = 1 gx ;
, . {
M A ) dp dg Y, J
) W ™ o oy : S (124)
121?13)- bu53}01n Qe 3 + ba31 81T s S
FOBE. B 8%,
W 58 ;
+ wion o sl ) = B e
a2b(ﬁ+o) c J dx «
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Solution of (123) for dp, dg yields.-

dx dx
4p . |
ax = PyLy #4 P2M1 - P3 W ?
. (125)
T = YLy + QM + Quu
where, 4b2sin a (0511 + BA)
i A D
| 2 it N
b c a sin a
o 31 o
2 D B 1
16b° aﬁi o Ft ¢ ? 3" 1
P3 = m bc_»,13 {m— 33‘j(ca11+E_h)J
Ybe sin a { Et_c
5 Y W / (126)
Qy = 5 ¢ 275y * Po3 33
16Et bgcea sin a
8 e W 1%
3 D(1+U)
3 Et +C 211
D = 4667 sin®a (—TT:ET + ba -f 4+EA )—b0313

Substitution from (125) into the second of (124) yields.-
dzw 2
- Bw = R,L, + R-M (127)
- . 2%y
sin aj¢Et_c - _ -
where, R1 = %2(¢+o) - ba335P1 + ba31Q1‘

sin a,xﬁt.c o 1
Bo = ~§Z |(Z0+) - ba33ﬁp i ba31% (128)

o sin aTEEt c = ? o 1 Et 533*
B” = B |l=0iay- Po33jPs * Pan st R *

L solution of (127) which vanishef at x = o and remains finite
ag x7s0 ig, -

(RyLy + RoM,)

0 = - 4L (4w 8~ Py (129)
B
The first of (124) gives assuming A =0 for x = 0.~
§oll .-_,;l
i& . 1Eth35iF L 8313 " (130)
a330
The remaining unknowns are easily found. p.q. follow from

(125) s W from (122) and the stress resultants from (119) and (121)
The solution found solves the problem of 'root constraint! for

a 'long' swept box loaded by any couple at the tip. It may be
applied with the usual approximation to other cases of loading.
The method used here may be extended to deal with the w»arabolic
warping of (108) and so yield an approximate solution of the

shear lag problem for the swept box.

/Part III. §5s
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Part IIT /Applications to Swept Back Wing Structures

Be 1o Generalisation of the Engineering Theory of Bending and

Torsion to Include the Case of Swept Back Wing Structurcs

The intention of the present section is to generalise
the solutions obtained in Part II for the simple cases of
londing (8 2.3, § 2.4, 8 2.5), to cover the case of a uniform
swept box, whose section bears a closer resemblance to an actual
wing structure, than that considered previously. The hox
to which we shall now devote attention is shown in Fig. 10.
The section has unequal spars, that at y = ¢ has thickness tW
and depth 2b, while that at y = -c hus curféspunarig Gimensions
t; arid 2b'. The sking are identical in both geometry and
eiasticity and so the section is symmetrical about the y-axis.
The skins may be curved,; but the development below is restricted
to the case where dz/dy is small,® where Z4(y) is the ordinate.
This will ensure that the angle o between the stringers and
the rib-skin intersections may be treated as constant over
the skin surfaces. The flanges of the spars y = # ¢C will have
section areas A and A' respectively.

The notation for displacements, strains, stress

resultants etc. will be the same as in Part II. However, in
the case of the curved skins, displacements etc. will be
treated as occuring 'in the surface'. For example V will

represent a displecement parallel to the tangent of the curve
of cross section.

¥e make the following assumptions with regard to
displacements, -

il Kach section X = x moves as a rigid body with
displacement ¥k and rotation pi + qj. W,p,a are functions of X,
the last two being quadratic and the first cubic.

-

2e The section is warped from the plane by 2 displacement
which is linear in x. In the skins we have U = w,(¥).x + wo (y)
and the worping in the spar webs is linear in 2. By a suitéble

definition of q we may assume that the rotation of linear
elements of the two spar webs to be egual and opposite.

3. The section is distorted in the plane in such a way
that Sy = 0 and that V = AT) X +A-(¥).

Reference to 8§ 2.5, in particular to equations (104), (105) and
(106) shows that our assumptions are sufficiently general to
deal with the loading cases and the simple box treated there.
putting our ascumptions into mathematical form, we can write.-

/U=QSSiIlCL4-..uu

o

o
-t
wm
a3}
=)
3
i =

This implies that lb - b" /2
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U=4g € 8in o + w H}
V:—.-p(g-yg—;ﬂ sina+1-":’%+ﬁ(

= qz sin a + (w)._ . z/b ;

W y=c i (131)
; = Wr i
Wy =W + pc sin a )

Rty 3 i
ul = 4z sin q + (w)y:—c' z/b ./
w& =W - pc sin g o

where, 1 ) =
p:p‘TX-i-'é"ng )
2

Q= Q4% + 3q,X
W=1vx - %xQ(q1 + %q2x)sin a (132)
A=A1x +A2

The quantities p,s Pos 4,5 dps Y are constants, while w,; w,s
A_1 5 A2 are f‘unctions of. ¥ The tc::x‘ms in (1.31) "involving p,q are

obtained by an applicatiodn of (9). Those involving %%

in the formula for V represent the tangential component of those
parts of w, which express rigid body motions (see Fig.11).

The remainﬁang component of the portions of Wo Are included in 4.
The definition of W in (131) is (w_ + w')/2, which will differ
from that used in 8 2,5 equation (97), By a term which

depends upon the cross sectional distortion and so will be
linear -in =z, This difference will therefore not affect the
relation between W and q given in (99) and (103). This
relation has been adopted here and used to derive the formula
for W in (4132). From equations (12) and (131) we find for the
strains in the skins.-

€y = (q1 + qzx) Z sin o + w,

(133)
B g% az dw dw
By = = (p1 - pgx)(g -y dy) sin a + ¥ iy +-ﬂ1 + 53} X + a§2

It follows that the stress resultants T, and S are linear in x
and so assuming in accordance with the %indings of Part II
that Top = 0 2nd Sp = o we find from (21) writing

X =% ='T2 = 0 thal,=
- as
T1 7o d'}_?’+ (T1)X=O
T2 = 0
S = 8(y)

/Equation (30) then .e...
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Equation (30) then gives. -

as
dy
as
A31 (-x d_y— + (T1)X=O)+ ABBS

6., = A¢1(—x

Wl + (T1)x=o)+ A,_S

13 ' (135)

Comparing (133) and (135) we deduce using (134).=

|

(ay + 4X)% sina (W), . A p,sing \
, = 1 i & l_l—-c 9 A15 ts)?;ﬁé ——EE““_(YZ+Cb')
11 11 2R 11
¥
A gin g, p
2 ]
+ 2(psy + Ki- ds) =% \J €
11 11
-c
: R
do sin o ,
S = (S)y=_,c 42} A11 j "-: dﬁf (136
~C
y
A3, . . A
Wy = (m1)y=—c+ (2p, + e a,) sin a \f £ dy - py sin a(y% + cb')
it .
dw, az ) daz
A‘i ¥ a_- e A}‘l (Tﬁ)}(:o+ A'ZJBS w p1 (Z - ay-—) BLIL 0 =% &"

Substltuting from (133) and (136) in (69) and (70)
(with A' written for A) we find.-

2oy
S == (8)._ 4+ g, sin a (523 + EAb) ]
157
S'w = (S)y=—c + EA'™'g, sin a ‘,r
where , -~ q B
E=%3,) & & (138)
-c

substituting from (131), (132) in (57) and (62) (with t!
written for t ) we find expressions for Sw’ S‘ which may be
compared with" (137) yielding. -

.
(w1)z=c (@ 1)1_-0
(1+0), 1 (1+0) q231n o (EAb EA'®D' 2cf O
Y=- g -8l ok 2 * e MR
w W i w 11 "w
i) fi) (el e
w w
2l y=06 2/ y==C _ ' 1
B Ch F72 = - pyestna - (55 t%)(s)y= c
1 ]
. (1go)q2 st %Ab 2 Eitb i 2
W W 11 W

/where in the .,...
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where in the last equation we have made use of the anti-symmetric
nature of the warping in the spar webs (cf.assumption {2

given above). Substituting now from the third of (136) into
the first of (139) we fing.-
A
31
PR T T dAe (140)

The formulae for T,; S, 8., § ((136), (137))
obtainecd above contain the uﬂknown dons¥ants Qs Gos» Po (W, y=we

d (B)... s Equations (139), (140) show that two of them
are exP¥E§%ible in terms of the remaining three. These last
three and hence the stresses can be determined by use of
cquations of overall eguilibrium like (75) and (76). However,
these require modification for the present structure. We
find easily that., -

C av i =
Z = 208, + 2b's! + 2( 8§ &= dy 3
~ ar ¢
Ly = 2beS, = 2b'es) + 2_% ysa§ = 2~£ ZSdy (141)
c
M, = 2bEA(eXX)y:C + 2b'EAI(€xx)y=-c+ 24}§T1dy

c

where allowance has been made for the z-wise components of
skin shear § 4z .
dy

Substituting from (136) and (137) into (141) and
making use of (139) and (140) we find after some transformation.-

b &
92 ¥ ET sin a /
where c
I =2+ a0 4 — 1 2%) JJ (142)
14 =0
O
L1 M2 2 j‘ =
S B e ey [ emne o e d
Syee bolfl, B Ay, ol }
-C
where = ey /
: : > 3 . (143)
d ' '2 2 2 LJ- ; { .»( o
2K (B° =A'D' %)+ AT yz ay + ok “;J&(Y)oa(y1)dy¢dy
i -C 0O
y fr
EI
A
& A1
(z:,l - 2A11L1>
a, = - _ (144)
BI sin a

It is to be remarked that Z and L, are constant in our solution, i
whereas M, is linear in x, It i% assumed in (144) that 2 is
applied a% X = 1 and hence that M1 is given by the expression

in (88).

Pormulae for the stress resultants can now be

/obtained., £as e
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obtained. Substituting from (142), (143), (144), (139) and
(140) in the formulse of (136) we find.-

I, z g
5= v o v
8c” EIA S - W
= 14 o
S (145)
where Ly = L, - ncZ ")
and gy A13 “
R e T e
& i )
where & A i i
= &Mq L ?ﬁl (Zy - L1) g
e 11 > (146)
Yxx BI
-t
Substituting in (13%7) we find.-
L, % o AbZ Y
B B = + f 7 Ay + —— ;
¥ " 8of EIA,, S © {
- & (147)
L‘1 7 : A'b'%
g = = = + dy +
w BGZ_, EIA jé .2 I #

4.5

The point y = nc, 2 = o on a section X = X may be termed the
'shear centre' at the section. It may be remarked that q = o
when there is symmetry about the 2z axis. The torque L

about an axis through the shear centre may be termed thé 'Batho
Torgue' and is seen to be reacted by & uniform shear flow given
by the usual Batho formula.

We turn now to the calculation of the deflections.
Combination of (4137) with the second of (139) gives.-

ay
8. S

1 /
r= (Le) (2. A (148)
W W

The quantity ¥ can then be obtained using (147). It is equal
to the mean shear strain in the two spar webs and so the term
in W(eq. (138))- 'Yx' is the 'shear deflection's. The
calculation of the rotations requires a2 knowledge of p,, Which
we have not found as yet. To determine p, we must aaﬂsider the
deformations of the ribs. The rib displacements are

calculated upon the supvosition that = 0 and that Wo is a
function of y only (ecf. 8 2.2). We f%nd by (52) that

dwR

—_— WD [ ) o J
Vg # 2 53 % = R® (149)
The displacement V at the skin is given by.-
of < WR
V= (vg),_, + o 3= -2 d(—- (150)
R g=r R dy 5o z ) :
Recalling (60) we find.-
W m' Ty
R { .
7 + gz = 0 (151)
-C

/Su'bstitutlng cae s
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Substituting from (131) in (151 we find.-
I A
W, = DYy sin g + W - ¥ j -5 Ay 152)
v
- =
and ¢ c
i A4 9n 3 m @y = 0 (153)
43 i
b _c‘j
Now the strain e in the curved skin can be calculated in two
Ways. Firstly ¥¥om the displacements V and .
by a well known formula and secondly from equation (30)., We
thus find. -
2
PRS- ') L e B T ; !
eov =3y - "n - 7 = AT, + AEBS (154)
Y.
Substituting from (131), (152), (145) and (146) and equating

coefficients of x in the resul

2
3A o Xgﬁ
2025 (Y
oy OF

The remaining terms of our ide
which we do not write here.

satisfies (153) is,
Mg An1 5 ‘¢
1 T
The quantity p, can now be cal
f ( ) dy and using (186), (1
_Egr i(wﬁ)y - = (mz)y=_c+Y(b_b’

obtained from (139) using

(142) and (145).

ting formulae we find, -

(155)

ntity give an equation forA,,
The solution of (155) which
dz )
7 |

Opeaating on (13%6) with

-

.

" (156)

- ¢9)
culated.
45) and (146) we find an expression
)f : This quantity can also be

Eou

ating the two

results we find for Dye =
py =Cy,L, - C QZ;f + 0132 s where
2 A
cosec uj(1+0)(b/t LB (hae n13/ﬁ11) 2as, 2 )
C = af= —
1%
8Zc { 28Zc 25 EIA$1J
A cosec o
O, = = ~s
12 aA,| 1EI
’ { 7
cosec a y (140) rb_ Db . & i é
Cpz = = ~e=—= J + ==Y+ (Axa = Ara/B,4) "
'3 7 4k | Bo Vi ol RS r (157)
COSEC Q
/+ 2d A1 EI L
1
* In all gtrictnecs Wy - VR %%, but the inclusion of the second

tcrm only introduces terms o

f the order neglected here,




c o]
cosec a(ﬂ+o)‘b f B! [ 2 el e
4 Er—— e '} = i =~ = ADb A !
2.;;113"3 He U J £ dy - ITJ %Ay + 'T"""";* { o t*b J; |
(4 Sy LR R
i
A A A o i
e e R NGRS : \
b 20 ol =] Y =~ e E ?_: dy il 3 5 £ _!:y"'?
(@] iy -1 \
\2 I c 3 |
(hoy = A34/4%44,) (o v J
+ T
O \.ﬂ’ y £ I‘h /
-¢ ! ,

Using (140), (142) and (157) we then find.- E

157
1

Q

LS

3

Q

ax = C1q 12 Wy (158}
where LE: = L'i = ._‘?\‘30 7 s
[ 3
s o ? (159)
f_'.-.nd q N = 1 5/(:-' \-J;I .'| ___.’j
Using (144), (142) and (132) we find.-
- é~% cosec o = 34 - Coqly + CypoM, (1€0)
dx dx ; o
where, 621 - 01? ;
} (161)
and Coo = cosec o /EI J

can be shown that the constants Cij of (157) and (161) reduce
to the forms given in (100) when the vproner specialisation is

The formular(158) and (160) have the same form as (99) and it

introduced, ThtgdilT“PbﬁQt in the new f ormulae lies in the
1ntroduvtlon of L= in (158). L# igs the moment avout a line
¥ = e, The intersection of this line with a rib wise

section (coordinate x) may be termed the 'centre for twist' at
that section.

The aim set at the Fpgirning of this section has now

been accomplished. Formulae for stresses and deflections

have been obtained for the case of a uniform sweot wing

structure loaded by 'normal' forces and couples ot the ends.

This represents a generalisation of the usual Bending-cum-Batho
® Which are ws:l by aircraft engineers to obtain a first

approximation to the behaviour of unswent wings.

F L Procedure for Practical Stress Analysis

Consider now an actual swept back wing structure
having two straight spars, skins reinforced by stringers and

ribs parallel to the 'direction of flight!'. (see Fig., 12)

The wing possessges a small amount of taper and the dimensions
of the structure vary in a gradual manner along the span. The
éxistance of a plane of symmetry intersecting the spar webs
will be assumed. IT no uuch plane uﬂlut“ in reality, thern the

ctual top and bottom surfaces should be replaced by fictitious

/surfaces having eeeea
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surfaces having ordinates and geometry which are mean values of
the real guantities for the two surfaces, This plane of
symmetry will be taken as the Xsy plane of a coordinate system,
The y-axis will be taken parallel to the ribs the x-axis will
interscct the traces of the ribs on the X,y plane at their

mid points and the Z-axlis will be normal: to the x,y plane.
Attention will be directea in what follows to a single rib-
wise section with coordinate x, The geometry of this section
and of the various structural €lements at this section, will
be described by the symbols used in 8 3,41, and illustrated in
Big. 10 It will be assumed that the wing is loaded by forces
acting in a z-wise direction and by couples whose axes lie

in the x,y plane.

The orocedure for estimation of the stressss at
section x may be outlined as follows, -

1. Tabulation of the values of the following guantities
at this section!-

(Ilasesb sb! sl);(y) P 9th t‘.;u”tR sA AT BA-SFAR 9aS$aR sBs0

If any of these, apart from ¥, vary across the sections; then
mean values should be taken. Allowance for the bending

. stiffness of the spar and rib webs should be made by augmenting
the areas A;A' and AR.

2y Calculation of sundry constants for the section|-
%y '@
g; 5 a;; (aij)p(equation (2%} ) (aij)R (equation (28)),
; {
2, 4 (equation (29)), the determinanti aij{’ Aij (equation (131)),
C c 1
- - L . 2 c ¥
Z (equation (138)), | £7ay, 5 y7% dy, | ?g<y).§(y1)dy}dy}
el ~C ~C 't
I (equation (142)), n(equation (143)).
B Calculation of the resultant static action across the
section: -
Z sum of' z-wise forces acting at points outboard of section.

This acts at the centre of the section (y=0).

L,sM, Oblique components, refered to axes 0(X,Y) (see Fig.1)
of the sum of the moments, about the centre of the
section; of all forces and couples acting at places
out board of the section. These may be calculated
using the formulae of eguation [A8), If the external
foroes are denoted by Zi and act at (xig yi) We may
write: - '

l-- e,
Law ¥ 5.9 My == 3 (x; - 2)8,
%

s i i g i

fhs

where the summation } is with respect to 1 over

g -
all the points Xy such that x £ &6 1 (where x = 1
is the tip). Any'couples' must be replaced by forces
before inclusion in these formulae,

/:_L‘[hjl LA B I B )
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51 X-wise component of moment about y = nc (see equation
(145) ).

4. Calculation of the Stress Resultante! -

S Shear per unit length (obligue component) in skins
(see equation (145)).

iy Tension per unit length (oblique component) in skins.

(see equation (146)).
The remaining componsnt T, 1is zero,
SysS; Shear per unit length in spar webs (see equation (142))

The shear per unit length in the rib webs S, is zero,
except of course for effects due to local 10ads applied
to the ribs.

5e Calculation of the stresses in the various components:-

E B Stress in the stringers. €., has already been found in
the calculation of Ty (equatidn (146)).

E(e Stresses in the spar flanges.

Xx)y=ic
The loads in the spar flanges and the tensions in the
stringer-skin combination (T, per unit length) will have
normal shear components if the wing structure is
tapered. Corrections of the typme, usually introduced
in the stress analysis of unswept wings, can be introduced
here to allow for the 'shear carried by end load', if it
is felt to be worthwhile.

E e Stress in the rib flanges. This is given by (30). We

vy : " A
find, eyy = A2¢T1 - n238.

GVX’ Ory Strain components in the skin (obligque axes).
e ayy have already been found, exy follows from
(=
35
xx?%vy? Cxy Strain components in the skin (rectangular axcs

OHY s &, has been calculated. Eyys €yy follow

K" 8
equation (30)i- e_._ = A,,T, + A

€

using equations (13) and (15).

51/t, Tz/tg S/t Stress components in the skin (rectangular
axes 0(x,Y).

These follow from equation (26).

Sw/t

o S%/t& Shear stresses in the spar webs.

This completes the analysis of the stresses at a
section of the wing. For a complete stress analysis these
calculations must; of course; be repeated at a number of
gections, The solution given will be in error near the tip,
near large concentrated loads and at the root,; but these errors
are present in the customary application of the beam theory
to unswept wings. A pufficiently accurate estimats of these

JEPTOTS eaes




B

errors may be obtained by idealising the wing structure and
treating it as a uniform doubly symmetric rectangular section
box and applying the methods developed in B e s The warping
equation (127) found there is so similar to that for an unswept
box that the outline given in 8 2.7 should be an adequate basis
for application,

T Procedure for Deflection Calculations

The procedure given here for the calculation of
deflections will be based upon the same assumptions with regard
to thé wing structure as the procedure for stress analysis
Of B8 2.2, The calculations described must be carried out
at a reasonable number of sections of the wing so t hat numerical
integrations to obtain actual deflections and rotations can be
carried out.

Te Calculation of Section Constants suosplementary to those

of & 3.2, (2)

y % dy.

Q%m0

c 0
j % CY¥.s 5 g ay s
(o] -C

0113 612 = 621, 013, C22‘ Formulae for these constants are given

in equations (157), (161).

1 (see equation (159).
2 Calculation of a special counle component supplementary
to B 5.2 (%),

Lf X-wise comnonent of moment about y = q%c (see equation
(159)).

3 Calculation of Rates of Section Rotation.

£2.+88 o . Q*% cosec a These quantities follow by

ax dx dx
equations (158) and (160).

b, Calculation of the Deflections and the Rotations

Psq These follow by integration of the expressions found in (3).

This rotation is about an axis passing through the centre
of the sectidnofy = z = 6)

p sin gDecrease in 'incidence'! of a rib section.

w This follows by integration of an expression found in (3)s
If the root is 'fixed' we may write W = aWl = o at
the root. ax
However see (5) below in this connection.

5e Calculation of the 'Deflection due to Shear',
5 36 This is the 'rate of shear deflection' and is given
by equation (148). In 8 3.1, it was a constant and
T
equal to %%) (see (132)). In general it will be
variable.

x=0

Mea  THO shiee
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W The 'additional deflection due to shearing', This is
obtained by integrating, -
aw

dx = Y'

WS must be added to W to obtain the 'total' mean soar

deflection, This prodedure will give the correct root
conditions for the total deflection W + W_.
[
This completes our analysis of deflections. o

account has been given of the calculation of section warping
and distortion, since this is of little nractical importance,
Rough estimates of these effects can h wever be made using the
simplified structure of Part II (sec equations (101), (102)
(104), (105) and (106)).
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