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Abstract 

In today‟s highly competitive business environment it is vital to have smart and robust 

decision making framework for companies to be competitive or even to stay in the 

business. Profit margin increase is no longer a result of producing and brings more 

products to the market. Instead it is also a result of reducing cost, in particular 

manufacturing tooling cost. In order to succeed with this, industry needs to look to 

innovative intelligent systems to enhance their process development so that maximum 

utilisation of tools can be achieved. Tooling is part of a process hence having an 

optimal process design is one ideal strategy for best utilising of manufacturing tools. 

In design optimisation however the presence of uncertainty in design variables and in 

the mathematical model (used for representing the real life process) is inevitable. For 

a reliable design solution to be found this process complexity need to be addressed. 

This research is to understand work roll system optimisation issues within rolling 

system design, and develop Genetic Algorithm (GA) based framework to deal with 

the challenges.   

The thesis has proposed a framework for generating approximate models from 

numeric finite element (FE) data. Using the proposed framework a number of single 

pass quantitative work roll system thermal analysis and optimisation models were 

generated and used in subsequent optimisation process. In the absence of a suitable 

multi-pass model that exhibits the features of a multi-stage process; this research has 

also developed a quantitative multi-pass models to simulate the work roll system 

thermal analysis and optimisation problem that represents the relationships between 

passes.  

The research has developed a novel Genetic Algorithm based optimisation framework 

that deals with the constraint quantitative problem as well as the uncertainty, in the 

design space and fitness functions. The study identifies the challenges in 

incorporating uncertainty information in the optimisation process.   

The research also proposed a post GA result analysis methodology for identifying the 

final best optimal design solution for the research many objective high dimensional 

problems. The performance of the proposed frameworks was studied and analysed 

through case studies. The research also identifies future research directions in the 

subject area. 
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1. Introduction  

 

Nowadays, the consumer wants more - with the best quality and at a low cost. 

Industries have to cope with this. As a forming expert in one of the leading car 

manufacturing companies, Tekkaya (2000) summarized the current pressure on this 

industry as follows: “In the past, we introduced 3 new models every 10 years, now we 

introduce 10 new models every 3 years.” Steel product development is no exception; 

the pressure on other manufacturing sectors has a direct impact on steel product 

development. The ever-increasing demands for the steel products by these industries 

forces the steel makers to respond faster to fulfil the demand. Responding faster 

requires continuous production and use of production tools hence, more tooling cost. 

In the rolling process, the tooling cost is one of the main factors that lower the profit 

margin. An increased margin can be achieved through production cost reduction, 

particularly tooling cost. In order to succeed in such a complex endeavour, therefore, 

industry is seeking innovative intelligent systems to enhance their new product and 

process development strategies more than ever. Since efficient uses of existing 

resources are key competitive drivers in industry, it is necessary that any techniques 

and methodologies used to keep the efficiency are capable of delivering high quality 

solutions, but at low cost. However, the traditional search and classical optimisation 

approaches in the steel industry, for monitoring tool life and roll thermal behaviour in 

particular, find it very difficult to satisfy these requirements. This is mainly due to the 

complex and uncertain nature of the problem. Roll thermal analysis is a complex 

problem due to the non-deterministic nature of the process and the large number of 

processing conditions and uncertainty involved. The problem complexity and 

uncertainty requires a robust and flexible approach to address it. The Algorithm based 

framework is expected to alleviate the key features of the problem, such as 

uncertainty. GA based techniques adopted in the thesis due to its ability to deal with 

multi-objectivity high dimensionality in the optimisation problems, and its flexibility 

in application hence complex problem characteristics such as uncertainty can be 

addresses. GA is also a technique currently in use by the sponsoring company. In the 

survey conducted by this research author on research paper published about 

engineering design optimisation techniques, the results clearly indicate that over the 
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years the GA based techniques popularity increased sharply. The survey conducted by 

Oduguwa (2003) also reveals the popularity of evolutionary computing (EC), 

particularly GA based techniques in industry for real-life optimisation problem 

applications. The survey shows that 95% of the techniques reported are GA based. 

Thermal profile study is the most important feature for the roll life. This is due to the 

fact that thermal related stresses are a major cause of work roll wear and cost of roll 

due to thermal wear is a concern to steel industry. Despite its importance however the 

subject is not fully investigated.  

Uncertainty in the Work Roll System Design  

Uncertainty in rolling particularly in data acquisition is inevitable. Rolling is a process 

that takes place in extremely hot and high disturbance uncertain environment. In this 

situation measuring accurate data live is challenging. As observed in Tata Steel 

Research, Development & Technology data acquisition is mainly using of measuring 

tools such as CNC machines and data taken during redressing off the processing line. 

Inter-stand data measurements are mainly calculated using assumed inter-stand 

relationship. Other very important rolling thermal variables such as roll speed and 

heat transfer coefficients are measured using encoders. The encoders convert the 

computer characters and commands in to digital forms. On the other hand roll profile 

is not directly measured, only estimated from models. These lead to data accuracy 

uncertainty. Due the complexity of the real life rolling processing environment, where 

empirical study is difficult to do, using approximate model is inevitable. Approximate 

models are however prone to forced accuracy compromises, as well as being known 

as model uncertainty. In this research context uncertainty is defined as the variability 

inherent in a physical system due to the range of expected outcome.  To deal with the 

design challenges such as uncertainty, therefore, the research:  

Aim to develop a framework for work roll system optimisation using thermal 

analysis and genetic algorithm. 

The chapter introduces the context of the research domain studied to address the aim, 

and is organised as follows: Section 1.1 introduces the sponsoring company business 

portfolio and its product development culture, as well as its association to the PhD 

project. Section 1.2 introduces metal forming technology and gives an overview of 

what constitutes the forming process. Section 1.3 introduces of engineering design 

optimisation and real engineering design problem complexities Section 1.4 Summery 
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of research initiative Section 1.5 present the thesis structure. The chapter concludes by 

outlining the thesis structure in Section 1.6. 

1.1 The Sponsoring Company         

TATA Steel - Europe, previously known as Corus is Europe's second largest steel 

producer, among the top ten in the world, with annual revenues of around £12 billion 

and a crude steel production of over 20 million tonnes. Corus was formed on 6th 

October 1999, through the merger of British Steel and Koninklijke Hoogovens. On 

April 2 2007, Corus became a subsidiary of Tata Steel, with 37, 000 employees 

worldwide, and has manufacturing operations in many countries, with major plants 

located in the UK and the Netherlands. The group operates through 20 business units 

and has an extensive product portfolio and services, including carbon steel, 

engineering and stainless steel, as well as aluminium. Corus comprises three operating 

divisions, strip Products, long products and distribution & Building Systems, and has 

a global network of sales offices and service centres. Tata Steel - Europe is a leading 

supplier to many of the most demanding markets, including construction, automotive, 

packaging and engineering. Rolling is the main manufacturing process undertaken, in 

which up to 15% goes to manufacturing tooling cost. The main collaborator of this 

research is Tata Steel - Europe, Research, Development and Technology (RD&T) 

Centre, located in Swinden, Rotherham, North of England, and UK.  

Table 1.1 The top 10 steel producers in 2009 (source world steel association) 

Rank Million metric tonnes Company 

1 103.3 Arcelor Mittal                  

2 37.5 Nippon Steel
1
 

3 35.4 Bao steel Group 

4 34.7 POSCO 

5 33.3 Hebei Steel Group 

6 33 JFE 

7 27.7 Wuhan Steel Group 

8 24.4 Tata Steel
2
 

9 23.3 Jiangsu Shagang Group 

10 23.2 U.S. Steel 

(1) - includes part of Usiminas         (2) - includes Corus 
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1.1.1 Steel Production Global Perspective in the last Decade  

There are around 80 companies worldwide known to be involved in the steel 

production, according to World Steel Association. The sum total of the annual 

production coming out of these companies amounted to 1219.715mmt in 2009. 

Although as indicated in the chart below, there is a downward growth from 2009 due 

to global recession. The latest update suggests that the world's total crude steel 

capacity, by the end of 2012, may grow by 251mmt to 1470.715mmt compared to 

2009. Corus, despite its leading position, ranking eighth in the world steel production, 

has only 2% of the global market share. 

 

Figure 1.1 global total steel productions in the last decade (world steel association 

2009) 

1.1.2 The Research Initiative and Tata Steel-Europe Research 

 Development & Technology (RD&T)  

As stated in the section above, the Tata Steel - Europe is comprised of three main 

divisions and 20 business units. One of the units is the Tata Steel - Europe RD&T, set 

to provide research, development and technology, and hence, to improve knowledge. 

The aim of the unit is to promote innovation and the development of new ideas to find 

optimum cost effective technologies based process solutions for the company as well 

as to continuously improve production processes development, and also protection of 
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the environment. The unit is stretched beyond Tata Steel - Europe, and collaborates 

with universities and other research councils to advance its research goals.  As part of 

fulfilling these goals, the RD&T initiate a long term research product, aiming to 

develop a process modelling techniques covering long product rolling to provide a 

robust modelling environment for roll life improvement. Some of the tasks necessary 

to achieve the project objective are stated as follows. 

 To develop a modelling environment for rolling scheduling and optimisation. 

This is primarily aimed at the new product development (NPD) and process 

improvement of long products. 

 To capture knowledge (uncertainty for accuracy, etc) within the rolling and 

modelling environment. 

Therefore, to satisfy these objectives, Tata Steel - Europe RD&T collaborated with 

Cranfield to develop the PhD project. The relevance of the PhD project to the new 

process development project is discussed in the next section. 

1.1.3 The Proposed PhD Research as part of Tata Steel – Europe  

 Strategic New Product Development Project 

The PhD project was initiated to provide support towards achieving some of the new 

process development project objectives introduced by Tata Steel - Europe RD&T. 

Rolling system design is a core skill, which significantly influences the ability to 

improve process, product and tool life. Currently, the rolling system design has been 

conducted by skilled experts using their experiences. Although in recent years, the 

system has been improved based on scientific approach, this approach, does not 

include the roll thermal effect. Currently, the roll damage due to heat can only be dealt 

with by mechanical means like dressing - this type is costly, time consuming and 

reduces the size of the roll unnecessarily.  Most importantly, it does not include some 

important real life design problem characteristics, such as uncertainty. Motivated by 

these necessities, therefore, the PhD project is designed to fill the gap by developing a 

rolling system design, thermal effect and uncertainty, based on scientific approach. By 

doing this, the PhD research contributes knowledge to the overall Tata Steel - Europe 

RD&T NP & D in the following areas: 

 Fulfil the increasing need to develop solutions, using scientific approaches in 

favour of traditional approaches, to advance effective utilisation of work rolls, 

overcoming thermal effect. 
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 To strengthen capability to search a design space to deliver robust, multiple, 

good solutions, regardless of the presence of uncertainty. 

Hot rolling is a process, driven by friction, in which large plastic strain occurs in the 

work piece when the roll exerts pressure at the bite region. The resulting plastic work 

is converted into heat energy, while friction heat is generated at the interface due to 

the relative motion between the work piece and the roll. Depending on the roll speed 

and material properties at the point of contact, a fraction of this heat is transferred 

toward the roll. Finally, the heat is taken away from the roll by the cooling system 

(either water cooling or air). It is important to emphasize that high heat flux, 

generated at the interface; results in substantial variations in the work piece and roll 

surface temperature, whereas roll bulk temperature remains more or less unaffected. 

The roll surface is subjected to significant variation of thermal stresses that ultimately 

cause roll damage, and shortening of roll life. It is obvious that such rolls decrease the 

productivity of the rolling process, thereby increasing the number of roll changes, and 

thus influencing product quality and cost. The cost of rolls and rolling take a 

significant portion of the overall production cost. A single roll costs £8000 and the 

rolling process estimated to have absorbed 5% to 15% of the production cost.    

Therefore, it is important that heat flow during the metal rolling process be studied, in 

order to design work roll thermal analysis and optimisation so that its working life can 

be improved. Although many studies have been carried out to model thermal 

behaviour of rolling processes that involve either modelling of roll or strip, few 

attempts have been made to couple thermal modelling of the roll, product and, most 

importantly, incorporate uncertainty and constraints in the modelling and 

optimisation. Therefore, this PhD research is designed and fills these gaps.  

 

Figure 1.2. Left to right: Roll breakage due to too high temperature gradient/high 

residual stresses and fire cracks rolling rails (Schroeder, 2005). 
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1.2 Introduction to Metal Forming  

Metal forming is a complex manufacturing process requiring a simple geometry to be 

to be transformed in to a complex one. But what are the details of the forming and the 

important characteristics involved in the process? Metal forming is normally 

performed after the primary processes of extraction, casting and powder compaction, 

and before the finishing process such as: cutting, grinding, polishing, painting and 

assembly (Avitzur, 1979). So, the forming process is an intermediary stage, but it is 

also a very important stage because the main objective of metal forming process is to 

give the dimension desired of the work piece to obtain the best final product. The 

forming process is defined as an operation where the shape of a metal experiences 

changes via plastic deformations using specially made forming tools called work rolls. 

To describe the details involved in the forming process and the deformation 

phenomena, plasticity theory can be employed (Leisten et.al., 2001). However, this is 

beyond the scope of this research. The forming process includes typical processes like 

rolling, forging, stamping, drawing and extrusion. During all these processes, 

deformation is induced by external compressive forces from work rolls. Work rolls 

are an important part of the forming process. The forming process can be divided into 

two categories: 

 Hot working 

 Cold working  

The main focus area of the research is in the hot metal rolling process, highlighted in 

Figure 1.3, particularly the roll used to cause the deformation in the product and the 

cooling system associated to it.  
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Figure 1.3. Steel making and the rolling process 

Hot Working Process  

This is a process by which a microstructure, thermal and thermo mechanical, 

transformation of a material occurred due to heat. During the process, the material is 

deformed above its re-crystallization temperature. Although the condition varies 

depending on the working condition and material type, the temperature can reach up 

to 1500
0
c during hot working. In hot rolling, the mechanical, thermal and physical 

properties, as well as boundary conditions, are temperature related. Therefore, heat is 

the major issue in the hot rolling. Thermal effect also has a trigger for the presence of 

stress; therefore, the heat flow and stress analysis cannot be analysed separately. The 

analysis requires a thermally coupled approach (Chen et.al., 1998). Since work roll is 

the integral part of the working process, it is exposed to all the effects of the above 

mentioned features of the working process. To protect the roll from these effects, 

therefore, it is necessity to have an optimal rolling thermal design that can overcome 

the effect and protect the roll from damage. Major hot-working processes that are of 

major importance in modern manufacturing include the following: Rolling, Forging, 

Extrusion and upsetting, Drawing, Spinning, Pipe welding, piercing.  
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Cold Working Process  

Cold working is defined as a plastic deformation of metals below the re crystallization 

temperature. In most cases of manufacturing, such cold forming is done at room 

temperature. In some cases, however, the working may be done at elevated 

temperatures that will provide increased ductility and reduced strength, but will be 

below the recrystallization temperature. In the majority of cases, no heating is 

required in the cold working process.  

1.2.1 Overview of Work Rolls and the Rolling Process  

The rolling operation is a high-speed process where the material referred to as the 

stock, is passed between two work rolls driven at same peripheral speed in opposite 

directions. Each roll exerts compressive stresses and forces the work piece to reduce 

in cross section, as shown in Figure 1.4. The stock leaves the work rolls with a 

reduced thickness and uniform cross section. Since the stock is driven by the roll 

speed the velocity (Vout) of the stock (after it comes out of the roll gap) is higher than 

before entering the gap (Vin) or can be written as (Vout> Vin).  Heat from the rolled 

product to the roll is the maximum at roll bite. The rate at which the heat transferred is 

depending on various factors, collectively called heat transfer coefficients (HTC). 

Other parameters such as roll stock contact length and roll speed also influence the 

heat transfer from stock to the work roll. This topic discussed in detail in Chapter 5.       

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. View of single pass rolling featuring roll/ stock contact length (C.L), roll 

radius, roll gap, stock before and after bite. 
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Figure 1.5. View of cylindrical work roll.    

Work rolls are a forming tools designed to change the shape and size of the rolled 

metals depending on forming requirements. Achieving the final shape of the product 

in minimum number of passes, within the constraints of the mills is the main criteria 

for designing rolls. Typical roll type, shown in Figure 1.4 and 1.5 consists of the 

following parts: Roll barrel, Roll neck, Roll shell and Roll core.  

Roll barrel – is the part of the roll that is in direct contact with the rolled product and 

makes the forming. Roll barrel can be sectioned in to two; these are the shell or the 

surface of the roll and the core or internal part of the roll. 

 Shell - is the surface or outer part of the of the roll barrel which is in direct 

contact with the hot stock during rolling. The temperature at this section rise 

above bulk (initial temperature of the roll as high as half of the stock 

temperature. The extent of the temperature rise and depth of penetrations is 

depending on various process factors. For example the speed in which the roll 

runs, the contact time the roll has with the hot stock, and the cooling 

conditions are some of the main factors determined the heat affected area on 

rolls. The roll running at lower speed with longer roll / stock contact time led 

to the higher the amount and depth of heat in to the roll. The section also acted 

up on by the cooling system to remove the excess heat from it, absorbed from 

the stock when in contact. This constant change in temperature and occasional 

non-uniformity of coolant application on the surface cause the shell highly 

prone to thermal related failure. 

 Core - is the inner part of the roll. The core expected to retain the bulk / initial 

roll temperature throughout the rolling process. In practise this is true only if 

the temperature increase in the shell is managed. Heat passed and accumulated 

Roll barrel Roll neck 

Roll shell  Roll core 
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to the core or at the interface between shell and core will cause roll thermal 

shock, particularly when the coolant applied to it or during the cooling period.  

Roll neck- is section at two end of the roll which is used to attach the roll in the roll 

mill and load applies to it so that the roll can press the rolled product when it pass 

through the roll gap. 

Rolls are manufactured by casting and are varies in size and texture/grades. The 

variation is an important behaviour of rolls because the choice of rolls for application 

in rolling is depend on it. For example selection of work roll differs depending on 

requirements of products to be rolled and section of the rolling process. The main 

drivers of rolls selections are the ability to resist wear, thermal shock and withstand 

stress. In the last decade the use of work rolls in hot rolling has improved. This is due 

to the roll grade development by using enhanced roll materials. For example due to 

the roll size and production demand placed on the rougher rolls, high chrome steel 70-

75 ShC has been gradually replaced by new grades like carbide enhanced high chrome 

steel 75-80 ShC, and the finishing passes have seen a development from high chrome 

cast iron 70-75 ShC to carbide enhanced high chrome cast iron 75-80 ShC, and a 

variety of other enhanced materials (Ziehenberger and Windhager, 2006). The 

development is necessary since it improves the surface quality of the roll; as a result it 

runs much longer campaigns and improves the efficiency of the entire mill. However 

improving the roll material or/and selecting compatible roll type for particular product 

and section of rolling may not guarantee that the roll behaviour could be fully 

realised. There are uncertainties. The uncertainties are due to imperfection in the roll 

manufacturing and developing as well as during the forming process. According to 

Ziehenberger and Windhager the following are roll manufacturing concerns, which 

may have impact on roll life when used in the hot rolling process. 

 Double poured work rolls are big and very complex castings. The bigger the 

casting, the more likely the inner part of the casting will show imperfections. 

 Shell (outer layer of rolls) and core material have different alloying contents 

resulted varying temperatures and thermal expansion. This leads to high 

residual stress, compression stress in the shell, tensile stress in the core.  

 High residual stress and imperfections in the inner part of the shell or in the 

transition zone, shell and core interface may increase the risk of roll failure. 
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The uncertainties, which are related to roll thermal behaviour, can only be improved if 

it is addressed in rolling process planning of campaigns that includes searching for 

robust, optimal process design. The work rolls in the mill are subjected to periodic 

loading that is accompanied with abrasion by scale and fluctuations in temperature 

(Hitchcock, 1935). Various factors cause the temperature fluctuations. Design 

variables such as roll speed, roll/stock contact length, stock temperature the cooling 

regime, delay time and other related process factors. Parameter variability in those 

design factors is also a source of uncertainty that cause thermal variation in rolls 

during rolling. Figure 1.6 shows a 6 high, 4 passes hot rolling process arrangements 

consisting of roughing, intermediate and finishing stands.    

 

 

 

 

 

 

 

Figure 1.6. View of sequence of 6 high rolling process involving 4 passes. 

The main drawback of the process is the tool life. During hot metal forming work roll 

service life is dramatically shortened by thermal and mechanical cycle, excessive 

metal flow and decrease in roll hardness. The roll life and degree of wear are also 

influenced by uncertainty. Uncertainty in the system design factors, as well as 

uncertainty in real life rolling practise, may cause unexpected load (thermal or 

mechanical) on rolls. In hot metal forming, the process takes place in a very high 

temperature, up to 1500
0
c, environment, and hence, the temperature is becoming a 

primary subject to research for improving roll life. Today, the advancement of 

computer software and statistical tools has made it possible to foresee forming process 

behaviour in advance. For example, predicting the temperature field during the 

forming processes is an important phenomenon, since it influences the 

lubrication/cooling conditions, the material behaviour during deformation, the quality 

of finished part, and above all, the service life of work rolls (Jeong, 2001). Work roll 

cooling system is an integral part of the rolling process design to protect the roll from 

thermal damage. Effective utilization of rolls can only be maintained by having a 
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rolling thermal design model that incorporates compatible roll cooling system. Section 

1.2.4 introduces the roll cooling system, its operation and disadvantages of the current 

system. 

1.2.2 Fundamentals of Rolls in Hot Metal Rolling 

Since the beginning of the technology era where metal forming become known to 

mankind, the forming process was always, and still is, dependant on the work rolls 

acting on the workspace to give it the required shape and form. Since then, however, 

the technology has enabled rolls to be made better and in accordance with the interests 

of the material to be rolled. The roll can be improved by blending, mixing different 

alloys together, so that stronger and better rolls can be made. In the early days, before 

the mid eighteenth century, cast iron rolls with different hardness (alloy properties) 

were used. These iron rolls, in comparison to modern era roll, exhibited low hardness 

and poor wear resistance. In the early part of the eighteenth century, with the 

introduction of the metal chill mould, the increased cooling rate at the surface of the 

roll produced a structure with about 40% iron carbide, a hardness of about 60%, and 

improved hardness. However, even though there was overall improvement in the roll, 

it was still characterized by low mechanical strength. As a result, to avoid roll 

breakage, relatively small drafts were taken during the rolling operation (90 % pearlite 

and 10 % graphite). In the mid nineteenth century, the cast steel rolls with a carbon 

content of about 0.5% were introduced. The introduction tripled the strength of the 

cast iron, due to the absence of graphite and massive carbides, but with a relatively 

low hardness. Towards the end of the nineteenth century, forged steel rolls were 

introduced. These exhibited a greater resistance to breaking, but not much in 

resistance to wear. However, improved strength and resistance to wear were provided 

by appropriate heat treatments, such as grain refining, annealing, as well as 

normalizing, and by carful control of composition, particularly with respect to carbon, 

manganese and chromium. In practice, even though the current materials used for 

rolls are much improved for reasons mentioned above, and equally important 

characteristics such as presence of bearings (roller bearings for work rolls and use of 

oil film bearings for back-up rolls) during operation, there are still problems 

associated with rolls that are visible mainly after certain temperatures build-up in the 

work roll during hot rolling. Some of the characteristics of those roll types and 

problems associated with them when used in hot rolling are shown in Table 1.2. 
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Table 1.2. Roll types and their characteristics when used in hot rolling  

(Hickley and Porthouse, 1975). 

Metal Temperature range (
0
C) Problems in rolling 

Carbon  steel 1300 - 850 Fire cracking, abrasive wear, shock load 

during roughing 

Low-alloy 

steel 

1300 - 850 Fire cracking, abrasive wear, shock load 

during roughing 

Stainless steel 1250 - 950 Several thermal conditions as cooling is 

often restricted 

The rolling operation is a deformation process, the deformation of the work-piece 

accomplished by two rolls rotating with equal speed in the opposite direction. The 

frictional effect drags the work piece in to the roll bite and forces it out through the 

narrowest end of the bite. In the absence of any tensile stresses and friction between 

the rolls and work piece, rolling would not be possible, since deformation energy 

could not be transferred from the rotating rolls to the work piece. It is also learnt that 

the nature of the rolling process where the work piece passes through the rolls rotating 

in opposite directions, involves the flow being mainly restricted to the direction of 

rolling, and thus, there is a lateral constraint applied to the work piece (except near its 

edges). In hot rolling, however, tensile stresses are usually created by adjacent roll 

stands acting on the same work piece as it is processed in continuous mills. Such 

stress must not be very large since it will cause necking. A reduction in the cross-

sectional area of the work piece may also be the cause for roll crack and damage 

(Schroeder, 2005 and Muller, 1959). In principle, rolling is a process where mass flow 

of work piece entering the roll bite is equal to that leaving it. Thus, a fractional 

increase in the speed of the work piece created by a rolling process corresponds to the 

fractional increase in the cross-sectional area of the piece. Thus, if v1 and v2 denote 

the work piece speed entering and leaving a mill pass and r is the reduction in the 

cross-sectional area (expressed in decimal fraction) v2 = v1 / (1-r). While the 

peripheral speed of a work roll in a mill stands remains constant, the surface speed of 

a point, on the surface of the work piece increase as it passes through the bite until 

usually on exit from the bit, then it exceed the speed of the roll. The work-pieces are 

then said to exhibit forward slip (Muller, 1975). Rolls can be chosen depending on the 

type and size of material to be manufactured. Based on the type of material to be 

manufactured, rolls can be classified as follows.   
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Iron rolls- There are various rolls made of iron, differing from one another based on 

alloy content, method of manufacture and the character of the chill. 

High-chromium rolls – high chromium is a material introduced in the 1970s and 

exhibiting a very high degree of wear resistance (due to chromium carbide in the 

shell). Today, because of these characteristics, in comparisons, high chromium rolls 

have better acceptance by industries. High chromium rolls have the following 

advantages: 

 Lower roll replacement and roll grinding costs. 

 Improved product quality because of better roll surface. 

 Reduced roll changing delays. 

 Some internal cast high-chromium rolls exhibit twice the life of grain iron 

rolls (McManus, 1980; Davis, 1981 and Linhart, 1972).  

Steel rolls – steel rolls are widely used, mainly in manufacturing products such as 

high-lift blooming miles, roughing miles and slabbing miles. There are various steel 

rolls available, varying in property. The variation is due to the process involved in the 

manufacturing of the rolls; the manufacturing processes include heat treatments and 

follow up tempering processes.  

Forged cast iron and steel rolls – to provide the toughness required in many hot-

rolling situations, certain types of both iron and steel rolls are frequently forged after 

casting. Although quite brittle at certain temperatures, cast iron can be plastically 

deformed by hot working. 

Carbide rolls, tungsten carbide – cobalt grades is a roll type mostly used in hot 

rolling. In hot rolling, carbide rolls are currently used only in the finishing, and rarely 

extended to the intermediate stand. However, due to the nature of the property of the 

material, a carbide roll must always be cooled during hot rolling. Pass arrangements in 

the rolling process are various, depending on the type of material to be rolled, section 

of operation and size of products. Typical roll arrangements commonly used are 

shown in Figure 1.7. 
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Figure 1.7. Rolling mill configurations  

1.2.3 Roll Types Selection for Hot Rolling Applications     

As discussed in the previous chapter, there are various types of rolls, and the variation 

is dependent on the material type and the suitability for particular applications. 

Therefore, to maintain longer roll life, the roll is selected depending on the section of 

the rolling process and the type of material intended to be rolled. Roughing is 

considered to be the most severe rolling operation next to high slabbing and 

blooming. High carbon grade material would be a solution for this type of process. 

However, its ability to grip to the work piece and resistance to fracture should be 

improved by alloying and heat treatment so as to refine the microstructure (Thieme 

and Ammareller, 1966). Generally, the selection of rolls for the rolling process 

requires the fulfilment of the following: with the section that exerts high stress to the 

roll, steel rolls mainly with low carbon contents are essential, while with the section 

where the stress is moderate, the steel rolls and a few specific types of cast iron whose 

property is compatible to steel may be appropriate. Where the stress exerted to the roll 

is less, any type of rolls, including cast iron, can be used. However, the choice of rolls 

for specific rolling operations may be difficult and require experimentation. In 

principle, under normal circumstances, if the right type of roll is selected for a specific 

type of rolling process, and with the right form of cooling conditions, the temperature 

of rolls remains in the outer layer of the roll. Temperature below the surface/shell at 

the radius should remain insignificant. Thus, it is assumed that only the outer layer 

with certain thickness, depending on the process factors, experiences thermal cycling. 
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There are various contributing factors determining the depth of the heat affected area.  

If the heat penetration zone reaches beyond certain radius and is accumulated at the 

core, it causes rapid damage to the roll. Depth of the heat penetration zone can be 

determined experimentally, and also as used in this research, using mathematical 

relationships of thermal, mechanical and process factors of the rolling process. Roll 

consumption represents a major part of rolling cost - much research in the field shows 

that thermal deterioration of the rolls is more severe than other wear mechanisms. In 

hot rolling, temperature and stress are mainly the results of the thermal and 

mechanical property of the roll material. Even though some materials such as 

cemented-carbide rolls are good enough to withstand thermal stresses, due to their 

excellent heat conduction property, however, the cooling problem, due to thermal 

shock, is much more severe, since more heat is conducted into the roll body. The 

thermal conditions at the interface between work rolls and the stock have been studied 

by a number of researchers  and all universally accepted that rolling temperature is an 

important factor in determining roll wear and roll life (Hill and Gray, 1981; Pallone, 

1993; Troeder et.al., 1985). If the temperature concentration in the outer layer of the 

roll is not timely controlled with adequate cooling, it can lead to fatigue, and hence, 

shorter roll life. The most noticeable roll wear due to heat is the thermal fatigue 

(Tseng et.al., 1991). 

Thermal fatigue is widely known as a mechanism of roll wear. It is the major form of 

roll wear occurring in rolling. During the hot rolling operation, any point on the roll 

surface is heated when contacting the hot stock and cooled by water. As the result, 

compressive and tensile stresses are generated at a frequency of the roll rotation. If the 

compressive stress exceeds the compressive yield limit of the roll material during the 

heating stage, the outer layer will deform plastically. In cooling, a high tensile stress 

will be imposed on the roll surface. The ductility of the roll material is significantly 

decreased at these lower temperatures. When the fatigue limit of the material is 

reached, crack begins and the characteristic overall “fire crack” pattern will result  

(Teseng et.al., 1990). Heavy bending stresses will accelerate the process of crack 

propagation and the subsequent roll damage. There are a number of processes, as well 

as operation factors and uncertainties in those factors, which directly or indirectly 

influence the variation in temperature in rolls, and hence, subsequent wear in rolls. 

But what is roll wear?  

Roll wear measures the loss of rolls‟ ability to roll and produce metal (in tons), due to 
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thermal fatigue. The rate at which work rolls wear in a hot mill, due to thermal 

fatigue, is of considerable economic importance because of roll purchase and grinding 

costs, together with the costs associated with roll change. Roll wear can be measured / 

estimated by the amount per ton rolled in rolls‟ expected normal life time. For  

example, under normal circumstances, cast iron is expected to roll up to 70,000 to 

130,000 tons, grain-iron rolls between 95,000 and 160,000 tons, and cast steel rolls 

105,000 and 165,000 - just to mention a few. This is just a rough estimate and often 

rolls damage before reaching this amount. Wear of the roll is greatly affected by some 

process parameters such as work-roll diameter and product dimension, as well as 

improper cooling that cause fire cracking. Keller (1955) believed that during hot 

rolling, heated surface layers expanded radially and contracted in the axial tangential 

direction. If the residual stress exceeds the tensile strength of the roll material, the 

condition leads to fire cracking. The correlation between the fire cracking and 

thermally induced stress (thermal fatigue) in the roll surface would be the main reason 

for untimely roll wear. If the plastic deformation in the roll surface is small, the stress 

in the circumferential direction, ζc due to thermal effect and the roll pressure P will be 

ζc = 1,43α ( ∆T  ) E + 0.39P, where E represents elastic module of the roll material 

and α is coefficient of thermal expansion. The difference between the roll surface and 

body temperature, ∆T can be approximated using the following relationships: ∆T = H 

(t/kρC)
 1/2

 (Ts-Tr) where H is the heat transfer coefficient between the roll and stock, t 

contact time, Ts initial temperature of the stock, Tr roll temperature and k, ρ, C are 

thermal conductivity, density and specific heat of material, respectively, (Williams 

and Boxall, 1963). The above relation indicates that there are number of important 

process factors such as heat transfer coefficient (H), influencing wear and roll life. 

The work also presents that the temperature condition in rolls are dependent on 

process sections. For example, maximum thermally induced stress occurring at the 2
nd

 

stand and dropping to the lowest in the last stand, corresponding to that the roll 

contact heat transfer coefficient h at the first stand, is less than half in comparison to 

the subsequent stands. The justification for these behaviours is partly because of the 

additional cooling of the stock surface by the descaling spray ahead of the first stand. 

Normally, protecting the roll from excessive heat is the job of the cooling system. 

Water cooling is the most common way of removing the heat and keeping the roll 

cooled. Heat removal from the roll, according to the Nektons‟ law of cooling, can be 

defined as the difference of the roll-surface and the coolant temperature, TRs and TC 
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respectively. With the heat transfer coefficient, H, mathematically, the relationship 

can be expressed as q = H (TRs – TC). Many researchers believe that the heat transfer 

coefficient, H is proportional to a fractional power to the amount of heat removed, or 

the difference between the roll surface and coolant temperature, and is mathematically 

expressed as q = h (TRs – TC) 
n
. The n value will vary depending on the flow of the 

coolant measured by the jet, high or low speed. Hence, the effectiveness of the 

cooling, and thus, the temperature in the roll, has high dependency with the heat 

transfer coefficient. Other important factors to be considered are: type of material 

used for the nozzle, the flow rate required and the distance between the sprays to the 

surface of the rolls. A similar experimental study in the field listed the following three 

spray cooling parameters as the main factors that affect the roll temperature. These 

are: the position of the spray around the roll, the water-spray density and the length of 

contact of the spray with the roll (Teseng, 1999). However, there are other process 

factors and parameters that can determine the overall thermal behaviour of rolls. 

Detailed descriptions of the main factors in the rolling process influencing rolls‟ 

thermal characteristics, are discussed in Chapter 5.   

1.2.4 Introduction of Roll Cooling System in the Rolling Process 

Continuous developments in roll making technology have now made it possible to 

provide a wide range of cast and forged rolls varying in hardness. Rolls may now be 

selected to be appropriate for any given set of rolling conditions, so that the limitation 

in mill productivity attributes to roll-surface deterioration may be minimized. 

However, one factor which is still a critical concern and not fully explored in the 

operation of hot mill, is the cooling of rolls. Rolling is a heavy duty manufacturing 

process and takes place in a high disturbance and extremely hot environment. In the 

absence of proper cooling, roll intimate contact with high-temperature work pieces 

would result in attainment of relatively high temperatures, and consequently, such 

problems as excessive fire cracking, roll deformation causing rapid wear of the roll 

surface, damage to bearings and seals, difficulties in obtaining proper thermal crowns 

for the rolls and unacceptable surface on the rolled product. Proper roll cooling can 

obviate, or at least alleviate, most of these problems. Rolls are estimated to contribute 

about 5% to 15% of overall production cost in product rolling; hence, establishing an 

effective cooling system for optimum roll temperature is vital. However, observations 

of industrial real life rolling practise and literature shows that current roll cooling 
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practise is conventional and inadequate for potential saving of roll related costs. The 

cooling system is operates by continuous spraying of water on to the work roll. The 

spraying of water remains throughout the rolling process. Although it is clearly 

understood that having an efficient cooling system for keeping temperature variation 

in the roll surface at a minimum is vital, the cooling practice remains unsatisfactorily 

explained (Parke and Baker, 1972). The cooling process, as observed in real life 

rolling practise is  a continuous flow of water in the roll during rolling, whether the 

roll is in contact with the stock or not. Continuous flow of water on the roll remains 

questionable because of the damaging effect of the increased thermal gradient, 

causing the roll to be prone to thermal shock, or generally known as thermal fatigue. 

The main issues of the current cooling techniques and gaps in the system are 

summarised as follows:  

 Although it is clearly understood that temperature variation around and across 

the roll surface is detrimental, extremely wide differences in cooling practice 

remain unsatisfactorily explained. 

 The cooling system is conventional and performed by continuous spraying of 

water on to the work roll, regardless of requirements and without taking in to 

consideration other related issues such as uncertainty, constraints and design 

factors.  

 Although in recent times, soft computing techniques are emerging as a 

solution alternative for solving real world rolling problems; existing soft 

computing based rolling system design has not been fully utilized to include 

the work roll system.   

 A more sophisticated problem of the optimisation of the work rolls via 

modelling with thermal, thermo mechanical parameters and uncertainty has 

not been explored. 

1.2.4.1 Roll Cooling System Operation   

Roll cooling is a process within the rolling system, designed to keep the roll 

temperature constant while it is in operation. The cooling system is carried out by 

continuous flow of water/coolant from a number of (usually 6) sprays through nozzles 

known as orifices at a given rate and pressure in to the rotating rolls. Consideration 

has to be given to a number of factors in selecting coolant sprays for best cooling 

result; these factors, as well as being known as heat transfer coefficient (HTC) of 
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cooling, include: type of material, flow rate and pressure, distance from the surface of 

the rolls and condition of oxide scale on the stock are of the most required. However, 

even though roll cooling is an important part of rolling system design in terms of 

keeping the roll in long lasting condition, observation of the real life rolling practice 

indicates that the system is not an innovative and intelligent system based operation. 

The system is mainly conventional and its application is characterised by various 

uncertainties. The presence of uncertainties hinders achieving a cooling regime that is 

efficient enough for full utilisation of rolls‟ working life. Main issues needing to be 

addressed and tackled here are the causes of insufficient cooling, or over cooling of 

rolls resulting in higher change in temperature, as well as the stress during rolling. 

There are a number of factors causing an inefficient roll cooling process. The main 

areas of interest needing to be investigated are parameters related to tools and the 

work piece, parameters related to the manufacturing environment, as well as 

parameters and uncertainties in the forming process. In addition, it is vital to 

understand complexity among factors (mechanical, thermal and thermo mechanical). 

For example: to understand temperature distribution of the tool, it is vital to know the 

initial temperature of both tool and stock parameters, as well as other properties 

associated to them such as the heat conductivity, density and thermal conductivity of 

the materials. According to Chen et.al. (1992) for a single rolling pass, the 

temperature distribution in the stock and rolls is influenced primarily by heat 

conduction across the roll-stock interface. There are also some process parameters 

which have to be taken into account, the period of contact between tools and materials 

and /or contact length (Rosochowska et.al., 2004). For example, the longer the contact 

is, the more the temperature transfers to the tool. Geometric parameters are also 

important, like position and size of the tool. Those parameters will have an influence 

on the time and place of contact, and can change the distribution of the temperature on 

rolls. The delay time, the time where stock stops coming through the roll for known or 

unknown reason, is also one of the main contributors of temperature variations on 

rolls. All these behaviours and causes of thermal behaviours described above make 

the rolling system design for optimum roll cooling challenging and complex issues to 

deal with. Detailed review of the literature in the research domains i.e. rolling system 

design for optimum roll cooling and other relevant topics associated to it, are 

presented in the next chapter. Lists of factors of the rolling process influencing rolls‟ 

thermal behaviour, as well as complexity of factors, are also discussed.  
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1.3  Introduction of Engineering Design Optimisation  

The concept of design was born the first time an individual created an object to serve 

human needs. Today, design is still the ultimate expression of the art and science of 

engineering. From the early days of engineering, the goal has been to improve the 

design so as to satisfy the needs, within the available means. The design process can 

be described in many ways, however, the common denominator that certain elements 

in the process that any description must contain are: recognition of needs and a 

selection of alternatives. The selection of the “best” alternative is the phase of design 

optimisation (Chinyere, 2000). Optimisation is the act of obtaining the best result 

under given circumstances and desired requirements. In the design of any engineering 

system, engineers have to take many technological and managerial decisions at 

several stages. The ultimate goal of all such decisions is either to minimize the effort 

required or to maximize the desired benefit. Since the effort required or the benefit 

desired in any practical situation can be expressed as a function of certain decision 

variables, optimisation can be defined as the process of finding the conditions that 

give the maximum or minimum value of a function (Deb, 2001). Optimisation search 

methods assist the designer at all stages of the design process. Today, there are a 

number of optimisation tools to support the design of a variety of products, including 

that requiring high structural integrity, such as the metal forming and rolling process. 

These tools will allow the designer to trade-off amongst contradictory product 

requirements to find the optimal design. Few examples of product design 

requirements include such elements as performance against cost, quality against 

durability, quality against quantity, production tool life against product output and/or 

combination of all. Over the years, the act of finding the optimal design has shown a 

substantial improvement in terms of reducing optimisation process time and cost, as 

well as accuracy. This is due to the availability of powerful computers, together with 

the advancement of artificial intelligence. 

1.3.1 Classification of Engineering Design Optimisation Problems 

Real world engineering design optimisation problems, such as roll cooling system 

design problems, can be seen as a problem of multiple characteristics, each 

characteristic with its own unique contribution to the problem. Chapter 2 describes 

classifications of design optimisation in terms of problem solving approaches. This 
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section discusses the classification which the problem is associated with. 

Classification allows engineers to understand design optimisation problems according 

to certain characteristics and problem solving philosophy, and facilitates organisation 

and reuse of knowledge in the design process. It also enhances the representation of 

knowledge and capturing of the reasoning schemes behind designs. Classification also 

helps engineers to compare different design methods and tools and come up with 

suggestions on how best to use computer aided systems in designs. Ullman (1995) 

proposed four classifications, namely structure of engineering design optimisation, 

problem focus, range of independence and level of support. Structure of engineering 

design optimisation itself consists of three sub classes, namely decision space, 

abstraction level and determinism, as well as preference model. The preference model 

in itself consists of an objective function. A classification of the engineering design 

optimisation problem is necessary and essential to select the right optimisation 

approach for the problem. Tiwari (2001) further categorized and proposed 10 

classifications for engineering design optimisation problems. An enhanced version of 

the classification is summarised by Roy et.al. (2008) is presented in Table 1.3. The 

enhanced classification is developed based on five basic schemes and two viewpoints. 

The basic schemes are: design variables, constraints, objective functions, problem 

domains and the environment for the design. The two viewpoints used are design 

evaluation effort and the degrees of freedom of the design optimisation problem. The 

five major classification schemes and their categories are discussed as follows: 

Design variable plays a major role in engineering design optimisation. The number of 

design variables, their natures, permissible values and mutual dependencies can affect 

the overall complexity of the optimisation task. Most of the real life or industrial 

design optimisation problems are likely to be multi-dimensional (Roy, 1997). In static 

or parameter optimisation problems, the design variables are independent of each 

other, whereas in trajectory or dynamic optimisation problems, the design variables 

are all continuous functions of some other variable(s). Another perspective of this 

classification is provided by Schütz and Schwefel (2000), based on time-dependence 

of the optimisation problems. Depending on the values permitted for design variables, 

the engineering design optimisation problems can be categorised as integer-valued, 

real-valued and mixed-integer (that involve both integer and real variables). Variable 

dependence occurs when the variables are functions of each other. It is often observed 
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that there are variable dependencies among real life design problems. This has an 

effect of constraining the search space (Oduguwa et.al., 2007).  

Existence of constraints in an engineering design optimisation problem affects the 

optimisation approach to be used. The constraints can be in-equality and equality 

types. They can also be linear or nonlinear in nature. A mixed-integer programming 

(MIP) problem is one where some of the design variables are constrained to have only 

integer values (i.e. whole numbers such as -1, 0, 1, 2, etc.) at the optimal solution. 

Constraint programming defines "higher-level" constraints that apply to integer 

variables. The most common and useful higher-level constraint is the all-different 

constraint, which applies to a set of variables, say x1, x2, x3, x4 and x5. This 

constraint assumes that the variables can have only a finite number of possible values 

(say 1 through 5), and specifies that the variables must be all different at the optimal 

solution, therefore it can be either 5, 4, 3, 2, 1 or 1, 2, 3, 4, 5. Travelling salesman is 

an example of the constraint programming type optimisation problem. The presence 

and types of constraints make optimisation much more difficult. Number of 

constraints, constraint development and evaluation time are factors that affects the 

optimisation significantly (Coello, 2002 and Landa et.al., 2006).  

Objective functions are used to evaluate a design solution within the optimisation 

context. Number of objective functions, their nature and whether they are separable 

determines the complexity of the optimisation task. In real life, most of the 

optimisation problems are multi-objective. The multi-objective optimisation becomes 

more challenging with more than 10 objectives for a problem (Corne, 2007). 

Quantitative objective functions can be further classified as simulation based (e.g. 

FEA, CFD) (Zaeh et.al., 2004). Analytical (e.g. mathematical models created from the 

first principle and with domain knowledge) (Roy et.al., 2003) and empirical (where 

models are created based on experimental data) (Roy, 1997). One of the major 

challenges in engineering design optimisation is to deal with computationally 

expensive objective functions. Typically, simulation based model stake a long time to 

evaluate. The nature of search space also classifies the engineering design 

optimisation problems as uni-modal and multimodal, based on the number of optimal 

solutions that the problem has. The multimodal problems can also be categorised as 

sensitive and robust. A multimodal problem is sensitive if it has mostly very sensitive 

optima, whereas a robust problem would have at least one robust optimum. The nature 

of the search space can also be classified as linear, nonlinear, geometric and quadratic, 
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based on the nature of underlying equations in the objective function. Based on this 

criterion, the engineering design optimisation problems can also be classified as 

continuous and discontinuous, depending on whether the equations involved in the 

problem have any discontinuities. A function is said to be separable if it can be 

decomposed into functions that involve groups of variables rather than just a single 

variable. Inseparability manifests itself as cross-product terms, and makes the effect of 

a variable on the function dependent on the values of other variables in the function. 

Problem domain brings different physics consideration within the optimisation. 

Multiple domains require a multi-disciplinary approach to the optimisation. 

Establishing interdependence between the domains for real life design problems and 

optimising them simultaneously, such as roll thermal process design, requires 

significant effort and makes the optimisation more complex than single domain 

optimisation. 

The optimisation environment involves considerations like uncertainties in the 

design, level of knowledge available about the design solutions, importance of 

designer involvement and finally the nature of the environment. Lately, there is 

significant interest in design optimisation with uncertainties (Yong et al., 2007). The 

uncertainties can be associated with the design variable definition, as well as in the 

model development (Beyer and Sendhoff, 2007). Knowledge about the design 

environment is often lacking for real life problems such as rolling and roll cooling 

system design. Only in the case of test examples, the nature of the design space and 

the location of the optimum are often known. Not knowing about the design space and 

the location makes the optimisation task more challenging. Some design tasks require 

designer involvement to improve their confidence and also to involve them in 

qualitative design evaluation; this is called interactive optimisation (Brintrup et.al., 

2007). The involvement increases the degrees of freedom of the optimisation due to 

non-uniform behaviour of human experts, and also involves significant effort from the 

expert designer. Finally, the nature of the environment could be static or dynamic. 

The dynamic environment will impact the design variables, as well as the design 

evaluation. If it is dynamic, the optimisation would require more effort and would 

involve more degrees of freedom than a static environment. The design evaluation 

effort viewpoint includes aspects such as computational effort required to evaluate a 

design model, including any constraints and the effort required to develop a model 

due to the nature of the objective functions, design variables and constraints 
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(complexity of the problem). Whereas, degree of freedom of an engineering design 

optimisation problem includes the number and types of design variables, constraints, 

objective functions, problem domains, and environmental factors like uncertainty and 

dynamicity. As presented in Roy et.al. (2008) there are two categories of design 

evaluation efforts. These are: inexpensive and expensive, and another two categories 

for the degrees of freedom: small and large. Based on these two view points, 

engineering design optimisation problems are classified as small-scale problem, 

expert dependent, algorithm dependent and large-scale problem (Koch et al., 1999). 

Table 1.3 presents the summary of classification of engineering design problems and 

complexities. The classification is an important step in understanding the research 

design problem complexity. Table 1.3 presents the characteristics in which real life 

engineering design optimisation can be classified. As presented in the research scope, 

this research is based on the real life case study of a process design in an engineering 

domain where the classification introduced in the section, such as design variability, 

estimation of constraints, multi-objectivity, as well as consideration of optimisation 

environment in the design, is directly related to the research problem. Consideration 

of the optimisation environment, such as uncertainty in the process, believed to have 

significant impact to the roll thermal design, is the main part of the research. 

Uncertainty is associated with the design variable definition, as well as in the model 

development. Therefore, the design optimisation classifications presented in the 

section, are directly related to the research problem under investigation. 
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Table 1.3. Summary of the classification and classification complexities  

(Roy et.al., 2008). 
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1.3.2 Engineering Design Optimisation in presence of Uncertainty  

The challenge in achieving “the best” result in engineering design optimisation is the 

presence of uncertainty. Uncertainty information such as design tolerance, 

significantly impacts the success of the design process. Such uncertainty and its 

presence is certain and unavoidable, and if not considered in the optimisation of the 

design, the obtained solution is likely to be more “high risk” than optimal. In real life, 

engineering designs also have to satisfy constraints and select the best design solution 

against multiple objectives. Literature review conducted in the subject area, shows 

that there is a lack of research in multi-objective design optimisation that addresses 

uncertainties and the constraints together. The challenge in uncertainty may not be 

their presence only, but also the difficulties in quantifying them, as well as 

introducing the uncertainty representations in the optimisation (Helton, 1997; 

Apostolakis, 1994; Trucano, 1998 and Hazelrigg, 1999). Based on the visibility or 

clarity of uncertainty in the design and the degree of complexity in dealing with it, 

uncertainty in engineering design can be categorised broadly in to four classes. These 

are known-known, known-unknown, unknown-known and unknown-unknown type. 

The underlined part represents the visibility of the uncertainty, and the other for the 

complexity in dealing with or quantifying the uncertainty. A brief description and 

examples of each classification are given as follows: 

Known-known refers to the type of uncertainty in design that has clarity and is 

relatively easier to quantify and introduce in the optimisation. Noise and variability 

could be considered as an example for known-known type uncertainty. Known-known 

uncertainty also can be manageable to deal with using appropriate means. Known-

unknown type is the uncertainties in design that have clarity in their presence, but it is 

complex or not known as to how to represent and quantify them. An example of 

known-unknown type uncertainty would be epistemic uncertainty in non-deterministic 

systems, which arises due to ignorance, lack of knowledge or incomplete information. 

Unknown-known is the type of uncertainties in design that one knows well how to 

represent and quantify the uncertainty, but it may be too complex or their presence not 

known. An example of the type unknown-known uncertainty would be error, also 

known as numerical uncertainty. Error, although one may not say the degree of the 

error but its presence, can be addressed by introducing robustness in the design so that 

a solution can be found that overcomes error or variation. Unknown-unknown type is 
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the type of uncertainty where it is complex to realize its presence, and also one may 

not have a clear idea how to represent or address it. Uncertainty in design can be from 

various sources. For example, uncertainty can be inherited from the design factors and 

passed to the model, from model structure and model error, such as approximation 

and tool selection. Design uncertainty is comprised of design imprecision, uncertainty 

in choosing among alternatives, and stochastic uncertainty, usually associated to 

measurement limitations Stochastic uncertainty arises from a lack of exact knowledge 

of a parameter in the process where the designer has no direct control or choice over 

(Agarwal et al., 2004; Jin et al., 2003; Stephen; et al., 2000 and Michele et al., 2002). 

This summarises the inevitability of uncertainty in design variables and variables 

parameters. If a reliable optimal solution is to be found, this inevitability must be 

considered in the optimisation. Prior to optimisation, therefore, it is vital to know the 

types of uncertainty encountered how to compute under this uncertainty, and the way 

to represent their presence, mathematically. Broadly speaking, there are several 

general sources that contribute to the uncertainties in design optimisation. These 

contributors can be categorized as follows: 

 Variability of input values x (including both design parameters and design 

variables), called “input parameter uncertainty” 

 Uncertainty due to limited information in estimating the characteristics of 

model parameters p, called “model parameter uncertainty” and 

 Uncertainty in the model structure F (×), including uncertainty in the validity 

of the assumptions underlying the model, called “model structure uncertainty”. 

Over the years, a number of techniques have been developed to deal with 

uncertainties in the engineering design. The first and most important step in that is the 

quantification or recognition of their presence. The goal of uncertainty quantification 

is to assign an appropriate mathematical meaning to real-world information with 

respect to objective, and make it available to be used in the decision making. The 

quantification procedure is a combination of established methods from mathematical 

statistics for specifying the random part of the uncertainty. The choice of an 

appropriate uncertainty model primarily depends on the characteristics of the 

available information. That is, the underlying reality with the sources of the 

uncertainty dictates the model. Information can be, for example, objective, subjective, 

incomplete, imprecise, fluctuating, data-based, or expert-specified (Oakley et al., 
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1998). In each particular case, this information must be analysed and classified before 

quantification. 

1.3.3    Design Optimisation in the presence of Constraints 

The problem of handling constrained problems in design optimisation has been 

studied and presented many times in the literature. Many of the proposed methods are 

evolutionary computing based, some are general and applicable to a wide range of 

optimisation techniques, and some are designed for use with specific optimisation 

algorithms. Cello (2002) gives the survey of constraint-handling methods. The survey 

highlighted the most popular technique such as penalty functions, decoders repair 

algorithms, and constraint preserving algorithms. In addition to the three categories, 

there are also number of methods, such as multi-objective optimisation, since 

constraint satisfaction and multi-objective optimisation are very much two aspects of 

the same problem. Real life engineering problems such as rod rolling thermal analysis 

and optimisation are often constrained by various restrictions, usually imposed in the 

decision variables. It is also true that sometimes constraints are imposed in the 

objectives space in the form of fitness functions - for example, to limit the allowable 

stress and temperature to the level the material can handle. Constraints usually fall in 

to two major categories; the two main categories are also classified in to two main 

types. Problems can be associated to one, few or all types of these constraint types: 

the two constraint types are:       

 Domain constraints - Referring to the definition of the domain of the objective 

function and  

 Preference constraints - Referring to the additional preference imposed in the 

optimisation solution.  

Constraints in design optimisation can be categorised as equality or inequality 

constraints. The forms can be expressed in f (x) = g, f (x) < g respectively, where f(x) 

is the fitness and g is the constraints. 

1.4  Summary of Research Initiative   

Work roll system thermal analysis and optimisation is a critical concern in the rolling 

system design, particularly in the operation of hot mills. Untimely loss of rolls is a 

common occurrence during the hot rolling process. Main sources of these phenomena 

are the severe temperature variations and the resulting thermal stresses experienced by 
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the roll during the rolling process. To control roll thermal stresses and roll life, it is 

necessary to know the temperature variations in the work-roll during the hot rolling 

process. Work rolls are one of the main contributors of the overall production cost in 

product rolling. Hence, the need for a mechanism to minimise this cost is important. 

Real life rolling is a heavy duty manufacturing process and takes place in a high 

disturbance, extremely hot environment, and is characterised by uncertainty and 

constraint. Most of the roll deterioration is a direct consequence of these process 

behaviours. Therefore, establishing an optimum work roll system design in the 

process is vital. In today‟s competitive environment, achieving that is only possible 

through a more scientific and robust approach than the traditional/conventional 

means, although skilled experts, relying on their many years experience, have been 

trying to come up with practical solutions, mainly by trial and error, but such 

solutions acquired only offer satisfying solutions. The approach is not capable of 

delivering multiple optimal solutions for this complex engineering design problems, 

and is costly and time consuming. The key features such as multiple objectives, 

multiple pass search capabilities in the presence of uncertainty and constraints, are 

required within a robust optimiser for obtaining optimal work roll system design 

solutions. This can be a solution for the challenges experienced by the traditional 

search methods. However, it is not well understood and defined how these features 

can be addressed. This represents a significant gap in the use of optimisation 

techniques for obtaining an optimal work roll system designs using thermal analysis 

and algorithm based technique. The research is to develop work roll system 

optimisation using thermal analysis and GA and by doing so, the key features 

presented above can be alleviated. To help understand the flow of information and 

fulfil the research objectives, the thesis structure presented in Figure 1.8 has been 

developed and used.      

1.5 Thesis Structure 

The thesis structure is the description of the thesis layout that gives an overview of the 

thesis framework. The thesis structure, shown in Figure 1.8, is designed to 

demonstrate the fundamental path of the research, from hypothesis/introduction up to 

the thesis findings, validations and conclusions. The description of the thesis structure 

is illustrated as follows:  
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Figure 1.8. Thesis structure 

Chapter 1. Introduction: Introduces the main issues of the research, the company, 

and highlights the hypothesis that leads to the research findings and contributions. 

Intuitively discusses the industrial problems of rolling system design and the cooling 

system, as well as the aim and objectives of the study.  

Chapter 2. Literature Review: Provides a detailed review of literature in the main 

domain area of the research subject and associated topics of the research. The main 

topics include, but are not limited to, areas such as engineering design optimisation, 

roll cooling system design, optimisation under uncertainty and constraints, rolling 

system design, evolutionary based single and multi objective optimisation techniques. 

The review also identifies and addresses limitations in the current techniques and 

methods used in the roll cooling optimisation. 
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Chapter 3. Research Aim, Objectives and Methodology: The chapter identifies the 

research objectives necessary to satisfy the research aim. The nature of the real world 

problem is discussed, with the features of the work roll system design and optimum 

using thermal analysis and Genetic algorithms, guided by the aim and objectives. 

Finally, the chapter discusses the methodology that has guided the main activities of 

this research to fulfil the objectives. 

Chapter 4. Current Practise Study: In order to understand the philosophy of work 

roll system thermal optimisation within rolling system design activities, the research 

developed an AS-IS process realization study with the sponsoring company. The 

study was based on eliciting rolling system process knowledge from suitable 

engineers identified from Corus Research, Development & Technology design and the 

rolling plant. The methodology adopted for the knowledge elicitation exercise is 

described in Chapter 4. The elicitation also extended to other engineering industries to 

include current activities the in engineering design optimisation and techniques in 

industries.  This leads to the development of the optimisation technique compatible to 

the research problem. The knowledge elicitation exercise from the sponsoring 

company was applied to map the process involved in the rod-roll system optimisation 

selected by the client organisation for investigation. The collaborative activities with 

the engineers contributed towards identifying likely areas of the research problem.  

Chapter 5. Work Roll Thermal Modelling Development: This chapter presents a 

framework for generating a quantitative model from finite element data. The chapter 

provides detailed procedures followed in the real life problem simulations, model 

building and description of the implementation of the framework. The chapter also 

provides analysis and validation of the models. 

Chapter 6. Single Pass Roll Cooling Design Optimisation with Uncertainty: Here 

is presented a multi-objective optimisation approach to address the work roll system 

thermal analysis and optimisation problems with presence of uncertainty and 

constraints. This chapter begins by describing the challenges in the work roll system 

thermal analysis and optimisation problems with presence uncertainty and constraints; 

it then presents detailed description of the optimisation frameworks. Several work roll 

system thermal analysis and optimisation problem models developed, and a case study 

is provided to illustrate and validate the solution and solution methodology. 
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Chapter 7. Multi-Pass Model Development & Optimisation: This chapter presents a 

multi-objective optimisation framework for multi-pass optimisation problems capable 

of handling high dimensional problems with uncertainty. The chapter also presents 

details of the procedure for the development of multi-pass work roll system analysis 

and optimisation problem models.  

Chapter 8. Validation of Results: The chapter presents the strategy followed for the 

validation of results. The validation is based on expert knowledge and experience. 

Questionnaires are developed to ask experts to comment on the result obtained and its 

relevance to the research real life case study problem. Questionnaires and scripts from 

expert feedbacks are presented in the chapter.  

Chapter 9. Discussion and Conclusions: This chapter concludes the thesis with a 

discussion of the applicability of the research, contribution to knowledge and 

limitations of the research with respect to the proposed optimisation frameworks and 

process models. Finally, the future research directions that would extend the work 

reported in the thesis are presented. 

1.6 Chapter Summary  

This chapter introduced the research scope, the industrial problem domain and 

provided an overview of the company business strategies, as well as the core business 

unit associated to the research project. The chapter also introduced the main topics 

relevant to the project, the rolling process cooling system design optimisation, and 

highlighted the hypothesis that leads to the proposed research investigation. The 

chapter concluded by presenting the aim and the structure of the thesis. The next 

chapter presents the review of literature in the research domain. 
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2. Literature Review 

 

Having optimal work roll thermal design in the rolling process have a significant 

importance in ensuring increased work roll life, eliminating unnecessary time required 

to replace rolls and overall rolling cost. Today motivated by the need to deliver a high 

quality design solution at low cost, by effectively utilizing the available resources, 

industries are increasingly shifting to scientific approaches over the traditional 

approaches. Several algorithmic optimisation approaches are emerging to deal with 

the complex search space properties of real world process optimisation problems such 

as work roll system optimisation. The inevitability of uncertainties and constraints in 

the real life engineering problems, which have a significant impact in achieving a best 

set of process design parameters, makes the complexity even greater. As part of the 

exploration of the fundamental issues of the research problems, work roll system 

optimisation using thermal analysis and genetic algorithms, the research conducted 

extensive literature reviews. The review is designed to understand evidently the 

current state of work roll thermal design and optimisation, the research gaps and the 

techniques and methods available to fill the gaps.  In brief, the review aimed to 

achieve the followings:  

 Explore and Identify fundamental features (factors and factor parameters) of 

metal forming and the rolling system design. 

 Understand existing practice in the roll cooling design optimisation, identify 

uncertainty and cause of uncertainty, and explore existing techniques and 

methods available for roll cooling design problems providing the design 

solution.  

 Review current state of engineering design optimisation and multi objective 

optimisation in research.  

The review chapter is organised as follows: 

The chapter begins with section 2.1, which explores features and complexities of 

work roll system optimisation using thermal analysis and GA. Section 2.2 reviews 

existing works and research gaps in work roll system optimisation using thermal 

analysis and GA. Section 2.3 explores uncertainty in the work roll system design, 

optimisation and thermal analysis problems. Section 2.4 presents modelling 
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approaches for work roll system design using thermal Analysis and GA. Section 2.5 

reviews engineering design optimisation approaches. Section 2.6 presents design 

optimisation approaches: A comparative overview of technique‟s development in the 

last decade. Section 2.7 discusses design problems representation in computing based 

design optimisations. Section 2.8 reviews multi-objective design optimisation. Section 

2.9 explores uncertainty in multi-objective design optimisation problems. Section 2.10 

identifies the research gap and Section 2.11 concludes the chapter with a summary of 

the main points.    

2.1  Features of the Work Roll System Optimisation using 

 Thermal Analysis and Genetic Algorithms (GA) 

This section explores the features of the work roll system optimisation using thermal 

analysis and GA as well as system complexity. The section also gives the relationship 

among features identified, and the challenges posed to the optimisation. Work roll 

thermal analysis and optimisation can be formulated as a process optimisation 

problem. Due to the fundamental nature of the rolling and load involved in the 

process, the problems can be identified as mechanical, thermal, and thermo 

mechanical in nature. Like most real-world process optimisation problems, it is also 

prone to uncertainty. Sections 2.2 explore some of the main rolling system features 

that influence the work roll system optimisation using thermal analysis. Feature of the 

rolling process, temperature variation on the roll, type and degree of roll wear, are a 

direct result of the normal pressure on the roll surface and friction. Average rolls 

rolling pressures can be considered to be in the range of 100-300 MPa. The 

corresponding cyclic stresses, amplified by thermal cycles, in roll surfaces are 

estimated to amount to 500 MPa (Kihara et al., 1983; Kuhn and Weinstein, 1970). 

Cyclic loads result in material fatigue and other forms of surface deterioration, unless 

regulated using, for example, a cooling system. However, application of coolant in 

these extremely hot conditions will have a potential to cause the roll to go through 

various behaviours - for instance, excessive thermal, mechanical and thermo-

mechanical changes. Improper cooling, such as under cooling, would lead to 

compressive stress on the roll, resulting in subsequent roll surface deformation, 

whereas over cooling, on the other hand, results in tensile stress and roll thermal 

shock when coming in contact with hot stock. Over cooling also triggers unexpected 
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thick oxide scale on stocks, where, above a critical thickness, the upper layer of the 

oxide scale breaks by thermal and mechanical fatigue, and spalls under the shearing. 

The repetition of this damage requires the machining of the roll after a certain running 

in the mill, and contributes to the reduction of the roll lifetime. Besides this, however, 

the coefficient of friction generated between the work rolls and the rolled product 

usually tends to decrease with the increase in thickness of the oxide scale on the rolls. 

This decrease in friction results in a reduction in the rolling force and, therefore, the 

torque applied to the rolls, which, in turn, saves energy. To some extent, the oxide 

scale also could limit the amount of heat transferred in to the rolls. In this way, the 

creation of an oxide scale on the roll has a direct impact on the operating cost of a hot 

mill, by reducing the damage on the rolls. Research confirms that the irregularity of 

this type is significantly decreased by optimally measured cooling regimes. Under 

normal circumstances, the aim of cooling is to keep the temperature in the roll in a 

balanced condition, i.e. heat entering the roll is expected to be balanced by heat 

exiting the roll (Devadas and Samarasekara, 1986). In real life engineering design, 

such as rolling, however, it is a challenge to achieve this phenomenon. This challenge 

is multiplied by the high dimensionality, non-linearity and high uncertainty. Heat may 

enter the work roll to raise its temperature above ambient as a result of flows coming 

from many sources, such as radiation from the work piece entering and leaving the 

roll bites, by conduction from the work piece through a layer of oxide, by frictional 

effects along the arc of contact in the roll bite and from other sources such as friction 

in the roll-neck bearings and rolling friction at the work roll/backup roll contact. 

During the rolling process, the large amount of heat generated in the roll bite transfers 

to work rolls (Tercelj et al., 2003; Komori and Suzuki, 2005, Komori, 1999 and Arif 

et al., 2004). Work rolls are cooled by a cooling medium in both entry and exit sides 

of the mill. Transient cooling behaviour of the roll affects temperature distribution and 

thermal profile. Review shows that apart from thermal profile, roll life is influenced 

by other issues. Troeder (1985) in his work presented the justification that rolls are 

subjected to stress fluctuations, thermal cycles, contact abrasion, and other chemical 

influences. Since the early 40's, the basic wear mechanism has been investigated by 

many qualitative studies. These also proved that there are independent quantitative 

factors present in the rolling process. These factors, such as scale size, spray nozzle 

temperature, and coolant pressure (part of cooling heat transfer coefficient), which 
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may be difficult to quantify, but need to be considered when searching for cooling 

regime that guarantees a longer  roll life.  

This section has shown the importance of the following rolling characteristics roll life 

determining factors:  

 Rolls are subjected to stress fluctuations, thermal cycles, contact abrasion, and 

other chemical influences. 

 Under normal circumstances, heat entering the roll is expected to be balanced 

by heat exiting the roll. In real life process however, it is a challenge to 

achieve this phenomenon. This challenge is multiplied by the high 

dimensionality, non-linearity, and uncertainty in the process. 

 Work roll thermal analysis and optimisation can be formulated as a process 

optimisation problem. Due to the fundamental nature of the rolling and load 

involved in the process, the problems can be identified as mechanical, thermal, 

and thermo mechanical in nature. 

2.2 Existing Works and Research Gaps in Work Roll 

 System Optimisation using Thermal Analysis and GA    

As shown in Section 2.1, over the years, a number of studies have been conducted and 

very visible developments have been recorded in improving the rolling process in 

general, and tooling behaviour in particular; however, very little attention has been 

given to the work roll thermal system analysis and optimisation in hot rolling. Cooling 

of rolls is a critical concern in the rolling system design - particularly in the operation 

of hot mills. In the absence of water cooling, roll crack and untimely loss of rolls is a 

common occurrence. Main sources of these phenomena are the severe temperature 

variations and the resulting thermal stresses occurring as a result of work-rolls and hot 

stock contact (Parke and Baker, 1972). To control roll thermal behaviour, and hence, 

roll life, it is important to understand the temperature variations and source of 

variation in the work-roll during the process. There are a number of published studies 

on temperature field in the work-roll, and how it affects the roll life during hot rolling. 

Parke and Baker (1972) applied a computational method for determining the 

temperature field in the finishing pass work-roll. The results from their model were 

then used to design the optimum water spray condition. A two-dimensional finite 

element method was used by Sluzalec (1984) to predict the temperature distribution 
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within the work-rolls in a roll forging process. Devadas and Samarasekara (1986) 

used a one-dimensional heat transfer model that was based on the finite difference 

method. The model was coupled with the assumption of homogenous work to 

estimate the steady state temperature distributions in the work-rolls and the rolled 

metal during the finishing stage. Teseng et al. (1990) and Teseng (1999) combined 

experimental and numerical methods to predict temperature distributions in work-

rolls, In another research work, Teseng (1991) used an analytical method to solve the 

heat transfer using partial differential equations, and thus determine the temperature 

field in a work-roll for a single pass hot strip rolling process. The cooling of both the 

work-rolls and the product was simulated with the aid of a mathematical model, and 

the results are presented in Teseng et.al. (1992). In that paper, the temperature fields 

in the work-roll and the rolled metal are predicted and the effects of various cooling 

conditions on roll temperature variations are determined. Serajzadeh and Mucciardi 

(2003) coupled the unsteady state heat transfer equations with time dependent 

boundary conditions with a two-dimensional finite element method to predict the 

work-roll temperature distribution during the continuous hot slab rolling process.  In 

all of these research works, however, the result shows only single pass work-roll 

temperature transfer prediction and estimates, how it affects the work roll life. 

Moreover, most of these works are focused on theoretical single objective problems, 

and have little or no assessments of uncertainty of the forming process and the 

potential effect it has on work rolls. The major gaps in the existing research work are 

summarised as follows: 

 Main sources of roll damage are the severe temperature variations and the 

resulting thermal stresses occurring as a result of work-rolls and hot stock 

contact. To control roll thermal behaviour, it is important to understand the 

temperature variations and source of variation in the work-roll. 

 Lack of exploring and documenting the uncertainty and source of uncertainties 

in the rolling process that have a potential impact on rolls‟ thermal behaviour. 

 The investigation lack in addressing real life high dimensional multi-pass roll 

cooling system design problems with uncertainty and constraints.  

 Genetic algorithm based technique is not fully explored to include process 

parameter optimisation of multi-pass, multi-objective work roll system thermal 

analysis and optimisation problems.  
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2.3  Uncertainty in the Work Roll System Design, 

Optimisation and Thermal Analysis Problem 

Uncertainty is inevitable in some form in any engineering systems. The existence of 

uncertainties has a big impact on the system performance - if their existence not taken 

in to consideration and dealt with, the quality and reliability of the system will be 

compromised. Uncertainty may arise from various sources. The sources can be 

classified in to three main categories: variability in the input variables, uncertainty due 

to the limited information in estimating the characteristics of model design 

parameters, as well as known as parameter uncertainty and model uncertainty (Wood, 

1989). In the latter, the uncertainty can arise from two scenarios: either due to the 

scientific and technical assumption adopted for developing the model or due to the 

fact that simulation is an approximation of a real life process where forced accuracy 

compromises are inevitable. Over the years, various approaches have been developed 

and tested to deal with uncertainty in engineering systems, for example the min-max 

approach for searching robust solution, making design or the system least sensitive to 

the uncertainty without eliminating the sources of uncertainty (Ong, 2004). The 

Maximum-Minimum (Max-Min) interval approach of variables is used to obtain the 

complete probabilistic information of the final output in term of distributions of the 

uncertainty. Sampling techniques such as Monte Carlo simulation is mostly used for 

sampling out of the distribution so that a fairly close sample can be selected. But the 

technique is very expensive. Other sampling techniques include improved Monte 

Carlo simulation, reliability based method and design of experiments. Although these 

techniques have reduced sampling techniques, they can still require a large amount of 

samples for complex problems (Chen et.al., 2004). The work roll system optimisation 

using thermal analysis and GA with presence of uncertainty is a complex engineering 

system, with a large number of uncertain variables involved, and is a multi objective, 

multi-stage and multi disciplinary system. Uncertainty due to design parameter 

variability and real life approximation, are the most common problems, hence those 

techniques discussed above have shortcomings to address it. Small variability in 

design variables could have a big impact on finding an accurate design solution. In 

practice, the properties of a solution may be subject to a certain amount of variation 

because its implementation cannot be realized with arbitrary precision. This can occur 

due to various reasons, such as precision tolerances. If instances of a certain solution 
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are considered in the design, which have slightly differing decision variable values, 

and then these instances are evaluated, the corresponding objective vectors might 

differ widely, even though the variation in the decision space is not huge. In this case, 

it can be said that the solution is sensitive to the variation in design variables. Today, 

there are various methods to address sensitivity in design. The most familiar method 

is robustness. A robust solution satisfies the following: 1) selecting proper design 

variables such that the objective functions is not sensitive to tolerance, i.e. objective 

robustness; 2) assuring that the design variables are able to satisfy the constraints 

under the existence of  tolerance, i.e. feasibility robustness (Du and Chen, 2000). In 

this study context, therefore, a robust design solution is defined as: a feasible design 

alternative that is optimum in its objectives and whose objective performance or 

feasibility (or both) is insensitive to the parameter variations. However, finding the 

design solutions that are insensitive to parameter variation requires carful decision 

making procedures in the following two important issues: 1) the selection of an 

appropriate robust measure and 2) an appropriate means of incorporating the selected 

measure or defining robustness in the context of the problem at hand (Du and Chen, 

2000). There are various measuring techniques in the literature that can be used 

generically in many engineering problems. Two major approaches in finding robust 

design are stochastic and deterministic approaches. Stochastic approaches use 

probability information of uncertainty parameters. These approaches are commonly 

used in the objective robust optimisation to deal with design variables variation, while 

feasibility robust optimisation is used to improve reliability and a trade-off, based on 

an evolutionary approach, between performance and robustness using variance 

information. Although there are a number of studies have been conducted to address 

the engineering design optimisation problems with uncertainty discussed here, not 

many literatures found for work roll system optimisation using thermal analysis in 

presence of uncertainty. The existing few are focused only on uncertainty analysis for 

the single objectives rolling process design problem. 

2.4 Modelling Approaches for Work Roll System Design 

 using Thermal Analysis  

A rolling system is a heavy duty manufacturing process, taking place in high 

disturbance and extremely hot environments. Since any live experimental research for 

improving the process, tools, and product in an engineering process of such nature is 
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unrealistic, a need for modelling the process in a less costly and easy to use form is 

essential. The modelling, although it is an approximation of the real life scenarios, is 

the best way of representing the engineering process with such complexity. Literature 

shows that there are many form of modelling techniques used often in the modelling 

of complex engineering processes such as the rolling system. Even though each 

modelling technique has its own advantages and shortcomings, depending on the type 

of process to be modelled, all are proved useful. Among them, however, due to its 

simplicity, less cost and ease of use, the Finite Element Analysis (FEA) is the most 

popular and widely used form of modelling. There are various types of FEA, where 

each type is uniquely selected depending on the type of problems and cost of 

modelling involved. Details of various types of FEA techniques application is 

discussed in the next sub section. 

2.4.1 Finite Element (FE) Methods 

The FE method is based on the idea of discretisation where the deformation zone is 

divided into a finite number of sub-zones called elements. The elements are connected 

together at the corners and at selected points at the edges called nodes. For each 

element, the individual relationship between the applied nodal forces and the resulting 

nodal variables are calculated and the element property obtained. These important 

properties made it possible for response variables to be realistically realized. The 

finite element method is a numerical analysis technique for obtaining approximate 

solutions to a wide variety of engineering problems. Although originally developed to 

study stresses in complex airframe structures, it has since been extended and applied 

to the broad field of problems in other areas. Because of its diversity and flexibility as 

an analysis tool, it is receiving much attention in engineering research and in industry. 

The first finite element analysis came in the late 1960s and early 1970s, with the so-

called elasto-plastic method (Huang and Leu, 1995; Xing and Makinouchi, 2002). 

During the 1970s and 1980s, FEA progressed extensively. The metal forming 

industries‟ worldwide views in the late 1970s and early 1980s, were considerably 

different than the current ones in the areas of analytical capabilities, process control 

and application of technology (Tang et al., 1994). In 1978, the first FEM software and 

also the first FEM program, called ALPID Analysis of Large Plastic Incremental 

Deformation were created. In the years between 1980 and 1990, the use of computers 

in industries increased considerably. Computers became cheaper, faster and available.  
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Figure 2.1. FEA in metal forming process (Tang et al., 2004) 

More and more companies were able to obtain one. Although several software 

applications were born during the 1980s, many of them were not fully utilised until 

1990. The problems solved were only 2-dimensional problems. After 1990, analysis 

of 3-D problems began to emerge. Nowadays, the availability and capacity of 

software and computers makes it easier for companies to deal with problems more 

adequately. However, even if FEM is a very efficient technique to analyse the roll 

temperature distribution, there are still some drawbacks (Aretz et.al., 2000). The 

characteristic of FEM is the mesh, but when this one becomes distorted, the FEM 

presents some limitations. Another kind of drawback would be the computation time. 

Because of the huge amount of calculations and depending on the problem, analysis 

can take several days. For example, during the preliminary stages, a response time of 

less than one hour is required, whereas for the main design stage of a complex 

problem, over-night would be tolerated. Nowadays, however, industries expect more 

from FEM code, due to research made in the field makes usage of the codes much 

simpler and faster. It also fulfils the desire that the thermal modelling techniques 

become more and more accurate. Moreover, it enhances the speed of the 

computational time required for the software to do the job. Today, there are various 

FEA methods and software to choose from, depending on the type of problems and 

systems of equations, such as linear or non linear and/or symmetric or non symmetric. 

The most common FEA techniques used today and survey of the various techniques, 

each with advantages and drawbacks are presented next. 

Direct method   

These methods are used only for systems with a reasonable size, because the 

calculation time is proportional to the cubic of unknown. Direct search methods are a 

nonlinear method that requires neither explicitly nor approximate derivatives for the 
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problem to be solved. Instead, at each iteration a set of trial points is generated and 

their function values are compared with the best solution previously obtained (Huang, 

2006). This information is then used to determine the next set of trial points. Due to 

its computational time, the method is only taken as a last resource to be used in the 

modelling and optimisation. 

Incremental method 

The incremental method, which is used in the final design stage to verify the 

feasibility, needs detailed design parameters, and enormous time and cost is required 

to perform the numerical trial-and-error (Yang et.al., 1950). This method is used for 

large size systems where the calculation time would be huge for a direct method. It is 

a compromise between an exact solution and calculation cost. Therefore, for these 

methods, there is another parameter to take into account: Time. Explicit and Implicit 

methods are two different classes of method which deal with the time. The difference 

between the two methods is the way to calculate the derivation. For the explicit 

method, the calculation is simple, but the solution is less stable than for the implicit 

method. But for the implicit method, the calculation needs an iterative method, which 

means that the calculation time is very high (Chen et.al., 1998). The implicit method 

employs a more reliable and rigorous scheme in considering the equilibrium at each 

step of deformation. The implicit method appears more efficient for 2D analysis than 

the explicit method.  

Inverse method 

The principle of the inverse method is simple. As Castro et.al. (2004) indicated in 

their paper, the inverse method uses, as entry parameters, the specifications of the 

final product, and then it determines the design parameters that produce the required 

final product. That means that the method searches the initial parameters for the tool 

and the material (Sousa et.al., 2006). This method is quite recent. The main drawback 

of this method is the accuracy of the result, which is quite low in certain cases. 

However, different advantages exist, which are explained by Yang and Nezu (1998). 

One of them is that the geometric definitions of the tools and the initial blank are not 

necessary, so the FEA model is easier to build. This method is often used at the very 

first stage of the design process to evaluate the feasibility of the concept.  
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Rigid-plastic flow method 

The formulation of this method and its implementation is very simple (Makinouchi, 

1996). Another advantage is its computational time. This method is faster than 

explicit method (Samuel, 2004). Even though this method is often used for metal 

forming; its application is not universal - i.e. some analyses are not applicable to it. 

Static implicit method 

This method is the first method used in simulation of the metal forming process. The 

static-implicit method, based on the equilibrium at each step of deformation, brings 

the most accurate result. For this reason, this method is the more used to solve 2D 

problems. The static-implicit method is difficult to apply to complex shapes, severe 

contact problems, and large and difficult convergence problems, because of the 

computation time to obtain a solution taking so long (Jung, 2002). For 3D analysis, it 

is not the most useful method. This method is often used for the analyses of the final 

stage of design, where accurate results are expected.  

Static explicit method 

The static explicit method was introduced and limited to solve the problem of the 

static implicit method. The static explicit method solves the equation without iteration 

at each time integration step. As the convergence is not checked, this problem is 

avoided with this method. The contact friction problem is easily treated with the 

application of very small time interval (Jung, 2002). So, the main advantage of the 

static explicit method is the reduction of computation time in comparison with the 

static implicit method, which can be ten times faster.  

Dynamic explicit method 

The Dynamic-explicit method is based on the dynamic balance equation with small 

time interval in each stage. The most important advantage of this method is the 

computation time. Indeed, this method is speedy and the memory requirement is less 

than the static-implicit method (Tekkaya, 2000). Moreover, large deformation and 3D 

contact constraints are relatively easy to implement in an explicit procedure. 

However, a very important drawback that exists with this method is the accuracy of 

the result. Each time this method is used, the results have to be studied just to be sure 

that they are meaningful. The explicit method is more effective for analyses of more 

complex cases (Yang, 1995).  
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Summary of techniques survey  

In conclusion, there are various simulation techniques in existence, each with their 

own advantages and drawbacks. The very first method, the static-implicit method, is 

very accurate, especially for 2D problems and applicable to all section of the rolling 

process. Due to its accuracy, speed and generic applicability the implicit method has 

been chosen and applied for FEA modelling of this research. Nowadays, some 

methods, like the dynamic-explicit method, exist to address problems unable to be 

solved with the other FEA methods presented above. This method is less precise, but 

a lot quicker. In most of the metal forming process, the analyses (temperature, loads 

and strain) are not done by only one Finite Element Method. During the first stage of 

the design, where only the question of the feasibility is asked, a quick method is used. 

Although, for the final stage of the design where precise analyses are requested, the 

most accurate methods are used - even if these methods have a long computational 

time. The inverse method is one of the most recent methods and approaches for 

quicker and less computational time. Statistics show that, in recent years, there are a 

number of research applications of finite element analysis for the metal forming 

process. Figure 2.2 show the sample of the proportion of research papers that survey 

about the different methods explained above. There are 44 papers considered in the 

survey. As it is shown, a larger proportion is about the static-implicit method - as it 

was the first method and it is the most accurate one. 

 

Figure 2.2. Finite Element Method research papers survey (2004-2009) 
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2.5  Engineering Design Optimisation Approaches 

The concept of design optimisation deals with betterment and improvement. A major 

goal driving current design optimisation technique research is to significantly 

decrease the cost and time, and increase quality of products and service. To achieve 

these, there is a need for new techniques and approaches. Over the years, with the 

advancement of computer technology, the era has arrived of new state of the art 

design and design optimisation techniques that attract attention from across the 

industry sectors. In the past, extensive developments have been seen in computational 

applications, in order to improve the efficiency of a design process, e.g. FEA; 

CAD/CEM; and virtual modelling. Over the years much research has been conducted 

in optimisation. The introduction of optimisation in design was revolutionary in terms 

of aiding both the efficiency and creativity of a designer, improving the quality of a 

design itself. Today, the new evolutionary state of the art optimisation and search 

methods can assist the designer at all stages of the design process to reach the final 

optimal product - the final product that meets the performance requirements most. The 

designer can choose the optimisation and search methods by tacking in to 

consideration the nature and type of problems that need to be solved. In a nut shell, 

there are three main optimisation techniques that the designer can choose from. These 

are: A classical technique, Evolutionary computing and Hybrid technique. Research 

shows that these three techniques are all popular in industry, based on the ability each 

technique has, depending on problems that need to be solved. A survey of design 

optimisation approaches: “a comparative overview of technique‟s development in the 

last decade” presented in Section 2.6 indicates that over the years however due to the 

fact that current engineering design problems are large scale, multi-objective and 

complex in nature, industries are leaning fast towards evolutionary computing 

techniques particularly GA based techniques, due to its popularity. It is also learnt that 

hybrid techniques are getting equal consideration as a solution for current 

optimisation problems. Hybrid techniques develop by combining two or more 

techniques together; to create a tailor made technique able to solve particular design 

optimisation problems. 

The classical methods of optimisation may be useful in finding the optimum solution 

of continuous functions. These methods are analytical and make use of the techniques 

of differential calculus in locating the optimum points. Since some of the practical 
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real life problems, involve objective functions that are not continuous the classical 

optimisation techniques have limited scope in practical applications. On the contrary, 

genetic algorithms (GA) are robust and powerful global optimisation techniques for 

solving large scale problems. GA also has flexibility and adaptability to the task at 

hand, and ability to create multiple solutions in a single run - a characteristic that 

makes GA technique better suited to deal with current design optimisation problems. 

A survey conducted by this research author, shows that, in the last decade in 

particular, the research and development on GA techniques has grown considerably. 

The industry survey also shows that genetic algorithm is emerging as a new 

engineering computational paradigm, which may significantly change the present and 

future design optimisation practice. A brief overview and comparison survey results 

of techniques are presented in the following section.   

Genetic Algorithms 

The section above briefly discussed advantages of using genetic algorithms based 

optimisation technique over its counterpart the classical technique and its 

functionality in the applications - but what is evolutionary computation? Briefly, GA 

is a part of evolutionary computation refers to a collection of stochastic search 

algorithms whose designs are gleaned from natural evolution, i.e. genetic inheritance 

and the Darwinian principle of the survival-of-the-fittest (natural selection) (Holland, 

1962 and Holland, 1972). It is a part of the several different styles of evolutionary 

algorithms, such as genetic programming (GP), neural network (NN) and fuzzy logic 

(FL), each share a common feature, i.e., modelling the search process by mimicking a 

biological evolution process which is operated over the solution space. They are 

different, mainly in the evolution operators involved and the representation of the 

solution space. For example, in genetic programming, each solution is represented by 

a computer program, and hence, the evolution process is implemented on a society of 

computer programs. In terms of application, however, to generate designs, they are all 

commonly popular in many different disciplines. Unlike the traditional methods, 

which are often employed to solve complex real world problems that tend to inhibit 

elaborate exploration of the search space, GA based optimisation  is generating 

considerable interest for solving real world engineering problems. They are proving 

robust in delivering global optimal solutions and helping to resolve limitations 

encountered in traditional methods. The noticeable highlight the GA possesses 
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compared to other optimisation techniques, such as classical, is that where most 

classical optimisation methods maintain a single best solution found up to a point, 

genetic algorithm maintains a population of candidate solutions. Only one of these is 

„best,‟ but the other members of the population are „sample points‟ in other regions of 

the search space, where a better solution may later be found. The use of a population 

of solutions helps the algorithm avoid becoming trapped at a local optimum, when an 

even better optimum may be found outside the vicinity of the current solution. Over 

the last decade, Hybrid methods in engineering design optimisation also have matured 

considerably, and when coupled with the marked advance in computing hardware, 

permit the numerical solution of complex industrial problems. The main 

characteristics of the hybrid technique are briefly discussed as the following.    

Hybrid Technique 

Another optimisation technique, emerging as equally important as evolutionary 

optimisation, is a Hybrid technique. Hybrid is a tailor maid technique, developed by 

combining two or more optimisation techniques to deal with the real world 

engineering design optimisation problems. Hybrid is becoming popular because it is 

considered as a technique that can fill the gap and drawbacks (such as computational 

time and cost) that both evolutionary computing and non-evolutionary techniques are 

having. Hybrid techniques are mainly used in problems where qualitative aspects of 

the problem need to be incorporated in to the deterministic part of the problems. For 

example, Odugua (2003a) developed and successfully applied a hybrid optimisation 

technique, by combining genetic algorithms with fuzzy logic, to deal with roll pass 

design problems. In the last decade in particular, the technique shows a steady growth 

in applications due to its flexibility and adaptive nature. The research paper survey 

shown in Figure 2.3 supports this fact and presents trends the technique has shown in 

the last decade. 

Classical Technique 

Real world engineering can be characterized as having chaotic disturbance, 

randomness and complex non-liner dynamically discontinuous. Most industrial 

processes are usually large scale, high dimensional, non-linear and highly uncertain, 

and these characteristics may not be fit to the classical approach (Deb, 1999). This 

approach relies on the use of the analyst‟s qualitative knowledge to explore the design 
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space - often through trial and error. Previous research work shows that classical 

optimisation often performs better for problems with many constraints than GA based 

techniques. However, there is also a drawback in classical optimisation techniques, 

such as; analyses are cumbersome and often invoked repeatedly during the search 

process, making the optimisation and concept exploration time consuming. In 

addition, classical techniques have common difficulties in terms of robustness, hence 

unable to deal with work roll system design problem characteristics such as 

uncertainty, compared to GA and hybrid techniques. Broadly, the classical 

optimisation methods can be classified into two distinct groups: these are: direct 

methods and gradient-based methods. The classification is based on guide on search 

strategy. Examples of the two classifications are described in (Spendley et.al., 1962) 

and (Marquardt, 1963) respectively.  

Summary of Advantages and Disadvantages of Techniques  

From the review, it is understood that, there are various optimisation techniques 

available to choose from, depending on the problem at hand and time and cost 

available. Each technique has its own advantages and disadvantages in terms of 

application and speed and time required. However, generally, the optimisation 

techniques are divided in to two main groups, namely manual optimisation and 

algorithm based techniques. Although, in some circumstances, engineers also develop 

tailor made hybrid techniques to deal with a particular design optimisation problems.  

Main features of the two techniques are summarised as follows: 

Conventional/Manual Techniques 

 The procedure in a conventional manual design process typically consists of 

taking an existing design and further developing, by modifications, to meet the 

new requirements. Optimisation is achieved through past experience and trial 

and error through iterative process, in some cases employing user driven 

computational analysis programs iteratively until a suitable solution is found. 

 Most real world engineering design optimisation problems are complex and 

incorporate a significant number of strongly correlated design variables, each 

with conflicting performance targets. This presents a challenging problem if an 

optimal solution is to be sought. The application of the traditional iterative 

process can be inefficient, resulting either in a lengthy and costly design phase 

or a compromised optimal result at the expense of time and cost.  
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Algorithm based Optimisation 

 Optimisation algorithms offer the potential to improve the overall efficiency of 

the design process by reducing the time spent manually iterating towards a 

suitable optimised design.   

 Algorithm based techniques are able to search a number of potential optimal 

design solutions in one go, making the decision process faster.  This can be 

automated by integrating numerical simulation and performance analysis,   

 The technique offers a choice of solving multi objective, high dimensional 

problems with presence of uncertainty and constraints, finding a compromised 

robust solution for conflicting objectives.    

 Unlike conventional techniques, algorithm techniques would make the 

optimisation jobs easier, thereby making them less dependent on the designers‟ 

skills and experience.  

The literature review in this section indicates that the algorithm based approach is 

favoured over the conventional approach to deal with complex engineering 

optimisation problems, such as work roll system design optimisation. A few of the 

major advantages of the techniques are savings in time and cost, and finding the 

best/optimal result. It also gives benefits in dealing with complex, many objectives 

and high dimensional design problems. 

2.6 Design Optimisation Approaches: A Comparative 

Overview of Technique’s Development in the Last 

Decade  

This section presents a review and comparative analysis of the main engineering 

design optimisation approaches, and the rationale behind why one approach is 

preferred over the other. The review was conducted in line with the industry survey, 

so that current optimisation techniques states, both in industry and academic research, 

can be understood. The review is based on research papers published in engineering 

design optimisation in the period between 2001 and 2009. Over 300 papers have been 

considered for the review. The main source of the review includes: Conference 

papers, Journals, E-journals and other Technology research databases. The resources 

are categorised according to methods and techniques they belong to - namely, Genetic 
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Algorithm based technique (GA), Non-Evolutionary computing and Hybrid 

techniques. The survey was conducted to fulfil the following objectives.  

Objectives of the Review are as Follows: 

 To understand current states of engineering design optimisation techniques, 

methods and tools available. 

 As part of a literature review, to find out techniques and methods, if any, 

relevant to the PhD research and that can be used as a reference in finding 

gaps in existing optimisation techniques. 

Conventional numerical optimisation methods have the known advantage of their 

efficiency; however, they are very sensitive to the starting point selection and are very 

likely to stop at non-global optima. The search for algorithms that are capable of 

escaping from local optima has led to the development of stochastic optimisation 

techniques via the introduction of probabilistic factors in the search process, that 

encourage global exploration. In addition, stochastic techniques, unlike conventional 

numerical optimisation methods, produce new design points that do not use 

information about the local slope of the objective function, and are, thus, not prone to 

stalling at local optima. Further, they have shown considerable potential in the 

solution of optimisation problems characterized by non-convex and disjointed or 

noisy solution spaces. The survey, conducted as part the research, also confirms this 

fact. In recent years, that GA application trend has shown a considerable increase 

compared to its conventional and hybrid counterpart. As shown in Figure 2.3 the 

technique is emerging as a new engineering computational paradigm, which may 

significantly change the present and future design optimisation practice. It is also 

learnt from the survey that due to its robustness, powerful global optimisation 

capacity for solving large scale problems, flexibility and adaptability to the task at 

hand, GA based techniques are better suited to deal with current design optimisation 

problems, as compared to their classical and hybrid counterparts. The trend, the black 

line in the graph, demonstrates exactly that. Hybrid methods, shown in the blue line in 

the graph, have also matured considerably over the years. Hybrid technique combined 

two or more from the various types‟ of evolutionary techniques, to create a method 

that suit a particular problem. For example genetic algorithms and fuzzy logic are 

used in Odugua (2003a) to deal with the quantitative and the qualitative aspects of the 

problem respectively, in the rolling system pass design problem.  
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Figure 2.3. Development trends of techniques in the last decade (2001-2009) 

 

Figure 2.4. Percentage share of techniques surveyed 

Figure 2.4 demonstrates the percentage share of each technique of the total number of 

papers surveyed. Out of the total surveyed, 40% fall in the category of genetic 

algorithms based techniques. This indicates the growing trend of the techniques in 

academic research. The trend is also in line with the survey engineers‟ feedback in 

terms of the states of algorithm based techniques in industry.       

2.7 Design Problems Representation in Computing Based 

Design Optimisations 

Solutions in design optimisation are only as good as the information provided in the 

optimisation. That information is usually delivered in the optimisation process in the 
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crucial stage in the process. Today, there are two well known approaches used to 

enquire and address real world engineering design problems (Robson, 2002). These 

are: qualitative and quantitative approaches. 

Quantitative Approach  

Quantitative is a scientific research, characterised by numerical approach to data 

analysis. It expresses an optimisation problem mathematically, by identifying 

variables and fixed parameters, systematically estimating unknown data, formulating 

an objective function, and identifying constraints on the variables. In today‟s complex 

engineering problems, such as work roll system design optimisation, the quantitative 

approach play a vital role in representing the process mathematically for optimisation, 

which otherwise would have been difficult to do in real life.    

Qualitative Approach 

Qualitative state is a set of propositions that characterise a qualitatively distinct 

behaviour of a system. Quantitative models are very popular in real world design 

optimisation problems; even though such models have been very useful in providing 

detailed information about the design problems, they can be ineffective in situations 

when the mathematical formulation of a design problem is not available or is partially 

defined. In such case, qualitative
 
information can provide a valuable access to the 

design problem by taking advantage of human approximate reasoning to improve the 

complex design problem representation (Oduguwa, 2003a). Qualitative reasoning 

creates representations for continuous aspects of the real world engineering problems, 

such as time and quantity, which support reasoning with very little information. In 

complex and large scale engineering problems, such as work roll system design, 

where a quantitative approach can only represent the numeric nature of the problem, it 

is vital to consider the qualitative reasoning aspect of the process in order to have 

continuous and full information of the problem. In turn, the consideration of 

continuous and full information (qualitative, quantitative) nature of the process will 

give a strong base for better decision making.  

2.8 Multi-Objective Design Optimisation 

In real life most of the process optimisation problems are multi-objectives and in 

majority of the cases these objectives are conflicting. The objectives are may be 
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minimisation or a maximisation of interest in the process. For example one may wish 

to minimise production cost of a part while at the same time maximising the quality of 

the part. Objectives in the optimisation can be two or many in number. Generally it 

can be expressed mathematically as, a multi-objective optimisation aims to minimise, 

under certain constraints, the elements of f(x) = (f1(x),…, fn(x)), of a vector function f ( 

in the objective space) of a decision factor x in the decision space and n is the number 

of objectives. In practice each of the objectives shown above may have different 

optimal solution in the optimisation. However in the multi-objective optimisation the 

solution will be a trade off, as well as known as Pareto optimal set, among the 

objectives. This means that the value of solution of any of the objectives cannot be 

improved without deteriorating one or more of the others. Objective optimisation 

works in the principle of dominance. For example let us assume that an optimisation 

seeks to maximise a single objective problem, where the objective space is a subset of 

real number, the principle of dominance can be expressed as  x1 ∈ X is better than 

another solution x2 ∈ X  if y1>y2; where y1 = f(x1) and y2 = f(x2). In a single 

objective case although there are a number of solutions in the decision space they all 

are mapped in to same vector in the objective space. Hence there is only one optimal 

in the objective space. This is however not a straight forward as this is in the multi-

objective case. Comparing two solutions y1 and y2 is more complex. In multi-

objective optimisation to conclude that a solution y1 is dominate solution y2 the 

following conditions have to be fulfilled.   

 If no component of y1 is smaller than the corresponding component of y2 and 

 At least one component y1 is greater than y2. 

By the same way, we can say that x1 dominates x2 if f(x1) dominates f(x2). These will 

produce many optimal objective vectors representing different trade-offs between the 

objectives. The solutions mapped in to the objective space and then form the Pareto 

front. The front then helps the decision makers to choose a compromised solution. 

Multi-objective optimisation becomes more challenging with high number of, more 

than about 10, objectives. Evolutionary algorithms seem particularly suitable to solve 

multi-objective optimisation problems because they deal simultaneously with a set of 

possible solutions (population of solutions), which allows finding an entire set of 

Pareto optimal solutions in a single run of the algorithm, instead of having to perform 

a series of separate runs, as in the case of the traditional technique (Deb, 2001). The 
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most common and relatively original evolutionary multi-objective optimisation 

techniques that are popular among researchers and widely mentioned in the literature, 

include the following: Aggregating functions; vector evaluated genetic algorithms, 

which was originally developed by Grefenstette (1984) as a simple genetic algorithm 

and which Schaffer (1985) extended to include multiple objective functions, Fonseca 

and Fleming‟s MOGA, a multi-objective genetic algorithm (Fonseca and Fleming, 

1993); and Srinivas and Deb‟s NSGA, a non-dominated sorting genetic algorithm 

(Srinivas and Deb, 1994). In comparison, however, NSGA-II Deb et al. (2002) is the 

preferred technique for solving multi-objective optimisation problems for the 

following reasons. The technique is a fast elitist solution algorithm that uses explicit–

preservation strategy to maintain diversity among solutions in the non-dominated 

front that is able to find much spread solutions over the Pareto-optimal front and it 

also requires low computational requirements. In the elitist strategy, the population is 

sorted into different non-domination levels and each solution is assigned fitness equal 

to its non-domination level (where one is the best level).  Binary tournament selection, 

crossover, and mutation operators are used to create offspring population. Other 

important features of the algorithm include crowding distance assignment procedure 

(for estimating the distance between two points in the solution space) and the crowded 

tournament selection operator (guides the selection process towards a uniformly 

dispersed Pareto-optimal front). This algorithm is more applied to real world 

problems compared to most reported multi-objective algorithms. Main advantages of 

the techniques can be summarised as follows:  

 Flexibility and adaptability of key features of the techniques makes it possible 

for wider application and more complex problems such as optimisation 

problem with presence of uncertainty and constraints. 

 Relatively less in complexity and computational time. This algorithm is more 

applied to real world problems compared to most reported multi-objective 

algorithms. 

 Use the non-dominated sorting concept in GAs; (Srinivas and Deb, 1994). 

 Use the crowded tournament selection operator to preserve the diversity 

among non-dominated solutions in order to obtain a good spread of solutions. 

 Results from experimental work conducted by various researchers in the 

literature conclude that, the NSGA-II has out-performed the Pareto-Archived 
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Evolution Strategy (PAES) and other multi-objective EA with the explicit goal 

of preserving spread on the non-dominated front (Deb et al., 2002).   

These important characteristics and consideration suggest that The NSGA-II based 

algorithm is adopted in this thesis. Other extended forms of multi-objective 

optimisation include: Horn and Nafpliotis‟ elitist NPGA, multi objective optimisation 

using the niched Pareto genetic algorithm (Horn and Nafpliotis, 1993). Zitzler and 

Thiele‟s suggestions of an elitist multi-criterion EA with the concept of non-

domination, called strength-Pareto EA, SPEA & SPEA 2 (Zitzler and Thiele, 1998). 

Generalised regression GA (GRGA) by Tiwari and Roy (2001) is another multi-

objective optimisation technique, developed to handle complex multi-objective 

optimisation problems having high degree of inseparable function interaction. An 

interaction occurs when the effect a variable has on the objective function depends on 

the values of other variables in the function (Knowles et.al., 2000). Pareto Archived 

Evolutionary Strategy, PAES is another techniques developed to deal with multi-

objective optimisation problems. The technique is based on an evolutionary strategy. 

The Pareto Archived Evolution Strategy (PAES) is a multi-objective optimizer which 

uses a simple (1+1) local search evolution strategy. The technique is capable of 

finding diverse solutions in the Pareto optimal set because it maintains an archive of 

non-dominated solutions which it exploits to estimate accurately the quality of new 

candidate solutions. There are three versions, (1+1), (1+lambda) and (mu+lambda)-

PAES have been developed. The Pareto archive has several roles in an MOEA: it 

often takes part in the generation of new solutions (i.e. "parents" are drawn from it); it 

can be used to estimate the quality of new solutions (Knowles and Corne, 2004). In a 

nut shell the functionality of PAES can be described as follows: it can be described as 

having one parent and one child. Both are compared, and if the child dominates the 

parent, it becomes the new parent and the iteration continues. If the parent dominates 

the child, the child is discarded and a new child created by mutation. However if 

either of them dominates each other the choice is made by comparing them with the 

archived best solutions found so far. If the child dominates any member of the 

archive, it becomes the new parent and the dominated solution eliminated from the 

archive. If the child does not dominate any member of the archive, both parent and 

child are compared for their proximity, with archive solutions. If the child resides in 

the least crowded region in the parameter space among the archived member it 

becomes the parent and a copy added to the archive (Knowles and Corne, 
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2003).Those optimisations techniques discussed here, even though there is a 

difference among the techniques to a degree in terms of functionality, they all are 

suitable to solve multi objective optimisation problems, dealing with the problems 

simultaneously with a set of possible solutions - the so-called population. These 

techniques are capable of tackling a wide range of problems and they form the key 

research areas in evolutionary-based multi-objective optimisation research, the likes 

of this research. Next discussed is the strength and weakness of the evolutionary 

based optimisation techniques in tackling current complex multi-objective 

optimisation problems. 

Strength and Weakness of Pareto based Optimisation Techniques  

The main strength of the techniques can be summarised as follows:  

 algorithms based techniques are particularly suitable to solve multi-objective 

optimisation problems because they deal simultaneously with a set of possible 

solutions (population of solutions), which allows finding an entire set of 

Pareto optimal solutions in a single run of the algorithm, instead of having to 

perform a series of separate runs, as in the case of the traditional technique 

 In majority of cases the techniques satisfy the two fundamental requirements 

of multi-objective optimisation principles: convergence to the Pareto-optimal 

front and maintenance of population diversity across the front.  

 They handle multiple variables involved in optimisation problems. As Zitzler 

and Thiele (1998); and Peng (2007) have confirmed, that in solving multi-

objective optimisation problems these techniques perform better than most 

others. 

However having considered the overall capacity and flexibility, in dealing with 

today‟s engineering design problems complexity, such as handling uncertainty and 

real life engineering constraints, however, the techniques lack maturity. Most complex 

problems arising in modern technologically developed science and engineering have 

multiple sources of distinct nature. Although algorithm based techniques have proven 

to be an efficient and powerful problem-solving strategy, as shown in the example 

above, they are not a problem free tool. GA based techniques do have certain 

limitations; in particular in the following areas: 

 The first, and most important, consideration in creating a genetic algorithm is 

defining a representation for the problem. The language used to specify 
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candidate solutions must be robust; i.e., it must be able to tolerate random 

changes such as uncertainty in the decision variables and models used as 

fitness functions. This is the most common characteristics of real world 

engineering design problems. The techniques as they are lack addressing these 

characteristics. 

 Another weakness are that the algorithms they use iteration for checking non-

dominance in a set of feasible solutions, (in the case of uncertain problems) are 

computationally very expensive, and as the population size and the number of 

objectives are increased their performance exhibit slowness. In a number of 

cases, the performance of these approaches is also dependent on the values of 

control parameters. In a highly chaotic and uncertain engineering process 

environment, use of a mathematical model is unavoidable. However, the 

mathematical model is a numerical representation which is prone to forced 

accuracy compromises. This compromise needs to be addressed in the 

optimisation. If the fitness function is chosen poorly or defined imprecisely, 

the genetic algorithm may be unable to find a solution to the problem, or may 

end up solving the wrong problem.  

To address the weaknesses particularly multi-objective problem optimisation in 

presence of uncertainty, there have been various attempts by number of researchers so 

that the techniques to be able to handle problems complexity. The next section 

discusses uncertainty in multi-objective optimisation and review of techniques to deal 

with multi-objective optimisation in presence of uncertainty.  

2.9 Uncertainty in Multi-Objective Design Optimisation 

It is often the case that due to the various uncontrollable variations of parameters 

involved, real-world engineering design problems, such as work roll system 

optimisation using thermal analysis and GA, are usually characterised as multi-

criterion and multi-objective in nature. The variations, controllable or uncontrollable, 

in parameters are as a result of presence of uncertainty in the problem. The aim of 

solving such problems is to obtain solutions, in terms of objectives and feasibility, 

which are as good as possible and, at the same time, are least sensitive to the 

parameter variations (Fiacco, 1983). Such solutions, also known as robust optimum 

solutions, are found following trade-offs among the objectives, performance or may 

be combination of other criterions. Many methods and approaches have been 
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proposed in the literature to deal with optimisation in presence of uncertainty. For 

example techniques for searching robust solution, that is, feasible design alternatives 

that are optimum in their objectives and whose objective performance or feasibility 

(or both) is insensitive to the parameter variations. Various classifications of 

uncertainty in design optimisation have been suggested by researchers in the past few 

years (Jin and Branke, 2005; Ben-Haim, 2004 and Ben-Haim, 1996). Jin and Branke 

(2005) described four types of uncertainty. They are: noise in fitness function, 

uncertainty in design and/or environmental parameters, approximation errors in 

fitness function, and time-varying fitness function. The first three types of uncertainty, 

the main focus of this research, have been studied by various researchers and possible 

solution suggested. Over the year‟s robust optimisation, which is frequently attributed 

to Taguchi (1978) and many other techniques have been developed, out of which the 

majority of them are probabilistic methods. Since Taguchi work, many other methods 

have been developed. A significant portion of the literature in this area reports on 

probabilistic methods that optimise statistical measures of expectation (or presumed 

probability distribution). However in the last few years there are few exceptions 

where the methods do not require a presumed probability distribution for parameter 

variations, and is applicable even when the variations are beyond the linear range. 

Gunawan and Azarm (2004) presented “Non-Gradient Based Parameter Sensitivity 

Estimation for Single Objective Robust Design Optimisation”. There research 

presents a new method for estimating parameter sensitivity of a design alternative and 

then use that estimate in an optimisation scheme to obtain a robust design solution. 

The method is non-gradient based: it is applicable even when the objective function of 

an optimisation problem is non-differentiable and/or discontinuous with respect to the 

parameters. Also, the method does not require a presumed probability distribution for 

parameters, and is still valid when parameter variations are large. The sensitivity 

estimate is developed based on the concept that, associated with each design 

alternative there is a region in the parameter variation space whose properties can be 

used to predict that design‟s sensitivity. Their method estimates such a region using a 

worst-case scenario analysis and uses that estimate in a bi-level robust optimisation 

approach. However this technique is applied only in single objective problems and as 

the authors concludes the feasibility assumption may not hold if the method applied in 

multi-objective optimisations. The method is later improved by Lim et.al. (2006), in 

the Inverse Multi-Objective Robust evolutionary design (IMOR). Here the 
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computational cost reduced greatly. „Robust Non-Dominance Criterion Technique for 

Multi-objective Optimisation of Weld Bead Geometry for Additive Manufacturing 

by‟ Mehnen and Trautmann (2008) is another recent technique in which they propose 

a robust non-dominance technique for two objective problems with uncertainty in the 

fitness functions.  The robust dominance criterion is a technique, designed to utilize 

the new robust multi-objective evaluation technique to generate robust best 

compromise solutions for problems with noise and uncertainty. Brief overview of the 

technique and its initial application is described as follows:  

In the case of noisy fitness functions (f1 and f2), the conventional Pareto criterion is 

not able to decide whether a point x is dominating another point x* because it can 

only compare two discrete solutions at a time. The robust dominance criterion takes 

uncertainty of the fitness function values into account by calculating median estimates 

and the convex hull around a solution in the objective space. The convex hull 

represents the area of uncertainty of a solution. To calculate the Pareto-non 

dominance properties of any two solutions x and x*, the median of all noisy fitness 

values are calculated. The problem at hand is then to estimate the true Pareto front 

from a set of k noisy samples (fik|x, ǫ), i = 1, . . . , m which cover true Pareto front. In 

order to introduce a dimension of the point clouds (due to noise) in the objective 

space, the mean distances of all points on the convex hull from the median 

representatives are calculated. Then, the measure of uncertainty of a solution in m-

dimensional objective space can be introduced by taking say P := med(fk) as a robust 

estimate of a solution, and the Convex Hull CHP(P) of all k sample points around P 

describes a worst case representative of solution P containing all k samples (Barber 

et.al., 1996). The absolute distances in each dimension of all points in CHP (P) to P 

can be used to define the uncertainty vector. Given the uncertainty vectors around a 

solution P, all points within the box formed by uncertainty vectors are represented by 

P. This implies that the conventional Pareto-dominance definition may not hold any 

more if any two points, P and say Q, are inside the uncertainty vicinity of each other. 

Although these points may dominate each other in a noise-free case, in the case with 

noise it is impossible to tell which point dominates the other.  Therefore, in this case, 

both points are considered as potential solutions (Pareto set). However the method has 

only been applied in two objective problems with uncertainty in the fitness function. 

Many other researchers have developed deterministic methods for obtaining robust 

design solutions. These include approximation-based methods by Parkinson et al. 
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(1993); Hirokawa and Fujita (2002); sampling-based methods by Tsutsui et.al. 

(1997); reliability-based methods by Du and Chen (2000); Jin et al. (2002); Choi and 

Youn (2001). Deterministic approaches obtain an objectively robust optimum design 

by analytically measuring the robustness of a design alternative using its first-order 

derivative or other non-statistical measures and then incorporating those measures 

into the approach. The section presents existing methods in the literature for multi-

objective optimisation problems in presence of uncertainty. These techniques are 

Pareto based and use either deterministic methods or probabilistic strategy to address 

the uncertainty in problems. The section summarised as follows: 

 Uncertainties present in many real-world design problems, such as work roll 

system and practically impossible to avoid. In the case where a solution is very 

sensitive to small variations either in design variables, approximate model or 

operating conditions, it may not be desirable to use this design because they are 

likely to perform differently when put into practice. Therefore optimisation 

without taking uncertainty into considerations produces a risky design than 

optimal.  

 There have been attempt for addressing fitness function uncertainty in multi-

objective and design variable uncertainty in single objectives optimisation. The 

existing techniques are design to manage uncertainty without eliminating 

uncertainty from the system. Various methods have been suggested of which the 

majority are using either deterministic methods or probabilistic strategy to address 

the uncertainty. Although no research work found for handling uncertainty in the 

work roll system design, the information from the literature on existing techniques 

give background knowledge for developing a technique to deal with the 

uncertainty in the design variable and fitness functions of many objective work 

roll system design optimisation problems.  

The next section point out the weakness in the existing techniques for dealing with 

uncertainty in multi-objective optimisation and highlights the research gaps.    

2.10  Research Gap 

Section 2.9 presents the inevitability of uncertainty in design optimisation, the state of 

uncertainty in multi-objective design optimisation and main existing techniques 

available to address uncertainty in multi objective optimisation problems. As 

indicated in the section, there are various research works in the field and successful 
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implementation of the techniques to deal with the MO problem with presence of 

uncertainty. However there is research gap in the existing approaches, particularly in 

the following areas. 

 Existing approaches for addressing design parameter uncertainties are limited for 

single objective optimsation. 

 Existing approaches for addressing multi-objective optimisation problems with 

presence of uncertainties are limited to uncertainties in the fitness functions. 

 Existing approaches for addressing uncertainty and constraints in multi-objective 

optimisation are mainly theory based and lack real life case study. 

 As observed in the review that the existing approach are not implemented in high 

dimensional, many objective (single and multi pass rolling) optimisation problems 

with uncertainty in the design variables and in the fitness functions. None of the 

existing approaches are implemented in the work roll system thermal design and 

optimisation problem with uncertainty in the design variables and fitness function. 

 Literature review revealed that in a complex and highly uncertain engineering 

process environment such as rolling system, a mathematical simulation is often 

required as the empirical study is very difficult. 

 Real life rolling is a process carried out using multi-pass stands. Although various 

approximate based models exist in the literature for real life work roll system 

thermal design and optimisation problems, there is no suitable approximate 

quantitative model for the multi-pass hot-rolling design problem, considering the 

relationship between passes, for conducting GA based optimisation search.   

2.11 Chapter Summary 

Real life engineering design optimisation such as work roll system is a challenging 

discipline. The obvious challenge is in decision making. Decision making is even 

more difficult due to presence of uncertainty and constraints. Uncertainties, such as 

due to input variability, model approximation are common occurrence in real life 

engineering process design. Real life engineering processes are characterised by high 

disturbance; therefore, design optimisation in a real life process is a complex task to 

do. Thus, the need to develop a representative mathematical model is unavoidable. 

However, the mathematical model is an approximation of the real life process 

scenarios. This approximation and the inherited input variable variability are the 



 

64 

 

sources of uncertainty in the model. The chapter reviewed the literature in engineering 

design optimisation, optimisation complexities such as presence of uncertainty and 

constraints, it also explore optimisation techniques available to deal with this 

complexity. The field of evolutionary computing is rapidly growing and has become 

the essential technique as a solution search for complex engineering design problems. 

The chapter also presents the review of literature in the subject area of the research 

case study. It explores features of work roll process optimisation using thermal 

analysis and GA and highlights work roll system design and optimisation problem 

challenges. Existing techniques for work roll system optimisation using thermal 

analysis, recent developments, and shortcomings of techniques are explored. The 

review is a prerequisite for the research problem statement, is indentifies the gap in 

the research domain and techniques for optimisation and highlights the following 

main points: 

 Knowledge elicitation in the steel industry revealed that work rolls are estimated 

to contribute about 5% to 15% of overall production cost in product rolling. 

Hence, establishing an optimum work roll system design is vital for longer roll 

working life, minimised machine down time, eliminate repair and replacement 

time and hence, minimised production cost. 

 Rolling is a heavy duty manufacturing process and takes place in a high 

disturbance and extremely hot environment. Due to these characteristics, an 

approximate mathematical model is considered appropriate to represent the 

complex behaviour of the process in a simplified and controllable manner. The 

model represents the underlying characteristics of the problem and above all, since 

it is based on response surface, it provides insights in to the relationship between 

the output and input variables. However, most of the approximate, quantitative 

modelling approaches, such as finite element FE based methods, are based on 

quantitative information only. It is difficult to accommodate most of the complex 

factors unexplainable by quantitative information, such as uncertainty. Therefore 

the model is prone to accuracy compromises that need to be considered in the 

optimisation. 

 Current approaches for searching solution for multi-objective optimisation 

problems are not simultaneously dealing with high dimensional problems with 

uncertainty in the design variables and fitness function. 
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 Existing GA based techniques in the rolling system design optimisation has not 

been fully utilised to include problems of work roll system optimisation using 

thermal analysis and GA. 

 In multi-pass rolling system design, the inter-pass relationship, factors complexity 

and related uncertainty between passes has not been fully addressed in the work 

roll system thermal analysis. Design and optimisation. 

Following the review, the research attempts to fill the gaps in the following areas: 

 Explore the rod rolling process, study process factors and factor complexities to 

develop an approximate model for single pass work roll system optimisation 

problem. 

 Investigate uncertainty and sources of uncertainty information in the rolling 

process relevant to roll thermal behaviour, as well as in the approximate 

mathematical model, so that to improve the design acceptance.  

 Explore the rod rolling process, study process factors and factor complexities to 

develop an approximate model for multi-pass work roll system optimisation 

problem, that consider inter-pass relationship. 

 Develop GA based optimisation framework for Multi-pass work roll system 

optimisation problems with uncertainty in the design variable and fitness function.  

These gaps define the main focus of this research. As mentioned in the introduction, 

the research aims to develop a framework for work roll system optimisation using 

thermal analysis and genetic algorithm to deal with the design problem. 

This chapter reviewed the subjects in the research domain and identify research 

shortcomings. The outcome of the review form the focus of this thesis and the 

research aim outlined. In the next chapter, the objectives of the research and the 

methodology used to meet these objectives are presented. 
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3. Research Objectives & Methodology  

 

The previous chapter reviewed the literature for current states of the main subjects in 

the research domain, such as engineering design and optimisation problems, 

challenges and existing techniques, the rolling process and roll thermal process 

design. The chapter also presented the gaps identified in the current techniques. The 

observations from the review led to the drafting of the direction of the research, the 

follow-up objectives, as well as methodology required to achieve the objectives. 

The chapter consists of four sections and is structured as follows. Section 3.1 

discusses the research scope and problem statements. Section 3.2 outlines the 

objectives of the research. Section 3.3 presents the methodology used to guide the 

research objectives. The main highlights of the sections and a summary of the Chapter 

are presented in Section 3.4. 

3.1 Research Scope and Problem Statements  

It has been learned from the literature review that although there are few scientific 

based solution search strategies in place to deal with the rolling system design 

problems, such as pass design, the existing techniques have not been fully utilised to 

include single pass and multi-pass hot rolling work roll system design optimisation 

and thermal analysis. It is also learnt that the uncertainties and constraints in the 

rolling system design, which have a potential to influence the work roll thermal 

behaviour, have not been extensively explored. Although real life industry system 

application review and industry expert reports indicate the presence of techniques, 

they are manual and address only single pass, single objective problems without 

consideration multi-pass rolling and the effect of uncertainty. These phenomena, 

described above, are the main drive for the research. The research is industry case 

study initiated by the sponsoring company for further investigation. The sponsoring 

organization, Tata Steel-Europe, Swinden technology centre‟s (STC) main role is 

process and product development, and setting the standards for steel research, as well 

as competence and programmes. Since there is very little research work reported in 

the literature concerning the research problem area, the pre-specified research domain 

was considered an interesting topic for the research. In order to understand the scope 

of the research within the rolling process and the roll thermal process design activities 
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of single and multi-pass rolling process, the author elicited rolling system process 

knowledge from suitable engineers from the sponsoring company, particularly 

Swinden technology centre R&D plant, Rotherham. Following the elicitation, the 

researcher developed a full proposal of the research, with detailed outline of aim, 

objective, methodology, as well as the philosophy behind the research deliverables. 

Post knowledge elicitation and literature review in the research domain led to 

outlining the research objective and methodology to achieve the objectives. The 

current activity study and knowledge capture with engineers in the research 

sponsoring company is presented in Chapter 4. 

3.2 Research Aim and Objectives 

Aim  

The Research Aims to Develop a Framework for Work Roll System Optimisation 

using Thermal Analysis and Genetic Algorithm 

Research objectives identify outputs and outcomes for key research challenges. The 

goal of this research is to develop a GA based framework for delivering solutions for 

real life work roll system thermal analysis and optimisation problems characterised by 

constraints and uncertainty. This is addressed from the perspective of the following 

objectives: 

 Deliver a critical analysis of existing research in the work roll system thermal 

analysis and optimisation, addressing quantitative and uncertainty, as well as 

sources of uncertainty aspects in the single pass and multi-stage rolling 

process environment.  Identify current GA based optimisation approaches and 

their relevance to this research domain.  

 Develop approximate quantitative model for single pass work roll system 

design and thermal analysis problem that can be used within the optimisation 

framework.  

 Develop GA based optimisation framework for searching optimal solution in 

presence of uncertainty for single pass work roll system design problem.   

 Develop a multi-pass quantitative model for work roll system design and 

thermal analysis problem that represents relationships between consecutive 

passes.  
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 Develop GA based many-objective, optimisation framework to search for 

optimal solutions in presence of uncertainty for multi-pass work roll system 

thermal analysis and optimisation problem.  

 Apply the framework to real life case studies and result validations. 

3.3  Research Methodology  

In order to fulfil the objectives outlined above, the need for a structured research 

methodology is paramount. The methodology needs to address the various issues such 

as quantitative, qualitative, as well as uncertainty, associated with the real life heavy 

duty engineering practice. With this in mind, the methodology presented below 

(covers from problem realisation to solution implementation) is designed as a guide 

for the research. The methodology is designed to fulfil the requirements for real-life 

case study problems. The research reviewed several methodologies reported in the 

literature, due to the specialised nature of the real life optimisation problem in the 

research however, the AS-IS methodology reviewed not fully address the research 

problem requirements. The requirements include study of current states of the 

research (Literature review) in the research domain, study of the real life rolling 

practises in the research domain: where extensive knowledge elicitation from 

engineers for the process behaviours, such as quantitative, uncertainty and multi-pass 

rolling system modelling, and the problem understanding is required. The 

methodology also addresses the study findings and gaps in the research topic. The 

methodology is expected to give a solution proposal to fill the gap and the steps 

followed to achieve it. The research also carried out a second industry survey 

involving various engineering and design companies, including the client company, in 

order to have a broader knowledge context - in particular, the current state of the art 

design and optimisation in industry today, evolutionary computing and evolutionary 

computing based design and optimisation. The study provides information about the 

current activity of GA based design optimisation, and used as a platform for 

developing the optimisation framework utilised for searching solutions for the 

research problem. Details of the methodology that has guided through the main 

activities of the research are discussed in the following. The graphical illustrations of 

the research methodology, summarising the link between steps, within the 

methodology, and detail descriptions of the modelling, optimisation and validation are 

presented in Figure 3.1 and Figure 3.2 respectively.   
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Figure 3.1. Summary of the research methodology  

3.3.1  Literature Review 

The research includes a comprehensive review of literature throughout the research 

program. The review demonstrates detailed background knowledge in the industry 

initiated case study subject area of the research. The review also identifies and 

addresses limitations in the current techniques and methods used in the optimisation. 

A review of literature showed that very little work has been reported in work roll 

system optimisation using thermal analysis and GA. It also indicates that there is not 

much evidence that the uncertainty information and constraints are considered in 

rolling single and multi-pass system thermal analysis and optimisation. However, 

since the researcher is an outsider, it was important that specialist rolling design 

knowledge was acquired in order to verify the review findings and formulate the 

research problem. To fulfil this, therefore, the researcher made repeated visits to the 

client organisation. This was necessary in order to develop the specialist rolling 

knowledge and to capture how the rolling engineers deal with rolling thermal design 

and optimisation problems, and most importantly, how uncertainty and constraint 

information are dealt with in the real life process design.  
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3.3.2  Knowledge Elicitation for Research Problem Realisation  

As mentioned above, this research case study is based on a real life problem. To 

define the issues to be investigated and build the case, it is vital to put in place a 

process for first hand real life understanding of the rolling process and acquiring 

knowledge from the experts. Therefore, the initial phase of the research includes a 

knowledge elicitation exercise, which was conducted with rolling engineers and 

software developers from various sections of the organization, at Tata Steel-Europe, 

Swinden technology centre. The primary objective of the exercise is to assess the 

current status of work roll system optimisation, system thermal analysis and 

optimisation techniques in place. This is important to devise a strategy for linking the 

aim of the research with the knowledge gap expected to be filled. The exercise was 

carried out through industrial visits and direct interviews supported by tailor made 

questionnaires. The questionnaires and details of interviews were sent to the engineers 

in advance so that the engineers would have time to prepare in the specific area of 

interest. The details of the elicitation exercise are discussed in Chapter 4. The industry 

interaction is designed to achieve the following: 

 To identify the main problem areas from engineers working in the problem 

domain.  

 To understand the current level of model development and optimisation 

activities in Tata Steel Europe and resources available.  

 To survey the current state of the art algorithm based optimisation techniques 

in industry.  

 Since the work roll system thermal design optimisation is a specialist subject, 

in addition to the literature on the rolling process, it is important to get a real-

life perspective on issues influencing formulation of the research problem.  

3.3.3  Identifying Research Aim and Objectives  

The survey of literature and problem definition highlights the main research issues 

that need to be addressed for handling single and multi-pass work roll system thermal 

analysis and optimisation problems in presence of uncertainty and constraints. This 

enables the precise identification of the research aim and objectives to be achieved. 

Knowledge elicitation, particularly, helps to formulate the research problem and 

requirements.   
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3.3.4  Industry Survey       

The aim of this industry survey is to support review of literature for grounding the 

research within the industrial context. The survey also is designed to attain a broad 

perspective on evolutionary computing. Particularly GA based engineering design 

optimisation, and share information on issues concerning development, validation and 

implementation of GA based design optimisation techniques in industry. The survey 

was carried out through industry visits in multiple companies, for face to face 

interviews with experts, as well as phone interviews followed by questions. Details of 

the procedures followed for the survey are presented in Chapter 4. 

3.3.5  Documentation and Proposed Solution Framework 

Here, the identified problems, limitations and knowledge gap in the research domain 

are documented. Based on the knowledge acquired in the literature and industry 

survey, the key rolling features relevant for work roll thermal system design will be 

identified and classified as either deterministic or uncertainty drivers. The driver‟s 

complexities of these two types were studied extensively. The section also proposes a 

methodology for functional work roll system thermal design modelling and a GA 

based optimisation framework for searching best optimal design solution.   

3.3.6  Modelling & Optimisation Framework Development  

Over view of the modelling, optimisation and validation strategy is shown in Figure 

3.2. The quantitative model is developed to represent the complex behaviour of a real 

life rolling process in a simplified and controllable manner. The developed 

alternative/surrogate model represents the underlying characteristics of the issues 

being investigated. Modelling, although it is an approximation of the real life process, 

is still considered by many as the best way of representing processes with high 

disturbance and noise, such as rolling systems. Information from literature and 

industry real practice survey and observations were the main background source for 

the development of the model. The review helped to understand the historical 

characteristics of the rolling process in general, and the problem of the work roll 

system optimisation using thermal analysis in particular. As seen in the previous 

chapter, the rolling process is a process that the quantitative model on its own cannot 

address the underlying issues investigated. A better result is only possible if the 

information that is in the process, but not addressed in the quantitative model, is 
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included in the optimisation framework. The research followed a modelling and 

optimisation framework where both the quantitative information and uncertainty are 

addressed; therefore, better decisions can be made. Modelling and optimisation 

without taking in to account uncertainty and variability, would lead to solutions that 

cannot be said to be optimal, as they are likely to perform differently when put in to 

practice.  

Modelling framework is referring to the structure used to from the surrogate models 

and model validation based on regression analysis. The structure, as well as known as 

Design of Experiment (DoE) as part of the modelling process, conducts various FEA 

runs and the responses from runs are later used to build the models. The FEA runs in 

the DoE are originated from the process model supplied by the sponsoring company. 

Details of the DoE and model validation are discussed in Chapter 5.  

A Quantitative Modelling and Optimisation for Single Pass Work 

 Roll System using Thermal Analysis and GA 

The aim of this section is to develop quantitative models that represent single pass 

problems and explain different aspects, such as uncertainty as well as rolling system 

factors that are relevant to work roll system thermal characteristics. An important 

aspect of the model development process is to capture knowledge from the rolling 

engineers, so that current knowledge, in terms of work roll system design, can be 

accommodated in the development process. This is necessary because it would help in 

bridging the gap between the researcher‟s views acquired in the literature review and 

the user in the real world rolling practice. The single pass model developed is used 

primarily as a representation of the fundamental of the real world work roll system 

design problem. It is also used as the source for the development of multi-pass 

problem models. Single pass design and optimisation consist of a quantitative model, 

DoE and a validation stage. The models developed are later used as a fitness functions 

in the optimisation for searching solutions for the research single pass design problem 

in presence of uncertainty and constraints. Description of the single pass modelling 

process, model validation, and searching solution in the optimisation, as well as 

subsequent improvement of the model by incorporating real world work roll system 

design problem characteristics such as uncertainty and constraint, are presented in 

Chapter 5 and 6 respectively. Summary of the multi-pass modelling and optimisation 

is described as follows. 
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B Quantitative Modelling and Optimisation for Multi-Pass Work 

 Roll System using Thermal Analysis and GA 

The multi-pass rolling is an ordered multi-stage process, using a multi-stand rolling 

arrangement. The arrangements let the product pass from one to the other 

sequentially, where the output stock of one pass is fed as input stock into the 

subsequent pass. Due to this characteristic, solving multi-pass problems will increase 

the complexity and problem size - i.e. number of variables involved in the process. As 

the problem size increases, so does the level of uncertainty Oduguwa (2003a) in his 

work on roll pass design optimisation and sequential optimisation, studied extensively 

the characteristics of multi pass problems and techniques available in the literature to 

deal with the problems. The techniques are such as: FE method, backward tracing by 

Wusatowski (1969), forward tracing by Park et.al. (1983) and a derivative based 

approach by Han et al. (1993). Although these techniques are solely applied in the 

rolling pass design and optimisation, their principles give a flavour of the nature of 

multi-pass problems in the work roll optimisation using thermal analysis and GA. 

However, these approaches are derivative based and require an initial guess which can 

influence the search and can get stuck in a sub-optimal solution. The techniques 

cannot identify multiple optimal solutions in a single run to multi-objective multi-pass 

problems while considering the relationship between passes. The multi-pass 

quantitative models are developed to represent a complex behaviour of a real life 

multi-pass work roll system in a simplified and controllable manner. The developed 

quantitative models represent the underlying characteristics of the multi-pass rolling 

problems issues being investigated. The characteristics are such as: rolling process, 

factors and parameters, as well as the influence of those factors on the roll thermal 

behaviour. The multi-pass problem design and optimisation has also needed to 

address the inherited problem characteristics from one pass to the next. For example, 

the speed of the roll increases from one pass to the next, while stock temperature 

decreases. The quantitative models developed for multi-pass should reflect these 

characteristics. The developed models are later used in the optimisation as fitness 

function for searching optimal design solution to the research problem. Chapter 7 

presents detailed procedures of the modelling, model validation, and solution search 

in the optimisation, for the multi-pass work roll system design problem in presence of 

uncertainty.  



 

74 

 

3.3.7  Validations 

The validation is vital for assuring the validity and accuracy of the work. The research 

carries out validation at the modelling stage and optimisation stage. Validation of the 

approximate model was carried out by comparing the experimental result with the 

properties of statistical simulation (regression) using a design of experiment. The 

optimisation stages are also validated taking in to account properties of the 

optimisation result obtained under different circumstances - for example, running the 

optimisation with varying or random generation and comparing the result for 

convergence, and once the convergence confirmed repeat (up to 10 times)  under the 

same circumstances, so that the continuity of the convergence can be verified. The 

research also carried out an overall validation of the design and optimisation 

qualitatively, by taking on board experts from the sponsoring company and experts in 

the field from Cranfield University. Knowledge acquired from real life hot rolling 

practise is compared with the result from the optimisation. The validation, by experts, 

is supported by questionnaires. The methodology followed for validation and experts 

feedbacks for the questionnaires is given in Chapter 8. The validation achieves the 

following: 

 Compare the modelling with real life rolling practice. It also verifies the 

theory, knowledge and understanding of work roll system optimisation using 

thermal analysis and GA. 

 Evaluate the impact of uncertainty information integrated in the modelling and 

optimisation.   

 Verify the methodology followed in the modelling and optimisation of work 

roll system thermal analysis and optimisation problem solution search. It also 

verifies design factors characteristics assumption made for modelling the 

single pass and multi-pass models. 

Figure 3.2 presents an overview of the modelling, optimisation and the validation 

strategy and steps followed to develop the quantitative models through DoE, analysis 

of variance used to validate the model statistically and the regression. The modelling 

requirements such as employing efficient uncertainty propagation scheme and 

defining acceptable model error are also highlighted.  The Figure also gives intuitive 

idea about constitute and steps of the optimisation framework development and 

validations.  
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Figure 3.2. Single & Multi-pass Modelling, Optimisation & Validation Strategy  
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3.4 Chapters Summary  

The chapter presents the aim and objective of the research. It also outlined the 

methodology that helps to achieve the objectives of the research. The chapter also 

gives brief descriptions of the procedures, used in the methodology, such as the 

knowledge elicitation exercise to capture requirements, literature review, the model 

building frameworks, optimisation frameworks and concluded with the validation. 

The next chapter describes details of the methodology followed for information 

gathering through real life rolling process observations and knowledge elicitation, in 

the research domain from experts in the sponsoring company and various other 

industries. 
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4 Current Practice Study  

 

Improvement, or new process and product development, always start with the analysis 

of the existing one - AS-IS model. The main purpose of current practice study is to 

gather detailed information about the existing process, and decide where 

improvements are needed. Current practice study also gives a foundation for TO-BE 

modelling, which is a description of future desired processes. This chapter outlines the 

current practice study steps and procedures followed. The study, as part of the 

research requirement, will understand and document the activities and interaction 

between key process units. The result of this study is a representation of the current 

process, in terms of its inputs, outputs and mechanisms, as well as shortcomings of 

work roll system optimisation using thermal analysis within the rolling system design. 

Another key element of the study is to understand the process environment 

knowledge, such as uncertainty, including assumptions made by engineers in process 

design, and how this affects the current practice. A brief summary of the chapter is as 

follows. There are two main sections in the chapter: these are engineering design 

optimisation in industry and work roll system design using thermal analysis within 

steel manufacturing industry. Each section consists of a sub section detailing the 

technique used in knowledge elicitation, as well as the observations and 

understanding made from the study. The chapter is structured as follows: Section 4.1 

describes the current practise study information gathering methodology; Section 4.2 

presents engineering design optimisation in practise in industry Section 4.3 presents 

industry survey analysis and results; Section 4.4 knowledge elicitation exercise in the 

research problem domain; and the chapter concludes with the chapter summary in 

Section 4.5. 

 4.1 Information Gathering Methodology 

The AS-IS study is wholly dependent on the process information gathered from 

available resources. Hence, for the best information to be found and maintained, a 

structured methodology is essential. This thesis focuses on thermal modelling, 

analysis and optimisation of work roll system in the rolling process. The topic was 

originally selected by the sponsoring company as the subject of interest; hence, the 

research problem in this thesis. Since there was very little work reported in the 
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literature regarding thermal analysis and optimisation within the work roll system 

design, the domain was considered an interesting area of research. Therefore, the 

information gathering has also focused on this process domain. Information gathering 

was conducted through interviews, supported by questionnaires. The objective of the 

interview is primarily for knowledge elicitation from experts in the research domain, 

particularly the rolling process, thermal modelling and optimisation in the sponsoring 

company, as well as current engineering design optimisation techniques in industry. 

Knowledge was elicited from experts by direct interviews, using a carefully prepared 

set of questions. Questionnaires were developed and made available to the 

participants in advance. This was to make experts aware of the specific areas of 

interest, and also to give them chance to comment on the structure of the elicitation 

process and the content of the questionnaire, so as to ensure that the required 

knowledge is elicited. Following the questionnaires, the interview was arranged to 

take place in the participants‟ location. The interview was supported by the 

introduction presentation, discussions and a review of the process after every session. 

Information gathering has taken place in two categories. These are the interview 

relating rolling system design involving the steel industry, and interviews relating 

engineering design optimisation and techniques survey in industry today. The latter 

involved companies associated with design and optimisation in their day to day 

activities. A wide variety of industries, such as automotive, aerospace and steel 

manufacturing, were considered. The current practice study was carried out in two 

categories - this is due to the particularity of the research topics and expertise required 

for knowledge elicitation. Detail procedures of the study of the current practise are 

discussed in the next sections. 

 
Figure 4.1 Current practice study categories 

Current 
Practice  Study 

Engineering Design Optimisation 

& Techniques in Industry 

Today

Work Roll System  Design 

Thermal Analysis  & 

Optimisation in Steel Industry
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Since it is a specialised process, AS-IS study in the work roll system design, thermal 

analysis and optimisation is only carried out in the company where the research topic 

originated and the required information can be found. The details of the study of 

engineering design in industry today, the comparative study of optimisation 

techniques available, based on research papers published in the last decade and the 

work roll system design thermal analysis and optimisation in the steel industry, are 

presented in the next consecutive sections. 

4.2 Engineering Design Optimisation & Techniques 

Current Practice 

This survey is carried out as part of the current practice study, to find out current 

design optimisation activities and techniques available in industry. The survey also 

can be seen as the supporting evidence for what has been learned in the review of 

literature, presented in Chapter 2. The knowledge acquired from the review was used 

as the initial background for the design of the survey and the questionnaire developed.  

The survey was carried out involving companies with significant experience of 

engineering design and optimisation. There are four companies that participated in the 

survey. One expert from the three most relevant departments, namely design, 

computing and manufacturing, and a total of twelve experts were selected. Expert 

information elicitation was carried out by having a one to one interview. Each 

interview lasted for two hours. In brief, the survey was designed to achieve the 

following objectives: 

 To understand the practice and state of the art of design optimisation in 

industry today. 

 To capture techniques and tools availability and popularity in industry. 

 To identify GA based and Non GA based optimisation in industry.  

Prior to the survey, the following important procedures were followed. The 

procedures are a guide to decide the objectives of the survey, preparation of the 

questionnaire and selection of relevant companies and people. Details of the 

procedure for guiding the survey are discussed as follows: 

4.2.1 Selection of Companies  

The current practise survey was initially motivated by the literature review conducted 

in the subject domain. The literature shows that the engineering design optimisation 
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techniques are a domain associated with wider disciplines across the industry. 

Although it seems that the application of techniques are mainly used in bigger scale 

companies like aerospace and automotives, it has been learned that it is also becoming 

interesting to small and medium enterprises (SME). With these realisations, therefore, 

to have the full sense of techniques‟ popularity and application in industry today, it is 

essential that the current practise survey includes all disciplines of all sizes across the 

industry. Achieving this to the full, of course, is constrained by time, resources and 

availability and willingness of participants. With this in mind, the survey was 

conducted with the involvement of various companies considered most familiar, with 

substantial expertise and willingness to participate in the survey. This includes 

Aeronautics, Automobile and Steel. Brief descriptions of the activities of the 

participant organizations presented as Company A, B, C and in Table 4.1 are 

described as follows: 

Company A – is a steelmaking company. The company is Europe‟s second largest 

steel producer with main design & manufacturing operations in many European 

countries with major plants located in the UK, The Netherlands, Germany, France and 

Belgium. It is a leading supplier to many of the most demanding markets around the 

world including construction, automotive, packaging, mechanical and electrical 

engineering, metal goods, and oil & gas. The versatility of the products manufactured 

by the company is evident in the sheer number and diversity of their applications in 

engineering industries. 

Company B - is a Europe based technical centre and part of globally well recognised, 

third largest car manufacturing company. The centre is a central player in company‟s 

global operations.  In a sustained period of produce led growth and profitability the 

centre is pivotal in the development of next generation vehicles and the further 

enhancement of the car brand range which will take the company‟s market position to 

new levels. The company was founded in 1988 and originally based at Motor 

Manufacturing UK Ltd in Sunderland. In 1991, the centre moved to an ideal location 

on the Cranfield University Technology Park, one of Europe‟s largest academic 

centres for applied research. The centre in Cranfield is company‟s centre of excellence 

for the design and development of vehicles manufactured in their European plants. 

Company C - The Company is a global and second largest defence and security 

company with approximately 100,000 employees worldwide. The company delivers a 
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full range of products and services for aerospace, land and naval forces, as well as 

advanced electronics, security, information technology solutions and support services. 

The company employed over 25,000 engineers across their global operations, 

delivering complex, challenging and diverse engineering solutions, providing 

customers with world class, highly innovative and affordable products and services. 

Company D - The Company is a global business, with majority of the design, 

research and development centre is based in the UK, is providing integrated power 

systems for use on land, at sea and in the air. The group has a business portfolio with 

leading market positions, particularly in the civil aerospace, defence aerospace, 

marine and energy. The company, as a global group, conducts also research and 

technology programmers on behalf of governments, state and regional bodies around 

the world.   

4.2.2 Departments Need to Participate within the Company  

Design optimisation is a multidisciplinary engineering activity, involving different 

departments within an organization. The final solutions are the result of collaborative 

activity of these departments. Therefore, for accurate and realistic feedback to be 

found, the survey was required to include all relevant departments within the surveyed 

companies. To fulfil this, therefore, the survey first identified relevant departments 

involved in the optimisation and design process.    

4.2.3 Selection of People/Experts 

The quality of survey results are as good as the feedback obtained, and the feedback is 

as good as the people who participate in the survey. Therefore, the selection of people 

/experts is an important step of the process. The experience and number of participant 

is crucial. The experienced engineers will give an important insight and true nature of 

the subjective matter. If the number of participants is very limited in numbers and 

experience, it may have an impact on the survey feedback and results qualities. In 

consideration of all these therefore, a robust procedure has been followed in the 

selection of the participants. Table 4.1 and 4.2 are present the pre survey 

arrangements and survey participants‟ introductions.     
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Table 4.1. Pre survey arrangements  

Companies Affiliations No of 

participants 

Departments  

Design Computing Manufacturing  

A Steel 3 1 1 1 

B Automotive 3 1 1 1 

C Aerospace 3 1 1 1 

D Aerospace 

& 

Automotive 

3 1 1 1 

Total 4 12 4 4 4 

Table 4.2.A. Surveyed companies and participant expertise 

Company A 

Department Design Computing Manufacturing Total 

No. Of 

participants 

1 1 1 3 

 

Job title 

Senior design 

engineer 

Modelling and 

analysis expert 

Senior research 

scientific fellow 

 

Years of relevant 

experience 

10 years 40 years 15 years  

 

 

Table 4.2.B. Surveyed companies and participant expertise 

 

Company B 

 

Department Design Computing Manufacturing Total 

No. Of 

participants 

1 1 1 3 

 

Job title 

Design & 

product 

development 

Process 

improvement 

engineer 

Senior 

Manufacturing 

engineer (Manager) 

 

Years of 

relevant 

experience 

 

12 years 

 

8 years 

 

20 years 
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Table 4.2.C. Surveyed companies and participant expertise 

Company C 

 

Department Design Computing Manufacturing Total 

No. Of participants 1 1 1 3 

Job title Senior design 

engineer 

Senior 

programmer 

Senior manufacturing 

engineer 

 

Years of relevant 

experience 

 

6 years 

 

9 years 

 

15 years 

 

Table 4.2.D.Surveyed companies and participant expertise 

Company D 

 

 Design Computing Manufacturing Total 

No. Of participants 1 1 1 3 

Job title Product 

design 

Product 

development 

Production 

engineer 

 

Years of relevant 

experience 

 

11 years 

 

8 years 

 

19 years 

 

 

4.2.4 Questionnaire Development Procedures   

A set of questions was developed to probe the required information of engineering 

design optimisation and techniques in industry today. Initially, the questionnaire was 

piloted, based on the knowledge acquired from literature, in one selected company 

before it was fully implemented and extended to other industries. The questionnaire 

was sent to engineers, accompanied by introductions and requirements - prior to that, 

a number of contacts had been made with participants to brief the purpose of the 

survey and for survey pre condition agreements. At the beginning, the questionnaire 

was developed with questions considered relevant and covering the survey subject 

matter through brainstorming. Next, from the brainstorm questions, a summarised, 

second form of questions were developed. The version contains fewer questions and 

eliminated any repetitions. The third and final version of the questionnaire is a result 

of a step by step evaluation of the initial brainstormed questions. The third and final 

version contains questions considered relevant to the survey and that can address the 

main objectives of the survey. Sample questions for design optimisation state of the 

art, industry survey are given in Table 4.3. The section also presents transcripts 
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(Transcript 1) of the expert responses to the questions. Details of survey 

questionnaires and engineer‟s response are given in Appendix (A).  

Table 4.3. Sample questions, Survey, State of the Art Design Optimisation 

Techniques in Industry 

Questions design to investigate the states of design & optimisations in industry 

Q1 Describe how you optimise the component design?  

Q2.  Have you documented your design optimisation or design improvement 

 process? (Could we have a copy please?). 

Questions designed to investigate techniques, state of the art and level of applications 

Q1.  Do you use any commercial software for the optimisation? Please describe 

 why you use them. How long have you been using the software? 

Q2.  Are the existing design optimisation techniques you are using algorithm based 

 fully or partially? 

Q3 What advantages algorithm based design optimisation technique has in 

 comparison to any other optimisation technique you know?  

Questions design to investigate the Rationale in choosing techniques. 

Q1 What criteria you would like to use to evaluate commercial optimisation tools 

 and software? 

4.2.5 Implementation of Questionnaires 

The section above, presents the development of the questionnaire and rationale of the 

questions. Primarily, the purpose of this questionnaire is used as a support during 

elicitation of knowledge from experts through direct interviews. The questionnaires 

were developed and issued to the interviewees prior to interview day. During the 

interview, the hard copy questionnaires were produced either completed by the 

interviewee in advance or with the option to be completed during the interview. The 

interview was conducted based on the questionnaire. Implementation followed the 

following procedures: 

 Sent questionnaire in advance to participants.  

 Made contact to arrange and agreed preconditions, date, time and place of 

interviews. 
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 Meet-up and conduct interview based on questionnaires. The interview began 

with a ten minutes presentation, followed by two to three hours of discussions. 

The discussion was driven by picking and reading question from the list - if 

the question was clearly understood as intended, then the interviewee give an 

answer to it orally before repeating it in writing. During this time, the 

interviewer was also taking notes. 

The interview concluded with a ten minute summary discussion and closing remarks  

4.3 Analysis and Presentation of Results 

The knowledge elicitation exercise is a technique designed for identifying the likely 

areas within the evolutionary techniques appropriate for the design and optimisation 

and to confirm in particular, the suitability of techniques already identified in the 

review of literature. To identify and present the interview feedback, it is essential to 

process the feedback and define the expert assessment to the questions asked. This 

section discusses the steps followed to analyse the interview feedback and present the 

findings. The knowledge elicitation exercise conducted in this survey was wholly 

reliant on experts in the subject surveyed giving their own assessment of design, 

optimisation and techniques based on their experience. Hence, in some respects, the 

majority of answers given are subjective in nature, implying that feedback analysis 

required qualitative sorting. It has been observed from the feedback that there are 

similarities and differences in expert responses to questions. It was also observed that 

some answers are unique, depending on the industry and experts‟ experience, and 

some are different in expressions but similar in content. These realisations, therefore, 

lead to looking for an analysis technique that recognises these issues and, at the same 

time, extracting meaningful results out of the expert responses. The responses analysis 

followed the following procedures: 

 First, list all responses together under the survey.   

 Next, the response are categorised under similarities, uniqueness and 

Miscellaneous. 

 Making decision 

In each category, response feedback is summarised and presented. Unique answers, 

depending on their relevance, are taken as they are. Transcripts of the interview, 

questions and expert answers summery are presented in Appendix A.  



 

86 

 

4.3.1 Survey, State of the Art Design Optimisation Techniques in 

 Industry 

Survey Questions Themes and Aim 

Table 4.4 and Table 4.5 present the survey questions themes and aim. The purpose is 

to assess the current status of design, optimisation and techniques in industry. Probe 

questions and aim of probes are given below. 

Table 4.4. Questions themes and aim 

 

Section 1 - Multiple Choices 

 

Qs 

 

Questions Themes 

 

Questions Aim 

   

1 Participant personal responsibilities To  determine participants 

experience and knowledge to the 

survey questionnaires 

2 Participant association within the company To confirm the relevancy of the 

participant and dept. to the survey 

3 How do you evaluate the design against 

criteria? 

To search for what priority given 

to evaluate design 

4 If you are using none algorithm based 

technique to improve a design, who much 

time required, relative to the total design 

cycle? 

To gauge the importance of or 

otherwise, using none algorithm 

based techniques in the design 

process. 

5 If you are using algorithm based technique 

to improve a design, how much time 

required, relative to the total design cycle? 

To gauge the importance of or 

otherwise, using algorithm based 

techniques in the design process. 

 

Table 4.5. Questions themes and  aim 

 

Section 2 

 

Qs 

 

Questions Themes 

 

Questions Aim 

1 Describe how you optimise a component To search for what factor 

determined   the design  

optimisation 

2 Have you documented your design 

optimisation or design improvement 

process? 

To find out if there is a structured 

and reusable process exist 

3 How much time (percentage) do you use to 

optimise one initial design? 

To gauge the total time spent to 

improve a design 

4 

 

What criteria do you use to optimise your 

design? 

To identify what derive the design 

optimisation 
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Qs Questions Themes Questions Aim 

5 Do you have a process to develop a model? If the modelling process is 

manual/iterative scientific? 

6 How do you measure the efficiency of the 

design process? 

To find out If there is a recognised 

way of measuring efficiency 

7 How frequently would you use 

optimisation? 

To find out the popularity and 

frequency of use of the 

optimisation process 

8 Do you use any commercial software for 

the optimisation? 

To gauge the dependency, if any 

and importance of commercial soft 

ware. 

9 What criteria you would like to use to 

evaluate commercial optimisation 

software? 

To investigate if there is appetite 

for commercial software, if not 

why? 

10 What are the draw backs in the current 

design optimisation process? 

To gauge the efficiency of the 

current optimisation process 

11 Are the current optimisation technique you 

are using are algorithm based fully or 

partially? 

The gauge the state and popularity 

of algorithm based optimisation 

techniques 

12 If using algorithm based techniques what 

are the drawbacks? 

To gauge the efficiency of 

algorithm based optimisation 

techniques for real life application 

13 What advantage algorithm based 

techniques have in comparison to any other 

techniques you may know? 

To compare the algorithm based 

optimisation techniques in 

comparison to any other 

techniques 

14 If your design improvement activities 

involve algorithm based techniques what 

particular tool/s you are using? 

To identify if there is a particular 

algorithm based technique that is 

popular for real life application 

and why 

15 If your design improvement activities is 

conventional based, what particular tool/s 

you are using? 

To identify if there is a particular  

conventional technique/s that is 

popular for real life application 

and why 

16 Is your design improvement techniques 

involves hybrid technique (conventional 

+algorithm based) 

To gauge the popularity and 

advantages of hybrid techniques 

for real life optimisation process 

application 

17 From your own experience what needs to 

be improved in the current optimisation 

technique you are using? 

To identify the weakness of the 

current techniques for real life 

process applications 

18 Please write if you have any general 

remarks and suggestions on algorithm 

based techniques 

To gauge individuals 

understanding , strength and 

weakness of algorithm based 

techniques 
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4, 3.2 Observations  

The section presents the engineering design and optimisation in industry and 

techniques availability survey. The section also discussed the survey methodology 

followed and knowledge elicitation approaches. The elicitation is based on interviews, 

questionnaires, observations, and discussions with experts in various engineering 

companies. The knowledge captured was analysed and the required information 

related to the research was identified. The required information includes: current 

engineering design optimisation in industries, shortcomings in the current techniques 

and what the industry needs to fulfil these shortcomings. Main points of the survey 

findings are the following: 

 Design optimisation is carried out, either in conventional and in less extent, in 

evolutionary form. However the current design optimisation techniques are 

manual and mainly dependant on the designer‟s skills and experience.  

 Although some of the industries have limited but growing evolutionary 

techniques application, mainly in research and development. The survey 

revealed that optimisation algorithms are not yet widely used in the 

engineering design process. There are several inhibiting factors identified as 

being responsible for this limited usage:  

o Lack of integration of existing optimisation tools 

o Limited optimisation skill among design engineers 

o The computational time and cost of simulation 

o The complexity of real life optimisation problems 

o Multinational companies, a need for a global lead in decision making 

to adopt new techniques. 

However, experts in all surveyed companies universally agreed that, knowing the 

capacity of the algorithm based optimisation techniques in handling complex 

optimisation problems with minimum expert dependency, it would be beneficial to the 

business if have it in their organisation. 

4.4 Knowledge Elicitation in the Research Problem 

 Domain  

Work roll system thermal analysis, design and optimisation are a specialised subject 

where the real life process understanding is essential to have a wider perspective and 
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to fill the issues influencing the process. Hence, in addition to the literature review, a 

real life current practise study is important. The current practise study in the rolling 

design and optimisation is carried out primarily to investigate the flow of information 

in the process, and through that, to understand, in particular, the thermal and its effect 

of the work roll. The study is carried out by eliciting rolling system process 

knowledge from suitable engineers identified from various relevant departments in the 

sponsoring company. The knowledge elicitation is also applied to map the process 

involved in the work roll system leading to the development of the process thermal 

model. This collaboration with the engineers for knowledge gathering also contributed 

towards identifying likely areas within the work roll system in the rolling process, and 

in particular, cause of roll thermal change. As reviewed in the literature, work roll 

system is a process characterised by high disturbance, taking place in extremely hot 

environments and with a potential that uncertainty can influence the product tool and 

the process. Therefore, the collaboration of experts in the elicitation exercise is very 

valuable, in a way that it provides knowledge in the form of qualitatively measured 

opinion, which would have been impossible to find otherwise. The literature review, 

conducted in the subject area at the initial stage of the research, also indicate the need 

to acquire more specialists‟ rolling design knowledge through participation with the 

experts, so that the real sense of the real life rolling and work roll system thermal 

analysis and optimisation problem could be realized. The information gathering was 

made in two ways:  

1 Initially, the researcher spent time in the plant. The plant visit was for 

 firsthand experience of the rolling process and the main factors involved in the 

 process. During the stay, the real life process observations and informal 

 discussion with various engineers in the shop floor were carried out. The time 

 was also used to study software and the current activity in the area of 

 modelling, design, analysis and optimisation within the company.  

2 This was followed by formal interviews, workshops, company presentations, 

 internal reports study and one-to-one training programs. The interaction and 

 knowledge elicitation exercise with experts in the Tata, Steel Europe, Swinden 

 Technology Centre (STC) has enhanced the knowledge acquired from the 

 literature and been used for developing the research case adopted and 

 identifying details of the work roll system thermal process design and 

 optimisation problem. The current practice study particularly focused on 
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 issues associated to the problems initially indentified by the sponsoring 

 company as a potential research topic. These are: 

 Work roll system thermal modelling and optimisation.  

 The modelling, analysis and optimisation techniques and capacity. 

 Work roll system and system complexity.   

 Rolling process and design factors uncertainty and constraints.   

Pre Knowledge Elicitation Arrangements 

Three engineers were particularly selected because of their many years of experience 

and also that they are currently actively involved in the work roll system thermal 

analysis and optimisation within the company. The three engineers, besides 

participating in the knowledge elicitation exercise at the start of the research, also 

remained in contact throughout the research programme. At the initial stage, intense 

knowledge elicitation, particularly on factors and factors parameters involved in the 

design and optimisation of work roll thermal analysis and optimisation, is carried out. 

This took a total of 25 hours (5 hours a day in 5 sessions). The three engineers are the 

most experienced and senior experts in the research domain; therefore, the elicitation 

exercise, particularly in the modelling and rolling thermal factors analysis, mainly 

relied on these experts. However, during the two weeks stay in the company, the 

researcher also has an informal discussion with engineers who are controlling the 

manufacturing process in the shop floor. Brief descriptions of the arrangements made 

for information gathering and achievements are presented in the table below. The 

arrangement consists of two parts: 

1 Informal discussions with engineers in the shop floor and physical observation 

 of roll damages due to thermal stress; learn from engineers the unforeseen or 

 uncertainty in the rolling process that might influence the thermal behaviour of 

 rolls; and brainstorming of rolling process factors determining rolls‟ thermal 

 behaviour.   

2 Two days training and practise on modelling and finite element analysis, using 

 software widely used by the sponsoring company. Learn effects of design 

 process factors on work roll thermal behaviour by creating different scenarios 

 and simulating on ABAQUS. 
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Table 4.6. Initial arrangements for knowledge elicitation 

 

Rolling 

experts 

 

Years of relevant 

experience 

 

Expertise 

 

Expert 1 

 

40 years 

 

Mathematical modelling 

 

Expert 2 

 

15 years 

Long product rolling, design, modelling and 

optimisation 

 

Expert 3 

 

10 years 
Long product rolling modelling and FEA 

The collaboration with the sponsoring company started with presentation by experts, 

who are involved in the research. The presentation by the experts gave the overall 

understanding of what is required. During the two weeks stay, the researcher learnt 

also that regarding the current design and optimisation techniques, even though there 

are approaches in place for the rolling system and pass design that are able to deal 

with multi-pass and multi-objective problems, the work roll thermal analysis and 

optimisation problems have not been integrated. It was also learnt that the 

optimisation techniques in place do not address the roll thermal problems with 

uncertainty. Although there is some work reported in the literature in this regard, in 

most cases it is only addressing single pass and single objective problems, and the 

works are mainly assumption based and lack real life case study. The collaboration of 

the author with the engineers contributed towards identifying likely areas within the 

work roll thermal analysis and design that are appropriate for evaluating the 

optimisation technique. In particular, the inclusion of uncertainty in the optimisation, 

identifying the process factors and parameters for single and multi-pass work roll 

system thermal analysis and design problems scenarios, the number of passes that 

need to be considered, and modelling and optimisation of multi-pass cases. It also 

helps to understand multi-pass rolling design factors functional relationships so that 

make realistic assumptions during quantitative modelling of the multi-pass problem. 

This thesis focuses on modelling and optimisation of work roll system optimisation 

using thermal analysis and GA. Hence, the survey for brainstorming and knowledge 

elicitation was carried out with engineers mainly focused in these particular domains. 

Elicitation exercise query topics and the rational for the query are presented in 

Appendix B. Sample questions and the rationales behind the questions are given in 

Table 4.7. The section also presents scripts of engineer‟s interview feedbacks.   
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Table 4.7. Sample questions, Work roll system in rolling process  

Qs Survey Question Survey Aim 

Q1 What is the cost of rolls To gauge the cost associated to rolls 

Q2 What are roll design criteria 
To fully understand rolls and key design 

criteria 

Q3 

What are the setup parameters, 

work roll thermal design 

parameters? 

To identify the nature of the set-up, 

parameters involved and parameter 

interactions 

4.4.1 Knowledge Elicitation Exercise, (Questionnaires and Experts 

 Feedback Transcript  

Transcript 2 

This transcript reports on an interviewing session with two Tata-Europe engineers. 

The purpose is to assess the current status (general assessments) of work roll system 

design within the rolling process taking in account uncertainty and thermal effect. 

This is transcribed as follows: 

Researcher: What is the cost of rolls and how do you and measuring the roll life?  

Tata Steel-Europe: Single roll (Section roll) cost 8,000 pounds and Plate mill cost 

70000 pounds. The roll life time measured by the amount (tons) of material rolled. 

For example under normal circumstances, cast steel roll estimated to roll up to 100 to 

160 tons of material. 

Researcher: What criteria you use to design roll? 

Tata Steel-Europe: Roll design criteria is achieving the final shape in minimum 

number of passes within the constraints of the mill 

Researcher:  How do you measure rolls data? 

Tata Steel-Europe: Roll data measurements are CNC /redressing data. Factors such as 

speed measured using decoder.  

Researcher: How do you measure roll thermal profile? 

Tata Steel. Europe: Roll thermal profile is not measured, only estimated from models 

Researcher: What is the percentage of cost of rolls from the total production cost? 

Tata Steel-Europe: Roughly rolling cost estimated to be 5% to 15% of the total 

production cost, higher portion of this goes to tooling costs. 

Researcher: What are the main causes of work roll damage that trigger higher roll 

cost in hot rolling?   
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Tata Steel-Europe: Stress due to thermal force acting on the roll during rolling and 

cooling is the main cause of roll damage. The depth and degree of roll damage is 

influenced by process design factors. It is believed that the mechanical and process 

environments factors may also have influence roll damage.     

Researcher: How do you maintain roll from damage? 

Tata Steel-Europe: Roll thermal condition regulated by the roll cooling system. 

However redressing the roll (removing the upper shell of the roll by machining is the 

main form of renewal of the work roll.  

Researcher:  How do you design and optimise rod rolling does it include work roll 

thermal analysis and optimisation?   

Tata Steel-Europe: We have innovative techniques for roll pass design and product 

quality and scheduling, that reduce our cost, reduce manpower, reduce change times. 

However these existing techniques do not incorporate work roll system thermal 

analysis and optimisation.   

Researcher: What do expect or benefits will you be looking for from this research 

project? 

Tata Steel Europe: Develop innovative techniques that give a range of design 

solutions. It got to reduce the conversion cost to increase the margin, Reduce our cost, 

reduce manpower, roll for longer period of time reduce energy cost, reduce change 

times, if we keep the same roll, we can have more stock and less down time.  

Transcript 2.1 

This transcript reports on a session held with two engineers. The purpose is to gather 

information about the rolling and work roll system thermal analysis, design and 

optimisations behaviours. This is transcribed as follows: 

Researcher: What are the setup parameters, work roll thermal design parameters? 

There is no work roll thermal design parameter as such, but rolling process parameters 

set from which the work roll system thermal design parameters can be found.    

Researcher: What are the main outputs and input of the mill pass? 

Tata Steel-Europe: The outputs are physical stock size, the speed, the torque develop 

in the drive spindle, roll separation force. The input are: collar gap, the draught and 

the speed, those are the basic input we put in. The other you input is the preceding 

pass output i.e. the incoming stock gap. 
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Researcher: What are the constraints & parameters that must hold to satisfy rolling 

thermal design &optimisation requirements? 

Tata Steel-Europe: Stress and surface temperature of work roll should remain within 

the material allowable limit, beside you should look in to other process factors need to 

be considered for constraint, one example could be coolant temperature.  

Researcher: Is the functional relationship between passes can define the real life 

process?    

Tata Steel-Europe: One can calculate the multi-pass rolling set up by carefully worked 

out functional relationship, by considering known factors parameters of passes. This is 

relatively strait forward for continuous rolling pass set.  

Researcher: Do you currently consider process uncertainty in the design & 

optimisation of the work roll thermal analysis? 

Tata Steel-Europe: Work roll thermal design is part of the rolling process scheduling, 

work roll thermal analysis, design and optimisation is not rigorously explored, work 

roll cost due to thermal issues is still a problem. In the previous improvement process 

uncertainty was not considered.        

Researcher: Do you have record of study made for process uncertainty relevant to rod 

rolling thermal analysis and optimisation? 

Tata Steel-Europe: Not particularly related to work roll design and optimisation for 

work roll thermal analysis,  

Researcher: Is there a specific conditions, factors/ parameters each pass experience 

during the rolling process? 

Tata Steel-Europe: with few exceptions such as roll bulk temperature, process factors; 

each pass is experiencing isolated thermal, mechanical and thermo-mechanical 

conditions. Factor parameters are also pass specific however a compromised design 

can also be found that serve a rolling set involving number of passes.     

Transcript 2.2  

This transcript reports on a session (work shop) held with two Tata engineers. The 

purpose is to clarify the work roll system thermal analysis, design and optimisations 

problem to be addressed by the research. This is transcribed as follows: 

Researcher: what do you look from the research?  

Tata Steel - Europe: We need to look at is optimisation, involving single pass, multi-

pass, multi-variable, multi-objective, uncertainty and constraint issues. Basically we 
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have to develop optimisation framework. The quantities we‟ve considered optimising 

is the work roll thermal analysis and optimisation; we‟ve picked the single pass of the 

rod schedule and multi-pass consisting of 5 passes for investigation. Also we need to 

look the mechanical, thermal and thermo-mechanical significance on the work roll 

thermal behaviour. We also want to look at the inter-pass relationships, taking in to 

account the output of one pass fed as input to the next pass. Temperature and stress 

have some sort of proportionality, so the first stage is to minimise the work roll 

temperature and at the same time looking in to the stress behaviour   may occurred as 

a result of minimising work roll temperate.  

Researcher: The context of approximate modelling and optimisation for the research.  

Tata Steel-Europe (Expert 1): The main issue is methodology for optimisation. 

Tata Steel-Europe (Expert 2): Your role is not to find the most accurate FE run. We 

can provide initial process model, your project is developing a method for pre-

processing DoE, and post processing for optimisation.  

Researcher: How about the uncertainty issues? 

Tata Steel-Europe (Expert 1): Uncertainty is the main issues affecting life of work 

rolls that need to be addressed. Current practise cannot efficient to deal with the 

uncertainty issues, current technique lack robustness.  

Tata Steel-Europe (Expert 2): The uncertainty can be used as additional information 

for the initial knowledge. In addition uncertainty can be included in the optimisation. 

Uncertainty and degree of uncertainty has not been considered in the current design 

and optimisation of work roll system, however based on research on the rolling 

system, closely related to work roll system thermal design and optimisation at least 

95% design variables accuracy expected.   

4.4.2 Observations 

Following the industrial survey and collaboration with experts in the sponsoring 

company, the following important findings related to the research domain are 

identified:  

 Work roll thermal analysis and optimisation is a process optimisation problem 

and influenced by various process factors that needs to be investigated.  

 Real-world multi-pass work roll thermal analysis and optimisation problems 

involve many design factors, which increases their complexity and reduces the 

ability of engineers to easily reason about them. However studying the factors 
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complexity and functional relationship between design factors is a possible 

strategy help to understand the behaviour of multi-pass rolling arrangements.   

 During hot rolling operation, the roll cooling system is to balance heat entering 

to the roll and leaving it; hence, keep the work roll from excessive 

temperature. However, due to the nature of the rolling environment and the 

presence of uncertainty, cause the cooling system from keeping the work roll 

in the required temperature range and protect it from damage. 

 Although the work roll system thermal design is a vital part of the rolling 

process for keeping the work roll from thermal shock, its operation is 

conventional. These techniques are inefficient and unable to deliver if a robust 

and optimal solution is sought.       

 Presence of uncertainty in the process is one main factor affecting the work 

roll system design, however currently the presence of uncertainty has not been 

considered in the design and optimisation.    

 The Current practise study revel that even though there are approaches in 

place for the rolling system and pass design that are able to deal with multi-

pass and multi-objective problems, the work roll system and thermal analysis 

and optimisation problems have not been integrated. It was also learnt that the 

optimisation techniques in place do not address the roll thermal problems with 

uncertainty in the design space and fitness function. Although there are few 

work reported in the literature in this regard, in most cases it is only addressing 

single pass and single objective problems, and the works are mainly 

assumption based and lack real life case study. 

The elicitation exercise was designed to explore the product development process in 

the sponsoring company within the technical centres, Rotherham office. The exercise 

helps to understand the work roll thermal analysis and optimisation problems and an 

overview of the process of rolling designing and optimisation. The elicitation exercise 

report, the current work roll thermal analysis and optimisation activity, and capacity 

to deal with it, identified critical areas requiring further analysis and the knowledge 

gaps in the current practise. These also led to identifying and setting the aim and 

objectives required to address and filling the gaps. These gaps define the main focus 

of this research. As mentioned in Chapter 3, this research attempts to develop GA 

based techniques for work roll thermal analysis and optimisation problems. The 
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chapter has given an overview of the rolling process and work roll system thermal 

analysis and optimisation problems, and existing techniques for handling the 

problems. It also identified the research gaps that form the focus of this thesis. This 

chapter re-evaluates and affirms the initial scope of the research, defined by the 

sponsoring company, and knowledge gained from the review of literature. The next 

section summarised the key issues and challenges.  

4.4.3 Key Issues and Challenges 

Based on the observation made in the real life rolling practise and as stated by 

engineers during the knowledge elicitation exercise, the following are main issues and 

challenges identified with regard to the research problem case studies.     

 The features of real-life work roll system thermal design and optimisation 

problems, such as presence of multiple objectives, constraints, interaction 

among decision variables, quantitative and uncertainty create challenges for 

the design and optimisation techniques currently in use in industry. These are 

also an issue that discourages the industry from adopting algorithm based 

techniques.  

 A process model that explains the behaviour of complex design problem is a 

pre-requisite of any optimisation process. It is needed by the optimisation 

algorithm to evaluate the goodness of the solution. The nature of the model 

influences the wider application of the optimisation algorithm. Realistic 

process models is a result of, not only based on quantitative formulations but 

also models based on perception based reasoning elicited from engineers. 

 Understanding inter-stage dependency plays a crucial role in the search for 

realistic real life multi-pass process optimisation problems. The link between 

passes establishes communication that can be useful to ensure the information 

about the previous passes is taken into account when dealing with the next 

passes. This is useful in ensuring that the search at the current pass is 

consistent with passes before. As in the case of real life practise.  

 The issue of high dimensionality is a common problem difficult to deal with in 

the current multi-pass work roll system thermal design and optimisation 

practise. The number of variables present in the design problem increases 

significantly with the number of passes. This has a significant impact on the 

feasibility of solutions obtainable by process optimisation algorithms. As the 
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problem size increases so does the complexity of the problem. The high 

dimensionality is also an issue for visualising the optimisation problem 

solutions (Pareto front). 

4.5 Chapter Summary   

This chapter described the part of the research methodology that has formed the basis 

of the research work carried out in this thesis. Since the research is an industry based 

case study, it is vital to acquire understanding of the real life process and operation in 

industry. This includes the knowledge elicitation exercise to capture requirements at 

the initial stage of the research. The knowledge elicitation exercise is an essential 

stage, helping to acquire more specialist rod rolling thermal analysis and optimisation 

knowledge through participation with experts in the design process. The primary 

objective of this exercise was to assess the current status of woke roll system thermal 

design and optimisation within the organisation, and to verify the proposed aim of the 

research. The exercise was carried out through industrial visits, structured, semi-

structured interviews supported by questionnaires.  

Since the aim of the research is to develop an optimisation technique using thermal 

analysis and GA for work roll system design and optimisation, it is important and 

necessary to study the current state of GA based optimisation technique in industry 

and in research. The research also conducted a comparative study of techniques 

application in the last decade, shown in Chapter 2. The study explored the 

fundamentals of techniques and their applications, advantages and shortcomings. The 

survey and the comparative study outcome on the techniques are used as a 

prerequisite for the development of the optimisation technique for searching for a 

solution for the research problem. While this chapter discussed the current practise 

study in the research domain, such as the rolling process, work roll system thermal 

analysis and optimisation, as well as the process factors and parameters influencing 

the thermal behaviour of the work roll, the next chapter presents the development of 

the single pass work roll system quantitative approximate models for design 

optimisation.  
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5 Work Roll System Single Pass 

 Thermal  Model  Development 

Chapter 1 introduced the nature of the research problem, the complexity of real life 

work roll thermal process design, and hence, the need for an alternative, easy to use 

surrogate model. Chapter 2 explored in the literature, among other issues, the 

simulation techniques, and acquired knowledge for developing a model to represent 

the work roll thermal process design in a controllable manner. Chapter 3 presented the 

methodology adopted for modelling the thermal model.  Chapter 4 discussed the 

current practise of the research area and explored the roll thermal modelling activity 

and shortcomings. This chapter presents the quantitative thermal model and the 

strategy used for the development of the thermal quantitative model. As presented in 

Chapter 2, thermal modelling approaches such as finite element analysis (FEA) are 

the most important techniques available in representing a complex real life process 

such as roll cooling system design. The collaboration with experts in the company is 

an important stage of the modelling process, and helped to identify the main problem 

area and possible contributory factors for the identified problems. The collaboration 

also helps to ensure that the surrogate model developed can approximate and 

represent the real world rolling process. The modelling also incorporates the 

uncertainty in the design input factor parameters. This is important for realistic 

representation of real life work roll thermal system design. The model is later used in 

the optimisation for searching for optimal design solutions for work roll system 

design problem. The mathematical modelling is based on the response surface of the 

FEA model supplied by the sponsoring company. Details of the FEA model, response 

surface simulation and the regression modelling are discussed in this chapter. The 

chapter is structured as follows:  

Section 5.1 presents details of the FEA problem model supplied by the company. 

Section 5.2 presents the functional modelling (mathematical modelling) for work roll 

system thermal analysis and design problem. Section 5.3 presents the procedures for 

the design of experiment (DoE) for work roll system design thermal modelling. 

Section 5.4 concludes the chapter by summarising the key points of the modelling 

process.   
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5.1  Description of the FEA Model  

The basic principle of approximation is to develop an alternative model that 

represents the underlying behaviour of the real life rolling process. The main objective 

of such a model is to be less complicated, less expensive, easier to use and able to 

achieve a reasonable trade-off between the expensive objective evaluations and the 

search problem. It is also simplifying the representation of a complex behaviour and 

speeding up the numerical solution process. As discussed in Chapter 3, the 

fundamental background information and research formulation is derived from 

literature review and knowledge elicitation from engineers. The information gathered 

was analysed and presented back to engineers, where the presentation describes, 

among other issues, the complexity of the rolling process and the need for an 

approximate modelling. In the presentation and subsequent discussion, it was agreed 

that the approximation should take place in two phases. These are problem and 

functional approximations. Problem approximation is recommended to replace the 

original problem by an approximate problem using FEA, and the functional 

approximation aims to construct an implicit model in place of an underlying 

behaviour by developing a Meta-model. However, since the case study of the research 

problem is  part of a previously started wider process improvement project being 

carried out by the sponsoring company where various problem approximations (FEA 

model) are already in use, it has been decided that the first phase of approximation 

(FEA) model in this research be omitted, and instead provided by the client company. 

The specification of the approximate problem model and regression modelling are 

described in the following sub sections.  

5.1.1  Problem Approximation (FEA Model) and Its Specifications    

The sponsoring company provided a CAD model for the rolling simulation. The 

model can be used for FEA based thermal analysis. The 2D thermal model consists of 

the thermal, mechanical and thermo mechanical properties of the rolling system 

design, representing real life single pass rolling. However, during the development of 

the functional modelling, the single pass model process factors‟ functional 

relationships have been manipulated so that the 2D single pass approximate model 

can be extended and used to develop functional approximation for multi-pass work 

roll system problem. Details of the multi-pass functional modelling are discussed in 
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Chapter 7. Original problem approximation (FEA) 2D model specification is 

described as follows:  

Specification of the problem approximation (FEA) model  

The problem approximate FEA model, supplied by the sponsoring company, is made 

up of three main parts of the rolling process. These are: the roll, stock (represented by 

the static pressure in the roll stock contact) and a cooling system with 6 cooling sprays 

rotating nozzles. The model specification is generated from the given original FEA 

model, in which all the necessary predefined fields and properties of the model parts 

can be accessed. For functional Meta models, developed by the researcher, the 

responses of simulation matrix of 27 FEA simulation runs have been carried out by 

changing the predefined property, for example, material property; roll speed, heat 

transfer coefficients, and other relevant variables, according to requirements, to 

measure the effect of cooling on the roll, using a specified roll thermal profile 

measures or responses. The quadrant original problem approximate (FEA model) 

supplied by the sponsoring company is presented in Figure 5.1. The quadrant FEA 

model is chosen to save computational time and the size of simulation Output Data 

Base (ODB) unnecessarily during simulation. Therefore the inexpensive model with 

stationary roll/stock but with rotating cooling nozzles has been selected. The problem 

FEA model shown in Figure 5.1 represents the rolling thermal process design, without 

compromising the true nature of the process. Heat affects the roll most in the area of 

contact, lower part of the roll, and tense at the time of contact. The model  presented 

here represent the roll lower part that have direct contact with hot stock and the 

surrounding area where the cooling applied to remove the excess heat from the roll. It 

has been learned during the interview, knowledge elicitation with rolling experts in 

the sponsoring company that, the part selected is determined the thermal profile of 

rolls most. The model represents two steps of single pass, long product rolling 

process. The two steps are the rolling and the delay time steps. The meshing and 

boundary conditions of the FEA problem model, developed using ABAQUS, are 

given in Figure 5.1 and Tables (5.1-5, 2). 
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Figure 5.1. Original problem approximate (FEA) model (source the sponsoring 

company) 

Table 5.1. FEA problem model meshing part boundary condition 

 

 

 

Meshing Boundary Conditions (Material property) 

 

Roll Shell Roll Core Nozzles Stock 

 

Material, 

name=highcr_shell 

Conductivity (w/m.k) 
18.4, 20.0 

Density 7.5833e-09 

(kg/m
3
) 

Elasticity 

215000, 0.3, 20.0 (MPa) 

Expansion 

1.3e-05, 20.0 (mm) 
Inelastic Heat Fraction 

0.9 

Specific Heat 
4.78e+08 (j//kg.k) 

 

 

Material, name= 

sgac core 

Conductivity 
48.58,20.0 (w/m.k) 

Density  

7.172e-09 (kg/m
3
) 

Elasticity 

167000, 0.3,20.0 (MPa) 

Expansion 

1.22e-05 (mm) 
Inelastic Heat-Fraction 

0.9 

Specific Heat 
4.78e+08 (j//kg.k) 

 

Material, 

name=nozzle 

Conductivity 
55. 50.0 (w/m.k) 

Density 0.02075 

(kg/m
3
) 

Elasticity 

812000,0.281,20.

0 (MPa) 

Specific Heat 
5.86e+08 (j//kg.k) 

 

Material 

Material=leaded steel 

Stock truss, 
(Beam Orientation) 
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Table 5.2. FEA problem model part interaction property 

5.1.2 Purpose of the Thermal Quantitative (Functional) Models    

The thermal models developed are used as a substitute for real life work roll system 

design characteristics for physical experiment. The work roll system characteristics 

such as: heat / cooling system effect on rolls, rolling process factors and parameters, 

and their associated uncertainty. The purpose of the thermal model is aimed at 

addressing the following:  

 To develop an alternative, mathematical model that represents the underlying 

behaviour of the research problem being investigated.  

 Approximate Meta-Models are developed in most cases to simplify the 

representation of a complex behaviour, less complicated, less expensive, easier 

to use and speeding up the experimental work. 

  To increase the integration of numerical information and the uncertainty in 

the work roll to be used in the optimisation; thus, better decision making.  

 Since the model developed is based on response surface methodology, it 

makes it possible to capture the dependent and independent design variables 

(input / output) relationships. the measure indicate the roll thermal profile and 

the effect of the cooling on the roll for given input design set as observed in 

real life rolling process.       

5.2 Approximate Modelling for Work Roll System 

 Thermal Analysis and Design Problem   

The purpose of approximate modelling, also known as functional approximation, is to 

develop an alternative mathematical model that represents the fundamental 

characteristics of a process being examined. The main objective of a functional 

approximation model is to develop a less expensive and easier to use model, and be 

Interaction Properties 

Surface Interaction 
name=INT-11 

Friction, slip 

tolerance=0.0050.3 
gap conductance  

(HTC roll/stock 

contact)  

 

  Surface Interaction 
name=nozzle - roll  

 Friction 0. 

gap conductance  
(HTC cooling) 

 

 

Nozz1Contact Pair 
interaction= 

nozzle-roll, 

type=surface  
to surface 

 

roll stock- 
contact Pair- 

interaction 

   (nt-1) 
type=surface to 

surface 
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able to achieve a reasonable representation of the real life complex process, such as 

roll cooling system in rolling design. Other reasons to develop approximate models 

are to minimise time required for real life physical experiment, and speed up the 

numerical solution process, which otherwise would have been difficult, if not 

impossible. Meta-model is a typical example of functional approximation (Friedman, 

1996). It is often referred to as the approximation of the simulation program‟s 

input/output transformation, also called response surface. Statistical meta-modelling 

techniques build approximate meta-models to output responses based on experimental 

or simulation data at carefully selected design points. Due to its simplicity in 

application and ability to emulate the complex real life process behaviour, the Meta 

modelling approach is becoming widely used in various engineering design 

disciplines. However, it has been established from the literature that there is still very 

little application reported, particularly in roll thermal modelling. Therefore, the 

research adopted a statistical meta-modelling technique for generating models for 

work roll system design problem. The design of experiment and the descriptions & 

development of the functional approximate models are presented in Section 5.3. The 

approximate models are developed based on the strategy shown in the flow chart 

presented in Figure 5.2. 

The flow chart is the framework describing the steps and constitutes of each step, 

from problem realization, model development to the validation, of the approximate 

modelling process. The framework used for flow of information between steps and 

help to define requirements relevant to the intended model in advance.  
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Start

1   Problem realisation/ definition

2  Process factor complexity study 

Higher no. of factors ?

4  Design matrix / full factorial

5  Run FEA experiments with the given 

CAD model

6  Construct the model 

4  Design matrix/ fractional 

factorial

7  Validate the model

Is Model acceptable ? 

Stop

No 

3  Identify key design factors

Yes

Yes

No 

 

Figure 5.2. Meta-modelling flow chart for single pass rolling thermal process design 

5.2.1 Rolling Process Factors Relevant to Roll Temperature 

 Variations  

This section discusses the issues concerning the work roll system thermal analysis and 

design problems and presents the rolling process variables relevant in the work roll 

system thermal analysis and design. The variables identified through literature review 

and brain storming session during knowledge elicitation exercise with rolling experts 

in the sponsoring company. The listing of variables leads to the identification of the 

most relevant process variables contributing to the roll thermal design problem. Most 

importantly, the complexity study and analysis is carried out among variables to 

determine process factors‟ relationships and dependency, if any, between variables to 
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determine process factors‟ relationships and dependency, if any, between variables to 

ensure that only independent fewer number of variables are selected for functional 

modelling. Identifying the most relevant process factors follows the steps shown at the 

end of this section: Figures 5.3 and 5.4, present rolling process factors determine 

rolls‟ thermal behaviour, and rolls thermal variation cause sources respectively. 

Figure 5.3. Rolling process factors features associated to roll thermal behaviours 

Figure 5.3 lists the rolling process factors (mechanical, thermal and thermo 

mechanical) in the hot rolling process. The factors in the list are identified through 

rolling expert knowledge elicitation, presented in Chapter 4. The list helps to identify 

the particular factors from the three categories that influence the thermal behaviour of 

work roll in the rolling process design. Figure 5.4 shows a cause and effect diagram 

where the factors are categorised depending on their source. The categories are tool, 

product, process and other, such as environmental. The identified thermal factors are 

further analysed for factors complexity and relationships before the final independent 

most relevant work roll system thermal analysis and design factors are chosen. 

Descriptions of the steps followed for identifying input design factors used in the 

modelling are as follows: 
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 Identify list of process factors and parameters for work roll thermal analysis 

and design from literature review. 

 Arrange meeting with engineers in the client company for further study and 

brainstorming of work roll system design factors, as well as identifying factors 

important for thermal design. 

 Study and analyse factors complexity, if any, among factors identified as 

important for work roll system thermal design. Here also, the relevant and 

independent factors are determined. Sample factor complexity study is 

presented in Appendix D. 

 Issue the selected, independent identified factors relevant for work roll system 

thermal analysis and design to expert in the client company for approval.  

 Document the validated final list of factors, to be used in the functional 

modelling of work roll system thermal analysis and design problem.    

The next section discusses the final, independent rolling process thermal design 

factors. The identified factors include the input design factors, as well as thermal 

measuring or dependent factors. 

Other/Environment. causeOther/Environment. cause

Product causeProduct cause

Process causeProcess cause

Tool causeTool cause

Stand off distance

Roughness

Interstand time 

Rate of heat loss
Roll size 

Roll bite

Roll microstructure

Scale amount

Roll initial Temperature 

Roll material 

Roll speed 

Roll position

Defective thermocouple

Coolant variation 

External friction 

Conduction 

Heat transfer coefficient 

Slide effect

Radiation 

Interstand time 
Coupling effect

Nozzle blockage 

Convection

Cooling rate 

Number of jets

Rolling force

Rolling power

Stock temperature 

Stock size & shape 

Water/jet temprature 

Coolant flow pressure

Draught/pass size

Density of material 

Nozzle  width

Delay time 

Coolant flow rate 

Jets type 

Contact pressure 

Period of contact

Speed along the track

Thermal conductivity 

Material heat conductivity 

Stock Lateral speed 

Material specific heat 

Stock velocity 

Property of scale 

Scale size 

Material type Micro structure 

Work roll thermal 

behavior variation 

Lubrication effect 

 

Figure 5.4. Causes of work roll thermal behaviour variations 
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5.2.2 Description of Final Independent Factor Relevant in Rolling 

 Process Thermal Design  

The aim is to understand the issues concerning the roll cooling problems and identify 

specific contributing factors to the identified problem. This step also lists the most 

important design variables from a large number of potentially important factors, 

presented in the previous section. The choice of design variables was driven by the 

need to mimic the real design problem experienced in the plant. This is achieved 

through a number of visits to the plant, for process real life operation physical 

observations, knowledge elicitations from rolling experts through interviews and 

questionnaires, as presented in Chapter 4. The literature review also helped to verify 

the rolling process factors relevant to work roll system thermal behaviours identified 

by rolling experts. Seven variables were identified and their operating range specified. 

The variable bounds are estimated for feasible design values. These are established 

after consultation with the rolling engineers. Table 5.3, shows the factors identified 

and factor levels recommended. Identifying the final seven design variables is based 

on the following steps: 

1. Brainstorm and list large portion of design variables involved in the rolling 

process 

2. Identify factors from step above, relevant to work roll thermal behaviour 

3. Study the factors identified in step 2 for complexity/functional relationships. 

The study is important in determining the relationships between the final 

selected design factors affecting roll thermal behaviour so that assuring only 

independent variables are selected in the modelling. Sample complexity study 

is shown in Appendix D.   

4. Select small number of independent factors from step 3, most relevant to work 

rolls thermal characteristics.    

The selected variables and their parameters are then fed in to the problem CAD model 

for FEA simulation. The responses from the simulation (the selected dependent 

variables i.e. objective functions measuring the behaviour of roll thermal behaviour) 

are recorded and later used to develop the functional/ mathematical models. The 

functional models are the fitness function in the optimisation used for searching 

solutions for the design problem. As discussed in the previous section, there are a 

number of process and operating contributing factors to rolls‟ thermal fatigue. 
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However, those factors sometimes are difficult to quantify. Also, depending on the 

degree of their contribution, as well as the fact that the higher the number of factors 

the more complex the design of experiment will be, hence, priority should be given to 

those factors most important to the problem. Those less contributing factors and 

factors created during operation, such as roll stock contact during rolling and the 

cooling operation, are represented by one compensating factor called heat transfer 

coefficient (HTC). Here, the HTC 1 and HTC 2 are the heat transfer coefficient values 

given for cooling and roll/stock contacts, respectively. The design factors have been 

given a range of design space, called factor levels that lie between acceptable upper 

and lower boundaries; therefore, modelling problems caused by factor variability can 

be resolved. The boundaries are assigned based on information from real world rolling 

practices. Higher model accuracy is expected from higher number of levels in the 

design space. Therefore, a 3-level is allocated for each of the identified main factors. 

The number and level of factors selected determined the basis for how the design 

samples will be allocated in the experimental FEA simulations, particularly in terms 

of size and quality of the design. The choice of design samples, as well as being 

known as design matrix, is shown in Section 5.3.3.    

Table 5.3. Work roll system independent design variables used in the model 

Key: HTC = Heat Transfer Coefficient 

 x1 x2 x3 x4 x5 x6 x7 

 

Variables 

 

 (HTC 

Roll/stock 

contact) 

(kW/m^2K) 

Stock 

temperature 

(0C) 

Contact 

length 

(mm) 

 (HTC -

Cooling) 

(kW/m^2K) 

Roll 

speed 

(Rad/sec) 

Roll 

Temperature 

(0C) 

Delay 

time 

(sec) 

Limits 5 950 10 15 0.14 40 20 

15 1250 30 50 1.256 80 100 

Table 5.4. Design simulation 3 level matrix inputs  

Design 

variables 

x1 x2 x3 x4 x5 x6 x7 

 

 

 

Levels 

(HTC- 

Roll/stock 
contact) 

(kW/m^2K) 

Stock 

temperature 
(0C) 

Contact 

length 
(mm) 

(HTC -

Cooling) 
(kW/m^2K) 

Roll 

speed 
(Rad/sec) 

Roll 

Temperature 
(0C) 

Delay 

time 
(sec) 

1 5 950 10 15 0.14 40 20 

2 10 1100 20 35.5 0.698 60 60 

3 15 1250 30 50 1.256 80 100 
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Roll thermal behaviour during rolling is dictated by a combination of input and output 

factors of the rolling process. However, due to the nature of the process and the wider 

impact on work rolls, the output factors change in temperature on rolls, and roll radial 

stress are taken as the main fitness measures in the research problem. The responses 

(dependent) factors are a result of a wide range of design factors (thermal) of the 

process. In the literature review, it was discovered that the obvious known design 

factors influencing the thermal behaviour on the roll are contact between the hot work 

piece and the tool, the temperature of the material, as well as the speed of the rolls. 

Similarly, however, there are other important design factors in the rolling process, 

relevant to roll thermal behaviour change. The design variables are inputs that are 

used to develop the new system and/or adjust in order to modify the system in 

progress. The dependent variables are the response from the design or independent 

variables, and used to measure the thermal behaviour of rolls. With the state and 

operational variables, although they may not have a direct contribution in the design, 

the uncertainty may rise in them and could affect the final result. The sources are 

classified in to independent, dependent, operational and state variables. The variables 

in each source are the input and output response of the modelling process. The 

variables and their source categories, in the rolling process relevant for work roll 

system thermal analysis and design are presented as follows: 

Independent design variables, these are the actual variables used in system as input 

to form the design. Here, the design variables used for system modelling are called 

input design factors. Following are the main factors in the rolling process that 

determine roll thermal characteristics. 

Temperature, In metal forming, both plastic deformation and friction contribute to 

heat generation. Approximately 95 % of mechanical energy involved in the process is 

transformed in to heat. A part of the generated heat remains in the deformed material, 

and the other goes in to tooling. This temperature developed influences the cooling 

conditions and tool life as much as the properties of the final product. Since the heat 

generated can influence the maximum deformation speed set to produce a quality 

product without excessive tool damage, it can be said that temperature generated 

during plastic deformation is the major influencing factor in the forming process. The 

main rolling variables relevant in determining work roll system thermal characteristics 

are discussed in the following. 
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Stock Temperature - Rolling temperatures vary mainly between 950
0
C to 1250

0
C. 

The temperature is mainly from the hot stock coming out of the furnace. The roll 

surface is heated initially to approximately 650
0
C while it is in contact with the hot 

stock, and subsequently cooled by water to around 50
0
C during the same cycle. The 

flash temperature could in fact rise above 800 
0
C due to the friction generated heat. 

The mechanical properties and dimensions of the rolled product have a strong 

influence on the rolling temperature and amount of heat that goes to the roll, and 

hence have a direct effect on roll life.  

Roll Temperature - roll temperature is the initial or bulk temperature of the roll, 

before it comes in to contact with the hot stock. As observed in the production plant in 

the sponsoring company, the initial rolls temperature is normally is in the range 

between 40
0
C to 80 

0
C. Roll temperature will go up to 650

0
C when it comes in contact 

with hot stock, but immediately cool down to normal temperature by the cooling 

system/ water spray. To maintain the working life of the roll, an adequate cooling 

system is a must - a system able to keep the roll in optimum temperature, regardless of 

the conditions of the working environment, such as uncertainty, variability and 

temperature variations arising in the process.  

HTC (roll stock contact) - heat transfer coefficient is an important factor in 

determining the roll life and better product during hot rolling of metals. HTC is a way 

of treating heat transfer problems in the roll gaps during hot rolling. According to 

many researchers, HTC parameters selection during hot rolling is dependent on a 

number of factors - for example, the size of metal reduction from the stock, presence 

and size of oxide scale in the stock, section of rolling operation and the contact time. 

In the literature, it is reported that HTC (α) is in the range of 25-30 kW/m
2
 K if the 

surfaces are free from oxides and 7-10 kW/m
2
 K if a 0.01 mm thick oxide layer covers 

the surface (Raudensky and Horsky, 1992). However, other researchers argued that 

heat-transfer rate has to be dependent on the contact time and the thickness of the 

oxide scale, and rejected the simple heat-transfer coefficient and looked at the heat 

transfer in the roll gap as heat transfer through a one-layer wall of thickness α equal to 

the oxide scale thickness. Pawelski et.al. (1989) derived an upper- and a lower-bound 

value for the coefficient of heat conduction k, where the upper bound represents the 

heat transfer without scale and the lower bound the heat transfer when the scale is 

sufficiently thick to determine the entire heat transfer rate. They are also derived the 
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values. Kupper = 8870 /    for upper and Klower. = 2360 /  , where t is roll / stock 

contact time. The simplest way researchers come up with to treat the heat-transfer 

problem in the roll gap is to use the heat-transfer coefficient α, and write the heat-

transfer rate or the power of heat transfer. P = aA∆T. Where: A = wbL, stock width, 

breadth and L length respectively. L =       , ∆h = ho – hi, ho and hi are stock 

height entry and exit respectively. ∆T = Ts - Tr, Ts and Tr are temperature of roll and 

temperature of stock respectively., In his work, he also discussed a quite simple 

method for the calculation of the coefficient of thermal conductance and of the 

thermal field in the rolls and rolled bar, as well as the total heat penetration depth and 

the boundary value, mathematically denoted as δ /2       > 3 and δ     ), 

respectively where d is thermal diffusivity and t is roll / stock contact time.  

HTC for roll-stock contact determined based on the following factors: 

 Scale size  

 Contact time  

 Rolling process section  

 Material specific property such as conductivity, heat capacity 

 Reduction size   

HTC (Cooling) - Another important heat transfer coefficient involved in hot rolling, 

and that has significance  in determining roll wear and roll life, is the interface 

between cooling and rolling, as well as being known as Heat Transfer Coefficient 

(HTC) for cooling. This parameter controls the rate of heat transfer from the rolled 

metal to the work-roll. HTC for cooling is comprised of a number of sub factors that 

determine the transfer of heat. Those sub factors include water temperature, water 

pressure, coolant flow rate, velocity, jet distance from the roll and orifices diameter 

are just to mention a few. To derive the proper heat transfer coefficient, both the 

rolling program and the cooling layout have to be taken into account. According to 

experimental work by Ye and Samarasekara (1994) the heat transfer coefficient for 

the water spray zone has been derived from the following relations: hws = 2900W
0.85 

(1 

+ 0.014Tw), where W is the water flow velocity, in m/s, and Tw is the water 

temperature, in 
0
C. It is also confirmed that HTC cooling depends on the section of 

the rolling process - for example roughing, intermediate and finishing, shown in 

Figure 1.6, Chapter 1. Generally, the contact time is higher and temperature of stock 

is higher in the roughing stage than the finishing stage. Thus, for this and a few other 
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reasons, flow stress behaviour and interfacial heat transfer coefficients differ between 

the roughing and finishing operations. In this research, however, to accommodate 

these variations, a parameter with range has been considered. Hadly et al. (1995) 

devised an empirical equation for HTC cooling, constituting the necessary factors that 

need to be addressed.   

Hcon = λmean /c1 (pr / σs)
 1/7 

    λmean       =      λ r λ s          

                                λ r + λ s           

The terms σs and pr are the mean flow stress and the mean roll pressure, respectively, 

and c1 is a constant that varies depending on the material used, and λs and λr are slab 

work-roll thermal conductivity, respectively. The above relation shows that the 

interfacial heat transfer coefficient is a function of the rolling conditions, such as the 

rolling speed, the reduction in thickness, and the friction. All these parameters affect 

the rolling pressure. Therefore, changes in the rolling program can alter the roll 

pressure, as well as the interfacial heat transfer coefficient. For example, as the rolling 

speed is increased, the contact time is reduced, and thus, the quantity of thermal 

energy that is transferred into the work-rolls is reduced. In addition, as a result, the 

interface heat transfer coefficient will also change. Roll cooling heat transfer 

coefficient HTC sub components can be divided into two main sections. These are 

from cooling source and roll stock contact. 

HTC for cooling determined based on the following factors:  

 Stand-off distance 

 Number of nozzles 

 Flow rate [l/min] 

 Flow pressure 

 Roll speed [rad/sec] 

 

HTC for roll-stock contact  

 Scale size  

 Contact time  

 Rolling process section  

 Material specific property 

 Reduction size   
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Rolling loads and stress - Hot wear rate is directly proportional to the normal 

pressure on roll surface. Average rolling pressures can be considered to be in the 

range 100-300 MPa. The corresponding cyclic stresses, amplified by thermal cycles, 

in roll surfaces are estimated to amount to 500 MPa. The rolling pressure can be 

linked to the initial stock temperature and stock size. The higher stock size will result 

in higher roll pressure and stress, and the opposite is true for increased roll 

temperature where the stress could be minimal.   

Roll speed/velocity - Roll speed is the most important factor in the rolling process, 

having the most influence on the thermal behaviour of rolls. Most other factors and 

factors behaviours are dependent on roll speed. The increase and decrease of the roll 

speed will have a direct impact on the heat transfer. For example, as the rolling speed 

increases, the contact time is reduced, and thus, the quantity of thermal energy 

transferred into the work-rolls is also reduced, and interface heat transfer coefficient 

will also change. There are various ways to derive velocity as a function from the 

rolling system. Most noted and relevant to the thermal characteristic of rolls is the 

speed as a function of inter-stand distance and time, i.e. (speed = inter-stand distance / 

time in [rad/sec]). Speed variation impacts all other factors relevant to roll thermal 

distribution and roll wear. For example, increasing the rolling speed lowers the 

temperature variations in work-rolls. This is due to the fact that the higher the speed 

the lower the contact time and heat transfer coefficient.  

Roll stock contact time - Roll stock contact time is another equally important factor in 

the rolling process, determining the variation of temperature in the roll. In hot rolling, 

the transfer of heat from the stock is directly proportional to the time and length of 

contact. The more the contact, more heat in to the roll results. The impact from the 

relation can also be the cause for temperature imbalance in the roll, as well as stress, 

and hence, shorter roll life. Longer contact time after long delay of stock before 

coming in to contact with the roll can cause sudden shock to the roll that may lead to 

roll crack. The impact of the delay time is discussed next. 

Stock delay time - Stock delay time refers to the time which the stock needs to reach 

to the roll gap. The stock experiences delay for various reasons - it may be the normal 

time the stock requires to reach to the roll gap, depending on pace and inter-stand 

distance, or it may be longer delay due to unspecified circumstances. A longer delay 

may result in a shock to the roll, unless it may be balanced by the scale amount on the 

stock formed because of the delay. However, a higher scale amount on the stock may 
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result in problems to the roll and quality issues to the rolled product. Therefore, the 

delay time is an important factor in the modelling and optimisation of the roll cooling 

system design.  

Dependent variables are not directly assigned in the design, but values to be 

measured as an output of the input or independent design variables. The dependent 

variables, otherwise known as characteristics of design, are largely a function of the 

characteristics of the input design variables. In the work roll system design problem 

optimisation, the objective function elements such as temperature change and stress 

on the roll are values corresponding to the function characteristics of the design input 

variables. The literature review disclosed that the two variables are best describing the 

thermal condition of rolls during the hot rolling of metals.    

Change in roll temperature (ΔT) is an important work roll system thermal design 

objective that expresses the effect of roll cooling system on rolls during hot rolling. It 

is a suitable measurement since it displays rolls‟ thermal behaviour (i.e. how well the 

current cooling design meets the requirements). The change in temperature is 

measured as the difference between roll temperature after rolling and subsequent 

cooling, measured over a cycle in quasi steady state heat exchange rolling conditions 

(T1) and initial or bulk temperature state of rolls before rolling (T0). Change in 

temperature is expressed as ΔT = T1 – T0, measured in 
0
C.  

Roll radial stress (SII) Another equally important measure/objective in optimising 

work roll system is keeping the roll radial stress (S11) at the roll surface as low as 

possible. Roll stress characteristics is a useful objective to consider since it has an 

inverse proportional effect with change in temperature in rolls. As the review of 

disclosed that roll thermal wear is highly influenced by stress.  Roll surface passing 

under the water cooling and hot stock undergoes a cyclic state of tensile and 

compressive stress, respectively. This tensile stress is a contributory factor to thermal 

crack growth. The tensile state of rolls also has effect on roll loads. The deformation 

load is a function of roll wear, where excessive deformation load results in large roll 

wear. Therefore, it is desirable to reduce the rolling deformation load by reducing the 

tensile stress. There are various types of stress on the roll as a result of mechanical 

and thermal cycle during rolling, such as axial, surface or hoop stress maximum 

principal, radial stress (S11) in the form of compressive and tensile stress. Although 

all have impact at a degree, radial stress (S11) is the most recognised in determining 

the roll wear.  
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State variables are intermediate design variables between dependent and independent 

design variables, which have no direct contribution or effect on either independent or 

dependent variables and the design itself. State variables cannot directly be assigned 

values, but exist during simulation process - for example, computer speed, current, 

and other conditionality in setting the simulation state.   

Operational variables are variables related to the environmental working condition 

of the design when in use. The environmental conditions are variables that can be 

changed by the operator on the ground to make the condition fit to the design. Factors 

such as coolant type coolant temperature, coolant pressure, spray distance from the 

roll as well as known as heat transfer coefficient (HTC) are examples of operational 

variables. These variables are also prone to uncertainty. Operational condition 

variables are conditions set for the system while in operation. Operational variables 

could be used, depending on the problem. In this work, the main focus is on 

independent and dependent variables of the process, as well as operational variables. 

The details of those variables application in the quantitative modelling are discussed 

in the next section.  

5.3  The Design of Experiment (DoE) for Work Roll System 

 Design Thermal Modelling 

Following the identification of the important process factors in the rolling and the 

factors measuring rolls thermal characteristics, the research developed a mathematical 

model based on the finite element method, to predict the work-roll change of 

temperature during the hot rolling process and the associated stress induced in rolls. 

The model takes into account the effect of process parameters discussed above. The 

design of experiment is based on response surface, targeting dependent variables 

discussed in the previous section, i.e. the change in temperature and stress on the roll. 

The response data are collected at the roll surface and various depths below the 

surface. This helps to figure the response‟s effect on the roll surface and depth of 

penetration in rolls below the surface. The depth of roll temperature and stress effect 

is dependent on the working conditions and the cooling system applied to it. Design of 

experiment is a technique often used to approximate a process. The technique is 

adopted here in the thesis because of its ability to systematically and accurately 

sample the design space. The method is used to capture the all important relationship 
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between the above described dependent and independent variables with a reasonable 

number of experiments. However, DoE is, although it is efficient in collecting 

response data of FEA simulated design variables, difficult to conduct in the real life 

production process. Hence, the need for an approximate mathematical model is 

important. Approximation of the model is carried out using a statistical analysis using 

the response data from the FEA simulations. As described in the literature, there are a 

number of techniques in the design optimisation that are used for constructing the 

approximate mathematical model, but here, however, because of its simplicity, less 

cost and the fact that it is the most popular technique adopted by industries, response 

surface methodology RSM is used.  

5.3.1 Response Surface Methodology 

The aim of the statistical technique, the response surface methodology, is to generate 

smooth functions, typically linear or quadratic polynomials, of model system 

response. The fundamental properties of the techniques relevant to the qualitative 

model building include: the design of experiment which is used to form the response 

data, and the analysis of variance and the regression analysis used to form and 

analysis the mathematical model. The modelling is based on 2
nd

 degree polynomial 

with the mathematical expression: 2
nd

 degree polynomial consisting of main effect, 

interaction effect and quadratic effect, also known as quadratic model, expressed as: 

ax + bx
2
 + cxy +d + ε  ; x and y  = 1...k    Equation 5.1 

Where a, b, c and d are the coefficients to be estimated, x and y are a vector of k 

system variables, ε is an error in most general cases and assumed to be zero. Here, in 

this work, due to the nature of the problem in the research domain, ε has a non zero 

value. Details of the uncertainty (design variables and model) are discussed in Chapter 

6. The research adopted the quadratic model due to the nature of the problem and the 

fact that the quadratic model has the appeal of representing most forms of real life 

engineering problem behaviours, such as the main effect, interaction effect and 

quadratic effect of design variables.       

5.3.2 Problem Definition  

The problem definition is referring to the identification of change in thermal 

behaviours in rolls which occur during contact with hot stock and cooling. The change 

in behaviours is used to measure the quality of solution for achieving optimum roll 
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cooling system design. Here are also defined the roll wear influencing factors, as well 

as the dependency, if any, between factors. The effects of other important rolling 

process characteristics such as presence of uncertainty, constraints and high 

dimensionally on work roll determined. Knowledge elicitation exercise, carried out 

through a series of contacts with engineers, conducted through interviews supported 

by semi-structured questionnaires, as well as observation of real life rolling processes 

in the manufacturing plan presented in, Chapter 4 led to the identification of the 

problem and the objectives that need to be addressed. As presented in the literature 

review, Chapter 2, hot metal rolling is a large scale, complex process where thermal 

behaviour of rolls could be as result of one or a combination of sections of the system. 

Therefore, the roll thermal characteristics problem has to be seen as a process problem 

(Kleiber and Kulpa, 1995). Hence, process factors, as well as associated qualitative 

phenomenon such as uncertainty and variability needs to be taken in to account in the 

problem definition and solution search. Modelling of the work roll system is used to 

predict roll thermal behaviour, such as temperature change and roll tensile stress. 

These predictions are obtained using design variables related to the rolls, stock and 

operational variables relevant in determining the roll thermal characteristics.  

5.3.3 Specify Design Matrix 

The design matrix specifies how the design space is to be sampled. The basis of 

selection of the design matrix is fare representation of factors in the design space for 

simulation. Computational cost and time for the design of experiment, as well as 

resources available to run it, are also reasons that need to be taken in to account. In 

this study, the L-27 (7
3-1

) matrix, shown in Table 5.5 is adopted. This design shows a 

three-level, 7 factor matrix. Each design variable is scaled such that it has a range of 

maximum, minimum and centre point values. ABAQUS FE simulations are 

performed, based on the selected matrix to generate the input values for the simulation 

runs. The first step in selecting the design matrix is to find the total degree of 

freedom. The total degree of freedom determines the minimum number of 

experiments required to accommodate all chosen factors, with acceptable 

representation in the design space. Here, the first degree of freedom is associated with 

the overall mean, regardless of the number of design variables to be studied, and the 

other degree of freedom is associated factors and their levels, and calculated as one 

less than the number of levels for each factor. This is because only one less than the 
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number of levels assigned for a variable are required for comparison. For example, in 

the case of 3 level design variables, only two comparisons are required. Thus, the total 

degree of freedom for the problem with 7 number design variables can be estimated 

as: 

Overall mean         1 

All variables     7 X (3-1)   =  14                                                                          

     ----------------------                     

Total               15 

That is, at least 15 experiments (evaluations) are required to estimate the effect. 

However, reasonable increase in the design space will increase proportional 

representation of samples; hence, better design. Therefore, a design matrix with 

increased sample space is chosen.  

Table 5.5.  Design matrix for FEA simulation (L-27 = 7 
3-1

) (Taguchi, 1978). 

x1 = HTC  Roll/stock contact (kW/m^2K), x2 = Stock temperature (
0
C), x3 = Contact length 

(mm), x4 =  HTC - Cooling (kW/m^2K), x5 = Roll speed (Rad/sec), x6 = Roll Temperature 

(
0
C), x7 = Delay time (sec) 

No. Of runs x1 x2 x3 x4 x5 x6 x7 
1 1 1 1 1 1 1 1 

2 1 1 1 1 2 2 2 

3 1 1 1 1 3 3 3 

4 1 2 2 2 1 1 1 

5 1 2 2 2 2 2 2 

6 1 2 2 2 3 3 3 

7 1 3 3 3 1 1 1 

8 1 3 3 3 2 2 2 

9 1 3 3 3 3 3 3 

10 1 1 2 3 1 2 3 

11 2 1 2 3 2 3 1 

12 2 1 2 3 3 1 2 

13 2 2 3 1 1 2 3 

14 2 2 3 1 2 3 1 

15 2 2 3 1 3 1 2 

16 2 3 1 2 1 2 3 

17 2 3 1 2 2 3 1 

18 2 3 1 2 3 1 2 

19 3 1 3 2 1 3 2 

20 3 1 3 2 2 1 3 

21 3 1 3 2 3 2 1 

22 3 2 1 3 1 3 2 

23 3 2 1 3 2 1 3 

24 3 2 1 3 3 2 1 

25 3 3 2 1 1 3 2 

26 3 3 2 1 2 1 3 

27 3 3 2 1 3 2 1 
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Table 5.6. Input Setting for the FEA Simulation 

x1 = HTC  Roll/stock contact (kW/m^2K), x2 = Stock temperature (
0
C), x3 = Contact length 

(mm), x4 =  HTC - Cooling (kW/m^2K), x5 = Roll speed (Rad/sec), x6 = Roll Temperature 

(
0
C), x7 = Delay time (sec). 

No. Of runs x1 x2 x3 x4 x5 x6 x7 
1 5 950 10 15 0.14 40 20 

2 5 950 10 15 0.698 60 60 

3 5 950 10 15 1.256 80 100 

4 5 1100 20 35.5 0.14 40 20 

5 5 1100 20 35.5 0.698 60 60 

6 5 1100 20 35.5 1.256 80 100 

7 5 1250 30 50 0.14 40 20 

8 5 1250 30 50 0.698 60 60 

9 5 1250 30 50 1.256 80 100 

10 5 950 20 50 0.14 60 100 

11 10 950 20 50 0.698 80 20 

12 10 950 20 50 1.256 40 60 

13 10 1100 30 15 0.14 60 100 

14 10 1100 30 15 0.698 80 20 

15 10 1100 30 15 1.256 40 60 

16 10 1250 10 35.5 0.14 60 100 

17 10 1250 10 35.5 0.698 80 20 

18 10 1250 10 35.5 1.256 40 60 

19 15 950 30 35.5 0.14 80 60 

20 15 950 30 35.5 0.698 40 100 

21 15 950 30 35.5 1.256 60 20 

22 15 1100 10 50 0.14 80 60 

23 15 1100 10 50 0.698 40 100 

24 15 1100 10 50 1.256 60 20 

25 15 1250 20 15 0.14 80 60 

26 15 1250 20 15 0.698 40 100 

27 15 1250 20 15 1.256 60 20 

5.3.4 The FEA Experiments  

Here, it involves running experiments from the given set of input data and FEA model 

supplied by the sponsoring company. The experimental run is a carried out with fixed 

values for all its inputs and parameters, and is performed to obtain the output. The 

results/responses obtained from the experimental runs are used to estimate the 

parameter values of the meta-model. In the experimental simulations, a total of 27 

runs were conducted using the data sampling matrix shown in the tables above. 

Values of the response variables, change in temperature and stress (S11) are recorded. 

The two responses are the main thermal characteristics identified that best describe 

the behaviour of rolls during hot rolling. Change in temperature is a result of 

temperature data collected from rolls after simulation minus original roll bulk 

temperature (T1 - T0). The experimental simulation was carried out for rolling, 
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consisting of two steps of the rolling process. The two steps are rolling and delay time 

shown in Figure 1.4, Chapter 1. The rolling step is the step where hot stocks pass 

through and have contact with rolls, while delay time is an occasional occurrence 

during rolling where no hot stocks pass or come in contact with the rolls. Delay can 

occur at any time in the process and results due to known or unknown reasons. For 

example, time from furnaces to the first pass and time for the stock to travel between 

passes, and also occasional occurrence of stock delay for unknown reasons. 

Generally, unsolicited delay time occurs at any time in the process and it is not certain 

to determined period and cause of the delay. Too short or too long delay can be a 

contributory factor for temperature variations on the roll, and hence, need to be 

considered in the design for safe operation to be achieved. The rolling and delay steps 

are more relevant for multi-pass process. The steps and responses expected are shown 

in Table 5.7. The design input factors properties and simulation initial conditions are 

also shown in Table 5.8 and Table 5.9.   

Table 5.7. Expected responses from the FEA simulation 

Expected Response (3 x 2) = 6 

At roll surface, 9 mm and 15 mm depth below the surface  

Change in temperature (∆T) 

Radial stress (S11) 

Figure 5.5 shows the 3 sample data points where the expected 6 response are taken 

from the roll. The data points shown in the Figure are at the roll surface, 9 mm and 15 

mm below the surface. In the experiment 9 mm is where the rate of change of 

temperature start to decline or at least steady state start and 15 mm is where all the 

experiment shows heat effect is minimal. There are also additional simulation runs 

and data collected at depth below the surface. The data are used to see the temperature 

trend patter along the heat affected area from surface towards the roll centre. The 

additional run is conducted with various materials type property and experimented by 

taking in to account the worst case scenario design input set, where heat from stock 

going in to the roll would be the maximum. Such scenario is where the design set 

includes the lowest roll speed; hence the longer contact between roll and stock, 

highest stock temperature parameters. The experiment is discussed in Section 5.3.8.   
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Figure 5.5. Simulation response data points from the roll, for functional modelling 

Table 5.8. Independent design variables set used in the FEA simulations.  

Process input variables Process input variables 

HTC 1 ( for cooling & 

rolling) 

HTC 2 ( for roll & stock contact )  

Stock temperature 

Roll temperature 

Roll speed 

Delay time 

Roll-Stock contact length 
 

 

HTC 1 & 2 are the 2 single entities of the design variables 

representing a number of sub factors discussed in Section 5.2.2. 

Table 5.9. The experimental simulation initial conditions 

Rolling simulation Initial conditions 

   

Thermal diffusivity (α)  =           λ / ρ Cp 

Thermal conductivity (λ)  =        48w/m.k 

Specific heat capacity (Cp)  =      478j/kg.k 

Density (ρ)   =                                7083kg/m3 
 

 

Roll size 

Roll material 

 

 

180 mm 

High 

chromium 

Thermal diffusivity expressed as a function of thermal conductivity density 

and heat capacity (ρ Cp). 

t  is stock and rolls contact time and expressed as a function of roll stock 

contact length, roll speed (omega) and roll radius, (t = L / Ω X r) 

         

    

 
 Stock after roll bite 

Response 

data at the 

surface  

At 9 mm  

At 15 mm  
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5.3.5  Experimental Set-Up  

The experimental runs are performed in high power grid computing. The grid 

computing is selected due to the fact that the time required to run a job is quicker, so 

that makes a significant reduction in computational time. It is also that a number of 

simulation jobs can be run in parallel. The jobs are sent to grid from a PC in a batch 

with the return directory in the PC, so that when the run completes, the jobs go back 

to the pre prepared folder in the PC - from which the analysis for response extraction 

takes place. Sending jobs from PC to the grid and back follows the following line, 

(CD.../ $W/ Job-A2 Roll-A2 Run-A-2), where CD corresponds to the researcher ID, 

$W the directory where the input data is sent to GRID and FEA simulation response 

from GRID returned and stored, Job A-2, is a script that contains a description that 

links the input data with particular features in the GRID; for example: to send a 

particular job to particular grid node, to determine if the job is to run in parallel in a 

number of nods at the same time, choice of 64 or 32 byte node. Roll-A2 is a folder 

containing the input file of the rolling simulation 2, and the Run-A2 is the file 

containing the data parameters and specifications of run2 (as well as known as design 

input data). Jobs run both in parallel and single depending on nodes availability. 

Parallel runs help to reduce the total computational time significantly. A total of 12 

jobs run in parallel node out of the total of 27 simulation inputs. This is because there 

were only 6 nodes available for parallel runs at the time of simulation. Although there 

is no significant difference in using either 32 bite or 64 byte nodes, in relation to the 

size of the ODB of the runs, 64 byte nodes have been selected for all simulation runs 

in this research.  The Graphical illustration of the log in, and sending and running of 

jobs in the GRID is shown in Figure 5.6 and 5.7. Also shown in Figure 5.8 is a typical 

example of the post analysis result from the GRID back to the PC.  
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Figure 5.6. Log in to the GRID from the PC using personal ID 

 

Figure 5.7.  Sending and running jobs on the GRID 
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Figure 5.6, shows the GRID display after log in, and Figure 5.7 displays the states of 

the job while it is in the GRID. For example, user ID, number of slots the job is using 

(4 in this case), Job ID, as well as job submission time and date. It also states whether 

the job is running or waiting in the queue. The upper section of Figure 5.6 indicates 

the job submission command, followed by the information about the success of the 

submissions. After successful completion of the simulation, the information, results 

and input data file are sent back to the pre set directory in the PC. The post simulation 

information is sent back in the form of files as shown in the following.       

 
   Run-M10, ODB File 
   Run-M10, MSG File 

 Run-M10, INP File 

   Run-M10, DAT File 

 Run-M10, PRT File 

  Run-M10, STA File 

          Run-M10, MS-DOS Application  

Figure 5.8. Showing post analysis results sent back to the PC by the GRID 

In the post simulation results shown above, each file holds useful information of the 

FEA individual run. However it is only the ODB file is useful for taking data 

information from the simulation. The ODB file is where the responses output data are 

stored. From this file, the dependent/responses variables (Temperature on the roll and 

radial stress after simulation) will be collected and the result later used for developing 

the approximate functional models and eventually as fitness function in the 

optimisation fro searching solution for the research problem. The Output Data Base 

(ODB) file contains up to 75% of the return data hence is the bigger size item in the 

file. Information from the other smaller files listed above is not used in the modelling 

or optimisation. The files mainly describe the states of the simulation run and result as 

shown in the following: 

 DAT file report processing part instance and assembly information of the FEA 

model. It also display if there is a warning, error or successful completion of 

the simulation run. DAT also shows memory used and size of the result 

package. 

 INP file present the input file used in the simulation. 

 STA file presents summery of job information such as the number of iteration, 

frequency and steps taken in the simulation and data saving.  
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 PRT file gives numbers describing part and assembly meshing elements and 

nodes of the FEA model.MSG is a file contains a message stating detail 

description of the simulation run, constraints in the model, response and part 

assembly. It also presents, at each step the criteria fulfilled while simulation 

complete. Step is the size of time increment.   

Running period/time and size of simulation job using GRID computing 

Time required to complete a single job using GRID computing and size of simulation 

output, is dependent on various features of the input data and parameter specification 

set for the simulation run. Such data and specification includes: the number of 

responses/dependent factors ordered to be saved, and the frequency within the steps, 

in which the data is saved during simulation. Rolling process has two steps. These are 

a rolling step and delay step. The steps time is a time needed to complete a single step, 

either rolling or delay step in the process. Step time determined by and is a function of 

roll speed and roll radius, hence, these rolling features also have a direct effect on the 

overall run time needed for single simulation. Here in this experiment, all non relevant 

responses are omitted, and only 2 responses (measured roll thermal characteristics), 

namely Radial stress (S11) and roll surface temperature (NT11) are saved. This helps 

to reduce computational time and the size of the simulation Output Data Base (ODB). 

The frequency in which the data needs to be saved is dependent on the period/step in 

which change occurs in the roll during simulation. Particular interest is the effect of 

heat and cooling on the roll; hence, the ODB is designed to save output that measures 

these effects. Taking in to account the input data parameters, such as the roll size and 

speed, a functional relationship is employed to decide interval time within the steps, 

which is the time period 1 full rolling will, takes place. The steps time refers to the 

cycle time in which the data expected to be saved. In this experiment, therefore, 

instead of saving every increment  of the simulation, which is time consuming and 

increases the size of ODB, interval time and step time are determined, (calculated) 

and introduced in the FEA simulation input file. The functional relationship shown 

here is used to determine the interval time and step time. Interval Time in second =  

  

 
 where    is the speed of the roll and,   = 3.14 and the step time is calculated as the 

interval time multiplied by cycle number. 3 cycle time has been chosen in the research 

hence the step time in second = 
  

 
 X 3. The function means that data to be saved 
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every 3 cycle of the roll. Response from simulations output, taken from the data saved 

from the cycles are then used in the simulation result analysis and subsequent model 

developments.  

Responses from simulation outputs  

As described in the previous section, the rolling process consists of two steps, the 

rolling steps and delay. The response data are collected from the step that comprised 

both steps, and by doing that, the effect of delay, delay from the furnace to the 1
st
 roll, 

and rolling steps thermal effects on the roll can be realized. Data from calculated 

depth from roll surface, as well as data at various depths below the surface, are the 

response target. Hence, a total of six (change in temperature and radial stress) data are 

taken. Response data from ODB, however, required careful observation. This is 

because, as discussed above, the functional relationships among input data 

specification determined the area of interest from the simulation run for analysis; 

hence help to locate precisely If this the area of interest is not precisely identified, the 

cooling effect and temperature and stress result may not be fully realized. Figure 5.9A 

illustrates a typical error which may happen that will give misleading results. The 

instance Figure 5.9A should be avoided when taking data from FEA simulation runs. 

  

       

Stock is here at this moment, and compressive (hoop stress) due to stock presence. 

This instance analysis should not be taken, as the stock is mainly outside of the roll, 

on the left side of the roll. The roll is rotating counter clockwise hence after rolling the 

rolled metal will move to the right side of the roll. At that instance the effect of heat 

and cooling on the roll can be observed.    

Figure 5.9A.  Typical error which may happen that will give misleading results. 
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Now stock is away from the roll (moved to the right side of the roll) and the cooling 

has taken effect. As a result, the tensile hoop stress (S11) seen here is formed. The 

corresponding temperature feature is shown in Figure C. This instance is where data 

should be taken from the roll.  

Figure 5.9B. Instance where data, Radial stress from the roll should be taken  

 

After the stock/roll contact, the roll cooling starts to take effect and a temperature 

value is recorded. This instance is where data should be taken from the roll. 

Figure 5.9C Instance where data, temperature from the roll should be taken after 

simulations run. 

5.3.6 Response Data from Finite Element (FE) Simulation 

The finite element runs were performed using ABAQUS standard version 6.7.1. The 

same loading and boundary conditions are applied in the simulations, so that the 

responses are measured under similar conditions. For each run, values of the six 
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response variables are recorded. Response values for change in temperature ΔT are 

collected from the roll at a depth, depending on the speed of rolls and roll /stock 

contact length, while stress is represented by the value directly measured from the roll 

below the surface. X-Y plot of the field output / Output Data Base (ODB) is used to 

determine the trend and exact value of the responses expected. The X-Y plot helps to 

accurately measure the depth at which temperature reaches, depending on roll speed 

and contact time, by interpolating the size of finite element on the roll. The calculated 

depth (ri) indicates the maximum heat penetration in to the roll below the surface 

when in contact with the stock at a given roll speed. The functional relationship of 

these dependent factors determining temperature, and procedures followed to 

determine the depth calculation are the following:  

                 Equation 5.2 

 Where α is thermal diffusivity of the roll material, expressed as a function of thermal 

conductivity (λ) and the product of density (ρ) and specific heat capacity (Cp), 

mathematically can be expressed as: 

                             Equation 5.3 

ρ and Cp represent roll material density and specific heat capacity, respectively. The 

parameter t is the stock and rolls contact time and is expressed as a function of roll 

/stock projected contact length (L) divided by roll rotational speed (Ω) and roll radius 

(r). Mathematically it is expressed as the following: 

            Equation 5.4 

Following the above functional expressions, the expected depth of heat penetration, 

and thus the data for temperature responses, are calculated (a total of 27 runs), as 

shown below. Based on the roll material considered for the simulation, the following 

values are allocated to calculate roll depth before the temperature extracted from the 

roll. The roll radius taken is 180mm, λ = 48 w/m.k, ρ = 7083kg/m3, 
c
p = 478j/kg.k 

hence α = 48w/mk / 7083 kg/m
3
 X 478 j/kg.k = 0.000014. This value used for the 27 

runs depth calculation. t value varies depending on specific case and calculated based 

on functional relationships among factors shown in Table 5.10. Applying equation 

5.2, the expected depths are calculated and presented as the following.     

√ 6αt = Depth of heat penetration 

α =   λ / (ρ Cp) 

t = L/ (Ω r) 
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Table 5.10. Based on function given, expected heat penetration depth in to the roll 

Runs Procedure                 Depth  

1 Contact length = 10mm,Roll speed = 0.14r/s 

t = 10mm / 0.14 r/sec X 180mm  = 0.397sec 

Depth = √ 6 X  0.000014 m
2
/s X 0.397 sec = 0.0057m = 5.7mm 

5.7mm 

2 Contact length = 20mm, Roll speed = 0.14r/s   

t = 20/ 0.14X 180 = 0.7940 sec 

Depth = √ 6 X 0.000014m
2
/s X 0.7940 sec = 0.0081m = 8.1mm 

8.1mm 

3 Contact length = 30mm, Roll speed = 0.14r/sec   

t = 30 / 0.14X180 = 1.19 sec 

Depth = √ 6 X 0.000014m
2
/s X 1.190 sec= 0.0099m = 9.9mm 

9.9mm 

4 Contact length = 10mm, Roll speed = 0.698r/s 

t = 10 / 0.698 X 180 = 0.0795 sec  

Depth = √ 6 X 0.000014m
2
/s X 0.0795 sec = 0.00258m = 2.58mm  

2.5mm 

5 Contact length = 20mm, Roll speed = 0.698r/s 

t = 20/0.698 X 180 = 0.1592 sec 

Depth = √ 6 X 0.000014m2/s X 0.1592 sec = 0.0036m = 3.6mm 

3.6mm 

6 Contact length = 30mm, Roll speed = 0.698r/s 

t = 30/ 0.698 X180 = 0.2388 sec 

Depth = √ 6 X 0.000014m2/s X 0.2388 sec = 0.0044m = 4.4mm 

4.4mm 

7 Contact length = 10mm, Roll speed = 1.256r/s 

t = 10/1.256 X 180 = 0.0442 sec 

Depth = √ 6 X 0.000014 m2/s  X 0.0442 sec = 0.0019m = 1.9mm 

1.9mm 

8 Contact length = 20mm, Roll speed = 1.256r/s 

t = 20 / 1.256 X180 = 0.0884 sec 

Depth = √ 6 X 0.000014 m2/s X 0.0884 sec = 0.0027m = 2.7mm 

2.7mm 

9 Contact length = 30mm, Roll speed = 1.256r/s 

t = 30 /1.256 X 180 = 0.1327 sec 

Depth = √ 6 X 0.000014 m2/s X 0.1327sec = 0. 0033m = 3.3mm 

3.3mm 

10 Contact length = 20mm, Roll speed 0.698r/s 

t = 20 / 0.698 X 180 = 0.1592 sec 

Depth = √ 6 X 0.000014 m2/s X 0.1592 sec = 0.0036m = 3.6mm 

3.6mm 

11 Contact length = 30mm, Roll speed = 0.698r/s 

t = 30 / 0.698 X 180 = 0.2388 sec 

Depth = √ 6 X 0.000014m2/s X 0.2388sec  = 0.0044m = 4.4mm 

4.4mm 
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Runs Procedure 

 
                Depth  

 

12 Contact length = 10mm, Roll speed = 0.698r/s 

t = 10/0.698 X 180 = 0.0795 sec  

Depth = √ 6 X 0.000014m
2
/s X 0.0795 sec  = 0.00258m =2.58mm  

               2.5mm 

13 Contact length = 20mm, Roll speed = 1.256r/s 

t = 20 / 1.256 X 180 sec  

Depth = √ 6 X 0.000014 m
2
/s X 0.0884 sec = 0.0027m = 2.7mm 

2.7mm 

14 Contact length = 30mm, Roll speed = 1.256r/s 

t = 30/1.256 X 180 sec  

Depth = √ 6 X 0.000014 m
2
/s X 0.1327 sec = 0. 0033m = 3.3mm 

3.3mm 

15 Contact length = 10mm, Roll speed =1.256r/s 

t = 10/1.256 X 180 = 0.0442 sec 

Depth = √ 6 X 0.000014 m
2
/s X 0.0442 sec = 0.0019m = 1.9mm 

1.9mm 

  

16 Contact length = 20mm, Roll speed = 0.14r/s 

t = 20/0.14 X 180 = 0.7940 sec 

Depth = √ 6 X 0.000014m
2
/s X 0.7940 sec = 0.0081m = 8.1mm 

8.1mm 

17 Contact length = 30mm, Roll speed = 0.14r/s   

t = 30/0.14 X 180 = 1.19 sec 

Depth = √ 6 X 0.000014m
2
/s X 1.19 sec  = 0.0099 m = 9.9mm 

9.9mm 

18 Contact length = 10mm, Roll speed = 0.14r/s      

t = 10 / 0.14 X 180 = 0.397 sec     

Depth = √ 6 X 0.000014 m
2
/s X 0.397 sec = 0.0057m = 5.7mm 

5.7mm 

19 Contact length = 30mm, Roll speed = 1.256r/s 

t = 30/1.256 X180 = 0.1327 sec 

Depth = √ 6 X 0.000014 m
2
/s X 0.1327 sec =   3.3mm 

 3.3mm 

20 Contact length = 10mm, Roll speed = 1.256r/s 

t = 10/1.256 X 180 = 0.0442 sec 

Depth = √ 6 X 0.000014 m
2
/s X 0.0442 sec = 0.0019m = 1.9mm 

1.9mm 
 

21 Contact length = 20mm, Roll speed = 1.256r/s 

t = 20/ 1.256 X 180 = 0.0884 sec 

Depth = √ 6 X  0.000014 m
2
/s X 0.0884 sec = 0.0027m = 2.7mm 

2.7mm 

22 Contact length = 30mm, Roll speed = 0.14r/s  

t = 30/0.14 X180 = 1.19 sec 

Depth = √ 6 X 0.000014m
2
/s X 1.19 sec = 0.0099m = 9.9mm 

9.9mm 
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Runs Procedure               Depth  

23 Contact length = 10mm, Roll speed = 0.14r/s      

t = 10 / 0.14 X 180 sec 

Depth = √ 6 X 0.000014 m
2
/s X 0.397 sec= 0.0057m = 5.7mm 

              5.7mm 

24 Contact length = 20mm, Roll speed = 0.14r/s 

t = 20/0.14 X 180 = 0.7940 sec   

Depth = √ 6 X 0.000014m
2
/s X 0.7940sec  = 0.0081m = 8.1mm 

8.1mm 

25 Contact length = 30mm, Roll speed = 0.698r/s 

t = 30/ 0.698 X 180 = 0.2388 sec  

Depth = √ 6 X 0.000014m2/s X 0.2388 sec = 0.0044m = 4.4mm 

4.4mm 

26 Contact length = 10mm, Roll speed = 0.698r/s 

t = 10/0.698 X 180 = 0.0795 sec 

Depth = √ 6 X 0.000014m
2
/s X 0.0795 sec = 0.00258m = 2.58mm  

2.5mm 

 27 Contact length = 20mm, Roll speed = 0.698r/s 

t = 20/0.698 X 180 = 0.1592 sec 

Depth = √ 6 X 0.000014 m
2
/s X 0.1592 sec = 0.0036m = 3.6mm 

3.6mm 

5.3.7 Procedures for Response Data from Experimental Simulations 

The results are taken when temperature reaches the steady state. The steady state is 

defined as the region where the temperature characteristics reach uniform. The steady 

states may vary depending on the speed of the roll, the size of the roll and the material 

property of rolls. Hence, the above depth calculation results indicate the depth at 

which the steady state is expected, taking in to account these factors. At steady state, 

the response values are collected by plotting an X-Y graph. Figures 5.12, 5.13, 5.14, 

show non dimensional FE results and steps followed to extract the response data. In 

the same way, each simulation response data results are recorded from a total of 27 x 

6 points, and 162 results for single pass rolling. Respective data points, for 

temperature and stress are shown in Figure 5.10 and 5.11.   
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Figure 5.10. Finite element plots for roll profile temperature at the surface of the roll, 

9mm and 15mm below the surface of the roll 

 

Figure 5.11. Finite element plots for roll profile radial stress at the surface 

Procedure for response data from rolls (change in temperature ∆T)   

 1
st
 - Select nodes at the bottom surface of the roll while the simulation output 

is on the NT11 (Temperature output states), Figure 5.10.  

 2
nd

 - Plot the true distance along the line of heat penetration from the same 

surface node selected at step 1 towards the centre. (Line at the centre of the 

roll in Figure 5.10). 

 3
rd

 - from true distance plotted at step 2, plot temperature / true distance graph. 

From the plot graph data collected at calculated depth and at various depths 

below the surface along the heat affect path. (Samples given in Figure 5.12 

and Figure 5.13). 

15mm 

9mm 

Surface  
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 Finally, values of the extracted temperature data are recorded. The difference 

between the recorded responses (T1) and the initial bulk temperature (T0) data 

in each simulation run are calculated. (∆T = T1-T0).  

The results are later used for the regression model. Here, the data at depth is 

considered more accurate, since it is the interpolation of the heat penetration along the 

path and convenient to pick the accurate values at the specified point or depth, as 

shown in Figure 5.13 Same setting and node locations are used to record the second 

response (radial stress), while the simulated roll is in the Stress (S11) state shown in 

Figure 5.11. Using a stress time graph values of the radial stress (S11) are recorded as 

shown in Figure 5.14. The values are later used to build the second regression model.  

 

Figure 5.12. Probe value report temperature from FEA simulation run 

 

 Figure 5.13 Temperatures response at calculated and various depth below the surface 
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Figure 5.14. Probe value report Radial stress (S11) from FEA simulation run 

Response data is collected from the simulation in two forms. The first is at the 

calculated depth. There are also data collected at various points below the surface at 9 

and 15mm). The responses from the simulations are presented in Table 5.11. 

Table 5.11.  FEA simulation responses 

Responses from FEA  

Ts (0C) S11s (MPa) T9mm (
0
C) S119mm (MPa) T15mm (

0
C) S1115mm (MPa) 

49.9 47.8 49.9 -12.77 50.8 -22.15 
86.6 45.6 86.8 -80.73 85.9 -103.84 

114.9 75.9 114.6 -122.7 112.9 -159.27 
43.4 13.6 45.8 -19.74 46.3 -22.75 
92.9 -78.5 95.1 -163.4 89.9 -153.09 

158.3 -127. 161.2 -305.7 152.5 -302.79 
60 7.0 41.8 -14.97 41.8 -14.19 

101.1 -124. 102.4 -193.7 91.9 -165.66 
187.2 -250. 187.6 -406.4 162.2 -327.8 
85.5 -1.5 91.4 -90.94 89.3 -92.72 
54.5 46.5 57.4 -0.05 58.4 -3.52 
42.4 54.1 57.2 19.96 59.4 17.78 

137.6 -159. 139.286 -254.4 121.3 -239.91 
105.8 -227. 104.3 -234.3 72.4 -242.37 
90.7 -74.2 91.4 -90.69 85.5 -68.03 

113.3 -145.8 113 -76.74 116 -114.58 
94.9 124.1 94.5 -49.17 97.1 -76.77 
65.5 97.0 66.4 -4.8 68.4 -17.69 
93 3.6 98.4 -55.52 95.4 -48.49 
53 70.7 60.4 40.65 60.4 41.04 
48 65.7 53.4 25.8 56.4 26.12 

60.1 37.1 62.2 31.52 59.2 22.09 
106 177.1 105.9 -22.19 109.4 -53.44 
66.1 127.1 66.5 31.52 69.4 22.1 

239.1 -251. 238.9 -225 223.8 -204 
106 -10.3 110.2 -87.87 108.1 -87.03 
86.2 0.43 89.4 -56.18 87.7 -47.43 
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Table 5.12 presents the objectives, change in temperature which is the difference 

between response data after simulation and initial bulk roll temperature (∆T = T1 – 

T0) and the radial stress (S11) from surface and at depth below the surface, taken at 

the same nodules where the roll Temperature value have been taken.    

Table 5.12. FEA results for Meta-model prediction. 

No. 

Of 

runs 

Calculated 

Depth (At roll 

surface.) 

(mm) 

Results at surface and depths 

 

At surface At depths 

∆Ts 
(0C) 

S11 
(MPa) 

∆T9mm 

(
0C) 

S119mm 

(MPa) 
∆T15mm 

(0C) 
S1115mm 

(MPa) 

1 5.7 9.9 47.8 9.9 -12.7 10.8 -22.15 

2 8.1 46.6 45.7 46.8 -80.7 47.9 -103.8 

3 9.9 74.9 75.9 74.6 -122.7 75.9 -159.2 

4 2.58 6.4 13.6 5.8 -19.74 3.3 -22.7 

5 3.6 52.9 -78.5 55.1 -163.4 49.9 -153.0 

6 4.4 118. -127 114 -305.7 112 -302.7 

7 1.9 1.8 7 1 -14.97 -1 -14.19 

8 2.7 61.2 -124.7 62.4 -193.7 51.9 -165.66 

9 3.3 147 -250.7 147 -406.4 122 -327.8 

10 3.6 31.5 -1.5 29.4 -90.94 25.3 -92.72 

11 4.4 -5.5 46.5 -2.6 -0.05 -1.6 -3.52 

12 2.58 -17.6 54.1 -2.8 19.96 -0.6 17.78 

13 2.7 191 -159 79.3 -254.4 61.3 -239.91 

14 3.3 159. -427.6 144. -434.3 112. -342.37 

15 1.9 30.2 -74.2 31.4 -90.69 25.5 -68.03 

16 8.1 53.3 145.8 53 -76.74 50 -114.58 

17 9.9 34.9 124.1 34.5 -49.17 32.1 -76.77 

18 5.7 5.5 96. 6.4 -4.8 8.4 -17.69 

19 3.3 13 3.6 15.4 -55.52 19.4 -48.49 

20 1.9 -27 70.7 -19.6 40.65 -19.6 41.04 

21 2.7 -32 65.7 -26.6 25.8 -23.6 26.12 

22 9.9 -11.6 37.1 -10.3 31.52 -7.5 22.09 

23 5.7 26 7.1 25.9 -22.19 24.4 -53.44 

24 8.1 -13.9 127.1 -13.5 31.52 -10.6 22.1 

25 4.4 157 -251.6 158 -425 143 -404 

26 2.58 26 -10.3 28.2 -87.87 30.1 -87.03 

27 3.6 6.2 0.4 9.4 -56.18 7.7 -47.43 

Temperature trend along the heat affected area, from the surface towards the 

centre of the roll 

As explained in Chapter 2, under normal circumstances (optimum cooling 

conditions), the temperature is expected to remain at certain depth depending on roll 

speed and contact time, and then decrease going towards the centre. To verify this 

characteristics additional 9 runs has been simulated, with various roll material 

property but keeping the 7 design variables used in the modelling, shown in Table 

5.15 fixed. The post simulation response data (at surface, 2mm, 6mm, 9mm and 
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15mm) collected are used to plot the temperature trend along the line towards the 

centre, and the trend used to verify the temperature condition of roll from the surface 

to depth below the surface. Table 5.13 -5.17 and Figure 5.16 illustrate the temperature 

trend verifications.  

Table 5.13. Material property value ranges considered for the simulation 

Material property and value ranges 

ε  = 11e-6  - 13e-6       Expansion  ∆L/L 

E = 150 GPa – 210 GPa   elasticity  (Giga Pascal) 

λ  15 – 50 W/ mk  material conductivity (W/mK) 

Cp = 400 -550 J/kg.K        specific heat  ( J / kg.
0
C) 

 

Table 5.14.  Simulation matrix and material property values for the selected material 

types 

Properties of the 9 types of materials used in the simulation 

          λ         E          ε           cp  

   15 150000 11e-06         4.00e+11j/kg.
0
C 

   15 180000            13e-06         5.50e+11j/ kg.
0
C 

15 210000 12e-06         4.75e+11j/ kg.
0
C 

35.5    150000             13-e6         4.75e+11j/ kg.
0
C 

35.5    180000              12e-06         4.00e+11j/ kg.
0
C 

35.5     210000 11e-06          5.50e+11j/ kg.
0
C 

50 150000 12e-06          5.50e+11j/ kg.
0
C 

50      180000           11e-06           4.75e+11j/kg.
0
C 

50        210000           13-e06          4.00e+11j/kg.
0
C 

Table 5.15. Simulation run input factors 

Variables 

 

Roll/stock 

contact 

(HTC) 

(kW/m^2K) 

Stock 

temperature 

(
0
C) 

Contact 

length 

(mm) 

Heat transfer 

coef. (HTC -

Cooling) 

(kW/m^2) 

Roll 

speed 

(Rad/sec) 

Roll 

Temperature 

(
0
C) 

Delay 

time 

(Sec) 

Design 

Input 

Values  

x1 x2 x3 x4 x5 x6 x7 

 
15 

 
1100 

 
10 

 
50 

 
0.14 

 
80 

 
60 
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Table 5.15 presents the design input data parameters used in the experimental 

simulation carried out for verifying the temperature trend, under various material 

types, along the heat affected area from the roll surface towards the centre of the roll.  

The experiment is conducted based on the matrix, fractional factorial (3
3-1)

 shown in 

the Table 5.16 below. After simulation data are collected from the surface of the roll 

and various depths below the surface, at 2mm, 6mm, 9mm and 15mm, as shown in the 

Table 5.17. As discussed in section 5.3.8 data from the surface (calculated depth) are 

calculated based on functional relationship of relevant input factors parameters of 

individual runs. Taking in to account those factors relevant in determining the depth 

heat penetration, in this case 9.9 mm has calculated for depth of heat penetration, 

where heat expected to reaches steady state. 

Table 5.16. FEA Simulation run matrix  

Run x1 x2 x3 x4 x5 x6 x7 

1 0 0 0 0 0 0 1 

2 0 1 1 1 1 1 2 

3 0 2 2 2 1 1 2 

4 1 0 1 2 2 0 2 

5 1 1 2 0 2 0 2 

6 1 2 0 1 1 2 0 

7 2 0 2 1 1 0 1 

8 2 1 0 2 2 1 0 

9 2 2 1 0 1 0 1 

Table 5.17.  Responses (Temperature in (
0
C) from simulation with different roll 

material (M) types, at roll surface and various depths below the roll surface  

Depth 2mm  6mm 9mm 9.9mm 15mm 

 

M1 92.49 90.54 84.81 80.24 79.54 

M2 112.47 91.09 91.84 87.23 85.33 

M3 121.15 95.56 90.04 86.42 86.59 

M4 81.46 81.05 78.58 78.79 76.16 

M5 86.02 86.1 86 85.85 84.19 

M6 78.58 69.19 69.07 60.11 59.58 

M7 75.49 73.89 73.34 76.51 76.58 

M8 86.64 77.05 77 68.67 68.76 

M9 85.32 85.68 76.11 70.25 68.3 

M0 80.6 80 62.2 60.1 59.2 
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Figure 5.15. Temperature tread along the heat affected area, from the surface to the 

centre of the roll 

The trend in Figure 5.16 indicate that as expected, the temperature is decreasing from 

the roll surface towards the centre and also the rate at which it is changing inside the 

roll (at 9, 9.9 and 15 mm) is slowing. This indicates the consistency of temperature 

profile decline depth below the surface of the roll. A material high chromium steel 

(M0) in the graph, due to its high were resistance ability, selected for the modelling. 

In comparison with other materials, considering its less conductivity it posses, it is 

considered a better choice. Chromium has better wear resistance. M0 to M9 in Figure 

5.16 represents 9 type of materials used in the experiment.  

5.3.8 Meta-Model Construction 

The quantitative models, a total of 6 models, were generated by fitting a second 

degree polynomial, consisting of a main effect, quadratic effect and interaction effect. 

The modelling was carried out using STATISTICA, a tool selected due to its 

applicability and availability. It is also widely used by the sponsoring company. The 

process was then repeated in MATLAB tools to compare results accuracy and observe 

statistical uncertainty/errors, if any. The dependent factors as objectives, change in 

temperature and radial stress, are used to form the approximate meta-models. The 

regression models developed with the input variables x1, x2,.., x3, shown in Table 

5.6. The models and the post regression analysis results are shown in the followings. 

(The bracts [ ] in the models, (Equations 5.5-5.10), are used to simplify the symbols, 

linear & quadratic, representing the variables).    
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Models fit for single pass work roll system problems  

Change in temperature ∆T at roll surface 

∆T-S = (-370.8659 + 3.92666667 * x[1] + 0.046222222 * x[1]^2 + 3.02845679 * x[2] 

- 0.00130938 * x[2]^2 + 0.0000001 * x[3] - 00000.025 * x[3]^2 - 7.0603175 * x[4] + 

0.085079365 * x[4]^2 + 26.9230797 * x[5] + 3.44362939 * x[5]^2 + 3.99055556 * 

x[6] - 0.04194444 * x[6]^2 - 0.801944 * x[7] + 0.004701389 * x[7]^2)    Equation 5.5 

Stress (S11) at roll surface 

S11-S = (140.63997 - 10.082111 * x[1] + 0.064200000 * x[1]^2 -1.2915963 * x[2] + 

0.002292222 * x[2]^2 + 0.0014444 * x[3] - 0.000003333 * x[3]^2 + 12.1149569 * 

x[4] - 0.21604354 * x[4]^2 - 387.34458 * x[5] + 145.751168 * x[5]^2 - 2.6677500 * 

x[6] + 0.0386875 * x[6]^2 - 1.4585556 * x[7] + 0.01198229 * x[7]^2)     Equation 5.6 

Change in temperature ∆T at 9mm depth below the surface 

∆T-9mm = (-819.98558 + 9.97380000 * x[1] - 0.31336444 * x[1]^2 + 1.43803309 * 

x[2] - 0.59030E-3 * x[2]^2 - 0.13506667 * x[3] + 0.095348889 * x[3]^2 - 5.1424209 

* x[4] + 0.062201542 * x[4]^2 + 52.8477445 * x[5] - 23.073031 * x[5]^2 + 

0.050088889 * x[6] - 0.00849611 * x[6]^2 - 0.22464444 * x[7] + 0.001426597 * 

x[7]^2)                   Equation 5.7 

Stress (S11) at 9mm depth below the surface 

S11-9mm = (913.51841 - 18.435556 * x[1] + 0.508400000 * x[1]^2 - 5.0893000 * 

x[2] + 0.002138444 * x[2]^2 - 3.9332778 * x[3] - 0.13521667 * x[3]^2 + 14.6337279 

* x[4] - 0.18028299 * x[4]^2 - 248.51971 * x[5] + 101.248057 * x[5]^2 + 0.1710833 

* x[6] + 0.017137500 * x[6]^2 + 0.108888 * x[7]- 0.17812E-3 * x[7]^2) Equation 5.8 

Change in temperature ∆T at 15mm depth below the surface 

∆T-15mm = (-553.55904 + 9.74111 * x[1] - 0.35888889 * x[1]^2 + 1.00235802 * 

x[2] -.40321E-3 * x[2]^2 - 0.51055556 * x[3] + 0.0949444 * x[3]^2 - 3.9777324 * 

x[4] + 0.04591383 * x[4]^2 + 51.7361959 * x[5] - 28.708807 * x[5]^2 - 1.0575000 * 

x[6] + 0.001652778 * x[6]^2 - 0.29222 * x[7] + 0.0022048 * x[7]^2)      Equation 5.9 

Stress (S11) at 15mm depth below the surface 

S11-15mm = (316.50677 - 19.781444 * x[1] + 0.553933333 * x[1]^2 - 4.0415037 * 

x[2] + 0.001683704 * x[2]^2 - 5.6866667 * x[3]- 0.07520000 * x[3]^2 + 11.4528209 

* x[4]-0.13340408 * x[4]^2 - 199.10688 * x[5] + 97.5171611 * x[5]^2 + 

0.867388889 * x[6] + 0.009866667 * x[6]^2 + 0.738388889 * x[7] - 0.00434792 * 

x[7]^2)                 Equation 5.10 
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5.3.9      Model Validations 

This section gives justification for the acceptability of the models for representing the 

problem in question. Validation is based on post processing statistical features from 

the regression. Post processing statistical results helps to determine the relevance of 

the independent input factors in the model building, as well as measure the ability of 

the model to predict the system response over the search space. The criteria of the 

performance are based on four measures: Pareto chart of p- values for coefficient, sum 

of squares error, R
2
 and R. R

2 
& R are measures of the amount of variation 

experienced by the model. R
2
 equals 1 indicates a perfect fit. The higher R

2
 implies 

the lower variation between observed and predicted values; therefore, a better model. 

The corresponding R
2
 and R for each model are given in Table 5.18. During model 

generation, a relatively high value of R
2
 & R has been recorded. It is, therefore, likely 

that these models would give good predictions when used in the optimisation. Other 

important model summaries, such as Pareto chart of p-values for coefficients, are 

used. The p-values for coefficient are used to determine the confidence of those 

factors‟ relevancies to the model. A p-value less than 0.005 is considered acceptable.  

Table 5.18. Model validation summary, p-values, sum of square errors (R) and (R
2
) 

Single-pass R , R
2 
& p values 

  R R
2
 p-values 

At roll 

Surface 

Change in temperature 0.908590 0.897465 0.001615 

Radial stress 0.937748 0.879371 0.001485 

At 9mm 

Depth 

Change in temperature 0.920435 0.897200 0.005103 

Radial stress 0.907458 0.853481 0.001555 

At 15 mm 

depth 

Change in temperature 0.929199 0.903411 0.002859 

Radial stress 0.921993 0.870071 0.004630 

Model validations for genera ability  

The model is further validated for general ability by taking 9 randomly selected data 

points within the design space. The experimental responses from those data points are 

then collected and recorded. The same procedure that was used for the main 

simulation runs is applied. The input factor parameters and the simulation response 

values from the validation runs are presented in Table 5.19 and Table 5.21 

respectively.  
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Table 5.19. Validation runs input data set (factors and factors parameters) 

(HTC 

Roll/stock 

contact) 

(kW/m^2K) 

 

Stock 

temperature 

(0C) 

 

Contact 

length 

(mm) 

 

(HTC -

Cooling) 

(kW/m^2K) 

 

 

Roll speed 

(Rad/sec) 

 

Roll 

Temperature 

(0C) 

 

Delay 

time 

(Sec) 

6 12 1000 20 0.18 43 30 

6 12 1210 40 1.25 43 30 

9 19 1105 30 0.715 43 62.5 

6 19 1000 30 1.25 65 95 

6 19 1210 20 0.715 65 95 

12 26 1000 20 0.18 43 95 

6 26 1000 40 0.715 55 62.5 

9 26 1105 40 0.18 65 30 

12 26 1210 30 0.18 55 30 

The validation simulation run carried out using the input data set shown in Table 5.19. 

The results are taken when temperature reaches the steady state. As discussed in the 

Section 5.3.6 the steady states may vary depending on the speed of the roll and the 

size of the roll therefore to determined the expected steady state the temperature reach 

at depth, depending on those relevant factors a functional relationship have employed. 

The functional relationships and result obtained for the 9 validation runs are given in 

Table 5.20. Data for temperature and stress are shown in Table 5.21. 

Table 5.20. Calculated depth at the roll surface, for data taking 

Run Procedure     Depth  

1 contact length 10mm and r 0.18r/s 

t = 10 / 0.18 X 180 =    0.3086 

Depth = d= √ 6 X 0.000014 X 0.3086 = 0.0050m X 1000 = 

 5.0mm 

2 contact length 10mm and r 1.250r/s 

t = 10/1.250 X180 = 0.0444 

Depth = d = √ 6 X 0.000014 X 0.0444 = 0.0019m X 1000 = 

1.9mm 

3 

 

 

 

contact length 10mm and r 1.250r/s 

t = 10/1.250 X 180 = 0.0444 

Depth = d = √ 6 X 0.000014 X 0.0444 = 0.0019m X 1000 = 

1.9mm 

 

 

4 contact length 20mm and r 0.715r/s 

t = 20/ 0.715 X 180 = 0.1554 

Depth = d = √ 6 X 0.000014 X 0.1554 = 0.0036m X 1000 = 

3.6mm 
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Run Procedure     Depth  

5 contact length 20mm and r 1.250r/s 

t = 20/1.250 X180 = 0.0889 

Depth = d = √ 6 X 0.000014m
2
/s X 0.0889 = 0.0027m X 1000 = 

2.7mm 

6 contact length 20mm and r 0.715r/s 

t = 20 / 0.715 X 180 = 0.1554 

Depth = d= √ 6 X 0.000014 X 0.1554 = 0.0036m X 1000 = 

 3.6mm 

7 contact length 30mm and r 0.18r/s 

t = 30/0.18 X 180 = 0.9259 

Depth = d= √ 6 X 0.000014m
2
/s X 0.9259 = 0.0088m X1000 = 

  8.8mm 

8 contact length 30mm and r 0.715r/s 

t = 30/ 0.715 X 180 = 0.2331 

Depth = d = √ 6 X 0.000014m2/s X 0.2331 = 0.0044m X 1000 = 

   4.4mm 

9 contact length 30mm and r 0.18r/s 

t = 30/0.18 X 180 = 0.9259 

Depth = d = √ 6 X 0.000014m
2
 /sX0.9259 = 0.0088m X1000 = 

   8.8mm 

Table 5.21. Validation FEA simulation run Response (Change in temperature in rolls 

after rolling (T1) and before rolling (T0) and the corresponding radial stress (S11) 

No. of 

runs 
T1 (

0
C) T0 (

0
C) 

∆T (
0
C) 

(T1-T0) 
S11 (MPa) 

1 51.49 (43) 8.49 53.92 

2 102.14 (43) 39.14 44.398 

3 107.68 (43) 64.68 86.27 

4 66.06 (65) 1.06 13.9 

5 111.55 (65) 44.55 - 52 

6 114.04 (43) 79.04 - 139.76 

7 72.91 (55) 17.91 6.96 

8 86.72 (65) 41.72 - 139.1 

9 130.05 (55) 75.05 - 142.07 

The individual FEA response from the 9 runs shown in Table 5.21, then compared 

with the result from the validation input data set fed in to the mathematical model for 

error. The error evaluates the probability error in percentage terms that the validation 

runs will have in relation to the Meta model, i.e. compares the FEA results against the 

Meta model results. The aim of validation is to determine whether the conceptual 

simulation model closely represents the system under study generically.  
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Table 5.22. validation results 

Radial stress (S11 in MPa ) at roll surface  
Change in temperature (∆T in 

0
C) 

at roll surface 

 

 

Predicted Observed Absolute  

error 

Predicted Observed Absolute  

error 

1 51.03 53.92 2.89 8.76 8.49 0.27 

2 45.09 44.39 0.69 51.15 59.14 7.99 

3 87.44 86.27 1.17 67.13 64.68 2.45 

4 14.37 13.9 0.47 1.30 1.06 0.24 

5 -50.51 -52 1.49 48.70 46.55 2.15 

6 -143.19 -139.76 3.43 73.65 71.04 2.61 

7 5.82 6.96 1.14 17.99 17.91 0.08 

8 -36.64 -39.1 2.46 21.30 21.72 0.42 

9 -146.43 -142.07 4.36 73.06 75.05 1.99 

The statistically universally accepted maximum percentage error allowable is 5%. As 

shown in the table above, the absolute errors values are negligible and assumed to be 

below 5 %. Therefore the result proves that the model, second degree polynomial, is 

expected to generate good predictions when used in the optimisation. As discussed in 

Chapter 6, multi-pass models are developed based on the single pass model developed 

from data taken at the roll surface and generate other pass models by taking in to 

account functional relationships between passes. Hence the validation of the single 

pass model presented here also gives an indication the possibility of using the model 

for multi-pass process modelling.   

5.4 Chapter Summary 

The chapter has developed a framework for quantitative models. The quantitative 

models are designed to represent and evaluate the work roll system thermal design in 

the rolling process. Several work roll system thermal models are developed, each 

representing the thermal behaviour of rolls at the surface and various depths below the 

surface. In summary, the chapter achieved the following: 

 Studied the rolling process, identified the fundamental issues of the work roll 

system design problems and their effect on the thermal behaviour of rolls.  

 Suggested a generic methodology to represent and evaluate the work roll 

system design problems quantitatively. 

 Presented a mathematical concept to detect heat effected zone on rolls (depth 

of penetration), depending on the rolling process initial conditions.  
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 Presented Meta-modelling framework, and detailed descriptions of steps used 

to develop the qualitative model for work roll  system thermal design and  

 Validated the developed quantitative model. 

 The next chapter discuss, the optimisation of the work roll system design problems 

with uncertainty, using the developed quantitative models as fitness functions.  
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6 Single Pass Work Roll System 

 Optimisation, in presence of 

 Uncertainty and Constraints using 

 Thermal Analysis and GA 

 

Chapter 2 discussed the importance of acquiring optimal work roll system design for 

effective and longer roll life. As stated in the previous chapter, it is also equally 

important to acquire a suitable simulation quantitative model to capture the real life 

work roll process design and quantify the formulation of an optimisation problem. It 

is also learned in the literature review that in practice, the properties of the design 

solution may be subject to a certain amount of variation because its implementation 

cannot be realized with arbitrary precision. Hence, optimisation without taking 

uncertainty/variability in to consideration, would result in a solution that is risky, 

since they are likely to perform differently when put in to practice. Literature revealed 

that there are a number of GA based techniques available to deal with current 

complex engineering design problems, allowing finding an entire set of Pareto 

optimal solutions in a single run, instead of having to perform series of separate runs, 

as in the case of the traditional technique. However, having considered the overall 

capacity and flexibility in dealing with today‟s engineering design problems 

complexity, such as handling uncertainty and constraints, the current techniques lack 

maturity. The developed framework is designed to address these limitations. This 

chapter presents a multi-objective optimisation technique and steps followed to 

develop the technique. The robust evolutionary multi-objective evaluation technique 

is applied to the constrained optimisation problems with real life uncertainty. The 

approach handles uncertainties associated both with the design variables and the 

mathematical Meta models used as fitness functions in the optimisation. The real life 

uncertainty includes:  

 Uncertainty associated with the inherent variation in the physical system or 

environment that is under consideration. For example, tooling setup, process 

setup, and operating environment. 
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 Uncertainty associated with deficiency in any phase or activity of the 

simulation process that originates in lack of system knowledge. For example, 

uncertainty associated with the lack of knowledge in the laws describing the 

behaviour of the system under various conditions.  

 Uncertainty associated with the limitations of numerical methods used to 

construct simulation models. When providing the stochastic assessment of 

model validity. This real life process design behaviours motivates that the 

technique developed to deal with the optimisation problem also need to take in 

to account these types of uncertainties. 

Constraints violation within the neighbourhood of a design is considered as part of a 

measurement for degree of feasibility and robustness of a solution. Two optimisation 

approaches are introduced. The first is robust non dominance criteria based 

optimisation technique, to deal with two objectives, single pass problems and the 

second is application of the technique, for dealing many (m) objectives problems. The 

second technique developed to address the issues the first technique experienced in 

searching solution for high dimensional, many objective problems. The techniques‟ 

ability in dealing with the work roll thermal analysis and optimisation problem in 

presence of uncertainty and constraints, addressing multi objectives single pass work 

roll design problems is analysed and their advantages and shortcomings are 

highlighted. The first technique is used to satisfy the initial target of the research i.e. 

searching optimal design solution for single pass optimisation problem with 

uncertainty and constraints involving two objectives at the surface of the roll.  One of 

the main challenges these approaches pose to optimisation algorithms is scalability 

and high dimensionality. This refers to the increase of the complexity of the problem 

as the number of objectives and number of passes increase. To overcome these 

challenges the second technique is developed. The second technique is designed to 

deal with single pass rolling arrangements for increased search space problem (surface 

and two random points at depth below the surface) and the multi-pass problem, to deal 

with high dimensional, many objectives problem discussed in Chapter 7. The chapter 

consists of the following: It begins with Section 6.1, giving a brief introduction of the 

robust non dominance criteria technique and R environment based non sorting GA 

technique. Section 6.2 introduces the case study, two-objective single pass work roll 

system thermal analysis and optimisation problems with uncertainty and constraints. 
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Section 6.3 evaluating criticality of constraints to optimum designs solution point. 

Section 6.4 demonstrates the application of the non dominance technique, in R 

environment to many-objective optimisation, for single pass, 6 objectives work roll 

system optimisation problem with uncertainty. The section also presents the 

application of the proposed post optimisation result analysis for identifying the final 

best, optimal design solution for the high dimensional problems. Section 6.5 

concludes the chapter with a summary of the main points. 

6.1  Robust Non Dominance Criteria Technique for 

 Optimisation Problem with Uncertainty 

Review of literature shows that although evolutionary computing has proven to be an 

efficient and powerful problem-solving strategy, they are not problem free techniques. 

The majority of EC techniques do have certain limitations, particularly in the 

following areas: 

 The first, and most important, consideration in creating a genetic algorithm is 

defining a representation for the problem. The language used to specify 

candidate solutions must be robust; i.e., it must be able to tolerate random 

changes such as noise and uncertainty, as well as constraints. These are the 

most common characteristics of real world engineering design problems such 

as rolling thermal analysis and optimisation. 

 In a complex and uncertain engineering process environment a mathematical 

simulation is often required as the empirical study is very difficult. However, 

the mathematical model is a numerical representation which is prone to forced 

accuracy compromises which leads to model uncertainty. 

These limitations have to be taken in to account in the optimisation for the required 

solution to be found. To address these issues, therefore, the current multi-objective 

optimisation techniques need to be reviewed for capability in handling the problems‟ 

complexity. The techniques proposed in this thesis is called robust non dominance 

criteria technique, implemented in MATLAB and R environment, for searching 

design solution for two objective and many objectives problems respectively. 

Primarily, the techniques are adopted due to their adaptability, access and easy to use 

nature - this nature makes it possible to include (incorporate) the uncertainty and 

constraint criticality in the technique, and hence, be able to search for solutions for the 
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optimisation problem of the thesis case study, regardless of the limitations listed 

above. The description of the techniques‟ application is presented as follows:  

The robust dominance criterion is a technique, designed to utilize the new robust 

multi-objective evaluation technique to generate robust best compromise solutions for 

problems with noise and uncertainty (Parmee, 2001; Chen, et al., 1996; Mehnen and 

Trautmann, 2008). The technique was developed and initially used by Mehnen and 

Trautmann (2008) in robust multi-objective optimisation of weld bead geometry for 

Additive manufacturing. In his work, the technique was used to search for solutions 

for two objective problems with uncertainty in the objective space. The technique is 

easy to use, adaptive, computationally inexpensive and flexible, so that it can be 

extended to be used for other engineering problems, such as uncertainty in the 

objective and decision space. Inspired by these qualities, hence, this research adopted 

the technique and extended it to include high dimensional problems with uncertainty, 

both in the objective and decision space. A brief overview of the technique and its 

initial application, supported by graphical illustrations is presented as follows.  

In the case of uncertain fitness functions (f1 and f2), Figure 6.1, the conventional 

Pareto criterion is not able to decide whether a point x is dominating another point x* 

because it can only compare two discrete solutions at a time. The robust dominance 

criterion takes uncertainty of the fitness function values into account by calculating 

median estimates and the convex hull around a solution in the objective space 

(Mehnen and Trautmann, 2008). The convex hull represents the area of uncertainty of 

a solution. To calculate the Pareto-non dominance properties of any two solutions x 

and x*, one calculates the median of all noisy fitness values. A solution x of the multi-

objective optimisation problem dominates a solution x* iff:  

med (fik |x, ε) + mean (dMCHi |x, ε)) < (med (fik |x∗, ε) − mean (dMCHi |x∗, ε)), i{1,.., m}  

(med (fjk |x, ε) + mean (dMCHj |x, ε)) ≤ (med (fj |x∗, ε) − mean (dMCHj |x∗, ε)), j = 1,... ,m, j ≠ i                                                           

Equation 6.1                      

Where      is an uncertain vector that holds the absolute distance of each point in 

the convex hull to   so it defines the bounds of the uncertain space around the 

solution. This approach using the convex hull, Figure 6.1, is considered more reliable 

because it takes always the worst case scenario. In the equation the arithmetic mean of 

the sample solutions is theoretically unbiased estimator of the true front (for k → ∞). 

However, the median is a statistically robust estimate of the noisy fitness values. 
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Therefore, the median is used in the case study. The problem at hand is then to 

estimate the true Pareto front from a set of k noisy samples (fik|x, ǫ), i = 1 . . . m which 

cover true Pareto front. In order to introduce a dimension of the point clouds (due to 

noise) in the objective space, the mean distances of all points on the convex hull from 

the median representatives are calculated as in Figure 6.1 below. Then, the measure of 

uncertainty of a solution in m-dimensional objective space can be introduced by 

taking say P := med(fk) as a robust estimate of a solution, and the Convex Hull 

CHP(P) of all k sample points around P describes a worst case representative of 

solution P containing all k samples. The absolute distances in each dimension of all 

points in CHP (P) to P can be used to define the uncertainty vector. Given the 

uncertainty vectors around a solution P, all points within the box formed by 

uncertainty vectors are represented by P. This implies that the conventional Pareto-

dominance definition may not hold any more if any two points, P and say Q, are 

inside the uncertainty vicinity of each other. Although these points may dominate 

each other in a noise-free case, in the case with noise it is impossible to tell which 

point dominates the other, as shown in Figure 6.1. Therefore, in this case, both points 

are considered as potential solutions (Pareto set). The set of non-dominated solutions 

are called the (expected) Pareto set. The median representatives are the elements of 

the (expected) Pareto front. 

 

Figure 6.1. Concepts of robust dominance criterion with noisy fitness functions 

(Mehnen and Trautmann, 2008) 

Figure 6.1 illustrates the major concepts in identifying dominance of one point over 

another. The small diamonds in the middle of the convex hull indicate the median 

estimates of f(x) + ε and f(x*) + ε, respectively. The mean dimensions of the point 

 Mean dimensions 

of point cloud 

Uncertainty zone    

of solution x 

Convex hulls 

Median 



 

151 

 

cloud distributions are also shown as small horizontal and vertical lines extending 

from the diamonds. They indicate the uncertainty zones around the solutions in the 

objective space. The dark grey area indicates the region which is dominated by the 

solution in the lower left part of Figure 6.1 while the light grey area shows the 

dominated area of the upper right solution. In the Figure, the lower left solution 

dominates the upper right solution because the light grey area completely fits inside 

the dark grey area. In case either of the areas overlap or one area does not fit within 

the other area, the corresponding solutions do not dominate each other. In this case, 

the non dominance criteria state that both solutions are best, and hence should be 

considered as an optimal solution for the problem. Figure 6.2 additionally shows the 

effect of the uncertainty zone in making the decision of dominance. In the figure, if 

the problem were to rely on the traditional approaches, which is only using 

expectation (median), it would have yielded the decision that solution x (median of 

the round points) dominates solution x* (median of the squares). In the proposed 

approach, however, it becomes obvious that this decision is too uncertain – hence, 

both solutions remain non-dominated.  

 

Figure 6.2. Concepts of robust dominance criterion with noisy fitness functions 

6.1.1 Application of the Technique in the Work Roll System 

 Design Problem in presence of Uncertainty 

The technique has been implemented in the work roll thermal analysis and 

optimisation problem to help identify optimum designs in presence of uncertainties 

Median of the  
round points 

Median of the      
square points 
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and constraints. A predecessor of this algorithm, applied in problem with uncertainty 

in the fitness functions, is described in the previous section. Here, the new technique, 

in conjunction with central limit theorem, is applied in the case of real life many 

objective problem with uncertainty in the design variables and in the fitness functions. 

The Central Limit Theorem, discussed in Section 6.2.1.3 is adopted since the 

application of the robust non dominance criteria technique in the problem with 

uncertainty in the decision space proved unsatisfactory i.e. unable to satisfy the 

solution requirements as expected. Although the technique is able to find the Pareto 

front, it is discontinuous and scattered. This indicate that how small uncertainty 

presence in the decision variables have a bigger impact on the design solution. The 

problem is unique only for uncertainty in the decision space; various approaches are 

explored to be used with the robust dominance criteria so that the problem occurred 

can be understood and rectified. One of the approaches is the application of central 

limit theorem CLT. CLT is used to control the sample size or iteration in a sequence 

of n independent and identical distributed random variables, where each having finite 

values of expectations. The theorem says that as the sample size n increases, the 

distribution of the sample average of these random variables approaches the normal 

distribution. In the optimisation the theorem applied to control the sampling size. The 

sample size, depending on the problem and uncertainty in the problem is determined 

through experimental trial. Degree of uncertainty in the research problem, as 

discussed in chapter 4, is assessed through expert opinion and real life process 

practice observations. The experimental trial for determining the sample size and the 

sample size identified to be used in the research problem is discussed in the section 

6.2.1.3. Problem solution search strategy using the robust dominance criteria 

technique and CLT, for the multi objective optimisation problem with uncertainty in 

the design space and fitness function is presented in Figure 6.3. 
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Solution search Strategy 

Pseudo-code for the uncertainty representation in the design variables and 

fitness function evaluation for the multi-objectives single pass problem 

Step 1: Initialise population pool at t = 0. For every member of the population i, generate random 

value xj in its range as well as ranges of uncertainty. This random value aids the exploration of the 

entire search space. 

1.1: Evaluate decision space and uncertainty in the design variables 

Evaluate    Xi = { (x1+ε) , . . . , (xn +εn)} 

Step 2: Evaluate the individuals in terms of quantitative model and model uncertainty. The individual 

chromosomes in terms of local and global QT objective functions values, for  all selected points on 

the roll, (at surface and depth below the surface at 9 mm &15 mm), then aggregate (sum) these 

objective function values as the global objective  and use the aggregated value as the fitness 

function value for the chromosome. 

2.1: Evaluate fitness functions and uncertainty in the fitness functions  

Evaluate ( 



1

|...2,1|)()(
j

kixfijxiF 


+ ε;  // assign a fitness value to 

each GA individual based quantitative model 

Step 3: Assign fitness to every member of the population based on dominance-ranking criteria of 
NSGA-II and Central Limit Theorem. The quantitative value is used for the quantitative objective 

value. 

Step 4: Termination If current generation satisfy the conditions, else return to step2 

 

Step 5: Create offspring population using binary tournament selection, crossover, and mutation 

operators 

t = t + 1, go to step 2.h 

Figure 6.3. Solution search strategy for multi-objective problems with uncertainty 

The work started with the assumption that a general multi-objective optimisation 

problem seeks to simultaneously minimise f objectives: fd(x), d = 1, . . ., i where each 

objective depends on a vector x = x1, . . ., xn of n design variables. The research 

problems, with the problem in which both the fitness functions and the decision 

variables are uncertain, are expressed as shown below. Uncertainty is denoted by ε1, 

ε2, ε ~ F, F is some distribution:  

                                                                                                 Equation.6.2 

The parameters are subject to the j constraints: 

                                                                                                 Equation 6.3 

The multi-objective optimisation problem may thus be expressed as: 

                                                                                       Equation 6.4 

Subject to the constraints: 

                                                                    .                            Equation 6.5 

Equation 6.2 can also be written in a real value vector (problem with uncertainty in 

the design variables and fitness function) as shown in Equation 6.6: 
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                                                                                                                     Equations 6.6 

     ∈    
         n = dimension 

The procedure and application of the technique, searching for solution for the 

intended single pass two objectives and many objectives problem case study are 

discussed in Section 6.2 and 6.4 respectively.  

6.2 Application of the Technique in the Single Pass Work 

 Roll System Design Optimisation Problems in Presence 

 of Uncertainty and Constraints  

This section and subsections gives details of the optimisation algorithm of the 

quantitative search space of multi-objective single pass, work roll system optimisation 

problems in the presence of uncertainty and constraints using thermal analysis and the 

GA based techniques proposed. The study introduces the concepts of conflicting 

behaviour between multiple objectives problems, on the proposed robust dominance 

criteria technique in collaboration with CLT. The optimisation carried out in two 

forms: the first application of the technique in two objective problems in MATLAB 

environment and application of the technique in many objective problems in R 

environment. The models (1 to 6) presented in Section 5.3.9, for single pass work roll 

system are used in the optimisation. The models are for work roll system thermal 

analysis at roll surface and at a depth below the surface of 9mm and 15mm. These 

equations are formulated as roll design optimisation problems, where the goal is to 

optimise/minimise temperature change (∆T) and radial stress (S11) functions at the 

roll surface, as well as at depth, Details of the application of the technique in the 

optimisation problem is presented in the sections in the following sub sections.  

6.2.1  The Single Pass Problem  

The main objective of single pass optimisation is keeping the temperature of rolls at 

the surface at a minimum, while at the same time, minimising the tensile stress on the 

surface created by the effect of cooling applied on the roll to cool it. Depending on the 

design input factors parameters, such as speed and contact length, heat steady state in 

rolls can reach up to certain depth when hot stock comes in contact with the rolls. As 

discussed in Section 5.3.7 and presented in Table 5.9, the expected depth of heat 

penetration and effect of stress on rolls are calculated. The objective function is then 
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formulated using the data taken. However, rolling is an iterative process where the hot 

stock comes in contact with the roll repeatedly. During rolling, although the heat is 

removed constantly from the roll by the cooling system, there is still a possibility that 

heat remaining will pass beyond the specified depth and build up at the core. The heat 

accumulated at the core has a potential to trigger thermal shock. The shock then leads 

to roll outward crack. The overall aim of optimisation at the surface is to prohibit the 

temperature from reaching and accumulating at the roll core. This problem is a two 

objectives design optimisation problem, given in Equation 6.7 & 6.8. The 

optimisation assumes the design input parameters presented in Table 5.7 and 5.8 in 

Chapter 5. The case study has also addressed the constraint criticalities to the design 

solution obtained and ranking of the criticality. The application of robust dominance 

criteria technique, in collaboration with the central limit theorem (CLT) on the work 

roll system optimisation problem with uncertainty in the decision and objective space 

is discussed in Section 6.2.2.  

6.2.1.1 Objective Functions 

This work focuses on optimising roll temperature change (∆T) and radial stress (S11) 

for work roll thermal analysis and optimisation - since numerous design variables 

influence the optimisation problem, and it is difficult and complex to include all the 

possible variables. The problem formulation adopted in this work focuses on relevant 

process variables identified in the literature, and interviews with the roll and rolling 

system designers. Details of the objectives and design variables identified are 

presented in Chapter 2.    

Change in roll surface temperature (∆T): is an important rolling thermal analysis 

objective that expresses the thermal condition of rolls during hot rolling. The change 

in temperature is measured as the difference between final surface temperature (T1), 

after rolling and cooling, and the initial bulk temperature (T0), before roll/stock 

contact. T1 values are taken over a cycle in Quasi-steady state heat exchange rolling 

conditions. ∆T is formulated as follows: 

Change in temperature         ∆ 01)( TTT x   measured in 
0
C.           Equation 6.7 

Roll radial stress (S11): Another equally important measure/objective in the 

optimising problem is keeping the roll radial stress at the roll surface as low as 

possible, but within rolls material allowable value. Minimising the roll temperature 

may trigger maximising the roll radial tensile stress and cause roll breakage. 



 

156 

 

Therefore, to normalise / (minimise) it, it is essential that the stress is also included in 

the optimisation.  

Radial stress                                      11)(11 SS x                                 Equation 6.8   

6.2.1.2 Constraints  

The industrial application imposes the introduction of some constraints, relevant to 

the work roll system thermal design; these constraints can be classified into 

mechanical and/or thermal design constraints and variables constraints. The variable 

constraints are the upper and lower limits of the design variables used in the work roll 

system thermal modelling and optimisation. Here, the thermal design constraint is 

applied to limit the allowable tensile stress value to the roll material type used in the 

rolling. Based on information from real life engineering practice, the minimisation of 

the change in temperature will also have a negative effect on the roll. This is because 

minimising temperature will increase the tensile stress on the roll. If the tensile stress 

is beyond the limit of the allowable value of the material, it could cause fire cracking 

and thermal fatigue to the roll. Hence to protect the roll from fatigue the stress value 

has to be constrained to the allowable stress value of material type used in the rolling. 

The thermal constraint of the problem optimisation is formulated as follows:  

Allowable radial stress              allowablei SSg 1111)(1 x                  Equation 6.9 

For the optimisation task, a real-coded multi-objective Genetic Algorithm (GA) 

(MATLAB version) was chosen and revised in such a way that it can deal with the 

uncertainty in the problem. The robust dominance criterion-based technique is 

designed to find robust optimal solutions for design problems with uncertainty. In this 

research, in consideration of the wider nature of design problems, the technique is 

extended to multi-objective problems with uncertain design space, uncertain objective 

space and problems with uncertainty in both spaces. However, in the application of 

the technique to problems with uncertainty in the decision space, it has been observed 

that the Pareto front is inconsistent, clustered and scattered. This implies that the 

robust non dominance criteria techniques can not deal with the uncertainty in the 

decision space by itself. To address these issues and improve the solution, the research 

proposed the introduction of the Central Limit Theorem (CLT) technique to be used in 

conjunction with robust dominance criterion, so that the technique can be applicable 

in complex multi-objective problems with uncertainty in the decision space. The 



 

157 

 

following sections discuss the central limit theorem and application steps followed to 

find solution for problems with uncertainty in the decision space.  

6.2.1.3 Principle of Central Limit Thermos (CLT) to deal with Uncertainty in the 

 Problem  

This section introduces a method called central limit theorem. The central limit 

theorem is also known as the second fundamental theorem of probability, and states 

the following.  Let X1, X2, X3, ..., Xn be a sequence of n independent and identically 

distributed random variables, each having finite values of expectation µ and variance 

ζ
2
 > 0. As the sample size n increases, the distribution of the sample average of these 

random variables approaches the normal distribution, with a mean µ and variance ζ
2
 / 

n, irrespective of the shape of the original distribution (empirical mean value  

reaching to the true mean value) (Dean and Illowsky, 2008). The theorem is 

mathematically expressed as follows: Let the sum of n random variables be Sn, given 

by: Sn = X1 + ... + Xn. Then, defining a new random variable : 

                                                   
n

nSn
Zn




                             Equation 6.10 

The distribution of Zn converges towards the standard normal distribution N (0, 1) as n 

approaches ∞ (this is convergence in distribution. This is often written as: 

   ),0()( 2 NXnn D         Equation 6.11   

Where the samples mean is: 

                        nXnXnSnXn /)...1(/          Equation 6.12               

In an uncertainty environment, a point assumed to be in a particular location could 

have a chance to be at any other location within a specific radius due to presence of 

uncertainty in the decision variables (x + ε), where x is a variable and ε is uncertainty 

in x. The technique adopted here is to find a random variable following a normal 

distribution with n samples. The sample taken, n times, is then used to calculate the 

estimate. The estimate is calculated using the arithmetic mean. This result is going to 

be the representative of the original point cloud assumed, and is then used in the 

optimisation. Here, a normal distribution was considered (it has to be noted that the 

technique can also be used regardless of the type of distribution). To determine the 

sample size n to be used in central limit theorem, a number of experiments have been 

conducted. The experiments are conducted by increasing the sampling „n‟, step by 

step, until a better estimate can be found. Criteria set for the experiment are as 
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follows: A number of experiments have conducted for different sampling „n‟, starting 

from lower number until better sampling n is found. The samples sizes 30, 50, 70, 90, 

have been experimented with. Each sample size experiments are repeated 10 times, so 

that the consistency of the result obtained can be verified. Since there is no 

improvement detected the 10
th

 runs has selected in all cases, Figures 6.4 – 6.7.  

Sample size n = 70 was considered acceptable to be used in the optimisation since no 

significant improvement was detected in the experiment after the sample size n = 70. 

The higher the sampling size n is the higher the computational time. Therefore, 

careful consideration is required during the sampling experiment not to pick the n 

value larger than required. The n value = 70 is based on 5% uncertainty due to noise 

level in the decision space. The 5% is taken as a result of experimental and real life 

observation of design input factor uncertainty incurred. If the uncertainty level had 

been more than 5%, then the sampling n would have been higher too. The results from 

the experiment with various samples size is presented in Figures (6.4-6.7). Limits and 

simulation run initial conditions presented in section 6.2.2.1 are used in the 

experiment.  

Experiment with sample size n = 30 

 

Figure 6.4. Simulation run with sample size n = 30 

Figure 6.4 illustrates the optimisation simulation experiment run conducted for 

determining the CLT iteration sample size 30. The result shows that the sample size 

(number of iteration before convergence) 30 is inadequate. The Pareto front is 

scattered, discontinuous and not distributed evenly. The sample size n = 30 is taken as 

initial in the experiment and the experiment repeated with increased n value until 

better result, hence Pareto front is found.  
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Experiment with sample size n =50. 

 

Figure 6.5. Simulation run with sample size n = 50 

Figure 6.5 illustrate the optimisation simulation experiment run with sample size n = 

50. The result shows that the sample size n = 50 gives a better Pareto front, distributed 

fairly evenly and convex in shape in comparison to n= 30 result shown in Figure 6.4. 

However there is still discontinuity observed in the Pareto front as shown in the 

Figure 6.5 hence n size higher than 50 needs to be tested. The experimental result 

with n = 70 is given in Figure 6.6.   

Experiment with sample size n =70 

 

Figure 6.6. Simulation run with sample size n = 70  

Figure 6.6 illustrate the optimisation simulation run with sample size n = 70. The 

result shows that the sample size n = 70 gives a better Pareto front, distributed fairly 

evenly and convex in shape. The higher the size of n resulted in the higher the 
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computational time, hence to minimised the computational time the sample size n = 

70 can be considered as the final iteration size and used in the optimisation, if no 

significant improvement observed in the Pareto front  in the consecutive experimental 

runs conducted with higher sample sizes.  

Experiment with sample size n = 90 

 

Figure 6.7. Simulations run with sample size n = 90 

Figure 6.7 illustrate the optimisation simulation run with sample size n = 90. The 

results show that there is no significant improvements in the Pareto front in the 

experiment after sample size n = 70. There are also experiments carried out with 

higher sample sizes. In all cases the result show that there is no significant 

improvement observed in the higher sample size after n = 70. Therefore the sample 

size = 70 is selected and applied in the CLT. The technique CLT with sample size n = 

70 is later used in the optimisation for searching design solution for problem with 

presence of uncertainty in the design variables. The next section presents the 

application and the experimental result of robust non dominance criteria and CLT 

techniques in the optimsation.  

6.2.2 Application of the Techniques to Two Objective, Single Pass 

Design Optimisation Problems with presence Uncertainties 

This section presents the application of robust non dominance criteria and the central 

limit theorem for the optimisation problem. The technique is applied in two 

objectives, work roll surface optimisation of the single pass problem, where both the 

fitness functions and design variables are uncertain. The performances of the solution 
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are based on quantitative models and uncertainty values introduced in the problem in 

the form of perturbation where the perturbation represented by normal distribution 

with sigma (ζ) values. The sigma is the value in the design space calculated as a 

percentage of decision space of each decision variables used in the modelling shown 

in Table 6.1. The calculated values, representing the level of uncertainty in the design 

space and fitness function are then introduced in the optimisation programme code 

used for searching robust design solution to the problem with presence of uncertainty. 

Examples of calculated value in percentage, representing level of uncertainty given in 

Table 6.2 of the design variables used in the optimisation are given in Table 6.3. 

Similar approach has followed for fitness function uncertainty representation. The 

case study solution strategy flowchart is given in Figure 6.3. After the application of 

the technique, set of optimum designs (Pareto solutions) is identified and then they are 

evaluated for constraint violations and constraint criticality in the neighbourhood of 

each design solution. Evaluating for constraint criticality is presented in Section 6.3.   

Experimental Detail 

The proposed Algorithm based optimisation technique is used to locate good solutions 

for the optimisation problem, formulated in Equation 6.13, by evaluating each 

member of the population using the quantitative models shown in Equation 6.14 and 

6.15.  

Design optimisation formulation Equation 6.13 

Minimise           Change in Temp at roll surface          f1(x) = ∆TS (x) 

Minimise           Radial stress at the roll surfaces         f2(x) = S11S (x) 

Change in temperature ∆T at roll surface 

∆T-S = (-370.8659 + 3.92666667 * x[1] + 0.0462222 * x[1]^2 + 3.02845679 * x[2] - 

0.00130938 * x[2]^2 + 0.0000001 * x[3] - 00000.02 * x[3]^2 - 7.0603175 * x[4] + 

0.085079365 * x[4]^2 + 26.9230797 * x[5] + 3.44362939 * x[5]^2 + 3.99055556 * 

x[6] - 0.041944 * x[6]^2 - 0.801944 * x[7] + 0.004701389 * x[7]^2)      Equation 6.14 

Stress (S11) at roll surface 

S11-S = (140.63997 - 10.082111 * x[1] + 0.0642000 * x[1]^2 -1.2915963 * x[2] + 

0.002292 * x[2]^2 + 0.001444 * x[3] - 0.0000033 * x[3]^2 + 12.11495 * x[4] - 

0.21604354 * x[4]^2 - 387.34458 * x[5] + 145.751168 * x[5]^2 - 2.66775 * x[6] + 

0.0386875 * x[6]^2 - 1.45855567 * x[7] + 0.0119829 *x[7]^2)               Equation 6.15 
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Figure 6.8. Design variables representation sequence in the optimisation of single 

pass 2 objective problem 

Table 6.1 Design details of single pass work roll design problem 

Table 6.2. Level of uncertainties, (Where, FF = Fitness Function (two objective 

functions), DS = Decision Space (7 variables), CLT = Central Limit Theorem) 

Opt. with no uncertainty in DS and FF  Error % 

DS with noise and no CLT 5% 

DS with noise and CLT  5% 

DS with noise and CLT 10% 

FF with noise, No CLT 5% 

FF with noise and NO CLT 10% 

(DS+FF) with noise no CLT 5% 

(DS+FF) with noise, CLT 5% 

(DS+FF) with noise and CLT 10% 

 

 

Design Variable Design Variable Bounds Outputs 

Roll / Stock contact HTC  (x1) 

Stock temperature (x2) 

Roll /Stock Contact length (x3) 

Cooling HTC (x4) 

Roll speed (x5) 

Roll temperature (x6) 

Delay time (x7) 

5 ≤  x1  ≤ 15 

950  ≤  x2 ≤ 1250 

15 ≤  x3 ≤ 50 

10  ≤  x4  ≤ 30 

0.14 ≤  x5 ≤ 1.256 

40  ≤  x6  ≤ 80 

20 ≤  x7 ≤ 100 

 

 

 

 Change in Temp at roll surface 

Radial stress at the roll surfaces               

 

 

 

X31 X41 X51 X61 X71 

       Single pass 

X11 X21 
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Table 6.3. – 5% error values for design input factor parameters, shown in Table 6.1 

x1_sigma = 0.5;          x2_sigma = 15.0; x3_sigma = 1.0; 

x4_sigma = 1.7;   x5_sigma = 0.0558;    x6_sigma = 2.0;     x7_sigma = 4.0; 

The 5% errors assumed above, are based on literature review, and knowledge from 

rolling engineers stating that in the real life rolling practise, normally 95 % accuracy 

is expected. The fitness function is an approximation of the real life scenario and 

forced accuracy compromises are inevitable. The sigma values in the fitness function 

represent these compromises.  

6.2.2.1 The Optimisation Initial Conditions  

The design optimisation approach was applied on the research problem to identify 

optimum design solutions in the presence of uncertainties. A crossover probability 

(pc) of 0.9 and mutation probability (pm) = 1/n are used for the design optimisation 

with NSGA II, where n is the number of decision variables. The distribution indices 

for cross over and mutation operators are vc = 20 and vm = 20, respectively. A 

population size of pop = 400 resulted in sufficient spread of the solutions along the 

Pareto front (Pareto convergence), and all the optimisations have been performed with 

gen=1000 generations. The size of population and generation are determined through 

experiment. The experiment was conducted using different sizes of generation and 

running each experiment 10 times i.e. 10 different generations‟ experiments and 10 

runs at each generation; hence, a total of 100 experiments are carried out. Based on 

results quality and reasonable computational time, the generation = 1000 and 

population = 400 are selected, to be used in the final optimisation. Prior to searching 

for solutions for the research optimisation problems with uncertainty and constraint, 

an exhaustive grid exploration is conducted. This is vital to make sure that the 

optimisation framework is fit for the intended problem. The result obtained from the 

classical search compared with the solution from the proposed GA based optimisation 

techniques applied on the problem with no uncertainty. Before comparing the results 

however, a total 10 experiment run have been conducted, so that result obtained can 

be verified for consistency. The final test result is presented in the Figure 6.9. As 

shown in the Figure, comparisons of the random search points with the standard 

NSGA-II results confirm the likely convergence to the Pareto front. The Figure shows 

the result of an exhaustive enumeration of the seven-dimensional decision space using 
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grid, and the Pareto front from the normal NSGA-II search. The Pareto front is the 

highlighted line below (at lower end) of the grid search. The dim dots cloud above the 

Pareto front is the map generated by the exhaustive grid exploration of the decision 

and objective space. Furthermore, the Pareto front of this problem is convex and 

continuous in nature. Since the search space is not known in absolute terms, it is likely 

that the result obtained in Figure 6.9 has converged to the near optimal Pareto front 

with a good spread of multiple optimal solutions for the problem, i.e. minimisation of 

radial stress and change in temperature at roll surface. Design solution at three 

random points along the true Pareto front is given in Table 6.4. The Pareto front 

obtained here also used to as a reference to verify the goodness of solution from the 

experiment carried out for the optimisation problem with presence of uncertainty. 

Next sub sections present the experimental result of the design problem with presence 

of uncertainty.  

 

Figure 6.9.  Map generated by an exhaustive grid exploration of the decision and 

objective space 

Table 6.4 below presents array (sample design solution) at randomly selected points 

from the Pareto front given in Figure 6.9. Similarly array also taken from the 

optimisation run carried out with problem in presence of uncertainty in the design 

space and fitness functions presented in Section 6.2.2.8., Figure 6.16. The arrays are 

presented in Table 6.5.  

A

  

B

  
C
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Table 6.4. Design solution at three random points (A, B and C), along the true Pareto 

front shown in Figure 6.9 representing High ∆T Low S, ∆T & S close to 0 and Low 

∆T High S respectively. 

 

Application of Techniques in the Problems with presence of Uncertainty  

Here presented the experimental results of the optimisation problem with presence of 

uncertainty carried out based on the experimental set shown in Table 6.1. Based on 

information from real world rolling practice the maximum level of inherent noise 

expected in the design, 5% for each design factors in the decision space and 5% for 

the fitness functions are allocated for uncertainness. However to investigate the 

impact of higher level of uncertainty (worst case scenario) additional runs with 10% 

uncertainty in the design space and fitness function are also experimented. The 

experimental results and discussion of results are presented in the following sections. 

6.2.2.2 Uncertainty in the Decision Space without the Application of CLT  

Here is presented the application of the robust non dominance criterion technique, 

without CLT, on the work roll optimisation problems with uncertainty in the decision 

space. As the results indicate, the multi-objective optimisation technique adopted for 

searching for solutions for the case study problem with uncertainty in the decision 

space, is not be able to find the solution as intended. The result proved that the 

presence of uncertainty in the decision space, have impact in the solution. The spread 

of the Pareto front is clustered and scattered, as shown in Figure 6.10. Similar 

experiment has also been carried out, but this time with the application of CLT to the 

problem. The corresponding result and comparison analysis is given in Figure 6.11. 
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Figure 6.10. Optimisation of the problems with uncertainty in the decision space, and 

no application of CLT  

This is, in fact, an expected feature of solutions according to the Pareto dominance in 

an uncertain environment. However, unlike results of other experiments presented in 

the next sections for uncertainty in the fitness function, this property is uniquely 

observed more in the case of problems in the decision space. Nevertheless, the all 

over spread of the solution lies around/behind the true Pareto front. To overcome the 

clustered behaviour and improve the solution, in this particular case, the technique 

CLT has been adopted and successfully incorporated with the robust dominance 

criterion techniques and is able to search for an evenly spread optimal solution for the 

problem. The result is presented in Figure 6.11.     

6.2.2.3 Uncertainty in the Decision Space & Application of CLT (5% Sigma)  

This section presents the application of the robust non dominance criterion technique 

and the CLT on work roll system optimisation problem with uncertainty in the 

decision space. Figure 6.11 shows the optimisation result of the problem, based on the 

CLT emphasising on the arithmetic mean. Runs are conducted with the sampling size 

n = 70. The result shown in Figure 6.11 is the representative out of the 10 runs 

conducted under the same initial optimisation conditions and problem circumstances. 

The experimental result and result descriptions are presented as follows. 
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Figure 6.11. Optimisation of the problems with uncertainty in the decision space,  

ζ = 5%  

As shown in the Figure 6.11, the results are conclusive. The optimisation results with 

uncertainty (dot line) lie very close to the true Pareto front (continuous line). From the 

result, it can be concluded that the optimisation framework proposed (robust non 

dominance criteria and CLT for problems with uncertainty in the decision space) 

manages to search and find a solution to the problem, regardless of the presence of 

uncertainty. The values in Figure 6.11, the radial stress axis, the negative and positive, 

indicate the respective compressive and tensile behaviour on the roll as a result of 

cooling. Tensile stress is the internal reaction of the roll due to the external force 

applied to it - application of cooling in this case. Generally, the lower roll temperature 

is, the better; however, excess cooling can lead to higher tensile stress, but if the 

tensile stress goes beyond the allowable, depending on material property, this could 

lead to crack on the roll. Hence, to avoid this happening, constraint needs to be 

imposed in the design optimisation. Section 6.3 presents constraints and their 

criticality to the design solutions.  

6.2.2.4 Uncertainty in the Decision Space, & Application of CLT, (10% Sigma) 

Here presented the optimisation problem with presence of high level of uncertainty in 

the decision space. Sigma value ( ζ =10%)  for uncertainty introduced to the design 

variables and the robust dominance criteria technique with CLT has applied for 

searching optimal design solutions to the problem. As the Pareto front in Figure 6.12 

Pareto front without 

uncertainty 

Pareto front with 

uncertainty 
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indicates the presence of high level of uncertainty in the design space shows higher 

impact in the solution in the objective space. The result shows a slight scattering 

behaviour, few design points and a slight shift away from the true Pareto front. The 

result from the experiment is given in Figure 6.12.   

 

Figure 6.12. Optimisation of the problems with uncertainty in the decision space,  

ζ = 10%    

6.2.2.5 Uncertainty in the Fitness Function, No Application of CLT, (5% Sigma)  

The section gives the application of the robust non dominance criterion technique on 

work roll optimisation problems with uncertainty in the fitness function. The 

uncertainty is introduced in the fitness functions Δf (change in temperature) and S11 

(Radial stress). As shown in Figure 6.13, Unlike the result observed in the above 

section, here the solutions for the problem with uncertainty (dark dotted line) are 

evenly spread and close to the true Pareto front (light continuous line). The Pareto, 

here, is the result of robust dominance criteria without the application of CLT for 

reasons discussed in Section 6.1.1. The result indicates that the uncertainty in the 

fitness function can be dealt with in the optimisation using the robust non dominated 

criterion technique. The experiment repeated with the same setting but with higher 

level of uncertainty, ζ = 10%, Figure 6.14. As shown in the Figure the presence of 

high level of uncertainty in the fitness function cause the result display slightly 

discontinuous and fewer number of design points in the final solutions. However 

despite the increase level of uncertainty in the problem, the technique searches and 

found robust optimal design solution to the problem.  
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Figure 6.13. Optimisation of the problems with uncertainty in the fitness functions,  

ζ = 5%. 

6.2.2.6 Uncertainty in the Fitness Function, No Application of CLT, (10 % 

 Sigma)  

 

Figure 6.14. Optimisation problems with uncertainty in the fitness functions = 10%. 

6.2.2.7 Uncertainty in the Decision Space and Fitness Function, No 

 Application of CLT, (5% Sigma) 

This deals with the experiment carried out for the optimisation problems with 

uncertainty in the decision space and in the fitness functions. As presented above, the 

two cases have been experimented separately, and each resulted in a Pareto of unique 
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characteristics. Here, the result shows that the Pareto dominance criteria technique 

(without CLT) finds solution very close to the true Pareto, but with few design 

solution points in comparison with results presented in the previous sections. This 

may be due to higher overall uncertainty level, and particularly, the presence of 

uncertain in the design variables in the problem, Figure 6.15. Nevertheless, the results 

suggest that the uncertainty in the decision space and the fitness function can be dealt 

with in the optimisation using the robust non dominated criterion. For comparison, the 

same problem is experimented, this time with the application of robust non dominance 

criterion technique and CLT. The result indicates that the algorithm is able to find 

evenly spread and improved design solutions, regardless of the presence of 

uncertainty in both the fitness function and design space. Figure 6.16 shows the 

improved Pareto front as a result of application of the robust dominance and CLT 

techniques to the problem. A further experimental work has been carried out but this 

time with higher level of uncertainty in both design variable and fitness function. This 

is an important step help to realize the impact of presence higher level of uncertainty 

in the design space and fitness function, to the design solution and also to verify the 

robustness of the optimisation techniques for searching optimal design solutions to the 

problem in such circumstances. The Pareto front from the experiment is presented in 

Figure 6.17.     

 

Figure 6.15. Optimisation of problems with uncertainty in the decision space and in 

the fitness function, with no CLT, ζ = 5 % and 5 % respectively. 
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6.2.2.8 Uncertainty in the Decision Space and Fitness Function, with Application 

of CLT, (5% Sigma)  

 

Figure 6.16. Optimisation of problems with uncertainty in the decision space and in 

the fitness function, with application of CLT, ζ = 5 % and 5 % respectively. 

Table 6.5. Design solution at three random points, (A, B and C), along the true Pareto 

front shown in Figure 6.16 representing High ∆T Low S, ∆T & S close to 0 and Low 

∆T High S respectively. 

 

 

 

 

 

A

  
B

  C
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6.2.2.9 Uncertainty in the Decision Space and Fitness Function, with Application 

 of CLT, (10% Sigma)  

 

Figure 6.17. Optimisation of problems with uncertainty in the decision space and in 

the fitness function, with application of CLT, ζ = 10 % and 10 % respectively. 

The result in Figure 6.17, the design solution, Pareto front for problem with 10% 

sigma level of uncertainty shows that even though the techniques, robust non 

dominance criteria and CLT have applied in comparison the front has fewer number 

of design points an even and slightly away from the true Pareto front. 10% sigma 

values are the worst case scenarios which are beyond the expected level of uncertainty 

in the real life work roll system design.  

Result Summary and Observations 

The section presents the application of robust non dominance criteria techniques and 

CLT on work roll system design optimisation problem in the presence of uncertainty 

and constraints. Various scenarios have been experimented, such as uncertain design 

space problems, uncertain fitness function and where both design space and fitness 

functions are uncertain. There are also additional experiment for cases where no 

uncertainties in the problem. The result from the scenarios are analysed and the results 

are presented. The optimised result shown in Figure 6.9 identifies the true Pareto front 

in comparison with the exhaustive grid exploration for work roll system thermal 

analysis and optimisation problem. Since the search space is not known in absolute 
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terms, it is likely the result reported in Figure 6.9, has converged to the true Pareto 

front, locating a reasonable spread of multiple optimal solutions. It is clear from the 

result that the solutions obtained by the GA based technique are superior to the grid 

search; an indication of the proposed GA based optimisation technique‟s acceptability 

for solving the research problem. The presence of a Pareto front also confirms the 

conflicting relationship between change in temperature and radial stress. Having 

continuous, convex and uniform Pareto, as this is the case in the result shown in 

Figure 6.9, it is fair to say that the Pareto maintain diversity. Results obtained from 

the proposed approach not only identify good solutions, but also provide insight into 

the complex behaviour of the design problem, such as the presence of uncertainty in 

the design space and its effect on solutions obtained. As the results indicate, 

particularly in Figures (6.11, 6.13,  6.14 and 6.16), the well spread Pareto front is 

close to the true Pareto, implying that the proposed approach and introduction of CLT 

is capable of identifying good solutions, regardless of the presence of uncertainty. The 

results also proved that the presence of uncertainty has impact on the ability of the 

algorithm to search for optimal global solution. Figure 6.10 and 6.15, particularly 

show that the result obtained lack diversity and cannot be said that the Pareto 

converged to global optima. In the next section, the obtained design solutions are 

evaluated for constraint violations in the neighbourhood of each solution. 

6.3 Evaluating Criticality of Constraints to Optimum 

 Designs  Solution Point 

This section presents a constraint handling approach of the design solution obtained 

and the constraint criticality relative to the design solution. As mentioned above in 

Section 6.2.1.1 fulfilling the objectives of the optimisation problems may come at a 

price. For example, in the problem, one of the objectives is minimising the change in 

temperature on the roll. However, minimising temperature has an inverse effect on 

stress, particularly tensile stress. If the tensile stress reaches beyond the allowable 

stress limit, it has a potential to cause thermal shock, leading to cracks on work rolls. 

In real life practise, the stress limit can also be dependent on other factors involved in 

the process and process condition. Process factors such as speed and cooling 

conditions, have greater effect on the roll stress. Therefore, to give engineers a chance 

to choose the design depending on constraints criticality, the research adopted a 
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technique to analyse the obtained result criticality relative to roll materials allowable 

stress. The constraint sensitivity is described in the form of their criticality in the 

neighbourhood of a design solution (Sundaresan, 1993; Roy, 1997 and Roy, et al., 

1997). Categorisation is based on tolerance space (TS) around a design solution with a 

set of points where each point represents a possible combination of the design variable 

with tolerance associated to them. The criticality is given a rank „1 to 5‟, where 1 is 

less critical and 5 very critical. Each design variable of a solution can have an upper 

and lower value defined by its tolerance. Thus, the three levels of each variable can be 

expressed as the variable value (g), the upper value (gu), i.e. g+ tolerance, and the 

lower level (gl) that is g-tolerance, Figure 6.18. In the Figure, the rectangle represents 

the tolerance space and five possible constraint criticalities in relation to the design 

solution shown in the circle at the centre of the rectangle. The thermal fatigue stress 

(material allowable stress limit) is used as the single constraint for the case study. 

 

Figure 6.18. Criticality of constraint in the design space (Roy et.al., 2009) 

Criticalities, number 1 to 5, shown above, are identified based on design solution 

sensitivity towards the constraints. Constraints are assumed to be monotonic with 

respect to all design variables in the tolerance space - this leads to the assumption that 

the maximum constraint value will occur at one of the corner points. Based on this 

assumption, the criticality of constraints is categorised as constraint satisfied (1), 

statistically active constraint (2), Quasi active constraint (3), peak active constraints 

(4) and constraint not satisfied (5)  (Roy et al., 2009). The criticalities can be given 

colour coded or, as in the case of this research, symbolic identities so that they can be 

traced and identified after the optimisation.  
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6.3.1 Application of the Constraint Criticality Analysis 

 Technique  to the Work Roll System design Problems   

The sensitivity analysis is applied to good designs already identified by the GA in the 

case study of work roll system optimisation problem with uncertainties and 

constraints. The technique is applied as a method of obtaining sensitivity of the design 

to constraints, based on criticality described above. The sensitivity is calculated within 

the neighbourhood of the design by focusing on the edges of the seven dimensional 

neighbourhoods, as shown in Figure 6.18. The Pareto optimum design solutions that 

are of „constraint satisfied‟ type are preferred over „statistically active constraint‟ or 

„quasi active constraint‟. Constraint not satisfied, although not preferred as a solution, 

would give information to engineers about the design limit. Except constraint not 

satisfied, other none automatically preferred constraints solution may also be selected 

by engineers in some circumstances, depending the design requirements and 

priorities.     

6.3.2 Sensitivity Analysis Result and Discussions  

Information of how sensitive the design optimisation solution  to  constraints, the roll 

allowable stress in this case study, is important information to help engineers in 

making design decision - although it has been common in engineering design that 

penalising constraints is the best approach for the safety of the design. In this 

research, however, instead of penalising the degree of criticality of the constraints to 

the design has been ranked. The ranking then would give engineers flexibility in 

making a design decision that is best, depending on requirements. In Figures 6.19 and 

6.20, constraint criticality is presented with symbols, such as „*‟ represents constraint 

not satisfied, sign „∆‟ for statistically active constraint, black dot for constraint 

satisfied, ■ for quasi active and ● for pick active constraints. The last two, namely 

quasi active constraint and peak active constraints, are not shown during the 

evaluation. The solution marked with „∆‟ in the Pareto set is the statistically active but 

critical, next to the non feasible segment marked with „*‟ at the bottom right hand 

side in Figure 6.19. „Statistically active constraint‟ type design solutions could be 

selected if there are other advantages, depending on the operations type, design 

requirements and factors involved in the operation. The Figures 6.19 and 6.20, show 

the constraint and criticality of the constraints to the design solution obtained.  
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Figure 6.19. The optimisation problem with uncertainty and constraints in the 

decision space and fitness function 

 

Figure 6.20. The optimisation problem with uncertainty and constraints in the 

decision space and fitness function 

6.3.3. Section Summary, Two Objectives Problem Optimisation in 

 presence of Uncertainty and Constraints  

In the above sections, the optimisation technique, the robust dominance criterion with 

the collaboration of CLT, and constraint criticality to the design solution are 

presented. The framework developed is applied in two objective work roll surface 
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designs 

Design not 
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thermal analysis and optimisation problems with uncertainty and constraints. The 

study introduced the concepts of conflicting behaviour between multiple objectives 

and presence of uncertainty, and showed how this can be resolved using GA based 

techniques to identify Pareto based solutions. A number of optimisation experiments 

have been conducted using the Mathematical models as fitness function and proved 

that the research problem, with uncertainty in the decision space and fitness function 

can be addressed using the robust non dominated criterion and CLT technique. The 

technique converges to a set of solutions that gives good nominal performance while 

exerting maximum robustness, giving an important work roll design parameter set. 

The step is also used to analyse the effect of uncertainty and constraint in the work 

roll surface optimisation problem in a simplified manner, by comparing the problem 

with uncertainty and without uncertainty. The results also considered important in 

order to show how the various algorithmic development stages led to the development 

of optimisation frameworks for handling the quantitative and uncertainty search space 

for more than two objectives (high dimensional problem), where the result cannot be 

visualised or observed with the help of a Pareto front. The approach then extended for 

many objective (more than 2) problems with presence of uncertainty. The framework 

for handling many objectives, single pass problems is discussed in the next section. 

6.4 Application of the Technique to the Many Objective, 

Single Pass Work Roll System Design Optimisation 

Problems with presence of Uncertainty 

Work roll damage due to heat is severe at the roll surface hence searching for an 

optimal design overcome this problem is essential. Keeping the roll surface 

temperature at optimum is also help to minimise the effect of heat on the roll beyond 

the surface. The previous section demonstrates the optimsation procedure to search 

for a design that can solve these issues.  As presented in the literature review, Chapter 

2, however the severity and penetration of heat beyond the point of contact (roll and 

stock), is depends on the type of operation and design factors - such as the radius of 

rolls, speed of roll, time of contact and stock temperature, involved in the process. 

The cooling conditions also have an impact on depth in which the heat can reach in to 

the roll below the surface. It was also learnt that after repeated rolling operation, heat 

may pass beyond the surface and be accumulated at a depth, and if this heat is not 
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controlled and dealt with on time, eventually it will reach to the core. When cooling 

applied on the roll thermal shock and roll crack emerged at the interface between the 

hot core and cold surface. The research conducted a number of experiments trying to 

establish the average depth the heat, under different operation circumstances, will 

penetrate in to the roll during hot rolling. The technique, developed in R environment, 

is designed to recognise these temperature variations at depth and deliver a solution 

that is optimal (robust), regardless of these variations. To achieve these depth 

parameters, taking the maximum depth the heat can reach under normal circumstances 

has been established. Based on experimental trial the depths 9 and 15mm below the 

surface have been considered. Therefore, at these depths, FEA response data are 

collected and a regression model developed. To increase the search space and so that a 

robust solution can be found, the regression model is used as fitness in the 

optimisation, treating the problem as 6 objectives problems. The 6 objectives, change 

in temperature and radial stress at roll surface, at 9 mm and 15mm, are presented in 

Section 5.3.8. Adopting the optimisation strategy is based on the following 

considerations:   

 A multi-objective GA is applied for solving the quantitative problems where 

the objectives are comprised of two or more search spaces.   

 This problem is such that the nature of this relationship exhibits a conflict. The 

conflicting nature is that the value of any one of the solutions cannot be 

improved without deteriorating at least one of the others.  

As discussed in the literature review, the presence of multiple objectives in a problem, 

in principle, gives rise to a set of optimal solutions (largely known as Pareto-optimal 

solutions), instead of a single optimal solution. The adoption of the GA based 

optimisation technique primarily is due to its ability to search for these solutions for 

multi-objective problems. However, in the research, due to the fact that uncertainty 

and constraints are also part of the problem, the AS-IS GA cannot be used on its own. 

Hence, the basic GA based technique is enhanced so that it is able to handle the 

problem complexity. The R language and software environment was chosen to 

develop the code for the research single pass many objective problem, because of its 

accessibility and flexibility, as well as the fact that it is powerful software capable of 

handling the research case study, regardless of problem complexity and number of 

objectives. R is designed in such a way that it allows users to add additional 
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functionality by defining new functions. This characteristic makes it possible for users 

to extend the optimisation components, such as NSGA-II, to accommodate additional 

features of the optimisation problems, such as uncertainty. Other features of R include 

the option that any code written in other languages can be linked and called at run 

time. Another important feature is that R can be extended easily via packages supplied 

with the R distribution, and many more are available through the CRAN family of 

Internet sites, covering a very wide range of modern statistics (Ihaka, et.al., 1996) 

Details of the application of the optimisation technique, programmed in R 

environment, to the research many objectives problem case study is discussed in 

Section 6.4.1. The technique has followed a similar, but with added features, 

procedure presented in 6.1 and 6.2 for two objective case study. Here, the technique is 

for solving the optimisation problems with uncertainty in high dimensional problem, 

i.e. regardless of the number of objectives and number of design variables. In high 

dimensional optimsation problem identifying the best optimal final design from the 

solution found by the optimisation techniques is an important feature of the design 

solution search process. The steps helps designer save time and obtain the best few or 

single compromised design instead of having the population of design solutions to 

choose from. The many objectives technique is applied to problems of more than 2 

objectives, and hence, the compromised solution Pareto front cannot be seen 

graphically. Therefore, here, compromised solutions between the conflicting 

objectives are found through alternative means. The research proposes a search space 

reduction technique for searching the final design solution from the Post GA result, 

where the result population goes through an iterative search space reduction steps 

before reaching the final best compromised design solution/s. In this case study, a 

weight vector methods solution search technique consisting of weight, average weight 

and step by step percentage reduction of the search space based on average weight, is 

proposed and used as post processing/filtering of the initial potential solutions 

obtained by the GA. The weight calculation is carried out using the pseudo weight 

vector approach presented in Section 6.4.3. In order to make the filtering possible and 

arrive at the last best design solution, a percentage search space reduction of the 

potential solution obtained by the GA is proposed. The percentage (%) is determined 

through trial and error experiment. The percentage reduction filters the less weighted 

objectives, step by step, until the best compromised solutions, good for all, can be 

found. The sequential reduction helps to arrive at the final solution in the objective 
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space, and subsequent corresponding best design solutions in the decision space. 

Other strategies such as utility functions and the advantages and disadvantages in 

relation to this problem are also studied. However the parentage reduction technique 

is chosen because of its simplicity and the fact that no compromise of solution, 

involved for searching the final robust design solution. The next sections present the 

optimisation procedure, Pseudo code for solution search strategy and the section that 

follows presents real-life case studies illustrating the optimisation concepts and 

solution results.  

The single pass many-objective optimisation process consists of two main steps: the 

first step is the application of the GA for locating the area of interest / identifying the 

population of good solutions and the second step is the post GA result analysis for 

identifying the final best optimal design solution. The programme codes for the two 

steps shown in the schematic view below are presented in Appendix E and G 

respectively. 

The Optimisation Problem Solution Search Strategy  

Programme Structure 

       Design variables 

  

 

                 Objective function Uncertainty 

 

                                                                                              Population of solutions 

 

                                                                                

    Best optimal design solution 

Figure 21. Design solution search strategy 

6.4.1 Experimental Details 

The quantitative evaluation with uncertainty in the design variables and in the fitness 

function of individual members of the population is carried out as the following. First 

is the evaluation of the design variables and uncertainty, and second is the evaluation 
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of the fitness function with uncertainty. This represents the global objective functions 

values evaluation for the single pass work roll thermal analysis and optimisation 

problem. The objective function value of the global evaluation represents the fitness 

of the chromosome. The global evaluation is given by a real value vector, as in 

Equation 6.17. The optimisation strategy is presented in Figure 6.3. 

                                             Xi = { (xi+ε) , . . . , (xn +εn)}                    Equation 6.16                     
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                   Equation 6.17 

Where i is the ith design variables, n is the number of design variables, j is the jth 

objective and k is the number of objectives. 

The optimisation is carried out with the proposed GA based algorithm, to find a 

solution for a design optimisation problem with uncertainty, minimising change in 

temperature (∆T) and radial stress (S11) at work roll surface, and depth below the 

surface at 9 mm and 15mm. Ten independent GA runs, with varying populations and 

generations size have been carried out. In each case, 10 repeated runs are 

experimented. Hence, a total of 100 experiments have been conducted before 

selecting the size of population and generation.  The final optimisation is carried out 

with population size 400 and 1000 generations. The set selected is the representative 

of 10 runs carried out. The final population and generation set is selected since there 

is no improvement observed after 10 runs All runs are performed with the following 

standard parameters: crossover probability (cp) of 0.7 and mutation probability (mp) 

0.2. This case study deals with six quantitative based objectives and aims to show 

how the proposed algorithm can deal with many objectives rolling system thermal 

design problem with uncertainty. The case study is 6 quantitative objectives 

formulated in Equation 6.18, and used the design factors bounds given in Table 6.6. 

The design variable representation sequence in the optimisation is presented in Figure 

6.22. The variable bounds are estimated for feasible design values. These are 

established after consultation with the rolling experts during the knowledge elicitation 

exercise. The representing design variables are linked together as a chain to form the 

chromosome. The proposed technique was used to locate good solutions for the 

optimisation problem formulated in Equation 6.18, by evaluating each member of the 

population using the quantitative models shown in Section 5.3.8 in Chapter 5.  
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Optimisation formulations, Equation 6.18 

 Minimise           Change in Temp at roll surface          f1(x) = ∆TS (x) 

Minimise           Radial stress at the roll surfaces         f2(x) = S11S (x) 

Minimise           Change in Temp at 9mm depth         f3(x) = ∆T 9d (x) 

Minimise           Radial stress at 9mm depth            f4(x) = S119d (x) 

Minimise           Change in Temp at 15mm depth       f5(x) = ∆T 15d (x) 

Minimise        Radial stress at 15mm depth       f6(x) = S1115d  (x) 

 

Figure 6.22. Design variables representation sequence in the optimisation of single 

pass 6 objective problem 

Table 6.6. Design details of single pass work roll design problem 

 

Introducing Uncertainty in the Optimisation 

The uncertainty is introduced and applied in the optimisation by altering the design 

fitness randomly with a noise factor, represented by sigma (ζ) values. The sigma is 

the value in the design space calculated as a percentage of decision space of each 

decision variable given in Table 6.6. The sigma values calculated are the following. 

x1_sigma = 0.5; x2_sigma = 15.0; x3_sigma = 1.0; x4_sigma = 1.7; x5_sigma = 

0.0558; x6_sigma = 2.0; x7_sigma = 4.0; 

Design Variable Design Variable Bounds Outputs 

Roll / Stock contact HTC  (x1) 

Stock temperature (x2) 

Roll /Stock Contact length (x3) 

Cooling HTC (x4) 

Roll speed (x5) 

Roll temperature (x6) 

Delay time (x7) 

5 ≤  x1  ≤ 15 

950 ≤  x2 ≤ 1250 

15 ≤ x3 ≤ 50 

10 ≤ x4  ≤ 30 

0.14 ≤ x5 ≤ 1.256 

40 ≤  x6  ≤ 80 

20 ≤  x7 ≤ 100 

 

 

 Change in Temp at roll 

surface,9mm and 15mm depth 

Radial stress at the roll 

surfaces,9mm and 15mm depth               

 

 

 

 

X31 X41 X51 X61 X71 

       Single pass 

X11 X21 
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The sigma values are based on 5% error in the work roll system design factors, The 

5% errors assumed above, are based on literature review, and knowledge from rolling 

engineers stating that in the real life rolling practise, normally 95 % accuracy is 

expected. The 5% error also applied for the fitness function. The fitness function is an 

approximation of the real life scenario and forced accuracy compromises are 

inevitable. The sigma values in the fitness function represent these compromises. 

6.4.2 GA Results 

The optimisation run with parameters outlined in the previous section, has produced 

the initial solutions. The NSGA-II based optimisation identified the solutions (Pareto 

set) that are optimal, best compromised between the change in temperature and radial 

stress at the roll surface, 9mm and 15mm below the surface. The problem is many 

dimensional in nature; hence, it is not possible to visualise the Pareto front. The post 

GA results search space reductions strategy, based on weight vector average, 

discussed in Section 6.4.3 is proposed to identify the final best optimum solution/s 

from the population of solutions set identified by the GA. 7 selected sample results 

(array) out of 400 population of solution identified by the GA are shown in Table 6.7 

and Table 6.8. Table 6.7 presents‟ objectives results, in the objective space, 

corresponding to change in temperature at the surface of the roll, at 9mm and 15mm 

below the surface as well as radial stress at the surface of the roll, at 9mm and 15mm 

below the surface of roll. Results in Table 6.8 are optimal design solutions set in the 

design space, giving the values for the design variables that guarantee minimal 

thermal effect on the work roll during hot rolling. As indicated above, the results in 

the Tables are samples (6 objectives and 7 design variables arrays) from the 

population of solution found by the GA.  

Table 6.7. Sample array from good solutions found by the GA, (Objective space), 

Change in tempreature (∆T) in 
0
C and Radial stress (S11) in MPa 

∆T-Surface 

Objective 1 

S11-Surface 

Objective 2 

∆T-9mm 

Objective 3 

S11-9mm 

Objective 4  

∆T-15mm 

Objective 5 

 S11-15mm 

Objective 6 

36.2 9.2 31.2 -96.9 28.1 -97.7 

18.1 -92.3 12.6 -82.7 6.9 -55.5 

14.2 -85.2 18.0 -88.8 8.4 -61.1 

33.9 -54.7 18.9 -82.0 10.4 -62.6 

-85.9 153.2 -64.3 147.9 -53.3 131.3 

21.5 -43.8 36.4 -126.7 33.3 -110.9 

-71.3 107.4 -41.0 105.0 -32.9  91.8 
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Table 6.8. Sample arrays from good design solutions found by the GA, 

(Design space) 

HTC R/S 
contact 

(kW/m^2K) 

Stock 
Temp. 

(0C) 

Contact 
Length 

(mm) 

HTC Cooling 
(kW/m^2K) 

Roll 
Speed 

(Rad/sec) 

Roll 
Temp. 

(0C). 

Delay 
Time 

(Sec) 

5.1 1216.2 22.8 17.8 0.31 78.4 36.7 

14.1 1099.5 26.2 15.3 1.04 40.0 26.0 

5.0 967.0 13.1 40.3 0.60 76.1 83.9 

5.1 1197.1 12.5 40.6 1.24 41.4 21.8 

5.0 967.0 13.1 40.3 0.60 76.1 79.8 

5.4 1178.5 28.3 43.7 0.73 79.6 73.8 

5.2 957.6 10.2 43.0 0.54 41.4 73.9 

6.4.3  Post GA Result and Analysis  

The post processing or search space reductions are independent steps designed to 

process the obtained solution of the objective space, as well as the corresponding 

design space. An important step of the solution strategy begins by calculating the 

weight vector of results in the objective space, found by the GA. Programme code and 

the procedure adopted for finding the final optimum set of design solutions is 

presented in Section 6.4.4. The programme code, developed in MATLAB, is to 

represent the mathematical formula used to calculate weights vector of the objectives 

result from the GA and the follow-up search space reduction steps for identifying the 

final optimal design. The formula, called Pseudo-Weight Vector Approach is 

designed to compute the weight Wi for the i-th objective function, and calculate the 

relative distance of the solution from the worst (max) value in each objective function; 

thus, the best solution for the i-th objectives, the weight Wi is the maximum. The 

mathematical formulation of the Pseudo-Weight Vector Approach is given in 

Equation 6.19.     

Pseudo-Weight Vector calculation (Deb, 2001) 
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Where fimin and fimax are values of each objective functions i from the obtained set 

of solutions from GA. fi(x) is the result from the GA population, 400 in this case. In 

the equation above, the characters on the left side of the numerator always ensure a 

value between 0 and 1 (normalise). Hence, after the application of the weight vector 

approach, the sum total of all the weight/objectives should add up to 1. Once the 

weights have been calculated, the next step is the prioritising of the weights, based on 

their weights average values. Prioritising is carried out as follows: first, take the 

average weight of all the populations of each objective individually; second, rearrange 

the average weight in descending order; third, taking the higher weight average value 

as high priority, hence considered the most important (rank 1) objective, place all the 

weights vectors according to their importance, such as the second highest weight 

average second most important, and so on, until all the m ( m = 6 in this case) 

objectives arrangements are completed. The arrangement provides a condition for 

each design factor solution in the decision space to satisfy the criteria, and hence 

preserve itself, and eventually be selected as best. As stated above, the 1
st
 ranking 

weight is considered as a good solution for all objectives. Taking the 1
st
 ranking 

weight vector as reference, carry out filtering (search space reductions) of the 

objective space. The filtering is an iterative process, leading to the identification of the 

final design solution. Details of filtering steps are described as follows: 

6.4.4 Post GA Result Analysis, Search Space Reduction for  Final 

 Optimal Design Solution/s 

Introduction of the refining technique, for search space reduction in the objective 

space and the corresponding decision space, helps to locate the area of interest 

considered to be the most preferred design solution. The post GA result processing, 

(search space reduction) steps for identifying the final optimal design solution, are 

summarised as follows:  

 Run GA to identify optimal solutions for the intended problem.  

 Programmed in MATLAB, calculate the weight vector for the objective 

functions space results obtained by the GA.  

 Calculate the average weights for the population of results of each 

column/objectives in the space.  
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 Prioritise the objectives according to the their average weight, giving the 

highest priority for the highest average weight and assign rank 1 to it, 

indicating that it contains the most desired solutions, good for all objectives. In 

the same way, rank 2, 3..., to all the remaining objectives, respectively. 

 Rearrange the objective functions positions according to importance or rank in 

descending order. 

 Rearrange the most important (1
st
 ranked) objective population of solutions in 

descending order so that elitist weighted vectors are identified. The aim is to 

filter out the least weight values and preserve the top n number of higher 

weights vectors (as discussed in Section 6.4.3, the higher the weight gives the 

better or, as in the case of this case study minimised solution).  

 Taking the 1
st
 column or most important objectives as a reference, gradually 

filtering or reducing the search space so that a single best design solution, that 

is shared by all objectives can be found. The filtering is conducted by 

assigning a percentage (%). The reduction started from the original solution 

obtained by the GA (400 populations) to the least ranked objective (the 6
th

 

objective in this case). Next, starting from the 1
st
 ranking objectives applied 

the percentage reduction. The percentage is determined through experimental 

trial, and in this case, 30 % for 6 objectives problem has been considered. The 

percentage reduction will preserve 30 % of the top n number of the highest 

weight vectors of the rank 1 objective. For population of solution 400, the 30% 

reduction will give 30% X 400 = 120 population. This means that only top 120 

(higher weight vector) or better population of solution remains.  

 Taking the selected 30% of the 1
st
 ranking objectives as reference, proceeds to 

find 30 % of the corresponding good solutions from the 2
nd

 ranking objective. 

The same procedure continued to all objectives until the final best optimal 

design solution/s shared by all objectives is obtained.       

 Following the search space reduction in the objective space, and locating the 

final best optimal design solutions, as described above, the corresponding 

design factors in the decision space are identified. The percentage reduction is 

a step used to determine the best set of design parameters, giving the best 

optimal design solution for the work roll system thermal design problem. 
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Table 6.9 illustrates the percentage reduction procedures shown above. The graph 

shows the steps in the search space reduction and remaining good population of 

solutions, in the objective space.  

Table 6.9. Post GA percentage reduction, within the objective space for final design 

solution 

 

  

 

 

 

400 pop 

 
400 x 

30 % 

 
120x 

30 % 

 
36x 

30 % 

 
11x 

30% 

 
4x 

30% 

 
2x 

30% 

 

 

120 

 

36 

 

11 

 

4 

 

2 

 

1 

                  

The Figures (6.23-6.30) give graphical illustrations of the post GA results search 

space reductions steps provided in Table 6.9. Figure 6.23 presents the original good 

solution population from GA (400 population), and Figures (6.24-6.29) are the 

reduced size of solution at each step. In the Figures, the x-axis indicates the search 

space and the y-axis are the individual‟s weight. The step by step reduction aims to 

identify the best optimal design from the initial solution population obtained by GA, 

and ensure that the identified solution is also good for all objectives within the space.  

 

Figure 6.23.  Initial solution from GA (400 population)  
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The result in Figure 6.24 presents the reduced number, by 30% from the initial 400 

population of solutions given in Figure 6.23. As discussed in Section 6.4.4, the 

population of solutions found in Figure 6.24 are the top n numbers of, highest weight 

average within the space hence are the most important or most preferred solutions. 

However to search for the best optimal preferably single solution that is commonly 

shared by all objectives in the space, the same procedure and percentage is applied to 

other subsequent objectives in the space. The followings are the reduction steps and 

the final result obtained.  

 

Figure 6.24. The highest weight vector average solutions (121 populations) 

 

Figure 6.25.  The 2
nd

 highest weight vector average solutions (36 populations) 
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Figure 6.26.  The 3
rd

 highest weight vector average solutions (11 populations) 

 

Figure 6.27.  The 4
th
 highest weight vector average solutions (4 populations) 

 

Figure 6.28. The 5
th
 highest weight vector average solutions (2 populations) 

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12In
d

iv
id

u
a

l 
W

ei
g

h
t 

V
ec

to
r

Solution Population

3rd Highest Weight Vector Average  Objective

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5

In
d

iv
id

u
a
l 

W
ei

g
h

t 
V

ec
to

r

Solution Population

4th Highest Weight Vector Average Objective

0.0288

0.029

0.0292

0.0294

0.0296

0.0298

0.03

0.0302

0 0.5 1 1.5 2 2.5

In
d

iv
id

u
a

l 
W

ei
g

h
t 

V
ec

to
r

Solution Population

5th Highest Weight Vector Avarage Objective 



 

190 

 

 

Figure 6.29. The 6
th
 highest weight vector average solutions (1individual) 

Figure 6.30 and Table 6.10 present optimal solutions in the objective space and the 

corresponding best, optimal design variables and parameters in the decision space, 

corresponding to the result, shown in the Figure 6.29 for single pass, work roll system 

thermal analysis and optimisation problems, identified through the search space 

reduction procedures discussed above. The percentage search space reduction 

technique is filters out the search space and arrives at the final optimal best design 

solution. 

 

Figure 6.30. Single pass 6 objective problem solutions in the objective space 
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Table 6.10. Best optimum design variables and parameters in the design space 

Design input factors 

 

Optimised design 

parameters 

Roll stock contact HTC 5.09  (kW/m^2K) 

Stock temperature 1197  (
0
C) 

Contact length 12.5   (mm) 

Cooling HTC 40   (kW/m^2K) 

Roll speed 1.24  (rad/sec) 

Roll temperature 41.4    (
0
C) 

Delay time 21.8    (mm) 

6.4.5 Observations 

This section presents the observation made on the final result obtained in the 

optimisation and subsequent search space reduction for identifying the final best 

optimal design solution to the problem presented in the Figure 6.30 and Table 6.10. 

Referring to Figure 6.30, the result obtained from the optimisation shows that the 

surface temperature trend decreased steadily going to the centre of the roll as 

expected. The rate of change of temperature, at depth between 9mm and 15mm is 

slowing, implying that heat effect below the surface is minimal. At the same time, the 

stress trend, as expected, contradicts with temperature behaviour. The stress at the 

surface decreased steadily, and rate of change from 9mm towards the centre is 

slowing, indicating that the stress level (particularly tensile stress) is minimal. 

Another important piece of information observed from the result, is the total roll 

temperature trend i.e. the sum total of the surface temperature and initial (bulk) roll 

temperature values. The result is plausible - as shown in Figure 6.31 the total 

temperature trend is decreasing and the rate of change of temperature towards the 

centre of the roll is believable. The result is in line with what has been learned in the 

review of literature and knowledge elicitation from rolling expert. It has been learned 

in the knowledge elicitation exercise that for longer utilization of rolls, the 

temperature on the surface of the roll preferred to be in the range of 40 
0
C to 80 

0
C 

and expected to decrease at depth below the surface towards the centre of the roll.       
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Figure 6.31. Roll total temp. (Change in temp. + Bulk initial roll temp. in [
0
C]) 

Solutions obtained, following the above proceedings demonstrate that the proposed 

methodology works for solving the intended multiple objective, single pass 

optimisation problems with uncertainty in the design space and fitness function. The 

results obtained reflect the fundamentals of the rolling process roll thermal 

characteristics observed in the real life practise; for example, the temperature 

condition in rolls varies from surface to depth, and the variation ought to be 

decreasing from the surface towards the centre of the roll. In this regard, the analysis 

of the results presented above, confirms that the optimal solutions obtained, from the 

proposed algorithm and search space reduction technique, behave as expected. This 

confirms that the solution search strategy is able to find good optimal solution for 

quantitative, multi-objective problem with uncertainty. The result further validated, 

shown in Chapter 8, with experts from the sponsoring company and academic from 

Cranfield University. The results are presented to the experts, supported by 

questionnaires asking to verify the result findings based on their real life experience.  

6.5  Chapter Summary  

The chapter study the optimisation problem of a real-life process concerning the 

design of a single-pass, multi-objective work roll system problem with uncertainty 

and constraints. The problem consists in defining a set of parameters able to guarantee 

the efficiency of the process in term of time, cost, and final quality. The overall 

process is made of single pass, and it is affected by a set of real factors characterised 

by uncertainty and constraints. To face the problem the chapter developed and 

introduce a novel thermal analysis and GA based optimisation framework so that the 
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Total-su-temp 75.4 60.3 51.8

0

10

20

30

40

50

60

70

80

Te
m

p
e

ra
tu

re
 in

 (
0 C

)

Final Roll Total Surface Temp.



 

193 

 

unique challenges identified in relation to the problem can be addressed. Those 

challenges such as multiple objective, uncertainty in the design variables, and 

uncertainty in the models developed to represent the real life process and effect of real 

life process constraints. The chapter particularly contribute to the thesis by developing 

an optimisation framework to address those challenges. Particular achievements of the 

chapter are summarised as follows: 

This chapter has demonstrated the successful application of a proposed optimisation 

framework for handling the work roll design problems with uncertainty and 

constraints using thermal analysis and GA. Two optimisation frameworks have been 

developed. The first framework is two objective optimisation frameworks, designed to 

verify the ability of the mathematical model to represent the intended problems, 

search for solution for work roll surface optimisation problem with uncertainty using 

thermal analysis and GA. And also gives an assurance, in a simplified manner that 

consideration of constraint criticality to the design solution can be dealt with using 

GA based optimisation technique. The second framework is an optimisation technique 

for searching solutions to the design problem, regardless of the number of objectives 

and problem dimension. A single pass work roll system thermal design problems 

consisting of six-objective minimisation (fitness function) problems, representing the 

objectives, change in temperature and radial stress at roll surface, as well as at 9 mm 

and 15 mm depth below the roll surface considered in the case study. The chapter also 

develop and applied a post GA result analysis technique iteratively reduce the search 

space to identify the best optimal design solution from the population of solution 

found by the GA. The procedure identifying the final optimum design solution and the 

result obtained are given in the chapter. Summary of The chapter achievements are 

the following: 

 Developed a noble, thermal analysis and GA based solution strategy for 

handling multi-objective, quantitative, constraint and uncertainty information 

based optimisation framework for work roll system  design problem. 

 Presented experimental results obtained for the work roll system thermal 

analysis and optimisation problems, using the proposed framework. 

 Developed a methodology for dealing with criticality of process constraint to 

the design solution obtained, hence engineers be able to choose a design 

depending on to its criticality in relation to requirements.  
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 Developed a strategy for post GA results search space reduction and analysis 

for many objective high dimensional optimisation problems. The post GA 

processing (search space reduction) technique is used for identifying the final 

best optimal design solution for the problem, the obtained solution was 

analysed and graphical illustrations have been presented.  

While this chapter has satisfied key research objectives for the single pass work roll 

system design optimisation problems in presence of uncertainty and constraints, the 

next chapter presents the optimisation approaches for multi-pass work roll system 

design problems in presence of uncertainty. 
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7 Multi-Pass Model Development and 

Optimisation 

 

Chapter 6 presents the optimsation of the single pass, carried out for searching 

solution for work roll system design problem; in presence of uncertainty and 

constraints using the proposed novel thermal analysis and GA based optimsation 

technique. The case study in the chapter particularly helps to understand the effect of 

heat at the surface of the roll and at depth below the surface. It also give insight to 

how presence of uncertainty in the fitness function and design variables can influence 

thermal behaviour of rolls. The case study highlights the sensitivity of designs to 

constraints and provides information about criticality of constraints and choice of 

design depending on requirements in presence of constraints. In real life however 

work roll system in hot rolling is a multi-stage process, involving several passes. 

Hence a real life work roll system design is a multi-pass case requires a multi-pass 

process optimsation. This chapter designed to address the multi-pass work roll system 

design problems and introduce a solution search strategy to deal with the problem.  

The multi-pass rolling is an ordered, multi-stage process, involving several stands 

arrangement. The arrangement introduced in Figure 7.1 allows the product to pass 

from one stand to the next sequentially, where the output of one pass is an input in to 

the next pass. Therefore to seek a realistic design solution that address the real life 

work roll system design and optimisation problem in the rolling process this process 

behaviour has to be taken in to account. Due to these characteristics however and the 

fact that multi-pass rolling operations sequentially interlink, solving multi-pass 

optimisation problems will increase the complexity and size of the problem, i.e. 

number of design factors, number of objectives involved in the process. As the 

problem size increases, so does the level of uncertainty - since the rolling process is a 

sequential process where product, tool and process characteristics in one pass are 

directly associated to the pass before. For these reasons, therefore, the multi-pass 

study and design optimisation discussed in this chapter, has been developed. As stated 

above, multi-pass rolling involves a large number of variables and uncertainty 

associated to them; hence, finding good design solutions within the multi-pass 

environment is a very complex problem. Although manual based design has been tried 
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and been successful in optimising work roll thermal analysis and optimisation 

problems, it is mainly with experts who have prior knowledge about the design. 

However, the manual approach can be very time consuming and tedious. This is 

mainly as a result of lack of knowledge about the process behaviour and due to the 

relationship among individual passes, leading to problem inheritance such as design 

factors relationship and uncertainty. This complexity means that the manual and 

classical way is not a recommended approach to deal with multi-pass problems. To 

address these problem complexities, a need for an intelligent, flexible and adaptive 

approach, such as evolutionary based algorithm optimisation solution search is 

essential. Literature review shows that there are a number of algorithm based 

techniques available to deal with multi-objective optimisation problems. For example 

in Oduguwa (2003) work although the technique was developed and  applied in the 

roll pass design and optimisation problems but not include the work system design, 

the principles give a flavour of the complexity of the nature of multi-pass work roll 

system design problems. It also gives prior knowledge about the problem faced in the 

solution search process. There are various approaches reported in the literature review 

for searching for solutions of problems in the multi-pass rolling process, either aiming 

to provide optimal design solutions for individual passes or provide design solution 

for the system as a whole, by aggregating, sum or forming a total score for pass 

involved (Oduguwa, 2003). However, not much is reported in the literature, or learnt 

in the knowledge elicitation exercise from the rolling experts in the sponsoring 

company, to suggest that GA based techniques have been developed and used for 

multi-pass multi-objective work roll system thermal analysis and optimisation 

problems with uncertainty. Presence of uncertainty in the problem could be in the 

design variables and/or the mathematical model developed to represent the real life 

process. Due to the significant lack of research in the many objective multi-pass 

thermal design and optimisation environment, particularly addressing presence of 

uncertainty both in the design variables and fitness function, this chapter aims to 

develop a thermal analysis and GA based optimisation frameworks to fill the research 

gap. Since the real life process of the multi-pass rolling is a complex and uncertain 

activity, use of a mathematical model is often required as the empirical study is very 

difficult. Therefore the chapter also develop a methodology to generate multi-pass 

mathematical models from FEA responses that consider inter-pass relationship. The 

developed work roll system thermal analysis and optimisation problem models are 
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used as fitness functions in the optimisation for searching optimal design solution to 

the problem. The chapter expected contribution is defining a set of parameters able to 

guarantee the efficiency of the work roll system in the rolling process in term of time, 

cost, and final quality. The overall process is made of several passes, and it is affected 

by a set of uncertain real factors. The thermal analysis and the GA based optimisation 

framework and the mathematical model are designed to overcome these problems. 

The chapter consists of two main parts. These are the strategy for multi-pass work roll 

system thermal design process modelling and the development of the optimisation 

framework. The first part investigates the multi-pass rolling process, factors that have 

impact in the multi-pass work rolls thermal characteristics, and develop the 

quantitative model. It also addresses design factors relationships and complexities 

among passes. The second part presents the optimisation framework development, the 

optimisation experiment and post optimisation solution search analysis strategy for 

identifying the final best optimal design. The chapter is organised as follows: Section 

7.1 presents the multi-pass quantitative model development and the background 

review used for the modelling. Section 7.2 presents the optimisation solution search 

strategy for multi-pass work roll thermal analysis and design problem. Section 7.3 

concludes the chapter by summarising the key points.          

7.1 Quantitative Modelling for Multi-Pass Work Roll 

System Design Optimisation Problem 

The multi-pass quantitative model is developed to represent the complex behaviour of 

a real life multi-pass rolling process in a simplified and controllable manner. The 

developed alternative/surrogate model represents the underlying characteristics of the 

multi-pass roll thermal design and uncertainty issues. Unlike the single pass, the 

multi-pass problem design and optimisation needs to address inherited phenomena, 

such as uncertainty from one pass to the next. There are also rolling system design 

factor dependencies among passes, and their dynamic behaviour from one pass to the 

next, that needs to be addressed in the design. The dynamic nature of the process 

factors such as the inter-pass distance and the delay time between passes, are the 

fundamental rolling behaviours that are used to interlink between passes in the 

modelling of the multi-pass cases. The inter-pass distance, delay time and contact 

time have a direct effect on the temperature conditions of rolls and stocks. For 

example, the longer inter-passes distance and delay give time for the roll and stock to 
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cool naturally, and due to the application of coolant, as a consequence, the roll 

thermal condition will change. Roll speed is another main roll thermal behaviour 

determining factor. It was learnt in the literature that, under normal circumstances, 

speed of roll increases from one pass to the next, while stock temperature decreases. 

Roll speed has a direct operational relationship with other important design factors, 

such as roll stock contact time, heat transfer coefficient, delay time, as well as contact 

length. Recognising these important operational relationships among factors in sub 

passes and all passes as a system, is vital to address the multi-pass work roll thermal 

analysis and optimisation problems. Figure 7.1 shows stock reduction during rolling, 

delay time and inter pass distance.  

Figure 7.1. Multi-pass rolling arrangements involving three passes showing inter pass 

distance and stock reduction after roll stock contact   

The quantitative model developed for multi-pass is required to reflect these facts for 

effectively representing the real life process behaviour. The framework for model 

development, for the multi-pass problem is fundamentally dependant on two main 

process features. These are the inter-dependency between stages and the search space 

dimensionality. The features are briefly described as follows:  

 Inter-stage dependency between passes is the main feature discovered that 

plays a crucial role in developing the multi-pass model. The link between 

stages establishes communication between stages that can be useful to ensure 
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the inter-pass information is taken in to account. This link can be useful in 

ensuring the search at the current stage (i) considers information of the 

previous stage (i-1).  

 High dimensionality is inevitable in the optimisation of multi-pass. The 

number of variables present in the design increases significantly with the 

increase in number of passes. This has a significant impact on the feasibility of 

solutions obtainable by process optimisation algorithms. The dimensionality 

has also a greater impact on computational time. Other important 

characteristics of multi pass rolling are the number of objectives involved. Just 

like the design variables dimensionality, as the number of passes increased, so 

do the number of objectives and uncertainty associated to them. Therefore, the 

optimisation framework development is required to be efficient in addressing 

these issues. This implies the need for finding algorithms and analysis of result 

from the algorithm to suit the specific features of the problems. It also requires 

knowing how to process the search result obtained by the GA. Since the 

conflicting objectives are many in numbers (high dimensional) identifying the 

final optimal design solution may require additional steps to reduce the search 

space and filter out the final optimal design solution/s.  

7.1.1 Multi-Pass Work Roll System and Modelling Characteristics 

The modelling of multi-pass problem is the continuation of the procedure followed for 

single pass approximate modelling, discussed in Chapter 5. The original FEA model 

shown in Figure 5.1 is the basis for developing the multi-pass model. The rolling 

process factor study and the expert knowledge elicitation exercise, carried out in the 

sponsoring company, presented in Chapter 4, and in Appendix D are served as 

information source for the multi-pass modelling and optimisation problems study. The 

multi-pass case is unique in itself, due to the fact that the modelling and optimisation 

process is dependent on the inter-pass factor relationships and uncertainty associated 

to them. As discussed in Section 7.1, the process factors involved between passes are 

interlinked, i.e. the output from one pass is the input to the next. This implies that the 

fundamental processing input design factors, in each pass, remains the same. The only 

exception is the differences in the design factors characteristics and parameters, 

depending on the pass position - for example, roughing pass, intermediate or finishing 

pass. These important process factors behaviours are manipulated and used as the 
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main drivers for building the multi-pass model. The modelling procedures and the 

mathematical model developed based on FE response data taken from the FEA 

problem model supplied by the sponsoring company. The response data taken at the 

roll surface is used to develop the first pass and all the other subsequent pass models 

(a total of 5 passes) developed by taking in to account the inter-pass factors 

relationships. The model development based on inter-pass factors relationship is 

discussed in the following.  

During the review of literature and knowledge elicitation from expert in the 

sponsoring company, it was learnt that although some design factors in the design 

space remain constant, there are also factors that are changing from one pass to the 

next. Making use of the factors‟ changing behaviour from one pass to the next makes 

the existence of interdependency between passes. For example, the speed of rolls 

increases along the path from one pass to the next. The increase in roll speed is 

directly related to decrease in size of stocks – thus, the roll is able to rotate faster. At 

the same time, stock temperature decreases along the line from pass to pass. The stock 

temperature starts losing heat immediately after coming out of the furnace. However, 

the higher heat losses start after the stock comes in contact with the first pass and the 

follow up cooling process. It is understood that in practise, based on expert knowledge 

elicitation in the  sponsoring company, that the stock temperature decreases by an 

average of 75
0
c after the first contact with the roll, and the roll speed increases by an 

average of 1.65rpm from pass to the next. One of the characteristics of multi-pass 

design is the presence of delay or stock travel time between passes. Under normal 

circumstances, the delay time is the time taken by the stock to cover the distance 

between consecutive passes, which is normally about 1.5m. However, depending on 

the condition of the process, as well as the nature of design factors, such as speed at 

section of the process (roughing, intermediate and finishing), the delay time is 

expected to vary. It is also observed that there are occasions in which delay time 

varies due to uncertainty or unforeseen circumstances in the process. The uncertainly 

that causes the delay time variations (small or too long delay time) will have an 

impact on work rolls thermal behaviour (the details are discussed in the literature 

review). The research makes use of these important characteristics for the 

mathematical modelling and optimisation of the multi-pass work roll thermal analysis 

and optimisation problems. The parameters are determined through real life process 

study and it reflects the functional relationship of the process as presented in the 
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Figure 7.1. These factors although they are pass specific in there characteristics they 

are also interdependent to each other, hence used as a link between passes during 

Meta modelling. Based on real life study the main factors identified that uniquely 

interlink one pass to the next are stock temperature, roll speed and delay time. The 

factors parameter variation from one pass to the next is presented in Table 7.1. The 

other design factors identified in the factors study made in Chapter 5, relevant to the 

thermal behaviour of rolls and whose parameter range given in Table 5.1, called the 

„free variables‟ are generic to all passes, hence used in all passes during multi-pass 

process modelling.  

Table 7.1. Inter-pass factor relationships for modelling multi-pass model 

Stock temperature decrease by up to 75 
0
C from one pass to the next 

Roll speed increase by average 1.65m/s from one pass to the next 

Delay time calculated depending on pass velocity and 1.5m inter-passes distance 

(Delay time = distance between passes / roll velocity (RPM) at specified pass) 

Modelling for a multi-pass problem take the 7 design input factors and parameters 

discussed in Section 5.2.2, Table 5.1 in Chapter 5. The interdependency nature of the 

three factors (i.e. rolls speed, delay time and roll temperature) and the functional 

relationship along the passes (parameters) are calculated and presented in Table 7.2, 

7.3 and 7.4. The functional relationships are calculated based on information gathered 

in the literature review in Chapter 2 and knowledge elicited from rolling experts in the 

research sponsoring company, presented in Chapter 4.  

Roll Speed 

Speed is increased by average of 1.65m/s from one pass to the next 

Table 7.2. Inter-pass speed in multi-pass rolling 

          0.14 m / s    ( pass1) 

         0.14 m/s x 1.65 = 0.23m/s     (pass 2) 

         0.23 m/s x 1.65 = 0.38 m/s    (pass 3) 

         0.38 m/s x 1.65 = 0.63 m/s    (pass 4) 

         0.63 m/s x 1.65 = 1.04 m/s    (pass 5) 

The initial roll speed 0.14m/s is the speed considered in pass 1 determined through 

real life process scenarios and expert opinion. All other pass speeds are calculated, 
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taking in to account the functional relationship among passes and the result is shown 

in the Table, Table 7.2. The same procedure followed for other factors presented in 

Table 7.3 and 7.4.   

Delay Time  

Time = inter-pass distance (IPD) / roll speed (Rotational speed) 

Table 7.3. Inter-pass delay time under normal circumstances 

Total  delay Time 

          From furnace to 1
st
 pass ~ 100 s                75 s 

         1.5m / 0.14m/s = 10.75 s    (pass1 – pass 2)                85.75 s 

         1.5m / 0.23m/s = 6.5s        (pass 2 – pass 3)                92.25 s 

         1.5m/ 0.38m/s = 3.95s       (pass 3 – pass 4)                96.20. s 

         1.5m/ 0.63 m/s = 2.38s      (pass 4 – pass 5)                99.58 s 

The total delay time at each pass is the summation of time from furnace and the t ime 

the stock take to reach to the current pass from the pass before. The maximum delay 

time is at pass 5. The delay time at pass 5 is the sum of total delay time of all 4 passes 

before, and the time for stock to travel from furnace to first pass. 

Stock Temperature   

Temperature decreased by average of 75
0
c from one pass to the next 

Table 7.4. Inter-pass stock temperature in multi-pass rolling 

         1250
0
c    ( pass1) 

         1250 
0
c – 75  

0
c = 1175 

0
c  (pass 2) 

         1175 
0
c – 75 

0
c = 1100 

0
c   (pass 3) 

         1100 
0
c – 75 

0
c = 1125 

0
c   (pass 4) 

         1125 
0
c – 75 

0
c = 950 

0
c     (pass 5) 

Based on functional relationship among passes as shown above the three pass- 

independent variables are calculated and there parameters range are determined.  The 

number of passes considered in the multi-pass case is 5, where each pass consists of 2 

objectives and 7 input design factors per pass. Hence, the total number of variables (3 

pass dependent and 4 free variables), (7 X 5) = 35 and objectives are (2 x5) = 10.The 
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Independent design factors parameter set used for the modelling and the dependent 

factors (objectives) for multi-pass problem are given in Table 7.5 and Table 7.6, 

respectively.  

Table 7.5. Design variables of multi-pass problems (5 passes) 

 x1 x2 x3 x4 x5 x6 x7 

Factors 

 

Roll/stock 

contact(HTC) 

( kW/m^2K) 

Stock 

temperature 

(0 C) 

Contact 

length 

(m) 

(HTC-

Cooling) 

( kW/m^2K) 

Roll 

speed 

( m /s) 

Roll 

Temperature 

 (0C) 

Delay 

time (s) 

Limits Pass 1 

Lower  5 1230 10 15 0.14 40 65 

upper 15 1250 30 50 0.2 80 75 

 Pass 2 

Lower  5 1155 10 15 0.17 40 75.75 

upper 15 1195 30 50 0.29 80 85..75 

 Pass 3 

Lower  5 1080 10 15 0.32 40 82.25. 

upper 15 1120 30 50 0.44 80 92.25. 

 Pass 4 

Lower  5 1005 10 15 0.57 40 86.20 

upper 15 1045 30 50 0.69 80 96.20. 

 Pass 5 

Lower  5 950 10 15 0.98 40 88.58 

upper 15 970 30 50 1.1 80 98.58 

Table 7.6 objective for multi-pass problems 

No. of Passes Pass1  Pass 2 Pass 3 Pass 4 Pass 5 

No. of  Objectives  

( 2 x 5) = 10 

2 2 2 2 2 

 

Objectives 

Change in Temperature (∆T in 
0
C), at the surface of the roll  

Radial Stress (S11 in MPa)) at the surface of the roll 

The number of variables present in the design problem increases significantly with the 

increase in the number of passes. As the number of passes increases, so does the size 

of the search space. The aim of this chapter is to develop a quantitative model 

representing thermal characteristics of multi-pass rolling process design, and to 

develop an optimisation framework for searching optimum design solution to the 
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multi-pass problem with uncertainty, regardless the size of the search space. 

Uncertainties in the problem are both in the design space and/or in the fitness 

functions. The following section discusses the quantitative modelling for the Multi-

pass problem. 

7.1.2 Multi-Pass Regression Model  

The modelling of the multi-pass is based on a follow-up of procedures shown in 

Chapter 5, for single pass design and optimisation. The work here focuses on 

optimising change in temperature and radial stress on the surface of the roll in 5 pass 

rolling process; the response models for the passes are developed from response data 

taken from FEA process model supplied by the sponsoring company. However, it has 

been learnt from discussion with experts in the industry, that it is a common practise 

that the FEA simulation response data used to develop the single pass mathematical 

model can also be used to develop other subsequent models in multi-pass cases, 

provided the design input design factors of the passes are known and the relationship 

between passes are known. Depending on the size of the range of factors parameters 

in the initial single pass model, the subsequent n number of new models can be 

developed by taking in to account the inter-pass factors relationships discussed in 

Section 7.1.1. The previous section discussed the inter-pass factor relationship and the 

factors parameter in each pass. Based on the discussion, the independent factors and 

factors parameter ranges at each pass, shown in Table 7.5, are identified. Taking the 

dependent factors, change in temperature and radial stress at the surface of the roll as 

objectives, the mathematical models shown below are developed. Based on the FE 

simulation run procedure and the steps followed for taking response data from ODB 

after simulation, presented in Section 5.3.6 and Section 5.3.7 in Chapter 5, the 

response (dependent variables) values shown in Table 7.7 and objectives data values 

used for generating mathematical models shown in Table 7.8 are recorded. Using the 

objective values obtained the quantitative models, a total of 10 models, were 

generated by fitting a second degree polynomial consisting of a main effect, quadratic 

effect and interaction effect. The input data matrix specified for each passes for 

generating the models are given in Appendix H. The modelling was carried out using 

STATISTICA, a tool selected due to its applicability and availability. It is also widely 

used by the sponsoring company. The following present the response data from 

simulations and the 5 pass regression models.  
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Table 7.7. Respons datas values from FEA simulation (Ts) = tempreature at roll 

surface and (S11) = Radial stress at roll surface 

Responses from FEA  

Ts  (0C) S11s  (MPa) 

49.9 47.8 

86.6 45.6 

114.9 75.9 

43.4 13.6 

92.9 -78.5 

158.3 -127. 

60 7.0 

101.1 -124. 

187.2 -250. 

85.5 -1.5 

54.5 46.5 

42.4 54.1 

137.6 -159. 

105.8 -227. 

90.7 -74.2 

113.3 -145.8 

94.9 124.1 

65.5 97.0 

93 3.6 

53 70.7 

48 65.7 

60.1 37.1 

106 177.1 

66.1 127.1 

239.1 -251. 

106 -10.3 

86.2 0.43 
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Table 7.8. Response data values used for generating the multi-pass models, (∆Ts) = 

Change in temperature at roll surface and (S11) = Radial stress at roll surface;  

(∆Ts = T1-T0) 

No. Of 

runs 

Calculated 

Depth at roll 

surface. (mm) 

At surface 

∆Ts  (0C) S11 (MPa) 

1 5.7 9.9 47.8 

2 8.1 46.6 45.7 

3 9.9 74.9 75.9 

4 2.58 6.4 13.6 

5 3.6 52.9 -78.5 

6 4.4 118. -127 

7 1.9 1.8 7 

8 2.7 61.2 -124.7 

9 3.3 147 -250.7 

10 3.6 31.5 -1.5 

11 4.4 -5.5 46.5 

12 2.58 -17.6 54.1 

13 2.7 191 -159 

14 3.3 159. -427.6 

15 1.9 30.2 -74.2 

16 8.1 53.3 145.8 

17 9.9 34.9 124.1 

18 5.7 5.5 96. 

19 3.3 13 3.6 

20 1.9 -27 70.7 

21 2.7 -32 65.7 

22 9.9 -11.6 37.1 

23 5.7 26 7.1 

24 8.1 -13.9 127.1 

25 4.4 157 -251.6 

26 2.58 26 -10.3 

27 3.6 6.2 0.4 

x1,...,x7 in the model shown in Equations (7.1 – 7.10) are symbols used to represent 

the design variables, given in Table 7.5. (The bracts [ ] in the models are used to 

simplify the symbols, linear & quadratic, representing the variables).    

Change in temperature at roll surface for passes 1 to 5  

Pass-1  (-3078.7483 + 3.92666667 * x[1] + 0.046222222 * x[1]^2 + 2.39944444 * 

x[2] + 0.00000000 * x[2]^2 + 4.90000000 * x[3] - 0.02511111 * x[3]^2 - 

7.0603175 * x[4] + 0.085079365 * x[4]^2 + 433.703704 * x[5] + 0.00000000 

* x[5]^2 + 3.99055556 * x[6] - 0.04194444 * x[6]^2 - 0.80194444 * x[7] + 

0.004701389 * x[7]^2).               Equation 7.1 

Pass-2  (-74017.666 + 3.92666667 * x[8] + 0.046222222 * x[8]^2 + 124.916389 * 

x[9]- 0.05286111 * x[9]^2 + 4.90000000 * x[10] - 0.02511111 * x[10]^2 - 

9.3007256 * x[11] + 0.112235828 * x[11]^2 + 2560.67901 * x[12] - 

4322.5309 * x[12]^2 + 1.07972222 * x[13] - 0.02115278 * x[13]^2 - 

0.90302431 * x[14] + 0.004701389 * x[14]^2),                              Equation 7.2 
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Pass-3 (-90392.107 + 3.92666667 * x[15] + 0.046222222 * x[15]^2 + 163.144722 * 

x[16] - 0.07365278 * x[16]^2 + 4.90000000 * x[17] - 0.02511111 * x[17]^2 - 

7.0603175 * x[18] + 0.085079365 * x[18]^2 + 68.7345679 * x[19] + 

297.839506 * x[19]^2 + 3.99055556 * x[20] - 0.04194444 * x[20]^2 - 

0.95991111 * x[21] + 0.004701389 * x[21]^2)                               Equation 7.3 

Pass-4 (-78565.254 + 3.92666667 * x[22] + 0.046222222 * x[22]^2 + 152.096806 * 

x[23] - 0.07365278 * x[23]^2 + 4.90000000 * x[24] - 0.02511111 * x[24]^2 - 

7.0603175 * x[25] + 0.085079365 * x[25]^2 - 80.185185 * x[26] + 

297.839506 * x[26]^2 + 3.99055556 * x[27] - 0.04194444 * x[27]^2 - 

0.99705208 * x[28] + 0.004701389 * x[28]^2)                               Equation 7.4 

Pass-5  (-868.02142 + 3.92666667 * x[29] + 0.046222222 * x[29]^2 + 0.926388889 * 

x[30] + 0.00000000 * x[30]^2 + 4.90000000 * x[31] - 0.02511111 * x[31]^2 - 

7.0603175 * x[32] + 0.085079365 * x[32]^2 - 324.41358 * x[33] + 

297.839506 * x[33]^2 + 3.99055556 * x[34] - 0.0419333 * x[34]^2 - 

1.0194307 * x[35] + 0.004701389 * x[35]^2)                                 Equation 7.5 

Radial Stress (S11 models) at roll surface pass 1 to 5 = 

Pass-1  (5551.59887 - 9.7710000 * x[1] + 0.419755556 * x[1]^2 -4.1428889 * x[2] + 

0.00000000 * x[2]^2 + 1.91477778 * x[3] - 0.18294444 * x[3]^2 + 

17.2142766 * x[4] - 0.21967166 * x[4]^2 - 2961.7685 * x[5] + 0.00000000 * 

x[5]^2 - 3.3344167 * x[6] + 0.044243056 * x[6]^2 - 1.6252222 * x[7] + 

0.013371181 * x[7]^2)                                                                     Equation 7.6 

Pass-2 (-69381.097 - 9.7710000 * x[8] + 0.419755556 * x[8]^2 + 120.479931 * x[9] 

- 0.05048750 * x[9]^2 + 1.91477778 * x[10] - 0.18294444 * x[10]^2 + 

37.1468753 * x[11] - 0.46127891 * x[11]^2 - 28760.889 * x[12] + 

53404.1667 * x[12]^2 + 22.5628611 * x[13] - 0.14073750 * x[13]^2 - 

1.9127026 * x[14] + 0.013371181 * x[14]^2)                                 Equation 7.7 

Pass-3 (167054.217 - 9.7710000 * x[15] + 0.419755556 * x[15]^2 - 297.75003 * 

x[16] + 0.134493056 * x[16]^2 + 1.91477778 * x[17] - 0.18294444 * x[17]^2 

+ 17.2142766 * x[18] - 0.21967166 * x[18]^2 - 11074.571 * x[19] + 

12297.3765 * x[19]^2 - 3.3344167 * x[20] + 0.044243056 * x[20]^2 - 

2.0744939 * x[21] + 0.013371181 * x[21]^2)                                 Equation 7.8 

 

Pass-4 (149025.120 - 9.7710000 * x[22] + 0.419755556 * x[22]^2 - 277.57607 * 

x[23] + 0.134493056 * x[23]^2 + 1.91477778 * x[24] - 0.18294444 * x[24]^2 

+ 17.2142766 * x[25] - 0.21967166 * x[25]^2 - 17223.259 * x[26] + 

12297.3765 * x[26]^2 - 3.3344167 * x[27] + 0.044243056 * x[27]^2 - 

2.1801262 * x[28] + 0.013371181 * x[28]^2)                                 Equation 7.9 

Pass-5 (16371.3330 - 9.7710000 * x[29] + 0.419755556 * x[29]^2 - 1.4530278 * 

x[30] + 0.00000000 * x[30]^2 + 1.91477778 * x[31] - 0.18294444 * x[31]^2 + 

17.2142766 * x[32] - 0.21967166 * x[32]^2 - 27307.108 * x[33] + 

12297.3765 * x[33]^2 - 3.3344167 * x[34] + 0.044243056 * x[34]^2 - 

2.2437730 * x[35] + 0.013371181 * x[35]^2)                               Equation 7.10 
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7.1.3 Multi-Pass Model Validation 

As noted in the previous sections, the mathematical representation of the multi-pass 

work roll thermal analysis and optimisation presented in this chapter is developed 

using several sources from the review of literature presented in chapter 2. Information 

from expert knowledge elicitation discussed in chapter 4, as well as manufacturing 

shop floor observations made during the visits to the sponsoring company has also 

contributed significantly. However, some of the information gathered, particularly 

during the knowledge elicitation exercise, is subjective in nature. Therefore, in order 

to make sure that the knowledge gathered is well understood and applied in the model 

building and optimisation as expected, it is vital to carry out a verification exercise. 

The verification is made based on the post optimisation results, studying the trends of 

the obtained final design factors along the passes of the multi-pass rolling 

arrangements. This section presents the research strategy followed for validating the 

model and the optimisation results. The validation has two parts. These are:  

 The statistical post regression analysis for model validation and   

 Validation based on experts‟ opinion, of the optimisation results and design 

factors result trends. Result factor trends are used to verify the assumption 

made of factors in the modelling and factors trends relevance in relation to real 

life rolling process factors behaviour. The validation based on expert opinion 

is presented in Chapter 8, the research validation chapter.   

Statistical Validation 

The post regression model characteristics of the 5 passes have been analysed to see if 

the model is statistically acceptable based on statistical model acceptance criteria 

reviewed in the literature. The criteria of the performance of the multi-pass models are 

based on three measures: Pareto chart of p-values for coefficient, R
2
 and R. R

2 
& R 

are measures of the amount of variation experienced by the model. R
2
 equals 1 

indicates a perfect fit. The higher R
2
 implies the lower variation between observed 

and predicted values, and therefore, a better model. The corresponding R
2
 and R for 

each model are given in Table 7.7. During model generation, a relatively high value of 

R
2
 & R has been recorded. It is, therefore, likely that these models would give good 

predictions when used in the optimisation. Other important model summaries, such as 

Pareto chart of p-values for coefficients, are used. The p-values for coefficient are 
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used to determine the confidence of those factors‟ relevancies to the model. A p-value 

less than 0.05 is considered acceptable. P-values are also indicating that either the 

factor relationship with the model is linear or quadratic.  

Table 7.9. Multi-pass models statistical validation  

Multi-pass regression R, R
2 
& p values 

 R R
2
 P-values 

 

Pass-1 Temperature  0.927754  0.860728  0.000422 

 Stress 0.967115 0.869330 0.009010 

Pass-2 Temperature  0.937748 0.879371 0.001485 

 Stress 0.895968 0.802758 0.018153 

Pass-3 Temperature  0.939948 0.880071 0.002485 

 Stress 0.899968 0.822758 0.019153 

Pass-4 Temperature 0.932448  0.882390 0.001995 

 Stress 0.895968 0.802758 0.018153 

Pass-5 Temperature 0.869986 0.806875 0.025060 

 Stress 0.864313 0.809851 0.012353 

 

The post regression validation data shown in Table 7.9 indicates that the models are 

statistically within the recommended acceptance criteria. For reasons explained in 

Chapter 4, the validation criteria are considered best to describe the model to 

represent the real life process. The R and R
2 

values are relatively high (above 80) and 

the p-values are within the recommended range, implying that the models are 

statistically acceptable to represent the intended problem. However, the regression is 

only modelled with the given data – therefore, the generality and consistency of the 

model needs to be checked. Hence the validation based on expert opinion has been 

proposed.  

The Need for Expert Opinion 

Although multi-pass mathematical models offer a fast simulation alternative for real 

life process, since the models are based on fundamental rolling theories and these 

theories have been originally formulated with many assumptions, such as inter pass 

factor parameters relationships, that influence the quality of the simulated behaviour, 

the models may lack completeness On the other hand, such models offer several 

benefits. They are capable of predicting system behaviour. They can be used to gain 

an insight into the structure of the problem. Since the model building process focuses 

on interrelationships of design variables rather than individual variables, the model 

building process allows the increased visibility of how the design variables influence 
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each other. This helps to improve an understanding of the underlying multi-pass 

behaviour (Tiwari et al., 2008). However, the regression is only modelled with the 

given data and assumptions made for the modelling; hence, the accuracy and 

consistency of the assumption need to be verified and validated. To fulfil that, the 

chapter proposes a verification strategy involving rolling experts from the sponsoring 

company who also participated in the initial knowledge elicitation exercise. A 

questionnaire was developed based on results of the optimisation experiment made 

using the developed multi-pass models. The verification was carried out to determine 

if the assumptions made previously, of design input factor inter-pass relationship and 

factor trends along passes in real life, is reflected in the optimisation experiment 

results found using the developed models, hence, the model is representing the 

intended problem. Details of the optimisation result validation and verification of 

assumptions made during the modelling of the multi-pass continuous rolling, work 

roll system problem is discussed in Chapter 8.   

7.2 Optimisation Solution Search Strategy for Multi-Pass 

Work Roll Thermal Analysis and Design Problem  

This section proposes the solution search strategy for the multi-pass work roll thermal 

analysis and optimisation problem with uncertainty. The main solution strategy 

adopted is GA. The algorithm‟s coding and optimisation strategy of the multi-pass 

problems is similar to the single pass, 6 objectives optimisation, discussed in Section 

6.4, Chapter 6. This section gives only the description of the quantitative evaluation 

and the coding scheme adopted for the multi-pass problem and other features already 

discussed in Sections 6.4, are omitted to avoid repetition. As discussed in Section 

7.1.1, the multi-pass problem has 10 objectives and 35 design variables, as well as 

uncertainty associated to them. The optimisation used the design factors parameter 

ranges presented in Table 7.5 and the models given in Section 7.1.2. Equation 7.2, 

real value vector gives a formal definition of the multi-objective optimisation problem 

that aims to minimise the change in temperature at roll surface and minimise the 

radial stress at the surface, which is increased due to the application of cooling to 

reduced temperature. Both objectives are assumed conflicting in nature, since the 

decrease in temperature on rolls increases the radial tensile stress, and vice versa. As 

stated in Section 6.4, Chapter 6, the optimisation of a high dimensional, many 



 

211 

 

objective problem in R environment consists of two parts. These are the solution 

search using GA, and the post GA search space reduction for identifying the final best 

optimal solution/s. The first part, searching for a solution using GA, is discussed in 

the next section. The Pseudo code for searching for the design solution for the multi-

pass problem is presented in Figure 7.2 and the programme code for the optimisation 

is given in Appendix I. 

Pseudo-code for the quantitative and the uncertainty in the design variables and 

fitness function evaluation for many objective, multi-pass problems 

Step 1: Initialise population pool at t = 0. For every member of the population i, generate random 

value xj in its range as well as ranges of uncertainty. This random value aids the exploration of the 

entire search space. 

1.1: Evaluate decision space and the uncertainty in the design variables 

Evaluate    Xi = { (x1+ε) , . . . , (xn +εn)} 

Step 2: Evaluate the individuals in terms of quantitative model and model uncertainty. 

2.1: Evaluate fitness functions and the uncertainty in the fitness function 

Evaluate ( 



1

|...2,1|)()(
m

kixfjxjF


+ ε;  // assign a fitness value to each GA 

individual based quantitative model 

Step 3: Assign fitness to every member of the population based on dominance-ranking criteria of 

NSGA-II. The quantitative value is used for the quantitative objective value. 
Step 4: Termination If current generation satisfy the conditions, else return to step2 

 

Step 5: Create offspring population using binary tournament selection, crossover, and mutation 

operators 

t = t + 1, go to step 2.h 

Figure 7.2. Solution search strategy for multi-pass problems with uncertainty 

7.2.1 Experimental Details 

The proposed many objective GA is used to locate good solutions for the optimisation 

problem formulated in Equation 7.3 by evaluating each member of the population 

using the multi-pass quantitative models given in Section 7.1.1. The quantitative 

evaluation with uncertainty in the design variables and in the fitness function of 

individual members of the population is carried out, based on the solution search 

strategy shown above, as the following. First is the evaluation of the design variables 

of the five passes and uncertainty, followed by the evaluation of the fitness function of 

the five passes with uncertainty. This represents the global objective functions values 

evaluation for the multi-pass work roll thermal analysis and optimisation problem. 

The objective function value of the global evaluation represents the fitness of the 

chromosome. The respective mathematical evaluation formulations are given in 

Equation 7.1 and Equation 7.2. 
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                                             Xi = { (xi+ε) , . . . , (xn +εn)}                         Equation 7.1                     

                          



1

|...2,1|)()(
m

kjxjfxjF


 + ε               Equation 7.2 

Where i is the ith design variables, n is the number of design variables, j is the jth 

objective and k is the number of objectives. 

Prior to the optimisation run for solution search to the design problem, an experiment 

conducted to determine the size of population and generation. Ten independent runs, 

with random generation, are carried out. Each run have been repeated 10 times in the 

experimented. Hence, a total of 100 experiments have been conducted before 

selecting the size of the population and generation. This is essential for assuring the 

diversity and convergence of the solutions. The final optimisation is carried out with 

population size 400 and 1000 generations. All runs are performed with the following 

standard parameters: crossover probability (cp) of 0.7 and mutation probability (mp) 

0.2. This research problem deals with qualitative based objectives and aims to show 

how the proposed algorithm can deal with many objectives work roll system 

optimisation problem with uncertainty using thermal analysis and GA. The case study 

is aimed at finding a solution for a design optimisation problem with uncertainty, 

minimising change in temperature (∆T in 
0
C) and radial stress (S11 in MPa) at work 

roll surface (S1, S2,,, S5) for 5 consecutive passes. 

Ten Objectives, Multi-pass Optimisation Problem 

Equation 7.3 Optimisation formulation for multi-pass problem 

Minimise           Change in Temp pass-1         f1(x) = ∆TS1 (x) 

Minimise           Stress (S11) -1         f2(x) = S11S1 (x) 

Minimise           Change in Temp pass-2                    f3(x) = ∆TS2 (x) 

Minimise           Stress (S11) pass-2           f4(x) = S11S2 (x) 

Minimise           Change in Temp pass-3               f5(x) = ∆TS3 (x) 

Minimise           Stress (S11) pass-3             f6(x) = S11S3 (x) 

Minimise           Change in Temp pass-4         f7(x) = ∆TS4 (x) 

Minimise           Stress (S11) pass-4         f8(x) = S11S4 (x) 

Minimise           Change in Temp pass-5                 f9(x) = ∆TS5 (x) 

Minimise           Stress (S11) pass-5        f10(x) = S11S5 (x) 

The sequence in representing the design variables in the optimisation of the multi-pass 

problem is shown in Figure 7.3. Pass are represented by the string. A string is made 
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up of sub-strings representing the number of passes; each of the sub-strings consists of 

product and process variables. Random values are chosen for these variables within 

the allowable range for each of the passes, based on discussion given in Section 7.2.1. 

 

Figure 7.3.  Design variables representation sequence in the optimisation 

Introducing Uncertainty in the Optimisation 

The uncertainty is introduced and applied in the optimisation by altering the design 

fitness randomly with a noise factor, represented by sigma (ζ) values. The sigma is 

the value in the design space calculated as a percentage of decision space of each 

decision variable given in Table 7.5. In the case study the following sigma values are 

assigned. x1 to x35 represent the design variables given in Table 7.5. 

x1_sigma = 0.5; x2_sigma = 1.0; x3_sigma = 0.5; x4_sigma = 1.7; x5_sigma = 0.003; 

x6_sigma = 2.0; x7_sigma = 0.5; x8_sigma = 0.5; x9_sigma = 2.0; x10_sigma = 1.0; 

x11_sigma = 1.7; x12_sigma = 0.006; x13_sigma = 2.0; x14_sigma = 0.5; 

x15_sigma= 0.5; x16_sigma = 2.0; x17_sigma = 1.0; x18_sigma = 1.7; x19_sigma = 

0.06; x20_sigma = 2.0; x21_sigma = 0.5; x22_sigma = 0.5; x23_sigma = 2.0; 

x24_sigma = 1.0; x25_sigma = 1.7; x26_sigma = 0.006; x27_sigma = 2.0; x28_sigma 

= 0.5; x29_sigma = 0.5; x30_sigma = 1.0; x31_sigma = 1.0; x32_sigma = 1.7; 

x33_sigma = 0.006; x34_sigma = 2.0; x35_sigma = 0.5; 

The sigma values are based on 5% error in the process. The 5% errors assumed above, 

are based on literature review, and knowledge from rolling engineers stating that in 

the real life rolling practise, normally 95 % accuracy is expected. The 5% error also 

applied for the fitness function.  

7.2.2 GA Results 

The optimisation run, with parameters outlined in the previous section and the models 

shown in Section 7.1.2, has produced the result. The optimisation identified the 

,...,

,,,, 

,...,

,,,, 

,...,

,,,,, 

 

X11 X21 Xm1 X12 X22 Xm2 X1n X2n Xmn 

    Pass 1       Pass2       Pass n 
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solutions (Pareto set) that are, good compromised between the change in temperature 

and radial stress at the roll surface of the 5 passes. Experiments were carried out using 

the proposed optimisation algorithm framework for the 10 objectives, to illustrate how 

the algorithm deals with the multi-objective multi-pass problem with uncertainty. 10 

runs have been carried out with the selected final generation and population sizes 

before the final result selected. The purpose of the run is to measure the consistency 

of results from the GA runs. The result selected as final is the representative from the 

ten GA runs, (the tenth run in this case).  The tenth run is selected as final because 

there is no significant change observed in all the 10 runs. Sample results (array) of 10 

objectives and 35 design variables from the 400 good populations of solutions found 

by the GA are presented in Table 7.10 and 7.11. 

The problem is high dimensional in nature; hence, it is not possible to visualise the 

Pareto front. The post GA search space reductions strategy, based on weight vector 

average discussed, in detail in Section 6.4.4. Chapter 6 and summarised in Section 

7.2.3, is used to search for the final best optimum design solution/s from the 

population of good solutions identified by the GA. The search space reduction 

procedure programme code is given in Appendix G. The strategy for searching the 

final best optimal design solution and discussion of the results are presented in 

Section 7.2.3 and Section 7.2.4.   

Table 7.10. Sample array from good solutions found by the GA, 

Objective space (Obj-1 - Obj-10) 

Obj-1 Obj-2 Obj-3 Obj-4 Obj-5 Obj-6 Obj-7 Obj-8 Obj-9 Obj-10 

 

115.2 -160.1 -14.7 186.3 28.1 -102.7 56.8 -136.3 64.1 -184.0 

-19.3 141.2 -92.1 196.7 -80.8 116.4 -84.8 104.0 -16.5 193.2 

8.0 115.0 6.3 144.5 30.1 -181.2 2.2 -37.7 -29.8 198.6 

42.2 -60.9 171.7 -421.2 113.6 -108.4 38.0 -105.4 38.2 -50.2 

55.6 -44.9 -115.0 266.4 -101.0 235.2 -3.1 160.6 60.6 -144.0 
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Table 7.11. Sample arrays from good design solutions found by the GA, 

 (Design space) 

HTC R/S 

contact 

(kW/m^2K) 

Stock Temp. 

(0C) 

Contact 

Length 

(mm) 

HTC 

Cooling 

(kW/m^2K) 

Roll 

Speed 

(Rad/sec) 

Roll 

Temp 

(0C). 

Delay 

Time 

(Sec) 

7.0 1245.2 26.5 17.4 0.2 47.4 85.6 

5.1 1230.2 10.4 35.5 0.1 79.7 90.8 

14.5 1247.5 12.5 39.8 0.2 59.9 24.2 

5.0 1230.1 13.3 43.1 0.2 78.0 64.4 

5.0 1231.1 10.4 38.7 0.1 79.3 94.6 

 

11.1 1155.2 30.0 15.6 0.3 40.2 77.5 

10.5 1182.8 10.4 15.4 0.2 42.3 48.4 

13.5 1181.1 14.2 40.6 0.2 79.6 38.8 

14.6 1160.5 29.7 17.0 0.3 41.7 57.1 

9.2 1157.4 10.2 15.3 0.2 46.7 40.9 

 

12.2 1115.3 27.3 19.3 0.4 44.8 77.8 

13.4 1109.6 27.2 16.2 0.4 77.6 113.7 

5.3 1100.6 13.2 16.3 0.4 44.0 69.5 

12.6 1112.2 28.6 15.3 0.4 76.3 69.3 

13.0 1109.6 27.4 22.6 0.4 45.7 70.4 

 

6.0 1031.9 12.3 34.5 0.6 61.1 50.2 

6.4 1031.7 11.6 35.5 0.6 58.2 40.9 

7.4 1011.8 12.7 43.2 0.7 40.3 80.3 

14.9 1025.4 29.5 16.9 0.7 48.1 58.4 

7.4 1035.2 15.0 16.4 0.7 57.7 41.4 

 

12.3 965.4 26.4 16.4 1.1 61.8 56.0 

11.7 967.7 29.9 16.1 1.1 49.2 63.4 

7.7 967.3 11.0 36.4 1.0 70.2 100.8 

13.4 969.5 28.4 15.7 1.1 78.3 73.2 

13.5 969.8 28.7 20.2 1.1 45.6 54.4 

7.2.3 Post GA Result and Analysis 

The result in the previous section gives the final design solutions (preferred design 

set) identified by the GA. This section presents a strategy for identifying the final 

optimal best design solution/s, from the obtained population of solutions by the GA. 

The filtering/search space reduction strategy (based on percentile), as discussed in 

Section 6.4.3 and 6.4.4, Chapter 6, is adopted for identifying the final optimal roll 

design solution. Detail descriptions of the technique is omitted here to avoid 

repetition. Here only techniques application to the multi-pass, multi-objective problem 

is explained. The technique is adopted due to its simplicity and flexibility in 

application. As explained in Section 6.4.4, the aim of percentage reduction is to step 
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by step reduce the search space and preserve n number of good design solutions 

within the space. The technique make it possible for a single best optimal design 

solution, best for all objectives can be identified from the remaining preserved few n 

number of good solutions, (Percentage taken is depending on the size of original 

population of solutions from GA). The percentage is determined through experimental 

trial - in this case, 55 % has been identified.  Table 7.12 gives brief descriptions of the 

steps taken for search space reduction, as well as the remaining good n number of 

population of solutions within the space. The example demonstrates how the 

procedure gradually searching for optimal design solutions before identifying the 

design solution that is best for all passes as a system, (out of 400 population found by 

the GA to the final 2 population best optimal solutions giving the design variables set 

good for all objectives in all passes). 

Table 7.12. Post GA percentage reduction, within the objective space for final design 

solution 
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55 % 

 

220 x 
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67x 
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55 % 
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Figures (7.4-7.14), give graphical illustrations of the post GA results search space 

reductions provided in Table 7.12. Figure 7.4 presents the original good solution 

population from GA (400 pop), and Figures (7.5-7.14) are steps showing the reduced 

number of population at each step after the application of the reduction strategy on the 

solution found by the GA. In Figures (7.4-7.14), the x-axis indicates the search space 

and the y-axis is for the individuals (weight). The step by step reduction aims to 

identify the best optimal design from the initial solution population obtained by the 

GA, and ensure that the identified solution is also commonly share by all objectives in 

the search space.  

Search space reduction 

for final optimal solution 

Initial 

solutions 

obtained 

by the 

GA 
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Figure 7.4.  Initial solutions from GA (400 population) 

The result in Figure 7.5 presents the reduced population of solutions, by 55% from the 

initial 400 population of solutions found by the GA, given in Figure 7.4. As discussed 

in Section 6.4.4, Chapter 6, the population of solutions found, shown in Figure 7.5 are 

selected n number of weights with the heights average within the space, hence are the 

most important or most preferred solutions, good for all objectives in the space. 

However the same procedure and percentage is continuously applied on the results in 

Figure 7.5 and subsequent results shown in Figures (7.6-7.14), to identify the best 

(preferably single) optimal design solution that is shared by all the objectives in the 

space. As expected the techniques is able to successfully identify the final best design 

solution (a single solution out the 400 good solutions from GA). The following 

presents the reduction steps and the remaining populations in each step. 

 

Figure 7.5. The highest weight vector average solutions (220 populations) 
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Figure 7.6. The 2
nd

 highest weight vector average solutions (121 populations) 

 

Figure 7.7. The 3
nd

 highest weight vector average solutions (67 populations) 

 

Figure 7.8. The 4
nd

 highest weight vector average solutions (37 populations) 

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120 140

In
d

iv
id

u
a

l 
W

ei
g

h
t 

V
ec

to
r

Solution Populations

2nd Heighest Weight Vector  

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250

in
d

iv
id

u
a
l 

W
ei

g
h

t 
V

ec
to

r

Solution Population

3rd Highest Weight Vector   

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40

In
d

iv
id

u
a

l 
W

ei
g

h
t 

V
ec

to
r

Solution Population

4th Highest Weight Vector 



 

219 

 

 

Figure 7.9. The 5
th

 highest weight vector average solutions (21 populations) 

 

Figure 7.10. The 6
th

 highest weight vector average solutions (12 populations) 

 

Figure 7.11. The 7
th
 highest weight vector average solutions (7 populations) 
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Figure 7.12. The 8
th
 highest weight vector average solutions (4 populations) 

 

Figure 7.13. The 9
th
 highest weight vector average solutions (3 populations) 

 

Figure 7.14. The 10
th
 highest weight vector average solutions (2 populations) 
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Figure 7.14 shows the final best optimal design labelled A and B identified by the 

technique, from the population of solutions obtained by the GA in the optimisation. 

Table 7.13 shows an example of the objectives vectors (out of 400 population of 

solutions) arranged in descending order based on average weight vector and the 

reduction strategy taking effect in the space to identify the best optimal solution good 

for all objectives. Table 7.13 also shows the preferred (best optimal) solution at each 

column identified by the post GA result processing technique. Design shown in red 

are preferred solutions while the not preferred ones are in black. The example in the 

Table demonstrate how the technique gradually filtered out the search space and 

arrived at the final optimal design solution best for all objectives. The bold red 

numbers in the middle of the Table are the final solution identified, where the 

corresponding factors in the design space are taken as final best optimal design 

solution factor parameters for the design problem. The weight vector shown in the 

Table (Obj-10) identified as the final individual in the row confirming that the final 

best optimal solution lies in that particular row in the space. The individual solution 

with the weight (0.0443) in Obj-10 in Table 7.15 represents the point labelled B in 

Figure 7.14. Following the identification of the preferred weight vectors as shown in 

Table 7.13, the corresponding actual solution array traced back in to the population of 

solution from GA, where the actual solution in the objective space and the design 

parameter set in the decision space can be identified. The solution identified and the 

descriptions of the solutions are discussed in the result and analysis section, Section 

7.2.4. 

Table 7.13. Objective (Obj) weight vectors samples showing population reduction 

before  identifying  best optimal solution good for all objectivesin in the search space 

Obj                                     

1 

Obj         

2 

Obj           

3 

Obj         

4 

Obj        

5 

Obj           

6 

Obj            

7 

Obj        

8 

Obj          

9 

Obj         

10 

0.1732 0.207 0.1189 0.1726 0.1182 0.0496 0.0488 0.0434 0.0367 0.0316 
0.1729 0.1523 0.1319 0.1564 0.1853 0.0337 0.0947 0.0137 0.0174 0.0417 
0.1723 0.1938 0.1161 0.0448 0.1652 0.1663 0.0528 0.0324 0.0266 0.0297 
0.1712 0.1018 0.1251 0.1939 0.1958 0.01 0.0548 0.0228 0.0404 0.0843 
0.1709 0.1647 0.1047 0.1264 0.1455 0.0422 0.1039 0.0633 0.0342 0.0443 
0.1706 0.1782 0.0035 0.1781 0.1622 0.0182 0.1884 0.0429 0.0333 0.0247 
0.1704 0.1254 0.0489 0.1826 0.1683 0.0076 0.1562 0.021 0.0287 0.0909 
0.1703 0.0655 0.0896 0.1429 0.17 0.0926 0.1192 0.0222 0.0231 0.1046 
0.17 0.1566 0.1311 0.2024 0.1806 0.0085 0.047 0.0247 0.0255 0.0536 
0.1698 0.0405 0.0594 0.1526 0.1488 0.0768 0.15 0.0645 0.0294 0.1082 
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Figure 7.14 presents the final most preferred two solutions, best optimal, for all 

objectives identified by the search space reduction procedure applied above. The two 

identified solutions labelled A and B in the Figure 7.14 are equally good and are the 

final best from which user can choose one depending on particular design 

requirements. Here in the thesis however, result discussions presented are referring to 

the solution labelled B in Figure 7.14. 

7.2.4  Results and Analysis  

Section 7.2.2 discusses the GA based algorithm solving a multi-pass, 5 pass 

arrangement of continuous rolling, work roll system design optimisation problem, 

minimising the change in temperature and radial stress at the surface of the roll. 

Section 7.2.3, presents the strategy for identifying the optimal solution from the 

results obtained by the GA shown in Section 7.2.2. This section presents and 

discusses the details of the final optimal design solution identified. The final optimal 

design solution discussed here includes solutions characteristics, such as the result in 

the objective space, Table 7.14.A the design factors and factors trends along the 

passes presented in Figures (7.17-7.23), Section 7.2.4.2. Also presented are the total 

temperature, (Table 7.14.C) which is the sum total of surface temperature and the roll 

initial / bulk temperature. The roll bulk temperature is the roll initial temperature 

before it comes in contact with the hot stock. The roll surface temperature is the 

additional temperature absorbed mainly at the surface of the roll when the roll comes 

in contact with the hot stock. Under optimum design rolling operation the additional 

temperature absorbed by the roll expected to be removed by the cooling system and 

roll temperature should remain around the initial/ bulk temperature range. The result 

presented in Table 7.14.C and the respective Figure 7.16 verifies this assessment. The 

details of the results and analysis are presented as follows. 

7.2.4.1. Results 

Table 7.14. Roll change in temperature (surface temperature) and total roll 

temperature after the optimisation (Objective space) 

. No. of passes 1 2 3 4 5 

A Change in Temperature (∆T in 
0
C) 

(surface temperature)  
7.99 6.34 30.1 2.15 -30.0 

B Optimal (initial) roll bulk 

temperature in 
0
C, 

59.89 79.60 43.98 40.3 70.2 

C Total Temperature ((∆T + Bulk) , 
0
C      67.88 85.94 74.08 42.45 40.2 
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Figures 7.15 and 7.16, show graphical representation of the change in temperature 

(roll surface temperature) and the roll total temperature trend, respectively, along the 

5 passes occurred after roll stock contact. The Figures are illustrating the final best 

optimal design solutions, shown in Table 7.14, obtained in the optimisation. Expected 

behaviours of the temperature change and total temperature on the roll and analysis of 

factors behaviours along the passes are discussed in Section 7.2.4.2.    

 

Figure 7.15. Temperature change in rolls along the 5 passes 

 

Figure 7.16. Total temperature in rolls along the 5 passes 

Table 7.15 shows the optimal design parameters, in each passes corresponding to the 

objective space results (change in temperature (∆T) presented in Figure 7.15.  
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Table 7.15. Best optimum design factors in design space corresponding to solutions 

in Table 7.14.A in objective space 

Design input factors  

 

 Optimised parameters 

Roll stock contact HTC  14.52 (kW/m^2K) 

Stock temperature  1247.51 (
0
C) 

Contact length  22.54 (mm) 

Cooling HTC  39.84 (kW/m^2K) 

Roll speed  0.15 (rad/sec) 

Roll temperature  59.89 (
0
C) 

Delay time  24.24. (mm) 

Roll stock contact HTC  13.51 (kW/m^2K) 

Stock temperature  1181.09 (0C) 

Contact length  14.16 (mm) 

Cooling HTC  40.59 (kW/m^2K) 

Roll speed  0.19 (rad/sec) 

Roll temperature  79.60 (0C) 

Delay time  38.79 (mm) 

Roll stock contact HTC  8.30  (kW/m^2K) 

Stock temperature  1100.60 (0C) 

Contact length  14.19 (mm) 

Cooling HTC  16.30 (kW/m^2K) 

Roll speed  0.41 (rad/sec) 

Roll temperature  43.98 (0C) 

Delay time  69.45(mm) 

Roll stock contact HTC  7.44  (kW/m^2K) 

Stock temperature  1011.77 (0C) 

Contact length  12.71 (mm) 

Cooling HTC  33.17 (kW/m^2K) 

Roll speed  0.69(rad/sec) 

Roll temperature  40.26 (0C) 

Delay time  80.31 (mm) 

Roll stock contact HTC  7.69 (kW/m^2K) 

Stock temperature  967.34 (0C) 

Contact length  10.98(mm) 

Cooling HTC  34.40 (kW/m^2K) 

Roll speed  0.98 (rad/sec) 

Roll temperature  70.17 (0C) 

Delay time  100.83 (mm) 

7.2.4.2 Discussion of the Results 

The research aim is to minimise or keep the roll change in temperature, i.e. 

temperature increased at the surface when the roll comes in contact with hot stock, 

within the initial/ bulk temperature parameters (parameter the roll hold before in 



 

225 

 

contact with hot stock). The optimisation framework developed designed to achieve 

this by searching for optimal design factor parameters set for the multi-pass rolling 

process hence guarantee the system operation with minimised roll damage due to 

thermal effect. The results obtained and presented above, reflect the fundamental of 

the optimal work roll system thermal design characteristics of a continuous mill.     

The factors trend also verifies the design factors assumption made initially for 

designing the continuous mill work roll system optimisation problem. The 

justifications for optimality, based on the results obtained, can be summarised as 

follows:  

As observed in the review of literature, the temperature condition on rolls varies 

depending on section of rolling. This is due to the fact that different sections of rolling 

have different design factors characteristics. At the start of the rolling or the roughing 

section, particularly in pass 2 and 3, for example, the roll temperature is expected to 

rise to the highest because of contact with the stock with highest temperature. 

Normally, the first pass is immune from this because of the build up of scales on the 

stock due to the delay time of the stock from furnace to the first pass and the 

application of water to cool it. At the roughing stage, the stock size is relatively higher 

and roll speed is lower; hence, the contact between roll and stock is also higher. The 

condition allows the roll to absorb more heat from the stock. As a consequence of 

these conditions, the cooling heat transfer coefficient and roll bite heat transfer 

coefficient to go relatively higher as well. However, in the intermediate and finishing 

stage, the design process factors‟ behaviours change. As observed in real life practise, 

the change in factors‟ behaviours starts at pass 3. This is the stage where the decrease 

in size of stock, and thus the increase in roll speed starts. The increase in roll speed is 

a major driving force for other process factors‟ behaviour change - factors such as 

contact time and heat transfer coefficient. The sudden drop of these factors can be felt 

in pass 3 before regaining normality in the subsequent passes. The result obtained 

using the optimisation strategies developed in the thesis, reflects these facts. For 

example, change of temperature is expected to lower along the pass, and if the design 

solution set is optimal, the total temperature, (roll surface and bulk temperature) is 

expected to be around the roll bulk temperature (temperature before contact with hot 

stock), Figures 7.15 and 7.16, change in temperature and the total temperature along 

the passes after optimisation, indicate these facts. As expected, the temperature 

change trend is descending along the passes, with the exception of pass 3, as shown in 
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Figure 7.15. Pass 3 shows a comparatively higher temperature value. As stated above, 

the change in temperature trend is dictated by the roll thermal design factors, such as 

roll speed, roll bite, heat transfer coefficient, contact length, delay time and cooling 

heat transfer coefficient parameter behaviours. As presented in Figures (7.17 to 7.23), 

some of these design factors‟ behaviour, shows a trend that causes relatively higher 

change in temperature at pass 3. For example, during continuous rolling, roll/stock 

contact is lower after the roughing stage, mainly after the second pass. This is due to 

the fact that from pass 2, the speed and rate of change of speed increase continuously. 

Ascending speed, delay time and the descending stock temperature are typical 

characteristics of the continuous rolling process. The decrease in roll stock contact 

also triggers a sudden drop in roll bite heat transfer coefficient, as shown in Figure 

7.21. Usually, the drop regains normality in the next pass. The drop in contact length, 

(Figure 7.20) and roll bite heat transfer coefficient, as well as the slight increase in 

delay time between pass 2 and 3, (Figure 7.19) cause relatively lower cooling heat 

transfer coefficient at pass 3. The drop in cooling heat transfer coefficient, shown in 

Figure 7.22, has a direct effect on the change in temperature to increase at pass 3, 

shown in Figure 7.15. However, although these conditions cause the change in 

temperature trend to be higher at pass 3, the overall trend remains consistently 

descending along the passes. The final total roll temperature, i.e. the sum of the roll 

bulk temperature and the change in temperature or roll surface temperature, shows a 

decreasing trend along the passes as expected. The results also remain within and 

around the bulk roll temperature parameter considered realistic in real life rolling 

practise, based on knowledge elicited from expert in the sponsoring company. These 

indicate that the obtained designs parameter set is a solution that is best optimal for 

the intended work roll system thermal design problems. The results also demonstrate 

that the proposed optimisation methodology is able to search solution for the intended 

multi-pass, multi objective optimisation problems with presence of uncertainty. 

Figures (7.17 to 23) show optimisation result design factor parameters trend along the 

5 passes.   
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Design Factors trends along the 5 passes 

 

Figure 7.17. Roll speed trend in 5 passes 

 

Figure 7.18. Stock temperature trend in 5 passes 

 
 

Figure 7.19. Delay time trend in 5 passes 
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 Figure 7.20. Roll / stock contact trend in 5 passes 

 
 

Figure 7.21.  Roll / stock contact HTC trend in 5 passes 

 

Figure 7.22. HTC cooling trend in 5 passes 
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Figure 7.23. Roll bulk temperature in 5 passes 

7.3 Chapter Summary 

This chapter has demonstrated the successful application of proposed optimisation 

framework for handling multi-pass work roll system thermal analysis and 

optimisation problems with uncertainty in the design variables and fitness function. A 

multi-pass rolling system models have been developed from several sources reported 

in the literature and information from rolling experts. A 10-objective, multi-pass 

problem for minimising change in temperature (∆T) and radial stress (S11) on the 

rolls‟ surface has been solved using the proposed GA based optimisation framework 

and the post GA result analysis strategy. The post GA strategy is used to reduce the 

search space of the solution obtained by the GA, and arrive at the final optimal design 

solution/s for the research case study; multi-pass, many objective problems with 

presence of uncertainty.     

As presented in the chapter, the results achieved from the algorithm confirm that the 

optimisation framework and the post optimisation result analysis developed have been 

able to search and identify the solution for the research multi-pass problem case study. 

Furthermore, the results factors trends along passes behave in a consistent manner 

with what has been observed in the real life work roll system of continuous rolling, 

confirming the successful application of the solution search strategy. The chapter has 

achieved the followings: 

 Identified issues concerning multi-pass work roll system design, thermal 

analysis and optimisation problems. 
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 Studied factors and factor parameters involved in the rod rolling process 

relevant to work roll system thermal analysis and optimisation problem, and 

identified factors most relevant to the problem.  

 Studied inter-pass design factors relationships as well as uncertainty associated 

to them. 

 Developed a work roll system thermal models, represent multi-pass rolling 

real life practise. 

 Applied the developed novel GA based optimisation framework for searching 

solution for the multi-pass, many objective work roll system design problems 

in presence of uncertainty. 

 Developed a post GA solution search strategy for (high dimensional) many-

objective, multi-pass optimisation problems to identify the final optimal 

design solution from the population of solution obtained by the GA.  

 Presented the experimental results and the analysis for the multi-pass work roll 

system optimisation problem obtained using the proposed optimisation 

framework and post optimisation result analysis strategy. 

While this chapter deals with the development of the multi-pass problem models and 

the solution search strategy to the multi-pass design optimisation problem in presence 

of uncertainty, the next chapter presents the validation and verification of results.  
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8 Validation of Results 

 

 

Chapter 8 presents result validation and the methodology followed to validate the 

optimisation result consistency in relation to the real life process practise. It also 

validates the ability of the optimisation framework in dealing with the research 

problem. The validation was conducted through questionnaires and involves 

experienced rolling experts and academics. The multi-pass rolling process model was 

initially generated to capture the real life performance of the work roll system thermal 

analysis and optimisation problem in presence of uncertainty. The validation process 

is designed to enquire about the optimisation results and design factors behaviour in 

relation to work roll system design real life practise hence verifies if the results 

obtained from the optimisation reflect the real life performance initially captured. The 

questionnaires are used to gather expert judgement on the results, asking to study 

result obtained and verify the acceptability of results based on their real life rolling 

practice experience. The process mathematical models have been validated 

statistically and the results are presented in Chapter 5, for single pass model and in 

Chapter 7 for multi-pass models. Therefore this chapter is an additional validation and 

mainly focused on the validation of optimisation result, based on expert knowledge 

for single and multi-pass problems. However the chapter also gives brief summary of 

the validation, based on statistical and experimental trial, used to validate the process 

models and the optimisation solution convergence. The validation chapter consists of 

the following sections: Section 8.1 gives brief summary of models and Pareto 

convergence validations for single and multi-pass cases study. Section 8.2 presents 

validation of the optimisation results and the performance of the optimisation 

framework, based on expert opinion. The section discusses also the methodology used 

for the validation, questionnaire development and presents the extracts of questions 

and response from experts. Section 8.3 gives chapter conclusions.  

8. 1 Summary of the Statistical and Experimental Validation  

The research applied single pass process model to analyse and validate the 

performance of the optimisation framework. The validity test with the process model 

shown in Chapter 6, Figure 6.8 (comparing results from grid search and result from 
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the proposed GA based optimisation framework) indicates a satisfactory consistency 

with the underlying work roll system domain. This gives some confidence that 

provided the optimisation algorithm can find the set of near optimal solutions to the 

problem in presence of uncertainty; it is likely that the process models are suitable for 

the optimisation purpose. The presence of the conflicting behaviour of the objectives 

functions that are used to measure the underlying characteristics of the work rolls 

system thermal analysis and optimisation problems in the search result is also give 

confirmation that the models and the framework proposed are suitable for the 

intended problem. The size of population and generation are determined through 

experiment. The experiment was conducted using different sizes of generation and 

running each experiment 10 times i.e. 10 different generations experiments and 10 

runs at each generation; hence, a total of 100 experiments are carried out before 

choosing the population size and generation required for the optimsation. All other 

subsequent experimental optimisation runs are also repeated so that the consistency of 

result can be verified before the final optimal design solution recorded.   

The single pass and multi-pass models are validated statistically based on post 

regression analysis and the results are presented in Chapter 5 and 7 respectively. The 

original mathematical models are also validated for general ability. This is done by 

conducting 9 FEA runs with the input design variable values selected randomly from 

the design space. The selected random factors parameters are also fed in to the 

mathematical model and the results for the 9 selected runs are obtained. The two 

results, the observed (FEA runs) and predicted (results from the mathematical model) 

are compared and the error values are calculated. The results, shown in Chapter 5, 

indicate that the absolute errors are insignificant and below the universally accepted 5 

percentage. The result indicate the generic nature of the models, hence applicability 

for the intend problem.      

While this section summarised the statistical and experimental validation carried out 

for the models and in the optimisation, the next section presents validation, based on 

expert opinion on the final result from the optimisation. The next section also presents 

extracts of questions and response from experts verifying the results obtained from the 

optimsation. To facilitate the validation, questionnaire was developed. The 

questionnaire is consists of two main parts: the first is to validate the optimisation 

result of the single pass and multi-pass problem and probe their relevance in relation 

to real life practise. The second part asks engineers to verify response variables 
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characteristics (trend) across the five passes. This is vital for determining the integrity 

and consistency of the multi-pass process models, generated based on factors 

functional relationships assumption made initially during the knowledge elicitation 

sessions. Validation of the results, based on experts and the methodology followed for 

the validation are presented in the following section. 

8.2 Optimisation Result Validation based on Expert  

 Opinion 

As learnt in the current practise study in Chapter 4, work roll system thermal analysis, 

design and optimisation is a specialised subject where the knowledge in the domain 

can only be acquired from specialist with many years experience. Real life process 

understanding is essential since it gives a wider perspective about the issues 

concerning the research problem. Hence, in addition to the literature review, a real life 

current practise study and knowledge elicitation in the research domain was carried 

out in collaboration with engineers selected from various departments in the 

sponsoring company. As discussed in the current practise study, Chapter 4, the 

knowledge from the elicitation serve as the main source for mapping the rolling 

process factors influencing the work roll system thermal characteristics. This 

collaboration with the engineers for knowledge gathering also contributed towards 

identifying the likely areas within the rolling process, cause the roll thermal 

characteristics change and process factors characteristics along passes, in the multi-

pass rolling. As reviewed in the literature, work roll system is a complex process, 

characterised by high disturbance taking place in extremely hot environments and 

with a potential that uncertainty can influence the product, tool and the process. 

Therefore, the collaboration of experts in the elicitation exercise is very valuable in a 

way that it provides knowledge in the form of qualitatively measured opinion about 

this complexity, which would have been impossible to find otherwise. The 

information gathered is the main prerequisite for developing the quantitative models 

that are generated for representing the real life work roll system problems. 

Consideration of this knowledge from expert and the quantitative knowledge 

influence the modelling and the optimisation. The assumption made in determining 

the design factors, factors parameters and the relation between factors within passes, 

in the multi pass problem are also influenced by it. The validation of the final result, 
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based on expert opinion is necessary so that effect of the real life process knowledge 

elicited and applied in the modelling and optimisation can be evaluated. The 

verification/ validation must prove the consistency of results in relation to the 

intended real life work roll system thermal behaviour, as recognised by the domain 

experts. It also verifies process factors trend consistency in passes in relation to 

assumed continuous multi-pass real life rolling process behaviours. Section 8.2.1 

discusses the methodology followed in the verification/validation. 

8.2.1 Methodology for Result Validation 

The section present the methodology (structured procedure) used to guide through the 

validation process, establishing a link between steps within the validation process. 

The validation involves experts in the research domain who are involved in the initial 

knowledge elicitation exercise from the sponsoring company and academics who are 

expert with many years experience in design and algorithm based optimisation 

techniques. The verification/validation is carried out using questionnaire requesting 

experts to compare and comment on the process behaviour exhibited by the design 

solution result from the optimisation to what is perceived normal according to their 

real life experience. The methodology consists of the following steps: 

 Establish what needs to be validated,  

 Extract relevant validation information from the optimisation solution 

(objectives and design space),  

 Manage requirements for validations such as developing questionnaire and 

selecting participants,   

 Held validation session with experts, supported by questionnaire, 

 Questionnaires feedback analysis and measuring results in relation to what 

needs to be validated  

Schematic view of the procedure followed is shown below. 
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Figure 8.1. Procedure followed for result validation. 

Each of the steps in the procedure shown in Figure 8.1 is described as follows: 

8.2.1.1 Establishing what needs to be validated  

The step identifies the main concern and issues raised during the knowledge 

elicitation exercise, particularly information related to design factors and factors 

relationship between passes, in multi-pass modelling and optimisation. As discussed 

in Chapter 4, rolling is a specialised subject where during the case study the real life 

process realisation is mainly based on expert‟s assumptions. The assumption is based 

on real life practise and made by experienced engineers with many years relevant 

experience. However the assumption made and used in the modelling and 

optimisation needs to be verified for consistency, if reflected in the design solution 

result found by the GA. 

8.2.1.2. Extract Data from the Optimisation Results for Validation  

Identify the information from the optimisation result relevant to the validation that can 

verify the issues and concern raised and needs to be validated. The information 

extracted from the optimisation results (data and Figures) are the prerequisite for the 

questionnaire development that are used by the experts to express their views of the 

result found, based on their experience in the real life practise.  

8.2.1.3 Manage Requirements for Validation  

The section discusses the requirements necessary to carry out the validation. This 

includes development and implementations of questionnaires, selection of company 
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and experts/people. The steps followed in the development and implementation of 

questionnaire, identifying and selecting of company and people are presented sown as 

follows.  

Questionnaire development procedure  

A set of questions was developed to describe selected results and factors behaviours 

from the optimisation. Initially, the questionnaire was piloted with one selected 

company and expert before it was fully implemented and extended to other 

establishments and experts. At the beginning, the questionnaire was developed with 

questions considered relevant and covering the, what needs to be validated. Next, 

from the wider questions recorded in the initial list of questions, a summarised, 

second form of questions were developed. The second version contains fewer 

questions and eliminated any repetitions. The third and final version of the 

questionnaire also developed through step by step evaluation of the initial list of 

questions. The third and final version contains questions considered most relevant to 

the purpose and probe the concern as expected. Here the questions are reviewed and 

some of the questions rewritten so that questions with similar themes can be avoided. 

The questionnaire was then sent to experts, accompanied by introductions and 

requirements - prior to that, contacts had been made to brief participant the purpose of 

the questionnaire and pre condition agreements. Questions themes and rational behind 

the questions are shown in Table 8.1A for single pass problem and Table 8.1.B for 

multi-pass problem.  

Table 8.1A. Validation questionnaire theme and aim 

No. Validation themes Probe  aim 

 

Single pass validation 

 

1 

Review solutions and factors 
trend presented and comment if 

in line with real life single pass 

optimal design knowledge? 

 

To verify & confirm the acceptability of 

the final design solution obtained from 

the optimisation; hence validate the 

optimisation framework developed for 

solution search to the single pass design 

problem. 
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Table 8.1B Validation questionnaire theme and aim 

Selection of organisation and experts/people 

The literature shows that the engineering design optimisation techniques are a domain 

associated with wider disciplines across the industry, mainly with high scale 

companies such as aerospace and automotives, Therefore, to have the wider 

perspective of the research problem and techniques available to solve the problem, the 

current practise study in the research domain was conducted with the involvement of 

various companies considered most relevant to the research domain, with substantial 

expertise and willingness to participate in the study. This includes Aeronautics, 

Automobile and Steel.  Hence it would be useful if the validation revisited all those 

companies and people involved in the initial knowledge elicitation exercise and 

current practise study. However achieving this was a challenge due to time 

constrained, resources and experts availability and willingness to participate in the 

validation process. Due to these constraints therefore it was necessary to limit 

organisations, expert with relevant experience and have better association with the 

research. Two organisations found to be fulfilling these requirements and selected for 

validation. These are: Tata-Steel Europe and Cranfield University. The quality of the 

validation results are as good as the feedback obtained, and the feedback is as good as 

the people who participate in the validation. Therefore, the selection of people 

No. Validation themes Probe  aim 

Multi-pass validation 

1 

Review solutions and factors 

trend presented and comment if 

in line with real life multi pass 
optimal design knowledge? 

To verify & confirm the acceptability of 

the final design solution obtained from 

the optimisation; hence validate the 

optimisation framework developed for 

solution search to the single pass design 

problem 

 

2 

Is the design factors trends & 
relationships between passes, as 

found by the GA relevant to the 

intended problem? 

 

To verify the assumption made during 

the multi-pass modelling and 

optimisation. This is done by analysing 

the design factors in the single pass and 

factors in each passes and trends between 

consecutive passes in multi-pass cases. 
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/experts is an important step of the process. The experience of participant is crucial. 

The experienced engineers will give an important insight and true nature of the result 

obtained and its relevance to real life scenarios. For this reason therefore, a careful 

consideration has been made in the selection of participants. Table 8.2 and 8.3 are 

present the pre survey arrangements and survey participants‟ introductions.     

Table 8.2.  Pre survey arrangements for validation (People and establishments) 

Company A 

 

Rolling 

expert 

 

Years of relevant 

experience 

 

Expertise 

 

Expert 1 

 

15 years relevant 

experience 

Long product rolling, design, modelling and 

optimisation 

(Tata-Steel Europe) 

 

Table 8.3.  Pre survey arrangements for validation (People and establishments) 

Company B 

 

Acadamics 

Years of relevant 

experience 

 

Expertise 

 

Expert 2 

 

10 years  

Design, optimisation and soft 

computing 

(Cranfield University) 

 

Expert 3 

 

 8 years 

Modelling and optimisation  

(Cranfield University) 

One expert from the sponsoring company was particularly selected because of his 

many years of experience and for the reason that he is currently actively involved in 

the work rolls system thermal analysis and optimisation, within the company. Besides 

he is the only highly experienced engineers in the field, he is also participating in the 

knowledge elicitation exercise at the start of the research. Due to his association to the 

research and the fact that he is well aware of the real life practise problems, he is 

considered effective and important participant of the validation process. There are two 

academics with relevant experience, shown in Table 8.3 are also selected. There are 
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experts in design, optimisation and evolutionary computing. The two academics are 

particularly useful in verifying the GA based optimisation techniques consistency and 

ability in dealing with the intended real life design problem.     

8.2.1.4 Implementation of Questionnaires 

The section above, presents the development of the questionnaire and rationale behind 

the questions. This section highlights the procedure followed in the implementation. 

The questionnaires were developed and issued to the interviewees prior to interview 

day. The interview was conducted based on the questionnaire, and the copy was 

completed during the interview. Implementation followed the following procedures: 

 Sent questionnaire in advance to participants. 

 Made contact to arrange and agreed preconditions, date, time and place for the 

validation. 

 Meet-up and conduct interview based on questionnaires. The validation began 

with a ten minutes introduction, followed by two to three hours session. The 

discussion was driven by picking and reading question from the list - if the 

question was clearly understood as intended, then the interviewee gave an 

answer to it orally and in writing. During this time, the interviewer was also 

taking notes so that the consistency of the answers given by experts can be 

verified later during the feedback analysis. The interview concluded with a ten 

minute summary and closing remarks. 

8.2.2 Overview of the Result from the Optimisation and the  Result 

 Validation  

This section presents overview of the result from the optimisation; the summary of the 

issues needs to be validated and gives extracts of questions and validation feedback 

from experts. The questionnaire gives the design factors and their behaviour across 

the five passes. The selected factors (process factors) shown in Table 8.4 and 8.5 are 

believed to be an important measures, taken from the results found by the GA in the 

optimisation, that can describe the real life continuous rolling work roll thermal 

behaviours. It also verifies the consistency of the design factors and factors 

relationships assumption made for thermal process modelling and optimisation of 

multi-pass rolling, in relation to the real life practise as elicited from experts and 

observed in real life rolling process in the industry. The section also gives brief 
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overview of the design solution obtained ability in keeping the change in temperature 

on the roll as intended (minimal). The section has two parts. The first part (Part A) is 

for single-pass validation and the second part is the validation for multi-pass problem 

case (Part B and C). The work roll process factors selected for result validation are 

shown in Tables (8.4 and 8.5). 

Table 8.4.  Multi-pass factors chosen for verification 

 

 

 

 

 

Table 8.5. Optimisation results selected for validation 

Results in single and multi-pass cases  

 

 Change in temperature in the single pass problem 

 Change in temperature of rolls at each pass and along the 

passes 

The optimisation result shown in Table 8.4 and 8.5 reflects the fundamentals of work 

roll system thermal design characteristics. The results graphical illustrations are given 

in Section 8.2.2.1 (A, B and C).  Based on the result the fundamentals of the work roll 

system thermal design characteristics can be summarised as follows: 

As demonstrated in the results (A, B and C) rolls temperature and stress conditions 

vary depending on the process sections and pass positions. Other important 

characteristics such as speed of rolls and stock temperature have also follows real life 

rolling process characteristics. The speed of rolls increases along the path from one 

pass to the next, (Figure 8.6). At the same time temperature decreases along the line 

from pass to pass, (Figure 8.7). The most important finding is the roll temperature 

profile. As shown in Figure 8.5 the roll total temperature, (bulk + surface temperature) 

remain within the minimum range (40
0
C-80

0
C) usually considered in real life rolling 

practise and as expected higher roughing stage (pass1 & 2). This is because of the 

high intensity of stock temperature at that stage. However it is also observed in the 

result that the total temperature and the change in temperature at pass 3 is higher. 

However this occurrence is possible and expected provided the following 

Design factors in i ( i = Pass number,  where i = 1…5 

 Roll speed trend along  passes 

 Stock delay time trend along passes  

 Stock temperature trend along  passes 

 Heat Transfer Coefficient (HTC- Cooling) along passes 

 Roll / Stock contact length 

 Roll/Stock contact HTC 
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justifications met. As observed in the review of literature, the temperature condition 

on rolls varies depending on section of rolling. This is due to the fact that different 

sections of rolling have different design factors and parameter characteristics. At the 

start of the rolling or the roughing section, particularly in pass 2 and 3, for example, 

the roll is expected to have the stock with highest temperature - normally, the first 

pass is immune from this because of the build up of scales on the stock, due to the 

delay time of the stock from furnace to the first pass, and water spray to cool it. At the 

roughing stage, the stock size is relatively higher and roll speed is lower; hence, the 

contact between roll and stock is also higher. The condition allows the roll to absorb 

more heat from the stock. As a consequence of these conditions, the cooling heat 

transfer coefficient and roll bite heat transfer coefficient to go relatively higher. 

However, in the intermediate and finishing stage, the design process factors‟ 

behaviours change. As observed in real life practice, the change in factors‟ behaviours 

starts at pass 3. This is the stage where the decrease in size of stock, and thus the 

increase in roll speed starts. The increase in roll speed is a major driving force for 

other process factors‟ behaviour change - factors such as contact time and heat 

transfer coefficient. The sudden drop of these factors can be felt in pass 3 before 

regaining normality in the subsequent passes. The result obtained using the 

optimisation strategies developed in the thesis, reflects these facts. For example, 

change of temperature is expected to lower along the pass, and if the design solution 

set is optimal, the total temperature, (roll surface and bulk temperature) is expected to 

be around the bulk (temperature before contact with hot stock) roll temperature. 

Figures 8.4 and 8.5, change in temperature and the total temperature along the passes 

after optimisation indicate these facts. As expected, the temperature change trend is 

descending along the passes, with the exception of pass 3. Pass 3 shows a 

comparatively higher temperature value. As stated above, the change in temperature 

trend is dictated by the roll thermal design factors, such as roll speed, roll bite heat 

transfer coefficient, contact length, delay time and cooling heat transfer coefficient 

parameter behaviours. As presented in Figures 8.6 to Figure 8.11, some of these 

design factors‟ behaviour, particularly at pass 3, shows a trend that causes the change 

in temperature at pass 3 to be different. For example, during continuous rolling, 

roll/stock contact, (Figure 8.9) is lower after the roughing stage of rolling, mainly 

after the second pass.  This is due to the fact that from pass 2, the speed and rate of 

change of speed, as shown in Figure 8.6, start to increase. The higher the speed is the 
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lower the roll/stock contact time. The decrease in roll stock contact also triggers a 

sudden drop in roll bite heat transfer coefficient, as shown in Figure 8.10. Usually, the 

drop regains normality in the next pass (pass-3). The drop in contact length and roll 

bite heat transfer coefficient, as well as the slight increase in delay time between pass 

2 and 3, shown in Figure 8.8, cause relatively lower cooling heat transfer coefficient 

at pass 3, Figure 8.11. The drop in the cooling transfer coefficient has a direct effect 

for the change in temperature to increase at pass 3. However, although these 

conditions cause the change in temperature trend to be higher at pass 3, the overall 

trend remains consistently descending along the passes. The optimisation results, as 

illustrated in Section 8.2.2.1, (A, B and C) are also showing these characteristics. The 

single and multi-pass optimisation results discussed in this section and the graphical 

illustrations given are the information used in the verification of results and validity of 

the optimisation technique developed to search for optimal solutions to the research 

problem. Expert express their opinion based on these evidence provided. The extract 

of the questionnaire and expert answers are presented next.  

8.2.2.1 Extract of Validation Questions and Experts Responses  

Extracts of questionnaires and responses from experts are presented in three parts. The 

first part (Part A) gives the validation for single pass problems. Part B and C are the 

validation for the Multi-pass problem, showing objectives results and factor 

relationship trends between passes respectively.   

A Single Pass problem Validation 

Figure 8.2 and Figure 8.3 present the solutions obtained for single pass optimisation 

problems with uncertainty. The results are temperature condition in rolls at the surface 

as well as depth, 9mm and 15mm below the surface of the roll. And another important 

information observed from the result is the roll total temperature trend, i.e. the surface 

temperature + initial/bulk roll temperature), (Figure 8.3). The question shown in Table 

8.6, supported by graphical illustration of the optimisation result obtained are 

presented to experts to comment and verify if the result obtained is matching with 

what they know in the real life practice. Results, with the corresponding questions and 

expert responses are presented in Figures 8.2- 8.3 and Table 8.6 respectively. 
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Figure 8.2. Single pass results for change in temperature in (
0
C) and radial stress in 

(MPa) at roll surface and depth below the surface  

 

Figure 8.3. Final Roll temp profile (surface + bulk initial roll Temp in [
0
C]) 
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Table 8.6. Questionnaire 1. Single pass rolling design optimisation main objective 

(change in temperature) 

 Yes No 

Is the trend in Figure 8.2 and 8.3 going in the direction 

that agrees with real life rolling process knowledge? 
Yes  

Based on the results above, please comment if any 

inconsistencies or observations you may have, 

 

Comments 

The trend is plausible. As 

expected the total temperature 

trend decreased steadily going 

to the centre of the roll. The 

rate of change at depth 

between 9mm and 15mm is 

slowing, implying that heat 

effect below the surface is 

minimal.     

 

B Validation Questionnaire and Results for Multi-Pass 

This section presents questions and responses from experts, shown in Table 8.7, 

validating the solution obtained by the GA in the optimisation. Figure 8.4 and Figure 

8.5 are the selected solution for verification, change in temperature at roll surface and 

rolls total temperature at each pass of the multi-pass of the five passes. 

,  
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Figure 8.5 Total temperature profile of rolls at each pass 

Table 8.7. Questionnaire 2. Multi-pass change in temperature in rolls, result trends 

along the 5 passes 

 Yes No  

Is the change in temperature and total temperature trend along 

the passes going in the direction that agrees with real life 

rolling process knowledge?  

Yes  

Based on the results in Figure 8.4 and 8.5, Please 

comment if noticed any inconsistencies or 

observations you may have.  

 

 

 

 

Comments 

The trend is plausible. As expected 

the total temperature decreased 

steadily from pass 1 to 5, and within 

the roll initial imposed bulk 

temperature range (adding the 

change in temperature and the initial 

imposed bulk temperature). This 

implies that the design solution 

obtained does control the 

temperature at the roll surface bite, 

However there is a slight increase in 

pass 3. As suggested this may well 

be that HTC cooling is slightly 

lower at pass 3, also related to other 

process factors behaviour presented.   
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C Inter-Pass Verification 

This section presents summary of questions and responses from experts presented in 

Tables (8.8-8.13), verifying the characteristics of response variables across the five 

passes. This is necessary to verify the consistency of the design factors that are used 

in the modelling and optimisation of the continuous mill. The verification begins by 

analysing the roll exit speed, which is the most important factor in the process where 

its characteristics influence other process factors, associated to the work roll thermal 

characteristics. Figure 8.6 and Table 8.8 gives the work roll exit speed profile and the 

corresponding questions feedbacks form experts respectively. The section also 

presents extracts of questions and expert feedbacks for other design factors validation.  

 

Figure 8.6. Roll speed profile 

Table 8.8. Questionnaire 3. Multi-pass exit speed design factor result trends along the 

5 passes 

  Yes No  

Is the exit speed trend along the passes going in the 

direction that agrees with real life rolling process 

knowledge?  

Yes  

Based on the results in Figure 8.6, Please comment if any 

inconsistencies or observations you may have you may 

have  

Comments 

The exit speed remain 

consistently ascending  from 

1
st
 pass to the last, as this 

should be the case for 

continuous mill.   
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Figure 8.7.  Stock temperature profile 

Table 8.9. Questionnaire 4. Multi-pass stock temperature trends along the passes 

 Yes No  

 

Is the stock temperature trend along the passes going in the 

direction that agrees with real life rolling process knowledge?  

Yes  

Based on the results in Figure 8.7, please comment if any 

inconsistencies or observations you may have.  

 

              Comments 

 The trend remain constant  

from 1
st
 pass to the last, as  

should be the case for  

continuous mill   
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Figure 8.8. Delay time between passes profile 

Table 8.10. Questionnaire 5. Multi-pass delay time design factor result trends along 

the 5 passes. 

 Yes No  

 

Is the delay time trend along the passes going in the direction 

that agrees with real life rolling process knowledge?  

Yes  

  

Comments 

Based on the results in Figure 8.8, Please 

comment if noticed any inconsistencies or 

observations you may have.  

 

This is expected in 

continuous mill. If the 

graph trend was different, 

the initial assumption 

having a continuous mill 

would have been lost.   
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 Figure 8.9. Roll / stock contact profile 

Table 8.11. Questionnaire 6.Multi-pass contact length design factor result trends 

along the 5 passes 

 Yes No  

 

Is the contact length trend along the passes going in the 

direction that agrees with real life rolling process knowledge?  

Yes  

Based on the results in Figure 8.9, Please comment if any 

inconsistencies or observations you may have. 

Comments 

The contact time followed 

roll exit speed. Trend as 

expected. Although this 

factor is now a free variable, 

it can be used as constraint, 

depending on the rolling 

schedule. 
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 Figure 8.10.  Roll / stock contact HTC profile  

Table 8.12. Questionnaire 7. Roll/Stock contact HTC design factor result trends along 

the 5 passes 
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 Yes No  

 

Is the roll/stock contact HTC trend along the passes going in 

the direction that agrees with real life rolling process 

knowledge?  

Yes  

Based on the results in Figure 8.10 Please comment if any 

inconsistencies or observations you may have. 

 

 

Comments 

The trend is consistent  

HTC contact expected to 

decrease along the passes 

following the decrease in 

contact length and the roll 

speed.  
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Figure 8.11. HTC cooling profile 

Table 8.13. Questionnaire 8. HTC-Cooling trends along the passes 

 Yes No  

Is the overall HTC-Cooling trend along the passes going in the 

direction that agrees with real life rolling process knowledge?  
Ok  

Based on the results in Figure 8.11 Please comment if any 

inconsistencies or observations you may have. 

Comments 

Relatively slight drops in 

HTC- cooling at pass 3. 

This could be, depending on 

HTC in roll bite and contact 

length.  

(A sudden drop in HTC roll 

bite could cause a drop in 

HTC cooling and then 

regain normality  in the next 

passes)   

. 

Validation Result Observations 

Analysis of the results presented in the sections confirms that the optimal solutions 

obtained from the proposed algorithm behave in a consistent manner with the results 

obtained from validation. For example, the exit speed at each pass increases as the 

pass progresses, and the roll/stock contact time correlates with that (as seen in Figure 

8.6 and Figure 8.9,). Also observed is the decrease in stock temperature and steady 
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increase in delay time along the pass as shown in Figure 8.7 and Figure 8.8. These are 

typical features of a continuous mill rolling, as it is the case in this research. The 

results, as confirmed by the domain experts are good optimal design solution for the 

intended, continuous mill arrangement, single and multi-pass work roll system 

problems, with presence of uncertainty in the design variables and the mathematical 

models. The result from the validation can confirm also the ability of the developed 

optimisation framework for searching solution to the intended design optimisation 

problem. 

8.3 Chapter Summary 

This chapter has demonstrated the successful application of the validation procedure 

used to verify the result obtained and the applicability of the proposed optimisation 

framework for handling the intended work roll system thermal analysis and 

optimisation problems with presence of uncertainty in the design variables and fitness 

function. Work roll system thermal analysis and optimisation problem models have 

been developed from several sources reported in the literature and information from 

rolling experts. Single and multi pass many objective, problem for minimising change 

in temperature (∆T) and radial stress (S11) on the rolls have been solved using the 

proposed GA based optimisation framework and post GA result analysis strategy. The 

post GA strategy is used to reduce the search space of the solution obtained by the 

GA, and arrive at the final optimal design solution/s for the research high dimensional 

many objective problems using the search space reduction techniques applied on the 

population of solutions found by The GA. Questionnaire are developed based on 

information from the obtained final results and presented to experts. Experts are asked 

if they agree or disagree with the result and comment if they see any inconsistency in 

the result in comparison with what is perceived normal in the real life practise. The 

questionnaires are prepared to verify the goodness and acceptability of design 

solutions obtained. It is also verify the assumption (factor inter-pass relationship) 

taken during the multi-pass system modelling and optimisation. A numerical 

representation (modelling) of hot work roll system thermal analysis and optimisation 

problem was developed using sources from expert and real life process observations. 

Following the knowledge from expert‟s the design input factors and parameters are 

identified. The knowledge acquired helps particularly for making assumption for 

inter-pass factor relationship used in the multi-pass cases modelling. The models later 
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used as a fitness function in the optimisation for searching optimal good design 

solutions for the research multi-pass problem. This verification is vital for assuring the 

validity and realistic assumptions made in the modelling and optimisation process that 

reflect the real life work roll system knowledge. As the responses from the experts 

indicate, the optimisation successfully search and found the design solution for the 

research problem as intended. The response from expert‟s shows also that they are 

satisfied that based on the information provided the design factors behaviour is in line 

with what is perceived normal in the real life practise hence the results obtained from 

the proposed approach not only identify good solutions, but also provide insight into 

the complex behaviour of the design factors relationships. 

While this chapter has demonstrated the successful application of the validation/ 

verification of the optimisation results, the next chapter gives discussions of results 

and conclusion of the thesis. 
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9 Discussions and Conclusions 

 

This chapter concludes the thesis with a summary of the findings of the research with 

respect to the aim and objectives set in chapters 3. The chapter is organised as 

follows. Section 9.1 summarises the key research findings and observations. The 

research contributions and achievement outlined in sections 9.2. Section 9.3 discussed 

the research business benefits. Section 9.4 highlights the limitations of the research 

followed by future work in section 9.5. Finally, section 9.6 concludes the research by 

highlighting the success in relation to the research objectives outlined in Chapter 3.      

9.1 Research Findings and Observations 

Roll consumption represents a major part of rolling cost. Many researches in the field 

conclude that thermal deterioration of the rolls is more severe than other wear 

mechanisms. Even though some materials such as cemented-carbide rolls are good 

enough to withstand thermal stresses due to their excellent heat conduction property, 

the cooling problem however is much more severe, since more heat is conducted into 

the roll body and when coolant applied to it. it will experience thermal shock. The 

thermal conditions at the interface between work rolls and the stock have been studied 

by a number of researchers and all universally accepted that rolling temperature is an 

important factor in determining roll wear and roll life. If the temperature 

concentration in the outer layer of the roll is not timely controlled with optimal 

cooling it can lead fatigue hence shorter roll life. The most noticeable roll wear due to 

heat is the thermal fatigue. It is observed that the existing solution strategies for work 

roll system thermal analysis and optimisation within the rolling process are not 

capable of delivering timely, high quality design solutions to the problem. The work 

roll system thermal design and analysis is mainly manual and not integrated with the 

existing rolling system design. These gaps coupled with the complexity of the rod 

rolling thermal analysis and optimisation problems, such as presence of uncertainty 

and constraints have motivate for developing more structured and scientific technique 

to search design solution that overcome these problems.  

This research aims to explore the fields of GA for developing techniques that are 

capable of searching solutions for the work roll system thermal analysis and 
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optimisation problems, characterised by constraints, uncertainty and high 

dimensionality. The key observations of this research are summarised as follows: 

9.1.1 Understanding the Research Problem 

The review (industrial and literature) presented in the thesis has identified features of 

process optimisation problems and justified the work roll system thermal analysis and 

optimisation as a process optimisation problem qualified for the research case to be 

investigated. The review carried out on the existing technique in relation to process 

quantitative modelling; GA based optimisation approaches, quantitative, uncertainty 

and constraint search space, multi and single pass rod rolling thermal analysis and 

optimisation. The review identified gaps in these areas which motivates the 

proposition of this research. 

Rolling takes place in high disturbance and extremely hot environment where live 

experimental work to improve process can be highly compromised. Although there 

are classical techniques that have been used to solve the design problem, they are 

limited in efficiency in terms of application, such as FE based computational 

techniques. The FE method although provides various detailed information it can be 

difficult to analyse and incur expensive computational cost. Literature review reviled 

that although there have been attempt to embed finite element analysis with 

optimisation algorithm so that improve the search (as well as known as online 

optimisation) it was proved that the computational cost and solution quality is still a 

problem. It is also that the complexity of the problem due to presence of uncertainty, 

which needs to be studied qualitatively, based on expert reasoning, makes this type of 

application difficult. For these reasons and the fact that due to the high dimensionality 

and multi objective nature of the problem the online optimisation is not a preferred 

way forward for solving such problem. Due to the significant modelling potential in 

representing a real life process however the finite element method is an integral part 

of the problem solving process. The finite element methods although it is a powerful 

technique for modelling and analysing, it cannot be used for identifying optimal 

solutions since they are not capable of an algorithmic search. Hence this led to the 

study and development of GA based optimisation techniques. The optimisation aims 

to find an optimal design solution for single and multi-pass work roll system design 

problem with uncertainty and constraint using thermal analysis and GA based 

optimisation technique. The real life optimisation problem is represented by a finite 
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element based quantitative model. A review of literature reviled that the current 

methods of optimising the work roll system thermal analysis and optimisation 

problem is not intelligent based. The few reported evolutionary based techniques are 

not capable of dealing with real life problem complexity such as uncertainty, high 

dimensionality and constraints. In addition, none of the reported existing techniques 

for rolling system design optimisation incorporate the work roll system thermal 

analysis and optimisation problem addressing, multi objectives, multi pass with 

presence of uncertainty in the design factors and fitness functions. To address these 

issues the research reviewed the existing techniques and strategies to realize the 

knowledge gaps. The knowledge obtained from review of literature,, industry real life 

process observations and knowledge elicitation help to understand the problem 

domain, develop a solution search technique, devise uncertainty handling techniques 

and a post optimisation result analysis strategy for searching optimal good solution 

from the populations of solutions obtained by the GA based optimisation technique. 

Review findings relevant to the research problem are summarised as follows:  

 Lack of suitable single pass process quantitative model for work roll system 

thermal analysis and optimisation problem. 

 Understanding uncertainty and sources of uncertainty in the rolling process 

relevant to the work roll system design thermal analysis and optimisation. 

 Lack of Multi-pass work rolls system thermal analysis and optimisation 

quantitative process model that address inter-pass relationship. 

 Lack of single pass optimisation framework for searching optimal design 

solution for work roll system thermal analysis and optimisation problem in 

presence of uncertainty and constraints. (Uncertainty both in the design 

variable and fitness function).   

 Multi-pass, many-objective (high dimensional) optimisation approach for the 

work roll system thermal analysis and optimisation problem with presence of 

uncertainty, in the design variables and fitness function. 

 The need for Post optimisation result analysis strategy for identifying optimal 

best design solution to the high dimensional many objective problems.   

 Although there are few techniques reported in the literature to deal with 

uncertainty in the design problems, they are limited to single objectives and 

lack real life case study application. None of the reported techniques able to 
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deal with the many objective, real life work problem system design problem 

with uncertain design variables and fitness functions   

The following section presents concluding remarks on the strategy and development 

carried out to address the problems in those areas.  

9.1.2 Quantitative Model Development    

This section discusses the approximate model-building frameworks for both single 

pass and multi-pass work roll system thermal analysis and optimisation problem. The 

modelling takes mechanical, thermal and thermo mechanical process information so 

that it can replicate the real life process. The main idea of developing the approximate 

quantitative model is to reduce the complexity of the design problem and time.  Due 

to the nature of the process, such as disturbance and uncertainty, real world problems 

such as rolling system are very complex for carrying out real life physical experiment. 

To overcome this inconvenience the research proposes and used a quantitative 

modelling framework. The proposed framework is based on statistical design of 

experiments and response surface methodology. Both of these approaches are widely 

accepted in industry for generating approximate models representing the underlying 

behaviour of the process. The fundamental advantages of the approximate model can 

be summarised as follows: 

 It provides the important correlation between the input design variables and 

output response variables. 

 It facilitates, as the 1
st
 step, the information to be used for wider application 

such as high dimensional and multi-objective complex optimisation problems. 

 Reduce time and cost by providing fast information analysis capability 

otherwise would have been difficult in online (in a real life) process 

optimisation. 

9.1.3 Uncertainty Information in Design Optimisation  

Literature review shows that uncertainty is a major part of most process design 

problems such as work roll system thermal analysis and optimisation. For realistic 

optimal design to be found, the uncertainty information needs to be considered in the 

optimisation. In specific design optimisation problems, uncertainty information in the 

form of qualitative reasoning is mainly available from experts with many years 

experience. Expert use their qualitative knowledge to solve design problem, mainly in 
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unstructured, manual trial and error form. This information however is in its basic 

form; it‟s discrete and not generic in application. It is also that when used it require an 

extensive amount of rules to capture the system behaviour and only possible for 

individual experts with many years experience. In a scientific approach this 

information can be quantified and incorporated in the optimisation so that a better 

design can be found with less time and cost. In addressing this issue the research 

proposed an uncertainty information use, by incorporating with the quantitative model 

in the algorithm based optimisation technique, so that a reliable optimal design 

solution can be found. Uncertainty in engineering design can be also from the 

approximate model. As discussed in Chapter 2, the quantitative model is an 

approximation of a real life process; hence there is a degree of incompleteness in 

accuracy. These are may be due to statistical error such as rounding of numbers, 

inherited errors from the system. The developed optimisation technique is designed to 

address this problem too when searching for optimal design solution for the work roll 

system thermal analysis and optimisation problem.  

9.1.4  Validation of the Quantitative Model 

The research has validated and tested the developed quantitative models using 

statistical measures and expert opinion. The statistical validation used to measure the 

deviation of the response model from the true simulation model. As shown in section 

5.3.10 and section 7.1.3 in all cases the models predict well. All of the models have 

high R
2
 and R values. The p-values are also, as expected in all cases are below 5%. In 

summary it appears that these models predict well and are therefore considered 

suitable for approximating the intended process and hence used in the optimisation for 

searching optimal design solution for the research problem. The models are further 

validated by experts (academic industrial) who are involved in the initial knowledge 

elicitation exercise.   

9.1.5  Quantitative and Uncertainty Information in Work Roll 

 Thermal Analysis and Optimisation  

The section discusses the observations made when addressing the optimisation 

problem using the process quantitative model and uncertainty information. The 

research is designed to search optimum design solution for single and multi-pass 

problems. However in both cases dealing with a multi or nowadays called many 
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objective optimisations problems. As a result, the optimisation frameworks developed 

in this research are based on multi-objective optimisation principles. The following 

sections presents the multi-objective optimisation technique for searching a design 

solution for the work roll system thermal analysis and optimisation problem with 

uncertainty in the design factor and fitness function, using the quantitative model as 

fitness function.  

9.1.5.1 Single-Pass, Multi-objective Optimisation using Quantitative and 

 Uncertainty Information for Work Roll System Thermal Analysis and 

 Optimisation Problems.  

In engineering and process optimisation, it is universally accepted that it is desirable 

to find the best set of compromise solutions to multiple objective problems. As it is a 

compromised solution however the results do not always give the desired solutions 

but optimal solution. The thesis has adopted a GA based technique to search best 

balanced solution for design and optimisation of work roll thermal design problem. 

The thesis proposed the GA based technique for addressing the multi-objective 

problems with uncertainty. The review of literature disclosed that GA based 

techniques are robust and offer the potential for achieving a good diverse set of near 

optimal solutions when applied to real world problems. This led to the adoption of the 

technique in this research. However the AS_IS GA based techniques are not able to 

address complex problems hence required to be made available in such a way that it is 

fit to the problem specific requirements, the problem requirements such as dealing 

with uncertainty and constraints. The GA based technique called NSGA-II 

optimisation techniques proposed, in this research, is designed to accommodate these 

requirements. The quantitative models discussed above were adopted as a fitness 

function in the multi-objective optimisation framework. The research applied the 

developed fitness function model to analyse the performance of an individual design. 

Previously explained validation of the quantitative model indicates a satisfactory 

consistency with the underlying characteristics of designing the real life work roll 

system thermal analysis and optimisation. This gives assurance that, provided the 

optimisation algorithm could find the set of near optimal solutions, it is likely that the 

model developed will be suitable for optimisation purposes. The optimisation 

framework has also validated for its convergence and diversity hence ability for 

searching solution for the intended multi-objective and complex optimisation 
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problem. The validation is performed based on observation made on result from the 

Grid (exhaustive) search and the developed algorithm search. As indicated in Chapter 

6, Figure 6.9 the comparison of the result of the random search and the result achieved 

from the algorithm confirms that the solution algorithm has been able to converge to 

the near Pareto front with a good spread of solutions. This shows that the optimisation 

algorithm is capable of finding a near optimal solution, confirming its ability for 

dealing with the intended multi-objective optimsation problem. The algorithm further 

validated by repeating the same procedure but this time comparing the results from 

random search from the algorithm (problem with no uncertainty) and result from 

algorithm with presence of uncertainty. The results are conclusive, showing that the 

Pareto front of the search algorithm with presence of uncertainty lying close to the 

true Pareto front with good spread of solutions, This suggest that the proposed 

algorithm is capable for searching the design solution for the problem with 

uncertainty. Presence of uncertainty in the decision space, uncertainty in the fitness 

function and uncertainty both in the decision and fitness function have been 

experimented. In all cases the algorithms able to find optimal solution as expected.  

Conclusion of research overall validation is presented in Section 9.1.6.    

9.1.5.2 Multi-Pass, Many-objective Optimisation using Quantitative and 

 Uncertainty Information for work roll system Thermal Analysis and 

 Optimisation Problems 

The many objectives (more than two objectives) GA based optimisation framework is 

a technique designed to deal with high dimensional (many objective) problems with 

uncertainty. The multi-objective optimisation technique discussed in section 6.1 

selected due to its flexibility and adaptability so that can be tailored to fit to the nature 

of the research problems. The technique is used for solving the optimisation problems 

with uncertainty in the design variables and fitness functions, regardless of the 

problem dimensionality such as number of objectives and number of design variables. 

It has been applied for searching solution for single pass rolling using quantitative 

models developed from data taken at roll surface and at various depths below the 

surface before extended to search design solution for multi-pass problem. In the single 

pass problem case the technique aim to increase the search space so that robust design 

solution, tolerate the effect of temperature from roll surface to depth below the 

surface, can be found. In principle under normal circumstances, if right type of roll 
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selected for specific type of rolling process and other associated rolling conditions, 

such as cooling, the temperature of rolls remain in the outer layer of radius (Ri) of the 

roll. Temperature below the surface at radius (ri) should remain insignificant. The 

term (ri) is the corresponding radius of the work-roll below which transient 

temperature variations during rolling can be considered insignificant. Thus, it is 

assumed that only the outer layer of thickness of the roll experiences thermal cycling. 

As shown in the research, there are various contributing factors determining the depth 

of the heat affected area Ri. If the heat penetration zone reach beyond the radius Ri, 

and accumulated to the ri and beyond, it will cause rapid damage to the roll. Depth of 

heat penetration zone can be determined experimentally and also as used in this 

research using mathematical relationships of thermal, mechanical and process factors 

of the rolling process.  

The developed framework for single-pass work roll system thermal analysis and 

optimisation problem with uncertainty then extended to include the multi-pass 

problem with uncertainty in the design variables and fitness function. The multi-pass 

quantitative model is developed to represent a complex behaviour of a real life multi-

pass rolling process in a simplified and controllable manner. Unlike the single pass 

the multi-pass problem design and optimisation needs to address the important inter-

pass relationship so that the continuous multi-pass rolling mill characteristics can be 

addressed. The important characteristics such as rolling system design factor 

dependencies among passes and their dynamic behaviour from one pass to the next. 

Those multi-pass rolling behaviours are accommodated in the multi-pass models 

before used in the optimisation as a fitness functions. Optimisation with high 

dimensional problem, with many objective search spaces has the obvious 

shortcomings. This is the inability to visualise the Pareto front. Here the GA based 

optimisation technique gives the users only a population of solutions to choose from 

but not the most desired design point. To overcome this problem the research 

proposed a search space reduction techniques that help to gradually filter the search 

space of the population of solutions found by the algorithm and arrived at the desired 

best optimal design solution or solutions. The post optimisation technique applied for 

identifying the best optimal design solution for the intended many objectives research 

problem from the population of solutions obtained by the GA. Concluding remark 

about the proposed post GA result analysis for searching the final best optimal design 

solution is presented in the following section. 
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9.1.5.3 Post GA Result Analysis for Identifying Optimal Design Solution   

The optimisation run discussed above have produced the design solution for the single 

and multi-pass problems. The GA based optimisation search solutions (Pareto set) that 

are good, compromised between all the objectives in the problem. The post GA results 

search space reductions strategy discussed in section 6.4.3 and 7.2.3  is proposed to 

identify the final best optimum solution/s from the population of solutions set 

identified by the GA. The strategy for searching the final optimal design solution 

applied in the single and multi-pass many objective optimisations problem. The post 

process strategy is based on applying weight vector in the objective space. Later the 

weight vector average are calculated and based on the average the objectives are 

prioritised within the space. The highest weight average given the highest priority 

hence recognised as the most important weight vectors. In the same way all other 

weight average are also ranked. According to weight average priority, the weight 

vectors are then rearranged within the space in descending order. Next is the 

application of search space reduction of the rearranged weight vectors in the objective 

space. The reduction is based on a percentile. The percentile is determined through 

experiment. Applications of percentile to individual ranking weight vector gradually 

reduce the search space and arrived at the final best optimal design solution to the 

problem. Post GA result analysis is an important step of the design solution search 

process. In real life engineering design and optimisation problems such as work roll 

system thermal analysis and optimisation, identifying the final best optimal design 

solution has an advantage, particularly saving time. Engineers can use the identified 

best design solution in the process directly instead of having a population of potential 

design solutions to choose from.   

Summary of the post GA result analysis strategy are as follows: 

 Convert (the result from GA) in the objective search space in to weight 

vectors; hence all the values are normalized by giving them values range 

between 0 and 1. The weight indicates how important the vector is with 

respect to the other vectors in the same row. The higher the weight is the better 

with respect to the formulation of the problem. In this research a minimisation 

problem formulation sought hence a vector with high weight indicates a better 

solution. 
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 Calculate the average weights of vectors that are in the same column within 

the search space. This is an important step in the process because it helps to 

find a common ground for the various weights vectors in the columns. The 

calculated average weights of vectors make it easier to make comparisons with 

other vectors in columns within the search space. 

 The vectors weight averages are compared and the weight with higher average 

is given the highest priority/rank. The highest vector average is most important 

with respect to the problem formulation. The highest weight average 

considered superior to all other objectives in the search space. The vectors of 

this average are then arranged in descending order. The superior average 

weight vectors found are the best solution set found in the objective space.     

 The vector weight are then arranged within the search space in descending 

order, with the highest weight vector average found above is 1
st
. This is an 

extra step designed to reduce the search space so that the final best optimal 

design solution can be filtered out. The search space reduction carried out 

using a percentage. A repeated application of percentage in the search space 

(through all weight vectors) leads to the identification of the final best optimal 

design solutions.    

The identified best design solutions then projected back in to the original design 

solution results from GA for locating the actual results parameters in the objective 

space and the corresponding design solutions factors parameters in the decision space.    

9.1.6  Research Validations 

There are a number of steps taken to measure the convergence of the results in the 

optimisation and also the validity of the final solutions with respect to the intended 

research problem. Results were obtained using the developed process model, which 

had its own statistical and expert opinion based validation process. The validation of 

procedure in the research summarised as follows: 

Pareto Convergence Test 

As observed in all algorithm based optimisation research work reviewed in the 

literature, none of them are proposed mechanisms that help to determine or predict in 

advance the convergence of solutions in the optimisation. In majority of the cases 

convergence criteria test are based on trial and error. In this research a similar 
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technique has been adopted for testing convergence. The experiment aimed to 

determine the size of population and generation needed to guarantee convergence with 

minimal computational time. The experiment conducted as the following:  

Before deciding the population and generation in the optimisation, there are 10 

independent GA runs (with varying generation and population size) have been 

performed. Each run repeated 10 times, but with similar generations. A total of 100 

runs are performed. After the experiment the population 400 and generation 1000 has 

been selected. These results is from the typical population and generation set obtained 

from 10 runs giving smooth ,continuous and convex Pareto front. In almost all cases 

examined, the runs give similar results, i.e. no improvement recorded hence the set 

from the final run (10
th
 run) taken as final. 

Random Grid Search  

A random grid search also conducted in order to get an indication of the search space 

and also used to identify the likely presence of a Pareto front in the design problem. 

The result from grid then compared with random solution from proposed GA based 

optimisation technique. The comparison indicates a clear convergence. The result is 

converged to the near optimal Pareto front locating a reasonable spread of multiple 

optimal solutions. The result indicates the ability of the GA finding the best optimal 

design solution to the problem. The presence of a Pareto front also confirms the 

conflicting relationship between the objectives, change in temperature and radial 

stress on the roll.  

Result Validation Qualitatively (Expert Opinion)  

Later the results are verified with the rolling experts and academics for validity. 

Experts asked to verify if the design solutions and design factors behaviours (trend) 

are matched with what is perceived realistic in real life process. This is an important 

part of the validation since it represent expert judgements of the result obtained from 

the optimisation and its relevance to real life work roll system thermal analysis and 

optimisation problem. The verification must prove that the result obtained represents 

the intended behaviour as recognised by the domain experts. The verification is 

carried out supported by questionnaires asking engineers to compare the results and 

design factors behaviour exhibited by the optimisation to what is the perceived normal 

according to their experience in real life practise. As presented in Chapter 8, analysis 
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of feedback from questionnaires indicate that experts are satisfied that the algorithm 

find solutions for the work roll system thermal analysis and optimisation problem. 

Academics asked to assess the optimisation technique solution searching activity, 

solution obtained and its relevance to the case study problem. Section 9.2 presents the 

overall achievements and contribution of the research. 

9.2 Research Achievement and Contribution 

This research has made a significant contribution to the understanding and handling of 

uncertainty, quantitative information and high dimensional many-objective multi and 

single pass work roll system thermal analysis and optimisation. The research has 

provided a framework for modelling quantitative and uncertainty information from 

the finite element data, suitable for simulating process problems. The research has 

also proposed two optimisation frameworks for handling many-objective and high 

dimensional constrained design problem with presence of uncertainty in the design 

space and fitness function. A percentage reduction method introduced to identify the 

final best optimal design solution from the population of solutions found by the 

optimisation framework. The contributions to knowledge made from the research 

work presented in the thesis are outlined as the followings:  

 The research carried out a literature review to explore the capabilities of 

existing techniques for optimisation and addressing the quantitative, 

uncertainty and constraint information in single and multi-pass rolling process, 

for searching optimal robust design solution for work roll system thermal 

analysis and optimisation problem. The findings from the literature review 

disclose the need for suitable techniques to address these issues. The need has 

led to the development of the frameworks presented in the thesis. 

 Development of a modelling framework for building a process models for a 

single pass work roll system thermal analysis and optimisation. The proposed 

methodology used for generating process models from numeric finite element 

data. The developed (6 quantitative) models are used later in the optimisation 

as fitness function for solution search for the design problems.   

 Developed a quantitative work roll system thermal analysis models to replicate 

many objectives, multiple passes showing relationship between the passes.  
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 The research has developed multi-objective framework for searching optimal 

design solution for work roll system thermal analysis and optimisation for 

single pass rolling, presenting a novel technique for addressing quantitative 

information and uncertainty  in the design variables and fitness function.  

 Demonstrate the application of constraint criticality of design solutions and 

rank criticality so that give users options to choose a design based on the 

constraint criticality to the design and its relevance in relation to requirements. 

 Developed many objective work roll system thermal analysis and optimisation 

framework for addressing multi-pass optimisation problems with uncertainty 

in the design space and fitness function.  

 Introduce a technique for post optimisation result analysis for identifying best 

optimal solution for the high dimensional design problem, from the population 

of solution found by the algorithms.  

9.3  Business Benefit 

The ultimate goal of researches is to add value to business and the value is measured 

by the benefit the business will attain from the research. Some of the main business 

benefit of this research are summarised as follows:    

 Knowledge sharing and improve information efficiency 

 Knowledge capture and reuse   

 Minimised process and production cost  

 Minimised tool changing time, repair time and production down time due to 

tool change over. 

The business, in which the research associated to, such as new product development 

benefit from the modelling and optimisation developed in this research. Rolling cost 

estimated to be 5% to 15% of the overall steel production hence establishing an 

optimal roll thermal design is vital to prolong rolls working life. Longer roll working 

life reduce time required for maintenance such as roll dressing and cost of ordering of 

new rolls. The optimisation frameworks have also a greater impact on the business in 

the form of knowledge sharing, knowledge capture and reuse, as well as time and cost 

saving. The source of those impacts to the business can be summarised as follows:    

As stated in the thesis the developed optimisation framework is able to generate 

multiple optimal solutions in a single run for the given work roll system thermal 



 

267 

 

analysis and optimisation problem. This means that a set of good optimal design 

solutions for many objectives, constraints problem with uncertainty is found in less 

time and cost i.e. the more costly and time consuming, iteration, trial and error of 

manual technique will be avoided. More over it also improve the quality of the 

solution since the techniques has the ability to explore large design space in short 

period of time giving good quality solution. For example the technique searches a 

design space to find optimal solution for work roll system thermal analyses and 

optimisation problem at roll surface and at depth below the surface in a single run. 

Similarly design solution for multi-pass arrangement process problem found in a 

single run. The technique also able to accommodate the ever increasing concern of 

rolling engineers, i.e. the complex characteristics of the rolling thermal analysis and 

optimisation problems such as uncertainty, constraint, high dimensionality and inter-

pass relationship in the multi-pass rolling process. The modelling and optimisation 

framework was developed taking initially quantitative and qualitative information 

from various experts from the problem domain. Knowledge captured from experts is 

an integral part of the modelling and optimisation process. Since the rolling thermal 

analysis and optimisation problems behaviour is a specialised subject, it can only be 

fully understood by engineers with many years experience. Most of the true nature of 

the process characteristics is in the engineers mind. Capturing this knowledge and 

incorporate it in the modelling and optimisation make that knowledge to be reused 

and available to wider users. The wider users can use this stored knowledge in timely 

bases when required. Another most valuable aspect of the knowledge capture and 

reuse is that it provides opportunities to address problems that could not be solved 

with quantitative information. In this research incorporating design variables and 

fitness function uncertainty in to the optimisation for searching design solution to the 

problem is one of the objectives. Uncertainty information is mainly qualitative in 

nature. Knowledge elicited from expert is the main source used to understand and 

quantify the uncertainty. The knowledge captured and incorporated in to the 

optimisation help to improve the framework in the following way. 

 Improve information efficiency so that a more realistic problem solution can 

be found.  

 The uncertainty knowledge captured and incorporated in to the framework can 

be reused repeatedly.  
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 Helps to make better and reliable decision making. 

These have a valuable reflection on the business and contribute to engineers work 

satisfaction. These achievements and its business benefit presented in the sections 

above confirm that this research has fulfilled the anticipated research objectives 

outlined in Chapter 3. The achievement expected to enhance process to the business 

section associated to the research domain in particular, and in the wider context add 

value to the company. 

9.4 Limitations 

The research achieves the aim and objectives set out at the start of the research. The 

section above presented also the business benefits from the research achievements to 

the company.  The research was conducted within the parameters of certain conditions 

that are directly relevant to the research problem. Besides due to cost and time there 

was a need to prioritise and limit the conditions of the research. This section outlines 

the limitations in the approximate modelling and optimisation. 

9.4.1 The Approximate Model for Work Roll System Thermal 

 Analysis and Optimisation (Single-Pass) 

The approximate model developed is validated and successfully applied in the 

optimisation as fitness function for searching optimal solution to the design problem 

as intended.  In future work however the modelling can be improved to address the 

limitation in the following areas: 

 The approximate model is developed to replicate the rolling process thermal, 

mechanical and thermo-mechanical behaviours and design factors associated 

to them. In the modelling however only few most relevant factor among the 

large number of potentially important design factors are selected. This is due 

to the fact that accommodating large number of factors will have a greater 

impact on computational cost.  

 This research incorporates the uncertainty (data accuracy compromises) that 

may occur during data transfer between tools, in this case for example data 

from finite element analysis and statistical tools. Although the possible loss of 

data accuracy has compensated in the fitness function during the optimisation, 

the data collecting and handling is manual work, it is time consuming and 

requires considerable space for data storage.  
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9.4.2 The Approximate Model for Work Roll System Thermal 

 Analysis and Optimisation (Multi-Pass) 

In addition to the general limitation of the approximate model behaviours outlined in 

Section 9.4.1, the multi-pass approximate models have the following limitations: 

 The approximate process models are representing the fundamental rolling 

theories. In most cases the modelling of multi-pass process is formulated with 

many assumptions. These assumptions may influence the quality of the models 

in capturing the real life process behaviour. They are prone to lack of absolute 

completeness and over-simplification.  

 The approximate process models are suitable for continuous forward rolling 

process where the design variables from one pass influence the performance of 

the subsequent pass. Hence is not suitable for other type rolling arrangements 

known as an unordered multi-pass problem such as backwards and forwards 

process.   

9.4.3 The Optimisation Framework for Single and Multi-Pass 

 Problem 

Limitation of the framework for handling the many objectives single and multi-pass 

optimisation problem is highlighted as follows.  

 The framework developed for handling the optimisation problem characterised 

by design factor uncertainty where a repeated evaluation of design points 

required before selecting samples of estimation used in the optimisation. The 

repeated action will increase the computational time. This problem is more 

noticeable when the dimensions of the design factors in the process increased.  

 In the case study the multi-pass optimisation framework uses fitness functions 

of a multi-pass continuous forward rolling process. It is important to consider 

optimisation problem regardless of the process type, for example to include 

such as unordered process and back and forth type process.   

9.5 Recommended Future Work 

This research has fulfilled its objectives, outlined in Chapter 3. However as any other 

researches this thesis also constrained with time, resource, and it is designed to focus 

on a specific issues that needs to be studied. For this reason therefore the research 
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cannot cover issues considered less relevant but may have some influence surrounding 

the research topic. Those issues not covered in this research could be an interesting 

topic to consider, thus recommended for further development. The recommended 

future work can be summarised as follows:    

 Multi-pass modelling is an approximation of real life process problem; the 

approximation is based on assumption made on the nature of the process. The 

assumption has impact on the optimisation framework developed. It is also 

known that the modelling is the result of the design factors selected out of the 

large number of potentially important process factors. These may influence the 

design solution of the intended problem and may not always be the best in 

searching a realistic solution. Further study could consider a single process 

framework for modelling and optimisation with large number of input design 

variables with integrated problem behaviour such as uncertainty. This could be 

done by developing improved algorithm that addresses such information. 

 The developed modelling framework is for work roll system thermal analysis 

and optimisation problems, specifically concerning a forward continuous 

rolling process. For this reason some of the rolling characteristics not directly 

relevant to the forward and continuous work roll system process are not 

included. Therefore the future work could be to develop a generic modelling 

framework addressing multi-pass optimisation problem incorporating rolling 

characteristics regardless the type of the process. Considering pass relationship 

ordered or unordered mill arrangements. 

 Rolling process has inherent features, where the behaviour on one pass will 

determine the behaviour of the next. For example design factors relationship 

among passes. In this optimisation framework, these unique inherent 

relationships considered as predictable. It would be very interesting and 

innovative see those pass relationships as unpredictable and dynamic in nature.  

9.6 Conclusions 

This section gives the thesis conclusion, and summarised what is achieved with 

respect to the aim and objectives stated in Chapter 3. The section outlines the 

conclusion of each of the research objectives as follows:  
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 The thesis presented a critical review of the literature on rolling thermal 

process, design optimisation and GA based techniques in relation to multi-

objective constraint, quantitative and uncertainty search space in single and 

multi-pass optimisation environments. The review reveals that although there 

are techniques for addressing single objectives single pass problems, there is a 

lack in recognising presence of uncertainty information in the optimisation. 

There is also a research gap in addressing constraint problem in presence of 

uncertainty in the design variables and fitness function. The review also 

reveals that multi-pass work roll system thermal analysis and optimisation is 

not fully explored, although there are few study have been carried out they 

lacks addressing relationships between passes and uncertainty associated to 

them.  

 This research has demonstrates that approximate quantitative models of single 

pass work roll system thermal analysis and optimisation can be developed 

using low cost experimental design principles and finite element analysis.  

 The novel GA based multi-objective framework, developed proves that the 

quantitative and process uncertainty information can be used in work roll 

system thermal analysis and optimisation to obtain multiple good design 

solutions. The framework proved that the application of central limit theorem 

in collaboration with the robust non dominance criteria optimisation technique 

proposed can successfully deal with the optimisation problem with uncertainty 

in the design variables and fitness functions. 

 The research demonstrates the importance of the application of constraint 

criticality in the design solutions. The principle gives designers an option to 

choose a design depending on its constraint criticality and its relative 

importance to requirements.   

 The research has proved that multi-pass work roll system thermal analysis and 

optimisation model can be developed based on process factors functional 

relationship between passes.  

 The multi-pass work roll system thermal analysis and optimisation framework 

developed proves that high dimensional, multi-pass design problem with 

uncertainty can be addressed using the GA based many-objective optimisation 
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technique and the fitness function models developed based on inter-pass 

factors functional relationships.   

 The research introduce post optimisation result analysis; search space 

reduction based on percentage, for the research many objectives, high 

dimensional problem, and proves that best optimal design solution can be 

identified from the population of solutions obtained by the GA based 

optimisation technique.   

The points outlined above conclude that this research has successfully proposed 

approximate modelling frameworks to develop meta-models. Based on the proposed 

framework a number of work roll system thermal analysis and optimisation models 

have been generated. The models are validated to evaluate their performance before 

used in the optimisation as a fitness functions. The research developed an optimisation 

framework to address work roll system thermal analysis and optimisation problem 

with constraint and presence of uncertainty in the design variables and fitness 

function. It also shows the development of the multi-pass work roll system thermal 

analysis and optimisation model based on design factors functional relationship 

between passes. The models are used as fitness function in many-objectives, multi-

pass optimisation framework for searching optimal good design solutions.  

The optimal design solutions obtained, using the approximate process models as 

fitness functions and the optimisation framework indicate that the GA based 

optimisation‟s capacity for addressing the intended complex work roll system thermal 

analysis and optimisation problems.    
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Appendix-A 

Industry Survey, Current Practise Questionnaires & 

Example Transcript 

Design Optimsation Techniques in Industry  
A Survey of Techniques Current States  

The survey, as part of PhD research, is sponsored by: EPSRC and CORUS 

 
Yoseph Tafesse Azene, Rajkumar Roy 

Cranfield University 
 

 

Organisation: ………………………………………… 

 

Address: …………………………………………….... 

 
Name: ……………………………………………….. 

 

Job Title: …………………………………………….. 

 

Role in the Organisation: …………………………...  

 

Years of Experience in Design: ……………………... 

 

Telephone Number: ………………………………….. 

 

Fax Number: …………………………………………. 

 
E-mail: ……………………………………………….. 

 

 

The information provided will only be used for academic and research purposes. If you agree please  

 

Tick the box:                  

 

Interview conducted by: ……………………………… 

 

Date:……………………. 

Time:………………….... 

Venue:………………......  

Purpose of Questionnaire: 

The purpose of this study is to understand state of the art practice in design optimisation across the new 

product development life cycle. The major focus is in the area of algorithm based optimisation. The 

questionnaire provides a structured requirement capture and consists of three sections. A multiple 

choice sections, section to answer in your own words and a self assessment section (optional)  

 

Contact address: Cranfield University, Cranfield, Bedfordshire, MK43OAL, UK 

Tel: +44 (0) 1234754086, Fax: +44 (0) 1234750852 

E-mail: R.roy@cranfield.ac.uk, Y.tafesseazene@cranfield.ac.uk 

mailto:R.roy@cranfield.ac.uk
mailto:Y.tafesseazene@cranfield.ac.uk
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Section A.1. - Multiple choices   

This section of the questionnaire is designed to understand the general design and 

design optimisation practice involved in your company and your involvement in those 

activities. 

Q1. Describe the component you are involved in designing now or in the recent 

 past. 

A. Name …………………………………………………………………... 

B. Usage………………………………………………................................ 

C. Complexity……………………………………………………………... 

D. Size……………………………………………………………………... 

Q2.  Select the stage of the design process you are involved in: 

A. Feasibility stage  

B. Styling stage  

C. Other, please specify 

Q3.  How do you evaluate a design against the criteria? 

A. Manually, using experience  

B. Using CAE tools ,such as FEA, CFD 

C. Using analytical models, developed internally 

D. Others, please specify 

Q4.  If you are using non algorithm technique to improve/optimise your design, 

 how much time do you spend relative to the total design cycle?  

A. Below 25% 

B. 25 to 50% 

C. 50 to 75% 

D. above 75% 

Q5.  If you are using algorithm based technique to improve/optimise your design, 

 how much time do you spend relative to the total design cycle? 

A. below 25% 

B. 25 to 50% 

C. 50 to 75% 

D. above 75% 
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Section A.2.   

The aim of this section is to capture experts experience and thought as well as 

industry requirements on existing optimisation technique. The section also allows 

experts to outline the limitations in the algorithm based optimsation technique and 

inhibiters the industry has to use algorithm approach in the optimsation.   

Q1.  Describe how you optimize the component design?  

Q2.  Have you documented your design optimsation or design improvement 

 process? (Could we have a copy please?) 

Q3.  How much time do you spend (% of your time) in improving or optimizing 

one     initial design? 

Q4.  What criteria do you use to optimize your design? 

Q5. Do you have a process to develop a model? 

Q6. How do you measure the efficiency of the design process? 

Q7.  Are you trying to achieve the best design or an improved design? How 

 frequently would you use optimisation?  

Q8.  Do you use any commercial software (e.g. I sight) for the optimisation? Please 

 describe why you use them. How long have you been using the software? 

Q9.  What criteria you would like to use to evaluate commercial optimisation 

 software? 

Q10.  What are the drawbacks and limitations in the current design optimisation 

 process? How they could be improved? 

Q11.  Are the existing design optimisation techniques you are using algorithm 

 based? Fully or partially 

Q12.  If you are using algorithm based design optimisation techniques, what are the 

 draw backs and limitations the technique has? How they could be improved? 

Q13.  What advantages algorithm based design optimisation technique has in 

 comparison to  any other optimsation technique you know?  

Q14.  If your design improvement activities involve algorithm based technique, what 

 particular tool/tools you are using?  

Q15.  If your design improvement activity involves conventional/traditional based 

 technique, what particular tool/tools you are using?  

Q16.  Could you specify please if your design improvement activity involves a 

 combination of both conventional and algorithm based, hybrid, technique? 
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Q17.  From your own experience what do you think needs to be improved in the 

 current design improvement/optimisation technique you are using?  

Q18.  Please write any general remarks you wish to make on GA based design 

 optimisation, and mention if you have any other suggestions.   

Section A.3. Self assessment section (optional) 

The section is designed for evaluation purpose only, and to make sure your answers in 

the questionnaire is evaluated in the right prospective. If you are happy to answer 

please circle one of the numbers below.  

If 1 is the best and 5 for worst, where can you put yourself in terms of? 

Engineering design: 

A. Knowledge 1 2 3 4 5        

A. Experience 1 2 3 4 5  

Design optimisation 

A.       knowledge  1 2 3 4 5 

B.        Experience  1 2 3 4 5 

Optimisation algorithms 

       A.       Knowledge 1 2 3 4 5 

       B.       Experience 1 2 3 4 5 

Transcript – A 

The transcript reports interviewing session made with engineers in 4 companies, 

ladled company A, B, C and D. The purpose is to assess the current status of design, 

optimisation and techniques in industry. The descriptions below are answers given by 

the majority of the participants for same question ask. In some cases unique answers, 

given by specific companies are also included. The interview was supported by 

questionnaires. The questionnaire has two sections. The transcripts from the two 

sections are given below:      

Section A.1. - Multiple Choices 

 

Q1 & Q2 are questions related to participant personal responsibility and associations?  

Q3.  How do you evaluation the design against the criteria? 

Answer (summery from 4 companies)           

About 65% are depend on manual /expert experience  
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About 20 % are depend on CAE tools  

10 % CFB, customer feed back       

Q4: If you are using non algorithm technique to improve/optimise your design, how 

much time do you spend relative to the total design cycle? 

Answer  

 Existing technique is iterative and takes 25% to 50 % of the total design cycle 

Q5: If you are using algorithm based technique to improve/optimise your design, how 

 much time do you spend relative to the total design cycle? 

Answer 

GA based optimisation technique is not applicable   

Section A.2.  

The aim of this section is to capture experts experience and thought as well as 

industry requirements on existing optimsation technique. The section also allows 

experts to outline the limitations in the algorithm based optimsation technique and 

inhibiters the industry has from to using algorithm approach in the optimsation.   

Q1: Describe how you optimise the component design?  

Answer 

Cost reduction is a major factor in the optimisation 65%  

Quality and criteria                                                   35% 

Q2: Have you documented your design optimsation or design improvement process? 

(Could we have a copy please?) 

 Answer 

No formal documentation / some sections in the departments may have some form of 

documentations but not mandatory 

Q3: How much time do you spend (% of your time) in improving or optimising one 

initial design? 

Answer 

Time spent to improve one initial design will take 40 % to 50%, 

Q4: What criteria do you use to optimise your design? 

Answer 

Cost is the main criteria used to optimise design, but used a method called QFD to 

define relative importance. (The main drive is maximising profit) 

Q5: Do you have a process to develop a model? 
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Answer 

Not a process but steps to follow, mainly manual and iterative  

Q6: How do you measure the efficiency of the design process? 

Answer 

There is no recognised way for measuring efficiency, but other manual ways like: 

 Performance against target 

 Output / cost 

 Company C also say compare man hour spent with other design centres within 

the organization. 

Q7: Are you trying to achieve the best design or an improved design? How frequently 

would you use optimsation?  

Answer 

In mass production priority given to achieve a design with balanced cost, quality and 

timing, the design may not be the best design,  

Q8: Do you use any commercial software (e.g. I sight) for the optimsation? Please 

describe why you use them. How long have you been using the software? 

Answer 

Most participant answer NO,  

Company A & B says there is limited availability, mostly in the R&D.   

Q9: What criteria you would like to use to evaluate commercial optimsation 

software? 

Answer 

 Re- usability of results, optimisation time, generic nature,  

 Show efficiency improvement needs, return on invested capital 

Q10: What are the drawbacks and limitations in the current design optimsation 

process? How they could be improved? 

Answer 

 Inefficient, lack of rigor in documenting progress, not have access to all tools. 

 late Time to get test feedback, late changes of spec by market requirement   

 Not supported by system, impact on changes on spec. are not clear until 

requested of design. 

Q11: Are the existing design optimsation techniques you are using algorithm based? 

Fully or partially 
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Answer 

 Company A, B and C say they are currently using GA based technique in 

design but very limited,  

 Company D say not using GA based optimsation technique in their design 

process      

Q12: If you are using algorithm based design optimsation techniques, what are the 

draw  backs and limitations the technique has? How they could be improved? 

Answer 

Not in a position to give full comparison or assailment, 

Company A says computational speed may be one that needs improvement in the GA 

based techniques  

Q13: What advantages algorithm based design optimsation technique has in 

comparison to any other optimsation technique you know?  

Answer 

 Re-usability and standardization, 

 Would improve management of change 

 In comparison to the manual technique we have, algorithm based technique is 

faster.  

Q14: If your design improvement activities involve algorithm based technique, what 

particular tool/tools you are using?  

Answer 

Design improvement activities are mainly based on traditional approach.  

Q15: If your design improvement activity involves conventional/traditional based 

technique, what particular tool/tools you are using?  

Answer 

The following are most commonly used approaches and techniques  

 Common mathematical calculations, mainly in excel and I-DEAS  

 Kepner trago KT, OFD, FMEA, FTA, FEA, FMEA 

Q16: Could you specify please if your design improvement activity involves a 

combination of both conventional and algorithm based, hybrid, technique? 

Answer 

Company B, C and D says used conventional  

Company A says currently using limited combination form.   
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Q17: From your own experience what do you think needs to be improved in the 

current design improvement/optimsation technique you are using? 

Answer 

 Not standardized, no recognized process that reflects the most appropriate  

optimisation technique 

 Be able to capture /document process, current method, lack for global strategy. 

 Speeding up communication whilst identifying the risk and often changes. 

Q18: Please write any general remarks you wish to make on GA based design 

optimsation, and mention if you have any other suggestions. 

Answer 

Companies are universally expressed that  

 Company C say based on information about GA based technique they have, it 

would be beneficial to have the technique and use it but a restriction due to the 

need for a global lead direction and complex global nature of the company.      

 Company A, B and D says, the need for integrated, robust and efficient 

process based design optimisation is necessary, may be GA will fill that gap in 

the future.   
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Appendix-B  

Industry Survey, Work roll System Current Practise 

Questionnaire Themes & Probe Aim 

Work Roll System & Problems, knowledge 

Elicitation Questionnaire Themes 

Table B.1. Work roll system in rolling, current practice questions 

Qs  Survey Question Survey Aim 

Q1 What is the cost of rolls To gauge the cost associated to rolls 

Q2 What are roll design criteria To fully understand rolls and key design criteria 

Q3 How do you measure rolls data  
To find out the measurement standard and accuracy, 

presence of uncertainty    

Q4 
How do you measure roll 

thermal  profile 

To understand measuring and analysis of thermal issues 

in the roll, accuracy and  uncertainty in measurements  

Q5 

What is the percentage of cost 

of rolls from the total 

production cost? 

To understand depth of the problem and justify the merit 

of the research domain for study 

Q6 

What are the main causes of roll 

damage that trigger higher roll 
cost?   

To identify the cause and source of the problem,  

Q7 
How do you maintain roll from 

damage? 

To understand if there is a scientific procedure in place 

or it is a manual approach  

Q8 
How do you design and 

optimise rod rolling? 

To understand the current activity of the design and 

optimisation process for rod rolling thermal analysis 

Q9 

Is the design and optimisation of 

the rolling process includes 

thermal analysis?    

To realize for the extent the rod rolling thermal analysis 

and optimisation integrated to the existing techniques 

Q10 

What do expect or benefits will 

you be looking for from this 
research project? 

To gauge the overall research outcome expectation  
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Table B.2. Work roll system Thermal Analysis and optimisation Questions 

Qs  Survey Question Survey Aim 

Q1 

What are the setup parameters, 

work roll thermal design 

parameters? 

To identify the nature of the set-up, parameters 

involved and parameter interactions 

 

What are the constraints & 

parameters that must hold to 

satisfy rolling  thermal design 

&optimisation requirements 

To understand constraints and limits in the real life rod 

rolling thermal analysis and optimisation  

Q4 
Is the functional relationship 

between passes can define the real 

life process? 

To understand input / output relationship among 
passes and also visualize if process modelling is 

possible using factors functional relationship 

Q5 

Do you currently consider process 

uncertainty in the design & 

optimisation in the rod rolling 

thermal analysis  

To divulge level of the work roll system thermal 

analysis and optimisation process  

Q6 

Do you have record of study 

made for process uncertainty 

relevant to rod rolling thermal 
analysis and optimisation  

To understand the uncertainty and source of 

uncertainty relevant to the rod rolling thermal analysis 

and optimisation 

Q7 

What are the conditions,  factors/ 

parameters  each pass experience 

during the rolling process 

To identify the nature of the interface of inputs 

relationship among passes and to reveal specific or 

generic nature of factors and parameters. 
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Appendix-C 

FEA Model Specifications 

 

Model assembly specification 
 

Table C.1. FEA problem model meshing part boundary condition 

 

Material, 

name=highcr_shell 

 

Material, 

name=sgac core 

 

Material, 

name=nozzle 

 

Material 

Material=leadedsteel 

stock_truss 

Conductivity 

18.4,20. 

Density 

7.5833e-09, 

Elasticity 

215000., 0.3, 20. 

Expansion 

1.3e-05, 20. 

Inelastic Heat 

Fraction0.9, 

Specific Heat 

4.78e+08 

Conductivity 

48.58,20. 

Density 

7.172e-09, 

Elasticity 

167000.,0.3,20. 

Expansion 

1.22e-05, 

Inelastic Heat 

Fraction0.9, 

Specific Heat 

4.78e+08, 

Conductivity 

55,50. 

Density 

0.02075, 

Elasticity 

812000. 0.281,20. 

Specific Heat 

5.86e+08 

(Beam Orientation) 

Table C.2. FEA problem model part interaction property 

Table C.3. Output request from FEA simulation  

OUTPUT REQUESTS 

** 

**Restart, write, frequency=0 

** 

** FIELD OUTPUT: F-Output-5 

*Output, field, number interval=50 

*Node Output 

** FIELD OUTPUT: F-Output-6 

** 

*Element Output, directions=YES 

*Output, history, frequency=0 

*End Step 

Interaction Properties 

Surface Interaction 

name=INT-11 

Friction, slip 
tolerance=0.0050.3 

gap conductance  

(HTC roll/stock 

contact)  
 

  Surface Interaction 

name=nozzle - roll  

 Friction 0. 
gap conductance  

(HTC cooling) 

 

 

Nozz1Contact Pair 

interaction= 

nozzle-roll, 
type=surface  

to surface 

 

roll stock- 

contact Pair- 

interaction 
   (nt-1) 

type=surface to 

surface 
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.  

 

 

 

 

 

Figure C.1. Original problem approximate (FEA) model (source: the sponsoring 

company) 

Table C.4. Process parameters/simulation initial conditions 

Rolling Simulation Initial conditions 

 

 

 

Roll size 

Roll material 

 

 

 

180 mm 

High 

chromium 

 

 

 

 

Thermal diffusivity (α)  =       λ / ρ Cp 

Thermal conductivity (λ)  =         48w/m.k 

Specific heat capacity (Cp)  =      478j/kg.k 

   Density (ρ)   =                                7083kg/m3 

Expansion (ε)  =             12e-6 

Elasticity (E)  =          180 GPa 
 

The FEA model is the assembly of 6 nozzles, one simplified version of the feedstock 

rotate around the roll and 180 mm radiuses chromium steel roll.   

The assembly boundary conditions inside the model are presented in the previous 

page. Tables C.4 and Table C.5 give the model specifications and process parameters. 
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Table C.5. Targeted independent design factors of the experiment 

Process Parameters Process Parameters 

HTC 1 ( for cooling & 

rolling) 

HTC 2 ( for roll & stock contact )  

Stock temperature 

Roll temperature 

Roll speed 

Delay time 

Roll-Stock contact length 
 

  

HTC 1 & 2 are the 2 single entities of the design variables 

representing a number of sub factors discussed in section 5.2.2 
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Appendix - D  

Work Roll System Design Factors Functional 

Relationships display 

  

This  section present extracts of functional relationship study of factors that determin 

the work roll system thermal behavior. The Tables presented below shows the few 

selected factor considered most rellevant to the problem and factors mathematical 

definitions so that the relationship, if any between factors can be identifyed. The 

functional relationships study is the follow-up of factoes reduction process shown in 

Section 5.2.1,  Figures 5.3 and 5.4, The dependency or independency of the factors 

studied by defining the factors identifyed mathematicaly and compare the factoes 

definition to  look for any the relationship. Based on the study the final 7 design 

factors shown in Section 5.2.2, Table 5.3 in Chapter 5. Factor relationship is presented 

in Table D.1 below.    

Table D.1. Work roll thermal design factors functional relationship 

 

System
REHEATING FURNACE Furnace tunnel [~2m]

Subsystem denomination

Variable 1

inter-stand time (depends on mill pace (ie, roll speed)

inter-stand time 1 = 1.4m / velocity 1 [m/s]

Variable 2

roll stock contact length can be expressed as a function of rolling load and length 

ps = P / bmL and lenmgth L =  sqt R (h1 – h2) – h1 – h2)^2 / 4 Ps specific mean roll pressure, 

P = rolling load , bm = mean breadth of material, h1 and h2 = height at the entry and exit of the roll

Variable 3

rolling force expressed as a function of change in temperature 

FL / WR  = ∆T f = is rolling force, L & W length and width of the rolled product , R = roll radius 

Variable 4

contact t time for given size of roll diameter 

time 1=asin(sqrt(draught1/R1))/omega1

for consecutive stands

inter-stand time 2 = 1.5m / velocity 2 [m/s]

Stand O2 (roll diam=628 mm)

time 2=asin(sqrt(draught2/R2))/omega2

inter-stand time 3 = 1.5m / velocity 3 [m/s]

Stand O3 (roll diam=630 mm)

time 3 =asin(sqrt(draught3/R3))/omega3

inter-stand time 4 = 1.5m / velocity 4 [m/s]

Stand O4 (roll diam=585 mm)

time 4 = asin(sqrt(draught4/R4))/omega4

inter-stand time 5 = 1.5m / velocity 5 [m/s]

Stand O5 (roll diam=665 mm)

time 5 = asin(sqrt(draught5/R5))/omega5
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Table D.2. Work roll thermal design factors functional relationship 

 

Table D.3. Work roll thermal design factors functional relationship 

 

 

 

 

 

 

 

 

 

Variable 5

roll speed [rad/s] (min 1.4 rad/s max10.4 rad/s) recommended 

velocity inter-stand distance / time   [rad/sec]

for consecutive stands based on recommended min max range 

velocity 1 (minimum) 0.14 rad/s max10.4 rad/s)

velocity 2 velocity 1 X 1.68

velocity 3 velocity 2 X 1.68

velocity 4 velocity 3 X 1.68

velocity 5 velocity X 1.68

Variable 6

draught per pass (i.e., reduction) [mm] draught = max 25%

redaction time X roll diameter / roll velocity at a given pass

Variable 7

stock temperature Tinit=950…1250deg ĉ range from stand 1 to 5

Variable 8

oxide scale thickness: ~0.8…2 mm depending on distance from furnace and descaling spray 

Variable 9

Stock size: varies between 180x180 mm/210x2

Variable 10

initial temp /pass 

T init - heat loss at each stage of the process (pass) + heat loss while the stock at delay time 

for consecutive passes the initial temp calculated as the following  

Tinit-heatLoss (heatLoss=~150deg C)

Tinit1 - heat Loss at dT1 (from furnace to the 1st stand) 

secondary oxide scale=~5…40microm

reduced stock size 1

Tinit2-heatLossR1 - dT1 - dT2

secondary oxide scale=~5…40microm

reduced stock size 2

Tinit3 - heatLossR2-dT1-dT2-dT3

secondary oxide scale=~5…40microm

reduced stock size 3

Tinit4 - heatLossR3 - dT1 - dT2 - dT3 - dT4

secondary oxide scale=~5…40microm

reduced stock size 4

Tinit5 - heatLossR4 - dT1- dT2 - dT3 - dT4 - dT5
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Table D.4. Work roll thermal design factors functional relationship 

 

Table D.5. Work roll thermal design factors functional relationship 

 

 

 

 

 

 

 

 

 

 

Variable   11

HTC heat transfer coefficient for Roll cooling heat

15…50 kW/m^2K ( if HTC considered as one variable to present the following component) *

HTc is depend on the sub groups in the rolling system that have influence the transfer of heat.  

The source of those factors classified in two i.e. The cooling factor and roll stock contac

The cooling factors

roll cooling stand-off distance 10mm 

roll cooling no of nozzles ~ 6

roll cooling flow rate [l/min] ~ max 40 l/min

roll cooling pressure ~3.5 bar

same value can be considered for each pass ( for multi-pass problems)

researchers also used the following function to represent HTC for water spray zone  

hws = 2900W0.85 (1 + 0.014Tw), where W is the water flow velocity, in ms−1, and TW is the water temperature, in ˚C

Roll stock contact factor

scale size 

contact time

rolling section type

material specific heat which can be derived from the relation  (α = K / ρC) ; where α = thermal diffusivity 

reduction size k = thermal conductivity 

ρ = density 

C = material specific heat 

Hadly et.a.l devised an empirical equation for HTC cooling; constituting the necessary factors that need to be addressed.  

Hcool = k/c1 (pr / ζs) 1/7

    ¯k       =       krks /           kr + ks          

             

The terms ¯ζs and pr are the mean flow stress and the mean roll pressure, respectively, and c1 is a constant, varies  respectively

depending on the material used, and ks and kr are slab work-roll thermal conductivity

Variable 12

HTC roll stock contact                            ( depend on the sub groups in the rolling system that have influence the transfer of heat). 

 heat-transfer problem in the roll gap as the function of heat-transfer coefficient α and writing the heat-transfer rate or the power of heat transfer. 

P = aA∆T. Where: A = wbL , L = sqt (Rt∆h), ∆h = ho – hi and ∆T = Tb -Tr. 
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Appendix - E  

Single Pass, Many Objectives Problem Optimisation 

Programme Code  

 

The programme code written in R environments written to search, optimal good 

design solution for work roll system optimisation using thermal analysis and genetic 

algorithms (GA). The framework is for searching solutions for the multi-objectives 

single pass optimisation problems with uncertainty presented in Section 6.4, Chapter 

6.  

Programme code 
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Figure E.1. Programme code for single pass problem optimisation 
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Appendix-F 

User Information for Running the Programme   

 

The section gives information guide for running the programme code for the 

optimisation. The procedures are as follows:  

 Open RGui and R console from the drive where R stored or using short cut 

icon from the desktop, ( double click the icon,  , to open it)  

 In the RGui tool bar click the package, in the dropdown menu appear select 

load package. The selection brings the new box shown on the right in Figure 

1.1. The new box contains modules which can be selected depending on job to 

be executed. In our case MCO, Multi Criterion Optimisation, highlighted in 

the box is selected. The mco package selected is shown at the end the console. 

The console also gives useful commands for further demonstration.       

 

Figure F.1.  RGui and R console with available work packages 

Calling the Programme Code  

The programme code can be called from the folder it has been stored by selecting file 

from the RGui tool bar and choose open script from the dropdown menu, then locate 
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the file and double click to open it. The programme will open in new window. The 

graph below shows the open programme code file in the console.  

 

Figure F.2. Example of the program code, ready to run 

After setting the required specification, depending on user requirements, such as pop 

and generation in the generic code shown above, the code can be set for run. To run 

the programme code locates on edit in the RGui tool bar. From the dropdown menu 

select the run all then there you go the programme code begin to run. Graph F.3 

below shows completed run from which the results can be saved or displayed. The 

(r1) in the plot (r1) at the end of the run shown in Figure F.4, holds the expected 

solution from the optimisation. Calling (r1) or may be cut & pest it will display the 

results. Result from the optimisation consists of the design variable parameters and 

objectives values of the optimisation problem. It also shows the number of true 

solutions out of the total population provided at the start of the optimisation run. The 

graph below shows an example of parameters and values from the optimisation. 

Figure F.3 and Figure F.4 below show, examples of the run completed programme 

and solution display after result called, respectively.  
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Figure F.3. Programme code after run completed.  

 

Figure F.4. Population of optimal solutions from the optimisation 
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Appendix-G  

Post GA Result Analysis, for Searching Best Optimal Design 

Solution/s 

Programme Code & Descriptions 

 

Here presented the programme code written in Matlab for analysis result from GA 

through iterative process of search space reductions to identifies the best optimal 

design solution,. The post GA result analysis programme code is consists of a 

processing units. The units are designed to process the input data i.e. the population of 

solutions found by the algorithm, to reduce the search space and identify the best 

optimal design solution or two solutions that satisfy the problem objectives. The 

programme code is generic hence applicable to any dimensional problem. The 

programme also used in the multi-pass problem solution final best optimal solution 

search. Description of the programme and its application in the solution search are 

discussed in Section 6.4-3 and 6.4-4 in Chapter 6. Figure F.1 present example 

showing the column order and the final best optimal design solution identified by the 

programme. Figure G.2 presents the programme code.  

 

Figure G.1 Final optimal design solution identified   
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Figure G.2. The Programme code for searching best optimal design solution search 
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Appendix-H  

Multi-pass Regression Models Factor Value Matrix 

 

The multi-pass models are developed from the FE simulations response data 

performed using the set-up in Table 5.5, Chapter 5 and the data sampling matrix given 

in Tables (F1-F.5) below as the input values for generating the regression models. 

Multi-pass quantitative models of all the responses were generated by fitting the 

second order model type (main effects, interaction effects and quadratic effects). 

Existing knowledge was used to define regions of interest, 35 variables were 

identified and their operating range specified. Table 7.5 shows the factors used in the 

simulations.  

Table H.1. Regression model factor value matrix for Pass-1 

Input 

set 
HTC-

II 
Stock 

temperature 
R/S contact 

length 
HTC-I 

Roll 
speed 

Roll 
temperature 

Delay 
time 

1 5 1230 10 15 0.14 40 20 
2 10 1230 20 15 0.14 40 20 
3 15 1230 30 15 0.14 40 30 
4 5 1250 10 32.5 0.2 40 20 
5 10 1250 20 32.5 0.2 40 20 
6 15 1250 30 32.5 0.2 40 30 
7 5 1250 10 50 0.2 40 20 
8 10 1250 20 50 0.2 40 20 
9 15 1250 30 50 0.2 40 30 
10 15 1230 20 50 0.2 60 20 
11 5 1230 30 50 0.2 60 20 
12 10 1230 10 50 0.2 60 30 
13 15 1250 20 15 0.2 60 20 
14 5 1250 30 15 0.2 60 20 
15 10 1250 10 15 0.2 60 30 
16 15 1250 20 32.5 0.14 60 20 
17 5 1250 30 32.5 0.14 60 20 
18 10 1250 10 32.5 0.14 60 30 
19 10 1230 30 32.5 0.2 80 20 
20 15 1230 10 32.5 0.2 80 20 
21 5 1230 20 32.5 0.2 80 30 
22 10 1250 30 50 0.14 80 20 
23 15 1250 10 50 0.14 80 20 
24 5 1250 20 50 0.14 80 30 
25 10 1250 30 15 0.2 80 20 
26 15 1250 10 15 0.2 80 20 
27 5 1250 20 15 0.2 80 30 
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Table H.2. Regression model factor value matrix for Pass-2 

Input 

set 
HTC-

II 
Stock 

temperature 
R/S contact 

length 
HTC-I 

Roll 
speed 

Roll 
temperature 

Delay 
time 

5 1155 10 15 0.17 40 30 5 

10 1155 20 15 0.17 40 40 10 

15 1155 30 15 0.17 40 50 15 

5 1175 10 32.5 0.23 40 30 5 

10 1175 20 32.5 0.23 40 40 10 

15 1175 30 32.5 0.23 40 50 15 

5 1195 10 50 0.29 40 30 5 

10 1195 20 50 0.29 40 40 10 

15 1195 30 50 0.29 40 50 15 

15 1155 20 50 0.23 60 30 15 

5 1155 30 50 0.23 60 40 5 

10 1155 10 50 0.23 60 50 10 

15 1175 20 15 0.29 60 30 15 

5 1175 30 15 0.29 60 40 5 

10 1175 10 15 0.29 60 50 10 

15 1195 20 32.5 0.23 60 30 15 

5 1195 30 32.5 0.23 60 40 5 

10 1195 10 32.5 0.23 60 50 10 

10 1155 30 32.5 0.29 80 30 10 

15 1155 10 32.5 0.29 80 40 15 

5 1155 20 32.5 0.29 80 50 5 

10 1175 30 50 0.23 80 30 10 

15 1175 10 50 0.23 80 40 15 

5 1175 20 50 0.23 80 50 5 

10 1195 30 15 0.23 80 30 10 

15 1195 10 15 0.23 80 40 15 

5 1195 20 15 0.23 80 50 5 
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Table H.3. Regression model factor value matrix for Pass-3 

Input 

set 
HTC-

II 
Stock 

temperature 
R/S contact 

length 
HTC-I 

Roll 
speed 

Roll 
temperature 

Delay 
time 

5 1080 10 15 0.32 40 50 5 

10 1080 20 15 0.32 40 60 10 

15 1080 30 15 0.32 40 70 15 

5 1100 10 32.5 0.38 40 50 5 

10 1100 20 32.5 0.38 40 60 10 

15 1100 30 32.5 0.38 40 70 15 

5 1120 10 50 0.44 40 50 5 

10 1120 20 50 0.44 40 60 10 

15 1120 30 50 0.44 40 70 15 

15 1080 20 50 0.38 60 50 15 

5 1080 30 50 0.38 60 60 5 

10 1080 10 50 0.38 60 70 10 

15 1100 20 15 0.44 60 50 15 

5 1100 30 15 0.44 60 60 5 

10 1100 10 15 0.44 60 70 10 

15 1120 20 32.5 0.32 60 50 15 

5 1120 30 32.5 0.32 60 60 5 

10 1120 10 32.5 0.32 60 70 10 

10 1080 30 32.5 0.44 80 50 10 

15 1080 10 32.5 0.44 80 60 15 

5 1080 20 32.5 0.44 80 70 5 

10 1100 30 50 0.32 80 50 10 

15 1100 10 50 0.32 80 60 15 

5 1100 20 50 0.32 80 70 5 

10 1120 30 15 0.38 80 50 10 

15 1120 10 15 0.38 80 60 15 

5 1120 20 15 0.38 80 70 5 
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Table H.4. Regression model factor value matrix for Pass-4 

Input 

set 
HTC-

II 
Stock 

temperature 
R/S contact 

length 
HTC-I 

Roll 
speed 

Roll 
temperature 

Delay 
time 

5 1005 10 15 0.57 40 70 5 

10 1005 20 15 0.57 40 80 10 

15 1005 30 15 0.57 40 90 15 

5 1025 10 32.5 0.63 40 70 5 

10 1025 20 32.5 0.63 40 80 10 

15 1025 30 32.5 0.63 40 90 15 

5 1045 10 50 0.69 40 70 5 

10 1045 20 50 0.69 40 80 10 

15 1045 30 50 0.69 40 90 15 

15 1005 20 50 0.63 60 70 15 

5 1005 30 50 0.63 60 80 5 

10 1005 10 50 0.63 60 90 10 

15 1025 20 15 0.69 60 70 15 

5 1025 30 15 0.69 60 80 5 

10 1025 10 15 0.69 60 90 10 

15 1045 20 32.5 0.57 60 70 15 

5 1045 30 32.5 0.57 60 80 5 

10 1045 10 32.5 0.57 60 90 10 

10 1005 30 32.5 0.69 80 70 10 

15 1005 10 32.5 0.69 80 80 15 

5 1005 20 32.5 0.69 80 90 5 

10 1025 30 50 0.57 80 70 10 

15 1025 10 50 0.57 80 80 15 

5 1025 20 50 0.57 80 90 5 

10 1045 30 15 0.63 80 70 10 

15 1045 10 15 0.63 80 80 15 

5 1045 20 15 0.63 80 90 5 

  



 

317 

 

Table H.5. Regression model factor value matrix for Pass-5 

Input 

set 
HTC-

II 
Stock 

temperature 
R/S contact 

length 
HTC-I 

Roll 
speed 

Roll 
temperature 

Delay 
time 

5 950 10 15 0.98 40 90 5 

10 950 20 15 0.98 40 100 10 

15 950 30 15 0.98 40 100 15 

5 950 10 32.5 1.04 40 90 5 

10 950 20 32.5 1.04 40 100 10 

15 950 30 32.5 1.04 40 100 15 

5 970 10 50 1.1 40 90 5 

10 970 20 50 1.1 40 100 10 

15 970 30 50 1.1 40 100 15 

15 950 20 50 1.04 60 90 15 

5 950 30 50 1.04 60 100 5 

10 950 10 50 1.04 60 100 10 

15 950 20 15 1.1 60 90 15 

5 950 30 15 1.1 60 100 5 

10 950 10 15 1.1 60 100 10 

15 970 20 32.5 0.98 60 90 15 

5 970 30 32.5 0.98 60 100 5 

10 970 10 32.5 0.98 60 100 10 

10 950 30 32.5 1.1 80 90 10 

15 950 10 32.5 1.1 80 100 15 

5 950 20 32.5 1.1 80 100 5 

10 950 30 50 0.98 80 90 10 

15 950 10 50 0.98 80 100 15 

5 950 20 50 0.98 80 100 5 

10 970 30 15 1.04 80 90 10 

15 970 10 15 1.04 80 100 15 

5 970 20 15 1.04 80 100 5 
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Appendix - I  

Multi-Pass Problem Optimisation Programme Code  

 

The programme code written in R environments written to search, optimal good 

design solution for work roll system optimisation using thermal analysis and genetic 

algorithms (GA). The framework is for searching solutions for the many-objectives 

multi-pass optimisation problems with uncertainty presented in Section 7.2, Chapter 

7.     Programme code 
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Figure I.1. Programme code for single pass problem optimisation 

 


