
International Journal of Advanced Manufacturing Technology, 2011, Volume 59, Issue 1-4, pp335-349

A Review on Assembly Sequence Planning and Assembly Line Balancing Optimisation using Soft
Computing Approaches

Mohd Fadzil Faisae Rashid, Windo Hutabarat, Ashutosh Tiwari

Abstract

Assembly optimisation activities occur across development and production stages of manufacturing
goods. Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) problems are among
the assembly optimisation. Both of these activities are classified as NP-hard. Several soft computing
approaches using different techniques have been developed to solve ASP and ALB. Although these
approaches do not guarantee the optimum solution, they have been successfully applied in many
ASP and ALB optimisation works. This paper reported the survey on research in ASP and ALB that use
soft computing approaches for the past 10 years. To be more specific, only Simple Assembly Line
Balancing Problem (SALBP) is considered for ALB. The survey shows that three soft computing
algorithms that frequently used to solve ASP and ALB are Genetic Algorithm, Ant Colony
Optimisation and Particle Swarm Optimisation. Meanwhile, the research in ASP and ALB is also
progressing to the next level by integration of assembly optimisation activities across product
development stages.

Keywords: Assembly sequence planning; Assembly line balancing; soft computing

1 Introduction

In product development, current global market con tinuously gives pressure to
manufacturer to compete with competitors from all over the world. Manufacturer needs to
speed up the time to market and at the same time minimise the manufacturing cost to
ensure that their products remain competitive [1]. Assembly is considered one of the important
processes in manufacturing. It consumes up to 50% of total production time and account
for more than 20% of total manufacturing cost [2].

Research in assembly optimisation can help manufacturer to speed up assembly process
and reduce assembly cost. According to [3], research in assembly optimisation can be
categorised based on which product development and production phases is being studied
(Fig. 1).

In product conception and design stage, the aim of assembly optimisation is to reduce the
assembly costs by applying design for assembly (DFA) approach in product design. Besides
reducing cost, DFA may also bring about additional benefits in terms of increased quality,
reliability and shorter manufacturing time. The approach shortens the product cycle and
ensures a smoother transition from prototype to production [4].

Assembly optimisation in the production planning stage deals with determination of
optimum assembly sequence and determination of optimum location of each resource.
Solving the Assembly Sequence Planning (ASP) problem is crucial because it will determine
many assembly aspects including tool changes, fixture design and assembly freedom. Assembly
sequence also influences overall productivity because it determines how fast and accurate
the product is assembled.

Fig. 1 Assembly related issues in different product development stages [3]

During manufacturing processes stage, assembly optimisation is focused on two major
activities. The first activity is determining the optimum automation level in assembly. The
purpose of this activity is to apply the appropriate automation level in assembly in order to
balance the investment in automation and the output. The second activity in this stage is
assigning the assembly tasks into workstations, such that workstations have equal or almost
equal load [3]. This activity is usually known as Assembly Line Balancing (ALB). In this stage,
research in assembly optimisation focuses more on ALB problem rather than optimisation
of automation level. It can be observe through the number of publication in optimising both
problems.

Both ASP and ALB problems are classified as NP-hard problem and cannot be solved in
polynomial time even using a powerful computer [5–8]. In ASP and ALB optimisation, the
soft computing approach is more acceptable because of their ability to handle more
complex problems, larger size problems and numerous side constraints. Lendak et al. [9] define
the soft computing method as an approach that is characterized by the use of inexact
solutions to computationally hard tasks for which an exact solution cannot be derived in
polynomial time.

This paper surveys the past 10 years of research that work on ASP and ALB optimisation
using soft computing methods. Besides reviewing the current research pattern, this paper also

PRODUCT
CONCEPTION AND

DESIGN

DESIGN FOR
ASSEMBLY (AND
DISASSEMBLY)

Design of the product

PRODUCTION
PLANNING ASSEMBLY PLANNING

Assembly sequence
and location of each

resource

MANUFACTURING
PROCESSES

ASSEMBLY
OPERATIONS

Automation and
optimisation of

assembly operation

Development and
production stages

Assembly issues Scope/focus of
optimisation

explores the potential of ASP and ALB research. The rest of this paper is organised as follow:
Sections 2 and 3 review the ASP and ALB problems starting with problem representation,
constraints and optimisation objectives. Section 4 reviews on soft computing methods that is
being used in ASP and ALB optimisation. Section 5 discussed the trends and research
potentials in ASP and ALB. Finally, Section 6 summarises and concludes the survey.

2 Assembly sequence planning

ASP is one of important component in assembly planning. ASP refers to a task for which
planners, on the basis of their particular heuristics in assembling all the components of a
product, arrange a specific assembly sequence according to the product design description
[10].

ASP is an NP-hard combinatorial problem [7, 8], where the solution space is excessively
increased when the number of component increased. Consider a product with six
components that can be assembled in any sequences. In this case, the number of possible
solution for this product is given by s = 6! which is equal to 720 solutions. When the number of
component increased to seven, the possible solutions for the products excessively increased
to 7! = 5,040. Additionally, in a real assembly problem, there are some constraints that need to
be considered when generating assembly sequences.

Previous research shows that many approaches were proposed and used by researchers to
represent the ASP problem. The most prominent way to represent the ASP problem is by
using directed graph method as used in [7, 11–13]. An assembly can be described by a
directed graph D = (P, C). P is a finite nonempty set of vertices, and C is a set of edges
connecting them. Each vertex represents a component, and each edge represents a
relationship between the two components. In some cases, the vertices and edges bring
additional information such as assembly orientation, tool, assem bly type and assembly time
as used in [5].

In assembly representation, directed graph is specifically known as precedence diagram
since the graph represents the precedence relation of assembly [14]. Figure 2 shows the
assembly precedence diagram with additional assembly information. In this diagram, the
vertices represent the assembly components. Meanwhile, the information T1, T2, T3 and
T4 represent the assembly tools and (+x, −x, +y, −y, +z, −z) represents the assembly
direction for a particular component. Therefore, when an assembly sequence is established, it
can be evaluated based on information in assembly precedence diagram.

Fig. 2 Assembly precedence diagram with additional information

The assembly sequence is evaluated according to objective function. In previous
research, to establish the objective function, the tool and direction variable is transformed
to measurable format such as cost [15– 17], time [18] or penalty index [13]. Besides this ap-
proach, researchers like [10, 19, 20] use connector-based approach to represent ASP
problem. In this method, each connector may assemble two or more components. Every
vertex represents one connector in assembly process and brings information of fasteners type,
assembly direction, tools type and standard assembly time.

2.1 ASP constraints

According to [3], there are two types of constraints in assembly, which are ‘absolute
constraints’ and ‘optimisation constraints’. The absolute constraints refer to constraints that, if
violated, lead to infeasible assembly sequence. Meanwhile, the optimisation constraints are
the constraints that lead to lower quality of assembly sequences when violated.

In ASP context, the absolute constraints that are usually considered include precedence
and geometrical constraints. Precedence constraint shows the relation of predecessor and
successor components for assembly process. The precedence constraint cannot be violated,
otherwise the infeasible assembly sequence will be generated. Precedence constraint can be
represented in precedence diagram (Fig. 2) or in matrix form. Table 1 presents the precedence
matrix for precedence diagram in Fig. 2. In this matrix, when part i must be assembled after
part j, P(i, j) = 1. Otherwise, the matrix will be left empty.

Meanwhile, geometrical constraint in assembly is about assembling the components
without any collision. When mating two parts, there must be at least one collision-free
trajectory that allows to bring components in contact. All valid assembly sequences must meet
geometric constraints for a given structure. Chen and Liu [21] use a matrix to describe
geometric constraints between components in an assembly. For each pair of components (Pi,
Pj), the matrix records directions in which Pi can be assembled without colliding with Pj.
Then, a set of valid assembly directions, for each (Pi, Pj) is defined, as the moving wedge of Pi
with respect to Pj , denoted by MW(Pi, Pj). They compute moving wedges for all pairs of
components and store all moving wedges in the MW matrix.

Table 1 Precedence matrix (P) for Fig. 2

i j
1 2 3 4 5 6

1
2 1
3 1
4 1 1 1
5 1 1
6 1 1 1 1 1

On the other hand, the constraints that classified as optimisation constraints are related with
optimisation objectives of the problem. The constraints that are classified in this category

include assembly tool constraint, assembly direction constraint and assembly stability
constraint.

Wang and Liu [22] use the tool matrix TM = [tij]nxm to represent the tool constraint. Where,
n is the number of parts and m is the number of practicable tools to assemble the
corresponding part. After the optimal or near optimal assembly sequences have been
generated, the corresponding tools are also confirmed and at the same time, the number of
change (nt) of the assembly tools can be obtained.

Meanwhile, the assembly direction constraint is represented as penalty index in [19, 23, 24]. In
these papers, when the subsequent assembly direction is different with the current direction,
a penalty will be given to that particular assembly sequence.

The stability constraint is defined by [11] when the assembling parts maintain relative
position and they do not break contact during the assembly operation. Wang and Liu [22]
categorised the stability strengthened by the assembly connectors into three levels according
to connection strength; strong, weak and unstable connection. This classification is also used
by [25]. In this approach, strong connection will be assigned ‘0’ index, weak connection ‘1’ index
and unstable connection ‘2’ index.

2.2 ASP optimisation objectives

From the past 10 years, various objectives and soft computing techniques have been
used to optimise ASP problem. The most popular ASP objective is to minimise the number
of assembly direction changes. This objective is applied in 29 out of 39 cited re search
papers in ASP. In this objective, the assem bly directions concerned are along the three
principal axes (+x, −x; +y, −y; +z, −z). When the direction of the next assembly part is
different with the current direction, a penalty is given according to the magnitude of
direction change. The optimum sequence according to this objective will have minimum
penalty caused by direction change.

The second most popular ASP objective is to minimise number of tool changes which were
used in 21 cited research papers. In assembly, tool change time is considered one of non-
productive activity and may consume large time if not well managed. In this case, when the
next assembly process requires different tool with the current assembly process, the penalty
will be given. The most optimum sequence following this objective is the sequence with the
least tool change penalty.

Besides these two most frequent objectives, the ASP objective to minimise assembly type
change is used in nine cited research papers. This objective considers the physical assembly
features change such as mating, aligning, screwing, reverting etc. [8, 26–28].

In the next place, four ASP optimisation objectives shares similar position with four cited
papers. These objectives are to minimise assembly complexity, minimise connector similarity,
maximise assembly stability and minimise geometrical constraint penalty. In ASP, some of

research stated that the geometrical constraint is a compulsory restriction. When the
generated assembly sequence did not match with geometrical constraint, the assembly
sequence will not be evaluated. Therefore, this attribute is not included as objective.
However, in a small number of ASP research as in [25, 29–31], the geometrical constraint is
declared as one of ASP objective. When the assembly geometry is unfeasible, the large
penalty index will be given to fitness function. Therefore, the unfeasible sequence will not
appear as optimum assembly sequence in final results.

Figure 3 shows that three least frequent ASP objectives that were used in cited papers are
to minimise assembly cost, assembly time and assembly tool travel distance. In ASP context,
the objective to minimise assembly time is suitable to be applied in assembly cell. Meanwhile,
the objective to minimise assembly tool travel distance is related with Printed Circuit Board
assemblies that involved robotic pick and place arm.

It needs to bear in mind that more than half of cited ASP research are using multi-objective
optimisation technique that employed more than one objective in their research. Therefore,
the total objectives frequencies as shown in Fig. 3 is more than the total ASP cited research.
Details on this information are available in Table 2.

3 Assembly line balancing

ALB is the decision problem of optimally partitioning the assembly work among the
stations with respect to some objective [5]. ALB was first mathematically formulated by
Salveson in 1955. This problem aims at grouping assembly operations, which have to be
performed to produce final products, and assigning the groups of operations to stations,
so that the total assembly time required at each station is approximately the same and the
precedence constraints between operations are respected [32].

Fig. 3 Frequency of ASP objective in cited research

In general, researchers like [6, 33, 34] divide ALB problem into two categories;
Simple Assembly Line Balancing Problem (SALBP) and Gener alised Assembly Line
Balancing Problem (GALBP). SALBP deals with a serial assembly line that processes a unique
model of a single product with all in put parameters known with certainty [35]. SALBP
can be classified into three groups according to the objectives [36]:

– SALBP-1: the objective is to minimise the number of stations on the line for a given cycle
time

– SALBP-2: the objective is to minimise the cycle time for a given number of stations on
the line

– SALBP-E: the objective is to maximise the line efficiency for variable cycle time and number of
stations

Meanwhile, GALBP includes all of the problems that are not SALBP, such as balancing of
mixed model, parallel, U-shaped and two-sided lines with stochastic-dependent processing times
[37]. In this paper, only SALBP will be considered since it has accumulated a large number of
works.

The simple ALB problem can be represented in precedence diagram that contain n
vertices and a set of edges. Each vertex represents an assembly task. Meanwhile, the
vertices weight shows the assembly time and the edges reflecting the successor tasks.

Fig. 4 Precedence diagram for ALB

Solving ALB problem is about assigning the tasks Vi(i = 1, 2, ..., n) into workstation Wj(j
= 1, 2, ..., m)subjected to assembly constraints and optimisation objectives. In this problem,
assembly time in each node is known as task time, ti that refers to task i. Meanwhile, the
total task time in workstation Wj is named as processing time, pj. The highest processing
time among all workstations then is defined as cycle time, c. In assembly line, the cycle time
will determine the production rate, R, which is given as follows:

= 1 (1)

Table 2 Summary of ASP research using soft computing methods (2000–2010)

Since cycle time is the highest processing time among all workstations, the difference between cycle
time and processing time is unproductive time which also known as idle time. The total idle time in
assembly line is calculated as follows:

= . − (2)
As an example, the assembly tasks in Figure 4 are assigned into four workstations; W1= {1,2}, W2=
{3,5}, W3= {4,6} and W4={7,8}. It was found that the processing time for each workstation is p1 = 7, p2

= 10, p3 = 10 and p4 = 9. The highest processing time is found in W2 and W3, therefore the cycle time
for this problem is c = 10 time units. The idle time for this solution is calculated as follows:

Idle time = 4(10) − (7 + 10 + 10 + 9)

= 4 time units

3.1 ALB Constraints

In ALB, the important constraints that highlighted by [38] are occurrence constraint,
precedence constraint and capacity constraint. The occurrence constraint refer to restriction
that ensure each task be assigned to exactly one workstation. For this purpose, an assignment
matrix that consists of task and workstation variables is established. For ith task and jth
workstation, xij = 1 if task i is assigned to workstation j and 0 if otherwise. [38] formulated the
precedence constraint as follows:

. − . ≤ 0 (3)

In this case, j refers to workstation, m is number of workstation, p is task/s that immediately
precede task i. Meanwhile, xpj = 1 if task p is assigned to workstation j and 0 if otherwise.

In the meantime, capacity constraint depends on SALBP problem. For SALBP-1, the capacity
constraint refers to maximum allowable cycle time in workstation. It can be formulated as
follows:

. ≤ (4)

In this equation, ti refers to processing time for task i and c is predetermined cycle time for
the assembly line. Meanwhile, in SALBP-2, the capacity constraint is represented by the
maximum number of workstations in assembly line.

ALB research works have also addressed problems that consider additional restrictions
apart from cycle time and precede constraints. For example, [39] considered a problem
involving resource constraint, which defined the assembly space as one of constraint. Other
examples include zoning constraint [40] and uniqueness constraint [41].

3.2 ALB Optimisation objectives

Figure 5 shows the frequencies of ALB objectives that has been recorded from 45 cited
research papers. The most frequent objective is to maximise work load smoothness. In
assembly line, the basic workload smoothness is measures by calculating workload devia tion as
follows:

= ∑ (−) (5)
where n is number of component, Ct is cycle time, Pt is processing time and m is number of
workstation. In this case minimising the workload deviation will maximise the workload
smoothness [5].

Fig. 5 Frequency of ALB objective in cited research

The objective to minimise cycle time is recorded in 17 cited research papers. Cycle time
is available time in each workstation, to complete the required tasks to process a unit of
product. It is also defined as the time interval between the processing of two consecutive
units [42]. In ALB view, the cycle time is equal to the longest processing time on any worksta-
tions. The ALB objective to minimise the number of workstation is also important as it had
been used in 16 cited papers. Usually, this objective is used in combination with upper limit of
cycle time and another objective to maximise workload smoothness. In this case, the smallest
number of workstation is not always the most optimum sequence because the workload
balance will need to be considered as well.

In ALB, the objective to maximise line efficiency has seen moderate frequency of usage as it
appears in 11 cited research. Line efficiency is the ratio between total processing time in all
workstations to the product of cycle time and number of workstation. The assembly line
efficiency is given by the following equation;

= ∑ ()× × 100 (6)

18 17 16

11
8

6 5
2

0
2
4
6
8

10
12
14
16
18
20

N
o

of
pa

pe
rs

Frequency of ALB Objective

With m is number of workstation, Pt is processing time in workstation ith and Ct is cycle
time.

The objective to minimise assembly cost is also moderately popular. To use this objective in ALB
optimisation, many assumptions need to be made such as labour cost, equipment utilisation
cost and setup cost. Most of the related costs are dependent on variables like time, market
price and geographical location. Therefore, this objective is only applicable to particular case
studies.

Besides that, objective to minimise idle time and maximise utilisation in assembly has also
been used in ALB optimisation. The idle time in each worksta tion is defined as the
difference between processing time and allowed cycle time in assembly line [43]. In the
meantime, the assembly utilisation measure has been implemented in variety of ways.
McMullen and Tarasewich [44] use assembly utilisation and associate the objective with
labour utilisation. Meanwhile, [45] combine the labour and space utilisation to represent
assembly utilisation objective.

The least frequent objective to optimise ALB is to minimise the total assembly time. The
total assembly time in an assembly line is defined as the total process ing time in all
workstations for a product. This objective is rarely used because in ALB context, the cycle time
is more important than total processing time since it will determine the production rate of the
assembly line.

Tables 2 and 3 show the summary of the research in ASP and ALB using soft computing
methods for the last 10 years, respectively.

4 Optimisation methods

Previous research in ASP and ALB optimisation shows that various soft computing methods
were used. Figure 6 shows the number of papers that used different soft computing methods
to optimise ASP and ALB problems for the past ten years. According to the diagram,
three most dominant optimisation methods which had been used in almost 70% of the cited
research are genetic algorithm (GA), ant colony optimisation (ACO) and particle swarm
optimisation (PSO).

Fig 6: Number of paper used different soft computing methods

Table 3: Summary of ALB research using soft computing methods (2000-2010)

4.1 Genetic algorithm

GA is inspired by evolutionary processes that based on natural evolution. It was introduced by
John Holland in 1975. This technique imitates the biological evolution theory, where by the
concept of ‘survival for the fittest’ exists. GA provides a method of searching which does not
need to explore every possible solution in the feasible region to obtain a good result [98].

In ASP and ALB optimisation, 35 out of 81 cited researches used this algorithm to find
optimum assembly sequence. Researchers like [15, 47] used GA in ASP problem because it
can generate optimum or near optimum solution faster than exact algorithms. In GA, the
number of considered solution is reduced compared with exact algorithms. Researchers also
prefer to use GA in ASP and ALB because it can handle complex and multiple constraints
problems well [21]. Other researchers like [32, 73] were influenced by the success of GA in
solving a wide variety of problems.

Although there are numerous papers that used this algorithm, GA in an original and basic
form is unsuitable to be directly used to solve and optimise ASP and ALB problems. The first
reason is the original binary strings in chromosomes are less suitable for complex
combinatorial problem such as ASP [99]. The second reason is regarding the feasibility of
chromosome in handling assembly precedence constraint. The GA in basic form tends to
generate infeasible offspring that violates precedence constraint because of crossover and
mutation operators [3]. To handle this constraint, researchers used different approaches like
penalty and repair strategy.

In [28, 48, 71], the penalty approach were used to handle precedence constraint. A
penalty is given to chromosomes that are infeasible due to violation of precedence
constraints, resulting in reduced fitness. Therefore, the chance of infeasible chromosome to
be selected in next generation is reduced. Besides that, repair strategy is used in [15, 100] to
handle precedence constraint. In this approach, the infeasible chromosome is repaired and
transformed into feasible chromosome using an additional step in GA. Other than that, topo -
logical sort concept that originated from graph theory is also applied in handling precedence
constraint as used in [74].

Even though GA has been successfully implemented in ASP and ALB, researchers have
highlighted some issues regarding this algorithm. The main issue is that standard GA is
susceptible to early convergence [61, 62]. Besides that, another common issue is about high
computational time [101]. Yu and Yin [73] proposed an adaptive GA to solve premature
convergence and high computational time issues. In adaptive GA, dynamic probabilities for
crossover and mutation operators are introduced to vary computational time and selection
rate. Another work to reduce computational time is performed by [67] by introducing
dynamic partitioning (DPa) in chromosome. DPa modifies chromosome structures by defining
frozen and unfrozen task allocation in workstation for ALB. The task allocation is only made for
unfrozen task, whereby the frozen task will remain unchanged as in previous generation.
Therefore, the computational time of this problem is reduced because of lesser length of
active chromosome. Besides improving basic GA operators, researchers have combined GA
with other soft computing algorithms to improve its performance. In general, combination of
GA with simulated annealing [61, 62], tabu search [29] and ant colony optimisation [65] has
resulted in better performance compared with the original GA.

4.2 Ant colony optimisation

ACO was introduced by Marco Dorigo in 1992. It is inspired by the pheromone trail laying
behaviour of real ant colonies. In ACO, a set of agents called artificial ants search for good
solutions to a given optimisation problem. To apply ACO, the optimization problem is
transformed into the problem of finding the best path on a weighted graph. The artificial
ants incrementally build solutions by moving on the graph. The solution construction
process is stochastic and is biased by a pheromone model, that is, a set of parameters associ-
ated with graph components (either nodes or edges) whose values are modified at runtime
by the ants.

ACO has attracted 13 cited papers in ASP and ALB in the past ten years due to various
reasons. Shuang et al. [59] and Wang et al. [57] used this algorithm to overcome a
shortcoming of GA that highly depends on initial chromosomes. Besides that, the success
of this algorithm to solve popular discrete problems such as Travelling Salesman Problem,
machine scheduling problem and Vehicle Routing Problem also have inspired researchers to
use ACO in ASP and ALB [45, 77]. Another reason of ACO implementation is that ASP and
ALB problem can be directly been repre sented by a completed graph as in ACO [57].

In original ACO, one of the common drawback were that stressed by researchers is
regarding positive feedback system that only accumulates good solutions. In original ACO, the
better the solution, the greater amount of pheromone will be deposited. However, the
pheromone trail for all paths is set to be evaporated when it generates a bad solution.
According to [59], over emphasis of this rule will cause premature convergence. Meanwhile,
[77] has proposed to re-evaluate the unfit solutions, because they might just be a few
iterations away from global optimum.

The main focus of researchers to improve ACO algorithm is solving premature
convergence. Zhang et al. [77] introduce a summation rule to replace the original
pheromone ‘drop and evaporate’ updating rule. In pheromone summation updating rule, the
best trail is determined by summation of total pheromone that dropped without considering
evaporation factor. Meanwhile, [59] adopted particle swarm position updating approach to
overcome premature convergence in ACO. The hybridisation of ACO and particle swarm not
only solves the premature convergence in ACO but also reduces computational time
compared with original ACO.

4.3 Particle swarm optimisation

PSO, originated by Kennedy and Eberhart in 1995 [102]. It is inspired by social behaviour of
bird flocking or fish schooling. The PSO is quite similar to GA, in which the system is initialised
with a population of random solutions. However, unlike the GA, the PSO has no evolution
operators such as crossover and mutation. The potential solutions, called particles, fly
through the problem space by following the current optimum particles [103]. In ASP and ALB,
only seven cited papers applied this algorithm. From this number, six papers used PSO to
solve multi-objective problem, but only one pa per used Pareto optimal approach to deal

with multi-objective optimisation. Most of the researchers used traditional weighted
approach to solve multi-objective optimisation.

The PSO is a relatively new algorithm compare with GA and ACO. Not many papers that
applied PSO to ASP and ALB have been published. This has motivated researchers [8, 25, 82] to
apply PSO to ASP and ALB optimisation. Besides that, PSO is a simple algorithm because it only
uses a single velocity formula to evolve [60]. Therefore, PSO algorithm is easy to implement
and requires less computational resources compared with GA.

However, similarly with GA, the original PSO is not suitable to be directly applied to ASP
and ALB problems. Besides the precedence constraint issue, the original PSO is designed for
continuous problem, where the solution is in real-value space while ASP and ALB solutions
reside in discrete integer space [8, 22]. Another important issue of original PSO is that it is
easily trapped in local optima [22]. To solve this problem, [25] introduced a new mechanism of
updating velocity by using one of two formulas randomly instead of single formula.
Meanwhile, [22] introduced a chaotic operator to diversify the updated particle posit ion,
which finally help to reduce premature convergence.

4.4 Other methods

Besides the three main algorithms above, the re searchers in ASP and ALB also use other
soft computing methods such as simulated annealing [61, 83, 84], Petri net [86–88], memetic
algorithm [20, 63, 90], immune algorithm [23, 89, 91], neural network [92] and tabu search [93].

Other than that, some researchers also combined a few soft computing methods to
solve the ASP and ALB. Qin et al. [7] Li and Shan [62] and Lin et al. [85] were combined GA with
simulated annealing method and called them genetic simulated annealing algorithm. Shan et
al. [64] combined PSO and simulated annealing to solve multi-objective ASP problem using
Pareto approach. The other algorithm combination that found to optimise ASP and ALB
problem are GA and tabu search [29] and GA, ACO and simulated annealing [65].

5 Discussions and research potentials

This paper studied research in ASP and ALB that used soft computing approaches for the
past 10 years. From this study, the previous research patterns and trends were identified.
Figure 7 shows the number of published ASP and ALB papers that used soft com puting
methods between 2000 until 2010. The number of published papers in ALB was significantly
increased from 2006. Meanwhile, the ASP research papers show increment from 2009. This
figure concludes that, although the research in ASP and ALB were started in earlier time, but
it had been given special attention by researchers between 2–5 years ago. This trend is
predicted to be maintained in the near future due to growth in computational technique.

Fig. 7 Number of published papers in ASP and ALB for 2000- 2010

Meanwhile, Fig. 8 presents the trend of single- and multi-objective usage in ASP and ALB
optimisation for 2000 until 2010. The trend shows research papers that used single objective
were fluctuated from 2000 to 2010. Meanwhile, similar trend was also found in number of
papers that used multi-objective optimisation for the first 5 years. However, this trend was
changed for the second half of this period. The number of papers that used multi-objective
optimisation was started to grow from 2006 until 2010. The multi-objective optimisation was
attracted many researchers because of complex ity of the problem and closer to the real
assembly application.

Fig. 8 Number of papers uses single and multi-objective

In terms of optimisation algorithms usage, application of GA in ASP and ALB papers
between 2005 and 2010 is quite stable with an average of three papers per year (Fig. 9).
For the same period, the ACO usage in the cited research papers fluctuates. Meanwhile, the
PSO algorithm was first implemented in ASP and ALB research in 2009. The number of
papers that applied PSO algorithm had shown rapid progress with two papers in 2009 and
five papers in 2010. In 2010, papers using PSO in ASP and ALB optimisation was outnumbered

papers that employed GA and ACO. If the current trend persists, it is possible for PSO to be
widely used in this area as GA.

Fig. 9 Number of papers uses GA, ACO and PSO for 2005–2010

A number of issues had also been raised by re searches regarding the ASP and ALB
optimisation. One of the issues is related with high computational time for ASP and ALB.
Researchers like [21, 55, 104, 105] agreed that the existing algorithms may inade quate to
solve larger ASP and ALB problems due to computational limitation.

The second issue highlighted by researchers is about tedious data entry procedure into
computer programme. The current approach requires the re searchers to identify and key
in a set of data such as precedence, geometrical character, direction etc. This process
consumes a lot of time as stated by [66]; ‘The man–computer interaction for constraint detection is
the most manpower consuming process’. To simplify the process, research on data extraction
from computer-aided design (CAD) model is highly recommended by [20, 22, 66].

Besides that, researchers also made an argument on assumptions in ALB. The first
assumption stated that all workstations have similar capability, therefore any assembly task
can be assigned to any workstation. The idea of all workstations having similar facilities
cannot be accepted because it did not imply the real situation [10]. Meanwhile, [95]
disagreed on the assumption where most of ALB problem is discussed as a deterministic
problem, but in reality, the processing times are rarely deterministic.

Researchers in assembly optimisation have con tributed in various problems and
applications. However, there are still a few unfulfilled potential and gaps. ALB research
started with simple line balancing problem with basic precedence constraint. This field has
progressed to a complex problem with other assembly constraints. In computational
experiment research like ALB, the computational model is nearer to actual situation when less
assumption is used. However, the problem will become more complicated and requires
higher computational cost. The suggestion to facilitate particular assembly task into a
particular workstation with facilities constraint had been discussed in earlier research, but it
has not been implemented yet.

In ASP and ALB problem, optimisation algorithm plays an important role since both
problems are classified as NP-hard. Research on algorithm improvement is important to
handle more complicated ASP and ALB problems with larger size, various constraints and
objectives. Currently, the algorithms to optimise ASP and ALB problem are dominated by
GA, ACO and PSO. The researchers are more interested to ex plore and improve these
algorithms although many other potential algorithms are available. However, the
algorithm improvement works mainly in focusing on solving premature convergence
issues rather than high-computational time or algorithm complexity issues.

In the next few years, the algorithm usage is likely that remain lead by main algorithms
(GA, ACO and PSO) with modification to reduce premature convergence. Although there are
many recent papers that focus on solving this problem, the definitive answer is still unclear.
In the near future, the trend for algorithm hybridisation is also predicted to be the focus of re -
searchers. The current success of hybrid algorithm as presented in [62, 65, 85] has motivated
researchers to give additional attention to this approach. Although the algorithm
hybridisation approach has been started earlier, the number of papers that use this
approach have significantly increased since 2008. However, there are still plenty of
opportunities in the algorithm hybridisation because many potential algorithm combinations
are not tested yet.

On the other hand, further research on automation and integration of assembly
optimisation also have a potential. At the moment, research on data extraction from CAD
model are only being implemented in DFA level but not widely used in ASP and ALB [20, 22].
Meanwhile, integration of assembly optimisation consumes larger manpower to enter the
data. In the same time, integration of assembly optimisation is also considered as a bridge to
enable flows of extracted data from DFA level to ASP and ALB optimisation. Therefore,
automation and integration of assembly optimisation are mutually dependent on enhancing
each other.

6 Conclusions

This paper surveyed the ASP and ALB research that used soft computing methods for the
past 10 years. The current research trend shows that ASP and ALB are progressing to a
more complicated problem by increment in the number of papers that works on multi-
objective optimisation. Besides that, growth in usage of relatively new algorithm like PSO shows
that the researchers tend to explore and develop algorithm which manage to handle more
complex problems.

In the future, one of the main challenges in ASP and ALB research is how to simplify and
shorten assembly optimisation processes throughout different levels (Fig. 1). This is an
important issue especially for manufacturers to be able to compete in the global market with
shorter product life cycle. Another challenge in this field is how to make the ASP and ALB

problem model closer to the actual situation in industry. This challenge is important to
acquire accurate results from computational experiments. The challenge to reduce
computational cost is another future research direction, since the ASP and ALB problems are
getting more complicated. Therefore, it can be concluded that, al though many works had
been published, research in ASP and ALB optimisation still have a long way to go.

References

1. Padron M, de los AIM, Resto P, Mejia HP (2009) A methodology for cost-oriented assembly
line balancing problems. J Manuf Technol Manag 20(8):1147–1165

2. Pan C (2005) Integrating CAD files and automatic assembly sequence planning. Ph.D.
thesis, Iowa State University

3. Marian R (2003) Optimisation of assembly sequences using genetic algorithm. Ph.D.
thesis, University of South Australia

4. Corallo A, Margherita M, Pascali G (2010) Digital mockup to optimize the assembly of a
ship fuel system. J Model Simul Syst 1(1):4–12

5. Chen RS, Lu KY, Yu SC (2002) A hybrid genetic algorithm approach on multi-objective of
assembly planning problem. Eng Appl Artif Intell 15(5):447–457

6. Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for
simple assembly line balancing. Eur J Oper Res 168(3):666–693

7. Qin YF, Xu ZG (2007) Assembly process planning using a multi-objective optimization
method. In: Proceedings of the 2007 IEEE international conference on mechatronics and
automation, ICMA 2007, 4303610, pp 593–598

8. Lv H, Lu C (2010) An assembly sequence planning approach with a discrete particle
swarm optimization algorithm. Int J Adv Manuf Technol 50(5–8):761

9. Lendak I, Erdeljan A, Capko D, Vukmirovic S (2010) Algorithms in electric power system
one-line diagram creation: the soft computing approach. In: IEEE international con-
ference on systems, man and cybernetics, pp 2867–2873

10. Tseng HE, Tang CE (2006) A sequential consideration for assembly sequence planning
and assembly line balancing using the connector concept. Int J Prod Res 44(1):97–116

11. Sinanoglu C, Boklu HR(2005) An assembly sequence-planning system for mechanical
parts using neural network. Assem Autom 25(1):38–52

12. Chen G, Zhou J, Cai W, Lai X, Lin Z, Menassa R (2006) A framework for an automotive body
assembly process design system. CAD Comput Aided Des 38(5):531–539

13. Chen WC, Tai PH, Deng WJ, Hsieh LF (2008) A three-stage integrated approach for assembly
sequence planning using neural networks. Expert Syst Appl 34(3):1777–1786

14. Mitrovic-Minic S, Krishnamurti V (2006) The multiple TSP with time windows: Vehicle
bounds based on precedence graphs. Oper Res Lett 34(1):111–120

15. DeLit P, Latinne P, Rekiek B, Delchambre A (2001) Assembly planning with an ordering
genetic algorithm. Int J Prod Res 39(16):3623–3640

16. Choi YK, Lee DM, Cho YB (2009) An approach to multi-criteria assembly sequence
planning using genetic algorithms. Int J Adv Manuf Technol 42(1–2):180–188

17. Tseng YJ, Chen JY, Huang FY (2010) A particle swarm optimisation algorithm for multi-
plant assembly sequence planning with integrated assembly sequence planning and
plant assignment. Int J Prod Res 48(10):2765–2791

18. Senin N, Groppetti R, Wallace DR (2000) Concurrent assembly planning with genetic
algorithms. Robot Comput Integr Manuf 16(1):65–72

19. Wang WP, Tseng HE (2009) Complexity estimation for genetic assembly sequence
planning. J Chin Inst Ind Eng 26(1):44–52

20. Chang CC, Tseng HE, Meng LP (2009) Artificial immune systems for assembly sequence
planning exploration. Eng Appl Artif Intell 22(8):1218–1232

21. Chen and Liu Chen SF, Liu YJ (2001) An adaptive genetic assembly-sequence planner. Int J
Comput Integr Manuf 14(5):489–500

22. Wang Y, Liu JH (2010) Chaotic particle swarm optimization for assembly sequence
planning. Robot Comput Integr Manuf 26(2):212–222

23. Cao PB, Xiao RB (2007) Assembly planning using a novel immune approach. Int J Adv
Manuf Technol 31(7–8):770– 782

24. Gao L, Qian W, Li X, Wang J (2010) Application of memetic algorithm in assembly sequence
planning. Int J Adv Manuf Technol 49(9–12):1175–1184

25. Yu H, Yu J, Zhang W (2009) An particle swarm optimization approach for assembly
sequence planning. Appl Mech Mater 1228:16–19

26. Lazzerini B, Marcelloni F (2000) Genetic algorithm for generating optimal assembly plans.
Artif Intell Eng 14(4):319– 329

27. Guan Q, Liu JH, Zhong YF (2002) A concurrent hierarchical evolution approach to
assembly process planning. Int J Prod Res 40(14):3357–3374

28. Lu C, Wong YS, Fuh JYH (2005) An enhanced assembly planning approach using a multi-
objective genetic algorithm. Proc Inst Mech Eng, B J Eng Manuf 220(2):255–272

29. Li JR, Khoo LP, Tor SB (2003) A Tabu-enhanced genetic algorithm approach for assembly
process planning. J Intell Manuf 14(2):197–208

30. Marian RM, Luong LHS, Abhary K (2006) A genetic algorithm for the optimisation of
assembly sequences. Comp Ind Eng 50(4):503–527.

31. Xing Y, Wang Y, Zhao X (2010) A particle swarm algorithm for assembly sequence planning.
Adv Mat Res 3243:97–101

32. Gu L, Hennequin S, Sava A, Xie X (2007) Assembly line balancing problems solved by
estimation of distribution. In: Proceedings of the 3rd IEEE international conference on
automation science and engineering, IEEE CASE 2007, pp 123–127

33. Baybars I (1986) Survey of exact algorithms for the simple assembly line balancing problem.
Manage Sci 32(8):909–932

34. Boysen N, Fliedner M, Scholl (2007) A classification of assembly line balancing problems.
Eur J Oper Res 183(2):674– 693

35. Betancourt L (2007) ASALBP: the alternative subgraphs assembly line balancing problem.
Formalization and resolution procedures. Ph.D. thesis, Technical University of Catalonia

36. Kilincci O, Bayhan GM (2006) A Petri net approach for simple assembly line balancing
problems. Int J Adv Manuf Technol 30(11–12):1165–1173

37. Tasan SO, Tunali S (2006) Improving the genetic algorithms performance in simple assembly
line balancing. In: Lecture notes in computer science, LNCS vol 3984, pp 78–87

38. Nof SY, WE W, Warnecke H (1997) Industrial assembly. Chapman & Hall, London

39. Chica M, Cordon O, Damas S, Bautista J (2010) Multiobjective constructive heuristics for the
1/3 variant of the time and space assembly line balancing problem: ACO and random
greedy search. Inf Sci 180(18):3465–3487

40. Ponnambalam SG, Aravindan P, Naidu GM (2000) Multi-objective genetic algorithm for
solving assembly line balancing problem. Int J Adv Manuf Technol 16(5):341–352

41. Capacho L, Pastor R (2008) Asalbp: The alternative sub-graphs assembly line balancing
problem. Int J Prod Res 46(13):3503–3516

42. Whitney DE (2004) Mechanical assemblies: their design, manufacture and role in product
development. Oxford University Press, New York

43. Zhang Z, Cheng W, Song L, Yu Q (2009) An ant-based algorithm for balancing assembly
lines in a mass customization environment. In: International workshop on intelligent
systems and applications, ISA 2009, 5072706

44. McMullen PR, Tarasewich P (2006) Multi-objective assembly line balancing via a modified
ant colony optimization technique. Int J Prod Res 44(1):27–42

45. Chica M, Cordon O, Damas S, Pereira J, Bautista J (2008) Incorporating preferences to a
multi-objective ant colony algorithm for time and space assembly line balancing. In:
Lecture notes in computer science. LNCS vol 5217, pp 331– 338

46. Moon DS, Park BY (2007) Genetic algorithms for concurrent assembly planning. In:
Regional computational conference, pp 214–219

47. Smith SSF, Liu YJ (2001) The application of multi-level genetic algorithms in assembly
planning. J Ind Technol 17(4):1

48. Smith GC, Smith SSF (2002) An enhanced genetic algorithm for automated assembly
planning. Robot Comput-Integr Manuf 18(5–6):355–364

49. Smith SSF (2004) Using multiple genetic operators to reduce premature convergence in
genetic assembly planning. Comput Ind 54(1):35–49

50. Tseng HE, Li JD, Chang YH (2004) Connector-based approach to assembly planning using a
genetic algorithm. Int J Prod Res 42(11):2243–2261

51. Bai YW, Chen ZN, Bin HZ, Hun J (2005) An effective integration approach toward
assembly sequence planning and evaluation. Int J Adv Manuf Technol 27(1–2):96–105

52. Udeshi T, Tsui K (2005) Assembly sequence planning for automated micro assembly. In:
IEEE International symposium on assembly and task planning 2005, vol 2005, pp 98– 105

53. Pan C, Smith S, Smith G (2006) Automatic assembly sequence planning from STEP CAD
files. Int J Comput Integr Manuf 19(8):775–783

54. Tseng HE, Chen MH, Chang CC, Wang WP (2008) Hybrid evolutionary multi-objective
algorithms for integrating assembly sequence planning and assembly line balancing. Int J
Prod Res 46(21):5951–5977

55. Tseng YJ, Chen JY, Huang FY (2010) A multi-plant assembly sequence planning model with
integrated assembly sequence planning and plant assignment using GA. Int J Adv Manuf
Technol 48(1–4):333–345

56. Zhou W, Zheng J, Yan J, Wang J (2010) A novel hybrid algorithm for assembly sequence
planning combining bacterial chemotaxis with genetic algorithm. Int J Adv Manuf Technol
52(5–8):715–724

57. Wang JF, Liu JH, Zhong YF (2005) A novel ant colony algorithm for assembly sequence
planning. Int J Adv Manuf Technol 25(11–12):1137–1143

58. Zhang J, Sun J, He Q (2010) An approach to assembly sequence planning using ant colony
optimization. In: Proceedings of 2010 international conference on intelligent control and
information processing, ICICIP 2010, vol part 2, pp 230– 233

59. Shuang B, Chen J, Li Z (2008) Microrobot based micro-assembly sequence planning with
hybrid ant colony algorithm. Int J Adv Manuf Technol 38(11–12):1227–1235

60. Lv HG, Lu C, Zha J (2010) A hybrid DPSO-SA approach to assembly sequence planning.
In: IEEE international conference on mechatronics and automation, ICMA 2010, 5589203,
pp 1998–2003

61. Shan H, Li S, Gong D, Lou P (2006) Genetic simulated annealing algorithm-based
assembly sequence planning. In: IET conference publications, vol 524, pp 1573–1579

62. Li SX, Shan HB (2008) GSSA and ACO for assembly sequence planning: a comparative
study. In: Proceedings of the IEEE international conference on automation and logistics,
ICAL 2008, pp 1270–1275

63. Tseng HE, Wang WP, Shih HY (2007) Using memetic algorithms with guided local search to
solve assembly sequence planning. Expert Syst Appl 33(2):451–467

64. Shan H, Zhou S, Sun Z (2009) Research on assembly sequence planning based on genetic
simulated annealing algorithm and ant colony optimization algorithm. Assem Autom
29(3):249–256

65. Hui C, Yuan L, Kai-Fu Z (2009) Efficient method of assembly sequence planning based on
GAAA and optimizing by assembly path feedback for complex product. Int J Adv Manuf
Technol 42(11–12):1187–1204

66. Su Q (2009) A hierarchical approach on assembly sequence planning and optimal sequences
analyzing. Robot ComputIntegr Manuf 25(1):224–234

67. Sabuncuoglu I, Erel E, Tanyer M (2000) Assembly line balancing using genetic algorithms. J
Intell Manuf 11(3):295– 310

68. Zhao ZY, Souza RD (2000) Genetic production line-balancing for the hard disk drive
industry. Int J Adv Manuf Technol 16(4):297–302

69. Goncalves JF, Almeida JRD (2002) A hybrid genetic algorithm for assembly line
balancing. J Heuristics 8(6): 629–642

70. Baykasoglu A (2006) Multi-rule multi-objective simulated annealing algorithm for straight
and U type assembly line balancing problems. J Intell Manuf 17(2):217–232

71. Zhang R, Chen D, Wang Y, Yang Z, Wang X (2007) Study on line balancing problem based
on improved genetic algorithms. In: International conference on wireless communications,
networking and mobile computing, WiCOM 2007, 4340283, pp 2033–2036

72. Zhang W, Gen M, Lin L (2008) A multiobjective genetic algorithm for assembly line
balancing problem with worker allocation. In: IEEE international conference on systems,
man and cybernetics, 4811759, pp 3026–3033

73. Yu J, Yin Y (2010) Assembly line balancing based on an adaptive genetic algorithm.
Int J Adv Manuf Technol 48(1–4):347–354

74. Zacharia PT, Nearchou AC (2010) Multi-objective fuzzy assembly line balancing using
genetic algorithms. J Intell Manuf 1–13. doi:10.1007/s10845-010-0400-9

75. McMullen PR, Tarasewich P (2003) Using ant techniques to solve the assembly line
balancing problem. IIE Trans (Institute of Industrial Engineers) 35(7):605–617

76. Blum C, Bautista J, Pereira J (2006) Beam-ACO applied to assembly line balancing. In:
Lecture note in computer science (LNCS), vol 4150, pp 96–107

77. Zhang, ZQ, Cheng WM, Tang LS, Zhong B (2008) Ant algorithm with summation rules for
assembly line balancing problem. In: International conference on management science
and engineering, ICMSE’07 (14th), 4421875, pp 369– 374

78. Blum C, Bautista J, Pereira J (2008) An extended beamACO approach to the time and
space constrained simple assembly line balancing problem. In: Lecture notes in computer
science (LNCS), vol 4972, pp 85–96

79. Zhang ZQ, W-M C, B Z, Wang JN (2007) Improved ant colony optimization for assembly
line balancing problem. Comput-Integr Manuf CIMS 13(8):1632–1638

80. Chica M, Cordon O, Damas S, Bautista J (2011) Including different kinds of
preferences in a multi-objective ant algorithm for time and space assembly line
balancing on different Nissan scenarios. Expert Syst Appl 38(1): 709–720

81. Lu JS, Jiang LL, Li XL (2009) Hybrid particle swarm optimization algorithm for assembly
line balancing problem-In: Proceedings 2009 IEEE 16th International conference on
industrial engineering and engineering management, pp 979–983

82. Nearchou AC (2010) Maximizing production rate and workload smoothing in assembly lines
using particle swarm optimization. Int J Prod Econ 12(2):242

83. Ozcan U, Toklu B (2009) A new hybrid improvement heuristic approach to simple
straight and U-type assembly line balancing problems. J Intell Manuf 20(1):123–136

84. Cakir B, Altiparmak F, Dengiz B (2010) Multi-objective optimization of a stochastic assembly
line balancing: a hybrid simulated annealing algorithm. Comput Indu Eng 60(3): 376

85. Lin YY, Che ZH, Chiang TA, Che ZG, Chiang CJ (2009) A bi-objective model for concurrent
planning of supplier selection and assembly sequence planning. In: Smith S (ed) Global
perspective for competitive enterprise, economy and ecology. Springer, London, pp 573–
580

86. Lapierre SD, Ruiz A, Soriano P (2006) Balancing assembly lines with tabu search. Eur J
Oper Res 168(3):826– 837

87. Suwannarongsri S, Limnararat S,Puangdownreong D (2007) A new hybrid intelligent
method for assembly line balancing. In: IEEE international conference on industrial engi-
neering and engineering management, 4419365, pp 1115– 1119

88. Kilincci O (2010) A Petri net-based heuristic for simple assembly line balancing problem of
type 2. Int J Adv Manuf Technol 46(1–4):329–338

89. Liu SB, Ong HL, Huang HC (2003) Two bi-directional heuristics for the assembly line type
II problem. Int J Adv Manuf Technol 22(9–10):656–661

90. Khoo LP, Alisantoso D (2003) Line balancing of PCB assembly line using immune algorithms.
Eng Comput 19(2– 3):92–100

91. Andrés C, Miralles C, Pastor R (2008) Balancing and scheduling tasks in assembly lines
with sequence-dependent setup times. Eur J Oper Res 187(3):1212–1223

92. Kilincci O, Bayhan GM (2008) A P-invariant-based algorithm for simple assembly line
balancing problem of type-1. Int J Adv Manuf Technol 37(3–4):400–409

93. Suwannarongsri S, Puangdownreong D (2008) Multi-objective assembly line balancing
via adaptive tabu search method with partial random permutation technique. In: IEEE
international conference on industrial engineering and engineering management, IEEM
2008, 4737881, pp 312– 316

94. Tijo S, Numar R (2008) Heuristic programming for assembly line balancing. In: Regional
conference of mathematical programming. Seoul, pp 226–230

95. Nearchou AC (2008) Multi-objective balancing of assembly lines by population heuristics.
Int J Prod Res 46(8):2275– 2297

96. Yeh DH, Kao HH (2009) A new bidirectional heuristic for the assembly line balancing
problem. Comput Indu Eng 57(4):1155–1160

97. Martino L, Pastor R (2010) Heuristic procedures for solving the general assembly line
balancing problem with setups. Int J Prod Res 48(6):1787–1804

98. Goldberd D (2007) Genetic algorithms: the design of innovation. Springer, Berlin
99. Tasan S, Tunali S (2008) A review of the current applications of genetic algorithms in

assembly line balancing. J Intell Manuf 19(1):49–69
100. Gao J, Sun L, Wang L, Gen M (2009) An efficient approach for type II robotic

assembly line balancing problems. Comput Ind Eng 56(3):1065–1080
101. Moon I, Logendran R, Lee J (2009) Integrated assembly line balancing with

resource restrictions. Int J Prod Res 47(19):5525–5541
102. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international

conference on neural networks, vol 4, pp 1942–1948
103. Sinavandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer,

Berlin
104. Toksari MD, Isleyen SK, Guner E, Baykoc OF (2010) Assembly line balancing

problem with deterioration tasks and learning effect. Expert Syst Appl 37(2):1223–1228
105. Capacho L, Pastor R (2006) The ASALB problem with processing alternatives

involving different tasks: definition, formalization and resolution. In: Lecture notes in
computer science, vol 3982 LNCS, pp 554–563.

