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
Abstract—Failure mechanisms of electro-mechanical systems

usually involve several degraded health-states. Tracking and
forecasting the evolution of health-states and impending failures,
in the form of remaining-useful-life (RUL), is a critical challenge
and regarded as the Achilles’ heel of condition-based-
maintenance (CBM). This paper demonstrates how this difficult
problem can be addressed through Hidden Markov models
(HMMs) that are able to estimate unobservable health-states
using observable sensor signals. In particular, implementation of
HMM based models as dynamic Bayesian networks (DBNs)
facilitates compact representation as well as additional flexibility
with regard to model structure. Both regular HMM pools and
hierarchical HMMs are employed here to estimate on-line the
health-state of drill-bits as they deteriorate with use on a CNC
drilling machine. Hierarchical HMM is composed of sub-HMMs
in a pyramid structure, providing functionality beyond an HMM
for modeling complex systems. In the case of regular HMMs,
each HMM within the pool competes to represent a distinct
health-state and adapts through competitive learning. In the case
of hierarchical HMMs, health-states are represented as distinct
nodes at the top of the hierarchy. Monte Carlo simulation, with
state transition probabilities derived from a hierarchical HMM,
is employed for RUL estimation. Detailed results on health-state
and RUL estimation are very promising and are reported in this
paper. Hierarchical HMMs seem to be particularly effective and
efficient and outperform other HMM methods from literature.

Note to Practitioners — Today’s high competitive environment
forces industry to decrease operating & support cost, whose one
of the most contributing factors is maintenance and repair cost.
Thus, industry is interested not only in the identification of
failures, but also in identification of failure states, their
progression and forecasting. This paper presents health state
estimation and remaining useful life prediction in machining
processes with a case study on drilling processes.

Index Terms — Condition-based-maintenance, diagnostics,
health-state estimation, prognostics, remaining-useful-life,
dynamic Bayesian networks, hidden Markov models

I. INTRODUCTION

ondition-Based-Maintenance (CBM) is a maintenance
technology that employs such tasks as monitoring,
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classification, and forecasting to increase system readiness and
safety while reducing costs attributed to reduced maintenance
and inventory, increased capacity, and enhanced logistics and
supply chain performance [1]. Unlike time-based preventive
maintenance and corrective maintenance practices, CBM aims
to avoid both unnecessary maintenance actions as well as
machine failures. The Center for Intelligent Maintenance
Systems estimates that $35 billion per year would be saved in
the United States alone if CBM technology were widely
employed [2].

The failure mechanisms of electro-mechanical systems
usually involve several degraded health-states. For example, a
tiny change in a bearing’s position could cause a small nick in
the bearing, which could cause scratches in the bearing race in
time, which then could cause additional nicks, which could
then lead to complete bearing failure [3]. Tracking and
forecasting the health-state of a machine is very critical for
detecting, identifying, and localizing the failure as well as
carrying out proper maintenance. Hence, employing effective
diagnostic and prognostic algorithms/methods is an important
prerequisite for widespread deployment of CBM [4].

Diagnostics is the process of identifying and localizing the
machine failure, and determining its primary cause and
severity, whereas prognostics is the process of estimating the
remaining-useful-life (RUL) [5]. Diagnostics is, in essence, a
classification problem, and there are many methods proposed
and implemented in the literature that attempt to resolve this
problem; this is in much contrast to prognostics, which is
essentially a forecasting problem. However, most diagnostic
algorithms have limited potential in that they cannot detect
failure modes in a timely manner. See [1] for a thorough
review of popular diagnostic algorithms and methods.

Diagnosing effectively the earliest stages of a failure, even
if the machine is serving its intended function, is not only
important but is a prerequisite for prognostics. It is logical to
diagnose these health-states through their effects on observed
sensor signals since we are unable to ‘observe’ real health-
states. The primary challenge then within diagnostics is to
achieve high classification accuracy in identifying health-
states given sensory signals such as vibration, current,
temperature, etc.

Prognostics is a dynamic process that evolves in time from
the moment the machine is first used until it fails. RUL should
not be confused with expected life expectancy, which is the
‘mean-time-to-failure’ of an average machine/component [6].
Expected life expectancy is the average life of similar
components/machines or a family of machines, while RUL is
the time-to-failure of a specific machine, which is being
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monitored. Prognostics is far more difficult than diagnostics,
and is currently regarded the Achilles’ heel of CBM [1].

Despite considerable advances in sensing hardware,
communications, information technologies, and software
algorithms, equipment health monitoring and diagnostics are
still largely reserved for only the most critical system
components and have not found their place in the mainstream
[7]. Worse, there exist no robust prognostics methods (for
predicting remaining-useful-life of existing assets), a vital
enabler of condition-based maintenance, for even the most
critical system components. The aim of the models presented
in this article is to squarely address this issue in the domain of
machining processes (one of the most common family of
manufacturing processes), in particular, for efficient and
economical replacement of cutting tools.

This paper employs Hidden Markov Models (HMMs),
which characterize doubly embedded stochastic processes
with an underlying stochastic process that can be observed
through another stochastic process and have been successful in
tackling such difficult tasks as automatic speech recognition
(ASR) [8] ,[9]. The tasks of both ASR and equipment
diagnostics have many commonalities. Speech signals are
quasi-stationary, and so are the sensory signals such as
machine vibration [10]. Quasi-stationary signals in some sense
terminate in an absorbing state and show stationary behavior
in any reasonable time scale [11]. In addition, words should be
recognized in automatic speech recognition, although they are
spoken by different speakers, whereas health-states should be
recognized in diagnostics although machine behavior can be
quite different due to such factors as manufacturing and
assembly variation, operating/maintenance history, and aging.
Beyond the aforementioned commonalities, implementation of
HMMs for diagnostics is more difficult than their
implementation in speech recognition. For example, the
number of phonemes is a relatively small finite set in ASR
(resulting in sound and word libraries), a notion that is neither
observed nor justified in machine diagnostics. In addition, S/N
ratios tend to be far better in speech signals unlike machine
sensor signals. Nevertheless, speech signal only remains
stationary over intervals of approximately 10ms. In
comparison, machine vibration signals remain stationary on
time scales of many seconds and even minutes [10].

Regular HMMs were implemented for health-state
estimation in the literature [3], [10] ,[12]-[16]. However,
regular HMMs tend to be limited in their ability to represent
complex systems. More importantly, in the absence of
‘labeled’ health-state sensor signal examples, the unsupervised
learning process for diagnostic applications is computationally
tedious, for it involves such methods as competitive learning
[15]. In addition, regular HMMs do not have intrinsic
transition probabilities between health-states since each HMM
represents a distinct ‘health-state’. Hence, they require
additional methods to calculate health-state transition
probabilities to be utilized in RUL estimation. Thus, effective
prognostics could not be carried out using regular HMMs.
While some have indicated the potential for using log-
likelihoods of health-state HMMs for calculating RUL [12],
[14], they rely on mostly empirical regression models. The
aim of this paper is to be able to obtain effective diagnostics
and prognostics results by overcoming aforementioned

difficulties (inability to represent complex systems,
computational difficulty, and lack of health-state transition
probability for RUL estimation).

In this article, we present the implementation of hierarchical
HMMs as dynamic Bayesian networks for health-state and
remaining-useful-life estimation. The main contribution of this
paper is to be able to obtain effective diagnostics and
prognostics results for machining processes (e.g., drilling
process) using Hierarchical Hidden Markov Model (HHMM).
Hierarchical HMM, a variant of a HMM that is composed of
several sub-HMMs in a pyramid structure, strengthens the
ability of an HMM to jointly represent multiple health-states
along with their state transition properties, facilitating
estimation of RUL.

The paper is organized as follows: Section II gives the
problem description, while section III discusses hidden
Markov Models (HMM) and dynamic Bayesian networks
(DBN) and their implementations for health-state estimation
(diagnostics) and RUL estimation (prognostics). Section IV
presents results from a drill-bit application of regular HMMs
and HHMMs for health-state estimation and RUL estimation
using HHMM and Monte-Carlo simulation. Finally, Section V
offers some concluding remarks.

II. PROBLEM DESCRIPTION

A. Drilling Process

Drilling process is one of the most commonly used
machining processes in industry [17], [18]. Up to 50% of all
machining operations in US involve drilling [19]. In addition,
around 40% of metal removal operations in the aerospace
industry involve the drilling process [20]. For example,
production of a typical small jet fighter requires about 245,000
holes to be drilled [21].

Tool breakage and/or excessive wear may cause fatal
defects in the product. Quality of drilled holes is crucial for
some 60% of rejected parts are often attributable to poor hole
quality [18]. Drill-bit, as a cutting tool, is one of the main
components that affects the hole quality. Thus, early detection
of drill-bit breakage and/or excessive wear is important and
has been studied extensively [17]-[21]. While there is a large
body of literature targeting monitoring and diagnostics of
drilling processes, there is very little work related to drill-bit
prognostics.

It is generally agreed that the most appropriate sensor
signals for drill-bit monitoring and diagnostics are longitudinal
thrust-force and torque signals [17],[18]. For example, a
careful review of diagnostics methods that employ 11 different
sensor signals for monitoring drill-bits reveals that the most
commonly used and valuable signals are indeed thrust-force
and torque signals [22]. For these reasons, we too employ
these same sensor signals for monitoring the drilling process.
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Figure 1: Experimental setup for capturing thrust-force
and torque degradation signals during drilling process.

Fig. 1 illustrates the drilling process along with a data
acquisition system. The signals collected during the actual
drilling process (from the time the drill-bit enters the work
piece until it exits the work piece from the other side), labeled
‘hole signal vector(s)’ will be used for monitoring the drill-bit
health. Thus, the life of the drill-bit can be discretely modeled
in terms of number of holes successfully drilled by the bit
rather than actual drilling time.

B. Problem Formulation

When used, drill-bits undergo deterioration, and in the
process, go through several ‘health-states’ (say ‘brand new’
state to the ‘failure’ state as do humans from infancy to death).
The fundamental problem this paper targets is two-fold:
identification of current drill-bit state (diagnostics – health-
state estimation) and remaining useful life (prognostics –
number of additional holes the drill-bit can successfully drill
from the ‘current’ state to ‘failure’ state).

1) Diagnostics – Health State Estimation
Health-states of the drill-bit cannot be clearly observed due

to the nature of the process. In most industrial settings, it is
very difficult if not impossible to stop and physically
observe/assess the drill-bit state after every hole. However, the
effects of the health-states can be observed indirectly through
the signals under observation (i.e., thrust-force and torque).
Since the identification of the health-states cannot be
deterministic due to the variations within the process, material
and other external factors, they will be represented with
probabilities. The diagnostics problem can be formulated as
follows:

  1:arg max | , 1...
i

t i t
S

HS P X S O i i N    (1)

where tX is health-state variable at time t , 1:tO is the

observed signal vector(s) from time 1 to t , iS is the health-

state i , N is the number of possible distinct health-states, and

HS is the identified health-state with highest probability.

Figure 2: Sensor signals from a typical hole drilling cycle
revealing different sub-state signatures.

Eq. (1) would be adequate for diagnostics if the
observations within a hole given the health-state were
stationary (having static statistical properties). Unfortunately,
thrust-force and torque signals are non-stationary during the
hole generation. When the drill-bit enters the material, the
thrust-force and torque signals increase rapidly. Later, they
become relatively smooth with increasing trend, partially due
to increase in friction between the side wall of the partially
completed hole and the rotating drill-bit. Once the drill-bit
produces the hole (goes through the other side of the work
piece), the thrust-force and torque signals decrease rapidly in
amplitude. In other words, there exist other states, labeled
‘sub-states’, within the hole that affect the observations (their
amplitudes and signatures) besides overall drill-bit ‘health-
states’. Fig. 2, a sample plot of sensor signals from a single
hole, clearly reveals these sub-states. In addition, health-states
not only affect observations, but also affect the sub-states and
their transitions. Hence, the monitoring algorithms have to
explicitly account for transitions between both the sub-states
within a hole as well as overall health-states for effective
diagnostics.

The diagnostics formulation can be re-written to handle the
sub-states as follows:

  1 2
1: 1:arg max | , , 1...

i

t i t t
S

HS P X S O X i i N    (2)

2
1:tX : Sub-states from time 1 to t
1
tX : Health-state at time t

Note that these formulations help us characterize the
problem, but do not present a solution. These formulations
may not be solvable directly and may need several other
formulations to represent the relationships. For example, the

sub-states 2
1:tX are not observable and have to be estimated

using inference algorithms.

2) Prognostics – Estimation of Remaining Useful Life
Here, the goal is to estimate the number of additional holes

the drill-bit can successfully drill from the current state to
failure state. This can be formulated as follows:

1 1 1 1
1 1: , ,..., ,t t t n t nFind n X i X j X l X f       (3)

Standardized Torque

Standardized Thrust-force

Rapid
Increase

Trend
Rapid
Decrease

HOLE
START

HOLE
END
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where t , 1t  , 2t  ,…, t n represent the distinct hole
sequence ( t denotes current hole and t n the last

successfully drilled hole prior to failure), , ,..., ,i j l f are the

health-state transitions, f the failure state ( ...f l j i    ),

and n is a random number representing the number of
remaining drilling cycles or holes.

Next section discusses the models to be employed for
addressing the formulations from Eqns. (2) and (3).

III. MODELING BACKGROUND

Two different modeling approaches that employ hidden
Markov models (HMMs) will be presented here to solve the
diagnostic and prognostic formulations discussed above (i.e.,
Eqns. (2) and (3)). First approach employs a ‘set’ of HMMs
whereas the second approach employs a single Hierarchical-
HMM (HHMM).

A. Hidden Markov Models (HMM)

This section discusses hidden Markov models and their
application to drill-bit health-state estimation using
‘competitive learning’ [23]. Readers familiar with HMMs can
skip the first sub-section and move to the second sub-section,
which gives the application details.

1) HMM Description
In state-space modeling, a stochastic system can be

described as being in one of a finite number of states at any
time. The system evolves through the states according to a set
of probabilities associated with each state as demonstrated in
Fig. 3. The model is called a hidden Markov model if states
are not observable (hidden) and are assumed to be causing the
observations. The system behavior depends on the current
state and predecessor states. A special case, first-order HMM,
assumes that only the current state is responsible for producing
the observations. In the remainder of this paper, HMM implies
a first-order HMM.

To better understand HMM, let us consider an urn and ball
system with 3 urns and a different number of colored balls in
each urn [24]. An urn is selected randomly; then, a ball is
chosen from this urn, its color is recorded, and it is placed
back into the urn it is chosen from. In the next step, a new urn
is selected, and a ball is chosen from this urn and recorded.
This process is repeated a finite number of times resulting in a
finite observation sequence of ball colors. Now, assume that
the system is in a different room and handled by someone else
so that we don’t see the selected urns. The only event
observable to us is the colors of the selected balls. Obviously,
the simplest HMM representation of this system corresponds
to states being urns with different color probabilities for each
urn.

Figure 3: A Markov chain with 6 states and state transition probabilities
(arrows represent non-zero state transition probabilities).

There are several elements to an HMM: number of

states ( )N , observations, state transition probability

distribution, observation probability distribution, and initial

state distribution. tX denotes the state at time t and tO

denotes observation at time t , which might either be a

discrete symbol {1,..., }tO L or a feature vector from L

dimensional space, L
tO R . State transition probability

distribution models the probability of being in state i at time
t , given that it is in state j in time 1t  , and is denoted as

, 1{ } ( | )i j t tA P X i X j     . Observation probability

distribution defines the probability of observing k at time t

given the state i , denoted as { ( )} ( | )i t tB b k P O k X i    .

These distributions are either mass functions in the case of
discrete observations or specified using a parametric model
family -commonly Gaussian- in the case of continuous
observations. Initial state distribution is the probability of

being in state i at 0t  and is denoted as 1( ) ( )i P X i   .

Generally,  , ,A B  is used to specify a HMM. The rest of

this paper employs the Gaussian observation model.
There are three basic problems of interest to be solved given

the above model specifications.
 How to compute the probability of obtaining the

observation sequence 1 2 ... TO O O O given the model  ? (i.e.

 1 2 ... |TP O O O  =?) The forward-backward (FB) algorithm

[25],[26] is commonly used for this since it is more efficient
than the direct evaluation method.

 How to identify the most likely state sequence that
might produce the observation sequence? The Baum-Welch
algorithm, also called the Expectation Maximization (EM)
algorithm, uses both the forward and backward procedures to
solve this problem [27].

 How to adjust or learn the parameters of  in order
to maximize the likelihood of the given observation sequence?
The EM algorithm solves this problem as well.

These three problems are tightly linked and studied
extensively in the literature. The standard HMM solution to
these problems requires an exponential number of parameters
to specify the transition and observation models since it
calculates the Cartesian product of the state-spaces of each
example. This means requiring excessive amounts of data to
learn the model (high sample complexity) and exponential
time for inference (high computational complexity). For

example, the FB algorithm cycle takes  2NO Tk operations.

For more detailed information about HMMs, see [24].

2) HMMs for Drilling Process Diagnostics with
Competitive Learning

As mentioned in section II.B.1, the thrust-force and torque
signals are non-stationary within a hole. In other words, there
exist several sub-states within a hole such as ‘rapid increase’,
‘trend’, and ‘rapid decrease’ states as displayed in Fig. 2. In

standard HMM modeling, the state of the HMM ( tX )

S1

S5

S2

S6

S4

S3
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represents these states in the hole. Given that HMM states are
modeling the sub-states within a hole, a single HMM is
incapable of modeling the different overall ‘health-states’
witnessed during the life of a typical drill-bit. Thus, we
employ a set of HMMs, hoping that at the end of the
(competitive learning based) training process, each HMM
within the set will represent a distinct health-state.

Identification of current health-state given observations of a
hole is performed as a competition among HMMs. Under
competitive learning [23], HMMs (undergoing learning)
compete to represent the health-state dynamics present within
each training example, i.e., sensor signals from a hole,
presented one at a time in random order to the HMM pool.
The HMM with the highest fitness, i.e. highest log-likelihood
value, is identified as a winner and is considered the
representative of the current health-state. In general, only the
HMM winner is allowed to further learn using the current
training example (however, literature offers other learning
schemes that might allow few nearest neighbors of the HMM
winner to learn as well). This process is repeated for all holes
of all drill-bits that are being used for training. Training
continuous until predefined number of iterations or
convergence is achieved (see [23] for more details). Fig. 4
further illustrates this competitive learning based training
procedure for the HMM pool. Once trained, for actual on-line
diagnostics, the health-state of any given hole sensor signal
vector is defined by the trained HMM with the highest log-
likelihood value as illustrated in Fig. 5.

Figure 4: Procedure for training HMM pool through competitive learning for
health-state diagnostics.

Figure 5: Health-state inference with regular HMMs.

B. Hierarchical Hidden Markov Models (HHMM)

Hierarchical HMM (HHMM), proposed by Fine et al [28],
is an extension of an HMM that is designed to model
hierarchical structures for sequential data. In the HHMM, each
state is considered to be a self contained probabilistic model.
More precisely, each state of the HHMM is itself an HMM (or
even a HHMM). When a state in an HHMM is activated, it
will activate its own probabilistic model, i.e. it will activate
one of the states of the underlying HHMM, which in turn may
activate its underlying HHMM and so on [29]. The process is
repeated until a special state, called a ‘production state’, is
activated. Only the production states emit observations in the
usual HMM sense.

Fig. 6 provides an illustrative example of this hierarchical

structure of hidden-states. In the figure, 1
tX represents the tht

top-state and 2
kX represents the thk sub-state. The states that

do not directly emit observations symbols are called hidden or

‘internal states’ ( 1
tX and 2

kX are hidden states). The transition

of a hidden state from one to another within the same level is

called ‘horizontal transition’. For example, under 1
1X ,

transition from 2
1X to 2

2X is an example of horizontal

transition. After the last state is reached in sub-states, a
‘vertical transition’ is allowed. For example, after sub state

transitions reach the last state 2
3X indicating that the hole has

ended, health-state transition from 1
1X to 1

2X may occur in the

example from Fig. 6.

Figure 6: Hierarchical representation of states in HHMM:

Top states (
1
iX ) and Sub-states (

2
jX )
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The methods for estimating the HHMM parameters and
model structure are more complex than for the HMM, see [28]
for more details. Dynamic Bayesian Network (DBN) can more
efficiently represent HMMs with the added flexibility of
implementing different variants of HMM such as HHMM.
Readers who are familiar with DBNs may skip the next two
sub-sections and move to the sub-section on HHMM for
drilling process diagnostics.

1) Dynamic Bayesian Network (DBN)
Graph and probability theories are the basis of Bayesian

networks, also known as Graphical Models, that combine the
visual representation of variables (i.e., nodes) and conditional
probabilities representing their cause-effect relationships. The
conditional probability distribution of a node variable depends
only on the parents of the node and is independent of its
ancestors (i.e., parent’s parents) given its parents. This is
called the factorization property, and it dramatically reduces
the number of model parameters.

While Bayesian networks are effective in their
representation, they are limited to modeling ‘static’
relationships. However, sequential data arises in many areas of
science and engineering, calling for modeling of dynamic
processes. Dynamic Bayesian networks (DBNs) are state-
space models that are effective for modeling these types of
stochastic processes, and are more general and expressive than
HMMs, where hidden variables are discrete, and Kalman
Filter Models (KFMs), where the hidden variables are
continuous [30], [31]. While state-space in HMMs consists of
a single discrete random variable, DBN can represent the
hidden-state in terms of a set of random variables. While KFM
requires all the condition probability distributions to be linear-
Gaussian, DBN allows arbitrary CPDs. In addition, HMMs
and KFMs have a restricted topology, whereas, DBN allows
much more general graph structures. Note that the term
‘dynamic’ in DBN means we are modeling a dynamic system,
and does not mean that the Bayesian network graph structure
changes over time. DBNs are thus designed to model
probability distributions of hidden variables (states) that
evolve in time by using sequenced observed variables that are
generated by these hidden-states [32]. DBN structure consists
of different levels such as observation level ( O nodes -
shaded) and hidden-state level ( X nodes – not shaded), as

illustrated in Fig. 7. Observation in time t ( )tO is generated

by hidden-state tX and previous observation 1( )tO  . Once the

structure is designed, conditional probability distributions (i.e.,

initial probability distribution 1( )P X i , state transition

distribution 1( | )t tP X X  , and the observation distribution

|( )t tP O X ) of each node given its parents are learned during

the ‘training’ process. It is also assumed here that transition
and observation functions do not change over time. In this
work, the observation distribution is assumed to be continuous
and Gaussian as represented in (4).

   2| ~ ,t t i iP O X i N   (4)

Even though a variable from different time instants could be
potentially represented as distinct variables in the DBN
network, the difficulty in representation and computation is
obvious even from problems with limited time history (e.g., 10

distinct variables will be required to represent 1 variable in 10
time instants). Hence, variables in different time slices that
have the same parental structure are represented as one
variable in DBNs to obtain compact representation. For
example, in Fig, 7, hidden-states in all time slices except the
initial time slice (i.e., 2,3,...t n but not 1t  ) have the same

parental structure, in which each variable has a previous
hidden-state as the sole parent, and are represented as one

variable tX . Similarly, observable variables in all time (i.e.,

1,2,...t n ) are represented as O , since they have a hidden-

state of the same time slice as the parent. Representation of
HMM as a DBN thus requires just three variables (i.e.,

1X , tX , and O ; one for the initial hidden variable, one for

other hidden variables, and one for the observable,
respectively). The goal of a DBN acting as a HMM is to infer
the hidden-state given the observation sequence, which can be

represented more precisely as 1:( | )t tP X i O . Fig. 7

illustrates the implementation of HMM as a DBN with shaded
nodes representing observable variables and blank nodes
representing hidden variables.

Figure 7: Representation of HMM as a dynamic Bayesian network (DBN).

2) Implementation of HHMM as DBN
In representing HHMM as a DBN, as illustrated in Fig. 8,
variables in all levels are represented by a node in each

time slice. Top-state 1( )tX is replicated in Fig. 8 for each

sub-state in Fig. 6 as well as the observation state, which
represents the observed variable. As illustrated in Fig. 8,
the hidden-states in top- and sub-state levels ‘cause’ the
observation and top-level states also cause the sub-level
state (‘cause’ is represented as an arrow). By replicating
top-states for each sub-state, we encounter the danger of
losing the hierarchical structure. In order to maintain the
hierarchical structure, ‘top level’ state transitions are only
allowed if the ‘lower level’ state reaches the last possible

state. In Fig. 6 example, top-state cannot be 1
2X unless

sub-state reaches 2
3X . This can be achieved through a

binary control variable F, allowing a top-level state
change only if the control variable F=1. The control
variable F is allowed to take a value of 1 only if the lower

level reaches its last possible state. In other words, 2
1tX 

affects 1
tX indirectly through 1tF  . 1

tX can change only if

1 1tF   . 1tF  becomes 1 only if 2
1tX  reaches the last

state. Hence, six variables (i.e., initial lower and top level

hidden-states 1
1X , 2

1X ; lower and top level hidden-states

other than initial case 1
tX , 2

tX ; control state F ; and

observed state O ) are necessary to represent the this
HHMM as a DBN.

1X tX

O O

1X

1O

1t

2X

2O

2t

3X

3O

3t

Hidden States

Observed signal

Time sequence

…

…
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Figure 8: DBN representation of HHMM from Fig. 6.
d
tX denotes node X in time t at level d

The conditional probabilities of variables in the first/initial
time slice are initial distributions and written in (5) and (6):

 1 1
1 ( )P X j j  (5)

   2 1 2
1 1| jP X i X j i   (6)

Here, 1( )j denotes the initial top-level state distribution and

 2
j i the probability of sub-state being in state i , given that

the upper state is in state j .

Given that variable F plays the key role of sustaining the
hierarchical structure in the rest of the time slices, the
conditional probabilities of top and lower hidden layers (other
than initial ones) are based on F. If F is ‘on’ (i.e., F=1), it is a
vertical transition (i.e., lets an upper level state change; e.g.,

from 1
1X to 1

2X ); otherwise, it is a horizontal transition (i.e.,

transition to a state in the sub-state level under the same top

level state; from 2
1X to 2

2X ). In the top level, the conditional

probability distribution is the top level state transition

probability (  1 ,A i j ) if the control variable F is ‘on’;

otherwise, the top level state is not allowed a transition as
formulated in (7). In the sub-state level, conditional
probability can be drawn from either the initial distribution or
the transition distribution depending on the state of the binary
control variable F as written in (8). The probability of turning
control variable F ‘on’ is equal to the probability of transition
to the last state as stated in (9). In addition, (10) gives the
conditional distribution of the observed state.

 1 1
1 1| ,t t tP X j X i F f    

 1

1 if 0 &

0 if 0 &

, if 1

f i j

f i j

A i j f

  


 




(7)

 1 ,A i j denotes transition probability from top state i to j

in the top level of the hierarchy.

 2 2 1
1 1| , ,t t t tP X j X i F f X k     

 

 

2

2

, if 0

if 1

k

k

A i j f

j f

 




(8)

 2 ,kA i j denotes transition probability from state i to j

given that the high level state is in k and  2
k j the initial

sub-state level distribution given that high level state is in k .

   1 2 21| , ,t t t kP F X k X i A i l    (9)

where l is the last state.

   1 2 2| , ~ ,, ,i j i jt t i jP O X X Nt    (10)

The conditional probabilities are learned during the training
process using the training dataset. See [33] for more detailed
information about DBNs.

3) HHMM for Drilling Process Diagnostics
Realization of a DBN involves three phases: Designing,

Training, and Testing as represented in Fig. 9. During the
Design phase, the structure of the DBN (i.e., hidden and
observable variables and their cause-effect relationships in the
form of a directed acyclic graph) and the conditional
probabilities are defined. Design phase includes the
identification of number health-states and sub-states within a
hole. In other words, number of different i and j values in

Eqns. (5) and (6). These numbers are typically identified
using subject domain expertise and/or trial-error and will be
discussed further in section IV.

In the training phase, drill-bits are divided into two groups:
one for training, other for testing. Given the observation

sequence, parameters 1( )j ,  2
j i ,  2 ,kA i j , ,i j , and 2

,i j

(as displayed in Eqns. (5)-(10)) are learned using the training
dataset. A hole is randomly selected from training dataset (any
hole from any drill bit in the training dataset) and DBN
(HHMM in our case) is trained with the data sequence of the
selected hole. The techniques for learning the mentioned
parameters in DBN given the data sequence are mostly
straightforward extensions of the techniques for learning BNs,
and often involve expectation maximization, such as the
Baum-Welch (EM) method. This training process is repeated
for all holes to be used for training, presenting them in random
order. Training continues until convergence or predefined
number of iterations are reached. Fig. 10.a illustrates this
training of HHMM. Note that the toolbox developed by Kevin
Murphy (Bayesian network toolbox
http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html [34]),
employed for this work, has ready functions for training,
which get the training data as input and performs the training
and returns the trained HHMM with estimated conditional
probability parameters.

1
1X 1

tX

O O

2
1X 2

tX

F

Sub-state level

Observed

Top-state level

Control Variable

H
idden

S
tates
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Figure 9: DBN application flowchart.

Figure 10: HHMM training and inference illustration.

Once training is complete, the testing phase (i.e., inference)
involves estimation of the most likely hidden-state sequence
given the observation sequence from all drill-bits in training
and testing datasets, albeit separately. While exact inference of
hidden-states in DBNs is possible through the forward-
backward algorithm and others, it is NP-hard (computationally
intractable). Fortunately, there are a variety of deterministic
and stochastic approximate inference methods that are
computationally efficient while offering reasonable
performance. The BNT toolbox mentioned above also has
functions for inference. See [28],[33] for more detailed
information about methods used in training and testing phases
of BNs and DBNs.

4) Prognostics - RUL Estimation
The primary task of prognostics is to estimate the

remaining-useful-life (RUL) of the equipment. In the context

of CBM, RUL can be defined as the operational hours or
number of cycles to be completed before a system or
component will require replacement or maintenance. Given
the uncertainty of prognostics, it is also best to characterize
RUL as a probability distribution.

The literature on prognostics is extremely sparse. In general,
prognostics methods can be broadly grouped into two
categories: physics-based and empirical-based. Even though
physics-based prognostics models have been attempted for a
variety of mechanical systems and sub-systems with some
success [35], [36] and might give better results than empirical-
based models, they are machine specific and much more
expensive to implement. For these reasons, physics-based
methods pose significant barriers to widespread deployment of
CBM practices.

Empirical prognostic methods can be grouped into three
categories. The first approach, evolutionary prognostics,
involves the trending of key features combined with simplistic
thresholds set from past experience and the analysis of the
change rate from the current condition to the known failure in
the feature space. In [37], failure is defined as specified level
of degradation (i.e., threshold) and various degradation models
are used to estimate RUL, the time to reach the threshold.
Similarly, a Gamma process model is used for degradation
modeling in [38]. However, many systems are not simple
enough to set thresholds to the features for failure states. The
second approach [39] is to utilize statistical regression models
and/or computational intelligence methods such as neural
networks to model known failure degradation paths in the
feature space. However, these models are not very promising,
especially for long-term forecasting, which is a necessity for
estimation of RUL. The third approach, future state
estimation, estimates a state vector that represents the
equipment health condition from a brand new state to failure
by employing subspace and non-linear dynamic methods [40].
These methods forecast the progression of health-states of the
machine from the current state (estimated by diagnostic
methods) to the failure state by employing transition
probabilities between states and time spent in each state [35],
[40], [41]. The proposed method for RUL estimation would
qualify as a state-estimator-driven prognostic method. Kalman
and Alpha-Beta-Gamma tracking filters are also examples of
this approach [42]. In [43], health-states are predicted using a
hidden degradation process identification method. However,
this method is claimed to be in its infancy and applicable to
non-complex conditions for now [43].

As state-estimator-driven prognostic method, HMM is used
in [12], [13], [16]. In [16], the health-states for each hole are
defined by the user and the estimated transition from one
health-state to another is compared with the transition defined
by the user. However, supervised learning concept may be
misleading in cases where ground truth information is not
available. In most health-state estimation problems, the true
health-state is not known or impractical to collect. Thus,
authors of [16] have presented an unsupervised learning
concept in [12], in which HMM models are employed for
RUL estimation. In particular, they employ a competitive
learning method for health-state estimation. They also
proposed three different RUL estimation methods. In the first
method (method 1), state transition probability distributions

Select data from a random
‘hole’ for learning

HHMM Train HHMM

Get data from all
training drill-bits

Data
left?

Conve
rged?

No YesNo

Yes

end

Thrust-Force
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are estimated. In methods 2 and 3, health-state log-likelihood
values are estimated using polynomial and quadratic
regression methods, respectively, and RUL is calculated based
on estimated log-likelihood values. In the HHMM method
presented in this paper, transition probabilities learnt during
the training process are used for RUL estimation. The results
of the presented method will be compared with the results in
[12].

In [13], hidden semi-Markov model is employed for a
pump-system. Some of these same authors also proposed an
auto-regressive hidden semi-Markov model [14] for
diagnostics and prognostics of hydraulic pumps. Even though
detailed information about diagnostics results is given in [13],
the prognostics results are limited (only mean and covariance
of one RUL estimation is reported).

Our proposed method is a future state estimator and
employs Monte-Carlo simulation based on the health-state
transition probabilities captured by the HHMM in order to
characterize the RUL. Since we employed ‘left-to-right’
HHMM, only forward transition (from left to right) is allowed.
In other words, health-state of a drill-bit may get worse or stay
the same, but cannot get better as time progress. Health-state
transition probability is calculated as follows:

   1 1 1
1 1

, if
| , 1

0 otherwise
t t t

A i j i j
P X j X i F 


    


(11)

where  ,A i j denotes transition probability from state i to

state j .

As can be seen from Eqn. (11), the transition probability
depends on the current state at (t-1) and possible future state at
(t). The time spent in the current state does not affect the
transition probability. Given that the proposed HHMM
structure does not explicitly incorporate any state duration
density, the assumption is that the state durations follow an
exponential distribution. Future research will consider explicit
state duration density modeling.

Given the current health-state and all possible future health-
states and transition probabilities from a HHMM, RUL can be
looked upon as the answer to the following question: How
many transitions need to be made to go from the current
health-state to the failure state? In the drill-bit monitoring
application, number of transitions from the current state to the
failure state corresponds to number of holes to be successfully
drilled before the failure of the drill-bit, since a transition from
a health-state to another one (or itself) occurs in each hole.
Hierarchical structure of the HHMM does not allow multiple
transitions in a hole (consider the transition of top-states and
control variable F).

It is generally the case that any unit or system under
consideration might endure multiple successful operational
hours/cycles in the ‘failure state’ as identified by the HHMM.
However, in the interest of not causing a real failure and
allowing time for replacement/maintenance, we define as
failure an ‘entry’ into the failure state. Given the learnt
HHMM model and the intrinsic state-transition probability
matrices, the proposed approach naturally characterizes RUL
as a probability distribution, utilizing the frequency table
generated by Monte-Carlo simulation. As is the case with any

Monte-Carlo simulation-based estimation, large sample sizes
are critical for accuracy.

The process is illustrated for a hypothetical system with five
health-states and some non-zero state transition probabilities
in Fig. 16. According to the figure, the system is currently in
the second health-state with the fifth health-state defined as
the failure state. RUL, given the current state, is the number of
transitions necessary to reach the failure state (i.e., state #5)
from the current state (i.e., state #2) by transitioning according
to health-state transition probabilities. RUL distribution can be
obtained by simulating the transition process several times,
yielding, distinct RUL values.

Figure 11: Illustration of equipment health-state
transition paths (including self-transitions).

1: Brand new equipment, 5: Failure state, 2: Current health-state

IV. IMPLEMENTATION AND RESULTS

The proposed health-state and RUL estimation methods
were applied to a drilling process, the most popular industrial
machining process. The intent was to estimate on-line (in a
non-intrusive way) the health-state of the drill-bit and RUL to
facilitate timely replacement of the bit in order to avoid any
failures within the work-piece and/or premature replacement.
Drill-bits are normally subject to gradual wear along the
cutting lips and the chisel edge, which leads to a series of
transitions in health-states from a ‘brand new’ state to a
‘failure state’ [15]. The objective of on-line estimation of
health-states and RUL was achieved through the processes
disclosed below.

The experimental setup (see Fig. 1) consisted of a HAAS
VF-1 CNC Machine, a workstation with LabVIEW software
for signal processing, a Kistler 9257B piezo-dynamometer for
measuring thrust-force and torque, and a NI PCI-MIO-16XE-
10 card for data acquisition. Twelve drill-bits were used for
the experiment, and each was operated until it reached a state
of physical failure. Thrust-force and torque sensor signals
were employed for health-state estimation given their strong
correlation with the health condition of the drill-bit [17], [18].
Stainless steel bars with a thickness of 0.25 inches were used
as specimens for tests. The drill-bits used consisted of high-
speed twist drill-bits with two flutes and were operated under
the following conditions without any coolant: feed-rate of 4.5
inches-per-minute (ipm) and spindle-speed of 800 revolutions-
per-minute (rpm). The thrust-force and torque data were
collected for each hole from the time instant the drill-bit
penetrated the work piece through the time instant the drill-bit
protruded from the other side of the work piece. The data was
collected at 250 Hz, considered adequate to capture cutting
tool dynamics in terms of thrust-force and torque. The number
of data points collected for a hole changed between 380 and
460. Data from each hole was binned to 24 RMS (root mean
square) values. For illustrative purposes, data collected from
drill-bit #5 are depicted in Fig. 11. Given the substantial

1 2 3 4 5
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difference in the amplitudes of the thrust and torque signals,
normalization (i.e., shifting the means to zero and scaling the
standard deviations to unity) seems to generally help speed up
the DBN parameter estimation process during learning. It
involves calculating the mean thrust force (a scalar) and
standard deviation of the thrust force (another scalar) of data
from all holes of all training dataset drill-bits. We then scale
the thrust force signal values by subtracting the mean and
dividing the difference by the standard deviation (essentially a
shifting and scaling operation). The procedure is repeated for
torque signals as well. The established mean and standard
deviation parameters of thrust force and torque signals are
then employed for scaling signals from the testing dataset as
well.

Figure 12: Trust-force and torque data from drill-bit #5.

In order to evaluate the effectiveness of the proposed
methods, health-state classification ‘accuracy’ needs to be
assessed. Reliable information is essential for calculation of
ideal classification accuracy. For the given experiment,
trustworthy information consists of the actual health-state of
drill-bits, which might be identified as a function of wear and
tear on the cutting lips or the chisel edge at the end of each
drilling cycle, an extremely tedious proposition. However, this
evaluation process between drilling cycles causes the drill-bit
to cool down and lead to a weak representation of true
degradation under actual operating conditions. In addition,
many real world applications lack accurate information about
the health-state of the equipment.

In the absence of accurate and reliable information, we have
evaluated the proposed method in two ways: first evaluation
involves health-state estimation performance and the second
evaluation is based on RUL estimation performance. As for
health-state estimation performance (i.e., diagnostics), three
criteria are employed: number of reverse health-state jumps,
uniformity, and health-state resolution. Reverse health-state
jump denotes the case when the diagnostic model indicates
that the drill-bit is revisiting a prior health-state after
transitioning to a different health-state. For example, if the
diagnostic model indicates that a particular drill-bit has
reached a state of failure during on-line monitoring and then
later indicates that the drill-bit is once again in an operational
health-state, we have a reverse health-state jump. Uniformity
measures the consistent presence of the different health-states
in all the drill-bits used for the training process and during on-
line monitoring. Each health-state needs to be visited by most,
if not all, drill-bits for generalization of health-state
estimation. This is a reasonable measure for this experiment
and may not be appropriate for systems that fail due to

multiple failure mechanisms. The last criterion, health-state
resolution, ensures adequate resolution between a brand new
drill-bit and a complete failure. This is measured here by
counting the number of identified health-states. As for RUL
estimation performance evaluation, we compare the estimated
RUL, which is calculated using the estimated health-states,
with true or witnessed RUL and will be discussed in
prognostics section.

Both regular and hierarchical HMMs (as described in
section III) were implemented for diagnostics and prognostics
using data from nine drill-bits for training and three for testing
and are discussed in the next sub-section. The application is
implemented using MATLAB based on Kevin Murphy’s
Bayesian network toolbox, available at
http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html [34].

A. Health State Estimation with Competitive Learning of
HMMs

As outlined in section III.A.2, in the competitive learning
case, several HMMs (HMM1, HMM2, etc.), each of which is
eventually expected to represent a distinct health-state, are
created. A data sequence (i.e., 24 data points) for a random
hole (among all training drill-bit data) was selected and the
probability of obtaining this data sequence given the HMM
model is calculated for all HMMs (1st basic problem
mentioned in HMM section). Log-likelihood value is the log-
probability of obtaining the data sequence given the HMM
calculated using the Forward-Backward algorithm. In general,
the resulting likelihood in HMM is represented as log-
likelihood values, since the exact distribution of the likelihood
ratio is very difficult to determine in testing nested
hypotheses, as in [15], [24], [44]. The HMM with the highest
log-likelihood value is labeled the ‘winner’, inferring that the
drill-bit is in the health-state represented by the winner. The
selected data sequence is used for further incremental training
of the winning HMM alone. Standard training methods
referred in section II were used. This unsupervised
competitive learning method is expected to lead each health-
state to be represented by a distinct HMM, since an HMM that
learned similar data sequences will have higher likelihood
values during the competition.

Initialization is an important issue for building HMMs for
health-state estimation in terms of reducing training times and
improving diagnostic performance. In this investigation, the
first and last holes of all drill-bits were used for initialization
of the ‘first’ and ‘last’ HMM models in the pool, respectively.
Then, one hole from each drill-bit is selected in such a way
that the selected holes are as far away from each other as
possible to initialize the remaining HMMs. For example, with
four HMMs in the competitive learning pool and data
available from 22 holes from drill-bit #1, holes 1, 8, 15, and
22 were used to initialize HMM1, HMM2, HMM3, and HMM4,
respectively. After initialization, HMMs were trained through
pure competitive learning as explained in detail in section
III.A.2. Data sequences from all training holes were presented
in a random order to the HMM pool in each epoch of the
competitive learning process. The learning process is
terminated when reverse jumps (i.e., classification error) per
epoch reach zero or when a pre-specified maximum number of
epochs are reached.

Time

Thrust-force –
Newtons

Torque –
Newton meters

A hole



11

Here is a note of caution regarding the selection of number
of hidden-states for each HMM prior to competitive learning.
In our experiments, we varied the number of hidden-states
within each HMM by starting with two states and increasing it
until the non-stationarity is captured adequately. As with most
statistical models where measures of goodness-of-fit improve
with model complexity, so is the case with HMMs. As we
increase the number of hidden-states, so does the log-
likelihood [44]. However, as is the case with any model, we
prefer simpler models to complex models, justified by the
principle of Occam’s razor [45]. Thus, we need to evaluate the
performance of HMMs by increasing the number of hidden-
states and stop when the rate of improvement in the log-
likelihood begins to diminish. If the number of hidden-states is
increased too much, they can also overlap, compromising the
distinction between the different sub-states, and in turn, the
health-states. In our experiments, we did not see any
significant improvement in performance beyond four hidden-
states per HMM.

For the given datasets, best results based on the
aforementioned evaluation criteria (i.e., number of reverse
health-state jumps, uniformity, and health-state resolution)
were obtained when the HMM pool was initialized with 4
HMMs. This selection process would of course vary from
application to application and should be based on subject
domain expertise and desired health-state resolution. In our
current application of monitoring drill-bits, 4 distinct health-
states are considered adequate, with the understanding that
once trained, HMMs can be used for health-state diagnostics
on-line to replace the drill-bit in a timely fashion (i.e.,
replacement at transition from the third health-state to the last
health-state or failure state). After proper initialization, the
competitive learning has been performed. As described in
section III.A.1, each trained HMM can be fully characterized

by  , ,A B  , where, ,{ }i jA  1( | )t tP X i X j  

denotes the state-transition matrix,

{ ( )} ( | )i t tB b k P O k X i    the observation distribution

given the state, and 1( ) ( )i P X i   the initial state

distribution. All our studies adopted the standard Gaussian
observation process assumption during modeling.

Given that each HMM is initialized with 4 hidden or sub-
states, each trained HMM (supposedly representing a distinct
health-state) yields 4 Gaussian distribution observation models
(one for each hidden state). Fig. 12 plots the mean (denoted by
‘+’ sign) and co-variance structure of the observation
distributions given the hidden-states for all four of the health-
state HMMs that underwent the competitive learning process,
super imposed on data from the complete life history of drill-
bit #1. The orientation of the co-variance structure ellipse is
based on the covariance matrix, and is scaled to pass through
the 1 points on the two principal component axes. In each
of the sub-plots, data sequences are also color coded based on
their similarity to the distinct health-state HMMs (green for
data sequences that closely match the particular health-state
HMM and yellow for those with low similarity – meaning
similar to one of the other three health-state HMMs).

As can be seen from Fig. 13, the thrust-force and torque
signals in 2D space look similar to an ellipsoid. All sub-plots

are showing data from all holes of drill-bit #1, however, with
color coding. Holes represented (under competition) by each
of the four distinct health-state HMMs are coded green in the
sub-plots, with sup-plots (a), (b), (c), and (d) corresponding to
health-states represented by HMM1, HMM4, HMM3, and
HMM2 (from brand new state to failure) respectively. Each
sub-plot also shows in red the centers as well as the constant
density contours representing the covariance structures of the
sub-health-states of the corresponding trained HMM. The
location of the center of the ellipse corresponds to the mean
vector of the observable bi-variate Gaussian density, and the
major and minor axes of the constant density contours
represent the eigen-vectors of the covariance matrix. For
example, Fig. 13(a) shows the four centers and the covariance
structure constant-density contours for HMM1. As drill-bit
wears, the blunt cutting edges increase the thrust-force and
torque signal amplitudes. The green ellipsoid data pattern is
small for HMM1 (see Fig. 13a), whereas it moves out
producing a bigger ellipsoid like pattern as the drill-bit gets
closer to failure health-state. Tracking the location of the four
sub-states of the four 4 distinct HMMs, there is evidence that
the HMMs are attempting to represent different health-states
or life stages of the drill-bit. The figure illustrates that the data
moves from the interior to the exterior as the drill-bit is used,
and sub-states of HMMs can represent this movement.
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Figure 13: Mean and co-variance structure of sub-states of the four health-
state HMMs superimposed on data from drill-bit #1.

After the HMMs were trained, health-states of drill-bits for
all holes are identified hole by hole. The data for the
corresponding hole is fed to all HMMs and the one with
highest log-likelihood value is defined as the representative of
the health-state, as illustrated in Fig. 5. The log-likelihood
values of the four HMMs for drill-bit #1 are plotted in Fig. 14.
The x-axis gives the life of the drill-bits in terms of holes and
the y-axis gives the log-likelihood values for the four health-
state HMMs. As can be seen from the figure, the log-
likelihood values are highest for HMM1, HMM4, HMM3, and
HMM2, as we go from brand new to failure states,
respectively. Meaning, HMM2 learned the ‘failure state’
during the competitive learning process, whereas HMM1

learned the ‘perfectly healthy state’. Note that we arbitrarily
labeled the randomly initialized HMMs in order from 1 to 4
prior to the competitive learning process. This order, as
indicated, is arbitrary and has no impact on the final solution.

(a)

(c) (d)
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What matters is the result of the competitive learning process.
As indicated above, it is the log-likelihood plots from the
training and testing cycles (past competitive learning) that
reveal the true order of the health-states and the corresponding
HMMs. It is not important if the failure state is represented by
HMM1 or HMM2 as long as it is always represented by the
same HMM both during training phase and the testing phase,
indicating successful learning.
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Figure 14: Log-likelihood trajectories of the four health-state HMMs
past competitive learning for data from drill-bit #1.

The health-state estimation results from competitive
learning are given in Table 1 for all twelve drill-bits. Each
drill-bit is represented in a row (total of 12 rows for 12 drill-
bits) with various numbers of successfully drilled holes
represented in columns. An empty cell denotes that the
corresponding drill-bit in the row failed before reaching the
corresponding hole in the column. The number in each cell
denotes the HMM number that represents the health of the
drill-bit in the corresponding row and hole in the
corresponding column. HMM1 represents the ‘good’ health-
state and HMM4, HMM3, and HMM2 represents health-states
closer to failure respectively, HMM2 representing the health-
state just before the failure-state. Different colors (gray levels
in black-white print) are used for ease of visualization. As can
be seen from the table, the trained HMMs were successful in
representing the health-states without yielding any reverse
jumps, and in addition, majority of drill-bits visited or
underwent all the distinct health-states.

In general, the number of HMMs within the competitive
learning pool and the number of hidden-states allowed within
each HMM should be optimized. Too many or too few HMM
hidden-states lead to data over-fitting (hence poor
performance on the testing set) or poor performance (even
within the training set), respectively [15]. For our drill-bit
monitoring application, it was noticed that when less than four
states are used, the reverse jumps increase (i.e., classification
accuracy decreases), whereas when more than four HMMs are
used, some of the HMMs either couldn’t win any competition
or tended to represent a part of a health-state. For example, in
the case of 5 HMMs used for training, both HMM 3 and 5
represented the final failure state (i.e., the last hole of all drill-
bits).

Table 1: Health-state estimation/labeling results for data from all holes of all
drill-bits using HMM pool competitive learning.

(1: brand new, 4: used, 3::excessively used, 2: close to failure)

Holes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
ri

ll
-b

it
s

1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 3 3 3 2

2 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 3 2

3 1 1 1 1 1 1 1 1 1 1 1 1 4 3 2

4 1 1 1 1 1 1 2

5 1 1 1 1 1 1 1 1 1 1 4 4 2

6 1 1 1 1 1 1 1 2

7 1 1 1 1 1 1 1 1 1 1 4 4 3 2

8 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 3 3 2

9 1 1 1 1 1 1 1 1 1 1 1 1 1 4 3 2

10 1 1 1 1 1 1 1 1 2 2

11 1 1 1 1 1 1 1 4 2

12 1 1 1 1 1 1 1 1 1 4 4 4 4 4 3 3 2

B. Hierarchical Hidden Markov Model for Health State
Estimation

Hierarchical HMM (HHMM) is designed to handle complex
systems. We implemented a two-level HHMM with top-level
states that represent health-states with sub-states representing
the non-stationarity within the hole. HHMM gives us the
opportunity to model all health-states by using a single overall
model (it is enough to train one HHMM instead of employing
competitive learning for a pool of HMMs). In addition, the
top-level state transition probabilities make the modeling of
transitions between health-states possible, leading to RUL
estimation, something not directly possible when employing a
HMM pool. Health-states in HMM pool are represented by
distinct HMMs, in which, transition from a health-state to
another (a HMM to another one) cannot be modeled.

In the designing phase of DBN, we set a two-level
hierarchical structure: one level for health-states, other for
non-stationarity within the hole. The conditional probabilities
are defined as in Eqns. (5)-(10). Note that the health-state of
the drill-bit should go forward (i.e., deteriorate) not backwards
(e.g., transition from ‘torn out’ state to ‘brand new’ state is not
allowed). Thus, we implemented a ‘left-to-right’ HHMM,
which allows only forward state transitions in order to
represent health-state progression, with appropriate initial
transition probabilities.

The mean and variance parameters ( 2
, ,,i j i j  ) of the

observation distribution given the hidden states (see Eqn.
(10)), representing thrust-force and torque signals, are learnt
during training by passing training data as in Fig. 10.a.
Number of mean and variance parameters to be learned for the
different observation distributions is the product of number of
health-states and number of sub-states under each health-state.
For example, if 4 health-states are identified with 5 sub-states
under each health-state, there will be 20 mean vectors and 20
covariance matrices. Fig. 14 illustrates the projection of mean
and covariance matrices of observation state given 4 health-
states and 5 sub-states within the HHMM. Each graph in the
figure (total 4) represents a health-state. Five mean and
contour plots are displayed in each graph representing the sub-
states under given health-state. As can be seen from the figure,
not unlike the HMM pool case, the data moves from interior to
the exterior as drill-bit is used and sub-states of HHMM can
effectively represent this movement.
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In addition to mean and variance parameters of observed
variables, the conditional probabilities (Eqns. (5)-(9)) are also
learnt during training. Then, the top state probabilities given
the data sequence of holes are obtained by inference as in Fig.
10.b. Most likely top state sequence is calculated as the health-
states given the observation sequence (2nd basic problem
mentioned in HMM section III.A.1). Fig. 15 displays the
likelihood values for HHMMs with four states at the top-level
for a drill-bit. As can be seen from the figures, using the one
trained HHMM, the health-states can be identified as ‘brand
new’, ‘used’, and ‘excessively used’ and ‘close to failure’
states. The probabilities are more distinguishable compared to
regular HMMs with competitive learning displayed in Fig. 13.
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Figure 15: Mean and co-variance structure of sub-states of HHMM
superimposed on data from drill-bit #1.
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Figure 16: Log-likelihood trajectories of top-level (health) states #4 of
HHMM for data from drill-bit #12.

The health-state of a drill-bit for a given hole data is
identified as the top state of the HHMM with highest
likelihood value. Table 2 gives the health-state estimation of
all 12 drill-bits displayed in rows and various numbers of
holes shown in columns for HHMM with five health-states.
Number in each cell represents the top level state value

(health-state) in the corresponding drill-bit and hole. Health-
state #4 is represented only in three drill-bits. Thus, health-
states #4 and #5 can be combined into one health-state. As can
be seen from the table, health-state estimation results seem
better with HHMM when compared to the case of employing a
committee of HMMs, since almost all drill-bits visit all the
health-states. There are once again no reverse jumps.

Table 2: Health-state estimation/labeling results for data from all holes
of all drill-bits using a HHMM

(1: brand new, 2: like new, 3: moderately used,
4: excessively used, 5: close to failure)

Holes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D
ri

ll-
b

it
s

1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 4 5

2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 5

3 1 1 1 1 1 1 1 1 2 2 2 2 3 3 5

4 1 1 1 1 2 3 5

5 1 1 1 1 1 1 1 1 2 2 2 3 5

6 1 1 1 1 1 2 3 5

7 1 1 1 1 1 1 1 2 2 2 2 3 3 5

8 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 5

9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 5

10 1 1 1 1 1 1 1 2 3 5

11 1 1 1 1 1 1 2 3 5

12 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 4 5

In trying to optimize the structure of HHMM, the general
principle of Occam’s razor is once again relevant. We tried
different numbers of health-states from three through six.
While we prefer high health-state resolution, as the number of
top-level states (health-states) increases, some of the states
might not represent distinct health-states. Therefore, we will
choose the highest number of top-level states (health-states),
each of which will be represented consistently within the life
of the different drill-bits used for training.

The second parameter to be optimized is the number of sub-
states, which identifies the number of states within a hole. In
our application, experimental evaluation suggests that five
sub-states are adequate to represent the data from a hole. This
is optimized with trial-error starting with two and increased
one-by-one. The maximum number of states with non-
overlapping mean and co-variance structure contours is
considered as optimum.

The training computational time for HHMM varied between
174 and 255 seconds depending on the number of states used
in top and lower levels. In our experiments, this was
comparable to regular HMM committees, which takes around
212 seconds. Careful comparison of HMMs trained using
competitive learning for health-state estimation versus using a
single hierarchical HMM revealed the following advantages
for using HHMM:

1.) Better Classification: HHMM gives better health-state
estimation than regular HMM (compare Tables 1 and
2).

2.) Training: No need for competitive learning. It is
enough to train just one HHMM. Initialization of sub-
state HHMs is not required for HHMM.

3.) Topological Ordering: It naturally forces topological
structure, which minimizes reverse jumps.

4.) Transition Probability: HHMM automatically
calculates the transition probabilities between health-
states (i.e. top level states), which regular HMM pool
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lacks. Transition probabilities between health-states are
important for RUL calculation (i.e., prognostics).

The next sub-section discusses a case study of RUL
estimation using HHMMs.

C. RUL Estimation Using HHMM

The following section builds on the results previously
reported in Section IV. Here we employ the proposed Monte-
Carlo approach to estimate on-line the RUL of drill-bits used
on the CNC drilling machine. Here we define RUL as the
potential number of holes to be successfully drilled before
failure. All results reported in this study are based on Monte-
Carlo simulation sample size of 10,000 (adequate given the
MTTF of a brand new drill-bit under the stated operating
conditions is under 20 holes). During each of the 10,000
simulation runs, next health-state is estimated based on the
transition probabilities (say 0.5 to state #2, 0.3 to state #3, and
0.2 to state #4) by generating a uniformly distributed random
number between 0 and 1. The location of the random number
(0-0.5, 0.5-0.8, and 0.8-1.0) identifies the next state (#2, #3,
and #4). This process is repeated considering the calculated
next state as the current state until the failure-state is reached.
Then, the number of transitions is counted as the RUL value,
since each transition represents a hole. This is repeated for all
samples yielding 10,000 RUL values.

Probability of RUL being a value (say r ) is calculated as
the ratio of number of r ‘s obtained in RUL calculation to the
simulation sample size (10,000 in our case).

RUL probability distribution is calculated for each hole of
all twelve drill-bits assuming the corresponding hole as the
most recent hole drilled. For illustration purposes, RUL
probability distributions of drill-bit #2, which failed in the 17th

hole, for several holes (holes 1, 3, 6, 9, 12, 13, 14, 15, 16) are
given in Fig. 17. The x-axis displays the overall life of the
drill-bit (in holes), which is the sum of the RUL estimate and
the total number of holes already drilled (i.e., expected total
number of holes to be drilled), and the y-axis displays
probability. The arrow within each graph shows the actual life
of the drill-bit, 17 for the given example (i.e., drill-bit #2). As
illustrated in the graphs, the variance of RUL probability
distribution decreases and the accuracy of RUL estimation
increases as the drill-bit approaches failure. In all drill-bits, the
proposed method successfully estimates the RUL as zero with
100% accuracy in the hole just prior to failure.

Figure 17: Estimated RUL probability mass function
at different stages of the life of drill-bit #2.
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(a) Plot of estimated RUL and prediction limits (80% confidence)
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Figure 18: Estimated and true RUL for drill-bits.

Fig. 18.a reports the estimated RUL and prediction limits
(80% confidence) along with true RUL for drill-bit #3. Fig.
18.b reports the estimated RUL and prediction limits (80%
confidence) along with true RUL for all 12 drill-bits (each sub
graph is for a drill-bit). The x-axis represents the time (hole) at
which the RUL is estimated and the y-axis the estimated RUL.
The dashed linear line is the true RUL value. The solid line is
the mean of the estimated RUL values. As it is more effective
to report the RUL as a range rather than a singular value, we
also report the estimated prediction limits calculated with 80%
confidence (outer dotted lines in Fig. 18.a). Prediction limit is
the minimum range of RUL values that compose the
confidence percentage of the whole sample.

The prediction limits are identified as shown in (12):
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 
 # b r e

P b r e cf
s

 
    (12)

where, r denotes the estimated RUL value, e and b denote

the upper and lower prediction limits, respectively, cf the

desired confidence, s the sample size (i.e., the total number of

RUL estimations), and #( )b r e  the number of RUL

values between e and .b The width of the prediction limits is

simply, .e b  Consider that there exist 10 RUL
estimations (e.g., 7, 8, 6, 7, 7, 5, 6, 4, 6, 5) obtained from
simulation. For 80% confidence, the width of the prediction
limit is 7-5=2, since eight out of ten are within the prediction
limit (7 and 5). To avoid clutter, the prediction limits for the
12 drill-bits are not displayed in Fig. 18.

Thus, the expected output from the proposed prognostic
module includes prediction limits and confidence that leads to
an expression such as “RUL is between 4 and 6 holes with
95% confidence”. Given a certain confidence, the narrower
the prediction limits (smaller its width) the higher the
precision and the more useful the RUL estimation. Fig. 19
displays the width of prediction limit results of the proposed
prognostic module. As expected, at the very early stages of
drill-bit use, the precision is poor (i.e., width of the prediction
limits is high). As the drill-bit approaches failure, the precision
improves (i.e., width of the prediction limit decreases) and
estimation becomes more valuable.
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Figure 19: Width of RUL prediction limits for all twelve drill-bits
based on 95% confidence.

In the proposed prognostic method, it is assumed that the
health-state transition can only occur between holes. In other
words, a drill-bit cannot be partially in one health-state and
jump to the other health-state during the same hole. This is a
reasonable assumption and necessary for RUL calculation,
which leads to integer RUL values. In calculating width of the
prediction limits, the target confidence is used as the minimum
acceptable confidence threshold. For example, if the
confidence values of RUL being between ‘4 and 6 holes’ and
‘4 and 7 holes’ are 93% and 97%, respectively, then the
proposed method will choose the latter for calculating
precision if the required confidence threshold is 95%.

While the above discussion pertains to the quality of RUL
‘interval estimates’ available from the Monte-Carlo procedure,
one could also assess the quality of the ‘point estimate’ (i.e.,
the mean of the RUL frequency distribution). Accuracy,
denoted acc , evaluates the quality of point estimate, and is
calculated as the ratio of number of RUL estimations that

exactly match the true RUL to the sample size of RUL
estimations, as indicated in (10):

 
 # r actr

acc P r actr
s


   (13)

where actr denotes the true or actual RUL value, #( )r actr

denotes the number of RUL values that match actr , and

( )P r actr the probability of r being equal to .actr

Consider that there exist 10 RUL estimations (e.g., 7, 8, 6,
7, 7, 5, 6, 4, 6, 5) obtained from simulation. If the real RUL
value is 6, then the accuracy is 0.3, since there are 3 RUL
estimates that match the true RUL over a set of 10 predictions.

Fig. 20 reports these accuracies for the drilling case study,
which is basically the probability that the point estimate
matches the actual RUL. It is evident from the plots that the
estimation accuracy continuously improves as drill-bits
approach failure. The two minor exceptions pertain to drill-
bits #4 and #10, which only lasted 7 and 9 holes, respectively.
Their short lives may be an indication of lack of consistent
degradation prior to failure. However, note that the RUL is
estimated as 0 with 100% confidence just prior to failure in all
cases.
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Figure 20: RUL estimation accuracy for all twelve drill-bits.

In order to compare the RUL estimation results with results
from [12], circular cross validation procedure is employed.
Twelve drill-bits are separated into training and testing data as
illustrated in Table 3. Tables 4 and 5 display average R2 and
median RMSE (Root Mean Square Error) of the presented
method. Table 6 compares the results with results in [12].
Note that columns in Tables 4 and 5 represent the drill-bit
used as nth training or testing drill-bit, not necessarily the nth

drill-bit in Table 3.
The results from employing methods 2 and 3 presented in

[12] are reported as mean R-square and median RMSE in
Table 6. The result of method 1 in [12] is reported as a figure
that displays the transition from health-state good to medium
and from medium to bad, not in the form of R-square and
RMSE. Given that method 1 is seen to be inferior to methods
2 and 3 of [12], we limit our comparisons to methods 2 and 3.

Table 3: Circular cross-validation training and testing datasets

DB # 1 2 3 4 5 6 7 8 9 10 11 12 # Trn
DBs

# Tst
DBs

#Trn
Holes

#Tst
Holes# Holes 22 18 15 7 13 8 14 24 7 10 9 17

Set 1 1 1 1 1 1 1 1 1 1 0 0 0 9 3 128 36

Set 2 0 1 1 1 1 1 1 1 1 1 0 0 9 3 116 48

Set 3 0 0 1 1 1 1 1 1 1 1 1 0 9 3 107 57

Set 4 0 0 0 1 1 1 1 1 1 1 1 1 9 3 109 55
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Set 5 1 0 0 0 1 1 1 1 1 1 1 1 9 3 124 40

Set 6 1 1 0 0 0 1 1 1 1 1 1 1 9 3 129 35

Set 7 1 1 1 0 0 0 1 1 1 1 1 1 9 3 136 28

Set 8 1 1 1 1 0 0 0 1 1 1 1 1 9 3 129 35

Set 9 1 1 1 1 1 0 0 0 1 1 1 1 9 3 118 46

Set 10 1 1 1 1 1 1 0 0 0 1 1 1 9 3 119 45

Set 11 1 1 1 1 1 1 1 0 0 0 1 1 9 3 123 41

Set 12 1 1 1 1 1 1 1 1 0 0 0 1 9 3 138 26

Table 4: Average R2 for training and testing sets

Training Set Testing Set

DB # 1 2 3 4 5 6 7 8 9 1 2 3

Set 1 0.82 0.88 0.81 0.94 0.94 0.84 0.91 0.84 0.83 0.93 0.90 0.91
Set 2 0.88 0.91 0.88 0.92 0.94 0.91 0.95 0.92 0.83 0.94 0.90 0.90
Set 3 0.96 0.86 0.91 0.87 0.90 0.96 0.94 0.94 0.90 0.83 0.86 0.97
Set 4 0.96 0.92 0.92 0.89 0.84 0.96 0.93 0.92 0.95 0.95 0.77 0.92
Set 5 0.98 0.96 0.96 0.87 0.90 0.92 0.92 0.96 0.89 0.97 0.82 0.82
Set 6 0.87 0.97 0.93 0.90 0.88 0.84 0.89 0.89 0.97 0.90 0.89 0.91
Set 7 0.94 0.86 0.88 0.98 0.92 0.85 0.90 0.93 0.91 0.90 0.90 0.99
Set 8 0.94 0.89 0.83 0.83 0.95 0.95 0.89 0.88 0.87 0.91 0.91 0.92
Set 9 0.96 0.97 0.92 0.77 0.96 0.97 0.97 0.91 0.84 0.93 0.92 0.95

Set 10 0.95 0.90 0.97 0.93 0.83 0.98 0.98 0.89 0.91 0.88 0.86 0.91
Set 11 0.90 0.94 0.92 1.00 0.94 0.75 0.95 0.97 0.99 0.88 0.86 0.85
Set 12 0.89 0.86 0.94 0.89 0.93 0.97 0.73 0.96 0.97 0.90 0.91 0.86

Table 5: Median RMSE for training and testing sets

Training Set Testing Set

DB # 1 2 3 4 5 6 7 8 9 1 2 3
Set 1 4.17 3.33 1.75 6.38 2.21 6.15 0.79 4.85 6.71 4.48 4.65 2.80
Set 2 2.64 4.28 3.17 1.72 6.79 2.09 6.41 1.29 5.61 6.75 4.37 4.95
Set 3 4.05 3.29 4.81 3.2 2.05 5.11 0.81 4.62 1.59 6.79 5.50 3.18
Set 4 2.79 3.53 3.30 5.36 3.48 2.45 4.97 1.37 4.06 1.70 6.32 4.98
Set 5 6.25 4.04 4.84 3.19 4.71 3.33 2.16 6.00 1.10 5.46 0.86 6.12
Set 6 5.63 6.94 4.70 5.70 2.93 4.34 3.01 1.10 6.69 2.05 5.81 1.09
Set 7 2.93 4.62 8.63 5.82 6.83 2.09 4.17 2.32 1.30 8.08 3.36 7.86
Set 8 6.18 1.25 5.79 7.00 4.60 5.86 2.48 4.37 3.41 1.24 6.89 2.38
Set 9 1.83 6.10 1.85 5.55 6.75 4.49 4.98 2.65 4.49 3.00 1.30 6.76

Set 10 5.05 1.42 4.36 1.55 6.81 5.05 3.06 3.59 2.73 5.92 3.15 2.52
Set 11 2.28 4.95 1.63 4.32 1.72 7.18 5.20 2.57 3.59 2.89 5.80 3.43
Set 12 3.35 1.93 5.68 0.70 4.99 1.79 5.78 5.76 4.01 3.53 2.96 5.04

Table 6: Comparison of presented method with methods from [12]:
TR: Training, TST: Testing

R Square RMSE

average worst best median

HMM
in [12]

Method1 N/A N/A N/A N/A

Method2 0.44 0.24 0.73 6.28

Method3 0.53 0.3 0.79 5.74

Presented
method

HHMM
TR TST

0.73 0.996
TR TST

0.91 0.90 3.78 4.03

As can be seen from the tables above, the proposed method
highly outperforms the HMM models presented in [12]. Even
the worst R-square result from the presented method is better
than the average R-Square result of methods from [12]. Note
however that R-square value equal to 1 does not necessarily
indicate 100% accuracy and 100% confidence (mentioned
before in eq. 12 and 13), but just indicative of the linear
correlation between two prediction data sets. This can be seen
in Set 11 and training drill-bit 4 (11th row and 4th column in
Table 4 and 5) as R-square value being close to 1 and median
RMSE value being 4.3 holes.

Besides diagnostic performance, RUL estimation accuracies
(both point as well as interval estimates) should also influence
the optimization of the HHMM structure (i.e., number of
health-states and sub-states) to be used in HHMM. For the
current case study, best results are obtained with four health-
states and four sub-states for each health-state. Overall, from
the results, we can conclude that the proposed HHMM

approach seems rather effective in supporting diagnostics and
prognostics needs of the drilling process.

V. CONCLUSION AND FUTURE RESEARCH

We implemented regular and hierarchical HMMs as
dynamic Bayesian networks (DBNs) for health-state and
remaining-useful-life (RUL) estimation. Casting HMMs as
DBNs offers compact representation as well as additional
flexibility with respect to the structure of the model.
Competitive learning is employed for training pools of regular
HMMs, each of which represents a distinct health-state.
Although regular HMMs seem to give reasonable diagnostic
accuracy, if diagnostic accuracy is defined simply as a
function of number of reverse jumps among the health-states,
they pose implementation difficulties such as long training
times and the inability to facilitate calculation of RUL. On the
other hand, a single hierarchical HMM can naturally represent
all health-states and offer several advantages over pools of
standard HMMs, such as better diagnostic accuracy and ease
of implementation and training. Additionally, hierarchical
HMM also directly captures health-state transition
probabilities, which are a prerequisite for health-state
prognostics (i.e., RUL estimation). Also discussed was the
method used for RUL estimation that employs Monte Carlo
simulation with HHMM. The proposed methods are
implemented for monitoring drill-bits on a CNC machine. The
results are very promising for development of effective
methods for diagnostics and prognostics (in particular RUL
estimation), even in the absence of a history of labeled
examples or cases. The proposed method also significantly
outperforms other HMM based methods from the literature.
Future research will attempt to explicitly introduce state-
duration densities into the HHMM model to overcome the
need for the assumption of exponential duration density. In
addition, HHMM structures that are more flexible will be
attempted to facilitate the monitoring of systems that exhibit
multiple and sometimes interacting failure modes.
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