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Eles não sabem que o sonho  

É uma constant da vida 

Tão concreta e definida  

Como outra coisa qualquer 

… 

Eles não sabem nem sonham 

Que o sonho comanda a vida 

Que sempre que um homem sonha 

O mundo pula e avança 

Como bola colorida  

Entre as mãos de uma criança 
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They do not know that the dream 

Is constantly in life 

So real defined 

As anything else 

… 

They do not know, they not even dream 

That dream commands life 

Whenever a man dreams 

The world jumps and progresses 

As a colourful ball  

At the hands of a child 

 

António Gedeão 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ABSTRACT 
 

Hyaluronic acid (HA) is one of the major components of the extracellular 

matrix; and may exhibit different biological functions, dependent on polymer molecular 

weight (MW). The signalling events performed by HA are mediated through 

interactions with its main cell receptors: CD44 and RHAMM. However, the direct 

effect between the HA MW and the expression of CD44 and RHAMM remains unclear. 

This study aimed to investigate whether different HA polymer MW alters the 

proliferation of tumour-derived cell lines, and whether different HA-sized has an effect 

on the regulation of the expression of CD44 and RHAMM.  

In order to determine size-specific responses of tumour cells of defined fragment 

MW, this investigation was undertaken using HA-tethered culture surfaces. Four 

surfaces were constructed, coated with polymers of different MWs. HA (4, 234, 2590 

kDa) and an oligomer mixture were tethered onto an aminosilane (AHAPTMS)-treated 

glass surfaces using a carbodiimide reaction. Surfaces were analysed using a toolbox of 

in situ characterisation techniques, including wettability measurements, QCM, AFM 

and confocal microscopy. Using the constructed surfaces was demonstrated that HA-

polymer MW modulates cell proliferation of human bladder (RT112 and T24) and 

prostate (PC3 and PNT1A) cell lines, with low HA MW (HA4) increasing proliferation, 

whereas a decrease is seen in the presence of medium (HA234) and high MW fragments 

(HA2590). The proliferation stimulus performed by HA was found to be phenotype 

dependent, with HA4 surfaces stimulating an increased proliferation in those less 

invasive cell lines (T24 and PNT1A), while HA234 and HA2590 inducing a sharper 

decrease in the most malignant tumour cell lines (RT112 and PC3). It was also 

demonstrated that the regulation of CD44 and RHAMM transcripts expression appears 

to be phenotype dependent but not HA-MW dependent. HA down-regulates CD44 and 

RHAMM in the most malignant cell lines; with up-regulation of the expression of the 

cell receptors in the less invasive cell lines. In addition, the presence of exogenous HA 

was shown to be involved in the regulation of the expression of CD44 variants 

expression. The results obtained for the CD44 and RHAMM protein expression were 

also found to be correlated with the obtained transcripts expression. However, the 

significance of these findings in tumourigenesis remains unclear. 

Findings from this investigation may help in the design and development of 

biocompatible implants with controlled surface properties to be used in cancer 



therapeutics; with medium and large HA polysaccharides being potential biopolymer 

candidates, useful for the development of novel therapies for highly invasive cancer. In 

addition, implications from this work can serve as a base for future research, and can 

lead to ideas for drugs and methods to be used in cancer therapeutic approaches.  

 

Key words: CD44/ extracellular matrix/ hyaluronic acid/ proliferation/ RHAMM/ 

surface/ tumour 
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CHAPTER 1 
“What is essential is invisible to the eye” – Antoine de Saint-Exupery 
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CHAPTER 1 
 

1. INTRODUCTION 

 

The extracellular matrix (ECM) once regarded simply as structural scaffold, is 

now recognised as an important modulator on cell phenotype and function, with cells 

requiring interactions with ECM components in order to undergo normal 

morphogenesis and consequently organogenesis. In certain pathological disorders such 

as cancer, increased synthesis of certain ECM components and/or increased breakdown 

with generation of ECM cleavage products can contribute to tumour progression. 

Hyaluronic acid (HA) is a major component of the ECM and it interacts with cells via 

two main receptors: CD44 and RHAMM. HA has been demonstrated to play a role in a 

number of processes, including embryonic development, wound healing, cell migration 

and proliferation and is implicated in tumour progression. The biological functions 

exhibited by HA are known to be dependent on the polymer molecular weight (MW), 

and mediated through interactions with its main cell receptors. However, the direct 

effect between the HA MW and the expression of CD44 and RHAMM remains unclear. 

The technology platforms originally developed for tissue engineering 

applications, once regarded in an opposite field of cancer research, are starting to 

provide valuable in vitro and/or in vivo models for cancer investigation. Immobilised 

components on a 2D substrate may more closely stimulate cell responses within 3D 

scaffolds due to intimate cell contact with the substrate, rather than periodic contact 

with exogenous components of media supplementation. Biological surfaces have been 
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used in medical implants for tissue regeneration and drug delivery systems, as well as in 

the unleashing of the structure and function of many biological receptors. HA structured 

surfaces not only offer the opportunity to be used in the establishment of in vitro models 

for the investigation of factors involved in tumourigenesis, but also provide insights for 

potential use in cancer therapeutics applications. 

 

1.1. THESIS STRUCTURE 

 

This thesis is organised into six chapters of work. Chapter 1 presents a review 

of the literature, aiming to provide relevant information for the understanding of this 

project. Therefore, this chapter gives an overview on basic cancer biology at a 

molecular and cellular level. It is presented hyaluronic acid and its importance in cancer 

biology along with the currently medical applications. The current understanding of the 

relation of hyaluronan with its main important cellular receptors CD44 and RHAMM is 

also reviewed. Finally it is given an overview of tissue engineering, and how it can meet 

the needs in cancer research, and as well as a summary of constructed HA biological 

surfaces. Chapter 2 describes the experimental design and methodology for the 

construction of a variety of novel structured hyaluronic acid surfaces, used to support 

the adhesion and growth of cultured cell lines. This chapter also reports the 

characterisation of these surfaces. Chapter 3 presents the methods used in mammalian 

cell culture. This chapter investigates whether HA has an effect on proliferation and 

apoptosis in human bladder and prostate cell lines. In Chapter 4 whether HA has an 

effect on CD44 and RHAMM expression is investigated on human cell lines, at both 

transcriptional and translational level. Chapter 5 presents a final discussion of the 
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results and Chapter 6 gives a general conclusion of the presented investigation and the 

current proposed direction of future work. 

 

1.2. INTRODUCTION TO CANCER BIOLOGY 

 

Cancer is a major public health problem in most of developed countries, 

affecting people at all ages, but typically the risk increases with age. In 2007, according 

to the American Cancer Society, of the 10 million new cases diagnosed, 7.6 million 

people died from cancer in the world. This corresponds about 13% of all deaths 

worldwide, with one in four deaths can be attributed to cancer, being the second most 

common cause of death in industrialised countries after cardiovascular diseases (Van 

der Schueren et al., 2000; WHO, 2002; Jemal et al., 2007; American Cancer Society, 

2008a).  

 

1.2.1.    THE MOLECULAR BASIS OF CANCER 

 

 Cancer is a group of diseases sharing common characteristics. It is considered a 

genetic disease, since malignant phenotype results from a genetic alteration, which is 

then transmitted from the mutated cell to its cellular offspring. Such alterations in the 

expression of genes lead to uncontrolled cell proliferation, invasion, and spread of cells 

from the site of origin to other sites in the body (Pecorino, 2005; Gabriel, 2007). There 

are a number of mechanisms by which alterations in gene expression occurs, and can 

occur through two routes: DNA alterations (such as mutation, translocation, 

amplification, deletion, loss of heterozygosity) or abnormal gene transcription or 

http://en.wikipedia.org/wiki/American_Cancer_Society
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translation. This results in an imbalance of cell replication and cell death that favours 

growth of a tumour cell population; whereas in normal tissues cell proliferation and 

death are in a state of equilibrium (Rudon, 2007). Depending on the damage abnormal 

cells may form either benign or malignant tumours. Benign tumours are not considered 

cancerous and rarely cause death, growing slowly and being limited to a specific 

location. Whereas, malignant tumours interfere with the normal functions of the body 

and being often fatal, since they can undergo metastasis, migrating through the blood or 

lymph vessels to distant locations throughout the body (McKee and McKee, 2008). 

Cancers are classified according to the tissues affected: carcinomas, which are 

the vast majority of cancerous tumours, are derived from epithelial tissue cells including 

skin, breast, various glands and the lining of most internal organs; adenocarcinoma 

originates in glandular tissue; sarcomas are tumours arising from connective or 

supportive tissue, including bone, cartilage and muscle; leukaemias are cancers of the 

bone marrow, where excessive leukocytes are produced; myeloma also arises from bone 

marrow, being a cancer of plasma cells; in lymphomas the lymphocytes produced in the 

lymph nodes and spleen proliferate uncontrollably; blastoma originates from precursor 

cells or blasts (immature or embryonic tissue of organs), and can occur in different part 

of the body, including  the brain, liver, kidneys, nervous system, bones and retina. 

(McKee and McKee, 2008). 

 

1.2.1.a.  Carcinogenesis 

 

 Carcinogenesis is the process by which cancers are generated, i.e., is the process 

by which normal cells are transformed into cancer cells. It is a mechanism resulting 
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from the accumulation of errors in vital regulatory pathways, due to dynamic changes in 

the genome (King, 2000; Hanahan and Weinberg, 2000). Mutations producing 

oncogenes with dominant gain of function and tumour suppressor genes with recessive 

loss of function are in the basis of genome changes (Bishop and Weinberg, 1996). 

 Vogelstein and Kinzler (1992), using skin painting experiments in mice have 

elucidated that carcinogenesis is a multistep process, constituting the first step towards 

neoplastic tumour development. The process by which neoplastic tumour development 

takes place can be split into a series of stages termed initiation, promotion and 

progression. Initiation is an early irreversible change produced by the single or very 

limited application of initiating factors (or carcinogens). Initiating agents can be 

chemical, physical or bacterial/viral, and generate a genetic mutation (such as 

transitions, transversions and deletions) within the cell. This mutation does not take 

effect until a secondary factor, a promoting agent, is present (King, 2000; Rudon, 2007). 

Cells may remain in this initiated latent stage for a number of years until acted upon by 

a promoter. During this time, cellular proliferation must occur, but it may originally be 

limited by host defences (Rudon, 2007). Promoting agents are influencing factors (not 

carcinogens) that enhance the effect of the damage caused during the initiation stage. 

These are numerous, varying from cell specific factors to hormones and normal growth 

factors.  Promotion is a reversible stage, and commonly associated with increased 

mitosis, which stimulates the development of an initiated cell to a tumour (King, 2000; 

Rudon, 2007). Tumour development can also be promoted by chemicals that not modify 

DNA structure – denominated as tumour promoters, and contributing to carcinogenesis 

by two principal methods: by activating components of intracellular signalling 

pathways, in which some molecules (e.g. phorbol esters) provide the cell a growth 
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advantage over the neighbours; and the second method may involve transient effects 

such as increasing cellular Ca2+ levels or increasing synthesis of enzymes that convert 

procarcinogens into carcinogens. Conversely to initiating agents, the effects of tumour 

promoters are reversible, and only producing permanent damage only with prolonged 

exposure after an affected cell has undergone an initiating mutation (McKee and 

McKee, 2008). Once a cell begins to proliferate, it enters in the stage of progression, 

where tumour progression escapes from the host defence mechanisms, and 

vascularisation of the growing tumour ultimately occur. During this stage genetic 

instability occurs, leading to a number of complex genetic mutations (such as deletions, 

translocations and gene amplification), alteration of surrounding cells sensitivity, and 

loss of growth regulation. All these events lead to phenotypic instability and eventual 

tumour formation. The tumor progression is reversible only up to a certain point, where 

the accumulation of a number of genetic changes reaches a point where progression 

becames an irreversible stage (King, 2000; Rudon, 2007).  

 

1.2.1.b.  Cell growth and proliferation 

 

 Cellular growth and proliferation in normal tissues are events highly controlled 

and regulated. The cell cycle is an ordered series of events leading to cell replication, 

and being divided in two basic periods: mitosis and interphase (Figure 1.1). It is during 

the interphase in which cell grows; accumulating nutrients needed for mitosis and DNA 

replication takes place. Cell cycle events occur in an orderly manner, which is organised 

in four major biological and biochemical stages: G1 (gap 1), S (synthesis), G2 (gap 2) 

and M (mitotic) phases. G1 is the first phase within interphase, from the end of the 
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previous M phase until the initiation of the DNA replication. In this phase, the cell is 

metabolically active, producing mRNA and proteins, and continuously grows, but do 

not synthesise its DNA. G1 is followed by S phase, with the DNA synthesis and 

chromosome replication. The DNA replication is followed by G2 phase, during which 

cell growth continues and significant protein synthesis occurs. In G2 phase the cell 

checks if DNA-replication is complete and prepares for mitosis. Mitosis (M phase) 

consists in the nuclear division, where the separation of the daughter chromosomes 

takes place, and ending with cytokinesis (cell division) take place (Alberts et al., 2002; 

Lodish et al., 2004; Stein and Pardee, 2004; Cooper and Hausman, 2007). 

 

 

 

 

 

 

 

 

 

Figure 1.1 – The phases of the cell cycle. Approximate time of activity for different combinations of 

cyclins and CDKs. Shapes outside the cycle indicate increase and reduction of corresponding CDK/cyclin 

activity [Adapted from Van den Heuvel, 2005]. 
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quiescent stage of the cycle (G0). The cells in G0 phase are metabolically active but no 

longer proliferating. They can remain in this phase for days, weeks or even years until 

have appropriated extracellular signals to its proliferation (Albers et al., 2002; Cooper 

and Hausman, 2007). 

The cell cycle is controlled trough the interaction of three different families of 

proteins: cyclins (phosphatases), cyclin-dependent kinases (CDKs) and cyclin-

dependent-kinase inhibitors (INK; Figure 1.1; Stein and Pardee, 2004; Van den Heuvel, 

2005). CDKs play key role in the phosphorylation of the proteins required for cell 

progression, and cyclins activate CDKs. INK bind and block activities of cyclin/CDK 

complexes, counterbalancing the cyclin’s activation of CDKs, and in this manner 

affecting cycling and developing tumourigenesis (Stein and Pardee, 2004).  

Uncorrected failures of DNA repair are important in the progression from 

normal to cancerous cells. There are some crucial steps involved in the regulation of the 

cell cycle: these include detection and repairing of genetic damage, and provision of 

various checkpoints to prevent uncontrolled cell division, delaying the entry into the 

next phase of the cell cycle (Albers et al., 2002; Stein and Pardee, 2004; Cooper and 

Hausman, 2007). In the process of DNA checkpoint control a signal transduction 

cascade occurs (Figure 1.2). Therefore, if DNA replication stops for any reason and/or 

the DNA is damaged, a signal is detected by sensor proteins and then sent by transducer 

proteins to effector proteins, which block the cell cycle and elicit DNA repair (Figure 

1.2A).  
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Figure 1.2 – (A) DNA checkpoint regulation; (B) DNA damage checkpoint [Adapted from Stein and 

Pardee, 2004].  
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1996), which increases its levels when DNA is damaged and acting as a transcription 

factor, increasing the expression of a number of important genes. As a result, p21 

protein is induced (Brugarolas et al., 1995; Deng et al., 1995), blocking DNA synthesis 

by inhibiting cyclin/CDK; and this resulting in the stimulation DNA repair mechanisms. 

In this pathway, DNA damage signal is transduced by the ATM (ataxia telangiectasia 

mutated) protein (Savitsky et al., 1995), which phosphorylates and increases p53, and 

therefore resulting in the transcription of p21. P53, known as the “guardian of the 

genome”, stops cell cycle progression by inhibiting the CDK enzyme either at G1/S or at 

G2/M, when DNA is damaged (Figure 1.2B; Stein and Pardee, 2004). Rb 

(retinoblastoma) protein (Weinberg, 1995) is another important protein implicated in 

cell cycle regulation, playing key roles in the regulation of the proliferation, acting as a 

barrier to inappropriate cell progression. Rb is involved in G1/S checkpoint, checking 

and ensuring the DNA integrity before synthesis at S phase. This process is also 

mediated through an interaction of p53 with Rb, and where a delay of the cell cycle 

progression occurs if DNA damaged is detected (Stein and Pardee, 2004). If the DNA 

damage is irreparable, then p53 mediates the entry of cells into apoptosis (programmed 

cell death; Stein and Pardee, 2004; Cooper and Hausman, 2007). 

 

1.2.1.c.  Apoptosis 

 

 In normal tissues, the number of cells is tightly regulated. This regulation 

occurs, not only by controlling the rate of cell division, but also by controlling the rate 

of cell death. Therefore, cellular proliferation occurs in balance with cell death. If cells 

are physiological unneeded or dangerous, they commit suicide by activating an 
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intracellular death program. This mechanism is denominated as programmed cell death 

or apoptosis, and can be divided in three phases: induction, commitment and 

degradation (Stein and Pardee, 1999; Vaux and Korsmeyer, 1999; Alberts et al., 2002; 

Stein et al., 2004). A cell may enter in apoptosis due a number of inducing events, such 

as a decrease or complete withdrawal of growth cytokines (including TGF-α, IGF, 

PDGF), influence of death-promoting cytokines (such as TNF), or DNA damage 

provoked by radiation and genotoxic agents and drugs used for chemotherapy.  After 

induction, cells enter in an irreversible commitment phase (King, 2000). The 

intracellular machinery responsible for apoptosis depends on a family of proteases 

known as caspases (cysteine-aspartate-acid-proteases). Initially caspases are synthesized 

in the cell as inactive procaspases, and then are activated by other caspases proteins. 

Once activated, caspases alter mithocondrial function to release cytochrome C into the 

cytoplasm, where it activates other procaspases, and what consequently results in an 

amplification of proteolytic cascade (King, 2000; Alberts et al., 2002). These proteins 

cleave other key proteins in the cell (such as endonucleases and proteases, as well as 

proteins involved in DNA repair, RNA splicing, signal transduction and transcription 

factors), leading to the degradation phase (Figure 1.3; King, 2000; Alberts et al., 2002, 

Stein and Pardee, 2004). The caspase cascade is activated by either extracellular or 

intracellular death signals, which cause intracellular adaptor molecules to aggregate and 

activate procaspases (Alberts et al., 2002, Stein and Pardee, 2004). The regulation of the 

cascade is carried out by many cellular mechanisms, including transcriptional regulation 

and posttranslational modification (Earnshaw et al., 1999; Stein and Pardee, 2004). Bcl 

and IAP (inhibitor of apoptosis) protein families are involved in the regulation of 

caspases (Alberts et al., 2002). The Bcl family consists of Bcl-2 (Cory and Adams, 
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2002), an anti-apoptotic protein involved in the inhibition of apoptosis; and BAX and 

Bad, which are pro-apoptotic, involved in the activation of apoptosis (Deveraux and 

Reed, 1999; Hay, 2000). The relative proportions of BAX/Bcl-2 in the cell determine 

the apoptosis response. Therefore, if the concentration of BAX is high enough, then the 

cell will enter in the degradation phase, whilst a high enough concentration of Bcl-2 will 

block apoptosis. On the other hand, Bad blocks Bcl-2, altering the balance in favour of 

BAX, and as a consequence stimulates the apoptosis (King, 2000). Cells that enter 

apoptosis via p53 are affected through this BAX/Bcl-2 protein balance, since p53 

induces an increase of BAX (King, 2000, Stein and Pardee, 2004). IAP proteins have 

two mechanisms of inhibiting apoptosis: one is that they bind to some procaspases to 

prevent their activation, and the other is their binding to caspases inhibiting their 

activity (Alberts et al., 2002). If a cell enters in the degradation phase, then a change in 

the permeability of the mitochondrial membrane results in the release of cytochrome C 

and calcium ions within the membrane. The release of cytochrome C results in the 

breakdown of membranes and cytoskeleton. The release of calcium, which is 

characteristic of apoptosis, leads to the degradation of DNA by calcium ion sensitive 

nucleases (King, 2000). Degradation is characterised by morphological changes of the 

cell such as shrinkage, chromatin condensation, DNA fragmentation and plasma 

membrane blebbing. As a result, the cell dismantles itself (apoptotic body) quickly and 

neatly, and it is rapidly taken up and digested by neighbouring cells (Alberts et al., 

2002, Stein and Pardee, 2004).  
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Figure 1.3 – Pathways promoting apoptosis [Adapted from King, 2000].  
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do not attach to extracellular matrix, and promotes resistance to immune system, 

chemotherapy and radiation (Kufe et al., 2003; Frank, 2007). 

 

1.2.1.d.  Oncogenes and tumour suppressor genes 

 

 Neoplastic transformation is dependent upon the accumulation of multiple 

mutations of a single cell, and where there is a loss of control favouring the increase 

proliferation and decrease of apoptosis (Coleman and Tsongalis, 2002).  The genes 

involved in neoplastic transforming mutations are divided in two major classes: 

oncogenes and tumour-suppressor genes (Kurzrock and Talpaz, 1996; Precorino, 2005). 

An oncogene is a mutated allele of normally functioning wild-type genes (proto-

oncogenes). The oncogene protein product is produced in higher quantities or is an 

altered product that has increased activity. These quantitative and qualitative changes, 

or the combination of both, are due to mutations within the coding regions and/or 

regulatory sequences of the oncogene.  According to a genetic point of view, this is 

referred to as a gain of function mutation, and is termed as transforming potential. Only 

a mutation in one allele is required for the activation of the proto-oncogene and loss of 

regulation of the proto-oncogene product. Thus, oncogenes act in a dominant manner 

(King, 2000; Coleman and Tsongalis, 2002; Precorino, 2005). Oncogenes can be 

referred to as either c-onc or v-onc, depending on their nature – cellular or viral, 

respectively (King, 2000). Oncogenes are grouped according to the function of the 

proto-oncogene protein product, and there are several classifications, not existing yet a 

widely accepted standard: growth factors (e.g. sis), receptor tyrosine kinases (e.g. 

PDGFR), membrane associated non-receptor tyrosine kinases (e.g. src), G-protein 
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coupled receptors (e.g. MAS), membrane associated G-proteins (e.g. ras), 

serine/threonine kinases (e.g. raf), nuclear DNA-binding/transcription factors (e.g. myc) 

(Kurzrock and Talpaz, 1996; Cooper and Hausmen, 2007). 

Tumour-suppressor genes encode proteins that inhibit or suppress cell 

proliferation. Unlike oncogenes, generally tumour-suppressor genes mutations act 

recessively, since both alleles need to be affected. And in genetic terms, tumour-

suppressor genes are referred as loss of functions mutations since they act as the cellular 

breaking mechanism, regulating cell proliferation in a negative manner (Coleman and 

Tsongalis, 2002). However, there are some exceptions for these recessive alterations in 

tumour-suppressor genes, such as p53 (Baker et al., 1990) and p27 (Fero et al., 1998). 

Tumour-suppressor genes encode five classes of proteins: intracellular proteins that 

regulate or inhibit progression through a specific stage of the cell cycle (e.g. p16 and 

Rb), receptors for secreted hormones that function to inhibit cell proliferation (e.g.TGF-

β), checkpoint-control proteins (e.g. p53), proteins that promote apoptosis and enzymes 

that participate in DNA repair (Lodish et al., 2004). 

 

1.2.1.e.  Cell adhesion molecules 

 

 Cells are surrounded either by other cells or by extracellular matrix (ECM), and 

contact tightly and interact specifically with each other. This interaction is mediated by 

cell adhesion molecules (CAMs), which enable cells to adhere tightly and specifically 

with cells of the same or similar type. CAMs are transmembrane receptor proteins that 

can be divided in four major families: immunoglobulin superfamily, integrins, cadherins 

and selectins (Lodish et al., 2004; Cooper and Hausmen, 2007). Ca2+, Mg2+ or Mn2+ are 



CHAPTER 1                                                                                                                                                                 INTRODUCTION 

 

16 

 

required for selectins, integrins and most of the cadherins cell-mediated adhesion 

molecules (Cooper and Hausmen, 2007). 

 Integrins are involved in the attachment of the cell to the ECM, as well as in the 

signal transduction from the ECM to the cell (Lodish et al., 2004; Cooper and Hausmen, 

2007). They are chief molecules in the development of tissues during morphogenesis, 

maintenance of adult tissue, wound healing, and oncogenesis, as they play roles in the 

architecture of the cellular shape, mobility and regulation of the cell cycle (Mizejewski, 

1999; Lodish et al., 2004; Cooper and Hausmen, 2007). Alterations in the expression of 

integrins are associated with tumour growth and metastasis, and they have also been 

shown to mediate angiogenesis in several types of cancers (Saiki, 1997; Mizejewski, 

1999).  

 Cadherins are key intracellular adhesion molecules in cell-cell adhesion and cell 

signalling, maintaining tissue architecture and playing key roles during tissue 

differentiation (Lodish et al., 2004; Cooper and Hausmen, 2007). Cadherins are a large 

family of proteins, being composed for about 80 members (Cooper and Hausmen, 

2007). E-cadherin is one of the most studied cadherin, being expressed in epithelial 

tissues, leading to selective adhesion of epithelial cells to one another; and the loss of 

this protein function or expression is implicated in cancer progression and metastasis 

(Saiki, 1997; Lodish et al., 2004; Cooper and Hausmen, 2007). 

 Selectins are expressed on the surface of leukocytes and activated in endothelial 

cells. They mediate the adhesion of the leukocytes to vascular endothelial cells (Tedder 

et al., 1995; Cooper and Hausmen, 2007). This event is followed by the formation of 

more stable adhesions, in which integrins on the surface of leukocytes bind to 

immunoglobulin superfamily molecules, and are expressed on the surface of endothelial 
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cells (Lodish et al., 2004; Cooper and Hausmen, 2007). The immunoglobulin 

superfamily is composed for more than 100 proteins, which are involved in cellular 

processes of recognition, binding and adhesion (Cooper and Hausmen, 2007). Selectins 

and immunoglobulin superfamily proteins have been shown to be involved in the 

metastasic process, as they promote the migration of tumour cells from the site of origin 

(Saiki, 1997). 

 

1.2.2.    EXTRACELLULAR MATRIX AND CANCER 

 

 Unlike bacterial, fungal and plant cells, animal cells are not surrounded by a 

rigid cell wall. However, many animal cells in tissues are embedded in an extracellular 

matrix (ECM), which fills the spaces between cells and binds cells and tissues together, 

providing structural support to the cells. This matrix is composed of water and a variety 

of proteins and polysaccharides, such as collagen, fibronectin, laminin, proteoglycans 

and glycosaminoglycans, which are secreted locally and interact with receptors on the 

cell surface (Figure 1.4; Yang et al., 1994; Alberts et al., 2002; Kufe et al., 2007). 
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Figure 1.4 – Scheme of the extracellular matrix components (Simmons, 2007). 

 

The composition of the extracellular matrix macromolecules and their 

organisation in the ECM is dependent on the type of tissue. Therefore, ECM has 

different forms, each adapted to functional requirements of that particular tissue 

(Alberts et al., 2002). ECM does not only play key roles in the cell architecture control 

of cell behaviour, but it also have a role on the cellular survival, development, migration 

and proliferation (Alberts et al., 2002; Kufe et al., 2007). Most of normal cells are 

anchorage-dependent, i.e., they need to be attached to one another and to the ECM for 

normal growth, differentiation, and function. When normal cells are detached, they 

undergo apoptosis. Unlikely, cancer cells are not anchorage-dependent, being free to 

proliferate and having increased cell motility and potential tissues invasiveness (Kufe et 

al., 2007). 

 ECM has a crucial role during the invasion of cancer cells (Herrera-Gayol and 

Jothy, 2002; Gosh et al., 2004; Pavia et al., 2005). Malignant cells produce a variety of 

lytic enzymes and cytokines that degrade and modify the ECM. The degradation and 

modification of the ECM allow the invasion of the tumour, through tissue barriers, 
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blood vessel and lymph channel walls, with the possible further metastatic development 

(Liotta and Kohn, 2001; Kufe et al., 2007). Promotion of abnormal intra- and inter-

cellular signalling stimulates cell migration, promotes proliferation and survival of those 

malignant cells (Adamia et al., 2005b). On the other hand, ECM can also act as a 

camouflage for malignant cells, and enable them do not be recognised by the body’s 

immune system (Pavia et al., 2005). 

 

1.3. HYALURONIC ACID 

 

1.3.1.    STRUCTURE AND FUNCTION OF HYALURONIC ACID 

 

1.3.1.a.  Physicochemical and structural properties 

 

Hyaluronic acid (HA, also called hyaluronan or hyaluronate; Balazacs et al., 

1986) was first biochemically isolated and purified from bovine vitreous humour and 

umbilical cord tissue in the 1930s by Meyer and Palmer (Meyer and Palmer, 1934, 

1936), and solved its structure in the 1950s  (Weissman and Meyer, 1954). 

HA is considered as a glucosaminoglycan (GAG), being the only non-sulphated 

member of this family (Table 1.1). It is a polymer composed of disaccharide units, each 

consisting of D-glucuronic acid (Glca) and D-N-acetylglucosamine (GlcNAc), linked 

together via alternating β-1,4 and β-1,3 glycosidic bonds (Figure 1.5; Laurent, 1970; 

Laurent and Fraser, 1992; Mian, N., 1986; Scott and Heatley, 2002). 

 

http://en.wikipedia.org/wiki/D-glucuronic_acid
http://en.wikipedia.org/wiki/D-N-acetylglucosamine
http://en.wikipedia.org/wiki/Glycosidic_bond
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  Table 1.1 – Glycosaminoglycans group [Adapted from Fraser et al., 1997]. 

Name Constituent sugars Sulphate Proteoglycans 

Hyaluronan Glucoronic acid - - 

 Glucosamine   

Chondroitin 4-(6-) sulphates Glucoronic acid + + 

 Galactosamine   

Dermatan sulphate Iduronic acid + + 

 Galactosamine   

Keratan sulphate Galactose + + 

 Glucosamine   

Heparan sulphate Glucoronic and iduronic acid + + 

 Glucosamine   

Heparin Glucoronic and iduronic acid + + 

 Glucosamine   

 

 

 

Figure 1.5 – The structure of native HA. HA is a naturally derived polymer composed of disaccharide 

repeats of glucoronic acid and N-acetylglucosamine. The molecular weight of native HA is typically 

several million. Each disaccharide contains three possible modification sites: the hydroxyl, carboxyl, and 

acetamido groups (Leach and Schmidt, 2004). 

 

In the body, HA occurs in the salt form – hyaluronate, and it is found in 

extracellular, cell surface and intracellular environments (Leach and Schmidt, 2004; 

Spagnoli et al.; 2005). High concentrations of HA are found in several soft connective 

tissues, including skin, umbilical cord, synovial fluid and vitreous humour, as well as in 
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lung, kidney, brain and muscle tissues (Table 1.2; Leach and Schmidt, 2004; 

Sundstrom, 2006). 

 

Table 1.2 – Concentration of hyaluronate in some tissues and body fluids [Adapted from Laurent and 

Fraser, 1992; Sundstrom, 2006]. 

Tissue / body fluid Concentration (mg/l) 

Human umbilical cord 4100 

Normal rooster comb 7500 

Human synovial fluid 1420-3600 

Bovine nasal cartilage 1200 

Human vitreous body 140-338 

Human dermis 200 

Human amniotic fluid  

at 16 weeks 20 

at term 1 

Human urine 0.2 

Human serum (healthy young adults) 

Rabbit brain 

Rabbit muscle 

0.035 

65 

27 

 

HA is a negatively charged polysaccharide and exhibits hydrodynamic 

behaviour typical from a slightly stiffened random coil in dilute aqueous salt solution 

(Spagnoli et al., 2005). Due to its highly hydrophilic properties, in the presence of 

water, HA molecules can expand in volume up to 1000 times to form loose hydrated 

matrices (Leach and Schmidt, 2004). Its viscoelasticity properties are influenced by 

their polymeric and polyelectrolytical characteristics. HA solutions are highly 

viscoelastic, providing protective functions to the synovial liquid, such as lubrication 

and absorption of shock (Lapick et al., 1998). 
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 HA is a megadalton molecule and its physicochemical and biological properties 

are dependent on its molecular weight (Laurent and Fraser, 1992; Lapick et al., 1998; 

Lee and Spicer, 2000; Toole, 2004; Evanko et al., 2007). Under normal physiological 

conditions it ranges in relative molecular mass from ~2x105 to ~10x107 Da (~2,000–

25,000 disaccharides) with polymer lengths of 2–25 μm (Laurent and Fraser, 1992; Lee 

and Spicer, 2000; Toole, 2004; Evanko et al., 2007). There is evidence that HA is 

capable of an amazing variety of conformations (Cowman et al., 2005; Spagnoli et al., 

2005; Evanko et al., 2007); for each specific biological function of HA there is a 

corresponding conformation and specific binding interactions (Cowman et al., 2005). 

HA can be from extended chains, to relaxed coils, to condensed rods, and pearl 

necklaces of helical coils, rods, hairpins, and toroids (Spagnoli et al., 2005; Evanko et 

al., 2007). It can also self-associate to form fibers, networks, and stacks (Evanko et al., 

2007). The different conformations can also be affected by the local environment (e.g. 

ionic strength, specific ionic interactions), local dielectric constant, excluded volume 

effects, tethering to surfaces and fixed macromolecular assemblies, exposure to 

perturbing mechanical forces, and presence of interacting species (e.g. proteins and 

lipids; Cowman et al., 2005). 

Despite being classified as a glucosaminoglycan, HA differs from other GAGs 

regarding the molecular size; GAGs are relatively smaller in size (<50 kDa, commonly 

15-20 kDa) with a short chain length comparatively to HA (Laurent and Fraser, 1992; 

Lee and Spicer, 2000; Toole, 2004). In addition, the cellular synthesis of HA is a unique 

and highly controlled process contrasting with other polymers of its family (Lee and 

Spicer, 2000). Most GAGs are synthesized by resident Golgi enzymes and covalently 

attached to core proteins, whereas HA is synthesized at the inner face of the plasma 
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membrane and immediately extruded out of the cell and into the ECM without any 

protein core (Lee and Spicer, 2000; Schumacher, 2004; Toole, 2004). HA synthesis is 

carried out by a group of the proteins called hyaluronan synthases (Laurent and Fraser, 

1992, DeAngelis, 1999). 

 

1.3.1.b.  Synthesis 

 

Hyaluronan is synthesized in the plasma membrane (Prem, 1984) by a class of 

integral membrane proteins called hyaluronan synthases (HAS, EC 2.4.1.212; Girish 

and Kemparaju, 2007). There are four HAS genes in most vertebrate genomes, but 

mammals only have three types: HAS1, HAS2, and HAS3 (Table 1.3).  

 

Table 1.3 – Chromosomal location of hyaluronan synthase genes [Adapted from Girish and Kemparaju, 

2007]. 

Family Species Chromosomal location Gene Protein 

HA synthase        Human 19q13.3-13.4 HAS1 HAS1 

  8q24.12 HAS2 HAS2 

  16q22.1 HAS3 HAS3 

        Mouse 17 Has1 Has1 

  15 Has2 Has2 

  8 Has3 Has3 

 

HAS isoenzymes have unique characteristics. The HA chain synthesis is carried 

out on the intracellular membrane surface, in contrast with all other GAGs, which are 

synthesised in the rough ER attached to core proteins that together generate GAG’s as 

end products. Also, HAS enzymes do not undergo any post-translational modifications 

that often take place in the Golgi, reinforcing the idea that HAS are integral membrane 

http://en.wikipedia.org/wiki/Integral_membrane_protein
http://en.wikipedia.org/wiki/Hyaluronan_synthase
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proteins with an active site located in the cytoplasmic side of the plasma membrane. 

HAS polypeptides have both selective (β-1,4)GlcNAc and (β-1,3)GlcUA transferase 

activities, being thus the first identified GAGs shown to catalyse the addiction of two 

different monosaccharides to a polymer chain. HA polymerisation occurs by repeatedly 

adding GlcNAc and GlcUA to the nascent polysaccharide as it is extruded through the 

cell membrane into the extracellular space (Mian, N., 1986, Laurent and Fraser, 1992, 

DeAngelis, 1999, Lee and Spicer, 2000, Rilla et al., 2005, Stern, 2005, Stern et al., 

2006, Girish and Kemparaju, 2007, Weigel and DeAngelis, 2007). 

Mammal HAS were only identified and cloned in the 1990’s (Itano and Kimata, 

1996 a, b, Shyjan et al., 1996, Spicer et al., 1996, Watanabe and Yamaguchi, 1996, 

Spicer et al., 1997 b, Weigel et al., 1997, DeAngelis, 1999), and found to be localised in 

different chromosomes (Table 1.3; Spicer et al., 1997 c; Girish and Kemparaju, 2007). 

Despite HAS genes presenting a high similarity (75-87%) they have distinct 

expression patterns, and therefore the catalytic rate and mode of regulation for each 

HAS isoenzyme are different, expressing different enzymatic properties. Each 

mammalian HAS enzyme presents different molecular stability, kinetic characteristics 

and molecular sizes of HA (Spicer and McDonald, 1998, Itano et al., 1999, Stern, 2005, 

Stern et al, 2006, Girish and Kemparaju, 2007, Weigel and DeAngelis, 2007). The 

different expression patterns expressed by HAS genes seem to be controlled by various 

growth factors and cytokines, and being tissue and cell-specific (Tzanakakis et al., 

1995; Tirone et al., 1997; Sugiyama et al., 1998, Itano and Kimata, 1996, Weigel et al., 

1997, Itano et al., 1999, Kennedy et al., 2000, Reclies et al., 2001, Stern et al., 2006).  

HAS1 is the less active mammal enzyme, synthesizing low levels of high 

molecular weight HA (3.9 x 106 Da). HAS2 also generates high molecular weight HA, 

http://en.wikipedia.org/wiki/Cell_membrane
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but is more catalytically active than HAS1. HAS2 is implicated in developmental and 

repair processes involving tissue expansion and growth, being involved in cell 

proliferation and angiogenesis, as well as in the development through cell migration and 

invasion (Adamia et al., 2005a; Stern, 2005). It is also involved in shock, septicaemia, 

inflammation and massive wounding. HAS3 is more active than HAS1 and HAS2, and 

synthesizes large amounts of shorter forms of HA molecules (< 3 x 105 Da). These HA 

molecules may provide the pericellular glycocalyx, and appear to interact with cell 

surface receptors, triggering cascades of signal transduction events and major changes 

in cellular behaviour (Itano et al., 1999; Stern, 2005; Girish and Kemparaju, 2007). 

However, the exact function of HAS isoenzymes and their role in cell signalling are 

assumptions and definitive functions require confirmation (Adamia et al., 2005a; Stern, 

2005). 

Dysregulation of HAS genes appears to result in abnormal production of HA and 

promotion of abnormal biological process such as transformation and metastasis 

(Adamia et al., 2005a; Girish and Kemparaju, 2007). The reason for the existence of 

three HAS isoforms remains unclear. However, it is believed that the existence of 

isoforms with different enzymatic characteristics may provide flexibility to the cells 

with respect to the control of HA biosynthesis and functions (Itano et al., 1999).  

 

1.3.1.c  Degradation 

 

 The degradation of HA occurs in cells by a series of coordinated enzymatic 

reactions performed by a family of enzymes called hyaluronidases, which share a high 

degree of sequence homology (Meyer, 1971; Stern, 2003; Stern, 2005; Girish and 

http://en.wikipedia.org/wiki/Hyaluronidase
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Kemparaju, 2007). According to Meyer (1971), based on biochemical analysis of their 

reaction products, there are three classes of hyaluronidases: 1) Endo-β-N-

acetylglucosaminidases (mammalian-type hyaluronidases, e.g. testicular, lysosomal and 

bee venom hyaluronidase, EC 3.2.1.35) have hydrolytic and transglycosidase activities, 

and  randomly cleave β-1-4 glycosidic linkages in HA, chondroitin and chondroitin 

sulfates to yield tetra- and hexasaccharides as the predominant end-products; 2) β-

eliminases or lyases (include bacterial hyaluronidases, EC 4.2.2.1,) function as 

eliminases yielding disaccharides, and contrasting with their eukaryotic counterparts, 

they are specific for HA; 3) Endo-β-glucuronidases (leech hyaluronidase, EC 3.2.1.36) 

mainly generate tetra- and hexasaccharide end-products with glucoronic acid at the 

reducing end of the product (Meyer, 1971; Stern, 2004; Stern, 2005; Girish and 

Kemparaju, 2007; Hofinger et al., 2008). 

 In the human genome, six hyaluronidase like gene sequences have been 

identified, being referred to as hyaluronoglucosaminidase (HYAL) genes. These six 

paralogs of HYAL genes are known to share about 40% of their identity with one 

another. Although, the expression of each gene has a unique tissue distribution, HYAL 

genes are tightly clustered at two chromosomal locations. HYAL1, HYAL2 and 

HYAL3 – coding for Hyal-1, Hyal-2, and Hyal-3, respectively – are located on 

chromosome 3p21.3; and the other  set of three genes, HYAL4, PHYAL1 (a 

pseudogene), and sperm adhesion molecule 1 (SPAM 1) – code respectively for Hyal-4, 

the pseudogene transcribed but not translated in the human, and PH-20 –  are clustered 

in a similar fashion on chromosome 7p31.3 (Stern, 2003; Stern, 2005; Girish and 

Kemparaju, 2007). In contrast to human genome, mouse genome has seven 
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hyaluronidase-like gene sequences (Table 1.4; Miller et al., 2007; Reitinger et al., 

2007). 

 

Table 1.4 – Chromosomal location of hyaluronidase genes [Adapted from Girish and Kemparaju, 2007]. 

Family Species Chromosomal location Gene Protein 

Hyaluronidase Human 3p21.3 HYAL1 Hyal1 

   HYAL2 Hyal2 

   HYAL3 Hyal3 

  7p31.3 HYAL4 Hya4 

   SPAM1 HPH-20 

   HYALP1 - 

 Mouse 9F1-F2 Hyal1 HYAL1 

   Hyal2 HYAL2 

   Hyal3 HYAL3 

  6 A2 Hyal4 HYAL4 

   Spam1 PH-20 

   Hyalp1 -  

   Hyal5 HYAL5 

Human and mouse hyaluronidase genes are located in equivalent locations of respective chromosomes 
 

The rapid turnover rate of HA enables its use in many physiological processes 

(Fraser et al., 1992; Toole et al., 1994). According to Stern (2003), a 70 kg individual 

has 15 g of HA; 5 g of which turns over daily. In the blood circulation, the t1/2 of HA is 

2-5 minutes (Fraser et al., 1998), while in the skin (comprising 50% of the total HA 

body) it is 1-2 days, and in a inert tissue, such as cartilage, the turnover occurs in 1-2 

weeks (Stern et al. 2003, 2004). 

It is well described that the discrete sizes of HA fragments have widely different 

biological activities (Stern, 2003; Stern, 2005; Stern et al., 2006; Girish and Kemparaju, 

2007; Hofinger et al., 2008), what may indicates that the HA catabolic pathway is a 

highly controlled process (Stern, 2003), occurring in a step-wise process generating 
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ever-smaller fragments (Roden et al., 1989; Lepperdinger et al., 2004; Stern, 2004; 

Stern, 2008).  HA turnover in the human body occurs through three different pathways 

(Stern et al., 2006): 

1 – Cellular pathway, which includes binding by the predominant HA receptors – CD44 

(Culty et al., 1992; Hua et al., 1993; Aguiar et al., 1999; Lesley et al., 2000; Ponta et 

al., 2003) and RHAMM (Zhang et al., 1998; Cheung et al., 1999; Lynn et al., 2001), 

internalisation, and degradation within cells (Stern et al., 2006). 

2 – Tissue pathway, where HA is released from the tissue matrices, drained into the 

vasculature and lymphatics, finishing its fate in liver, kidney, and possibly spleen (Stern 

et al., 2006). This pathway, as well as the pathway described above involves HA 

receptors, such as HARE (Zhou et al., 2000), LYVE-1 (Banerji et al., 1999), and layilin 

(Bono et al., 2005). 

3 – Non-enzymatical HA degradation can occur by free radicals under oxidative 

conditions, yielding several intermediate end products (Myint et al., 1987; Deguine et 

al., 1998; Uchiyama et al., 1990; Saari et al., 1993; Noble et al., 2002; Soltes et al., 

2005). These reactive oxygen species (ROS) includes superoxide anion radical (O2-), 

hydrogen peroxide (H2O2) and especially by –OH radicals. 

Regarding the cellular pathway, there is a putative HA metabolic scheme 

(Figure 1.6) proposed by Stern (2003, 2004), where 5 g of HA are daily degraded in the 

average individual, and therefore 5 g of these sugars are daily released.  
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Figure 1.6 – A putative scheme for HA catabolism, beginning with a high molecular-weight extracellular 

polymer, and ending with single sugars that are then available for other metabolic cycles [Adapted from 

Stern, 2004]. 
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In this catabolic scheme, high-molecular-weight extracellular HA is tethered to 

the plasma cell surface by HA receptors (CD44 and RHAMM), combined with an 

interaction of Hyal-2, which is the GPI-linked hyaluronidase anchored to the plasma 

membrane (Stern 2003, 2004). Hyal-2 cleaves HA, generating fragments of 50-100 

saccharides (Stern, 2008). These fragments are internalised, delivered to endosomes, 

and later on to lysosomes. In the lysosomes, these HA fragments are degraded to 

smaller oligosaccharides, predominantly tetrasaccharides, by the action of Hyal-1 (Stern 

2003, 2004, 2008). In mammals, besides hyaluronidases, two more lysosomal β-

exoglycosidases, β-D-glucuronidase and β-N-acetyl-hexosaminidase, participate in this 

degradation (Leach and Schmidt, 2004; Stern, 2003, 2004). The single sugars that are 

products of HA catabolism are glucuronic acid and N-acetylglucosamine (Stern, 2004). 

N-acetylglucosamine is phosphorylated to N-acetylglucosamine-6-P, and glucosamine-

6-P is generated (Figure 1.6; Stern, 2004), particularly in Kupffer and endothelial cells 

of the liver (Smedsrod and Pertoft, 1985; Roden et al. 1989). 

Stern (2003, 2004) proposed that, as for glycogen metabolism there is a 

glycogen mini-organelle occurring in both liver and muscle (Banhegyi and Mandl, 

2001), a similar mini-organelle may occur for the β-linked hyaluronan polymer – the 

hyaluronasome. Thus, the putative hyaluronasome may be a multi-protein membrane-

associated complex, located possibly in cytoplasmic surface of plasma membranes, 

containing both synthetic and catabolic activities. Due to its ability to respond to 

extracellular and intracellular events, may contain HA receptors (such as CD44 and 

RHAMM), HAS and HYAL enzymes, HYAL inhibitors, β-exoglycosidases and HA-

binding proteins (such as HAPB1; Stern 2003, 2004). 

 



CHAPTER 1                                                                                                                                                                 INTRODUCTION 

 

31 

 

1.3.1.d.  Biological activities of HA and HA oligomers 

 

 Although the major biological function of HA is still unsure, many roles have 

been correlated with this polymer. HA is predominantly present in the ECM, 

particularly in embryonic and malignant tissues (Stern, 2003), and performing three 

basic molecular functions: autocrine signalling with cell surface HA receptors on the 

same cell; paracrine signalling with a variety of ECM molecules on neighbouring cells, 

and due to its large physical structure HA can interact with more than one cell (Tammi 

et al., 2002; Turley et al., 2002; Toole, 2004; Spicer and Tien, 2004); secretion of the 

newly synthesized HA molecules that subsequently can interact with several cell surface 

receptors (such as CD44, RHAMM, LYVE-1, HARE, LEC receptor and TLR-4). This 

HA interaction with cell surface receptors mediates important physiological processes, 

including signal transduction, formation of pericellular coats and receptor-mediated 

internalisation (Laurent et al., 1996; Vercruysse et al., 1999; Toole et al., 2002; Turley 

et al., 2002; Toole, 2004; Spicer and Tien, 2004; Adamia et al., 2005a; Tailor and 

Gallo, 2006). 

 HA has been shown to participate in various physiological processes, and given 

such complexity, distinguishing between the effects of biological activity and 

physicochemical properties of this polysaccharide is not straightforward.  Due to its 

hydrophilic properties, HA plays several roles in the ECM, including space filler 

(probably to protect cells against lymphocytes and viruses), lubrificant and osmotic 

buffer. HA is implicated in pathological processes, such as immune surveillance and 

inflammation, since it can act as a sieve, restricting the movement of the pathogens, 

plasma proteins and proteases (Termeer et al., 2003; George and Stern, 2004; Adamia et 
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al., 2005a; Day and de la Motte, 2005; Jiang et al., 2005; Leach and Schmidt, 2005; 

Girish and Kemparaju, 2007). This polysaccharide also appears to be implicated in 

phagocytosis, increasing its concentration in monocytes and granulocytes (Shultz et al., 

2005; Pavia et al., 2005; Girish and Kemparaju, 2007). Hyaluronan was shown to be 

involved in other physiological processes, including embryological development, 

proliferation, differentiation, migration and adhesion of cells (Manzel and Farr, 1988; 

Heldin, 2003; Spicer and Tien, 2004; Adamia et al., 2005a; Girish and Kemparaju, 

2007). During some stages of embryogenesis, the embryo is covered by a thick HA 

coating, which is probably important in the differentiation of the cells (Adamia et al., 

2005a). The production of HA is high during cell proliferation, since this polymer 

promotes chromatin condensation, and therefore facilitating mitosis. On the other hand, 

HA may help cells to detach from the matrix making it easier for them to divide. HA 

levels also increase during the differentiation and in the areas where cell migration 

begins (Adamia et al., 2005a). It also plays important roles in multi-drug resistance 

(Toole, 2004), wound healing (Chen and Abatangelo, 1999), angiogenesis and 

malignant transformation (Adamia et al., 2005a; Shultz et al., 2005; Pavia et al., 2005; 

Girish and Kemparaju, 2007). 

 It is known that the biological functions exhibited by HA depend on the chain 

length, molecular mass and on the conditions under which the polysaccharide is 

synthesized (Noble, 2002; Toole, 2004; Girish and Kemparaju, 2007). Polymers coming 

from the HA fragmentation in the course of the catabolic pathway occur in a variety of 

sizes that have a vast range of properties. High and low molecular weight HA polymers 

play opposite roles on cell behaviour (Girish and Kemparaju, 2007). 
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 High-molecular-size HA polymers are space filling-molecules that are able to 

hydrate tissues, since they can incorporate large amounts of water into its solvent 

domain (Granger et al., 1984), and on the other hand they are able to exclude other 

molecules and cells (Feinberg and Beebe, 1983; Deed et al., 1997). These large 

molecules inhibit endothelial cell growth, and due to this physiological property they 

are anti-angiogenic (Chen and Abatangelo, 1999; Stern et al., 2006). They also show 

anti-inflammatory and immunosuppresive properties (McBride and Bard, 1979; 

Delmage et al., 1986; Day and de la Motte, 2005; Milner et al., 2006). There are some 

evidence that high-molecular-mass HA is involved in ovulation, fertilisation, and 

embryogenesis processes (Stern, 2006). High concentrations of HA are present in foetal 

circulation (Decker et al., 1989) and amniotic fluid (Dahl et al., 1983), which may have 

some effect in the immunosuppression in the developing foetus. High levels of HA are 

also involved in inflammation process, being correlated with leukocyte migration and 

adhesion (Day and de la Motte, 2005; Milner et al., 2006), and inhibition of the 

phagocytosis by monocytes, macrophages and peripheral polymorphonuclear 

neutrophils (Foster and Balazs, 1980). In addition, these large HA molecules are also 

involved in the promotion of cell quiescence and protection of cells against apoptosis 

and injury, and support of tissue integrity (Morrison et al., 2001; Jiang et al., 2005). 

 Conversly to high-molecular-size HA fragments, small polymers have 

angiogenic, wound healing, inflammatory and immunostimulatory properties (Noble, 

2002; Termeer et al., 2002; Rossler and Hinghofer-Szalkay, 2002; Stern, 2003). Several 

studies have shown that low-molecular-size HA fragments promote angiogenesis (West 

et al., 1985; Kumar et al., 1989; Rooney et al., 1995; Horton et al., 1998, 2000; Noble, 

2002; Toole, 2004). These fragments stimulate endothelial cell proliferation, adhesion, 
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and migration by activating multiple signalling pathways, such as adhesion kinase and 

mitogen activated protein (MAP) kinase pathways (Rossler and Hinghofer-Szalkay, 

2002; Murai et al., 2004) and tyrosine kinase cascades (Lokeshwar and Selzer, 2000). 

Low and intermediate molecular weight (2×104–4.5×105) HA fragments activate 

dendritic cells (the antigen-presenting cells of the immune system), stimulating 

inflammatory cytokine production and adhesion molecules (Noble et al., 1993; McKee 

et al., 1996; Termeer et al., 2000, 2002, 2003). 

 Very small HA oligosaccharides also play very important and specific roles in 

cell behaviour. Tetrasaccharides are anti-apoptotic, inducing expression of heat shock 

proteins (Xu et al., 2002) and inhibiting anchorage-independent growth of several 

tumour cell types (Ghatk et al., 2002). Whilst hexasaccharides act as antagonists to 

larger HA fragments, promoting, for example, differentiation of the endothelial cells 

induced in response to the angiogenic effect of larger HA fragments (Ohno et al., 2005; 

Takahashi et al., 2005). 

 Table 1.5 shows a list of HA fragments and their biological functions correlated 

with molecular size. 
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Table 1.5 – Sizes of HA with key function [Adapted from Stern et al., 2006]. 

Size (saccharides) Function 

High-molecular-mass 

HA > 1000-5000 

Suppression of angiogenesis 

Immune suppression 

Inhibition of phagocytosis 

Suppression of HA synthesis 

 
HA fragments  
~1000 Induction of inflammatory chemokines 

Stimulation of PAI-1 
Stimulation of urokinase 
 

10-40 Induction of CD44 cleavage 
Promotion of tumour cell migration 
 

8-32 Stimulation of angiogenesis 
Stimulation of tumour neovascularisation 
 

~15 Suppression of smooth muscle cell proliferation 
 

12 Endothelial cell differentiation 
~Up-regulation of PTEN in tumour cells 
 

10 Displacement of matrix HA on oocyte surface 
Displacement of proteoglycans from cell surface 
 

6 Suppression of HA cable formation 
Induction of NO and MMPs in chondrocytes 
Induction of HAS2 in chondrocytes 
 

4-6 Induction of cytokine synthesis in dendritic cells 
Transcription of MMPs 
 

4 Up-regulation of Hsp 72 expression 

Suppression of apoptosis 

Induction of chemotaxis 

Up-regulation of heat shock factor-1 

Up-regulation of Fas expression 

Suppression of proteoglycan sulfation 

 

 

1.3.2.    HA BINDING PROTEINS AND RECEPTORS 

   

 All the previously mentioned signalling events performed by HA, such as cell 

migration, attachment and metastasis, are mediated through a group of HA-binding 

proteins denominated hyaladherins (Toole, 1990; Knudson and Knudson, 1993; Leach 
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and Schmidt, 2004; Girish and Kemparaju, 2007). Hyaladherins exhibit significant 

differences in their tissue expression, cellular localisation, specificity, affinity and 

regulation (Day and Prestwich, 2002). These proteins are categorised according to their 

molecular basis of HA recognition (sequence of HA binding site) and their location, i.e., 

some of them interact with HA within the ECM, whereas others interact with HA at the 

plasma membrane of cells, as cell-surface matrix receptors (Table 1.6; Knudson and 

Knudson, 1993; Turley and Harrison, 1999; Girish and Kemparaju, 2007). 

      

Table 1.6– Hyaladherin family proteins [Adapted from Turley and Harrison, 1999]. 

Cellular Extracellular 

Itinerant proteins 
Transmembrane 

proteins 
ECM proteins Soluble proteins 

RHAMM CD44 family versican Inter-α-trypsin inhibitor 

cdc37  aggrecan  

p68  neurocan  

HBP  brevican  

IHABP4  link protein  

TSG-6  fibrinogen  

LYVE-1    

LEC    

 

Most of the hyaladherins share a common structural binding domain of ~100 

amino acids in length, denominated as the link module (Day and Prestwich, 2002). The 

link module region comprises an immunoglobulin domain, which is responsible for the 

link protein-proteoglycan interaction, and two contiguous link modules, which mediate 

binding to HA (Day and Prestwich, 2002; Spicer et al., 2003). Nevertheless, there are 

number of hyaladherins that lack this domain and are unrelated to each other at the 

sequence level (Figure 1.7; Day and Prestwich, 2002). 
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Figure 1.7 – The modular domain organization of the hyaladherins [Adapted from Day and 

Prestwich, 2002]. 

 

1.3.2.a.  Extracellular hyaladherins 

 

 Extracellular hyaladherins include aggrecan, versican, neurocan and brevican, 

which constitute a gene family denominated as lectins (or hyalectins; Yamaguchi, 2000; 

Hartmann and Maurer, 2001; Girish and Kemparaju, 2007). These lectins are 

chondroitin sulphate proteins (CSPGs; Yamanda et al., 1994), and they can form huge 

and link protein-stabilised complexes with HA (Day and Prestwich, 2002). Aggrecan is 

the largest proteoglycan, found predominantly in cartilage (Hardingham and Muir, 

1972; Hardingham and Fosang, 1992; Knudson and Knudson, 1993), while versican is 

predominantly synthesised in fibroblasts and also present in another soft tissues 

(Knudson and Knudson, 1993; Yamanda et al., 1994; Girish and Kemparaju, 2007). 

Neurocan and brevican are present predominantly in the central nervous system 
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(Yamanda et al., 1994). The complexes formed between these proteoglycans and HA 

provide the load-bearing function in articular cartilage, give elasticity to blood vessels, 

while contributing to structural integrity of many tissues such as skin and brain 

(Watanabe et al., 1997; Yamaguchi, 2000). 

Link protein also has a specific and strong binding to HA, and its interaction 

with the polysaccharide results in the retention of aggrecan within cartilaginous tissues 

(Knudson and Knudson, 1993). In addition, the presence of link protein in non-

cartilaginous tissues may be correlated with the stabilisation of versican and neurocan 

with HA (Rauch et al., 1992; Knudson and Knudson, 1993). 

 Inter-α-trypsin inhibitor (IαI) is an atypical HA-binding protein since does not 

appear to use the link module as the binding domain (Huang et al., 1993; Toole, 2001; 

Zhuo et al., 2004). This protein interacts in a complex manner with HA generating the 

serum-derived hyaluronan-associated protein (SHAP)-HA complex (Hamerman et al., 

1963; Sandson et al., 1965; Zhuo et al., 2004). This complex is involved in the binding 

of HA to cell surfaces and in the assembly of pericellular matrices (Toole, 2001; Zhuo 

et al., 2004). 

 

1.3.2.b.  Cellular hyaladherins – HA receptors 

 

 Cluster of differentiation 44 (CD44; Aruffo et al., 1990; Goldstein et al., 1989) 

and receptor for HA-mediated motility (RHAMM; Turley, 1982; Hardwick et al., 1992) 

are the most studied hyaladherins, and are considered to be the principal HA receptors 

(Leach and Schmidt; 2004; Girish and Kemparaju, 2007). 
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 CD44 is a transmembrane glycoprotein, being expressed in a number of 

different isoforms and on a variety of cell types including leukocytes, fibroblasts, 

epithelial cells, keratinocytes, and some endothelial cells (Tavernor et al., 1992; Isacke 

and Yarwood, 2002; Sillanpää et al., 2003; Leach and Schimdt, 2004; Girish and 

Kemparaju, 2007). It is involved in many cell-cell and cell-matrix interactions and 

signalling, including cell adhesion, migration, receptor-mediated 

internalisation/degradation of HA, and lymphocyte functions (Knudson et al., 2002; 

Toole, 2002, 2004; Knudson, 2003; Leach and Schimdt, 2004; Spicer and Tien, 2004; 

Girish and Kemparaju, 2007). 

 RHAMM is also known as CD168 since is expressed on the cell surface. This 

hyaladherin is also expressed in the cytoplasm, cytoskeleton, mitochondria and nucleus 

(Turley et al., 2002; Nedvetzki et al., 2004) by several cell types, including most adult 

homeostatic tissues, keratinocytes, fibroblasts, smooth muscle cells, macrophages and T 

lymphocytes (Turley and Harrison, 1999). Similarly to CD44, RHAMM is expressed in 

several isoforms (Zhang et al., 1998; Akyiama et al., 2001; Lynn et al., 2001; Turley et 

al., 2002). The intracellular isoforms are also known as IHAPBs (intracellular HA-

binding proteins; Fieber et al., 1999; Lee and Spicer, 2000). Depending on which 

isoform present, RHAMM plays key roles in HA mediate migration and motility, 

cytoskeletal assembly and intracellular signal transduction (Hall et al., 1996; Fieber et 

al., 1999; Turley et al., 2002; Toole, 2004; Girish and Kemparaju, 2007). 

 LYVE-1 (lymphatic vascular endothelial hyaluronan receptor) is a HA specific 

binding protein being only expressed in lymph vessel endothelium (Jackson, 2003, 

2004; Girish and Kemparaju, 2007). LYVE-1 appears to play a role in HA metabolism 

or leukocyte trafficking within lymphatic vessels and lymph nodes (Jackson, 2004). 
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LYVE-1 is structurally related with CD44 presenting 43% of similarity (Banerji et al., 

1999; Jackson et al., 2001; Jackson, 2003). 

 TGS-6 (tumour necrosis factor-stimulated gene-6) is a protein implicated in 

many physiological and pathological conditions associated with inflammation and tissue 

remodelling (Bayliss et al., 2001; Mahoney et al., 2001; Girish and Kemparaju, 2007). 

It plays key roles in the regulation of leukocyte migration, and its pattern of expression 

and ligand specificity indicate that it may be involved in extracellular matrix 

remodelling (Bayliss et al., 2001; Day and Prestwich, 2002; Mahoney et al., 2001; 

Girish and Kemparaju; 2007). 

 Table 1.7 shows the relationship of HA oligosaccharides size and hyaladherins. 

 

Table 1.7 – Minimum size of HA oligosaccharides that bind to hyaladherins [Adapted from Stern et al., 

2006]. 

Molecular size (saccharides) Protein 

6 HAPB1 

CD44 and TGS-6 link module 

Chondrocyte CD44 

Smooth muscle cell CD44 

8 
IαI 

TSG-6 

8-10 SHAP 

10 

Aggrecan 

Versican 

Link protein 

Keratinocyte CD44 (CD44E) 

50 Link protein plus aggrecan 
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1.3.3.    HA AND CANCER 

 

 It has been shown that high concentrations of HA are present in tumours, being 

consistent with the high levels of HA present in the serum of some cancer patients, 

when compared with the levels found in those normal individuals (Dahl and Laurent, 

1988; Knudson et al., 1989; Knudson, 1996; Auvinen et al., 1997; Ropponen, 1998). 

HA has been implicated in migration, differentiation, progression and invasion of 

cancer cells leading to metastasis. Several studies have shown that HA mediates these 

cellular functions through interactions with specific binding proteins, previously 

discussed in the subchapter 1.3.2. 

 Tumour progression is accompanied by various cellular, biochemical and 

genetic alterations, including the interaction of tumour cells with ECM molecules, such 

as HA. The accumulation of HA has been found in several tumours, including bladder 

carcinoma (Hautman et al., 2001) breast carcinoma (Auvinen et al., 1997, 2000; Li et 

al., 2007), colon carcinoma (Ropponen et al., 1998; Köbel et al., 2004), epithelial 

ovarian carcinoma (Anttila et al., 2000), gliomas (Delpech et al., 1993), lung carcinoma 

(Horai et al., 1981; Pirinen et al., 2001), prostate carcinoma (Lokeshwar et al., 2001; 

Lipponen et al., 2001; Aaltomaa et al., 2002), thyroid carcinoma (Bohm et al., 2002),  

and Wilm’s tumours (nephroblastoma; Hopwood and Dorfman, 1978). High levels of 

HA are not only a characteristic seen in tumours; transformed cells, including those 

cells infected with oncogenic viruses, exhibit higher levels of HA production as well as 

abnormal acceleration of cellular growth (Hamerman et al., 1965; Ishimoto et al., 1966; 

Hopwood and Dorfman, 1977; Leonard et al., 1978). 
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 Several studies have demonstrated that the overexpression of HAS genes 

induces HA production and matrix formation. There is some evidence that is due the 

HA overproduction that cancer cells form a HA-rich matrix, providing a suitable 

environment for tumour growth, invasion and metastasis (Toole et al., 1979; Dick et al., 

1983; Kimata et al., 1983; Turley and Tretiak, 1985; Turley, 1992; Zhang, 1995; 

Knudson, 1996; Itano et al., 2004). Kosaki and co-workers (1999) have demonstrated 

that high levels of HA induce tumour growth of fibrosarcoma cells, whereas in a study 

performed by Itano and co-workers (1999) the stimulation of metastatic breast cancer 

cells was observed. There is some evidence that HAS isoforms are involved in different 

stages of malignant tumourigenesis, with HAS1 overexpression correlated with poor 

prognosis in human colon (Yamada et al., 2004) and ovarian (Yabushita et al., 2004) 

cancers, and multiple myelomas (Adamia et al., 2005b); whilst elevated expression of 

HAS2 and HAS3 isoforms is involved in fibrosarcomas, melanomas and mesotheliomas 

(Kosaki et al., 1999; Liu et al., 2001; Li and Heldin, 2001). Conversly, decrease of 

tumourigenic potential of various cell lines was seen when low levels of HA are 

expressed, due to suppression of HAS2 and HAS3 (Simpson et al., 2002; Simpson et 

al., 2002b; Nishida et al., 2005; Udabage et al., 2005). However, Ened and co-workers 

(2002) have shown contradictory results, demonstrating that overexpression of HAS2 

inhibits tumour formation. These findings were supported by a study performed by 

Itano and co-workers (2004), showing suppression of the tumourigenesis, while using 

rat 3Y1 fibroblasts undergoing oncogenic transformation.  

Degradation of HA may be involved in the control of HA accumulation, with 

HYALs appearing to play roles in tumourigenesis (Csoka et al., 1997). However, 

HYALs function is not fully understood, since some results show to be ambiguous. 
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Hyal-1 overexpression is seen in prostate (Lokeshwar et al., 2001) and bladder 

(Lokeshwar et al., 2002) cancers; but on the other hand, low levels of Hyal-1 are shown 

in advanced ovarian cancer (Hiltunen, 2002). 

 All the findings above described suggest that HA is an effector of tumour cell 

behaviour, and there are a number of ways that HA can be involved in the regulation of 

cancer growth and spreading. Nevertheless, the relation of HA production/degradation 

and its functions in cancer progression remains to be elucidated. 

 

1.3.4.     MEDICAL APPLICATIONS OF HA 

 

The clinical use of HA is rapidly increasing and estimations about its world-

wide size market are around one billion dollars (Liao et al., 2005; Oh et al., 2010).  The 

intrinsic physicochemical and biological properties of HA make this polymer suitable 

for applications in clinical therapies, diagnostics, tissue engineering, and drug delivery, 

for a variety of biomedical needs, including orthopedic, cardiovascular, pharmacologic 

and oncologic applications (Liao et al., 2005). In Table 1.8 it can be seen a list of HA 

products for clinical use commercially available. 
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  Table 1.8 – Some commercial available HA products [Adapted from Liao et al., 2005]. 

Application Tradename Company 

Osteoarthritis Hyalgan Fidia 
 Synvisc Biomatrix/Genzyme 
 Supartz Seikagaku 

 

Hylashield 
Artz 

Orthovisc 
 

Biomatrix 
Seikagaku 

Anika 
 

Ophthalmology Healon Pharmacia 
 Amvisc Bausch & Lomb 
 Coease, Shellgel, Staarvisc Anika Therapeutics 
 Amo Vitrax, Vitrax Allergan/Medtronic 

 

Provisc, Viscoat 
Opegan, OpeganHi 

Opelead 
 

Alcon Laboratories 
Seikagaku 
Shiseido 

 
Wound healing Bionect Fidia 

 
Ialuset 

Connettivina 
 

IBSA 
Fidia 

 
Postsurgical adhesions Adcon Gliatech 

 Intergel LifeCore Biomedical 

 Seprafilm 
 

Genzyme 
 

Surgical scaffolding Hyalomatrix Fidia 

 Hylasine 
 

Biomatrix 
 

Gastrourology 
 

Deflux 
 

Q-Med 
 

Embryo implantation EmbryoGlue Vitrolife 
   

 

Hyaluronan originally found in the vitreous humour of the eye, is an important 

agent in ophthalmic surgery, due to its viscoelasticity and hydrophilicity. It has been 

routinely used during cataract operations, aiming to protect the delicate corneal 

endothelium or to maintain the shape of the anterior eye chamber. HA has been used as 

well as an adjuvant to eye tissue repair and as an enhancing component of eye drops 

(Miller and Stegmann, 1983; Laurent et al., 1995; Menzel and Farr, 1998; Lapckik et 

al., 1998). 

Due to its viscoelastic and hydrophilic properties HA has been used in 

orthopaedic applications, acting as a lubricant and promoting cartilage-healing in joint 
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diseases, such as osteoarthritis. A variety of HA materials have been developed and 

used in viscosupplementation treatments to treat many orthopaedic diseases, where the 

concentration and molecular weight of the HA naturally present in the joint decreases, 

contributing to stiffness and pain (Laurent and Fraser, 1992; Peyron, 1993; Pozo et al., 

1997). 

The advent of HA derivatives and crosslinked HA has allowed the use of HA 

materials in drug delivery applications for drug targeting. In the administration route of 

HA materials are included gene delivery, and dermal, ophthalmic, nasal, pulmonary, 

parenteral, liposomal, and implantable drug delivery; which have a wide variety of 

applications ranging from wound healing and tissue regeneration, cancer, ophthalmic 

patologies, to diabetes (Table 1.9, Liao et al., 2005). Hyaladherins, such as CD44 and 

RHAMM, are involved in the mechanisms of HA in the application of drug delivery 

system, not only because they are overexpressed in many diseases tissues (e.g. tumour 

and inflamed tissues), but because they can internalise the HA-drugs. These potential 

drug delivery system materials have been formulated as topical, injectable and 

implantable vehicles (in forms such as films, microspheres, liposomes, fibres, or 

hydrogels).  Biocompatibility, biodegradability, stability and readily modified chemical 

structure are on the basis of using HA as a drug carrier. In addition, the coupling of 

drugs to HA provides advantages in drug solubilisation and stabilisation, allowing a 

controllable and localised delivery of biologically active molecules (Willoughby, 1994; 

Leach and Schmidt, 2004; Liao et al., 2005; Yadav et al., 2008). A number of studies 

have shown that HA has the capacity to increase the bioavailability of many drug 

molecules, including insulin, pilocarpine, tropicamide, timolol, gentimycin, and 

arecaidine propargyl ester. The bioavailability promoted by HA is the result of 
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bioadhesion and/or penetration enhancement, which were found to be dependent on the 

polysaccharide molecular-weight, with high molecular weight HA fragments (more than 

300 kDa) promoting an increase in the bioavailability and low molecular weight 

fragments (55 kDa) having no effect (Liao et al., 2005). 

 

Table 1.9 – Summary of the drug delivery applications of HA (Liao et al., 2005). 

Route Justification Therapeutic agents 

Ophtalmic Increased ocular residence of drug that can 
lead to increased bioavailability 

Pilocarpine, tropicamide, timolol, gentimycin, 
tobramycin, arecaidine polyester, (S) aceclidine 

Nasal Bioadhesion resulting in increased 
bioavailability 

Xylometazoline, vasopressin, gentamycin 

Pulmonary Absortion enhancer and dissolution rate 
modification 

Insulin 

Parenteral Drug carrier and facilitator of liposomal 
entrapment 

Taxol, superoxide dismutase, human recombinant 
insulin-like growth factor, dexorubicin 

Implant Dissolution rate modification Insulin 

Gene Dissolution rate modification and protection Plasmid DNA/ monoclonal antibodies 

 

HA has been investigated in wound healing regeneration. Despite its role in the 

wound healing not be fully understood, there is some evidence that HA is present in 

high concentrations in the skin and soft connective tissues. Furthermore, some studies 

have showed that exogenous HA exerts have beneficial effects on the wound healing 

process, accelerating skin wound healing when topically applied in hamsters and rats 

(Foschi et al., 1990; King et al., 1991; David-Raoudi et al., 2008). HA forms a very 

readily matrix and its tissue-integrity-promoting behaviour, making this polymer an 

appropriate matrix to support dermal regeneration and augmentation, and also giving 

many possibilities in the wound repair field (Chen and Abatangelo, 1999). Several 

studies have shown that HA promotes cell detachment, and therefore having both 
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adhesive and anti-adhesive properties (Barnhart et al., 1979; Abatangelo et al., 1982; 

Koochekpour et al., 1995). Crosslinked HA has been used in post-surgical applications 

preventing adhesions and forming barriers to cell movement (Evanko et al., 2007). 

Injections of HA are now being used in endoscopic mucosal resection (EMR) or 

endoscopic mucosal dissection (EMD), instead of normal saline solution. Some studies 

have shown that EMRSH (endoscopic mucosal resection sodium hyaluronate) creates a 

more prominent and longer-lasting mucosal protrusion and complete resection can be 

achieved in greater numbers of cases comparatively with typical EMR. However, it is 

unclear if exogenous HA can increase the risk of cell growth and tumour development 

in case of malignant disease (Matsui et al., 2004; Sohn et al., 2008). 

 HA has been successfully used in cosmetic applications due to its ability to 

retain water for considerable periods, presenting properties of a moisturiser, in addition 

that it is highly elastic. HA gels are currently commercially available in forms of creams 

and injectables. These preparations have been used in soft tissue augmentation, to fill 

facial wrinkles and depressed scars (Duranti et al., 1998; Kogan et al., 2006; Stern and 

Maibach, 2008). 

 HA has been now a substitute for albumin in culture media, since sometimes 

albumins can be contaminated with prions and viruses (Gardner et al., 1999; Simon et 

al., 2003; Liao et al., 2005). HA is a suitable component for in vitro fertilisation, and 

can act as a cryopreservative to human embryos (Gardener et al., 2003). 

The surface coating of medical devices is another prominent application of HA. 

The biopolymer coating enables devices such as catheters, guidewires and sensors, to be 

biocompatible and lubricated, while reducing fouling and tissue abrasion (Hoekstra, 

1999). 
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1.4. CD44 

 

CD44 is a family of transmembrane glycoproteins (Weber et al., 1996), initially 

discovered on lymphocytes, and later identified on many different cell types from 

several mammal species (Dalchau et al., 1980). It was first identified as having cell 

adhesion and cell homing functions, but it already has been shown to have a multiplicity 

of functions. CD44 is also known as Ly-24, lymphocyte homing receptor (gp90 

Hermes), phagocytic glycoprotein (Pgp-1), extracellular matrix receptor III (ECMRIII), 

and HA receptor (H-CAM-homing cellular adhesion molecule and HUTCH-1). This 

variety of names is due its individual discovery by several research centres, but 

sequencing studies have shown that all these molecules were identical. Thus, in the 

Third International Workshop on Human Leukocyte Differentiation Antigens, CD44 

was decided as the name of the protein (Cobbold, 1987). 

 

1.4.1.    CD44 GENE 

 

In humans, the gene coding for CD44 is located on the short arm of chromosome 

11 location p13 (Francke et al., 1983; Forsberg et al., 1989a, 1989b), on chromosome 2 

in mice. It was first cloned in 1989 by Stamenkovic and co-workers, while using cDNA 

libraries prepared from hematopoietic cell lines. Screaton and co-workers (1992) have 

found that the gene was composed by 19 exons, 12 of which were alternatively spliced 

(Screaton et al., 1992, 1993). However, some years later it has been shown that it is 

composed by at least 20 exons, spanning approximately 60 kb (Borland et al., 1998; 

Günthert, 2001). There are two groups of 10 exons each: one group comprises exons 1-
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5 and 16-20, being expressed together on all cell types and described as the standard 

form of the gene – CD44S; and the other group described as the variable form – CD44V 

– which comprises exons 6-15 that can be alternatively spliced, resulting in a large 

number of functionally distinct isoforms (Figure 1.8; Tölg et al., 1993). 

Among seventeen exons that code for extracellular domain, the first five exons 

(exon 1-5), exons 16 and 17 are present in all CD44 isoforms, whereas exons 6-15 are 

subjected to alternative splicing (designated as variant exons, v1-v10; van Weering et 

al., 1993; Martin et al., 2003; Thorne et al., 2004; see Figure 1.8). The human CD44 

does not contain exon v1, thus the first variant exon of human CD44 is numbered as v2 

(Nedvetzki et al., 2003). Exon 1 encodes the N-terminal signal sequence, exons 2 and 3 

encode a link-homology hyaluronan-binding module, the membrane proximal region of 

the extracellular domain is encoded by exons 4, 5, 16 and 17, exon 18 encodes a short 

hydrophobic transmembrane domain, and the cytoplasmic domain is encoded by exons 

19 and 20 (Martin et al., 2003; Thorne et al., 2004). It was also noticed that exons 19 

and 20 can also be alternatively spliced, generating different lengths of the cytoplasmic 

tail of the CD44 protein. Thus, the expression of exon 19 results in a short and truncated 

form (additional three amino acids), while exon 20 results in a long version by the 

inclusion of the C-terminal exon (additional 67 amino acids). The longer form of the 

cytoplasmic tail is predominantly expressed, while exon 19 is normally spliced out, and 

therefore, the short form is only rarely expressed (Goldstein et al., 1990; Screaton et al., 

1992; Günthert, 2001; Martin et al., 2003).  

The alternative splicing of CD44 can gives rise to a variety of CD44 

polymorphisms (more than one thousand), but nevertheless, not all combinations of 

variably spliced exons are expressed (Naor et al, 1997, 2002). CD44 isoforms are 
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expressed in a cell-specific manner, and among these isoforms there are two occurring 

more frequently: haematopoietic CD44 (CD44H), which is broadly distributed in 

haematopoietic cells (particularly leukocytes; Stamenkovic et al., 1989; Quackenbush et 

al., 1990), and epithelial CD44 (CD44E), which appears restricted to subsets of 

epithelial cells (Stamenkovic et al., 1991; Brown et al., 1991). CD44H does not contain 

variably sliced exons, being encoded by constitutively expressed exons 1-5, 16-17 and 

19 (Bajorath, 2000). CD44E is one of the CD44 variants, containing exons 12, 13 and 

14 (Stamenkovic et al., 1991). 

 

 

Figure 1.8 – Genomic organisation of CD44. Orange boxes represent the 10 variant exons v1–v10 which 

are either all spliced out to produce CD44s or inserted into the extracellular domain in multiple 

combinations to produce alternatively spliced CD44 isoforms (CD44v) [Adapted from Isacke and 

Yarwood, 2002; Martin et al., 2003].  

 

1.4.2.    CD44 PROTEIN STRUCTURE 

 

The standard isoform of human CD44 (CD44s) is a type I transmembrane 

molecule, i.e. the N-terminus is located outside and the C-terminus inside the cell 

(Bajorath, 2000). CD44s is the smallest CD44 isoform, since all variant exons are 

1 2 3 4 5 16 17 18

Signal peptide CytoplasmicTM
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excised. It is composed of 341 amino acids (aa) and is subdivided into three major 

domains: a C-terminal cytoplasmic domain (70 aa), a transmembrane domain (23 aa), 

and a N-terminal extracellular domain (248 aa), which can be subdivided further into 

two distinct regions: the N-terminal domain and the membrane proximal region of the 

extracellular domain (or stem region; 85 aa). The ten exons subjected to alternative 

splicing (v1-v10) encode up to 381 aa. They are inserted at a single site in the 

membrane proximal extracellular domain between exons 5 and 16 of the RNA 

transcript, corresponding to a position between aa 202 and 203 (Figure 1.9; Martin et 

al., 2003). 

 

Figure 1.9 (A) Protein structure of CD44 [Adapted from Ponta et al., 1998]. (B) Comparison between 

CD44s and the largest variant isoform CD44v1–10, which shows that the sequences encoded by the 

variant exons are in the stem region [Adapted from Ponta et al., 2003]. 

  

The single-pass transmembrane domain encoded by exon 18 contains 23 aa. The 

cytoplasmic region, composed by 70 aa (residues 272-341), is encoded by exons 19 and 

20, and part of exon 18 (only three aa; Martin et al., 2003). CD44s is a polypeptide 
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synthesised as 37 kDa. However, CD44 can undergoes extensive post-translational 

modifications, resulting in several isoforms-specific post-translational modifications 

and therefore to a structural diversity. For example, the attachment of numerous 

carbohydrates to N- and O-linked glycosylation sites of the extracellular domain, results 

in a protein of 80-95 kDa, while the attachment of chondroitin sulphate results in a 

protein of 180-200 kDa. Glycosylation patterns of CD44 isoforms varies among 

different cell types and cellular context, giving rise to CD44 polypeptides ranging from 

80-250 kDa (Bajorath, 2000; Martin et al., 2003). Consequently, post-translational 

modifications modulate binding characteristics and functional properties of CD44 

(Kincade et al., 1997; Lesley et al., 1997; Borland et al., 1998). 

 

1.4.3.    CD44 LIGANDS 

 

 It is well known that HA is the principal ligand of CD44 (Lesley and Hyman, 

1998). CD44 binds to HA through a link domain (previously discussed in subchapter 

1.3.2.; Goodison et al., 1999; Martin et al., 2003; Banerji et al., 2007). Although all 

CD44 isoforms contain the HA recognition site, not all cells expressing CD44 bind the 

HA constitutively. And in many cases CD44 only binds to its ligand when is activated 

by external stimuli. Cells can express CD44 in an active (can bind to HA), an inducible 

(which does not bind HA or binds it only weakly, but can only bind HA in presence of 

inducing factors), or an inactive state (unable to bind HA, even in presence of inducing 

factors) with respect to HA binding (Lesley et al., 1993, 2000; Goodison et al., 1999; 

Bajorath, 2000). These differences in the HA binding are cell specific and can be 

attributed to post-translational modification patterns. Thus, glycosylation of CD44 is 
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directly or indirectly required for HA binding (Goodison et al., 1999; Bajorath, 2000). 

While reduced levels of N- and O-glycosylation enhance HA binding (Bennet et al., 

1995; Katoh et al., 1995; Lesley et al., 1995), mutation of N-linked glycosylation sites 

in CD44 abrogates HA binding, converting thus an inducible to an active form 

(Bartolazzi et al., 1996). In addition, it has been shown that in certain cell types, CD44 

can be induced to bind HA by specific monoclonal antibodies, cytokines growth factors 

or phorbol ester (Lesley et al., 1993, 1995, 2000). 

 Due to its polymorphic nature CD44 can also bind to other ligands besides HA. 

These include growth factors (Yu et al., 2002), matrix metalloproteinases (Yu and 

Stamenkovic, 1999, 2000; Mori et al., 2002; Yu et al., 2002), and ECM proteins, 

including osteopontin (Webber et al., 1997), collagen (Carter and Wayner., 1988; 

Faassen et al., 1992; Ishii et al., 1993), fibronectin (Jalkanen et al., 1992; Romaris et 

al., 1995) and laminin (Ishii et al., 1993). Furthermore, CD44 also interacts with a 

number of other non-ECM ligands, such as the major histocompatibility complex 

(MHC) class II (Naujocas et al., 1993), addresin (Picker et al., 1989) and serglycin 

(Toyama-Sorimachi and Miyasaka, 1994; Toyama-Sorimachi et al., 1995). In addition, 

it was also been reported that CD44 interacts with intracellular proteins via its 

cytoplasmic domain; these include ankyrin (Bourguignon et al., 1986; Kalomiris and 

Bourguignon, 1988), proteins of ERM family (such as ezrin, radixin and moesin (Sato 

et al., 1992; Yonemura et al., 1998; Legg et al., 2002) and merlin, a tumour suppressor 

protein related to ERM proteins (Morrison et al., 2001). There is some evidence that 

CD44 interacts with cytoskeleton through actin microfilaments binding mediated by 

ankyrin and ERM proteins (Tsukita et al., 1994). 
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There is a current model for HA-dependent CD44-signalling pathways (Figure 

1.10), in which CD44 is tightly coupled at least to two tyrosine kinases: p185HER2 and c-

src.  

 

 

Figure 1. 10 – Current model for HA-dependent CD44-signalling pathways (Turley et al., 2002). 

 

The CD44-HA interactions can stimulate CD44-associated p185HER2 tyrosine 

kinase activity, leading to an increase in the tumour growth. On the other hand, CD44-

HA interactions stimulate c-src kinase activity, increasing tyrosine phosphorylation of 

the cytoskeletal protein (cortactin), which induces cytoskeleton-regulated tumour cell 

migration. CD44-HA interactions also activate Rho GTPases, such as RhoA and Rac1, 

which participate in the interaction between CD44 and cytoeskeletal proteins. When 

associated with CD44, RhoA stimulates ROK (Rho kinase) to phosphorylate several 

cellular proteins, promoting binding of CD44 to ankyrin. It has been proposed that 

CD44 and RhoA-mediated signalling is involved in membrane-cytoskeleton interactions 
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and tumour cell migration during cancer progression. CD44 also activates Rac1 through 

its binding with Tiam1 and Vav2, which are guanine nucleotide factors that catalyse 

GDP-GTP exchange, leading to HA-mediated tumour cell migration (Figure 1.10; 

Turley et al., 2002).  

Wolny and co-workers (2010) have shown that small fragments of HA (≤10 

kDa) reversible bind to CD44, whereas an irreversible interaction with larger polymers 

is seen (Wolny et al., 2010). It has also been reported that HA oligomers can stimulate 

different cell responses when bound to CD44, comparatively to high MW fragments, 

because oligomers can cause clustering of multiple CD44 receptors and thus altering the 

intracellular responses (Liu et al., 1998). It has been suggested that the interaction of 

HA oligomers with CD44 promote cell proliferation, due the enhancement of vascular 

EC growth factor (VEGF) (Murphy et al., 2005). 

 

1.4.4.    CD44 FUNCTIONS AND EXPRESSION 

 

CD44 is a cell surface glycoprotein, playing an important role in cell-cell and 

cell-ECM interactions. In addition, CD44 is a cell adhesion molecule, being involved in 

cell motility and migration, differentiation, signal transduction, and gene transcription 

(Martin et al., 2003). Most of the roles of CD44 are intimately associated with its 

capacity to promote cell attachment to HA (Naor et al., 1997). CD44 is also implicated 

in uptake and subsequent degradation of HA (Culty et al., 1992). It was also been 

shown that the accumulation of HA is directly correlated with the downregulation of 

CD44. The abnormal excess of HA is associated with lichen sclerosus at atrophicus 

(LSA; Kaya et al., 2000), solitary cutaneous myxomas (Calikoglu et al., 2002), myxoid 
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dermatofibroma (Calikoglu et al., 2003), while high levels of HA in keratinocytes are 

implicated in skin and corneal lesions (Kaya et al., 1997, 1999). 

As previously discussed, CD44 has two important isoforms: CD44H and 

CD44E. The major differences presented by these isoforms are correlated with the 

mediation of lymphocyte homing: while CD44H can bind to HA and mediate 

lymphocyte homing, CD44E cannot (Berg et al., 1989; Picker et al., 1989; Stamenkovic 

et al., 1991). One of the major functions of CD44 is lymph node homing (Jalkanen et 

al., 1986, 1987; Aruffo et al., 1990), playing as well key roles in lymphocyte activation 

and extravasation (Huet et al., 1989; Shimizu et al., 1989; Aruffo et al., 1990). These 

interactions are carried out by the middle domain of CD44H in lymphocytes and a 

mucosal adressin. CD44E cannot perform these functions, due to an insert in the middle 

of domain, preventing the interaction with mucosal adressin (Underhill, 1992). Due to 

its involvement in homing and inflammation, CD44 has been shown to play roles in 

wound healing. 

 

1.4.5.    CD44 AND CANCER 

 

The biological and physiological properties of CD44 are not only essential to the 

activities of normal cells, but they are also correlated with pathologic activities of 

cancer cells. While CD44s is ubiquitously expressed, CD44v is more restricted in 

normal cells, being some of the variants only expressed on malignant cells and tumour-

derived cell lines (Bourguignon et al., 1993, Martin et al., 2003). CD44 mediates 

tumour-cell adhesion through its binding to several ECM components, including HA. 

CD44 can be correlated with the oncobiological behaviour (including tumourigenesis, 
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growth, metastasis and prognosis), since it is a transmembrane protein involved in the 

mediation of the mechanical force created by the cytoskeleton and for transmission of 

intracellular locomotory signals. Furthermore, high levels of CD44 are expressed in 

several types of tumours (Bourguignon et al., 1993; Liu and Jiang, 2006). 

 In 1989, Stamenkovic co-workers have shown that CD44 gene was expressed in 

a variety of carcinoma cell lines and solid tumours. A couple of years later, Günthert 

and co-workers (1991), while working with a non-metastasic rat pancreatic 

adenocarcinoma cell line transfected with the CD44v4-7 isoform,  showed that CD44 

has metastatic properties, since the original tumour started to metastasing when 

administrated into healthy rats. These authors have shown an inhibition of metastasis 

upon the reaction of an antibody directly against CD44v6 (Günthert et al., 1991). 

Furthermore, Guo and co-workers (1994) demonstrated that a mAb specific for CD44s 

completely inhibits the binding to hyaluronic acid of cells of a human melanoma cell 

line in vitro, inhibiting as well the metastatic capacity of the tumour cell in vivo. 

According to studies performed by Bartolazzi and co-workers (1994) there is a strong 

and direct relationship between HA and aggressiveness of human melanoma cell lines. 

This observation was achieved when working with cells transfected with CD44 mutated 

at arginine 41 exon s2, which is an essential site for HA recognition; resulting in the 

singnificantly reduction of cellular aggressiviness (Bartolazzi et al., 1994). A very 

different behaviour of melanoma cells was observed in studies performed by Birch and 

co-workers (1991). These authors showed that cells exhibiting high levels of CD44 have 

a stronger adhesion to HA, and a more vigorous motility and homotypic aggregation, 

when compared to those cells expressing lower levels of CD44. In addition, cells 

expressing high levels of CD44 have an increased capability of colonise lungs of nude 
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mice, and consequently producing pulmonary nodules (Birch et al., 1991). It has also 

been reported high levels of CD44 are correlated with the aggressiveness of lymphoid 

tumours (Horst et al., 1990) and invasiveness of bladder carcinomas (Knudson et al., 

1990). 

 Proteolytic cleavage of the extracellular domain of CD44 is strongly related to 

cancer migration and signalling pathway. After the release of the extracellular domain 

by matrix metalloproteinases (MMPs; Nagano et al., 2004) and further proteolytic 

cleavage by presenilin-dependent g-secretase, the intracellular domain suffers 

translocation to the nucleus (Okamoto et al., 2001; Pelletier et al., 2006). This leads to 

the activation of gene transcription and consequently promotion of neoplastic 

transformation. Despite the cleavage of the extracellular domain occurs as well in non-

malignant cells; this event is clinically relevant, serving as a diagnosing parameter, 

since soluble CD44v can be detected in the serum of patients (Gadducci et al., 1997; 

Goi et al., 1997; Sliutz et al., 1995; Saito et al., 1998; Yamaguchi et al., 1998; Shee-

Chen et al., 1999; Yamane et al., 1999; Kopp et al., 2001). A major problem in cancer 

diagnosis, using serum CD44v, is that some variant forms are also expressed in non-

malignant epithelial cells, and high levels of soluble CD44v are detected in patients 

mainly with inflammatory diseases (Kittl et al., 1997a, 1997b; Scott et al., 2000). 

 In spite of the biological significance of CD44 in tumourigenesis starts to be 

elucidated, there are some aspects that need to be clarified. There are cases showing that 

standard CD44, rather than its variants, enhances tumour progression (Sy et al., 1991; 

Bartolazzi et al., 1994). Conversely, in prostate cancer and cervical neuroendocrine 

carcinoma, CD44 suppresses metastasis (Gao et al., 1997; Kuo et al., 2007). 

Furthermore, if in some cases low levels of CD44 allow the release of the tumour from 
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the primary site and the subsequent metastatic phase, there are studies showing that it 

inhibits prostate cancer progression (Desai et al., 2007; Patrawala et al., 2007). 

Therefore, the internal and external environment of the tumour appears to have an 

influence in the relationship of standard CD44 vs. CD44 variants. Consequently, this 

relationship must be analysed for each case and type of tumour, since heterogeneity in 

CD44-dependency can be detected in tumours derived from the same histological origin 

(Naor et al., 2008). 

 

1.5. RHAMM 

 

RHAMM was the second characterised and cloned HA receptor. It was 

originally isolated in 1982 by Turley, from subconfluent fibroblasts in culture, and later 

cloned by Hardwick and co-workers (1992), while using mesenchymal cells. RHAMM 

is a unique hyaladherin, since it occurs in multiple forms, being expressed both 

intracellularly and at the cell surface. RHAMM is also known by different names, 

including hyaluronan-mediated motility receptor (HMMR), intracellular hyaluronic acid 

binding protein (IHABP) and CD168. 

 

1.5.1.    RHAMM GENE 

 

RHAMM is encoded by a single gene, which in humans is located on 

chromosome 5 location 5q33.2 (Spicer et al., 1995), and on chromosome 11 in mice. It 

was first cloned by Hardwick and co-workers (1992), while using a 3T3-cDNA library 
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from murines. The gene is composed by 18 exons, 9 of which can be alternatively 

spliced (Hardwick et al., 1992; Entwiste et al., 1995; Harrison and Turley, 1999). Thus, 

similarly to CD44, RHAMM can exist in multiple forms, and there are at least six 

described isoforms (Figure 1.11; Harrison and Turley, 1999). 

 

Figure 1.11 – Predicted domain structure of RHAMM in human (h) and mouse (m) [Adapted from 

Harrison and Turley, 1999].  

 

Human and mouse RHAMM share 85% homology, while sharing 100% 

homology in HA binding domains (Pilarski et al., 1999). In humans, four different 

transcripts were identified. These include full length RHAMM, an isoform lacking exon 

4 and other lacking exon 13, and a variant reported in adherent cells lacking both exons 

4 and 13 (Harrison and Turley, 1999; Assmann et al., 1999). While in mice three 

isoforms were identified, including full length RHAMM, a variant lacking 1-5 exons 

and other variant lacking 1-9 exons (Figure 1.11; Harrison and Turley, 1999). 
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1 2 3 4 5 6 8 12 13 14 16 17 187 1511109
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1.5.2.    RHAMM PROTEIN STRUCTURE 

 

RHAMM protein, originally isolated from supernatant medium of non-confluent 

embryonic chick heart fibroblasts (Turley et al., 1992), is a unique hyaladherin occuring 

as multiple forms. Conversly to the others hyaladherins, RHAMM occurs intracellularly 

and at the cell surface. Due its lack of both signal peptide and transmembrane domain, 

RHAMM it is exported from the cell through putative chaperone signalling proteins 

involved in regulating cell cycle and motility. Associations with a GPI anchor or a 

linker protein allows the incorporation of RHAMM onto the cell surface (Hall et al., 

1995; Enwistle et al., 1996; Zhang et al., 1998; Crainie et al., 1999). 

The constitutively expressed and most common RHAMM mRNA transcript 

encodes the largest intracellular RHAMM protein with 85 kDa in humans and 95 kDa in 

murines, and which has been designated as RHAMMv5. Some isoforms are generated 

by alternative splicing of the longest RHAMMv5 mRNA transcript; shorter isoforms 

may be generated either by separate mRNA transcripts, internal start codon usage of the 

v5 transcript, or proteolysis of the v5 protein (Figure 1.11; Harrison and Turley, 1999). 

RHAMM protein has five functional domains Figure 1.12), which have been identified 

by structure/function analysis and are required for RHAMM-mediated cell motility and 

passage through the cell cycle.  
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Figure 1.12 – Predicted secondary and domain structure of RHAMM (Harrison and Turley, 1999). 

 

D1 is composed by exons 1-5, and negatively regulates the ability of RHAMM 

sequence to promote activation of erk1 kinase; D2 is composed by exon 8 and encodes 

an imperfect leucine zipper that is required for RHAMM-mediated cell motility and 

podosome formation; D3, which is exon 9, is involved in the interaction of intracellular 

RHAMM with MEK1; exon 12 gives rise to D4 which can be repeated up to 8 times in 

the murine protein and contributes to the binding of erk1 to intracellular RHAMM; D5, 

composed by exons 16 and 17, encodes hyaluronan binding motifs that are responsible 

for interaction of hyaluronan with cell surface RHAMM and erk1 binding to 

intracellular RHAMM (Harrison and Turley, 1999). 

RHAMM’s secondary structure analysis indicates that the sequence of this 

molecule, from amino acids 163 to carboxyl-terminus, is largely a coiled coil protein 

punctuated by small non-coiled coil stretches often preceding functional domains 

(Figure 1.12; Harrison and Turley, 1999). 

RHAMM undergoes alternative splicing, containing many potential sites for 

post-translational modifications. These include N-glycosylation sites, myristoylation 

sites and notably, multiple serine-threonine phosphorylation sites. Despite being well 
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known that similarly to CD44, RHAMM has potential for alternative splicing and post-

translational modifications, giving rise to numerous tissue- and species-specific protein 

isoforms, it is still unclear whether these modifications might cause effects on 

subcellular localisation and protein interactions (Harrison and Turley, 1999). 

The classical protein export model is dependent on the secretory pathway of the 

Golgi/ endoplasmatic reticulum (ER), accounting for most of the constitutive export 

proteins. However, RHAMM is part of a heterogeneous group of cell-surface proteins 

that do not follow this model, since RHAMM gene does not encode a traditional leader 

sequence to permit it secretion via the traditional Golgi/ER export pathway (Turley et 

al., 2002; Maxwell et al., 2008). As a consequence, RHAMM lacks signal peptides and 

is predicted to be a cytoplasmatic protein, being exported in response to specific stimuli 

(e.g. non-constitutively) by unconventional mechanisms (Maxwell et al., 2008). 

 

1.5.3.    RHAMM LIGANDS 

 

HA is known to be the principal ligand for RHAMM (Leach and Schmidt, 2004; 

Girish and Kemparaju, 2007). Both cell surface and intracellular RHAMM forms are 

required for cell motility and cell cycle progression. Cell surface RHAMM acts as co-

receptor that modify signalling through integral proteins (e.g. PDGF), while 

intracellular RHAMM forms are erk1 binding proteins (Harrison and Turley, 1999). A 

current proposed model for HA-dependent RHAMM mediated signalling pathways, is 

based on the cell surface RHAMM-HA interactions regulation signalling through src 

and ras (Figure 1.13; Harrison and Turley, 1999; Turley et al., 2002). These molecules 

can act as oncogenes, and are involved in the regulation of cytoskeleton assembly, 
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proliferation and motility (Harrison and Turley, 1999). Modification of tyrosine 

phosphorylation of FAK and signalling of growth factors (such as PDGF) are events 

that result from the interaction between cell surface RHAMM with HA, and which are 

mediated by src and ras. As a result, these interactions alter the ability of PDGF receptor 

to activate erk kinase, which is a molecule involved in cell motility. Intracellular 

RHAMM forms are src and erk binding proteins, since they have specific recognition 

sites for these molecules. Cell surface RHAMM is also required for the regulation of 

ras, but at different points along the signalling pathway (Harrison and Turley, 1999; 

Turley et al., 2002; Maxwell et al., 2008). 

 

 

Figure 1.13 – A current model for HA-dependent RHAMM-mediated signalling pathways (Turley et al., 

2002). 
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RHAMM can bind to other ligands, including tubulin, actin, calmodulin 

(Assman et al., 1998; 2001), heparin (Yang et al., 2004), fibronectin (Yang et al., 1993; 

Yang et al., 1994a; Chang et al., 1997) and laminin (Nagy et al., 1995). 

 

1.5.4.    RHAMM FUNCTIONS AND EXPRESSION 

 

RHAMM is distributed into multiple compartments, such as cell surface, 

cytoskeleton, mitochondria, and cell nucleus, depending on alternative splicing of the 

transcript (Turley et al., 2002). This molecule is expressed in several cells and tissues, 

including fibroblasts, smooth muscle cells, endothelial cells, macrophages, immature 

thymocytes, B cell lineages, bone marrow stromal cells, keratinocytes, sperm, 

astrocytes, astrocytomas, central nerve cells, microglial cells, sprouting olfactory nerve 

cells. Moreover, it is also observed in some malignant tumours (Harrison and Turley, 

1999). 

RHAMM has two major isoforms: cell surface and intracellular (usually referred 

to as intracellular HA binding protein [IHAPB]) variants. Cell surface RHAMM is 

implicated in promotion of the cellular motility and invasion. While IHAPB, localised 

in the centrosome, it is involved in the cell cycle control and mitotic spindle formation. 

IHAPB is also associated with actin and microtubule cytoskeletal elements (Turley et 

al., 2002; Girish and Kemparaju, 2007). 

As previously described, RHAMM is part of an unconventionally exported 

protein, performing unexpected extracellular functions that are not defined by protein-

structure rules. This protein is exported in response to specific stimuli, and stimulating 

on the other hand, cell adhesion and/or motility upon export (Maxwell et al., 2008). The 
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RHAMM’s promotion of the cellular motility and invasion is signalled via an 

association with HA-CD44 complexes, promoting the activation of signalling cascades. 

In the presence of HA, RHAMM partners with CD44, activating erk1/2 and resulting in 

the expression of genes, which are required for cell motility and invasion (Figure 1.14; 

Turley et al., 2002; Toole et al., 2004; Maxwell et al., 2008). 

 

 

Figure 1.14 – Extracellular functions of RHAMM. erk1/2 is indicated as phosphorylated (PO4) ERK1,2, 

(Maxwell et al., 2008).  

 

Physiologically, RHAMM plays key roles in the processes of development 

(Boudreau et al., 1991) and wound repair (Savani et al., 1995); while pathologically, is 

involved in restenosis (Savani and Turley, 1995) and tumour progression (Hall and 

Turley, 1995; Masellis-Smith et al., 1996). In most of normal tissues RHAMM mRNA 

and protein expressions are low or undetectable. However,  an upregulated expression 

of RHAMM is seen following both wounding in vivo and in fibroblasts and smooth 

muscle cells in vitro, in response to hypoxia and fibrogenic factors, such as 

TGFβ1(Savani et al., 1995; Mohapara et al., 1996; Tolg et al., 2003; Maxwell et al., 
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2008). In contrast, a genetic delection of RHAMM results in a slow healing of skin 

wounds (Tolg et al., 2006). 

High levels of RHAMM are also seen in culture at low confluence in vitro in the 

presence of growth factors or upon neoplastic transformation both in vitro and in vivo 

(Tolg et al., 2003). Furthermore, RHAMM it is also involved on the progression of 

diseases such as arthritis (Maxwell et al., 2008). 

 

1.5.5.    RHAMM AND CANCER 

 

High levels of RHAMM are seen in tumour cells, and they are also correlated 

with the neoplastic progression of a variety of tumours (Maxwell et al., 2008). In some 

tumours a high expression of RHAMM can be a prognostic of a poor outcome; whereas 

many aggressive human neoplasms are characterised by having high levels of 

RHAMM, including aggressive human fibromatoses (desmoid) tumours, terminally 

differentiated multiple myelomas, breast carcinoma cells, blood tumours, 

adenocarcinomas, small lung carcinoma cells, squamous cell carcinomas, and late stage 

astrocytoma (Turley et al., 1993; Teder et al., 1995; Mohapara et al., 1996; Assman et 

al., 1998; Greiner et al., 2002; Tolg et al., 2003). 

 IHAPB plays key roles in the mitotic-spindle stability, which is important for the 

regulation of the mitosis (Adamia et al., 2005a; Maxwell et al., 2008). It has been 

suggested that RHAMM-centrosome-mitotic-spindle associations promotes gene 

instability, having implications on cell transformation and tumour progression (Maxwell 

et al., 2008). 
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There is some evidence of RHAMM and CD44 interplaying, with cell surface 

RHAMM having a role in the activation of CD44-dependent signalling. It has been 

suggested that this partnership can confer malignant potential in breast cancer, by 

activating the extracellular HA binding (Maxwell et al., 2008). Moreover, this 

partnership was also seen in invasive breast cancer cell lines, where extracellular 

RHAMM-CD44 complexes coordinate HA-dependent erk1/2-mediated cell 

transformation (Hamilton et al., 2007). In advanced prostate cancer RHAMM seems to 

compensate the loss of CD44. Thus, partnering with other integral HA receptors, 

RHAMM can maintain the activation of HA-signalling pathways (Maxwell et al., 

2008). 

Some studies have shown that suppression of normal HA-RHAMM interactions 

and genetic delection of RHAMM inhibit the cell locomotion and proliferation, leading 

to an inhibition and decrease of tumour growth (Hall et al., 1995; Mohapara  et al., 

1996; Tolg et al., 2003). Moreover, mutations of key basic residues in the C-terminus of 

RHAMM, lead to a disruption in HA binding, which in turn inhibits the transforming 

capacity of RHAMM and ras transformation (Maxwell et al., 2008). Conversly, 

RHAMM-transfected cells are able to metastasize (Hall et al., 1995). 

RHAMM appears to be a promising target for immunotherapeutic approaches 

and have shown some potentialities in clinical use. Currently, a vaccine for acute 

myeloid leukaemia and multiple myeloma using RHAMM is being carried out in phase 

I of clinical trials (Schmitt et al., 2007). 
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1.6. EXPLOITATION OF HA AT THE BIO-INTERFACE 

 

Surfaces play a key role in biology and medicine, with most biological reactions 

occurring at surfaces and interfaces. Interfaces of biological importance include cell 

surface/biomaterial, ECM/biomolecule and ECM/cell (Castner and Ratner, 2002). 

Therefore, the development of biomaterials for tissue engineering applications has been 

focused on the design of biomimetic materials, which are an attempt to make the 

materials able to interact with surrounding tissues by biomolecular recognition, eliciting 

specific cell responses (Shin et al., 2003). The introduction of surface methods of 

biological interest has had a considerable impact on molecular and cellular biology and 

medicine (Castner and Ratner, 2002). Surfaces have been used in medical implants for 

tissue regeneration and drug delivery systems. Furthermore, the structure and function 

of many biological receptors have been determined along with their mechanism of cell 

binding activation (Castner and Ratner, 2002; Shin et al., 2003). In the last years, the 

investigation of the processes relating biointerfaces and cancer biology has been 

increasing (Peramo et al., 2008). 

Body tissue is composed of cells and the surrounding environment, which 

includes the extracellular matrix (ECM) and biosignalling molecules. However, 

sometimes tissue repairing cannot be achieved only by the single or combinatory effect 

of the use of ECM components and biosignalling molecules in an appropriate way. 

Therefore, it is necessary to biomedically contrive the way to combine, what can be 

achieved by biomaterial technology (Tabata, 2009). Biomaterial technology plays an 

important role in the tissue engineering therapeutics strategy, providing cells with a 

local environment that regulates cellular proliferation, differentiation, angiogenesis and 
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apoptosis (Tabata, 2009; Tilkorn et al., 2010). Biomolecular recognition of materials by 

cells has been achieved by surface with bioactive molecules, including ECM 

components that can incur specific interactions with cell receptors (Shin et al., 2003). 

Tethering biomolecules onto solid substrates can provide the construction of interesting 

models that can be used in biological applications, including controlled cellular 

adhesion and growth, biosensors and immunoassays (Peramo et al., 2008). 

Tissue engineering is a multidisciplinary field and applies knowledge of clinical 

and life sciences with engineering. This field has been attracting many scientists and 

clinicians with a hope to treat patients in a minimal invasive and less painful way. It 

offers unique opportunities to investigate aspects of the structure-function relationship 

and to predict the clinical outcome of the specific medical treatment. This can be 

achieved by the use of biomimetic materials, which are designed for eliciting specific 

cellular responses and biomolecular recognition (Shin et al., 2003). 

 

1.6.1.    TISSUE ENGINEERING IN CANCER RESEARCH 

 

Tissue engineering and cancer research once regarded as in opposite fields 

concerning their proclaimed goals, start now suggesting that the cross-disciplinary 

research will benefit both fields (Tilkorn et al., 2010). Technology platforms originally 

developed for tissue engineering applications produce valuable in vitro and/or in vivo 

models for cancer research (Figure 1.15). These models mimic tissue organisation and 

function allowing the understanding of cell/tissue function under normal and 

pathological situations, and unleashing the mechanisms of morphogenesis, 

differentiation and cancer. In addition, these models have started now to be used in the 



CHAPTER 1                                                                                                                                                                 INTRODUCTION 

 

71 

 

investigation of angiogenesis, apoptosis and factors in tumourigenesis, in order to 

establish ways of targeting angiogenesis and inducing apoptosis in tumours (Hutmacher 

et al., 2010). These models have been established by the use of well-defined synthetic 

hydrogels or scaffold-based tissue engineered constructs that generate tightly controlled 

microenvironments typical from in vivo environment (Hutmacher et al., 2010). 

Naturally-derived matrices used in cancer research include collagen and laminin-rich 

gels (Kleinman et al., 1986; Benton et al., 2009; Kleimen and Martin, 2005). Kleiman 

and co-workers (1986) firstly demonstrated the great value of reconstituted basement 

membrane as a culture substract (Kleinman et al., 1986).  This basement membrane was 

mainly constituted by type IV collagen, laminin and heparan sulphate proteoglycan, and 

allowed the development of new products, including MatrigelTM (which consists of 

mainly type IV collagen and laminin). Later on, alternative systems, such as type I 

collagen gels, have also been used in cancer models (Jedeszco et al., 2008; Moss et al., 

2009; Sabeh et al., 2009; Wozniak et al., 2010). Although these gels can be easily 

produced, their structure can be affected by minor changes in several factors, including 

their source, crosslinking chemistry, temperature, pH, ionic strength and ion 

stoichiometry, and monomer concentration, what can lead to alterations in the properties 

of the resultant matrices and variations of results obtained from different work groups 

(Sabeh et al., 2009). 
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Figure 1.15 – Schematic illustration of how technology platforms originally developed for tissue 

engineering applications produce valuable models that mimic tissue organisation and function by 

replicating physiological and pathological conditions of cancer as close as possible [Adapted from 

Hutmacher et al., 2010]. 
 

In the last years, tissue engineering has been focusing in the development of 

alternatives to naturally derived matrices, and therefore trying to overcome their 

limitations. As a result, synthetic hydrogel-like materials and scaffolds that biomimetic 

ECM have been developed. These synthetic materials provide the possibility of 

controlling characteristics, including as matrix morphology and porosity, gel formation 

and cross-linking dynamics, degradation rates and mechanical properties (Hutmacher et 

al., 2010). Currently, there are several alternative gel systems, including those based in 

polyethylene glycol (PEG; Schneider et al., 2006), RGD-peptides coupled to alginate 

(Fischbach et al., 2009), poly(lactide-co-gylcolide acid) (PLGA; Fischbach et al., 

2007), and HA (Liu et al., 2007; David et al., 2008; Choi et al., 2010 ). 

 



CHAPTER 1                                                                                                                                                                 INTRODUCTION 

 

73 

 

1.6.2.    HYALURONIC ACID STRUCTURED SURFACES 

 

Hyaluronic acid is of great biological interest, and due to its physiochemical 

characteristics it is an advantageous polysaccharide for biomaterial fabrication and 

applications. It is naturally derived, enzymatically degradable and non-immunogenic, 

and in addition can be easily and controllably produced in large quantities through 

microbial fermentation, enabling the scale-up of HA-derived products and avoiding the 

risk of animal-derived pathogens (Leach and Schimidt, 2004). Therefore, HA appears to 

be a good candidate for incorporation in biological surfaces aimed to favour cell 

adhesion, tissue repair, or drug delivery (Picart et al., 2001). 

 Several approaches have been taken aiming to construct HA-coated surfaces. 

Most of them rely on the self-assembled methodology, while using crosslinked HA. 

Picart and co-workers (2001) fabricated films based on poly(L-lysine) and HA 

(PLL/HA), aiming to investigate the interaction of the surfaces with chondrocytes and 

study the interaction of HA with CD44. PLL/HA films were also investigated in other 

works aiming to study the interaction of the surfaces with chondrosomas (Richert et al., 

2004a), hepatocytes (Khademhosseini et al., 2004), fibroblasts (Khademhosseini et al., 

2004, Schneider et al., 2007a), smooth muscle cells (Richert et al., 2004c) and 

myoblasts (Ken et al., 2008; Váskez et al., 2009). Surfaces based on the alternate 

deposition of chitosan (CHI) and HA were also investigated, since the low cost of CHI 

when compared to PLL makes it a better candidate for industrial applications (Richert et 

al., 2004b). Scheneider and co-workers (2007) also investigated CHI/HA films for drug 

diffusion (Schneider et al., 2007b). Porous collagen-HA matrix was produced by Park 

and co-workers (2003) to be used as a scaffold for dermal tissue regeneration (Park et 
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al., 2003). An investigation of the size-specific effects of HA on aortic endothelial cells 

was carried out using surfaces coated with a wide range of HA fragment sizes (Ibrahim 

et al., 2007). David and co-workers (2008) produced an HA hydrogel used for the 

evaluation of anticancer drug sensitivity, while using lung cancer cell lines. These 

authors showed that the crosslinked HA matrix was a good model for the evaluation of 

the efficiency of cytotoxic drugs on the growth and invasion of tumour cells (David et 

al., 2008). 

 

1.7. AIMS AND OBJECTIVES 

 

The biological functions exhibited by HA are known to be dependent on the 

polymer molecular weight (MW), and mediated through interactions with its main cell 

receptors: CD44 and RHAMM. However, the direct effect between the HA molecular 

weight and the expression of CD44 and RHAMM remains unclear. The overall aim of 

this project is to investigate whether different HA polymer MW alters the proliferation 

of tumour-derived cell lines, and whether different sizes of HA have an effect on the 

expression of CD44 and RHAMM, and on the alternative splicing patterns commonly 

seen for these cell receptors.  In order to perform this investigation, this project also 

aims to immobilise HA polymer to glass coverslips, designed to support cell adhesion 

and therefore allowing the permanent contact of the cells with the substrate, rather than 

periodic contact with exogenous HA of media supplementation. 

The initial objective of this work is the development of a protocol to construct a 

variety of novel HA structured surfaces to support adhesion of tumour-derived cell 

lines. In order to determine size-specific responses of tumour cells of defined fragment 
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MW, surfaces coated with a range of polymers of different MWs will be constructed 

and analysed using a toolbox of in situ characterisation techniques. After the 

establishment of well-defined in vitro model systems, the effect that HA has on cell 

proliferation and apoptosis will be evaluated. Once cell biology studies have been 

assessed, the study will move to the last objective of the project, the investigation of the 

interaction of HA with CD44 and RHAMM cell receptors. This investigation will be 

carried out at both transcriptional and translational levels. Transcription studies include 

the quantification of the CD44 and RHAMM transcript levels, and to look at the 

alternative splicing patterns commonly seen for these cell receptors. Transcriptional 

studies will be carried out in order to investigate the immunolocalisation of CD44 and 

RHAMM proteins. These objectives will each be achieved through a defined chapter of 

work previously described in section 1.1. 

 

 

 

 

 

 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 
“Impossible is just a big word thrown around by small men who find it easier to live the world they've 
been given than to explore the power they have to change it. Impossible is not a fact. It's an opinion. 
Impossible is not a declaration. It's a dare. Impossible is potential. Impossible is temporary. Impossible is 
nothing.” – Muhammed Al 
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CHAPTER 2 
 

2. CONSTRUCTION OF A VARIETY OF NOVEL 

STRUCTURED HYALURONIC ACID SURFACES 
 

2.1. INTRODUCTION 

 

The present work deals with the construction of hyaluronic acid (HA)-coated 

surfaces designed to support cell adhesion. Immobilised components on a 2D substrat 

may more closely stimulate cell responses within controlled surfaces, due to intimate 

cell contact with the substract-bound HA, rather than periodic contact with exogenous 

HA of media supplementation (Ibrahim et al., 2007). Due to its physiochemical 

characteristics, HA is an advantageous polysaccharide for biomaterial fabrication and 

applications. It is naturally derived, enzymatically degradable and non-immunogenic, 

and in addition can be easily and controllably produced in large quantities through 

microbial fermentation, enabling the scale-up of HA-derived products and avoiding the 

risk of animal-derived pathogens (Leach and Schimidt, 2004).  

 Soluble HA has been used in several clinical applications, such as 

ophthalmology (Miller and Stegmann, 1983; Laurent et al., 1995; Menzel and Farr, 

1998; Lapckik et al., 1998), cartilage and wound repair (Chen and Abatengelo, 1999), 

wound regenerative healing (Foshi et al., 1990; King et al., 1991; David-Raoudi et al., 

2008), viscosupplementation for osteoarthritis (Laurent and Fraser, 1992; Peyron, 1993; 

Pozo et al., 1997), anti-adhesion applications (Barnhart et al., 1979; Abatangelo et al., 
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1982; Koochekpour et al., 1995; Evanko et al., 2005), drug delivery systems (Liao et 

al., 2005), and binding onto tumour cells and metastases (Toole and Hascall, 2002). 

However, uncrosslinked soluble HA presents some characteristics that limit its use in 

many biomedical applications. HA can be chemically modified or crosslinked in order 

to improve its poor mechanical properties and rapid degradation in an aqueous 

environment (Segura et al., 2005; Collins and Birkinshaw, 2007). Crosslinking is the 

most common modification of HA to form a hydrogel, while attempting to maintain its 

biocompatibility and biological activity (Leach and Schimidt, 2004; Collins and 

Birkinshaw, 2008). The functional groups which are mainly responsible for the 

crosslinking of HA molecules are hydroxyl and carboxyl groups, with hydroxyl groups 

crosslinked via an ether linkage and carboxyl groups via an ester linkage. If desired, HA 

may be chemically modified prior to crosslinking to form other chemically reactive 

groups. The structural integrity of HA hydrogels is determined by the chemical bonds 

and by physical interactions formed during crosslinking, and such gels are processed 

easily, are generally biodegradable and can be delivered in a minimally invasive manner 

(Collins and Birkinshaw, 2008). 

 Many strategies exist for crosslinking HA (Figure 2.1; Leach and Schmidt, 

2004; Collins and Birkinshaw, 2008), of which carbodiimide-mediated crosslinking was 

chosen for the present investigation, for its simplicity to induce intermolecular 

crosslinks on HA, and in contrast with conventional crosslinking agents does not 

chemically bind to HA polysaccharide molecules (Tomihata and Ikada, 1997; Wrobel et 

al., 2002). EDC modifies the side groups of polysaccharides to make them reactive with 

other side groups, including ester linkages between the carboxyl groups of HA and the 

hydroxyl groups of HA (Richert et al., 2004). The carbodiimide-mediated crosslinking 
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is also often used for immobilisation of different biological molecules on solid supports, 

where the reaction of activated carboxylic sites with primary amino groups in the 

presence of water soluble carbodiimide (EDC) and of N-hydroxysuccinimide takes 

place (NHS; Schneider et al., 2007). EDC catalyses the formation of amide bonds 

between carboxylic acids and amines. Briefly, EDC reacts first with a carboxyl group, 

forming an amine-reactive O-acylisourea intermediate that quickly reacts with an amino 

group to form an amide bond and releasing an isourea by-product in the process (Staros 

et al., 1986; Schneider et al., 2007; NHS instructions). The intermediate is unstable in 

aqueous solutions. Thus, the carboxyl groups of the component HA disaccharide 

monomers are activated with EDC into the chemically reactive and unstable O-

acylisourea. This complex can either react with a primary amine to form stable amide 

bonds or undergo hydrolysis in the presence of water to reform the carboxyl (Figure 

2.1; Schneider et al., 2007; NHS instructions).  

 

 

Figure 2.1 – The repeating disaccharide unit of hyaluronic acid. 

 

To prevent the hydrolysis of O-acylisourea, NHS is added to the solution. NHS 

combined with O-acylisourea produces a more stable amine reactive NHS-ester 

intermediate, increasing the efficiency of EDC-mediated coupling reactions, which 
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consequently gives a greater reaction yield (Figure 2.2; Staros et al., 1986; Schneider et 

al., 2007; NHS instructions). 

 
Figure 2.2 – HA crosslinking reaction by carbodiimide-mediated crosslinking using EDC as crosslinker. 

EDC reacts with a carboxylic group (1). The activated complex is conversed into an active ester with 

NHS (2). The activated ester reacts with a primary amine to form an amide bound (3). The unreacted sites 

are hydrolysed giving a regeneration of the carboxyls (4) [Adapted from Richert et al., 2004]. 

  

 The optimisation of the construction process for HA-coated surfaces represents 

another important stage in their design. It is an overall complex experimental approach, 

dependent upon multiple parameters. In the field of biomaterials, controlling the surface 

properties of the material is of crucial importance, as these properties can influence cell 

behavior, including recolonisation, adhesion, migration, and differentiation. 

Cell/material interactions are influenced by a large number of parameters, which include 

surface chemistry and topography, and mechanics of the substrate (Wong et al., 2004; 

Ren et al., 2008). Matrix stiffness was found to have an effect on cell morphology, 

adhesion, proliferation, and migration; and several studies have demonstrated the 

influence of the substrate rigidity on the cell adhesion and movement (Ren et al., 2008). 
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It was also found that cells show different morphologies and motility rates when 

cultured on substrates of identical chemical properties but different rigidities (Pelham 

and Wang, 1997).  

This chapter describes the protocol development and optimisation of the 

construction of 2D structured hyaluronic acid surfaces designed to support cell 

adhesion. These are well defined HA surfaces, coated with a range of different sized-

polymers. In addition, in order to investigate the influence of crosslinker on the 

concentration of the surfaces, HA films of different polymer chain lengths were 

crosslinked to various degrees. 

The work presented in this chapter can be divided into three main parts: 

- Experimental design and optimisation of the construction of HA-coated 

surfaces; 

- Characterisation of the surfaces; 

- Choice of the surfaces to support cell adhesion. 

 

In Figure 2.3 is summarised the steps involved in the construction and 

characterisation of HA-coated surfaces. 
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Figure 2.3 – Summary of the steps involved in the construction and characterisation of HA structured 

surfaces. 
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2.2. MATERIAL AND METHODS 

 

2.2.1.    PREPARATION OF HA FILMS ON GLASS COVERSLIPS 

 

In the present work hyaluronan sodium salt from microbial (Streptococcus 

pyogenes) fermentation process (Lifecore, USA) was used. Hyaluronan (HA) was 

anchored on glass coverslips (19 mm diameter – nº0 thickness, Raimond A Lamb 

Limited, UK) through aminosilane monolayers. Glass coverslips were first immersed in 

10% NaOH overnight. The cleaning procedure was then followed by four washing steps 

of 5 minutes each to hydrate the surfaces: first with RO water, followed by 0.2 M HCl, 

RO water, and the last step performed in absolute ethanol. The coverslips were dried 

under nitrogen flux and then immersed in an absolute ethanol solution containing 1 

µl/ml AHAPTMS (N-(6-aminohexyl)-aminopropyltrimethoxysilane) 95% (Fluorochem 

Ltd, UK) overnight. This was followed by two washing steps with absolute ethanol and 

RO water as previously described, and drying with a nitrogen flux. The dried coverslips 

were stored for later use at room temperature. 

Four different HA-films were prepared: low-molecular-size – HA4 (4.3 kDa), 

medium-molecular-size – HA234 (234 kDa), high-molecular-size – HA2590 (2590 kDa), 

and a mix of all -polymers in an equal ratio – HAmix (Appendix XIX). Each HA 

solution was prepared at 2 mg/ml in 10 mM HEPES buffer (pH 7.0; Fisher) and gently 

stirred overnight. All HA solutions were sterilised with a syringe filter (0.2 µm, 

Nalgene, Thermo Fisher Scientific Inc.). EDC (1-ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride; Thermo scientific) and NHS (N-
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hydroxysuccinimide; Pierce) were added to the HA solution previously described and 

reacted for 5 minutes at room temperature (23ºC). Three different crosslinker 

concentrations were tested (Table 2.1). 

 

Table 2.1 – EDC and NHS concentrations used for crosslinking reaction. 

 EDC NHS 

C1 0.2 M 0.05 M 

C2 0.4 M 0.10 M 

C3 0.6 M 0.15 M 

 

To create a thin and flat film, 70 µl of the gelation solution were dropped onto a 

square glass slide (22 x 22 mm, Thermo Scientific) previously subjected to UV 

radiation for sterilisation  and covered with an aminosilanised glass coverslip. The HA 

attachment was carried out at room temperature for 1 hour in case of HA2590 surfaces 

and for 4 hours for the rest of the surfaces. Then the entire coverslip assembly was 

placed in 0.15 M NaCl solution pH 6.0, and they were carefully separated in parallel 

directions. The HA coated-coverslips were first washed with 0.15 M NaCl solution pH 

6.0 for 30 minutes, followed by a RO water washing step for 10 minutes. Coverslips 

were dried under nitrogen flux and stored at 4ºC until use. 

Figure 2.4 shows a schematic representation of HA-coating protocol. 
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Figure 2.4 – Scheme summarising the steps involved in the protocol for coating HA to glass 

coverslips. 

 

2.2.1.a.  Optimisation of the construction of HA structured surfaces 

 

For the optimisation of the construction of HA-coated surfaces, preliminary 

experiments were carried out, in order to facilitate an appropriate selection of the 

experimental ranges of investigation: 

- Sterilisation of HA solutions 

- Reaction temperature 

- Reaction time 

- Volume of HA solution drop in each coverslip 

 

In order to reach different matrix stiffness, different crosslinker concentrations 

were tested. The chosen crosslinker concentrations were based on a study performed by 

Ladam and co-workers (2003), and according to EDC solubility in water (> 200 g/l). 
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2.2.2. CONTACT ANGLE 

 

 To estimate the quality of stable monolayers and multilayer films, wetting 

measurements can be used. One of the most commonly used techniques is contact angle, 

which is a quantitative technique that measures the wetting of solid surfaces by a liquid. 

It can be used to gauge the surface tension between a liquid and a surface, thus shedding 

light on a surface’s hydrophobicity. To verify the modification of the surface, static 

contact angle measurements were performed using a KSV cam 100 (KSV Instruments 

Ltd) with RO water. 

 

2.2.3. ATOMIC FORCE MICROSCOPY* 

 

 Atomic force microscopy (AFM) is a scanned probe technique, which reveals 

the surface topography on a very fine scale. In the present work AFM was performed in 

glass, aminosilane and HA-tethered coverslips in order to determine the roughness and 

gauge the uniformity of the coatings. A PicoScan SPM (Molecular Imaging, USA) was 

used, and samples were imaged under non-contact mode, and analysed with Gwyddion 

and ImageJ software. Three samples were analysed for each HA-coated surface and one 

sample for glass and aminosilane surfaces. Five points per sample were analysed for the 

calculation of the roughness.  

 

 

*Atomic force microscopy image capture was undertaken by Dr. Steven A. Fowler, with data analysis and 
interpretation carried out by the author of the present thesis. 
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2.2.4. CONFOCAL MICROSCOPY 

 

The detection of surface bound-HA fragments was carried out by 

immunofluorescence. Briefly, dried coverslips were immersed into PBS for 5 minutes. 

This was followed by incubation with primary antibody solution reacting with HA-

tethered surfaces for 1 hour at room temperature. The primary antibody was HABP 

polyclonal sheep IgG (AbD Serotec, UK) diluted 1:100 in 1% goat serum in PBS, and 

the excess was removed by rising the coverslips with PBS. Then coverslips were 

immersed in a secondary antibody solution and incubated for 30 minutes at room 

temperature. Secondary antibody was donkey anti-sheep IgG-biotin conjugate (Sigma, 

UK) diluted 1:200 in 1% goat serum in PBS, and the excess was removed by rising the 

coverslips with PBS. Coverslips were then immersed in strepavidin-alexa fluor 555 

conjugate diluted to 1 µg/ml in PBS, and incubated at room temperature in the dark for 

20 minutes, followed by a rinse step in PBS. Coverslips were mounted in a slide using 

glycerol fixer (glycergel, DAKO, UK). For the control, the same protocol was followed 

except the incubation with the primary antibody. Slides were imaged using an 

Axioskop2plus LSM 510 confocal scanning fluorescence microscope (Zeiss, Germany). 

 

2.2.5. QUARTZ CRYSTAL MICROBALANCE 

 

Quartz crystal microbalance (QCM) is a technique for the assessment of a mass per unit 

area, by the measuring the change in frequency of a quartz crystal resonator, and thus 

giving the rate of deposition in thin film deposition. QCM experiments were carried out 
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using 10 MHz AT-cut quartz crystals (16 mm diameter, International Crystals 

Manufacturing co, Inc, USA) with gold electrodes (6 mm diameter) on both sides. Prior 

to the experiments the electrode surfaces were cleaned for 5 minutes using oxygen 

plasma at 40 W in a plasma chamber (Emitech, UK) and rinsed in absolute ethanol for 5 

minutes. The electrodes were dried with nitrogen flux and immersed in a 5 mM 2-

mercapto-ethylamine (Sigma, UK) solution in absolute ethanol overnight. This was 

followed by two washing steps with absolute ethanol and RO water for 5 minutes, and 

drying with nitrogen flux. HA attachment was performed as previously described for the 

preparation of HA films on glass coverslips. The frequency variations of the quartz 

crystals were monitored using a Techno Biochip frequency counter model Libra V3.0.  

 Theoretical backgrounds for using quartzes as mass sensors take origin in 

Sauerbrey equation (Equation 2.1), which takes into account the frequency shift due to 

mass deposition on quartz surfaces: 

 

𝛥𝑓 =  −2𝑛𝑓0
2  

𝛥𝑚
𝐴�𝜌𝑞µ𝑞

                                                                                 (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟐.𝟏) 

 

Where Δf corresponds to the frequency shift, n is the overtone number, f0 is the 

unloaded quartz frequency, A is the piezoelectric active area and Δm is the mass 

deposited/adsorpted. ρq and μq are respectively the density (2.648 g/cm3) and shear 

modulus (2.947 1011 g/cm s2 ) the density and and shear modulus of the quartz.  

According to Sauerbrey equation, for a 10 MHz crystal, a Δf of 1 Hz 

corresponds to a Δm/A of 4.41ng/cm2 (Appendix XX). 
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2.2.6.    STATISTICAL ANALYSIS 

 

Analysis of variance (ANOVA) was performed using Tukeys’ multiple 

comparison test. A probability value of < 0.05 was considered statistically significant. 

Data are reported as mean ± 1 standard deviation (s.d.) of the mean. 

 

2.3. RESULTS 

 

2.3.1.    CONSTRUCTION OF HA-COATED SURFACES 

 

This section of work had deal with the establishment of a protocol to construct 

2D HA-coated surfaces to support cell adhesion. For this purpose, an investigation of 

immobilising HA on glass surfaces was carried out. 

The protocol for coating surfaces with HA can be divided into two parts: firstly, 

the aminosilylation of a glass coverslip and secondly, the covalent immobilisation of 

hyaluronic acid. The aminosilylation of a glass coverslip aims to attach a silane 

coupling agent to the glass, which in turn will allow the attachment of HA to the 

surface. The aminosilane used in this investigation was AHAPTMS (N-(6-aminohexyl)-

aminopropyltrimethoxysilane). The formation of monolayers via the self assembly of 

silane compounds to activated surfaces is well known (Matinlinna et al., 2004).  For 

AHAPTMS (C12H30N2O3Si), this self-assembly occurs by a condensation reaction 

between the hydrolysed methoxylsilane and the activated surface’s hydroxyl groups 
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(Figure 2.5). This resulting in AHAPTMS’s terminal amino group being exposed at the 

surface and changing the surface functionality (Fowler, 2009).  

 
 

 
 

Figure 2.5 – Reaction of AHAPTMS with glass surface [Adapted from Thermo Fisher Scientific]. 

 

The amino functionality provided by the AHAPTMS monolayer allows the 

covalent binding of HA via an amino-carboxyl coupling (Matinlinna et al., 2004; 

Fowler, 2009). Briefly, the conjugation of HA with AHAPTMS involves the formation 

of an amidic bond between the carboxylate groups of the polysaccharide and the 

primary amino of the silane (Figure 2.6; Pasqui et al., 2007). 

 

Figure 2.6 – Final product between the reaction of AHAPTMS with hyaluronic acid [Adapted from 

Pasqui et al., 2007]. 
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In this work carbodiimide-mediated crosslinking was the method of choice for 

crosslinking hyaluronic acid (Figure 2.3). Carbodiimide-mediated crosslinking is 

commonly used for reactions between carboxylic acids and amines. EDC is used as 

carbodiimide agent and the addition of NHS increases the efficiency of EDC-mediated 

coupling reactions and thus promoting a greater desired yield (Staros et al., 1986; 

Schneider et al., 2007; NHS instructions). 

For the optimisation of this protocol, preliminary experiments were carried out. 

Regarding the sterilisation of the HA solutions, autoclaving and the use of a 0.2 µm 

filter syringe were compared. It was observed upon autoclaving that HA solutions lost 

their viscosity properties. Therefore, the sterilisation method relied on filtration. The 

incubation time, at which the hyaluronic acid reacts with the aminosilane surface, is 

dependent on the temperature at which this occurs. Several preliminary experiments 

were carried out in order optimise the tethering of HA molecules to aminosilane 

surfaces. Incubation was first carried out at 4ºC for 48h, then at room temperature 

(23ºC) for 12h, and later still reacting at room temperature but decreasing the time for 

4h in case of HA4, HA234 and HAmix surfaces and 1h for HA2590 surfaces. This choice 

was based on the crosslinking properties of hyaluronic acid. It was observed that for 

HA2590, and depending on the crosslinker concentration, this polymer starts to be 

crosslinked in less than 1h, quickly becoming gelatinous. The rest of polymers required 

longer incubation periods to get crosslinked. Preliminary experiments were also carried 

out in the presence and absence of crosslinker. From this results, it was observed that 

gelatinisation of HA was due the crosslinking, as in the absence of crosslinker 

gelatinisation did not occur. 
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 Table 2.2 summarises the parameters optimised for the construction of HA-

coated surfaces. 

 

Table 2.2– Factors involved on the construction and optimisation of HA-coated surfaces. 

HA solutions 

sterilisation 

Reaction 

temperature 
Reaction time 

HA solution 

concentration 

Crosslinker 

concentration 

Volume of HA 

crosslinked 

solution 

    EDC NHS  

0.2 µm RT (23ºC) 1h (HA2590) 2 mg/ml 0.2 M 0.05 M 70 µl 

syringe filter  4h (HA4, HA234  0.4 M 0.10 M  

  and HAmix)  0.6 M 0.15 M  

 

2.3.2.    SURFACE CHARACTERISATION 

 

2.3.2.a.  Surface wettability 

 

Changes in the surface wettability were assessed using static contact angle 

measurements at each stage of the HA immobilisation: from glass, through activated glass, 

aminosilane, and HA-coated coverslips. To verify the modification of the surface, three 

samples were used for each step, and contact angle was performed at several points on 

each surface (Figure 2.7; Appendix II). The contact angle measurement was taken by 

placing a drop of pure water onto each surface. The contact angle can be defined as the 

angle formed between the solid/liquid interface and the tangent at the liquid/vapour 

interface where the three phase boundaries intersect. This angle provides information 

about the relationship between the cohesive forces of the liquid and the adhesive forces 
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between the surface and the liquid. Therefore, a relationship can be directly related to 

the hydrophobicity of solid surface: when the angle tends towards 0º (the adhesive 

forces are greater than the cohesive forces) then the surface is hydrophilic and if the 

angle is greater than 90º the surface is hydrophobic.  

 
Figure 2.7  – Surfaces wettability measurements assessed by contact angle. Data are reported as means ± 

1 s.d. Statistical comparisons were based on ANOVA analysis and Tukey’s test for pairwise comparisons 

(p<0.05 was considered significant; n=3). The conditions linked by (*) are statistically similar.  

 

The surface wettability of the glass coverslips was 64.78º, whereas the contact 

angle formed on the activated coverslips was 22.16º. The activated glass coverslips 

were treated with AHAPTMS, and the contact angle of the surface increased from 

21.86º to 35.41º after silination (Appendix II). This means that the surface became less 

hydrophilic. The immobilisation of HA increased the hydrophilicity of the surfaces, 

except for the HA4, which an increase of the wettability can be seen. HA4-coated 

coverslips appeared to be the less hydrophilic comparatively to the rest of HA-coated 

surfaces. From HA4 surfaces it can be seen that only C2 formed a contact angle 

significantly different from C3, the other surfaces being similar; with C2 being the most 
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hydrophilic surface of the HA4 subset. The contact angle values for HA234 C1 and C2 

were found to be significantly similar, with C3 being the less hydrophilic surface of this 

subset. HA2590-coated coverslips were found to be the most hydrophilic subset of 

surfaces, with only C2 and C3 not having contact angle values significantly similar. The 

contact angle formed on HAmix C2 and C3-coated coverslips was also found to be 

significantly similar. HA234 and HAmix-coated surfaces were found to have similar 

contact angle values. 

 

2.3.2.b.  Surface topography 

 

Surface topography was assessed by AFM demonstrating the presence of 

tethered aminosilane and HA molecules (Figure 2.8). The increase in roughness (Ra) of 

aminosilane-tethered surface (236.0 ± 32.86 pm) in comparison to untreated glass (56.0 

± 5.48 pm) confirmed the successful immobilisation of the aminosilane. There is a 

direct relationship between film stiffness and film roughness: as the crosslinker 

concentration increases, so does the film roughness. The roughness of the HA-coated 

surfaces showed an inverse correlation to molecular weight of HA fragments. In 

accordance, HA2590 appears smoother than HA4 and HA234. HAmix presents the smoother 

surface overall (Figure 2.8). 

From the comparison of each HA molecular weight subset it was found that C3-

coated surfaces were significantly rougher than the correspondent C1 surface, with no 

topographical significant difference seen between C1 and C2, and C2 and C3 surfaces. 

The only exception was observed for HAmix surfaces, were C3 was also found to be 

significantly rougher than C2 surface. Therefore, a greater increase in crosslinker 
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concentration can lead to significant difference in roughness, and hence topography 

changes. The MW was also found to significantly change the topography of the 

surfaces. Regarding C1 subset, was observed that HA4 presents a significant increased 

roughness than HA2590 and HAmix; with HA234 also presenting a rougher surface 

comparatively to HAmix. The same results found for C1 were also observed for C2 

surfaces subset. Regarding C3 surface subset, only HA2590-coated surface was found to 

present a significantly different topography comparatively to the rest of the surfaces, 

presenting the smoothest surface (Figure 2.8, Appendix XVIII). 
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Figure 2.8 – AFM topographies of glass, aminosilane and HA-coated surfaces. Image range 1µm x 1µm 

x 15nm. Ra refers to roughness of the surface, representing the arithmetic average of the absolut values. 

 

2.3.3.c.  Surface homogeneity 
 

The presence of HA tethered to amine-modified surfaces was confirmed by 

immunofluorescent using an anti-HA antibody and detected by fluorescence labelling 

with strepavidin-Alexa Fluor 555 bioconjugated.  HA4 C3 surface not treated with anti-
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HA antibody was used as negative control, and did not exhibit non-specific binding 

(Figure 2.9).  

 

 

Figure 2.9 – Immunofluorescence (IF) detection of surface-immobilised HA, using anti-HA antibody, 

and confirmed by fluorescence labelling with strepavidin-Alexa Fluor 555 bioconjugated. For the control 

a HA4 C3 surface was not treated with anti-HA antibody, and not exhibiting non-specific binding. Scale 

bar refers to 20 µm. 

 

From the figure above it can be seen that there appears to be a direct relationship 

between the homogeneity of the surfaces and film stiffness. Surfaces coated with highly 
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crosslinked films (C3) appear to be the most homogeneous, showing fewer gaps 

between the polymer fragments. HA2590 and HAmix surfaces appeared somewhat less 

homogeneous with some gaps between areas of intense fluorescence, while HA4 and 

HA234 surfaces fluoresced more uniformly (Figure 2.9). 

 

2.3.3.d.  HA density 

 

Figure 2.10 shows the frequency shift values for each HA-coated surface 

obtained from QCM measurements. These values were used to calculate the respective 

densities of HA and the total amount of HA in each surface (Table 2.3). QCM was not a 

valid method to estimate the densities of HA of C1 and C2-coated surfaces, as it was not 

possible to obtain the respective frequency shifts.  

 

 
Figure 2.10 – QCM frequency shift vs HA-coated surface. Data are reported as means ± 1 s.d (n=3). 

 

QCM showed that HA4 C3 surface presents a considerably higher polymer 

density than the rest of the surfaces. HA234 C3 and HA2590 C3 present similar densities, 
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with a small amount of HA being tethered onto these surfaces. HAmix C3 surface 

presents a relatively small increase of tethered polymer in comparison to HA234 and 

HA2590 surfaces (Table 2.3). 

 

Table 2.3– HA densities and total amount of HA per surface. 

Surface Density of HA (µg/cm2) 
Total amount of HA per surface 

(µg) 

HA4 C3 2.27 6.45 

HA234 C3 0.27 0.75 

HA2590 C3 0.30 0.85 

HAmix C3 0.55 1.55 

 

2.4. DISCUSSION 

 

The main goal of this chapter was the construction of 2D hyaluronic acid 

structured surfaces designed to support cell adhesion. Therefore, in the present chapter it 

is presented the experimental design and optimisation of a protocol to construct HA-

coated surfaces. Four surfaces were constructed, coated with different sized-polymers 

and over a range of different crosslinker concentrations. After the characterisation of the 

surfaces, the best subset was chosen in order to support cell adhesion and to be used in 

in vitro studies.  
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2.4.1.    CONSTRUCTION OF HA-COATED SURFACES 

 

The development of self-assembled monolayers (SAMs) methods presents a 

major advance in materials fabrication technology. SAMs provide well defined 

structures and chemistries, being used to immobilise biomolecules to the surfaces 

required for well-defined biological experiments (Castner and Ratner, 2002).  

Here it was presented a simple method to create HA films that are well-defined 

in their molecular attachment to the substrate (glass coverslip). The confinement to a 

solid support made these coats accessible to characterisation with a range of techniques 

that are not easily applicable to living cells. Therefore, the first decision to be made was 

the choice of a surface that could be both coated with hyaluronic acid, and easily 

adapted for cell culture vessels, making it suitable for analysis. A number of different 

materials, including glass, quartz, metal oxide and polymers have been modified with 

biomolecules and characterised for cellular interaction with their surfaces (Shin et al., 

2003). The choice of round glass coverslips was made on the basis of their ability to be 

placed on cell growth plates and removed from plates for analysis, in addition to their 

low cost when compared to other materials. A suitable protocol for the hyaluronic acid 

tethering to glass coverslips was the second decision to be made. The protocol for 

coating surfaces with HA can be divided in two parts: firstly, the aminosilylation of a 

glass surface, and secondly the covalent immobilisation of hyaluronic acid. The 

aminosilylation of a glass surface aims to attach a silane coupling agent to the glass, 

which in turn will allow the attachment of HA to the surface. As mentioned previously, 

the formation of monolayers via the self assembly of silane compounds to activated 
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surfaces has already been well established (Matinlinna et al., 2004). Silane coupling 

agents are often used as they can provide organic functionality to inorganic compounds 

(Matinlinna et al., 2004). The aminosilane used in the present investigation was 

AHAPTMS (N-(6-aminohexyl)-aminopropyltrimethoxysilane). This choice was based 

on work performed by Ladam and co-workers (2003) and due the hydrolytic stability of 

AHAPTMS shown elsewhere (Ladam et al., 2003; Matinlinna et al., 2004).  

Soluble HA has some characteristics that limit its use in many biomedical 

applications; these include poor mechanical properties and rapid degradation in an 

aqueous environment.  These limiting characteristics can be overcome by crosslinking 

HA (Segura et al., 2005; Collins and Birkinshaw, 2007). Crosslinking individual HA 

polymer chains together decreases their degradation rates (Leach and Schimidt, 2004). 

Crosslinking is the most common modification of HA to form a hydrogel (Leach and 

Schimidt, 2004; Collins and Birkinshaw, 2008). There are many strategies employed to 

crosslink HA, a process where the chemical modification of one or more of HA’s 

available reactive groups (hydroxyl, carboxyl, and acetamido) is performed while 

attempting to maintain biocompatibility and biological activity: diepoxy crosslinking, 

carbodiimide-mediated crosslinking, aldehyde crosslinking, divinyl sulfone 

crosslinking, photocrosslinking (Leach and Schimidt, 2004). However, carbodiimide-

mediated crosslinking was the method of choice. This choice relied on the literature, 

where carbodiimide-mediated crosslinking is often utilised in reactions between 

carboxylic acids and amines. In addition, since EDC is a zero length crosslinker, it does 

not introduce additional molecules that may be toxic in in vitro and in vivo applications 

(Richert et al., 2004). 
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The optimisation of the second part of this protocol (the covalent immobilisation 

of hyaluronic acid to aminosilane coverslips) was not straightforward. Several issues 

had to be dealt with. First was the sterilisation of HA solutions, concerning the necessity 

of producing pathogen-free surfaces. The easiest way would be the exposition of the 

HA-coated coverslips to UV irradiation. However, large HA fragments are broken into 

smaller fragments when exposed to UV radiation (Trommer et al., 2003). Consequently, 

an investigation of the use of filtration and autoclaving methods was carried out. As the 

HA molecular-weight increases, so does the polymer viscosity. In a work performed by 

Ito and co-workers (2004), HA solutions have been autoclaved at 128ºC for 20 minutes; 

however, in this study loss of viscoelastic properties was observed when autoclaving 

HA solutions at 121ºC for 20 minutes (Ito et al., 2004). Therefore, filtered HA solutions 

using a 0.2 µm syringe filter as described by others (Baier, 2003) was the method of 

choice. 

Since it has been described that HA concentrations can influence cell behaviour 

(Liu et al., 2004), the choice of the HA solution concentration was another important 

factor to consider. Depending on the application, different concentrations have been 

used, ranging 1–4 mg/ml. The choice of 2 mg/ml was made on the basis of the 

expensive price of HA polymer. One mg/ml was not the chosen concentration, since this 

concentration is typically used in applications where multilayered films are constructed 

(Picart et al., 2001; Etienne et al., 2004; Richert et al., 2004; Schneider et al., 2006).  

The incubation conditions for the immobilisation of HA with the aminosilane 

surfaces were crucial in the optimisation of this protocol, especially regarding time and 

temperature. In different studies, different conditions have been used. Incubations are 

reported to be performed either at 25ºC, room temperature or 4ºC; for 2h, 4h, 16h, 12h 
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or 120h, under normal atmosphere, vacuum, or humid conditions (Picart et al., 2001; 

Etienne et al., 2004; Richert et al., 2003; Schneider et al., 2006; Landam et al., 2003; 

Collins and Birkinshaw, 2006; Morra et al., 2006 Ibrahim et al., 2007). In the present 

study, pre-experiments have been carried out in order to optimise the reaction time and 

temperature. Incubation was first carried out at 4ºC for 48h, then at room temperature 

(23ºC) for 12h, and later still at room temperature; but decreasing the time to 4h in case 

of HA4, HA234 and HAmix surfaces, and 1h for HA2590 surfaces. These different times 

relied on the differences on crosslinking times, since for HA2590 it was observed that this 

polymer becomes crosslinked more rapidly than the rest.  Thus, in the present work it 

was deduced that there was no need to incubate for as a long period as in other studies. 

Other considered factors were the volume drop in each aminosilane-tethered 

surface and how to make a homogenised HA film. First 200 µl of each HA solution was 

drop on each coverslip, and later on this volume was reduced to 120 µl.  Nevertheless, 

the problem of achieving a homogenised HA still persisted. Therefore, to create a thin 

and flat film, a square glass coverslip was used to make an assembly of coverslips, 

allowing for the construction of a much more homogenised surface and requiring the 

use of less HA solution. Seventy µl of solution was fixed as final volume. 

 

2.4.2. CROSSLINKING AND HA-POLYMER MOLECULAR 

WEIGHT INFLUENCE THE CONSTRUCTION OF THE 

SURFACES 
 

Changes in surface wettability were assessed using static contact angle 

measurements at each stage of the HA immobilisation: from glass, through activated 
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glass, aminosilane, and HA-coated coverslips. The increase in the wettability seen from 

glass to activated glass coverslips can be attributed to the hydration of the surfaces. An 

increase in the contact angle was observed after the treatment of activated glass 

coverslips with AHAPTMS, meaning that the surface becomes less hydrophilic. The 

immobilisation of HA was found to increase the hydrophilicity of the surface, except for 

HA4.  This increase is probably due to the hydrophilic nature of hyaluronic acid. The 

decrease in wettability of HA4 surfaces may be related with the size of HA, as smaller 

fragments can lead to a more closely-packed structure, and consequently reducing 

water-surface interactions and the exposure of hydrophilic groups at the interface 

(Pasqui et al., 2007). The great wettability seen for HA2590 surfaces might be related to 

the highly hydrophilic properties presented by HA. In the presence of water, HA 

molecules can expand in volume up to 1000 times to form hydrated matrices (Leach and 

Schmidt, 2004). Thus, as larger fragments can absorb more water, the presence of 

HA2590 molecules presented a more hydrophilic surface. Interestingly, HA234 and HAmix-

coated surfaces were found to have similar contact angle values. Therefore, the contact 

angle value obtained for surfaces coated with different MW polymers in an equal ratio 

(HAmix), were found to be intermediate between HA4 and HA2590 films. 

There is some evidence that the surface hydrophilicity/hydrophobicity can be 

important for cell adhesion and growth. Depending on the cell line, cellular growth can 

be improved by increasing the hydrophilicity of the surfaces, whereas the optimal rates 

were obtained using an intermediate degree of hydrophilicity. Nevertheless, cell growth 

on highly hydrophobic surfaces has also been stated (Larsson and Ocklind, 2000). Since 

it is still unclear how the chemistry of material surfaces affects cell adhesion, spreading 

and growth, conclusions cannot be made regarding the relationship between the 
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obtained contact angle measurements and the adhesion and proliferation of the cell lines 

used in the present work (see Chapter 3). The use of wettability measurements relied 

on the simplicity and fast method to estimate the quality of monolayers. In addition, 

contact angle is an inexpensively technique. The use of contact angle gave information 

regarding the modifications occurred on the coverslips along the protocol.  

Analysis of the HA surfaces by AFM and confocal microscopy indicate that film 

stiffness modulates the topography and construction of the surfaces. Highly crosslinked 

films present the most homogenous and rough surfaces. Ren and co-workers (2007) also 

observed these findings, showing that film roughness increases as a function of film 

stiffness (Ren et al., 2007). In addition, the construction of the surfaces is also 

influenced by the HA polymer-size. The roughness of the HA-coated surfaces showed 

an inverse correlation to molecular weight of HA fragments, which was also observed 

by Ibrahim and co-workers (2007). All of these AFM observations were supported by 

confocal microscopy analysis. It was found that there is a direct relationship between 

the homogeneity of the surfaces and film stiffness. Surfaces coated with highly 

crosslinked films (C3) appeared to be the most homogeneous, showing fewer gaps 

between the polymer molecules. Also, homogeneity was found to be related with 

polymer size. HA2590 and HAmix surfaces appeared somewhat less homogeneous with 

some gaps between areas of intense fluorescence, while HA4 and HA253 surfaces 

fluoresced more uniformly. A possible explanation lies in the fact that the strands of 

larger HA fragments cause substantial strand entanglement producing a compact zone 

of HA close to the aminated surface, and creating sporadic gaps devoid of HA. On the 

other hand, this can also be related with the fact that the strands of larger HA fragments 

might prevent other strands from binding to aminosilane molecules in the local vicinity 
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by directly binding to them or sterically inhibiting their interaction with other strands, 

therefore this resulting in a less efficient binding of HA to aminosilane-tethered surface 

(Ibrahim et al., 2007). Ibrahim and co-workers (2007), while performing a study where 

a range of different HA fragments (1000, 200, 20 kDa and 4 HA oligomers) was 

immobilised onto aminosilane-coated surfaces using carbodiimide reaction, also 

observed that HA1000 and HA200 surfaces appeared less homogeneous and formed 

greater gaps between HA coatings (Ibrahim et al., 2007). 

QCM showed that HA4 C3 surface presents a higher polymer density than the 

rest of the surfaces. HA253 and HA2590 present similar densities, where a small amount 

of HA is tethered onto these surfaces. HAmix presents a few increase of polymer amount, 

comparatively to HA253 and HA2590 surfaces. Similar findings were found by by Richter 

and co-workers (2007), reporting that HA-film density increases strongly as molecular 

weight decreases (Richter et al., 2007). However, QCM was not a valid and sensitive 

method for estimating the density of HA on C1 and C2-coated surfaces. This might be 

related with the small amount of HA present in the quartz. In addition, it can also be 

related with the viscosity and flexibility of the films, and being not stiff enough to 

vibrate along with the quartz, and therefore not possible to be analysed by QCM 

(Chianella, 2010).  

 

2.5. CONCLUSIONS 

 

This chapter describes the attempts made in order to immobilise hyaluronic acid 

on 2D glass surfaces, in a wide range of HA fragment sizes and crosslinker 
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concentrations. A protocol to construct homogeneous HA-coated surfaces was 

successfully developed. In this protocol HA is tethered onto aminosilane (AHAPTMS)-

treated glass surfaces using a carbodiimide reaction (EDC and NHS). Four surfaces 

were constructed, coated with polymers of different molecular weights (HA4, HA253, 

HA2590 and HAmix). In addition, three different crosslinker concentrations were 

investigated. After a characterisation of these surfaces using contact angle, AFM and 

confocal microscopy it was concluded that the most homogeneous surfaces were those 

coated with films of higher stiffness (C3 crosslinker concentration). Therefore, C3 

surfaces were chosen to be used in in vitro experiments. The construction and 

characterisation of these surfaces represented a crucial step in the overall project. These 

surfaces were used as cell growth support, and were used in the evaluation of the effect 

that exogenous HA has on cell proliferation (Chapter 3). 

To the present knowledge, this represents the first study where surfaces coated 

with HA polymers of varying molecular weights have been constructed over a range of 

film stiffness.  

 

 

 

 

 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 
“Essentially, all models are wrong, but some are useful.” – George E. P. Box 
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CHAPTER 3 
 

3. STUDY OF THE GROWTH AND PROLIFERATION OF 

TUMOUR-DERIVED CELL LINES ON A RANGE OF HA 

STRUCTURED SURFACES 
 

3.1. INTRODUCTION 

 

The extracellular matrix (ECM), although once regarded simply as structural 

scaffold, is now recognised as an important modulator of cell phenotype and function, 

and the glycosaminoglycan hyaluronic acid (HA) one of the chief components. 

Although the major biological function of HA remains unclear, many roles have been 

attributed to this polymer. HA is present predominantly in the ECM, particularly in 

embryonic and malignant tissues (Stern, 2003). It has been shown to be involved in 

various physiological processes, including embryological development, proliferation, 

differentiation, migration and adhesion of cells (Manzel and Farr, 1988; Heldin, 2003; 

Spicer and Tien, 2004; Adamia et al., 2005a; Girish and Kemparaju, 2007). It has been 

reported that the production of HA is high during cell proliferation, since this polymer is 

involved in the promotion of chromatin condensation, and therefore facilitating mitosis. 

On the other hand, HA may help cells to detach from the matrix making it easier for 

them to divide. HA levels also increase during the differentiation and in the areas where 

cell migration begins (Adamia et al., 2005a). It also plays important roles in multi-drug 

resistance (Toole, 2004), wound healing (Chen and Abatangelo, 1999), angiogenesis 
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and malignant transformation (Adamia et al., 2005a; Shultz et al., 2005; Pavia et al., 

2005; Girish and Kemparaju, 2007). 

 It is well reported that the biological functions exhibited by HA depend on the 

chain length, molecular mass and on the conditions under which the polysaccharide is 

synthesized (Noble, 2002; Toole, 2004; Girish and Kemparaju, 2007). Polymers coming 

from the HA fragmentation in the course of the catabolic pathway occur in a variety of 

sizes that have a vast range of properties; with high and low molecular weight HA 

polymers playing opposite roles on cell behaviour (Girish and Kemparaju, 2007). High-

molecular-size HA polymers are reported to inhibit endothelial cell growth and being 

anti-angiogenic (Chen and Abatangelo, 1999; Stern et al., 2006); showing anti-

inflammatory and immunosuppressive properties (McBride and Bard, 1979; Delmage et 

al., 1986; Day and de la Motte, 2005; Milner et al., 2006). In addition, these large 

fragments are also involved in the promotion of cell quiescence and protection of cells 

against apoptosis and injury, and support of tissue integrity (Morrison et al., 2001; Jiang 

et al., 2005). Conversely to high-molecular-size HA molecules, small polymers have 

angiogenic, wound healing, inflammatory and immunostimulatory properties (Noble, 

2002; Termeer et al., 2002; Rossler and Hinghofer-Szalkay, 2002; Stern, 2003). 

The main goal of this chapter was to investigate whether surfaces constructed 

with HA polymers of different molecular weight can influence the growth and 

proliferation of tumour-derived cell lines. The development and maintenance of 

multicellular biological systems depends on a sophisticated interplay between cell 

proliferation and physiological cell death, in order to maintain homeostasis in terms of 

constant cell numbers (Gewies, 2003). Therefore, this chapter of work also aimed to 

investigate whether HA has as effect on apoptosis of tumour-derived cell lines. 
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Quantitation in cell culture is required for the characterisation of the growth 

properties of different cell lines for experimental analyses (Freshney, 2005). Knowledge 

of the growth state of a culture and its kinetic parameters is critical in the design of cell 

culture experiments, with measurements of kinetic parameters often used to determine 

the response of cells to a particular stimulus or toxin. This work is focused upon human 

bladder and prostate cell lines, using two cell lines of each tissue type. The use of two 

cell lines of each tissue type may provide insights into the variability of expression 

within tumours of differing stage and grade. The first part of this chapter presents cell 

proliferation assays using cells growing under normal conditions (i.e., cells growing on 

uncoated wells) in order to compare cell lines and establish the optimal conditions to be 

used in tissue culture. The comparison of cells growing under normal conditions with 

cells growing in the presence of HA made possible the assessment of the effect that HA 

has on cell proliferation and apoptosis. Therefore, this chapter can be divided in three 

different parts: firstly the establishment of the optimal conditions to be used in the 

culture of the cell lines, secondly the assessment of the effect that HA has on cellular 

proliferation, and in the last part the assessment of the effect that HA has on apoptosis. 

The work presented in this chapter can be illustrated by Figure 3.1, summarising all the 

stages involved in this investigation. 
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Figure 3.1 – Summary of all the stages of work involved in Chapter 3. 
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3.2. MATERIAL AND METHODS 

 

3.2.1. CELL CULTURE 

 

3.2.1.a.  Cell lines and cell culture 

 

 Four cell lines were used as model systems for CD44 and RHAMM expression, 

all human in origin. The bladder cell lines were RT112/84 (derived from a human 

bladder carcinoma with epithelial morphology – ECACC: 85061106) and T24/83 

(derived from a human bladder carcinoma with epithelial morphology from an 81 year 

old Caucasian female – ECACC: 85061107, also known by the names EJ138 and 

MGH-U1). The prostate cell lines were PC3 (derived from a human prostate 

adenocarcinoma grade IV from a 62 years old Caucasian male – ECACC: 90112714) 

and PNT1A (derived from a human post pubertal prostate normal, from a 35 years old 

male at post mortem, immortalised with SV40 – ECACC: 95012614). 

 All cells were grown from seed culture stored under liquid nitrogen and cultured 

in Dulbeccos modified eagles medium (DMEM) containing HAM’s F12 (1:1) 1x 

nutrient mix plus 15 mM HEPES & L-glutamine medium (GIBCO, Invitrogen, UK). 

The media was supplemented with 10% heat inactivated foetal calf serum (FCS; 

GIBCO, Invitrogen, UK), 200 mM L-glutamine (Invitrogen, UK), 1000 units of 

penicillin and 1 mg streptomycin (GIBCO, Invitrogen, UK) per bottle. Cultures were 

grown at 37ºC in a 5% CO2 atmosphere and were maintained by passage when they had 

grown to 80-90%. 
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3.2.1.b.  Cell passage and maintenance 

  

 Once all four lines were adhered, passaging required the use of trypsin/EDTA to 

detach the cells from the surface of the culture flasks. Cultures were first washed in 10 

ml of sterile PBS followed by the addition of 5 ml of 1x 0.5% trypsin/EDTA solution 

(GIBCO, Invitrogen, UK) to each flask. This was incubated at 37ºC for approximately 

one minute, or until detachment could be detected, upon which the cells were removed 

from the flask and placed into a centrifuge tube containing 5 ml of media to inactivate 

the trypsin. This was then centrifuged at 1,300 g at 4ºC for 5 minutes. The supernatant 

was discarded and the cells resuspended in DMEM and subcultured into each fresh 

flask. 

 

3.2.1.c.  Cell Storage 

 

Cell lines were frozen for long term storage. When cell monolayers reached 

approximately 90% confluence, cells were detached as described in section 2.2.1.c. The 

trypsin/EDTA solution was neutralised in full media and the suspension was then 

centrifuged at 1,300 g for 5 minutes at 4ºC. The supernatant was removed and the cell 

pellet was resuspended in freezing medium (10% DMSO in FCS). DMSO prevents the 

formation of intracellular ice crystals during the freezing process and consequently aids 

in maintaining cellular integrity. The cell and freezing medium suspension was 

aliquoted into 1.5ml cryovials (Greiner Bio-one, Frickenhausen, Germany). The 

cryovials were placed in a cryofreeze container (Nalgene, Milton Keynes, UK) 
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containing propan-2-ol and then stored at -80°C. After at least 24 hours at -80°C, the 

cryovials were transferred to liquid nitrogen dewars, at -196°C, for long term storage. 

 

3.2.1.d.  Cell Thawing 

 

To revive cells after storage in liquid nitrogen, it is essential to thaw the cells 

rapidly. The cryovial was warmed to 37°C and the cell suspension was resuspended in 

10 ml warmed culture media. The suspension was centrifuged at 1,300 g for 5 minutes 

at 4ºC and the supernatant containing the DMSO was removed. The pellet was 

resuspended in full culture media and transferred to a culture flask, which was then 

placed in the incubator so the cells could adhere.  

 

3.2.2. CELL PROLIFERATION ASSAYS 

 

 To seed the wells with a required number of cells, a T75 flask was treated as if 

for passage. Cells were centrifuged at 307 g at 4ºC for 5 minutes. The supernatant was 

discarded and the cell pellet resuspended in 1 ml of media before the cells were counted 

using a haemocytometer (Neubauer Assistant, Germany). The number of cells in the 1 

ml suspension was then calculated before being diluted to a desired concentration and 

seeded into 12-well plates to give a final volume of 2 ml/well. The 12-well plates were 

incubated at 37ºC with 5% CO2. 
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3.2.2.a.  Cell counting 

  

Permeability assays involve staining damaged cells with a dye and counting 

viable cells that exclude the dye. Counts can be performed manually using a 

haemocytometer, and this method is normally used to determine the cell density (cell 

number/ml) in batch cell cultures.  

For each cell line, eight 12-well polystyrene plates were prepared, and cells were 

seeded with a final concentration of 5 x 104 cells/ml. This assay was performed over 

eight days, and every 24 hours cell counting was performed as described: media was 

removed from wells, followed by washing with 1 ml PBS.  Then 500 µl of 1x 0.5% 

trypsin/EDTA solution was added and the cells were incubated for 1-2 minutes. Cells 

were detached from the bottom of the well using a cell scraper, and the cell solution was 

placed into a microcentrifuge tube and centrifuged at 1,300 g at 4ºC for 5 minutes. The 

supernatant was discarded and the cells resuspended in 1 ml of PBS. 50 µl of the cell 

suspension was mixed with 50 µl of trypan blue (Sigma-Aldrich, UK). Cell counting 

was assessed using 20 µl of the cells/PBS/trypan blue placed onto a haemocytometer. 

The number of cells was then counted using an x10 objective lens (Nikon microscope). 

The average number of cells from three replicates was calculated and plotted against the 

number of days the cells had been allowed to grow, for the construction of a growth 

curve. 
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3.2.2.b.  MTT assay 

 

Metabolic assays measure the mitochondrial activity, relying on the basis that 

cellular damage will inevitably result in loss of the ability of the cell to maintain and 

provide energy for metabolic cell function and growth. MTT cell proliferation assay is 

one of these metabolic assays. It is a quantitative colourimetric assay, which has been 

used to study the mammalian cell survival and proliferation. On the basis of MTT assay 

there is the assessment of mitochondrial activity through the measure of succinate 

dehydrogenase enzymatic activity of metabolically active cells. These enzymes reduce 

the yellow tetrazolium MTT salt (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium 

bromide) to a purple formazan product. This resulting intracellular insoluble formazan 

product is then dissolved and the colour produced quantified spectrophotometrically. 

MTT assay detects living, but not dead cells and the signal generated is dependent on 

the degree of activation of the cells (Mosmann, 1983; Davey and Lord, 2002). 

For each cell line, eight 12-well polystyrene plates were prepared. Four different 

cell densities were used: 5x104, 2.5x104, 1.25x104 and 6.25x103 cells/well. Three 

replicates were used for each cell density. Plates were incubated at 37ºC with 5% CO2. 

One thousand and five hundred ml of the supernatant from each well were removed and 

650 μl of MTT solution pipetted into each well. MTT solution was prepared as 

described: 1mg MTT powder (Sigma-Aldrich, UK) was dissolved in 1ml of PBS, and 

filtered with a 0.45 µm syringe filter (NALGENE Labware, Thermo Fisher Scientific, 

UK). The plate was incubated at room temperature for three hours in the dark and 1340 

μl of acidified isopropanol (100 μl concentrated HCl in 100 ml isopropanol) were added 

to each well and vigorously mixed to solubilise the formazan salts. This procedure was 
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performed over eight days, and the absorbance of each well was then read in a plate 

reader (Varioskan Flash, Thermo Fisher Scientific) at λ = 570 nm each 24 hours. 

 

3.2.2.c.  Assessment of the effect that HA has on cell proliferation 

 

In order to assess the effect that HA has on cellular proliferation, MTT assay 

was performed on cells cultured on HA and aminosilane-coated surfaces. Briefly, cells 

were trypsinized, pelleted by centrifugation at 4ºC (1,300 g, 5 minutes) and resuspended 

in DMEM. Two ml of cell suspension were cultured on surfaces previously placed onto 

12-well plates. Cultures were grown at 37ºC in a 5% CO2 atmosphere over 8 days. MTT 

assay was performed in three wells per film condition, and cells growing on tissue 

culture polystyrene wells were used as control. 

 

3.2.3. CALCULATION OF KINETIC GROWTH PARAMETERS 

 

The understanding of the growth state of a culture and its kinetic parameters are 

critical factors in the design of cell culture experiments. Thus, using the data collected 

from the curve fitting, kinetic parameters were calculated. 

The log phase is a period of exponential increasing in cell number, which can be 

represented by Equation 3.1: 
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𝑁 =  𝑁0  ×  2𝑋                                                                                                                           (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑.𝟏)                                   
 
where N0 = initial cell concentration of the log phase; N = final cell concentration of the 

log phase; X = number of generations of cell growth. The generation time (X) refers to 

the average time it takes between two cell divisions. 

  

The population doubling time (D) during cell growth, which is the time taken for 

the culture to increase two-fold in the middle of the exponential phase, can be calculated 

using Equation 3.2: 

 

𝐷 =  
𝑇
𝑋

                                                                                                                                          (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑.𝟐) 

where T = total elapsed time of the log phase. 

 

The specific growth rate (µ), which is the measure of the rate of increase of cell 

number at certain cell concentration, can be calculated from Equation 3.3: 

 

µ =  
𝑙𝑜𝑔𝑁 − 𝑙𝑜𝑔𝑁0 

𝑇1 −  𝑡1
                                                                                                                  (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑.𝟑) 

Where t1 = initial time of the log phase and T1 = final time of the log phase. 

 

The growing percentage can be achieved by Equation 3.4: 

 

𝐺𝑟𝑜𝑤𝑖𝑛𝑔 % =  
𝐹𝑖𝑛𝑎𝑙 𝑛º 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 
𝑁º 𝑜𝑓 𝑠𝑒𝑒𝑑𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

 ×  100                                                                       (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑.𝟒) 
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3.2.4. APOPTOSIS ASSAY 

 

Apoptosis was assessed by Poly-ADP-Ribose-Polymerase (PARP) cleavage. 

Detection of the 89 kD PARP fragment with anti-PARP serves as an early marker of 

apoptosis. Western blotting was carried out in order to detect cleaved PARP. β-actin 

antibody was used as positive control, to ensure integrity of protein. Protein extract 

from OE21 (Caucasian oesophageal squamous cell carcinoma) cells 10 Gy irradiated 

(kind gift from Joana Senra, Manchester University) was also used as positive control.  

 

3.2.4.a.  Protein extraction and quantification 

 

Two ml of cell suspension were cultured onto surfaces previously placed on 12-

well plates and seeded to the same concentrations as optimised for MTT assay (section 

3.2.2). Protein extraction was performed after 8 days of cell growth, into 12 wells per 

film condition, and cells growing on tissue culture polystyrene wells were used as 

control. Culture media was removed and cells were washed in PBS. This was followed 

by the addition of protease inhibitor cocktail produced (MP Biomedicals, UK; 

Appendix I) and scraping of cells off the surface of wells. Once all cells were removed 

from 12 wells, the solution was transferred into a 15 ml centrifuge tube and cells 

pelleted by centrifugation at 554 g for 10 minutes at room temperature. The supernatant 

was discarded and the pellet resuspended in 1.5 ml of protease inhibitor cocktail. Cell 

suspension was transferred to an Eppendorf tube and centrifuged at 12073 g for 15 

minutes at room temperature. The supernatant was discarded and the pellet resuspended 

in 1.5 ml of CHAPS lysis buffer (Appendix I) and snap frozen. This was then thawed 
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and incubated on ice for 1 hour and centrifuged at 12,073 g for 30 minutes. The 

resulting supernatant is the cellular protein extract and after quantification was stored at 

-80ºC.  

Protein quantification was carried out in a 96-well plate using the Micro-BCA 

protein assay (Pierce, Thermo Scientific, UK) according to manufacturer’s guidelines. 

One hundred and fifty µl of Micro BCA Working Reagent were added to 150 µl of each 

sample and the plate thoroughly mixed on a plate shaker for 30 seconds. This was 

incubated at 37ºC for 2 hours and the absorbance of each sample was read in a plate 

reader (Varioskan Flash, Thermo Fisher Scientific) at λ = 562 nm. For the protein 

quantification, a standard curve was constructed using a BSA protein standard (100 

µg/ml; Pierce, Thermo Scientific, UK; Appendix XVII). 

 

3.2.4.b.  Western Blotting 

 

Preparation of Samples for Electrophoresis 

 

After protein concentrations were determined, the volume of sample needed to 

give the 10 µg of protein was calculated and transferred to an Eppendorf tube. An equal 

volume of 2x sample buffer was added and the samples were then boiled at 100°C for 5 

minutes to ensure denaturation of the proteins. Samples were briefly centrifuged then 

kept on ice to prevent protein clumping. 
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SDS-PAGE (Poly-Acrylamide Gel Electrophoresis)  

 

Denatured protein samples were separated on discontinuous polyacrylamide gels 

on the basis of size. 10% resolving gels, determined by the concentration of acrylamide 

(BioRad, UK), were used to separate and isolate the proteins in question. A Mini-

Protean II Cell (BioRad, UK) gel electrophoresis equipment was assembled according 

to manufacturer’s instructions. The resolving gel was loaded between the glass plates 

and distilled water was immediately loaded afterwards to prevent oxidation at the gel 

surface, as well as to aid in reducing bubble formation and to ensure an even surface 

while solidifying. Excess water was blotted away using filter paper once the gel had set 

and the stacking gel was then poured. Well-forming combs were quickly yet carefully 

inserted between the glass plates to form loading wells in the stacking gel.  

When solidified, the gels were fitted onto the tank equipment to form the central 

chamber and 1x running buffer was poured into the tank to completely immerse the 

gels. The well-forming combs were removed and the wells were washed by pipetting 

running buffer into them. A molecular weight protein marker (BioRad Kaleidoscope 

Pre-stained Standards Cat. No. 161-0324 range 6-197 kDa) was loaded in the gel as 

well. The anode and cathode of the Mini-Protean II Cell were connected to a power 

supply and set at 150 volts. The electrophoresis was carried out at 150 V for 

approximately 10 minutes until the samples had stacked and passed through to the 

resolving gel. At this time the voltage was reduced to 100 V for approximately 1 hour. 
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Immunoblotting Procedure 

 

To transfer the separated proteins to polyvinylidene fluoride (PVDF) membrane 

(Millipore, Hertfordshire, UK) for antibody detection, a wet protein transfer method 

was employed. The PVDF membrane was cut to the appropriate size, the top left hand 

corner was cut off and the membrane was activated in 100% methanol for 1 minute until 

it became translucent and ready to accept proteins. Cold 1x transfer buffer was used to 

wet sponge pads, 3mm filter paper (Whatman Plc, Brentford, UK) and the activated 

membrane. The electrophoresis equipment was dismantled and the gel was removed. 

The stacking gel was cut away and the top left hand corner of the gel was cut off to 

align with the membrane and aid in orientation. 

The cassette containing the sandwich of sponge pads, filter paper, gel and 

membrane was placed into the transfer tank containing 1x transfer buffer. An ice block 

was also inserted and the tank was then placed on ice. This was to ensure a cool 

environment lasted for the entire transfer process to prevent protein denaturation from 

electrical heat generated. Electrode connections were attached to the power supply and 

the proteins transferred overnight at 30 volts. 

 

Probing the Membrane 

 

To ensure successful transfer of the proteins, once the membrane was removed 

from the transfer cassette it was washed in Ponceau S solution. Ponceau S reversibly 

binds to proteins present on the membrane and allows quick visualisation of any protein 

bands present. The membrane was washed in PBS supplemented with 0.1% (v/v) 
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Tween-20 (PBST), on a rotating gyrorocker mixer (Stuart Scientific, Staffordshire, 

UK), to remove the Ponceau S solution. It was then blocked for 1 hour in 5% (w/v) non-

fat dried milk (NFDM, Marvel) solubilised in 0.1% (v/v) PBST to mask non-specific 

binding sites. Primary antibodies were prepared in 5% (w/v) NFDM at the dilutions 

specified in Table 3.1. Membranes were incubated in cleave PARP antibody solution at 

overnight at 4ºC on a roller mixer (Stuart Scientific, UK). After antibody incubation, the 

membrane was washed with 0.1% (v/v) PBST three times for 15 minutes to ensure 

complete removal of the primary antibody. Secondary antibody was incubated with the 

membranes for 1 hour at room temperature on the roller mix. The membrane was then 

washed again with 0.1% (v/v) PBST three times for 15 minutes to ensure complete 

removal of the secondary antibody. β-actin was used as a loading control for every 

membrane. Membranes were incubated in β-actin antibody solution 1 hour at room 

temperature, followed by the same as for cleaved PARP antibody. 

 

Table 3.1– Primary and secondary antibodies used in western blotting. 

Primary Antibody Dilution 
Secondary antibody 

(HRP-conjugated) 
Dilution 

Cleaved PARP (New England Biolabs, UK) 1:1,000 anti-mouse (New England Biolabs, UK) 
1:10,000 

β-actin (Sigma Aldrich, UK) 1:40,000 anti-rabbit (New England Biolabs, UK) 

Antibodies were diluted in 5% (w/v) NFDM 

 

Chemiluminescent Detection 

 

To detect and visualise the proteins, the Enhanced Chemiluminescence (ECL) 

kit (GE Healthcare, Buckinghamshire, UK) was used according to manufacturer's 

guidelines. The membrane was immersed in activated ECL solution for 1 minute and 
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then blotted and transferred to an autoradiography hypercassette (Kodak, UK). HRP-

conjugates present on the membrane react with the luminol in the ECL solution and 

emit blue light at 480nm, which is detected by blue-light-sensitive film. The membrane 

and cassette were transferred to the dark room where a piece of hyperfilm (Fuji Medical 

X-ray film; Fuji, UK) was removed from the packaging, in the red light environment, 

and placed over the membrane. The cassette was sealed and the film was exposed to the 

membrane for the required amount of time. The film was then developed using the 

automated developer (Xograph Imaging Systems, UK). On removal from the developer, 

the film was placed back in the cassette to identify the protein bands based on the pre-

stained marker standards.  

 

3.2.5. STATISTICAL ANALYSES 

 

Data were analysed using GraphPad Prism 5.0 software with significance at p < 

0.05. Statistical comparisons between treatment and control were performed using a 

paired Student’s T-Test. Data are reported as mean ± 1 standard deviation (s.d.) of the 

mean. Curve fitting was performed for best-fit data using SigmaPlot 10.0 software, 

using Piecewise nonlinear regression to test the fit of the regression line. 

 

3.3. RESULTS 

 

Biologists often utilise growth experiments to analyse basic properties of a given 

organism or cellular model. To investigate the specific effect of a given experimental set 
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up or condition (e.g., a compound or substrate), characteristic parameters of the growth 

curves are derived. Curve fitting is finding a curve that matches the best fit to a series of 

data points, possibly subjected to constraints. It is often used in science to visualise and 

plot the curve that best describes the shape and behaviour of the interested data. The 

data collected for the construction of cell growth curves are usually at regular intervals, 

with mammalian cell growth curve being represented by different phases: lag phase, 

exponential (log) phase and stationary phase. In this context, application of one linear 

model for the whole data is not justified. Frequently biologists use exponential linear 

regression in order to fit cell growth curves. However, the growth of mammalian cells is 

characterised by different phases, and the exponential model does not take into account 

the different phases. It is therefore necessary to exploit the possibility of using a model 

to suit the available data. The model representing the growth curve in piecewise model 

can then be split into linear pieces that can represent the different phases of a 

mammalian cell growth curve. The use of piecewise nonlinear regression allows multi-

line fit equations to be defined over different independent variable (x) intervals. This 

data measures the number of viable cells as function of time, with the shape of a cell 

growth curve consisting of three segments (see Figures 3.2B and C, 3.3B and 2C). 
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𝑓 =  

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑥1 (𝑇1 − 𝑡) +  𝑥2 (𝑡 − 𝑡1)

𝑇1 −  𝑡1
 , 𝑡1  ≤ 𝑡 ≤  𝑇1      → 𝐫𝐞𝐠𝐢𝐨𝐧 𝟏

𝑥2 (𝑇2 − 𝑡) +  𝑥3 (𝑡 − 𝑇1)
𝑇2 −  𝑇1

 , 𝑇1  ≤ 𝑡 ≤  𝑇2      → 𝐫𝐞𝐠𝐢𝐨𝐧 𝟐

𝑥3 (𝑇3 − 𝑡) +  𝑥4 (𝑡 − 𝑇2)
𝑇3 −  𝑇2

 , 𝑇2  ≤ 𝑡 ≤  𝑡3      → 𝐫𝐞𝐠𝐢𝐨𝐧 𝟑

 

The three x intervals can be defined by the time points t1 < T1 < T2 < T3. The "region" 

equations are defined so that the end points of each segment meet.  

 

3.3.1. CELL LINES COMPARISON 

 

 Cell counting, performed over eight days, allowed the construction of growth 

curves for each cell line (see Appendices IV and V). The mean values of the replicates 

were plotted and a nonlinear regression was performed for best-fit data. This procedure 

was carried out using piecewise nonlinear regression using three linear segments and 

kinetic parameters were calculated (Chandrasekaran et al., 2005; Appendix VI).  

 

3.3.1.a.  RT112 and T24 cell lines 

 

In Figure 3.2A is shown the comparison of cell growth curves for RT112 and 

T24. Figures 3.2B and C show the curve fitting for both cell lines, with the respective 

kinetic parameters calculated in Table 3.2. 

 

 



CHAPTER 3                                                              STUDY OF THE GROWTH AND PROLIFERATION OF TUMOUR-DERIVED  
                                                                                           CELL LINES ON A RANGE OF HA STRUCTURED SURFACES 

 

126 

 

 

Figure 3.2– Comparison of the cell growth curves for RT112 and T24 cell lines, using viable cell 

counting method (A). Graphs of nonlinear regression, using piecewise with 3 linear segments, of RT112 

(B) and T24 (C) cell lines. 

 

Table 3.2 – Kinetic growth parameters calculated for RT112 and T24 cell lines. 

Parameter RT112 T24 

N0 (cells/ml x 104) 15.74 28.52 

N (cells/ml x 104) 126.88 68.98 

t1 (days) 2.62 4.39 

T1  (days) 5.00 5.66 

X (generations/day) 3.01 1.27 

D (hour) 18.94 23.88 

µ (hour-1) 0.016 0.013 

Growing % 1500.00% 740.00% 

Where N0 = initial cell concentration of the log phase; N = final cell concentration of the log phase; t1 = initial time of 

the log phase; T1 = final time of the log phase; X = number of generations of cell growth; D = doubling time; µ = 

specific growth rate. 
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It can be seen from Figure 3.2 that RT112 has a higher cell growth rate than 

T24. Using values obtained by the nonlinear regression (Appendix VI) it can be 

observed that RT112 has a lag phase of about two and a half days, from which cells 

enter into exponential phase until day 5. While T24 has a lag phase of approximately 

four and half days, and having the exponential phase until almost the day 6, followed by 

a plateau. The comparison of cell growth curves between RT112 and T24 has shown 

that a higher cell growth rate is seen in RT112. RT112 had an increase of 1500% in the 

cell growth, while in T24 was observed an increase of 740%.  The calculated kinetic 

parameters (Table 3.2) also show that the number of generations per day (X) and the 

specific growth rate (µ) are higher for RT112. Furthermore, the doubling time (D) for 

RT112 is lower than for T24. 

 

3.3.1.b.  PC3 and PNT1A cell lines 

 

Figure 3.3A shows a comparison between cell growth curves for PC3 and 

PNT1A, and Figures 3.2B and C the respective fitting curves. In Table 3.3 is shown 

the respective kinetic parameters. 
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Figure 3.3 – Comparison of the cell growth curves for PC3 and PNT1A cell lines, using viable cell 

counting method (A).  Graphs of nonlinear regression, using piecewise with 3 linear segments, of PC3 (B) 

and PNT1A (C) cell lines. 

 
Table 3.3 – Kinetic growth parameters calculated for PC3 and PNT1A cell lines. 

Parameter PC3 PNT1A 

N0 (cells/ml x 104) 12.25 14.11 

N (cells/ml x 104) 49.84 38.32 

t1 (days) 2.58 3.00 

T1  (days) 3.52 5.92 

X (generations/day) 2.02 1.44 

D (hour) 11.12 48.54 

µ (hour-1) 0.027 0.0062 

Growing % 1086.67% 720.00% 

 

In Figure 3.3 is shown that PC3 has a higher cell growth rate than PNT1A. 

According to piecewise regression (Figure 3.3, Appendix VI) PC3 has a lag phase of 

about two and half days, followed by a growth phase of one day. PNT1A has an 
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exponential phase starting on day 3 and followed by three more days. From Table 3.3 

can be observed that all the calculated kinetic parameters, X and µ, are higher for PC3 

than PNT1A, being observed a much lower D value for PC3. A higher growing 

efficiency was also achieved in PC3, being respectively 1090%, while a growth of 

720% was observed for PNT1A cell line.  

 

3.3.2. OPTIMISATION OF MTT ASSAY 

 

MTT assay was another approach to assess cell proliferation. In order to 

optimise MTT for each cell line, this assay was carried out over eight days, and four 

different cell dilutions were used for each cell line. Different cell concentrations were 

used not only aiming for the optimisation of MTT assay for each cell line, but also 

allowed the observation of the cell growth behaviour under different seeding 

concentrations (see Appendices VII and VIII). Conversely, for viable cell counting 

assay, cell growth percentage was not calculated, since OD values were not obtained for 

day 0. 

 

3.3.2.a.  RT112 cell line 

 

Figure 3.4 shows the growth curves for RT112, where the mean of OD values of 

the replicates were plotted against day. Table 3.4 shows the respective kinetic growth 

parameters calculated for each initial cell concentration (see Appendix IX). 

 



CHAPTER 3                                                              STUDY OF THE GROWTH AND PROLIFERATION OF TUMOUR-DERIVED  
                                                                                           CELL LINES ON A RANGE OF HA STRUCTURED SURFACES 

 

130 

 

 
Figure 3.4 – Cell growth curves of RT112 cell line under normal conditions measured by MTT optical 

density readings at λ = 570 nm. 

 

Table 3.4 – Kinetic growth parameters calculated for RT112 cell line, according to the different seeded 

cell concentrations. 

Parameter 5x104 cells/well 2.5x104 cells/well 1.25x104 cells/well 6.25x103 cells/well 

N0 (OD) 0.27 0.24 0.19 0.13 

N (OD) 0.78 0.57 0.32 0.20 

t1 (days) 4.41 5.35 5.01 4.72 

T1  (days) 7.52 7.13 7.22 6.22 

X (generations/day) 1.52 1.25 0.76 0.66 

D (hour) 49.05 34.30 69.56 54.13 

µ (hour-1) 0.0061 0.0088 0.0043 0.0056 

  

From the data analysis it can be observed that the best initial concentration for 

the MTT assay is 2.5x104 cells/well.  This conclusion was based on the population 

doubling time (D) and on the specific growth rate (µ). Regarding the population 

doubling time, this initial concentration has the lower value – approximately 34 hours. 

Whereas, for the specific growth rate is seen the higher value. This means that with this 
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concentration is reached the higher rate of increase of cell number. The exponential 

phase was achieved in approximately two days, being observed between days 5 and 7. 

 

3.3.2.b.  T24 cell line 

 

In Figure 3.5 it can be seen the growth curves for T24 and in Table 3.5 the 

respective kinetic growth parameters calculated for each initial cell concentration (see 

Appendix IX). 

 

 
Figure 3.5 – Cell growth curves of T24 cell line under normal conditions, measured by MTT optical 

density readings at λ = 570 nm. 
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Table 3.5 – Kinetic growth parameters calculated for T24 cell line, according to the different seeded cell 

concentrations. 

Parameter 5x104 cells/well 2.5x104 cells/well 1.25x104 cells/well 6.25x103 cells/well 

N0 (OD) 0.19 0.51 0.31 0.22 

N (OD) 0.94 0.92 0.82 0.72 

t1 (days) 1.76 5.00 4.66 4.66 

T1  (days) 6.73 6.66 6.71 6.81 

X (generations/day) 2.32 0.85 1.41 1.73 

D (hour) 51.27 46.48 34.78 29.83 

µ (hour-1) 0.0059 0.0065 0.0087 0.010 

 

 From the data analysis it can be observed that the best initial concentration for 

for T24 cell line is 6.25x103 cells/well.  This concentration shows a better specific 

growth rate and a lower population doubling time. The log phase for this concentration 

has approximately two days, being seen between days 4.7 and 6.8. 

 

3.3.2.c.  PC3 cell line 

 

Figure 3.6 shows the cell growth curves for PC3 cell line and Table 3.6 the 

respective kinetic growth parameters calculated for each initial seeded cell 

concentration (see Appendix IX). 
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Figure 3.6 – Cell growth curves for PC3 cell line under normal conditions, measured by MTT optical 

density readings at λ = 570 nm. 

 

Table 3.6 – Kinetic growth parameters calculated for PC3 cell line, according to the different seeded cell 

concentrations. 

Parameter 5x104 cells/well 2.5x104 cells/well 1.25x104 cells/well 6.25x103 cells/well 

N0 (OD) 0.27 0.19 0.13 0.11 

N (OD) 0.53 0.27 0.24 0.17 

t1 (days) 3.94 3.98 1.61 1.49 

T1  (days) 5.01 4.55 6.55 6.68 

X (generations/day) 0.97 0.54 0.83 0.65 

D (hour) 26.24 25.17 142.06 192.13 

µ (hour-1) 0.012 0.012 0.0021 0.0016 

 

From the data analysis, 5x104 cells/well was the chosen concentration to be used 

in further MTT assays. This choice was based on the specific growth rate and in the 

number of generations per day. Despite being seen a slightly lower doubling time for 

the concentration of 2.5x104 cells/well, a lower X is also observed. Since the difference 

of D between the concentrations of 5x104 and 2.5x104 cells/well it is only one hour, the 
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highest concentration was the selected one for the MTT assay. Thus, for 5x104 

cells/well a log phase of approximately one day is seen between days 4 and 5. 

 

3.3.2.d.  PNT1A cell line 

 

In Figure 3.7 is shown the cell growth curves for PNT1A cell line and in Table 

3.7 the respective kinetic growth parameters calculated for each initial cell 

concentration (see Appendix IX). 

 

 
Figure 3.7  – Cell growth curves for PNT1A cell line under normal conditions, measured by MTT optical 

density readings at λ = 570 nm. 
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Table 3.7 – Kinetic growth parameters calculated for PNT1A cell line, according to the different seeded 

cell concentrations. 

Parameter 5x104 cells/well 2.5x104 cells/well 1.25x104 cells/well 6.25x103 cells/well 

N0 (OD) 0.27 0.11 0.09 0.08 

N (OD) 0.78 0.22 0.16 0.13 

t1 (days) 4.41 2.60 3.00 3.00 

T1  (days) 7.52 6.68 7.25 7.65 

X (generations/day) 1.52 1.06 0.91 0.71 

D (hour) 49.05 92.70 112.51 158.17 

µ (hour-1) 0.0061 0.0032 0.0027 0.0019 

 

From the data analysis it can be seen that the best initial concentration for 

PNT1A cell line is 5x104 cells/well.  This concentration shows a better specific growth 

rate and a lower population doubling time. The exponential phase for this concentration 

is at approximately three days – between days 4.4 and 7.5.  

 

3.3.3. EVALUATION OF THE EFFECT THAT HA HAS ON CELL 

GROWTH AND PROLIFERATION OF TUMOUR-DERIVED 

CELL LINES 
 

To investigate whether HA polymer MW has an effect on proliferation of 

tumour-derived cell lines, cells were seeded and cultured on HA-coated surfaces. All 

four cell lines used in this project were found to adhere and growth onto the different 

structured surfaces, although different growth patterns were observed. All cell lines 

growing on HA4 can spread along the surface, appearing to show similar cell 

morphology to the controls; whereas cells growing on HA234 and HA2590 surfaces 

showed a markedly increased capacity for self-aggregation, leading to enhanced cell 
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clumping. Cells growing on HAmix presented a mix of morphologies but mainly forming 

cell aggregates (Figure 3.8). However, when removed and placed on tissue culture 

polystyrene, these cellular clumps started to spread along the surface and presented 

similar cell morphology as the controls (data not shown). 

MTT assay was performed in order to assess the effect that HA polymer 

molecular weight has on proliferation of tumour-derived cell lines.  Using tissue culture 

polystyrene as control, the proliferation of RT112, T24, PC3 and PNT1A on the coated 

surfaces was evaluated. The cells were seeded and cultured in vitro over eight days, and 

cell viability was determined (see Appendix X). Using the obtained OD values, for 

each cell line cell proliferation percentages (Figure 3.9) and kinetic parameters were 

calculated (Tables 3.8 to 3.11; Appendix XII). 
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Figure 3.8 – Effect of HA on cell growth of RT112, T24, PC3 and PNT1A cell lines after 5 incubation days in growth medium. 
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Figure 3.9 – Effect of HA on cell proliferation of tumour-derived cell lines. Cell proliferation percentages 

when compared to the respective control (cells growing on tissue culture polystyrene) after 8 incubation 

days in growth medium. Measurements were performed by MTT optical density reading at λ = 570 nm. 

Statistical comparisons were based on t student test for two-tailed P value (p< 0.05 was considered 

significant; n=3). The conditions linked by (*) are statistically different to the control, the other one being 

similar. 

 

In Figure 3.9 is shown the cell proliferation percentages obtained for all four 

cell lines when compared to the respective controls after 8 days of cell growth. Cell 

proliferation percentage values were calculated using data obtained from the OD 

measurements. HA-tethered surfaces induced significant proliferation of tumour-derived 

cell lines over 8 days of culture, although different growth patterns were observed 

depending on the molecular weight of HA chain (Figure 3.9; Appendix XI). For all 

cell lines, an increase in the proliferation was seen for cells growing on HA4 surfaces, 

whilst a decrease was observed in those cells growing on HA234 and HA2590 surfaces. 

This cell proliferation decrease was very sharp for RT112 and PC3 cells. For RT112 

cells growing on HA234, a decrease of 40% can be seen, whereas a decrease of 65% is 
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observed for those cells growing on HA2590. Regarding PC3 cell line, a decrease of 88% 

can be observed when cells grow on HA234, while a decrease of 75% is seen on those 

cells growing on HA2590. For T24 cells, it can be seen that HA4 and HAmix stimulated a 

proliferation of 17% and 14%, respectively, when compared to control, whereas a 

decrease was observed for those cells growing on HA2590 (24%) and HA234 (5%). For 

PNT1A cells growing on HA4 and HAmix, the highest proliferation increase when 

compared to the rest of cell lines is seen; 22% and 19% respectively. Conversely to the 

other cell lines, HA234 did not induce significant changes in the proliferation of PNT1A 

cells. In addition, for PNT1A cells growing on HA2590, the smallest decrease in 

proliferation (4%) when compared to the other cell lines is seen. Aminosilane surfaces 

were used as a control to show that the differences seen in cell proliferation were not 

due to the construction of HA-coated surfaces, but due to the properties of HA. 

Quantitation in cell culture is required for the characterisation of the growth 

properties of different cell lines for experimental analyses (Freshney, 2005). Knowledge 

of the growth state of a culture and its kinetic parameters is critical in the design of cell 

culture experiments. Measurements of kinetic parameters are often used to determine 

the response of cells to a particular stimulus or toxin. The calculated kinetic parameters 

were found to be related to the cell proliferation percentages obtained (Figure 3.8). For 

RT112 cells growing on HA4 surfaces, it can be seen that the doubling time value (D) is 

lower and the specific growth rate (µ) and number of generations/day (X) values are 

higher than for the control. Whilst for cells growing on the other surfaces, higher D 

values, and lower X and µ values are observed when compared to the control (Table 

3.8). Regarding T24, PC3 and PNT1A cell lines this correlation between cell growth 
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and kinetic parameters is also observed (Tables 3.8 to 3.11). The only exceptions are 

seen for PC3 cells growing on HA4, and PNT1A growing on HAmix. 

 

Table 3.8 – Kinetic growth parameters calculated for RT112 cell line. Cells were seeded at a 

concentration of 2.5 x104 cells/well. 

Parameter Control Aminosilane HA4 HA234 HA2590 HAmix 

N0 (OD) 0.23 0.63 0.40 0.44 0.30 0.34 

N (OD) 0.79 1.11 0.89 0.67 0.65 0.64 

t1 (days) 1.91 4.22 4.40 4.19 1.96 2.71 

T1  (days) 4.79 5.83 5.61 5.63 6.00 4.51 

X (generations/day) 1.77 0.81 1.15 0.61 1.13 0.90 

D (hour) 38.90 47.34 25.43 56.71 85.84 48.05 

µ (hour-1) 0.008 0.0064 0.012 0.0053 0.004 0.0063 

 

 

Table 3.9 – Kinetic growth parameters calculated for T24 cell line. Cells were seeded at a concentration 

of 6.25x103 cells/well. 

Parameter Control Aminosilane HA4 HA234 HA2590 HAmix 

N0 (OD) 0.37 0.28 0.34 0.26 0.25 0.37 

N (OD) 0.91 0.93 0.81 0.37 0.38 0.96 

t1 (days) 4.68 4.47 4.79 3.00 3.00 5.46 

T1  (days) 7.04 7.03 6.37 5.05 5.54 6.90 

X (generations/day) 1.31 1.74 1.27 0.53 0.58 1.36 

D (hour) 43.30 35.35 29.79 92.11 104.57 25.35 

µ (hour-1) 0.0070 0.0085 0.0101 0.0033 0.0029 0.0119 
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Table 3.10 – Kinetic growth parameters calculated for PC3 cell line. Cells were seeded at a concentration 

of  5x104 cells/well. 

Parameter Control Aminosilane HA4 HA234 HA2590 HAmix 

N0 (OD) 0.73 0.76 0.62 0.39 0.52 0.58 

N (OD) 1.10 0.98 1.01 0.77 0.83 1.05 

t1 (days) 5.20 5.21 5.06 4.47 4.72 5.47 

T1  (days) 5.84 5.75 5.94 6.32 6.00 6.82 

X (generations/day) 0.59 0.36 0.70 0.99 0.68 0.85 

D (hour) 25.59 36.74 30.47 44.85 45.17 37.91 

µ (hour-1) 0.0118 0.0082 0.0099 0.0067 0.0067 0.0079 

 

 

Table 3.11 – Kinetic growth parameters calculated for PNT1A cell line. Cells were seeded at a 

concentration of  5x104 cells/well. 

Parameter Control Aminosilane HA4 HA234 HA2590 HAmix 

N0 (OD) 0.51 0.51 0.46 0.37 0.35 0.32 

N (OD) 0.80 0.85 0.67 0.67 0.56 0.63 

t1 (days) 4.98 5.19 5.90 5.38 5.69 4.33 

T1  (days) 5.74 6.18 6.23 6.50 6.63 7.03 

X (generations/day) 0.63 0.74 0.55 0.87 0.67 0.97 

D (hour) 29.03 31.73 14.43 30.68 33.39 67.03 

µ (hour-1) 0.010 0.0095 0.021 0.0098 0.009 0.0045 
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3.3.4. EVALUATION OF THE EFFECT THAT HA HAS ON 

APOPTOSIS OF TUMOUR-DERIVED CELL LINES 
 

To investigate whether HA polymer MW induce apoptosis, cells were 

immunoblotted for the 89 kDa, carboxy-terminal catalytic domain fragment of cleaved 

PARP. Using tissue culture polystyrene as control, the apoptosis of RT112, T24, PC3 

and PNT1A cells growing on the coated surfaces was evaluated. The cells were seeded 

and cultured in vitro over eight days, and apoptosis was determined by western blotting. 

The amount of cleaved PARP produced following treatment can indicate the extent to 

which the cells have undergone apoptosis. β-actin antibody was used as positive control, 

to ensure integrity of protein. Protein extract from OE21 cells 10 Gy irradiated was also 

used as positive control.  

 

Control      HA           HA          HA           HA4 234 2590 mix

RT112 T24
Control      HA         HA         HA        HA4 234 2590 mix

42 kDa 

89 kDa Cleaved
PARP

β-actin 

42 kDa 

89 kDa Cleaved
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Control      HA        HA         HA           HA4 234 2590 mix

PC3 PNT1A

Control      HA         HA         HA        HA4 234 2590 mix

42 kDa 

89 kDa Cleaved
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β-actin 

 
Figure 3.10 – Effect of HA on the expression of apoptotic marker protein. Lysates from RT112, T24, 

PC3 and PNT1A cells growing on HA-coated surfaces were immunoblotted, probing for cleaved PARP. 
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β-actin was used as a loading control. Lysate from OE21 10 Gy irradiated cells was used as positive 

control for apoptosis. 

The data shown in Figure 3.10 indicate that HA did not induce apoptosis. 

Cleaved PARP was not detected on cell lines growing on HA-coated surfaces. The only 

exception is seen on PNT1A cells, where samples have undergone apoptosis. Since 

similar expression of cleaved PARP was also found in control cells, it can therefore be 

assumed that HA did not have an effect on apoptosis. 

 

3.4. DISCUSSION 

 

The data shown in Figure 3.10 indicate that HA did not induce apoptosis. 

Cleaved PARP was not detected on cell lines growing on HA-coated surfaces. The only 

exception is seen on PNT1A cells, where samples have undergone apoptosis. Since 

similar expression of cleaved PARP was also found in control cells, it can therefore be 

assumed that HA did not have an effect on apoptosis. 

 

3.4.1.    QUANTITATION OF THE CULTURE GROWTH 

 

One of the goals of this project was to assess whether different HA molecular 

weight has on proliferation of tumour-derived cell lines. For this purpose, the studies 

firstly carried out in this chapter aimed to construct cell growth curves viewing a better 

knowledge of the cell lines characteristics, and to establish reproducible conditions for 

the experiments and maintenance of the cultures. The construction of growth curves 

from cell counts provides information about a number of parameters that should be 
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characteristic of the cell line under a given set of culture conditions, including cell 

growth vessel area, cell concentration, and media.  Quantitation of the culture growth is 

not only an important factor in routine maintenance, but also a crucial element for 

monitoring the consistency of the culture and knowing the most appropriate time to 

subculture. It is very important to observe when it is the exponential phase of a cell 

culture, since it is in this stage that the cell growth is high (usually 90-100%) and the 

culture is in its most reproducible form. Consequently, this is the optimal time for 

sampling, as the population is at its most uniform and the viability is high (Freshney, 

2005). 

A variety of assays are currently available providing information on the 

proliferation and capability of cell populations: cell counting, measurement of metabolic 

activity, measurement of DNA synthesis, measurement of cell cycle regulatory 

molecules (Rode et al., 2006). Of these available methods, two different assays were 

chosen, focusing on a direct and an indirect technique. Viable cell count is a direct 

measure of proliferation, while MTT assay is an indirect method based on the 

measurement of the cell metabolic activity. The direct cell counting in a 

haemocytometer is the most straightforward method for quantifying the number of 

viable cells in a culture. The cell viability is measured by the ability of viable cells 

exclude a dye such as trypan blue, while cells with compromised membrane integrity 

are stained. This is an inexpensive technique and requires only a small fraction of total 

cells from a cell population (Rode et al., 2006). However, it is a laborious and time 

consuming procedure (Lin et al., 1999). MTT assay is a colourimetric method, being 

less laborious than cell counting and widely used in evaluation of viable cell numbers in 

vitro experiments (Lin et al., 1999). In MTT assay, the use of a tetrazolium dye as the 
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end point relies on the ability of cells to reduce the dye in a quantitative manner, and 

thus estimate of surviving cell numbers (Plumb et al., 1989). Whereas MTT is an assay 

where the metabolic activity measures the cell health, cell viable counting gives an 

absolute measure of cell proliferation. In addition, MTT assay is a widely used method, 

being inexpensive and supported by an extensive literature base. Thus, combining these 

assays, a more detailed view of the cell activity can be reached (Genetic Engineering & 

Biotechnology News, 2006). 

This work focused upon human bladder and prostate cell lines, using two cell 

lines of each tissue type. The use of two cell lines of each tissue type may provide 

insights into the variability of expression within tumours of differing stage and grade. 

Regarding the comparison of cell growth curves between RT112 and T24 (bladder) cell 

lines , it was observed that RT112 presents a higher cell growth rate. This is likely to be 

related to with the more invasive phenotype presented by RT112 cells; and therefore 

being observed a higher cell proliferation rate than T24 cells (Nixdorf et al., 2004). 

From the comparison between PC3 and PNT1A (prostate) cell lines, it was shown that 

PC3 presents a higher cell growth rate. These data might be correlated with the 

malignant phenotype presented by PC3 cells; the PNT1A cell line is derived from 

normal prostate cells immortalised with SV40 viral genome, hence their non-malignant 

phenotype (Cussenot  et al., 1991; Scaltriti1 et al., 2004). 

Findings from this work suggest that piecewise nonlinear regression with three 

linear segments can represent the different growth phases of a mammalian cell culture. 

Piecewise nonlinear regression has been used for the analysis of trends in cancer rate 

incidence (Kim et al., 2000; Tiwari et al., 2005), to estimate size- and age-related 

mortality rates of fish (Maceina, 2007), and to fit stock-recruitment and individual 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cussenot%20O%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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growth curves for fish (Borrowman and Myers, 2000). In this chapter of work is 

proposed the use of piecewise nonlinear regression with three linear segments as a good 

tool for the calculation of growth kinetic parameters of mammalian cell lines 

(Chandrasekaran et al., 2005).  

 

3.4.2. HA-POLYMER MOLECULAR WEIGHT MODULATES 

GROWTH AND PROLIFERATION OF TUMOUR-DERIVED 

CELL LINES 
 

  Tumour progression is accompanied by various cellular, biochemical and 

genetic alterations, including the interaction of tumour cells with ECM molecules, 

including HA (Laurent and Fraser, 1992). The effects of HA on cell adhesion are 

controversial and dependent on cell type. It has been reported promotion or inhibition of 

cell adhesion in inflammatory cells, hepatic cells, myoblast cells or stabilised cell lines 

(Cho et al., 2004; Ken et al., 2008). The differential effects of HA on tumour cells 

attachment, proliferation and migration have not been completely studied. In particular, 

the effects of different HA polymer molecular weight (MW) have not been explored. To 

the present knowledge, this represents the first study were HA polymer MW has been 

suggested to modulate cell adhesion and differentiation of tumour-derived cell lines. 

Here it was reported that the MW of the polysaccharide plays a pivotal role in 

adherence and morphology of tumour-derived cell lines. It was observed that HA with 

medium and large molecular weights prevent tumour cells from attaching to the matrix, 

and consequently cells do not acquire their normal morphology. Hence, these findings 

may suggest that cell behaviour of tumour cells is HA MW-dependent. 
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The next stage of work was the evaluation of the effect that HA has on cell 

proliferation. Cells were seeded and cultured in vitro over 8 days, and cell viability was 

determined by MTT assay. HA-tethered surfaces induced proliferation of tumour-

derived cell lines over eight days of culture, although different growth patterns were 

seen. It was observed that cells respond to HA low MW fragments more exuberantly 

than to high MW fragments. Small HA fragments (HA4) increase proliferation, whereas 

a decrease is seen in the presence of medium (HA234) and large fragments (HA2590). 

Interestingly, HA4 stimulated an increased proliferation in those less invasive cell lines 

(T24 and PNT1A), while HA234 and HA2590 induced a sharper decrease in the most 

malignant tumour cell lines (RT112 and PC3). An increase in cell proliferation was 

observed for T24 and PNT1A cells growing on HAmix surfaces, whereas a small 

decrease was observed for RT112 and T24 cell lines. These observations might be 

related with the antagonist effect that small HA polymers have in the presence of larger 

fragments (Ohno et al., 2005; Takahashi et al., 2005). The cell growth results are 

comparable to the kinetic values obtained. These observations were also found in a 

work performed by West and Kumar (1989) on endothelial cells, where 3-10 

disaccharide fragments stimulated cell growth, while native HA inhibited cell 

proliferation (West and Kumar, 1989). HA oligosaccharides (4-25 saccharide range) 

have been suggested to be implicated in cell proliferation and promotion of 

angiogenesis (West et al., 1985). In addition to angiogenesis, there is also some 

evidence that small HA fragments stimulate endothelial cell proliferation, adhesion and 

migration (Rossler and Hingghofer-Szalkay, 2002; Murai et al., 2004). Conversely, it 

has been suggested that large HA molecules inhibit endothelial cell growth, exhibiting 

anti-angiogenic properties (Chen and Abatangelo, 1999; Stern et al., 2006), and being 
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involved in the promotion of cell quiescence and protection of cells against apoptosis 

(Morrison et al., 2001; Jiang et al., 2005).  There is some evidence suggesting that high 

levels of HA are present in most cancer malignancies, as well as in the serum of some 

cancer patients (Dahl and Laurent, 1988; Knudson et al., 1989; Knudson, 1996; 

Auvinen et al., 1997; Lokeshwar et al., 1997; Ropponen, 1998). Additionally, some 

studies have evidenced that large HA chain length is found in most normal biological 

processes, while much smaller fragments are detected in malignant tumours (Kumar et 

al., 1989; Lokeshwar et al., 1997). Production of HA fragments in the 30-50 saccharide 

range is seen in highly invasive bladder cancers (Lokeshwar et al., 1997). It has also 

been reported that HA has the capacity to increase the bioavailability of many drug 

molecules. The bioavailability promoted by HA is the result of bioadhesion and/or 

penetration enhancement, which were found to be dependent on the polysaccharide 

molecular weight (MW). While high MW HA fragments (more than 300 kDa) promote 

an increase in the bioavailability, low MW fragments (55 kDa) have no effect (Liao et 

al., 2005).  

Since cell proliferation occurs in a balance with apoptosis, the next addressed 

question was whether HA MW induces apoptosis of tumour-derived cell lines. 

Apoptosis was assessed by Poly-ADP-Ribose-Polymerase (PARP) cleavage, which is 

an indicator of apoptosis. PARP is a 113 kD enzyme that it is involved in the DNA 

repair, binding specifically at DNA strand breaks, and it is also a substrate for certain 

caspases (including caspase 3 and 7) activated during early stages of apoptosis. These 

proteases cleave PARP to two fragments of approximately 89 kD and 24 kD. This 

cleavage neutralises the ability of PARP to participate in DNA repair, and contributes to 

a cell commitment to undergo apoptosis. Detection of PARP cleavage therefore allows 
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distinguishing different types of cell death and quantifying apoptotic cells in a 

population. Detection of the 89 kD PARP fragment with anti-PARP serves as an early 

marker of apoptosis (Soldani and Scovassi, 2002). To investigate whether HA polymer 

MW induce apoptosis, cells growing on HA-coated surfaces were immunoblotted for 

the 89kDa, carboxy-terminal catalytic domain fragment of cleaved PARP, with the 

amount of cleaved PARP produced following treatment indicating the extent to which 

the cells have undergone apoptosis. In the present work, a significant apoptosis 

induction promoted by HA was not shown. Apoptotic marker was only detected in 

PNT1A cells. Apoptosis study was performed after eight days of cell growth. In order to 

perform this investigation cells could not be fed over this period of time, since all cells 

needed to be collected for protein extraction. Therefore, this might be related with the 

fact that PNT1A cells undergone apoptosis, including control cells. These results may 

suggest that HA was not involved in the apoptosis, but only on cell proliferation. Hence, 

the decreased proliferation seen for cells growing on medium and large HA fragments 

maybe due a decrease of growth kinetics, and not apoptosis mechanism. The role of HA 

on apoptosis is still controversial. It is reported that tetrasaccharides are anti-apoptotic 

(Xu et al., 2002). However, a study performed by Pauloin and co-workers (2009) 

evidenced that high MW hyaluronic acid decreases UVB-induced apoptosis in human 

epithelial corneal cells (Pauloin et al., 2009). Bourguignon and co-workers (2009) have 

also proposed a model for HA-CD44-mediated PKC (Protein Kinase C) activation in 

the regulation of chemoresistance in breast tumour cells. In this model, HA binds to 

CD44, promoting PKC activity and activating a protein cascade, leading to anti-

apoptosis and survival of breast tumour cells (Bourguignon et al., 2009). However, in 

this study, the molecular size of the HA polymer is not mentioned. 
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It would be useful to perform more apoptosis studies in order to confirm these 

results, and using more apoptotic markers, such as Bid and Bax. These markers are pro-

apoptotic proteins and their respective levels can also be indicative of apoptosis. Bid is 

truncated and relocates to the mitochondria at the start of apoptosis (Luo et al., 1998; 

Kim and Chung, 2007), while Bax is recruited to the mitochondrial membrane to 

repress the anti-apoptotic protein Bcl-2 and to permeabilise the membrane so 

cytochrome c can be released to initiate the caspase cascade (Lalier et al., 2007). Cells 

that are undergoing programmed cell death acquire characteristic nuclear morphology, 

such as nuclear condensation and fragmentation (Kerr et al., 1972). Another way to 

visualise the induction of programmed cell death is to assess apoptotic markers using 

fluorescence microscopy. Although this is a non-quantitative method, through the 

analysis of the nuclear staining it is possible to observe the different stages of nuclear 

disruption that occur throughout programmed cell death. 

The investigation performed in this chapter indicates that HA affects the 

proliferation of the cells to varying degrees, but not apoptosis. Proliferation is a tightly 

controlled process, regulated by the checkpoints of the cell cycle. The cell cycle consists 

of different stages of DNA replication and division, and progression of a cell through 

each one is tightly regulated to prevent aberrant cells from proliferating.  To determine 

whether the effects of HA on cell proliferation and viability are related to changes in 

cell cycle progression, it would be useful to examine the distribution of the cells 

throughout the cell cycle. This could be performed using propidium iodide (PI) and 

analysed by flow cytometry. PI is a fluorochrome that intercalates double-stranded 

nucleic acids and its signal can therefore be used to quantify cellular DNA content.  The 

distinct phases of the cell cycle can be identified, based on relative fluorescence 
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intensity and hence relative DNA content, and then subsequent quantification of the 

number of cells within each phase can be performed. 

Targeted therapieshat are designed to induce apoptosis selectively in cancer cells 

are currently the most promising anti-cancer strategies. These strategies aim to target 

and kill malignant cells with minimal or no collateral damage. Therefore, the toxicity of 

anti-cancer agents has to be kept to a minimum level. When this cannot be achieved, 

dosage is reduced. Another important factor is how the immune system deals with the 

targeted delivery of its potentially highly dangerous effector mechanisms (Bremer, 

2006). Although HA was not shown to induce apoptosis, this compound is a 

biocompatible and biodegradable molecule, reported to increase the bioavailability of 

many drug molecules. Since proliferation of malignant cells was markedly reduced by 

the presence of exogenous HA234 and HA2590, findings from this work also suggest that 

these polymers may be potential candidates to be used in cancer therapeutics. 

 

3.5. CONCLUSIONS 

 

To the present knowledge, this represents the first study were HA polymer MW 

has been suggested to modulate cell adhesion and differentiation of tumour-derived cell 

lines, with medium and large HA fragments preventing tumour cells from attaching to 

the surface, and consequently cells do not differentiate and acquire their normal 

morphology. Therefore, being suggested that the regulation of differentiation of tumour 

cells is dependent on HA MW. In this chapter of work it was demonstrated that the 

proliferation of tumour-derived cell lines is specifically HA-molecular size and 

phenotype dependent; with low MW stimulating increased proliferation in less invasive 
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cell lines, whereas a sharp decrease was observed in the most malignant cell lines 

growing in the presence of medium and high molecular weight fragments. Here it was 

also reported that piecewise nonlinear regression with three linear fragments is a good 

approach for the calculation of growth kinetic parameters of mammalian cell lines. 

Despite not being shown that HA promotes apoptosis, findings from this investigation 

can suggest that medium and large MW polysaccharides may be potential biopolymer 

candidates to be used in cancer therapeutics. 
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“Science is a way of thinking much more than it is a body of knowledge” – Carl Sagan 
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CHAPTER 4 
 

4. INVESTIGATION OF THE EFFECT THAT HA HAS ON THE 

EXPRESSION OF CD44 AND RHAMM 
 

4.1. INTRODUCTION 

 

As previously discussed in Chapter 1, the biological functions presented by 

hyaluronic acid are mediated through interactions with its cellular receptors: CD44 and 

RHAMM being the principal HA receptors. CD44 is a cell surface receptor, playing an 

important role in cell-cell and cell-ECM interactions (Martin et al., 2003). It is also 

involved in cell motility, migration and differentiation, functions intimately associated 

with the capacity of CD44 to promote cell attachment to HA (Naor et al., 1997). The 

gene coding for human CD44 is located on the short arm of chromosome 11 location 

p13 (Francke et al., 1983; Forsberg et al., 1989a, 1989b). It is composed of at least by 

20 exons, spanning approximately 60 kb (Screaton et al., 1992; Borland et al., 1998; 

Günthert, 2001). There are two groups of 10 exons each: one group comprises exons 1-

5 and 16-20, being constitutively expressed and described as the standard form of the 

gene – CD44s; and the other group described as the variable form – CD44v – which in 

humans comprises exons 7-15 that can be alternatively spliced, resulting in a large 

number of functionally distinct isoforms (Figure 4.1; Tölg et al., 1993). The first five 

exons (exon 1-5) and exons 16 and 17 are present in all CD44 isoforms, whereas exons 

7-15 are subjected to alternative splicing (designated as variant exons, v2-v10; Tölg et 



CHAPTER 4                 INVESTIGATION OF THE EFFECT THAT HA HAS ON THE EXPRESSION OF CD44 AND RHAMM 

 

154 

 

al., 1993; van Weering et al., 1993; Martin et al., 2003; Thorne et al., 2004; see Figure 

4.1). 

 

 

Figure 4.1 – Genomic organisation of human CD44. Orange boxes represent the 9 variant exons v2–v10 

which are either all spliced out to produce the standard form of CD44 (CD44s) or combinations to 

produce alternatively spliced CD44 isoforms (CD44v) [Adapted from Isacke and Yarwood, 2002; Martin 

et al., 2003].  

 

CD44 is a family of transmembrane glycoproteins (Weber et al., 1996). The 

standard form of CD44 (CD44s) is a type I transmembrane molecule, composed of 341 

amino acids and synthesised as a 37 kDa protein that undergoes extensive post-

translational modifications. The protein can be divided into three major domains: a 

cytoplasmic (70 aa), transmembrane (23 aa) and extracellular (248 aa). The nine exons 

subjected to alternative splicing (v2-v10) encode up to 381 aa. They are inserted at a 

single site in the membrane proximal extracellular domain between exons 5 and 16 of 

the RNA transcript, corresponding to a position between aa 202 and 203 (Martin et al., 

2003). The protein modifications following translation result in several isoforms-

specific post-translational modifications and therefore to a structural diversity (Bajorath, 

2000). Post-translational modifications occurs either due to glycosylation resulting in a 

protein of 85 kDa, or through the addition of chondroitin sulphate producing a protein 
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of 180-200 kDa. The cytoplasmic domain of the protein may also undergo to 

phosphorylation changes. Post-translational modification patterns of CD44 isoforms 

varies among different cell types and cellular context (Bajorath, 2000; Martin et al., 

2003). Consequently, post-translational modifications can modulate the binding 

characteristics and functional properties of CD44 (Kincade et al., 1997; Lesley et al., 

1997; Borland et al., 1998). 

In contrast to the other hyaladherins, RHAMM is expressed both intracellularly 

and at the cell surface. Cell surface RHAMM is involved in promotion of cell motility 

and invasion, whereas the intracellular form is implicated in the cell cycle control and 

mitotic spindle formation (Turley et al., 2002; Girish and Kemparaju, 2007). The single 

gene encoding for human RHAMM is located on chromosome 5 location 5q33.2 (Spicer 

et al., 1995). The gene is composed of 18 exons, 2 of which can be alternatively spliced 

(Hardwick et al., 1992; Entwiste et al., 1995; Harrison and Turley, 1999). Similar to 

CD44, RHAMM can exist in multiple isoforms, with four different transcripts identified 

in humans (Figure 4.2; Harrison and Turley, 1999). These four RHAMM isoforms 

include full length RHAMM (standard RHAMM), an isoform lacking exon 4 and one 

lacking exon 13, and a variant lacking both exons 4 and 13 (Figure 4.2; Harrison and 

Turley, 1999; Assmann et al., 1999). 
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Figure 4.2 – Genomic organisation of standard and alternatively spliced isoforms of human RHAMM 

[Adapted from Harrison and Turley, 1999].  

 

The constitutively expressed and most common RHAMM mRNA human 

transcript encodes the largest intracellular RHAMM protein with 85 kDa (Figure 4.2). 

Some isoforms are generated by alternative splicing of the longest RHAMM mRNA 

transcript (Figure 4.2; Harrison and Turley, 1999). The existence of shorter RHAMM 

proteins ranging 56-80 kDa, have been also reported, the N-terminal truncations of the 

largest protein (Harrison and Turley, 1999; Lyn et al., 2001).  

In a similar fashion to CD44, RHAMM protein also has the potential for post-

translational modifications. RHAMM contains many potential sites for post-

translational modifications, including N-glycosylation, myristoylation, and multiple 

serine-threonine phosphorylation sites. The effect that these modifications might have 

on subcellular localisation and protein interactions remains unclear (Harrison and 

Turley, 1999; Savani, 2010). 

In Chapter 3 it was shown that surfaces coated with HA polymers of differing 

molecular weights have the ability to modulate the proliferation of a number of tumour-

derived cell lines. Since the biological functions presented by HA are known to be 

mediated via interactions with its cell receptors, this chapter of work aims to investigate 

whether HA polymer MW has an effect on the expression of CD44 and RHAMM, in 
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both standard and variant forms, in the same cell lines previously used in Chapter 3. 

One way of investigating the cellular alterations induced by an artificial or natural agent 

during a biological process is to look for changes in transcript expression levels; such 

changes may also produce an effect on expression at the protein level. Therefore, in 

order to perform the present investigation, both transcriptional and translational studies 

have been carried out. Transcriptional studies focused upon the presence of mature 

RNA - mRNA. Thus, RNA was extracted from the cell lines and then reverse 

transcribed into complementary DNA (cDNA). This cDNA was then used as the 

template in a PCR reaction. Translational studies investigated the expression of CD44 

and RHAMM proteins. The work presented in this chapter can be illustrated by Figure 

4.3, summarising all the steps and techniques involved in this investigation. 
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Figure 4.3 – Summary of the steps involved in the investigation carried out in Chapter 4, for both 

transcriptional and translational studies. 
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4.2. MATERIAL AND METHODS 

 

4.2.1. CELL CULTURE 

 

Culture and maintenance of RT112, T24, PC3 and PNT1A cell lines was 

performed as previously described in Chapter 3 (section 3.2.1.). 

 

4.2.2. RNA EXTRACTION 

 

4.2.2.a.  Cell preparation 

 

 RNA extraction was carried out in T75 flask for control cells and in twelve HA-

coated surfaces per film condition previously placed in a 12-well plate. Culture media 

was removed and cells were washed with sterile PBS. 10 ml of fresh sterile PBS were 

added to the flask and cells were detached from the surface using a cell scraper (Fisher, 

UK). The PBS was then removed and placed in a 15 ml centrifuge tube and centrifuged 

at 307 g at 4ºC for 5 minutes. The supernatant was discarded and the cells resuspended 

in 1 ml of sterile PBS. This was then transferred to a micro-centrifuge tube and 

centrifuged again as described previously. The supernatant was discarded and the cell 

pellet then used for the total RNA extraction. 

 

 

 



CHAPTER 4                 INVESTIGATION OF THE EFFECT THAT HA HAS ON THE EXPRESSION OF CD44 AND RHAMM 

 

160 

 

4.2.2.b.  Synopsis of PureLink™ RNA Mini Kit protocol 

 

Total RNA was extracted using PureLink™ RNA Mini Kit (Invitrogen, Paisley, 

UK) according to the manufacturer’s instructions. Briefly, a lysis buffer containing 

guanidine isothiocyanate and 2-mercaptoethanol was added to the cell pellet and lysate 

was passed through an 18 gauge needle. Nucleic acids were precipitated in 70% ethanol 

and then cell homogenate transferred to a spin column, and washed a number of times 

to remove impurities. This was followed by a centrifugation to remove the ethanol 

mixture. The RNA allowed to dry and then resuspended in 30 µl of RNase-free water. 

 

4.2.2.c.  RNA quantification and integrity analysis 

 

The purified total RNA quantification was performed using Picodrop 

spectrophotometer (Picodrop Limited, United Kingdom).  

RNA integrity was assessed using Experion Automated Electrophoresis System 

(Bio-Rad, UK) according to the manufacturer’s instructions. This method applies 

combination of microfluidic separation technology and sensitive fluorescent sample 

detection to perform a rapid and automated analysis of RNA. All gel-based 

electrophoretic steps, including sample separation, staining, de-staining, imaging, band 

detection and data analysis, are automatically performed in a RNA chip to generate 

reproducible separation and quantitative results. In this study, RNA analysis was 

performed using RNA StdSens analysis kit. The RNA quality indicator (RQI) 

classification generated by Experion system returns a number between 10 (intact RNA) 
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and 1 (highly degraded RNA). RQI values ranged 7.4-10, meaning that all RNA 

samples presented high quality and integrity (see Appendix XV).  

 

4.2.3. CDNA PRODUCTION BY REVERSE TRANSCRIPTION (RT) 
 

cDNA production was carried out using a cDNA cycle kit (Invitrogen, Paisley, 

UK), according to the manufacturer’s instructions. RNA from cell extraction was mixed 

with 1 µl of random-hexamer primers and 2 µl of dNTP mix and RO water for a final 

volume of 12 µl. This was incubated at 65ºC for 10 minutes before being placed on ice 

for 2 minutes. Then an RT master mix (Table 4.1) was added to the previously 

described mix. This mix (20 µl in total) was then incubated at 25ºC for 10 min, 50ºC for 

50 min, followed by a final step of 85ºC for 5 minutes. 

 

Table 4.1– RT master mix for cDNA production. 

 Reaction mix Volume (µl) Final concentration 

5x cDNA synthase buffer 4.0 2.5x 

0.1 M DTT 1.0 12.5 mM 

40 U/µl RNase Out 1.0 5 U 

15 U/µl Cloned AMV RT 1.0 1.88 U 

 DEPC H2O 1.0  

 Total 8.0  

 

For the construction of Real-Time PCR standard curves, 2 µg of total RNA were 

used, whereas 1 µg of total RNA was used for Real-Time PCR target gene expression 

analysis. Between 1-2 µg of total RNA were used for PCR. 
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4.2.4. PCR 

 

cDNA from the above cycle was used in PCR reactions. For the amplification 

reaction mixes, Taq PCR Core Kit (Qiagen, UK) was used. The composition of PCR 

mastermix is shown in Table 4.2.  

 

Table 4.2 – Mastermix composition used in PCR reactions. 

 Reaction mix Volume (µl) Final concentration 

10x PCR buffer 5.0 1x 

10 mM dNTPs 1.0 0.2 mM 

25 mM MgCl2 1.0 0.5 mM 

10 mM F primer 1.0 0.2 mM 

10 mM R primer 1.0  

5 U/µl Taq DNA polymerase 0.5 2.5 U 

 DEPC H2O 38.5  

 cDNA 2.0  

 Total 50.0  

 

The primer pair (P1/P4) used in the standard amplification of CD44 (Goodison 

et al., 1997) amplifies from exon 3 to exon 17, thereby encompassing the whole variant 

region. A positive result from CD44 standard amplification was indicated by the 

presence of a number of bands, the smallest of which is 482 bp. Regarding CD44 

variants amplification, exon link PCR assay was used. Exon link assay is a PCR-based 

assay that allows the examination of CD44 exon splicing, focusing upon splicing at the 

standard/variant exon border (Goodison et al., 1997). This technique uses the standard 

exon-anchored primer (P1) at exon 3 and a second primer for a particular 

standard/variant junction between exon 5 and one of the variant exons 7-14 (Figure 
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4.4). Reverse primers used are designated as follows: 5/7, 5/8, 5/9, 5/10, 5/11, 5/12, 

5/13 and 5/14. A positive result of variants amplification is a product of 348 bp 

(Goodison et al., 1997).  

 

 

Figure 4.4 – Schematic diagram of the exon link assay design. PCR is performed using the standard 

exon-anchored primer (P1) at exon 3 and a second primer for a particular standard/variant junction 

between exon 5 and one of the variant exons 7-14 [Adapted from Goodison et al., 1997]. 

 

For the amplification of RHAMM standard form (RHAMMFL), a primer pair 

was designed for exon 7 and exon 11, and therefore encompassing the common region 

for all the variants. RHAMM-48 corresponds to the isoform lacking exon 4, and the 

primers were designed for amplifying the region encompassing exons 1 to 7. RHAMM-

147 corresponds to the variant lacking exon 13, and primer pair was designed for the 

amplification of exons 11 to 16. Positive results correspond to a product amplification 

of 571 bp for RHAMMFL, 646 bp for RHAMM-48 and 677 bp for RHAMM-147 (Crainie 

et al., 1999). 

Positive and negative controls were included in each reaction. A negative control 

included everything within the PCR mastermix except the cDNA, to ensure that no 

contamination was present. β-actin amplification was used as positive control, since it is 

an abundant protein within eukaryotic cells and therefore is readily detectable by PCR 

via its mRNA. 

Exon 3 Exon 4 Exon 5 Variant exon X

348 bp

P1

5’ 3’

Exon overlaping primer 5/XStandard exons
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CD44 standard and exon link assay, and β-actin PCR amplifications were 

performed in a DNA Engine (PTC200) Peltier Thermo Cycler (MJ Research, USA) 

programmed for one initial cycle at 95ºC for 1 minute, followed by 29 cycles at 94ºC 

for 1 minute, 55ºC for 1 minute and 72ºC for 1 minute. This was followed by 1 cycle at 

94ºC for 1 minute, 55ºC for 1 minute and a final extension step at 72ºC for 5 minutes. 

For RHAMMFL and RHAMM-48 amplifications thermocycler was programmed for one 

initial cycle at 95ºC for 1 minute, followed by 35 cycles at 95ºC for 1 minute, 60ºC for 1 

minute and 72ºC for 1 minute, and a final extension step at 72ºC for 5 minutes. For 

RHAMM-147 the same cycling parameters were used, but 58ºC for the annealing 

temperature.  

PCR products were separated by 1.5% agarose gel electrophoresis in 1% TAE 

buffer, at 80 V for 70 minutes, stained with ethidium bromide and visualised on an UV 

light transluminator. GeneGenius Bio Imaging System (Syngene, USA). The size of the 

PCR fragments was estimated comparing to a molecular weight marker (100 bp ladder 

Promega, UK). 

Primer sequences can be found in Appendix XIII. 

 

4.2.5. REAL-TIME PCR 

 

For the study of the expression of CD44, a primer pair was designed for standard 

CD44 form flanking exons 2 and 3. Regarding RHAMM standard form, a primer pair 

was designed flaking exons 5 to 7. Primers were designed using Primer 3.0 software 

(Rozen and Skaletsky, 2000), and a BLAST (Altschul et al., 1990) was performed in the 

http://www.ejbiotechnology.info/content/vol9/issue5/full/2/index.html#2
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Nacional Center for Biotechnology Information (NCBI), in order to ensure that the 

proposed primers were only specific to the target sequences. Normaliser genes need to 

be evaluated and validated regarding the expression stability in each tissue type; hence, 

ABL1 was selected to be used as housekeeping gene for prostate cell lines (Nna et al., 

2010) and HSPCB for bladder cell lines (Anderson et al., 2004). The sequences of the 

primers used in real-time PCR are shown in Appendix XIV. 

PCR reactions were performed in a Bio-rad CFX96 thermal cycler (Biorad, UK) 

programmed for one initial cycle at 95ºC for 15 minutes, followed by 45 cycles at 95ºC 

for 15 seconds, 60.1ºC for 30 seconds and 72ºC for 30 seconds, and a final melting 

curve analysis 65ºC-95ºC with an increment of 0.5ºC for 5 seconds. Product formation 

was detected by incorporation of SYBR green (QuantiTect SYBR Green PCR Kit, 

Qiagen, UK). The composition of the real-time PCR mastermix is shown in Table 4.3. 

 

Table 4.3 – Reaction mixture used in real-time PCR. 

 Reaction mix Volume (µl) Final concentration 

10x PCR buffer 5.0 5x 

10 mM F primer 0.5 0.5 mM 

10 mM R primer 0.5    0.5 mM 

 DEPC H2O 3.0  

 cDNA 1.0  

 Total 10.0  

 

4.2.5.a.  Data analysis 

 

In the present study relative quantification of gene expression was performed in 

order to evaluate expression of CD44 and RHAMM using Pfaffl method (Pfaffl, 2001). 
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In this method, the relative expression ratio (R) of a target gene is calculated based on E 

and the Ct deviation of an unknown sample versus a control, and expressed in 

comparison to a reference gene (Equation 4.1). The preparation of standard curves is 

only required to determine the amplification efficiencies of the target and housekeeping 

genes in an initial experiment (Pfaffl, 2001).  

 

R =  
�Etarget�

ΔCttarget(control−sample)

(Ereference)ΔCtreference(control−sample)                                                                 (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒.𝟏) 

Where Etarget is the real-time PCR efficiency of target gene transcript; Ereference is the real-

time PCR efficiency of a reference gene transcript. Efficiencies can be calculated according 

to Equation 4.2: 

 

E =  10⌊−1/slope⌋                                                                                                                (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒.𝟐) 

 

Ct deviations are calculated using Equations 4.3 and 4.4: 

 

ΔCttarget = Ct control target gene−   Ct sample target gene                              (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒.𝟑) 

 
ΔCtreference = Ct control reference gene−  Ct sample reference gene            (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒.𝟒) 

 

The fold change in expression ratios and statistical analysis for quantitative PCR 

were performed by group-wise comparison based on PCR efficiencies and the mean 

crossing point of the amplification curve with the threshold deviation between sample 

and control group using Relative Expression Software Tool - REST© (MCS version) 



CHAPTER 4                 INVESTIGATION OF THE EFFECT THAT HA HAS ON THE EXPRESSION OF CD44 AND RHAMM 

 

167 

 

using randomisation tests with pair-wise reallocation (Pfaffl et al., 2002). This type of 

test makes no assumptions about distribution of the data, thus allowing for more 

flexibility than non-parametric ranked tests. Significance was set at p ≤ 0.05. Graphical 

representations are presented in logarithmic scale (power of 2). 

For the calculation of the RHAMM/CD44 expression ratio, Pfaffl equation was 

simplified as Equation 4.5: 

 

R =  
(ERHAMM)ΔCtRHAMM(sample)

(ECD44)ΔCtCD44(sample)                                                                                   (𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒.𝟓) 

 

Statistical analysis was performed using GraphPad Prism 5.0 software. Analysis 

of variance (ANOVA) was performed using Kruskal-Wallis test (for nonparametric, and 

not assuming Gaussian distribution) and Dunns’ multiple comparison test. A probability 

value of < 0.05 was considered statistically significant. Graphical representations are 

presented in logarithmic scale (power of 2). 

 

4.2.6.    IMMUNOCYTOCHEMISTRY 

 

Cells required for immunocytochemistry (ICC) were treated as if for passage and 

resuspended in fresh media. Control cells were grown in slide flasks with a detachable 

polystyrene slide as their base (Nunc, Denmark). Cells were seeded in these flasks and 

were grown until the base of flask was covered by a monolayer of cells. The media was 

removed and cells were washed in cold sterile PBS, before detaching the flasks from the 

slides. These slides were then immersed in cold methanol for 10 minutes to fix the cells 
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and left to dry overnight at 4ºC. Slides were wrapped in foil and stored at -20ºC until 

required. The same protocol was followed for cells growing on the coverslips coated 

with hyaluronic acid. 

Slides and coverslips were removed from storage at -20ºC and allowed to stand 

at room temperature for 10 minutes, before being divided into sections using an 

ImmEdge pen (Vector Laboratories, Peterborough, UK). To block non-specific 

antibody reactions, 50µl/grid of a 1:5 dilution of goat serum (Biosera Limited, UK) in 

PBS was applied to the slides, which were then incubated for 1 hour at room 

temperature in a humid atmosphere. Blocking solution was removed and slides were 

incubated with 50µl of primary antibody (Table 4.4) overnight at 4ºC in a humid 

atmosphere. 

Slides were then incubated 30 minutes at room temperature followed by three 

washes in PBS of 5 minutes each. This was followed by incubation with secondary 

antibody (Table 4.4) for 1 hour at room temperature in humid atmosphere followed by 

three 15 minutes washes in PBS. Slides were incubated at room temperature for 30 

minutes in ABC (avidin-biotin conjugate), which represents the first stage of the 

detection system. The ABC (Dako) was made up 30 minutes in advance, consisting in 

equal amounts of solution A (5 µl) and solution B (5 µl) with 1000 µl of PBS. Slides 

were then washed three 5 minutes in PBS, and incubated in DAB (diaminobenzidine) 

solution for 30 minutes. Slides were then washed in water and conterstained in 

haematoxylin for 30 seconds, followed by washing in running water to produce the true 

colour of the counterstaining. Slides were then mounted using a glycerol based 

mountant (Vector, UK) and analysed using a Zeiss microscope with a Zeiss axiocam 
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camera, and using a Zeiss axiansian software. Staining was evaluated using x800 

magnification. 

Table 4.4 – Primary and secondary antibodies used in immunocytochemistry. 

Primary Antibody Dilution Secondary antibody (biotinylated) Dilution 

CD44 mAb (AbD Serotec, UK) 1:100 
Rabbit anti-mouse (Dako-Cytomation, UK) 1:200 

CD168 mAb (Abcam, UK) 1:25 

Antibodies were diluted in PBS containing 1% of goat serum. 

 

4.3. RESULTS 

 

4.3.1. CD44 AND RHAMM STANDARD FORMS EXPRESSION 

 

4.3.1.a.  CD44 expression 

 

In order to confirm the expression of CD44, a screening of CD44 was first 

carried out among the controls of all four cell lines (Figure 4.5). The four cell lines 

generated an amplification pattern, albeit showing different patterns. All cell lines 

express a common band of approximately 470 bp. In RT112 cells it can be seen the 

presence of a number of bands, the lowest of which is approximately 470 bp and the 

highest approximately 1500 bp. For T24 only a band can be seen (470 bp), whereas for 

PNT1A the presence of two bands (700 bp and 470 bp) can be observed. In PC3 cells 

three bands of approximately 850 bp, 650 bp and 470 bp were amplified. The band of 

approximately 470 bp corresponds to the standard form of CD44, and the other bands 
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representing CD44 variant forms. For RT112 cells the CD44 standard form band 

appears to be less expressed comparatively to the other cell lines. 

 

 

 
Figure 4.5 – Amplification pattern generated by CD44 standard form using P1-P4 primers for RT112, 

T24, PC3 and PNT1A cell lines. Pattern marker of 100 bp (M); negative control (NC). 

 

After confirmation of the expression of CD44 in the control cells, the analysis of 

the expression of this transcript was also performed in those cells growing on HA 

structured surfaces (Figures 4.6 to 4.9). 

 

RT112 cell line 

 

Figure 4.6 presents the amplification pattern generated by CD44 standard form 

for RT112 cell line. It can be seen that CD44 is expressed in RT112 cells growing in all 

four HA structured surfaces, with the same pattern generated by control cells amplified. 

 

 
Figure 4.6 – Amplification pattern generated by CD44 standard form using P1-P4 primers for RT112 

cells growing on HA-coated surfaces. Pattern marker of 100 bp (M); negative control (NC). 

 

 

  M     RT112    T24     PC3    PNT1A    NC 

1500 bp 

1000 bp 

500 bp 

M         HA4        HA234   HA2590    HAmix      NC    

1000 bp 

500 bp 

2000 bp 
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T24 cell line 

 

Figure 4.7 shows the amplification pattern generated by P1-P4 primers for T24 

cell line. It can be seen that T24 cells growing on HA-coated surfaces express CD44 

standard transcript, and having the same amplification pattern from the control (a band 

of approximately 470 bp). Cells growing on structured surfaces appear to have similar 

CD44 expression. 

 

 
Figure 4.7 – Amplification pattern generated by CD44 P1-P4 primers for T24 cells growing on HA-

coated surfaces. Pattern marker of 100 bp (M); negative control (NC). 

 

PC3 cell line 

 

Figure 4.8 shows the amplification pattern generated by CD44 P1-P4 primers 

for PC3 cell line. As it can be seen CD44 is expressed in cells growing on all four 

different structured surfaces and showing the same amplification pattern from the 

control. Stronger bands appear to be amplified in PC3 cells growing on HA2590 and 

HAmix surfaces. In addition, in all four treatments the bands corresponding to CD44 

isoforms appear to be less expressed when comparing to the control (see Figure 4.5). 

 

 
Figure 4.8 – Amplification pattern generated by CD44 P1-P4 primers for PC3 cells growing on HA-

coated surfaces. Pattern marker of 100 bp (M); negative control (NC). 

M        HA4       HA234      HA2590     HAmix      NC    

1000 bp 

500 bp 

M        HA4       HA234      HA2590   HAmix      NC    

1000 bp 

500 bp 
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PNT1A cell line 

 

In Figure 4.9 is shown the amplification pattern generated by CD44 P1-P4 

primers for PNT1A cell line growing on the HA-coated surfaces. As it can be observed 

CD44 shows the same amplification pattern from the control. However, interestingly, 

the band corresponding to the CD44 standard form (470 bp) appears to be less 

expressed and the band of approximately 700 pb corresponding to variant form being 

more expressed comparatively to control cells (see Figure 4.5). The 700 bp band also 

appears to be more expressed on PNT1A cells growing on HA2590 and HAmix. 

 

 
Figure 4.9 –Amplification pattern generated by CD44 P1-P4 primers for PNT1A cells growing on HA-

coated surfaces. Pattern marker of 100 bp (M); negative control (NC). 

 

4.3.1.b.  RHAMM expression 

 

A RHAMM standard form (RHAMMFL) screening was carried among all cell 

lines in order to verify the presence or absence of this gene (Figure 4.10). As it can be 

observed from Figure 4.10, RHAMMFL is highly expressed in all four cell lines, 

showing a band of approximately 520 bp.  

 

 
Figure 4.10 – Amplification pattern generated by RHAMMFL primers for RT112, T24, PC3 and PNT1A 

control cells. Pattern marker of 100 bp (M); negative control (NC). 

M        HA4       HA234      HA2590     HAmix      NC    
1000 bp 

500 bp 

M      RT112   T24      PC3    PNT1A    NC 
1000 bp 

500 bp 
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After confirmation of the presence of RHAMM in control cells, the same 

investigation was performed in those cells growing on HA structured surfaces (Figures 

4.11 to 4.14).  

 

RT112 cell line 

 

From Figure 4.11 it can be seen that RHAMMFL was expressed in RT112 cells 

growing in all four HA-coated surfaces, presenting similar amplification to the control 

(see Figure 4.11).  

 

 
Figure 4.11 – Amplification pattern generated by RHAMMFL primers for RT112 cells growing on HA-

coated surfaces. Pattern marker of 100 bp (M); negative control (NC). 

 

T24 cell line 

 

In Figure 4.12 is presented the amplification pattern generated by RHAMMFL 

primers, being observed that RHAMM standard form is expressed in T24 growing in 

the presence of HA.  

 

 

Figure 4.12 – Amplification pattern generated by RHAMMFL primers for T24 cells growing on HA-

coated surfaces. Pattern marker of 100 bp (M); negative control (NC). 

 

 

 M        HA4        HA234     HA2590    HAmix      NC    
1000 bp 
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 M        HA4        HA234     HA2590    HAmix      NC    
1000 bp 
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PC3 cell line 

 

 In Figure 4.13 it can be seen that RHAMM standard form was amplified in PC3 

cells growing in the presence of HA, appearing to have similar expression levels to the 

control (see Figure 4.13). 

 

 
Figure 4.13 – Amplification pattern generated by RHAMMFL primers for PC3 cells growing on HA-

coated surfaces. Pattern marker of 100 bp (M); negative control (NC). 

 

PNT1A cell line 

 

In Figure 4.14 it can be observed that RHAMMFL is amplified in PNT1A cells 

growing on all four HA structured surfaces 

 

 
Figure 4.14 – Amplification pattern generated by RHAMMFL primers for PNT1A cells growing on HA-

coated surfaces. Pattern marker of 100 bp (M); negative control (NC). 

 

4.3.1.c.  Quantitative CD44 and RHAMM expression 

 

Real-time PCR (qPCR) is considered the gold-standard technique for measuring 

gene expression. It is a quantitative technique that monitors the accumulation kinetics of 

a specific PCR product, recognised by a specific fluorescent dye. Quantification of 

 M        HA4        HA234     HA2590    HAmix      NC    
1000 bp 

500 bp 

 M        HA4        HA234     HA2590    HAmix      NC    

1000 bp 

500 bp 
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cDNA can be achieved by determining, for each sample, the specific cycle number at 

which the detection of PCR product reaches an arbitrary threshold value; this value 

must represent the PCR’s exponential phase across all relevant samples in the reaction. 

In the present study relative quantification of gene expression was performed in order to 

evaluate expression of CD44 and RHAMM. In Figures 4.15 - 4.18 is shown the CD44 

and RHAMM transcript expression levels in all four cell lines. 

 

RT112 cell line 

 

Results from qPCR assays normalised to HSPCB, showed that both CD44 and 

RHAMM transcripts are down-regulated in RT112 cells growing on HA-coated 

surfaces. CD44 appears to be down-regulated to a greater level in cells growing on HA4 

surfaces, with a greater RHAMM decrease in those cells growing in the presence of 

HAmix (Figure 4.15). However, the expression of CD44 and RHAMM in cells growing 

on HA234 are not significantly down-regulated when compared to controls.  
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Figure 4.15 – Change in expression of CD44 and RHAMM transcript (expressed as relative gene 

expression) normalised to HSPCB in RT112 cell line. Data represent the mean ± S.D. of triplicate PCR 

observations. Cells growing on HA-coated surfaces were compared to control cells using Pair-Wise Fixed 

Reallocation Randomization Test© with significance set at p ≤ 0.05. The conditions linked by (*) are 

statistically different to the control, the other one being similar. 

  

T24 cell line 

 

From the CD44 and RHAMM expression normalised to HSPCB in T24 cell line 

it can be seen that both transcripts are up-regulated for cells growing on HA-coated 

surfaces. The expression of both transcripts appears to be up-regulated to a greater 

degree in those cells growing on HAmix, with a lower increased level in cells growing in 

the presence of HA234. Nevertheless, the cell receptors expression is not significantly 

up-regulated when compared to the control (Figure 4.15). 
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Figure 4.16 – Change in expression of CD44 and RHAMM transcript (expressed as relative gene 

expression) normalised to HSPCB in T24 cell line. Data represent the mean ± S.D. of triplicate PCR 

observations. Cells growing on HA-coated surfaces were compared to control cells using Pair-Wise Fixed 

Reallocation Randomization Test© with significance set at p ≤ 0.05. The conditions linked by (*) are 

statistically different to the control, the other one being similar. 

 

PC3 cell line 

 

In Figure 4.17 is shown the CD44 and RHAMM expression normalised to 

ABL1 in PC3 cell line. It can be observed that CD44 and RHAMM transcript levels are 

significantly down-regulated for PC3 cells growing on HA structured surfaces. CD44 

transcript levels have a greater decrease in cells growing on HA2590 surfaces, and lower 

decrease in those cells growing in the presence of HA234. Regarding RHAMM, this 

transcript is down-regulated to a greater level in PC3 cells growing on HA234 surfaces, 

and having lower down-regulation level in cells growing on HA4 surfaces (Figure 

4.17). 
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Figure 4.17 – Change in expression of CD44 and RHAMM transcript (expressed as relative gene 

expression) normalised to ABL1 in PC3 cell line. Data represent the mean ± S.D. of triplicate PCR 

observations. Cells growing on HA-coated surfaces were compared to control using Pair-Wise Fixed 

Reallocation Randomization Test© with significance set at p ≤ 0.05. The conditions linked by (*) are 

statistically different to the control, the other one being similar. 

 

PNT1A cell line 

 

In Figure 4.18 is presented the CD44 and RHAMM expression normalised to 

ABL1 in PNT1A cell line. As it can be observed, CD44 transcript is up-regulated in 

PNT1A cells growing on HA structured surfaces. CD44 is up-regulated to a greater 

level in PNT1A cells growing on HAmix surfaces, with a lower up-regulation seen in 

those cells growing in the presence of HA234. However, significant up-regulation is only 

seen on PNT1A cells growing on HAmix-coated surfaces. Regarding RHAMM, this 

transcript is up-regulated in cells growing on HA4 and HA234-coated surfaces, and 

down-regulated in those cells growing on HA2590 and HAmix surfaces.  This transcript is 

up-regulated to a greater degree in cells growing on HA234, with a greater down-

regulation seen for cells growing on HAmix. Nevertheless, no significant expression is 

seen in RHAMM regulation when compared to the control. 
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Figure 4.18 – Change in expression of CD44 and RHAMM transcript (expressed as relative gene 

expression) normalised to ABL1 in PNT1A cell line. Data represent the mean ± S.D. of triplicate PCR 

observations. Cells growing on HA-coated surfaces were compared to control cells Pair-Wise Fixed 

Reallocation Randomization Test© with significance set at p ≤ 0.05. The conditions linked by (*) are 

statistically different to the control, the other one being similar. 

 

Figures 4.19 and 4.20 present graphs summarising the expression of CD44 and 

RHAMM transcripts in all four cell lines. In Figure 4.19 is shown the expression of 

CD44, being observed that CD44 transcript is up-regulated in the less invasive cell lines 

(T24 and PNT1A), while a down-regulation is seen in the most malignant cells (RT112 

and PC3). From Figure 4.20 it can be observed that RHAMM transcript is also down-

regulated in RT112 and PC3 cells, and up-regulated in T24 and PNT1A cell lines; with 

the exception of PNT1A cells growing on HA2590 and HAmix structured surfaces. 
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Figure 4.19 – Change in expression of CD44 transcript (expressed as relative gene expression) 

normalised to the correspondent housekeeping gene in all four cell lines. Data represent the mean ± S.D. 

of triplicate PCR observations. Cells growing on HA-coated surfaces were compared to control cells 

using Pair-Wise Fixed Reallocation Randomization Test© with significance set at p ≤ 0.05. The 

conditions linked by (*) are statistically different to the control, the other one being similar. 
 

 
Figure 4.20 – Change in expression of RHAMM transcript (expressed as relative gene expression) 

normalised to the correspondent housekeeping gene in all four cell lines. Data represent the mean ± S.D. 

of triplicate PCR observations. Cells growing on HA-coated surfaces were compared to control cells 

using Pair-Wise Fixed Reallocation Randomization Test© with significance set at p ≤ 0.05. The 

conditions linked by (*) are statistically different to the control, the other one being similar. 
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 In Figure 4.21 is presented the RHAMM/CD44 transcript expression ratio.  

 
Figure 4.21 – RHAMM/CD44 transcripts ratio in all four cell lines. Data represent the mean ± S.D. of 

triplicate PCR observations. 

  

From figure above it can be seen that CD44 is more expressed than RHAMM in 

all four cell lines and all treatments. The RHAMM/CD44 ratio was significantly 

decreased to a greater degree in RT112 cells growing in the presence of HA4 

comparatively to control and those cells growing in the presence of HAmix. No 

significant difference between treatments was found in T24 cell lines. PC3 cells 

growing on HA234 surfaces showed a decreased ratio comparatively to control cells and 

those growing on HA4 and HA2590 surfaces. The RHAMM/CD44 ratio was also 

significantly decreased to a greater level in PNT1A cells growing in the presence of 

HAmix when compared to the control and cells growing in the presence of HA234 (Figure 

4.21). 

Regarding RHAMM/CD44 ratio no pattern was observed. RHAMM/CD44 

transcript ratio in PNT1A control cells showed a significantly lower decrease than the 

rest of cell lines. For cells growing on HA4-coated surfaces, the transcript ratio was seen 
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lower ratio decrease seen for PNT1A cells. Again, RHAMM/CD44 ratio was found to 

be decreased to a lower level in PNT1A cells growing in the presence of HA234; with a 

greater decreased seen for PC3 cell line growing on HA234-coated surfaces. RT112 cells 

growing in the presence of HA2590 were found to have the transcript ratio decreased to a 

greater level comparatively to the other cell lines. No significant difference was found 

for cell lines growing on HAmix-coated surfaces (Figure 4.21). 

 

4.3.2. CD44 AND RHAMM ISOFORMS EXPRESSION 

 

4.3.2.a.  CD44 expression 

 

After confirmation of the expression of CD44 standard form in the control cells, 

exon link PCR assay was subsequently performed to study the presence of CD44 variant 

exons on all four cell lines and cells growing on HA-coated surfaces (Figures 4.22 to 

4.25). 

 

RT112 cell line 

 

Figure 4.22 presents the amplification pattern generated by the exon link assay 

for RT112 cell line. Lane 2 shows a standard CD44 amplification pattern, using primers 

P1 and P4, used here as a positive control. Lanes 3-10 indicate the presence or absence 

of exon junctions between 5/7, 5/8, 5/9, 5/10, 5/11, 5/12, 5/13 and 5/14. Lane 11 

corresponds to β-actin amplification used as positive control to ensure integrity of 
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cDNA, and lane 12 the negative control. Thus it can be seen that RT112 cell line 

expresses exon junctions between standard exon 5 and variant exons 7, 8, 9, 11, 12, 13 

and 14. This is demonstrated by the presence of a band of approximately 348 bp in each 

relevant lane. Lane 6 corresponds to exon junction 5/10, being observed an 

amplification of approximately 680 bp. However, this is an unspecific and unexpected 

amplification, and the reason for its present remains unclear. The band amplified on 

lane 9, corresponding to CD44v8 (exon junction 5/13), presented the strongest 

amplification expression. Conversely, the amplification of CD44v7 and v9 (lanes 8 and 

10) presented feint bands (Figure 4.22). 

 

 

Figure 4.22 – Amplification pattern of RT112 exon link assay. Lanes numbered 1-12 from left to right. 

Pattern marker of 100 bp (1), P1/P4 primers (2), P1/ 5/7 primers (3), P1/ 5/8 primers (4), P1/ 5/9 primers 

(5), P1/ 5/10 primers (6), P1/ 5/11 primers (7), P1/ 5/12 primers (8), P1/ 5/13 primers (9), P1/ 5/14 

primers (10), β-actin primers (11), negative control (12). 

 

T24 cell line 

 

In Figure 4.23 is presented the amplification result for exon link assay from T24 

cell lines. It can be seen the presence of variant forms, although lesser in number than in 

RT112 cell line. T24 cell line showed the amplification of 5/8, 5/9, 5/11, 5/12 and 5/13 

variant junctions. The band in lane 9 corresponding to exon junction 5/13 (CD44 variant 

8) does not appear to be very distinct. 
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Figure 4.23 – Amplification pattern of T24 exon link assay. Lanes numbered 1-12 from left to right. 

Pattern marker of 100 bp (1), P1/P4 primers (2), P1/ 5/7 primers (3), P1/ 5/8 primers (4), P1/ 5/9 primers 

(5), P1/ 5/10 primers (6), P1/ 5/11 primers (7), P1/ 5/12 primers (8), P1/ 5/13 primers (9), P1/ 5/14 

primers (10), β-actin primers (11) and negative control (12). 

 

PC3 cell line 

 

Figure 4.24 shows the amplification pattern generated by the exon link assay for 

PC3 cell line. For this cell line 5/7, 5/8, 5/9, 5/11, 5/13 and 5/14 variant exons are 

expressed. Two very distinct bands can be seen in lanes 7 and 9, corresponding to 

CD44v8 and v8 forms (exon junctions 5/11 and 5/13). Conversely, CD44v2 and v4 

shown in lanes 3 and 5 appear to be feint. 

 

 
Figure 4.24 – Amplification pattern of PC3 exon link assay. Lanes numbered 1-12 from left to right. 

Pattern marker of 100 bp (1), P1/P4 primers (2), P1/ 5/7 primers (3), P1/ 5/8 primers (4), P1/ 5/9 primers 

(5), P1/ 5/10 primers (6), P1/ 5/11 primers (7), P1/ 5/12 primers (8), P1/ 5/13 primers (9), P1/ 5/14 

primers (10), β-actin primers (11) and negative control (12). 

 

PNT1A cell line 

 

Figure 4.25 shows the amplification pattern generated by the exon link assay for 

PNT1A cell line. Of all four cell lines used in this investigation, PNT1A was the cell 
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line expressing the lowest number of variant exons. Only three out of eight variant 

exons were expressed: 5/8, 5/11 and 5/13. The bands amplified in lanes 4 and 9 

corresponding to CD44v3 and CD44v8 are not very distinct, appearing to be very feint. 

 

 

Figure 4.25 – Amplification pattern of PNT1A exon link assay. Lanes numbered 1-12 from left to right. 

Pattern marker of 100 bp (1), P1/P4 primers (2), P1/ 5/7 primers (3), P1/ 5/8 primers (4), P1/ 5/9 primers 

(5), P1/ 5/10 primers (6), P1/ 5/11 primers (7), P1/ 5/12 primers (8), P1/ 5/13 primers (9), P1/ 5/14 

primers (10), β-actin primers (11) and negative control (12). 
 

In Table 4.5 is summarised the CD44 variants expression on the controls of all 

four cell lines.  

 
Table 4.5 – Summary of the CD44s and CD44v forms expression on RT112, T24, PC3 and PNT1A cell 

lines. + presence of the form, - absence of the form. 

 CD44s 
CD44v2 

(5/7) 

CD44v3 

(5/8) 

CD44v4 

(5/9) 

CD44v5 

(5/10) 

CD44v6 

(5/11) 

CD44v7 

(5/12) 

CD44v8 

(5/13) 

CD44v9 

(5/14) 

RT112 control  + + + + - + + + + 

T24 control + - + + - + + + - 

PC3 control + + + + - + - + + 

PNT1A control + - + - - + - + - 

 

The semi-quantitative CD44 expression results within cell lines investigated in 

this study revealed the expression of a number of variant exon junctions. For bladder 

models, seven out of eight variants were found to be present in RT112 cell line (v2, v3, 
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v4, v6, v7, v8 and v9); with the presence of five variants in T24 cell line (v3, v4, v6, v7 

and v8). Regarding prostate models, in PC3 cell line six out of eight possible variants of 

are expressed:  v2, v3, v4, v6, v8 and v9; whereas only there variants (v3, v6 and v8) 

were found to be expressed in PNT1A cell line. It was also noticed the presence of v7 

(junction 5/12) only be present in RT112 and T24 cells, being absent in prostate cell 

lines. It was also observed that v2 and v9 isoforms are only present in RT112 and PC3 

cell lines. In addition, CD44v4 appears to be expressed in all cell lines, except in 

PNT1A cells; with the absence of CD44v5 in all four cell lines (Table 4.5). 

 

4.3.2.b.  CD44 isoforms expression on cells growing on HA-coated 

surfaces 
 

After confirmation of the presence of CD44 standard form on HA-coated 

surfaces and the investigation of variant forms on control cells, CD44 exon link PCR 

was also carried out on cell lines growing on the HA structured surfaces. Results from 

the exon link PCR are summarised in Tables 4.6 to 4.9. 

 

RT112 cell line 

 

In Table 4.6 is presented a summary of CD44 variants expressed in RT112 cells 

growing on HA-coated surfaces. As it can be seen, RT112 cells growing on HA 

surfaces appear to have similar CD44 variants pattern expression. Although, conversely 

to control cells CD44 v7 and v9 were not found to be present in those cells growing in 

the presence of HA (Table 4.6).  
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Table 4.6 – Summary of the CD44s and CD44v forms in RT112cell line. + presence of the form, - 

absence of the form. 

 CD44s 
CD44v2 

(5/7) 

CD44v3 

(5/8) 

CD44v4 

(5/9) 

CD44v5 

(5/10) 

CD44v6 

(5/11) 

CD44v7 

(5/12) 

CD44v8 

(5/13) 

CD44v9 

(5/14) 

RT112 control + + + + - + + + + 

RT112 HA4 + + + + - + - + - 

RT112 HA234 + + + + - + - + - 

RT112 HA2590 + + + + - + - + - 

RT112 HAmix + + + + - + - + - 

 

T24 cell line 

  

In Table 4.7 is summarised the amplification pattern generated by CD44 

variants on T24 cells. It can be observed that three variants (v3, v6 and v8) expressed in 

control cells do not appear to be amplified in cells growing on HA structured surfaces 

(Table 4.7). 

 

Table 4.7 – Summary of the CD44s and CD44v forms in T24cell line. + presence of the form, - absence 

of the form. 

 CD44s 
CD44v2 

(5/7) 

CD44v3 

(5/8) 

CD44v4 

(5/9) 

CD44v5 

(5/10) 

CD44v6 

(5/11) 

CD44v7 

(5/12) 

CD44v8 

(5/13) 

CD44v9 

(5/14) 

T24 control + - + + - + + + - 

T24 HA4 + - - + - - + - - 

T24 HA234 + - - + - - + - - 

T24 HA2590 + - - + - - + - - 

T24 HAmix + - - + - - + - - 
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PC3 cell line 

 

From the analysis of the results presented in Table 4.8, it can be seen that 

conversely to control cells CD44v2 and v7 are not found to be amplified in PC3 cells 

growing on HA-coated surfaces. In addition, v3 and v6 do not also appear to be 

amplified in those cells growing on HA234 surfaces. 

 

Table 4.8 – Summary of the CD44s and CD44v forms in PC3 cell line. + presence of the form, - absence 

of the form. 

 CD44s 
CD44v2 

(5/7) 

CD44v3 

(5/8) 

CD44v4 

(5/9) 

CD44v5 

(5/10) 

CD44v6 

(5/11) 

CD44v7 

(5/12) 

CD44v8 

(5/13) 

CD44v9 

(5/14) 

PC3 control + + + + - + - + + 

PC3 HA4 + - + - - + - + + 

PC3 HA234 + - - - - - - + - 

PC3 HA2590 + - + - - + - + + 

PC3 HAmix + - + - - + - + + 

 

PNT1A cell line 

 

Table 4.9 presents the summary of the amplification of CD44 variants from 

PNT1A cells. As it can be observed, CD44v3 and v8 appear do not be expressed in 

PNT1A cells growing on HA234 and HA2590 surfaces. In addition, CD44v8 appears do 

not be found in those cells growing on HA4 surfaces (Table 4.9). 
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Table 4.9 – Summary of the CD44s and CD44v forms in PNT1A cell line. + presence of the form, - 

absence of the form. 

 CD44s 
CD44v2 

(5/7) 

CD44v3 

(5/8) 

CD44v4 

(5/9) 

CD44v5 

(5/10) 

CD44v6 

(5/11) 

CD44v7 

(5/12) 

CD44v8 

(5/13) 

CD44v9 

(5/14) 

PNT1A control + - + - - + - + - 

PNT1A HA4 + - + - - + - - - 

PNT1A HA234 + - - - - + - - - 

PNT1A HA2590 + - - - - + - - - 

PNT1A HAmix + - + - - + - + - 

 

4.3.2.c.  RHAMM expression 

 

After confirmation of the expression of RHAMM standard form in the cell lines, 

a subsequent study was performed in order to investigate the presence of RHAMM 

variant forms in both control and cells growing in the presence of HA (Figures 4.26 to 

4.29).  

 

RT112 cell line 

 

Figure 4.26 presents the amplification generated by RHAMM isoforms for 

RT112 cell line. Lane 2 shows a standard RHAMM (RHAMMFL) amplification pattern 

used here as positive control. Lane 3 indicates the presence of RHAMM-48 and lane 4 

the presence of RHAMM-147. Lane 5 corresponds to β-actin also used as positive 

control, and lane 6 the negative control. Thus, it can be seen that both RHAMM-48 and 

RHAMM-147 variant forms appear to be expressed in RT112 cells. This is demonstrated 

by the presence of a band of approximately 646 bp and of 677 bp, for each 
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correspondent isoform. It can be also observed that both isoforms appear to have very 

distinct amplification (Figure 4.26). 

 

 

Figure 4.26 – Amplification pattern generated for RT112 cell line. Lanes numbered 1-6 from left to right. 

Pattern marker of 100 bp (1), RHAMMFL (2), RHAMM-48 (3), RHAMM-147 (4), β-actin (5) and negative 

control (6). 

 

T24 cell line 

 

Figure 4.27 shows the result of the RHAMM isoforms amplification pattern 

generated for T24 cell line. For this cell line very distinct bands were amplified for both 

RHAMM-48 and RHAMM-147 isoforms. 

 

 

Figure 4.27 – Amplification pattern generated for T24 cell line. Lanes numbered 1-6 from left to right. 

Pattern marker of 100 bp (1), RHAMMFL (2), RHAMM-48 (3), RHAMM-147 (4), β-actin (5) and negative 

control (6). 

 

PC3 cell line 

 

In Figure 4.28 is presented the RHAMM isoforms amplification pattern 

generated by PC3 cell line. It can be observed that very distinct bands were amplified 

for both RHAMM-48 and RHAMM-147 isoforms in PC3 cells. 
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Figure 4.28 – Amplification pattern generated for PC3 cell line. Lanes numbered 1-6 from left to right. 

Pattern marker of 100 bp (1), RHAMMFL (2), RHAMM-48 (3), RHAMM-147 (4), β-actin (5) and negative 

control (6). 

 

PNT1A cell line 

 

 From Figure 4.29 it can be seen that both RHAMM-48 and RHAMM-147 

isoforms were expressed in PNT1A cell line, with very distinct bands being amplified. 

 

 
Figure 4.29 – Amplification pattern generated for PNT1A cell line. Lanes numbered 1-6 from left to 

right. Pattern marker of 100 bp (1), RHAMMFL (2), RHAMM-48 (3), RHAMM-147 (4), β-actin (5) and 

negative control (6). 
 

In Table 4.10 is summarised the RHAMM isoforms expression on the controls 

of both bladder and prostate cell lines. The semi-quantitative RHAMM expression 

results within cell lines investigated in this study revealed that both RHAMM-48 and 

RHAMM-147 isoforms were present in all four cell lines. 

 
Table 4.10 – Summary of the RHAMM forms expression on RT112, T24, PC3 and PNT1A cell lines. + 

presence of the form, - absence of the form. 

 RHAMM FL RHAMM-48 RHAMM-147 

RT112 + + + 

T24 + + + 

PC3 + + + 

PNT1A + + + 
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4.3.2.b.  RHAMM isoforms expression on cells growing on HA-coated 

surfaces 
 
After confirmation of the presence of RHAMM isoforms in control cells, the 

same investigation was performed in those cells growing on HA structured surfaces. 

Both RHAMM-48 and   RHAMM-147 variant forms were found to be present in all four 

cell lines growing on HA-coated surfaces (Table 4.11). 

 
Table 4.11 – Summary of the RHAMM forms in RT112, T24, PC3 and PNT1A cell lines growing on 

HA-coated surfaces. + presence of the form, - absence of the form. 

 RHAMM FL RHAMM-48 RHAMM-147 

RT112 control + + + 

RT112 HA4 + + + 

RT112 HA234 + + + 

RT112 HA2590 + + + 

RT112 HAmix + + + 

T24 control + + + 

T24 HA4 + + + 

T24 HA234 + + + 

T24 HA2590 + + + 

T24 HAmix + + + 

PC3 control + + + 

PC3 HA4 + + + 

PC3 HA234 + + + 

PC3 HA2590 + + + 

PC3 HAmix + + + 

PNT1A control + + + 

PNT1A HA4 + + + 

PNT1A HA234 + + + 

PNT1A HA2590 + + + 

PNT1A HAmix + + + 
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4.3.3. CD44 AND RHAMM IMMUNOLOCALISATION  

 

Immunocytochemistry (ICC) was performed in order to detect the presence and 

localisation of CD44 and RHAMM in both cell lines and to compare the expression 

profile of cells grown under varying conditions. Figures 4.30 – 4.33 show the 

immunocytochemical results for each cell line with CD44 and RHAMM antibodies. No 

staining was seen on any of the negative controls confirming the absence of non-

specific binding. All cell lines express CD44 and RHAMM proteins, although as for the 

mRNA expression, patterns differed between each. As CD44 is a cell adhesion 

molecule, it would be expected that staining would be concentrated within the cell 

membrane. However, cytoplasmic and nuclear staining was also noticed in some cells. 

Regarding RHAMM, membrane, cytoplasmic and nuclear expression was found to be 

present.  

As previously discussed in Chapter 3, it is observed the formation of aggregates 

on cells growing on HA234, HA2590 and HAmix structured surfaces. Due all steps 

involved in immunocytochemistry, including the fixation and staining of cells, most of 

cellular aggregates have been lost. Therefore, it is not possible to present 

immunostaining results for all treatments. 

 

4.3.3.a.  RT112 cell line 

 

Figure 4.30 shows the result of ICC with CD44 and RHAMM antibodies for 

RT112 cell line. It can be observed cells growing on HA4-coated surfaces appear to 
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have similar morphology to control cells. Conversely, cells growing on HA234, HA2590 

and HAmix surfaces do not have similar morphology to the controls, forming cell 

aggregates and displaying spherical somal shape. CD44 was found to be stained in 

membrane, cytoplasm and nucleus of RT112 control and cells growing in the presence 

of HA. In addition, a decreased CD44 expression appears to be found in those cells 

growing on HA-coated surfaces, in comparison to controls. RHAMM appears to be 

stained in the cytoplasm of control and cells growing in the presence of HA4 and 

HA2590; being observed a higher expression in cells undergoing cellular division. Cells 

growing on HA234 and HAmix-coated surfaces appeared to be stained for RHAMM 

antibody in membrane, cytoplasm and nucleus. 

 

4.3.3.b.  T24 cell line 

 

In Figure 4.31 is shown the result of ICC with CD44 and RHAMM antibodies 

for T24 cell line. It can be observed that control cells appear to be larger than those cells 

growing in the presence of HA. Again, cells growing on HA234, HA2590 and HAmix 

surfaces do not have similar morphology to the controls, forming cell aggregates and 

displaying spherical somal shape. CD44 was found to be stained in membrane, 

cytoplasm and nucleus of T24 control and cells growing in the presence of HA. Similar 

findings to those observed for CD44 protein can be also seen for the RHAMM staining 

in T24 cell line. 
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4.3.3.c.  PC3 cell line 

 

Staining patterns of CD44 and RHAMM in PC3 cell line are shown in Figure 

4.32. Again, it can be observed that cells growing in the presence of HA are smaller 

than control cells, with the formation of aggregates in those cells growing on HA234, 

HA2590 and HAmix. PC3 cells positively stained for both CD44 and RHAMM antibodies. 

CD44 staining pattern of the PC3 on controls and cells growing on HA-coated surfaces 

appears to be localised in the membrane, cytoplasm and nucleus. However, the CD44 

membrane protein appears to be down-regulated in cells growing in the presence of HA4 

comparatively to control. RHAMM also appears to be expressed in cytoplasm and 

nucleus in both control and cells growing in the presence of HA. An increased 

cytoplasmic and nuclear expression can be seen in those cells undergoing to cell 

division. Membrane RHAMM expression also appears to be found in those cells 

growing on HA2590 and HAmix-coated surfaces. 

 

4.3.3.d.  PNT1A cell line 

 

Figure 4.33 illustrates the ICC results for PNT1A cell line with CD44 and 

RHAMM antibodies. Again, PNT1A control cells appear to be slightly larger than those 

cells growing on HA4-coated surfaces; with cells growing on HA234, HA2590 and HAmix 

surfaces displaying spherical somal shape and forming cellular clumps. PNT1A cells 

positively stained for both CD44 and RHAMM antibodies. Both control and cells 

growing in the presence of HA were found to be stained for CD44 in membrane, 



CHAPTER 4                 INVESTIGATION OF THE EFFECT THAT HA HAS ON THE EXPRESSION OF CD44 AND RHAMM 

 

196 

 

cytoplasm and nucleus. In addition, CD44 expression appears to be up-regulated in cells 

growing on HA4, comparatively to control. RHAMM also showed membrane, 

cytoplasmic and nuclear staining in both control and cells growing in the presence of 

HA. RHAMM protein expression appears to be up-regulated in those cells growing on 

HA-coated surfaces. Interestingly, conversely for cells growing in the presence of 

HA2590 surfaces, not all cells growing on HAmix structured surfaces were found to be 

stained for RHAMM. Indeed, cells growing in the presence of HAmix appear to have a 

decreased RHAMM expression comparatively to control and the rest of treatments. 

 

CD44 appears to be highly expressed in the controls of all four cell lines. The 

expression of CD44 protein appears to be decreased in RT112 and PC3 cell lines 

growing on HA-coated surfaces. A slightly increased CD44 expression can be seen in 

T24 cells. Regarding PNT1A cell line, CD44 also appears to be slightly increased in 

those cells growing on HA-coated surfaces. RHAMM protein is also expressed in all 

four cell lines, with cells appearing to be stained in membrane, cytoplasm and nucleus. 

RHAMM appears to be more expressed in T24 cell lines, and being less expressed in 

PNT1A cells. Conversely, RHAMM appears to be down-regulated in RT112 and PC3 

cells growing on HA structured surfaces comparatively to controls. In addition, as also 

found from the qPCR results, RHAMM appears to be less expressed than CD44 in all 

cell lines. 
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Figure 4.30 – Immunocytochemical staining in RT112 cell line using anti-CD44 and anti-RHAMM antibodies, with nuclei counterstained in haematoxylin. 
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Figure 4.31 – Immunocytochemical staining in T24 cell line using anti-CD44 and anti-RHAMM antibodies, with nuclei counterstained in haematoxylin. 
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Figure 4.32 – Immunocytochemical staining in PC3 cell line using anti-CD44 and anti-RHAMM antibodies, with nuclei counterstained in haematoxylin 
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Figure 4.33 – Immunocytochemical staining in PNT1A cell line using anti-CD44 and anti-RHAMM antibodies, with nuclei counterstained in haematoxylin. 



CHAPTER 4                              INVESTIGATION OF THE EFFECT OF HA ON THE EXPRESSION OF CD44 AND RHAMM 

 

201 

4.4. DISCUSSION 

 

This chapter of work aimed to investigate whether HA polymer molecular 

weight modulates the expression of CD44 and RHAMM within tumour-derived cell 

lines. In order to perform this investigation transcriptional and translational studies have 

been carried out.  

 

4.4.1. HA MODULATES TRANSCRIPTION OF CD44 AND 

RHAMM GENES IN A CELL PHENOTYPE MANNER 
 

From the results presented, it can be seen that all four cell lines used as in vitro 

models express both CD44 and RHAMM at the mRNA level. However, this expression 

varies between both tissue and cell lines of each tissue type. Interestingly, CD44 and 

RHAMM expression appear to be phenotype dependent, but not HA molecular weight 

dependent. CD44 and RHAMM were found to be down-regulated in the most malignant 

cell lines (RT112 and PC3) and up-regulated in the less invasive cells (T24 and 

PNT1A). These data suggest that CD44 and RHAMM interrelated, as the expression 

levels can be correlated: CD44 and RHAMM are either up-regulated or down-regulated. 

From the RHAMM/CD44 ratio obtained from qPCR, it was also found that CD44 is 

more expressed than RHAMM transcript in all four cell lines and all different 

treatments. Previous reports had established that some of the oncogenic effects of 

RHAMM results from its extracellular HA-binding properties (Yang et al., 1994; Hall 

et al., 1995). It has also been shown an involvement of the extracellular RHAMM 

protein in signalling via an association with HA-CD44 complexes, promoting cell 

motility and invasion (Turley et al., 2002; Toole, 2004). In breast cancer there is some 
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evidence that in the presence of HA, RHAMM partners with CD44, activating erk1/2, 

which in turn results in the expression of genes required for cell motility and invasion, 

and consequently conferring malignant potential  (Turley et al., 2002; Toole et al., 

2004; Tolg et al., 2006; Hamilton et al., 2007; Maxwell et al., 2008). Evidence 

presented in this study further suggests that CD44 and RHAMM act in an interrelated 

fashion in bladder and prostate cancer. However, one cannot conclude that the 

mechanism active in bladder and prostate carcinomas is the same as that seen in breast 

cancer. More studies would be required in order to confirm such an assertion. 

 

4.4.2. HA MODULATES EXPRESSION OF CELL RECEPTORS 

VARIANTS 
 

The semi-quantitative CD44 expression results within the prostate (PC3 and 

PNT1A cell lines) and bladder (RT112 and T24 cell lines) in vitro models revealed the 

expression of a number of variant exon junctions. This suggests that a characteristic 

splice pattern can be demonstrated within prostate and bladder cancer. For prostate 

models, regarding PC3 cell line six out of eight possible variants of are expressed:  v2, 

v3, v4, v6, v8 and v9; whereas only there variants (v3, v6 and v8) were found to be 

expressed in PNT1A cell line. PC3 cell line shows multiple banding with varied size 

product; while PNT1A shows two bands. Yang and co-workers (2010) have shown that 

CD44v7-v10 isoforms constitute a unique prostate cancer signature, consistently 

expressed in primary and metastatic prostate cancer (Yang et al., 2010). In addition, 

several studies have shown that cells lose the ability to produce the standard isoform 

and certain variants, other than CD44 v7-v10, in benign prostate tumour (Iczkowski et 

al., 1997; Omara-Opyene et al., 2004; Vis et al., 2000, 2002; Harrison et al., 2006; 



CHAPTER 4                              INVESTIGATION OF THE EFFECT OF HA ON THE EXPRESSION OF CD44 AND RHAMM 

 

203 

Yang et al., 2010). Since PNT1A is a cell line derived from normal prostatic epithelial 

cells, absence of variants would be expected; however, the presence of variant exons 

might be attributed to the immortalisation of the cells with a plasmid containing SV40 

viral gene with a defective replication origin. 

For bladder models, in RT112 cell line seven variants were found to be present, 

namely v2, v3, v4, v6, v7, v8 and v9. For T24 cell line v3, v4, v6, v7 and v8 variants 

were found to be present. The number of variant exons present within each cell line can 

be compared to the characteristic banding noted when carrying out a standard P1-P4 

amplification across the whole gene. RT112 cell line shows multiple banding with 

varied size product; therefore the presence of a number of variant could be expected. 

Conversely, T24 cell line shows only a major band in the agarose gel. However, 

Morgan (2002) reported that when southern blotting is undertaken, a further band 

slightly greater in size than the standard band can be seen (Morgan, 2002). Therefore, 

the presence of lower number in variant exons could be expected in T24 cells. CD44 

exon link assay also showed that v7 (junction 5/12) only appears in RT112 and T24 

cells, being absent in prostate cell lines. Interestingly, junction 5/12 had previously been 

demonstrated to be a potentially useful marker for bladder cancer (Morgan, 2002). It 

was also observed that v2 and v9 isoforms are only present in RT112 and PC3 cell lines, 

and therefore might be suggestive of a correlation between these variants and the more 

invasive and malignant phenotype of these cells. Expectedly, CD44v6 isoform was 

shown to be expressed in all four cells lines, as this isoform is reported to be implicated 

in cancer progression and metastasis formation in a number of tumours (Günthert, 1991; 

Ponta et al., 2003; Bendall et al., 2004; Yaqin et al., 2007). 

From the analysis of the results of the cell lines growing on the structured 

surfaces, the absence of v7 and v9 in RT112 cells growing in the presence of HA can be 
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also observed. Absence of v3, v6 and v8 is also observed for T24 cells growing on HA-

coated surfaces. The absence of v2 is seen in PC3 cells growing on HA structured 

surfaces. Interestingly, the absence of v3, v6 and v9 is seen in PC3 cells growing on 

HA234-coated surfaces. The presence of v8 in PNT1A cell line is only observed in 

control cells and cells growing on HAmix-coated surfaces. Additionally, for this prostate 

cell line, an absence of v3 in cells growing on HA234 and HA2590 structured surfaces is 

also observed. As previously described by Morgan (2002), as sometimes no result with 

agarose gel analysis is obtained due to a very low expression of CD44 variant forms, 

there is a need for a southern blotting analysis in order to confirm the presence of 

different CD44 isoforms obtained by exon-link PCR (Morgan, 2002). 

It has been reported that certain variant exons are spliced in blocks, and exons 

rarely appear to be spliced alone in the transcript (Bell et al., 1998). Despite the simply 

analysis of exon presence may not give rise to any form of distinguishable pattern, it 

may be demonstrated the level of expression for each exon. Analysis of exon junctions 

allows for detection of a predominant pattern that may be tissue and/or tumour specific. 

Normal tissues have preferential splicing patterns, and in tumour cells a desorganised 

regulation of the transcript assembly is seen; this resulting in the generation of a wide 

variety of unusual and alternatively spliced transcripts (Goodison et al., 1997). The 

expression of certain CD44 variant isoforms has been reported to being implicated in 

tumour metastasis (Henke et al., 1996). However, the regulation of the expression of 

CD44 variants in tumours is still controversial. For instance, whereas most of studies 

have shown an increase in CD44v6 expression in colorectal cancer, others have 

demonstrated a significant decrease in advanced colorectal carcinoma (Ni et al., 2002).  

From the semi-quantitative RHAMM expression results it can be seen that 

RHAMM-48 and RHAMM-147 variant transcripts were amplified in all four cell lines, 
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and also in the presence of hyaluronic acid of different molecular weights. It is 

described that in most of normal tissues RHAMM mRNA expression is low or 

undetectable. Conversely, high levels of RHAMM are seen in tumour cells, and are also 

correlated with the neoplastic progression of a variety of tumours, including aggressive 

human fibromatoses tumours, terminally differentiated multiple myelomas, breast 

carcinoma cells, blood tumours, adenocarcinomas, small lung carcinoma cells, 

squamous cell carcinomas, and late stage astrocytoma (Turley et al., 1993; Teder et al., 

1995; Mohapara et al., 1996; Assman et al., 1998; Greiner et al., 2002; Tolg et al., 

2003; Maxwell et al., 2008). RHAMM splice variants of exon 4 (RHAMM-48) and exon 

13 (RHAMM-147) have also been detected in blood of patients with multiple myeloma 

(Crainie et al., 1999). RHAMM-48 was also described in several tumours and cancer cell 

lines (Maxwell et al., 2004). 

The data presented in this study have demonstrated that CD44 and RHAMM 

expression do both appear to change in the presence of different weights of HA, but no 

evidence to conclude its regulatory role. Nevertheless, the significance of these findings 

in tumourigenesis remains unclear. It would therefore be useful to develop a real-time 

PCR assay for the quantitative analysis of the isoform expression presented by these 

genes, as performed for CD44 and RHAMM standard isoforms. This would provide a 

more accurate analysis of the gene splicing observed. 

 

4.4.3. HA MODULATES EXPRESSION OF CD44 AND RHAMM 

PROTEINS 
 

After being seen that HA regulates the expression of CD44 and RHAMM at 

mRNA level, the next addressed question was whether HA also modulates the 
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expression of these cell receptors at protein level. Immunocytochemistry (ICC) was 

performed in order to detect and localise CD44 and RHAMM proteins. It was not 

possible to present immunocytochemical results for all treatments, due to the loss of cell 

clumps during the steps involved in the cellular fixation and staining. The antibodies 

used were specific to detect both standard and protein isoforms. From the results 

obtained it can be seen both CD44 and RHAMM proteins are expressed in all four cell 

lines, with the protein expression appearing to be somehow correlated with the obtained 

transcripts expression. In concordance with the results seen during mRNA 

quantification, CD44 and RHAMM proteins appear to be down-regulated in RT112 and 

PC3 cells growing on HA-coated surfaces, when compared to control cells. Conversely, 

cell receptors appear to be slightly up-regulated in T24 and PNT1A cells growing in the 

presence of exogenous HA. In addition, is it also observed that lower levels of 

RHAMM are present in PNT1A control cells comparing to the other cell lines. This 

finding might be correlated with the phenotype nature of this cell line, as it is reported 

that in most of normal tissues RHAMM mRNA and protein expression is low or 

undectable (Savani et al., 1995; Mohapara et al., 1996; Tolg et al., 2003; Maxwell et 

al., 2008). For all cell lines it can be observed a lower expression of RHAMM 

comparatively to CD44; finding that was also observed for the transcripts expression. 

From the immunolocalisation results it can be observed that RHAMM protein is 

expressed at the membrane, cytoplasmic and nuclear level. This is not wholly 

unexpected, since it has been described that RHAMM is a protein localised at both cell 

surface and intracellularly, including cytoplasm, mitochondria, and nucleus, being 

associated with the cytoskeleton, microtubules, centrosomes and mitotic spindle. 

However, it still remains unclear whether the cell localisation of RHAMM is due to the 

different isoforms of the transcript or due to post-translational modifications. Sohr and 
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co-workers (2008) have also reported that RHAMM expression is regulated during the 

various phases of the cell cycle, with resting cells containing very low levels of 

RHAMM, with the increase of mRNA and protein levels rising during S phase (DNA 

synthesis) and peaking during G2/M phase (mitotic phase) (Sohr and Engeland, 2008). 

Indeed, from immunocytochemical results it can be observed that RHAMM is normally 

more expressed in cells undergoing division.  

From the CD44 immunolocalisation results it can be observed that this protein is 

expressed at both membrane, cytoplasmic and nuclear level. As CD44 is a 

transmembrane protein, it would be expected that the majority of CD44 would be 

present on the membrane alone. However, all four cell lines showed expression in 

membrane, cytoplasm and nucleus. The regulation of CD44 occurs at multiple levels in 

addition to splicing, including promoter methylation, transcription, post-translational 

modifications, ligand binding, and proteolytic processing of the extracellular domain. A 

possible explanation for the cytoplasmic presence of CD44 may be correlated with post-

translational modifications, leading to defective proteins production. Alternatively, it 

could be associated with the build-up of functional protein that is unable to integrate 

into the membrane due to saturation. In some cells the cytoplasmic staining appears to 

be grainy in nature, suggesting aggregation of protein; this may be caused by the 

removal mechanisms within the cells where proteins are encapsulated in order to 

facilitate their degradation. Recently, Lee and co-workers (2009) have shown that CD44 

is internalised and translocated to the nucleus, forming complexes with STAT3 and 

p300, binding to cyclin D1 promoter and enhancing cell proliferation. A bipartite 

nuclear localisation signal was mapped to the cytoplasmic tail of CD44, which is 

involved in the mediation of its nuclear translocation (Lee et al., 2009). However, the 

mechanism of the nuclear localisation and the function of nuclear CD44 remains to be 
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elucidated. Similarly to RHAMM, CD44 protein expression is less expressed in RT112 

and PC3 cells growing on HA-coated surfaces, when compared to control cells.  In 

addition, for T24 cells there appears to be an increased expression of membrane protein 

for cells growing on HA structured surfaces.  

 CD44 is a cell surface glycoprotein, playing an important role in cell-cell and 

cell-ECM interactions and mediating tumour-cell adhesion through binding to several 

ECM components, including hyaluronic acid (Martin et al., 2003). CD44 can be 

correlated with the oncobiological behaviour, including tumourigenesis, growth, 

metastasis and prognosis (Liu and Jiang, 2006). The CD44s protein is detected in 

several types of normal tissues, but an increased expression is seen in neoplastic 

pathologies (Yoshida et al., 1996). The abnormal expression of CD44v proteins is 

detected in a variety of human tumours, including gastrointestinal, mammary, 

urothelial, pulmonary, uterine, bladder, colorectal, thymic and prostate (Yoshida et al., 

1996; Lee et al., 2003; Kobel et al., 2004; Kuncová et al., 2007; Afify et al., 2009). 

Hence, it would be useful to perform detection of CD44 protein variants. In spite of the 

biological significance of CD44 in tumourigenesis is starting to be elucidated, there are 

some aspects that need to be clarified. There are cases showing that standard CD44, 

rather than its variants, enhances tumour progression (Sy et al., 1991; Bartolazzi et al., 

1994). Conversely, in prostate cancer and cervical neuroendocrine carcinoma, CD44 

suppresses metastasis (Gao et al., 1997; Kuo et al., 2007). Furthermore, there are 

studies showing that it inhibits prostate cancer progression (Desai et al., 2007; 

Patrawala et al., 2007). Therefore, the internal and external environment of the tumour 

appears to have an influence in the relationship of standard CD44 vs. CD44 variants. 

Consequently, this relationship must be analysed for each case and each type of tumour; 
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heterogeneity in CD44-dependency can be detected in tumours derived from the same 

histological origin (Naor et al., 2008). 

  

4.5. CONCLUSIONS 

 

In this chapter of work it was demonstrated that the regulation of CD44 and 

RHAMM expression in tumour-derived cell lines appears to be phenotype dependent 

but not HA-MW dependent. HA down-regulates CD44 and RHAMM in the most 

malignant cell lines; and in general, up-regulation of the expression of the cell receptors 

in the less invasive cell lines is seen.  

Findings from this work suggest that CD44 and RHAMM functioning is 

interrelated as their expression levels can be correlated: both CD44 and RHAMM are 

either up-regulated or down-regulated. In addition, the presence of exogenous HA 

appears to be involved in the regulation of CD44 isoform expression. However, the 

significance of these findings in tumourigenesis remains unclear. As performed for 

CD44 and RHAMM standard isoforms, it would be useful to develop a real-time PCR 

assay for the quantitative analysis of the isoform expression pattern presented by these 

genes. This would facilitate a more accurate analysis of the gene splicing observed in 

this study. 

Findings from this study also suggest that the results obtained for the CD44 and 

RHAMM gene expression are consistent at both the mRNA and protein level. HA 

appears to up-regulate CD44 and RHAMM in the less invasive cell lines, and down-

regulate the cell receptors in the most malignant cells. In the future, it would be also 

interesting to perform double immunolocalisation of CD44 and RHAMM, to directly 

compare the localisation and expression of both proteins. In addition, it would be also 
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useful to perform a more accurate analysis of CD44 and RHAMM protein expression 

levels, both standard and variant forms, using techniques such as western blotting and 

flow cytometry.  

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 
“ 1. When a distinguished but elderly scientist states that something is possible, he is almost certainly right; when 
he states that something is impossible, he is probably wrong.  
2. The only way of discovering the limits of the possible is to venture a little way past them into the impossible.  
3. Any sufficiently advanced technology is indistinguishable from magic.” 

Clarke's three laws 
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CHAPTER 5 
 

5. FINAL DISCUSSION 
 

Tumour progression is accompanied by various cellular, biochemical and 

genetic alterations, including the interaction of tumour cells with extracellular matrix 

(ECM) molecules.  Increased synthesis of certain ECM components and/or increased 

breakdown with generation of ECM cleavage products are known to contribute to 

tumour progression. Hyaluronic acid (HA) is a major constituent of ECM, and several 

studies have shown that there is a positive correlation between tumour aggressiveness 

and stromal HA expression on human cancers from different origins and various 

malignancy degrees (Hautman et al., 2001; Auvinen et al., 1997; Li et al., 2007; 

Ropponen et al., 1998; Anttila et al., 2000; Delpech et al., 1993; Horai et al., 1981; 

Lokeshwar et al., 2001; Lipponen et al., 2001; Aaltomaa et al., 2002; Köbel et al., 

2004; Pirinen et al., 2001; Böhm et al., 2002). The high concentrations of HA present in 

tumours are consistent with the high levels present in the serum of some cancer patients, 

when compared with the levels found in those normal individuals (Ropponen et al., 

1998; Dahland Laurent 1988; Knudson et al., 1989; Knudson 1996). The aberrant 

amounts of HA seen in cancers can be produced by the tumour cells themselves or by 

the stromal cells commandeered by the tumour cells (Asplund et al., 1993; Toole 2004). 

High levels of HA are not only a characteristic seen in tumours; transformed cells, 

including those infected with oncogenic viruses, exhibit higher levels of HA production 

as well as abnormal acceleration of cellular growth (Hamerman et al., 1965; Ishimoto et 

al., 1966; Hopwood and Dorfman, 1978; Leonard et al., 1978). In spite of high levels of 

HA being also associated with an unfavourable outcome of the disease, some studies 
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have shown that the accumulation of HA in tumour could serve as a favourable 

prognostic (Pirinen et al., 2001). Therefore, the role of hyaluronic acid and its 

association with progression and metastasis remains unclear and cannot be generalised; 

therefore there is a need to be studied in different cancer entities. 

HA has been implicated in migration, differentiation, progression and invasion 

of cancer cells leading to metastasis. Several studies have shown that HA mediates 

these cellular functions through interactions with specific binding proteins, including 

CD44 and RHAMM, which are known to be the principal receptors for HA. Although 

the major biological function of HA are still unsure, it is well reported that the functions 

exhibited by HA depend on the chain length, molecular mass and on the conditions 

under which the polysaccharide is synthesized (Toole, 2004; Noble, 2002; Girish and 

Kemparaju, 2007). Polymers coming from the HA fragmentation in the course of the 

catabolic pathway occur in a variety of sizes that have a vast range of properties. High 

and low molecular weight HA polymers play opposite roles on cell behaviour (Girish 

and Kemparaju, 2007). It has also been reported that the expression of CD44 and 

RHAMM are linked with pathologic activities of cancer cells (Bourguignon et al., 1993; 

Crainie et al., 1999; Martin et al., 2003; Maxwell et al., 2008). 

All the previous stated findings were the basis of the present project. Hence, the 

aim of this work was to investigate whether hyaluronan polymer molecular weight has 

an effect on the proliferation of tumour-derived cell lines, and to investigate whether 

different HA molecular weight polymers have an effect on the expression of CD44 and 

RHAMM.  

It is reported that immobilised components on a substrate may more closely 

stimulate cell responses due to intimate cell contact with the substrate-bound HA, rather 

than periodic contact with exogenous hyaluronan of media supplementation (Ibrahim et 
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al., 2007). Therefore, in order to perform this investigation, biocompatible surfaces for 

the immobilisation of cells have been produced and characterised as part of the work, to 

allow for the study of cell proliferation and subsequent receptor expression. A number 

of surfaces, coated with polymers of different molecular weights, were constructed. The 

present strategy relied on the crosslinking of HA, in order to improve the rapid 

degradation of this polymer in an aqueous environment, while maintaining its 

biocompatibility and biological activity (Leach and Schimidt, 2004; Segura et al., 2005; 

Collins and Birkinshaw, 2007). Many strategies exist for crosslinking HA, of which 

carbodiimide-mediated crosslinking was selected, for its simplicity and in contrast with 

other crosslinking agents it does not chemically bind to HA polymer molecules 

(Tomihata and Ikada, 1997; Wrobel et al., 2002). Different approaches using lipid 

bilayers have also been employed on the construction of HA surfaces. However, these 

systems require the anchoring of HA films to solid supported membranes through the 

use of HA binding ligands, including p53 and CD44 (Sengupta et al., 2003; Richter et 

al., 2007). This in turn could lead to a competition of HA performed by these ligands 

and the molecular receptors on the cell membrane. 

The studies performed in this investigation relied on 2D in vitro culture, since 

the construction of 3D surfaces would require the use of another component (e.g. 

poly(L-lysine), chitosan, collagen, fibronectin) (Prestwich, 2010), which could stimulate 

a different response, rather than only HA. It is also reported that matrix stiffness has an 

effect on cell morphology, adhesion, proliferation, and migration; with cells showing 

different morphologies and motility rates when cultured on substrates of identical 

chemical properties but different rigidities (Pelham and Wang, 1997; Ren et al., 2008). 

For this reason, the structured surfaces were constructed over a range of different 

crosslinker concentrations (C1, C2 and C3). Using a toolbox of in situ characterisation 
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techniques, including wettability measurements, QCM, AFM and confocal microscopy, 

the highly HA crosslinked films (C3) were selected to be used in in vitro studies. 

The definition of low, medium and high molecular weight lacks consistency in 

studies using HA. In the present work small polymer (H4), which consists of 4.3 kDa 

and approximately 22 saccharides was chosen based on the minimum of 

oligosaccharides that can bind to CD44. It is reported that 6 saccharides is the minimum 

size binding to CD44 (Kohda et al., 1996). Regarding RHAMM, it is not reported the 

minimum size of polysaccharide that can bind to this receptor. In some studies, high 

molecular mass polymers are reported to be larger than 500 kDa, whereas in other 

studies are considered larger than 400 kDa or 262 kDa; with very-high-molecular size 

HA polymers reaching 20,000 kDa (Stern, 2006; Kothapalli et al., 2008; Wolny et al., 

2010). HA with 2,590 kDa (HA2590) was the chosen high molecular mass polymer, and 

HA234 consisting of 234 kDa the medium MW polymer. It would be also interesting to 

test different sizes of the polymer; for instance testing HA consisting of 6 saccharides 

and see whether it also binds to RHAMM. Regarding medium HA size, would be 

interesting to evaluate a polymer smaller than 234 kDa. In addition, it would be also 

interesting to investigate the effect of very-high-molecular size HA polymers. 

Before investigating whether HA has as effect on proliferation of tumour-

derived cell lines, cells were required to adhere and grow on the films. Cells were thus 

seeded and cultured on HA structured surfaces, coated with polymers of different 

molecular weights. To the present knowledge, this represents the first study were HA 

polymer MW has been suggested to modulate cell adhesion and differentiation of 

tumour-derived cell lines, with medium and large polymers preventing the attachment 

of tumour cells to the matrix. As a consequence, cells do not differentiate and acquire 

their normal morphology. Preliminary experiments have also shown that when placing 
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the cellular clumps on normal plastic tissue culture flask, cells spread and acquire again 

similar morphology to the control (data not shown). These findings might be correlated 

with the anti-adhesive properties of HA, also reported by other studies, where it was 

shown that HA promotes cell detachment (Barnhart et al., 1979; Abatangelo et al., 

1982; Koochekpour et al., 1995). Therefore, HA shows to have both adhesive and anti-

adhesive properties, being correlated with the size of the polymer. The effects of HA on 

tumour cells attachment, proliferation and migration have not yet been completely 

studied and remain to be elucidated. However, findings from this work may suggest that 

the regulation of the differentiation of tumour cells is dependent on HA MW. 

Using the constructed structured surfaces was demonstrated that HA-polymer 

MW modulates cell proliferation of human bladder (RT112 and T24) and prostate (PC3 

and PNT1A) tumour-derived cell lines. Low HA MW (HA4) increases proliferation, 

whereas a decrease is seen in the presence of medium (HA234) and high MW fragments 

(HA2590). Interestingly, the proliferation stimulus performed by HA appears to be 

phenotype dependent, with HA4 surfaces stimulating an increased proliferation in those 

less invasive cell lines (T24 and PNT1A), while HA234 and HA2590 inducing a sharper 

decrease in the more malignant tumour cell lines (RT112 and PC3).  

Cell proliferation occurs in a balance with apoptosis. In addition, targeted 

therapies that are designed to induce apoptosis in cancer cells are currently the most 

promising anti-cancer strategies, aiming to target and kill malignant cells with minimal 

or no collateral damage (Bremer, 2006). Therefore, after being shown that HA 

modulates cell proliferation, the next addressed question was whether HA also has an 

effect on apoptosis of tumour-derived cell lines. However, no production of significant 

amount of cleaved PARP protein, which serves as an early marker of apoptosis, was 

detected. These results may suggest that HA is not involved in the apoptosis pathway, 
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but only on proliferation of tumour-derived cell lines. In addition, the decreased 

proliferation seen for cells growing on medium and large HA fragments might be only 

correlated with a decrease of growth kinetics, and not apoptosis mechanism. 

The reasons for the unique interactions of different molecular sizes of HA with 

tumour cells are not fully understood. However, it is believed that the biological 

functions presented by HA are mediated through interactions with its cellular receptors. 

CD44 and RHAMM are known to be the principal HA receptors, with CD44 being the 

most studied among the cell receptors identified. After being shown that HA is involved 

in the promotion of cell proliferation, the next question was whether the expression of 

CD44 and RHAMM was also modulated by the different molecular weights of HA. 

CD44 and RHAMM are hyaluronic acid receptors known to be involved in cell 

proliferation and development of tumourigenesis. It has been reported that HA 

fragments ranging 20-500 kDa promote cell cycle progression via CD44/Rac/ERK 

pathway in smooth muscle cells, whereas fragments with >500 kDa were shown to be 

inhibitory (Kothapalli et al., 2008). Wolny and co-workers (2010) have shown that 

small fragments of HA (≤10 kDa) reversible bind to CD44, whereas an irreversible 

interaction with larger polymers is seen (Wolny et al., 2010). It has also been reported 

that HA oligomers can induce very different cell responses when bound to CD44, 

comparatively to high MW fragments, because oligomers can cause clustering of 

multiple CD44 receptors and thus altering the intracellular responses (Liu et al., 1998). 

It has been suggested that the interaction of HA oligomers with CD44 promote cell 

proliferation, due the enhancement of vascular endothelial growth factor (VEGF; 

Murphy et al., 2005). Therefore, in the present investigation one could speculate that the 

expression of these receptors could be correlated with the cell proliferation findings 

obtained, with CD44 and RHAMM transcripts being up-regulated in cells growing in 
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the presence of HA4, and down-regulated in the presence of HA234 and HA2590. 

Unexpectedly, CD44 and RHAMM expression were found to be phenotype dependent, 

but not HA polymer size dependent; with CD44 and RHAMM being down-regulated in 

the most malignant cell lines (RT112 and PC3) and up-regulated in the less invasive 

cells (T24 and PNT1A). It can also be suggested that CD44 and RHAMM interplay, as 

the expression levels can be correlated: CD44 and RHAMM are either significantly up-

regulated or down-regulated. Although cellular assays have provided insights into 

overall molecular pathways, the regulation of the interaction of the different molecular 

sizes of HA with its cell receptors, and its role in cancer progression, remains unclear. 

In addition, as previously discussed the definition of low, medium and high molecular 

weight lacks consistency in these studies, and there is not a consensus of the size of the 

polymer. For instance, in some studies either oligomers that correspond to a single 

binding site for CD44, or polymers with more than 100 binding sites are denoted as low 

MW (Wolny et al., 2010). 

It has been reported that the expression of certain CD44 variant isoforms is 

implicated in tumour metastasis (Henke et al., 1996). In addition, RHAMM splice exon 

variants have been also detected in several tumours and cancer cell lines (Maxwell et 

al., 2004). Hence, the next question was whether HA has also a role in the expression of 

CD44 and RHAMM splice variants transcription. The use of exon link assay revealed 

the expression of a number of CD44 variant exon junctions within the prostate and 

bladder in vitro models. It was demonstrated that RT112 and PC3 cells present a higher 

number of variants, which can be correlated with the more invasive and malignant 

phenotype of these cell lines. The non-appearance of some variants in cells growing in 

the presence of exogenous HA was also observed. Regarding RHAMM, it was observed 

that all four cell lines growing on HA structured surfaces express all variant isoforms. 
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The significance of these findings in tumourigenesis remains unclear. Similarly as 

performed for standard forms, the development of a real-time PCR assay for cell 

receptors isoforms would allow a more accurate transcription quantification. 

The results from protein expression were found to be somehow correlated with 

the obtained transcripts expression. It can be seen that both CD44 and RHAMM 

proteins are detected in all four cell lines, appearing to be less expressed in RT112 and 

PC3 cells growing on HA-coated surfaces, when compared to control cells. Conversely, 

cell receptors appear to be more expressed on T24 and PNT1A cells growing in the 

presence of exogenous HA. In addition, it can be observed that lower levels of 

RHAMM are present in PNT1A cells, comparing to the other cell lines; being correlated 

with the phenotype nature of this cell line, as it is reported that in most of the normal 

tissues RHAMM mRNA and protein expression is low or undectable (Savani et al., 

1995; Mohapara et al., 1996; Tolg et al., 2003; Maxwell et al., 2008). For all cell lines 

it can be observed a lower expression of RHAMM comparatively to CD44, what was 

previously observed for the transcripts expression. Both proteins appear to be expressed 

at both membrane, cytoplasmic and nuclei level. Western blotting and flow cytometry 

techniques, in addition the use of antibodies against CD44 and RHAMM isoforms, 

could be employed to clearly see whether alterations in mRNA expression were 

translated down to protein level in the cells. 

It has been reported that the ability of cells to bind HA is due to CD44/HA 

interactions.  Some studies have evidenced that melanoma cells in the absence of CD44 

were not able to bind to HA, with higher levels of CD44 promoting binding of cancer 

cell lines to HA (Guo et al., 1994; Herrera-Gayol and Jothy, 2001). Therefore, up-

regulation of CD44 expression in the membrane could be expected, leading to increased 

cell adhesion and proliferation in those cells growing in the presence of HA4. 
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Conversely, drop in CD44 expression at the membrane, leading to poorer adhesion and 

decreased proliferation in cells growing in HA234 and HA2590-coated surfaces would also 

be expected. However, these findings were not observed for all cell lines. The 

unexpected CD44 and RHAMM expression findings obtained may be correlated with 

epithelial-mesenchymal transition (EMT) phenomena. EMT and the reverse process, 

denominated as mesenchymal-epithelial transition (MET), are processes involved in 

embryonic development. During embryogenesis, epithelial cells are required to change 

gene expression patterns, lose their adhesion molecules and become motile: 

mesenchymal-like cells that invade the ECM and differentiate into multiple tissues via 

EMTs; and later mesodermal cells generate epithelial organs by METs (Mani et al., 

2008). A similar process is also a prerequisite in tumour progression, particularly in the 

metastatic process; which includes the loss of adhesion molecules and the activation of 

common genes. The relevance of EMT to tumourigenesis has been explored in vitro 

using epithelial cell models.  A number of embryonic transcription factors that play 

crucial roles in early embryogenesis, tissue morphogenesis and wound healing, have 

also been found to confer malignant characteristics to neoplastic cells (Greenburgand 

Hay 1986, Klymkowskyand Savagner 2009). Therefore, since active and activated 

genes during the carcinoma progression and metastasis are also active in other 

processes, these findings have led to the idea that EMT, as it occurs during 

developmental events, is also reactivated in the course of tumour development. The 

term EMT in tumourigenesis only refers to epithelial-derived cancers (carcinomas). 

However, the loss of cell-cell adhesion in epithelial cells, does not make an EMT 

phenotype (Klymkowskyand Savagner 2009). 

Recent studies have suggested that HA is involved in EMT (Chow et al., 2010). 

A study performed by Zoltan-Jones and co-workers (2003) have shown that increased 



CHAPTER 5                                                                                                                                                  FINAL DISCUSSION 

 

220 

endogenous expression of high molecular weight HA is sufficient to induce EMT and 

acquisition of transformed properties in phenotypically normal epithelial cells (Zoltan-

Jones et al., 2003). These authors infected canine kidney and mammary human cells 

with a HAS2 adenovirus, leading to an increase in the endogenous levels of HA; they 

showed that high levels of high MW HA promoted cellular anchorage-independent 

growth and increased cell invasiveness. They also showed that the addition of HA 

oligomers and antibody against CD44 could reverse this anchorage independent growth 

(Zoltan-Jones et al., 2003). Conversely, Chow and co-workers (2010) when transfecting 

non-small cell lung cancer with HAS3, which is involved in the synthesis of small HA 

chains, showed that small endogenous HA fragments promotes EMT phenotype and 

increased cell invasion (Chow et al., 2010). A possible explanation for these differences 

seen can be correlated with the different types of tissues and tumours. In addition, both 

authors did not investigate the expression of HYALs that could also have increased 

expression and have been also reported to be involved in cancer progression; and 

therefore these results could be also related with the expression of HYALS. A question 

that arises from these studies is whether cells exhibit the same behaviour and are 

stimulated in the same way in the presence of exogenous or endogenous HA. 

Two possible hypotheses arise from the findings obtained from the present 

investigation: cells growing in the presence of medium and high MW exogenous HA 

polymers may either lose their adhesion ability, due the anti-adhesion properties 

presented by HA; or on the other hand, may gain anchorage-independent growth 

properties related with the induction of mesenchymal transformed phenotype properties 

by HA in epithelial cells. In order to test both hypotheses, more studies would need to 

be performed, namely the investigation of the expression of other transient factors 

involved in EMT, including β-catenin, vimentin, E-cadherin, N-cadherin, Snail, Slug. 
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There is some evidence that malignant tumours may contain their own stem 

cells, denominated as cancer stem cells (CSCs). CSCs represent a small subpopulation 

of cells within the tumour, possessing a self-renewing ability and can differentiate into 

multiple lineages (Yu et al., 2008, Fabrizi et al., 2010, Fan et al., 2010). Recently, CSCs 

have been isolated from leukaemia and several solid tumours, including colorectal, 

breast, prostate and bladder (Fan et al., 2010, Bonnetand Dick 1997, Singh et al., 2004, 

O'Brien et al., 2007, Bentivegna et al., 2010). Most of the CSCs have been isolated 

from clinical tumours specimens and only a few from established cell lines; being 

described that CSCs can form spheres in vitro (Yu et al., 2008, Fan et al., 2010). 

Another question that arose from this investigation was the nature of the cellular clumps 

observed, whether or not these clumps are tumourspheres formed by CSCs. It has been 

reported the prostate sphere formation of PC3 cells, being shown that PC3 cells can 

either grow in an adherent culture or form spheres in suspension culture system when 

growing in serum free media (Fan et al., 2010). It is described that cancer stem cells are 

enriched in CD44+; but since in general tumour prostate cells express CD44, it is 

difficult to use CD44+ to sort prostate cancer stem cells (PrCSC). It has been described 

that cells with CD44+/CD133+ phenotype possess a marked capacity of self-renewal and 

differentiation into cells expressing androgen receptor and prostatic acid phosphates. 

Therefore, cell surface markers CD44+/CD133+ have been used to localise and isolate 

PrCSC. Fan and co-workers (2010) have shown that there was a markedly increased 

proportion of CD44+/CD133+ cells in sphere-forming population, but not in adherent 

cells (Fan et al., 2010). However, in the present work a decreased expression of CD44 

in PC3 cells, and an increased expression of this molecular receptor in PNT1A cells 

growing in the presence of exogenous HA, comparatively to control cells was observed. 

Therefore, it would be interesting to investigate the proportion of CD44+/CD133+ in 
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prostate cells. CD133+ has been also described as a marker of tumour-initiating cells in 

other types of human cancer, including bladder carcinomas (Bentivegna et al., 2010, 

Mizrak et al., 2008). Other stem cell markers have been assessed for bladder cancer 

disorders, including Oct-3/4, nestin and cytokeratins (Bentivegna et al., 2010). Hence, it 

would be interesting to investigate the presence of these cancer stem cell molecular 

markers in RT112 and T24 cell lines.  

The work performed in this thesis provides a basis for future research. In this 

study was shown that HA polymer of medium and high MW decrease proliferation of 

tumour-derived cell lines. Hence, if it is highlighted that the formation of cellular 

clumps in the presence of medium and high MW polymers is associated with the anti-

adhesion properties of HA, these molecules might be potentially used in cancer 

therapeutics. On the other hand, if there is some evidence that different molecular 

weights of HA are involved in EMT and formation of tumourspheres, the understanding 

of these spheres could lead to ideas for drugs and methods to be used in cancer 

therapeutic approaches.  

 

 

 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 
 

“Science... never solves a problem without creating ten more.” -  George Bernard Shaw
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CHAPTER 6 
 

6. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

The aim of this work was to investigate whether HA polymer molecular weight 

(MW) alters the proliferation of tumour-derived cell lines, and to investigate the effect 

that HA has on the expression of CD44 and RHAMM, using HA-tethered culture 

surfaces. This aim was achieved, through meeting all of the objectives established 

within Chapter 1. Therefore, a variety of novel 2D HA structured surfaces to support 

cell adhesion have been constructed. These surfaces were coated with HA polymers of 

different MWs. Surfaces approached was used, since immobilised components on a 2D 

substract may more closely stimulate cell responses within 3D scaffolds due to intimate 

cell contact with the substract-bound HA, rather than periodic contact with exogenous 

HA of media supplementation. To the present knowledge, this represents the first study 

where surfaces coated with HA polymers of varying MWs have been constructed over a 

range of film stiffness. It was shown that the stiffness of films and the polymer MW 

modulate the surface characteristics (Chapter 2). Using these structured surfaces, 

human in vitro models have been established, allowing the assessment that HA has on 

cell proliferation and apoptosis of tumour-derived cell lines. This study demonstrates 

that HA-polymer molecular weight modulates adhesion, differentiation and proliferation 

of human bladder (RT112 and T24) and prostate (PC3 and PNT1A) tumour-derived cell 

lines. It was observed that all four cell lines adhered and grew on the structured 

surfaces, although different cellular growth patterns were observed depending on the 

MW of HA chain. It was also observed that HA MW does not appear to be involved in 
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the promotion of apoptosis (Chapter 3). In Chapter 4 was demonstrated that HA 

regulates transcription and translation of CD44 and RHAMM cell receptors in a 

phenotype dependent manner. Findings from this work may also suggest that CD44 and 

RHAMM functioning is interrelated. 

The findings from this investigation can help, not only in highlighting the 

biological significance that hyaluronic acid has on tumourigenesis, but also in the 

design and development of biocompatible implants with controlled surface properties to 

be used in cancer therapeutics. Implications from this work may allow better 

understanding of the biomaterial/cell interface, which is particularly important in many 

therapeutics applications, including tissue engineering and implant surgery. In addition, 

medium and large HA polysaccharides have shown to be potential biopolymer 

candidates, useful for the development of novel therapies for highly invasive cancer. 

Therefore, this study can serve as a base for future research, leading to ideas for drugs 

and methods to be used in cancer therapeutic approaches. 

In conclusion, the work presented here has met the aims and objectives 

addressed to this project. However, a large body of further work arises from this project: 

 

- From a surface side, would be interesting to characterise the amount of HA 

immobilised on each surface; this could be assessed, with ellipsometry. Some 

degradation studies would be also interesting to perform, to quantify if there is any loss 

of polymer and degradation of larger polymers into smaller along the time. 

 

- Studies in 2D cell culture have produced results to help in the interpretation of 

complex biological phenomena and hypothesis. However, cells cultured in 3D cultures 

are characterised by several factors differentiating them from 2D dimensions and 
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providing findings more closely to those produced in vivo. Therefore, from an 

anatomical and physiological point of view, it would be useful to growth the tumour-

derived cell lines in 3D constructed surfaces coated with HA polymers of different 

MWs. 

 

- Confirmation of the absence of bands seen in CD44 exon link PCR by Southern 

Blotting, and analysis of CD44 and RHAMM isoforms transcript expression by real-

time PCR. 

 

- CD44 and RHAMM protein expression analysis by Western blotting and flow 

cytometry. The use of antibodies against CD44 and RHAMM isoforms would show 

more clearly whether alterations in mRNA expression were translated down to protein 

level in the cells. 

 

- Knock-down and transfection of cell lines with CD44 and RHAMM isoforms, in order 

to disclose the role of each isoform in tumourigenesis. 

 

- Analysis of HA synthases (HAS) expression, since has been demonstrated that the 

overexpression of HAS genes induces HA production and matrix formation. 

Additionally, there is some evidence that is due the HA overproduction that cancer cells 

form a HA-rich matrix, providing a suitable environment for tumour growth, invasion 

and metastasis. Furthermore, there is also some evidence that HAS isoforms are 

involved in different stages of malignant tumourigenesis. 
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- Analysis of hyaluronidases (HYALs) expression, since degradation of HA may be 

involved in the control of HA accumulation, with HYAL isoforms appearing to play 

roles in tumourigenesis. It would also be interesting to study the exogenous HYAL 

expression, to see whether the addition of HA to exogenous cellular environment led to 

endogenous HYALs production, ultimately leading to a disrupted HA and lower 

endogenous production. 

 

- The relation of HA production/degradation and its function in cancer progression 

remains unclear. Therefore, would be interesting to carry out an analysis of the presence 

of HA in both culture media and cells, in order to detect the size/concentration of 

polymers present, and localisation of the polymer in the cells, correlating it with the 

production/degradation ratio. 

 

- It is known that different CD44 and RHAMM isoforms are expressed depending on 

the cell type and disease pathology, and post-translational modifications modulate 

binding characteristics and functional properties of these proteins.  In addition, for 

CD44 there is some evidence that post-translational modification patterns lead to 

differences in the HA binding. Therefore it would be interesting to clarify whether 

different HA-polymer MW alters expression of CD44 and RHAMM protein isoforms, 

and how it affects the binding affinity of the protein isoforms to HA. 

 

- Since it was demonstrated in this work that HA modulates proliferation of tumour-

derived cell lines, it would be useful to see whether HA polymer MW has an effect on 

cell adhesion, migration and invasion. In addition, further apoptotic studies by flow 
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cytometry would be useful to confirm whether HA molecular size is involved in 

promotion of apoptosis. 

 

- It has been reported that in the presence of HA, RHAMM partners with CD44, 

activating erk1/2 and resulting in the expression of genes required for cell motility and 

invasion, and conferring malignant potential. In addition, it has been also evidenced that 

p53 down-regulates CD44 and RHAMM. Therefore, it would be interesting to 

investigate the effect that HA polymer MW has on the expression of erk1/2 and p53, 

correlating it with the expression of CD44 and RHAMM. 

 

- There is some evidence that RHAMM is involved in the activation of the CD44-HA 

pathway, and in the absence of CD44, RHAMM seems to compensate the loss of CD44. 

However, it is still unclear how the absence of RHAMM affects CD44 expression. 

Therefore, through blocking studies, would be interesting to investigate the interplay 

between RHAMM and CD44, looking at transcripts and protein expression levels of 

these cell receptors and relating it with cell proliferation. 

 

 - One of the challenges of the present investigation was the study of the formed cell 

aggregates. Therefore, it would be useful to improve the immobilisation/analysis of the 

cell aggregates. This could be achieved by removing the clumps from the HA-coated 

slides and then cytospinning the cells in a new slide. It would be also interesting to 

embed these cellular clumps into paraffin, and then cut them into sections, and analyse 

these sections. 
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- Two possible hypotheses may arise from the findings obtained from the present 

investigation: cells growing in the presence of exogenous medium and high MW HA 

polymers may either lose their adhesion ability, due the anti-adhesion properties 

presented by HA; or on the other hand may gain anchorage-independent growth 

properties related with the induction of mesenchymal transformed phenotype properties 

by HA in epithelial cells. Therefore, in order to test these hypotheses, would be 

necessary to investigate the expression of other transient factors involved in EMT, 

including β-catenin, vimentin, E-cadherin, N-cadherin, Snail, Slug. In addition, it would 

be also interesting to investigate the expression of prostate and bladder cancer stem cell 

(CSC) markers, in order to confirm the presence/absence of CSCs. 

 

- In vivo studies would be useful to see whether HA polymer MW also modulates 

proliferation of tumours in animal models. In addition, since HA has been reported to 

have immunostimulatory properties and a role in inflammation, would be interesting to 

relate the findings from tumour proliferation with inflammation. 
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Appendix I 

 

Solution formulations 

 

General solutions 

PBS PBS is made using tablets (Sigma, UK) dissolved in 500 ml of 

RO H2O. PBS for sell culture was sterilised by autoclaving. 

 

Protein extraction 

Protease inhibitor Protease inhibitor cocktail arrives in kit form with four separate 

constituents (EDTA disodium dihydrate, pepstatin A, leupeptin 

hemisulfate and AEBSF hydrochloride). Each bottle is 

resuspended in RO H2O, and the four bottles mixed. The volume 

is then made up to 100 ml with RO H2O. 

CHAPS lysis 

buffer 

20 mM Tris pH 8.0 

0.15 M NaCl 

5 mM EDTA 

310 mg of CHAPS 

1 ml of protease inhibitor cocktail 

Made to a final volume of 50 ml with RO H2O 

 

ICC 

DAB solution 30 mg of DAB 

50 ml PBS 

100 µl of hydrogen peroxide 
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Western Blot 

5x Sample buffer 10 ml 0.5M Tris (pH 6.8) – final concentration 250mM 

8 ml Glycerol - final concentration 40% (v/v) 

2 g SDS – final concentration 10% (w/v) 

0.1 mg Bromophenol blue – final concentration 0.5% (w/v) 

Made up to 20ml with distilled water, and pH set to 6.8 

The solution was aliquoted and stored at -20°C for future use. 

Directly before use 125µl β-mercaptoethanol was added to 875µl 

of 5x sample buffer. A working solution of either 1x or 2x 

sample buffer was used. These were prepared by diluting the 5x 

buffer in RO H2O as appropriate. 

 

10x Running 

buffer 

30.2g Tris - final concentration 0.025M 

144g Glycine - final concentration 0.192M 

10g SDS - final concentration 0.1% (w/v) 

Made up to 1 L with RO H2O. 

The 10x running buffer solution was stored at room temperature 

for future use. A 1x working solution was made fresh on the day 

of use by diluting 100 ml 10x running buffer with 900ml RO 

H2O. 

 

10x 

Transfer/Blotting 

buffer 

30.2g Tris - final concentration 0.025M 

144g Glycine - final concentration 0.192M 

Made up to 1 L in RO H2O. 

The 10x transfer buffer solution was stored at room temperature 

for future use. A 1x working solution was made fresh on the day 

of use by diluting 100ml 10x transfer buffer with 200ml 

methanol and 700ml distilled water. The 1x working solution of 

transfer buffer was cooled to 4°C prior to use. 
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Surface wettability measurements assessed by contact angle 

 

  θ (angle formed) 

Glass 64.78 ± 1.65 

Activated glass 22.16 ± 1.58 

Aminosilane 34.26 ± 2.81 

HA4 C1 42.17 ± 5.39 

HA4 C2 41.76 ± 3.75 

HA4 C3 43.62 ± 2.69 

HA234 C1 27.98 ± 3.06 

HA234 C2 29.17 ± 2.74 

HA234 C3 35.30 ± 2.04 

HA2590 C1 17.05 ± 4.48 

HA2590 C2 19.89 ± 3.26 

HA2590 C3 18.74 ± 2.03 

HAmix C1 28.60 ± 3.065 

HAmix C2 34.44 ± 2.09 

HAmix C3 33.82 ± 2.17 
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Surface wettability statistics 
 

  Glass 
Activated 

glass Aminosilane 
HA4 
C1 

HA4 
C2 

HA4 
C3 

HA234 
C1 

HA234 
C2 

HA234 
C3 

HA2590 
C1 

HA2590 
C2 

HA2590 
C3 

HAmix 
C1 

HAmix 
C2 

HAmix 
C3 

Number of values 12 12 25 99 85 72 113 64 55 60 78 91 117 56 50 
  

               Minimum 60.99 19.19 31.28 28.90 35.10 26.56 23.63 24.09 31.16 10.03 15.02 15.34 23.56 31.04 31.18 
25% Percentile 63.52 20.57 33.27 38.94 39.34 42.35 25.57 26.79 33.92 12.66 16.92 17.15 26.55 32.61 31.92 
Median 64.78 22.16 34.26 43.07 41.13 43.95 27.09 29.17 35.45 17.43 19.17 18.53 28.15 34.27 33.06 
75% Percentile 65.34 22.66 37.38 46.56 44.80 45.32 30.68 31.92 36.73 21.00 22.49 19.97 29.84 36.46 36.15 
Maximum 67.06 24.93 41.37 53.00 48.97 46.63 33.91 33.38 38.94 23.69 25.97 23.66 37.95 37.97 37.64 
  

               Mean 64.55 21.86 35.41 42.17 41.76 43.62 27.98 29.17 35.30 17.05 19.89 18.74 28.60 34.44 33.82 
Std. Deviation 1.653 1.578 2.809 5.389 3.750 2.686 3.061 2.741 2.039 4.475 3.263 2.029 3.065 2.094 2.172 
Std. Error 0.4772 0.4556 0.5619 0.5416 0.4068 0.3165 0.2880 0.3427 0.2750 0.5778 0.3695 0.2127 0.2834 0.2798 0.3072 
  

               Lower 95% CI of 
mean 63.50 20.86 34.25 41.10 40.95 42.99 27.41 28.48 34.75 15.89 19.16 18.32 28.03 33.88 33.20 
Upper 95% CI of 
mean 65.60 22.86 36.57 43.25 42.57 44.25 28.55 29.85 35.85 18.20 20.63 19.17 29.16 35.00 34.44 
  

               Sum 774.6 262.3 885.2 4175 3550 3140 3162 1867 1942 1023 1552 1706 3346 1929 1691 
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One-way analysis of variance       
P value < 0.0001     
P value summary ***     
Are means signif. different? (P < 0.05) Yes     
Number of groups 15     
F 581.6     
R square 0.8932     
        
Bartlett's test for equal variances       
Bartlett's statistic (corrected) 189.9     
P value < 0.0001     
P value summary ***     
Do the variances differ signif. (P < 0.05) Yes     
        
ANOVA Table SS df MS 
Treatment (between columns) 87512 14 6251 
Residual (within columns) 10468 974 10.75 
Total 97980 988   
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Tukey's Multiple Comparison Test Mean Diff. q 
Significant? 

P < 0.05? Summary 95% CI of diff 
Glass vs Activated glass 42.69 45.11 Yes *** 38.08 to 47.30 
Glass vs Aminosilane 29.14 35.80 Yes *** 25.18 to 33.11 
Glass vs HA4 C1 22.38 31.58 Yes *** 18.93 to 25.83 
Glass vs HA4 C2 22.79 31.88 Yes *** 19.31 to 26.27 
Glass vs HA4 C3 20.93 28.96 Yes *** 17.41 to 24.45 
Glass vs HA234 C1 36.57 51.96 Yes *** 33.14 to 39.99 
Glass vs HA234 C2 35.38 48.52 Yes *** 31.83 to 38.93 
Glass vs HA234 C3 29.25 39.60 Yes *** 25.65 to 32.84 
Glass vs HA2590 C1 47.50 64.80 Yes *** 43.94 to 51.07 
Glass vs HA2590 C2 44.66 62.12 Yes *** 41.16 to 48.16 
Glass vs HA2590 C3 45.81 64.34 Yes *** 42.34 to 49.27 
Glass vs HAmix C1 35.95 51.17 Yes *** 32.53 to 39.37 
Glass vs HAmix C2 30.11 40.83 Yes *** 26.52 to 33.70 
Glass vs HAmix C3 30.73 41.24 Yes *** 27.10 to 34.36 
Activated glass vs Aminosilane -13.55 16.64 Yes *** -17.51 to -9.584 
Activated glass vs HA4 C1 -20.31 28.66 Yes *** -23.76 to -16.86 
Activated glass vs HA4 C2 -19.90 27.84 Yes *** -23.38 to -16.42 
Activated glass vs HA4 C3 -21.76 30.10 Yes *** -25.27 to -18.24 
Activated glass vs HA234 C1 -6.122 8.698 Yes *** -9.548 to -2.696 
Activated glass vs HA234 C2 -7.308 10.02 Yes *** -10.86 to -3.758 
Activated glass vs HA234 C3 -13.44 18.20 Yes *** -17.04 to -9.846 
Activated glass vs HA2590 C1 4.815 6.568 Yes *** 1.247 to 8.383 
Activated glass vs HA2590 C2 1.967 2.737 No ns -1.532 to 5.466 
Activated glass vs HA2590 C3 3.118 4.380 No ns -0.3476 to 6.584 
Activated glass vs HAmix C1 -6.735 9.584 Yes *** -10.16 to -3.314 
Activated glass vs HAmix C2 -12.58 17.06 Yes *** -16.17 to -8.988 
Activated glass vs HAmix C3 -11.96 16.05 Yes *** -15.59 to -8.331 
Aminosilane vs HA4 C1 -6.763 13.03 Yes *** -9.289 to -4.237 
Aminosilane vs HA4 C2 -6.356 12.05 Yes *** -8.923 to -3.788 
Aminosilane vs HA4 C3 -8.210 15.26 Yes *** -10.83 to -5.590 
Aminosilane vs HA234 C1 7.425 14.49 Yes *** 4.931 to 9.919 
Aminosilane vs HA234 C2 6.239 11.41 Yes *** 3.577 to 8.900 
Aminosilane vs HA234 C3 0.1054 0.1885 No ns -2.616 to 2.827 
Aminosilane vs HA2590 C1 18.36 33.27 Yes *** 15.68 to 21.05 
Aminosilane vs HA2590 C2 15.51 29.12 Yes *** 12.92 to 18.11 
Aminosilane vs HA2590 C3 16.66 31.84 Yes *** 14.12 to 19.21 
Aminosilane vs HAmix C1 6.812 13.34 Yes *** 4.326 to 9.298 
Aminosilane vs HAmix C2 0.9694 1.739 No ns -1.745 to 3.684 
Aminosilane vs HAmix C3 1.588 2.797 No ns -1.176 to 4.352 
HA4 C1 vs HA4 C2 0.4074 1.189 No ns -1.261 to 2.076 
HA4 C1 vs HA4 C3 -1.447 4.029 No ns -3.194 to 0.3012 
HA4 C1 vs HA234 C1 14.19 44.46 Yes *** 12.63 to 15.74 
HA4 C1 vs HA234 C2 13.00 34.97 Yes *** 11.19 to 14.81 
HA4 C1 vs HA234 C3 6.869 17.62 Yes *** 4.971 to 8.766 
HA4 C1 vs HA2590 C1 25.12 66.25 Yes *** 23.28 to 26.97 
HA4 C1 vs HA2590 C2 22.28 63.47 Yes *** 20.57 to 23.99 
HA4 C1 vs HA2590 C3 23.43 69.59 Yes *** 21.79 to 25.07 
HA4 C1 vs HAmix C1 13.58 42.88 Yes *** 12.03 to 15.12 
HA4 C1 vs HAmix C2 7.732 19.95 Yes *** 5.846 to 9.619 
HA4 C1 vs HAmix C3 8.351 20.76 Yes *** 6.394 to 10.31 
HA4 C2 vs HA4 C3 -1.854 4.993 Yes * -3.661 to -0.04658 
HA4 C2 vs HA234 C1 13.78 41.40 Yes *** 12.16 to 15.40 
HA4 C2 vs HA234 C2 12.59 32.83 Yes *** 10.73 to 14.46 
HA4 C2 vs HA234 C3 6.461 16.11 Yes *** 4.508 to 8.414 
HA4 C2 vs HA2590 C1 24.72 63.24 Yes *** 22.81 to 26.62 
HA4 C2 vs HA2590 C2 21.87 60.17 Yes *** 20.10 to 23.64 
HA4 C2 vs HA2590 C3 23.02 65.83 Yes *** 21.32 to 24.72 
      



Appendix III 

 

Tukey's Multiple Comparison Test Mean Diff. q Significant? 
P < 0.05? 

Summary 95% CI of diff 

HA4 C2 vs HAmix C1 13.17 39.86 Yes *** 11.56 to 14.78 
HA4 C2 vs HAmix C2 7.325 18.36 Yes *** 5.383 to 9.267 
HA4 C2 vs HAmix C3 7.944 19.23 Yes *** 5.933 to 9.955 
HA4 C3 vs HA234 C1 15.63 44.73 Yes *** 13.93 to 17.34 
HA4 C3 vs HA234 C2 14.45 36.28 Yes *** 12.51 to 16.39 
HA4 C3 vs HA234 C3 8.315 20.03 Yes *** 6.294 to 10.34 
HA4 C3 vs HA2590 C1 26.57 65.57 Yes *** 24.60 to 28.54 
HA4 C3 vs HA2590 C2 23.72 62.62 Yes *** 21.88 to 25.57 
HA4 C3 vs HA2590 C3 24.87 68.03 Yes *** 23.09 to 26.65 
HA4 C3 vs HAmix C1 15.02 43.26 Yes *** 13.33 to 16.71 
HA4 C3 vs HAmix C2 9.179 22.22 Yes *** 7.168 to 11.19 
HA4 C3 vs HAmix C3 9.798 22.96 Yes *** 7.721 to 11.88 
HA234 C1 vs HA234 C2 -1.186 3.271 No ns -2.952 to 0.5790 
HA234 C1 vs HA234 C3 -7.320 19.21 Yes *** -9.175 to -5.464 
HA234 C1 vs HA2590 C1 10.94 29.54 Yes *** 9.134 to 12.74 
HA234 C1 vs HA2590 C2 8.089 23.70 Yes *** 6.428 to 9.750 
HA234 C1 vs HA2590 C3 9.240 28.30 Yes *** 7.650 to 10.83 
HA234 C1 vs HAmix C1 -0.6129 2.005 No ns -2.101 to 0.8754 
HA234 C1 vs HAmix C2 -6.456 17.04 Yes *** -8.300 to -4.612 
HA234 C1 vs HAmix C3 -5.837 14.82 Yes *** -7.753 to -3.920 
HA234 C2 vs HA234 C3 -6.133 14.39 Yes *** -8.208 to -4.059 
HA234 C2 vs HA2590 C1 12.12 29.10 Yes *** 10.10 to 14.15 
HA234 C2 vs HA2590 C2 9.275 23.72 Yes *** 7.372 to 11.18 
HA234 C2 vs HA2590 C3 10.43 27.57 Yes *** 8.585 to 12.27 
HA234 C2 vs HAmix C1 0.5734 1.591 No ns -1.181 to 2.328 
HA234 C2 vs HAmix C2 -5.269 12.42 Yes *** -7.334 to -3.205 
HA234 C2 vs HAmix C3 -4.650 10.63 Yes *** -6.780 to -2.521 
HA234 C3 vs HA2590 C1 18.26 42.19 Yes *** 16.15 to 20.36 
HA234 C3 vs HA2590 C2 15.41 37.75 Yes *** 13.42 to 17.40 
HA234 C3 vs HA2590 C3 16.56 41.82 Yes *** 14.63 to 18.49 
HA234 C3 vs HAmix C1 6.707 17.70 Yes *** 4.862 to 8.552 
HA234 C3 vs HAmix C2 0.8640 1.963 No ns -1.278 to 3.006 
HA234 C3 vs HAmix C3 1.483 3.273 No ns -0.7222 to 3.688 
HA2590 C1 vs HA2590 C2 -2.848 7.154 Yes *** -4.785 to -0.9099 
HA2590 C1 vs HA2590 C3 -1.697 4.402 No ns -3.574 to 0.1795 
HA2590 C1 vs HAmix C1 -11.55 31.38 Yes *** -13.34 to -9.758 
HA2590 C1 vs HAmix C2 -17.39 40.38 Yes *** -19.49 to -15.30 
HA2590 C1 vs HAmix C3 -16.77 37.79 Yes *** -18.93 to -14.61 
HA2590 C2 vs HA2590 C3 1.151 3.217 No ns -0.5906 to 2.892 
HA2590 C2 vs HAmix C1 -8.702 25.68 Yes *** -10.35 to -7.053 
HA2590 C2 vs HAmix C2 -14.54 35.82 Yes *** -16.52 to -12.57 
HA2590 C2 vs HAmix C3 -13.93 33.16 Yes *** -15.97 to -11.88 
HA2590 C3 vs HAmix C1 -9.853 30.41 Yes *** -11.43 to -8.275 
HA2590 C3 vs HAmix C2 -15.70 39.86 Yes *** -17.61 to -13.78 
HA2590 C3 vs HAmix C3 -15.08 36.95 Yes *** -17.06 to -13.09 
HAmix C1 vs HAmix C2 -5.843 15.51 Yes *** -7.676 to -4.009 
HAmix C1 vs HAmix C3 -5.224 13.34 Yes *** -7.130 to -3.317 
HAmix C2 vs HAmix C3 0.6188 1.372 No ns -1.577 to 2.814 
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Cell counting raw data 

 
RT112 T24 

Day Cell density (x104) Cell density (x104) Cell density (x104) Cell density 
Average (x104) Cell density (x104) Cell density (x104) Cell density (x104) Cell density 

Average (x104) 

0 10 10 10 10 10 10 10 10 

1 8 11 10 10 11 17 15 14 

2 8 19 19 15 31 20 24 25 

3 29 37 35 34 32 17 14 21 

4 69 93 71 78 29 31 18 26 

5 125 152 130 136 52 47 46 48 

6 103 127 122 117 79 65 67 70 

7 168 179 125 157 69 73 70 71 

8 175 148 127 150 74  -  74 74 
 

 

 
PC3 PNT1A 

Day Cell density (x104) Cell density (x104) Cell density (x104) Cell density 
Average (x104) Cell density (x104) Cell density (x104) Cell density (x104) Cell density 

Average (x104) 

0 10 10 10 10 10 10 10 10 

1 10 11 8 10 14 11 10 12 

2 11 13 11 12 16 14 13 14 

3 38 20 30 29 12 11 12 12 

4 56 62 58 59 26 31 17 25 

5 81 58 58 66 30  -  28 29 

6 72 100 63 78  -  47 31 39 

7 117 73 68 86 57 52 66 58 

8 105 108 113 109   -   72 72 72 
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Cell counting statistics 

 

 RT112 T24 PC3 PNT1A 

Number of values 9 9 9 9 

     
Minimum 9.667 10.00 9.667 10.00 

25% Percentile 12.67 17.67 10.83 11.67 

Median 77.67 26.00 58.67 24.67 

75% Percentile 142.8 70.50 82.17 48.67 

Maximum 157.3 74.00 108.7 72.00 

     
Mean 78.52 39.96 50.89 30.07 

Std. Deviation 62.78 26.05 37.04 22.35 

Std. Error 20.93 8.682 12.35 7.449 

     
Lower 95% CI of mean 30.26 19.94 22.42 12.90 

Upper 95% CI of mean 126.8 59.98 79.36 47.25 

     
Sum 706.7 359.7 458.0 270.7 
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Cell counting – curve fitting using SigmaPlot 10.0 

a) RT112 cell line 

Nonlinear Regression - Dynamic Fitting 
 
Data Source: RT112 in Notebook2 
Equation: Piecewise; 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1; region1(t); if(t <= T2; region2(t); region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 
                    Minimum Maximum 
y1                 -12.9378          38.8135 
y2                 -34.2869         102.8607 
y3                -121.9138        365.7414 
y4                -150.0692       450.2075 
T1                -2.6667           8.0000 
T2                -5.3333          16.0000 
 
Summary of Fit Results: 
Converged    97.0% 
Singular Solutions   68.0% 
Ill-Conditioned Solutions   20.0% 
Iterations Exceeding 200    3.0% 
 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9903 0.9807 0.9485  14.2342  
 
  Coefficient    Std. Error t                          P VIF  
y1 9.1573 12.9940 0.7047 0.5318 1.1997  
y2 15.7376 19.3622 0.8128 0.4758 2.9825  
y3 126.8762 25.9483 4.8896 0.0164 6.3669<  
y4 152.6963 12.5937 12.1248 0.0012 1.2177  
T1 2.6242 0.5890 4.4556 0.0210 3.3266  
T2 5.0000 0.9876 5.0629 0.0149 7.1465<  
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Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 86391.1614 14398.5269  
Residual         3 607.8386 202.6129  
Total               9 86999.0000 9666.5556  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 30852.3836 6170.4767 30.4545 0.0090  
Residual         3 607.8386 202.6129  
Total              8 31460.2222 3932.5278  
 
Statistical Tests: 
 
PRESS  3831.7618 
 
Durbin-Watson Statistic  3.5164 Failed  
 
Normality Test   Passed (P = 0.4742) 
 
K-S Statistic = 0.2674 Significance Level = 0.4742 
 
Constant Variance Test  Passed (P = 0,0200) 
 
Power of performed test with alpha = <0.0001: 0.0000 
 
The power of the performed test (0.0000) is below the desired power of 0,8000. 
You should interpret the negative findings cautiously. 
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b) T24 cell line 

Nonlinear Regression - Dynamic Fitting 
 
Data Source: T24 in Notebook2 
Equation: Piecewise; 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1; region1(t); if(t <= T2; region2(t); region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 
 Minimum Maximum 
y1 -9.3419 28.0256 
y2 -20.6710 62.0130 
y3 -52.2951 156.8854 
y4 -72.5136 217.5408 
T1 -2.6667 8.0000 
T2 -5.3333 16.0000 
 
Summary of Fit Results: 
Converged    96.5% 
Singular Solutions   77.5% 
Ill-Conditioned Solutions   19.0% 
Iterations Exceeding 200    3.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9960 0.9920 0.9787  3.8020  
 
  Coefficient Std. Error t P VIF  
y1 11.4000 2.9451 3.8709 0.0305 0.0000  
y2 28.5187 3.9760 7.1727 0.0056 0.0000  
y3 68.9819 4.2242 16.3302 0.0005 0.0000  
y4 73.6667 3.4708 21.2248 0.0002 0.0000  
T1 4.3894 0.3203 13.7028 0.0008 0.0000  
T2 5.6576 0.0159 356.5576 <0.0001 0.0000  
 
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
                    DF SS MS  
Regression 6 19715.6333 3285.9389  
Residual 3 43.3667 14.4556  
Total 9 19759.0000 2195.4444  
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Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 5395.5222 1079.1044 74.6498 0.0024  
Residual         3 43.3667 14.4556  
Total              8 5438.8889 679.8611  
Statistical Tests: 
 
PRESS  1.0727E+014 
 
Durbin-Watson Statistic  2.7014 Failed  
 
Normality Test   Passed (P = 0.2221) 
 
K-S Statistic = 0.3320 Significance Level = 0.2221 
 
Constant Variance Test  Passed (P = 0.0158) 
 
Power of performed test with alpha = <0.0001: 0.0000 
 
The power of the performed test (0.0000) is below the desired power of 0,8000. 
You should interpret the negative findings cautiously. 
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c) PC3 cell line 

Nonlinear Regression - Dynamic Fitting 
 
Data Source: PC3 in Notebook2 
Equation: Piecewise; 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1; region1(t); if(t <= T2; region2(t); region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 
 Minimum Maximum 
y1 -11.8733 35.6200 
y2 -27.8087 83.4261 
y3 -70.6345 211.9035 
y4 -108.0754 324.2261 
T1 -2.6667 8.0000 
T2 -5.3333 16.0000 
 
Summary of Fit Results: 
Converged    96.0% 
Singular Solutions   69.0% 
Ill-Conditioned Solutions   19.5% 
Iterations Exceeding 200    4.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9964 0.9929 0.9811  5.0947  
 
  Coefficient Std. Error t P VIF  
y1 9.6667                   4.6508 2.0785 0.1292 1.1885  
y2              12.2487            5519374.9572 2.2192E-006 1.0000 1.2409E+012<  
y3               49.8395        114675676.7255 4.3461E-007 1.0000 8.5791E+014<  
y4               103.6000                4.1067         25.2269 0.0001 1.3193  
T1 2.5820             5519374.9845 4.6781E-007 1.0000 5.8031E+014<  
T2 3.5200             9556306.4227 3.6834E-007 1.0000 1.8796E+015<  
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Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 34305.1333 5717.5222  
Residual         3 77.8667 25.9556  
Total              9 34383.0000 3820.3333  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 10896.1333 2179.2267 83.9599 0.0020  
Residual         3 77.8667 25.9556  
Total              8 10974.0000 1371.7500  
Statistical Tests: 
 
PRESS  2968.3867 
 
Durbin-Watson Statistic  2.2561 Failed  
 
Normality Test   Passed (P = 0.6397) 
 
K-S Statistic = 0.2352 Significance Level = 0.6397 
 
Constant Variance Test  Passed (P = 0.0039) 
 
Power of performed test with alpha = <0.0001: 0.0000 
 
The power of the performed test (0.0000) is below the desired power of 0,8000. 
You should interpret the negative findings cautiously. 
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d)  PNT1A cell line 

Nonlinear Regression - Dynamic Fitting 
 
Data Source: PNT1A in Notebook2 
Equation: Piecewise; 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1; region1(t); if(t <= T2; region2(t); region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 
 Minimum Maximum 
y1 -10.1158 30.3473 
y2 -14.5247 43.5742 
y3 -33.1283 99.3849 
y4 -72.4390 217.3170 
T1 -2.6667 8.0000 
T2 -5.3333 16.0000 
 
Summary of Fit Results: 
Converged    96.0% 
Singular Solutions   67.5% 
Ill-Conditioned Solutions   18.5% 
Iterations Exceeding 200    4.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9975 0.9950 0.9867  2.5695  
 
  Coefficient Std. Error t P VIF  
y1 10.5363 2.2703 4.6409 0.0189 1.2144  
y2 14.1077 4.3057 3.2765 0.0465 5.8577<  
y3 38.3246 9.9875 3.8372 0.0312 26.2816<  
y4 72.8226 2.3456 31.0467 <0.0001 1.0601  
T1 3.0000 0.9596 3.1261 0.0522 7.7772<  
T2 5.9163 0.6563 9.0146 0.0029 23.,2375<  
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Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 12099.1937 2016.5323  
Residual         3 19.8063 6.6021  
Total              9 12119.0000 1346.5556  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 3939.0826 787.8165 119.3280 0.0012  
Residual        3 19.8063 6.6021  
Total             8 3958.8889 494.8611  
Statistical Tests: 
 
PRESS  773.7495 
 
Durbin-Watson Statistic  3.3112 Failed  
 
Normality Test   Passed (P = 0.8689) 
 
K-S Statistic = 0.1890 Significance Level = 0.8689 
 
Constant Variance Test  Passed (P = 0.3558) 
 
Power of performed test with alpha = <0.0001: 0.0000 
 
The power of the performed test (0.0000) is below the desired power of 0.8000. 
You should interpret the negative findings cautiously. 
 

 



Appendix VII 

 

MTT assay raw data 

 RT112 

 5 x 104 cells/well 2.5 x 104 cells/well 1.25 x 104 cells/well 6.25 x 103 cells/well 

Day OD OD OD OD 
Average OD OD OD OD 

Average OD OD OD OD 
Average OD OD OD OD 

Average 

1 0,121098 0,132753 0,123470 0,125774 0,095271 0,102409 0,090952 0,096211 0,075069 0,068748 0,066768 0,070195 0,096373 0,067866 0,074302 0,079514 
2 0,233944 0,236996 0,191767 0,220902 0,187385 0,218359 0,180280 0,195341 0,154890 0,140851 0,086731 0,127491 0,102085 0,135241 0,160578 0,132635 
3 0,462192 0,499506 0,706911 0,556203 0,361141 0,318832 0,396644 0,358872 0,227792 0,188246 0,173079 0,196372 0,108411 0,143664 0,114478 0,122184 
4 0,490042 0,783793 0,679699 0,651178 0,453061 0,458324 0,440470 0,450618 0,348387 0,319244 0,229465 0,299032 0,237593 0,164646 0,162242 0,188160 
5  -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -  
6 0,931375 0,956415 0,878249 0,922013 0,764141 0,697791 0,817968 0,759967 0,479049 0,591917 0,693637 0,588201 0,360303 0,379873 0,453982 0,398053 
7 0,978242 0,747502 0,792431 0,839392 0,719865 0,761657 0,712742 0,731421 0,671882 0,593287 0,801570 0,688913 0,717500 0,513409 0,575102 0,602004 
8 0,770693 0,835520 0,978109 0,861441 0,702665 0,620979 0,981363 0,768336 0,675917 0,847879 0,933055 0,818950 0,877655 0,798094 0,731169 0,802306 

 

 T24 

 5 x 104 cells/well 2.5 x 104 cells/well 1.25 x 104 cells/well 6.25 x 103 cells/well 

Day OD OD OD OD 
Average OD OD OD OD 

Average OD OD OD OD 
Average OD OD OD OD 

Average 
1 0.1878 0.1677 0.1725 0.1760 0.1173 0.0935 0.1194 0.1101 0.1247 0.1298 0.0793 0.1113 0.0975 0.0782 0.1240 0.0999 
2 0.1889 0.2011 0.1837 0.1912 0.1598 0.1632 0.1542 0.1591 0.1441 0.1334 0.1292 0.1356 0.1151 0.1112 0.1476 0.1246 
3 0.4058 0.4319 0.3400 0.3926 0.3403 0.2719 0.1902 0.2675 0.1760 0.2223 0.1835 0.1940 0.1424 0.1387 0.1264 0.1358 
4 0.5787 0.6248 0.6214 0.6083 0.4114 0.4457 0.4351 0.4307 0.2857 0.2724 0.3009 0.2863 0.2018 0.1742 0.2535 0.2098 
5 0.5494 0.5843 0.6173 0.5837 0.5166 0.4979 0.5102 0.5083 0.3783 0.4281 0.3736 0.3933 0.2649 0.3215 0.2990 0.2951 
6 0.8259 0.8854 0.8417 0.8510 0.7048 0.7530 0.8121 0.7566 0.5887 0.6528 0.6882 0.6432 0.5089 0.5369 0.5376 0.5278 
7 0.8981 0.8941 0.9327 0.9083 0.7783 0.9231 0.9841 0.8952 0.6674 0.8562 0.9210 0.8148 0.7291 0.6541 0.7323 0.7052 
8 0.8585 0.7607 0.7918 0.8037 0.8481 0.8480 0.7714 0.8225 0.8298 0.8299 0.7366 0.7987 0.6968 0.6326 0.6248 0.6514 
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 PC3 

 5 x 104 cells/well 2.5 x 104 cells/well 1.25 x 104 cells/well 6.25 x 103 cells/well 

Day OD OD OD OD 
Average OD OD OD OD 

Average OD OD OD OD 
Average OD OD OD OD 

Average 
1 0.1523 0.1275 0.1637 0.1478 0.0861 0.1241 0.0993 0.1032 0.0865 0.0940 0.0971 0.0925 0.0786 0.0949 0.0958 0.0897 
2 0.2042 0.1669 0.1882 0.1864 0.1467 0.1774 0.1630 0.1624 0.1480 0.1418 0.1788 0.1562 0.1052 0.1169 0.1257 0.1159 
3 0.2252 0.2386 0.2359 0.2332 0.1664 0.1626 0.1364 0.1551 0.1279 0.1429 0.1631 0.1447 0.1124 0.1157 0.1372 0.1218 
4 0.2695 0.2742 0.3148 0.2861 0.1923 0.1855 0.1900 0.1893 0.1410 0.1572 0.1950 0.1644 0.1252 0.1272 0.0951 0.1158 
5 0.5017 0.5100 0.5856 0.5324 0.2855 0.3174 0.3417 0.3149 0.2444 0.2193 0.2173 0.2270 0.1834 0.1527 0.1668 0.1676 
6 0.6338 0.5767 0.5349 0.5818 0.4062 0.4110 0.4003 0.4059 0.2144 0.2176 0.2276 0.2199 0.1479 0.1498 0.1541 0.1506 
7 0.6382 0.6016 0.6300 0.6233 0.5147 0.4688 0.4929 0.4921 0.3425 0.3487 0.3072 0.3328 0.2021 0.2165 0.2483 0.2223 
8 0.6520 0.6779 0.6933 0.6744 0.6146 0.6204 0.5484 0.5944 0.5740 0.5401 0.5284 0.5475 0.3652 0.4328 0.4113 0.4031 

 

 PNT1A 

 5 x 104 cells/well 2.5 x 104 cells/well 1.25 x 104 cells/well 6.25 x 103 cells/well 

Day OD OD OD OD 
Average OD OD OD OD 

Average OD OD OD OD 
Average OD OD OD OD 

Average 
1 0.1718 0.0963 0.1255 0.1312 0.1042 0.0568 0.0802 0.0804 0.0834 0.0816 0.0819 0.0823 0.0713 0.0729 0.0705 0.0716 
2 0.1370 0.1398 0.1197 0.1322 0.1064 0.0806 0.0974 0.0948 0.1146 0.0888 0.1009 0.1014 0.0778 0.0815 0.0684 0.0759 
3 0.1634 0.1625 0.1660 0.1639 0.1101 0.1079 0.1114 0.1098 0.0833 0.0823 0.0810 0.0822 0.0742 0.0729 0.0783 0.0751 
4 0.2058 0.2404 0.2301 0.2254 0.1533 0.1754 0.1736 0.1675 0.1037 0.1147 0.1092 0.1092 0.0882 0.0857 0.0864 0.0868 
5 0.1900 0.2279 0.2505 0.2228 0.1808 0.1688 0.1435 0.1644 0.0966 0.1198 0.1228 0.1131 0.1161 0.1233 0.1124 0.1173 
6 0.2643 0.3122 0.3131 0.2965 0.2032 0.2132 0.2008 0.2057 0.1326 0.1408 0.1518 0.1417 0.1305 0.1000 0.1085 0.1130 
7 0.3335 0.3689 0.3382 0.3469 0.2409 - 0.2521 0.2465 0.1567 0.1536 0.1687 0.1597 0.1316 0.0945 0.1010 0.1090 
8 0.3235 0.3458 0.3182 0.3291 - 0.2816 0.3524 0.3170 0.3413 0.2237 0.2539 0.2730 0.2012 0.1250 0.1373 0.1545 
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MTT assay statistics 
 

RT112 

 5 x 104 cells/well 2.5 x 104 cells/well 1.25 x 104 cells/well 6.25 x 103 cells/well 

Number of values 7 7 7 7 

     
Minimum 0.1258 0.09621 0.07020 0.07951 
25% Percentile 0.2209 0.1953 0.1275 0.1222 
Median 0.6512 0.4506 0.2990 0.1882 
75% Percentile 0.8614 0.7600 0.6889 0.6020 
Maximum 0.9220 0.7683 0.8190 0.8023 

     
Mean 0.5967 0.4801 0.3985 0.3321 
Std. Deviation 0.3169 0.2795 0.2970 0.2789 
Std. Error 0.1198 0.1056 0.1122 0.1054 

     
Lower 95% CI of mean 0.3036 0.2216 0.1238 0.07419 
Upper 95% CI of mean 0.8898 0.7386 0.6731 0.5900 

     
Sum 4.177 3.361 2.789 2.325 
 

 

T24 

 5 x 104 cells/well 2.5 x 104 cells/well 1.25 x 104 cells/well 6.25 x 103 cells/well 

Number of values 8 8 8 8 

     
Minimum 0.1760 0.1101 0.1113 0.09990 
25% Percentile 0.2415 0.1862 0.1502 0.1274 
Median 0.5960 0.4695 0.3398 0.2525 
75% Percentile 0.8391 0.8060 0.7599 0.6205 
Maximum 0.9083 0.8952 0.8148 0.7052 

     
Mean 0.5643 0.4937 0.4222 0.3437 
Std. Deviation 0.2877 0.3054 0.2916 0.2479 
Std. Error 0.1017 0.1080 0.1031 0.08764 

     
Lower 95% CI of mean 0.3238 0.2384 0.1784 0.1365 
Upper 95% CI of mean 0.8049 0.7491 0.6659 0.5510 

     
Sum 4.515 3.950 3.377 2.750 
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PC3 

 5 x 104 cells/well 2.5 x 104 cells/well 1.25 x 104 cells/well 6.25 x 103 cells/well 

Number of values 8 8 8 8 

 
    Minimum 0.1478 0.1032 0.09251 0.08974 

25% Percentile 0.1981 0.1569 0.1475 0.1159 
Median 0.4093 0.2521 0.1921 0.1362 
75% Percentile 0.6129 0.4705 0.3064 0.2086 
Maximum 0.6744 0.5944 0.5475 0.4031 

 
    Mean 0.4082 0.3022 0.2356 0.1734 

Std. Deviation 0.2155 0.1797 0.1450 0.1014 
Std. Error 0.07620 0.06352 0.05127 0.03586 

 
    Lower 95% CI of mean 0.2280 0.1520 0.1144 0.08858 

Upper 95% CI of mean 0.5884 0.4524 0.3569 0.2582 

 
    Sum 3.265 2.417 1.885 1.387 

 

 

PNT1A 

 5 x 104 cells/well 2.5 x 104 cells/well 1.25 x 104 cells/well 6.25 x 103 cells/well 

Number of values 8 8 8 8 

 
    Minimum 0.1312 0.08038 0.08218 0.07156 

25% Percentile 0.1401 0.09853 0.08708 0.07531 
Median 0.2241 0.1659 0.1111 0.09791 
75% Percentile 0.3210 0.2363 0.1552 0.1162 
Maximum 0.3469 0.3170 0.2730 0.1545 

 
    Mean 0.2310 0.1733 0.1328 0.1004 

Std. Deviation 0.08592 0.08107 0.06268 0.02855 
Std. Error 0.03038 0.02866 0.02216 0.01009 

 
    Lower 95% CI of mean 0.1592 0.1055 0.08042 0.07653 

Upper 95% CI of mean 0.3028 0.2410 0.1852 0.1243 

 
    Sum 1.848 1.386 1.063 0.8032 

 



Appendix IX 

 

MTT assay – curve fitting 
 
a) RT112 cell line 

 
i) 5 x 104 cells/well 

 
Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1195 0.3585 
y2 -0.5678 1.7035 
y3 -0.,8833 2.6499 
y4 -0.8563 2.5690 
T1 -3.,3333 10.,0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged   100.0% 
Singular Solutions   84.5% 
Ill-Conditioned Solutions   13.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9905 0.9810 0.8861  0.1070  
 
  Coefficient Std. Error t P VIF  
y1 0.0857 0.0976 0.8782 0.5412 0.0000  
y2 0.5292 7.2156 0.0733 0.9534 0.0000  
y3 0.9058 1.1326 0.7997 0.5706 0.0000  
y4 0.8440 0.0976 8.6442 0.0733 0.0000  
T1 3.0606 33.5406 0.0913 0.9421 0.0000  
T2 5.9609 37.2503 0.1600 0.8990 0.0000  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 3.0833 0.5139  
Residual        1 0.0114 0.0114  
Total              7 3.0948 0.4421  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 0.5910 0.1182 10.3320 0.2317  
Residual        1 0.0114 0.0114  
Total             6 0.6024 0.1004  
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Statistical Tests: 
 
PRESS  197324537.6713 
 
Durbin-Watson Statistic  3.1667 Failed  
 
Normality Test   Passed (P = 0.8128) 
 
K-S Statistic = 0.2267 Significance Level = 0.8128 
 
Constant Variance Test  Passed (P = 0.0545) 
 
Power of performed test with alpha = <0.0001: 0.0000 
 
The power of the performed test (0.0000) is below the desired power of 0.8000. 
You should interpret the negative findings cautiously. 
 

 
ii) 2.5 x 104 cells/well 
 

Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.0980 0.2940 
y2 -0.3868 1.1605 
y3 -0.6902 2.0705 
y4 -0.7594 2.2781 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.0% 
Singular Solutions   86.0% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    2.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9982 0.9965 0.9788  0.0407  
 
  Coefficient Std. Error t P VIF  
y1 0.0912                  0.0352 2.5932 0.2343 1.6015  
y2 0.6955338923     5.0839 2.0521E-007 1.0000 4.0046E+015<  
y3 0.74378711         9.5516 8.5361E-006 1.0000 2.1187E+012<  
y4 0.7574                 0.0617 12.2790 0.0517 3.7660  
T1 5.92582762766   9.1123 2.1449E-007 1.0000 4.0046E+015<  
T2 4.71032081959   4.9007 2.2624E-007 1.0000 2.1187E+012<  
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Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 2.0805 0.3467  
Residual        1 0.0017 0.0017  
Total              7 2.0821 0.2974  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.4669 0.0934 56.4233 0.1007  
Residual 1 0.0017 0.0017  
Total 6 0.4686 0.0781  
 
Statistical Tests: 
 
PRESS  56548.6550 
 
Durbin-Watson Statistic  3.4472 Failed  
 
Normality Test   Passed (P = 0.9412) 
 
K-S Statistic = 0.1889 Significance Level = 0.9412 
 
Constant Variance Test  Passed (P = 0.6602) 
 
Power of performed test with alpha = <0.0001: 0.0000 
 
The power of the performed test (0.0000) is below the desired power of 0.8000. 
You should interpret the negative findings cautiously. 
 

 
iii) 1.25 x 104 cells/well 
 

Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
                 Minimum Maximum 
y1 -0.0728 0.2184 
y2 -0.2323 0.6970 
y3 -0.5255 1.5765 
y4 -0.8148 2.4445 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.0% 
Singular Solutions   83.0% 
Ill-Conditioned Solutions   13.0% 
Iterations Exceeding 200    3.0% 
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Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9998 0.9997 0.9981  0.0129  
 
  Coefficient Std. Error t P VIF  
y1 0.0683                   0.0118 5.8092 0.1085 1.2519  
y2 0.246428946         7.2124 8.5129E-007 1.0000 5.1377E+014<  
y3 0.3862112761       2.5216 3.4253E-007 1.0000 3.8768E+015<  
y4 0.8141                   0.0178 45.7892 0.0139 3.3296  
T1 3.8239 458826      5.0730 8.3341E-007 1.0000 4.7294E+015<  
T2 4.2919 977348      4.9239 4.3913E-007 1.0000 1.0077E+016<  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 1.6403 0.2734  
Residual        1 0.0002 0.0002  
Total             7 1.6404 0.2343  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0,5289 0,1058 638,3953 0,0300  
Residual 1 0,0002 0,0002  
Total 6 0,5291 0,0882  
 
Statistical Tests: 
 
PRESS  0.0003 
 
Durbin-Watson Statistic  3.1667 Failed  
 
Normality Test   Passed (P = 0.8603) 
 
K-S Statistic = 0.2148 Significance Level = 0.8603 
 
Constant Variance Test  Passed (P = 0.0956) 
 
Power of performed test with alpha = <0,0001: 0,0000 
 
The power of the performed test (0.0000) is below the desired power of 0.8000. 
You should interpret the negative findings cautiously. 
 

 
iv) 6.25 x 103 cells/well 
 

Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 
 Minimum Maximum 
y1 -0.0812 0.2436 
y2 -0.1466 0.4397 
y3 -0.3511 1.0534 
y4 -0.8033 2.4099 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    94.0% 
Singular Solutions   79.5% 
Ill-Conditioned Solutions   14.5% 
Iterations Exceeding 200    6.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9993 0.9986 0.9913  0.0260  
 
  Coefficient Std. Error t P VIF  
y1 0.0901                0.0237 3.7971 0.1639 1.1659  
y2 0.14346601        1.4901 2.1721E-006 1.0000 9.0240E+012<  
y3 0.3406127355    4.7036 2.6744E-007 1.0000 2.4177E+015<  
y4 0.8029                0.0238             33.7262 0.0189 1.1176  
T1 3.4969309400    8.2702 1.1302E-006 1.0000 7.2217E+013<  
T2 5.7128 630077   4.9573 9.0668E-007 1.0000 2.3180E+015<  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 1.2381 0.2064  
Residual        1 0.0007 0.0007  
Total             7 1.2388 0.1770  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 0.4660 0.0932 137.9127 0.0646  
Residual        1 0.0007 0.0007  
Total              6 0.4667 0.0778  
 
Statistical Tests: 
 
PRESS  0.0092 
 
Durbin-Watson Statistic  3.1667 Failed  
 
Normality Test   Passed (P = 0.4288) 
 
K-S Statistic = 0.3115 Significance Level = 0,4288 
 
Constant Variance Test  Passed (P = 0.0956) 
 
Power of performed test with alpha = <0.0001: 0.0000 
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a) T24 cell line 
 

i) 5 x 104 cells/well 
 

Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
                 Minimum      Maximum 
y1 -0.1601 0.4802 
y2 -0.4196 1.2587 
y3 -0.7869 2.3606 
y4 -0.8142 2.4426 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged   100.0% 
Singular Solutions   87.0% 
Ill-Conditioned Solutions   13.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9849 0.9700 0.8950  0.0932  
 
  Coefficient Std. Error    t   P VIF  
y1 0.1760                 0.0932 1.8874 0.1997 1.0000  
y2 0.1872 144981    8.9801 1.2914E-007 1.0000 4.6256E+014<  
y3 0.9370                 0.0815 11.4933 0.0075 1.5581  
y4 0.8037                 0.0932 8.6193 0.0132 1.0465  
T1 1.7618 959718    3.2488 1.8357E-007 1.0000 4.6256E+014<  
T2 6.7251                 0.6016 11.1796 0.0079 1.6315  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 3.1100 0.5183  
Residual         2 0.0174 0.0087  
Total              8 3.1274 0.3909  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 0.5622 0.1124 12.9331 0.0733  
Residual         2 0.0174 0.0087  
Total              7 0.5796 0.0828  
 
 
 
 
 
 
 
 



Appendix IX 

 

Statistical Tests: 
 
PRESS  2.6206E+014 
 
Durbin-Watson Statistic  3.0280 Failed  
 
Normality Test   Passed (P = 0.6325) 
 
K-S Statistic = 0.2500 Significance Level = 0.6325 
 
Constant Variance Test  Passed (P = 0.8393) 
 
Power of performed test with alpha = <0.0001: 0.0000 
 
The power of the performed test (0.0000) is below the desired power of 0.8000. 
You should interpret the negative findings cautiously. 
 

 
ii) 2.5 x 104 cells/well 
 

Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
                 Minimum    Maximum 
y1 -0.1024 0.3072 
y2 -0.2964 0.8893 
y3 -0.6893 2.0680 
y4 -0.8288 2.4864 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.0% 
Singular Solutions   84.0% 
Ill-Conditioned Solutions   14.0% 
Iterations Exceeding 200    1.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9975 0.9950 0.9825  0.0404  
 
                Coefficient    Std. Error   t   P VIF  
y1 0.0815 0.0324 2.5162 0.1283 1.2055  
y2 0.5092      2914937.6284 1.7469E-007 1.0000 1.0551E+016<  
y3 0.9200       578102.4842 1.5915E-006 1.0000 1.8768E+014<  
y4 0.8225 0.0404     20.3490 0.0024 1.0651  
T1 5.0047     27293299.3931 1.8337E-007 1.0000 1.4186E+016<  
T2 6.6575      7957180.7253 8.3667E-007 1.0000 9.8169E+014<  
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Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 2.5999 0.4333  
Residual         2 0.0033 0.0016  
Total              8 2.6031 0.3254  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 0.6496 0.1299 79.5250 0.0125  
Residual        2 0.0033 0.0016  
Total             7 0.6529 0.0933  
 
Statistical Tests: 
 
PRESS  0.0162 
 
Durbin-Watson Statistic  2.2626 Failed  
 
Normality Test   Passed (P = 0.6325) 
 
K-S Statistic = 0.2500 Significance Level = 0.6325 
 
Constant Variance Test  Passed (P = 0.0018) 
 
Power of performed test with alpha = <0.0001: 0.0000 
 
The power of the performed test (0.0000) is below the desired power of 0.8000. 
You should interpret the negative findings cautiously. 
 

 
iii) 1.25 x 104 cells/well 

 
Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1056 0.3168 
y2 -0.2008 0.6025 
y3 -0.5646 1.6937 
y4 -0.8022 2.4066 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.0% 
Singular Solutions   85.5% 
Ill-Conditioned Solutions   12.5% 
Iterations Exceeding 200    1.0% 
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Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9990 0.9981 0.9932  0.0241  
 
  Coefficient Std. Error t P VIF  
y1 0.0943 0.0201 4.6829 0.0427 1.2359  
y2 0.3077 0.0356 8.6462 0.0131 4.0666<  
y3 0.8196 0.0301 27.2126 0.0013 1.6531  
y4 0.7987 0.0241 33.2033 0.0009 1.0517  
T1 4.6572 0.2212 21.0585 0.0022 4.5874<  
T2 6.7057 0.2056 32.6129 0.0009 2.0994  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 2.0196 0.3366  
Residual         2 0.0012 0.0006  
Total              8 2.0207 0.2526  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 0.5939 0.1188 205.2436 0.0049  
Residual         2 0.0012 0.0006  
Total              7 0.5950 0.0850  
 
Statistical Tests: 
 
PRESS  501338760288.7576 
 
Durbin-Watson Statistic  2.2499 Failed  
 
Normality Test   Passed (P = 0.6325) 
 
K-S Statistic = 0.2500 Significance Level = 0.6325 
 
Constant Variance Test  Passed (P = <0.0001) 
 
Power of performed test with alpha = <0.0001: 0.0000 
The power of the performed test (0.0000) is below the desired power of 0.8000. 
You should interpret the negative findings cautiously. 
 

 
iv) 6.25 x 103 cells/well 
 

Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.0953 0.2858 
y2 -0.1399 0.4197 
y3 -0.4577 1.3732 
y4 -0.6557 1.9670 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.0% 
Singular Solutions   82.5% 
Ill-Conditioned Solutions   13.5% 
Iterations Exceeding 200    3.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9990 0.9979 0.9927  0.0212  
 
                 Coefficient    Std. Error   t   P VIF  
y1 0.0914 0.0177 5.1573 0.0356 1.2367  
y2 0.2162 0.0275 7.8711 0.0158 3.1866  
y3 0.7155 0.0222 32.1801 0.0010 1.2305  
y4 0.6514 0.0212 30.7479 0.0011 1.0262  
T1 4.6608 0.1876 24.8426 0.0016 3.7051  
T2 6.8070 0.1715 39.6906 0.0006 1.6030  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression     6 1.3743 0.2291  
Residual         2 0.0009 0.0004  
Total              8 1.3752 0.1719  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression     5 0.4292 0.0858 191.2805 0.0052  
Residual         2 0.0009 0.0004  
Total              7 0.4301 0.0614  
 
Statistical Tests: 
 
PRESS  6.1959E+013 
 
Durbin-Watson Statistic  2.7441 Failed  
 
Normality Test   Passed (P = 0.2396) 
 
K-S Statistic = 0.3447 Significance Level = 0.2396 
 
Constant Variance Test  Passed (P = 0.0149) 
 
Power of performed test with alpha = <0.0001: 0.0000 
The power of the performed test (0.0000) is below the desired power of 0.8000. 
You should interpret the negative findings cautiously. 
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a) PC3 cell line 
 

i) 5 x 104 cells/well 
 
Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
                  Minimum    Maximum 
y1 -0.1571 0.4713 
y2 -0.2695 0.8086 
y3 -0.5464 1.6393 
y4 -0.6650 1.9950 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.5% 
Singular Solutions   81.0% 
Ill-Conditioned Solutions   15.0% 
Iterations Exceeding 200    2.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
1.0000 0.9999 0.9997  0.0037  
   
                 Coefficient    Std. Error  t   P VIF  
y1 0.1465 0.0033 43.7279 0.0005 1.2821  
y2 0.2721 0.0067 40.8303 0.0006 4.8607<  
y3 0.5342 0.0069 77.0355 0.0002 5.5286<  
y4 0.6728 0.0033 200.8733 <0.0001 1.2945  
T1 3.9430 0.0329 119.6935 <0.0001 4.4655<  
T2 5.0071 0.0335 149.4766 <0.0001 5.1031<  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
                   DF   SS MS  
Regression 6 1.6581 0.2763  
Residual 2 2.6923E-005 1.3461E-005  
Total 8 1.6581 0.2073  
 
Corrected for the mean of the observations: 
                   DF   SS MS F P  
Regression 5 0.3251 0.0650 4830.7099 0.0002  
Residual 2 2.6923E-005 1.3461E-005  
Total 7 0.3252 0.0465  
 
 
 
 
Statistical Tests: 
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PRESS  0.0002 
 
Durbin-Watson Statistic  3.1667 Failed  
 
Normality Test   Passed (P = 0.5886) 
 
K-S Statistic = 0.2588 Significance Level = 0.5886 
 
Constant Variance Test  Passed (P = 0.4228) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
 

ii) 2.5 x 104 cells/well 
 
Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.0951 0.2852 
y2 -0.4506 1.3518 
y3 -0.3936 1.1807 
y4 -0.5945 1.7835 
T1 -0.1942 0.5826 
T2 -0.2987 0.8960 
 
Summary of Fit Results: 
Converged   100.0% 
Singular Solutions   92.5% 
Ill-Conditioned Solutions    7.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9768 0.9541 0.8392  0.0716  
 
                  Coefficient Std. Error t P VIF  
y1 0.1067 0.0725 1.4721 0.2789 1.3782  
y2 0.2029     7760751.8463 2.6149E-008 1.0000 1.5818E+016<  
y3 0.3089      859976.9417 3.5918E-007 1.0000 2.0881E+014<  
y4 0.6044 0.0716 8.4447 0.0137 1.3163  
T1 0.1319    3398540.7405 3.8806E-008 1.0000 1.5818E+016<  
T2 0.0792    942585.6078 8.4073E-008 1.0000 2.0881E+014<  
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Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
                   DF   SS MS  
Regression 6 0.9490 0.1582  
Residual 2 0.0103 0.0051  
Total 8 0.9593 0.1199  
 
Corrected for the mean of the observations: 
                   DF   SS  MS F P  
Regression 5 0.2130 0.0426 8.3051 0.1109  
Residual 2 0.0103 0.0051  
Total 7 0.2233 0.0319  
 
Statistical Tests: 
 
PRESS  0.0212 
 
Durbin-Watson Statistic  2.6154 Failed  
 
Normality Test   Passed (P = 0.7841) 
 
K-S Statistic = 0.2193 Significance Level = 0.7841 
 
Constant Variance Test  Passed (P = 0.1597) 
 
Power of performed test with alpha = 0.0500: 0.9987 
 
 

iii) 1.25 x 104 cells/well 
 

Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.0982 0.2947 
y2 -0.1692 0.5075 
y3 -0.2164 0.6492 
y4 -0.5454 1.6363 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   86.5% 
Ill-Conditioned Solutions   10.0% 
Iterations Exceeding 200    1.5% 
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Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9951 0.9903 0.9659  0.0268  
 
                Coefficient     Std. Error     t    P VIF  
y1 0.0925 0.0268 3.4553 0.0745 1.0000  
y2 0.1323     1303742.5010 1.0146E-007 1.0000 4.1287E+015<  
y3 0.2359 0.0535 4.4083 0.0478 8.2121<  
y4 0.5475 0.0268 20.4500 0.0024 1.0968  
T1 1.6094     62155100.0116 2.5894E-008 1.0000 4.1287E+015<  
T2 6.5483 0.3254 20.1239 0.0025 3.3325  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
                   DF  SS MS  
Regression 6 0.5899 0.0983  
Residual 2 0.0014 0.0007  
Total 8 0.5913 0.0739  
 
Corrected for the mean of the observations: 
                  DF  SS  MS F P  
Regression 5 0.1458 0.0292 40.6686 0.0242  
Residual 2 0.0014 0.0007  
Total 7 0.1472 0.0210  
 
Statistical Tests: 
 
PRESS  0.0000 
 
Durbin-Watson Statistic  2.6890 Failed  
 
Normality Test   Passed (P = 0.6325) 
 
K-S Statistic = 0.2500 Significance Level = 0.6325 
 
Constant Variance Test  Passed (P = 0.7941) 
 
Power of performed test with alpha = 0.0500: 1.0000 

 
iv) 6.25 x 103 cells/well 
 

Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 
                 Minimum     Maximum 
y1 -0.0897 0.2692 
y2 -0.1942 0.5826 
y3 -0.2987 0.8960 
y4 -0.4031 1.2094 
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T1 -0.1942 0.5826 
T2 -0.2987 0.8960 
Summary of Fit Results: 
Converged    99.5% 
Singular Solutions   94.0% 
Ill-Conditioned Solutions    5.5% 
Iterations Exceeding 200    0.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
1.0000 1.0000 1.0000  0.0000  
 
               Coefficient  
y1 0.0897  
y2 0.2094  
y3 1.8482  
y4 1.1160  
T1 0.2094  
T2 1.8482  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
  DF SS MS  
Regression 6 0.3125 0.0521  
Residual 2 0.0000 0.0000  
Total 8 0.3125 0.0391  
 
Corrected for the mean of the observations: 
  DF SS MS                  F                        P  
Regression 5 0.0720 0.0144        (+inf) (NAN)  
Residual 2 0.0000 0.0000  
Total 7 0.0720 0.0103  
 
Statistical Tests: 
 
PRESS  0.0000 
 
Durbin-Watson Statistic  (+inf) Failed  
 
Normality Test   Failed (P = <0.0001) 
 
K-S Statistic = <0.0001 Significance Level = <0.0001 
 
Constant Variance Test  Passed (P = 0.1823) 
 
Power of performed test with alpha = 0.0500: 1.0000 
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a) PNT1A cell line 
 

i) 5 x 104 cells/well 
 

Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 
                 Minimum    Maximum 
y1 -0.1275 0.3825 
y2 -0.1744 0.5232 
y3 -0.2820 0.8459 
y4 -0.3331 0.9993 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   87.5% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    1.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9897 0.9795 0.9282  0.0230  
 
                 Coefficient   Std. Error    t   P VIF  
y1 0.1198 0.0178 6.7195 0.0214 0.0000  
y2 0.2408 0.5121 0.4702 0.6845 0.0000  
y3 0.3533 0.1949 1.8129 0.2115 0.0000  
y4 0.3291 0.0230 14.2974 0.0049 0.0000  
T1 5.3756 18.4984 0.2906 0.7987 0.0000  
T2 6.6363 10.8430 0.6120 0.6028 0.0000  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
                    DF    SS MS  
Regression 6 0.4775 0.0796  
Residual 2 0.0011 0.0005  
Total 8 0.4786 0.0598  
 
Corrected for the mean of the observations: 
                  DF   SS MS F P  
Regression 5 0.0506 0.0101 19.0983 0.0505  
Residual 2 0.0011 0.0005  
Total 7 0.0517 0.0074  
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Statistical Tests: 
 
PRESS  47335729508.8559 
 
Durbin-Watson Statistic  2.6863 Failed  
 
Normality Test   Passed (P = 0.6325) 
 
K-S Statistic = 0.2500 Significance Level = 0.6325 
 
Constant Variance Test  Failed (P = 0.0212) 
 

Power of performed test with alpha = 0.0500: 1.0000 
 
ii) 2.5 x 104 cells/well 

 
Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 
                 Minimum    Maximum 
y1 -0.0804 0.2413 
y2 -0.1304 0.3911 
y3 -0.1944 0.5832 
y4 -0.3179 0.9537 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.0% 
Singular Solutions   83.5% 
Ill-Conditioned Solutions    9.0% 
Iterations Exceeding 200    3.0% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9932 0.9865 0.9529  0.0176  
 
                  Coefficient   Std. Error    t    P VIF  
y1 0.0804 0.0176 4.5689 0.0447 1.0503  
y2 0.0989 0.0510 1.9380 0.1922 15.5463<  
y3 0.2239 0.0361 6.1941 0.0251 7.7946<  
y4 0.3170 0.0176 18.0192 0.0031 1.0591  
T1 2.2890 2.1552 1.0621 0.3995 17.0014<  
T2 6.6788 0.7306 9.1419 0.0118 6.6902<  
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Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
                   DF   SS MS  
Regression 6 0.2855 0.0476  
Residual 2 0.0006 0.0003  
Total 8 0.2861 0.0358  
 
Corrected for the mean of the observations: 
                  DF  SS MS F P  
Regression 5 0.0454 0.0091 29.3287 0.0333  
Residual 2 0.0006 0.0003  
Total 7 0.0460 0.0066  
 
Statistical Tests: 
 
PRESS  48616480789.2878 
 
Durbin-Watson Statistic  3.3934 Failed  
 
Normality Test   Passed (P = 0.3047) 
 
K-S Statistic = 0.3244 Significance Level = 0.3047 
 
Constant Variance Test  Passed (P = 0.3873) 
 
Power of performed test with alpha = 0.0500: 1.0000 

 
 
iii) 1.25 x 104 cells/well 

 
Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
                  Minimum   Maximum 
y1 -0.0862 0.2585 
y2 -0.1009 0.3026 
y3 -0.1225 0.3675 
y4 -0.2695 0.8085 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.5% 
Singular Solutions   87.5% 
Ill-Conditioned Solutions    7.5% 
Iterations Exceeding 200    2.5% 
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Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9936 0.9873 0.9556  0.0132  
 
                Coefficient    Std. Error    t   P VIF  
y1 0.0885 0.0121 7.3343 0.0181 1.0417  
y2 0.0893 0.0124 7.2041 0.0187 1.8486  
y3 0.1515 0.0228 6.6334 0.0220 5.2978<  
y4 0.2730 0.0132 20.6572 0.0023 1.0050  
T1 3.0000 1.5223 1.9706 0.1876 2.8431  
T2 6.9241 0.2492 27.7892 0.0013 3.9961  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
                   DF   SS MS  
Regression 6 0.1683 0.0280  
Residual 2 0.0003 0.0002  
Total 8 0.1686 0.0211  
 
Corrected for the mean of the observations: 
                  DF   SS MS F P  
Regression 5 0.0272 0.0054 31.1019 0.0314  
Residual 2 0.0003 0.0002  
Total 7 0.0275 0.0039  
 
Statistical Tests: 
 
PRESS  >1e20 
 
Durbin-Watson Statistic  3.4265 Failed  
 
Normality Test   Passed (P = 0.9238) 
 
K-S Statistic = 0.1838 Significance Level = 0.9238 
 
Constant Variance Test  Failed (P = 0.0374) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
 

iv) 6.25 x 103 cells/well 
 
Nonlinear Regression - Dynamic Fitting 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 
 Minimum Maximum 
y1 -0.0741 0.2222 
y2 -0.0855 0.2566 
y3 -0.1103 0.3308 
y4 -0.1525 0.4574 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.5% 
Singular Solutions   88.5% 
Ill-Conditioned Solutions   11.0% 
Iterations Exceeding 200    0.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9712 0.9433 0.8015  0.0129  
 
                  Coefficient    Std. Error    t    P VIF  
y1 0.0716 0.0129 5.5470 0.0310 1.2500  
y2 0.0800 0.0477 1.6762 0.2357 31.9373<  
y3 0.1305      481447.9227 2.7103E-007 1.0000 1.9277E+015<  
y4 0.1545 0.0129 11.9703 0.0069 1.0000  
T1 3.0000 4.7513 0.6314 0.5923 33.9078<  
T2 7.6527     44355169.9462 1.7253E-007 1.0000 1.9277E+015<  
 
Analysis of Variance:  
 
Uncorrected for the mean of the observations: 
                  DF SS MS  
Regression 6 0.0876 0.0146  
Residual 2 0.0003 0.0002  
Total 8 0.0880 0.0110  
 
Corrected for the mean of the observations: 
                   DF SS MS F P  
Regression 5 0.0055 0.0011 6.6530 0.1358  
Residual 2 0.0003 0.0002  
Total 7 0.0059 0.0008  
 
Statistical Tests: 
 
PRESS  >1e20 
 
Durbin-Watson Statistic  2.2405 Passed  
 
Normality Test   Passed (P = 0.2296) 
 
K-S Statistic = 0.3481 Significance Level = 0.2296 
 
Constant Variance Test  Passed (P = 0.7494) 
 
Power of performed test with alpha = 0.0500: 0.9972 
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MTT assay raw data 

 

RT112 cell line 

 

 Control Aminosilane 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1 0.1493 0.1557 0.1526 0.1448 0.1523 0.1519 0.1511 0.1864 0.1758 0.1642 0.1816 0.1733 0.1624 0.1739 

2 0.2230 0.2801 0.1884 0.2260 0.2918 0.1939 0.2339 0.2729 0.2783 0.2971 0.2699 0.2852 0.3031 0.2844 

3 0.4489 0.4760 0.5104 0.4379 0.4488 0.4813 0.4672 0.6567 0.4975 0.4320 0.6362 0.4988 0.4096 0.5218 

4 0.3764 0.8924 0.6519 0.3529 0.8282 0.6271 0.6215 0.4956 0.4015 0.8344 0.4781 0.4029 0.7901 0.5671 

5 0.7215 0.8058 0.9166 0.7005 0.7720 0.8968 0.8022 1.0707 1.0135 0.9613 0.7166 0.7209 0.6913 0.8624 

6 0.8857 1.0613 0.7061 0.8855 1.0605 0.6948 0.8823 1.1405 1.1853 1.0043 1.1518 1.1736 0.9770 1.1054 

7 0.7828 0.8463 0.8896 0.9905 1.0961 1.0556 0.9435 0.9374 0.9875 0.9636 1.1381 1.1631 1.1288 1.0531 

8 0.9704 1.0905 1.0274 0.9857 1.0801 1.0141 1.0280 0.9586 1.0124 1.0655 0.9389 1.0515 1.0936 1.0201 

 
 HA4 HA234 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1 0.2085 0.2678 0.2007 0.2041 0.2616 0.2000 0.2238 0.1861 0.2115 0.2005 0.1861 0.2124 0.1974 0.1990 

2 0.2958 0.4537 0.2605 0.3036 0.4410 0.2579 0.3354 0.2790 0.2569 0.2600 0.2846 0.2867 0.2704 0.2729 

3 0.3548 0.3497 0.3471 0.3383 0.3649 0.3749 0.3549 0.3963 0.3936 0.3839 0.3662 0.3865 0.3672 0.3823 

4 0.3727 0.3636 0.3620 0.3576 0.3443 0.3416 0.3570 0.4452 0.4329 0.4339 0.3782 0.3742 0.3704 0.4058 

5 0.5424 0.7220 0.6648 0.5492 0.7101 0.6672 0.6426 0.5450 0.5359 0.5325 0.5960 0.5980 0.6011 0.5681 

6 1.0442 0.9999 0.9902 0.9164 0.8806 0.8703 0.9503 0.7784 0.7110 0.5752 0.6698 0.7362 0.6103 0.6802 

7 0.9443 0.8679 0.8416 0.9265 0.8679 0.8653 0.8856 0.6609 0.6652 0.6222 0.7258 0.7633 0.7858 0.7039 

8 1.0115 1.0762 1.0804 0.9929 1.0709 1.1411 1.0621 0.8202 0.7927 0.7024 0.7816 0.6782 0.6399 0.7358 
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 HA2590 HAmix 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1 0.1441 0.1800 0.2008 0.1488 0.1804 0.1925 0.1744 0.1883 0.1393 0.2193 0.1886 0.1393 0.2142 0.1815 

2 0.3116 0.2762 0.3082 0.3277 0.2972 0.3091 0.3050 0.2616 0.2655 0.3028 0.2653 0.2668 0.2949 0.2762 

3 0.3971 0.3836 0.3782 0.4004 0.4097 0.3766 0.3909 0.3971 0.3836 0.3782 0.4004 0.4097 0.3766 0.3909 

4 0.5330 0.5309 0.2726 0.6056 0.2751 0.6286 0.4743 0.5728 0.4930 0.6219 0.5635 0.4721 0.6121 0.5559 

5 0.5167 0.5323 0.5456 0.5105 0.5316 0.5631 0.5333 0.5976 0.5889 0.5827 0.7631 0.7682 0.8008 0.6836 

6 0.8823 0.7992 0.7919 0.5403 0.5281 0.5187 0.6768 0.9941 0.8540 0.5642 0.9390 0.8157 0.5393 0.7844 

7 0.6302 0.6160 0.5794 0.5915 0.6847 0.6364 0.6230 0.9579 0.9492 0.9173 0.9198 0.8923 0.8602 0.9161 

8 0.5600 0.5777 0.5729 0.6919 0.7054 0.6356 0.6239 1.0002 1.0023 0.9767 0.9642 0.9809 0.9193 0.9739 

 

 

T24 cell line 

 

 Control Aminosilane 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1  - - -  0.3043 0.2549 0.2174 0.2589  - - -  0.2207 0.2178 0.1749 0.2044 

2 0.2238 0.2655 0.2934 0.2137 0.2683 0.2993 0.2607 0.2057 0.2505 0.2661 0.2051 0.2522 0.2744 0.2423 

3 0.2965 0.3149 0.2705 0.2816 0.3123 0.2716 0.2912 0.2546 0.2654 0.3104 0.2424 0.2633 0.3138 0.2750 

4 0.5783 0.3531 0.3630 0.5828 0.3670 0.3598 0.4340 0.4225 0.2361 0.2792 0.4221 0.2524 0.2869 0.3165 

5 0.4396 0.4288 0.4692 0.4293 0.4357 0.4623 0.4442 0.4329 0.3897 0.4342 0.4302 0.4046 0.4289 0.4201 

6 0.6656 0.5620 0.7431 0.6608 0.5859 0.7562 0.6623 0.6455 0.6110 0.7047 0.6447 0.6250 0.7006 0.6553 

7 0.9510 0.9124 0.9142 0.9148 0.8737 0.8512 0.9029 0.8558 0.8527 1.0782 0.8423 0.8621 1.0878 0.9298 

8 0.7312 0.8403 0.9145 0.7162 0.8395 0.8593 0.8168 0.8184 0.8468 0.9907 0.7700 0.8195 1.0170 0.8771 
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 HA4 HA234 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1  - - -  0.1864 0.2116 0.2131 0.2037  - - -  0.2048 0.2530 0.2057 0.2212 

2 0.2427 0.2464 0.2437 0.2405 0.2443 0.2434 0.2435 0.2478 0.2478 0.2359 0.2452 0.2496 0.2365 0.2438 

3 0.1853 0.2275 0.2245 0.1774 0.2227 0.2262 0.2106 0.2054 0.2549 0.2365 0.1955 0.2569 0.2330 0.2304 

4 0.2963 0.4041 0.3141 0.2971 0.4105 0.3307 0.3421 0.4310 0.3958 0.2995 0.4316 0.4240 0.3078 0.3816 

5 0.3512 0.4033 0.4367 0.3416 0.4055 0.4627 0.4002 0.3023 0.4235 0.3128 0.3213 0.4495 0.3334 0.3571 

6 0.7489 0.6672 0.6906 0.7617 0.6735 0.6735 0.7026 0.5198 0.4349 0.5583 0.5296 0.4370 0.5559 0.5059 

7 0.9443 0.8679 0.8416 0.9265 0.8679 0.8318 0.8800 0.6609 0.5071 0.7258 0.6222 0.5396 0.7858 0.6402 

8 0.9610 1.0390 0.9518 0.9128 1.0154 1.0251 0.9842 0.9464 0.5596 0.8582 0.8850 0.5247 0.8866 0.7767 

 

 HA2590 HAmix 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1  - - -  0.2164 0.2605 0.2179 0.2316  - - -  0.2420 0.2679 0.3456 0.2801 

2 0.1853 0.3069 0.2283 0.1838 0.3323 0.2253 0.2436 0.3197 0.2461 0.2622 0.3209 0.2541 0.2624 0.2776 

3 0.2852 0.2374 0.2333 0.2731 0.2357 0.2289 0.2489 0.2116 0.2508 0.2601 0.1996 0.2419 0.2500 0.2357 

4 0.4321 0.2572 0.3994 0.4171 0.2683 0.4048 0.3632 0.3235 0.3081 0.3296 0.3263 0.3149 0.3265 0.3215 

5 0.3230 0.3969 0.3357 0.3292 0.4022 0.3420 0.3548 0.3721 0.3792 0.4456 0.3652 0.3723 0.4488 0.3972 

6 0.4208 0.4090 0.4212 0.4283 0.3719 0.3742 0.4042 0.5535 0.5834 0.6545 0.5419 0.5966 0.6470 0.5961 

7 0.6160 0.5471 0.5915 0.5674 0.5415 0.6364 0.5833 1.0275 0.9198 1.0102 0.9492 0.8923 0.9706 0.9616 

8 0.6090 0.6264 0.8324 0.5683 0.6059 0.7143 0.6594 0.8430 0.8886 1.0585 0.8541 0.9531 1.0734 0.9451 
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PC3 cell line 

 

 Control Aminosilane 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1 0.2393 0.2240 0.2133 0.2395 0.2262 0.2119 0.2257 0.2200 0.2834 0.1872 0.2217 0.2819 0.1753 0.2282 

2 0.4794 0.2458 0.4703 0.4794 0.2458 0.4703 0.3985 0.4441 0.4302 0.3996 0.4422 0.4172 0.4030 0.4227 

3 0.6520 0.6500 0.6374 0.5330 0.5529 0.5469 0.5953 0.6604 0.3910 0.5198 0.6418 0.3866 0.5268 0.5211 

4 0.5137 0.5402 0.5925 0.5302 0.6340 0.6080 0.5698 0.6636 0.6147 0.6193 0.6710 0.6463 0.6863 0.6502 

5 0.6643 0.6608 0.6543 0.6718 0.6828 0.6942 0.6714 0.7950 0.7997 0.6939 0.6636 0.6147 0.6193 0.6977 

6 1.1821 1.1222 1.1052 1.1343 1.1094 1.1176 1.1285 - - 1.0554 1.0367 1.0402 1.0270 1.0398 

7 1.2685 1.1351 1.1302 1.2035 1.1234 1.1672 1.1713 1.1062 1.0568 1.0639 1.0884 - 1.0510 1.0732 

8 1.3761 1.2711 1.2302 1.3343 1.3397 1.3396 1.3151 1.2978 1.3184 1.2770 1.2819 1.3470 1.2765 1.2998 

 

 HA4 HA234 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1 0.2576 0.2611 0.2598 0.2062 0.2090 0.2048 0.2331 0.2799 0.1751 0.2715 0.2738 0.1891 0.2875 0.2461 

2 0.4905 0.4154 0.4497 0.5146 0.4334 0.4687 0.4620 0.1845 0.3538 0.2956 0.1877 0.3903 0.3138 0.2876 

3 0.4449 0.4484 0.4461 0.5406 0.5552 0.5506 0.4976 0.2575 0.2616 0.2664 0.3419 0.3575 0.3552 0.3067 

4 0.5637 0.5715 0.5753 0.5454 0.5609 0.5735 0.5651 0.4140 0.4282 0.4255 0.3290 0.3386 0.3507 0.3810 

5 0.5394 0.5670 0.5681 0.5519 0.5734 0.5814 0.5635 0.4692 0.5731 0.4388 0.4671 0.5778 0.4660 0.4987 

6 1.0608 1.0984 1.0271 1.0483 1.1014 1.0071 1.0572 0.7215 0.7287 0.6774 0.7032 0.7213 0.6830 0.7058 

7 0.9451 1.0888 1.1306 0.9580 1.1324 1.1223 1.0629 0.7206 0.7466 0.7746 0.7404 0.7047 0.7715 0.7431 

8 1.2009 1.4051 1.3643 1.2001 1.3781 1.3605 1.3182 0.5988 0.6974 0.7466 0.6133 0.7289 0.8233 0.7014 
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 HA2590 HAmix 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1 0.2486 0.2490 0.2441 0.3139 0.3132 0.3174 0.2810 0.2980 0.3067 0.3052 0.1386 0.1456 0.1544 0.2248 

2 0.4171 0.1974 0.3386 0.4262 0.2031 0.3586 0.3235 0.2793 0.2837 0.2869 0.3935 0.4081 0.4050 0.3428 

3 0.3545 0.3617 0.3589 0.3250 0.3450 0.3379 0.3472 0.4128 0.4221 0.4196 0.3559 0.3721 0.3708 0.3922 

4 0.4394 0.4526 0.4500 0.5625 0.5723 0.5752 0.5087 0.5567 0.5688 0.5743 0.4468 0.4537 0.4494 0.5083 

5 0.5602 0.6212 0.5806 - - - 0.5873 0.5453 0.5722 0.5644 0.4607 0.4782 0.4613 0.5137 

6 0.8178 0.8477 0.8237 0.8474 0.8528 0.8523 0.8403 0.7650 0.7764 0.7525 - - - 0.7646 

7 0.7427 0.7531 0.6935 0.8029 0.8435 0.8053 0.7735 1.0475 1.0828 1.0391 1.1430 1.0851 1.0387 1.0727 

8 0.7271 0.7754 0.8008 0.6614 0.7532 0.7867 0.7508 1.1759 1.2041 1.2053 1.2079 1.2408 1.2181 1.2087 

 

 

PNT1A cell line 

 

 Control Aminosilane 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1 0.2419 0.2561 0.1789 0.2420 0.2558 0.1801 0.2258 0.2622 0.2208 0.2116 0.2612 0.2213 0.2132 0.2317 

2 0.4311 0.2524 0.4283 0.2567 0.4275 0.2513 0.3412 0.3765 0.4186 0.4818 0.3776 0.4187 0.4900 0.4272 

3 0.3616 0.3357 0.3572 0.3414 0.3550 0.3379 0.3481 0.3776 0.3865 0.3784 0.3762 0.3954 0.3856 0.3833 

4 0.3874 0.5209 0.3874 0.3937 0.5233 0.5174 0.4550 0.4741 0.4701 0.4137 0.4716 0.4804 0.4282 0.4563 

5 0.4990 0.5011 0.5543 0.4874 0.5458 0.5497 0.5229 0.4851 0.4843 0.4546 0.4792 0.4500 0.4446 0.4663 

6 0.7773 0.8817 0.7512 0.8042 0.7503 0.7931 0.7930 0.7561 0.8204 0.8003 0.7497 0.8173 0.8130 0.7928 

7 0.6993 0.7046 0.7065 0.6874 0.6760 0.6863 0.6933 0.7032 0.7539 0.7488 0.6915 0.7378 0.7365 0.7286 

8 0.6473 0.6446 0.6652 0.6687 0.6918 0.6632 0.6635 0.5582 0.6449 0.6525 0.5539 0.6515 0.6408 0.6170 
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 HA4 HA234 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1 0.1865 0.1803 0.1652 0.1875 0.1793 0.1664 0.1776 0.1782 0.1785 0.1820 0.1788 0.1792 0.1855 0.1804 

2 0.2373 0.2582 0.2442 0.2654 0.2440 0.2709 0.2534 0.3204 0.3462 0.3306 0.3564 - - 0.3384 

3 0.2510 0.2621 0.2628 0.2574 0.2650 0.2692 0.2613 0.2518 0.2477 0.2489 0.2397 0.2598 0.2554 0.2506 

4 0.3522 0.3014 0.3464 0.3544 0.3084 0.3500 0.3355 0.3055 0.2778 0.3141 0.2823 0.3110 0.2815 0.2954 

5 0.4019 0.4570 0.4246 0.3902 0.4499 0.4273 0.4251 0.3132 0.3001 0.3850 0.3055 0.3728 0.3562 0.3388 

6 0.5406 0.5125 0.5371 0.5054 0.5294 0.4947 0.5199 0.5537 0.5366 0.5262 0.5419 0.5407 0.5258 0.5375 

7 0.7791 0.7337 0.7656 0.7418 0.7513 0.7201 0.7486 0.6670 0.6484 0.6656 0.6547 0.6658 0.6495 0.6585 

8 0.7901 0.9472 0.7708 0.9169 0.7643 0.9156 0.8508 0.7173 0.6244 0.6957 0.6517 0.6848 0.6256 0.6666 

 

 

 HA2590 HAmix 

Day OD OD OD OD OD OD OD 
Average OD OD OD OD OD OD OD 

Average 

1 0.1760 0.2134 0.1930 0.1828 0.2131 0.1965 0.1958 0.2491 0.2437 0.2466 0.2383 0.2388 0.2411 0.2429 

2 0.3301 0.2973 0.3496 0.3413 0.3143 0.3648 0.3329 0.3725 0.3774 0.3748 0.4278 0.4291 0.4227 0.4007 

3 0.2525 0.2764 0.2638 0.2472 0.2693 0.2738 0.2638 0.2686 0.2626 0.2916 0.2654 0.2676 0.2868 0.2738 

4 0.2698 0.3127 0.3033 0.2636 0.3003 0.3079 0.2929 0.3213 0.3003 0.3478 0.3269 0.3053 0.3466 0.3247 

5 0.3419 0.3280 0.3452 0.3139 0.3188 0.3407 0.3314 0.4038 0.3996 0.3926 0.3956 0.3947 0.3769 0.3939 

6 0.5686 0.5974 0.5669 0.5768 0.5462 0.5750 0.5718 0.3649 0.3660 0.3577 0.4797 0.5050 0.4940 0.4279 

7 0.4832 0.4728 0.4728 0.4919 0.4562 0.4719 0.4748 0.4797 0.5050 0.4940 0.6172 0.6200 0.6260 0.5570 

8 0.5620 0.6441 0.6632 0.6229 0.5860 0.6237 0.6170 0.8890 0.8788 0.8494 0.8916 0.9046 0.8939 0.8845 
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MTT assay statistics 
 

RT112 cell line 

 
Column A Control Control Control Control Control 
vs vs vs vs vs vs 
Column B Aminosilane HA4 HA234 HA2590 HAmix 
            
Unpaired t test           
P value 0.8087 0.2748 P<0.0001 P<0.0001 0.0440 
P value summary ns ns *** *** * 
Are means signif. different? (P < 

 
No No Yes Yes Yes 

One- or two-tailed P value? Two-tailed Two-tailed Two-tailed Two-tailed Two-tailed 
t, df t=0.2486 df=10 t=1.155 df=10 t=8.210 df=10 t=12.34 df=10 t=2.304 df=10 
            
How big is the difference?           
Mean ± SEM of column A 1.028 ± 0.01994 N=6 1.028 ± 0.01994 N=6 1.028 ± 0.01994 N=6 1.028 ± 0.01994 N=6 1.028 ± 0.01994 N=6 
Mean ± SEM of column B 1.020 ± 0.02509 N=6 1.062 ± 0.02175 N=6 0.7358 ± 0.02948 N=6 0.6239 ± 0.02597 N=6 0.9739 ± 0.01242 N=6 
Difference between means 0.007968 ± 0.03205 -0.03410 ± 0.02951 0.2922 ± 0.03559 0.4041 ± 0.03274 0.05413 ± 0.02350 
95% confidence interval -0.06343 to 0.07937 -0.09985 to 0.03166 0.2129 to 0.3715 0.3312 to 0.4771 0.001778 to 0.1065 
R squared 0.006144 0.1178 0.8708 0.9384 0.3467 
            
F test to compare variances           
F,DFn, Dfd 1.583, 5, 5 1.190, 5, 5 2.186, 5, 5 1.696, 5, 5 2.576, 5, 5 
P value 0.6267 0.8532 0.4110 0.5761 0.3223 
P value summary ns ns ns ns ns 
Are variances significantly different? No No No No No 
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T24 cell line 

 
Column A Control Control Control Control Control 
vs vs vs vs vs vs 
Column B Aminosilane HA4 HA234 HA2590 HAmix 
            
Unpaired t test           
P value 0.2747 0.0012 0.6339 0.0113 0.0333 
P value summary ns ** ns * * 
Are means signif. different? (P < 

 
No Yes No Yes Yes 

One- or two-tailed P value? Two-tailed Two-tailed Two-tailed Two-tailed Two-tailed 
t, df t=1.156 df=10 t=4.461 df=10 t=0.4912 df=10 t=3.095 df=10 t=2.466 df=10 
            
How big is the difference?           
Mean ± SEM of column A 0.8168 ± 0.03156 N=6 0.8168 ± 0.03156 N=6 0.8168 ± 0.03156 N=6 0.8168 ± 0.03156 N=6 0.8168 ± 0.03156 N=6 
Mean ± SEM of column B 0.8771 ± 0.04148 N=6 0.9842 ± 0.02027 N=6 0.7767 ± 0.07526 N=6 0.6594 ± 0.03990 N=6 0.9451 ± 0.04134 N=6 
Difference between means -0.06024 ± 0.05212 -0.1673 ± 0.03751 0.04009 ± 0.08161 0.1575 ± 0.05087 -0.1283 ± 0.05201 
95% confidence interval -0.1764 to 0.05589 -0.2509 to -0.08376 -0.1417 to 0.2219 0.04411 to 0.2708 -0.2442 to -0.01240 
R squared 0.1178 0.6656 0.02356 0.4893 0.3782 
            
F test to compare variances           
F,DFn, Dfd 1.727, 5, 5 2.424, 5, 5 5.687, 5, 5 1.598, 5, 5 1.716, 5, 5 
P value 0.5632 0.3534 0.0794 0.6195 0.5678 
P value summary ns ns ns ns ns 
Are variances significantly different? No No No No No 
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PC3 cell line 

 

 

  
Column A Control Control Control Control Control 
vs vs vs vs vs vs 
Column B Aminosilane HA4 HA234 HA2590 HAmix 
            
Unpaired t test           
P value 0.5490 0.9463 P<0.0001 P<0.0001 0.0011 
P value summary ns ns *** *** ** 
Are means signif. different? (P < 

 
No No Yes Yes Yes 

One- or two-tailed P value? Two-tailed Two-tailed Two-tailed Two-tailed Two-tailed 
t, df t=0.6202 df=10 t=0.06905 df=10 t=14.98 df=10 t=18.68 df=10 t=4.518 df=10 
            
How big is the difference?           
Mean ± SEM of column A 1.315 ± 0.02193 N=6 1.315 ± 0.02193 N=6 1.315 ± 0.02193 N=6 1.315 ± 0.02193 N=6 1.315 ± 0.02193 N=6 
Mean ± SEM of column B 1.300 ± 0.01150 N=6 1.318 ± 0.03776 N=6 0.7014 ± 0.03462 N=6 0.7508 ± 0.02078 N=6 1.209 ± 0.008625 N=6 
Difference between means 0.01536 ± 0.02476 -0.003015 ± 0.04366 0.6138 ± 0.04098 0.5644 ± 0.03021 0.1065 ± 0.02356 
95% confidence interval -0.03981 to 0.07052 -0.1003 to 0.09426 0.5225 to 0.7051 0.4971 to 0.6317 0.05397 to 0.1590 
R squared 0.03704 0.0004766 0.9573 0.9721 0.6712 
            
F test to compare variances           
F,DFn, Dfd 3.639, 5, 5 2.964, 5, 5 2.492, 5, 5 1.114, 5, 5 6.465, 5, 5 
P value 0.1826 0.2582 0.3389 0.9088 0.0614 
P value summary ns ns ns ns ns 
Are variances significantly different? No No No No No 
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 PNT1A cell line 

 

 

Column A Control Control Control Control Control 
vs vs vs vs vs vs 
Column B Aminosilane HA4 HA234 HA2590 HAmix 
            
Unpaired t test           
P value 0.0210 0.0003 0.3231 0.1041 0.0002 
P value summary * *** ns ns *** 
Are means signif. different? (P < 

 
Yes Yes No No Yes 

One- or two-tailed P value? Two-tailed Two-tailed Two-tailed Two-tailed Two-tailed 
t, df t=2.736 df=10 t=5.343 df=10 t=1.039 df=10 t=1.788 df=10 t=5.664 df=10 
            
How big is the difference?           
Mean ± SEM of column A 0.6635 ± 0.006954 

 
0.6635 ± 0.006954 N=6 0.6635 ± 0.006954 N=6 0.6635 ± 0.006954 N=6 0.6635 ± 0.006954 

 Mean ± SEM of column B 0.6387 ± 0.005775 
 

0.8508 ± 0.03436 N=6 0.6801 ± 0.01438 N=6 0.6370 ± 0.01306 N=6 0.8156 ± 0.02595 N=6 
Difference between means 0.02473 ± 0.009040 -0.1873 ± 0.03506 -0.01660 ± 0.01597 0.02646 ± 0.01480 -0.1521 ± 0.02686 
95% confidence interval 0.004590 to 0.04487 -0.2655 to -0.1092 -0.05218 to 0.01898 -0.006518 to 0.05943 -0.2120 to -0.09229 
R squared 0.4281 0.7406 0.09750 0.2422 0.7623 
            
F test to compare variances           
F,DFn, Dfd 1.450, 5, 5 24.42, 5, 5 4.274, 5, 5 3.529, 5, 5 13.92, 5, 5 
P value 0.6934 0.0032 0.1368 0.1926 0.0117 
P value summary ns ** ns ns * 
Are variances significantly different? No Yes No No Yes 
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MTT assay – curve fitting 

 

RT112 cell line 

a) Control 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1480 0.4441 
y2 -0.5120 1.5360 
y3 -0.8605 2.5816 
y4 -1.0287 3.0860 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.5% 
Singular Solutions   84.0% 
Ill-Conditioned Solutions   14.0% 
Iterations Exceeding 200    0.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.9993 0.9985 0.9948  0.0238  
 
  Coefficient Std. Error t P  
y1 0.1511 0.0238 6.3387 0.0240  
y2 0.2303 1122127.9199 2.0527E-007 1.0000  
y3 0.7876 0.0526 14.9641 0.0044  
y4 1.0248 0.0199 51.3911 0.0004  
T1 1.9138 5789797.4524 3.3055E-007 1.0000  
T2 4.7891 0.5599 8.5538 0.0134  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 4.0499 0.6750  
Residual 2 0.0011 0.0006  
Total 8 4.0510 0.5064  
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Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.7607 0.1521 267.8172 0.0037  
Residual 2 0.0011 0.0006  
Total 7 0.7619 0.1088  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.2004) 
 
W Statistic= 0.8828 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.7941) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 14 

 

a) Aminosilane 
Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 

Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1739 0.5217 
y2 -0.5183 1.5549 
y3 -0.9808 2.9425 
y4 -1.0049 3.0148 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.0% 
Singular Solutions   87.0% 
Ill-Conditioned Solutions   11.0% 
Iterations Exceeding 200    1.0% 
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Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9966 0.9932 0.9763  0.0557  
  Coefficient Std. Error t P  
y1 0.1743 0.0479 3.6363 0.0680  
y2 0.6310 2366771.1322 2.6660E-007 1.0000  
y3 1.1095 349170.1357 3.1775E-006 1.0000  
y4 1.0169 0.0511 19.9019 0.0025  
T1 4.2233 16704407.3780 2.5283E-007 1.0000  
T2 5.8293 8182604.2214 7.1240E-007 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 4.8140 0.8023  
Residual 2 0.0062 0.0031  
Total 8 4.8202 0.6025  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.9105 0.1821 58.6115 0.0169  
Residual 2 0.0062 0.0031  
Total 7 0.9167 0.1310  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0386) 
 
W Statistic= 0.8122 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.6194) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 

 

c) HA4 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2154 0.6461 
y2 -0.3616 1.0847 
y3 -0.7646 2.2938 
y4 -1.0334 3.1002 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    96.5% 
Singular Solutions   84.5% 
Ill-Conditioned Solutions   12.0% 
Iterations Exceeding 200    3.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9928 0.9857 0.9498  0.0756  
 
  Coefficient Std. Error t P  
y1 0.2184 0.0633 3.4511 0.0747  
y2 0.4012 0.1303 3.0798 0.0912  
y3 0.8884 0.1321 6.7248 0.0214  
y4 1.0219 0.0690 14.8019 0.0045  
T1 4.3980 1.8303 2.4029 0.1382  
T2 5.6131 1.7918 3.1326 0.0886  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 3.5909 0.5985  
Residual 2 0.0114 0.0057  
Total 8 3.6024 0.4503  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.7861 0.1572 27.4868 0.0355  
Residual 2 0.0114 0.0057  
Total 7 0.7976 0.1139  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.2755) 
 
W Statistic= 0.8977 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.0716) 
 

iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 10 
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d) HA234 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 

Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1999 0.5998 
y2 -0.3850 1.1549 
y3 -0.6236 1.8708 
y4 -0.7292 2.1877 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.5% 
Singular Solutions   85.5% 
Ill-Conditioned Solutions   11.0% 
Iterations Exceeding 200    2.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9977 0.9954 0.9838  0.0263  
 
  Coefficient Std. Error t P  
y1 0.2055 0.0267 7.6902 0.0165  
y2 0.4382 2444164.8645 1.7927E-007 1.0000  
y3 0.6685 473366.0928 1.4122E-006 1.0000  
y4 0.7344 0.0257 28.5381 0.0012  
T1 4.1877 33490886.8464 1.2504E-007 1.0000  
T2 5.6276 17027556.4370 3.3050E-007 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.2458 0.3743  
Residual 2 0.0014 0.0007  
Total 8 2.2472 0.2809  
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Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2975 0.0595 86.0265 0.0115  
Residual 2 0.0014 0.0007  
Total 7 0.2989 0.0427  
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.0547) 
 
W Statistic= 0.8266 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.1020) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 

 

e) HA2590 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 

Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1773 0.5320 
y2 -0.4204 1.2613 
y3 -0.6064 1.8191 
y4 -0.6155 1.8464 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.0% 
Singular Solutions   86.0% 
Ill-Conditioned Solutions   10.0% 
Iterations Exceeding 200    1.0% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9959 0.9918 0.9713  0.0297  
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 Coefficient Std. Error t P  
y1 0.1744 0.0318 5.4814 0.0317  
y2 0.2970 1057265.3717 2.8089E-007 1.0000  
y3 0.6496 0.0566 11.4844 0.0075  
y4 0.6190 0.0297 20.8617 0.0023  
T1 1.9614 12109909.9548 1.6197E-007 1.0000  
T2 6.0000 0.6862 8.7433 0.0128  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.0193 0.3366  
Residual 2 0.0018 0.0009  
Total 8 2.0211 0.2526  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2128 0.0426 48.3365 0.0204  
Residual 2 0.0018 0.0009  
Total 7 0.2145 0.0306  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.4130) 
 
W Statistic= 0.9179 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0212) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 26 

 

f) HAmix 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1813 0.5440 
y2 -0.4482 1.3445 
y3 -0.7642 2.2926 
y4 -0.9773 2.9320 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.0% 
Singular Solutions   85.0% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    1.0% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9992 0.9983 0.9942  0.0225  
 
  Coefficient Std. Error t P  
y1 0.1815 0.0225 8.0686 0.0150  
y2 0.3437 0.1058 3.2492 0.0831  
y3 0.6398 0.0807 7.9254 0.0156  
y4 0.9899 0.0188 52.5960 0.0004  
T1 2.7138 0.7283 3.7264 0.0651  
T2 4.5086 0.6578 6.8537 0.0206  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 3.4403 0.5734  
Residual 2 0.0010 0.0005  
Total 8 3.4413 0.4302  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.6052 0.1210 239.1890 0.0042  
Residual 2 0.0010 0.0005  
Total 7 0.6062 0.0866  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0236) 
 
W Statistic= 0.7922 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0149) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 17 

 



Appendix XII 

 

T24 cell line 

a) Control 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 

Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2512 0.7537 
y2 -0.2884 0.8653 
y3 -0.6116 1.8349 
y4 -0.8267 2.4800 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.5% 
Singular Solutions   85.0% 
Ill-Conditioned Solutions   12.5% 
Iterations Exceeding 200    2.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9990 0.9981 0.9932  0.0212  
 
  Coefficient Std. Error t P  
y1 0.2508 0.0177 14.1584 0.0050  
y2 0.3668 0.0271 13.5129 0.0054  
y3 0.9076 835110.5664 1.0868E-006 1.0000  
y4 0.8168 0.0212 38.5730 0.0007  
T1 4.6790 0.1662 28.1499 0.0013  
T2 7.0370 3640944.1371 1.9327E-006 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.4786 0.4131  
Residual 2 0.0009 0.0004  
Total 8 2.4795 0.3099  
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Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.4600 0.0920 205.1691 0.0049  
Residual 2 0.0009 0.0004  
Total 7 0.4609 0.0658  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.5163) 
 
W Statistic= 0.9300 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.2327) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 

 
b) Aminosilane 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1977 0.5932 
y2 -0.2309 0.6927 
y3 -0.5873 1.7618 
y4 -0.8837 2.6512 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.0% 
Singular Solutions   84.5% 
Ill-Conditioned Solutions   13.5% 
Iterations Exceeding 200    2.0% 
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Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9996 0.9992 0.9972  0.0159  
 
   
 Coefficient Std. Error t P  
y1 0.2130 0.0133 15.9829 0.0039  
y2 0.2795 0.0175 15.9328 0.0039  
y3 0.9315 1027237.4394 9.0681E-007 1.0000  
y4 0.8771 0.0159 55.0726 0.0003  
T1 4.4743 0.1075 41.6339 0.0006  
T2 7.0324 4030500.2338 1.7448E-006 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.4749 0.4125  
Residual 2 0.0005 0.0003  
Total 8 2.4754 0.3094  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.6230 0.1246 491.2757 0.0020  
Residual 2 0.0005 0.0003  
Total 7 0.6235 0.0891  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.3717) 
 
W Statistic= 0.9125 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.2897) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
 
c) HA4 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2049 0.6148 
y2 -0.2475 0.7426 
y3 -0.5925 1.7774 
y4 -0.9823 2.9470 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
Summary of Fit Results: 
Converged    95.5% 
Singular Solutions   75.0% 
Ill-Conditioned Solutions   18.0% 
Iterations Exceeding 200    4.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9964 0.9929 0.9751  0.0496  
 
  Coefficient Std. Error t P  
y1 0.1926 0.0415 4.6428 0.0434  
y2 0.3377 0.0654 5.1664 0.0355  
y3 0.8143 0.1373 5.9304 0.0273  
y4 0.9842 0.0496 19.8474 0.0025  
T1 4.7934 0.3141 15.2589 0.0043  
T2 6.3694 0.5631 11.3107 0.0077  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.6540 0.4423  
Residual 2 0.0049 0.0025  
Total 8 2.6589 0.3324  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.6870 0.1374 55.8826 0.0177  
Residual 2 0.0049 0.0025  
Total 7 0.6919 0.0988  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0234) 
 
W Statistic= 0.7918 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.0860) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
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d) HA234 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2208 0.6623 
y2 -0.2710 0.8130 
y3 -0.4547 1.3642 
y4 -0.7793 2.3378 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.0% 
Singular Solutions   84.0% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    2.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9938 0.9875 0.9564  0.0432  
 
  Coefficient Std. Error t P  
y1 0.2234 0.0422 5.2960 0.0339  
y2 0.2555 0.1356 1.8845 0.2002  
y3 0.3701 0.0839 4.4102 0.0478  
y4 0.7785 0.0394 19.7346 0.0026  
T1 3.0000 3.3914 0.8846 0.4697  
T2 5.0517 0.9369 5.3917 0.0327  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 1.6702 0.2784  
Residual 2 0.0037 0.0019  
Total 8 1.6739 0.2092  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2961 0.0592 31.7120 0.0309  
Residual 2 0.0037 0.0019  
Total 7 0.2998 0.0428  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.1102) 
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W Statistic= 0.8563 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.4228) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
Number of Iterations Performed = 88 
 
e) HA2590 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations  
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2300 0.6901 
y2 -0.2652 0.7956 
y3 -0.4074 1.2222 
y4 -0.6657 1.9971 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.5% 
Singular Solutions   83.0% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    2.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9936 0.9872 0.9550  0.0343  
 
  Coefficient Std. Error t P  
y1 0.2326 0.0318 7.3083 0.0182  
y2 0.2507 0.0604 4.1536 0.0534  
y3 0.3754 0.0973 3.8568 0.0611  
y4 0.6704 0.0313 21.4053 0.0022  
T1 3.0000 2.4673 1.2159 0.3481  
T2 5.5378 0.9665 5.7296 0.0291  
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Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 1.3253 0.2209  
Residual 2 0.0024 0.0012  
Total 8 1.3277 0.1660  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.1809 0.0362 30.7336 0.0318  
Residual 2 0.0024 0.0012  
Total 7 0.1833 0.0262  
 
 
 
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.1176) 
 
W Statistic= 0.8591 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.2897) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
Number of Iterations Performed = 22 
 
 
e) HAmix 

Equation: Piecewise, 3 segment linear 

t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2690 0.8071 
y2 -0.2425 0.7274 
y3 -0.5712 1.7136 
y4 -0.9628 2.8884 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
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Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   83.0% 
Ill-Conditioned Solutions   14.0% 
Iterations Exceeding 200    1.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9955 0.9910 0.9685  0.0534  
 
  Coefficient Std. Error t P  
y1 0.2414 0.0414 5.8368 0.0281  
y2 0.3747 321682.6360 1.1647E-006 1.0000  
y3 0.9633 262022.6307 3.6763E-006 1.0000  
y4 0.9451 0.0561 16.8505 0.0035  
T1 5.4587 10764125.5337 5.0712E-007 1.0000  
T2 6.8974 15900716.8503 4.3378E-007 1.0000  
 
 
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.6358 0.4393  
Residual 2 0.0057 0.0029  
Total 8 2.6415 0.3302  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.6270 0.1254 43.9847 0.0224  
Residual 2 0.0057 0.0029  
Total 7 0.6327 0.0904  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.3582) 
 
W Statistic= 0.9106 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0053) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 
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PC3 cell line 

a) Control 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2167 0.6501 
y2 -0.5369 1.6106 
y3 -0.9161 2.7482 
y4 -1.3014 3.9042 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    96.0% 
Singular Solutions   85.0% 
Ill-Conditioned Solutions   11.0% 
Iterations Exceeding 200    4.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9921 0.9842 0.9448  0.0931  
 
  Coefficient Std. Error t P  
y1 0.2796 0.0735 3.8032 0.0627   
y2 0.7262 4168008.6997 1.7423E-007 1.0000   
y3 1.0963 4666853.6247 2.3492E-007 1.0000   
y4 1.2983 0.0950 13.6646 0.0053   
T1 5.2025 39223045.9324 1.3264E-007 1.0000   
T2 5.8361 49999769.1479 1.1672E-007        1.0000   
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 5.6973 0.9495  
Residual 2 0.0173 0.0087  
Total 8 5.7146 0.7143  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 1.0831 0.2166 24.9755 0.0389  
Residual 2 0.0173 0.0087  
Total 7 1.1005 0.1572  
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Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.1205) 
 
W Statistic= 0.8602 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.4597) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 
 
 

b) Aminosilane 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2314 0.6942 
y2 -0.5595 1.6784 
y3 -0.8806 2.6419 
y4 -1.2863 3.8590 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.0% 
Singular Solutions   84.5% 
Ill-Conditioned Solutions   13.5% 
Iterations Exceeding 200    2.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9936 0.9872 0.9551  0.0775  
 
  Coefficient Std. Error t P  
y1 0.2707 0.0852 3.1762 0.0865  
y2 0.7612 13720119.3452 5.5483E-008 1.0000  
y3 0.9756 0.6069 1.6076 0.2492  
y4 1.2676 0.0707 17.9256 0.0031  
T1 5.2056 117629492.3518 4.4254E-008 1.0000  
T2 5.7537 4.6259 1.2438 0.3396  
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Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 5.3223 0.8871  
Residual 2 0.0120 0.0060  
Total 8 5.3343 0.6668  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.9226 0.1845 30.7507 0.0318  
Residual 2 0.0120 0.0060  
Total 7 0.9346 0.1335  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0211) 
 
W Statistic= 0.7877 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.8849) 

iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 

 

c) HA4 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2375 0.7124 
y2 -0.5073 1.5218 
y3 -0.8167 2.4501 
y4 -1.2965 3.8896 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.5% 
Singular Solutions   86.5% 
Ill-Conditioned Solutions   13.0% 
Iterations Exceeding 200    0.5% 
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Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9865 0.9731 0.9060  0.1153  
 
  Coefficient Std. Error t P  
y1 0.3115 0.0981 3.1763 0.0865  
y2 0.6214 3575551.6669 1.7378E-007 1.0000  
y3 1.0081 8079635.6953 1.2477E-007 1.0000  
y4 1.2766 0.1053 12.1250 0.0067  
T1 5.0563 46806246.9374 1.0803E-007 1.0000  
T2 5.9425 61918844.6003 9.5972E-008 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 5.1106 0.8518  
Residual 2 0.0266 0.0133  
Total 8 5.1372 0.6422  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.9640 0.1928 14.4947 0.0658  
Residual 2 0.0266 0.0133  
Total 7 0.9906 0.1415  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.0942) 
 
W Statistic= 0.8495 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.8849) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 13 
 
 
d) HA234 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2487 0.7461 
y2 -0.3270 0.9810 
y3 -0.6193 1.8579 
y4 -0.6950 2.0849 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.0% 
Singular Solutions   86.5% 
Ill-Conditioned Solutions    9.0% 
Iterations Exceeding 200    2.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9991 0.9981 0.9934  0.0169  
 
  Coefficient Std. Error t P  
y1 0.2418 0.0141 17.1059 0.0034  
y2 0.3888 0.0226 17.1776 0.0034  
y3 0.7715 0.0258 29.8688 0.0011  
y4 0.7014 0.0169 41.5106 0.0006  
T1 4.4698 0.1958 22.8231 0.0019  
T2 6.3172 0.1538 41.0641 0.0006  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.1729 0.3622  
Residual 2 0.0006 0.0003  
Total 8 2.1735 0.2717  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.3004 0.0601 210.4517 0.0047  
Residual 2 0.0006 0.0003  
Total 7 0.3010 0.0430  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0251) 
 
W Statistic= 0.7946 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0287) 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
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e) HA2590 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2876 0.8629 
y2 -0.4060 1.2181 
y3 -0.7263 2.1790 
y4 -0.7385 2.2154 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    96.5% 
Singular Solutions   87.5% 
Ill-Conditioned Solutions    7.0% 
Iterations Exceeding 200    3.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9925 0.9851 0.9479  0.0505  
 
  Coefficient Std. Error t P  
y1 0.2597 0.0423 6.1451 0.0255  
y2 0.5199 0.0900 5.7760 0.0287  
y3 0.8340 0.0602 13.8470 0.0052  
y4 0.7435 0.0505 14.7206 0.0046  
T1 4.7169 0.7051 6.6899 0.0216  
T2 6.0000 1.4217 4.2202 0.0518  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.7709 0.4618  
Residual 2 0.0051 0.0026  
Total 8 2.7760 0.3470  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.3373 0.0675 26.4483 0.0368  
Residual 2 0.0051 0.0026  
Total 7 0.3424 0.0489  
 
Statistical Tests: 
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Normality Test (Shapiro-Wilk)   Passed (P = 0.7522) 
W Statistic= 0.9541 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.4597) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 34 
 
e) HAmix 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2159 0.6477 
y2 -0.4069 1.2206 
y3 -0.7022 2.1065 
y4 -1.2201 3.6604 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   84.0% 
Ill-Conditioned Solutions   11.5% 
Iterations Exceeding 200    1.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9981 0.9962 0.9866  0.0410  
 
  Coefficient Std. Error t P  
y1 0.2477 0.0318 7.7924 0.0161  
y2 0.5797 0.0704 8.2404 0.0144  
y3 1.0477 0.1813 5.7794 0.0287  
y4 1.2087 0.0410 29.4567 0.0012  
T1 5.4672 0.7176 7.6187 0.0168  
T2 6.8159 1.2834 5.3109 0.0337  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 4.0370 0.6728  
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Residual 2 0.0034 0.0017  
Total 8 4.0403 0.5050  
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.8772 0.1754 104.2030 0.0095  
Residual 2 0.0034 0.0017  
Total 7 0.8806 0.1258  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.6022) 
 
W Statistic= 0.9391 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.0716) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
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PNT1A cell line 

a) Control 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2344 0.7033 
y2 -0.3912 1.1735 
y3 -0.6578 1.9733 
y4 -0.6465 1.9395 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    95.5% 
Singular Solutions   84.5% 
Ill-Conditioned Solutions    9.0% 
Iterations Exceeding 200    4.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9945 0.9891 0.9619  0.0387  
 
  Coefficient Std. Error t P  
y1 0.2383 0.0324 7.3521 0.0180  
y2 0.5146 316727.6410 1.6249E-006 1.0000  
y3 0.7980 6814941.4132 1.1709E-007 1.0000  
y4 0.6518 0.0497 13.1172 0.0058  
T1 4.9777 4559674.1669 1.0917E-006 1.0000  
T2 5.7432 105246534.0202 5.4569E-008 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.3158 0.3860  
Residual 2 0.0030 0.0015  
Total 8 2.3188 0.2898  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2727 0.0545 36.3343 0.0270  
Residual 2 0.0030 0.0015  
Total 7 0.2757 0.0394  
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Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.7722) 
 
W Statistic= 0.9561 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.3533) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 12 
 
 
b) Aminosilane 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2389 0.7167 
y2 -0.4095 1.2286 
y3 -0.6401 1.9202 
y4 -0.6019 1.8057 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    96.0% 
Singular Solutions   85.5% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    4.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9755 0.9516 0.8305  0.0769  
 
  Coefficient Std. Error t P  
y1 0.2933 0.0853 3.4369 0.0752  
y2 0.5013 4655067.8338 1.0769E-007 1.0000  
y3 0.8289 842205.0005 9.8418E-007 1.0000  
y4 0.6170 0.0769 8.0221 0.0152  
T1 5.1743 93419732.7629 5.5388E-008 1.0000  
T2 6.1022 7542336.6478 8.0905E-007 1.0000  
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Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.3370 0.3895  
Residual 2 0.0118 0.0059  
Total 8 2.3489 0.2936  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2325 0.0465 7.8602 0.1167  
Residual 2 0.0118 0.0059  
Total 7 0.2443 0.0349  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.2191) 
 
W Statistic= 0.8869 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0018) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
 
c) HA4 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1773 0.5318 
y2 -0.2870 0.8609 
y3 -0.5034 1.5103 
y4 -0.8568 2.5704 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.5% 
Singular Solutions   83.0% 
Ill-Conditioned Solutions   14.0% 
Iterations Exceeding 200    0.5% 
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Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9978 0.9956 0.9848  0.0301  
 
  Coefficient Std. Error t P  
y1 0.1751 0.0233 7.5037 0.0173  
y2 0.4582 0.0382 11.9834 0.0069  
y3 0.6703 0.0990 6.7693 0.0211  
y4 0.8508 0.0301 28.2421 0.0013  
T1 5.9039 0.3138 18.8114 0.0028  
T2 6.2339 0.7853 7.9386 0.0155  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.0101 0.3350  
Residual 2 0.0018 0.0009  
Total 8 2.0119 0.2515  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.4150 0.0830 91.4646 0.0109  
Residual 2 0.0018 0.0009  
Total 7 0.4169 0.0596  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.3639) 
 
W Statistic= 0.9114 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0474) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 
 
d) HA234 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1858 0.5574 
y2 -0.2725 0.8174 
y3 -0.4570 1.3709 
y4 -0.6623 1.9870 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   86.5% 
Ill-Conditioned Solutions   10.0% 
Iterations Exceeding 200    1.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9831 0.9665 0.8826  0.0644  
 
  Coefficient Std. Error t P  
y1 0.2224 0.0539 4.1287 0.0540  
y2 0.3292 0.0904 3.6399 0.0679  
y3 0.6552 0.0985 6.6527 0.0219  
y4 0.6666 0.0644 10.3515 0.0092  
T1 4.9515 0.5994 8.2614 0.0143  
T2 6.5924 0.7581 8.6964 0.0130  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 1.5619 0.2603  
Residual 2 0.0083 0.0041  
Total 8 1.5702 0.1963  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2390 0.0478 11.5250 0.0818  
Residual 2 0.0083 0.0041  
Total 7 0.2473 0.0353  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0241) 
 
W Statistic= 0.7930 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = <0.0001) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
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f) HA2590 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2100 0.6299 
y2 -0.2943 0.8829 
y3 -0.4265 1.2796 
y4 -0.5758 1.7273 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    94.0% 
Singular Solutions   85.5% 
Ill-Conditioned Solutions    8.5% 
Iterations Exceeding 200    6.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9474 0.8976 0.6416  0.0885  
 
  Coefficient Std. Error t P  
y1 0.2380 0.0741 3.2130 0.0847  
y2 0.3266 30025.9941 1.0879E-005 1.0000  
y3 0.5293 729392.8187 7.2574E-007 1.0000  
y4 0.5618 0.0886 6.3419 0.0240  
T1 4.9860 1350463.3135 3.6920E-006 1.0000  
T2 5.5797 54326371.3029 1.0271E-007 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 1.3095 0.2183  
Residual 2 0.0157 0.0078  
Total 8 1.3252 0.1656  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.1374 0.0275 3.5059 0.2367  
Residual 2 0.0157 0.0078  
Total 7 0.1531 0.0219  
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Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.9570) 
W Statistic= 0.9788 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.8849) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 
 
f) HAmix 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2641 0.7923 
y2 -0.3383 1.0150 
y3 -0.4316 1.2947 
y4 -0.8630 2.5891 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   85.5% 
Ill-Conditioned Solutions   11.5% 
Iterations Exceeding 200    1.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9731 0.9469 0.8140  0.0897  
 
  Coefficient Std. Error t P  
y1 0.2925 0.0751 3.8968 0.0600  
y2 0.3292 0.0911 3.6133 0.0688  
y3 0.5874 0.7487 0.7846 0.5149  
y4 0.8845 0.0897 9.8579 0.0101  
T1 4.0000 2.2029 1.8158 0.2111  
T2 7.1060 8.9429 0.7946 0.5102  
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Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 1.9202 0.3200  
Residual 2 0.0161 0.0081  
Total 8 1.9363 0.2420  
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2869 0.0574 7.1282 0.1276  
Residual 2 0.0161 0.0081  
Total 7 0.3030 0.0433  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.2192) 
 
W Statistic= 0.8870 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0212) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 24 
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MTT assay – curve fitting 

 

RT112 cell line 

a) Control 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1480 0.4441 
y2 -0.5120 1.5360 
y3 -0.8605 2.5816 
y4 -1.0287 3.0860 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.5% 
Singular Solutions   84.0% 
Ill-Conditioned Solutions   14.0% 
Iterations Exceeding 200    0.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
 
0.9993 0.9985 0.9948  0.0238  
 
  Coefficient Std. Error t P  
y1 0.1511 0.0238 6.3387 0.0240  
y2 0.2303 1122127.9199 2.0527E-007 1.0000  
y3 0.7876 0.0526 14.9641 0.0044  
y4 1.0248 0.0199 51.3911 0.0004  
T1 1.9138 5789797.4524 3.3055E-007 1.0000  
T2 4.7891 0.5599 8.5538 0.0134  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 4.0499 0.6750  
Residual 2 0.0011 0.0006  
Total 8 4.0510 0.5064  
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Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.7607 0.1521 267.8172 0.0037  
Residual 2 0.0011 0.0006  
Total 7 0.7619 0.1088  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.2004) 
 
W Statistic= 0.8828 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.7941) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 14 

 

a) Aminosilane 
Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 

Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1739 0.5217 
y2 -0.5183 1.5549 
y3 -0.9808 2.9425 
y4 -1.0049 3.0148 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.0% 
Singular Solutions   87.0% 
Ill-Conditioned Solutions   11.0% 
Iterations Exceeding 200    1.0% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9966 0.9932 0.9763  0.0557  
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  Coefficient Std. Error t P  
y1 0.1743 0.0479 3.6363 0.0680  
y2 0.6310 2366771.1322 2.6660E-007 1.0000  
y3 1.1095 349170.1357 3.1775E-006 1.0000  
y4 1.0169 0.0511 19.9019 0.0025  
T1 4.2233 16704407.3780 2.5283E-007 1.0000  
T2 5.8293 8182604.2214 7.1240E-007 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 4.8140 0.8023  
Residual 2 0.0062 0.0031  
Total 8 4.8202 0.6025  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.9105 0.1821 58.6115 0.0169  
Residual 2 0.0062 0.0031  
Total 7 0.9167 0.1310  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0386) 
 
W Statistic= 0.8122 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.6194) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 

 

c) HA4 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2154 0.6461 
y2 -0.3616 1.0847 
y3 -0.7646 2.2938 
y4 -1.0334 3.1002 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    96.5% 
Singular Solutions   84.5% 
Ill-Conditioned Solutions   12.0% 
Iterations Exceeding 200    3.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9928 0.9857 0.9498  0.0756  
 
  Coefficient Std. Error t P  
y1 0.2184 0.0633 3.4511 0.0747  
y2 0.4012 0.1303 3.0798 0.0912  
y3 0.8884 0.1321 6.7248 0.0214  
y4 1.0219 0.0690 14.8019 0.0045  
T1 4.3980 1.8303 2.4029 0.1382  
T2 5.6131 1.7918 3.1326 0.0886  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 3.5909 0.5985  
Residual 2 0.0114 0.0057  
Total 8 3.6024 0.4503  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.7861 0.1572 27.4868 0.0355  
Residual 2 0.0114 0.0057  
Total 7 0.7976 0.1139  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.2755) 
 
W Statistic= 0.8977 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.0716) 
 

iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 10 
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d) HA234 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 

Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1999 0.5998 
y2 -0.3850 1.1549 
y3 -0.6236 1.8708 
y4 -0.7292 2.1877 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.5% 
Singular Solutions   85.5% 
Ill-Conditioned Solutions   11.0% 
Iterations Exceeding 200    2.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9977 0.9954 0.9838  0.0263  
 
  Coefficient Std. Error t P  
y1 0.2055 0.0267 7.6902 0.0165  
y2 0.4382 2444164.8645 1.7927E-007 1.0000  
y3 0.6685 473366.0928 1.4122E-006 1.0000  
y4 0.7344 0.0257 28.5381 0.0012  
T1 4.1877 33490886.8464 1.2504E-007 1.0000  
T2 5.6276 17027556.4370 3.3050E-007 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.2458 0.3743  
Residual 2 0.0014 0.0007  
Total 8 2.2472 0.2809  
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Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2975 0.0595 86.0265 0.0115  
Residual 2 0.0014 0.0007  
Total 7 0.2989 0.0427  
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.0547) 
 
W Statistic= 0.8266 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.1020) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 

 

e) HA2590 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 

Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1773 0.5320 
y2 -0.4204 1.2613 
y3 -0.6064 1.8191 
y4 -0.6155 1.8464 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.0% 
Singular Solutions   86.0% 
Ill-Conditioned Solutions   10.0% 
Iterations Exceeding 200    1.0% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9959 0.9918 0.9713  0.0297  
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 Coefficient Std. Error t P  
y1 0.1744 0.0318 5.4814 0.0317  
y2 0.2970 1057265.3717 2.8089E-007 1.0000  
y3 0.6496 0.0566 11.4844 0.0075  
y4 0.6190 0.0297 20.8617 0.0023  
T1 1.9614 12109909.9548 1.6197E-007 1.0000  
T2 6.0000 0.6862 8.7433 0.0128  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.0193 0.3366  
Residual 2 0.0018 0.0009  
Total 8 2.0211 0.2526  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2128 0.0426 48.3365 0.0204  
Residual 2 0.0018 0.0009  
Total 7 0.2145 0.0306  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.4130) 
 
W Statistic= 0.9179 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0212) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 26 

 

f) HAmix 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1813 0.5440 
y2 -0.4482 1.3445 
y3 -0.7642 2.2926 
y4 -0.9773 2.9320 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.0% 
Singular Solutions   85.0% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    1.0% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9992 0.9983 0.9942  0.0225  
 
  Coefficient Std. Error t P  
y1 0.1815 0.0225 8.0686 0.0150  
y2 0.3437 0.1058 3.2492 0.0831  
y3 0.6398 0.0807 7.9254 0.0156  
y4 0.9899 0.0188 52.5960 0.0004  
T1 2.7138 0.7283 3.7264 0.0651  
T2 4.5086 0.6578 6.8537 0.0206  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 3.4403 0.5734  
Residual 2 0.0010 0.0005  
Total 8 3.4413 0.4302  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.6052 0.1210 239.1890 0.0042  
Residual 2 0.0010 0.0005  
Total 7 0.6062 0.0866  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0236) 
 
W Statistic= 0.7922 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0149) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 17 
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T24 cell line 

a) Control 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 

Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2512 0.7537 
y2 -0.2884 0.8653 
y3 -0.6116 1.8349 
y4 -0.8267 2.4800 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.5% 
Singular Solutions   85.0% 
Ill-Conditioned Solutions   12.5% 
Iterations Exceeding 200    2.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9990 0.9981 0.9932  0.0212  
 
  Coefficient Std. Error t P  
y1 0.2508 0.0177 14.1584 0.0050  
y2 0.3668 0.0271 13.5129 0.0054  
y3 0.9076 835110.5664 1.0868E-006 1.0000  
y4 0.8168 0.0212 38.5730 0.0007  
T1 4.6790 0.1662 28.1499 0.0013  
T2 7.0370 3640944.1371 1.9327E-006 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.4786 0.4131  
Residual 2 0.0009 0.0004  
Total 8 2.4795 0.3099  
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Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.4600 0.0920 205.1691 0.0049  
Residual 2 0.0009 0.0004  
Total 7 0.4609 0.0658  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.5163) 
 
W Statistic= 0.9300 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.2327) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 

 
b) Aminosilane 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1977 0.5932 
y2 -0.2309 0.6927 
y3 -0.5873 1.7618 
y4 -0.8837 2.6512 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.0% 
Singular Solutions   84.5% 
Ill-Conditioned Solutions   13.5% 
Iterations Exceeding 200    2.0% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9996 0.9992 0.9972  0.0159  
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 Coefficient Std. Error t P  
y1 0.2130 0.0133 15.9829 0.0039  
y2 0.2795 0.0175 15.9328 0.0039  
y3 0.9315 1027237.4394 9.0681E-007 1.0000  
y4 0.8771 0.0159 55.0726 0.0003  
T1 4.4743 0.1075 41.6339 0.0006  
T2 7.0324 4030500.2338 1.7448E-006 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.4749 0.4125  
Residual 2 0.0005 0.0003  
Total 8 2.4754 0.3094  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.6230 0.1246 491.2757 0.0020  
Residual 2 0.0005 0.0003  
Total 7 0.6235 0.0891  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.3717) 
 
W Statistic= 0.9125 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.2897) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
 
c) HA4 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
 
 
 
 
 
 
 



Appendix XII 

 

Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2049 0.6148 
y2 -0.2475 0.7426 
y3 -0.5925 1.7774 
y4 -0.9823 2.9470 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    95.5% 
Singular Solutions   75.0% 
Ill-Conditioned Solutions   18.0% 
Iterations Exceeding 200    4.5% 
 
 
Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9964 0.9929 0.9751  0.0496  
 
  Coefficient Std. Error t P  
y1 0.1926 0.0415 4.6428 0.0434  
y2 0.3377 0.0654 5.1664 0.0355  
y3 0.8143 0.1373 5.9304 0.0273  
y4 0.9842 0.0496 19.8474 0.0025  
T1 4.7934 0.3141 15.2589 0.0043  
T2 6.3694 0.5631 11.3107 0.0077  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.6540 0.4423  
Residual 2 0.0049 0.0025  
Total 8 2.6589 0.3324  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.6870 0.1374 55.8826 0.0177  
Residual 2 0.0049 0.0025  
Total 7 0.6919 0.0988  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0234) 
 
W Statistic= 0.7918 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.0860) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
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d) HA234 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2208 0.6623 
y2 -0.2710 0.8130 
y3 -0.4547 1.3642 
y4 -0.7793 2.3378 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.0% 
Singular Solutions   84.0% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    2.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9938 0.9875 0.9564  0.0432  
 
  Coefficient Std. Error t P  
y1 0.2234 0.0422 5.2960 0.0339  
y2 0.2555 0.1356 1.8845 0.2002  
y3 0.3701 0.0839 4.4102 0.0478  
y4 0.7785 0.0394 19.7346 0.0026  
T1 3.0000 3.3914 0.8846 0.4697  
T2 5.0517 0.9369 5.3917 0.0327  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 1.6702 0.2784  
Residual 2 0.0037 0.0019  
Total 8 1.6739 0.2092  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2961 0.0592 31.7120 0.0309  
Residual 2 0.0037 0.0019  
Total 7 0.2998 0.0428  
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Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.1102) 
 
W Statistic= 0.8563 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.4228) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
Number of Iterations Performed = 88 
 
e) HA2590 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations  
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2300 0.6901 
y2 -0.2652 0.7956 
y3 -0.4074 1.2222 
y4 -0.6657 1.9971 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    97.5% 
Singular Solutions   83.0% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    2.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9936 0.9872 0.9550  0.0343  
 
  Coefficient Std. Error t P  
y1 0.2326 0.0318 7.3083 0.0182  
y2 0.2507 0.0604 4.1536 0.0534  
y3 0.3754 0.0973 3.8568 0.0611  
y4 0.6704 0.0313 21.4053 0.0022  
T1 3.0000 2.4673 1.2159 0.3481  
T2 5.5378 0.9665 5.7296 0.0291  
 
Analysis of Variance:  
 
Analysis of Variance:  
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  DF SS MS  
Regression 6 1.3253 0.2209  
Residual 2 0.0024 0.0012  
Total 8 1.3277 0.1660  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.1809 0.0362 30.7336 0.0318  
Residual 2 0.0024 0.0012  
Total 7 0.1833 0.0262  
 
 
 
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.1176) 
 
W Statistic= 0.8591 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.2897) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
Number of Iterations Performed = 22 
 
 
e) HAmix 

Equation: Piecewise, 3 segment linear 

t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2690 0.8071 
y2 -0.2425 0.7274 
y3 -0.5712 1.7136 
y4 -0.9628 2.8884 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   83.0% 
Ill-Conditioned Solutions   14.0% 
Iterations Exceeding 200    1.5% 
 
Results for the Overall Best-Fit Solution: 



Appendix XII 

 

R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9955 0.9910 0.9685  0.0534  
 
  Coefficient Std. Error t P  
y1 0.2414 0.0414 5.8368 0.0281  
y2 0.3747 321682.6360 1.1647E-006 1.0000  
y3 0.9633 262022.6307 3.6763E-006 1.0000  
y4 0.9451 0.0561 16.8505 0.0035  
T1 5.4587 10764125.5337 5.0712E-007 1.0000  
T2 6.8974 15900716.8503 4.3378E-007 1.0000  
 
 
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.6358 0.4393  
Residual 2 0.0057 0.0029  
Total 8 2.6415 0.3302  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.6270 0.1254 43.9847 0.0224  
Residual 2 0.0057 0.0029  
Total 7 0.6327 0.0904  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.3582) 
 
W Statistic= 0.9106 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0053) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 
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PC3 cell line 

a) Control 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2167 0.6501 
y2 -0.5369 1.6106 
y3 -0.9161 2.7482 
y4 -1.3014 3.9042 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    96.0% 
Singular Solutions   85.0% 
Ill-Conditioned Solutions   11.0% 
Iterations Exceeding 200    4.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9921 0.9842 0.9448  0.0931  
 
  Coefficient Std. Error t P  
y1 0.2796 0.0735 3.8032 0.0627   
y2 0.7262 4168008.6997 1.7423E-007 1.0000   
y3 1.0963 4666853.6247 2.3492E-007 1.0000   
y4 1.2983 0.0950 13.6646 0.0053   
T1 5.2025 39223045.9324 1.3264E-007 1.0000   
T2 5.8361 49999769.1479 1.1672E-007        1.0000   
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 5.6973 0.9495  
Residual 2 0.0173 0.0087  
Total 8 5.7146 0.7143  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 1.0831 0.2166 24.9755 0.0389  
Residual 2 0.0173 0.0087  
Total 7 1.1005 0.1572  
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Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.1205) 
 
W Statistic= 0.8602 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.4597) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 
 
 

b) Aminosilane 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2314 0.6942 
y2 -0.5595 1.6784 
y3 -0.8806 2.6419 
y4 -1.2863 3.8590 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.0% 
Singular Solutions   84.5% 
Ill-Conditioned Solutions   13.5% 
Iterations Exceeding 200    2.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9936 0.9872 0.9551  0.0775  
 
  Coefficient Std. Error t P  
y1 0.2707 0.0852 3.1762 0.0865  
y2 0.7612 13720119.3452 5.5483E-008 1.0000  
y3 0.9756 0.6069 1.6076 0.2492  
y4 1.2676 0.0707 17.9256 0.0031  
T1 5.2056 117629492.3518 4.4254E-008 1.0000  
T2 5.7537 4.6259 1.2438 0.3396  
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Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 5.3223 0.8871  
Residual 2 0.0120 0.0060  
Total 8 5.3343 0.6668  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.9226 0.1845 30.7507 0.0318  
Residual 2 0.0120 0.0060  
Total 7 0.9346 0.1335  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0211) 
 
W Statistic= 0.7877 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.8849) 

iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 

 

c) HA4 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2375 0.7124 
y2 -0.5073 1.5218 
y3 -0.8167 2.4501 
y4 -1.2965 3.8896 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.5% 
Singular Solutions   86.5% 
Ill-Conditioned Solutions   13.0% 
Iterations Exceeding 200    0.5% 
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Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9865 0.9731 0.9060  0.1153  
 
  Coefficient Std. Error t P  
y1 0.3115 0.0981 3.1763 0.0865  
y2 0.6214 3575551.6669 1.7378E-007 1.0000  
y3 1.0081 8079635.6953 1.2477E-007 1.0000  
y4 1.2766 0.1053 12.1250 0.0067  
T1 5.0563 46806246.9374 1.0803E-007 1.0000  
T2 5.9425 61918844.6003 9.5972E-008 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 5.1106 0.8518  
Residual 2 0.0266 0.0133  
Total 8 5.1372 0.6422  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.9640 0.1928 14.4947 0.0658  
Residual 2 0.0266 0.0133  
Total 7 0.9906 0.1415  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.0942) 
 
W Statistic= 0.8495 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.8849) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 13 
 
 
d) HA234 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2487 0.7461 
y2 -0.3270 0.9810 
y3 -0.6193 1.8579 
y4 -0.6950 2.0849 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.0% 
Singular Solutions   86.5% 
Ill-Conditioned Solutions    9.0% 
Iterations Exceeding 200    2.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9991 0.9981 0.9934  0.0169  
 
  Coefficient Std. Error t P  
y1 0.2418 0.0141 17.1059 0.0034  
y2 0.3888 0.0226 17.1776 0.0034  
y3 0.7715 0.0258 29.8688 0.0011  
y4 0.7014 0.0169 41.5106 0.0006  
T1 4.4698 0.1958 22.8231 0.0019  
T2 6.3172 0.1538 41.0641 0.0006  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.1729 0.3622  
Residual 2 0.0006 0.0003  
Total 8 2.1735 0.2717  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.3004 0.0601 210.4517 0.0047  
Residual 2 0.0006 0.0003  
Total 7 0.3010 0.0430  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0251) 
 
W Statistic= 0.7946 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0287) 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
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e) HA2590 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2876 0.8629 
y2 -0.4060 1.2181 
y3 -0.7263 2.1790 
y4 -0.7385 2.2154 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    96.5% 
Singular Solutions   87.5% 
Ill-Conditioned Solutions    7.0% 
Iterations Exceeding 200    3.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9925 0.9851 0.9479  0.0505  
 
  Coefficient Std. Error t P  
y1 0.2597 0.0423 6.1451 0.0255  
y2 0.5199 0.0900 5.7760 0.0287  
y3 0.8340 0.0602 13.8470 0.0052  
y4 0.7435 0.0505 14.7206 0.0046  
T1 4.7169 0.7051 6.6899 0.0216  
T2 6.0000 1.4217 4.2202 0.0518  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.7709 0.4618  
Residual 2 0.0051 0.0026  
Total 8 2.7760 0.3470  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.3373 0.0675 26.4483 0.0368  
Residual 2 0.0051 0.0026  
Total 7 0.3424 0.0489  
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Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.7522) 
W Statistic= 0.9541 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.4597) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 34 
 
e) HAmix 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2159 0.6477 
y2 -0.4069 1.2206 
y3 -0.7022 2.1065 
y4 -1.2201 3.6604 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   84.0% 
Ill-Conditioned Solutions   11.5% 
Iterations Exceeding 200    1.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9981 0.9962 0.9866  0.0410  
 
  Coefficient Std. Error t P  
y1 0.2477 0.0318 7.7924 0.0161  
y2 0.5797 0.0704 8.2404 0.0144  
y3 1.0477 0.1813 5.7794 0.0287  
y4 1.2087 0.0410 29.4567 0.0012  
T1 5.4672 0.7176 7.6187 0.0168  
T2 6.8159 1.2834 5.3109 0.0337  
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Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 4.0370 0.6728  
Residual 2 0.0034 0.0017  
Total 8 4.0403 0.5050  
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.8772 0.1754 104.2030 0.0095  
Residual 2 0.0034 0.0017  
Total 7 0.8806 0.1258  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.6022) 
 
W Statistic= 0.9391 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.0716) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
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PNT1A cell line 

a) Control 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2344 0.7033 
y2 -0.3912 1.1735 
y3 -0.6578 1.9733 
y4 -0.6465 1.9395 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    95.5% 
Singular Solutions   84.5% 
Ill-Conditioned Solutions    9.0% 
Iterations Exceeding 200    4.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9945 0.9891 0.9619  0.0387  
 
  Coefficient Std. Error t P  
y1 0.2383 0.0324 7.3521 0.0180  
y2 0.5146 316727.6410 1.6249E-006 1.0000  
y3 0.7980 6814941.4132 1.1709E-007 1.0000  
y4 0.6518 0.0497 13.1172 0.0058  
T1 4.9777 4559674.1669 1.0917E-006 1.0000  
T2 5.7432 105246534.0202 5.4569E-008 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.3158 0.3860  
Residual 2 0.0030 0.0015  
Total 8 2.3188 0.2898  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2727 0.0545 36.3343 0.0270  
Residual 2 0.0030 0.0015  
Total 7 0.2757 0.0394  
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Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.7722) 
 
W Statistic= 0.9561 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.3533) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 12 
 
 
b) Aminosilane 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2389 0.7167 
y2 -0.4095 1.2286 
y3 -0.6401 1.9202 
y4 -0.6019 1.8057 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    96.0% 
Singular Solutions   85.5% 
Ill-Conditioned Solutions   10.5% 
Iterations Exceeding 200    4.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9755 0.9516 0.8305  0.0769  
 
  Coefficient Std. Error t P  
y1 0.2933 0.0853 3.4369 0.0752  
y2 0.5013 4655067.8338 1.0769E-007 1.0000  
y3 0.8289 842205.0005 9.8418E-007 1.0000  
y4 0.6170 0.0769 8.0221 0.0152  
T1 5.1743 93419732.7629 5.5388E-008 1.0000  
T2 6.1022 7542336.6478 8.0905E-007 1.0000  
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Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.3370 0.3895  
Residual 2 0.0118 0.0059  
Total 8 2.3489 0.2936  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2325 0.0465 7.8602 0.1167  
Residual 2 0.0118 0.0059  
Total 7 0.2443 0.0349  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.2191) 
 
W Statistic= 0.8869 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0018) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
 
c) HA4 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1773 0.5318 
y2 -0.2870 0.8609 
y3 -0.5034 1.5103 
y4 -0.8568 2.5704 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    99.5% 
Singular Solutions   83.0% 
Ill-Conditioned Solutions   14.0% 
Iterations Exceeding 200    0.5% 
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Results for the Overall Best-Fit Solution: 
 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9978 0.9956 0.9848  0.0301  
 
  Coefficient Std. Error t P  
y1 0.1751 0.0233 7.5037 0.0173  
y2 0.4582 0.0382 11.9834 0.0069  
y3 0.6703 0.0990 6.7693 0.0211  
y4 0.8508 0.0301 28.2421 0.0013  
T1 5.9039 0.3138 18.8114 0.0028  
T2 6.2339 0.7853 7.9386 0.0155  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 2.0101 0.3350  
Residual 2 0.0018 0.0009  
Total 8 2.0119 0.2515  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.4150 0.0830 91.4646 0.0109  
Residual 2 0.0018 0.0009  
Total 7 0.4169 0.0596  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.3639) 
 
W Statistic= 0.9114 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0474) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 
 
d) HA234 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
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Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.1858 0.5574 
y2 -0.2725 0.8174 
y3 -0.4570 1.3709 
y4 -0.6623 1.9870 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   86.5% 
Ill-Conditioned Solutions   10.0% 
Iterations Exceeding 200    1.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9831 0.9665 0.8826  0.0644  
 
  Coefficient Std. Error t P  
y1 0.2224 0.0539 4.1287 0.0540  
y2 0.3292 0.0904 3.6399 0.0679  
y3 0.6552 0.0985 6.6527 0.0219  
y4 0.6666 0.0644 10.3515 0.0092  
T1 4.9515 0.5994 8.2614 0.0143  
T2 6.5924 0.7581 8.6964 0.0130  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 1.5619 0.2603  
Residual 2 0.0083 0.0041  
Total 8 1.5702 0.1963  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2390 0.0478 11.5250 0.0818  
Residual 2 0.0083 0.0041  
Total 7 0.2473 0.0353  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Failed (P = 0.0241) 
 
W Statistic= 0.7930 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = <0.0001) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 8 
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f) HA2590 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2100 0.6299 
y2 -0.2943 0.8829 
y3 -0.4265 1.2796 
y4 -0.5758 1.7273 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    94.0% 
Singular Solutions   85.5% 
Ill-Conditioned Solutions    8.5% 
Iterations Exceeding 200    6.0% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9474 0.8976 0.6416  0.0885  
 
  Coefficient Std. Error t P  
y1 0.2380 0.0741 3.2130 0.0847  
y2 0.3266 30025.9941 1.0879E-005 1.0000  
y3 0.5293 729392.8187 7.2574E-007 1.0000  
y4 0.5618 0.0886 6.3419 0.0240  
T1 4.9860 1350463.3135 3.6920E-006 1.0000  
T2 5.5797 54326371.3029 1.0271E-007 1.0000  
 
Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 1.3095 0.2183  
Residual 2 0.0157 0.0078  
Total 8 1.3252 0.1656  
 
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.1374 0.0275 3.5059 0.2367  
Residual 2 0.0157 0.0078  
Total 7 0.1531 0.0219  
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Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.9570) 
W Statistic= 0.9788 Significance Level = 0.0500 
 
Constant Variance Test  Passed (P = 0.8849) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 7 
 
f) HAmix 

Equation: Piecewise, 3 segment linear 
t1 = min(t) 
t3 = max(t) 
region1(t) = (y1*(T1-t) + y2*(t-t1))/(T1-t1)  
region2(t) = (y2*(T2-t) + y3*(t-T1))/(T2-T1)  
region3(t) = (y3*(t3-t) + y4*(t-T2))/(t3-T2)  
f = if(t <= T1, region1(t), if(t <= T2, region2(t), region3(t)))  
 
Dynamic Fit Options: 
Total Number of Fits    200 
Maximum Number of Iterations   200 
 
Parameter Ranges for Initial Estimates: 
 Minimum Maximum 
y1 -0.2641 0.7923 
y2 -0.3383 1.0150 
y3 -0.4316 1.2947 
y4 -0.8630 2.5891 
T1 -3.3333 10.0000 
T2 -5.6667 17.0000 
 
Summary of Fit Results: 
Converged    98.5% 
Singular Solutions   85.5% 
Ill-Conditioned Solutions   11.5% 
Iterations Exceeding 200    1.5% 
 
Results for the Overall Best-Fit Solution: 
 
R  Rsqr  Adj Rsqr  Standard Error of Estimate 
0.9731 0.9469 0.8140  0.0897  
 
  Coefficient Std. Error t P  
y1 0.2925 0.0751 3.8968 0.0600  
y2 0.3292 0.0911 3.6133 0.0688  
y3 0.5874 0.7487 0.7846 0.5149  
y4 0.8845 0.0897 9.8579 0.0101  
T1 4.0000 2.2029 1.8158 0.2111  
T2 7.1060 8.9429 0.7946 0.5102  
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Analysis of Variance:  
 
Analysis of Variance:  
  DF SS MS  
Regression 6 1.9202 0.3200  
Residual 2 0.0161 0.0081  
Total 8 1.9363 0.2420  
Corrected for the mean of the observations: 
  DF SS MS F P  
Regression 5 0.2869 0.0574 7.1282 0.1276  
Residual 2 0.0161 0.0081  
Total 7 0.3030 0.0433  
 
Statistical Tests: 
 
Normality Test (Shapiro-Wilk)   Passed (P = 0.2192) 
 
W Statistic= 0.8870 Significance Level = 0.0500 
 
Constant Variance Test  Failed (P = 0.0212) 
 
iterations=200 
stepsize=1 
tolerance=1e-10 
 
Number of Iterations Performed = 24 
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PCR primers 

 

Primer  Sequence (5’ – 3’) 

P1  GACACATATTGCTTCAATGCTTCAGC 

P4  GATGCCAAGATGATCAGCCATTCTGGAA 

5/7  CACTAGTGCTCATCAAAGTGGTAG  

5/8  TGGTATTTGAAGACGTACTGGTAG  

5/9  CCCGTG GTGTGGTTGAAATGGTAG  

5/10  TGCCATTTCTGTCTACATTGGTAG 

5/11  TACTAGGAGTTGCCTGGATGGTAG  

5/12  TGGTATGAGCTGAGGCTGTGGTAG  

5/13  TATGACTGGAGTCCATATTGGTAG  

5/14  TCTGAGAATTACTCTGCTTGGTAG  

RHAMMFL F CAGGTCACCCAAAGGAGTCTCG 

 R CAAGCTCATCCAGTGTTTGC 

RHAMM-48 F GGCCGTCAACATGTCCTTTCCTA 

 R TTGGGCTATTTTCCCTTGAGACTC 

RHAMM-147 F AGGAGGAACAAGCTGAAAGG 

 R TTCCTGAGCTGCACCATGTT 

β-actin F CTAGAAGCATTTGCGGTGGAC 

 R TGACGGGGTCACCCATGT 
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Real-time PCR 
 

Primer  Sequence (5’ – 3’) Amplicon Size (bp) 

HSPCB F AAGAGAGCAAGGCAAAGTTTGAG 
120 

 R TGGTCACAATGCAGCAAGGT 

ABL1 F GATACGAAGGGAGGGTGTACCA 
94 

 R CTCGGCCAGGGTGTTGAA 

CD44 F GGCTTTCAATAGCACCTTGC 
152 

 R ACACCCCTGTGTTGTTTGCT 

RHAMM F GTTGTGCACCATCTCCAGGT 
152  R AGCTGAAGCAGGCAAGGTAG 

 

Calculation of the real-time PCR efficiency 

 

For the relative gene quantification using Plaff method, the preparation of standard curves 

is only required to determine the amplification efficiencies of the target and housekeeping genes 

in an initial experiment. The calculation of the real-time PCR efficiencies of the housekeeping 

and target genes constituted the first step for quantification of gene expression. The accuracy of 

qPCR is dependent on the linearity and efficiency of PCR amplification. Both of these were 

determined using a standard curve generated by dilution series using a pool of cDNA from both 

cell lines, in order to have high representativity of gene expression. For the establishment of a 

standard curve for each gene, five concentrations of cDNA of the targets and the normalisers: 1:1 

(neat), 1:10, 1:100, 1:1,000 and 1:10,000 were prepared, and using three replicates of each 

template (Figures I – IV).  
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Figure I – HSPCB standard curve. Five dilutions were used: 1:1 (neat), 1:10, 1:100, 1:1,000 and 1:10,000, with 

three replicates per dilution, using a pool of RT112 and T24 cells cDNA. In the x-axis is represented the logarithm 

of cDNA concentration value and in the y-axis is represented the amplification cycle. 

 

 

 

Figure II – ABL1 standard curve. Five dilutions were used: 1:1 (neat), 1:10, 1:100, 1:1,000 and 1:10,000, with three 

replicates per dilution, using a pool of PC3 and PNT1A cells cDNA. In the x-axis is represented the logarithm of 

cDNA concentration value and in the y-axis is represented the amplification cycle. 
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Figure III – CD44 standard curve. Five dilutions were used: 1:1 (neat), 1:10, 1:100, 1:1,000 and 1:10,000, with 

three replicates per dilution, using a pool of RT112, T24, PC3 and PNT1A cells cDNA. In the x-axis is represented 

the logarithm of cDNA concentration value and in the y-axis is represented the amplification cycle. 

 

 

Figure IV – RHAMM standard curve. Five dilutions were used: 1:1 (neat), 1:10, 1:100, 1:1,000 and 1:10,000, with 

three replicates per dilution, using a pool of RT112, T24, PC3 and PNT1A cells cDNA. In the x-axis is represented 

the logarithm of cDNA concentration value and in the y-axis is represented the amplification cycle. 

 

Negative control 

 

For all experiments a negative control was used in order to assure the efficiency of the 

method and absence of contaminations. The negative control consists on a normal qPCR 

amplification procedure in a sample where water was added instead of cDNA template. The 

figures below describe the results of the negative controls amplification for each primer pair. 
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These are indicated by an arrow, whereas the other peaks correspond to the various cDNA 

templates (Figures V to VIII). 

 

 

Figure V – HSPCB melt curves characteristic for a specific amplification, illustrating the negative control 

importance. The arrow points to the negative control. 

 

 

Figure VI – ABL1 melt curves characteristic for a specific amplification, illustrating the negative control 

importance. The arrow points to the negative control. 
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Figure VII – CD44 melt curves characteristic for a specific amplification, illustrating the negative control 

importance. The arrow points to the negative control. 

 

 

Figure VIII – RHAMM melt curves characteristic for a specific amplification, illustrating the negative control 

importance. The arrow points to the negative control. 

 

Analysis of the qPCR products 

 

An analysis of the obtained products from standard curves amplification was carried out 

in order to confirm the fragments size resulting from the qPCR amplification for each primer 

pair. This analysis was performed by electrophoresis using 1.5% agarose gel (Figures IX to 

XII). 
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Figure IX – Amplification pattern generated by HSPCB primer pair at 60.1ºC annealing temperature, in a pool of 

RT112 and T24 cells cDNA. Lanes numbered 1-7 from left to right. Pattern marker of 100 bp (1), negative control 

(7). 
 

 
Figure X – Amplification pattern generated by ABL1 primer pair at 60.1ºC annealing temperature, in a pool of PC3 

and PNT1A cells cDNA. Lanes numbered 1-7 from left to right. Pattern marker of 100 bp (1), negative control (7). 

 

 
Figure XI – Amplification pattern generated by CD44 primer pair at 60.1ºC annealing temperature, in a pool of 

RT112, T24, PC3 and PNT1A cells cDNA. Lanes numbered 1-7 from left to right. Pattern marker of 100 bp (1), 

negative control (7). 

 

 
Figure XII – Amplification pattern generated by RHAMM primer pair at 60.1ºC annealing temperature, in a pool of 

RT112, T24, PC3 and PNT1A cells cDNA. Lanes numbered 1-7 from left to right. Pattern marker of 100 bp (1), 

negative control (7). 
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RNA integrity analysis generated by Experion Automated Electrophoresis 

System (Bio-Rad) 

 
 

 

 
Figure I – Virtual gel generated by Experion Automated Electrophoresis System. Lanes numbered 1-5 from left to 

right. RNA ladder (1), RT112 cells (2), T24 cells (3), PC3 cells (4) and PNT1A cells (5). 

 

 
Figure II – Electropherogram of a total RNA sample from RT112 cell line, showing the 18s/28s RNA peaks. 
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Run summary generated by Experion Automated Electrophoresis System. RQI refers to RNA quality indicator. 

Sample Name RNA Area
RNA 

Concentration      
(ng/µl)

Ratio    
[28S:18S]

RQI
RQI     

Classification

Ladder 817.11 160.00

RT112 control 3,024.07 592.15 2.15 10.0

RT112 HA4 548.09 153.60 1.22 7.4

RT112 HA234 927.02 259.80 1.31 8.1

RT112 HA2590 1,161.79 325.59 1.08 7.8

RT112 HAmix 965.64 270.62 1.53 8.2

T24 control 3,621.88 709.20 2.11 10.0

T24 HA4 609.89 170.92 2.26 10.0

T24 HA234 884.36 247.84 2.02 9.9

T24 HA2590 1,178.12 330.17 1.84 9.9

T24 HAmix 1,184.09 331.84 1.96 10.0

PC3 control 2,728.31 534.23 2.00 10.0

PC3 HA4 518.59 405.94 1.73 7.8

PC3 HA234 666.73 521.90 1.57 7.9

PC3 HA2590 316.36 247.63 1.47 9.3

PC3 HAmix 324.11 253.70 1.49 7.6

PNT1A control 1,441.07 282.18 2.04 10.0

PNT1A HA4 1,940.00 543.72 2.04 10.0

PNT1A HA234 2,301.55 645.01 1.84 10.0

PNT1A HA2590 1,824.69 511.37 1.88 10.0

PNT1A HAmix 3,691.44 1034.52 1.84 10.0  
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Real-time PCR – RHAMM/CD44 ratio statistics 

 

One-way analysis of variance       
P value < 0.0001     
P value summary ***     
Are means signif. different? (P < 0.05) Yes     
Number of groups 20     
F 20.15     
R square 0.7336     
        
Bartlett's test for equal variances       
Bartlett's statistic (corrected) 95.71     
P value < 0.0001     
P value summary ***     
Do the variances differ signif. (P < 0.05) Yes     
        
ANOVA Table SS df MS 
Treatment (between columns) 457.5 19 24.08 
Residual (within columns) 166.1 139 1.195 
Total 623.6 158   

 
          

Tukey's Multiple Comparison Test Mean Diff. q 
Significant? 

P < 0.05? Summary 95% CI of diff 
RT112 control vs RT112 HA4 3.403 7.625 Yes *** 1.116 to 5.690 
RT112 control vs RT112 HA234 2.331 5.721 Yes * 0.2429 to 4.419 
RT112 control vs RT112 HA2590 2.422 5.428 Yes * 0.1351 to 4.710 
RT112 control vs RT112 HAmix 2.022 4.964 No ns -0.06571 to 4.110 
RT112 control vs T24 control 0.9092 2.232 No ns -1.179 to 2.997 
RT112 control vs T24 HA4 0.7741 1.900 No ns -1.314 to 2.862 
RT112 control vs T24 HA234 1.088 2.439 No ns -1.199 to 3.376 
RT112 control vs T24 HA2590 1.296 3.182 No ns -0.7918 to 3.384 
RT112 control vs T24 HAmix 1.009 2.476 No ns -1.079 to 3.097 
RT112 control vs PC3 control -0.06734 0.1653 No ns -2.155 to 2.021 
RT112 control vs PC3 HA4 0.05173 0.1270 No ns -2.036 to 2.140 
RT112 control vs PC3 HA234 3.477 8.535 Yes *** 1.389 to 5.565 
RT112 control vs PC3 HA2590 -1.336 3.278 No ns -3.424 to 0.7524 
RT112 control vs PC3 HAmix 0.9991 2.452 No ns -1.089 to 3.087 
RT112 control vs PNT1A control -2.803 6.282 Yes ** -5.091 to -0.5161 
RT112 control vs PNT1A HA4 -1.647 4.043 No ns -3.735 to 0.4409 
RT112 control vs PNT1A HA234 -3.045 6.823 Yes *** -5.332 to -0.7579 
RT112 control vs PNT1A HA2590 -1.007 2.471 No ns -3.095 to 1.081 
RT112 control vs PNT1A HAmix 0.2256 0.5056 No ns -2.062 to 2.513 
RT112 HA4 vs RT112 HA234 -1.072 2.632 No ns -3.160 to 1.016 
RT112 HA4 vs RT112 HA2590 -0.9806 2.197 No ns -3.268 to 1.307 
RT112 HA4 vs RT112 HAmix -1.381 3.389 No ns -3.469 to 0.7073 
RT112 HA4 vs T24 control -2.494 6.121 Yes ** -4.582 to -0.4058 
RT112 HA4 vs T24 HA4 -2.629 6.453 Yes ** -4.717 to -0.5409 
RT112 HA4 vs T24 HA234 -2.315 5.187 Yes * -4.602 to -0.02746 
RT112 HA4 vs T24 HA2590 -2.107 5.171 Yes * -4.195 to -0.01883 
RT112 HA4 vs T24 HAmix -2.394 5.877 Yes ** -4.482 to -0.3063 
RT112 HA4 vs PC3 control -3.470 8.518 Yes *** -5.558 to -1.382 
RT112 HA4 vs PC3 HA4 -3.351 8.226 Yes *** -5.439 to -1.263 
RT112 HA4 vs PC3 HA234 0.07402 0.1817 No ns -2.014 to 2.162 
RT112 HA4 vs PC3 HA2590 -4.739 11.63 Yes *** -6.827 to -2.651 
 
 

 
 

 
 

 
 

 
 

 
 



Appendix XVI 

 

 
Tukey's Multiple Comparison Test 

Mean Diff. q Significant? 
P < 0.05? 

Summary 95% CI of diff 

T24 control vs PC3 HA4 -0.8575 2.353 No ns -2.725 to 1.010 
T24 control vs PC3 HA234 2.568 7.047 Yes *** 0.7003 to 4.435 
T24 control vs PC3 HA2590 -2.245 6.161 Yes ** -4.112 to -0.3772 
T24 control vs PC3 HAmix 0.08986 0.2466 No ns -1.778 to 1.957 
T24 control vs PNT1A control -3.713 9.113 Yes *** -5.801 to -1.625 
T24 control vs PNT1A HA4 -2.556 7.015 Yes *** -4.424 to -0.6888 
T24 control vs PNT1A HA234 -3.954 9.706 Yes *** -6.042 to -1.866 
T24 control vs PNT1A HA2590 -1.916 5.258 Yes * -3.784 to -0.04839 
T24 control vs PNT1A HAmix -0.6836 1.678 No ns -2.772 to 1.404 
T24 HA4 vs T24 HA234 0.3141 0.7711 No ns -1.774 to 2.402 
T24 HA4 vs T24 HA2590 0.5221 1.433 No ns -1.346 to 2.390 
T24 HA4 vs T24 HAmix 0.2346 0.6439 No ns -1.633 to 2.102 
T24 HA4 vs PC3 control -0.8415 2.309 No ns -2.709 to 1.026 
T24 HA4 vs PC3 HA4 -0.7224 1.983 No ns -2.590 to 1.145 
T24 HA4 vs PC3 HA234 2.703 7.418 Yes *** 0.8353 to 4.570 
T24 HA4 vs PC3 HA2590 -2.110 5.790 Yes * -3.977 to -0.2422 
T24 HA4 vs PC3 HAmix 0.2249 0.6173 No ns -1.643 to 2.092 
T24 HA4 vs PNT1A control -3.578 8.781 Yes *** -5.666 to -1.490 
T24 HA4 vs PNT1A HA4 -2.421 6.645 Yes ** -4.289 to -0.5537 
T24 HA4 vs PNT1A HA234 -3.819 9.375 Yes *** -5.907 to -1.731 
T24 HA4 vs PNT1A HA2590 -1.781 4.887 No ns -3.648 to 0.08668 
T24 HA4 vs PNT1A HAmix -0.5485 1.346 No ns -2.637 to 1.539 
T24 HA234 vs T24 HA2590 0.2079 0.5104 No ns -1.880 to 2.296 
T24 HA234 vs T24 HAmix -0.07950 0.1952 No ns -2.168 to 2.008 
T24 HA234 vs PC3 control -1.156 2.837 No ns -3.244 to 0.9324 
T24 HA234 vs PC3 HA4 -1.037 2.544 No ns -3.125 to 1.051 
T24 HA234 vs PC3 HA234 2.389 5.864 Yes ** 0.3008 to 4.477 
T24 HA234 vs PC3 HA2590 -2.424 5.950 Yes ** -4.512 to -0.3359 
T24 HA234 vs PC3 HAmix -0.08922 0.2190 No ns -2.177 to 1.999 
T24 HA234 vs PNT1A control -3.892 8.720 Yes *** -6.179 to -1.604 
T24 HA234 vs PNT1A HA4 -2.735 6.714 Yes *** -4.823 to -0.6474 
T24 HA234 vs PNT1A HA234 -4.133 9.262 Yes *** -6.421 to -1.846 
T24 HA234 vs PNT1A HA2590 -2.095 5.142 Yes * -4.183 to -0.007025 
T24 HA234 vs PNT1A HAmix -0.8626 1.933 No ns -3.150 to 1.425 
T24 HA2590 vs T24 HAmix -0.2874 0.7888 No ns -2.155 to 1.580 
T24 HA2590 vs PC3 control -1.364 3.742 No ns -3.231 to 0.5040 
T24 HA2590 vs PC3 HA4 -1.244 3.415 No ns -3.112 to 0.6231 
T24 HA2590 vs PC3 HA234 2.181 5.985 Yes ** 0.3133 to 4.048 
T24 HA2590 vs PC3 HA2590 -2.632 7.223 Yes *** -4.499 to -0.7642 
T24 HA2590 vs PC3 HAmix -0.2971 0.8154 No ns -2.165 to 1.570 
T24 HA2590 vs PNT1A control -4.100 10.06 Yes *** -6.188 to -2.012 
T24 HA2590 vs PNT1A HA4 -2.943 8.077 Yes *** -4.811 to -1.076 
T24 HA2590 vs PNT1A HA234 -4.341 10.66 Yes *** -6.429 to -2.253 
T24 HA2590 vs PNT1A HA2590 -2.303 6.320 Yes ** -4.171 to -0.4354 
T24 HA2590 vs PNT1A HAmix -1.071 2.628 No ns -3.159 to 1.017 
T24 HAmix vs PC3 control -1.076 2.953 No ns -2.944 to 0.7914 
T24 HAmix vs PC3 HA4 -0.9570 2.626 No ns -2.825 to 0.9105 
T24 HAmix vs PC3 HA234 2.468 6.774 Yes *** 0.6007 to 4.336 
T24 HAmix vs PC3 HA2590 -2.344 6.434 Yes ** -4.212 to -0.4768 
T24 HAmix vs PC3 HAmix -0.009711 0.02665 No ns -1.877 to 1.858 
T24 HAmix vs PNT1A control -3.812 9.357 Yes *** -5.900 to -1.724 
T24 HAmix vs PNT1A HA4 -2.656 7.289 Yes *** -4.523 to -0.7883 
T24 HAmix vs PNT1A HA234 -4.054 9.951 Yes *** -6.142 to -1.966 
T24 HAmix vs PNT1A HA2590 -2.016 5.531 Yes * -3.883 to -0.1480 
T24 HAmix vs PNT1A HAmix -0.7831 1.922 No ns -2.871 to 1.305 
PC3 control vs PC3 HA4 0.1191 0.3268 No ns -1.748 to 1.987 
PC3 control vs PC3 HA234 3.544 9.727 Yes *** 1.677 to 5.412 
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Tukey's Multiple Comparison Test Mean Diff. q 
Significant? 

P < 0.05? Summary 95% CI of diff 
PC3 control vs PC3 HA2590 -1.268 3.481 No ns -3.136 to 0.5993 
PC3 control vs PC3 HAmix 1.066 2.927 No ns -0.8012 to 2.934 
PC3 control vs PNT1A control -2.736 6.716 Yes *** -4.824 to -0.6480 
PC3 control vs PNT1A HA4 -1.580 4.335 No ns -3.447 to 0.2878 
PC3 control vs PNT1A HA234 -2.978 7.309 Yes *** -5.066 to -0.8898 
PC3 control vs PNT1A HA2590 -0.9394 2.578 No ns -2.807 to 0.9282 
PC3 control vs PNT1A HAmix 0.2930 0.7191 No ns -1.795 to 2.381 
PC3 HA4 vs PC3 HA234 3.425 9.400 Yes *** 1.558 to 5.293 
PC3 HA4 vs PC3 HA2590 -1.387 3.807 No ns -3.255 to 0.4802 
PC3 HA4 vs PC3 HAmix 0.9473 2.600 No ns -0.9202 to 2.815 
PC3 HA4 vs PNT1A control -2.855 7.008 Yes *** -4.943 to -0.7671 
PC3 HA4 vs PNT1A HA4 -1.699 4.662 No ns -3.566 to 0.1687 
PC3 HA4 vs PNT1A HA234 -3.097 7.602 Yes *** -5.185 to -1.009 
PC3 HA4 vs PNT1A HA2590 -1.058 2.905 No ns -2.926 to 0.8091 
PC3 HA4 vs PNT1A HAmix 0.1739 0.4269 No ns -1.914 to 2.262 
PC3 HA234 vs PC3 HA2590 -4.813 13.21 Yes *** -6.680 to -2.945 
PC3 HA234 vs PC3 HAmix -2.478 6.800 Yes *** -4.346 to -0.6104 
PC3 HA234 vs PNT1A control -6.280 15.42 Yes *** -8.368 to -4.192 
PC3 HA234 vs PNT1A HA4 -5.124 14.06 Yes *** -6.992 to -3.257 
PC3 HA234 vs PNT1A HA234 -6.522 16.01 Yes *** -8.610 to -4.434 
PC3 HA234 vs PNT1A HA2590 -4.484 12.31 Yes *** -6.351 to -2.616 
PC3 HA234 vs PNT1A HAmix -3.251 7.981 Yes *** -5.339 to -1.163 
PC3 HA2590 vs PC3 HAmix 2.335 6.407 Yes ** 0.4671 to 4.202 
PC3 HA2590 vs PNT1A control -1.468 3.603 No ns -3.556 to 0.6202 
PC3 HA2590 vs PNT1A HA4 -0.3115 0.8549 No ns -2.179 to 1.556 
PC3 HA2590 vs PNT1A HA234 -1.710 4.196 No ns -3.798 to 0.3784 
PC3 HA2590 vs PNT1A HA2590 0.3289 0.9025 No ns -1.539 to 2.196 
PC3 HA2590 vs PNT1A HAmix 1.561 3.832 No ns -0.5268 to 3.649 
PC3 HAmix vs PNT1A control -3.802 9.334 Yes *** -5.890 to -1.714 
PC3 HAmix vs PNT1A HA4 -2.646 7.262 Yes *** -4.514 to -0.7786 
PC3 HAmix vs PNT1A HA234 -4.044 9.927 Yes *** -6.132 to -1.956 
PC3 HAmix vs PNT1A HA2590 -2.006 5.505 Yes * -3.873 to -0.1382 
PC3 HAmix vs PNT1A HAmix -0.7734 1.898 No ns -2.861 to 1.315 
PNT1A control vs PNT1A HA4 1.156 2.838 No ns -0.9318 to 3.244 
PNT1A control vs PNT1A HA234 -0.2418 0.5418 No ns -2.529 to 2.045 
PNT1A control vs PNT1A HA2590 1.797 4.410 No ns -0.2914 to 3.885 
PNT1A control vs PNT1A HAmix 3.029 6.787 Yes *** 0.7417 to 5.316 
PNT1A HA4 vs PNT1A HA234 -1.398 3.432 No ns -3.486 to 0.6900 
PNT1A HA4 vs PNT1A HA2590 0.6404 1.757 No ns -1.227 to 2.508 
PNT1A HA4 vs PNT1A HAmix 1.873 4.597 No ns -0.2152 to 3.961 
PNT1A HA234 vs PNT1A HA2590 2.038 5.004 No ns -0.04958 to 4.126 
PNT1A HA234 vs PNT1A HAmix 3.271 7.329 Yes *** 0.9835 to 5.558 
PNT1A HA2590 vs PNT1A HAmix 1.232 3.025 No ns -0.8556 to 3.320 
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Protein quantification 

 

y = 13.693 x - 0.0467 

R2 = 0.997 
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AFM statistics 

 

 
Glass Aminosilane HA4 C1 HA4 C2 HA4 C3 HA234 C1 HA234 C2 HA234 C3 HA2590 C1 HA2590 C2 HA2590 C3 HAmix C1 HAmix C2 HAmix C3 

               Minimum 0.0500 0.2100 0.1000 0.0800 0.0700 0.0700 0.0800 0.0800 0.0600 0.0650 0.0740 0.0400 0.0600 0.1100 
25% Percentile 0.0500 0.2100 0.1100 0.1100 0.1400 0.0800 0.1000 0.1100 0.0700 0.0730 0.0800 0.0470 0.0740 0.1300 

Median 0.0600 0.2300 0.1300 0.1600 0.1800 0.1000 0.1200 0.1700 0.0800 0.0800 0.1200 0.0500 0.0870 0.1500 
75% Percentile 0.0600 0.2650 0.1500 0.1800 0.2000 0.1200 0.1400 0.1900 0.0800 0.0990 0.1300 0.0600 0.0930 0.1800 

Maximum 0.0600 0.2900 0.1800 0.2000 0.2200 0.1600 0.1600 0.2100 0.0900 0.1400 0.1600 0.0660 0.1180 0.2100 
               Mean 0.0560 0.2360 0.1307 0.1500 0.1688 0.1021 0.1200 0.1533 0.07533 0.08687 0.1143 0.05287 0.08507 0.1533 

Std. Deviation 0.005477 0.03286 0.02520 0.03817 0.04241 0.02438 0.02563 0.04117 0.009155 0.01927 0.02715 0.008417 0.01468 0.03155 
Std. Error 0.002449 0.01470 0.006508 0.009856 0.01029 0.006296 0.006619 0.01063 0.002364 0.004975 0.007011 0.002173 0.003792 0.008146 

               Lower 95% CI 
of mean 0.04920 0.1952 0.1167 0.1289 0.1470 0.08863 0.1058 0.1305 0.07026 0.07620 0.09930 0.04821 0.07693 0.1359 

Upper 95% CI 
of mean 0.06280 0.2768 0.1446 0.1711 0.1906 0.1156 0.1342 0.1761 0.08040 0.09754 0.1294 0.05753 0.09320 0.1708 

               Sum 0.2800 1.180 1.960 2.250 2.870 1.532 1.800 2.300 1.130 1.303 1.715 0.7930 1.276 2.300 
 

 

 



Appendix XVIII 

 

One-way analysis of variance       
P value < 0.0001     
P value summary ***     
Are means signif. different? (P < 0.05) Yes     
Number of groups 14     
F 31.04     
R square 0.6939     
        
Bartlett's test for equal variances       
Bartlett's statistic (corrected) 75.26     
P value < 0.0001     
P value summary ***     
Do the variances differ signif. (P < 0.05) Yes     
        
ANOVA Table SS df MS 
Treatment (between columns) 0.3138 13 0.02413 
Residual (within columns) 0.1384 178 0.0007776 
Total 0.4522 191   
        
 

Tukey's Multiple Comparison Test Mean Diff. q 
Significant? 

P < 0.05? Summary 95% CI of diff 
Glass vs Aminosilane -0.1800 14.43 Yes *** -0.2404 to -0.1196 
Glass vs HA4 C1 -0.07467 7.333 Yes *** -0.1239 to -0.02539 
Glass vs HA4 C2 -0.09400 9.232 Yes *** -0.1433 to -0.04472 
Glass vs HA4 C3 -0.1128 11.25 Yes *** -0.1614 to -0.06427 
Glass vs HA234 C1 -0.04613 4.531 No ns -0.09541 to 0.003148 
Glass vs HA234 C2 -0.0640 6.286 Yes ** -0.1133 to -0.01472 
Glass vs HA234 C3 -0.09733 9.559 Yes *** -0.1466 to -0.04805 
Glass vs HA2590 C1 -0.01933 1.899 No ns -0.06861 to 0.02995 
Glass vs HA2590 C2 -0.03087 3.031 No ns -0.08015 to 0.01841 
Glass vs HA2590 C3 -0.05833 5.729 Yes ** -0.1076 to -0.009052 
Glass vs HAmix C1 0.003133 0.3077 No ns -0.04615 to 0.05241 
Glass vs HAmix C2 -0.02907 2.855 No ns -0.07835 to 0.02021 
Glass vs HAmix C3 -0.09733 9.559 Yes *** -0.1466 to -0.04805 
Aminosilane vs HA4 C1 0.1053 10.34 Yes *** 0.05605 to 0.1546 
Aminosilane vs HA4 C2 0.0860 8.446 Yes *** 0.03672 to 0.1353 
Aminosilane vs HA4 C3 0.06718 6.697 Yes *** 0.01863 to 0.1157 
Aminosilane vs HA234 C1 0.1339 13.15 Yes *** 0.08459 to 0.1831 
Aminosilane vs HA234 C2 0.1160 11.39 Yes *** 0.06672 to 0.1653 
Aminosilane vs HA234 C3 0.08267 8.119 Yes *** 0.03339 to 0.1319 
Aminosilane vs HA2590 C1 0.1607 15.78 Yes *** 0.1114 to 0.2099 
Aminosilane vs HA2590 C2 0.1491 14.65 Yes *** 0.09985 to 0.1984 
Aminosilane vs HA2590 C3 0.1217 11.95 Yes *** 0.07239 to 0.1709 
Aminosilane vs HAmix C1 0.1831 17.99 Yes *** 0.1339 to 0.2324 
Aminosilane vs HAmix C2 0.1509 14.82 Yes *** 0.1017 to 0.2002 
Aminosilane vs HAmix C3 0.08267 8.119 Yes *** 0.03339 to 0.1319 
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Tukey's Multiple Comparison Test Mean Diff. q 
Significant? 

P < 0.05? Summary 95% CI of diff 
HA4 C1 vs HA4 C2 -0.01933 2.685 No ns -0.05418 to 0.01551 
HA4 C1 vs HA4 C3 -0.03816 5.463 Yes * -0.07196 to -0.004350 
HA4 C1 vs HA234 C1 0.02853 3.963 No ns -0.006314 to 0.06338 
HA4 C1 vs HA234 C2 0.01067 1.482 No ns -0.02418 to 0.04551 
HA4 C1 vs HA234 C3 -0.02267 3.148 No ns -0.05751 to 0.01218 
HA4 C1 vs HA2590 C1 0.05533 7.685 Yes *** 0.02049 to 0.09018 
HA4 C1 vs HA2590 C2 0.0438 6.083 Yes ** 0.008953 to 0.07865 
HA4 C1 vs HA2590 C3 0.01633 2.269 No ns -0.01851 to 0.05118 
HA4 C1 vs HAmix C1 0.07780 10.81 Yes *** 0.04295 to 0.1126 
HA4 C1 vs HAmix C2 0.0456 6.334 Yes ** 0.01075 to 0.08045 
HA4 C1 vs HAmix C3 -0.02267 3.148 No ns -0.05751 to 0.01218 
HA4 C2 vs HA4 C3 -0.01882 2.695 No ns -0.05263 to 0.01498 
HA4 C2 vs HA234 C1 0.04787 6.648 Yes *** 0.01302 to 0.08271 
HA4 C2 vs HA234 C2 0.03000 4.167 No ns -0.004847 to 0.06485 
HA4 C2 vs HA234 C3 -0.003333 0.4630 No ns -0.03818 to 0.03151 
HA4 C2 vs HA2590 C1 0.07467 10.37 Yes *** 0.03982 to 0.1095 
HA4 C2 vs HA2590 C2 0.06313 8.769 Yes *** 0.02829 to 0.09798 
HA4 C2 vs HA2590 C3 0.03567 4.954 Yes * 0.0008196 to 0.07051 
HA4 C2 vs HAmix C1 0.09713 13.49 Yes *** 0.06229 to 0.1320 
HA4 C2 vs HAmix C2 0.06493 9.019 Yes *** 0.03009 to 0.09978 
HA4 C2 vs HAmix C3 -0.003333 0.4630 No ns -0.03818 to 0.03151 
HA4 C3 vs HA234 C1 0.06669 9.548 Yes *** 0.03288 to 0.1005 
HA4 C3 vs HA234 C2 0.04882 6.990 Yes *** 0.01502 to 0.08263 
HA4 C3 vs HA234 C3 0.01549 2.218 No ns -0.01832 to 0.04930 
HA4 C3 vs HA2590 C1 0.09349 13.38 Yes *** 0.05968 to 0.1273 
HA4 C3 vs HA2590 C2 0.08196 11.73 Yes *** 0.04815 to 0.1158 
HA4 C3 vs HA2590 C3 0.05449 7.801 Yes *** 0.02068 to 0.08830 
HA4 C3 vs HAmix C1 0.1160 16.60 Yes *** 0.08215 to 0.1498 
HA4 C3 vs HAmix C2 0.08376 11.99 Yes *** 0.04995 to 0.1176 
HA4 C3 vs HAmix C3 0.01549 2.218 No ns -0.01832 to 0.04930 
HA234 C1 vs HA234 C2 -0.01787 2.482 No ns -0.05271 to 0.01698 
HA234 C1 vs HA234 C3 -0.0512 7.111 Yes *** -0.08605 to -0.01635 
HA234 C1 vs HA2590 C1 0.0268 3.722 No ns -0.008047 to 0.06165 
HA234 C1 vs HA2590 C2 0.01527 2.120 No ns -0.01958 to 0.05011 
HA234 C1 vs HA2590 C3 -0.0122 1.694 No ns -0.04705 to 0.02265 
HA234 C1 vs HAmix C1 0.04927 6.843 Yes *** 0.01442 to 0.08411 
HA234 C1 vs HAmix C2 0.01707 2.370 No ns -0.01778 to 0.05191 
HA234 C1 vs HAmix C3 -0.0512 7.111 Yes *** -0.08605 to -0.01635 
HA234 C2 vs HA234 C3 -0.03333 4.630 No ns -0.06818 to 0.001514 
HA234 C2 vs HA2590 C1 0.04467 6.204 Yes ** 0.009820 to 0.07951 
HA234 C2 vs HA2590 C2 0.03313 4.602 No ns -0.001714 to 0.06798 
HA234 C2 vs HA2590 C3 0.005667 0.7871 No ns -0.02918 to 0.04051 
HA234 C2 vs HAmix C1 0.06713 9.324 Yes *** 0.03229 to 0.1020 
HA234 C2 vs HAmix C2 0.03493 4.852 Yes * 8.623e-005 to 0.06978 
HA234 C2 vs HAmix C3 -0.03333 4.630 No ns -0.06818 to 0.001514 
HA234 C3 vs HA2590 C1 0.0780 10.83 Yes *** 0.04315 to 0.1128 
HA234 C3 vs HA2590 C2 0.06647 9.232 Yes *** 0.03162 to 0.1013 
HA234 C3 vs HA2590 C3 0.0390 5.417 Yes * 0.004153 to 0.07385 
HA234 C3 vs HAmix C1 0.1005 13.95 Yes *** 0.06562 to 0.1353 
HA234 C3 vs HAmix C2 0.06827 9.482 Yes *** 0.03342 to 0.1031 
HA234 C3 vs HAmix C3 0.0 0.0 No ns -0.03485 to 0.03485 
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Tukey's Multiple Comparison Test Mean Diff. q 
Significant? 

P < 0.05? Summary 95% CI of diff 
HA2590 C1 vs HA2590 C2 -0.01153 1.602 No ns -0.04638 to 0.02331 
HA2590 C1 vs HA2590 C3 -0.0390 5.417 Yes * -0.07385 to -0.004153 
HA2590 C1 vs HAmix C1 0.02247 3.120 No ns -0.01238 to 0.05731 
HA2590 C1 vs HAmix C2 -0.009733 1.352 No ns -0.04458 to 0.02511 
HA2590 C1 vs HAmix C3 -0.0780 10.83 Yes *** -0.1128 to -0.04315 
HA2590 C2 vs HA2590 C3 -0.02747 3.815 No ns -0.06231 to 0.007380 
HA2590 C2 vs HAmix C1 0.0340 4.722 No ns -0.0008471 to 0.06885 
HA2590 C2 vs HAmix C2 0.001800 0.2500 No ns -0.03305 to 0.03665 
HA2590 C2 vs HAmix C3 -0.06647 9.232 Yes *** -0.1013 to -0.03162 
HA2590 C3 vs HAmix C1 0.06147 8.537 Yes *** 0.02662 to 0.09631 
HA2590 C3 vs HAmix C2 0.02927 4.065 No ns -0.005580 to 0.06411 
HA2590 C3 vs HAmix C3 -0.0390 5.417 Yes * -0.07385 to -0.004153 
HAmix C1 vs HAmix C2 -0.0322 4.472 No ns -0.06705 to 0.002647 
HAmix C1 vs HAmix C3 -0.1005 13.95 Yes *** -0.1353 to -0.06562 
HAmix C2 vs HAmix C3 -0.06827 9.482 Yes *** -0.1031 to -0.03342 
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APPROVAL SIGNATURE 
Dept/Date: Effective Date:  

(Document Control Use Only) 
 

QA/Date:  

 

Purpose and Scope 
To define the testing and specifications for Dried Sodium Hyaluronate, pH 4.0 Process, Medical Grade. 

Chemical Structure 
[-β-Sodium Glucuronic Acid-(1→3)-β-N-Acetyl Glucosamine-(1→4)-]n 

 
Acceptance Criteria 

Test Method Specification 

Intrinsic Viscosity QATM 136 > 3.0 dl/g 

Endotoxin QATM 092 0.07 EU/mg NaHy maximum 

Bioburden QATM 208 ≤ 100 cfu/g 
Microbial Identification1 
 

QATM 075   None of the following observed: E. coli, 
Pseudomonas aeruginosa, Staphylococcus 
aureus, Salmonella sp. & Streptococcus 
pyogenes 

Water Content QATM 256 ≤ 10.0% 

pH (1% solution in water) QATM 021 6.2 -7.8 

Osmolality (1% solution in water) QATM 069 75 mOsm/kg maximum 
Visual Appearance QATM 071 White to off white, fluffy to small grain 

powder 
Odor QATM 071 None 
IR Spectrum (4000-800 cm-1)  
(1% solution in water) 

QATM 081 Matches Standard 

UV-VIS Spectrum (820-190nm)  
(1% solution in water) 

QATM 086 Matches Standard 

Nucleic Acid (1% solution in water) QATM 086 A260 ≤ 0.5 
Hyaluronidase sensitivity (1% solution in water) QATM 065 Positive 

Acetate Concentration  QATM 030 1.0 % maximum 

Protein Concentration  QATM 001 0.1% maximum 

Ethanol QATM 229 0.5% maximum 
Isopropanol QATM 229 0.5% maximum 
Methanol QATM 229 0.25% maximum 

 
Continued on next page 

 

1 Microbial identification is necessary only if microorganisms were found using QATM 208. 
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Acceptance Criteria (continued) 

Test Method Specification 

Arsenic SOP 9011 2 ppm maximum 
Cadmium SOP 9011 5 ppm maximum 
Chromium SOP 9011 5 ppm maximum 
Cobalt SOP 9011 10 ppm maximum 
Copper SOP 9011 10 ppm maximum 
Iron SOP 9011 51 ppm maximum 
Lead SOP 9011 10 ppm maximum 
Mercury SOP 9011 10 ppm maximum 
Nickel SOP 9011 5 ppm maximum 
Rabbit Ocular Toxicity Testing 
(2% solution in ROPBS) 

SOP 9011 • Mean vitreal score ≤ 175 cells/mm3 
• No spike > 400 cells/mm3 
• Mean clinical score < 2.0 

 
Labeling 

Method Stage Characteristic Present and Accounted For on Date of Inspection  

Visual WIP • Product Name: Dried Sodium Hyaluronate 
• Lot Number 
• SPEC Number 
• Expiration date per SOP 0340 
• Product Weight 
• Bottle Weight 
• Bottle Number 

 
Additional Information 

Sampling Plan Sample per MPR 0059 for QC Testing and Archiving 

Storage Requirements ≤ -15°C  

Retest Date per SOP 0340 
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QATM 021, Hydrogen Ion Concentration (pH) 
QATM 030, Acetic Acid Test 
QATM 065, Hyaluronidase Test for Hyaluronan 
QATM 069, Solution Osmolality 
QATM 071, Sensory Testing for Raw Materials, In-Process, Final Products and NaHy Powder 
QATM 075, Microbial Differentiation/Identification 
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SUMMARY OF REVISION CHANGES 

 
Rev. Change Change # Eff. Date 

0 Initial release. 13315 11/06/96 

1 Add specification for viscosity in 0.9% saline. 14358 02/19/97 

2 
Add Lifecore part number and remove SPEC 801 requirement.  
Change bioburden, protein, and ethanol for specifications.  Change 
viscosity on  3% .  Add expiration date. 

15550 09/23/97 

3 
Change QATM 130 to 229.  Change lower limit of intrinsic viscosity 
from 14 to 20.  Bioburden BAP & SAP ≤ 100 CFU/g. 

50909 8/5/98 

4 Remove reference to QATM 037, add reference to QATM 208. 53673 2/1/99 

5 Remove reference to SOP 1341, add MPR 0059. 54153 5/5/99 

6 Add Volatile Organic Compounds Testing. 56502 8/21/00 

7 Chang QATM’s 060, 251, and 033 to Sop 9011. Update references.  
Change word to read mean not average. 57094 03/19/01 

8 Add Methanol SPEC. 57439 04/30/01 

9 Add new test method QATM 256. Remove record retention section. 
Update references.  Remove VOC testing.  

58773 11/4/02 

10 

Update format to InfoAccess. Add chemical structure section.  Change 
pH from 5.5-7.8, to 6.2 – 7.8, change protein concentration from 0.3% 
max to, 0.1% max, change water from 8.0% max to, 10.0%max, 
change ethanol from 1.5% to, 0.5%, change iron from 25ppm to, 
51ppm, change nucleic acid <0.5 absorbance to, 0.5 max.  

60083 10/27/2003 

11 Add 260nm to Nucleic Acid Test. 60143 12/1/2003 

12 Change title of QATM 001 in references section. 60605 6/14/04 

13 Add streptococcus pyogenes to microbial identification. 60872 10/14/04 

14 Update format.  No changes were made to test specifications 61647 11/23/05 

15 Removed molecular weight and viscosity.  Lowered intrinsic 
viscosity and ROTT specification. 
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