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Abstract

Organically managed land has increased to 4 % of the total area of agricultural land in

the UK. Changing land management can impact upon the rural environment (soils,

hydrology and biodiversity) and rural community (socio-economics and culture). This

thesis aims to compare the effects of organic farming practices on soil physical,

chemical and hydrological properties in relation to conventional farming systems. The

research combines data from three different scales: field measurements, plot

measurements and catchment modelling.

At the field scale: 16 pairs of farms (organic and conventional between 50 and 3000 m

apart) located in England, over a range of soil textures: clayey, silty, medium and coarse

were investigated. There were also two different land uses (grass and winter wheat).

Data was obtained on soil properties including: shear strength, Atterberg limits, field

capacity, aggregate stability, HOST values, infiltration rates and Soil Organic Carbon

(SOC). The analysis of the data shows that, whilst it is possible to detect the effects of

both soil texture and land use (grassland / arable) on a number of the soil properties;

there is no evidence that organic farming improves soil properties or physical condition

- equally there is no detrimental effect. This is in agreement with the results of a

number of other European studies. There was evidence to show that infiltration rates

are greater on organically managed grassland than conventional grassland; which agrees

with the HOST analysis where fewer fields were degraded under organic management.

Fewer traces of pesticides and herbicides were in the soil water from the organic fields

compared with the conventionally managed fields; none were at a level which would

contribute to agricultural pollution.

At the plot scale: a two year arable trial on three pairs of neighbouring farms (organic

and conventional between 350 – 1500 m apart) located in the UK, over a range of soil

textures: clay, clay loam and sandy silt loam were investigated. Different tillage

regimes including: reduced tillage and conventional plough based systems were

implemented in the plots. Data were obtained on soil chemical, physical and

hydrological properties. Tillage regimes (reduced or traditionally ploughed) make a

difference to soil quality; this varies with soil texture and management. There is an
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improvement for: SOC, maximum water holding capacity, plastic limits and shear

strength under reduced tillage; whereas, yield and infiltration rates are higher under

ploughing. Overall, organic management can have a benefit for a number of soil

physical and chemical properties in arable fields. However, this varies with soil texture

and any resulting effects are not always in the same direction. For example, SOC is

higher in organically managed land in clay loam soil, lower in the sandy silt loam soil

and no significant difference for the clay soil. Organic management improves soil

quality for maximum water holding capacity, aggregate stability, shear strength and

infiltration rate. However, there is no significant difference due to organic management

in bulk density, field capacity, plastic limit, total porosity, pH, total C:N ratio or

workability. Infiltration rates are higher or equal to conventional arable land and this

could be related to the significant improvement in maximum water holding capacity for

organically managed soils. This has implications for flood prevention; as organically

managed land has an increased capacity to store water.

The different scales were combined using the measured infiltration data at the field and

plot scale in the USDA SCS runoff model. This enabled catchment scale modelling of

totally grassland, totally arable, organic and conventional landscapes for three climatic

zones: Midlands (dry), South (intermediate) and South West (wet) in the UK. The

USDA SCS model provides useful catchment scale comparisons, where if all the

grassland is managed organically runoff is substantially reduced by 60 – 70 % and in

turn reduces the effective flood return period from the 1 in 10 year to 1 in 1.5 years for

dry climatic conditions. Moving from conventional (60 % arable / 25 % grass / 15 %

fallow) to organic management (45 % arable / 40 % grass / 15 % fallow) reduces the

effective flood in the wet climatic region from the 1 in 10 year return period to the less

severe 1 in 5 year. Similarly, for the intermediate and dry climatic regions the effective

flood reduces from the 1 in 10 year return period to the less severe 1 in 3 year. If all

farms within a catchment manage the grass fields with organic or less intensive

conventional management there could be a reduction of runoff. This could have an

economic benefit through substantially reducing flood damage costs to residential

properties (by 33 %, 47 % and 100 % for dry, intermediate and wet respectively) and

prevent loss of productive agricultural land.
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Aggregate stability: Soil aggregates are groups of soil particles that bind to each other. The space

between the aggregates provides pore space for retention and exchange of air and water. Aggregate

stability is a measure of the ability of a soil aggregate to resist disrupt

water force is applied. This is the percentage of aggregates which are retained on the sieves after wet

sieving. Higher percentage values mean that the soil is more stable, it is dependent upon the amount

of soil organic matter (SOM) and the percentage clay present in the aggregate.

Arable: a land classification unit which is cultivated and used to produce a non

Atterberg Limits: are a basic measure of the rheological properties of a soil. It depends on the

content of the soil which is affected by the amount of soil organic matter (SOM) present. It defines

several different states namely plastic and liquid limits where the consisten

is different and hence so are its engineering properties. Plasticity indicates how easily a soil can be

deformed without cracking in response to an applied stress and is an indicator of the likely mechanical

behaviour and workability of soils.

Cropping rotation: the successive planting of different crops on the same land to improve soil

fertility and help control insects and diseases.

Conventional: is generally a more intensive farm management system with high inputs of

organic fertilisers, pesticides and generally higher yield output. It does not refer to a specific type of

tillage regime.

Field Capacity (FC): the amount of

drained away and the rate of downward movement has materially decreased,

within 2–3 days after a rain or irrigation in previous soils of uniform structure and texture.

Flood Return Period: is also known as a recurrence interval and is an estimate of the interval of time

between flood events of a certa

alter the size of a flood event and so an equivalent flood return period can be calculated.

Grassland: is land that has been in grass ley or permanent pasture with a either grass or a mixtu

clover which is used for grazing of cattle and sheep.

HOST: is the Hydrology of Soil Type and classifies the main soil types in the UK into 29 classes

(Boorman et al., 1995). These 29 classes based upon soil physical properties which are correlated

with catchment scale hydrological variables the dominant pathways of water movement through the

soil and substrate.

xx
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: Soil aggregates are groups of soil particles that bind to each other. The space

between the aggregates provides pore space for retention and exchange of air and water. Aggregate

stability is a measure of the ability of a soil aggregate to resist disruption and breaking down when a

water force is applied. This is the percentage of aggregates which are retained on the sieves after wet

sieving. Higher percentage values mean that the soil is more stable, it is dependent upon the amount

er (SOM) and the percentage clay present in the aggregate.
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is different and hence so are its engineering properties. Plasticity indicates how easily a soil can be
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the successive planting of different crops on the same land to improve soil

fertility and help control insects and diseases.
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organic fertilisers, pesticides and generally higher yield output. It does not refer to a specific type of

the amount of soil moisture or water content held in soil
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Hydrology of Soil Type and classifies the main soil types in the UK into 29 classes

, 1995). These 29 classes based upon soil physical properties which are correlated
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Glossary

Engineering Doctorate (2011)

: Soil aggregates are groups of soil particles that bind to each other. The space

between the aggregates provides pore space for retention and exchange of air and water. Aggregate

ion and breaking down when a

water force is applied. This is the percentage of aggregates which are retained on the sieves after wet

sieving. Higher percentage values mean that the soil is more stable, it is dependent upon the amount

er (SOM) and the percentage clay present in the aggregate.

a land classification unit which is cultivated and used to produce a non-grass crop.

are a basic measure of the rheological properties of a soil. It depends on the water

content of the soil which is affected by the amount of soil organic matter (SOM) present. It defines

cy and behaviour of a soil

is different and hence so are its engineering properties. Plasticity indicates how easily a soil can be

deformed without cracking in response to an applied stress and is an indicator of the likely mechanical

the successive planting of different crops on the same land to improve soil

is generally a more intensive farm management system with high inputs of non-

organic fertilisers, pesticides and generally higher yield output. It does not refer to a specific type of

soil after excess water has

which usually takes place

3 days after a rain or irrigation in previous soils of uniform structure and texture.

is also known as a recurrence interval and is an estimate of the interval of time

in intensity or size (FHRC, 2010). Changing land management can

alter the size of a flood event and so an equivalent flood return period can be calculated.

is land that has been in grass ley or permanent pasture with a either grass or a mixture of

Hydrology of Soil Type and classifies the main soil types in the UK into 29 classes

, 1995). These 29 classes based upon soil physical properties which are correlated

with catchment scale hydrological variables the dominant pathways of water movement through the



Laura Hathaway-Jenkins

Infiltration: is the process by which water on the ground surface enters the soil. The rate at which

this occurs is measured in mm

of precipitation exceeds the infiltration rate runoff can occur.

Leaching: is the process by which soluble matter such as nutrients and pesticides are dissolved in

groundwater and then transported through the soil.

Liquid Limit (LL): is the water content where a soil changes from plastic to liquid behaviour.

Minimum tillage: is a tillage method aimed at generally shallower simpler operations that reduce time

and energy and may also conserve both

on the surface rather than burying it by using a mouldboard plough. Frequently, the weeds are

controlled by herbicides.

Non inversion tillage: is a method of minimum tillage which

avoiding the use of the plough which does not turn the soil. The technique enables cheaper and quicker

establishment and is predominantly used for winter cereals.

Non organic: see conventional.

Organic: is a more integrated environmentally and economically sustainable agricultural production

system with less reliance on external inputs such as chemical fertilisers and with strict controls and

legislations about the production of organic food (Lampkin, 1999).

Penetration resistance: is a measure of the resistance of any soil to the entry of any device or

biological matter. It varies depending on soil physical properties such as the particle size distribution,

water content, resistance to compression and shear strength

Permanent wilting point (PWP):

phase a plant wilts and can no longer recover its

12 hours.

Plastic Index (PI): is a measure of the plasticity of a soil. The plasticity index is the size of the range

of water contents where the soil exhibits plastic properties. The PI is the difference between the liquid

limit and the plastic limit (PI = LL

to be silt, and those with a PI approaching 0 are sandy soils with l

Plastic Limit (PL): is the water content where soil starts to exhibit plastic behaviour.

RELU: stands for Rural Economy and Land Use, a programme which was set up following the

outbreak of foot and mouth disease in 2005. It aims

changing rural land use and the impacts for the rural economy.
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is the process by which water on the ground surface enters the soil. The rate at which

this occurs is measured in mm hr-1. The rate decreases as the soil becomes saturated and if the amount

of precipitation exceeds the infiltration rate runoff can occur.

the process by which soluble matter such as nutrients and pesticides are dissolved in

ansported through the soil.

is the water content where a soil changes from plastic to liquid behaviour.

tillage method aimed at generally shallower simpler operations that reduce time

conserve both soil and water by leaving more of the crop residue or stubble

on the surface rather than burying it by using a mouldboard plough. Frequently, the weeds are

: is a method of minimum tillage which involves reducing cultivation depth and

avoiding the use of the plough which does not turn the soil. The technique enables cheaper and quicker

establishment and is predominantly used for winter cereals.

see conventional.

egrated environmentally and economically sustainable agricultural production

system with less reliance on external inputs such as chemical fertilisers and with strict controls and

legislations about the production of organic food (Lampkin, 1999).

is a measure of the resistance of any soil to the entry of any device or

biological matter. It varies depending on soil physical properties such as the particle size distribution,

water content, resistance to compression and shear strength (Campbell and O’Sullivan, 1991).

Permanent wilting point (PWP): is defined as the soil moisture content at which during a drying

phase a plant wilts and can no longer recover its turgidity when placed in a saturated atmosphere for

is a measure of the plasticity of a soil. The plasticity index is the size of the range

he soil exhibits plastic properties. The PI is the difference between the liquid

limit and the plastic limit (PI = LL-PL). Soils with a high PI tend to be clay, those with a lower PI tend

to be silt, and those with a PI approaching 0 are sandy soils with little or no silt or clay.

is the water content where soil starts to exhibit plastic behaviour.

Rural Economy and Land Use, a programme which was set up following the

outbreak of foot and mouth disease in 2005. It aims to provide funding for projects to investigate

changing rural land use and the impacts for the rural economy.
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is the process by which water on the ground surface enters the soil. The rate at which

The rate decreases as the soil becomes saturated and if the amount

the process by which soluble matter such as nutrients and pesticides are dissolved in

is the water content where a soil changes from plastic to liquid behaviour.

tillage method aimed at generally shallower simpler operations that reduce time

soil and water by leaving more of the crop residue or stubble

on the surface rather than burying it by using a mouldboard plough. Frequently, the weeds are

involves reducing cultivation depth and

avoiding the use of the plough which does not turn the soil. The technique enables cheaper and quicker

egrated environmentally and economically sustainable agricultural production

system with less reliance on external inputs such as chemical fertilisers and with strict controls and

is a measure of the resistance of any soil to the entry of any device or

biological matter. It varies depending on soil physical properties such as the particle size distribution,

(Campbell and O’Sullivan, 1991).

content at which during a drying

when placed in a saturated atmosphere for

is a measure of the plasticity of a soil. The plasticity index is the size of the range

he soil exhibits plastic properties. The PI is the difference between the liquid

PL). Soils with a high PI tend to be clay, those with a lower PI tend

ittle or no silt or clay.

is the water content where soil starts to exhibit plastic behaviour.

Rural Economy and Land Use, a programme which was set up following the

to provide funding for projects to investigate
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Runoff: is the water from rain, snowmelt or irrigation that flows over the land surface and is not

absorbed into the ground, instead it flows into

flash flooding.

Shear strength: is the maximum strength of soil at which point significant plastic deformation occurs

due to an applied stress. The shear strength of a soil depends on a number of fact

moisture content, percentage clay, percentage sand, soil bulk density and amount of soil organic

matter.

Soil management: is defined as all of the operations, practices and treatments which are employed to

protect the soil in terms of str

fertility and other environmental benefits such as habitat provision and flood prevention.

Soil Organic Matter: is defined as any plant and animal material added to the soil which is not fu

decomposed.

Soil Structure: The shape of soil units (peds) that occur naturally in a soil horizon. Some possible soil

structures are granular, blocky, prismatic, columnar, or platy. Soils can also be structure less such as

consolidated mass (massive) o

Soil Workability: is a measure of the optimum water content at which agricultural tillage produces

the greatest proportion of small aggregates. If the soil is tilled when it is wetter large clods can be

produced and soil structural damaged can occur. However, if the soil is drier then tillage requires

excessive energy and can also produce large clods (Rounsevell and Jones, 1993; Dexter and Bird,

2001).

Statistical Analysis: both ANOVA (analysis of variance) and

analysis provide a method of analysing the significance of findings. The data is presented in data of

means with significant differences (p < 0.05) shown by different letters. For example:

Mean

There are no significant differences between grass (organic and conventional) or arable (organic and

conventional) systems. However, both arable systems are significantly different from

Traditional tillage: is the cultivation of the land using a mouldboard plough based system, where the

mouldboard plough is followed by tines, discs, presses to form a tilth before seeds are sown.

Water holding capacity: is the ability of the

texture, structure and the amount of soil organic matter and is the difference between field capacity

(FC) and permanent wilting point (PWP).
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is the water from rain, snowmelt or irrigation that flows over the land surface and is not

absorbed into the ground, instead it flows into streams or other surface waters and can contribute to

the maximum strength of soil at which point significant plastic deformation occurs

due to an applied stress. The shear strength of a soil depends on a number of fact

moisture content, percentage clay, percentage sand, soil bulk density and amount of soil organic

is defined as all of the operations, practices and treatments which are employed to

protect the soil in terms of structure, carbon content and to enhance its performance in terms of

fertility and other environmental benefits such as habitat provision and flood prevention.

: is defined as any plant and animal material added to the soil which is not fu

The shape of soil units (peds) that occur naturally in a soil horizon. Some possible soil

structures are granular, blocky, prismatic, columnar, or platy. Soils can also be structure less such as

consolidated mass (massive) or as individual particles (single-grained).

: is a measure of the optimum water content at which agricultural tillage produces

the greatest proportion of small aggregates. If the soil is tilled when it is wetter large clods can be

and soil structural damaged can occur. However, if the soil is drier then tillage requires

excessive energy and can also produce large clods (Rounsevell and Jones, 1993; Dexter and Bird,

both ANOVA (analysis of variance) and REML (restricted maximum likelihood)

analysis provide a method of analysing the significance of findings. The data is presented in data of

means with significant differences (p < 0.05) shown by different letters. For example:

Organic
Arable

Organic Grass Con Arable

39.01a 63.34b 36.71a

There are no significant differences between grass (organic and conventional) or arable (organic and

conventional) systems. However, both arable systems are significantly different from

cultivation of the land using a mouldboard plough based system, where the

mouldboard plough is followed by tines, discs, presses to form a tilth before seeds are sown.

is the ability of the soil to retain or store water, it is dependent upon soil

texture, structure and the amount of soil organic matter and is the difference between field capacity

(FC) and permanent wilting point (PWP).
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is the water from rain, snowmelt or irrigation that flows over the land surface and is not

streams or other surface waters and can contribute to

the maximum strength of soil at which point significant plastic deformation occurs

due to an applied stress. The shear strength of a soil depends on a number of factors such as the

moisture content, percentage clay, percentage sand, soil bulk density and amount of soil organic

is defined as all of the operations, practices and treatments which are employed to

ucture, carbon content and to enhance its performance in terms of

fertility and other environmental benefits such as habitat provision and flood prevention.

: is defined as any plant and animal material added to the soil which is not fully

The shape of soil units (peds) that occur naturally in a soil horizon. Some possible soil

structures are granular, blocky, prismatic, columnar, or platy. Soils can also be structure less such as

: is a measure of the optimum water content at which agricultural tillage produces

the greatest proportion of small aggregates. If the soil is tilled when it is wetter large clods can be

and soil structural damaged can occur. However, if the soil is drier then tillage requires

excessive energy and can also produce large clods (Rounsevell and Jones, 1993; Dexter and Bird,

REML (restricted maximum likelihood)

analysis provide a method of analysing the significance of findings. The data is presented in data of

means with significant differences (p < 0.05) shown by different letters. For example:

Con Grass

62.08b

There are no significant differences between grass (organic and conventional) or arable (organic and

conventional) systems. However, both arable systems are significantly different from grass systems.

cultivation of the land using a mouldboard plough based system, where the

mouldboard plough is followed by tines, discs, presses to form a tilth before seeds are sown.

soil to retain or store water, it is dependent upon soil

texture, structure and the amount of soil organic matter and is the difference between field capacity
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1 Introduction

Farmers and land owners (both organic and conventional managers) are encountering

new challenges in the face of changing climatic conditions and the recent economic

downturn. There is a need to maintain and increase crop yield and production. This is

especially important as there is a growing global population predicted to reach 8 billion

by 2020 (Nygaard, 2010). It should also be stressed that there is a need for these

challenges to be managed sustainably, improving soil health for better production for

future generations.

This section highlights the differences between conventional and organic farming.

Conventional farming (non organic) is a more input intensive system compared to

organic farming with high inputs such as fertilisers, pesticides and high outputs in terms

of yield (Byrne, 1997). However, when considering the tillage regime to be adopted, it

should be noted that minimum tillage (generally non-inversion with fewer passes) can

be less intensive especially in terms of labour requirements. On the other hand, organic

farming aims to create an integrated environmentally and economically sustainable

agricultural production system (Lampkin, 1999). There is generally a reduced reliance

on external inputs, such as chemical fertilisers, and improved soil management

techniques with strict controls and legislations controlling the production of organic

food within the UK (Lampkin, 1999; Royal Commission on Environmental Pollution,

1996).

The period of conversion to an organic system varies depending on cropping history but

most farms will first need to go through a two year period when the land is managed

organically, but the crops and livestock cannot be marketed as organic. This is not

always economically viable as crop yields are often reduced. Although financial

support is available during conversion there is no guarantee of long-term improved

income (Lampkin, 1999). The key to long-term success in organic farming is soil

management; as a combination of reduced inputs and improved soil management,

should lead to profitability. Even with small decreases in yield the organic price

premium should compensate. There is a need to establish a comprehensive code of
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good soil management practices to guarantee profitability both in the long term and

during the transition to organic farming (Defra, 2007).

1.1 Background to the research

Since the First Soil Action Plan for England 2004-2006 (SAP), the importance of soil in

the agenda for sustainable development has increased. Defra (2004) defines soil as a

‘fundamental and irreplaceable natural resource’ promoting the need for good soil

management. There are many different uses of soil; however, the majority of land in the

UK (over 80%) is used for agriculture or forestry. This area needs to be targeted in

terms of sustainable soil management.

Costanza et al. (1997) determined the seventeen ecosystem services and functions and

attempted to place an economic value upon each. Seven of these are specifically

associated with soil:

 disturbance regulation

 water regulation

 water supply

 erosion control and sediment retention

 soil formation

 nutrient cycling

 waste treatment

Disturbance regulation is becoming increasingly important as the effects of habitat

change due to climate change are felt especially in terms of extreme flooding or

droughts (depending upon location). Soil needs to be managed in a sustainable manner,

especially on agricultural land, to ensure that these services are able to continue to

function.

Prior to the Common Agricultural Policy (CAP) reform, soil management was

neglected due to economic pressures and subsidies, which did not encourage

sustainability and good management practices. This is beginning to change following

the implementation of Cross Compliance conditions to the Single Payment Scheme
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(SPS) in January 2005. Cross Compliance provides a baseline standard for agriculture

and contributes to environmental protection, including soil erosion prevention and

protection of soil organic matter (SOM) and structure (Defra, 2006a).

Defra in 2005 launched agri-environment schemes (environmental stewardship

schemes), which build upon the base of Good Agricultural and Environmental

Conditions through Cross Compliance. These include Entry Level Scheme (ELS),

Organic Entry Level Scheme (OELS) and Higher Entry Level Scheme (HELS). The

schemes encourage good environmental conditions beyond the SPS and farmers receive

additional payments between £30-60 per hectare per year. These include OELS

accounts for land in conversion (£175 per hectare per year) and only land that is farmed

in accordance with the specified standards established by council regulation 2092/91

(regulated by private companies in the UK e.g. Soil Association) can enter this scheme.

Diffuse pollution has been a common problem for the farming industry for years leading

to problems of eutrophication and blue baby syndrome (Merrington et al., 2002). The

above schemes which were outlined also try to prevent this and align the UK with the

Water Framework Directive (WFD). The EU WFD (2000/60/EC) states that the UK

must protect, enhance and maintain all surface, coastal and groundwater bodies in order

to achieve good chemical and ecological status by 2015. Therefore, nitrate vulnerable

zones (NVZ) and catchment sensitive farming initiatives were set up to try and alleviate

the effects of diffuse pollution relating to agriculture. This integrated catchment

management of the air, water and soil also has potential benefits on water resources and

flood risk mitigation (Environment Agency (EA), 2007).

In the UK, the occurrence of flooding, especially summer floods has greatly increased

over the last few years (Environment Agency (EA), 2008). There are a number of

factors which contribute to this: firstly changing climatic behaviours with different

rainfall patterns altering both duration and intensity of rainstorms and secondly

increasing loss of soil medium as a buffer against excess runoff (Godwin and Dresser,

2003). In urban areas surface sealing of the soil with tarmac and concrete has led to

increased runoff being experienced and in rural areas poor soil management leading to
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compacted soil and low infiltration of rainwater. These lead to a ‘peaky’ flood

hydrograph which if attenuated would reduce the extreme flood events experienced in

the summer of 2007 in the UK.

One possible method of reducing runoff is through improved soil management and

sustainable farming methods. Recently, the public’s awareness of environmental issues

and sustainable agriculture has increased through various government initiatives, such

as Local Agenda 21. Many issues have been brought into the public spotlight through

the media, for example, the sustainability of the world’s food production, Genetically

Modified (GM) and organic farming. The increased knowledge of the public has led to

improved consumer choices and pressure to change unsustainable practices of soil

management, highlighting the importance of market and consumer power. However, it

is important to note that individual farmers are more driven by the costs of production

such as fertiliser, labour and fossil fuels. To survive, farming businesses must balance

being able to respond to consumer demand and production costs; this is not only

reflected in price but also the safety and quality of the produce. There is a constant need

to adapt to changing circumstances and become more efficient.

The UK government is trying to modify and monitor management to ensure

environmental sustainability in agricultural practices via legislation and advisory papers

(such as Code for Good Agricultural Protection of Soils). Hence, Defra (2007)

produced several papers such as an action plan to develop organic sustainable farming

and a paper on sustainable farming and food strategy. The Rural White Paper (Defra,

2007) recognised the key role of agriculture in rural England as a producer of food and

an employer, in addition to the management activity that creates much of the

countryside environment.

Much literature (Defra, 2006b) has been produced on the subject of diversification

especially relating to farmers’ understanding of the Common Agricultural Policy (CAP)

reform. Diversification is advised by Nix (2010) as a method of supplementing income

of the farm by:

 reducing the area farmed by selling land
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 converting to organic agriculture

 using redundant buildings for alternative purposes

 and adding value to produce through direct selling to the consumer

This is fundamentally changing how land is farmed as more farmers are converting to

organic systems as shown in Table 1.1 – an added benefit is higher payments from

OELS (£60 per ha per year, Defra, 2006a).

Table 1.1: Total amount of certified organic land in England and as a percentage of
agricultural land in the UK (Nix, 2010).

Year Fully Organic (ha) In conversion (ha) Organic land as %
of total

agricultural land
2008 238, 255 53, 223 3.1
2009 258, 744 89, 037 3.7
2010 283, 949 90, 860 4.0

1.2 Research aims and objectives

Soil surface management in both arable and grassland farming can have a very

significant effect upon soil structure and tilth, infiltration and runoff and energy use for

tillage. Whilst the short-term effects of different soil management systems are well

documented, the medium-term effects of alternative residue management and reduced

tillage versus traditional plough have not been quantified. These data are important for

improvements in soil workability, which in turn could influence farming practices and

the costs of farming operations as well as improving infiltration rates [which may

reduce flood risk downstream (Godwin and Dresser, 2003)].

1.2.1 Aim

The aim of this research is to investigate the effects of organic farming practices on soil

properties, hydrology and workability at different scales in comparison to conventional

farming practices.

1.2.2 Objectives

The specific objectives of the research are:
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1. To compare the effects of organic and conventional management on soil physical,

chemical and hydrological properties in both grass and arable fields

2. To determine the effects of soil management and tillage regime interactions with

organic and conventional farming systems in terms of soil physical, chemical,

hydraulic properties and soil workability

3. To estimate the potential economic benefits related to organic management practices

from a reduction in runoff

4. To provide suggestions of best management practices

1.3 Managing the research

1.3.1 Project methodology

The project critically reviews existing available knowledge on agricultural systems and

soil management. There is currently little information on the impact of land status

(organic or conventional) on infiltration rates and the relationship between this and

flood risk. This research aims to fill the knowledge gap for medium-term data and

provide more information on the impacts of organic agriculture on soil properties and

potential flood risk alleviation.

Several experimental investigations combine to achieve this aim; these experiments are

both field-scale and plot-scale. They involve paired fields under both organic and

conventional farming systems based upon: soil texture, previous land use and current

crop rotation (see Appendix A for further details). The results provide sound scientific

background to support the modelling aspect of the project which offers relevant

information to policy makers linking the commercial and management aspects of this

research.

The work comprises four phases that are shown in Figure 1.1. This four-phased

approach to the research enabled suitable data to be collected in order to model a

catchment suitable for predicting the effect of soil surface management on flood

potential in organic and conventional farms. Phase one collected baseline data; whereas

phases two and three provided data for validating the model. The model was

implemented and validated in phase four.
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Phase 1:

Baseline survey of 32
farms paired (organic
and conventional)
examining soil
physical and chemical
soil water properties
under grass and arable
(winter wheat) fields

Phase 2:

Baseline survey of 16
fields paired organic
and conventional
examining soil
hydraulics
(infiltration) under
both grass and arable
(winter wheat) fields

Phase 3:
Measuring soil physical properties, workability
and infiltration on three paired organic and
conventional farms (Huntingdon, Aberdeen and
East Grinstead) over two years to provide data on
tillage regime and management.

RELU Funded
Organic Research Centre

Funded

Phase 4:
Provided best management practice data,
which are modelled to the catchment scale
(using SCS-CN) determining the effect on
runoff generation. The economics of
reducing flood severity are calculated.

Addressing Objective 1

Addressing Objective 2

Addressing Objectives 3 and 4
Chapter 3

Chapter 4

Chapter 5

Figure 1.1: Overview of the different phases of research showing how this helps to fulfil each objective.
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The project has been jointly funded by both Rural Economy and Land Use (RELU)

programme and the Organic Research Centre (ORC). RELU is a government funded

research body which uses interdisciplinary research to help inform future policies and

management practice for the countryside and rural economy. This research formed part

of a larger project investigating the scale effects of organic farming and this will be

discussed further in Chapter 3. The ORC is a registered charity, which aims to develop

and support sustainable land-use, agriculture and food systems; this research formed

part of their investigations into soil health in organic farms.

1.3.2 Thesis structure

Chapter 1 provides an introduction to the research and background information, which

links into the subsequent chapters. Chapter 2 focuses on reviewing the current literature

on organic agriculture and comparative studies between organic and conventional

practice, to help identify scientific and knowledge gaps within the literature. Chapter 3

details the first and second phases of the research and displays the results and principal

findings from this research. Chapter 4 features the third phase of the research

highlighting the methodology, results and discussion. Chapter 5 introduces the

modelling aspects of the data in relation to runoff and flooding. Chapter 6 integrates the

findings from Chapters 3, 4 and 5 to provide suggestions for best soil management.

Chapter 7 reports the main conclusions of the research and ideas for future work.
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2 Literature Review

2.1 Introduction

This section introduces the main findings from the literature review: firstly looking at

the concept of organic farming and then considers both physical and chemical soil

properties in this context. Subsequently, soil hydraulics and the implications for flood

control are examined. Finally, it highlights alternative soil management practices and

current policy relating to soil management. This section also aims to identify the

current gaps in knowledge and hence provide justification for this research.

2.2 Organic Farming

It is essential to understand the differences in the agricultural system that exist between

organic and conventional farming. The principles and regulations behind organic

farming, in relation to the farming system but also specifically to soil management are

highlighted. Then there follows a critical review of the current comparative research

studies between organic and conventional farms.

A systems perspective is essential to understanding sustainability which is central to

organic farming. The agricultural system is envisioned in its broadest sense, from the

individual farm encompassing all aspects from soil to management, to the local

ecosystem, on local and catchment scales (Hess et al., 2000). Sustainable agriculture is

difficult to define, as the concept is holistic including production, environmental,

economic and social factors. Therefore, organic principles will be highlighted in

reference to Philipps (2003) who states that ‘organic farming aims to achieve

sustainability through the duplication of the natural biological cycles present in soils.’

The organic farming methods aim to manage the soil so as to sustain and build soil

fertility. This is achieved by recycling nutrients, maintaining soil structural stability and

soil biological activity to achieve crop and livestock health; thus reducing the need for

artificial inputs.

Philipps (2003) highlights two key areas where different principles of farming are

applied between organic and conventional agriculture:
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1. Rotation Design – in organic agriculture this needs to be adequate to provide a

break between crops to avoid specific pests and diseases. It also needs to ensure

that soil is not laid bare for prolonged period especially over winter. Organic

farmers grow crops with different root structures (see Figure 2.1) to help

improve soil structure; hence there is rarely continuous cropping on a field.

Figure 2.1: Rooting patterns of different crops, indicating the importance of crop
rotations in organic farming for maintaining good soil structure (Adapted from
Philipps, 2003).

2. Fertilisation Strategy – organic farms have strict guidelines to follow regarding

the substances that can be allowed to fertilise the land. There are strict

guidelines to follow about the length of time compost is required to have been

matured especially if it is from a non-organic source (see Table 2.1).

Table 2.1: Required treatment of manures from non organic resources when being applied
to organic land (Adapted from Philipps, 2003 and Defra, 2002).

Source of Manure Treatment

Straw and farmyard manure (FYM) Stacked for six months or composted for
three months

Non-poultry manures from straw based
pig units

Stacked for twelve months or composted
for three months

Slurry Aerated
Compost Stacked for six months or composted for

three months (restricted use of mushroom
compost, worm compost and green waste
if from non organic source)
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According to Pulleman et al., 2003, ‘soil plays a crucial role in defining sustainable

management.’ This is because soil structure and organic matter are important for both

soil workability and availability of water and nutrients for plants. Hence, the Soil

Association’s (2010) definition of organic farming is highly relevant as it stresses

management of a healthy soil by developing and protecting an optimum soil structure,

biological activity and fertility.

In the UK, 68 % of the agricultural land is designated as Nitrate Vulnerable Zone

(NVZ) (Defra, 2010). Any organic farms in these areas still need to comply with the

rules and regulations involving amount, type and timing of applications of nutrients,

(namely Nitrogen (N)) to prevent leaching. Generally, organic farms have to apply the

lower amount 170 kg ha-1 N averaged over the cropped area; but this does differ

according to land use, for example, 250 kg ha-1 N is allowed over grassed areas. There

are also Nmax limits which are based upon crop type grown and must be adhered to.

There are closed periods where organic manures cannot be applied; usually from 1st

August to 1st November for arable land (Shepherd et al., 2003). This helps to meet

requirements of the Water Framework Directive (WFD), which aims by 2015 to obtain

good ecological status of all waterways in the UK.

In recent years, there has been a shift away from conventional agricultural methods

towards organic techniques. The amount of fully converted land is 743 516 hectares

and 4.6% of farms in the UK are registered as fully organic (Soil Association, 2010).

This is higher than the amount estimated in Nix (2010) but the amount of land

converting to organic status has decreased by 6.6 % since 2008 suggesting a reduction

in the rate of conversion. Organic farming remains central in many debates, especially

as the sales of organic produce have dramatically increased and now command a market

value of £1.85 billion in the UK (Soil Association, 2010).

2.2.1 Comparative Studies

Several studies have been based on comparisons between organic and conventional

farming methods, in terms of their implications for soil properties, microbiology and

nutrient analysis (Marinari et al., 2006; Pulleman et al., 2003; Parfitt et al., 2005; Wells

et al., 2000, Armstrong Brown et al., 2000). Pulleman et al. (2003) compared
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conventional and organic arable farming on soil structure and organic matter dynamics.

They concluded that although organic methods were favourable the farmer needs to be

careful not to destroy the soil structure so that the benefits from increased biochemical

activities are not lost.

Table 2.2: This table shows four broad soil characteristics and whether organic farming
provided a benefit (+/ ++), no change (0) or a negative affect (- / - -) when compared with
conventional farming methods (Adapted from Stolze et al., 2000). The numericals show
the number of studies relating to each soil property.

Soil Properties ++ + 0 - --
Soil Organic Matter 5 2

Soil Physical Structure 4
Soil Erodibility 1 1 2 1

Flood Prevention 3

Soil Total 1 6 11 1

Stolze et al. (2000) emphasizes the problem of inconsistent data between comparisons

of organic and conventional fields on soil properties. Aggregate stability was found to

be higher in organic management (Maidl et al., 1988 and García et al., 1994); however

a number of European studies found no difference between conventional and organic

(Diez et al., 1991; Gehlen, 1987; König et al., 1989; Petersen et al., 1997). Long-term

(greater than five years) trials have found that there is no significant difference in soil

physical properties, bulk density and soil stability (Alföldi et al., 1996; Rothamsted

Research, 2005) between organically and conventionally managed soil. A positive

effect from organic farming cannot be confirmed (only for topsoil – Maidl et al., 1988),

although, Shepherd et al., (2002) suggested that organic farming produces a better soil

structure, whilst comparing 90 fields organic versus conventional, and discovered that

soil bulk density was negatively correlated with organic matter content of the soil.

Stolze et al. (2000) reviewed comparative research between organic and conventional

farming methods for a range of soil physical, chemical and biological properties. Table

2.2 reports their major findings; showing that the same property can be beneficial or

have no difference depending upon the study. This highlights the difficulty in

performing comparative studies between two different farming systems across a range

of soil types with the majority of studies showing no major effects, some show a

positive benefit and one a negative effect.
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Soil Organic Matter (SOM) plays a central role in the maintenance of soil fertility and

helps to limit physical damage. Some comparisons shows that organically managed

soils have a higher total soil carbon content compared to conventionally managed soils

(Armstrong Brown et al., 1993; Labrador et al., 1994; Petersen et al., 1997; Pomares et

al., 1994). However, in some cases no significant differences were observed (Amman,

1989; König et al., 1989). This could be due to organic farming practices temporarily

inducing a higher decomposition of soil organic carbon or could be linked to an

increase in harrowing (mechanical weed removal) (Thomsen and Sørensen, 2006).

Long-term investigations support the theory that organic soil management conserves

more SOM. However, minimum tillage can also be seen as playing an important role

in maintaining organic matter (Stolze et al., 2000).

The DOC (Biodynamic, Bio-organic, conventional) trial (Switzerland) compares bio-

dynamic, organic and conventional system since 1978 in a long-term trial. The major

differences in treatment are related to fertiliser regime and pesticide regime. Only the

conventional system has inorganic fertiliser and the other two systems receive organic

amendments; which typically contain 45-69 % of the nutrients (N, P, and K). The

differences between the treatments after 17 years of the experiment are small in terms of

soil properties, but there is increased microbial activity within organic and biodynamic

systems. The results also indicate that the mean yields were 20 % lower for organic and

bio-dynamic compared to conventional systems (Mäder et al., 1996). Reganold et al.

(1993) compared 16 paired biodynamic and conventional farms in New Zealand for a

range of soil properties. They found that biodynamic soils had higher biological and

physical quality, significantly greater organic matter content and microbial activity, better

soil structure and lower bulk density. Earthworms were much more numerous on the

biodynamic vegetable field than on the conventional vegetable field.

Defra funded a research project focusing on biodiversity into the benefits of organic

agriculture compared to non organic farming practices for field, farm and landscape

complexity (Norton et al., 2009). This study concluded that organic farming was

important for maintaining landscape and local complexity which was beneficial for

biodiversity.
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Armstrong-Brown et al. (2000) tested 30 paired organic and conventional farms across

a range of soil types and management regimes. The farms ranged from grassland to

horticultural/arable and purely arable. Pasture farms showed no significant differences

in terms of soil physical (aggregate stability, bulk density, soil water retention) and

chemical (SOC, pH, total N) properties between organic and conventional farms. The

management factors deemed most important for differentiating between conventional

and organic management included frequent farmyard manure applications to land and

the inclusion of grass leys in arable rotations.

Due to the reduced reliance on manufactured fertilisers in organic agriculture, larger

amounts of organic inputs (such as manure or compost) are needed to maintain nutrient

supply. It was determined in a recent study by Bhogal et al. (2009) that repeated and

large amounts (up to 65 t ha-1 organic carbon) of SOC were required to induce a

measurable change in soil physical properties. However, many benefits arise from

increased organic additions to the soil (a practice common in organic agriculture) such

as improvements in soil quality, fertility and water holding capacity which in the longer

term increase yield and hence improve farm economics. Although, there could be

negative impacts relating to loss of nutrients both to the atmosphere and to water

supplies (Bhogal et al., 2009).

The positive aspects are provision of real data but, statistical analysis and hence

generalisations can be problematic as all farms are unique (Lampkin, 1995). However,

there are many different factors involved other than just organic or conventional

practices; and there is a demand for this type of comparative data so results continue to

be produced (Østergaard, 1996). van Diepeningen et al. (2006) suggested that soil

texture had a much stronger effect on the soil physical characteristics than the

management type.

2.3 Soil physical properties

Soils need examining in terms of chemical, biological and physical aspects, which are

linked in complex interactions. Soil properties vary in terms of geographical location,

parent material, climate, biota, land-use and management (Brady, 1990). This section
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reviews the current research into soil physical properties: soil structure, compaction,

workability, aggregate stability, penetration resistance and shear strength.

Soil properties are highly significant to plant growth, the type of land-use and the

management required for the best return from the land (Cresser et al., 1994). Dexter

(2004) produced an index of soil quality based on the idea that of physical properties are

deemed more influential than chemical and biological properties. It incorporates

observations on soil compaction, the amount of SOC and plant root growth. Overall,

this index is useful as a better understanding of the interactions between physical,

chemical and biological properties can provide a more helpful determination of soil

quality and sustainability.

There have been many studies into different soil physical properties: structure

(Håkansson and Lipiec, 2000; Papadopoulos et al., 2006; Shepherd, 2002; Gerhardt,

1997), texture, aggregate stability (Eynard et al., 2005; Pinheiro et al., 2004; Hermawan

and Cameron, 1993; Sparling et al., 1992; Bronick et al., 2005), bulk density and

plasticity (Soane et al., 1972; Archer, 1975) in relation to different land use,

management and soil type. The following research papers reveal the links between

various soil properties such as soil structure and compaction linked to the turnover rate

of Soil Organic Matter (SOM) and its decline (Jensen et al., 1996). Shepherd (2002)

determined that SOM levels and management are the primary factors, which affect soil

structure on both organic and conventional farms. Other studies illustrate the

importance of soil organic matter and its positive effect on aggregate stability and shear

strength in different cropping systems (Haynes and Swift, 1990; Tisdall and Oades,

1982; Chaney and Swift, 1984; Ekwue, 1990).

2.3.1 Soil Structure and Compaction

Soil structure is the three dimensional arrangement of mineral particles (sand, silt, clay)

and pores within the soil (Dexter, 1988). Good soil structure enables crop development

and growth through balancing water/oxygen supply to root systems, providing

mechanical anchorage, forming seedbeds and buffering inputs of rainwater by

infiltration and evaporation (see Figure 2.2). The management methods associated with
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organic farming induce the formation of an ameliorated soil structure, which is porous,

better developed and has increased organic matter (Gerhardt, 1997).

Figure 2.2: Compaction effects on soil structural conditions. Diagram a) shows good soil
structure whereas diagram b) shows the effect of compaction on pore spaces (NSRI, 2001).

Soil structure is very important and is linked to soil porosity; the academic literature

(summarised in Warkentin, 2001) has focused upon two key dimensions thought to be

linked to good soil structure. These are SOM contents and external pressures on soil.

SOM contents will be discussed further later in this literature review section.

Warkentin (2001) outlined external pressures such as tillage, having a major impact on

soil structure. Compaction of the soil, decreased porosity as well as habitat biodiversity

but, post tillage nutrient recycling rates increased because of better aeration of the soil

and improved microbial action during tillage operations. Gardner and Clancy (1996)

found general trends for improved structure on organic farms but differences in

individual parameters were rarely statistically significant.

Papadopoulos et al. (2006) investigated the effects of crop rotation on soil structure

within a stockless organic arable system through analysis of macroporosity and pore

size distribution. Significant differences between treatments were found in overall

macroporosity percentage (11.7 %) with red clover (Trifolium pratense) having the

highest. However, the benefits to soil structure and porosity from clover were initially

large and significant but they were not long lasting (decreasing to 1.6 % after four

years). This highlights the importance of including clover in the crop rotation not only

for fertility building but also for the benefits to structure, macroporosity and infiltration.
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Ball et al. (1997) provided soil physical properties data (bulk density, shear strength,

cone resistance, macroporosity, relative diffusivity, air permeability and water

infiltration) on the impact of arable cropping (yields) through tillage and compaction of

soil structure. Ball et al. (1997) determined that the best method for reducing soil

structural degradation and improving yields was zero-traffic but if the soil was

compacted recovery took three years. Soil physical structural research now focuses

upon the modelling of soil architecture which provides microenvironments that differ in

physical, chemical and biological properties (Ranjard and Richaume, 2001; Young et

al., 2001).

Raper (2005) provides an overview of the impacts of soil compaction in terms of

reducing infiltration and erosion. The main findings will now be briefly outlined. Soil

compaction and rut formation negatively impacts rainfall infiltration (reducing on clay

soils by 18- 21 %) and rooting depth; hence can potentially cause increased soil erosion

and runoff. Soil compaction effects can last for three years and may not be reduced

immediately by tillage. Soil compaction is a function of soil type (Craul, 1994;

Gaultney et al., 1982), management of the land (for example tillage regime), soil

moisture content (reduced soil strength and compaction is more likely to occur if topsoil

is close to field capacity), increased vehicle loadings and repeated loadings.

Compaction by vehicle traffic causes an increase in the sealing or capping of soils,

which reduces infiltration. There is a reduction in water holding capacity of near the

surface horizon, which decreases the amount of moisture available for plant growth.

Gaultney et al. (1982) found that water stood for longer on compacted plots and that

runoff rates were higher on soil that had been trafficked. Poor soil structure and

compaction can contribute to impeded soil drainage and increase the amount of runoff

or surface ponding of water on the land (NSRI, 2001). Raper (2005) suggests several

methods to help reduce the effects of compaction in agricultural soils – smaller axle

load, less tractive element and soil contact stress, increased soil drying and conservation

tillage. Mueller et al. (2009) highlighted the benefit of reducing contact with the soil

through controlled traffic and including perennials in the rotation for improving soil

structure. Compaction is a problem that is present in both organic and conventional
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farming systems, which may contribute to flooding downstream in catchments

(Environment Agency, 2007). The contribution of land management and preventative

measures employed to alleviate these problems need to be quantified and related to the

flood hydrograph to aid flood mitigation measures.

2.3.2 Soil Workability

A key function of an arable soil is its workability; creation of seedbeds suitable for seed

germination and crop growth. The condition of land for field operations can be

classified in terms of trafficability and workability. Trafficability is defined as when the

soil can provide traction and withstand traffic without damage; whereas workability is

defined as when the soil is suitable for cultivation and soil engaging operations (Earl,

1997). Currently, in the UK there are two main types of tillage system: inversion

(including traditional plough-based systems) and non-inversion (including minimum

tillage systems). Both systems have advantages and disadvantages; ploughing helps to

ease weed problems, which can be prevalent in organic agriculture due to reduction in

pesticide use, but it can cause soil compaction and erosion, which lower the workability

of the soil. Minimum tillage especially at shallow depths can permit faster land

preparation allowing more successful crop establishment before the soil becomes too

wet for seedbed preparation (Morris et al., 2010a). However, there are still weed issues

that can be controlled in organic agriculture by mechanical weeding or spraying in

conventional agriculture. The major reasons for changing tillage systems are cost

pressures associated with cultivation, such as increasing fuel and labour costs, and

timeliness of operations (relating to the work days available). Therefore, as the climate

changes and with different land management systems (organic and conventional), the

type of cultivation whether minimum tillage or traditional ploughing should be

considered. If the number of work days are reduced it may become a more viable

option to use a minimum tillage system, which normally requires less work days

compared to a traditional plough-based systems.

Watts and Dexter (1998) measured the tensile strength of soil aggregates and estimated

soil friability for a range of differently managed soils. This showed that under arable

land the amount of SOC and friability reduced compared to permanent pasture. Mueller

et al. (2003) found the maximum soil water content for optimum tillage for cohesive
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soils to be 90% of the water content at the field capacity moisture content or for non-

cohesive soils this is equal to 70% of the water content at the tension of -5kPa. This

enables relatively quick measurements of workability in the field to be made.

Rounsevell (1993) reviews the different types of model used to determine the

workability of different soil types. He highlights the main components as soil

properties (field capacity, plastic limit) and climatic data (rainfall and

evapotranspiration). These models are empirical and there are limits to their usage

especially in the short-term, for example predicting work-days within a week is not

possible. However, they are useful for comparing the effects of climatic change

(Cooper et al., 1997) on work-day as well as changing management regime.

Studies have shown the importance of soil moisture content and plasticity in terms of

workability (Mueller et al., 2003; Baver et al., 1972). These revealed that the soil

plasticity and dry bulk density could be dependent on the type of SOM. Soil plasticity

has also been linked to clay content and different soil management but ultimately

whether the plastic limit increases or decreases with organic matter is related to texture

(Archer, 1975).

Plasticity indicates how easily a soil can be deformed without cracking in response to an

applied stress and is an indicator of the likely mechanical behaviour and workability of

soils. Atterberg limits are important as these are linked to soil texture but can be

affected by amounts of SOM (Campbell, 1991). The amount of SOM does not affect

the plasticity index; however, it creates a strong bond with water raising the position for

the plastic and liquid limits (Brady, 1990). Baver et al. (1972) suggested that SOM

would cause a shift in the plasticity index extending the friability zone to fairly high

moisture contents.

2.3.3 Aggregate stability

Aggregate stability is an indication of soil strength related to soil structure and amount

of SOM present. It impacts on aeration, water and nutrient supply, thus affecting plant

growth (Tisdall and Oades, 1982). Changes due to management and different land-uses

can cause a response in aggregate stability shown before changes in SOM are observed

(Haynes and Swift, 1990).
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Kemper and Koch (1966) tested the relationship between SOM and aggregate stability.

They determined that lower levels of SOM increased the variability of arable soils.

Tisdall and Oades (1982) draw some conclusions from their study. Firstly, that above a

certain amount of SOM (which varies depending on soil type) no additional stabilising

effect can be felt. Secondly, particle arrangement is more important in some soils than

the absolute amount of SOM present.

Haynes and Swift (1990) revealed that air-drying could improve aggregate stability

where there is high SOM and porosity as it is able to retain more water. Likewise, this

method decreases aggregate stability where there is less SOM; and may mask the effect

of treatment. Haynes et al. (1991) found a difference between two different land-uses

for aggregate stability. However, research by Hathaway-Jenkins (2006) did not

correspond with this trend in aggregate stability. This emphasises that soil textural

similarity (clay content) can have a larger impact on aggregate stability than the amount

of SOM present.

The SOM content is important for structural development and aggregate stability

(Shepherd et al., 2002; Tisdall and Oades, 1982) which is related to the type of SOC, as

Sparling et al. (1992) outlined the difference between microbial C and total SOC. Only

part of SOC is responsible for stability of soils and organic materials are not the major

binding agent. A fine network of polysaccharides, roots and hyphae, not measured in

SOC, hold the aggregates together - these are affected by management practices (Tisdall

and Oades, 1982). SOC is protected from microbial decomposition when occluded

within stable aggregates, which are able to withstand wind and water erosion. The more

unstable aggregates break up due to tillage erosion and hence accelerate the

decomposition of SOC previously enclosed within the aggregates (De Gryze et al.,

2007). Macro aggregation is dominated by landscape-scale processes such as water and

tillage erosion rather than the local variables such as variations in organic matter or

texture (De Gryze et al., 2007). SOM plays an important role in soil structure and

aggregate stability is highest under grassland, decreasing rapidly under arable

cultivation (Loveland and Webb, 2003).
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2.3.4 Shear strength and penetration resistance

Shear strength is conveyed through cohesive forces between particles and frictional

resistance met by particles that are forced to slide over each other (Marshall and

Holmes, 1988). The strength of soil affects its behaviour: load bearing, tillage,

compaction and root penetration. Soil strength can be affected by the amount of SOM

and moisture; SOM increases whereas moisture decreases the strength of the soil (Smith

and Mullins, 1991).

Penetration resistance is a measure of the soil resistance to the entry of any device or

biological matter. It varies depending upon soil physical properties such as particle size

distribution, water content, resistance to compression and shear strength (Campbell and

O’Sullivan, 1991). The limiting resistance for root growth in untilled soils are 4.9 MPa

and tilled soils are 3.6 MPa (Ehlers et al., 1983).

The penetration resistance of a soil is controlled more by soil strength rather than bulk

density. Ekwue and Stone (1995) reported that bulk density, penetration resistance and

shear strength of soils increased with incremental increases in moisture content to a

point. SOM also plays a part in this relationship. At low moisture content and high

SOM penetration resistance is reduced; yet, at high moisture contents and high SOM

penetration and soil strength is increased. However, after peak values (dependent on

soil texture) are achieved further moisture increases caused decreases in these soil

properties. Improving a soil’s resistance to compaction can be achieved by increasing

soil strength through reducing soil moisture. Allen and Musick (1997) found that

relatively moist soils (above 60% field capacity) during heavy traffic operations greatly

increased compaction and decreased infiltration even for a relatively lightweight tractor.

2.3.5 Summary

Overall, this section has highlighted importance of soil physical properties and their

interactions; the knowledge gaps are identified and will now be further explained.

There were few UK-based studies on the relative benefits of organic or conventional

systems for soil quality. Hence there is a need to look at the effects of organic farming

shown in European countries and determine whether the same benefits can be found in
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the UK. These benefits in soil quality have been shown to relate soil physical quality

and compaction to the amount of water infiltration. This is shown as an area that

requires more research to investigate the impacts of changing land management on soil

structure in the UK and the impacts on water infiltration.

2.4 Soil chemical properties

Soils are key determinants of land-use and are highly important in terms of fertility and

crop growth. A fertile soil is ‘capable of producing a desired crop with favourable yield

and quality characteristics’ (Cresser et al., 1994). Soil chemical properties will be

discussed in the following section. These are highly important as differences in the

level of soil organic matter can influence the soil physical properties which in turn will

influence the availability and leaching potential for the major nutrients required by

crops (nitrogen, potassium, phosphorus).

2.4.1 Soil Organic Matter (SOM)

Soil Organic Matter (SOM) is a key requirement in sustainable agriculture. SOM is a

set of fractions ranging from light macro-organic, biomass carbon, mineralisable

carbon, carbohydrates and enzymes. SOM increases linearly with input levels (such as

green manures) but this is very dependent on climate, soil type and most importantly

soil management (Parton et al., 1996). In terms of soil management, additions of SOM

from crop residues or organic amendments increase the concentration of free low

density macro-organic matter by 10-40% and this in turn affects the properties of soil

(Carter et al., 1998; Kay, 1998).

SOM is both a source and a sink for plant nutrients and provides energy substrate for

soil organisms. It helps to stabilise macro and micro aggregates to promote infiltration

of air (Tisdall, 1996). It promotes water retention and influences the fate of pesticides

(Gregovich et al., 1994; 1997). It also influences soil physical processes through

mycorrhizal fungi such as compactability (Soane, 1990), friability (Watts and Dexter,

1998) and soil erodibility (Feller and Beare, 1997).

There is a need, highlighted by Carter (2000) to monitor changes over time, test the

methods of estimation, protect soil functions that are provided by SOM and prevent
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irreversible declines. Loveland et al. (2000) recognise that the use of monitoring SOM

over short periods is not helpful as changes are very small. Analytical methods measure

Soil Organic Carbon (SOC) content, which is related to SOM by multiplying by a factor

of 1.72. Changes in SOC are generally slow to occur and difficult to measure against

the large background of carbon content in arable soils in the UK (Chambers et al.,

2007). Returning organic materials to the soil is important for maintaining the existing

SOC levels and completing natural nutrient and carbon cycles.

Loveland et al. (2000) also highlight that the critical SOM values are soil specific range

of factors based on the most limiting soil function/ process. The amount of clay present

will influence the SOM due to the protective adhesive nature of the clay particles (Webb

et al., 2003). Therefore, it is important to be careful when comparing SOM levels due

to crop derived carbon and erosion related to topography. Greenland et al. (1975) used

dichromate oxidation to determine SOM levels of soils and determined that soils with

less than 2% SOC were unstable whereas 2-2.5% SOC were moderately stable and

greater than 2.5% is stable. These data are unsubstantiated but, based on reviewing

findings at the time, Loveland et al. (2000) concluded that soil structure is likely to

become unstable if SOM contents fell below 3.4 % or 2 % SOC.

Soil disturbance by tillage is believed to be the primary cause of the historical loss of

SOC (Baker et al., 2007). Some soil scientists have been investigating the effect of

conservation tillage and organic land management to determine if this leads to

substantial SOC sequestration. However, Baker et al. (2007) highlight that there is a

lack of long-term data that would support this conclusion and hence, whilst there are

benefits in terms of soil structure and porosity, carbon sequestration should not be a

motive for changing tillage regime.

Körschens and Müller (1996) studied the effects of N fertiliser and FYM on the crop

yield, SOC and total N level. They found a positive correlation between management

practice (organic or conventional), crop yield, amount of SOC and total N. They also

found that the SOM additions were ineffective in sandy soil compared to the loam. This

is due to compaction and the need for better land management. Raupp (1995) supports
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this finding with results from a long-term plot experiment demonstrating SOM

differences between agricultural systems due to organic matter inputs. After circa 10

years of treatments SOM increases in the following order: conventional (0.79% C) <

organic (0.92% C) < biodynamic (1.02% C). The importance of actual organic matter

inputs to the soil in influencing SOM contents is illustrated by Amman (1989) who

found no differences in SOM content between organic and conventional. Armstrong-

Brown (2000) showed that in general arable soils contain less SOM than grassland soils

but the texture of the soil is more important, especially the amount of clay and silt.

2.4.2 Nitrogen

Several nutrients are required for plants to grow, these are classified as primary

(nitrogen, phosphorous, potassium), secondary (calcium, magnesium, sulphur) and

micro nutrients (Miller and Gardiner, 2001). These nutrients are all required in different

quantities depending upon the crop; however any deficiencies can reduce yield (Archer,

1988). Deficiencies in the primary nutrients can be the major limiting factors to growth

and are also the nutrients responsible for most agricultural pollution.

Deficiencies in N are the major reason for poor crop production especially in organic

farming systems. Conventional farming systems use inorganic substitutes and

sometimes a combination of FYM to help boost levels of N; these are carefully matched

with the requirements of the crop and applied during the appropriate stage in the

growing cycle as determined by RB209 (Defra, 2010). Total N can be seen more as a

reflection of fertiliser regime in arable fields.  It affects the bulk density (ρb) due to

fungal growth, hyphae, which aid structural development (Tisdall, 1996).

In organic farming systems, N is provided by the use of legumes in the crop rotations to

help fix N from the atmosphere, residue management (recycled into the soil) and

addition of compost or animal wastes (see Figure 2.3). This can be difficult to manage

as these methods are highly dependent upon biological activities to ensure that N is

available in the correct format for crop uptake. Therefore, there is a higher potential for

N to be available when not required by the crop and hence a greater risk of leaching

(Philipps, 2003).
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Bremer (1975) found that 95 % of the total nitrogen found within soils occurs in the

unavailable organic form. The remaining amount of total nitrogen is in the inorganic

form which if not taken up by crops is at risk of leaching (Cooke, 1982). Defra (2004)

suggest that in England up to 70% of the nitrate leaching into water courses originates

from agricultural land.

Figure 2.3: Simplified soil nitrogen cycle for organic and conventional farms.
Mineralisation comprises of several processes aminisation, ammonification and
nitrification which is performed by micro-organisms (Adapted from Phillips, 2003).

Nitrogen cycle is closely linked to the Carbon (C) cycle and in soils they are inseparable

(O’Sullivan et al., 2001). The C: N ratio is very important as it helps to determine the

ease that N containing compounds can mineralise and indicates whether the soil is

mineralising or immobilising C or N (Ashman and Puri, 2002). C:N stocks in soil are

not affected by tillage and crop rotation in arable soils (Nicolardot et al., 2007).

Shepherd (1999) showed that the method of incorporation of residues had no effect on

leaching potential and that mineralisation is greater when the land is cultivated. The

ploughing of grassland can have a great impact upon the SOC contents and available N

as it releases the stored carbon which reduces the efficiency of N usage (O’Sullivan et

al., 2001).
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Low and Armitage (1970) examined the effect of soil use and management on leaching

in England; the largest amount of nitrate leaching occurred in fallow land (greater than

100 kg N ha yr-1) followed by white clover (less than 25 kg N ha yr-1). This has serious

implications for the management of organic land as crop rotations including ley and

clover are essential in an organic system.

2.4.3 Phosphorus

The amount of phosphorus (P) in the available pool is very small and, to become

available for crop uptake, it is released from readily mineralisable organic matter or

unstable compounds (see Figure 2.4 Philipps, 2003). Mycorrhizal fungi play an

important role in ensuring availability of P for in crop roots. P needs to be maintained

for long term fertility and in organic systems this is achieved through the use of

manures, composts and residue management.

Figure 2.4: Simplified diagram of the soil P cycle (Adapted from Philipps, 2003 and Troeh
and Thompson, 1993). P changes form from organic to available through mineralisation
and the reverse by immobilisation.

Mineralisation and immobilisation of P is affected by pH, soil moisture and

temperature. The availability of P is greatest when the pH is between 6.5 and 7; at

lower and higher pH, P precipitates or adsorption increases and hence is unavailable

(Ashman and Puri, 2002).

If the level of P within the soil is high, above 70 mg l-1 extractable P (Smith et al., 1998)

then there is a high risk of P erosion (particulates) and runoff (dissolved P); which can
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contribute to eutrophication of watercourses. Shepherd and Withers (2001) stress that P

– inputs should be lowered to help prevent eutrophication.

2.4.4 Potassium

Potassium (K) availability is less dependent upon the biological activities compared to

N and P. K is often needed in large supplies as plants assimilate more potassium than is

required (‘luxury consumption’); therefore K can often be in short supply even though it

is fairly mobile (Ashman and Puri, 2002). The texture of the soil greatly affects the

likelihood of leaching, for example a sandy soil is more likely to leach K (Philipps,

2003). In organic systems, composts and manure applications are used to return K to

the land; however it can be difficult to control K fixation and monitor the reserves of K

within the soil (Andrist-Rangel et al., 2007). Gosling and Shepherd (2005) found that

extractable K was significantly lower in organically managed farms; it is argued this is

because organic systems are mining the reserves of K which built during conventional

management. Hence, the build up of or removal of nutrients (nutrient budgets) are

particularly important to monitor in organic systems to aid long term fertility of the soil

and prevent erosion and leaching.

2.4.5 Nutrient Budgets

A soil surface nutrient budget can be calculated for a farm using information about the

field management and measurements of the soil, crops and manure. Berry et al. (2003)

studied nine organic farms and determined nutrient budgets for each of them. Nutrient

budgets for seven of the farm rotations showed an N surplus and six a P surplus and

three a K surplus; only rotations with large amounts of manure added or imported feed

showed a K surplus or a balanced K budget. These indicate that there is no reason why

organic farms should be inherently unsustainable in relation to N (see Table 2.3).
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Table 2.3: Summary of two European countries for N, P, K balances (kg ha-1) in organic
and conventional farms (Adapted from Stolze et al., 2000).

Country N

balance

Organic

N balance

Conventional

P

balance

Organic

P balance

Conventional

K

balance

Organic

K balance

Conventional

Sweden -15 +44 -12 +37 -4 +39

Germany +42 +118 -4 +13 -27 +31

The formulation of nutrient budgets has major implications for understanding nutrient

availability and cycling (Shepherd, 1999; Withers et al., 2001; Powlson, 1993; Smith

and Chambers, 1993). These studies highlight the potential nutrient savings which can

arise from using organic amendments, as in organic farms there is a reduced reliance on

inorganic fertilisers. Inorganic fertilisers are increasingly more expensive due to rises in

fuel prices and hence production costs. The use of FYM (farmyard manure) and

organic manure have been studied for its effects on soil fertility and leaching in both

organic and conventional management systems (Wong et al., 1999; ADAS, 2002). FYM

was found to have positive effects for soil fertility due to increasing SOC contents.

It is important to note the differences in the fraction of the organic amendments. The

nutrients are mainly in the organic fraction and hence are not readily available to the

crop for uptake until mineralisation has occurred. This is aided by the soil microbial

community, which is larger where there are higher levels of organic matter (substrate).

Crop rotations are the key to organic farming systems both in managing nutrients, pests

and soil fertility as well as increasing the amount of SOM present (Stockdale et al.,

2002). The general conclusion that can be drawn from the literature is that nutrient

surpluses are smaller for organic than conventional farms, when comparing the same

farm types.

2.4.6 Summary

Overall, this section has outlined the principles underlying soil chemical properties and

the research that has already occurred. The areas that are important for research include

dynamics of SOM or SOC; this is increasingly being conveyed into the agenda for

addressing climate change. A potential change in land use or management can reduce
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or enhance the amount of SOM and affect major nutrient cycles. Whether SOC can be

sequestered on organically managed agricultural land and through reducing tillage in the

UK has not been investigated. Whilst nutrient cycling and SOC dynamics are not the

main focus of this research, it is vital to understand the impact on sustainability of the

farming system. This research compares organic and conventional farming systems in

terms of SOC and will investigate whether SOC is able to be sequestered on organic

farms.

2.5 Soil hydraulic properties

Soil surface conditions play a major role in determining the rates of water infiltration

and evaporation from the soil (Lampurlanés and Cantero-Martínez, 2006). Tillage is the

most effective method to alter pore space combined with residue cover and surface

roughness. Therefore, this section will firstly discuss porosity and infiltration before

considering the effects of tillage on hydraulic conductivity.

2.5.1 Porosity

Porosity is determined by the arrangement of the solid particles; if soils are compacted

the porosity is low (Brady, 1990). Where there are larger SOM contents, the porosity is

generally large. Soil pore characteristics are dependent upon soil texture but are

affected by seasonal management (short-term) and probably provide the basis for later

significant changes also in mechanical tilth characteristics (SchjØnning et al., 2007). As

soil structure develops and improves, soil becomes increasingly porous, pore spaces

form between peds and soil becomes less dense so bulk density decreases; experimental

work by Antille (2006) into low tyre inflation pressures reduced compaction of soils and

confirmed this relationship. The porosity of a soil is important in terms of water

retention (to alleviate flooding) but also to provide enough water for crops to maintain

yield (see Figure 2.5 for moisture release curve). Soil water flow at the soil surface is

mainly regulated by macropores even though it is a very small fraction of total soil

porosity (Moret and Arrué, 2007).
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Figure 2.5: Soil Moisture release curve showing how water is held by different soil textures
(Source Ashman and Puri, 2002).

Field Capacity is defined as the point after saturation when all the gravitational water

has drained (Miller and Gardiner, 2001). Figure 2.5 shows field capacity as 0.01 MPa

(10 kPa) but in this research the UK standard 5 kPa was used (Hall et al., 1977). It is

important as this determines the length of time when a field is able to be worked.

Godwin and Dresser (2003) suggest that a method of flood prevention would be to

ensure that during a peak rainfall month soil is not near to field capacity so as to

increase water storage capacity. This could be achieved through adequate field drainage

and prevention of soil compaction through the use of zero-traffic or low inflation tyre

pressures (Antille, 2006).

2.5.2 Infiltration Rates

Infiltration is the entry of water into the soil via the soil surface; it is similar to hydraulic

conductivity which is a measure of the downward movement of water through the soil

profile (Godwin and Dresser, 2003). Any surface water that cannot infiltrate into the

soil may runoff the land into rivers and streams through quick flow processes.

Therefore, improving infiltration rates is essential to reduce runoff and flooding

downstream in a catchment.
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Infiltration is affected by the type and amount of vegetation and surface cover, soil

texture and structural condition and moisture content of the soil (Godwin and Dresser,

2003). Surface land management can modify these variables influencing the amount of

surface storage, infiltration rate and capacity of the soil to retain water. If porosity is

large (greater than 30%) and pores are continuous, then the soil water storage capacity

and the potential for deep infiltration also large. This can be enhanced through the use

of a residue cover which promotes infiltration and prevents evaporation as it provides

soil aggregation and structural stability (Lampurlanés and Cantero-Martínez, 2006).

The tillage regime can drastically alter the infiltration of soil depending upon the soil

structural conditions and the level of SOC present. Franzluebbers (2002) identified that

a uniformly stratified SOC through the profile helps reduce bulk density (by 12 %) and

increase water retention (by 37 %). He also determined that tillage in the short term

increased soil porosity; however, tillage dispersed the soil structure and mixed surface

SOC which is a critical feature controlling water infiltration, storage and transmission in

soils. Ball et al. (1997) reviewed several studies and concluded that under various soils

and climatic conditions no tillage regime can lead to a decrease in structural porosity in

the upper part of the soil. Comparisons with conventional tillage regimes show that no

tillage regime can result in greater (Ball et al., 1997), or smaller (Lampurlanés and

Cantero-Martínez, 2006) infiltration rates. Schnug et al (2006) investigated infiltration

rates on organic and conventional farms in Germany and found that improving soil

porosity helped increase infiltration and could contribute towards mitigating flood

peaks.

Over the past 30 years, agricultural land use has been changing from rotational

grassland and arable farming to intensive arable only stockless systems. This has

contributed to degradation and compaction to soils; which can reduce the amount of

infiltration and increase the speed of runoff. At the local scale this is seen through

‘muddy floods’ which damage roads and properties (Boardman et al., 2003).

Monitoring studies have been carried out at the plot/ field scale in terms of the impacts

on surface runoff and drainage flows (Burt and Slattery, 1996; Davies et al., 1973;

Melvin and Morgan, 2001). Mainly these were carried out in lowlands covering a range

of land uses and management practices (cultivation and runoff mitigation measures).
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However, the extent to which farming practices affect flooding at the catchment scale

during a rainfall event is unclear (O’Connell et al., 2007).

Table 2.4: Effects of soil degradation on SPR HOST classification (Adapted from Holman
et al., 2002 in Godwin and Dresser, 2003).

HOST Class SPR (%) Degraded HOST
Class

Degraded SPR (%)

1 2 3 12
2 2 3 12
3 12 7 21
4 2 3 12
5 12 7 21
6 34 18 47
7 21 10 35
8 30 18 47
9 25 No Change 25

10 35 No Change 35
11 2 No Change 2
12 60 N/A N/A
13 2 3 12
14 40 15 48
15 48 N/A N/A
16 22 21 47
17 29 19 45
18 47 26 59
19 45 22 60
20 47 23 60
21 47 26 59
22 60 27 60
23 60 No Change 60
24 40 26 59
25 50 29 60
26 59 10 N/A
27 60 18 N/A
28 60 N/A N/A
29 60 N/A N/A

2.5.3 HOST

Hydrology of soil type (HOST) is the classification of the main soil types in the UK into

29 classes (Boorman et al., 1995). These 29 classes are based upon soil physical

properties that are correlated with catchment scale hydrological variables and the

dominant pathways of water movement through the soil and substrate (base flow index,

BFI and standard percentage runoff, SPR). BFI is the long-term average proportion of

flow that comes from stored sources and SPR is the percentage runoff derived from

event data, adjusted to standard rainfall and catchment moisture conditions (Boorman et
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al., 1995). This model allows the level of degradation of soil to be input and hence

modifies the HOST class (see Table 2.4). A physically degraded soil, for example

compacted, can lead to a significant change in the amount of runoff for most of the

HOST classes (Godwin and Dresser, 2003). These data are useful in flood estimation

and predicting the individual flood events and durations.

2.5.4 Flood Risk

According to the Environment Agency (EA) (2008) 5 million people live in areas which

are at risk of flooding. In addition to this 1.3 million hectares of the most productive

agricultural land in England and Wales are in the flood plain. Increasingly the effects of

extreme rainfall are being felt as widespread serious flooding occurred in England and

Wales in June and July 2007.

The EA (2008) believe that the flooding was caused by drains, river channels and flood

defences being overwhelmed by the extreme flows of water. This could be linked to

building on flood plain land as well as the intensification of agriculture. Both of these

would have the effect of capping the soil surface and preventing the water from being

absorbed or percolating through the soil. This would mean that there is more water

running overland – a quick flow process which is causing the peaky hydrograph (Figure

2.6) and this makes flood risk areas difficult to predict.

Figure 2.6: Effect of land management on flood hydrograph. The ‘before’ treatment
indicates the ‘peaky’ flood hydrograph and the ‘after’ treatment shows the attenuated
flow and mitigated flood risk (Source Godwin and Dresser, 2003).
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During autumn of 2000, England and Wales experienced severe flooding. Holman et

al. (2003) hypothesise that due to the wet weather in both spring and autumn there was

increased potential for soil structural damage or degradation. In the five catchments that

were studied all fields of different land uses (arable or grassland) should signs of

damaged topsoil structure and linked to the Soil Conservation Service (SCS) curve

numbers revealed the enhanced runoff values (see Figure 2.7). This highlights the need

for an holistic catchment-wide approach to managing the interactions between

agricultural land use and hydrology to help alleviate flood risk downstream.

Figure 2.7: Potential increase in runoff caused by soil structural degradation for a range
of rainfall events on four different catchments in the UK (Source Holman et al., 2002).
Flood Estimation Handbook (FEH) and Soil Conservation Service Curve Number (CN)
show two different modelling of runoff with a degraded option on CN.

2.5.5 Summary

This section has outlined soil hydraulic properties (porosity and infiltration) and the

research that has already occurred in relation to SOC levels, soil structure and tillage

regimes. The HOST classifications are also described and current flooding problems in

the UK. It also provides a brief discussion on two techniques for hydrological

agricultural catchment modelling. However, there are no specific studies comparing

organic and conventional farming systems in the UK. Overall, there is a need to

establish a solid research base with field trials investigating the effects of organic

farming in terms of water storage (Defra, 2004).
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2.6 Soil Management Practices

The method of soil management adopted can have implications for infiltration and water

retention capacity of soils as well as affecting nutrient cycles and decomposition of

SOM. Changing soil management methods either through tillage regime or residue

management can improve infiltration and reduce capping and improve available pore

space by reducing compaction (Godwin and Dresser, 2003). This section looks at the

impacts of different tillage schemes on soil properties.

2.6.1 Tillage regimes

Three main tillage regimes will be considered: conventional tillage, reduced cultivations

(minimum / reduced tillage) and direct drilling (no tillage). Raper (2005) outlines the

typical numbers of passes for a conventional tillage scheme as: initial primary tillage,

secondary tillage, additional secondary tillage, planting and repeated spraying or

cultivation operations during the growing season, harvest. During these operations up

to 70 % of the field is trafficked which has implications for soil compaction. Peigné et

al. (2007) define minimum tillage as a range of tillage practices that are mainly non-

inversion. There is a reduction in typical number of passes which are: planting,

spraying if necessary, harvesting and cover crop establishment (Raper, 2005). Another

aspect of tillage regime is controlled traffic; this involves crop zones and traffic zones

that are permanently separated (Chamen, 2010). The traffic lanes are compacted and

hence are able to withstand further traffic without more deformation (Raper, 2005).

There are potential advantages of reduced tillage in preserving soil quality, fertility and

preventing degradation and compaction. However, not all soil or agricultural systems

(for example) organic are suitable for direct drilling or reduced cultivations. Organic

systems can suffer from greater problems relating to weeds and restricted availability of

N (Peigné et al., 2007).

Reduced tillage and no tillage can help to improve soil structure and stability which

increases soil moisture content, lowers compaction and increases SOM (Holland, 2004).

This can be attributed to the reduced use of heavy machinery which promotes aggregate

formation, maintains porosity and increases water infiltration. There is also potential

for less energy to be consumed due to lower fuel requirements, fewer pesticides and
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fertiliser uses; therefore directly reducing the amount of fossil fuels consumed (see

Table 2.5).

Table 2.5: Energy inputs for three tillage systems highlighting economic efficiency
(Adapted from Davies et al., 2001).

Tillage System Energy Requirement (MJ ha-1)
Direct drilling (zero cultivation) 35-80
Reduced cultivations (tines and discs) 100-230
Traditional cultivation (mouldboard) 200-360

Conventional tillage can cause the break down and decomposition of protected SOM

especially after a number of years with no tillage (Nicolardot et al., 2007). This break

down of SOM can lead to increased compaction and reduce water holding capacity of a

soil (Raper, 2005). Deep tillage helps to mix the SOM over a greater depth, which can

increase the immobilisation and fixation of N in subsoil. This can reduce the SOC level

in the soil, which in Nicolardot et al. (2007) was determined to be 285 g m-2 higher

under no-tillage than conventional tillage. This work was based in Germany measuring

three different tillage systems: mouldboard plough, two layer plough and loosening over

three years. They determined that aggregate stability was greater under loosening only

treatment.

The level of SOM in the soil needs to be carefully monitored especially on organic

farms. Reduced tillage needs to be approached carefully on organic farms and include

perennial mulches, mechanical control of cover crops, controlled traffic and rotational

tillage (Peigné et al., 2007). Bescansa et al. (2006) found that conservation tillage has a

greater impact on soil water properties (increasing water retention by 13 %). There was

no difference due to crop residue management and crop yield improved slightly

depending on conservation tillage system. It is important to investigate the effects of

tillage regime for different agricultural systems (organic and conventional).

2.6.2 Residue Management

The physical and chemical properties of soil determine the suitability for sustaining

crop growth, they are dependent upon SOM. The equilibrium level of SOM depends on

the balance between input through crop residues and output through decomposition,
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erosion and leaching (Mulumba and Lal, 2008). Crop residue management has been

shown to significantly affect the decomposition of SOM (Coppens et al., 2007).

2.6.3 Removal or Incorporation

Several long-term trials have been established to determine the effects of residue

removal or incorporation on crop yields (Christian et al., 1999) and soil properties

(Mulumba and Lal, 2008; Coppens et al., 2007; Malhi et al., 2006). For crop yields

(winter wheat) over the nine year study period; straw incorporation caused a one-third

reduction in yield, due to problems establishing a good seedbed, compared to direct

drilling where the straw was removed (Christian et al., 1999).

Mulumba and Lal (2008) found that incorporation of residues significantly increased

available water capacity by 18–35%, total porosity by 35–46% and soil moisture

retention at low suctions from 29 to 70%. Malhi et al. (2006) found that straw

management had no effect on total organic C and N in the 0–15 cm soil. When straw

was removed there were a lower proportion of fine aggregates compared to

incorporation. Coppens et al. (2007) indicate that antecedent moisture conditions can

affect the decomposition of mulched (incorporated) residues. The findings of these

trials have implications for erosion rate and water retention in relation to flood

prevention which can be beneficial due to improved soil physical properties (Malhi et

al., 2006).

2.6.4 Amendments

According to Lohr and Park (2007) soil improvement is a long-term process where

years are required to achieve optimum organic efficiency as inputs are relevant to both

annual cropping and long-term farm productivity. The Broadbalk experiment

established in 1843, at Rothamsted, found that organic manures and crop residues

should be recycled and used more effectively to increase SOM, supply nutrients and

improve soil structure (Carter et al., 2000).

Lohr and Park (2007) investigated efficiency of compost usage within farming systems

in both organic and conventional. They determined that there are five common types of

amendments:



Chapter 2: Literature Review

Laura Hathaway-Jenkins
38

Engineering Doctorate (2011)

 Animal manure compost

 Green waste compost

 Finished compost

 Mineral soil amendments

 Biological soil fertilisers.

Lohr and Park (2007) through their research into compost and energy efficiency

emphasise a need to understand the economic factors related to organic farming

systems. It is difficult for organic farms to find legally acceptable soil inputs and often

these have to travel over long distances. Due to the cost associated with compost and

mineral amendments; organic farms are increasingly becoming self-sufficient in terms

of using their own farmyard manure or green wastes on arable land. However, there is a

major problem associated with the use of organic manures in the farming system; this is

that large amounts of nitrogen can be lost from the crop and soil system through

leaching (Johnston, 1991). This can be mitigated through better analysis and

management of the nutrients available within the amendments.

Increasingly, the use of FYM (farmyard manure) and organic manure has been studied

for its affects on soil fertility and leaching in both organic and conventional

management systems (Wong et al., 1999 and ADAS, 2002). Bulluck et al. (2002)

investigated the effects of organic and synthetic amendments on three organic and

conventional farms on soil physical, chemical and biological properties. They found

that organic fertility amendments, enhanced beneficial soil micro-organisms, increased

soil organic matter, total carbon, and cation exchange capacity (CEC), and lowered bulk

density thus improving soil quality.

SchjØnning et al. (2007) determined that after 5-6 years of management there is a shift

to biotic rather than abiotic bonding and binding mechanism for the cropping systems.

The study found that the dynamics of soil structural stabilisation are affected rather

quickly when changing management practice; and more tortuous networks of soil pores

were found for the enhanced cropping system compared to a system with no compost.
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2.6.5 Energy Budgets

On a global scale, agriculture is responsible for about 5 % of the total energy used

(Stout, 1990). The amount of fossil fuels used is closely related to the release of CO2

from a particular agricultural system (Deike et al., 2008). Hansen et al. (2001)

reviewed many studies in terms of total energy use and efficiency. They discovered that

organic farms had higher energy use efficiency and a smaller energy output (lower

yields) at the farm scale (see Table 2.6). Pesticide application in conventional farming

systems can significantly reduce yield losses caused by weeds and therefore will

increase the net energy output changing the input: output ratio (Deike et al., 2008).

Table 2.6: Comparison of farm energy consumption (GJ ha yr-1) in organic and
conventional systems in two European locations (Adapted from Stolze et al., 2000).

Location Organic Conventional Percentage of
Conventional

UK - livestock 3.3 9.3 64.0
Germany - livestock 17.3 19.4 33.5

Low energy input production schemes are not well accepted by farmers who are

interested in the economic benefits rather than energy productivity. Kaltsas et al.

(2007) determined that there was no difference between organic and conventional

farming (in olive groves) for fossil fuel consumption and total energy inputs. In

conventional systems there is less weeding; however in organic systems there is no

fertiliser application.

2.7 Soil Policy Development

This section gives an overview of current policies and frameworks regarding

agriculture, sustainability and soils. There are several UK laws that relate to the

protection of soil; but these are mainly relating to urban soils and preventing pollution

of soils (Town and Country Planning Act 1990; Environmental Protection Act 1990;

Waste Management Licensing Regulations 1994; Sludge (use in agriculture)

Regulations 1989; Environment Act 1995, section 57). An EC Regulation 2078/92

promotes organic farming due to its positive effects on the environment (Stolze et al.,

2000) and this was introduced into the UK through the Rural White Paper. This outlined
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the Government’s aims for the future in regard to sustainable agriculture; it is currently

being up dated.

In 1999, the Government made a commitment to ensure that soil protection received

equal priority with air and water as it launched a strategy for sustainable development.

In 2004, Defra introduced the First Soil Action Plan for England and Wales 2004-2006

which outlined a programme to provide a clear sustainable vision for the protection of

soil. This emphasises a requirement to train soil managers to meet their short-term

needs as well as the needs of future generations. It intends to provide appropriate

legislation and a political framework that will protect soil as an irreplaceable natural

resource and encourage proper management through a better understanding of soils and

the processes which occur within them (Defra, 2004). Hence, there is a need for more

information on the current state of soil and the physical, chemical and biological

processes, which operate within them, allowing meaningful conclusions to be drawn.

The Environment Agency’s (2004) soil protection code highlights the importance of soil

studies on all farming systems. These include studies into the maintenance of organic

matter content to keep soil in good condition and the microbial response of soils to

organic management.

In 2007, the Environment Agency introduced a new soil strategy 2006-2011 which

highlights the following seven cross cutting themes:

1. Climate Change – relating to carbon storage and losses, flood risk management

2. Sustainability – both in the urban and rural environment

3. Integrated catchment management – linking air, water and soil.

4. Tackling agricultural impacts (diffuse pollution)

5. Protecting soil in the built environment

6. Understanding soil biodiversity

7. Improving the knowledge base

These key themes provide areas of research into the effects of soil management on the

wider environment.
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The EU legislation has imposed several directives that mention soils such as the

Habitats directive, Nitrates and Environmental liability directives and more recently the

Water Framework and Groundwater directive. Research has determined seven key

threats to soils: climate change, compaction, contamination, erosion, loss of

biodiversity, loss of organic matter and sealing (Defra, 2009). The EU commission

published the findings of this research in ‘Thematic Strategy for Soil Protection’ (Van

Camp et al., 2004). Recently there has been a drive to introduce a Soil Framework

directive; a proposal was considered by the European Parliament and following the first

reading 501 votes to 160 rejected the proposal for a full redraft of the original proposals.

This means that a Soil Framework Directive is still a possibility and hence research into

the status of soil and its management is still required to influence the need for this

directive.

2.8 Modelling catchment scales

Godwin and Dresser (2003) outline two main methods of modelling the effects of soil

management on peak runoff rates in small agricultural catchments. These include the

Soil Conservation Service (SCS) method and the rational method. The SCS method is

detailed in Schwab et al. (1996); it uses input variables such as land use and soil and

water conservation practices to predict runoff based on runoff curve N numbers (which

range from 1 to 100). The rational method which is illustrated in Hudson (1995) uses

runoff coefficient values (C) which vary with the intensity of rain and the degree of

saturation of the watershed. There are difficulties in determining the time to

concentration (longest time for water to travel by overland flow from anywhere in the

catchment). The values of C can be unreliable for small catchments as the values can be

too high.

Runoff estimation is one of the principal methods used in the UK for estimating the

magnitude of the flood for a given frequency of occurrence (Godwin and Dresser,

2003). Both of the runoff modelling techniques above indicates the potential impact of

land management on runoff generation. However, these techniques are limited by

difficulty in changing input parameters for example alternative cropping and soil

management.
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Maréchal and Holman (2005) proposed a Catchment Resources and Soil Hydrology

(CRASH) model. This was developed by transforming rainfall into simulated river

discharge using pre-existing national datasets of soil, land use and weather combined

with soil properties and land use. CRASH has been calibrated and validated for three

catchments in England with contrasting soil characteristics and meteorological

conditions. However, there is a need to test the CRASH model over a wider range of

catchments to enable further validation. Further discussion and details of the models

can be found in Chapter 5 where the effect of organic farming and runoff is modelled.

2.9 Conclusions

This chapter has reviewed current research into the physical, chemical and hydraulic

properties of soil. Major themes are the degradation of soil through compaction, SOM

loss and the implications of soil surface management for flood prevention agricultural

catchments. It has provided an overview of organic farming and recent conclusions

from comparative studies with conventional farming over a range of soil properties; as

well has highlighting the difficulty in comparing farming systems. A summary of soil

management practices that could impact soil structural quality, which in turn would

affect water holding capacity of soils and flooding is also provided. Although

comparisons between different tillage regimes (no-tillage and conventional tillage) have

been widespread in both short-term and long-term experiments and over a number of

different soil textures (Green et al., 2003), no reference to specific research linking this

to organic farming especially on short-term effects could be found. Therefore, a gap in

scientific knowledge has been identified especially regarding the impact of different

tillage regimes within organic farming on soil physical properties, workability and

infiltration rates.

Defra (2004) identifies a need for a solid research base built upon scientific field trials

into the effects of flood alleviation through soil management practices in organic farms.

There is also a need to determine the effect of land management (organic or

conventional) on runoff generation. This research is aiming to contribute knowledge in

this area.
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3 Field Scale Studies of Organic Farming and Land Use

3.1 Introduction

This chapter addresses objective 1, outlined in Chapter 1; this was to compare soil

physical and chemical properties on organic and conventional farms at the field scale.

The results for the soils and water component to the Rural Economy and Land Use

(RELU) Scale project are presented. Firstly, the background and the need for research

to be undertaken into alternative agricultural systems, specifically relating to soil and

water properties comparing organic and non organic practices is highlighted. The

overall aim of the RELU Scale project is described before identifying a gap in research

with a focus on comparative research between organic and conventional agricultural

systems. Then the outline methodology is shown especially its relation to the aim and

deliverables for this component of the work. Finally, the results are discussed and some

conclusions drawn.

3.2 Background to the RELU Scale Project

RELU aims to research the challenges and changes that affect rural areas in the UK.

This is achieved through several different projects, using interdisciplinary research to

help inform future policies and management practice for the countryside and rural

economies.

The aim of the RELU Scale project is to provide interdisciplinary research into the

effects of alternative agriculture at different landscape scales. This research is needed to

help understand the complexity of alternative farming systems and their impacts upon

rural landscape quality. Defra recently financed a research project focusing on

biodiversity and the benefits of organic agriculture compared to conventional farming

practices for field, farm and landscape complexity (Norton et al., 2009). This study

concluded that organic farming was important for maintaining landscape and local

complexity which was beneficial for biodiversity.

The RELU scale project was driven by the increasing need for sustainable agriculture,

with a growing global population and a higher demand for food, it has to be produced in

a manner that does not damage the environment or limit further production. Organic
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farming has been highlighted as one type of sustainable farming. The amount of land in

the UK that is being organically managed is 4 % of the total agricultural land (Nix,

2010). Further research is needed into the effects of conversion of ‘conventional’

(intensive arable and livestock production) to alternative land management such as

organic farming. Current research has shown that changes in land management can

impact upon the rural environment (hydrology and biodiversity) and rural community

(socio-economics and culture). Intensive agriculture was blamed for many of the

environmental problems that are now being felt, such as a reduction in farm

biodiversity, loss of farm land and increasing runoff, soil erosion, flood risk, and diffuse

pollution pathways.

3.3 Aims and Objectives

The overall aims for the RELU Scale project are; firstly to determine the factors that

influence the spatial concentration of organic farms at a variety of scales and secondly,

to discover the corresponding scale-dependent effects of different farm concentrations

on the ecological, hydrological, socio-economic and cultural impacts of those farms.

Figure 3.1: Methodological framework and structure to the RELU Scale project (RELU,
2006).

These impacts have been investigated using matched pairs of organic and conventional

farms. The work was conducted in the different packages shown in Figure 3.1 to help

encompass all of the disciplines with the common aim. Social surveys provide
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information on farm economic flows and value added, on-farm resources use, marketing

choices and supply chain coordination, cross-farm social interactions, and farm family

cultural attitudes. Scientific studies into bird, invertebrate and plant biodiversity; soil

physical properties and the ease of soil working, water infiltration rates which affect run

off, soil erosion and nutrient transfer to downstream surface waters are also performed.

Through the combination of quantitative and qualitative empirical methods for data

collection, modelling will be performed involving social and natural scientists as well as

stakeholders inputs. This will enable the derivation of land management

recommendations from both the social and the physical scientific points of view.

The objectives of this component were to compare organically and conventionally

managed soils in terms of:

i. Soil physical properties including: soil texture, soil strength, soil structure,

aggregate stability, Atterberg limits and soil organic matter

ii. Soil hydrological properties including: field capacity moisture content,

hydrological class (HOST) and infiltration rates

iii. Soil water quality (nutrients and pesticides).

3.4 Gap Analysis

In Chapter 2, discrepancies between results of different research projects comparing

organic and conventional practices underline the limited value of these studies. It can

be seen that, at the present time, there is no consensus whether the two different farming

systems, organic and conventional, have positive or negative effects on soil properties.

There are many different factors involved other than just organic or conventional

practices such as different tillage regimes. There is a demand for this type of

comparative data so results continue to be produced (Østergaard, 1996). van

Diepeningen et al. (2006) suggested that soil texture had a much stronger effect on the

soil physical characteristics than the management type. It is generally thought that soil

management rather than organic or conventional farming systems has the larger effect

on soil properties, especially chemical and biological which are governed by physical

properties.
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The RELU Scale project had an overall hypothesis that organic farming has an effect at

different scales. However, in the soil and water study ‘scale’ was not an issue, hence; it

was decided to evaluate the null hypothesis ‘that organic farming does not influence soil

properties or physical condition’. This was based upon the review and ideas by Stolze

et al. (2000), Armstrong Brown et al. (2000) and Pulleman et al. (2003). The

alternative hypothesis would be that organic farming has an effect upon soil properties

or physical condition. These hypotheses will be evaluated through the results of the

research and the statistical analysis of the data to determine whether the null hypothesis

can be rejected.

3.5 Outline Methodology for Work Package Five

The objective of work package five was to collect a data set which would enable

comparisons between organic and conventional farming practises to be drawn.

Differences were anticipated due to different crop rotations, appropriate cultivation,

cover crops which can help to reduce runoff and erosion, flood risk and pollutant

pathways (Godwin and Dresser, 2003). This was achieved through the collection of soil

and water quality data at 16 pairs of farms (organic and conventional), and on two land

uses (winter wheat and grass).

The following measurements were taken:

 Soil texture, organic carbon, field capacity, Atterberg limits (soil plasticity range

which influences soil workability) and aggregate stability by laboratory methods

from field samples collected at field capacity moisture content (three replicates

in laboratory)

 Soil structure and soil hydrological class (HOST) from field reconnaissance

 In situ soil strength by in field measurement (30 replicates per site)

 In situ infiltration rates (four pairs of sites – ten replicates per site)

 Soil water quality by field sampling and laboratory analysis to determine organic

and inorganic constituents including nutrients and organic constituents in

pesticides, herbicides, fungicides.

There are some similarities in the method used for site selection to those published by

Norton et al. (2009); which covered a wider range of fields (89 paired fields in total)
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and factors including: habitat surveys, land manager questionnaires and large-scale

landscape datasets. However, no direct analyses of soil properties were undertaken in

their study.

3.6 Methodology

3.6.1 Field Site Selection

Sixteen field sites on mixed (i.e. arable and grass rotations) farms were chosen using a

10km x 10km moving window using geographical distance and soil types. This helped

to find the best matching organic and conventional fields in eight ‘clusters’ of sites.

These were: 1) an organic dominated landscape with greater than 10% organic farming

and a minimum of two organic farms (hot spot) and 2) a conventional dominated

landscape less than 2 % organic farming with a maximum of two organic farms (cold

spot) as shown in Figure 3.2. These were equally split into two main regions with eight

in the “midlands” and eight in the “south” of England. Within each site; fields were

identified with three arable (predominately winter wheat) and three grass (grass / clover

composition) fields. The organic farm database which was obtained from Defra was

overlaid with environmental factors such as climate, topography, land use, soil type and

hydrological data.

At each site, three fields were chosen which met the requirements of the

multidisciplinary team. The closest matching pairs of organic and conventional fields

were determined through in-field soil sampling based upon the NSRI soil database

(Landis). The farms were neighbours however; appropriate fields were not always on

the adjacent boundary. The distance between the fields is given in Table 3.1. This

shows spatial differences ranging from 25 m to 3 km; where 50 % of the sampling sites

are less than 300 m apart. The time period in which the land has been managed

organically (not including time in conversion) ranged between 1 and 58 years. All the

grassland was grazed and the age of grassland for 68 % of the sites was greater than 10

years. Table 3.1 shows the previous land use of the arable land, where there was some

grass and clover leys which in organically managed land are used for fertility building.

The age of different grass leys for the grass fields is also shown.
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Figure 3.2: This map shows the 8 clusters of organic ■ (hot) or conventional □ (cold) 
dominated landscapes which were selected for sampling and their location within the UK.
The numbers relate to site numbers (Courtesy of RELU Scale, 2007).
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Table 3.1: Details of the sixteen paired sites including the spatial distance between organic
and conventional fields and land use history for arable (three previous crops) and grass
sites.

Site
Management Distance

between
fields (m)

Managed
Organically
(years)

Previous
crop
(Arable)

Length of
time in ley
(Grass)

2H Org 3000 22 RCG 10
Con 3000 WW 30

2C Org 200 6 RCG 20
Con 200 SG 10

6H Org 300 11 RCG 100
Con 300 WW 70

6C Org 100 6 WO 20
Con 100 WW 50

9H Org 50 11 WCG 11
Con 50 OSR 10

9C Org 2000 1 WW 10
Con 2000 WW 15

20H Org 25 3 C 5
Con 25 WO 5

20C Org 100 3 WCG 15
Con 100 OSR 4

12H Org 3000 4 WW 50
Con 3000 WB 20

12C Org 1000 2 WW 7
Con 1000 SW 9

16H Org 1000 7 OSR 25
Con 1000 WW 10

16C Org 2500 12 OSR 2
Con 2500 WCG 2

21H Org 500 4 G 4
Con 500 SB 8

21C Org 100 6 M 50
Con 100 RCG 40

23H Org 50 58 WW 30
Con 50 WCG 30

23C Org 2000 5 M 10
Con 2000 M 12

Key: RCG – red clover and grass mix, WW – winter wheat, G – grass, WO – winter oats,
WCG – white clover and grass mix, WB – winter barley, SW – spring wheat, OSR –
oilseed rape, SB – spring barley, M - maize

The selection of the sites posed a number of challenges due to the multi-disciplinary

nature of the RELU Scale project, as the sites ideally needed to meet the requirements

of ecologists, economists, cultural geographers and soil scientists. Details of the site

selection process are given in Gabriel et al. (2009) but often the needs were not

complementary. Hence, the priority to have neighbouring fields required by soil

scientists, to minimise the variation in soil texture, were compromised by the other
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disciplines which needed spatial separation between organic and conventional fields to

reduce the migration of fauna and flora. Overall the objective of having a wide range of

soil textures was met.

Site selection was complex and soil maps were relied upon for providing soil series

data. However, whilst the soil maps provided an important framework for designing

and choosing field locations; they should not be over relied on. This is due to the

spatial variability which means that the major soil type may not be present at the field or

sub-field scale (Dane and Topp, 2002). This meant that at some of the clusters the soil

textures were not similar and hence could not be easily compared. Table 3.2 a and b

show the variability of the selected soil types in terms of map based soil series, the

manual topsoil texture and the infield classification of soil series. These show

significant variation between the classification based on the soil map and the actual

infield classification. There was also considerable variation of soil type within a given

cluster; with only cluster 20 having a uniform “silty” soil. As a result to partially solve

this problem the soils were reclassified (Palmer, 2007) into the four main ‘RELU’ soil

classes shown. Further details of this are found in Chapter 3.6.4.

The cropping cycle varied considerably between the organic and conventional pairs,

with some arable fields having just been reverted from a grassland ley. There were also

problems with grassland sites, as there were some fields which were ancient parkland

compared to others which were first year ley. There was no control over the type of

tillage regime or the farm management practises. This emphasises the complexity in

comparing farming systems as found by Stolze et al. (2000).
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Table 3.2a: Soil texture and series for each of the farms measured showing the RELU
cluster in the south region.

UK
Location

Cluster
ID Management Landuse

Soil Series based on
soil map

Measured Topsoil
Texture

Infield classification of
Soil Series

RELU
Soil

Class
2H Organic Arable 343h, 342a Clay Loam Upton / Dullingham Medium
2H Conventional Arable 343h, 342a Silty Clay Loam Upton/ Panton Silty
2H Organic Grass 343h, 342a Clay Upton Clayey
2H Conventional Grass 343h, 342a Silty Clay Loam Icknield/ Dullingham Silty

S 2C Organic Arable 343i Silty Clay Loam Panhole Silty
2C Conventional Arable 343i, 343h Silty Clay Panhole / Andover Clayey

O 2C Organic Grass 343i Silty Clay Loam Panholes / Millington Silty
2C Conventional Grass 343i, 343h Silty Clay Loam Panholes / Millington Silty

U 6H Organic Arable 343ab, 411a Clay Haselor / Elmton Clayey
6H Conventional Arable 343ab, 411a Sandy Loam Oxpasture Coarse

T 6H Organic Grass 343ab, 411a Clay Oxpasture Clayey
6H Conventional Grass 343ab, 411a Sandy Silt Loam Elmton Coarse

H 6C Organic Arable 343ab, 411a Silty Clay Loam Denchworth Silty
6C Conventional Arable 343ab, 411a Sandy Clay Badsey / Denchworth Clayey
6C Organic Grass 343ab, 411a Silty Clay Loam Evesham Silty

R 6C Conventional Grass 343ab, 411a Clay Evesham Clayey

9H Organic Arable 712b Clay Denchworth Clayey
E 9H Conventional Arable 712b Clay Loam Denchworth Medium

9H Organic Grass 712b Clay Denchworth Clayey
G 9H Conventional Grass 712b Clay Denchworth Clayey

9C Organic Arable 712b, 512e, 342b Silty Clay Loam Wantage Silty
I 9C Conventional Arable 342b, 511d Silty Clay Loam Wantage Silty

9C Organic Grass 712b, 512e, 342b Silty Clay Foggathorpe Clayey
O 9C Conventional Grass 342b, 511d Clay Block Clayey

20H Organic Arable 343h, 343i, 342a Silty Clay Loam
Panholes / Andover /
Millington Silty

N 20H Conventional Arable 343h, 342a Silty Clay Loam Panholes / Millington Silty

20H Organic Grass 343h, 343i, 342a Silty Clay Loam
Panholes/
Andover/Millington Silty

20H Conventional Grass 343h, 342a Silty Clay Loam Panholes Silty

20C Organic Arable 343h Silty Clay Loam
Panholes / Andover /
Millington Silty

20C Conventional Arable 343h Silty Clay Loam Panholes / Andover Silty
20C Organic Grass 343h Silty Clay Loam Panholes / Millington Silty
20C Conventional Grass 343h Silty Clay Loam Andover/ Sonning Silty
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Table 3.2 b: Soil texture and series for each of the farms measured showing the RELU
cluster in the midlands region.

UK
Location

Cluster
ID Management

Land
use

Soil series based on
soil map

Measured Topsoil
Texture

In Field classification of
soil series

RELU
Soil

Class

12H Organic Arable 572f, 541b Clay Loam
Whimple / Worcester /
Enborne Medium

12H Conventional Arable 572f Silty Clay Whimple Clayey
M 12H Organic Grass 572f, 541b Silty Clay Loam Brockhurst Silty

12H Conventional Grass 572f Silty Clay Loam Brockhurst Silty
I 12C Organic Arable 572f, 541b Silty Clay Loam Whimple / Worcester Silty

12C Conventional Arable 572f Clay Loam Brockhurst Medium
D 12C Organic Grass 572f, 541b Silty Clay Whimple / Bromsgrove Clayey

12C Conventional Grass 572f Clay Loam
Whimple / Wigton Moor /
Worcester Medium

L 16H Organic Arable 511c, 711f Sandy Clay Loam Winchester Medium
16H Conventional Arable 511e, 711f Clay Loam Eyeworth Medium

A 16H Organic Grass 511c, 711f Sandy Clay Blewbury / Wickham Clayey
16H Conventional Grass 511e, 711f Sandy Loam Soham / Cannamore Coarse

N 16C Organic Arable 511c Silty Clay Loam Panholes Silty
16C Conventional Grass 511c Silty Clay Loam Panholes Silty

D 16C Organic Grass 511c Clay
Panholes / Andover /
Millington Clayey

16C Conventional Arable 511c Silty Clay Loam Panholes Silty

S 21H Organic Arable 711m, 431 Sandy Loam
Salwick / Whimple /
Worcester Coarse

21H Conventional Arable 711m, 431 Clay Loam Whimple Medium
21H Organic Grass 711m, 431 Sandy Loam Whimple Coarse

R 21H Conventional Grass 711m, 431 Clay Loam Brockhurst Medium
21C Organic Arable 572m, 572f Sandy Silt Loam Clifton Coarse

E 21C Conventional Arable 572c, 572f Clay Loam Whimple Medium
21C Organic Grass 572m, 572f Clay Loam Whimple / Compton Medium

G 21C Conventional Grass 572c, 572f Clay Loam Whimple / Salop Medium

23H Organic Arable 551a, 711b Sandy Loam Bridgnorth Coarse
I 23H Conventional Arable 711b, 514d, 572c Sandy Silt Loam Eardiston Coarse

23H Organic Grass 551a, 711b Sandy Loam Bridgnorth Coarse
O 23H Conventional Grass 711b, 514d, 572c Sandy Clay Loam Eardiston Medium

23C Organic Arable 541b, 572f Clay Loam Salop Medium
N 23C Conventional Arable 711n, 541b, 541r Sandy Loam Wick Coarse

23C Organic Grass 541b, 572f Clay Fladbury Clayey
23C Conventional Grass 711n, 541b, 541r Sandy Loam Bromsgrove Coarse

3.6.2 Field Methodology

A pilot study was performed during July 2006; based upon four paired arable fields

(organic and conventional) in southern England (Hathaway-Jenkins, 2006). The soils

were sampled for a range of soil physical properties (including total C:N ratio, SOM,

penetration resistance, shear strength, aggregate stability, bulk density and Atterberg

limits). This methodology was adapted for the full RELU sites. The ‘going stick’ was
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used in the pilot study to measure shear strength and penetration resistance (similar to a

penetrometer) simultaneously for the top 100 – 200 mm in situ. Due to problems with

both very loose and very dense soils the ‘going stick’ (see Figure 3.3) was replaced in

the main study with the shear vane.

Figure 3.3: Going Stick with data logger and showing failure of soil (photograph in soil bin
at Cranfield University, Silsoe courtesy of Godwin, 2006).

The variability of the soil texture in the fields sampled meant that bulk density readings

were not measured in the main study as this would not have allowed useful

interpretation. However, the same methods were followed for the other soil physical

properties measured.

Soil sampling and within field assessment was carried out in March and April 2007,

when fields were at or near to field capacity moisture content. This provided an

equivalent soil moisture content for all the sites and also because soil structural

condition is most clearly assessed at this time (Palmer, 2007). The seasonal effects of

variations in soil moisture content were therefore minimised. Sampling occurred after

the main dressing of fertiliser on the conventional land. At each site a soil assessment

was conducted and samples were collected to measure a suite of physical and agro-

chemical parameters. To obtain a representative sample of soil, a ‘W’ shaped path
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sampling strategy was observed, avoiding untypical areas, taking 10 samples; which

were bulked. Samples were obtained from 0 - 200 mm depth. One or more small pits

were excavated at each site to determine the soil structure and physical conditions of the

soil. Although a number of techniques exist to make in situ measurements of torsional

and penetration shear resistance, which are used as a measure of surface soil shear

strength, the shear vane (Franti et al., 1985) provided a relatively simple and quick

method of estimating the shear strength of the surface of soils (0 – 200 mm) in situ

based on a grid sampling technique, using 30 samples to cover the field.

For the study of infiltration rates, a subset of fields was selected that covered a range of

soils with more uniform textures for all the treatments. The initial baseline survey of

the soils revealed a high variability of soil types even within each cluster. Therefore,

from the soil series data and the detailed soil textural analysis four clusters were chosen

to be sampled. At each of the clusters one grass field and one arable field were sampled

for both organic and conventional treatments (see Figure 3.4). The clusters were also

chosen because they cover a range of soil types: clay, clay loam, silty clay loam and

sandy loam.

Figure 3.4: Map of the sites showing the clusters in organic ■ (hot) or conventional □ 
(cold) organic or conventional dominated landscapes which will be used during infiltration
measurements (Courtesy of RELU Scale, 2007).
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Fieldwork was performed during May and June 2008. At each site, infiltration

(saturated hydraulic conductivity) was measured using the Decagon mini disk

infiltrometer (see Figure 3.5). This method was chosen in preference to the double ring

infiltrometer as it requires less water (which was not always readily available at the

fields). Both methods are very time consuming and have a similar accuracy level as

they need constant attention to record measurements and ensure that the apparatus is

functioning correctly. The rings of the double ring infiltrometer are heavy to move and

require a flat undisturbed surface (McKenzie et al., 2002). The advantage of the tension

infiltrometer is that it can provide both saturated and unsaturated hydraulic conductivity

measurements, as well as steady state infiltration rates. Ten replicates were made in

each field along a ‘w’ shape avoiding atypical areas (Bodhinayake et al., 2004). Each

replicate was sampled for 30 minutes at 20 mm tension and the infiltration rate was

calculated using the method developed by Zhang (1997) and the van Genuchten

parameters (Carsel and Parrish, 1988).

Figure 3.5: Photograph of the Decagon Mini Disk Infiltrometer (courtesy Hathaway-
Jenkins, 2008).
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3.6.3 Laboratory Methodology

The soil samples were air dried, ground and sieved (Allen, 1989). A 2 mm diameter

mesh sieve was used for SOC and texture; a 425 μm mesh sieve was used for Atterberg 

limits and a combination of 5 mm and 3.35 mm mesh sieves were used for aggregate

stability. Soil texture was determined using the pipette method which separates the soil

into three fractions: sand, silt and clay and by plotting these values onto a soil textural

triangle the texture can be determined (BS 7755). SOC was established by dichromate

digestion (BS 1377-3). Aggregate stability was determined through the wet sieving

method described by Haynes and Swift (1990). Gravimetric moisture content was

measured through oven drying at 105 oC until a constant weight was achieved.

Atterberg limits were determined; firstly the plastic limit (BS 1377-2) and a drop cone

penetrometer technique (BS 1377-2) to determine the liquid limit. The arithmetic

difference of these two gravimetric moisture contents allows the determination of the

plasticity index (Keen and Coutts, 1928).

The pipette method was used to determine soil texture in preference to the hydrometer

and hand texturing, as it is the most accurate direct sampling procedure. The main errors

are associated with sampling and weighing, however, according to Gee and Or (2002)

these are confined to +/- 1%.

Aggregate Stability is measured by wet or dry sieving. It was decided that wet sieving

would be the most appropriate method for analysis - care was taken to ensure the water

content was uniform in each soil as this can affect cohesion of the soil. The only

disadvantage was the time limitation so rapid re-wetting of the samples occurred.

However, this may have caused slaking or dispersion of the larger aggregates (Dane and

Topp, 2002).

The drop-cone penetration method was determined as the most appropriate method to

assess plasticity, as it is more repeatable than the Casagrande method, however it is still

prone to both mechanical and operator variability (McBride, 2002).
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Soil water sub-samples were analysed for a suite of common pesticides (carbonates,

dicarboximides, organochlorine, organophosphorous, organonitrogen, synthetic

pyrethoids and triazoles) and nutrients (total inorganic nitrogen, total phosphorus, total

potassium). Soil water nutrient values were analysed through centrifuging the sample

and the use of flame photometer. Soil water pesticides were extracted and quantified by

High Performance Liquid Chromotography (HPLC-UV).

3.6.4 Statistical Methodology

Statistical analysis was performed using Statistica (8.0). First, any data that showed

deviation from normality was transformed (Box-Cox). Then the 23 variables that

characterised the sites were reduced using (1) correlation analysis to reduce the number

of correlated variables and (2) factorial analysis with varimax rotation. This revealed

that % clay and % silt had the largest loading in the factor which explained the greatest

variation in the data. Thus the rest of the analyses grouped the data by soil texture as

well as land use and management. Four groups of soil texture were formed because of

the large variation due to spatial differences between the sites, allowing comparisons to

be drawn. The soil textural groups were: clayey (defined as > 35 % clay) silty (defined

as > 50 % silt), coarse (defined as > 50 % sand and < 18 % clay) and medium (defined

as between 18 and 35 % clay).

The null hypothesis, for the soil and water study, was ‘organic farming does not

influence soil properties or physical condition’ as found in some of the studies reviewed

by Stolze et al. (2000) and van Diepengen et al. (2006). With the alternative hypothesis

that organic farming has an effect upon soil properties and physical condition; as shown

in Bhogal et al. (2009) where increasing OM levels improved soil properties. This

section will also determine whether the research data is sufficient to reject the null

hypothesis.

The differences in soil quality between organic and conventional land management

were tested using ANOVA, under the assumption that the measured variables (SOC,

shear strength, field capacity, aggregate stability, Atterberg limits, nutrients and

pesticides) were normally distributed and outliers were identified and removed from the

dataset. Statistical analysis was performed on the data using both the ‘hot’ and ‘cold’
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spots within each cluster as replicates because the actual intensity of organic farming

was not relevant to this component of the work. A general linear model (factorial

analysis) was used to determine whether there was significant differences in soil

properties between the two treatments organic and conventional); between two land

uses (arable and grass) and between four soil texture classes.

However, due to the unbalanced ‘experimental design’ where there were different

numbers of fields for the land use, treatment and soil textures were not present for every

treatment. Table 3.3 highlights the difficulty in analysing the data statistically using

ANOVA as it shows that whilst the design of the experiment for number of organic and

conventional fields for both land uses was balanced, when based upon an examination

of soil texture this was not the case. The ANOVA model used was a nested design with

land use (fixed effect) nested within treatment (fixed effect) and with soil texture as a

random effect. The ANOVA was calculated using both Least Squares (Statistica 9.0)

and Restricted Maximum Likelihood (REML) Genstat (10.1). These results were

further interpreted in using Fisher LSD as this is one of the least conservative post hoc

tests (Winer et al., 1991). REML provides a method of fitting the general linear model

to the data allowing for the degrees of freedom that are used up in estimating the fixed

effects. Therefore, REML accounts for the variance of the data without being affected

by the fixed effects and it is also less sensitive to outliers (Crawley, 2007). The REML

analysis compared the treatments, land use and soil texture whilst allowing for an

unbalanced design and permits unbiased conclusions to be drawn.

Table 3.3: Sample Sizes for each treatment and land use divided by soil texture.

Land use and Treatment
Organic
Arable

Organic
Grass

Conventional
Arable

Conventional
Grass

Total

Soil
Textural

Class

Clayey 2 8 3 3 16
Silty 7 5 5 6 23
Medium 4 1 5 4 14
Coarse 3 2 3 3 11
Total 16 16 16 16 64
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3.6.5 Limitations and Evaluation of the data

As previously highlighted, there were limitations with the data collected. This then

restricts the output of the research where the results may be unable to fully determine

the effect of organic and conventional farming practices for two main reasons. Firstly

due to enforced spatial separation of the fields within a cluster, leading to the inherent

variability of soils referred to earlier. This did pose problems in terms of comparisons

and conclusions which could be drawn as not all treatments (organic or conventional)

were present in every soil texture. This led to difficulties in analysing the data

statistically as the experiment was unbalanced. Secondly there was a wide range of

agricultural practices occurring in terms of length of time the farm had been organic,

tillage regimes and crop cycles which could not be classified as typically organic or

conventional over which the author had no control. Therefore, this study is only able to

provide a best attempt under the limitations imposed by a multidisciplinary project of a

snapshot of the current situation of agricultural systems both organic and conventional

in the UK. It should, however, provide a platform or benchmark for future research into

farming systems research and draw conclusions on the relative effects of organic

farming practices in relation to conventional practices.

3.7 Results and Discussion

This section reports the results of both the pilot and main study for each of the soil

properties measured.

3.7.1 Pilot Study

In the summer 2006, four pairs of arable fields (organic and conventional) in southern

England were sampled for a range of soil physical properties including: penetration

resistance, shear strength, plasticity, bulk density, aggregate stability and field capacity,

SOM and C:N ratio. These paired fields were selected to be very closely located to

each other, to minimise the variability of soil textures (in all of the four cases they were

adjacent fields).

The results of the pilot study given in Table 3.4 show that there were significant

differences between organically and conventionally managed soils in total C:N ratio,

penetration resistance and shear strength. However, where there were differences they
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were not always consistent and that these varied with soil texture (Hathaway-Jenkins,

2006). Overall, there was no specific trend which could be applied for organic or

conventional treatments according to texture or land use. The only exception was that

there was a consistently higher C:N ratio for all soil types in organic land management.

The penetration resistance was lower (except in sandy clay loam) and the shear strength

was higher for the organic soils in two soil types (clay loam and silty clay loam).

SOM was not significantly different between organically and conventionally managed

land however there was a trend present that SOM was higher in organic land (with the

exception of clay loam). The Loss on Ignition (LOI) method gave consistently higher

values for SOM and is not considered as accurate as dichromate oxidation (Walkley and

Black, 1934) due to the burning of calcareous material, so this was excluded from the

main study. It was concluded in the context of the pilot study that the effect of soil

texture and other land management practices, such as grassland or arable, are very

important to understand when comparing the two different farming systems.

Table 3.4: Summary of the main results for each soil physical property and texture
indicating differences between the treatments of the pilot study (Hathaway-Jenkins, 2006).

Property Clay Clay
Loam

Sandy Clay
Loam

Silty Clay
Loam

Overall
Mean

SOM – LOI NS ↑ ↑ ↓ NS 
SOM –Oxidation* ↑ ↓ ↑ ↑ - 

C: N Ratio ↑ ↑ ↑ ↑ ↑ 
Bulk Density (ρb) ↑ NS NS NS NS 

Field Capacity NS NS NS ↓ NS 
Plastic Index* NS ↑ ↓ ↑ - 

Aggregate Stability NS NS NS NS NS
Penetration Resistance NS ↓ ↑ ↓ ↓ 

Shear Strength (τ) NS ↑ ↓ ↑ ↑ 

* No statistics were calculated for these physical properties. NS = no significant
difference. Arrows indicate whether organic treatment is higher (↑) or lower (↓) than non-
organic. (LOI- loss on ignition)

3.7.2 Soil Properties

3.7.2.1 Soil Texture

The soil texture values from each site were plotted onto a soil textural triangle, Figure

3.6, and is summarised in Table 3.5. They show that despite best efforts to ensure

otherwise not all land management (organic or conventional) or all land uses are present
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in each soil textural class. Table 3.4 provides the year that the fields were first managed

organically; showing a range from as little as one year to fifty years. This highlights

some of the complexity of interpreting data from these variable sites but was driven by

the need to have locations that suited the collective requirements of a multidisciplinary

project. Also shown are the mean total rainfall figures using data from Smith and

Trafford (1976). They range from a low of 605 mm yr-1 to a high of 807 mm yr-1 with

an overall mean of 752 mm yr-1 and a standard deviation of 54 mm yr-1. This indicates

that the sites had relatively similar mean total annual rainfall.

Figure 3.6: Soil textural triangle adapted from Hodgson (1976) showing organic and
conventional fields in terms of their soil texture regardless of arable or grassland land use.

Key:

Organic

Conventional
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Table 3.5: Soil texture and series for each of the farms measured (†Topsoil texture based
on the UK soil textural triangle and soil series data from Soil Survey of England and
Wales, * Adapted from Smith and Trafford, 1976).

Grouping Topsoil
Texture

Soil Series† Organic/
Con

Land
Use

Years of
conversion to

organic
management

Mean Total
Annual
Rainfall
(mm)*

Clayey C Evesham Organic Grass 2001 775

C Denchworth Both
Grass /
Arable 1996 -2001

775

C Haselor Organic Arable 1996 775
ZC Blewbury Organic Grass 2000 605
ZC Winchester Organic Arable 2000 605

ZC Wimple Both
Grass /
Arable 1997-2005

714

ZC Foggathorpe Organic Grass 1998 775
SC Block Con Grass n/a 775

Silty
ZCL Upton Both

Grass /
Arable 1985

798

ZCL Panhole Both
Grass /
Arable 2001-2004

798

ZCL Oxpasture Both
Grass/
Arable 1996

775

ZCL Andover Con Grass n/a 807
ZCL Wantage Both Arable 2007 775

Medium
CL Brockhurst Both

Grass /
Arable 2000 -2005

714

SCL Elmton Con Grass n/a 775
ZL Badsey Con Arable n/a 775
ZL Soham Con Grass n/a 714

Coarse
SZL Salop Organic

Grass/
Arable 2002

763

L Eardiston Con Arable n/a 763
L Wick Con Arable n/a 763
L Broomsgrove Con Grass n/a 763

LS Bridgnorth Organic
Grass/
Arable 1949

763

Mean (S.D.) 752 (+/- 54)

All groups of research data were explored using multi-variate exploratory analysis; a

threshold level of 6% total variance was used to reduce the number of original variables,

any variable which explains less variance than this was excluded. The Eigen value is

the variance which is extracted by the factor (and the sum of all the Eigen values is

equal to the number of variables); so the larger the number the greater explanation of

variation in the data is achieved. This analysis provided six factors which could account

for over 70% of the variation within the data (Table 3.6). The major factor causing

variation was the percentage clay and silt in the soil. The other factors which result



Chapter 3: Field scale studies of organic farming and land use

Laura Hathaway-Jenkins
63

Engineering Doctorate (2011)

from the analysis are coincidental; it is, however, a surprise that SOC does not explain a

high percentage of variance. This analysis shows that soil texture (percentage clay and

silt) should be included as fixed effects when fitting the generalised model. Hence,

further analyses were then performed on the data after grouping by soil texture as

described below.

Table 3.6: The factors which can account for the majority of the variance in the data.

Factor Highest Weighted Variable Total Variance (%) Eigenvalue

Factor 1 Clay and Silt 21.4 3.6

Factor 2 BFI and SPR 17.3 2.9

Factor 3 Organonitrogen and triazoles 11.1 1.9

Factor 4 Plastic and Liquid Limit 8.9 1.5

Factor 5 Soil shear strength 7.2 1.2

Factor 6 Organochlorine 6.3 1.1

Total - 72.3 12.3

The soil textures of the sites were plotted onto soil textural triangles (see Figure 3.7)

showing a representative spread of soil textures. There were many different soil texture

classes and following on from the factor analysis (where the majority of the variance

could be attributed to texture) they were grouped to allow more detailed analysis.

Therefore; four principle textural groups were determined (Palmer, 2007): clayey,

defined as >35% clay; coarse defined as >50% sand and <18% clay; medium defined

as between 18 and 35% clay; and silty defined as >50% silt to allow meaningful

statistical analysis to be performed. This soil classification was formed, as the study

looked at the effects of land management (organic and conventional) and uses (arable

and grass) on topsoil. Therefore, it was concluded from the factor analysis that clay and

silt content are the most important factor. This led to the formation of the three textural

groups: clayey, coarse and medium. The silty classification was formed because of

their high silt content and the need for very careful soil management (Palmer, 2007).
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Figure 3.7: Soil textural triangle adapted from Hodgson (1976) showing: 1) organic and
conventional fields in terms of their soil texture regardless of arable or grassland land use
and 2) the broad classification of soil textures used in subsequent analysis Brown = coarse,
pink = medium, grey = clay, yellow = silty.

3.7.2.2 Soil Organic Carbon (SOC)

The amount of SOC can be influenced by land management both past and present

(Plaster, 1985). It can help improve soil structure; lower bulk density and increase

porosity hence increase water infiltration (Sparling et al., 1992; Evangelou, 1998). The

results given in Figure 3.8 show that there was no overall significant difference in SOM

contents between organic and conventional treatments for each of the four soil textural

classes. This aligns with the results presented by Gosling and Shepherd (2002). This

can be explained by SOC additions and grass / arable rotations which would improve

residual root biomass. Bhogal et al. (2009) suggest that to have a significant effect on

SOC at least 65 t ha-1yr-1 of fresh organic matter needs to be applied whereas currently

organic farmers add 40 t ha-1yr-1 on average (Trump, 2010). However, the results of the

ANOVA given in Table 3.7 show that there were significant differences related to land

use, where grass had a significantly higher level of SOC compared to arable (p<0.05).

The REML analysis (shown Appendix B) shows that this is particularly significant in

conventional land use which is greater than grassland. There is less of a difference

between organically managed land, where arable rotations include grass leys more

frequently. There is also a significant difference between the soil textural classes where

Key:

Organic

Conventional
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overall the clayey and silty soils had an improved level of SOC in relation to coarse and

medium soils (p < 0.05). This can, in part, be explained by the results of Loveland and

Webb (2003) which suggests that the protective nature of the clayey soils reduces the

amount of SOC decomposition.

Figure 3.8: Box and whisker plot showing how soil organic matter varies according to
textural class. The vertical bars indicate 95 % confidence levels for organic and
conventional and do not show significant difference between treatments.

Table 3.7: The mean average SOC (g kg-1) for each of the soil textures and land uses
showing significant differences with different letters where p < 0.05. Numbers in brackets
are the total number of samples in each category.

Land use and Treatment
Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean
Mean SD Mean SD Mean SD Mean SD

Soil
Textural
Class

Clayey
(16)

44.57 3.21 57.33 11.61 49.84 16.29 53.89 18.87 51.41a

Silty
(23)

52.89 11.24 65.47 16.37 46.07 13.64 71.31 20.37 58.94a

Medium
(14)

35.23 2.10 57.67 0.00 32.56 3.94 40.96 9.50 41.61b

Coarse
(11)

31.11 10.44 29.13 9.05 26.39 13.28 64.77 40.84 37.85b

Mean 40.95a 52.40b 38.72a 58.98c
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An argument for the overall lack of difference between the arable treatments is that a

reduction in biomass production for organic compared to non-organic fields could

reduce the amount of crop residue available. However, the yield effect could be offset

by the other inputs (ley and manure) and hence not be detected (Gosling and Shepherd,

2002). SchjØnning et al. (2007) have recently shown that different land management

practices will influence the level of SOM and the length of time the soils are managed

can have a positive effect on the SOM level after 5-6 years.

3.7.2.3 Field Capacity Moisture Content

Field capacity is defined as the moisture content of the soil after excess gravitational

water has drained (Smith and Mullins, 1991). It is affected by soil texture, soil

structure, the amount of SOM and the type of clay present. The results in Table 3.8

show that there was no significant difference in field capacity between organic and

conventional treatments for each of the four soil textural classes.

Table 3.8: The mean average Field Capacity moisture content (% mass, mass) for each of
the soil textures and land uses showing significant differences with different letters where
p < 0.05. Numbers in brackets are the total number of samples in each category. *shows
differences only highlighted through REML.

Land use and Treatment
Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean
Mean SD Mean SD Mean SD Mean SD

Soil
Textural
Class

Clayey
(16)

35.84 4.01 38.03 13.39 31.95 18.25 36.09 3.13 35.48a

Silty
(23)

30.73 3.26 35.81 9.80 30.67 4.79 40.50 11.31 34.43a

Medium
(14)

28.22 1.39 43.35 0.00 27.65 5.07 32.37 5.63 32.90a

Coarse
(11)

22.59 5.02 21.85 5.03 16.67 4.20 29.42 5.09 22.63b

Mean 29.35a 34.76b 26.74a 34.60b*

However, as expected the results given in Table 3.8 show that there was a difference

due to soil texture; where the coarse textured soils have a lower field capacity compared

to the other textures. This was because the coarse textured soils have a smaller amount

of clay which is the constituent that produces a larger surface area within the soil

structure with more micropores for water absorption (Brady, 1990).
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There is also a difference which could be attributed to land use, where all grass has a

higher field capacity moisture content compared to arable (p < 0.05). The REML

analysis proves that more specifically conventional grass has a higher field capacity

moisture content compared to conventional arable. This is likely to be because there is

a higher amount of SOC in the grassland fields that can help absorb and retain a larger

volume of water. There is no significant difference between the organic and

conventional grass.

3.7.2.4 Aggregate Stability

Aggregate stability is a measure of soil strength which is related to the soil texture

(namely the percentage clay content), the amount of SOM present and the soil structure.

It can greatly influence aeration, nutrient and water availability for plants (Tisdall and

Oades, 1982). It can often show the impact of changes in land use before a change in

the level of organic matter is observed (Haynes and Swift, 1990). The values shown in

both Figure 3.9 and Table 3.9 are the amount of soil retained as a percentage of the

original amount of soil before the test was performed, for example, the larger the

percentage the higher the stability of the soil.

The results in Figure 3.9 show that there was no significant difference in aggregate

stability between organic and conventional treatments for each of the four soil textural

classes. This agrees with Williams and Petticrew (2009). However, with the exception

of the coarse textured soils, the organically managed land tends to have a marginally

higher aggregate stability than the conventionally managed soil. Even when the coarse

textured soils are excluded from the analysis there was still no significant difference in

aggregate stability.
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Figure 3.9: Box and whisker plot showing how aggregate stability varies according to
textural class. The vertical bars indicate 95 % confidence levels for organic and
conventional and do not show significant difference between treatments.

Table 3.9: The mean average aggregate stability (% mass, mass) for each of the soil
textures and land uses showing significant differences with different letters where p<0.05.
Numbers in brackets are the total number of samples in each category.

Land use and Treatment
Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean
Mean SD Mean SD Mean SD Mean SD

Soil
Textural
Class

Clayey
(16)

54.06 18.86 68.19 19.67 48.86 11.67 66.30 6.69 59.35a

Silty
(23)

44.07 16.57 65.33 11.56 36.85 18.13 52.36 17.74 49.65a

Medium
(14)

33.98 8.57 74.61 0.00 27.17 5.79 60.55 9.62 49.08ab

Coarse
(11)

23.92 3.12 45.21 35.28 33.94 26.92 69.11 9.13 43.05b

Mean 39.01a 63.34b 36.71a 62.08b

According to the data given in Table 3.9, there were significant differences related to

land use for both organic and conventional treatments, where grass had a significantly

higher proportion of stable aggregates compared to arable (p < 0.05). The REML

analysis revealed that more specifically aggregate stability for both the conventional and
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organic grass was higher than in the conventional arable soil. There were also

differences between soil textural class where the clayey, silty and medium soils were

more stable than the coarse soils. The clayey and silty textured soils also had the

highest amount of SOC; both this and the clay content help to bind the soil together,

hence, improving the stability of the aggregates.

The management style of grassland such as the removal of grass as silage can also

remove roots, SOM and binding ingredients (such as calcium ions) which reduces

aggregate stability. For all of the fields, a mixture of practices were occurring, which

could be masking any overall effect of organic or conventional treatments. The lack of

significant difference between treatments agrees with a number of European studies

which found no difference between conventional and organic land uses (Stolze et al.,

2000). However, at present it is not possible to relate the values determined within this

report directly with other research values; as there is no standard method for assessing

aggregate stability. Each method is slightly different and can lead to different results

and unfair comparisons. This problem is not a new phenomenon and was discussed in

some depth at the Defra Soil Research meeting in December 2008 (Godwin et al.,

2009).

3.7.2.5 Atterberg Limits

The Atterberg limits (plastic and liquid) determine the moisture content at the lower and

upper end respectively of the moisture content range; over which the soil behaves in a

plastic manner. Therefore, it provides an indication of the likely mechanical behaviour

and hence workability of the soil. Plasticity is primarily a function of soil texture, clay

type and chemical cation exchange capacity; however for a given soil where these

factors are constant the amount of SOM present in the soil has an effect (Campbell,

1991).

The Atterberg Limits (plastic limit, liquid limit and plasticity index) for each of the soil

types, land use and management are shown in Table 3.10. Whilst there were overall

significant (p < 0.05) differences between the arable and grassland for the plastic limit

and plasticity index; there was no significant difference in terms of plasticity index,

plastic or liquid limits between organic and conventional agricultural management.
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Table 3.10: The mean average Atterberg Limits (plastic limit, liquid limit and plastic
index) in g kg-1 for each of the soil textures and land uses showing significant differences
with different letters where p < 0.05. Numbers in brackets are the total number of samples
in each category.

Plastic
Limit
(g kg-1)

Land use and Treatment

Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean

Mean SD Mean SD Mean SD Mean SD

Soil
Textural

Class

Clayey
(16)

370.00 28.28 350.00 63.70 366.67 35.12 340.00 45.83 356.67a

Silty
(23)

250.00 42.03 334.00 150.43 192.00 104.26 340.00 94.45 279.00b

Medium
(14)

285.00 110.91 380.00 0.00 200.00 49.50 265.00 66.58 285.20b

Coarse
(11)

220.00 50.00 180.00 56.57 206.67 51.32 200.00 52.92 201.67c

Mean 281.25a 311.00b 241.33a 286.25b

Liquid
Limit
(g kg-1)

Land use and Treatment

Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean

Mean SD Mean SD Mean SD Mean SD

Soil
Textural

Class

Clayey
(16)

580.00 42.43 526.25 79.81 596.67 50.33 530.00 60.83 558.23a

Silty
(23)

482.86 28.70 496.00 134.28 454.00 87.35 458.33 136.74 472.79a

Medium
(14)

415.00 21.16 560.00 0.00 358.00 27.75 407.50 41.93 435.13a

Coarse
(11)

300.00 50.00 385.00 134.35 363.33 47.26 286.67 25.17 333.75b

Mean 444.46a 491.81a 443.00a 420.63a

Plastic Index
(g kg-1)

Land use and Treatment

Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean

Mean SD Mean SD Mean SD Mean SD

Soil
Textural

Class

Clayey
(16)

210.00 14.14 176.25 29.25 230.00 17.32 190.00 20.00 201.56a

Silty
(23)

232.86 18.90 113.96 84.08 262.00 88.99 118.33 44.46 181.79a

Medium
(14)

130.00 101.32 180.00 0.00 158.00 52.63 142.50 60.76 152.62a

Coarse
(11)

80.00 0.00 205.00 190.92 156.67 5.77 86.67 28.87 132.10b

Mean 163.22a 158.13b 201.66a 134.38b
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The ANOVA analysis shows that there was no significant difference between arable and

grassland land uses for the liquid limits. However, the REML analysis reveals that

there are some interactions present for the plastic limits and hence the plasticity index.

Soil texture is very important for governing changes in Atterberg limits, although,

following the ANOVA and REML tests, there were no significant differences between

the soil texture for the plastic index or plastic limit. However, for the liquid limit there

was a difference between soil textures where the coarse textural class has a significantly

lower liquid limit than the other textures.

The REML analysis shows that:

i. There was a significant difference in the plastic limit where conventional grass

was higher than conventional arable. This could be partly attributed to the clay

content but there was a higher amount of SOM which could be raising the

plastic limit for these soils; as plasticity could be dependent on polysaccharide

gel within SOM (Soane et al., 1972)

ii. The amount of SOM does not affect the plasticity index; however, it creates a

strong bond with water raising the position for the plastic and liquid limits

(Brady, 1990). Baver et al. (1972) suggested that SOM would cause a shift in

the plasticity index extending the friability zone to fairly high moisture contents.

The soil texture is very important for governing the effectiveness of SOM in

changing the plasticity index (Archer, 1975).

The plasticity results can be used as a guide to determine the water content at which soil

can be handled without causing damage (Marshal and Holmes, 1988). Ideally, the soil

should only be worked when the moisture content is below the lower plastic limit to

prevent soil damage and compaction. This is when the soil is in the optimum friable

state. It is ideal for the field capacity of agricultural soils to be below the lower plastic

limit as this enables field working to be conducted with a lower risk of soil damage.

Table 3.11 summarises for each field whether this is the case.

Overall, there was no overriding management condition which actually makes a positive

difference on soil working conditions. There appears to be no advantages in terms of
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land management for improving soil handling conditions from this data. However, a

crude analysis of Table 3.11 shows that for 20 of the 32 pairs (66%) there was no

difference in the relationship between field capacity (FC) and plastic limit (PL). This

leaves 12 pairs where there was a change; five of these show an improvement for

organic over conventional and seven the reverse. In the five beneficial sites, four of

them were grassland and one was arable compared to the non-beneficial sites where five

are arable and two are grassland. Hence, it might be concluded that there was a net shift

of two grassland sites being positively benefited from organic management and four

arable sites being negatively influenced. However, the soil texture also needs to be

taken into consideration. For the grassland sites, the soil type was the same for both

organic and conventional land management and one falls into the textural group of silty

and the other clayey; hence the trend shown above was not due to soil texture.

However, there is a more mixed soil textural classification for the arable sites where

soils are medium, clayey, silty and coarse. There were only two arable sites where the

soil texture was the same, one where the soil was silty and the other where the soil was

medium textured in both cases there was a negative impact from organic farming.
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Table 3.11: This shows whether the field capacity is below the plastic limit for each of the
64 fields measured. Key: Orange cells = clayey, yellow cells = silty, pink cells = medium
and blue cells = coarse.  = FC > PL,  = FC < PL. The highlighted yellow cells for
cluster ID 20 show that this is the only cluster with matching soil texture (silty clay loam).

Cluster
ID Treatment Land use FC < PL

Cluster
ID Treatment Land use FC < PL

2H Organic Arable  12H Organic Arable 

2H Conventional Arable  12H Conventional Arable 

2H Organic Grass  12H Organic Grass 

2H Conventional Grass  12H Conventional Grass 

2C Organic Arable  12C Organic Arable 

2C Conventional Arable  12C Conventional Arable 

2C Organic Grass  12C Organic Grass 

2C Conventional Grass  12C Conventional Grass 

6H Organic Arable  16H Organic Arable 

6H Conventional Arable  16H Conventional Arable 

6H Organic Grass  16H Organic Grass 

6H Conventional Grass  16H Conventional Grass 

6C Organic Arable  16C Organic Arable 

6C Conventional Arable  16C Conventional Grass 

6C Organic Grass  16C Organic Grass 

6C Conventional Grass  16C Conventional Arable 

9H Organic Arable  21H Organic Arable 

9H Conventional Arable  21H Conventional Arable 

9H Organic Grass  21H Organic Grass 

9H Conventional Grass  21H Conventional Grass 

9C Organic Arable  21C Organic Arable 

9C Conventional Arable  21C Conventional Arable 

9C Organic Grass  21C Organic Grass 

9C Conventional Grass  21C Conventional Grass 

20H Organic Arable  23H Organic Arable 

20H Conventional Arable  23H Conventional Arable 

20H Organic Grass  23H Organic Grass 

20H Conventional Grass  23H Conventional Grass 

20C Organic Arable  23C Organic Arable 

20C Conventional Arable  23C Conventional Arable 

20C Organic Grass  23C Organic Grass 

20C Conventional Grass  23C Conventional Grass 

Figure 3.10 focuses on the results from Cluster 20; which is unique in that it has the

same soil texture (silty clay loam) in each location and hence is the most uniform of all

clusters. When focusing on the cold spot; it was possible to see that both the

conventional arable and grassland provides improved working conditions compared to
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their organic counterpart. However, this could be attributed to slightly higher

percentage clay contents in the soil rather than changes in SOC (as these contents are

fairly consistent).

When focusing on the ‘hot’ spot, whilst there are differences between the absolute

percentage moisture content (FC) for organic / conventional arable and grass, the effect

of soil management does not change the condition with both grassland sites having FC

< PL. Whilst this was not the case for the arable sites organic farming does

substantially raise PL and reduce FC so that they are nearly even.

Figure 3.10: This graph shows field capacity and plastic limit for an example of cluster 20
with matching soil texture (silty clay loam).
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3.7.2.6 Shear Strength

The strength of the soil will affect its behaviour 1) during the tillage operation and the

energy required for the tillage operation, 2) vehicle movement causing compaction and

3) the ability for root penetration. The strength of a soil depends upon cohesive forces

between the particles of soil and the amount of frictional resistance met by the particles

as they slide over each other (Marshall and Holmes, 1988). These are influenced by soil

density, soil moisture and SOC content (Smith and Mullins, 1991)

Figure 3.11: Box and whisker plot showing how shear strength varies according to
textural class at field capacity moisture content. The vertical bars indicate 95 %
confidence levels for organic and conventional and do not show significant difference
between treatments.

The results in Figure 3.11 show that overall there were no significant differences in soil

shear strength between the organic and conventional treatments. Whilst the analysis in

Table 3.12 showed that the grass fields generally had higher shear strength due to the

effect of the root mat binding the soil together and the lack of disturbance from tillage.

The arable fields were more affected by the point at which the tillage was undertaken in

the farming cycle, a few fields had just been tilled (namely organic arable fields in

cluster 21) and hence the shear strength was lower than those that had settled over the

winter. The soils were all sampled at field capacity and the higher clay fractions in the



Chapter 3: Field scale studies of organic farming and land use

Laura Hathaway-Jenkins
76

Engineering Doctorate (2011)

clayey group of soils have significantly higher shear strength. This is due to cohesion

caused by the clay component which rises as the soil dries (Spoor and Godwin, 1979).

Table 3.12: The mean average shear strength (kPa) for each of the soil textures and land
uses showing significant differences with different letters where p<0.05. Numbers in
brackets show the total number of samples.

Land use and Treatment
Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean
Mean SD Mean SD Mean SD Mean SD

Soil
Textural
Class

Clayey
(16)

70.40 10.66 68.03 19.97 54.73 34.60 93.23 11.80 71.60a

Silty
(23)

50.19 26.46 62.50 29.06 41.60 18.94 43.3 7.56 49.40b

Medium
(14)

29.45 6.45 37.30 11.03 47.20 15.70 59.05 5.48 43.25b

Coarse
(11)

42.90 24.39 56.05 3.75 41.15 10.96 61.6 13.62 50.42b

Mean 48.24a 55.97b 46.17a 64.30b

3.7.2.7 Pesticides and Nutrients

Soil water samples were analysed for a range of pesticides from the major groups:

carbonate (C), dicarboximides (D), organochlorine (OC), organophosphorus (OP),

organonitrogen (ON), synthetic pyrethoids (SP) and triazoles (T). Table 3.13 shows the

results of the analysis of residual agrochemicals in the soil water. Pesticides were

present only in the soil water samples extracted from five of the clusters, in 15 out of

the 64 fields measured.

Table 3.13: The number of fields which show a presence at trace level of the different
types of pesticides.

Number of
fields with
pesticides
present

Carbonate /
Dicarboximides

Organo
chlorine

Organo
phosphorus

Organo
nitrogen

Synthetic
Pyrethoid

Triazole

Org Grass (16)
Org Arable
(16)

-
-

-
1

-
-

1
-

-
-

-
-

Con Grass (16) - 1 - - - -
Con Arable
(16)

- 1 - 9 - 2

Two organic fields showed levels of pesticides above the detection levels shown in

Table 3.13. These were compounds of organochlorine (DDE) and organonitrogen
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(pendimethaline) with concentration of 0.3 and 0.02 mg kg-1 respectively. Sampling of

the soil occurred in 2007, and these pesticide residues have remained since the farm

converted to organic practice in 2000. Pesticides are degraded by the microbial

community to form metabolites and its half life determines its persistence in the soil

(Andreu and Pico, 2004). In Table 3.14, it can be seen that DDE has a large half-life (dt

50) equating to roughly 13 years which explains the presence of this pesticide in the

organic farm. DDE is highly persistent and has a low leaching ability so is unlikely to

cause ground or surface water pollution; however it has a high bioaccumulation factor

which can cause problems as the pesticide can concentrate within the food chain.

On the other hand, pendimethaline has a lower half-life of only 90 days (PPDB

Footprint, 2009). Therefore, this was not the reason for the presence of this pesticide.

Pendimethaline has a high bioaccumulation factor (almost five times as high as DDE).

Hence, this has probably accumulated to a high level in the soil as prior to conversion

pendimethaline would have been applied every year (PPDB Footprint, 2009). It was

surprising that the pendimethaline was not transformed or broken down by the soil

micro-organisms, so there may have potentially been accidental contamination of this

site from over application or drift from surrounding conventional fields.

Pendimethaline has a low leaching potential, so would not pose a threat to ground or

surface water supplies. Both the pesticides detected in the organic fields are persistent

within the environment and, whilst not posing threats of pollution by leaching, there

was potential for bioaccumulation within the food chain. The levels which were

detected are well below the no observed effect concentration (NOEC) and hence would

not pose environmental problems.

Thirteen conventional fields have shown levels of pesticides, which are believed to be

related to the timings of application to the fields. Table 3.14 shows all the residues

which were detected in the fields; all of which are persistent within the soil. None of

the residues detected pose a leaching risk; however, all of the residues except

chlorothalonil do pose an environmental impact through bioaccumulation within the

food chain. Most of the levels reported were only marginally over the reporting limits;

however, the fields which had DDE detected were almost 300 times greater than the
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reporting limits. This highlights the problem of persistence of this pesticide within the

soil system due to the relatively long half life and lack of leaching (as a method of

removal). However, the levels detected for all of the pesticides were well below the

NOEC and so there should not be any environmental impacts.

Table 3.14: Shows the seven residues which were detected in soil water samples and their
pesticide group reporting level, half life (dt 50) and environmental factors leaching
potential and bioaccumulation potential (Adapted from PPDB Footprint, 2009).

Residue Group
*

Report
Limit

(mg kg-1)

dt 50 in
soil

(days)

NOEC**
mg kg-1

(earthworm
reproduction)

GUS
Leaching

potential***

Bio-
accumulation

factor

Chlorothalonil
(fungicide)

OC 0.01 44 (18-
77)

Moderate
persistent

25.0 1.44
Low

leachability

100
Low potential

DDE
(metabolite)

OC 0.02 5000
Very

persistent

6.1 -2.59
Low

leachability

1800
High potential

DDD
(metabolite)

OC 0.02 1000
Very

persistent

6.1 -3.53
Low

leachability

3173
High potential

Flusilazole
(pesticide)

T 0.02 300 (63-
240)

Moderate
persistent

8.82 1.93
Transition

State

250
Moderate
potential

HCH
(insecticide)

OC 0.02 121
Persistent

6.8 2.00
Transition

State

1300
High potential

Pendimethaline
(herbicide)

ON 0.02 90 (27-
186)

Moderate
persistent

4.0 -0.39
Low

leachability

5100
High potential

Trifluralin
(herbicide)

OC 0.02 181 (81-
375)

Persistent

28.98 0.13
Low

leachability

5674
High potential

* Agrochemical group: OC - organochlorine, T - triazoles, ON – organonitrate

** NOEC is the no observed effect concentration this is based upon the reproductive
behaviour of earthworms after 14 days of constant application at the rates above.

*** GUS is the groundwater ubiquity score and is a measure of the mobility of pesticides it
does not take into account soil or antecedent conditions (Gustafson, 1993).

Soil water nutrients (total inorganic nitrogen, total phosphorus and total potassium)

were measured using flame photometry. This is important for availability of nutrients

for plant growth and uptake as well as potential for leaching and agricultural pollution.
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The data in Table 3.15 shows the levels of total inorganic nitrogen (N), total phosphorus

(P) and total potassium (K).

The data in Table 3.15 shows that there were no significant difference in levels of total

phosphorus (mean 2176.9 +/- s.d. 970.7 g kg-1) and total potassium (mean 863.6 +/ s.d.

304.3 g kg-1) according to treatment, organic or conventional, at p > 0.05 and these are

not affected by either soil texture or land use. For total inorganic nitrogen (ammonium

and nitrate), there was a significant difference where the conventional arable (31 g kg-1)

is two to three times greater than the other land uses and treatments. This is shown in

Figure 3.12. This difference was not surprising and could be attributed to the timings of

fertiliser applications or manure applications which had been applied in the spring to the

conventional arable land and not to the grassland. The organic arable had the lowest

amount of total inorganic nitrogen compared to the other land uses, this could be related

to the increased uptake of nitrogen into the crop which was harvested and not

replenished with readily available nitrogen fertilisers as in the conventional land.
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Table 3.15: The mean total nutrients for each of the soil textures and land uses showing
significant differences with different letters where p<0.05. Numbers in brackets show the
total number of samples.

Total
inorganic N
(g kg-1)

Land use and Treatment

Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean

Mean SD Mean SD Mean SD Mean SD

Soil Textural
Class

Clayey
(16)

8.43 5.45 6.10 6.42 33.00 10.65 7.21 0.75 13.69a

Silty (23) 12.67 5.69 12.75 12.71 31.41 28.14 21.38 10.14 19.55a

Medium
(14)

8.48 0.96 22.23 3.92 22.86 15.47 16.56 3.26 17.53a

Coarse
(11)

10.21 6.98 16.45 5.67 34.98 16.75 10.37 6.77 18.00a

Mean 9.94a 14.38a 30.56b 13.88a

Total K
(g kg-1)

Land use and Treatment

Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean

Mean SD Mean SD Mean SD Mean SD

Soil
Textural

Class

Clayey
(16)

585.25 145.12 913.00 290.48 993.00 130.10 583.33 202.65 768.65a

Silty
(23)

1038.33 299.39 956.00 191.74 895.17 343.62 1059.27 341.37 987.19a

Medium
(14)

763.67 290.89 659.50 256.68 777.60 351.48 903.33 552.40 776.02a

Coarse
(11)

605.67 160.79 673.50 258.09 815.00 189.30 1063.00 313.60 789.29a

Mean 748.23 a 800.50a 870.94a 902.22 a

Total P
(g kg-1)

Land use and Treatment

Organic Conventional

Arable (16) Grass (16) Arable (16) Grass (16) Mean

Mean SD Mean SD Mean SD Mean SD

Soil
Textural

Class

Clayey
(16)

3189.50 499.35 2358.14 981.51 2462.00 1418.00 2144.00 594.49 2538.41a

Silty
(23)

1994.00 636.77 2140.00 716.53 2229.17 1047.80 257.57 1279.83 1665.19a

Medium
(14)

1423.66 451.52 3159.50 3032.78 2387.00 930.73 1562.00 641.56 2133.04a

Coarse
(11)

1364.66 434.65 1629.50 562.15 1348.66 120.79 2016.33 837.23 1589.79a

Mean 1992.95a 2321.79a 2106.70a 1494.95a



Chapter 3: Field scale studies of organic farming and land use

Laura Hathaway-Jenkins
81

Engineering Doctorate (2011)

Figure 3.12: Box and whisker plot showing how total inorganic Nitrogen varies according
to land use in each treatment. The vertical bars indicate 95 % confidence levels for
organic and conventional and do show significant difference between treatments. (N.B.
Texture not shown as it was not significant).

3.7.2.8 Soil Hydrological Properties

3.7.2.8.1 Infiltration Rate (Saturated Hydraulic Conductivity)

Infiltration rate (IR) is defined as the rate of movement of water into the surface soil

layer (Brady, 1990). If the rainfall intensity is greater than the infiltration rate, water

will accumulate on the surface and runoff will begin (this is also dependent upon

depressional storage and slope angle). Therefore, improved infiltration rate is important

in helping to reduce runoff and hence potential soil erosion and flooding (Godwin and

Dresser, 2003). The infiltration rates for field soils range typically between 1 and

12 mm hr-1 (USDA, 1973). The level of variability in the soil surface conditions was

compensated for by replicating the IR measurements ten times in each field using a ‘w’

sampling strategy across the field.
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The statistical analysis of the IR data in Table 3.16 and Table 3.17 shows that despite a

high level of infield variability; the IR of the conventional management was

significantly lower than the others. There were also differences in the soil textural class,

where IR in the clay (9.87 mm hr-1) and sandy loam (7.52 mm hr-1) soils were

significantly greater than in the silty clay loam (4.35 mm hr-1) and the clay loam

(1.47 mm hr-1) soils. This could be explained by the cracking nature of clay soils and

the coarse texture of the sandy loam.
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Table 3.16: Each treatment alongside details of soil series, management data and field observations.

Site Land use Soil
Texture

Soil
Series

Mean
Infiltration

rate (mm hr-1)

Management Field Observations HOST
classification
(**degraded)

2C Conventional
Grass

Silty Clay
Loam

Panholes 0.78 Permanent pasture for 200 years.
Grazed with 3.5 sheep / acre. No
additions.

Tightly grazed by sheep, firm and
compacted

1 (BFI 1%, SPR 2%)

2H Conventional
Arable

Silty Clay
Loam

Upton 6.79 Synthetic fertilisers and herbicides.
Tillage regime has 4 passes to a
depth of 80mm using 2 discs, press
roll, drill and roll.

Good visual structure 1 (BFI 1%, SPR 2%)

2C Organic
Grass

Silty Clay
Loam

Panholes 5.67 Permanent pasture for 20 years.
Topped and ragwort removal.
Sucker cows (500kg). No
additions.

Very large stocked field with
patches of poaching

1 (BFI 1%, SPR 2%)

2C Organic
Arable

Silty Clay
Loam

Panholes 4.18 No fertilisers, regular liming.
Tillage regime has 5 passes to a
depth of 150mm using plough,
press, drill, harrow and roll.

Good soil structure, slight surface
cap.

1 (BFI 1%, SPR 2%)

9H Conventional
Grass

Clay Denchworth 6.38 Temporary pasture for 10 years.
Topped once and used horse
grazing. No additions.

Very poached in gateways and
around feed areas. Soil structure
very compact and firm. Horse
paddock.

25 (BFI 0.17%, SPR
50%)

9H Conventional
Arable

Clay Denchworth 4.89 Synthetic fertilisers and herbicides.
Tillage regime has 4 passes to a
depth of 180mm using plough, roll,
drill and roll.

Moderately degraded 25 (BFI 0.17%, SPR
50%)

9H Organic
Grass

Clay Denchworth 14.81 Permanent pasture for 100 years.
Ridge and furrow, topped twice
and used for rotational grazing of
sheep. No additions.

Used for sheep grazing with old
ridge and furrow still present.

25 (BFI 0.17%, SPR
50%)

9H Organic
Arable

Clay Denchworth 13.42 FYM applied at 20t ha-1. Tillage
regime has 5 passes to a depth of
460mm using disc, roll, heavy tine,
drill and roll with mole drainage.

Large surface cracks between
crops with a slight surface crust.

25 (BFI 0.17%, SPR
50%)
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Site Land use Soil
Texture

Soil
Series

Mean
Infiltration

rate (mm hr-1)

Management Field Observations HOST
classification
(**degraded)

21H Conventional
Grass

Clay Loam Brockhurst 1.16 Permanent pasture for 50 years.
Grazed with young stock (350kg).
N additions and herbicides to
control thistles.

Severe poached 24 (BFI 0.31, SPR
40%) **

21C Conventional
Arable

Clay Loam Whimple 0.77 Synthetic fertilisers and herbicides,
also FYM (16t ha-1). Tillage
regime has 2 passes to a depth of
230mm using plough and combi-
drill.

Very degraded with obvious
wheelings

21 (BFI 0.34, SPR
47% )**

21C Organic
Grass

Clay Loam Whimple 1.57 Permanent pasture for 100 years.
Grazed with cattle all year. Rotted
FYM added and mechanical
wedding with chain harrow.

Never ploughed, friable with
strong grass sward

7 (BFI 0.79%, SPR
44%)

21C Organic
Arable

Clay Loam Clifton 2.36 Rotten FYM. Tillage regime
including mechanical weed
control. There are 3 passes to a
depth of 140mm using plough,
power harrow and drill.

Previous damage from cattle
poaching still visible

21 (BFI 0.34%, SPR
40%)

23H Conventional
Grass

Sandy
Loam

Eardiston 1.80 Permanent pasture for 30 years.
Used for silage production, two
cuts a year; harrowed and rolled.

Localised poaching areas, around
gateways and tracks.

4 (BFI 0.79%, SPR
2%)

23H Conventional
Arable

Sandy
Loam

Eardiston 16.20 Synthetic fertilisers and herbicides.
Tillage regime has 3 passes to a
depth of 200mm using plough,
power harrow, drill and roll.

Very weedy and compacted in
patches

4 (BFI 0.79%, SPR
2%)

23C Organic
Grass

Sandy
Loam

Salop 8.44 Permanent pasture for 10 years.
Grazed cattle and sheep (2 weeks
on 3 weeks off). Topped once and
green waste compost added.

Seasonally waterlogged 9 (BFI 0.73%, SPR
25%)

23C Organic
Arable

Sandy
Loam

Salop 3.64 No amendment. Tillage regime
mechanical weed control. 4 passes
to a depth of 250mm using plough
power harrow, drill and roll.

Seasonally waterlogged 24 (BFI 0.31%, SPR
40%)
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Table 3.17: The mean Saturated Hydraulic Conductivity (mm hr-1) for each of the soil textures and land
uses showing significant differences with different letters where p<0.05.

Land use and Treatment

Organic Conventional

Arable Grass Arable Grass Mean

Mean SE Mean SE Mean SE Mean SE

Soil
Textural

Class

Clay 13.42 0.17 14.81 0.16 4.89 0.48 6.38 0.37 9.87a

Silty Clay
Loam

4.18 0.56 5.67 0.41 6.79 0.34 0.79 2.98 4.35b

Clay Loam 2.36 0.99 1.57 1.49 0.77 3.04 1.16 2.01 1.47c

Sandy Loam 3.64 0.64 8.44 0.28 16.20 0.14 1.80 1.30 7.52a

Mean 5.90a 7.62a 7.16a 2.53b

The results in Table 3.17 were anticipated when comparing these results with those obtained

by Witzel (2008). Witzel (2008) used the same apparatus in controlled laboratory conditions

in a sandy loam with a bulk density of 1.4 g cm-3 and three replicates yielding a mean value of

8.16 mm hr-1 with a standard deviation of 2.20. Chamen (2008) also used the Decagon to

measure in field infiltration rates of a clay soil. These ranged between an average of 8.6 to

10.39 mm hr-1 depending upon the intensity of wheel traffic; there were 21 replicates

undertaken, with standard deviations of 8.55 and 13.10 respectively. The variation in

infiltration rates experienced with the in situ and laboratory measurements was very similar.

The data in Table 3.17 and Figure 3.13 show that the infiltration rate was lower for the

conventional grassland compared to organic grassland. This difference between organic and

conventional practices was also found in recent studies (Oquist et al., 2006; Reganold and

Palmer, 1995) those highlighted the issue of variability in collecting infiltration data. The

conventional arable land use has a higher infiltration rate compared to conventional grass land

use. This is shown in Figures 3.13 where conventional grass had a significantly lower

infiltration rate compared to the other land use and management. For the organic land

management there was no significant difference between the two land uses; this could be

related to improvements in structure due to additions of FYM and other sources of SOM,

which could potentially improve the soil biology especially the number of earthworms. It

could also be related to an overall lower stocking density (where the average organic stocking

density was 1.1 livestock units per ha compared to 1.3 livestock units per ha for the

conventionally managed grassland (Sutherland et al., 2011). Or fewer machinery passes on

the arable land (Table 3.16).
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There was an insignificant relationship between infiltration rate and SOC: where higher

infiltration rates correspond with the highest SOC content except for arable silty clay loam.

This could be because at this site, the soil structure was more compacted and hence the

infiltration rate was reduced.

Figure 3.13: Box and whisker plot showing how infiltration rates vary according to land use and
management. Covariant means for soil texture depending upon the percentage silt and clay
were used to transform the data allowing for variation in soil texture. The vertical bars indicate
95 % confidence levels for organic and conventional. This difference was significant as p < 0.05.

Overall, it is possible to conclude infiltration was influenced by the local conditions such as

the soil type and soil structural conduction which can occur regardless of the organic /

conventional farming practices in place especially where the seasonal impacts of cracking,

cultivation practices and crop rotation have more of an effect. Figure 3.14 shows some of the

fields where infiltration were measured. It shows a well managed grass field for the

conventional field where there may have been more traffic and compaction compared to the

organic field above it. Figure 3.14 also shows a difference between the species richness of the

sward which appears to be greater in the organic grassland; this would mean that there would

be an increase in biomass helping prevent damage to the soil surface and structure hence

improving infiltration rates in the organic grassland. There is little difference between the

arable fields for organic and conventional (although it should be noted that the crops were

different).
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Figure 3.14: Conventional (top) and organic (bottom) managed land grass (left) and arable
(right).



Chapter 3

Laura Hathaway-Jenkins
88

Engineering Doctorate (2011)

3.7.2.8.2 HOST

Hydrology of Soil Type (HOST) is the classification of the main soil types in the UK into 29

hydrological classes (Boorman et al., 1995). These 29 classes are based upon the soil

physical properties which are correlated with catchment scale hydrological variables and the

dominant pathways of water movement through the soil and substrate (base flow index, BFI

and standard percentage runoff, SPR respectively). BFI is the long-term average proportion

of flow that comes from stored sources and SPR is the percentage runoff derived from event

data, adjusted to standard rainfall and catchment moisture conditions (Boorman et al., 1995).

This model allows the level of degradation of soil to be an input and hence modifies the

HOST class. A physically degraded soil, for example compacted, can lead to a significant

change in the amount of runoff for most of the HOST classes (Godwin and Dresser, 2003).

The HOST classifications showed degradation of soil properties within 12 of the 64 fields and

is summarised in Table 3.18 and presented in detail in Table 3.19a and 3.19b for the south and

midlands groups respectively). This was indicated by an increase in the Standard Percentage

Runoff (SPR) by approximately 10% and a decrease in the Base Flow Index (BFI) by 0.1 %.

Overall there were less degraded organic than conventional fields and there were more

degraded arable fields than grassland. This highlighted the poor soil structural quality of

these fields which could be due to untimely tilling of the arable land or overstocking and

hence poaching of the grassland.

Table 3.18: Table revealing the number of graded fields for each land use and management
showing the soil textural group and the cluster location.

Land Use and
Management

Number of
degraded fields

Present in
Clusters

Soil Textural Group

Organic Arable 3 12C, 16H, 21C Silty, Medium, Coarse

Organic Grass 1 12C Clayey

Conventional Arable 6 6C, 12C, 16C,
20H, 21C, 23C

Clayey, Medium, Silty,
Silty, Medium, Coarse

Conventional Grass 2 20H, 21H Silty, Medium

Total 12
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Table 3.19a: Host classifications for each field in the Midlands region together with an
indication of true state if the field was damaged (Palmer, 2007).

Cluster Hot/Cold Management
HOST
Class

BFI
(%)

SPR
(%)

Degraded
State

Infiltration Rate
(mm hr-1)

2 Hot Organic Arable 1 1 2

2 Hot Organic Grass 1 1 2

2 Hot
Conventional
Arable 1 1 2

2 Hot
Conventional
Grass 1 1 2

2 Cold Organic Arable 1 1 2

2 Cold Organic Grass 1 1 2

2 Cold
Conventional
Arable 1 1 2

2 Cold
Conventional
Grass 1 1 2

6 Hot Organic Arable 2 1 2 4.18

6 Hot Organic Grass 20 0.52 60 5.67

6 Hot
Conventional
Arable 20 0.52 60

6.79

6 Hot
Conventional
Grass 2 1 2

0.78

6 Cold Organic Arable 25 0.17 50

6 Cold Organic Grass 23 0.22 60

6 Cold
Conventional
Arable 5 0.9 15

0.79 and
27

6 Cold
Conventional
Grass 23 0.22 60

9 Hot Organic Arable 25 0.17 50 13.42

9 Hot Organic Grass 25 0.17 50 14.81

9 Hot
Conventional
Arable 25 0.17 50

4.89

9 Hot
Conventional
Grass 25 0.17 50

6.38

9 Cold Organic Arable 1 1 2

9 Cold Organic Grass 24 0.31 40

9 Cold
Conventional
Arable 1 1 2

9 Cold
Conventional
Grass 8 0.56 44

12 Hot Organic Arable 21 0.34 47

12 Hot Organic Grass 24 0.31 40

12 Hot
Conventional
Arable 21 0.34 47

12 Hot
Conventional
Grass 24 0.31 40

12 Cold Organic Arable 21 0.34 47
0.22 and
58

12 Cold Organic Grass 21 0.34 47
0.22 and
60

12 Cold
Conventional
Arable 24 0.31 40

0.21 and
50

12 Cold
Conventional
Grass 21 0.34 47
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Table 3.19b: Host classifications for each field in the southern region together with an indication
of true state if the field was damaged (Palmer, 2007).

Cluster Hot/Cold Management HOST BFI (%) SPR (%)
Degraded

State
Infiltration

Rate (mm hr-1)

16 Hot Organic Arable 1 1 2
0.90 and
10

16 Hot Organic Grass 1 1 2

16 Hot Conventional Arable 18 0.52 47

16 Hot Conventional Grass 18 0.52 47

16 Cold Organic Arable 1 1 2

16 Cold Organic Grass 1 1 2

16 Cold Conventional Arable 1 1 2
0.90 and
10

16 Cold Conventional Grass 1 1 2

20 Hot Organic Arable 1 1 2

20 Hot Organic Grass 1 1 2

20 Hot Conventional Arable 1 1 2
0.90 and
14

20 Hot Conventional Grass 1 1 2
0.90 and
15

20 Cold Organic Arable 1 1 2

20 Cold Organic Grass 1 1 2

20 Cold Conventional Arable 1 1 2

20 Cold Conventional Grass 1 1 2

21 Hot Organic Arable 18/21 0.52/0.34 47

21 Hot Organic Grass 7 0.79 44

21 Hot Conventional Arable 21 0.34 47

21 Hot Conventional Grass 24 0.31 40
0.21 and
49.6 1.16

21 Cold Organic Arable 24 0.31 40
0.21 and
49.6 2.36

21 Cold Organic Grass 21 0.34 47 1.57

21 Cold Conventional Arable 21 0.34 47
0.22 and
59 0.77

21 Cold Conventional Grass 21 0.34 47

23 Hot Organic Arable 3 0.9 15

23 Hot Organic Grass 3 0.9 15

23 Hot Conventional Arable 4 0.79 2 16.2

23 Hot Conventional Grass 4 0.79 2 1.8

23 Cold Organic Arable 24 0.31 40 3.64

23 Cold Organic Grass 9 0.73 25 8.44

23 Cold Conventional Arable 5 0.9 15
0.79 and
27

23 Cold Conventional Grass 3 0.9 15

3.8 Summary of Results and Discussion

The results summarised in Table 3.20 show that despite a number of problems relating to site

selection and the spatial separation of organically and conventionally managed fields that a

number of significant effects could be determined. These are primarily due to the effects of

soil texture and whether or not the fields were grass or arable. These results give confidence
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with respect to the findings as they are generally expected from the wealth of previous

research.

The most critical finding with respect to the null hypothesis ‘organic farming does not

influence soil properties or physical condition’ is that there is no evidence of SOC, field

capacity, aggregate stability, the Atterberg limits (workability) or soil shear strength to

support a rejection of this hypothesis. This gives weight to the findings of Armstrong Brown

et al. (2000) and Stolze et al. (2000) that there was no evidence to show an improvement in

soil conditions due to organic farming equally there is no detrimental effect. The fact that the

effects of both soil type and cropping (i.e. grassland or arable) are often significant, as might

be expected, gives confidence in the data. The data also provided a useful statement on the

current status of soils under organic and conventional farming; provides baseline soil data to

complete the agro-environmental study on the relative effects of organic farming on

biodiversity (Gabriel et al., 2009) and supports the farm economy studies of the Rural

Economy and Land Use project ‘Effects of scale in organic agriculture’ (Sutherland et al.,

2011).

In an ideal world matched pairs of immediately adjacent organic and conventional fields with

the same soil texture and management practice would have been selected. This may have

resulted in improved resolution to differentiate between organic and conventional soil

management. It was essential however, that some latitude was shown in field selection to

enable the multidisciplinary RELU project to be conducted. The fact that 50 % of the fields

in this study were within 300 m and less than 30 % were greater than 2 km; was not

unreasonable given the multidisciplinary nature of this study.

Overall there were fewer identified pesticides and herbicides in the soil water from two

organic fields as opposed to 13 in conventional fields. It must be stressed that these were all

at trace levels and below the No Observed Effect Concentration (NOEC). There were no

differences in soil nutrients with the exception that the total inorganic nitrogen was

significantly higher in the conventional arable compared to all the other land use and

treatments. This would be expected as the samples were taken in the spring after at least one

application of nitrogen to arable crops.
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The infiltration rates were higher for clay and sandy loam soils, as would be expected, due to

the ability of the clay to crack upon drying and the more porous texture and structure of the

sandy loam. A significant effect was found where the conventional grassland had a lower

infiltration rate than all other land uses and treatments. The field assessment of the

Hydrology of Soil Types (HOST) classes showed that eight conventional fields were in a

degraded state compared to only four organic fields.

The most useful finding for organic farmers is that organically managed grassland maintains a

higher infiltration rate than conventional grassland (Table 3.17). Given the recent summer

rainfall patterns of more and more extreme storm events, and their effects on runoff and

flooding, the reduction in runoff could be beneficial to society (this will be explored further in

Chapter 5). However, the benefits would only be accrued through a comprehensive unifying

soil and water management plan for each catchment. But if, as is thought, the change in

infiltration rate was due to slightly lower intensities of grazing then the same improvements

could also result from better soil management on conventional grassland farms.
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Table 3.20: Summary of the effects of soil type (texture), land use and organic/conventional management on soil, water, pesticide and nutrient status.
The analysis of variance was performed at 95% confidence level.

Property Soil Textural Class Land use (Arable / Grass) Management
(Organic/Conventional)

Remarks

SOM / SOC Clayey (51.41 +/- 11.61 g kg-1) and silty
(58.94 +/- 13.64 g kg-1) soils significantly
higher than medium (41.61 +/- 3.94 g kg-1)
and coarse (37.85 +/- 10.44 g kg-1) soil

Grassland (52.48 +/- 9.05 g kg-1)
significantly higher than arable
(38.72 +/- 13.21 g kg-1) for both
organic and conventional

No significant effect organic
(46.67 +/- 8.12 g kg-1)
conventional (48.85 +/-
17.08 g kg-1)

Agrees with the findings of
Gosling and Shepherd
(2002)

Field
Capacity

Coarse soil (22.63+/-5.02 %) significantly
lower than other soil textures clayey
(35.48+/-3.26 %) silty (34.43+/-4.79 %)
medium (32.90+/- 5.07 %)

Grassland (36.6+/-5.63 %)
significantly higher than arable
(26.67+/-4.20 %) for both
organic and conventional

No significant effect organic
(32.05+/-5.24 %)
conventional (30.67+/-
7.18 %)

As expected given the SOM
results

Aggregate
Stability

Clayey (59.39+/-11.67 %) and silty
(49.60+/-11.26 %) soils significantly higher
than coarse soils (43.05+/-20.69 %).
Medium (49.2+/-5.79 %) soil not
significantly different from the other soils

Grassland (63.30+/-17.74 %)
significantly higher than arable
(36.70+/-9.62 %) for both
organic and conventional

No significant effect organic
(51.18+/-14.20 %)
conventional (49.40+/-
13.21 %)

As expected given the SOM
results
Agrees with the findings of
Stolze et al. (2000)

Plastic
Limit

No significant effect clayey (356.67+/-
28.28 g kg-1) silty (279.00+/ 42.03 g kg-1)
coarse (285.20+/-49.50 g kg-1) medium
(201.67+/-50.00 g kg-1)

Grassland (311.00+/-56.17 g kg-

1) significantly higher than
arable (281.50+/-28.28 g kg-1)
for both organic and
conventional

No significant effect organic
(296.13+/-50.00 g kg-1)
conventional (527.58+/-
51.32 g kg-1)

Liquid
Limit

Coarse soils (333.75+/-25.17 g kg-1) are
significantly lower than the other soils
clayey (558.23+/-42.43 g kg-1) silty
(472.79+/-28.70 g kg-1) medium (333.75+/-
25.17 g kg-1)

No significant effect grassland
(456.22+/-60.83 g kg-1) arable
(443.73 +/- 27.75 g kg-1)

No significant effect organic
(468.14+/-50.00 g kg-1)
conventional (431.82+/-
47.26 g kg-1)

Plasticity
Index

No significant effect clayey (201.56+/-
14.14 g kg-1) silty (181.79+/-44.46 g kg-1)
coarse (152.62+/-52.63 g kg-1) medium
(132.10+/-28.87 g kg-1)

No significant effect grassland
(146.26+/-28.87 g kg-1) arable
(182.44+/-18.90 g kg-1)

No significant effect organic
(160.68+/-29.25 g kg-1)
conventional (168.02+/-
52.63 g kg-1)
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Property Soil Textural Class Land use (Arable / Grass) Management
(Organic/Conventional)

Remarks

Shear
Strength

Clayey soils (71.59+/-10.66 kPa) are
significantly higher than the other soil
textural groups silty (49.40+/-18.94 kPa)
coarse (50.42+/-10.96 kPa) medium (43.25
+/-11.03 kPa)

Grassland (55.97+/-7.56 kPa)
significantly higher than arable
(48.24+/-10.66 kPa) for both
organic and conventional.

No significant effect organic
(52.11+/-19.97 kPa)
conventional (55.24+/-
18.94 kPa)

As expected where soil
texture and presence of
roots / non tillage in
grassland would maintain
strength.

Pesticides /
Herbicides

Two organic fields showed traces (0.3 and 0.02 mg kg-1) of organochlorine (DDE) and organonitrogen
(pendimethaline) respectively. Two conventional fields showed organochlorine (DDE), nine organonitrogen
(pendimethaline) and two triazoles. Levels detected below NOEC.

All below No Observed
Effects Concentration
(NOEC) levels.

Total
Inorganic
Nitrogen

No significant effect clayey (13.69+/-5.45
g kg-1) silty (19.55+/-5.69 g kg-1) medium

(17.53+/-3.92 g kg-1) coarse (18.00+/-
5.67 g kg-1)

Conventional arable (30.56+/-10.1 g kg-1) significantly higher
than all the other treatments.

As expected

Total
Phosphorous

No significant effect clayey (2538.41+/-
594.49 g kg-1) silty (1665.19+/-636.77 g kg-

1) medium (2133.04+/-641.56 g kg-1) coarse
(1589.79+/-434.65 g kg-1)

No significant effect
grassland (1908.37+/-
594.94 g kg-1) arable
(2049.83+/-451.52 g kg-1)

No significant effect organic
(2157.37+/-499.35 g kg-1)
conventional (1800.83+/-
930.73 g kg-1)

As expected

Total
Potassium

No significant effect clayey (768.65+/-
145.12 g kg-1) silty (987.19+/-191.74 g kg-1)
medium (776.02+/-256.68 g kg-1) coarse
(789.29+/-189.30 g kg-1)

No significant effect
grassland (851.36+/-
191.74 g kg-1) arable
(825.25+/-130.10 g kg-1)

No significant effect organic
(774.37+/-160.79 g kg-1)
conventional (886.58 +/-
202.65 g kg-1)

As expected

Infiltration
Rate

Clay (9.89+/-0.17 mm hr-1) and sandy loam
(7.52+/-0.28 mm hr-1) soils significantly
higher than silty clay loam (4.35+/-
0.41 mm hr-1) and clay loam (1.47+/-
0.99 mm hr-1)

Conventional grassland (2.53+/-0.37 mm hr-1) significantly
less than all the other treatments.
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3.9 Conclusions

The main conclusions which can be drawn are the following:

1) The analysis of the data, from a subset of organic and conventional farms, shows that,

whilst it was possible to detect the effects of both soil texture and land use (grassland /

arable) on a number of the soil properties, there is no evidence based upon soil organic

matter, field capacity, aggregate stability, Atterberg limits/ workability and soil shear

strength to reject the hypothesis that ‘organic farming does not improve soil properties

or physical condition.’ Hence, in agreement with the results of a number of other

studies, there is little direct benefit on the individual soil properties from organic

farming practices – equally there is no detrimental effect.

2) There was evidence to support the suggestion that infiltration rates are greater on

organically managed grassland than conventional grassland; such a difference might

reduce runoff. This is in general agreement with the results of the HOST analysis

which indicated fewer degraded fields under organic management.

3) Overall, there were fewer traces of pesticides or herbicides in the soil water from the

organic fields compared with the conventionally managed fields. The conventional

arable fields had higher levels of total inorganic nitrogen than the other land uses and

treatments. There were no significant differences in total phosphorus and total

potassium for any land use or treatment combinations.
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4 Plot scale studies of organic farming practices and
interactions with tillage regime

4.1 Introduction

Following the field-scale research (Chapter 3); these studies were established to

determine the effect of tillage practices in both organic and conventional arable fields.

This plot scale study at three different site locations allowed greater control of soil

texture and soil series in the paired sites selected than the field scale study (Chapter 3).

These paired sites were closer in proximity than in Chapter 3’s paired fields with the

furthest distance apart being 1500 m at East Grinstead. The plots on the remaining sites

were approximately 350 m apart as shown in Table 4.1. There were three different soil

textures: sandy loam, clay loam and clay. These studies were established and ran over

two cropping seasons to see the short-term effects of converting tillage regime on both

organic and conventional fields for the soil physical properties, infiltration rates and

yields. These studies were intended to provide a link between the baseline data

previously collected at the field scale (Chapter 3) and the SCS-CN modelling (Chapter

5).

The purpose of this study was to achieve the second objective outlined in Chapter 1.

This was to determine the effects of soil management / tillage regime interactions on

both organic and conventional farming systems, in terms of soil physical, chemical and

hydraulic properties. As highlighted in the literature review (Chapter 2), there has been

much research focusing on different types of tillage systems ranging from conventional

plough, minimum non-inversion tillage to direct drilling. This has focused on many

aspects of soil health including soil physical properties, soil hydraulics and nutrient

cycling. There have also been studies investigating the effects of tillage economics and

the cost benefit from reducing tillage intensity (Vozka, 2007). Reduced tillage is often

avoided on organic farms due to the negative consequences for increasing weed

populations (Vakali et al., 2011). Peigné et al. (2007) specifically investigated

changing tillage regime to minimum tillage on organic land to determine the impact

upon weed populations and suggested methods to ensure that minimum tillage

succeeded on organic farms. These included perennial mulches, the use of controlled

traffic and rotational tillage. However, there is little research into the effect of changing
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tillage regime on soil properties in organically managed compared to conventionally

managed land. This led to the formulation of two more specific objectives to address

the lack of comparative research of tillage regimes on organic and conventional farms.

These were to:

1. Identify fields that were more comparable in terms of soil texture and distance

apart; so that the effects of the organic versus conventional arable management

could be determined with a greater degree of confidence

2. Compare tillage regimes in terms of soil physical properties, infiltration rates

and yield between organically and conventionally managed land over two

cropping seasons and two different soil depths (0- 75 mm and 75 – 150 mm)

4.2 Methodology

This presents the second part of the study as outlined in Figure 1.1 (Chapter 1). Each of

the three sites is described in detail explaining the experimental design and tillage

treatments. This is followed by the common methodology for field sampling,

laboratory and statistical analysis.

4.2.1 Site location and background information

Three focal farms were chosen using contacts of the Organic Research Centre and the

Scottish Agricultural College. The locations of each of the farms in the UK (Figure 4.1)

and their organic and conventional fields are shown (Figures 4.3-4.8). Prior to

establishing the trials, soil samples were collected to determine the soil textural

properties and current level of Soil Organic Carbon (SOC) (Table 4.1 and Figure 4.2).

This was to ensure that the organic and conventional fields were similar in soil texture.

The average value for SOC and soil texture for the two fields for each site is shown in

Table 4.1.
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Figure 4.1: Map of the UK showing the location of the three focal study sites: Aberdeen,
Huntingdon and East Grinstead (Multimap, 2010).

Table 4.1: Soil textural properties for each site (both organic and conventional) prior to
establishing the trials.

Soil Parameter Aberdeen

Org Con

East Grinstead

Org Con

Huntingdon

Org Con

Sand 2.00 - 0.063 mm (%)

Silt 0.063 - 0.002 mm (%)

20.75

68.35

24.43

65.44

27

55

30

50

7

36

5

36

Clay < 0.002 mm (%) 10.90 10.12 18 20 57 59

Textural Class

Soil Series/ Association

(England and Wales /

Scottish)

Sandy Silt Loam

Countesswells

(Dess Series)

Clay loam

Wickham 1

(711e)

Clay

Evesham 3 (411c)

Organic Carbon (g kg-1) 35.44 37.21 16.24 10.05 25.00 25.00

Distance between fields

(m)

400 1500 350

Aberdeen

Huntingdon

E. Grinstead
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Figure 4.2: UK Soil textural triangle showing the three different soil textures for each site
(McRae, 1988). (Key: = Huntingdon, = East Grinstead, = Aberdeen)

Details of each farm which include: the length of time of organic management, previous

tillage regimes, previous cropping cycle, and the amendments / fertilisers to the land

both organic and inorganic are shown in Table 4.2.
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Table 4.2: Background information for each of the three sites (WW = winter wheat, SW=

spring wheat, WO = winter oats, SO = spring oats, OSR = Oilseed Rape).

Site

Location

Organic

(years)

Previous

Tillage

Residue

Management

Previous

crop

Amendments

Aberdeen
Organic 20 Plough Removed Grass (3),

cereal,
legume,
cereal

25% dry matter
cattle manure 15 t/ha

Conventional N / A Plough Removed Cereal,
cereal,

legume,
grass

Phosphate, Nitrogen
(spray Pennant)

E.Grinstead

Organic
50 Plough Incorporated Grass, SW,

SO, legume
30 t/ha Farmyard

manure
Conventional N / A Plough Incorporated WW, WO,

OSR
Phosphate, Nitrogen

(sprayed Comet)

Huntingdon

Organic
8 Flat lift and

min-till
Removed WW, SO

vetch,
legumes

Spent mushroom
compost (sewage

sludge)
Conventional N / A Flat lift and

min-till
Removed WW, WW,

OSR
Phosphate, Nitrogen

(spray Pennant)

4.2.1.1 Aberdeen (Grid ref: NJ8725510493)

Two fields (one organic and one conventional) were located on soil with the same

texture and soil series (shown in Figure 4.3). At each of the fields three different tillage

treatments were implemented: traditional plough, reduced tillage rotavator and reduced

tillage rotavator and disc (Table 4.3). The additional rotavator operation in the reduced

tillage rotavator and disc, was required due to difficulties in forming a seedbed in

grassland; it was maintained for consistency in the second year. In the organic field

there was an additional treatment of ploughing, which was under-sown with a white

clover mix because this is a common practice with organic farms for fertility building.

There were three replicates of each tillage treatment in both the organic and

conventional fields. The crop established in the first year (2008-2009) was spring

barley Riveria in both the conventional and organic plots. In the second year (2009-

2010), spring oats Firth were established in both the conventional and organic plots.
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The plots sizes were 30 m length by 6 m width for all of the treatments on both the

organic and conventional fields (the layout and treatments are shown in Figure 4.4).

Figure 4.3: Aerial Photograph showing the relative locations of the organic ( ) and
conventional ( ) fields in Aberdeen (Multimap, 2010).

Figure 4.4: Experimental design in Aberdeen (Organic field left, Conventional field right).
Treatments were randomised A= Plough B = Reduced tillage rotavator C = Reduced
tillage disc D = Plough and under-sown (organic only). Not to scale.

100 m
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Table 4.3: Primary and Secondary tillage information for each of the three different
tillage treatments in Aberdeen.

Treatment Plough Reduced Rotavator Reduced Disc
Primary
Tillage

1 pass (200 mm depth,
1.2m width, 3 furrows)

1 pass Rotavator (100
mm depth, 2m width)

2 passes standard disc
(80 – 100 mm depth,
3.5m width)

1 pass Rotavator (100
mm depth, 2m width)

Secondary
Tillage

Power Harrow (1 pass)
Roll 6m width (1 pass)
Drill 3m width 40 mm
depth

Power Harrow (1 pass)
Roll 6m width (1 pass)
Drill 3m width 40 mm
depth

Power Harrow (1 pass)
Roll 6m width (1 pass)
Drill 3m 40 mm width
depth

Tractor details
for tillage

McCormick 118 hp
(Tyres: Back
480/70R34, Front
360/70R24)

MF 59 hp
(Tyres: Back 136/ 12-38,
Front 7.5 – 16)

McCormick CX 105 hp
(Tyres: Back
480/70R34, Front
360/70R24)

Harvester
details

Plot Combine Deutz
Fahr M660 56 hp

Plot Combine Deutz
Fahr M660 56 hp

Plot Combine Deutz
Fahr M660 56 hp

4.2.1.2 East Grinstead (Grid Ref: TQ4289935191)

Two fields (one organic and one conventional) were located on soil with the same

texture and soil series (shown in Figure 4.5). At each of the fields two different tillage

treatments were implemented: traditional plough (depth 200 mm) and reduced tillage

(depth 150 mm) (Table 4.4). The crops established in the first year (2008-2009) were

winter wheat (conventional and spring wheat (organic). In the second year (2009-2010)

the crops were winter wheat (conventional) and spring barley (organic). Therefore,

comparisons between organic and conventional yields cannot be made; they can only be

made for different tillage regimes in organic or conventional management. The plots

sizes were 25 m long by 24 m wide for all of the treatments on both the organic and

conventional fields (Figure 4.6). This was not randomised due to the farmer

implementing the trial and ease for access of machinery. There were three pseudo

replicates (sub-sample areas from the larger plot) of each tillage treatment in both the

organic and conventional fields.
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Table 4.4: Primary and Secondary tillage information for each of the two different tillage

treatments in East Grinstead.

Treatment Plough Minimum Tillage
Primary Tillage 1 pass (200 mm depth, 1.2m

width, 3 furrows)
None

Secondary Tillage

Drill

Power Harrow (1 pass)
Roll 6m width (1 pass)

Drill 3m width 40 mm depth

Ecodyn (3 passes) 150 mm depth

Drill 3m width 40 mm depth

Tractor details John Deere 7800 170 hp John Deere 7800 170 hp

Figure 4.5: Aerial Photograph showing the relative locations of the organic ( ) and
conventional ( ) fields in East Grinstead. A) Organic field B) Conventional field
(Multimap, 2010).

A B100 m

200 m

100 m
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Figure 4.6: Experimental design in East Grinstead (Organic field right, Conventional field
left) MT = minimum tillage. Not to scale.

4.2.1.3 Huntingdon (Grid Ref: TL2101280614)

Two fields (one organic and one conventional) were located on soil with the same

texture and soil series (shown in Figure 4.7). At each of the fields three different tillage

treatments were implemented: no tillage (direct drill), reduced tillage disc (150 mm) and

ploughed (depth 300 mm) (Table 4.5). The crops established were winter wheat

(conventional) and spring wheat (organic). Hence, it is not possible to compare yields

between organic and conventional management. This trial was for one cropping season

(2008-2009) because it was only possible to establish a one year trial at this site. The

plots were 9 m long by 3 m wide and as shown in Figure 4.8. This was not randomised

due to the farmer installing this trial, which required ease of access of machinery. There

were three pseudo replicates (sub-sample areas from the larger plot) of each tillage

treatment in both the organic and conventional fields.
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Table 4.5: Primary and Secondary tillage information for each of the three different
tillage treatments in Huntingdon.

Treatment Plough Reduced Tillage (Disc) Direct Drill
Primary Tillage 1 pass (200 mm depth,

1.2m width, 3 furrows)
1 pass Rotavator (100 mm
depth, 2m width)

None

Secondary
Tillage
Drill

Power Harrow (1 pass)
Roll 6m width (1 pass)
Drill 3.45m width 40 mm
depth

Roll 6m width (1 pass)

Drill 3.45m width 40 mm
depth

None

Claydon driect v drill
(3.45m width, 40 mm
depth)

Tractor details John Deere 7800 170 hp John Deere 7800 170 hp John Deere 7800 170 hp

Figure 4.7: Aerial Photograph showing the relative locations of the organic ( ) and
conventional ( ) fields in Huntingdon (Multimap, 2010).

200 m
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Figure 4.8: Experimental design in Huntingdon (Organic field right, conventional field
left). Treatments were a= Plough b = Reduced tillage (disc) c = direct drill. Not to scale.

4.2.2 Field Methodology

Soil samples were collected at each of the three sites following the same methodology

as outlined in Phase 1. Samples totalling 1 kg (wet weight) were taken at two different

depths within the topsoil layer (0 -75 mm and 75 - 150 mm). These were collected at

four different periods during the growing season for two crop cycles (except for

Huntingdon); to enable seasonality to be accounted for (see Table 4.6). The different

time periods are:

1. Prior to planting - the effect of tillage on infiltration and potential runoff

2. During preparation of land for planting – the workability of land

3. During crop growth – the effect of vegetation

4. Post harvest – the effect of traffic, compaction and effect of stubble/ crop residue
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Table 4.6: Timings of sampling in each of the three focal farms and testing requirements.

Timing Collection of soil
for testing

In Situ Testing Additional
Information

Prior to land
preparation (initial
conditions)
February 2009
(Aberdeen and East
Grinstead)
September 2008
(Huntingdon)

Soil texture,
Aggregate stability,
Atterberg limits,
SOC, Total C:N, pH

Shear strength,
soil structure, bulk
density

Inputs

Post land preparation
and sowing
April 2009 / 2010

Porosity, Aggregate
stability, plastic
limit, SOC, Total
C:N, pH, field
capacity

Shear strength,
infiltration, soil
structure, bulk
density

Inputs

During crop
development (stem
extension)
June 2009 / 2010

Aggregate stability,
SOC, pH

Weed observation

Post Harvest
September 2009/2010

Porosity, Aggregate
stability, plastic
limit, SOC, Total
C:N, pH, field
capacity

Shear strength,
infiltration, soil
structure, bulk
density

Yield estimates
(dry matter
contents)

One small profile pit was excavated (200 mm depth) within each treatment at all three

sites to determine the soil structure and physical conditions of the topsoil. In Aberdeen,

the first measurements of shear strength were collected using the torsional shear box

(Payne and Fountaine, 1952). However, the shear vane was used for the remainder of

the samples because of constraints in access to equipment. The shear vane was used as

a measure of surface soil shear strength in situ (Franti et al., 1985) as it is simple and

quick to use within the field. Measurements were taken using a grid sampling technique

allowing 30 samples to cover each treatment to a depth of (0 – 200 mm). Core samples

were collected ensuring minimal disturbance to the soil (Hall et al., 1977). These

cylinders had a volume of 222 cm-3 and were used to determine the bulk density of the

soil as well as the field capacity. At Aberdeen, five cores were taken across each

treatment in both the organic and conventional fields; at the different time periods

shown in Table 4.1. This allowed the calculation of bulk density, field capacity moisture
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content and water holding capacity. At Huntingdon and East Grinstead, three cores

were taken across each treatment in both the organic and conventional fields.

At each site, infiltration (saturated hydraulic conductivity) was measured using the

Decagon mini disk infiltrometer (see Figure 3.5). The advantages of this method are

outlined in the field scale study (Chapter 3). In all three sites, five replicates were made

in each treatment for both the organic and conventional fields along a ‘w’ shape

avoiding atypical areas (Bodhinayake et al., 2004). Each replicate was sampled for 15

minutes at 20 mm tension and the infiltration rate was calculated using the method

developed by Zhang (1997) and the van Genuchten parameters (Carsel and Parrish,

1988). The soil moisture content was measured at each site using a ThetaProbe (Delta-

T, 1999) with five replicates in each treatment.

Yield estimates (t ha-1 @ 85% Dry Matter) were calculated and recorded for the grain

removed from each plot.

4.2.3 Laboratory Methodology

The soil samples were air dried, mixed ground and sieved (Allen, 1989). A 2 mm

diameter mesh sieve was used for soil organic carbon (SOC), pH and texture, a 425 μm 

mesh sieve was used for Atterberg limits, total C: N and a combination of passing

through a 5 mm and held on a 3.35 mm mesh sieves were used for aggregate stability.

Soil texture was determined using the pipette method which separates the soil into three

fractions: sand, silt and clay and by plotting these values onto a soil textural triangle the

texture can be determined as shown in Figure 4.2 (BS 7755). SOM was established by

dichromate digestion (BS 1377-3). Aggregate stability was determined through the wet

sieving method outlined in Haynes and Swift (1990). Gravimetric moisture content was

measured through oven drying at 105oC until a constant weight was achieved (Gardner,

1986). The plastic limit (BS 1377-2) was determined. The pH was measured using a

1:1 distilled water solution, shaking the samples for 1 hour and standing for 1 hour prior

to measurement with a pH probe. Total C:N ratio was measured using the CNS

elemental analyser.
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The soil cores analysed for dry bulk density were removed from their tins and oven

dried at 105oC for 24 hours. Then the volume of the soil within the core was

determined as the volume of the tin was known (222 cm-3). Total porosity was

calculated; through Equation 4.1 (Hall et al., 1977).

Total porosity = 1 – bulk density of sample x 100 Equation 4.1

particle density (2.65)

The remaining cores were analysed for maximum (or total) water holding capacity and

field capacity moisture content at 0.05 bar suction. Following the procedure in Smith

and Mullins (1991) samples were saturated on a foam bath for twenty four hours and

weighed periodically until there was no further weight gain. Then they were placed on

a sand tension table to a suction of 0.05 bar to determine field capacity moisture content

(Hall et al., 1977). The water holding characteristics on a mass basis; were calculated

using the following equations.

WHCmax (% m / m) = WHCa – WHCc – WHCf x 100 Equation 4.2
WHCc – WHCd

WHCfc 0.05 bar (% m / m) = WHCg – WHCc x 100 Equation 4.3
WHCc – WHCd

WHCa = mass of saturated sample, tin, mesh and elastic band.

WHCc = mass of oven dried sample, tin, mesh

WHCd = mass of tin and mess

WHCf = mass of elastic band

WHCg = mass of suction tin and mesh

4.2.4 Statistical Methodology

Statistical analysis was performed using Statistica (8.0). First, any data that showed

deviation from normality was transformed (Box-Cox). Data analyses were conducted to

test the null hypothesis that ‘there were no significant differences in soil properties due

to organic farming in arable fields (as discovered in Chapter 3) or different tillage

regimes over time’. The alternative hypothesis is that organic farming and tillage
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regimes have an effect upon soil properties as shown by Peigné et al. (2007). The

differences in soil quality between organic and conventional management and tillage

treatments was testing using ANOVA, assuming that the measured variables (SOC,

aggregate stability, plastic limits, shear strength, water holding capacity, bulk density,

pH, total C:N ratio and infiltration rates) were normally distributed. Any outliers were

identified and removed from the data set. As the experimental design was balanced

with the same soil textures and treatments available for both organic and conventional

management, factorial analysis was used. A general linear model (factorial analysis),

including repeated measures, was used to determine whether there was a significant

difference in soil properties between organic and conventional fields, tillage treatment

and soil texture and the effect over time. The ANOVA was calculated using Least

Squares (Statistica 9.0) and the results were further interpreted in using Fisher LSD.

4.3 Results and Discussion

This section presents the main findings for each of the soil properties measured for all

three sites. The results are presented for each site to highlight differences between

management (whether organic or conventional), treatment (different tillage regimes as

described in Section 4.2) and over time. The three sites are then compared to indicate

an effect of soil texture. The literature review (Chapter 2) showed there is a mixture of

results for all soil properties both in favour and against organic farming. The results

presented here are compared with the literature and highlighted where there is

consensus.

4.3.1 Soil Organic Carbon (SOC)

The RELU field scale study (Chapter 3) showed that there was no significant difference

in SOC content between organic and conventionally managed fields. However, there

was a trend for organic arable fields to have a higher level of SOC. An issue raised in

field study (Chapter 3), was that differences in tillage regimes and soil texture may

mask any possible effect of organic management. Therefore, the plot scale study

exercised more control over soil texture and spatial distance between organic and

conventional fields. Tillage is thought to influence these SOC dynamics through

changing the soil habitat for micro-organisms, incorporating SOC into the soil matrix

(where clay particles can protect SOC from decomposition) and through the disruption
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of the soil structure (Balesdent et al., 2000). Kemper and Koch (1966) indicated that

for functioning agricultural soils there was a critical SOC level of 20 g kg-1. However,

this has been disputed as being too simplistic and not accounting for differences in soil

texture or climate.

Table 4.7: Typical SOC range for each of the three sites (under arable land use) based
upon soil texture and precipitation (adapted from LandIS (Keay et al., 2009) and
Glentworth and Muir, 1963).

Site Clay Rainfall mm yr-1 SOC mean and

standard deviation

(g kg-1)

Aberdeen 0-10 545 44.5 + / - 14.8

East Grinstead 10-20 900 37.8 + / - 24.3

Huntingdon 50-60 650 31.4 + / - 7.8

Each plot scale study site is explored and their results for SOC are presented by location

and then comparatively by soil texture.

4.3.1.1 Aberdeen (Sandy Silt Loam)

Figure 4.9 shows that the level of SOC is within the typical range outlined in Table 4.7;

hence there is no issue of decreased SOC due to arable management. Towers et al.

(2006) stated that Scotland’s soils contain a much higher proportion of SOC compared

with the rest of the UK. This can be related to climatic conditions (colder) during

formation and reduced rates of decomposition; however this may change with the

warmer and wetter climates predicted where decomposition would occur more rapidly

(Towers et al., 2006).

When comparing the overall effects of organic and conventional management practices

irrespective of different tillage regimes; there was significantly less SOC (p < 0.05) in

organically managed soil (41.61 g kg-1) than the conventionally managed soil

(44.82 g kg-1). The land has been managed organically for 20 years; differences

between organic and conventional management are shown. Stolze et al (2000) reported

more studies with an increase in SOC under organic management and two with no

significant difference. This was not supported in this research. In February 2009, the
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two fields recorded similar levels of SOC with conventional management being slightly

higher. In the years before the trial commenced, the conventional farmer regularly

applied organic manures on the land, which most likely have helped to up build organic

matter contents. The effect could be due to previous applications of SOM to the land,

helping to compensate for any reduction in SOC which would be anticipated due to

higher yields (see Section 4.3.11 for yield data).

Figure 4.9 shows how SOC varies over the two year sampling period for both organic

and conventional management. The SOC increased post tillage (April 2009) and then

reduced gradually during stem extension (June 2009) until it reached the lowest level

post harvest (September 2009). This trend was repeated during the second year with an

increase immediately post tillage (April 2010) with a further increase during stem

extension (June 2010) before reducing post harvest (September 2010). There appears to

be a cyclic trend where there is no stabilisation of SOC content such as under long- term

management but SOC is in a constant state of flux (Bhogal et al. 2009). This could be

due to tillage interactions where oxidation occurs during crop establishment (April 2009

/ 2010) and increases until slight compaction during harvest (September 2009 / 2010)

reducing the SOC content. Alternatively, it could be related to the soil temperature,

which would normally increase during the season and influence the amount of

microbiological activity occurring which would mineralise SOC. The largest value for

SOC was measured during stem extension (June 2010) and was significantly larger than

the other values. This difference could be due to the crop rotation from spring barley to

spring oats which could have increased the SOC pool during the second year of the

study.
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Figure 4.9: Mean value of SOC (g kg-1) in Aberdeen at each sampling point (the bars show
95 % confidence interval). The SOC values are not corrected according to differences in
bulk density as this did not influence the results. LSD = 5.05

The effects of different tillage regimes and their interaction with management (organic

and conventional) are shown in Figure 4.10. Conventional reduced tillage (disc) was

significantly higher (47.38 g kg-1) than all the organic treatments (p < 0.05). The

conventional reduced tillage (rotavator) was significantly lower (42.75 g kg-1) than the

other conventional treatments but was not significantly different to the organic

treatments. An additional treatment of ploughing and undersowing in the organic land,

as a fertility building system, was included. It was not significantly different to any of

the other treatments. These differences are supported in the literature where Kingery et

al. (1996) found that tillage can significantly impact SOC contents even in the short-

term (two year study duration).



Chapter 4: Plot scale studies of organic farming and tillage regime

Laura Hathaway-Jenkins
115

Engineering Doctorate (2011)

Figure 4.10: Mean values for SOC (g kg-1) in Aberdeen according to management and
tillage treatment (the bars show 95 % confidence interval). LSD = 4.44

There was no significant difference (p > 0.05) between SOC for top soil depths (0 – 75

and 75 – 150 mm) or any interaction with land management (organic and conventional)

or tillage treatment (ploughed or reduced tillage). There was no significant interaction

between sample timings during the two years and tillage regime type (p > 0.05).

However, the same cyclical trend was present as shown in Figure 4.9.

4.3.1.2 East Grinstead (Clay Loam)

Figure 4.11 shows that both the organic and conventional fields are slightly below the

typical level shown in Table 4.7. This could suggest that SOC contents were not

enhancing soil workability or crop growth; so increased sustained additions of organic

matter (FYM) should be introduced to improve the level. As Bhogal et al. (2009)

suggest that once there is a change in management (tillage regime or land management)

SOC changes towards a new equilibrium. Any changes or reductions in the amount of

organic matter added to the land can cause another shift; often to a level lower than the

build up previously achieved. Therefore, changing land management and amendments

need to be carefully monitored but may help to improve SOC on these clay loam soils.

When comparing the overall effect of organic and conventional management

irrespective of different tillage regimes there was significantly less (p < 0.05) SOC in

the conventionally managed soil (11.73 g kg-1) than organically managed soil
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(15.29 g kg-1). The land has been farmed organically for the longest period of time; and

according to SchjØnning et al. (2007) the effects of management on SOC should be felt

after this time. There was a higher SOC content in the organically managed soil which

would support the review of Stolze et al. (2000) which reported similar findings in five

trials.

Figure 4.11 shows how SOC varies with time during the cropping season for both

organic and conventional management. In September 2008, there was a significant

difference between organic and conventionally managed soils; with SOC being higher

for the conventional management. Post tillage (March 2009) there was an increase in

SOC, which reduced slightly during stem extension (June 2009) and post harvest

(August 2009). The same trend existed during the second year; with a more pronounced

decrease post harvest (August 2010) which was no longer significantly different

between organic and conventionally managed land. There was a seasonal effect which

although not as pronounced as that shown in Aberdeen, shows a similar cyclical trend,

with the highest amounts of SOC during crop establishment (June 2009 / 2010) before

decreasing post harvest (August 2009 / 2010). This could be related to compaction

issues or due to lack of organic inputs; reducing the amount of SOC. There is an issue

which needs to be noted that the crop on the conventional land was a winter cereal and

so in June 2009, it would have been at a different stage of crop growth compared to the

organic crop.
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Figure 4.11: Mean value of SOC (g kg-1) in East Grinstead at each sampling point (bars
show 95 % confidence interval). The differences are significant with p < 0.05. There was
no correction of SOC content due to differences in bulk density. LSD = 5.69

The effects of different tillage regimes are shown in Figure 4.12; where the

conventional ploughing resulted in significantly less SOC (10.19 g kg-1) than the other

treatments. There were no other significant differences between either the conventional

minimum tillage or organic plough and organic minimum tillage. Organically managed

minimum tillage provided the highest SOC content (15.60 g kg-1) compared to the other

treatments; but this was not significantly greater than organically managed ploughed

soil. The ploughed conventional treatment had a lower SOC content due to the

mechanics of tillage which turns over the topsoil and exposes it to rapid drying,

mineralising SOC and reducing the amount present.
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Figure 4.12: Mean values for SOC (g kg-1) at East Grinstead according to management
and tillage treatment (the bars show 95 % confidence interval). LSD = 3.04

Soil samples were collected at two different depths (0- 75 mm and 75 – 150 mm); there

was a significant difference between soil depths for SOC content with 75- 150 mm

having a lower content. This could be related to the depth of tillage allowing SOC to

oxidise. There was no significant interaction between sample timings during the two

years and tillage regime type (p > 0.05). However, the same cyclical trend is present

shown in Figure 4.12.

4.3.1.3 Huntingdon (Clay)

Figure 4.13 shows that both the organic and conventional fields are marginally below

the typical level shown in Table 4.7. This would suggest that SOC was not being stored

within the system. This could be due to a changing management (tillage regime) which

created a shift towards a new equilibrium (Bhogal et al., 2009). Therefore, it would be

suggested that there were further additions of SOM, to improve levels to the ideal range.

When comparing the overall effect of organic and conventional management

irrespective of different tillage regimes; there was no significant difference (p > 0.05)

between organically managed soil (17.79 g kg-1) and conventionally managed soil

(17.48 g kg-1). The land has been managed organically for eight years; and no

difference was found between the two management systems which disagree with

SchjØnning et al. (2007). However, this is in agreement with the research in the field
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scale study (Chapter 3) but also with Gosling and Shepherd (2002) who found little

difference in SOC between organic and conventional management.

Figure 4.13 shows the variation in SOC with time for both organic and conventional

management. The initial values for SOC were significantly higher (p < 0.05) for

conventionally managed soil (19.67 g kg-1) compared to organically managed soil

(11.47 g kg-1). Post tillage (April 2009) there was a decrease in SOC before an increase

during stem extension (June 2009) and post harvest (September 2009). There was a

very marginal trend for the level of SOC in the organically managed soil to be higher

than the conventionally managed soil. There appears to be a reduction from the initial

sample to the post tillage which then increases over the last two sampling points to a

significantly higher SOC content than the initial value (Figure 4.13). This is because

the farmer had just incorporated spent mushroom compost prior to the final sampling to

both the organic and conventional fields. The lack of significant difference between the

organically and conventionally managed soils could be explained through the nature of

the clay which protects SOC from decomposition (Webb et al., 2003).

Figure 4.13: Mean value of SOC (g kg-1) in Huntingdon at each sampling point (bars show
95 % confidence interval). LSD = 5.69

The effects of different tillage regimes are shown in Figure 4.14 (p < 0.05); the

organically managed reduced tillage was significantly higher (20.04 g kg-1) than the

organically managed plough (14.91 g kg-1). There were no other significant differences
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between either the conventional or organic treatments or tillage regimes.

Conventionally managed direct drill provided the highest amount of SOC (19.54 g kg-1)

compared to the other conventional treatments. This was due to non-inversion of the

soil, hence not exposing the topsoil for mineralisation allowing SOC to build up (Jones

et al., 2005).

Figure 4.14: Mean values for SOC (g kg-1) in Huntingdon according to management and
tillage treatment (the bars show 95 % confidence interval). LSD= 3.03

Soil samples were collected at two different depths (0- 75 mm and 75 – 150 mm); there

was no significant difference between soil depths for SOC content with 75- 150 mm

having a lower content (p > 0.05). There was a significant interaction between sample

timings during the two years and tillage regime type (p < 0.05); whereby sampling in

September 2008 and April 2009 were significantly lower than June and September

2009. The interaction with tillage regime revealed that ploughed treatments both

organically and conventionally managed were lower during the first two sampling times

compared to reduced tillage treatments.

4.3.1.4 Comparative Summary

Overall, there was no outright trend for either organic or conventional to have a higher

amount of SOC. The sandy silt loam had a significantly higher amount of SOC

(40.96 g kg-1) compared to clay loam (11.21 g kg-1) and clay (17.47 g kg-1). The sandy

silt loam had the highest SOC content as the sample was taken in Aberdeen (Scotland),

which contains a much higher proportion of SOC compared with the rest of the UK
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(Towers et al., 2006). Although the other soil textures have higher percentage clay

which is thought to improve the SOC content; this was not supported in this study. The

different SOC contents due to soil texture were also shown in field scale study (Chapter

3), whereby coarse and medium textured soils had a lower level compared to clayey and

silty soils.

The three sites were compared using only two treatments (reduced tillage and plough)

as these were present at each site; but only for the first year. In Figure 4.15, the

ploughed treatment, with the exception of the clay loam, showed that the organically

managed land has a similar or slightly lower SOC content compared to conventionally

managed land. This trend is reversed for the reduced tillage treatment where the

organically managed land had a higher SOC content compared to the conventionally

managed land. For all of the soil textures (excluding sandy silt loam conventional

minimum tillage); there was a higher SOC content in the minimum tillage treatment.

This is due to a reduction in turning over the soil; which reduces losses of SOC through

mineralisation (Jones et al., 2005). The heaviest textured clay showed the smallest

response to changing tillage regime or management on SOC content in the short–term;

this is could be explained by the nature of the clay soil which protects SOC and

prevents decomposition (Webb et al., 2003).

Figure 4.15: Mean values for SOC (g kg-1) for all three soil textures, management (organic
/ conventional and tillage treatments (reduced tillage / plough). (The bars show 95 %
confidence interval). LSD = 7.32
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4.3.2 Maximum Water Holding Capacity and Field Capacity

This section looks at both field capacity moisture content and saturation or maximum

water holding capacity. These were calculated from soil cores collected in the field at

one depth (0- 50 mm). The field capacity was also used in conjunction with plastic

limits to determine the workability of soils in Section 4.1 10.

This research has focused only upon saturation (maximum water holding capacity) and

field capacity as the difference between these two values gives the transmission water

(Figure 2.5 – Chapter 2). According to Godwin and Dresser (2003), if soils are at or

slightly below field capacity prior to a rainstorm event; the ability of the soil to store

‘transmission water’ is greater and hence could help prevent flooding.

4.3.2.1 Aberdeen (Sandy silt loam)

Figure 4.16 shows the average water holding capacity at maximum and field capacity

for both organically and conventionally managed soils. It shows that the field capacity

(WHC FC 0.05) between tillage treatments was not significantly different (p > 0.05).

There was no significant difference between organically (49.08 %) and conventionally

(50.41 %) managed for field capacity (WHC FC 0.05). This would be anticipated as the

field capacity is more dependent upon soil texture than physical properties which can be

manipulated through management (Brady, 1990). There was no difference in field

capacity with time of samples (p > 0.05). Hence, the full data is not shown here. There

were significant differences between maximum water holding capacity which will now

be discussed (these are expanded in Table 4.8).
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Figure 4.16: Maximum water holding capacity for Aberdeen at 0 bar (WHC max) and at
field capacity 0.05 bar (WHC FC 0.05 bar) for the different tillage treatments and land
management. Error bars show the standard error. LSD = 2.25

As shown in Table 4.8, there was no significant difference (p < 0.05) in maximum water

holding capacity between organically managed (58.51 %) and conventionally managed

land (57.94 %). There was an effect of tillage treatment, where organic ploughed and

organic ploughed and undersown treatments (52.60 %, 52.33 %) had a lower maximum

water holding capacity compared to the other treatments (p > 0.05). This corresponds

with other findings highlighted in Strudley et al. (2008) who found that ploughing

reduces the water holding capacity of a soil. This would suggest that increasing tillage

intensity (ploughing) reduced the maximum water holding capacity; this could be due to

changes in soil structure induced by tillage such as compaction. However, the ploughed

samples had a lower bulk density (not significantly) so this was not the case. Zeiger and

Fohrer (2009) stressed that differences in maximum water holding capacity were mostly

due to changes in continuity and connectivity of macropores which would not be

disrupted through tillage. There was a significant difference in maximum water holding

capacity over time (p < 0.05). Although, there was a general increase over time rising

post tillage (April 2009 and 2010) and decreasing post harvest (September 2009 and

September 2010). These differences in maximum water holding capacity of the soil are

important; as the difference between them and field capacity indicates an increase in

water storage capacity for ‘transmission water’. If the field is at field capacity during a

heavy rainstorm, the organically managed soil would be able to hold more water

compared to the conventionally managed soil. This would have implications for flood

mitigation.

Organic Conventional
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Table 4.8: All tillage treatments, management types and sampling times for maximum
water holding capacity (%) in Aberdeen. Different letters show a significant difference (p
value > 0.05).

Time Organic Conventional Mean

Plough Plough and
undersow

Reduced
tillage
(disc)

Reduced
tillage

(rotavator)

Plough Reduced
tillage
(disc)

Reduced
tillage

(rotavator)

Post
Tillage

51.37 52.44 58.83 56.29 51.67 52.18 58.99 54.88a

Post
Harvest

60.07 51.57 64.49 71.28 56.12 67.14 70.28 64.89b

Post
Tillage

45.55 57.95 55.71 61.68 53.11 57.89 61.23 55.86a

Post
Harvest

53.45 47.37 59.73 63.78 54.84 52.47 59.35 57.27a

Mean 52.60a 52.33a 59.69abc 63.26c 53.93ab 57.42abc 62.46bc

4.3.2.2 East Grinstead (Clay loam)

Figure 4.17 shows the average water holding capacity at maximum and field capacity.

It shows that the field capacity (WHC FC 0.05) between land management was

significantly different (p < 0.05) with organic having a higher field capacity compared

to conventional land use. This data is not shown but will be developed further in the

workability Section 4.3.10. There were differences between maximum water holding

capacity (shown in Table 4.9).

Figure 4.17: Maximum water holding capacity in East Grinstead at 0 bar (WHC max)
and at field capacity 0.05 bar (WHC FC 0.05) for the different tillage treatments and land
management. LSD = 3.52
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As shown in Table 4.9, there was significant difference in maximum water holding

capacity between organic (44.77 %) and conventional land (33.7 %) management

(p < 0.05). There was an effect of tillage treatment, where organic minimum tillage

treatment (49.69 %) had higher total water holding capacity compared to the other

treatments (p < 0.05). This corresponds with other findings highlighted in Strudley et

al. (2008) who found that ploughing reduces the water holding capacity of a soil. There

was no significant difference in maximum water holding capacity over time (p > 0.05),

although there is a general trend for an increase over time. As in Aberdeen, these

differences in maximum water holding capacity of the soil are important; increasing the

maximum water holding capacity would have implications for flood mitigation.

Table 4.9: All tillage treatments, management types and sampling times for total water
holding capacity (%) in East Grinstead. Different letters show a significant difference
(p value > 0.05).

Time Organic Conventional Mean

Plough Minimum Tillage Plough Minimum Tillage

Post
Tillage

40.00 49.53 31.83 36.46 37.26a

Post
Harvest

41.83 43.16 31.66 36.76 38.35a

Post
Tillage

43.02 54.9 35.40 34.21 39.45a

Post
Harvest

34.55 51.19 30.42 32.86 41.88a

Mean 39.85a 49.69b 32.33ac 35.07c

4.3.2.3 Huntingdon (Clay)

Figure 4.18 shows the average water holding capacity at maximum and field capacity.

It shows that the field capacity (WHC FC 0.05) between land management were not

significantly different (p > 0.05). Therefore, this data is not shown. There were

differences between maximum water holding capacity (shown in Table 4.10).
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Figure 4.18: Total water holding capacity in Huntingdon at 0 bar (WHC max) and at field
capacity 0.05 bar (WHC FC 0.05) for the different tillage treatments and land
management. LSD = 2.54

As shown in Table 4.10, there was no significant difference in maximum water holding

capacity between organic (56.61 %) and conventional land (53.39%) management

(p > 0.05). There was an effect of tillage treatment, shown only on the conventionally

managed land; where reduced tillage (disc) (55.02 %) was greater than the other two

treatments. This corresponds with other findings highlighted in Strudley et al. (2008)

who found that ploughing reduces the water holding capacity of a soil. There was no

significant difference in maximum water holding capacity over time (p > 0.05),

although there was a general trend for an increase over time. This corresponds with the

findings in both Aberdeen and East Grinstead; highlighting the importance differences

in maximum water holding capacity of the soil and the implications for flood

mitigation.

Table 4.10: All tillage treatments, management types and sampling times for maximum
water holding capacity (%) in Huntingdon. Different letters show a significant difference
(p value > 0.05).

Time Organic Conventional Mean

Plough Reduced
tillage
(disc)

Direct
drill

Plough Minimum
tillage
(disc)

Direct drill

Post
Tillage

54.20 58.83 56.29 51.67 52.18 48.99 53.69a

Post
Harvest

56.31 55.10 58.93 55.59 57.86 54.10 56.31a

Mean 55.26a 56.96a 57.61a 53.63b 55.02a 51.45b

Organic Conventional
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4.3.2.4 Comparative Summary

For field capacity moisture content, there was no significant difference due to organic or

conventional management of land or due to different tillage regimes in the clay or sandy

silt loam. There were differences on the maximum water holding capacity of the soils

between organic and conventional management systems. The organically managed

soils (58.52 %, 44.77 % and 56.61 %) have a higher maximum water holding capacity

compared to conventionally managed soils (57.94 %, 33.70 % and 53.39 %) for sandy

silt loam, clay loam and clay respectively. There was also an interaction with tillage

regimes, where reduced tillage regimes have a higher maximum water holding capacity

compared to the ploughed treatment. This could be due to better soil structure, although

it was not thought that this would be the case in this two year trial. The organically

managed fields have an increased amount of grassland and fertility building leys in their

rotation, which may help build a more continuous network of pores. Therefore, if

maximum water holding capacity is compared with field capacity there is an implied

increase in water storage on organically managed land, which has implications for flood

alleviation.

4.3.3 Aggregate Stability

Soil aggregate stability is an important measure of soil quality and sustainability

(Bronick and Lal, 2005). The values for aggregate stability shown are the amount of

soil retained as a percentage of the original amount of soil before the test was

performed; for example, the larger the percentage the higher the stability of the soil. In

the field scale study (Chapter 3) the results showed no significant difference between

organic and conventional management. This agrees with Williams and Petticrew (2009)

who compared macro and micro aggregate stability between organic and conventional

farms. This did not consider the effects of different tillage systems; however it is

widely acknowledged that increasing tillage intensity reduces the macro-aggregate

stability (Shepherd et al., 2003).

The field scale study (Chapter 3) also showed that there were differences, which could

be attributed to soil textural group. The coarse textured soils were the least stable

(43.05 %) compared to the clayey (59.35 %) silty (49.65 %) and medium (49.08 %).

This is due to having both lower SOC and clay contents, which would have helped to
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bind the soil together. In this section, the three sites different tillage schemes are

explored and their results for aggregate stability are presented by site and then

comparatively by soil texture.

4.3.3.1 Aberdeen (Sandy silt loam)

Figure 4.19 shows that at the initial sample (February 2009), there was a large

significant difference between organically and conventionally managed samples. This

difference remains over time however the difference between the two managements

tends to coalesce with time. There was a reduction in stability after the initial samples

but it steadily increases over time until stem extension (June 2010) where there is a

slight reduction in the final post harvest (September 2010) measurement. However, this

significant difference could be a residual effect as the difference is present in the initial

samples (prior to commencing the trial). Although, when this sample was removed and

the analysis re-run, the significant difference between the two land management

(organic and conventional) remained. Overall the organically managed land had a

significantly (p < 0.05) higher aggregate stability (46.00 %) compared to conventional

management (42.62 %). This result contrasts with the field scale study (Chapter 3)

because of greater soil and site variability, but agrees with Shepherd et al. (2003) and

Maidl et al. (1988), who both found that managing the land organically increases

aggregate stability. As the soil textures of both the organically and conventionally

managed soils were identical, differences in aggregate stability could have contributed

to an increase in SOC. However, aggregate stability can show a difference between

land management systems before any change in SOC can be detected (Haynes and

Swift, 1991).
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Figure 4.19: Mean value of aggregate stability in Aberdeen (% w, w) at each sampling
point (bars show 95 % confidence interval). LSD = 4.80

The effects of different tillage regimes (p < 0.05) are shown in Figure 4.20; organic

reduced tillage was significantly higher (48.01 %) than the conventional plough

(39.33 %). The organic plough had the second lowest aggregate stability but the other

organic treatments were both higher than their conventional partner (Figure 4.20). The

additional treatment on the organic land (plough and undersow) was not significantly

different from the other organic ploughed treatment (42.60 %). It is thought that

changes in aggregate stability caused by tillage are associated with the dynamics of

SOC (altering the amount of each fraction present) particularly at the soil surface

(Douglas and Goss, 1982). As shown in the previous section, SOC did increase over

the two years in the two forms of reduced tillage (reduced tillage (disc), reduced tillage

(rotavator)). Therefore, this could be attributed to the improvement in aggregate

stability felt for the reduced tillage under organic management.
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Figure 4.20: Mean values for aggregate stability (%) in Aberdeen according to
management and tillage treatment (bars show 95 % confidence interval). LSD = 4.84

Soil samples were collected at two different depths (0- 75 mm and 75 – 150 mm); there

was no significant difference between soil depths for aggregate stability with 75- 150

mm having a lower stability (p > 0.05). There was no significant interaction between

sample timings during the two years and tillage regime type (p > 0.05).

4.3.3.2 East Grinstead (Clay loam)

Overall, there was no significant difference (p > 0.05) in aggregate stability between

organically managed land (52.13 %) and conventional management (50.89 %). This

agrees with research by Diez et al. (1991). Figure 4.21 shows that the initial

measurements (February 2009) for aggregate stability in both organically and

conventionally managed soils are similar; with the conventionally managed soil being

marginally higher. There was no significant difference over time for aggregate stability;

equally there was no clear trend as shown in Aberdeen. As the SOC was significantly

higher for organically managed soil, it was anticipated there would be a significant

difference in aggregate stability especially as the clay content is very similar between

the two land management systems as SOC helps to bind aggregates. However, this was

not the case in this research. Williams and Petticrew (2009) found that any differences

between organically and conventionally managed lands were primarily due to additions

of SOC rather than synthetic fertilisers, which helped to provide a better soil structure.
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Figure 4.21: Mean value of aggregate stability (%) in East Grinstead at each sampling
point (bars show 95 % confidence interval). LSD = 6.72

The effects of different tillage regimes (p > 0.05) are shown in Figure 4.22. Whilst

there was a trend for the plough (50.58 %) to have a slightly lower aggregate stability

than minimum tillage (52.30 %) it was not significant. However, the organic ploughed

soil (49.59 %) had a significantly lower aggregate stability than all the other treatments.

This is because clay soils under more intense cultivation (ploughing) lose their

aggregate stability quicker than the reduction in SOC (Troeh and Thompson, 1993).

Figure 4.22: Mean values for aggregate stability (%) in East Grinstead according to
management and tillage treatment (bars show 95 % confidence interval). LSD = 2.68
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Soil samples were collected at two different depths (0- 75 mm and 75 – 150 mm); there

was no significant difference between soil depths for aggregate stability content with

75- 150 (p > 0.05). There was a significant interaction between sample timings,

management (organic or conventional) and tillage regime type (p < 0.05). This showed

that conventional ploughed soils during the first year of sampling (February to

September 2009) had a lower aggregate stability compared to the other samples.

4.3.3.3 Huntingdon (Clay)

Figure 4.23 shows that there was a significant reduction (p < 0.05) in aggregate stability

for organically managed land (47.95 %) compared to conventionally managed land

(68.72 %) over time (one year sampling). There was no significant difference in

aggregate stability over time for organically managed land. However, for

conventionally managed land there was a significant increase in stability from 57.75 %

(September 2008) to 75.81 % (post harvest, September 2009). Both the organic and

conventionally managed land have similar SOC and clay contents; so it would be

though that there would be no difference between organically and conventionally

managed soils. This however was not the case; and this soil texture rejects the findings

of Williams and Petticrew (2009) whereby soils which had synthetic fertilisers applied

would have a lower aggregate stability. Therefore, the differences could be due to

changing bulk density between organically and conventionally managed soils. However

there was no significant difference in bulk density but there was a trend for the

conventionally managed soil to have a higher value.
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Figure 4.23: Mean value of aggregate stability (%) in Huntingdon at each sampling point
(bars show 95 % confidence interval). LSD = 5.94

The effects of different tillage regimes (p < 0.05) are shown in Figure 4.24. For the

conventionally managed land, the reduced tillage treatment (disc) (71.85 %) produced

significantly higher aggregate stability than the ploughed treatment (64.96 %). The

organically managed tillage treatments are not significantly different, but there is a trend

for the organic reduced tillage to have the highest stability (48.76 %). This is the same

trend that was found at both the Aberdeen and East Grinstead sites and agrees with

work by Pagliai et al. (2004) which was found that reduced tillage (minimum tillage)

had a significantly greater aggregate stability than conventional deep ploughing.



Chapter 4: Plot scale studies of organic farming and tillage regime

Laura Hathaway-Jenkins
134

Engineering Doctorate (2011)

Figure 4.24: Mean values for aggregate stability (%) in Huntingdon according to
management and tillage treatment (bars show 95 % confidence interval). LSD = 5.13

Soil samples were collected at two different depths (0 – 75 mm and 75 – 150 mm); there

was no significant difference between soil depths for aggregate stability content with

75 – 150 (p > 0.05). There was a significant interaction between sample timings,

management (organic or conventional) and tillage regime type (p < 0.05). This shows

that conventionally managed soils (both ploughed and reduced tillage) had a

significantly higher aggregate stability which increased with time.

4.3.3.4 Comparative Summary

Overall, there was no outright trend for either organically or conventionally managed

soils to be more stable. The sandy silt loam had a significantly lower aggregate stability

(40.94 %) compared to both clay loam (53.25 %) and clay (57.45 %). These values are

comparable to the field scale study (Chapter 3) where the clayey soils had an average

aggregate stability of 59.35 %. The three sites were compared using only two

treatments (reduced tillage (disc) and plough) as these were present at each site; and

only the first year of data because only one year of data was available from Huntingdon.

In Figure 4.25, it is possible to see that there was no significant difference between

tillage treatments for organically and conventionally managed land. This does not

support research by Kasper et al. (2009) who found that soil aggregation is influenced
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by tillage systems. Although aggregate stability is primarily governed by the content of

clay and SOC; it was shown here that the sandy silt loam (where the SOC content was

high) with reduced tillage improves the level of aggregate stability. This helps to show

the impact of different tillage systems which affect the level of SOC; with differences

being felt in the measured topsoil as this is where root action and residue mulches can

influence soil stability (Abid and Lal, 2008a).

Figure 4.25: Mean values for aggregate stability (%) for all three soil textures,
management (organic / conventional) and tillage treatment (reduced tillage / plough) (bars
show 95 % confidence interval). LSD = 9.86

4.3.4 Plastic Limit

The plastic limit forms part of the two Atterberg measurements (plastic and liquid

limits) shown in the field scale study (Chapter 3). These indicate the plastic range of

consistency of the soil. Due to the time consuming nature of this method; it was

deemed that only the lower plastic limits would be measured as together with the field

capacity this helps to describe the workability of the soil. According to Baver et al.

(1972), changing soil management and increasing SOC would cause a shift in the

plasticity index (through increasing the plastic limit). This was calculated to help

provide an indication of the mechanical behaviour of the soil and its changes over the

cropping season due to different management (organic and conventional) or tillage

regimes. As there has been no other research in this area; the data will be compared

against typical values for plastic limits measured by Archer (1975).
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Table 4.11: Plastic limits for the soil textures measured (adapted from Archer, 1975).

Soil Texture Clay Content (%) Plastic Limit (g kg-1)

Sandy Silt Loam 10 160

Clay Loam 20 250

Clay 59 360

Further work linking these measurements to field capacity moisture content indicating

the workability of the soils is shown in Section 4.3.10.

4.3.4.1 Aberdeen (Sandy silt loam)

Studying the plastic limits given in Table 4.12 and comparing them to the values in

Table 4.11 for sandy silt loam; shows that they were very high and also above the

values obtained in the field scale study (Chapter 3). This can be attributed to the high

SOC content which would increase the amount of water needed for the soil to act in a

plastic manner. Campbell (1991) explains that there must be total hydration of SOC in

the soil before any water is available for film formation on soil particles (causing

plasticity). Table 4.12 shows that when comparing organic and conventional soils

irrespective of different tillage regimes, there was no significant difference (p > 0.05)

between organic soil (236.32 g kg-1) and conventionally managed soil (255.65 g kg-1).

There was a significant difference between the tillage systems (p < 0.05) with the

conventional plough having a higher plastic limit (305.11 g kg-1) compared to the other

systems. The organically managed reduced tillage rotavator (225.20 g kg-1) had the

lowest plastic limit. The plough and undersown treatment was not significantly

different from any of the other organic treatments. There was a significant difference

due to the time of sampling, with post harvest being lower than post tillage (Table 4.12).

This could be attributed to changes in soil structure and mineralisation of SOC which

was cyclical as shown in Figure 4.6. There were no interactions between tillage

treatment, management (organic or conventional) and time for plastic limit (p > 0.05).

There was no significant difference between plastic limit for the two soil depths

measured (p > 0.05).
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Table 4.12: All tillage treatments, management types and sampling times for plastic limit
(g kg-1) in Aberdeen. Different letters show a significant difference (p < 0.05).

Time Organic Conventional Mean

Plough Plough and

undersow

Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Plough Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Post
Tillage

265.73 213.22 284.83 235.52 402.82 227.69 238.43 275.83a

Post
Harvest

231.00 243.93 258.06 230.44 220.29 230.72 236.16 234.45b

Post
Tillage

229.62 243.27 221.77 223.70 372.28 228.95 236.72 252.17ab

Post
Harvest

212.53 219.27 231.52 211.15 225.03 219.59 229.17 221.50b

Mean 234.72a 229.92b 249.05a 225.20b 305.11c 226.74b 235.12a

4.3.4.2 East Grinstead (Clay loam)

When comparing the values of plastic limit in Table 4.13 with those shown in Table

4.11 for a clay loam; the values are above average. This could be attributed to the SOC

content or the nature and mineralogy of the clay being slightly different from those

measured by Archer (1975). Table 4.13 shows when comparing organic and

conventional soils irrespective of different tillage regimes, the organic soil

(376.3 g kg-1) was significantly less than the conventionally managed soil

(396.3 g kg-1). There was a significant difference between the two tillage systems; with

minimum tillage being higher on both organic land and conventional land. This

correlates with higher amounts of SOC found in the minimum tillage treatments.

There was a significant difference due to the time of sampling – the plastic limit

increased slightly with time (although it reduces in the final post harvest reading).

There were no interactions between tillage treatment, management (organic or

conventional) and time for plastic limit (p > 0.05). There was no significant difference

between plastic limit for the two soil depths measured (p > 0.05).
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Table 4.13: All tillage treatments, management types and sampling times for plastic limit
(gkg-1) in East Grinstead. Different letters show a significant difference (p value < 0.05).

Time Organic Conventional Mean

Plough Minimum Tillage Plough Minimum Tillage

Post
Tillage

361 332.8 392.8 425.6 378.1a

Post
Harvest

298.5 401 352.3 395.6 361.85a

Post
Tillage

361.8 424.5 454.6 412.3 413.3b

Post
Harvest

391.8 439.3 350.8 386 391.9a

Mean 353.3a 400.0b 387.6a 404.9b

4.3.4.3 Huntingdon (Clay)

Table 4.11 shows average values for plastic limit; comparing these to the values in

Table 4.14 they are slightly above average but this is explained by the higher levels of

SOC present in these clay soil compared to the ones measured by Archer (1975). Table

4.14 shows that when comparing organic and conventional soils irrespective of different

tillage regimes, there were no significant differences (p > 0.05). There was a significant

difference between the tillage treatments for both organic and conventional management

for the minimum tillage to have the highest plastic limit. It was also significant that

plastic limit decreases over time between the post tillage and post harvest.

There was an interaction between tillage treatment, management (organic or

conventional) and time for plastic limit (p > 0.05). There was no significant difference

between plastic limit for the two soil depths measured (p < 0.05).
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Table 4.14: All tillage treatments, management types and sampling times for plastic limit
(g kg-1) in Huntingdon. Different letters show a significant difference (p value < 0.05).

Time Organic Conventional Mean

Plough Minimum

tillage (disc)

Direct

drill

Plough Minimum

tillage (disc)

Direct

drill

Post

Tillage

392.6 387.1 476.1 452.1 349.1 347.6 400.8a

Post

Harvest

451.5 371.0 372.0 273.0 303.8 488.3 376.6b

Mean 390.5a 379.1a 424.1b 362.5a 326.5a 418.0b

4.3.4.4 Comparative Summary

Figure 4.26 shows that overall there was no outright trend for either organic or

conventional soil to have a higher plastic limit. The three sites were compared using

only two treatments (reduced tillage and plough) as these were present at each site; and

only the first year of data because only one year of data was available from Huntingdon.

Sandy silt loam had a significantly lower plastic limit (257.65 g kg-1) compared to both

clay loam (399.85 g kg-1) and clay (401.54 g kg-1). This is as would be expected

according to Archer (1975). There were no significant differences between organic and

conventional management; as some are higher or lower depending upon the tillage

regime and soil texture. For example, the ploughed treatment shows that organic

management had a lower plastic limit for both sandy silt loam and clay loam but is

higher for clay. This highlights the importance of soil texture (predominately the clay

content) in affecting the plastic limit.
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Figure 4.26: Mean values for plastic limit (g kg-1) for all three soil textures, management

(organic / conventional) and tillage treatment (reduced tillage / plough). LSD = 175.27

4.3.5 Shear Strength

High shear strength can limit root growth (Barley et al., 1965) which would reduce crop

yields. Soils are tilled to provide a suitable seedbed, reduce competition from other

plants and change soil structure to enable roots to penetrate. The shear strength

indicates the quality of seedbed, structure and is related to macroporosity (Carter, 1990).

Therefore, low shear strength is helpful during seedbed formation as it allows shoots to

penetrate; whereas higher shear strength helps provide vehicle access without causing

structural damage. The effects of different tillage regimes are best shown in the top

0 - 100 mm (Benjamin and Cruse, 1987); hence measurements shown here are for the

topsoil only.



Chapter 4: Plot scale studies of organic farming and tillage regime

Laura Hathaway-Jenkins
141

Engineering Doctorate (2011)

4.3.5.1 Aberdeen (Sandy silt loam)

A torsional shear box was used for the first sampling time (post tillage 2009). However,

due to the lack of availability of this equipment, the soil strength for the three remaining

sampling times was determined using a shear vane. Therefore, the first sampling time

will be presented separately and analysed for both cohesion and angle of internal

shearing resistance (friction). For the remaining three sampling dates shear strength

data only is presented. These two different measurements were not combined and

should be interpreted independently from each other.

Table 4.15 shows there was no significant difference (p > 0.05) in cohesion or angle of

internal friction between organic (25.09o / 17.80 kPa) and conventionally managed land

(29.73o / 16.07 kPa). However, there was a significant difference (p < 0.05) between

tillage treatments for both cohesion and angle of internal friction. Where the

organically managed reduced tillage had a lower cohesion (16.14 kPa) compared to

organic plough (19.58 kPa) and conventional plough (32.3o) and minimum tillage and

disc (33.15o) have a larger angle of internal friction compared to the other treatments.

Table 4.15: Torsional shear values for internal friction (o) and cohesion (kPa) for post
tillage (April 2009) in Aberdeen.

Organic Conventional

Plough Plough and

Undersow

Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Plough Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Internal

Friction

(o)

26.35a 27.68ab 23.74a 22.59a 32.3b 33.15b 23.74a

Cohesion

(kPa)

19.58a 22.38b 16.14ac 13.13c 18.08ac 14.85ac 15.28ac

Figure 4.27 shows that there was a significant difference (p < 0.05) in shear strength (τ) 

with organically managed land (64.44 kPa) having a greater shear strength than

conventionally managed soils (55.24 kPa). There was a slight trend for a decrease in

shear strength over the cropping season; this could be related to a decrease in bulk

density or due to in field higher moisture contents during sampling post harvest

(September 2010).
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Figure 4.27: Mean value of shear strength (kPa) at each sampling point (bars show 95 %
confidence interval) in Aberdeen. LSD= 9.88

The effects of different tillage regimes (p < 0.05) are shown in Figure 4.28. The

ploughed (38.9 kPa) treatments in both organic and conventionally managed land were

significantly lower than the other treatments. The additional treatment on the

organically managed land of plough and undersown (42.5 kPa) was also significantly

lower than the other organic treatments but was not different to ploughing. This

corresponds with work by Ball et al. (1997) who showed that shear strength was four

times greater under non- ploughed land compared to ploughed land. These differences

can be attributed to soil structural compaction, soil moisture content, SOC and clay

content (Smith and Mullins, 1991). The measurements were taken on the same day and

post tillage measurements were when the soil was at field capacity moisture content; so

variation in soil moisture content was minimised. Correlation matrices were calculated

between shear strength and soil moisture content for each of the sampling times and

there was no significant correlation (see Appendix C). However, there was an

exception in the post tillage treatment (April 2010) where there was a positive

correlation (0.60) as shear strength increased moisture content decreased (Ball et al.,

1997). There was no significant difference between moisture content and tillage

treatments so this was not thought to be causing the effect. There was no difference in

the clay content (10%) of the soil between the tillage treatments. Therefore, differences

can be attributed to increasing bulk density (or compaction) and increasing SOC content

(as shown Section 4.3.1.1 SOC increases under reduced tillage regimes).
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Figure 4.28: Mean values for shear strength (kPa) in Aberdeen according to management
and tillage treatment. Bars show 95 % confidence intervals. LSD = 14.94

4.3.5.2 East Grinstead (Clay loam)

Figure 4.29 shows that there was no significant difference (p > 0.05) in shear strength

(τ) between organically managed land (86.17 kPa) and conventionally managed land 

(83.06 kPa). Post tillage (September 2009 and 2010) is significantly lower than post

harvest (for both years) as Figure 4.29. This would be expected as soil tillage would

reduce bulk density and compaction, whereas soil is compacted during harvest which

increases soil shear strength (Hamza and Anderson, 2005). There was an overall

increase in shear strength over two cropping seasons as expected.
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Figure 4.29: Mean value of shear strength (kPa) in East Grinstead at each sampling point
(bars show 95 % confidence interval). LSD = 10.29

The differences between tillage regimes (p < 0.05) are shown in Figure 4.30. All the

treatments were significantly different from each other with organic minimum tillage

having the highest shear strength (100.9 kPa) and the lowest was organic plough (71.44

kPa). Correlation matrices were calculated between shear strength and soil moisture

content for each of the sampling times and there was no significant correlation (see

Appendix C). Hence, the differences between tillage treatments are more likely to be

related to SOC content. There was a significant interaction (p < 0.05) between

management (organic or conventional), tillage treatment and time; whereby organic

minimum tillage at the final post harvest sampling has the highest shear strength.
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Figure 4.30: Mean values for shear strength (kPa) in East Grinstead according to
management and tillage treatment. Bars show 95 % confidence intervals. LSD= 6.15

4.3.5.3 Huntingdon (Clay)

Figure 4.31 shows that organically managed land (83.71 kPa) had a significantly higher

(p < 0.05) shear strength compared to conventional management (64.61 kPa). This

difference was not identified between arable fields in the field scale study (Chapter 3);

this was thought to be due to sampling occurring at different stages within the tillage

regime. Most notably, some fields were sampled after tillage (which would reduce

shear strength) and other fields were sampled where direct drilling was used. This plot

scale study allowed differences in shear strength as an indicator of soil structure to be

identified. The main difference between organically and conventionally managed land

was during the first sampling time (April 2009), the conventionally managed shear

strength increases considerably post harvest (September) to a similar level to the

organically managed soil. Post tillage (April 2009) had a significantly (p < 0.05) lower

shear strength than post harvest (September 2009) as expected. This was more apparent

in the conventionally managed soil.
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Figure 4.31: Mean value of shear strength (kPa) in Huntingdon at each sampling point
(bars show 95 % confidence interval). LSD = 11.87

The differences between tillage regimes (p < 0.05) are shown in Figure 4.32. All the

treatments were significantly different from each other with organic reduced tillage

having the highest shear strength (100.9 kPa) and the lowest was organic plough (71.44

kPa). Correlation matrices were calculated between shear strength and soil moisture

content for each of the sampling times and there was no significant correlation.

Therefore, the difference can be explained through differences in SOC; the organic

minimum tillage had a significantly higher SOC content (20.04 g kg-1) compared to the

other conventional tillage treatments. Increasing levels of SOC help to improve soil

structure and increases in soil bulk density also help to improve soil shear strength (Ball

et al., 1997). This is a positive due to increasing vehicle access during changing

climatic conditions without causing damage to soil structure. There was no significant

interaction (p > 0.05) between management (organic or conventional), tillage treatment

and time.
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Figure 4.32: Mean values for shear strength (kPa) in Huntingdon according to
management and tillage treatment. Bars show 95 % confidence interval. LSD= 17.05

4.3.5.4 Comparative Summary

The three sites were compared using only two tillage treatments (reduced tillage and

plough) and one sampling point (post harvest - September 2009) as this data was

available for all three sites. Overall, there was no outright trend for either organic or

conventional soil to have higher shear strength. In Figure 4.33, it is possible to see that

there was a significant difference (p < 0.05) in shear strength between the soil textures.

Whereby, clay loam had the highest (103.66 kPa), clay (88.22 kPa) and the lowest was

sandy silt loam (55.45 kPa). These values correspond with the data presented in the

field scale study (Chapter 3) where the clayey soils had a significantly higher shear

strength (71.60 kPa) compared to the other soil textures. The main difference in tillage

regime was shown for the sandy silt loam where the ploughed treatment reduces the

shear strength by almost 50 % compared to the reduced tillage. This finding is similar

to work by Ball et al. (1997) who also noted a decrease in shear strength with increasing

tillage intensity.
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Figure 4.33: Mean values for shear strength (kPa) for all three soil textures, management
(organic / conventional) and tillage treatment (reduced tillage / plough). Bars show 95 %
confidence intervals. LSD = 10.27

4.3.6 Bulk Density (ρb) and Total Porosity

Bulk density (ρb) is a combination of solid and pore spaces (Brady, 1990). It reveals the

ease of root penetration and water transmission which can be altered by management

practices and land use (Ashman and Puri, 2002). ρb is affected by texture, structure,

compaction and the SOC content. ρb can be used to determine the current state of the

soil structure, for example, the level of compaction. However, depending upon the

sample size, it may omit macropores between peds are significant in structure and can

be more controlling in terms of water movement (Smith and Mullins, 1991).

4.3.6.1 Aberdeen (Sandy silt loam)

Table 4.16 shows that when comparing organically and conventionally managed soils

irrespective of different tillage regimes, there was no significant difference (p > 0.05)

between organically managed soil (1.02 g cm-3) and conventionally managed soil

(1.03 g cm-3). There was a significant difference between the tillage systems (p < 0.05)

with the conventionally managed reduced tillage (rotavator) having the lowest bulk

density (0.99 g cm-3) compared to the other systems. There was a significant difference

between the tillage treatments on organically managed land; whereby the reduced tillage

and rotavator had the lowest bulk density (0.98 g cm-3). The undersown treatment was



Chapter 4: Plot scale studies of organic farming and tillage regime

Laura Hathaway-Jenkins
149

Engineering Doctorate (2011)

not significantly different from any of the other organic treatments. There was a

significant difference (p < 0.05) due to the time of sampling – the bulk density increased

over time from post tillage to post harvest. Abid and Lal (2008b) suggest that bulk

density is usually higher under reduced tillage systems; it agrees with Lipiec et al.

(2006) who found that ploughed soils had higher bulk density.

Total porosity is directly related to bulk density, as bulk density increases total porosity

decreases and vice versa. The data for total porosity is not shown for this reason;

however some differences are as follows. There was no significant difference

(p > 0.05) in total porosity when organically managed soil (61.30 %) was compared

with conventionally (60.95 %) managed soil. This is mostly due to the length of time of

this study; where differences in total porosity are not shown in the short term. There

was a significant difference (p < 0.05) in porosity due to tillage treatment where

ploughed (58.87 %) for both organic and conventional was lower than all the other

treatments. There was a decrease in porosity over the two cropping seasons between

post tillage and post harvest.

Table 4.16: Tillage treatment, management and sampling timings for bulk density (g cm-3)
in Aberdeen. Different letters are significantly different (p < 0.05).

Time Organic Conventional Mean

Plough Plough and

Undersow

Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Plough Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Post

Tillage

0.99 1.03 0.89 0.84 0.94 0.89 0.90 0.91a

Post

Harvest

1.15 1.17 1.06 1.06 1.18 1.12 1.03 1.10a

Post

Tillage

1.11 0.99 0.98 0.98 1.02 0.98 0.93 1.00b

Post

Harvest

1.09 1.21 1.11 1.05 1.21 1.08 1.11 1.11b

Mean 1.08a 1.10a 1.01a 0.98a 1.09a 1.01a 0.99ab

4.3.6.2 East Grinstead (Clay loam)

Table 4.17 shows that when comparing organically and conventionally managed soils

irrespective of different tillage regimes, there was a significant difference (p < 0.05)

where the organically managed soil (1.05 g cm-3) has a lower density than the
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conventionally managed soil (1.32 g cm-3). There was no significant difference

between the tillage systems (p > 0.05). There was a significant difference (p < 0.05)

due to the time of sampling. Post tillage in the first year (1.09 g cm-3) had the lowest

value; then post harvest the bulk density increases considerably and is significantly

different. This indicates a loosening and compaction of soil by farm equipment during

harvesting in the first year of sampling. In the second year, post tillage the bulk density

is reduced (1.18 g cm-3) but remains constant with post harvest. This is because the

differences in bulk density between tillage systems usually disappear at the end of the

growing season due to consolidation (Moret and Arrue, 2007). There was a significant

difference (p < 0.05) in porosity where organic (60.19 %) was higher than

conventionally (50.05 %) managed land. There was no significant difference in

porosity that could be attributed to time of sampling or tillage treatments.

Table 4.17: Tillage treatment, management and sampling timings for bulk density (g cm-3)
in East Grinstead. Different letters are significantly different (p < 0.05).

Time Organic Conventional Mean

Plough Minimum Tillage Plough Minimum Tillage

Post Tillage 1.11 1.02 1.07 1.14 1.09a

Post Harvest 1.15 1.12 1.51 1.34 1.29b

Post Tillage 1.11 0.98 1.24 1.39 1.18ab

Post Harvest 0.94 0.97 1.34 1.47 1.18ab

Mean 1.08a 1.02a 1.29b 1.35b

4.3.6.3 Huntingdon (Clay)

Table 4.18 shows that when comparing organically and conventionally managed soils

irrespective of different tillage regimes, there was no significant difference (p > 0.05)

between the organically managed soil (1.22 g cm-3) and the conventionally managed

soil (1.23 g cm-3). There was a significant difference between the tillage systems

(p > 0.05). In the conventionally managed soils; the reduced tillage (disc) has a lower

bulk density compared to the other treatments. In the organically managed soil, the

direct drill had a significantly higher bulk density compared to both the other

treatments. This agrees with Lipiec et al. (2006); who determined that bulk density

decreased under ploughed tillage regimes but this disagrees with Abid and Lal (2008b).
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This also affected the total porosity which increased under ploughing compared to direct

drill. There was a significant difference (p < 0.05) due to the time of sampling; as bulk

density increased between the two sampling times from post tillage to post harvest

which could be related to soil compaction during harvest.

There was no significant difference (p > 0.05) in porosity between organic (60.05 %)

and conventionally (60.61 %) managed land. There was a significant difference

(p < 0.05) in porosity due to tillage treatment where direct drill (53.93 %) was lower

than all the other treatments in both organically and conventionally managed soils.

There was a decrease in porosity over the cropping season. This would be as expected

due to compaction during harvesting.

Table 4.18: Tillage treatment, management and sampling timings for bulk density (g cm-3)
in Huntingdon. Different letters are significantly different (p < 0.05).

Time Organic Conventional Mean

Plough Reduced

tillage (disc)

Direct

drill

Plough Reduced

tillage (disc)

Direct drill

Post

Tillage

1.05 1.20 1.30 1.20 1.00 1.15 1.15a

Post

Harvest

1.15 1.12 1.51 1.39 1.10 1.51 1.28b

Mean 1.10a 1.16a 1.41b 1.30b 1.05a 1.33b

4.3.6.4 Comparative Summary

The three sites were compared using only two tillage treatments (reduced tillage and

plough) and one cropping season. Overall, there was no outright trend for either

organic or conventional soil to have higher bulk density. Reganold and Palmer (1995)

found that organic farms had a significantly lower bulk density when compared with

conventional farms; this research does not support this finding. In Figure 4.34, it is

possible to see that there was no significant difference (p > 0.05) in bulk density

between the soil textures. It would be anticipated that there should be a difference

between soil textures; with clay and clay loam having a higher bulk density however

this was not found in this research. As total porosity is related to bulk density; there

was also no significant difference (p > 0.05) between different soil textures. There was
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also no significant interaction with tillage regime for the three different soil textures and

land management (organic or conventional).

Figure 4.34: Mean values for bulk density (g cm-3) for all three soil textures, management
(organic/ conventional) and tillage treatment (reduced tillage / plough). (Bars show 95 %
confidence levels). LSD = 0.32

4.3.7 pH

Armstrong Brown (2000) proposed that pH was a good indicator of soil health and

sustainability of a farming system. Soil pH is governed by inherent soil properties

including clay content and SOC which may be affected through land management, such

as rotations and plant residues (Clark et al., 1998). Soil buffering (capacity of a soil to

resist change) is highly significant as it helps to maintain equilibrium within the soil

(Brady, 1990). Soil pH controls the release of nutrients and the effects of increasing

acidity on crop production and biological activity have been well documented (Brady,

1990).

4.3.7.1 Aberdeen (Sandy silt loam)

Figure 4.35 shows that there was a significantly (p < 0.05) lower pH for organically

managed land (pH 6.06) compared to conventional management (pH 6.44). It is

important to note that the trend for organically managed land to have a lower pH was

present in the initial sampling (pre- tillage treatments). This difference was maintained

over the sampling season and there was a significant trend (p < 0.05) for the pH to
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increase over time from the initial sample (February 2009) to final post harvest

(September 2010) for both organic and conventionally managed land. Differences in

pH over time can be due to decomposition of SOC during warming weather (in June

2009) or due to a build up of salts which subsequently leach during wetter periods

(Brady, 1990).

Figure 4.35: Mean value of pH in Aberdeen at each sampling point (bars show confidence
95 % interval). LSD = 0.15

The effects of different tillage regimes (p < 0.05) are shown in Figure 4.36. There was

no difference between tillage treatments; however the additional treatment on the

organically managed land (plough and undersow) had a significantly lower pH (5.93)

but it was not different from the organically managed ploughed treatment. The lack of

difference between tillage treatments supports the findings of Edwards et al. (1992).
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Figure 4.36: Mean values for pH in Aberdeen according to management and tillage
treatment (bars show confidence interval 95 %). LSD = 0.38

There was no significant difference (p > 0.05) for pH between top soil depths (0 – 75

and 75 – 150 mm). There was no significant interaction (p > 0.05) between land

management (organic and conventional), sampling time or tillage treatment (ploughed

or reduced tillage).

4.3.7.2 East Grinstead (Clay loam)

Figure 4.37 shows that overall organically managed land (pH 6.43) has a significantly

lower (p < 0.05) pH compared to conventional management (pH 6.75). It is important

note that this difference is present in the initial sampling (February 2009) and it has

been maintained over the cropping seasons. There was a significant difference in pH

due to sample timing with a small decrease over time. For the organically managed

land, the pH increased slightly after tillage (April 2009 and 2010) before decreasing

through to post harvest (September 2010). This was because there are seasonal

variations due to soil moisture content and the ionic concentration of soil solution;

which increase the levels of salts over time reducing soil pH (Edwards et al., 1992).
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Figure 4.37: Mean value of pH in East Grinstead at each sampling point (bars show 95 %
confidence interval). LSD = 0.23

Figure 4.38 shows the effect of tillage regime on soil pH (p < 0.05). The ploughed and

minimum tillage treatments in organically managed land had significantly lower pH

than the other treatments (pH 6.42 and pH 6.45 respectively). The conventionally

ploughed soil had significantly higher pH than the other treatments (pH 6.92). Changes

in pH can be due to changing rotation and plant residue management; however these

were the same on the tillage plots so this is not the contributing factor (Edwards et al.,

1992). Therefore, the differences can be linked to the starting conditions whereby the

organically managed land had a lower pH. Doran (1980) suggested that pH lowered as

total N increases as this increases the microbial biomass. However there was no

significant difference in total N between organic and conventionally managed land or

between different tillage regime (see total C:N ratio Section 4.3.8).
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Figure 4.38: Mean values for pH in East Grinstead according to management and tillage
treatment (bars show 95 % confidence interval). LSD = 0.10

There was no difference (p > 0.05) for pH between top soil depths (0 – 75 and 75 –

150 mm). There was no interaction (p > 0.05) between land management (organic and

conventional), time of sampling and tillage treatment (ploughed or reduced tillage).

4.3.7.3 Huntingdon (Clay)

Figure 4.39 shows that there was no significant difference (p > 0.05) in pH between

organically managed land and conventional management. There was a significant

seasonal effect on pH for organically managed land with post tillage (April 2009)

increasing the pH which then decreases over time. The seasonal effect is slightly

different for the conventionally managed land which remains almost constant with a

small decrease during stem extension (June 2009). The buffering capacity (resistance to

change) of a clay soil is greater and hence there was no significant difference between

organic and conventionally managed soils (Brady, 1990).
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Figure 4.39: Mean value of pH in Huntingdon at each sampling point (bars show 95 %
confidence interval). LSD =0.15

The effects of different tillage regimes (p > 0.05) are shown in Figure 4.40. The

treatments were not significantly different from each other. There was a trend for the

organic land in plough and direct drill to have a slightly higher pH but this was not

significant. This lack of difference can again be attributed to the nature of the clay soil

which is more resistant to changes in pH (Brady, 1990).

Figure 4.40: Mean values for pH in Huntingdon according to management and tillage
treatment (bars show 95 % confidence interval). LSD = 0.12
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There was no difference (p value > 0.05) for pH between top soil depths (0 – 75 and 75

– 150 mm). There was a significant interaction between sample timings during the two

years, management (organic or conventional) and tillage regime type (p < 0.05). This

showed decreasing pH from post tillage samples to post harvest.

4.3.7.4 Comparative Summary

The three sites were compared using only two tillage treatments (reduced tillage and

plough) and the first year of data. Overall, there was a significantly lower pH for

organically managed land (6.36) compared to conventionally managed land (6.56). This

was due to the initial conditions; in both the sandy silt loam and clay loam where

organically managed land had a lower pH and this trend continued throughout the

season. In Figure 4.41, it is possible to see there was a significant difference (p < 0.05)

in pH between the soil textures. Whereby, the sandy silt loam (pH 6.19) was lower than

the other two textures which were not significantly different from each other (pH 6.61

and 6.59 clay and clay loam respectively). This was due to their soil series and

association; the sandy silt loam (Countesswells) is inherently slightly acidic. Whereas,

the clay (Evesham 3) is naturally calcareous and the clay loam (Wickham 1) which can

be calcareous. The soils are all slightly acidic which is influenced by the crops grown

previously mainly grass which thrives in these soil conditions (Brady, 1990).

Figure 4.41: Mean values for pH for all three soil textures, management (organic /
conventional) and tillage treatment (reduced tillage / plough). Bars show confidence 95 %
interval. LSD = 0.308
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4.3.8 Total C:N ratio

The SOC stored in the soil is dependent on the balance between the inputs of SOM and

the outputs of mineralization. The total C:N ratio provides information regarding the

degree of humification of SOC and the availability of nutrients (Martins et al., 2011).

Typically, the total C:N ratio of arable (cultivated soils) ranges between 8 and 15

(Brady, 1990). The amount of SOC and its degree of humification can be affected by

land use or tillage regime (Lettens et al., 2004).

4.3.8.1 Aberdeen (Sandy silt loam)

Table 4.19 shows that when comparing organically and conventionally managed soils

irrespective of different tillage regimes, there was a significant difference (p < 0.05)

between organically managed soil (13.03) and conventionally managed soil (13.83).

The total C:N ratio was within the naturally occurring norm as described by Brady

(1990). The higher values for total C:N ratio would correspond with the measurements

of SOC which were greater under conventionally managed soils. Martins et al. (2011)

suggest that the higher the total C:N ratio the lower the amount of humification;

allowing a build up of SOC. There was no significant difference between the tillage

systems (p > 0.05). The undersown treatment was not significantly different from any

of the other organic treatments. This was because the plot scale study was a short

duration (two years) and hence differences in total C:N ratio was not identified in this

time frame. There was a significant difference (p < 0.05) due to the time of sampling –

the total C:N ratio increased over time. There were no significant interactions between

sampling time, tillage regime and management (organic or conventional).
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Table 4.19: Tillage treatment, management and sampling timings for Total C:N in
Aberdeen. Different letters are significantly different (p< 0.05).

Time Organic Conventional Mean

Plough Plough

and

undersow

Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Plough Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Post

Tillage

12.82 12.77 12.72 12.84 13.60 13.57 13.62 13.19a

Post

Harvest

13.15 12.77 13.08 13.26 13.82 14.07 13.41 13.46b

Post

Tillage

13.40 13.26 13.28 13.36 14.02 14.08 14.20 13.66c

Post

Harvest

13.20 13.54 12.96 13.17 14.19 14.18 14.27 13.72c

Mean 13.06a 13.09a 12.94a 13.08a 13.82b 13.90b 13.82b

4.3.8.2 East Grinstead (Clay loam)

Table 4.20 shows that when comparing organically and conventionally managed soils

irrespective of different tillage regimes, there was no significant difference (p > 0.05)

between organically managed soil (10.59) and conventionally managed soil (10.52).

The measured values for total C:N ratios are within the natural norms for arable land as

described by Brady (1990). There was no significant difference between the tillage

systems (p > 0.05). There was a significant difference due to the time of sampling – the

initial level was significantly lower (p < 0.05) and there was a general increase in total

C:N ratio over the two cropping seasons. There were no significant interactions

between sampling time, tillage regime and management (organic or conventional).

Table 4.20: Tillage treatment, management and sampling timings for Total C:N in East
Grinsteaad. Different letters are significantly different (p < 0.05).

Time Organic Conventional Mean

Plough Minimum Tillage Plough Minimum Tillage

Post Tillage 9.90 9.57 9.76 9.75 9.75a

Post Harvest 10.96 10.89 11.01 10.41 10.69b

Post Tillage 10.74 10.31 10.75 10.96 10.82b

Post Harvest 11.20 11.11 10.86 10.62 10.96b

Mean 10.70a 10.47a 10.59a 10.44a
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4.3.8.3 Huntingdon (Clay)

Table 4.21 shows that when comparing organically and conventionally managed soils

irrespective of different tillage regimes, there was no significant difference (p > 0.05)

between organically managed soil (9.43) and conventionally managed soil (9.48). The

value of total C:N ratios are within the natural norms outlined by Brady (1990). There

was a significant difference between the tillage systems (p < 0.05) with the conventional

direct drill having a lower total C:N ratio (9.28) compared to the other systems. This

aligns with the research by Kasper et al. (2009); who determined that total C:N ratio

was highest under traditional ploughed systems. This difference was attributed to less

total N being lost from the system under conventional plough compared to reduced

tillage systems. There was no significant difference due to the time of sampling or any

interactions with tillage treatments.

Table 4.21: Tillage treatment, management and sampling timings for Total C:N in
Huntingdon. Different letters are significantly different (p< 0.05).

Time Organic Conventional Mean

Plough Reduced

tillage (disc)

Direct

drill

Plough Minimum

tillage (disc)

Direct

drill

Post

Tillage

9.38 9.57 9.43 9.70 9.58 9.24 9.43a

Post

Harvest

9.56 9.47 9.47 9.34 9.39 9.33 9.48a

Mean 9.47ab 9.52a 9.45ab 9.52a 9.49ab 9.28b

4.3.8.4 Comparative Summary

The three sites were compared using only two tillage treatments (reduced tillage and

plough) and one cropping season. Figure 4.42 shows that overall, there was a

significantly lower total C:N ratio (p < 0.05) for organically managed land (10.87)

compared to conventionally managed land (11.11). This indicated a greater level of

humification in organically managed land and potentially lowers nutrient availability

(Martins et al., 2011). In Figure 4.42, it was possible to see there was a significant

difference in total C:N between the soil textures (p < 0.05). Whereby, the lowest total

C:N ratio was in the clay soil (9.43), followed by clay loam (10.22) and the highest was

the sandy silt loam (13.31). This agrees with research by Hassink et al. (1992) who
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found that clay and clay loam soils protect SOC from humification by the location of

SOC in small soil pores; hence reducing the total C:N ratio. There was no significant

difference between different tillage systems (p > 0.05).

Figure 4.42: Mean values for Total C:N ratio for all three soil textures, management
(organic / conventional) and tillage treatment (reduced tillage / plough). Bars show 95 %
confidence interval. LSD= 0.48

4.3.9 Infiltration Rate

Infiltration rate was measured in situ using a Decagon mini disc tension infiltrometer. It

is important to state that there is a caveat with this method; it is based on a small surface

area (45 mm diameter). However, it provided a viable method within the time and

budget constraints. Therefore, five replicates were measured on each plot at each site,

as a means to obtain a more representative estimate.

4.3.9.1 Aberdeen (Sandy silt loam)

Overall, when comparing the effects of organic and conventional management of soils

irrespective of different tillage regimes, there was a significant difference (p < 0.05)

between organically managed soil (10.32 mm hr-1) and conventionally managed soil

(5.45 mm hr-1). A similar difference was found by Zeiger and Fohrer (2009) who

monitored rainfall runoff and infiltration on organic and conventional arable farms;

where organic farms had a significantly higher infiltration rate. This is in contrast to the

field scale study (Chapter 3) where there was no difference between organic and
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conventionally managed arable land; whereas organically managed grass land was

higher than conventional grass land.

Table 4.22 shows that there was a significant difference between the tillage systems

(p < 0.05) with the organically managed plough having higher infiltration rates to the

other organic systems. This does not agree with research by Abid and Lal (2008b) who

stated that infiltration rates were higher under no tillage compared with ploughing. This

is due to increasing continuity of pores especially macropores; which under this short-

term trial would not have been fully established in the reduced tillage systems.

However, in the ploughed system soil structure would be altered and improve in the

short-term and reducing the bulk density of the soil which would increase total porosity

(Lipiec et al., 2006). Moret and Arrue (2007) determine that infiltration rate is

governed by macropores and even though these form a small proportion of total

porosity; they are very sensitive to compaction. Moret and Arrue (2007) found that

infiltration rate could be related to tillage intensity, increasing intensity (ploughing)

would decrease infiltration rate; this research does not support this. This could be due

to ploughing allowing more water to flow through the vertical cracks and pore spaces

compared to the more compacted reduced tillage treatments. However, in longer

duration experiments reduced tillage treatments form a more porous soil structure which

would improve infiltration rates; this short duration study does not show this.

There was a significant difference (p < 0.05) due to sampling time – where the post

tillage (April 2009 and 2010) infiltration rate was higher than the post harvest

(September 2009 and 2010). This difference was significant across all tillage treatments

and management (organic and conventional). This research agrees with Cameira et al.

(2003) who found that infiltration rates were always greater at the beginning of the

cropping season; which can be related to a reduction in compaction during tillage

operations.
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Table 4.22: Tillage treatment, management and sampling timings for infiltration rate
(mm hr-1) in Aberdeen. Different letters are significantly different (p < 0.05).

Time Organic Conventional Mean

Plough Plough and

undersow

Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Plough Reduced

tillage

(disc)

Reduced

tillage

(rotavator)

Post

Tillage

18.36 24.25 12.66 12.66 10.98 6.24 4.87 10.96a

Post

Harvest

9.78 10.44 7.50 9.72 6.42 4.62 3.90 6.99bc

Post

Tillage

14.80 21.18 4.22 7.98 10.26 4.98 5.82 8.01b

Post

Harvest

11.70 12.82 7.38 7.08 2.04 2.20 1.89 5.38c

Mean 13.66a 17.17a 7.94b 9.36b 7.42b 4.51c 4.12c

4.3.9.2 East Grinstead (Clay loam)

Overall, when comparing organically and conventionally managed soils irrespective of

different tillage regimes, there was a significant difference (p < 0.05) between

organically (3.02 mm hr-1) and conventionally managed soil (0.94 mm hr-1). This was

expected and correlates with Zeiger and Fohrer (2009) and Lampurlanés and Cantero-

Martínez, (2006).

Table 4.23 shows that there was a significant difference between the tillage systems

(p < 0.05) with the organic minimum tillage and plough having higher infiltration rates

to the other conventional systems. The organically managed ploughed treatment had a

higher infiltration rate compared to minimum tillage. This was the same trend as found

in Aberdeen, whereby under the minimum tillage the benefit of improved pore

continuity had not developed in this short-term trial. There was no difference between

the conventional treatments. This lack of difference was also shown by Lal and

Vandore (1990) who found that tillage intensity did not have an effect on equilibrium

infiltration rates. There was a significant difference (p < 0.05) due to sampling time –

where the post harvest infiltration rate in the first year was lower than the other times.

This can be related to compaction post harvest and a decrease in infiltration capacity

(Dunn and Phillips, 1991).
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Table 4.23: Tillage treatment, management and sampling timings for infiltration rate
(mm hr -1) in East Grinstead. Different letters are significantly different (p < 0.05).

Time Organic Conventional Mean

Plough Minimum Tillage Plough Minimum Tillage

Post Tillage 2.38 0.93 0.97 0.65 1.23a

Post Harvest 3.65 3.26 0.91 0.83 2.13b

Post Tillage 3.93 2.80 0.90 0.91 2.17b

Post Harvest 4.47 2.74 1.42 0.88 2.38b

Mean 3.61a 2.43b 1.05c 0.82c

4.3.9.3 Huntingdon (Clay)

Overall, when comparing infiltration in organically and conventionally managed soils

irrespective of different tillage regimes, there was no significant difference (p > 0.05)

between organically managed soil (3.35 mm hr-1) and conventionally managed soil

(3.21 mm hr-1). Table 4.24 shows there was a significant difference between the tillage

systems (p < 0.05) with the organic plough having higher infiltration rates compared to

the other organic treatments. There was no difference between the conventional

treatments. There was no significant difference (p > 0.05) due to sampling time. It is

thought that soil compaction, due to the nature of the Evesham clay, was a contributing

factor to the lower levels of infiltration rates and lack of significant differences and

interactions between treatments.

Table 4.24: Tillage treatment, management and sampling timings for infiltration rate
(mm hr-1) in Huntingdon. Different letters are significantly different (p < 0.05).

Time Organic Conventional Mean

Plough Reduced

tillage

(disc)

Direct drill Plough Reduced

tillage

(disc)

Direct drill

Post

Tillage

3.91 2.45 3.01 3.91 2.45 3.01 3.12a

Post

Harvest

5.09 2.86 2.78 3.60 2.82 3.46 3.43a

Mean 4.50a 2.65b 2.90b 3.75ab 2.64b 3.24ab

4.3.9.4 Comparative Summary

The three sites were compared using only two tillage treatments (reduced tillage and

plough) and only one cropping season. Overall, there was a higher infiltration rate

(p < 0.05) for organically managed land (5.68 mm hr-1) compared to conventionally
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managed land (3.82 mm hr-1). This can be related to an improved maximum water

holding capacity for organically managed land. This result was not found in the field

scale study (Chapter 3) as differences between organic and conventionally managed

land were only found in grass land. In Figure 4.43, it is possible to see there was a

significant difference (p < 0.05) in infiltration rate between the soil textures. Whereby,

the lowest was clay loam (1.7 mm hr-1) compared the other two textures (3.5 mm hr-1

and 8.94 mm hr-1 clay and sandy silt loam respectively). These values correspond to the

measured infiltration rate in the field scale study; where clay loam was the lowest

(1.47 mm hr-1) and the clay was higher (9.87 mm hr-1). There was no sandy silt loam

measured; however the sandy loam had a high infiltration rate (7.52 mm hr-1). This

could be explained by the cracking nature of clay soils and the coarse texture of the

sandy loam.

There was an effect due to tillage treatment (p < 0.05) where the minimum tillage was

significantly lower (3.65 mm hr-1) compared to ploughed treatment (5.85 mm hr-1).

Minimum tillage systems usually improve infiltration rates due to increases in both total

porosity (not shown in this research) and improving continuity of pores this has not

established in this two year study. There was no significant difference between the two

sampling times for the first year of cropping.

Figure 4.43: Mean values for infiltration rates (mm hr-1) for all three soil textures,
management (organic / conventional) and tillage treatment (minimum tillage / plough).
Bars show 95 % confidence intervals. LSD = 2.2
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4.3.10 Workability

This section looks at the effect that changing land management (organic) and tillage

regime have on soil workability. Knowledge of the workability of an arable soil,

whether managed organically or conventionally, is important as it provides an

estimation of the number of days when different soils are workable for cultivation and

seedbed preparation (Rounsevell, 1993; Droogers et al., 1996). This governs the ease of

creation of seedbeds suitable for seed germination and crop growth. Workability is not

a precise soil condition as it does depend on both the operator and the available

machinery. If the soil is worked when the conditions are unsuitable it can cause damage

to the soil structure which can persist for years (Earl, 1997). Good workability provides

a longer window of opportunity for working the land (work days) without causing

damage to soil structure, especially compaction or smearing of clay soils (Cooper et al.,

1997). This window of opportunity is altered by changing climatic conditions in the

UK namely warmer wetter winters; with different rainfall patterns altering both duration

and intensity of rainstorms (Godwin and Dresser, 2003).

Whilst, there has been much literature produced during the 1970s and 1980s (see

Rounsevell, 1993); less workability research has been reported in recent years. Watts

and Dexter (1998) related soil physical properties and friability through tensile strength

for different soil texture but tensile strength was not explored in this project.

Kouwerhoven et al. (2002) investigated the effect of changing to shallow ploughing for

workability in organic farming in the Netherlands. However, there had been no

attempts to investigate differences in workability due to changing tillage regime and

conversion to organic status in the UK. Hence this research fills this gap by

investigating soil workability (and number of work days available) of three different

arable soils; sandy silt loam, clay loam and clay, under both organic and conventional

management.

4.3.10.1 Model Options and Methodology

Rounsevell (1993) indentified two main types of workability models: empirical and

deterministic. Deterministic models combine processes to derive soil moisture status

and create simulations (Toro and Hansson, 2004). This can present a large
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disadvantage; as a relationship between soil water potential, work-days and hydraulic

conductivity must first be determined empirically (Rounsevell, 1993). Hence, the

models used in this research were empirically based. Thomasson (1987) developed a

model that is based on long-term median weather data (such as Smith and Trafford,

1976), which is then made site specific through altering the number of workdays based

upon soil properties. Thomasson (1987) suggested a relative value to determine the

ease of soil workability giving a specific soil a rating between a to d (based on soil

wetness and water retention with a being lowest and d being highest). These values are

based upon wetness class, and retained water capacity (through inherent soil physical

properties such as SOC content, percentage clay content and soil structure). The

numbers of spring and autumn workdays, for both organic and conventionally managed

land on two soil textures (clay loam and clay), were calculated using Thomasson (1987)

(see Appendix C for the detailed methodology).

Two of the many empirical models for determining workability; are outlined and the

reasons for not using in this study highlighted. Smith (1977) developed a simple model

which classified land into three textural classes and suitability of operations during a

spring day were determined. However, large soil variability within the soil textural

classes meant that there was a large amount of error. Hence, this method was not used.

Soil moisture budgets are also used to determine workability such as the Versatile Soil

Moisture Budget (Baier and Roberston, 1966). This method divided soil into six

moisture zones; allowing the potential soil moisture deficit based upon daily

precipitation and evapotranspiration to be calculated. A work-day existed if the

calculated moisture content in each of the top three zones was less than 99.5 % of field

capacity (Rutledge and Russell, 1971). This method is very labour intensive requiring

detailed field knowledge of soil moisture contents at different depths and hence this

method was not used.

Firstly, the number of work-days was calculated using Thomasson (1987). Then the

following two methods were used to determine the workability using measured data

from the three soil textures.
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1. The optimum moisture content for tillage (determined by Mueller et al., 2003) is

characterised as being 90 % of the field capacity (pF2) moisture content. This

value was compared against actual soil moisture contents in the field to

determine whether operations could take occur. This method was chosen as

provides a snapshot of workability at the time of sampling.

Optimum moisture for tillage (%) = Equation 4.4

2. The workability index (Boekel, 1963) shown in equation 4.5 was calculated for

each of the three soil types, different tillage regimes and management

combinations. This is based upon field capacity (pF2) and lower plastic limit

(LPL) measurements. For good workability the index value should be greater

than 1. This method was chosen as it provides a snapshot of workability at the

time of sampling and incorporates soil textural properties.

Workability index = LPL/pF2 Equation 4.5

4.3.10.2 Work-days (Thomasson, 1987)

This section presents the findings from applying Thomasson’s (1987) model of work

days to the two different areas and soil textures (clay loam and clay). As the climate

data in Smith and Trafford (1976) is limited to the England and Wales it was not

possible to model the effects of climate changing on the soils in Aberdeen (sandy silt

loam). This model does not have high enough resolution to distinguish between organic

and conventional management. Therefore, more work is needed to determine this

through the relationship with SOC contents. However, it is able to depict yearly

differences due to change in annual precipitation. Soil moisture content governs

workability of a soil and is strongly related to the amount and timing of precipitation.

Changing climatic conditions suggest that increasing winter rainfall may alter the

timings of autumn work days and push spring work days further back into April

(Cooper et al., 1997).

Cooper et al. (1997) describe the effects of changing climatic conditions on four

different soil types in Scotland. The results of Cooper et al. (1997) show that there was

a substantial decrease in the number of autumn work days in the modified climatic
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conditions due to increased rainfall. This agrees with the modelling of clay and clay

loam soils; whereby increasing precipitation between the sampling years reduced the

number of work days. The precipitation data collected in Aberdeen shows the

variability in rainfall during winter with total rainfall between September to December

in 2009 (545 mm) compared to 2010 (396 mm). Cooper et al. (1997) also suggest a

slight improvement of the number of work days in April due to an increase in

temperature and potential evapotranspiration. This would imply that the workability

specifically for seedbed creation would be better during spring. Organic farmers grow

more spring cereals, to reduce competition of weeds during establishment (Vakali et al.,

2011). Therefore, changing climatic conditions towards improved work days in April

would be beneficial for spring crops.

4.3.10.3 Optimum Water Content for Tillage (Mueller et al., 2003)

The percentage moisture content of the three different soils was measured in situ using a

theta probe. This was measured at two different times during the cropping season;

firstly close to the time of tillage operations (April) and secondly close to the time of

harvest (September). The data from these sampling times have been used as a proxy for

spring tillage operations (April) and autumn tillage operations (September). The

optimum moisture content for tillage is calculated using Equation 4.4 (Muller et al.,

2003). Comparisons between soil textures and land management can be made through

differences in the optimum moisture content for tillage and in field measured moisture

contents at the sampling time (Figure 4.44).

Sandy silt
loam

Clay Loam Clay

Optimum or below
moisture content

34.90
44.83

34.18
44.83

13.24
31.41

29.50
31.41

40.78
33.17

48.62
33.17

Organic

Above Optimum
moisture content

34.44
45.52

35.34
45.52

12.38
28.91

31.55
28.91

39.53
32.97

44.62
32.97

Conventional

April Sept April Sept April Sept
Figure 4.44: Average measured soil moisture conditions (%) shown in bold and the
optimum moisture content for tillage shown in italic for organic and conventional
management and soil texture. Not significantly different (p> 0.05).

There is no difference between organic and conventional management or between

spring and autumn operations for sandy silt loam or clay. Sandy silt loam always

exhibited workability at the sampling time whereas clay was never workable in this
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study. The samples were taken in March and September when the clay soil had higher

water content. The only difference between organic and conventional management was

shown in clay loam during the autumn sampling times. This showed that tillage on the

conventional land is more likely to cause structural damage.

4.3.10.4 Workability Index (Boekel, 1963)

Table 4.25 shows that all of the values for workability index were less than 1, and hence

would indicate poor soil workability at the time of soil sampling. There was a

difference within tillage regimes where for both organic and conventional management

the plough tillage regime has the highest workability index. There was no overall

difference between organic and conventional management for workability. Thomasson

(1987) provides information for each soil textural class (based on UK soil textural

classification). He suggests that for a sandy silty loam an average field capacity (0.05

bars) would be 35.0 % and the lower plastic limit would be 32.0 % providing a

workability index of 1.09. The sandy silt loam values for both field capacity and lower

plastic limits are higher than these values. The sandy silt loam has a high SOC level

which helps to increase the amount of water held by a soil and hence would move the

plastic limit to a higher level (Marshall and Holmes, 1988).

Table 4.25: Soil workability index (LPL and Field capacity) for sandy silt loam (Aberdeen)
with average SOC for organic 35.44 g kg-1 and conventional 37.21 g kg-1. Different letters
show significant differences (p < 0.05).

Management Tillage Regime Field capacity
(%)

Lower plastic
limit (%)

Workability
index

Organic Plough and undersow 49.11 36.74 0.75a

Organic Plough 48.48 40.25 0.83b

Organic Reduced tillage (disc) 48.63 37.45 0.77a

Organic Reduced tillage (rotavator) 50.14 36.26 0.72a

Conventional Plough 50.23 40.25 0.80b

Conventional Reduced tillage (disc) 51.42 36.34 0.71a

Conventional Reduced tillage (rotavator) 49.58 36.76 0.74a

Average from Thomasson (1987) 35.00 32.00 1.09

Table 4.26 shows that all of the values for workability index were greater than 1, and

hence would indicate good soil workability. There was a difference within tillage

regimes with opposite trends being shown for organic and conventional. The highest

workability index in the organic management was the organic plough with the lowest

for minimum tillage. This trend was reversed for the conventional management with
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minimum tillage having the highest workability index. There was a slightly higher

workability index for the organic compared to the conventional management but it is

not significantly different. Thomasson (1987) provides information for each soil

textural class (based on UK soil textural classification). He suggests that for clay loam

an average field capacity (0.05 bars) would be 43.3 % and the lower plastic limit would

be 32.00 % providing a workability index of 1.35. The clay loam values for field

capacity were lower and plastic limits were higher (with the exception of the

conventional plough which is closest to this average). This difference in field capacity is

because the samples had a higher bulk density (1.31g cm-3) and hence lower porosity

than the averages from Thomasson (1987).

Table 4.26: Soil workability index (LPL and Field capacity) for clay loam (East Grinstead)
with average SOC for organic 16.24 g kg-1 and conventional 10.05 g kg-1. Different letters
show significant differences (p < 0.05).

Management Tillage regime Field capacity
(%)

Lower plastic
limit (%)

Workability
index

Organic Plough 34.66 48.07 1.39a

Organic Minimum tillage 35.16 40.16 1.14b

Conventional Plough 30.91 33.26 1.08b

Conventional Minimum tillage 33.34 45.49 1.36a

Average from Thomasson (1987) 43.30 32.00 1.35

Table 4.27 shows that all of the values for workability index were greater than 1, and

hence would indicate good soil workability. There was a difference within tillage

regimes especially in the conventional management. The highest workability index in

the organic management was the organic plough with the lowest for direct drill. This

trend was reversed for the conventional management with direct drill having the highest

workability index. There was a slightly higher workability index for the organic

compared to the conventional management but it is not significantly different.

Thomasson (1987) provides information for each soil textural class (based on UK soil

textural classification). He suggests that for clay an average field capacity (0.05 bars)

would be 48.0 % and the lower plastic limit would be 45.0 % providing a workability

index of 1.06. The clay values for field capacity were lower and plastic limits were

higher; this could be due to compaction within core samples which would have reduced

the field capacity. Whereas, higher than the average percentage clay was found in the
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samples measured which would require more moisture for the soil to behave in a plastic

manner.

Table 4.27: Soil workability index (LPL and Field capacity) for clay (Huntingdon) with
average SOC for organic 25.00 g kg-1 and conventional 25.00 g kg-1. Different letters show
significant differences (p < 0.05).

Management Tillage Regime Field capacity
(%)

Lower plastic
limit (%)

Workability index

Organic Plough 34.62 52.02 1.50a

Organic Reduced tillage (disc) 37.29 47.91 1.28b

Organic Direct drill 38.65 47.41 1.23b

Conventional Plough 35.01 41.26 1.18b

Conventional Reduced tillage (disc) 36.65 42.65 1.16b

Conventional Direct drill 38.26 51.80 1.35a

Average from Thomasson (1987) 48.00 45.00 1.06

4.3.10.5 Comparative summary

There was no in available work days difference between organic and conventional

management (Thomasson, 1987). This was due to the model not having a high enough

resolution to determine between two different land management systems. This model

would be useful particularly to determine the effects of changing climatic conditions

with increasing precipitation reducing the number of available work days. This would

influence the crops grown (spring or winter) and the types of tillage regimes (reduced

tillage or ploughed). Variations in optimum moisture content for tillage (Muller et al.,

2003) are small between organic and conventional management. There are differences

that can be seen due to soil texture (spatial distance could be contributing due to

climatic differences). Only clay loam shows that for the organically managed soil there

is a positive benefit for autumn operations compared to the conventionally managed

soil; this was the soil which had been managed organically for the longest period of

time. This would be expected as sandy silt loams are typically more workable

compared to clay soils. The nature and mineralogy of the clay soil means that the effect

of changing management (organic) was not detected during this study because the land

was only managed organically for eight years. Variations in workability index (Boekel,

1963) are governed more by soil texture than soil management (organic or

conventional). There was no overall trend for organic and conventional managed to

have a higher workability index. Changes in tillage regimes do alter the workability

index; but not always in the same direction across every soil type. For example, in the

sandy silt loam soil, workability index is greatest under ploughed treatments, whereas in
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the clay loam conventionally managed minimum tillage and organically managed

ploughed treatments have the highest workability index values.

4.3.11 Yield

4.3.11.1 Aberdeen (Sandy silt loam)

Table 4.28 shows yield data for 2009 and 2010; two different cereal crops were grown

firstly spring barley and secondly spring oats. Hence the yield between the two years

cannot be compared. Comparisons will be drawn according to management and tillage

regime. The yields for ploughed treatments were up to 13 % lower for the organically

managed land compared to conventionally managed land. This corresponds with

research by Mäder et al. (2007) who found on average yield was 23 % lower on organic

farms which can be attributed to lower availability of nutrients.

For the cropping year 2009, the organically managed land (3.99 t) has a lower average

yield compared to the conventionally managed land (5.86 t). The ploughed treatments

in both organic and conventional have the highest yield. The lowest yields were from

the reduced tillage treatments especially in the organically managed land. The

difference between tillage treatments on the conventionally managed land is reduced;

this is due to more readily available nitrogen early season due to the fertiliser input, as

well as some weed control (herbicides) reducing the ryegrass. The organic treatment of

ploughing and undersowing was aimed at helping build fertility through N fixation;

which should boost yield in the subsequent years. However, it appears to have no effect

in the short-term.

In 2010, the organically managed land (2.54 t) has a lower average yield compared to

the conventionally managed land (5.36 t). The highest yields were in the ploughed

treatments both for organic and conventional management. The lowest yield was for the

organic reduced tillage treatments. The plough and undersown treatment did not

provide a boost in yield through N fixation; this is due to poor establishment of the

clover during 2009 which reduced the amount of N carryover.
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Table 4.28: The effect of tillage treatment, management and sampling timings on crop
yield (t) in Aberdeen. Different letters are significantly different (p < 0.05). No
comparisons can be made between the two cropping seasons.

Year Organic Conventional

Plough Plough and
undersow

Reduced
tillage
(disc)

Reduced
tillage

(rotavator)

Plough Reduced
tillage
(disc)

Reduced
tillage

(rotavator)

2009
Spring
Barley

5.66a 5.85a 3.77b 2.54c 6.54e 5.17f 5.95f

2010
Spring
Oats

4.23a 3.09b 1.07c 2.34d 6.65e 5.17f 4.28g

Figure 4.45 shows the different tillage treatments for both the organic and conventional

fields during crop growth. There were several weed issues in the organic field namely

charlock, which is a persistent weed and can remain dormant for up to 10 years. There

was also a problem with ryegrass which was more prevalent in the reduced tillage

rotavator plots compared to reduced tillage and disc and ploughed plots. There was no

issue of ryegrass in the conventional plots; this is due to a combination of factors firstly

the field was top-dressed with fertiliser soon after sowing ensuring a fast growth of

barley. Secondly, an herbicide (Pennant and Optica) was applied which would have had

an effect in reducing the ryegrass problem.
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Figure 4.45: Photographs of each of the tillage treatments in 2009 on both organic and
conventional land during crop growth at the Aberdeen site. RT = reduced tillage
(Photographs with permission of Walker, 2011).

4.3.11.2 East Grinstead (Clay loam)

Table 4.29 shows the yield data for 2009 and 2010; it was not possible to compare

yields between the two years because different crops were grown. It was also not

possible to compare between organic and conventional management as there was a

difference in spring and winter cereals being grown. Planting times can make a

significant difference to yields with winter cereals usually having a higher yield than

spring ones (Nix, 2010). However, organic farmers tend to favour spring cereals to help

reduce competition of the crop with weeds (Vakali et al., 2011). There was an issue

with weeds; namely thistles which were prevalent in the organic fields although

additional topping was performed to help reduce their numbers. There was no issue of

weeds in the conventional field this was due to application of herbicides (Optica).

For the 2009 crop, the highest yields for both organic and conventionally managed land

were from the ploughed treatments. The lowest yields were from the minimum

treatment which reduced yields by up to 11 % compared to the organically managed

ploughed treatment. This could be due to the novel Ecodyn equipment which did not

Conventional
Plough

Conventional RT
(disc)

Conventional
RT (rotavator)

Organic Plough Organic RT (disc) Organic RT
(rotavator)

Organic Plough
and undersow
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produce a good seed bed and hence establishment of the crop was poor. Also cereals

require high N during spring and Berner et al. (2008) determined that minimum tillage

systems release N through mineralisation later than ploughing, which can reduce plant

growth. In 2010, the highest yields were in the ploughed treatments both for organic

and conventional management. For the conventionally managed ploughed treatment,

the yield was 43 % higher compared to conventionally managed minimum tillage

treatment. The lowest yield was for the organic minimum tillage treatment; this could

be related to later availability of N, compaction and the weed issues.

Table 4.29: Tillage treatment, management and sampling timings for yield (t) in East
Grinstead. Different letters are significantly different (p < 0.05). It is not possible to
calculate a yearly mean as spring wheat was grown in the organic field and winter wheat
was grown in the conventional field.

Year Organic (Spring wheat) Conventional (Winter wheat)

Plough Minimum Tillage Plough Minimum Tillage

2009 4.5a 4.0a 8.35b 4.75c

2010 4.26a 3.4a 7.50b 5.21c

4.3.11.3 Huntingdon (Clay)

Table 4.30 shows the yield data for 2009. The highest yields for both organically and

conventionally managed land were from the ploughed treatments. Changing tillage

regime to reduced tillage (disc) reduces yield by 25 % and 16 % for organically and

conventionally managed land respectively. This corresponds to the research by Mäder

et al. (2007); however there were issues establishing the conventional crop as the first

wheat failed. This was due to compaction as the soil texture is clay (Evesham series).

There was an issue of black grass on both the organic and conventional land; however it

was controlled through the use of herbicides (Pennant) on the conventional land. The

lowest yields were from the reduced tillage treatments; this could be related to a lower

release of N (Berner et al., 2008) and compaction issues. Tillage intensity did not seem

to have an impact on weed presence on the organic or conventionally managed land for

a clay soil.
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Table 4.30: Tillage treatment, management and sampling timings for yield (t) in
Huntingdon. Different letters are significantly different (p < 0.05). It is not possible to
calculate a yearly mean as different crops were grown in organic and conventionally
managed land.

Year Organic - Spring wheat Conventional – Winter wheat

Plough Reduced
tillage (disc)

Direct drill Plough Reduced
tillage (disc)

Direct drill

2009 4.26a 3.16b 1.66c 7.26d 6.11e 6.60e

4.3.11.4 Comparative Summary

Overall, whilst for two out of the three sites, it was not possible to compare the two

different management systems; it was possible to compare tillage regimes. At

Aberdeen, where the same crops were grown in both the organically and conventionally

managed land, the yields were lower by 13 % on organically managed land. There was

a universal trend across all three soil textures; that as tillage intensity increases yield

also increases. Therefore, reducing tillage (minimum tillage / direct drill / reduced

tillage disc) can lower the yield by up to 43 % depending upon soil type and land

management (organic or conventional).

4.4 Summary of Results and Discussion

The results summarised in Table 4.31 show that a number of significant effects in soil

properties could be determined due to management (organic / conventional), tillage

regime (reduced tillage / plough), time, and soil texture. This research aimed to address

the finding from the field scale study (Chapter 3), that there were no significant

differences in soil properties due to organic farming in arable fields. This was further

explored through the interactions of tillage regimes with soil properties on organic and

conventionally managed land for three soil textures over time. The soil properties

which were measured indicate overall soil physical health and its ease of workability

(plastic limit, shear strength, bulk density, field capacity, total porosity, pH, Total C:N

and workability index). The other soil properties which were measured align with

ecosystem services (Costanza et al., 1997): namely the sequestration of SOC and water

regulation / disturbance regulation (water holding capacity and infiltration rate). These

ideas will be further developed in the integrated discussion (Chapter 6).
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The results from the plot scale study (Chapter 4) will be compared with the field scale

study (Chapter 3). In the field scale study there was no significant difference between

organically and conventionally managed arable land for any of the properties measured.

The properties measured had the resolution to show differences due to soil texture and

land management. Therefore, it was thought that a range of tillage practices could be

masking any effect in the arable fields due to conventional / organic management. In

the field scale study, there were some issues over proximity of sampled fields as ideally

matched pairs would have been in immediately adjacent fields to ensure climatic and

soil variation were minimised. However, this was not possible for either the fields in

the field scale or plot scale studies. The distance between fields, in the plot scale study,

with the exception of East Grinstead (1500 m apart), was lower than the field study

(average 995 m apart). Therefore, when the farms were matched according to topsoil

texture; differences between land management (organic and conventional) were shown.

The differences shown in Table 4.31 reveal interactions between land management

(conventional or organic), tillage intensity (plough or reduced tillage) and duration of

the study (two year) all of which vary with soil texture. Therefore, it would be possible

to reject the null hypothesis established earlier that ‘organic farming does not influence

soil properties on arable fields or tillage regimes, time and texture over time.’

Overall, there was no trend to suggest that organically managed land has a higher SOC

content. There are variations in soil texture, the sandy silt loam shows conventionally

managed land had a higher SOC content (44.82 g kg-1) whereas the clay loam shows

organically managed land had a higher SOC content (15.29 g kg-1) and the clay shows

no significant difference. This can also be related to the length of time each of the

farms have been managed organically, there was no significant difference on clay soils

where the land has been managed organically for the shortest period of time (eight

years). The farm which was managed organically for the longest period of time (fifty

years) was the clay loam and here a significant difference for SOC in favour of organic

management is found. This was because management factors which are thought to

differentiate between organic and conventionally managed land are frequent

applications of FYM and grass leys in arable rotations (Armstrong Brown, 2000).

These practices help to encourage a build up of SOC. In this short duration study,
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depending on the soil texture, reduced tillage improved SOC content by 5 % compared

to traditional plough. This could be due to a reduction in disturbance of topsoil in

reduced tillage which can lower mineralisation of SOC allowing it to build up. It is

important to note that whilst differences in SOC can be identified in the short-term; the

overall balance of SOC is affected by complex interactions between current and past

land use and management.

Whilst, it was not possible to compare organically managed and conventionally

managed land in terms of yield for all of the sites; it was possible in Aberdeen (sandy

silt loam) where the same crops were grown. Organically managed land had a

significantly lower yield between 32 – 52 % depending on crop type compared to

conventionally managed land, which agrees with research by Mäder et al. (2007). It

was possible to see an effect due to tillage regimes, which is uniform across all sites

(soil textures) and management (organic and conventional), reduced tillage lowers yield

in the short-term by up to 27 %. This agrees with the findings of Carter (1994) who

determined that the benefits of reduced tillage systems are not felt in the short-term.

Generally, the following soil properties: plastic limit, bulk density, field capacity, total

porosity, pH and total C:N were not significantly different between organically and

conventionally managed soils. However, there were exceptions to this, which can be

attributed to different soil textures. Soil physical properties are difficult to alter in the

short-term as most are related to inherent soil textural properties and whilst the organic

management was medium to long term, there was no overall difference. The clay loam

soil field capacity was higher under organically managed soil. This, therefore, has

implications for the soil workability, whereby the clay loam soil exhibited improved

workability for organically managed soils. No differences in workability between

organically and conventionally managed soils were shown in the other soil textures.

Improving workability of soil under organic management in the clay loam is important

due to changing climatic conditions such as wetter winters (Cooper et al., 1997) which

would potentially reduce the number of work days. There were no significant

differences between these properties for tillage regimes or changes over time in this
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short duration study. This is because changes in soil structure can take years to improve

(Carter, 1994) and this was a short duration (two year) study.

Overall, the following soil properties: shear strength, aggregate stability and maximum

water holding capacity were significantly different between organically and

conventionally managed soils. These effects vary with soil texture. The shear strength

is higher for organically managed soils in both the sandy silt loam (64.44 kPa) and clay

loam (87.71 kPa) and there was no significant difference for the clay soil. This is

beneficial especially for improving soil workability during times when vehicle access is

required to the land as this would help prevent compaction. However, there may be an

issue during seedbed establishment as higher shear strengths can reduce the ease of

penetration of roots which could decrease crop yields. Tillage regime has a significant

effect on soil shear strength; reducing tillage intensity increases the shear strength by up

to 29 % depending upon soil texture. This is due to the formation of a good soil

structure which is not disturbed as in traditional ploughing.

The aggregate stability was higher for organically managed soils in sandy silt loam

(46.00 %) showing a lower value in the clay soil (47.95 %) and no significant difference

in the clay loam soil. This would have implications on potential soil erosion especially

in the sandy silt loam where higher aggregate stability could reduce the likelihood of

soil surface capping and improve workability and infiltration rates. The reduced tillage

regime can improve aggregate stability by up to 8 % depending on soil texture; due to a

reduction in disturbance (through tillage) allowing a build up of SOC and increasing

microbial activity binding the aggregates (Tisdale and Oades, 1982). The clay soils

showed the highest aggregate stability compared to the sandy silt loam as would be

expected. There was an overall increase in aggregate stability with time for both sandy

silt loam and clay soils but there is no significant difference for clay loam soil. The

maximum water holding capacity is significantly higher for organically managed soils

across all three soil textures. There was also an improvement which can be attributed to

reduced tillage systems. There was no detectable difference in total porosity, as the soil

cores taken were large enough to account for improvements in macroporosity. It is

thought that improvements to soil structure and formation of continuous pores,
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particularly macropores, are felt under organic management. This is due to increasing

grass / clover leys in the rotation and the benefits are twofold; to increase fertility and

improve the structure and porosity of soils.

The infiltration rates were higher for organically managed soils compared to

conventionally managed soils for both the sandy silt loam (10.32 mm hr-1) and clay

loam (3.02 mm hr-1). There was no significant difference between land management for

the clay soil. This would suggest that heavier (clay soils) are less likely to show

differences between land management. The higher infiltration rates for organically

managed land correlate with improvements in maximum water holding capacity. This

is important with the recent changes in rainfall patterns with more extreme storm

events; as organically managed fields would have the opportunity to both infiltrate

water quicker but also to store more water. This would therefore reduce runoff and

potentially flooding which would be beneficial to farmers and society. This result, in

conjunction with the findings in the field scale study show that organically managed

grassland has an improved infiltration rate compared to conventionally managed

grassland. This has implications for runoff and flooding at the catchment scale which is

developed further in the catchment modelling (Chapter 5).

There were differences in infiltration rates which could be attributed to soil texture, with

the sandy silt loam having the highest infiltration rate compared to the other two

textures. This can be related to the higher proportion of SOC (due to differences in

climatic conditions in Aberdeen, Towers et al., 2006) and the natural more porous

texture and structure of sandy silt loams compared to the other two soil textures. There

were also differences that could be attributed to tillage regime, with the ploughed

system having the highest infiltration rates up to 41 % higher depending upon soil

texture. This disagrees with research by Abid and Lal (2008b) who found that reducing

tillage intensity improved infiltration rates due to improvements in pore continuity. It is

thought that in this two year study, the effects of pore continuity and higher numbers of

macropores were not shown in the different tillage regimes. Therefore ploughing which

disturbs soil structure and reduces compaction is more influential on infiltration rates in

the short-term.
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Table 4.31: Descriptive summary of the main findings for each property measured in terms of management, time, tillage treatment and soil texture.

KEY: SSL = sandy silt loam, CL = clay loam, C = clay, RT = reduced tillage and PL = plough, ↑ = increased, N.S. = not significant

Property Management (Org/
Con)

Time (over the cropping
season)

Tillage Treatment Soil Texture

SOC No universal trend
SSL ↑ Con 44.82 g kg-1

CL ↑ Org 15.29 g kg-1

C N.S.

SSL and CL ↑ over time
CL N.S.

RT ↑ (up to 5%) ↑ SSL 40.96 g kg-1

C 17.47 g kg-1

CL 11.21 g kg-1

Field Capacity No universal trend
SSL N.S.
CL ↑ Org

C N.S.

N.S. N.S N / A

Maximum Water
Holding Capacity

Organic is higher
SSL ↑ Org 58.51 %
CL ↑ Org 44.77 %
C↑ Org 56.61 %

N.S. RT ↑ N / A

Aggregate Stability No universal trend
SSL ↑ Org 46.00%
C ↑ Con 68.72 %

CL N.S.

SSL and C ↑ over time 
CL opposite trend

RT ↑ (up to 8 %) ↑ C 57.45 %
CL 53.25 %
SSL 40.94 %

Plastic Limit No universal trend
SSL N.S

C and CL N.S.

CL ↑ over time
SSL and C opposite trend

RT ↑ C and CL 
PL ↑ SSL 

↑ C 401.54 g kg-1

CL 399.85 g kg-1

SSL 257.65 g kg-1

Shear Strength No universal trend
SSL ↑ Org 64.44 kPa
C ↑  Org 83.71 kPa

CL N.S.

Cyclic ↑ following harvest and 
reducing post tillage

RT ↑ (up to 29 %) ↑ CL 103.66 kPa
C 88.22 kPa

SSL 55.45 kPa

Bulk Density No universal trend
SSL N.S

CL ↑  Con 1.32 g cm-3

C N.S.

↑ over time N.S. N.S.
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Property Management (Org/
Con)

Time (over the cropping
season)

Tillage Treatment Soil Texture

Total Porosity No universal trend
SSL N.S

CL ↑  Org
C N.S.

N.S. N.S. N.S.

pH No universal trend
SSL ↑ Con 6.44 
CL ↑ Con 6.75 

C N.S.

No trend No trend ↑ C 6.61 
CL 6.59
SSL 6.19

Total C:N Ratio No universal trend
SSL ↑ Con 13.83 
C and CL N.S.

SSL and C ↑ overtime 
C N.S.

No trend ↑ SSL 13.31 
CL 10.22

C 9.43

Infiltration Rate No universal trend
SSL ↑ Org 10.32 mm hr-1

CL ↑ Org 3.02 mm hr-1

C N.S.

↑ post tillage ↑ PL (up to 41 %) ↑ SSL 8.94 mm hr-1

C 1.7 mm hr-1

CL 3.5 mm hr-1

Workability
(Mueller / Boekel)

No universal trend
CL ↑ Org 

Not applicable N.S. Reverse trend with Boekel
↑ workability SSL 

CL
C – not workable

Yield (cereal) Con is always higher
SSL ↑ Con 5.88 t 

Not applicable for CL and C

Not applicable Ploughed is always higher
↑ Con PL 7.38 t 

Not applicable
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4.5 Conclusions

In contrast to the field scale study, the plot scale study was able to detect differences between

organically and conventionally managed arable land. This was due to better control of

topsoil textures (ensuring similarity) on both organically and conventionally managed soils.

The main conclusions which can be drawn from the plot scale study are as follows:

 Organic management can have a benefit in arable fields for a number of soil physical

propertied. Differences in soil properties vary with soil texture and any differences

are not always in the same direction. There was a spatial climatic effect of soil

texture on soil properties especially for SOC. Therefore care was taken when

comparing between different soil textures to account for any abnormalities in soil

properties due to spatial differences.

o For soil physical and hydrological properties (maximum water holding

capacity, aggregate stability, shear strength, infiltration rate) organically

managed soil has an improved soil quality. There was no significant

difference for bulk density, field capacity, plastic limit or total porosity which

could be due to the short duration of the study.

o For soil chemical properties (pH, total C:N ratio and SOC) there was no

overall trend to show that organically managed land improves soil quality.

SOC presented a cyclic trend over the cropping season which was present in

both organic and conventionally managed land.

o For soil workability and crop yield there was no overall significant benefit

from managing the land organically for all three soil textures. For example, in

East Grinstead (clay loam) there was an improvement in workability during

autumn for the organically managed soil; this was the only soil where a

difference between management was found and this can be attributed to the

length of time the land was managed organically (50 years). In Aberdeen (the

only site with the same crop in both organic and conventional management),

crop yields were reduced for organically managed land corresponding with

Mäder et al. (2007).

 Tillage regimes, whether reduced or traditionally ploughed, make a difference to soil

quality. The difference was not always in the same direction for each of the soil

properties measured.
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o There was a benefit for reduced tillage for: SOC, maximum water holding

capacity, plastic limits and shear strength. However, the level of improvement

varies with soil texture.

o There was a benefit for ploughed treatments for: yield and infiltration rates.

However, it is important to note that the heavier (clay) the soil texture the less

likely the tillage regime makes a significant difference. Also there was an

implication due to the duration of this research, that the benefits of reduced

tillage are not felt in the short-term.

 Infiltration rates on organically managed were higher or equal to conventionally

managed arable land. This could be related to the significant improvement in

maximum water holding capacity for organically managed soils. Pores are likely to

become more continuous and connected providing a better soil structure which would

improve infiltration rates. This has implications for flood prevention; whereby if

prior to a rainstorm fields were held at field capacity, there would be increased

storage for water under organic management. Higher infiltration rates would also

help to reduce runoff rates and this is modelled in further detail in Chapter 5.



Chapter 5

Laura Hathaway-Jenkins
187

Engineering Doctorate (2011)

5 Catchment modelling of organic farming and flood

mitigation

5.1 Background

The incidence of flooding worldwide has increased considerably (Figure 5.1) and it has

the potential to cause wide scale damage affecting a large number of people. In the UK,

the flood events tend to be smaller scale, due to size of the rivers, but they are still

devastating to the communities affected (Wheater, 2006). Currently, five million people

in the UK live in ‘at risk’ areas, and it is expected to rise within both increasing

population and larger number of homes built in areas at risk from flooding. In recent

years, the number of flood events has dramatically increased with significant floods

recorded in 1998, 2000, 2004, 2005, 2007, 2009 and 2010.

Figure 5.1: Number of flood related disasters worldwide from 1975-2001 (Source: Centre
for research on epidemiology of disasters, CRED, 2002 University of Louvain, Belgium).

In 2007, June was one of the wettest months with some areas of the UK receiving an

entire month’s precipitation in 24 hours (Figure 5.2). The flooding was widespread

over several counties and damaged thousands of homes, with 600 people being

displaced in Oxfordshire alone (Environment Agency (EA), 2007). It is estimated by

the Association of British Insurers that the total insurance damage bill for the 2007

floods was £3 billion. In January 2005, Carlisle received 164 mm of precipitation (in

excess of one month’s worth) in 24 hours which caused devastation to 2000 properties

and over £450 million worth of damage. These flash floods are difficult to predict and
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the damage can be very widespread not only to individual properties but to

infrastructure and services as well (Wheater, 2006).

Figure 5.2: Flooding in an Oxfordshire street (Courtesy of A. Davies, 2007).

In the UK, changing climate to wetter winters and drier summers combined with land

use change, are thought to be the major contributors to increased flooding (Godwin and

Dresser, 2003). Land management change due to economic pressures, such as differing

cropping patterns, increasing untimely soil cultivation and heavier machine especially in

arable land, can be detrimental to soil structure. Holman et al. (2002) reviewed the

condition of UK soils and revealed many were suffering from substantial degradation.

In grassland, changes in grazing patterns such as maintaining stock on land over the

winter, increasing stock density and increasing weight of stock can also lead to damage

of soil structure (Hathaway-Jenkins et al, 2011).

The local scale effects of land management practice are complex and depend on soil

type, land use, location and timing of access to land by machinery and animals

(Wheater, 2006). If the land management practices are over a sufficient spatial extent; a

significant change in the peak runoff and catchment hydrology can occur. The effects

of environmental change due to more subtle agricultural practices, such as improved

grassland management practices including conversion to organic management, remain

unquantifiable at present. Any potential improvements due to changing practices that
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might prevent local scale effects on soil degradation and ‘muddy’ floods from

agricultural land; could be used to decrease runoff generation and downstream flood

risk. It is important to use a suitable model to see the impacts of land use and

management at the catchment scale. This chapter is fulfilling objectives three and four

outlined in the introduction (Chapter 1). It aims to investigate how changing land

management to organic management at the catchment scale can influence peak runoff

rates and flood frequency. It will quantify the effects on flood return periods both

economically through the use of insurance replacement costs and environmentally

through an ecosystems approach.

This chapter will address this issue by applying the USDA SCS model to hypothetical

scenarios involving different land use and management. The modelled scenarios were

formed from actual measured data from the field studies outlined in Chapter 4. Finally,

the potential costs to the farmer of changing land management techniques and the

advantages to wider society will be outlined through cost benefit analysis.

5.2 Runoff Estimation

5.2.1 Introduction

5.2.1.1 Pilot Study

It was shown in Chapter 3 that both land use (arable/ grassland) and management

(organic/ conventional) have a significant effect on the infiltration rate. This

information is shown in Figure 5.3; the predicted runoff was calculated assuming that if

the rainfall does not infiltrate then it will generate runoff.

Runoff = Total Rainfall – Infiltration Equation 5.1

When comparing the infield measured infiltration rate with the potential amount of

runoff for a 1 year return period storm 20 mm hr-1 (Nerc, 1975); there is potential for a

reduction in runoff under organically managed grass land by 500 m3 ha-1 compared to

conventionally managed grass land (Figure 5.3).
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Figure 5.3: A comparison of the mean infiltration rates between organic and conventional
management for grass and arable land use. Also shown are the LSD values for infiltration
rates at 0.95 and the predicted runoff from 20 mm hr-1 rainfall event (1 year return
period) (Nerc, 1975).

Cooper et al. (1997) suggest that the UK climate is likely to experience wetter winters

and warmer summers. Figure 5.3 shows the relationship between infiltration and

predicted runoff; increasing precipitation upon poorly structured soils could reduce

infiltration rates and increase predicted runoff. The effects of different land use and

management are also shown, where higher infiltration rates are shown under organic

grass management compared to conventional management. Hence, there could be a

major impact upon the amount of runoff and flood generation downstream especially

with changing land use management and climatic conditions. However, this crude

attempt does not account for previous conditions in the catchment, evapotranspiration or

land use. Therefore, in order to investigate this in more detail several alternative

methods will be reviewed before highlighting the model which is most appropriate.

5.2.1.2 Possible Models

There have been many different attempts to derive empirical models of the rainfall

runoff relationship (Beven, 2001). There are well in excess of 100 different models

being used worldwide to determine this relationship. O’Connell et al. (2007) propose a
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five step procedure to model changes in land use and management. The first step

addresses this issue of deciding on a suitable model and the next steps are as follows:

1. Select an appropriate model

2. Calibrate the model and run simulations of the catchment prior to change

3. Alter the parameters to reflect the change

4. Estimate the effect of change on runoff

5. Estimate the uncertainty bounds (validity) and state the level of reliability

Therefore, following this five stage procedure some alternative models will be

discussed before highlighting the model used for analysis of land use change. Only four

different models are shown as these are models which have previously been used in the

UK and were found to be valid for the UK environment.

The ADAS method (1983) was developed initially as a simple handbook for drain flow

calculations. ADAS adapted these calculations using subjective assumptions to predict

peak flood flows from natural catchments. It is calculated through Equation 5.2.

Q0= ST x F x A Equation 5.2

(Where Q0 = peak flood flow, ST = soil type factor, F = catchment

characteristics, A =area ha)

This model requires the input of length and slope data from the catchment which is

integrated through a nomograph (show numerical relationships between three coplanar

variables) and other data tables. This method is satisfactory for predicting surface

runoff from small agricultural catchments (not bigger than 30 ha). Comparisons of

different runoff models by Godwin and Dresser (2003) revealed that the ADAS method

can significantly underestimate the peak runoff. Therefore, due to the catchment size

being greater than 30 ha and the issues of underestimation of runoff this method was not

used in this investigation.

The HOST classification is described by Boorman et al. (1995), this classifies UK soils

into 29 different classes. These classes are based upon differences in soil physical
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properties which are correlated with hydrological variables at the catchment scale for

base flow index (BFI) and standard percentage runoff (SPR). Holman et al. (2003)

estimated how soil degradation would affect HOST classification and more specifically

the SPR. From the data in the field scale study (Chapter 3) it is possible to see that this

model can predict the effects of soil degradation showing an increase in SPR and

possible change to the HOST classification. However, this model requires an

experienced soil surveyor in the field to classify the soil and determine degradation,

which was not available. This model also was deemed not to give enough detailed data

on specific land use management which can lead to differences in soil structure. Hence,

this model was not used as it does not have the resolution to highlight differences

between organic and conventional management.

The Soil and Water Assessment Tool (SWAT) was developed in the USA by Arnold et

al. (1998) it incorporates hydrology, sedimentation, soil temperature, crop growth,

nutrients, pesticides and agricultural management. It uses routing algorithms to

consider attenuation of flow within a catchment. It was developed to quantify the

impact of land management practices in large, complex watersheds. According to

Gassman et al. (2007) this model is very informative and has been proven to be robust

both in the USA and throughout Europe (with a slight adaptation to the model).

However, this model requires very detailed information; such as weather, hydrology,

soil temperature and properties and plant growth, nutrients, and is not suitable for

hypothetical catchments where this data is not available.

The Catchment Resources and Soil Hydrology (CRASH) model (Maréchal and

Holman, 2005) is a UK based, daily, catchment-scale, rainfall-runoff model. This

model links together HOST and rainfall data allowing derivation of infiltration and

excess surface runoff. The benefit of this model is that it is specifically developed and

calibrated for UK soil based on the soil surveys of England and Wales. The model is

still being developed and tested. It was not used in this research as it requires too much

detailed data regarding stream flow which is not available for the hypothetical scenarios

presented in this chapter.
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The United States Department for Agriculture Soil Conservation Service (USDA SCS)

Method for runoff estimation was chosen and run for this investigation. More details

about this model can be found in the methodology section. The model was run

according to ‘typical’ conditions found in the field scale and plot scale studies. Several

different land cover options and soil management methods were explored and the

results are presented for a catchment similar in characteristics to the Parrett Catchment

in Dorset and Somerset as reported in Godwin and Dresser (2003). This model was

chosen because data were available and it has been used successfully in the UK both by

Hess et al. (2010) and Godwin and Dresser (2003), who found that it was accurate to

within 2.5 % for the Parrett Catchment.

5.2.1.3 Rainfall and runoff relationship to potential flooding

There is a need to improve water storage capacity on some of the land within

catchments; to help reduce water runoff. This may not be able to be over the whole

catchment, as some areas could have been permanently degraded by surface sealing

through urbanisation. The major area that can be improved is agricultural land which

can be improved through changes in soil management practices. Holman et al. (2002)

identified a number of UK agricultural fields as suffering from structurally damaged

soils with unnaturally low infiltration capacities which significantly increased the

chance of overland flow and flood potential. Schwab et al. (1996) suggested that there

were three major ways to alleviate these problems on agricultural land:

1. Soil should not remain saturated at peak rainfall event times

2. Reduce soil surface caps and subsoil pans to increase the amount of infiltration

3. Increase the amount of surface depressional storage

As rainfall patterns change through climatic factors affecting intensity, duration and

frequency the outputs from hydrological modelling are valuable. They can help to

determine the effect of organic farming and other improved soil management processes

at the landscape and catchment levels in helping to alleviate the flood risk.

5.2.2 Methodology

During the infield infiltration measurements differences were detected between organic

and conventional grass and arable land uses, hence the SCS model was initially used for

a catchment comprising totally of grass land and then one comprising totally of arable
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land before modelling other hypothetical catchments. Firstly, this section contains an

introduction to the SCS model followed by the model parameters and data inputs for the

scenarios chosen.

5.2.2.1 Background to Soil Conservation Service (SCS) Model

The USDA SCS Curve number (CN) method was developed for uniform rainfall and it

is limited in accuracy to watersheds of less than 800 ha with slopes greater than 0.5°

(USDA, 1973). This model relates antecedent rainfall (Table 5.1), drainage status and

optimum soil moisture conditions to predict runoff within the catchment. It

incorporates land use and hydrologic soil group (Table 5.2) through chosen N factors;

where N = 100 there is no infiltration and all the rainfall runs off. Where there is

infiltration the N factor is reduced depending upon whether the land use is fallow,

arable, grass or woodland (typically N factors of 90 to 60) although values as low as 25

represent ideal infiltration conditions in woodland (Godwin and Dresser, 2003).

Table 5.1: Antecedent rainfall conditions and curve numbers (for Ia (initial abstraction) =
0.2S (maximum potential difference between rainfall and runoff) (USDA, 1973).

5-Day Antecedent Rainfall (mm)

Condition General Description Dormant Season Growing Season

I Optimum soil condition from about lower
plastic limit to wilting point

< 13 < 36

II Average Value for annual floods 13-28 36-53
III Heavy rainfall or light rainfall and low

temperatures within 5 days prior to the
given storm

> 28 >53

Table 5.2: Hydrologic soil group description and infiltration rate (Godwin and Dresser
2003).

Soil Group Description Final Infiltration
Rate (mm hr-1)

A Lowest Runoff Potential – includes deep sands with very
little silt and clay, also deep rapidly permeable loess.

8-12

B Moderately Low Runoff Potential – mostly sandy soils less
deep than A, and loess less deep or less aggregated than A,
but the group as a whole has above-average infiltration
after thorough wetting.

4-8

C Moderately High Runoff Potential – comprises shallow
soils and soils containing considerable clay and colloids,
though less than those of group D. The group has below-
average infiltration after pre-saturation.

1-4

D Highest Runoff Potential – includes mostly clays of high
swelling percent, but the group also includes some shallow
soils, nearly impermeable sub-horizons near the surface.

0-1
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In this case antecedent rainfall condition II (I = 0.2S) was used for each of the different

scenarios and soil hydrological cover complexes as this is the average value for the

annual floods. Therefore Table 5.3 was used for determining the N curve values.

Table 5.3: Runoff Curve (N) numbers for hydrological soil-cover complexes for antecedent
rainfall condition II and I = 0.2S (Adapted from USDA, 1973).

Hydrological Soil Group
Land use Treatment Condition A B C D

Fallow - - 77 86 91 94
Row Crops Straight Row Good 72 81 88 91
Row Crops Straight Row Poor 67 78 85 89
Rotation Meadow - Good 66 77 85 89
Rotation Meadow - Poor 58 72 81 85
Pasture - Good 68 79 86 89
Pasture
Woodland

- Poor
Good

49
25

69
55

79
70

84
77

From the infield measurements of infiltration rates, the soil group within the SCS model

were determined using Table 5.2 and are given in Table 5.4.

Table 5.4: Infiltration rates and SCS soil group for each land use management
combination.

Land use and Management Infiltration Rate (mm hr-1) SCS Soil Group

Organic Arable 5.9 B
Organic Grass 7.6 B
Conventional Arable
Conventional Grass

7.1
2.5

B
C

The relationship between runoff and rainfall is shown below in relation to their N curve

number (Figure 5.4).
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Figure 5.4: Relationship between rainfall and runoff depth by curve numbers (Godwin
and Dresser, 2003).

The model requires the input of rainfall data for different return periods. It was decided

to use the model for the rainfall data in the Midlands, South and South West England as

given in Table 5.5 from Smith and Trafford (1976). It was also decided that the model

would be run for short duration rainfall events; as this is most likely to cause minor

floods and small scale events where changing land management may have a significant

effect.

Table 5.5: Rainfall rates based on three different regions Midlands (Dry), South
(Intermediate) and South West (Wet) adapted from Smith and Trafford (1976).

Rainfall mm hr-1

Return Period Dry Medium Wet
1 Year 33 45 64
2 Year 43 52 73

10 Year 56 66 87

5.2.2.2 Method of implementation of SCS Model

Step 1: Determine the catchment characteristics such as slope, size and land use.

Step 2: Choose the antecedent conditions (I, II, III) Table 5.1 and soil hydrological
group (A, B, C, D) Table 5.2 and Table 5.4.
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Step 3: Determine the runoff curve number (N) Table 5.3

Step 4: These inputs are combined through the following equation for the runoff rate
(q):

q = qu A Q Equation 5.3

Where qu = unit peak flow rate (m3 s-1 ha-1 mm-1)

A = area of infiltration

Q = direct surface runoff

Q = (I- 0.2S)2 Equation 5.4

I+ 0.8S

Where Q = direct surface runoff

I = storm rainfall

S = maximum potential difference between rainfall and runoff

I = 0.2 S Equation 5.5

S = (25400 / N) – 254 Equation 5.6

The model also requires the calculation of the time of concentration (Tc) which is given

by the following equation:

Tc = L 0.8 [(1000 / N) -9] 0.7 / [4407 (0.01) 0.5 ] Equation 5.7

Where: L = length of catchment and N = N curve number

Ia: P Ratio = Ia / P Equation 5.8

Where: Ia = initial abstraction and P = rainfall

Step 5: These two values are combined using Figure 5.5 to calculate the value for peak

discharge (qu) for the catchment and it is then converted in m3 s-1 ha-1
.
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Figure 5.5: Unit peak discharge (qu) for SCS Type II rainfall distribution (USDA, 1973).

5.2.2.3 Limitations of the Model

This is a simple conceptual method which is well supported by empirical data in the

USA where it was developed. Therefore, the results should be interpreted with care

when using it in the UK and bounded by the conditions and inputs to the model, shown

in Table 5.6 for this study. The model allows for good management and poor

management of soil conditions through changing the hydrological soil group. It is

important to define these terms for better interpretation of data. According to Hess et

al. (2010) poor management practices is defined as ‘poor soil structure leading to

enhanced runoff generation plus evidence of practices which increase runoff

transmission; e.g. downslope tramlines, fine seed beds, large sloping fields, compaction

caused by intensive livestock trampling or use of heavy machinery during wet

conditions’. Hess et al. (2010) also define good management practices as ‘good soil

structure plus limited activities to reduce runoff transmission from the field e.g. contour

ploughing.’ However, this can be very difficult in the UK due to unfavourable

topographical conditions and hence is seldom adopted in practice.

This model is difficult to validate in the field where more complex interactions in the

factors which control runoff rates cannot be held constant so that solely the effects of

land use can be measured (Hess et al., 2010). This is a common problem with most of

the modelling tools available (O’Connell et al., 2007). Hess et al. (2010) stressed that
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this does not mean that there is no effect due to land management; or that effects shown

in peak runoff at the catchment scale are incorrect.

5.2.2.4 Inputs to the Model

The following different land use scenarios using both poor and good management

practice were then evaluated and the results presented.

1. Grassland only – highlighting further the differences between organic and

conventional grassland (Figure 5.6)

2. Arable only – highlighting differences between organic and conventional

management and tillage regimes (through measured soil conditions) (Figure 5.7)

3. Scenarios based on current landscape compositions for an organic landscape and

conventional landscape (Norton et al., 2009) (Figure 5.8)

4. Future scenarios based upon an organic landscape and conventional landscape

with all land in production either arable or grassland with the grassland being

either organic or improved conventional grass land (Figure 5.9)

The size of the catchment (chosen as 550 ha), the total maximum rainfall (calculated for

each of the values in Table 5.5) and antecedent moisture contents (average value for

annual floods 13-28 mm) remained the same throughout the different scenarios. The

hydrological conditions of the soil were adjusted from the conditions found in the 32

paired sites of field scale study (Chapter 3) that were measured to simulate degraded

and improved soil conditions. Initially, catchment with 100 % grassland was explored

to determine any changes between 100 % organic or conventional grassland using

arable land as a comparison. All of the parameters required for the model are given in

Table 5.6.
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Table 5.6: Inputs and sources of data for SCS CN modelling.

Model Input Requirements Source

Catchment characteristics – slope, size 0.5 ° slope, 550 ha (typical values Godwin and
Dresser, 2003)

Antecedent rainfall conditions Condition II (average value for annual floods)

Hydrological soil conditions Group B and C depending on in field
infiltration rates and Table 5.4

Rainfall Depth (mm) Data from Smith and Trafford (1976) shown
in Table 5.5

N curve number

Direct Runoff (Q) (mm)

Time to Concentration (Tc) (sec)
Maximum potential difference between
rainfall and runoff (S)
Initial Abstraction (Ia)
Unit peak discharge (qu)

Data in Table 5.3 based upon the land use and
percentage of land use within the catchment
Figure 5.4 and rainfall depth and N curve
number
Catchment size and N curve number
Equation 5.7 combining rainfall data and
Direct Runoff (Q)
Equation 5.8
Initial abstraction and time to concentration
given in Figure 5.5

According to the Environment Agency (EA), the way in which land is used and

managed can affect the extent and frequency of flooding at a local scale; which in turn

can propagate downstream and contribute to flooding at the catchment scale (EA, 2009).

Therefore, two different current landscape scenarios were explored:

1. Conventionally dominated landscape with 60% arable land, 25% grassland and

15% fallow land set-a-side (bare)

2. Organically dominated landscape with 45% arable land, 40% grassland and 15%

fallow land set-a-side (bare)

The composition of the landscapes 1 and 2 above resulted from studies by Norton et al.

(2009) following a survey of organic and conventional landscapes, where it was found

that organic farms had a significantly higher proportion of grassland compared to a

conventional landscape and this was reflected in the choice of land cover for each of the

two scenarios. Set-a-side was included at 15 % of the total catchment, however, it

should be noted that organic farming is now exempt from set-a-side rules.

A further two landscapes were also included in the modelling exercise. These was based

upon a future projection where there is a need to increase the amount of land for crop

production (both food and bio fuels); hence there is no fallow land.
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a) Alternative landscape future scenario with 45 % organic arable land and 55 %

organic grassland

b) Alternative landscape future scenario with 60 % organic arable land and 40 %

organic grassland.

The results from using the model indicated that the total amount of projected runoff was

the same for each scenario; hence only one alternative landscape is presented. For this

scenario and soil condition both good and poor management practice effects for runoff

were calculated to allow comparisons with the current conditions. The full calculations

for each modelled scenario are shown in Appendix E.

5.3 Results and Discussion

5.3.1 Grassland Catchment Modelling

This section compares the differences between organic grass and conventional grass

management. As shown in Figure 5.6, the total peak runoff for organic grass is always

lower than conventional grass. For example, for the 1 in 1 year return period for the

driest climatic region, the organic grass runoff rate is substantially lower (90 %) than

conventional grass; reduced from 0.14 to 0.01 m3 s-1. The trend is the same regardless

of the regional climatic situation whether dry, intermediate or wet. However, the

reduction in runoff rate between organic and conventional grassland becomes larger

with wetter climatic conditions.

The flood return period is also known as a recurrence interval and is an estimate of the

interval of time between flood events of a certain intensity or size. It is a statistical

measurement denoting the average recurrence interval over an extended period of time,

and is usually required for risk management (FHRC, 2010). The graphs in Figure 5.6

help to determine the effects of changing land management on flood return periods. For

example, if there was a 1 in 10 year storm in a dry climatic condition, then the

conventional grassland would generate 0.75 m3 s-1 runoff. However, if this is converted

into organic grassland this would reduce to 0.25 m3 s-1. This is a reduction in total runoff

of 66 % which results in a much less severe equivalent return period of 1 in 1.5 year had

the grass remained in conventional management. This is the same trend which occurs



Chapter 5: Catchment modelling of organic farming and flood mitigation

Laura Hathaway-Jenkins
202

Engineering Doctorate (2011)

for the climatic conditions with a reduction in runoff in a 1 in 10 year return period

shown in Table 5.7.

Table 5.7: The effect of changing practices from conventional grassland to organic
grassland on flood return period. The values reflect the change from 1 in 10 year flood
when managed organically.

Climatic Condition Good Practices Poor Practices
Dry 1 in 1.5 1 in 2
Intermediate 1 in 1 1in 1
Wet 1 in 1 1 in 1

This is supported by the work of Hess et al (2010) who modelled catchments in England

and Wales based on the Environment Agency catchment sensitive farming areas. Hess

et al (2010) found that the greatest relative reduction in runoff (up to 40% depending on

land cover and soil class) can be achieved through the improvement of degraded

permeable soils under managed grassland in drier regions.
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Figure 5.6: Flood return period and runoff rate for organic and conventional grass land
use in the three different climatic regions for good (left) and poor (right) management in a
550 ha and 0.5o catchment. (Blue triangle represents conventional grass and red triangle
represents organic grass).

Dry
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5.3.2 Arable Catchment Modelling

In the arable only modelled scenario (Figure 5.7), the arable land use has a higher runoff

rate compared to the grassland (Figure 5.6); with the exception of the wettest climatic

conditions where arable has a lower runoff rate. However, when looking at only the

grassland values in the model; it shows the same significant difference between

organically managed and conventionally managed grass as determined through the

infield measurements (field scale - Chapter 3). In the modelled scenario this was not the

case, with the arable runoff being higher than organic grassland but not as high as the

conventional grassland. Arable and organic grass are different due to the nature of

cover which typically have relative N numbers of arable 81 and grass 79 for good soil

conditions. The model inputs also deem that arable land has a higher runoff due to

planting row crops where there are areas of bare soil where the infiltration would be

reduced (Mishra and Singh, 2003). The model does not have a high enough resolution

to pick out differences between the different tillage regimes (plot scale - Chapter 4), but

it is able to show the differences between organic and conventional management.

Table 5.8: The effect of changing practices from conventional arable to organic arable on
flood return period. The values reflect the change from 1 in 10 year flood when managed
organically.

Climatic Condition Good Practices Poor Practices
Dry 1 in 3.5 1 in 5.5
Intermediate 1 in 2.5 1 in3.5
Wet 1 in 1.5 1 in 3.5

When taking the organic 1 in 10 year flood and converting this into the equivalent flood

for conventional management; it is possible to see a reduction in flood return period

(Table 5.8). This highlights a reduction in flood severity. This means that the more

destructive floods such as the 1 in 10 year flood are reduced due to less runoff; and

events which previously were more disruptive would no longer be classified as

flooding. It is possible to see that climatic conditions also affect the reduction of flood

return period; with the wetter climates exhibiting the greatest difference in flood return

period. Poor practices in both organic and conventional arable do not reduce the flood

return period as much as good practices.
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Figure 5.7: Flood return period and runoff rate for organic and conventional arable land
use in the three different climatic regions for good (left) and poor (right) management in a
550 ha and 0.5o catchment. (Blue circle represents conventional arable and red circle
represents organic arable).

Good Poor

Dry

Intermediate

Wet
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5.3.3 Current situation

Table 5.9 shows the current situation for runoff in the catchment. Where the

conventionally dominated landscape (60 % arable / 25 % grass / 15 % fallow) has the

greater amount of runoff under good and poor soil management practices; compared to

the organic landscape (45 % arable / 40 % grass / 15 % fallow) for the three climatic

regions respectively. It should be noted, that the differences in total runoff between

organically and conventionally dominated landscapes are not as great as when a totally

grassland catchment is modelled.

From Table 5.9, it is possible to see that under poor management practices there is less

difference in reducing runoff between organic and conventional dominated landscapes.

This is a similar trend across all different climatic conditions and rainfall return periods;

therefore one case will be used as an example to further highlight this issue. Using, the

intermediate climatic conditions and 1 in 2 year rainfall event (Table 5.9- highlighted in

blue) as an example; under good management there is a difference of 0.23 m3s-1

compared to under poor management where there is a difference of 0.20 m3s-1. In this

example, under good management practices, runoff decreases by up to 37 % if the

landscape is organically dominated with a higher percentage of grassland. This

highlights the importance for good soil management on grassland and prevention of

overstocking which can lead to soil structural damage by trafficking and poaching. This

could be explained through a reduction in livestock units between conventional (1.3)

and organic (1.1) farms (Sutherland et al., 2011).



Chapter 5: Catchment modelling of organic farming and flood mitigation

Laura Hathaway-Jenkins
207

Engineering Doctorate (2011)

Table 5.9: The total runoff for the conventional and organic dominated scenarios based
upon rainfall return period for current hydrological soil conditions (based upon the values
determined by in situ infiltration rates) for the a) dry b) intermediate and c) wet climatic
regions. (% reduction in runoff = (poor practice – good practice) / poor practice).

Landscape

DRY

Rainfall Return
Period (yrs)

Good Practice
Runoff (m3 s-1)

Poor Practice
Runoff (m3 s-1)

Runoff
ratio good
/ poor

Reduction
in runoff
(%)

Conventional

Organic

Conventional

Organic

Conventional

Organic

1

1

2

2

10

10

0.15

0.06

0.39

0.27

0.81

0.52

0.29

0.19

0.63

0.51

1.06

0.89

0.51

0.32

0.62

0.53

0.76

0.58

49.00

68.00

38.00

47.00

24.00

42.00

INTERMEDIATE

Conventional

Organic

Conventional

Organic

Conventional

Organic

1

1

2

2

10

10

0.34

0.16

0.64

0.41

1.09

0.76

0.59

0.43

0.92

0.72

1.47

1.14

0.57

0.37

0.69

0.55

0.74

0.66

43.00

63.00

31.00

45.00

26.00

34.00

WET
Conventional

Organic

Conventional

Organic

Conventional

Organic

1

1

2

2

10

10

1.06

0.75

1.37

1.03

1.87

1.40

1.33

1.18

1.81

1.43

2.49

2.00

0.79

0.64

0.76

0.72

0.75

0.70

21.00

36.00

24.00

28.00

25.00

30.00

Figure 5.8 utilises the data from Table 5.9; it shows the effect of organically and

conventionally dominated landscapes on total runoff. It is clear the conventionally

dominated landscapes have a greater amount of total runoff compared to organically

dominated landscapes. This trend is the same across all three climatic conditions with

the total amount of runoff increasing as the climate becomes wetter and the difference

between the two landscapes is greater.
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When taking the organic 1 in 10 year flood and converting this into the equivalent flood

for conventional management; it is possible to see a reduction in flood return period

(Table 5.10). This highlights a reduction in flood severity but may increase flood

frequency of less destructive floods. It is possible to see that climatic conditions also

affect the reduction of flood return period; with the wetter climates exhibiting the

greatest difference in flood return period. Poor practices in both organic and

conventional reduce the flood return period less than good practices.

Table 5.10: The effect of changing practices from conventionally dominated to organically
dominated on flood return period. The values reflect the change from 1 in 10 year flood
when managed organically.

Climatic Condition Good Practices Poor Practices
Dry 1 in 3.5 1 in 5.5
Intermediate 1 in 2.5 1 in 3.5
Wet 1 in 1.5 1 in 3.5

Overall, in the current situation there is a positive benefit from the organically

dominated landscape compared with the conventionally dominated landscape. This is

due to the increased proportion of grassland and fallow land (55 % compared to 40 % in

the conventionally dominated landscape), which improve the amount of infiltration in

the organically dominated landscape. It could be argued that this is due to the rotation

opposed to organic management; however the author believes that organic management

and the involvement of the more grass within the rotation are crucial to organic farm

principles. However, a conventional farm can follow organic practices increasing the

amount of grass in the rotation. However, in Norton et al. (2009) landscape analysis

showed that organic management consistently provided more grassland within the

rotation than conventional management. There is always less runoff when good soil

management practices are followed; which can reduce runoff by 63 % in an organically

dominated landscape in dry climatic conditions.
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Figure 5.8: Flood return period and runoff rate for organic and conventional dominated
scenarios in the three different climatic regions for good (left) and poor (right)
management in a 550 ha and 0.5o catchment. (Blue represents conventionally dominated
and red represents organically dominated).
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5.3.4 Future Scenarios

According to Food and Farming Foresight (2011), there are five key challenges which

need to be met by 2030:

1. Manage demand and supply sustainably

2. Stability in food supplies

3. Global access to food

4. Production with climate change mitigation

5. Preserving ecosystem service and biodiversity

The global population is expected to rise to 8 billion by 2030; this will increase the

demand for food creating competition for land, water and energy whilst need to account

for changes in climatic conditions (Foresight, 2011). It is a widely held view that more

land will be required for both livestock and arable (cereal) production; hence in the

modelled scenarios fallow land was removed due to pressures to use the land for

production. A third set of scenarios were modelled where the 15 % fallow (bare) soil

was converted to (A) 45 % organic arable land and 55 % organic grassland and (B)

60 % organic arable land and 40 % organic grassland. These were thought to be more

realistic future landscape based upon Foresight (2011).

For the alternative future scenarios, there are benefits in terms of increased infiltration

and less runoff production across all three different climatic conditions (dry,

intermediate and wet). The data in Table 5.11 shows the results of these predictions and

indicate that there is little difference between the two future land use scenarios. The

data in Table 5.11 also show a reduction in runoff between good and poor practices

which is greatest under wet climatic conditions. The results of the model for the future

scenarios again reveal the importance of following good soil management practices as

runoff significantly increases as the quality of the soil management decreases.

As there was little difference in runoff generated between the two future scenarios

modelled, only one scenario (scenario B) was chosen and compared against the current

conventionally and organically dominated landscapes (Figure 5.9).
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Table 5.11: The total runoff for future scenarios A (45 % arable and 55 % grassland) and
B (60 % arable, 40 % grassland) based upon the 1 in 2 year rainstorm for three climatic
conditions.

Scenario
A

Good Practice
runoff (m3 s-1)

Poor Practice
runoff (m3 s-1)

Runoff ratio
good / poor

Reduction in
runoff (%)

Dry 0.00 0.01 0.17 83.00
0.02 0.05 0.39 61.00
0.08 0.19 0.40 60.00

Intermediate 0.02 0.07 0.34 66.00
0.04 0.13 0.34 66.00
0.16 0.35 0.46 54.00

Wet 0.15 0.33 0.47 53.00
0.25 0.48 0.52 48.00
0.55 0.81 0.68 32.00

Scenario B
Dry 0.01 0.05 0.13 87.00

0.05 0.1 0.29 71.00
0.07 0.19 0.37 63.00

Intermediate 0.02 0.06 0.31 69.00
0.04 0.12 0.29 71.00
0.14 0.35 0.41 59.00

Wet 0.14 0.31 0.45 55.00
0.23 0.47 0.49 51.00
0.49 0.78 0.63 27.00

The effect of converting fallow land to either arable or grassland shows that there is a

reduction in the amount of runoff improving the conditions in the catchment. Overall,

there is a reduction in the return periods from both the conventionally and organically

dominated landscapes to the future scenario for each of the climatic regions. This is

substantial and results in reducing the severity of runoff. For example, a 1 in 10 year

rainfall event becomes equivalent to rainfall return periods of less than 1 in 1 year for

either of the conventional or organically dominated landscape in the intermediate and

wet climatic conditions.
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Figure 5.9: Flood return period and runoff rate for good (left) and poor (right)
management practices in organic, conventional and future scenarios in the three different
climatic regions for a 550 ha and 0.5o catchment. (Blue diamond represents current
conventional dominated, red square represents current organic dominated and green
triangle represents future scenario with no fallow land).

Wet

Good Poor
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5.3.5 Summary of results and discussion

From the data presented in each section; it is possible to see that the amount of runoff is

influenced by how well the soil is managed and also by the composition of the

landscape (the total amount of land under grass or arable land use). When comparing

the different scenarios modelled; it is possible to rank the order of the highest to the

lowest amount of runoff; which applies similarly across all climatic conditions (Figure

5.10).

Current landscapes (organic and conventional) > total arable (conventional) >

total arable (organic) > total grassland (conventional) > total grassland (organic)

> future scenario (conversion of fallow to grassland or arable)

Figure 5.10: The ranked order of the different scenarios from the highest generated runoff
to the lowest amount of generated runoff.

The overall move from conventional grass to organic grass would reduce runoff such

that the 1 in 10 year flood return period reduces in severity to approximately 1 year in 2,

based upon model predictions using the USDA SCS runoff curve. The move from

conventionally dominated landscape (60 % arable / 25 % grass / 15 % fallow) to an

organically dominated landscape (45 % arable / 40 % grass / 15 % fallow) would reduce

runoff as follows:

 For dry climatic conditions – the 1 in 10 year return period would reduce to 1 in

3.5

 For intermediate conditions – the 1 in 10 year return period would reduce to 1 in

2.5

 For wet climatic conditions – the 1 in 10 year return period would reduce to 1 in

1.5

For the future scenario (where the fallow land was converted to either arable or

grassland) this is further reduced as follows:

 For dry climatic conditions it becomes the 1 in 1 year return period

 For the intermediate it becomes less than 1 in 1 year return period

 For the wet conditions it becomes less than 1 in 1 year return period.
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This shows that in the future following good soil management practices; regardless of

whether the landscape is organically or conventionally dominated, it is beneficial for

reducing runoff. This is partially due to the inputs to the model where arable row crops

reduce infiltration rates (which were supported by in field measurements – plot scale

Chapter 4), but also due to the reduction in fallow land which within the model has a

lower infiltration rate (Table 5.3). As previously highlighted, the model was developed

in the USA and so some slight differences compared with actual measurements in the

field would be expected due to differences in soil properties. Within the current

landscape scenarios; organic landscapes under good soil management have the lowest

amount of runoff across all three climatic regions. This is due to a higher proportion of

organic or well managed grassland which improves infiltration rates as shown

empirically in the field scale study.

5.4 Costs to the farmer and benefits to society

The modelling undertaken in the previous section has shown that through conversion to

organic farming there is a benefit to society through the reduction of surface runoff.

This is one of the ecosystem benefits outlined by Costanza et al. (1997) and in the

introduction (Chapter 1), which are provided by farming practices in both organic and

conventional systems. Farming practices provide a wide range of ecosystem services

which have not been covered in this research but the recommendations need to be

balanced with other services such as carbon sequestration. Increasing the amount of

organic land or well managed grassland in the landscape could be costly to the farmer

and the next section outlines the theoretical costs of a farm converting to organic

agriculture. Then the societal benefits of reduced flooding are analysed through a cost

benefit analysis (presenting three different options), before highlighting the cost savings

due to the reduction in flood damage from converting to organic management principles

(not necessarily certified).

5.4.1 Economic impacts for the farmer

There can be many costs associated with changing farm systems (to organic) or to

changing land use (increasing well managed grassland in rotations). Increasing the

amount of well managed grassland; could be related to decreasing the overall stocking
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density which could prove costly to the farmer due to a reduction in income. However,

this is difficult to quantify as it varies depending on the size of the enterprise, the

current system operating in the farm and the current health of the farm. These issues

also influence the costs which can be associated with converting to organic farming.

These are described by Lampkin et al. (2009) and the main conversion costs are as

follows:

 Output reduction – through increasing fertility building legumes in the rotation

or mistakes

 New investments – changing livestock to organic, improving fencing

 Information and experience gathering – directly through advisory literature

 Variable cost reductions – reseeding grassland, withdrawal of prohibited inputs

 Fixed cost increases – labour use (10-20 % higher), certification (up to £450 per

farm per year)

 Lack of access to premium prices during two year conversion – this can cost

between £200 – 500 ha-1 and cost of market development

 Eligibility for single payment and other benefits

According to the organic farm handbook (Lampkin et al., 2009) there are two main

methods for adopting organic agriculture: staged and single step. There are risks

associated with both methods. Staged farm approach usually provides a buffer against

opportunity costs in the first few years of conversion as some of the farm remains

farmed conventionally (maintaining yield and knowledge of prices). The whole farm

approach is seen as more risky by farmers as any errors are detrimental over time;

especially after a large outlay to converting through certification and possible

investment in new machinery (Morris et al., 2010a). However, whilst being more risky

support through the Organic Entry Level Scheme (OELS) for the first five years

provides a buffer to organic farmers. This is typically £60 per ha per year, with an

additional payment of £175 per ha per year in the first two years (Lampkin et al., 2009).

Therefore, it is important to look at the whole farm margins over a period of a few years

to determine the true benefit to the farmer of conversion compared with remaining

conventional (Table 5.12). There appears to be a benefit in both cropping (arable only)

and mixed farming for organic farmers, this is related to a reduction of synthetic
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fertilisers and pesticides as well as a price premium. However, if the price premium

was removed; this may no longer be the case as organic farming internalises many of

the costs associated with producing food.

Table 5.12: Comparison of net farm income (average 2005/2006 and 2006/2007) between
organic and conventional farms (Lampkin et al., 2009).

Farm Type £ / farm £ ha-1

Cropping
Organic
Conventional

45,344
23,089

271
151

Mixed
Organic 20,095 184
Conventional 18,076 154

5.4.2 Ecosystem’s Approach to flood prevention

If all farms within a neighbourhood collectively manage the grass fields with organic or

less intensive conventional management there could be a reduction of runoff in the sub

catchment, agreeing with the findings of Hess et al. (2010). This effect needs further

study at the sub catchment level as Morris et al. (2010) report ‘there is little

hydrological evidence to verify this [benefit], it is generally felt that policies that

encourage retention of water in the landscape can contribute to flood risk mitigation

especially for smaller, more frequent events.’

This research helps to provide some data for Defra’s ‘Making Space for Water’ and

current land use policy, as it suggests that rural management in upstream areas of

catchments can ameliorate runoff and reduce the incidence of localised flooding. Defra

(2006a) suggested that cultivation practices such as minimum tillage could help to

reduce runoff. However, the resolution of the SCS-CN model was not able to identify

differences in runoff due to changing tillage practices (plot scale study - Chapter 4).

Defra indicates that the benefits of controlling runoff from agricultural soils could be

captured into cross-compliance and the single farm payment scheme. Table 5.13

presents two options for changing catchment management through increasing grassland

or increasing organic farming and their economic, environmental costs and benefits. It

shows that whilst there is no immediate expenditure if continuing with the current

management (baseline), there could be hidden costs associated with flood protection and
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flood damage repairs. There is likely to be an increased cost associated with improving

flood defences due to a reduction in water retentive capacity because of surface sealing

and compaction.

The cost of implementing Option 1 is likely to be lower than Option 2; especially for

the individual farmer (as outlined previously). The options would provide the same

ecosystem services of improved water retention, higher infiltration rates and reducing

runoff. However, it was shown in the research presented in the field scale, plot scale

and catchment scale studies that organic land has a higher infiltration rate compared

with conventional land. The associated cost to convert to certified organic status is

higher (due to certification and improving demand for organic produce) than increasing

grass land within rotations. Whilst this research supports payments for changing

catchment management by farmers, it is felt that as the research presented is

hypothetical it would be beneficial to study the effects for a real catchment. This would

allow detailed costing for conversion to organic agriculture and flood damage costs to

be linked through actual data for a specific catchment.
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Table 5.13: The effect of changing catchment management on economic, social and environment aspects (based on AST EA) using ecosystems approach
(Environment Agency, 2002).

Option Baseline Option 1 Option 2

Description No Change Increase the amount of grassland in the landscape
through incentives (countryside stewardship
scheme paid £179 ha-1 yr-1)

Increase the number of organic farms and
farms practising BMPs

Technical Issues None Reluctance for change / cost to farmers of
establishment of crops

Limited number of certifying bodies,
monitoring issues, access to information for
farmers

Assumptions and
uncertainties

None Farmers will be willing to convert more land into
grassland and there are no economic barriers or
demand to grow crops on the land.

Farmers will be willing to convert to
organic – accepting initial investments and
potential loss of earning.

Approach to Adapt None Staged approach tackling high risk flood areas
first.

Staged approach (partial conversion of
farm) tackling high risk flood areas or
fields first.

Comparative costs of
adoption

£ ££ £££

ECONOMIC May need more flood defences; as
natural soil buffers and soil water
storage is decreased due to
compaction, surface sealing and land
use change.

Need to sow at least three perennial grass species
will cost £71 ha-1 establishment costs and restrict
grazing density (to 1.1 LSU).

Conversion costs are variable, some
covered by OELS but only for the first 5
years of conversion.

ENVIRONMENTAL No changes. It will decrease leaching, create an SOC sink. It
will also improve infiltration rates reducing runoff
rates and preventing soil erosion.

It will improve soil quality; organic land
infiltrates more water and could have the
potential to reduce runoff rates and prevent
soil erosion.

SOCIAL Implications of increasing flooding
and the issues on livelihoods of people
at risk.

Increased amount of permanent grassland in the
landscape is very aesthetically pleasing.

Major changes to farming systems and
need to change farmers approach. Need to
change public perception to purchase
organic farm.
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5.4.3 Effect of changing land management on flood damage repair cost

As shown previously in Section 5.3 there is a benefit in terms of reducing flood

intensity by converting to organic farming. Hence, the impact different land uses, such

as residential or agricultural, is important. The shape and size of the catchment as well

as the proximity to rivers influence the likelihood of flooding to occur. Therefore, a

hypothetical catchment of 550 ha which consists of both agricultural land and some

residential properties will be considered. Hess and Morris (1986) investigated the

occurrence of winter flooding due to catchment size. They found that smaller

catchments (below 25 km2) had 60% of flood events happening between October and

March compared to 80 % in larger catchments. The catchment size in this hypothetical

scenario is small and so there is more risk of summer flooding which is more damaging

particularly to agricultural land. The shape and topography of the catchment will also

have an impact on the extent of flooding and flood depth; however this cannot be

estimated from this hypothetical data.

Firstly, the effects of a reduction in flood intensity for agricultural land will be

discussed. When determining the cost of flood damage to agricultural land both loss to

output (such as crop yield or livestock units) and cost of remedial work need to be

considered. The timing and duration of the flood are also highly significant. Summer

flooding lasting a few weeks is more damaging than winter flooding, due to the crop

growth stage and inaccessibility of the land for working. Data in the FHRC (2010) is

based upon flood frequency rather than flood return period (severity); therefore typical

gross margins for land use (based upon crop type) will be used to give a value to

agricultural land. As the modelling and research in the field and plot scale studies have

looked at cropped fields (mainly cereals) and grassland fields these two examples will

be highlighted. The typical wheat financial gross margins for good field drainage

conditions are £300-350 ha-1 and the typical gross margins for good conditions

grassland with high stocking density (1.7-2.0 LSU) is £1200 – 1400 ha-1 (FHRC, 2010).

For example, if there was the 1 in 10 year return period more land is likely to be flooded

and for a longer period compared to a 1 in 2 year return period. This would reduce the

gross margin due to crop damage, soil damage (compaction), loss of livestock and

remedial work.
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Secondly, the effects of a reduction in flood intensity for residential properties will be

discussed. As shown in section 5.3, when converting to organic management there is a

reduction in return period from the 1 in 10 depending upon climatic conditions. Figure

5.10, shows the cost of flood damage per residential property up to the 1 in 25 year

return period. There is a relationship between flood damage and return period; the

damage augments with increasing flood return period until saturation point is reached.

In Figure 5.11, the saturation point is reached at the 1 in 25 year return period. If

further points are plotted onto the graph such as the 1 in 50 year return period – there is

a slight increase before a plateau is reached in the 1 in 100 year return period where no

more damage is caused. This research focuses on reducing the 1 in 10 year flood; and

Figure 5.11 shows that the relative effects of short duration events are very significant.

Figure 5.11 shows the cost of flood damage from a 1 in 10 year flood event to a

residential properties would be £20 592. However, in the current situation, with good

management for an organically dominated landscape, this is reduced to £ 9707 (dry

climatic conditions), £1350 (intermediate climatic conditions) and £0 (wet climatic

conditions). This provides a substantial saving in flood damage costs through altering

land use (increasing grassland within the rotation) and management (organic or

conventional).

Figure 5.11: Cost of damage due to flooding to a four bedroom residential property
(FHRC, 2010). Black arrow shows the cost of the 1 in 10 year return period, blue dashed
arrow shows the reduction of costs when converting to organic agriculture dry conditions.
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Overall, this research has shown that for each of the different climatic conditions

modelled a positive benefit is felt by society through reduction of flood severity. This is

particularly beneficial in terms of reducing flood damage costs to residential properties;

as in dry climatic conditions converting to organic management can decrease the

damage by 50 %. It is particularly important in wet climatic areas, where there are

already higher levels of precipitation, as this reduces the costs of damage to residential

properties by 100 %. It is thought that there would also be a benefit to agricultural land,

as a reduction in the generation of runoff should provide savings in flood damage

repairs. However, it is not possible to quantify these potential savings.

5.5 Conclusions

The main conclusions which can be drawn from the modelling and the cost benefit

analysis are as follows:

 SCS model, despite its limitations, provides useful catchment scale comparisons for

both good and poor soil management.

o If all grassland is organically managed runoff is substantially reduced by

60 – 70 % and in turn reduced the effective return period from the 1 in

10 to 1 in 1.5 years, 1 in 1 and 1 in 1 for dry, intermediate and wet

climatic conditions respectively

o Organically dominated landscapes (45 % arable / 40 % grass / 15 %

fallow) reduce runoff compared to conventional dominated landscapes

(60 % arable / 25 % grass / 15 % fallow) by 29, 33, 47 % for the three

climatic zones (dry, intermediate and wet).

o Moving from conventional to organic management reduces the effective

return period from the 1 in 10 year to the 1 in 3.5, 1 in 2.5 and 1 in 1.5

year return periods for the dry, intermediate and wet climatic regions

respectively.

o Converting the fallow land (arable or grassland) gives very similar

overall effects and reduces the runoff by 44, 60, 85 % for the three

climatic zones (dry, intermediate and wet).
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o It also reduces the effective return period for the 1 in 10 to 1 in 2, 1 in

1.25 and 1 in 2 year return periods for the three climatic regions (dry,

intermediate and wet).

 For the hypothetical catchment, there would be a saving of £20 592 in flood

damages (per residential property) in wet climatic conditions if land is converted to

organic agriculture with good management practices. There are also potential

savings for both dry and intermediate climatic conditions of £13 659 and £ 19 242

respectively. There would also be a benefit for agricultural land which was not able

to be quantified.

 There is a benefit for flood reduction when converting to organic management or

through better management of grassland. However, this is for a hypothetical

catchment and the benefit would vary according to catchment characteristics such as

shape and size. It was not possible to validate this model with in field

measurements of runoff so care should be taken when extrapolating these findings

to larger scales.
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6 Integrated Discussion

This chapter will integrate the principal findings relating to soil physical quality,

workability and soil hydrology from the field scale (Chapter 3), the plot scale

(Chapter 4) and modelled catchment (Chapter 5). Firstly, a few caveats relating to the

research should be described to prevent over interpretation of the data. This research

compared organic and conventional farming systems whereby organic was separated

from conventional by its certification which met EU regulations. It is very difficult,

especially in the case of the field scale study, to distinguish the systems by different soil

management and tillage regimes as a range of practices were occurring over both

systems. This research was predominantly focused on lowland areas of the UK with

farms covering the midlands, south west, south east and one in Scotland. This resulted

in considering a range of climatic variations. However, any variations in soil properties

determined seem to hold true in all areas. The farm types were similar, small mixed

rotational farms. Larger monocultures and intensive systems were excluded from this

study; this is a more usual conventional arable farming system in the east. Therefore,

practices which were occurring on both organic and conventional farms could have been

more similar rather than being at different extremes in the management spectrum.

Previous land use and starting conditions of these fields could have a significant effect

upon any differences; this was minimised in the plot scale study as all sites were

previously leys. The infiltration measurements, which also formed the basis of the

inputs to the SCS-CN runoff modelling, were collected in field using a Decagon tension

infiltrometer which has a small surface area. Hence, care should be taken when

interpreting these results and the output from the SCS-CN runoff modelling.

Whilst there has been much research, comparing organic and conventional farming for

soil properties, yield and farm economics (Stolze et al., 2000). In the UK, there has

been little new research about the effects of organic farming on soil properties in the last

10 years. The focus has shifted towards the effects of climatic change partially due to

an increase in flooding in recent years. This has been blamed upon poor agricultural

practices reducing soil functionality leading to compaction and decreasing the water

holding capacity of soils. The idea of a functioning soil combines sustainability (ability

to produce food without being detrimental to the environment or natural resources, such



Chapter 6: Integrated Discussion

Laura Hathaway-Jenkins
224

Engineering Doctorate (2011)

as soil) and the specific abilities of soil. Soil has many key functions (Defra, 2009a) but

this research has focused on four factors which can be altered through changing

management (organic or conventional):

 Storing carbon (monitoring soil carbon content)

 Storing, filtering and transforming nutrients substances and water

 Biomass production (crop yield)

 Provision of ecosystem services (benefit to humans from natural ecosystems –

for example water storage on agricultural land to reduce flooding)

The two main threats which affect agricultural soils are decreasing SOC content and

increasing soil compaction. These two components are central to both soil health and

soil functioning. By 2030, Defra set a target that England’s soils will be managed

sustainably and degradation threats tackled successfully (Defra, 2009a). This research

addressed these two degradation threats and aimed to look at the effects of organic

farming at different scales (plot, field and modelled catchment) with different land uses

(arable and grassland) and tillage intensity (reduced tillage and ploughing). Firstly, the

effects of organic farming on SOC will be discussed, before highlighting the

implications for soil health and soil functions at different scales. Then the potential

benefits to ecosystems services will be considered and the economic consequences for

changing land management.

6.1 Soil Organic Carbon

This research has shown that organic farming has no detectable advantage for increasing

SOC compared to conventional farming; with the exception of the organically managed

clay loam soil in the plot scale study. The field scale study (Chapter 3) showed there

was no significant difference between organic (46.67 g kg-1) and conventionally

(48.85 g kg-1) managed land across a range of soil textures and two land uses (grass and

arable). This lack of difference was attributed to a range of soil management practices

and number of years under organic management (between 0-50 years) which could have

masked any differences. There was a difference attributed to land use where grassland

(52.48 g kg-1) (both organic and conventional) had a higher SOC content compared to

arable land (38.72 g kg-1). The plot scale study (Chapter 4) showed that there was a

significant difference between organic and conventionally managed arable land which
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was dependent upon soil texture. The organically managed land was certified organic

for eight, twenty and fifty years, for clay, sandy silt loam and clay loam soils

respectively. For the sandy silt loam conventionally managed land (44.82 g kg-1) had a

higher SOC content whereas for the clay loam organically managed land (11.73 g kg-1)

had a higher SOC content and the clay showed no significant difference. This could be

due to the length of time the different systems had been managed organically;

increasing time that the land had been managed organically appears to improve the SOC

content. The trend for differences between plough and reduced tillage was universal

across all three soil textures; reducing the tillage intensity increased the amount of SOC

by up to 5 % compared to traditional ploughing. This is due to a reduction in SOC

turnover due to less aeration of the soil which helps SOC to build up. Hence, the

benefits of changing tillage system (towards reduction in number of passes and depth)

can be felt in the short term within this two year plot scale study.

Therefore, this research concludes that there is no significant improvement in SOC due

to organic management at the field scale. However, at the plot scale, differences are

apparent depending upon soil texture and the length of time under organic management.

This could be related to the amount of SOC inputs which need to be added periodically

in a continued manner; if no further SOC is added, the rate of decline is greater than the

initial build up of SOC (Bhogal et al., 2009). Cooper and Melchett (2008) suggest three

practices which help to build SOC: reduced tillage, ley periods (grass or clover) and

organic amendments. Although organic amendments were not investigated specifically

in this research, the influence of these on SOC is considered important. These practices

are not specific to either the organic or conventional farming systems; however, they are

encapsulated in the principles of organic farming. The effect of these practices on SOC

has been confirmed through this research. Where SOC content was greatest under

reduced tillage practices and there was a higher SOC content for grassland compared to

arable land use. When relating these findings to the catchment scale; Chapter 5

suggests that there is a higher amount of grassland within the organic rotations and

organic landscapes (Norton et al., 2009). Therefore, as shown in the field scale study

(Chapter 3), there is an increase in SOC for grassland (whether organic or conventional)

this could potentially improve the amount of SOC at the catchment scale which may

have implications for carbon sequestration.
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Gattinger (2010) performed a meta-analysis using 37 peer reviewed journal articles to

compare topsoil SOC content in long term trials. They found a benefit for organic

farming which had 14.7 g kg-1 SOC compared to 11.6 g kg-1 SOC for conventional

farming. Cooper and Melchett (2008) also found that in the long term organic farms

had a higher SOC content compared to conventional farms. Therefore, it is suggested

that there is a potential to sequester atmospheric carbon in the soil, helping to combat

climatic change through the reduction of greenhouse gases (Smith et al., 2011).

However, it is difficult to know where to draw the boundaries of the system; whether at

the farm gate or to include transportation and manufacturing relating to fertiliser

production. Hence, comparisons between organic and conventionally managed land on

SOC and potential sequestration for climate change mitigation are difficult. As this

research showed that the amount of SOC depended upon length of time the land has

been organically managed, soil texture and tillage intensity; it is not possible to draw

firm conclusions about potential carbon sequestration effects due to organic or

conventional systems.

SOC is a soil property which exhibits interactions with the other properties measured to

help maintain productivity and sustainable soil functions; such as reducing compaction

and increasing soil water holding capacity and workability. Therefore, from the results

of the SOC analysis in the field scale study (Chapter 3); it would be thought that there

would be little impact upon the other soil physical properties measured for soil health

and ecosystem services under arable land use. However, this was not the case for the

plot scale study (Chapter 4) where differences were anticipated especially in the clay

loam.

6.2 Soil physical and chemical properties to maintain soil functions

This research shows that organic farming does not have a detectable benefit or a

detrimental effect on soil physical health and sustainability of soil functioning compared

to conventional farming. However, it does show that organic farming has a smaller

number of fields (2 fields) with nutrients, herbicides and pesticides present in soil water

quality compared to conventional farming (13 fields). However, the levels recorded

were less than the current thresholds that are considered detrimental to the environment

for both organic and conventional agricultural management systems. The soil indicator
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properties for soil physical and chemical health were able to show the impacts of

different soil textures, land uses and tillage regime however they did not always

attribute any changes to management (organic or conventional) on soil functioning. The

soil physical properties (aggregate stability, plastic limit, shear strength, bulk density

and total porosity) were chosen to be indicators of soil strength and resistance to

compactability. Each of these properties are affected by SOC, increasing amounts

should improve the overall soil physical quality. The soil chemical properties (total C:

N ratio, pH, total NPK, agrochemicals) were chosen to indicate the effects on

productivity (nutrient availability) and agricultural pollution (runoff / leaching of

nutrients).

Each of the measured soil properties (indicators) will now be discussed with reference

to their effects at the plot and field scale and the implications for soil functions. It is

important to note that the impacts of organic and conventional farming on the different

properties are complicated by interactions and variations in both space and time (Liebig

and Doran, 1999). Any implications for climatic change will also be highlighted.

6.2.1 Soil physical functions

Overall, there was no clear benefit in terms of improving soil physical functioning when

managing the land organically. There were no significant differences attributed to

organic land management for plastic limit, bulk density, total porosity, or workability.

However, there were some significant differences between organically and

conventionally managed land for aggregate stability and shear strength. All of these

properties are dependent upon the clay content and the amount of SOC; therefore

differences were found between different soil textures for each of the soil properties

measured.

The field scale study (Chapter 3) showed there were some significant differences which

could be attributed to land use (grass or arable). For example, grass had a higher plastic

limit (311.00 g kg-1) compared to arable land (281.50 g kg-1); this is expected as there

was an increase in the amount of SOC helps to bind the soil together. However, there

were no differences which could be attributed to reducing tillage intensity for plastic

limit, bulk density, total porosity or workability. This is related to the short duration of
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this study; where any benefits in these soil physical properties were not found in after

two years. The plot scale study (Chapter 4) showed there was no significant difference

between organic and conventionally managed arable land for bulk density and total

porosity. However, bulk density and total porosity were not measured on the grassland

fields. The plot scale study (Chapter 4) showed that the differences in workability of

arable land depended upon soil texture rather than management system, increasing clay

content reduced workability compared to sandy silt loam. There was no significant

difference between organic and conventionally managed arable land for workability in

the field scale study (Chapter 3), which could be attributed to a mixture of soil textures.

Aggregate stability and shear strength will now be discussed in more detail and their

impact on soil functions in a changing climate. The field scale study (Chapter 3)

showed that there was no significant difference between organic and conventional

management for aggregate stability. Although there was a trend for the organically

managed land (51.18 %) to have a slightly higher aggregate stability compared to

conventionally managed land (49.40 %). Land use had a significant effect on aggregate

stability with grass having a higher value compared to arable land. This is expected as

grassland has a higher SOC content which helps to bind the soil together (Tisdall and

Oades, 1982).

Aggregate stability can often show the impact of changes in land use and management

before a change SOC is observed (Haynes and Swift, 1991). The plot scale study

(Chapter 4) showed that there was no overall trend and results were mixed dependent

upon soil texture. The sandy silt loam exhibited improved aggregate stability under

organic management (46.00 %), the clay had a higher stability under conventional

management (68.72 %) and the clay loam showed no difference. Therefore, land

management whether organic or conventional seem to make a significant difference on

lighter textured soils. However, the heavier textured clay soil exhibited no significant

difference between management types (organic or conventional) because there was no

difference in the amount of clay or SOC content. Aggregate stability was significantly

affected by tillage intensity; reducing tillage increased the stability of the soil by 8 %

depending on soil texture. As aggregate stability is governed by the clay and SOC
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content; higher clay contents seems to be more important than changing land

management and its induced SOC content changes. Stolze et al (2000) reviewed

comparative studies for aggregate stability and overall deemed there was no significant

difference. This research has shown that there can be a significant difference in

aggregate stability due to land management change (organic and conventional);

however differences vary according to soil texture (clay content).

Aggregate stability is important for helping to prevent soil erosion and resisting the

impact of raindrops. This helps to prevent surface sealing and crust formation which

restricts crop growth and water infiltrating (USDA, 1996). At the landscape scale, as

previously highlighted, organic farms tend to have a higher proportion of land within

grassland use due to their crop rotation. The field scale study (Chapter 3) shows that

grassland use has a higher aggregate stability which would help to prevent soil erosion

and surface sealing. There was no difference between organic and conventional

grassland, so it is argued that increasing the amount of grassland within the catchment

either organic or conventional would have a benefit for aggregate stability. This would

help maintain and improve soil functions especially through the regulation of water

movement in soils. Climate change particularly in the UK, associated with increasing

Green House Gas (GHG) emissions, are making extreme rainfall events and flooding

more common (Min et al., 2011). Hence, improvements in aggregates stability and

prevention of soil surface sealing through increasing grassland in the catchment would

help to improve water infiltration and storage.

There was a benefit in terms of increasing shear strength when managing arable land

organically. Soil shear strength is important for contrasting two reasons: seedbed

preparation and vehicle access. Low shear strength during seedbed preparation enables

seeding to emergence and to produce a good crop. Whereas higher shear strengths

would enable good vehicle access with reduced amount of soil compaction (Benjamin

and Cruse, 1987). Higher shear strengths also help reduce likelihood of soil erosion and

surface sealing; thus improving infiltration rates and preventing surface runoff of water.

This is particularly significant in changing climatic conditions whereby rainfall is more

intense; as there is potential to infiltrate more water and prevent excessive overland
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flow and flooding. The field scale study (Chapter 3) showed that there was no

significant difference between organic (52.11 kPa) and conventional management

(55.24 kPa); this is regardless of land use. Grassland (55.97 kPa) had a significantly

higher shear strength compared to arable (48.24 kPa). This is expected as there was an

increase in the amount of SOC helps to bind the soil together improving its strength.

The plot scale study (Chapter 4) for arable land only, showed that organic management

increases shear strength on loamy soils (clay and sandy silt) but there is no difference in

the clay soil. This research showed that reducing tillage intensity (from traditional

ploughing to reduced tillage) increases the shear strength of the soil by up to 29 %

depending on soil texture. This could be due to improvements in soil structure; as the

reduced tillage soil has not be disturbed whereas the ploughed soil is loosen which

would lower the shear strength. If this is scaled up to the landscape, where an

organically managed landscape has a higher proportion of grassland as shown in the

catchment modelling (Chapter 5) the benefits are two-fold. This is because there is

higher shear strength on both organic grassland and organic arable land which would

reduce soil erosion and surface sealing allowing more infiltration and less runoff.

Therefore, whilst the majority of these physical properties measured showed no

significant difference between organic and conventional management, shear strength

and aggregate stability reveal an overall benefit especially on organically managed

arable land for soil functions. This does vary with soil texture (heavier textured soils

showing fewer differences), length of time managed organically (increasing longevity

of management increases difference) and climatic conditions based on geographical

location of sampling.

6.2.2 Soil chemical functions

Overall, there was no benefit for improving soil chemical functioning shown in this

study; equally there was no detrimental effect. The field scale study (Chapter 3)

showed that organically managed land indicated fewer pesticide and herbicides residues

in soil water with only two fields showing trace levels. This reduction in pesticides and

herbicides would help to prevent agricultural pollution through leaching; although none

of the recorded levels were above the No Observed Effects Concentration (NOEC). The
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field scale study (Chapter 3) shows that there were no significant differences between

organic and conventionally managed land for nutrients (total P, K). However,

conventionally managed arable land had a significantly higher total N content

(30.56 g kg-1) compared to the other land uses and management. These differences are

due to the timing of sampling in spring, post applications of fertilisers for many of the

conventional farms.

The plot scale study (Chapter 4) showed that there was no significant difference

between organically and conventionally managed land for total C:N ratio or pH. There

was a variation with soil texture; where only the sandy silt loam showed a significant

difference where conventionally managed land was higher than organic land for both

total C:N 13.83 (conventional), 13.03 (organic) and pH 6.44 (conventional), 6.06

(organic). This higher C:N ratio on the conventional managed land is consistent with a

greater SOC compared to the organic managed land. Usually, higher levels of C:N ratio

are related to lower bulk densities and increased water holding capacity which would

aid resistance to compaction (Martins et al., 2011). This study however did not confirm

this relationship. There were no significant differences which could be attributed to

land use (arable or grassland) or changing tillage intensity (ploughed to reduced tillage).

Therefore, this research fails to find any benefit for farming organically on soil chemical

functioning which is comforting as the aim of the safeguards and regulations in

conventional agriculture are to prevent this.

6.3 Ecosystem services – water storage and infiltration

This research primarily looked at a reduction in flooding through water regulation by

soil as a means to provide public goods (ecosystem service). Ecosystems and their

services need to be managed in the face of environmental and climatic change. These

changes include increasing intense rainfall during winter and summer months which can

contribute to flooding. Therefore, the effect of changing land management (organic or

conventional) on soil properties (namely infiltration rates and water holding capacity) is

very important for ecosystem services.

Soil surface management in both arable and grassland makes a difference to soil

structure tilth, infiltration and runoff. Overall, there is an improvement in infiltration
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rates due to organic land management for both arable and grassland. From the research

presented at the field scale (Chapter 3) and plot scale (Chapter 4), it is possible to see

that organically managed land consistently has a higher rate of infiltration compared to

conventionally managed land. The amount of infiltration does vary with soil texture

and soil series (in relation to the clay content). In the field scale study (Chapter 3), clay

soils (9.89 mm hr-1) and sandy loam soils (7.52 mm hr-1) had the highest rates of

infiltration compared to the other soil textures. This is due to the shrink well nature of

the clay soils and the sampling time (during crop growth). The field scale study

(Chapter 3), did not find any difference between organic arable, organic grassland and

conventional arable fields that all had higher levels of infiltration than conventional

grassland (2.53 mm hr-1) regardless of the soil texture. This is due to soil degradation in

the conventional grassland; which was determined by HOST interpretations in the field.

There was a higher stocking density on conventional grass land (1.3 LSU) than organic

grass land (1.1 LSU) which could be contributing to this degradation of soil structure

and reducing infiltration rates.

The plot scale study (Chapter 4), showed a consistent difference between arable fields

with organic infiltration rate being higher than conventional infiltration rate. The

amount of infiltration did vary with soil texture; with no significant difference between

management found in the clay soil but both the sandy silt loam (47 % higher) and the

clay loam (68 % higher) showed an improvement under organic management. Tillage

intensity (ploughing or reduced tillage) and sampling timing (post harvest or post

tillage) contributed to significant differences within each management type. Ploughed

tillage treatments increased the amount of infiltration by up to 5 % compared to reduced

tillage. This is because the benefit of reduced tillage is not felt in the first few years as

increase the continuity of pore structures especially macropores which influence the

amount of infiltration have not developed (Carter, 1994). Hence, due to increasing soil

strength and structural changes the reduced tillage soil may be more compact compared

to the ploughed soil.

In the catchment modelling (Chapter 5), the effects of these differences in infiltration

rates were converted into runoff and scaled up for a hypothetical catchment. It is
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important to note that whilst it was not possible to validate this model through infield

measurements of runoff rates, the model was based upon measured infiltration data

presented in the field and plot studies (Chapters 3 and 4). Irrespective of the three

different climatic conditions modelled, organically dominated landscapes (45 % arable /

40 % grassland / 15 % fallow) always decreased runoff in comparison to conventionally

dominated landscapes (60 % arable / 25 % grassland / 15 % fallow). This has

implications for cost savings through reduced flood likelihood especially in wet climatic

regions where the most significant reductions in runoff (up to 47 %) were seen. In wet

climatic regions, there is a reduction from the 1 in 10 year return period to the 1 in 1.5

return period; which is a huge reduction in flood severity and would reduce damage

costs to a residential property and agriculture land substantially. Flood damage costs to

residential properties were reduced by 33 %, 47 % and 100 % for dry, intermediate and

wet respectively. This would also prevent loss of productive agricultural land saving

£300 ha-1 for arable land and £1200 ha-1 for grassland. Therefore, organic farming can

provide increased infiltration rates and reduced runoff rates which would help mitigate

against flooding.

6.4 Economics of flood prevention

It has widely been acknowledged that agriculture plays a key part in diffuse pollution

and flooding (Merrington et al., 2002). As this research has shown, changing land

management system can influence the amount of flooding and runoff at all scales

measured. However, as shown at Aberdeen (sandy silt loam) in the plot scale study,

organic farming produces a lower yield in comparison to conventional farming. For the

sandy silty loam soil where there was spring oats grown on both land management

systems; yield was reduced by up to 2 % on organically managed land. Whilst this is

not a large reduction in yield, values can vary according to soil texture and climatic

conditions. Therefore, farmers in high risk areas for runoff and flooding need to be

encouraged to manage fields with typically organic practices. This includes reducing

livestock density on grassland and increasing grassland leys within arable rotations. As

farmers will be providing a public good (reduction in flooding) they cannot be expected

to internalise all the costs of conversion such as reduced yields. However, as existing

agri-environmental schemes and CAP are due another reform in 2013 which would
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potentially reduce funding; the financial support needs to come from other sources (EC,

2010). Hence, flood insurance companies (who would benefit through reducing floods)

could make allowances for farmers providing this ecosystem service through reducing

conversion costs and barriers to conversion for the farmers.

This study was not biased towards organic farming and investigated the effects for

typical small mixed rotational farms. The main finding was that infiltration rates for

organically managed land was always equal to or greater than conventionally managed

land. On grassland (field scale) this is thought to be due to a reduction in stocking

density or other management factors which were not tested. On arable land improved

infiltration rates are thought to be due to an improvement in maximum water holding

capacity. Therefore, organic farming or practices inherent within this farming system

such as a reduced stocking density, increased amount of grassland in the rotation and

higher incorporation of organic amendments can provide ecosystem service benefits

through the reduction of flooding at the catchment scale. Hence measures should be

recommended to encourage conventional farms to address these issues with greater

vigour.
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7 Conclusions

This research has reviewed existing data; highlighting research gaps regarding the

differences between organic and conventional agriculture on soil properties and

hydrology. The main conclusions from each study (plot scale, field scale and catchment

scale modelling) have been shown in Chapters 3, 4 and 5 and integrated in Chapter 6.

This chapter presents overall conclusions from the research and highlights advice on

best soil management practices for flood prevention. Finally, suggestions for further

research are offered.

7.1 Overall Conclusions

The main conclusions which can be drawn are as follows:

1. There is little direct benefit on soil physical and chemical condition for organic

farming practices but equally there is no detrimental effect. Any differences depend

upon the sampling resolution, whether at the plot, field or catchment scale. The

results from the field scale study show that there were no significant differences

between organic and conventional management for any of the soil physical properties

measured (Soil Organic Carbon (SOC), shear strength, field capacity, aggregate

stability and Atterberg Limits). There were fewer traces of indentified pesticides and

herbicides in organic fields compared to conventional fields. The pesticide and

herbicide levels recorded were less than the current thresholds that are considered

detrimental to the environment for both agricultural management systems.

The results from the plot scale study show that organically managed land had higher

(shear strength, aggregate stability) depending upon soil texture. SOC was higher in

organically managed land only in the clay loam soil which had been managed

organically for the longest time period (50 years). There was a seasonal change in

SOC which was cyclic with the same trends being present across all three soil

textures. There were no significant differences for soil pH or total C:N ratio between

organically and conventionally managed land. For the other soil properties, the

effects of organic farming may cause increases or decreases in the property value

dependent on soil texture.
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Therefore, it can be concluded that the variability found in this research between

organic and conventional agriculture agrees with the comparative literature (Stolze et

al., 2000). Any differences between organic and conventional management on soil

physical properties were predominately influenced by:

 length of time the land had been managed organically (longer time since

conversion increased likelihood of a significant difference between

alternative management)

 soil texture (increasing amount of clay or heavier textured soils reduced the

likelihood of a significant difference between alternative management)

 land use (grassland improved soil physical properties compared to arable

land)

These differences are related to the complex interactions between previous land use,

current cropping cycle and tillage regime.

2. Tillage regime whether reduced or traditionally ploughed makes a difference to soil

quality. The differences were similar in both organically and conventionally

managed land. The effects of tillage regime may cause improvements or decreases

in the soil properties measured which is dependent on soil texture. However, the

benefits of reduced tillage are not felt in the short-term (Carter, 1994); so may not

have shown in this two year duration study.

 There is a benefit for reduced tillage for: SOC, maximum water holding

capacity, plastic limits and shear strength. However, the level of

improvement varies with soil texture

 There is a benefit for ploughed treatments for: yield and infiltration rates.

However, it is important to note that the heavier (clay) the soil texture

the less likely the tillage regime is to make a significant difference

3. For small mixed rotational farming systems organically managed land always has a

higher infiltration rate compared to conventionally managed land. The results from

the field scale study, show that there was evidence to support the suggestion that

infiltration rates are greater on organically managed grassland (7.62 mm hr-1) than

conventional grassland (2.53 mm hr-1) across all soil textures. This is probably due
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to lower stocking densities (1.3 Livestock Units (LSU) compared to 1.1 LSU,

Sutherland et al., 2011). However, no difference was determined between organic

and conventional arable land.

The results from the plot scale study, show that organically managed arable land had

a greater infiltration rate compared to conventionally managed arable land; the extent

of the variation depended upon soil texture. This significant difference was for the

sandy silt loam and clay loam; however there was no significant difference for the

clay soil. The lack of difference most likely due to the length of time under organic

managed (which is eight years for the clay – the shortest in the plot scale study). The

difference between organically and conventionally managed land is probably due to

an increase in grass leys within organic management which would help improve soil

structure and continuity of pores. This is shown through an increase in maximum

water holding capacity of organically managed soils of up to 6 % compared to

conventionally managed soils. There was also a difference due to tillage regime

where ploughing had a higher infiltration rate up to 41 % compared to reduced tillage

with the magnitude of the difference depending on soil texture. This is because any

benefit in infiltration rates from reduced tillage on soil pore connectivity would not

be felt in a short-duration (two year study).

4. Overall, in the modelled catchment, there is a decreased amount of runoff in

organically dominated catchment compared to conventionally dominated catchment

across the three different climatic conditions. For example, converting a

conventionally dominated catchment (60 % arable / 25 % grass / 15 % fallow) to

organically dominated catchment (45 % arable / 40 % grass / 15 % fallow) would

reduce flood severity:

 In dry conditions: the 1 in 10 year to 1 in 5 year and if fallow removed to

1 in 2 year

 In intermediate conditions: 1 in 10 year to 1 in 3 year and if fallow

removed to 1 in 1.25 year

 In wet conditions: 1 in 10 year to 1 in 3 year and if fallow removed to 1

in 2 year
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This helps to reduce the flood return period and the decrease damage to residential

property and agricultural land. This could have an economic benefit through

substantially reducing flood damage costs to residential properties (by 33 %, 47 %

and 100 % for dry, intermediate and wet respectively) and prevent loss of productive

agricultural land where the gross profit margins are £300 ha-1 for arable land and

£1200 ha-1 for grassland (FHRC, 2010). The largest saving is found in the wettest

climatic conditions where there is greater potential to reduce flood damage on

residential properties and agricultural land.

5. This project has looked at soil properties at different scales: field, plot and

catchment. This was important in the RELU (field scale) study for the biodiversity

aspects such as bird populations; however it was not important for individual soil

properties. However, soil properties which are altered by management become more

important at the landscape scale for potential runoff production. Therefore,

differences in organically and conventionally managed land can be attributed to the

effect of scale. In the field scale studies, reduced control over spatial distance

between organic and conventional fields and soil series matches meant that statistical

analysis was more complex. The differences were analysed in a hierarchical nested

design for land use and management. However, differences in soil texture produced

an unbalanced design so restricted maximum likelihood (REML) was used to

improve interpretation of the data. In the plot scale studies, spatial distance between

sites was reduced and soil texture was identical on organically and conventionally

managed land; therefore repeated measures factorial analysis was used without the

difficulties shown in the field scale study. This highlights the importance of

incorporating soil texture within the experimental design to enable best statistical

analysis and interpretation of the data.

6. The first part of this research (field scale - Chapter 3) was part of a multidisciplinary

project; which enabled several disciplines to collectively address a common set of

research questions. This process was challenging; as the chosen farms needed to

meet the requirements of ecologists, economists, cultural geographers and soil

scientists. Often the needs were not complementary; and some of the needs, such as
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neighbouring fields by the soil scientists, were compromised. Multidisciplinary

research is more time consuming and misunderstanding the terminology between

different disciplines can lead to communications difficulties. However, the process

can help to provide more holistic solutions to problems facing the environment.

In summary, this research has shown that when comparing organic and conventional

farming at different scales (field, plot and catchment), different climatic conditions and

over a range of soil textures; some soil physical properties show a benefit when the land

is managed organically. In the initial field scale study, there was no effect due to

organic management (except for infiltration rates); however the techniques employed

had the resolution to detect differences in land use (grass or arable) and soil textures.

This provides confidence in the results of both the field and plot scale studies. The

main finding was that organically managed land (both arable at the plot scale, and

grassland at the field scale) improved infiltration rates in comparison to conventionally

managed land. This can be related to improved soil structure and less degradation in

grass land fields and improved maximum water holding capacity in arable fields. This

has implications for significantly reducing potential runoff and hence reducing flood

severity risk from a 1 in 10 year to typically a 1 in 1.25 to 1 in 5 year event. Although,

the reader should be reminded of the main caveat concerning this finding, that the data

was obtained using Decagon tension infiltrometer.

7.2 Recommendations for farmers and land owners

The Code of Good Agricultural Practices (CGAP) (Defra, 2009b) also advocates the

importance of good soil management to ensure sustainability of farming systems. The

recommendations below are in addition to following the advice in CGAP; and mainly

aim to help to maintain SOC and prevent its loss from the agricultural system. From the

findings presented in the plot, field and modelled catchment scales there was an increase

in infiltration rate, hence reducing runoff through managing the land organically. As

previously highlighted the main factors (Cooper and Melchett, 2009) which are thought

to differentiate between organically and conventionally managed land are:

 Frequent applications of FYM or other organic manures
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 Reduced stocking intensity (to 1.1 LSU) and increase rotational grazing on

grassland

 Greater inclusion of grass / clover leys and green manures within the arable

rotations

 Reduced number of passes, depth, weight and tyre pressures of machinery

during field operations

These practices are not inherent organic practices however they are rarely practiced by

conventional farms. This research does not recommend converting to no tillage systems

as the benefits are not felt in the short-term but reducing the number of passes and depth

of operations would provide benefits. It should be noted that there may be increased

issues of weed control, such as black grass, particularly in organically managed soils so

eliminating tillage completely on these systems would not be practicable. This research

would recommend that it is not necessary for the farm to convert to certified organic as

there may not be a financial benefit. However inclusion of these typically organic

practices on conventional farms could produce beneficial results for improving soil

quality, infiltration rates and reducing runoff.

7.3 Recommendations for further research

This research has highlighted some areas which would require scientific research to

further knowledge. The SCS-CN model whilst a useful tool was based on in field

measurements of infiltration. These measurements were taken using a Decagon

minidisc tension infiltrometer which only has a small surface diameter (50 mm) even

with replicates it is important to state this limitation. Therefore, in order to validate the

model findings catchment specific runoff measurements would be advised in addition to

infiltration measurements. The hydrological consequences of farming management

practices also depend on cultivation patterns at the catchment scale, which may limit the

usefulness of considering management changes at the individual field or farm scale

(Hess et al., 2010). Therefore, further research into the effects of changing land

management at the sub catchment scale on water retention and flood mitigation through

‘Catchment Sensitive Farming’ initiatives (Environment Agency, 2009) is

recommended.
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Although this research has focused on soil physical, chemical and hydrological

properties; it is important to remember that these can also have an impact by the soil

microbial communities. Research into the changes in microbial communities through

changing tillage regime, addition of amendments or changing land management have

been completed (Cong et al., 2006, Birkhofer et al., 2008); however not in conjunction

with soil properties and effects on hydrology (flooding likelihood).

Finally, Thomasson (1987) created a model that is able to predict the number of work

days for autumn and spring periods based upon soil series and climatic data. This was

updated by Thomasson and Jones (1989) and Rounsevell and Jones (1993). However,

this model does not have the resolution to detect differences due to land management

(organic or conventional) based on the same soil texture. Further research into the

impacts of changing the SOC content on work days would be beneficial to help

highlight differences due to land management particularly in a changing climate.

Further research into seasonal changes in SOC would help to provide explanations into

the cyclic trend which was determined in Chapter 4 (plot scale study).
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Appendix A: Methodology for locating paired farms

This first part of the research was multidisciplinary (shown in Chapter 3). It involved

the selection of representative and comparable set of 32 focal farms, arranged as paired

organic and conventional farms set in organic-dominated (hot spot) and conventional-

dominated (cold spot) landscapes. These were indentified using a 10 by 10 km moving

window to locate cold spot (< 2% organic farming with a maximum of two organic

farms) and hot spot (> 10 % organic farming with minimum of two organic farms). The

results are shown in Figure A.1.

Figure A.1: Location of organic farming in England (Gabriel et al., 2009). Red (hot spot)
represents areas with a higher concentration of organic farms and blue (cold spot)
represents higher concentrations of conventional farms.

Environmental analysis was also included to account for topography, weather, climate,

land cover, soil and hydrology. These were overlaid with the hot and cold spot maps to

identify the best matching pairs of organic and conventional farms. The organic farms

were located through the Soil Association of growers; they were contacted and a

neighbouring conventional farm was approached to participate within the study. For

each paired organic and conventional farm criteria had to be met for each member of the

multidisciplinary team to complete their part of the study. These were as follows:
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 Similar in enterprise type and size

 Similar in soil type

 Close proximity

 Arable and pasture

This was not always possible at each of the 32 paired farms; allowances were made

often resulting in not identical soil textures at each farm. Therefore, a further study

involving three paired focal farms where the soil texture was identical was established.

These organic farms were identified through contacts provided by the Organic Research

Centre. The topography, weather and climate, land cover (arable) of the two farms were

similar or identical. Five farms were visited, soil samples were collected from both the

organic and conventional farm and analysed for soil texture prior to establishing the

trials. Two farms were rejected due to differences in soil texture between organic and

conventional fields (Table A.1). The farms chosen encompassed a range of soil textures

(clay, clay loam and sandy silt loam) and were generally closer in proximity than the

fields sampled in the field scale study (Chapter 3).

Table A.1: Topsoil textural classes for the five farms visited prior to establishing the trial.

Farm A Farm B Farm C Farm D Farm E

Organic Clay Clay loam Sandy silt
loam

Clay Silt Loam

Conventional Clay Clay loam Sandy silt
loam

Clay loam Sandy
Loam
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Appendix B: Land Use and Management Statistical Analysis

REML (restricted maximum likelihood) was used as a post-hoc test with hierarchical

generalised linear model; using fixed effects as land use (grass vs. arable) nested in

fixed effect land management (organic vs. conventional) and soil textural class as a

random effect.

This provided estimate tables of parameters from the mean model. From these tables it

is possible to determine whether there is a significant difference between a parameter

and the reference parameter.

Table B.1: SOC (mg kg-1) estimates of parameters from mean model. The significance is
determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 3.18 0.22 NS

Conventional Grass vs. Conventional Arable 3.17 3.21 

Organic Grass vs. Organic Arable 3.31 2.22 

Soil texture: Clayey 3.15 0.47 NS

Silty 3.01 1.92 NS

Medium 3.16 -1.37 NS

Coarse 3.22 -0.91 NS

Table B.2: SOM (mg kg-1) estimates of parameters from mean model. The significance is
determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 5.44 0.55 NS

Conventional vs. Conventional Arable 5.42 3.56 

Organic Grass vs. Organic Arable 5.66 1.99 NS

Soil texture: Clayey 5.62 0.62 NS

Silty 5.38 1.90 NS

Medium 5.63 -1.23 NS

Coarse 5.73 -1.18 NS
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Table B.3: Field Capacity (%) estimates of parameters from mean model. The
significance is determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 2.97 0.58 NS

Conventional Grass vs. Conventional Arable 2.96 2.72 

Organic Grass vs. Organic Arable 3.09 1.64 NS

Soil texture: Clayey 3.09 1.15 NS

Silty 2.96 1.00 NS

Medium 3.09 0.01 NS

Coarse 3.15 -2.07 

Table B.4: Aggregate stability (%) estimates of parameters from mean model. The
significance is determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 5.66 0.64 NS

Conventional Grass vs. Conventional Arable 5.65 4.34 

Organic Grass vs. Organic Arable 5.79 4.10 

Soil texture: Clayey 3.34 1.25 NS

Silty 3.18 0.02 NS

Medium 3.35 -0.55 NS

Coarse 3.42 -0.71 NS

Table B.5: Plastic Limit (g kg-1) estimates of parameters from mean model. The
significance is determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 29.1 1.47 NS

Conventional Grass vs. Conventional Arable 29.0 2.15 

Organic Grass vs. Organic Arable 30.3 0.92 NS

Soil texture: Clayey 31.5 1.95 NS

Silty 30.2 0.11 NS

Medium 31.5 -0.27 NS

Coarse 32.1 -1.75 NS
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Table B.6: Liquid Limit (g kg-1) estimates of parameters from mean model. The
significance is determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 33.2 0.09 NS

Conventional Grass vs. Conventional Arable 33.1 -0.12 NS

Organic Grass vs. Organic Arable 34.7 0.61 NS

Soil texture: Clayey 47.8 1.98 NS

Silty 46.6 0.70 NS

Medium 47.9 -0.62 NS

Coarse 48.5 -2.02 

Table B.7: Plasticity Index (g kg-1) estimates of parameters from mean model. The
significance is determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 23.2 -1.71 NS

Conventional Grass vs. Conventional Arable 23.1 2.84 

Organic Grass vs. Organic Arable 24.1 -0.07 NS

Soil texture: Clayey 20.5 1.08 NS

Silty 19.5 1.26 NS

Medium 20.6 -0.84 NS

Coarse 21.0 -1.40 NS

Table B.8: Total Inorganic N (g kg-1) estimates of parameters from mean model. The
significance is determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 4.32 -4.59 

Conventional Grass vs. Conventional Arable 4.31 -3.42 

Organic Grass vs. Organic Arable 4.39 0.16 NS

Soil texture: Clayey 1.99 -0.61 NS

Silty 1.91 0.94 NS

Medium 1.99 -0.40 NS

Coarse 2.02 0.11 NS
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Table B.9: Total K (g kg-1) estimates of parameters from mean model. The significance is
determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 339 -0.12 NS

Conventional Grass vs. Conventional Arable 338 0.16 NS

Organic Grass vs. Organic Arable 350 0.12 NS

Soil texture: Clayey 255 1.48 NS

Silty 242 -0.05 NS

Medium 256 -0.09 NS

Coarse 262 -1.32 NS

Table B.10: Total P (g kg-1) estimates of parameters from mean model. The significance is
determined at p=0.01 and this is shown by t (60) being greater than 2.

Parameter S.E. t (60) Significance

Organic vs. Conventional 106 -0.72 NS

Conventional Grass vs. Conventional Arable 106 0.73 NS

Organic Grass vs. Organic Arable 109 0.76 NS

Soil texture: Clayey 67.9 -0.59 NS

Silty 64.4 1.54 NS

Medium 68.2 -0.51 NS

Coarse 69.5 -0.35 NS
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Appendix C: Tillage regime and Management Statistical

Analysis

As shear strength varies with soil moisture content (Ball et al., 1997); correlation matrix

were calculated. This was to ensure that no differences could be attributed to initial

moisture contents rather than land management or tillage regime.

C.1: Correlation Matrix for Aberdeen between soil moisture content (%) and shear
strength (kPa) where significance (p < 0.05) is shown by highlighted cell.

Shear Strength /
Moisture content

Moisture Content
Post Harvest

Moisture Content
Post Tillage

Moisture Content
Post Harvest

Shear Strength
Post Harvest

0.30 0.73 -0.22

Shear Strength
Post Tillage

0.24 0.60 -0.28

Shear Strength
Post Harvest

0.35 0.78 -0.24

C.2: Correlation Matrix for East Grinstead between soil moisture content (%) and shear
strength (kPa) where p > 0.05 (no significant differences).

Shear Strength /
Moisture content

Moisture Content
Post Harvest

Moisture Content
Post Tillage

Moisture Content
Post Harvest

Shear Strength
Post Harvest

0.21 -0.21 0.22

Shear Strength
Post Tillage

0.24 -0.11 0.22

Shear Strength
Post Harvest

0.11 0.11 0.18

C.3: Correlation Matrix for Huntingdon between soil moisture content (%) and shear
strength (kPa) where p > 0.05 (no significant differences).

Shear Strength /
Moisture content

Moisture Content
Post Harvest

Moisture Content
Post Tillage

Shear Strength
Post Harvest

0.22 0.11

Shear Strength
Post Tillage

0.11 -0.24
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Appendix D: Work day model inputs (Thomasson, 1987)

Thomasson’s model for workability involves several different steps to incorporate both

climate and soil data. These will now be outlined.

 Firstly, soil assessment based upon the England and Wales (1984) soil survey

data provides the soil wetness class. For example, the clay soil was Evesham 1

with wetness class IV and the clay loam was Wickham 3 with wetness class II.

This method does not allow for differences in soil organic carbon; so it is not

possible to compare two different land management regimes.

Table D.1: Soil moisture regime classes and duration of wet states in most years
(Thomasson, 1987).

Wetness Class Duration of Water logging

I Soil profile is not waterlogged within 700 mm depth for more 30 days

II Soil profile is waterlogged within 700 mm for 30- 90 days

III Soil profile is waterlogged within 700 mm for 90-180 days

IV Soil profile is waterlogged within 700 mm for more than 180 days but not
within 400 mm for more than 180 days

 These wetness classes are combined through Table D.2 to provide a soil class (a-

d). Soil textural class determines the water capacity of the soil. For example the

clay soil has a high water retention capacity whereas the clay loam has a

medium water retention capacity.

Table D.2: Soil assessment relating wetness class with retained water capacity to
provide soil class (Thomasson, 1987).

Wetness Class Retained Water Capacity of Topsoil
Low Medium High

I a a a

II a/b a/b b/c

III b/c c/d c/d

IV c/d d d

 Current rainfall data (yearly) for the years 2008-2010 was collected from the

met-office (2010). The current rainfall data was compared against the rainfall
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data in Smith and Trafford (1976) to provide evapotranspiration rates. Smith

and Trafford (1976) provide early, median and late date estimates for the end of

field capacity and return to field capacity. The median value was used;

interpolation between recorded rainfall and the values in Smith and Trafford

(1976) allowed the correct estimation of dates. There was no allowance for

different types of machinery or growing different crops.

 The number of workable days was calculated through difference (days) between

end of field capacity and the return to field capacity. This was then corrected for

soil type and time of operations (spring or autumn) according to Table D.3. For

example, for soil a in spring 10 days can be added whereas in autumn 20 days

can be added.

Table D.3: Integration of soil (soil assessment classification) and climatic components to
estimate potential machinery work days in spring and autumn (Thomasson, 1987).

a b c d

Spring +10 0 -5 -10
Autumn +20 0 -20 -30
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Appendix E: SCS-CN Calculations
Table E.1: SCS Calculations for Grassland modelling for the three different climatic conditions for the 1 in 1, 1 in 2 and 1 in 10 yea
events (Smith and Trafford, 1976).

Land use
DRY

Antecedent
conditions -

average value
for annual

floods
N number
Good Poor

Hydrological
Group (based
on infiltration
measurement)

Rainfall
Depth

(P) mm

Organic Grass II 69 79 B 33

Conventional Grass II 79 86 C 33

Organic Grass II 69 79 B 43

Conventional Grass II 79 86 C 43

Organic Grass II 69 79 B 56

Conventional Grass II 79 86 C 56

Land use
INTERMEDIATE

Antecedent
conditions -

average value
for annual

floods
N number
Good Poor

Hydrological
Group (based
on infiltration
measurement)

Rainfall
Depth

(P) mm

Organic Grass II 69 79 B 45

Conventional Grass II 79 86 C 45

Organic Grass II 69 79 B 52

Conventional Grass II 79 86 C 52

Organic Grass II 69 79 B 66

Conventional Grass II 79 86 C 66

Land use
WET

Antecedent
conditions -

average value
for annual

floods
N number
Good Poor

Hydrological
Group (based
on infiltration
measurement)

Rainfall
Depth

(P) mm

Organic Grass II 69 79 B 64

Conventional Grass II 79 86 C 64

Organic Grass II 69 79 B 73

Conventional Grass II 79 86 C 73

Organic Grass II 69 79 B 87

Conventional Grass II 79 86 C 87
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CN Calculations
: SCS Calculations for Grassland modelling for the three different climatic conditions for the 1 in 1, 1 in 2 and 1 in 10 yea

Rainfall
Direct

Runoff (Q)
mm

Good Poor

Time to
concentration

hr Good Poor Area

Max. potential
difference between
rainfall and runoff
(S) Good Poor

Initial
Abstraction

Good Poor
Ia/P ratio

Good Poor

Unit Peak discharge
(qu) m3s-1ha-

Good

3 6 1.16 0.88 550 114.12 67.52 22.82 13.50 0.69 0.02 0.0005

6 11 0.88 0.69 550 67.52 41.35 13.50 8.27 0.41 0.01 0.0011

7 15 1.16 0.88 550 114.1 67.5 22.8 13.5 0.5 0.0 0.0006

15 24 0.88 0.69 550 67.5 41.3 13.5 8.3 0.3 0.0 0.0013

10 24 1.16 0.88 550 114.1 67.5 22.8 13.5 0.4 0.0 0.0012

24 35 0.88 0.69 550 67.5 41.3 13.5 8.3 0.2 0.0 0.0015

Rainfall
Direct

Runoff (Q)
mm

Good Poor

Time to
concentration

hr Good Poor Area

Max. potential
difference between
rainfall and runoff
(S) Good Poor

Initial
Abstraction

Good Poor
Ia/P ratio

Good Poor

Unit Peak discharge
(qu) m3s-1ha-

Good Poor

7 15 1.16 0.88 550 114.12 67.52 22.82 13.50 0.51 0.01 0.0007

15 24 0.88 0.69 550 67.52 41.35 13.50 8.27 0.30 0.01 0.0013

10 24 1.16 0.88 550 114.12 67.52 22.82 13.50 0.44 0.01 0.0008

15 35 0.88 0.69 550 67.52 41.35 13.50 8.27 0.26 0.00 0.0012

20 29 1.16 0.88 550 114.12 67.52 22.82 13.50 0.35 0.01 0.0012

29 40 0.88 0.69 550 67.52 41.35 13.50 8.27 0.20 0.00 0.0015

Rainfall
Direct

Runoff (Q)
mm

Good Poor

Time to
concentration

hr Good Poor Area

Max. potential
difference between
rainfall and runoff
(S) Good Poor

Initial
Abstraction

Good Poor
Ia/P ratio

Good Poor

Unit Peak discharge
(qu) m3s-1ha-

Good

20 29 1.16 0.88 550 114.12 67.52 22.82 13.50 0.36 0.01 0.0012

29 40 0.88 0.69 550 67.52 41.35 13.50 8.27 0.21 0.0 0.0015

25 35 1.16 0.88 550 114.12 67.52 22.82 13.50 0.31 0.0 0.0012

35 55 0.88 0.69 550 67.52 41.35 13.50 8.27 0.18 0.0 0.0016

30 52 1.16 0.88 550 114.12 67.52 22.82 13.50 0.26 0.0 0.0013

52 70 0.88 0.69 550 67.52 41.35 13.50 8.27 0.16 0.0 0.0015
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: SCS Calculations for Grassland modelling for the three different climatic conditions for the 1 in 1, 1 in 2 and 1 in 10 yea r rainfall

Unit Peak discharge
1mm-1

Good Poor
Q

Good Poor
q runoff m3s-1

Good Poor

Ratio
Good
to poor

0.0019 0.83 4.37 0.01 0.25 0.05

0.0021 4.37 9.26 0.14 0.58 0.24

0.0019 3.03 8.97 0.06 0.52 0.11

0.0021 8.97 15.85 0.36 1.00 0.36

0.0019 7.47 16.42 0.26 0.95 0.27

0.0021 16.42 25.57 0.73 1.61 0.46

Unit Peak discharge
1mm-1

Poor
Q

Good Poor
q runoff m3s-1

Good Poor

Ratio
Good
to poor

0.0020 3.61 10.02 0.07 0.59 0.12

0.0022 10.02 17.28 0.41 1.14 0.36

0.0019 5.94 13.98 0.14 0.81 0.18

0.0019 13.98 22.08 0.51 1.30 0.39

0.0019 11.85 22.96 0.43 1.33 0.32

0.0015 22.96 33.64 1.02 2.11 0.49

Unit Peak discharge
1mm-1

Poor
Q

Good Poor
q runoff m3s-1

Good Poor

Ratio
Good
to poor

0.0019 10.92 21.61 0.40 1.25 0.32

0.0021 21.61 31.99 0.96 2.01 0.48

0.0019 15.32 27.87 0.53 1.61 0.33

0.0021 27.87 39.50 1.33 2.48 0.54

0.0019 23.10 38.31 0.88 2.21 0.40

0.0021 38.31 51.62 1.71 3.24 0.53
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Table E.2: SCS Calculations for arable modelling for the three different climatic conditions for the 1 in 1, 1 in 2 and 1 in 10 year rainfal
(Smith and Trafford, 1976).

Land use DRY

Antecedent
conditions -

average value
for annual

floods
N number
Good Poor

Hydrological
Group (based
on infiltration
measurement)

Rainfall
Depth

(P) mm

Organic Arable II 67 72 B 33

Conventional Arable II 78 81 C 33

Organic Arable II 67 72 B 43

Conventional Arable II 78 81 C 43

Organic Arable II 67 72 B 56

Conventional Arable II 78 81 C 56

Land use
INTERMEDIATE

Antecedent
conditions -

average value
for annual

floods
N number
Good Poor

Hydrological
Group (based
on infiltration
measurement)

Rainfall
Depth

(P) mm

Organic Arable II 67 72 B 45

Conventional Arable II 78 81 C 45

Organic Arable II 67 72 B 52

Conventional Arable II 78 81 C 52

Organic Arable II 67 72 B 66

Conventional Arable II 78 81 C 66

Land use WET

Antecedent
conditions -

average value
for annual

floods
N number
Good Poor

Hydrological
Group (based
on infiltration
measurement)

Rainfall
Depth

(P) mm

Organic Arable II 67 72 B 64

Conventional Arable II 78 81 C 64

Organic Arable II 67 72 B 73

Conventional Arable II 78 81 C 73

2Organic Arable II 67 72 B 87

Conventional Arable II 78 81 C 87
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Calculations for arable modelling for the three different climatic conditions for the 1 in 1, 1 in 2 and 1 in 10 year rainfal

Rainfall
Depth

(P) mm

Direct
Runoff (Q)

mm
Good Poor

Time to
concentration

hr Good Poor Area

Max. potential
difference between
rainfall and runoff
(S) Good Poor

Initial
Abstraction

Good Poor
Ia/P ratio

Good Poor

Unit Peak discharge
(qu) m3s-

Good

33 3 6 1.23 1.07 550 125.10 98.78 25.02 19.76 0.60 0.02 0.0005

33 6 11 0.90 0.82 550 71.64 59.58 14.33 11.92 0.36 0.01 0.0011

43 7 15 1.23 1.07 550 125.10 98.78 25.02 19.76 0.5 0.0 0.0006

43 15 24 0.90 0.82 550 71.64 59.58 14.33 11.92 0.3 0.0 0.0013

56 10 24 1.23 1.07 550 125.10 98.78 25.02 19.76 0.4 0.0 0.0015

56 24 35 0.90 0.82 550 71.64 59.58 14.33 11.92 0.2 0.0 0.0015

Rainfall
Depth

(P) mm

Direct
Runoff (Q)

mm
Good Poor

Time to
concentration

hr Good Poor Area

Max. potential
difference between
rainfall and runoff
(S) Good Poor

Initial
Abstraction

Good Poor
Ia/P ratio

Good Poor

Unit Peak discharge
(qu) m3s-

Good

45 7 15 1.23 1.07 550 125.10 98.78 25.02 19.76 0.44 0.01 0.0007

45 15 24 0.90 0.82 550 71.64 59.58 14.33 11.92 0.26 0.01 0.0013

52 10 24 1.23 1.07 550 125.10 98.78 25.02 19.76 0.38 0.01 0.0008

52 15 35 0.90 0.82 550 71.64 59.58 14.33 11.92 0.23 0.0 0.0012

66 20 29 1.23 1.07 550 125.10 98.78 25.02 19.76 0.30 0.0 0.0012

66 29 40 0.90 0.82 550 71.64 59.58 14.33 11.92 0.18 0.0 0.0015

Rainfall
Depth

(P) mm

Direct
Runoff (Q)

mm
Good Poor

Time to
concentration

hr Good Poor Area

Max. potential
difference between
rainfall and runoff
(S) Good Poor

Initial
Abstraction

Good Poor
Ia/P ratio

Good Poor

Unit Peak discharge
(qu) m3s-

Good

64 20 29 1.23 1.07 550 125.10 98.78 25.05 19.76 0.31 0.0 0.0012

64 29 40 0.90 0.82 550 71.64 59.58 14.33 11.92 0.19 0.0 0.0015

73 25 35 1.23 1.07 550 125.40 98.78 25.05 19.76 0.27 0.0 0.0012

73 35 55 0.90 0.82 550 71.64 59.58 14.33 11.92 0.16 0.0 0.0016

87 30 52 1.23 1.07 550 125.10 98.78 25.05 19.76 0.23 0.0 0.0013

87 52 70 0.90 0.82 550 71.64 59.58 14.33 11.92 0.14 0.0 0.0015

Appendices

Engineering Doctorate (2011)

Calculations for arable modelling for the three different climatic conditions for the 1 in 1, 1 in 2 and 1 in 10 year rainfal l events

Unit Peak discharge
-1ha-1mm-1

Good Poor
Q

Good Poor
q runoff m3s-1

Good Poor

Ratio
Good
to poor

0.0019 0.48 1.57 0.02 0.03 0.89

0.0021 3.86 5.51 0.18 0.24 0.73

0.0019 2.26 4.43 0.08 0.13 0.64

0.0021 8.20 10.66 0.43 0.51 0.84

0.0019 6.15 9.73 0.34 0.36 0.95

0.0021 15.33 18.75 0.84 0.96 0.87

Unit Peak discharge
-1ha-1mm-1

Good Poor
Q

Good Poor
q runoff m3s-1

Good Poor

Ratio
Good
to poor

0.0020 2.75 5.14 0.10 0.16 0.63

0.0022 9.19 11.81 0.48 0.61 0.79

0.0019 4.79 7.34 0.19 0.28 0.69

0.0019 12.98 16.12 0.59 0.75 0.78

0.0019 10.11 14.75 0.54 0.58 0.92

0.0021 21.65 25.73 1.15 1.36 0.84

Unit Peak discharge
-1ha-1mm-1

Poor
Q

Good Poor
q runoff m3s-1

Good Poor

Ratio
Good
to poor

0.0019 9.26 13.69 0.50 0.54 0.93

0.0021 20.34 24.29 1.08 1.28 0.85

0.0019 13.30 18.65 0.65 0.77 0.84

0.0021 26.42 30.92 1.48 1.66 0.89

0.0019 20.53 27.24 1.03 1.19 0.87

0.0021 36.60 41.86 1.87 2.30 0.81
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Table E.3: SCS Calculations for current landscape modelling f
rainfall events (Smith and Trafford, 1976).

Landscape DRY Land use
% in

catchment

Antecedent
conditions
for annual

flood
N Number
GoodPoor

Weighted
average N
number

Good Poor
Conventionally
dominated
landscape Arable 0.6 II 78 81 79.45 83

Grassland 0.25 II 79 86

Bareland 0.15 II 86 86
Organically

dominated
landscape Arable 0.45 II 78 81 75.6 80.95

Grassland 0.4 II 69 79
Bareland 0.15 II 86 86

Conventionally
dominated
landscape Arable 0.6 II 78 81 79.45 83

Grassland 0.25 II 79 86
Bareland 0.15 II 86 86

Organically
dominated
landscape Arable 0.45 II 78 81 75.6 80.95

Grassland 0.4 II 69 79
Bareland 0.15 II 86 86

Conventionally
dominated
landscape Arable 0.6 II 78 81 79.45 83

Grassland 0.25 II 79 86
Bareland 0.15 II 86 86

Organically
dominated
landscape Arable 0.45 II 78 81 75.6 80.95

Grassland 0.4 II 69 79
Bareland 0.15 II 86 86

Landscape
MEDIUM Land use

% in
catchment

Antecedent
conditions
for annual

flood
N Number
GoodPoor

Weighted
average N

number
Good Poor

Conventionally
dominated
landscape Arable 0.6 II 78 81 79.45 83

Grassland 0.25 II 79 86

Bareland 0.15 II 86 86
Organically
dominated
landscape Arable 0.45 II 78 81 75.6 80.95

Grassland 0.4 II 69 79
Bareland 0.15 II 86 86

Conventionally
dominated Arable 0.6 II 78 81 79.45 83
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Hydrological
group

Rainfall
depth
(mm)

Direct
runoff

(Q)
GoodPoor

Time to
concentration
Good Poor Area

Maximum
potential

difference
between

rainfall and
runoff

Good Poor

Initial
abstraction
Good Poor

Ia / P ratio
Good Poor

B 33 5 7 0.86 0.77 550 65.70 52.02 13.14 10.40 0.40 0.32
C 33 5 7

B 33 5 7

B 33 3 6.5 0.97 0.82 550 81.98 59.77 16.40 11.95 0.50 0.36
B 33 3 6.5
B 33 3 6.5

B 43 11 18 0.86 0.77 550 65.70 52.02 13.14 10.40 0.31 0.24
C 43 11 18
B 43 11 18

B 43 10 12 0.97 0.82 550 81.98 59.77 16.40 11.95 0.38 0.28
B 43 10 12
B 43 10 12

B 56 22 30 0.86 0.77 550 65.70 52.02 13.14 10.40 0.23 0.19
C 56 22 30
B 56 22 30

B 56 18 25 0.97 0.82 550 81.98 59.77 16.40 11.95 0.29 0.21
B 56 18 25
B 56 18 25

Hydrological
group

Rainfall
depth
(mm)

Direct
runoff

(Q)
GoodPoor

Time to
concentration
Good Poor Area

Maximum
potential

difference
between

rainfall and
runoff

Good Poor

Initial
abstraction
Good Poor

Ia / P ratio
Good Poor

83 B 45 15 25 0.86 0.77 550 65.70 52.02 13.14 10.40 0.29
C 45 15 25

B 45 15 25

80.95 B 45 13 24 0.97 0.82 550 81.98 59.77 16.40 11.95 0.36
B 45 13 24
B 45 13 24

83 B 52 20 25 0.86 0.77 550 65.70 52.02 13.14 10.40 0.25
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or the three different climatic conditions for the 1 in 1, 1 in 2 and 1 in 10 year

Ia / P ratio
Good Poor

Unit peak
discharge (qu)
good poor

Q
Good poor

q runoff
good poor

Ratio
good

to
poor

0.32 0.0011 0.0014 4.61 6.84 0.15 0.29 1.98

0.36 0.0007 0.0012 2.80 5.48 0.06 0.19 3.24

0.24 0.0014 0.0017 9.33 12.56 0.39 0.63 1.61

0.28 0.0014 0.0016 6.52 10.61 0.27 0.51 1.85

0.19 0.0016 0.0017 16.92 21.30 0.81 1.06 1.30

0.21 0.0013 0.0016 12.90 18.69 0.52 0.89 1.71

Ia / P ratio
Good Poor

Unit peak
discharge (qu)
good poor

Q
Good poor

q runoff
good poor

Ratio
good

to
poor

0.23 0.0011 0.0014 10.40 13.82 0.34 0.59 1.77

0.27 0.0007 0.0012 7.40 11.76 0.16 0.43 2.69

0.20 0.0015 0.0017 14.44 18.48 0.64 0.92 1.42
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landscape
Grassland 0.25 II 79 86
Bareland 0.15 II 86 86

Organically
dominated
landscape Arable 0.45 II 78 81 75.6 80.95

Grassland 0.4 II 69 79
Bareland 0.15 II 86 86

Conventionally
dominated
landscape Arable 0.6 II 78 81 79.45 83

Grassland 0.25 II 79 86
Bareland 0.15 II 86 86

Organically
dominated
landscape Arable 0.45 II 78 81 75.6 80.95

Grassland 0.4 II 69 79
Bareland 0.15 II 86 86

Landscape
WET Land use

% in
catchment

Antecedent
conditions
for annual
flood

N
Number
GoodPoor

Weighted
average N
number
Good Poor

Hydrological
group

Conventionally
dominated
landscape Arable 0.6 II 78 81 79.45 83

Grassland 0.25 II 79 86
Bareland 0.15 II 86 86

Organically
dominated
landscape Arable 0.45 II 78 81 75.6 80.95

Grassland 0.4 II 69 79
Bareland 0.15 II 86 86

Conventionally
dominated
landscape Arable 0.6 II 78 81 79.45 83

Grassland 0.25 II 79 86
Bareland 0.15 II 86 86

Organically
dominated
landscape Arable 0.45 II 78 81 75.6 80 .95

Grassland 0.4 II 69 79
Bareland 0.15 II 86 86

Conventionally
dominated
landscape Arable 0.6 II 78 81 79.45 83

Grassland 0.25 II 79 86
Bareland 0.15 II 86 86

Organically
dominated
landscape Arable 0.45 II 78 81 75.6 80.95

Grassland 0.4 II 69 79

Bareland 0.15 II 86 86
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C 52 20 25
B 52 20 25

80.95 B 52 12 22 0.97 0.82 550 81.98 59.77 16.40 11.95 0.32
B 52 12 22
B 52 12 22

83 B 66 29 35 0.86 0.77 550 65.70 52.02 13.14 10.40 0.20
C 66 29 35
B 66 29 35

80.95 B 66 25 30 0.97 0.82 550 81.98 59.77 16.40 11.95 0.25
B 66 25 30
B 66 25 30

Hydrological
group

Rainfall
depth
(mm)

Direct
runoff
(Q)
GoodPoor

Time to
concentration
Good Poor Area

Maximum
potential
difference
between
rainfall and
runoff
Good Poor

Initial
abstraction Good
Poor

Ia / P ratio
Good Poor

83 B 64 29 35 0.86 0.77 550 65.70 52.02 13.14 10.40 0.21
C 64 29 35
B 64 29 35

80.95 B 64 25 30 0.97 0.82 550 81.98 59.77 16.40 11.95 0.26
B 64 25 30
B 64 25 30

83 B 73 39 46 0.86 0.77 550 65.70 52.02 13.14 10.40 0.18
C 73 39 46
B 73 39 46

.95 B 73 31 40 0.97 0.82 550 81.98 59.77 16.40 11.95 0.22
B 73 31 40
B 73 31 40

83 B 87 52 60 0.86 0.77 550 65.70 52.02 13.14 10.40 0.15
C 87 52 60
B 87 52 60

80.95 B 87 45 55 0.97 0.82 550 81.98 59.77 16.40 11.95 0.19

B 87 45 55

B 87 45 55
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0.23 0.0013 0.0015 10.78 16.07 0.41 0.72 1.75

0.16 0.0015 0.0017 23.57 28.72 1.09 1.47 1.35

0.18 0.0013 0.0015 18.70 25.66 0.76 1.14 1.51

Unit peak
discharge (qu)
good poor

Q
Good poor

q runoff
good poor

Ratio
good to
poor

0.16 0.0016 0.0016 22.19 27.20 1.06 1.33 1.25

0.19 0.0014 0.0016 17.49 24.22 0.75 1.18 1.57

0.14 0.0016 0.0018 28.54 34.18 1.37 1.81 1.32

0.16 0.0015 0.0015 23.12 30.84 1.03 1.43 1.38

0.12 0.0016 0.0018 39.09 45.61 1.87 2.49 1.33

0.14 0.0014 0.0016 32.67 41.77 1.40 2.00 1.43
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Table E.4: SCS Calculations for future landscape mod
rainfall events (Smith and Trafford, 1976). Only one future scenario is presented as all the calculations were the same.

Landscape
DRY Land use

% in
catchment

Antecedent
conditions
for annual

flood
N Number
GoodPoor

Weighted
average N
number

Good Poor
Hydrological

Future
landscape Arable 0.45 II 78 81 62.7 68.05

Grassland 0.55 II 69 79
Future
landscape Arable 0.45 II 78 81 62.7 68.05

Grassland 0.55 II 69 79
Future
landscape Arable 0.45 II 78 81 62.7 68.05

Grassland 0.55 II 69 79

Landscape
MEDIUM Land use

% in
catchment

Antecedent
conditions
for annual

flood
N Number
GoodPoor

Weighted
average N

number
Good Poor

Hydrological

Future
landscape Arable 0.45 II 78 81 62.7 68.05

Grassland 0.55 II 69 79
Future
landscape Arable 0.45 II 78 81 62.7 68.05

Grassland 0.55 II 69 79
Future
landscape Arable 0.45 II 78 81 62.7 68.05

Grassland 0.55 II 69 79

Landscape
WET Land use

% in
catchment

Antecedent
conditions
for annual
flood

N
Number
GoodPoor

Weighted average N
number

Good Poor
Future
landscape Arable 0.45 II 78 81 62.7 68.05

Grassland 0.55 II 69 79
Future
landscape Arable 0.45 II 78 81 62.7 68.05

Grassland 0.55 II 69 79
Future
landscape Arable 0.45 II 78 81 62.7 68.05

Grassland 0.55 II 69 79
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.4: SCS Calculations for future landscape modelling for the three different climatic conditions for the 1 in 1, 1 in 2 and 1 in 10 year
rainfall events (Smith and Trafford, 1976). Only one future scenario is presented as all the calculations were the same.

Hydrological
group

Rainfall
depth
(mm)

Direct
runoff (Q)
GoodPoor

Time to
concentration
Good Poor Area

Maximum
potential

difference
between rainfall

and runoff
Good Poor

Initial
abstraction
Good Poor

Ia / P ratio
Good Poor

B 33 2 2 1.37 1.19 550 151.10 119.25 30.22 23.85 0.72 0.92
B 33

B 33 4 5 1.37 1.19 550 151.10 119.25 30.22 23.85 0.55 0.70
B 33

B 43 5 8 1.37 1.19 550 151.10 119.25 30.22 23.85 0.43 0.54
B 43

Hydrological
group

Rainfall
depth
(mm)

Direct
runoff (Q)
GoodPoor

Time to
concentration
Good Poor Area

Maximum
potential

difference
between rainfall

and runoff
Good Poor

Initial
abstraction
Good Poor

Ia / P ratio
Good Poor

B 45 4 5 1.37 1.19 550 151.10 119.25 30.22 23.85 0.67 0.53
B 45

B 45 8 5 1.37 1.19 550 151.10 119.25 30.22 23.85 0.46 0.58
B 45

B 52 18 10 1.37 1.19 550 151.10 119.25 30.22 23.85 0.36 0.43
B 52

Hydrological
group

Rainfall
depth
(mm)

Direct runoff
(Q)
GoodPoor

Time to
concentration
Good Poor Area

Maximum
potential
difference
between rainfall
and runoff
Good Poor

Initial
abstraction
Good Poor

Ia / P ratio
Good

B 64 10 18 1.37 1.19 550 151.10 119.25 30.22 23.85 0.47
B 64

B 64 15 25 1.37 1.19 550 151.10 119.25 30.22 23.85 0.41
B 64

B 73 21 30 1.37 1.19 550 151.10 119.25 30.22 23.85 0.35
B 73
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elling for the three different climatic conditions for the 1 in 1, 1 in 2 and 1 in 10 year
rainfall events (Smith and Trafford, 1976). Only one future scenario is presented as all the calculations were the same.

Good Poor

Unit peak
discharge (qu)
good poor

Q
Good poor

q runoff
good poor

Ratio
good to

poor

0.92 0.0004 0.0007 0.05 0.65 0.01 0.05 0.29

0.70 0.0004 0.0006 1.00 2.65 0.05 0.1

0.54 0.00006 0.0009 3.76 6.83 0.07 0.19 0.37

Ia / P ratio
Good Poor

Unit peak
discharge (qu)
good poor

Q
Good poor

q runoff
good poor

Ratio
good

to poor

0.53 0.0005 0.0007 1.32 3.19 0.02 0.06 0.31

0.58 0.0004 0.0008 2.74 5.38 0.04 0.12 0.29

0.43 0.0007 0.0010 7.80 11.27 0.14 0.35 0.41

Ia / P ratio
Good Poor

Unit peak
discharge (qu)
good poor

Q
Good poor

q runoff
good poor

Ratio
good
to
poor

0.37 0.0008 0.0010 6.17 10.11 0.14 0.31 0.45

0.33 0.0008 0.0011 9.44 14.34 0.23 0.47 0.49

0.27 0.0010 0.0012 15.51 21.86 0.49 0.78 0.63
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Abstract

Organic farming and improvements to agricultural sustainability are often seen as synonymous.

However, an extensive European review demonstrated that in practice this is not always true. This

study aims to compare the status of soil and water properties between separate fields managed in either

an organic or a conventional manner. Soil samples were collected from 16 pairs of farms, throughout

England, with both arable and grass fields within each pair on similar soil type. Chemical (nutrients,

pesticides, herbicides) and physical (aggregate stability, field capacity, shear strength, soil organic

matter, infiltration rates) soil properties were measured in four main soil texture classes in organic and

conventional fields. The physical soil properties varied significantly between the different classes of

texture and land use. The heavier textured soils have significantly higher soil organic carbon (SOC),

aggregate stability and shear strength. The coarse-textured soils have significantly lower field capacity

moisture contents. The grassland has a significantly higher level of SOC, field capacity moisture

content, aggregate stability and soil shear strength. However, there were no significant differences

between organic and conventional treatments for any of the soil physical properties measured. There

were fewer traces of agrochemicals in the soil water from the organic fields compared with the

conventionally managed fields. The conventional arable fields had higher levels of total inorganic

nitrogen than the other land uses and treatments. There was evidence to show that infiltration rates

were significantly higher on organically managed grassland soils (7.6 mm ⁄h) than conventionally

managed grassland (2.5 mm ⁄h) with lower stocking rates. The results suggest that improved grassland

management, whether organic or conventional, could reduce predicted runoff by 28%.

Keywords: Organic and conventional agriculture, infiltration rate, aggregate stability, SOC

Introduction

Changing UK policy relating to farming practices has fuelled

the debate over the relative merits of organic and

conventional management, especially regarding the issues of

sustainability, leaching and agricultural pollution. Generally,

conventional farming (nonorganic) has inputs of fertilizers,

herbicides and pesticides which result in higher yields than

organic farming, but is considered by some as non-

sustainable because of the high inputs (Byrne, 1997). Organic

farming, governed by various sources of legislation, aims to

reduce the reliance on external inputs, obtain nutrients from

organic sources and promote good soil management

techniques but its lower yields require premium prices to

secure economic sustainability (Lampkin, 1999). Sustainable

management is crucial to the maintenance of soil structure

and organic matter (SOM) levels especially if the availability

of water and nutrients as well as ease of soil workability is to

be maintained (Pulleman et al., 2003). Stolze et al. (2000)

review the literature comparing organic and conventional

farms with respect to soil properties, microbiology and

nutrient analysis, which was updated by Armstrong Brown

et al. (2000), Marinari et al. (2006), Mulumba & Lal (2008),

Pulleman et al. (2003) and Parfitt et al. (2005). A summary of

the main findings is shown in Table 1; different studies found

contrasting results to highlight the difficulty in performing

comparative studies between different farming techniques
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across a range of soil types and conditions. Whilst the

majority of the results (11) indicate no improvement, five

show improvements in SOM and two reductions in soil

erodibility in organic systems.

Pulleman et al. (2003) compare SOM dynamics on

conventional and organic arable farms in the Netherlands.

They conclude that although organic methods were

economically favourable, the farmer needs to be careful not

to destroy the soil structure so that the benefits from

increased biological activity are not lost. It is well accepted

(Stolze et al., 2000) that the key to long-term success in

organic farming is good soil management. There is at present

a lack of comparative research into soil physical properties

between organic and conventional management in the UK.

The exception is the work of Armstrong Brown et al. (2000),

which compares topsoil properties of 30 paired organic and

conventional farms across a range of soil types and

management regimes, but their investigation did not include

the implications for hydrology or infiltration rate (IR).

Pasture and arable farms showed no significant differences in

terms of soil physical and chemical properties between

organic and conventional farms. The management factors

deemed most important for differentiating between

conventional and organic systems included frequent farmyard

manure applications to land and the inclusion of grass leys in

arable rotations.

This project reports a comparison of the effects of organic

and conventional farming practises in England on both soil

and soil water. The purpose is to provide complementary

data for the biodiversity and socioeconomic analysis of the

benefits of organic farming in the Rural Economy and Land

Use funded ‘Impacts of Scale on Organic Farming’ project

(Hathaway-Jenkins, 2011) and to update the work of

Armstrong Brown et al. (2000). To investigate this, a null

hypothesis was proposed based on the reviews by Stolze et al.

(2000), Armstrong Brown et al. (2000) and Pulleman et al.

(2003) that ‘organic farming does not have a beneficial effect

upon soil and water properties’. The properties examined in

this study for a range of soil textural groups are soil organic

carbon (SOC), soil strength, field capacity, aggregate

stability, Atterberg limits, soil water quality (nutrient,

pesticides and herbicide levels), soil structure, soil

hydrological class (HOST) and IRs.

Materials and methods

Site location

Sixteen sites on mixed (arable and grass rotations) farms were

chosen based upon the Defra farm database (for both organic

and conventional), which was overlain using GIS with

environmental factors such as climate, topography, land use,

soil type and hydrological data (similar to Norton et al.,

2009). The locations of the 16 sites are shown in Figure 1.

Each site comprised a matching pair of organic and

conventional fields. At each site both arable (winter wheat)

and grass (grass ⁄ clover composition) fields were selected. This

provided a total of 64 sampling locations. The selection of

the sites posed a number of challenges because of the

multidisciplinary nature of the project as the sites ideally

needed to meet the requirements of ecologists, economists

and geographers as well as soil scientists.

At each site three fields were chosen which met the

requirements of the multidisciplinary team. The closest

matching pairs of organic and conventional fields were

determined through in-field soil sampling based upon the

NSRI soil database (Landis). The farms were neighbours, but

appropriate fields were not always on the adjacent boundary.

The distance between the fields is given in Table 2. This

shows spatial differences ranging from 25 m to 3 km where

50% of the sampling sites are <300 m apart. The time period

in which the land had been managed organically (not

including time in conversion) ranged between 1 and 58 yr. All

Table 1 The effect of organic farming on four soil characteristics:

whether beneficial (+ ⁄++), no change (NC) or a negative affect

()) when compared with conventional farming methods in Europe

(adapted from Stolze et al., 2000). Data are the number of studies in

each category

Soil properties ++ + NC )

Soil organic matter 5 2

Soil physical structure 4

Soil erodibility 1 1 2 1

Flood prevention 3

Soil total 1 6 11 1

N

Figure 1 The 16 paired locations comprising of two organic and

conventional fields with both grass and arable land uses (after

Gabriel et al., 2009).
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the grassland was grazed and the age of grassland for 68% of

the sites was >10 yr. The previous arable crop rotation is

also shown in Table 2.

Field sampling and analysis

Soil sampling and within field assessments were carried out in

March and April 2007 when soils were at or near to field

capacity. This is when seasonal effects of variations in soil

moisture content are minimized and soil structural condition

is most easily assessed. Sampling occurred after the main

dressing of fertilizer on the conventional land. At each site,

soil assessment was conducted and samples were collected to

measure a suite of physical and agro-chemical parameters. To

obtain a representative sample of soil, a ‘W’ shaped sampling

strategy was adopted, avoiding untypical areas (such as

severe poaching on grassland and wheelings on arable land),

taking 10 samples which were bulked (MAFF, 2000).

Samples were obtained from 0 to 200 mm depth. One or

more small pits were excavated at each site to determine the

soil structure and physical condition of the soil. A shear vane

was used to measure shear strength in situ based on a grid

sampling technique using 30 samples to cover the field.

Ten replicates of IRs were measured using the Decagon

mini disc tension infiltrometer (Decagon Services, 2006) in a

‘W’ sampling strategy on a subset of 16 fields. These covered

four soil textures: clay, clay loam, silty clay loam and sandy

loam for both arable and grass land. Each replicate was

sampled for 30 min at 20 mm tension and the IR was

calculated using the method developed by Zhang (1997) and

Table 2 Details of the 16 paired sites including

the distance between organic and

conventional fields and land use history for

arable (three previous crops) and grass sites Site Management

Distance

between

fields (m)

Managed

organically

(yr)

Previous

crop

Age of

grassland

Soil

textural

group

1 Org 3000 22 RCG 10 Medium

Con 3000 WW 30 Silty

2 Org 200 6 RCG 20 Silty

Con 200 SG 10 Clayey

3 Org 300 11 RCG 100 Clayey

Con 300 WW 70 Coarse

4 Org 100 6 WO 20 Silty

Con 100 WW 50 Clayey

5 Org 50 11 WCG 11 Clayey

Con 50 OSR 10 Clayey

6 Org 2000 1 WW 10 Silty

Con 2000 WW 15 Silty

7 Org 25 3 C 5 Silty

Con 25 WO 5 Silty

8 Org 100 3 WCG 15 Silty

Con 100 OSR 4 Silty

9 Org 3000 4 WW 50 Medium

Con 3000 WB 20 Silty

10 Org 1000 2 WW 7 Medium

Con 1000 SW 9 Medium

11 Org 1000 7 OSR 25 Medium

Con 1000 WW 10 Medium

12 Org 2500 12 OSR 2 Silty

Con 2500 WCG 2 Silty

13 Org 500 4 G 4 Coarse

Con 500 SB 8 Coarse

14 Org 100 6 M 50 Medium

Con 100 RCG 40 Medium

15 Org 50 58 WW 30 Coarse

Con 50 WCG 30 Coarse

16 Org 2000 5 M 10 Medium

Con 2000 M 12 Coarse

RCG, red clover and grass mix; WW, winter wheat; G, grass; WO, winter oats; WCG, white

clover and grass mix; WB, winter barley; SW, spring wheat; OSR, oilseed rape; SB, spring

barley; M, maize.
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applying the van Genuchten parameters (Carsel & Parrish,

1988).

Laboratory analysis

The soil samples were air dried and homogenized by grinding

and sieving (Allen, 1989); the samples were sieved to either

2 mm (to determine SOC and texture) or passed through a

5-mm sieve and retained on a 3.35-mm sieve (to determine

aggregate stability). Soil texture was measured using the

pipette method (BS 7755). SOC was measured by dichromate

digestion (BS 1377-3). Aggregate stability was determined by

wet sieving as described by Haynes & Swift (1990).

Gravimetric moisture content at field capacity was measured

by oven drying at 105 �C until a constant weight was

achieved. Atterberg limits were determined as the plastic limit

(BS 1377-2) and the liquid limit (BS 1377-2) using a drop

cone penetrometer; the arithmetic difference between these

two gravimetric moisture contents is the plasticity index

(Keen & Coutts, 1928). Soil water sub-samples obtained by

centrifugation were analysed for a suite of common pesticides

and herbicides (carbonates, dicarboximides, organochlorine,

organophosphorus, organonitrogen, synthetic pyrethroids,

triazoles) and nutrients (total inorganic nitrogen, total

phosphorus, total potassium).

Statistical analysis

Statistical analysis was performed using Statistica (8.0). First,

any data that showed deviation from normality were

transformed (Box-Cox). Then the 23 variables that

characterized the sites were reduced using (i) correlation

analysis to reduce the number of correlated variables and (ii)

factorial analysis with variamax rotation. This revealed that

% clay and % silt had the largest loading in the factor which

explained the greatest variation in the data. Thus, the rest of

the analyses grouped the data by soil texture as well as land

use and management. Four groups of soil texture were

formed because of the large variation owing to the spatial

differences between the sites, allowing comparisons to be

drawn. The soil textural groups were clayey (defined as

>35% clay), silty (defined as >50% silt), coarse (defined

as >50% sand and <18% clay) and medium (defined as

between 18 and 35% clay).

The differences in soil quality between organic and

conventional land management were tested using ANOVA,

under the assumption that measured variables (SOC, shear

strength, field capacity, aggregate stability, Atterberg limits,

nutrients and pesticides) were normally distributed and the

outliers were identified and removed from the dataset. A

general linear model (factorial analysis) was used to

determine whether there were significant differences in soil

properties between the two treatments (organic and

conventional), between two land uses (arable and grass) and

between the four soil texture classes. The ANOVA model

used was a nested design with land use (fixed effect) nested

within treatment (fixed effect) and with soil texture as a

random effect. The ANOVA was calculated using both least

squares (Statistica 9.0) and restricted maximum likelihood

(REML) Genstat (10.1). These results were further

interpreted using the Fisher LSD test as this is one of the

least conservative post hoc tests (Winer et al., 1991).

Results

Soil organic carbon

There was no significant difference (P < 0.05) in SOC

contents of the organic and conventionally managed land

(Table 3) in agreement with Gosling & Shepherd (2005). This

can be explained by the fact that to have a significant effect

on SOC, Bhogal et al. (2008) suggest that at least 65 t ⁄ha ⁄ yr

Table 3 The mean SOC (g ⁄ kg) for each of the soil textures and land uses showing significant differences with different letters where P < 0.05.

Numbers in brackets are the total number of samples in each category

Land use and treatment

Organic Conventional

Mean

Arable (16) Grass (16) Arable (16) Grass (16)

Mean SD Mean SD Mean SD Mean SD

Soil textural class Clayey (16) 44.57 3.21 57.33 11.61 49.84 16.29 53.89 18.87 51.41a

Silty (23) 52.89 11.24 65.47 16.37 46.07 13.64 71.31 20.37 58.94a

Medium (14) 35.23 2.10 57.67 0.00 32.56 3.94 40.96 9.50 41.61b

Coarse (11) 31.11 10.44 29.13 9.05 26.39 13.28 64.77 40.84 37.85b

Mean 40.95a 52.40b 38.72a 58.98c
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of fresh organic matter needs to be applied. Currently organic

farmers add on average 40 t ⁄ha ⁄ yr (Lampkin, 1999). There

were significant differences related to land use; grass

contained a significantly larger amount of SOC compared to

arable land (P < 0.05) and soil textural class, while the

clayey and silty soils contained more SOC than coarse and

medium soils (P < 0.05). This is as a result of the way in

which clayey soils protect SOC from decomposition

(Loveland & Webb, 2003).

Shear strength and field capacity

There were no significant differences in shear strength

(Table 4) or field capacity moisture content (Table 5) between

organic and conventional fields. There were significant

differences between land uses, where soil under grass had a

significantly higher shear strength compared to arable. The

grass fields generally have higher soil shear strength than the

arable fields as a result of the formation of a strong root mat

which binds the soil together. The highest strength (93 kPa)

occurred in the conventionally managed grassland. The

coarse-textured soil had a significantly lower field capacity

than the other soils, and the grass fields had a greater field

capacity than the arable.

Aggregate stability

There was no significant difference (P < 0.05) in the

aggregate stability of the soil under organic and conventional

management (Table 6); this agrees with the findings of

Williams & Petticrew (2009). There were significant

differences related to land use, where grass had a significantly

greater proportion of stable aggregates compared to arable,

and soil textural class whereas the clayey and silty soils were

more stable than the coarse- and medium-textured soils.

Clayey soil contained most SOC, and both this and the clay

help to bind the soil particles, thus improving the stability of

the aggregates.

Table 4 The mean shear strength (kPa) for each of the soil texture classes and land uses showing significant differences with different letters

where P < 0.05. Numbers in brackets are the total number of samples in each category

Land use and treatment

Organic Conventional

Mean

Arable (16) Grass (16) Arable (16) Grass (16)

Mean SD Mean SD Mean SD Mean SD

Soil textural class Clayey (16) 70.40 10.66 68.03 19.97 54.73 34.60 93.23 11.80 71.60a

Silty (23) 50.19 26.46 62.50 29.06 41.60 18.94 43.3 7.56 49.40b

Medium (14) 29.45 6.45 37.30 11.03 47.20 15.70 59.05 5.48 43.25b

Coarse (11) 42.90 24.39 56.05 3.75 41.15 10.96 61.6 13.62 50.42b

Mean 48.24a 55.97b 46.17a 64.30b

Table 5 The mean value of field capacity (% mass) for each of the soil texture classes and land uses showing significant differences with

different letters where P < 0.05. Numbers in brackets are the total number of samples in each category

Land use and treatment

Organic Conventional

Mean

Arable (16) Grass (16) Arable (16) Grass (16)

Mean SD Mean SD Mean SD Mean SD

Soil textural class Clayey (16) 35.84 4.01 38.03 13.39 31.95 18.25 36.09 3.13 35.48a

Silty (23) 30.73 3.26 35.81 9.80 30.67 4.79 40.50 11.31 34.43a

Medium (14) 28.22 1.39 43.35 0.00 27.65 5.07 32.37 5.63 32.90a

Coarse (11) 22.59 5.02 21.85 5.03 16.67 4.20 29.42 5.09 22.63b

Mean 29.35a 34.76b 26.74a 34.60b
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Atterberg limits and workability

There were no significant differences (P < 0.05) in the plastic

limits, liquid limits or plasticity indices of organic and

conventionally managed land (Table 7). Soil texture and the

amount of SOC are very important for controlling changes in

Atterberg limits: higher levels of SOC can cause a shift in

plasticity index, extending the friability zone to higher

moisture contents (Baver et al., 1972). For this reason,

REML analysis was performed as it is more sensitive than

ANOVA and allows for the variation in soil texture.

The REML analysis showed that the plastic limit of

conventional grass is significantly larger than that of

conventional arable. This could be partly attributed to the

higher clay content but the conventional grass soils also

contain more SOC, which could be increasing the plastic limit

for these soils because plasticity could be dependent on the

polysaccharide gels within SOC (Soane et al., 1972). The

amount of SOC does not affect the plasticity index but it

creates a strong bond with water, increasing the plastic and

liquid limits (Brady, 1990). Baver et al. (1972) suggest that

increasing the SOC in soils would cause a shift in the

plasticity index extending the friability zone to fairly high

moisture contents.

The plastic limit can be used as a guide to determine the

water content at which a soil can be cultivated without

causing damage: if the field capacity moisture content is

below the plastic limit, there is less risk of soil damage. From

this study, it was found that there was no management type

(organic or conventional) which made a difference to soil

workability which was dependent on soil texture.

Soil water nutrients and pesticides

The soil water in two organic fields contained agrochemicals,

but only trace levels. The soil water in 13 conventional fields

contained traces of agrochemicals; Table 8 lists the residues

present in the conventional fields, their concentrations, the

half life values (dt 50) and environmental impacts. The

agrochemicals detected in the organic fields were compounds

Table 6 The mean aggregate stability (% mass) for each of the soil texture classes and land uses showing significant differences with different

letters where P < 0.05. Numbers in brackets are the total number of samples in each category

Land use and treatment

Organic Conventional

Mean

Arable (16) Grass (16) Arable (16) Grass (16)

Mean SD Mean SD Mean SD Mean SD

Soil textural class Clayey (16) 54.06 18.86 68.19 19.67 48.86 11.67 66.30 6.69 59.35a

Silty (23) 44.07 16.57 65.33 11.56 36.85 18.13 52.36 17.74 49.65a

Medium (14) 33.98 8.57 74.61 0.00 27.17 5.79 60.55 9.62 49.08ab

Coarse (11) 23.92 3.12 45.21 35.28 33.94 26.92 69.11 9.13 43.05b

Mean 39.01a 63.34b 36.71a 62.08b

Table 7 The mean plastic limit (mg ⁄ kg) for each of the soil texture classes and land uses showing significant differences with different letters

where P < 0.05

Land use and treatment

Organic Conventional

Mean

Arable (16) Grass (16) Arable (16) Grass (16)

Mean SD Mean SD Mean SD Mean SD

Soil textural class Clayey (16) 370.00 28.28 350.00 63.70 366.67 35.12 340.00 45.83 356.67a

Silty (23) 250.00 42.03 334.00 150.43 192.00 104.26 340.00 94.45 279.00b

Medium (14) 285.00 110.91 380.00 0.00 200.00 49.50 265.00 66.58 285.20b

Coarse (11) 220.00 50.00 180.00 56.57 206.67 51.32 200.00 52.92 201.67c

Mean 281.25a 311.00b 241.33a 286.25b*

Numbers in brackets are the total number of samples in each category. *Indicates the significant difference which was shown in REML only.
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of organochlorine (DDE) and organonitrogen (pendi-

methaline), with concentrations of 0.3 and 0.02 mg ⁄kg,
respectively. These agrochemicals are degraded by the

microbial community to form metabolites, and their half lives

determine their persistence (Andreu & Pico, 2004). Both are

moderately persistent: DDE has a dt 50 of 13 yr and

pendimethaline a dt 50 of 90 days. Pendimethaline has bio-

accumulated within the soil as a result of subsequent

applications prior to the farm converting to organic in 2000.

The low concentration of DDE detected can be associated

with historical applications and does not pose a threat. None

of the residues detected pose a leaching risk; however, all

of the residues except chlorothalonil could have an

environmental impact through bioaccumulation (PPDB,

2009). All the detected levels are below the ‘No Observed

Effects Concentration’.

There were no significant differences (P < 0.05) in total

phosphorus (mean 2176.9 ± SD 970.7 mg ⁄kg) and total

potassium (mean 863.6 ± SD 304.3 mg ⁄kg) according to

management, land use or soil texture. However, there was a

significant difference in total inorganic N (ammonium and

nitrate): in the conventional arable soil this was

approximately twice that of the grass fields. This is as a result

of the application of fertilizer or manure on the conventional

arable land and not on the grassland or the organic arable.

Hydrology of soil type (HOST)

UK soils can be classified on the basis of hydrology into 29

classes (Boorman et al., 1995). This is based on soil physical

properties, which are correlated with catchment scale

hydrological variables, the dominant pathways of water

movement through the soil and substrate (base flow index,

BFI and standard percentage runoff, SPR). BFI is the long-

term average proportion of flow that comes from stored

sources and SPR is the percentage runoff derived from event

data, adjusted to standard rainfall and catchment moisture

conditions (Boorman et al., 1995). This model allows the level

of degradation of soil to be input and hence modifies the

HOST class. A physically degraded soil, for example a

compacted soil, can lead to a significant change in the

amount of runoff for most of the HOST classes. The HOST

classification revealed degradation of soil properties within 12

fields; this is indicated by an increase in the SPR of 10% and

a decrease in the BFI of 0.1%. Three of the 12 fields were

organic arable fields and one was an organic grass field.

Overall there were fewer degraded organic than conventional

fields, and there were more degraded arable than grassland

fields. This highlights the poor soil structure of these fields,

which could be the result of untimely cultivations of the

arable land or overstocking and hence increased poaching of

the grassland.

Infiltration rate

The mean results of the IR studies are given in Figure 2,

which shows that the IR under conventional grassland is

significantly smaller than that in all other treatments. This

difference was found in other studies (Reganold & Palmer,

1995; Oquist et al., 2006), which also highlight the issue of

variability in infiltration data. The conventional arable land

has a higher IR compared to conventional grassland,

Table 8 The residues detected in soil water samples and their pesticide group reporting level, half life (dt 50) and environmental factors leaching

potential and bioaccumulation potential (adapted from PPDB Footprint report, 2009)

Residue Group

Recorded

value

(mg ⁄ kg) dt 50 in soil (days)

NOEC mg ⁄ kg
(earthworm

reproduction)

GUS leaching

potential

Bioaccumulation

factor

Chlorothalonil (fungicide) OC 0.30 44 (18–77)

Moderately persistent

25.0 1.44

Low leachability

100

Low potential

DDE (metabolite) OC 5.70 5000

Very persistent

6.1 )2.59
Low leachability

1800

High potential

DDD (metabolite) OC 0.90 1000

Very persistent

6.1 )3.53
Low leachability

3173

High potential

Flusilazole (pesticide) T 0.03 300 (63–240)

Moderately persistent

8.82 1.93

Transition state

250

Moderatepotential

HCH (insecticide) OC 0.05 121

Persistent

6.8 2.00 Transition state 1300

High potential

Pendimethaline (herbicide) ON 0.11 90 (27–186)

Moderately persistent

4.0 )0.39
Low leachability

5100

High potential

Trifluralin (herbicide) OC 0.02 181 (81–375)

Persistent

28.98 0.13

Low leachability

5674

High potential

Agro-chemical group: OC, organochlorine; T, triazoles; ON, organonitrate. NOEC is the no observed effect concentration this is based upon the

reproductive behaviour of earthworms after 14 days of constant application at the rates above. GUS is the groundwater ubiquity score and is a

measure of the mobility of pesticides it does not take into account soil or antecedent condition.
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presumably because of the tillage involved in crop

establishment. For the organic land management there is no

significant difference between the two land uses; this could be

related to improvements in structure as a result of the

additions of SOC and an overall lower stocking density

(where the average organic stocking density was 1.1 livestock

units per ha compared to 1.3 livestock units per ha for the

conventionally managed grassland, Hathaway-Jenkins, 2011).

There were also differences in the soil textural class, where IR

in the clay (9.87 mm ⁄h) and sandy loam (7.52 mm ⁄h) soils

were significantly greater than in the silty clay loam

(4.35 mm ⁄h) and the clay loam (1.47 mm ⁄h) soils. This could
be explained by the cracking nature of clay soils and the

coarse texture of the sandy loam.

Overall, we conclude that IR is influenced by local

conditions such as soil type and structure that occurs

regardless of farming practice. This is especially true where the

seasonal impacts of cracking, cultivation practices and crop

rotation have more of an effect. Figure 2 also shows that the

predicted runoff from conventional grassland for a 20-mm ⁄h,
1 yr return period storm (NERC, 1975) is 1800 m3 ⁄ha
reducing to 1300 m3 ⁄ha in conventional arable land.

Discussion

The results support the null hypothesis of no overall effect of

organic conventional farming practices on soil conditions on

mixed farms in England. This gives weight to the findings

of Armstrong Brown et al. (2000) and Stolze et al. (2000)

that there is no evidence to show an improvement in

soil conditions from organic farming, equally there is no

detrimental effect. The fact that the effects of both soil type

and cropping (i.e. grassland or arable) are often significant,

as might be expected, gives confidence in the data. The data

also provide a useful statement on the current relative status

of soils under organic and conventional farming, provide

baseline soil data to complete the agro-environmental study

on the relative effects of organic farming on biodiversity

(Gabriel et al., 2009) and support the farm economy studies

of the Rural Economy and Land Use project ‘Effects of scale

in organic agriculture’ (Hathaway-Jenkins, 2011).

In an ideal world matched pairs of immediately adjacent

organic and conventional fields with the same soil texture and

management practice would have been selected. This may

result in improved resolution to differentiate between organic

and conventional soil management. It was essential, however,

that some latitude was shown in field selection to enable the

multidisciplinary RELU project to be conducted. The fact

that 50% of the fields in this study were <300 m and <30%

were >2 km distant is acceptable given the multidisciplinary

nature of this study. To reduce the effect of the distance

between organic and conventional fields, a further study is

being conducted by Hathaway-Jenkins (2011) on a farm in

Aberdeenshire with paired comparisons for a range of soil

properties in fields at distances of 500 m.

The most useful finding for organic farmers is that

organically managed grassland maintains a higher IR than

conventional grassland (Figure 2). Given the recent summer

rainfall patterns of more and more extreme storm events, and

their effects on runoff and flooding, the reduction in runoff

of 28% could be beneficial. However, the benefits would only

be accrued through a comprehensive unifying soil and water
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management plan for each catchment. But if as is thought,

the change in IR was owing to slightly lower intensities of

grazing, then the same improvements could also result from

better soil management on conventional grassland farms.

Conclusions

The analysis of the data shows that whilst it is possible to

detect the effects of both soil texture and land use

(grassland ⁄ arable) on a number of the soil properties, there is

no evidence based upon soil organic matter, field capacity,

aggregate stability, Atterberg limits ⁄workability and soil

shear strength to reject the hypothesis that ‘organic farming

does not improve soil properties or physical condition’.

Hence, in agreement with the results of other studies, there is

little direct benefit on the individual soil properties from

organic farming practices – equally there is no detrimental

effect.

There was evidence to support the suggestion that IRs are

greater on organically managed grassland than conventional

grassland; such a difference might reduce runoff by up to

28%. This is in general agreement with the results of the

HOST analysis which indicates fewer degraded fields under

organic management.

Overall, there were fewer traces of pesticides or herbicides

in the soil water from the organic fields compared with the

conventionally managed fields. The conventional arable fields

had higher levels of total inorganic nitrogen than the other

land uses and treatments. There are no significant differences

in total phosphorus and total potassium for any land use or

treatment combinations.
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