
 

 
 
 

CRANFIELD UNIVERSITY 
 
 
 
 
 
 

MIKE J. W. RILEY 
 
 
 
 

EVALUATING CASCADE CORRELATION NEURAL NETWORKS FOR 
SURROGATE MODELLING NEEDS AND ENHANCING THE 

NIMROD/O TOOLKIT FOR MULTI-OBJECTIVE OPTIMISATION 
 
 
 
 
 

SCHOOL OF ENGINEERING 
      
 
 
 
 

PhD Thesis 
Academic Year: 2010 - 2011 

 
 
 
 

Supervisor:  Dr. Karl Jenkins 
March 2011  

 
 
 
  



 

  



 

 
CRANFIELD UNIVERSITY 

 
 
 
 

SCHOOL OF ENGINEERING 
      
 

PhD Thesis 
 
 
 

Academic Year 2010 - 2011 
 
 
 
 

MIKE J. W. RILEY 
 
 

Evaluating Cascade Correlation neural networks for surrogate 
modelling needs and enhancing the Nimrod/O toolkit for multi-

objective optimisation 
 
 

Supervisor:  Dr. Karl Jenkins 
 

March 2011 
 
 
 
 
 
 
 
 

© Cranfield University 2011. All rights reserved. No part of this 
publication may be reproduced without the written permission of the 

copyright owner. 



i 

ABSTRACT 

Engineering design often requires the optimisation of multiple objectives, and 

becomes significantly more difficult and time consuming when the response 

surfaces are multimodal, rather than unimodal. A surrogate model, also known 

as a metamodel, can be used to replace expensive computer simulations, 

accelerating single and multi-objective optimisation and the exploration of new 

design concepts. The main research focus of this work is to investigate the use 

of a neural network surrogate model to improve optimisation of multimodal 

surfaces. 

Several significant contributions derive from evaluating the Cascade Correlation 

neural network as the basis of a surrogate model. The contributions to the 

neural network community ultimately outnumber those to the optimisation 

community. 

The effects of training this surrogate on multimodal test functions are explored. 

The Cascade Correlation neural network is shown to map poorly such response 

surfaces. A hypothesis for this weakness is formulated and tested. A new 

subdivision technique is created that addresses this problem; however, this new 

technique requires excessively large datasets upon which to train.  

The primary conclusion of this work is that Cascade Correlation neural networks 

form an unreliable basis for a surrogate model, despite successes reported in 

the literature. 

A further contribution of this work is the enhancement of an open source 

optimisation toolkit, achieved by the first integration of a truly multi-objective 

optimisation algorithm.  

Keywords: early stopping, ensembling, multimodal functions, variance, bias, 

subdivision technique, shape optimisation 
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1 INTRODUCTION 

The central theme of this thesis is to explore, develop, or enhance methods of 

reducing the computational load of optimisation with a particular focus on 

multimodal functions. Chapters 3 and 4 evaluate Cascade Correlation neural 

networks as surrogates for accelerating optimisations. Chapter 5 reduces the 

load of aerofoil optimisation by determining appropriate search domains for low 

Reynolds numbers cases. Chapter 6 enhances an existing optimisation toolkit 

by interfacing a multi-objective optimisation algorithm along with enabling 

parallelism in that algorithm. 

A properly trained surrogate model delivers a good approximation of the 

objective function that would be returned by a high-fidelity model but much 

faster. This speed-up is the advantage of surrogate modelling: the surrogate 

model described in this work returns evaluations of objective functions in less 

than 10ms (200 MFLOP) irrespective of the problem dimensions. Machine 

learning algorithms are often used for model-approximation and the surrogate of 

this work is based on the Cascade Correlation neural network.  

The principal challenge when training a neural network is to reduce both its bias 

(under fitting) and its variance (over fitting). Reducing the variance of the 

Cascade Correlation neural network forms the theme of Chapter 3, whilst bias is 

treated in Chapter 4. The absolute values of variance errors are problem 

dependent, however, Chapter 3 contains a detailed study of two existing 

techniques that, for the test functions used, are found to reduce variance by a 

factor of three. The work in this chapter produced the following contributions: 

 Determining an appropriate number of training samples per dimension 
(3.3.1) 

 The postulate that we may dispense with creating testing datasets, and 
thereby save a significant amount of time (3.3.3) 

 A novel technique for determining the variance and bias of a neural 
network ensemble (3.3.4) 
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The novel method for determining bias and variance prompts further analysis 

and a statistical treatment is given in the appendix. 

As the focus of this thesis is multimodal problems, and the motivation is to 

develop a CasCor metamodel for integration with Nimrod/O, Chapter 4 

describes research on the performance of Cascade Correlation when mapping 

multimodal response surfaces. To the author‟s knowledge, there are no 

examples in the literature that explicitly evaluate the performance of CasCor on 

low dimensional (2-5), highly multimodal, surfaces. 

This neural network type is found to exhibit a particular weakness on these 

surfaces. Despite the reductions in mean squared error from the variance-

reducing methods in Chapter 3, undesirably high testing errors remain. It is 

shown that this neural network exhibits the problem of possessing a high bias 

(severe under-fitting). A new subdivision technique named „patchworking‟ is 

introduced to address the - not previously published - bias problem of this 

neural network type; patchworking delivers significantly improved fits to 

multimodal surfaces. The contributions of this chapter are the identification of 

the bias problem of Cascade Correlation neural networks and the introduction of 

the patchworking technique to overcome this problem. 

In addition to training Cascade Correlation neural networks on mathematical 

test functions, real world case studies were sought from the publicly-available 

machine learning repository [1]. Whilst not representative of optimisation 

problems, the concrete compressive strength and the abalone age-predictions 

are examples (Chapter 3) that do illustrate successful applications of this 

surrogate. In Chapter 4, a very large census dataset is used to illustrate the 

benefits of the patchworking algorithm on real-world data. 

The competitive manufacturing climate in the last two decades has highlighted 

inadequacies in the serial practice of design. This competitive environment 

requires organisations to design high-quality products faster, better, and 

cheaper than their competitors [2]. In civil, mechanical, aerospace, and 
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electronic engineering, computer aided engineering (CAE) software has 

assisted the designer in achieving these goals. 

The uses of CAE can encompass simulation, validation, and the optimisation of 

designs. A designer starts with the idea of a new product and uses computer 

aided design (CAD) software to create a preliminary design. With the use of 

computer based modelling tools, the preliminary design can be analysed for 

functionality as the design is being created. By manipulating the geometry of a 

design, its performance can be improved. “Performance” in this case is the 

improvement of some metric(s) determined by the engineer a priori. These 

metrics are better known as objective functions.  

In shape optimisation, the optimisation algorithms manipulate the parameters 

that specify the geometry of a design, and complex models, typically 

incorporating solids and fluids solvers, return the objective functions. However, 

the computational load of evaluating these time-expensive objective functions 

can inhibit, or even prohibit, optimisation. 

Chapter 5 applies the multi-objective optimisation algorithm (detailed in Chapter 

6) to reduce the search space, and therefore the computational load, of aerofoil 

shape optimisation. The reverse chronology of these chapters acknowledges 

the minor contribution of this case study. Chapter 5 also sets the scene for the 

generic process of shape optimisation; the overall aim being to expose the 

practicalities of such work, with the intent of revealing potential research gaps. 

One of the driving motivations for the current work was that the outcomes 

should aim to be of practical, as well as theoretical (3.3.3 , 3.3.4), use to the 

research community. For this reason an early decision was made to enhance 

an existent software toolkit rather than attempt to build another stand-alone 

package. The maturity of the Nimrod toolkit (Figure 1-1), its ease of use, a good 

working relationship with the developers, and access to its source code 

motivated the choice of this toolkit for this work. 
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Figure 1-1 Publications relating to the Nimrod toolkit 

Chapter 6 contains a significant contribution of this thesis. The Nimrod/O [3] 

optimisation package is part of a suite of problem solving tools developed since 

1995 at Monash University, Melbourne, Australia. To date, this toolkit contains 

software packages for; Design of Experiments (Nimrod/E), Workflow 

management (Nimrod K), Grid Computing (Nimrod G), a web portal for job 

management (Nimrod/P), and an optimisation package, Nimrod/O. The work 

described in Chapter 6 details how a truly multi-objective optimisation algorithm 

was interfaced to Nimrod/O for the first time. Another contribution is the 

introduction of a parameter that will reduce dramatically the wall-clock time for 

these optimisations by enabling concurrent function evaluations. The successful 

implementation is illustrated with another shape optimisation; that of a rib-

reinforced wall bracket. 
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2 BACKGROUND 

2.1 Meta/surrogate modelling 

Metamodels, previously known as surrogate evaluation models (or just 

evaluation models) are currently active research areas in the optimisation of 

complex designs. Complex in this sense would mean those designs for which a 

single objective function evaluation is very (time) costly and, in many cases, 

these are designs that involve a high number of parameters (10+). 

Metamodelling can play several different roles for the engineer [4] (Table 2-1). 

Table 2-1 The uses of metamodels 

Model 

approximation 

Approximation of computation-intensive processes across the entire 

design space, or global approximation, is used to reduce 

computational costs. 

Design space 

exploration 

The design space is explored to enhance the engineers‟ understanding 

of the design problem by working on a cheap-to-run metamodel. 

Problem 

formulation 

Based on an enhanced understanding of a design optimisation 

problem, the number and search range of design variables may be 

reduced; certain ineffective constraints may be removed; a single 

objective optimisation problem may be changed to a multi-objective 

optimisation problem or vice versa. Metamodelling can assist the 

formulation of an optimisation problem that is easier to solve or more 

accurate than otherwise. 

Optimisation 

support 

Industry has various optimisation needs, e.g., global optimisation, 

multi-objective optimisation, multidisciplinary design optimisation, 

probabilistic optimisation, and so on. Each type of optimisation has its 

own challenges. Metamodelling can be applied and integrated to solve 

various types of optimisation problems that involve computation-

intensive functions. 

 

Once trained, surrogate models can replace expensive fluids or solids 

evaluation codes and facilitate multi-objective optimisation and the exploration 
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of new design concepts; returning objective function evaluations in fractions of a 

second.  

Metamodelling involves: 

1. Choosing an experimental design for generating the data (2.2) 

2. Choosing a model to represent the data (2.3) 

3. Fitting the model to the observed data from the experiments (2.6). 

The metamodel of this work uses a neural network to represent the data. The 

data itself comes from sets of objective function evaluations, or „experiments‟. 

The design of these experiments conforms to orthogonal sampling. The benefits 

of orthogonal sampling are discussed in section 2.2.3 

2.2 Design of experiments 

With the exclusion of trivial problems, for which full parameter sweeps can be 

performed, techniques from Design of Experiments (DoE) are typically applied 

for sampling a problem‟s response surface. Three sampling techniques are 

outlined below; random sampling, Latin hypercube sampling and orthogonal 

array sampling. 

2.2.1 Random sampling 

The Direct Monte Carlo Sampling method, which is a random sampling method, 

is still popular in industry, regardless of its inefficiency. This popularity probably 

derives from the fact that the adequate and yet efficient sample size at the 

outset of metamodelling is unknown for any black box function. Therefore it 

holds an advantage over orthogonal and Latin hypercube sampling in that no 

decision as to the size of the sample is necessary at the outset [4]. The 

inefficiency of the technique derives from the fact that Direct Monte Carlo 

sampling has no „memory‟ of previous samples.  

For example, if we have a two dimensional problem to sample (variables X1 

and X2) in the domain [0.0,1.0], and we generate 15 samples, it is possible to 
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find clustering of some of those samples in the input space (Figure 2-1) [5]. 

Clustered samples do not provide new information or insight into the overall 

behaviour of the response surface – moreover, the corollary is that clustering in 

one region leads to an undesirable sparseness of sampling in other regions of 

the domain. 

 

Figure 2-1 Monte Carlo Sampling showing clustering (circled) 

2.2.2 Latin hypercube sampling 

If we consider the sampling of a two dimensional function in the form of a grid of 

points, Latin hypercube sampling would consist of samples within that grid with 

each sample point existing at a unique x and a unique y co-ordinate. If the 

leading diagonal was populated with sampling points then we would have a 

Latin hypercube Design of Experiment – however, such a DoE would be 

undesirable as it would not be classed as space-filling. Figure 2-2 [5] shows an 

example of a space-filling Latin hypercube. Unlike Monte Carlo sampling, 

space-filling Latin hypercubes can be thought of as having a „sample memory‟, 

meaning that it avoids repeating samples that have been evaluated before (i.e. 

avoiding clustering). Although dependent on the problem at hand, a space-filling 

Latin hypercube DoE could require 20% to 40% fewer samples than a Monte 

Carlo DoE to deliver the same results with the same accuracy [5]. 
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Figure 2-2 Space-filling Latin hypercube 

2.2.3 Orthogonal Sampling 

Orthogonal array testing is a systematic, statistical way of testing. The 

permutations of factor levels comprising a single treatment are chosen such that 

their responses are uncorrelated, each treatment thereby giving a unique piece 

of information. By creating a design of experiments based on an orthogonal 

array, that same piece of information is gathered in the minimum number of 

experiments. 

Each orthogonal vector conveys different information from any other vector in 

the DoE, hence avoiding redundancy. Additionally, each of the vectors is 

statistically independent of the others, i.e. the correlation between them is nil. 

Sampling with orthogonal arrays (OAs) can be described as a generalisation of 

Latin hypercube sampling whose one dimensional projection is uniformly 

spaced [6]. Wang [4] highlights the two most important properties of the 

sampling distribution of a DoE. Those are its orthogonality, and its space-filling 

properties. OAs enhance the ability to analyse and estimate as many effects 

and interactions as possible. Research into orthogonal array generation is an 
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ongoing subject in mathematics, though recent progress has yielded powerful 

algorithms [7]. 

An OA is defined in the form 𝑂𝐴. 𝑁. 𝑘. 𝑠. 𝑡 indicating an orthogonal array with 𝑁 

runs, 𝑘 factors, 𝑠 levels, and strength 𝑡. This is an array of size 𝑁 by 𝑘, with 

entries from 0 to 𝑠 − 1 with the property that in any of the 𝑘 columns each of the 

𝑠 possibilities occurs equally often [8]. 

Table 2-2 The orthogonal array used for this work (OA.25.6.5.2) 

 5 levels can be tested in up to 6 dimensions 

Experiment 1 2 3 4 5 6 

1 0 0 0 0 0 0 

2 0 1 1 2 3 4 

3 0 2 2 3 4 1 

4 0 3 3 4 1 2 

5 0 4 4 1 2 3 

6 1 0 1 1 1 1 

7 1 1 2 4 0 3 

8 1 2 4 0 3 2 

9 1 3 0 3 2 4 

10 1 4 3 2 4 0 

11 2 0 2 2 2 2 

12 2 1 4 3 1 0 

13 2 2 3 1 0 4 

14 2 3 1 0 4 3 

15 2 4 0 4 3 1 

16 3 0 3 3 3 3 

17 3 1 0 1 4 2 

18 3 2 1 4 2 0 

19 3 3 4 2 0 1 

20 3 4 2 0 1 4 

21 4 0 4 4 4 4 

22 4 1 3 0 2 1 

23 4 2 0 2 1 3 

24 4 3 2 1 3 0 

25 4 4 1 3 0 2 
 

2.2.4 Summary of design of experiments 

For the sampling of the test functions in Chapters 3 and 4, orthogonal arrays 

were chosen to generate the training datasets. This method of sampling was 
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chosen as OAs can provide the convenient benefit of screening the number of 

dimensions of a problem (if necessary) with the use of ANOVA (ANalysis Of 

Variance). 

2.3 Popular metamodel types 

2.3.1 Response surface methodology (RSM) 

RSM fits a response surface with some form of least squares linear regression 

(typically a low order polynomial is used although recent advances have seen 

Padé–Legendre approximations used successfully for discontinuous response 

surfaces [9]). RSM is a popular technique; partly due to the simplicity of its 

implementation, and partly because many examples exist in the literature. 

There are three main problems with RSM. Firstly, polynomial models cannot 

capture highly non-linear response variations; the accuracy of quadratic RSM 

being questionable for multimodal problems [10]. Secondly, if higher order 

polynomials are used, the large number of co-efficients to be determined results 

in large training times [11]. Thirdly, the amount of training data required to build 

a second order surface grows quadratically with the input dimensions of the 

problem. Hence, increasing the input parameters results in a rapid non-linear 

increase in the necessary training data [12]. 

2.3.2 Kriging 

Kriging is also known as a Gaussian process or a Gaussian random function 

method [13]. Unlike the linear regression of RSM, it uses Bayesian regression. 

It has two significant advantages over RSM: 1. It can be applied for mapping 

surfaces for which there are a significant number of input parameters e.g. 20-

30, and, 2. It can honour the training data; fitting it precisely by interpolation, or, 

smooth over the data, thus approximating the surface [14]. A weakness of the 

Kriging method is the general need to tune multiple hyperparameters that 

control curvature and the degree of regression; this can be very time consuming 

on large data sets in many dimensions [6]. 
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2.3.3 Neural networks 

Originally inspired by the multilayered information processing structures of 

biological brains, neural networks typically consist of a large number of simple, 

but interconnected, processing units. The processing units, called neurons, are 

multiple linear regression models with non-linear transformations applied to their 

inputs. The architecture of the network is formed by connecting many neurons 

with weights (the regression co-efficients). Hence, there are two main issues: 1. 

Specifying this architecture, and, 2. Training the neural network to perform well 

with respect to the training dataset [11].  

The advantage of using neural networks is that they are universal functions 

approximators [15] i.e. the family of functions that the network can implement is 

broad enough to contain f  or a good approximation of f . For the training of a 

neural network to converge it must, in the limit, approach the target function as 

closely as desired. A sequence { }nf strongly converges to f if 

lim 0n nf f    , where     is the norm for the function space being 

considered [16]. 

Two criticisms often levelled are; that the training usually takes a significant 

amount of time, and, they are „black-box‟ approximators; once trained, it is 

difficult to trace the behaviour, relationships and dynamics of the network back 

to the reference model [17]. 

2.3.4 Radial Basis Functions 

Radial Basis Functions are closely related to both Kriging and neural networks. 

They approximate surfaces by using a linear combination of radially symmetric 

functions [18]. Like the Kriging method, they can exactly interpolate a surface 

from the training data. However, as all RBFs employ a measure of distance 

between data points, attempting to learn in a high dimensional space means 

that almost every sample is closer to the boundary of the domain than to 

another point. This makes Radial Basis Functions less suited to learning with a 
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very high number of input parameters [19]. As an example, take a 15 

dimensional problem. The hypercube of the input space would have 
152  vertices 

(32,768) and  15 1
2 15


 = 245,760 edges. A typical training dataset for such a 

problem would likely contain fewer than 245,760 samples; hence there would 

be many more edges of the domain than samples. 

2.3.5 Support Vector and Relevance Vector machines for regression 

(SVR & RVM) 

Both of these techniques are closely related and known as sparse kernel 

methods. They centre basis functions on subsets of the training data and then 

train on these subsets. A major advantage of these learning methods is that 

their mathematical formulation is dimension-independent. This makes them an 

attractive solution for learning in very high dimensional cases [17]. 

The advantage of SVR over RVM is that the training consists of the solution of a 

convex (i.e. simpler) optimisation problem [20]. Though SVR has been used 

successfully for surrogate modelling [18], it is disadvantaged by the necessity to 

determine two parameters after training. This post-training-optimisation is 

performed by a cross-validation method and is typically time consuming. A 

disadvantage of both types is that they map multivariate inputs to only a 

univariate output variable; hence further models must be trained if several 

objective functions are to be surrogated [21]. 

RVM has an identical functional form to SVR but, by reforming the support 

vector solution with „expectation maximisation learning‟, the relevance vector 

machine is created. A Bayesian framework is used in the case of RVM, thus 

providing posterior probabilistic outputs, and typically much sparser solutions 

than for SVR; both of which are desirable as described in [20]. The advantage 

of the relevance vector method over the support vector is that there is no 

requirement to determine any parameters after training. However, this benefit is 

associated with a penalty – namely, that the training procedure now involves the 

solution of non-convex optimisation problem. When training an RVM (and 

neural networks), we face the „local minima problem‟.  
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2.4 Local minima problem 

The local minima problem [22] arises when attempting an optimisation on a 

function whose response surface is multimodal. There will be one or more local 

minima and there could be several global minima. The challenge posed to any 

optimisation algorithm is to find the location within the search space of a global 

minimum. This is a pertinent problem for the training algorithm of some 

surrogates and also for the optimisation of engineering designs. For example, 

radial basis functions and support vector regression are insensitive to the local 

minima problem [23]. However, relevance vector machines and neural networks 

are subject to this problem. 

Distinct from the nature of the objective function to be mapped, it is the error 

surface of a neural network that will typically have multiple local minima. The 

total number of local minima is compounded by symmetries in the network. For 

example, taking the case of a network with two layers of weights, M  hidden 

units, and a sigmoid activation function, there will be a family of !2MM

equivalent minima belonging to each distinct local minima [24]. 

In the training of a neural network, the difference between a neural network‟s 

output and the desired output is the error that should be minimised. It is by 

altering the weights of a neural network that this is achieved. For example, the 

backpropagation training algorithm approaches this problem by means of a 

gradient descent method but, as such, the training is subject to convergence to 

a local minimum – rather than the desired global minimum.  

2.5 Cascade correlation neural network 

The Cascade Correlation neural network (also referred to as CasCor in this 

work) is a constructive neural network. Growing on-demand, it only adds hidden 

neurons as and when they are needed. The standard CasCor network adds 

each new neuron to a new layer, creating deep neural networks. Neurons 

themselves can be thought of as feature detectors; the more features that exist 

in the response surface of a target function, the more neurons will be necessary 
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to map that surface. With insufficient numbers of neurons, too few features can 

be represented and the network will possess an undesirably high bias (Figure 

2-3). Hand-crafting the topology of a neural network is a very time consuming 

process, and so constructive neural networks that solve this problem 

automatically have become very popular. 
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Figure 2-3 Cascade Correlation training 
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In Figure 2-3 [25] the Cascading architecture is displayed for a neural network 

with three input and two output dimensions. The diagrams show the initial state, 

and then the addition of two hidden units. The vertical lines sum all incoming 

activations. Boxed connections are frozen, X connections are trained 

repeatedly. The “+1” input is known as the “bias neuron”. During training, each 

neuron begins as a candidate neuron. It is not yet connected to the network. For 

the current work a pool of candidates is used, with each unit having a different 

activation function and different random initial weights. All receive the same 

input signals during training, but do not interact with each other. When the 

optimal candidate is inserted as the next hidden unit the other candidate 

neurons for that layer are discarded. The activation functions used in this work 

are as follows: Sigmoid, Sigmoid Symmetric, Gaussian, Gaussian Symmetric, 

Elliot, Elliot Symmetric. They share the necessary property of being 

differentiable. 

Fahlman and Lebiere [25] describe this neural network as follows: training 

progresses by running a number of passes over the data in the training set. 

Each candidate input weights are adjusted after each pass to maximise S , the 

sum over the output units ( o ) of the magnitude of the correlation betweenV ,the 

candidate unit‟s value and oE  , the residual output error observed at unit o . S  

is defined as: 

  ,p p o o

o p

S V V E E    

Where o  is the network output at which the error is measured and p  is the 

training pattern. The quantities V  and oE  are the values of V  and oE  averaged 

over all patterns. In maximising S , iS w   must be computed i.e. the partial 

derivative of S  with respect to each of the candidate unit‟s weights ( iw ). 

Expanding and differentiating the formula for S gives: 
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  '

, ,

,

i o p o o p i p

p o

S w E E f I     where o  is the sign of the correlation between 

the candidate‟s value and output o , '

pf is the derivative for pattern p of the 

candidate unit‟s activation function with respect to the sum of its inputs, and, 

,i pI  is the input the candidate unit receives from unit i  for pattern p . After 

iS w   has been computed for each incoming connection, a gradient ascent is 

performed to maximise S . When S stops improving, the best candidate is 

installed to the network and its input weights are frozen (weight freezing). More 

hidden neurons as installed with the above cycle above until one of the used-

defined stopping criteria are met and the network is pronounced as “trained”. 

Drago and Ridella [26] also investigated the convergence properties of the 

Cascade Correlation neural network and proved a speed of the order O(1/nh) 

where nh is the number of hidden neurons. 

One cannot traverse far through the Cascade Correlation literature without 

meeting a reference to its notable performance on the “two-spirals problem”: 

397 articles are returned by a Google scholar search for „"cascade correlation" 

+spirals‟. This is a problem that is said to pose a very difficult learning 

benchmark for backpropagation neural networks, but one for which Cascade 

Correlation performs very well [27]. Arguably, this notable performance has 

singularly popularised this neural network type more than any other benchmark. 

Seen in Figure 2-1 are the results of a count of the literary references to this 

neural network since 1990. In red are the number of articles published annually 

that have „Cascade Correlation‟ in their title. The blue columns show that, each 

year since 1993, this neural network has been referred to over 100 times in the 

body of papers indexed on Google scholar, showing that this neural network is 

still active in the research community. 



30 

 

Figure 2-4 Cascade Correlation neural networks in the literature 

  

Some articles do exist that illustrate poor performances of Cascade Correlation 

on benchmark problems such as Banks et al. [28]. However, on further 

inspection, Banks‟s trainings have been conducted in the absence of early 

stopping, ensembling, or any other variance reducing technique (2.6.1) – 

despite the well known propensity of Cascade Correlation neural networks to 

lose generalisation due to overfitting [29]. 

With her implementation of the Cascade Correlation, Schmitz [30] gives a 

thorough treatment of surrogate modelling with this neural network. In addition, 

she modifies its training mechanism such that it trains more rapidly as well as 

integrating the BFGS optimisation algorithm for more optimal selection of 

weights; potentially improving training outcomes. Particular emphasis is given to 

validating the performance of Cascade Correlation-based metamodels in 

approximating high dimensional surfaces.  In the automated hydrodynamic 

shape optimisation of a ship‟s hull [31], her CasCor surrogate assisted 

optimisation returned a 34% improvement in the objective function (Lift/Drag 
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ratio) for the 28 dimensional problem. The success of applying her CasCor-

based surrogate is underlined by noting that the comparative „classical‟ 

approach yielded only a 26% improvement and required more than five times 

the CPU time. 

There are many reasons why CasCor might be chosen as the basis for a potent 

surrogate model: 

1. Verifiably successful trainings on high dimensional surfaces 

2. No need to train n-neural networks to surrogate for n-responses (unlike 

relevance vector machines) 

3. No parameters to be tuned post-training  (unlike for support vector 

machines) 

4. No tuning of multiple hyperparameters, unlike the Kriging method 

5. Training times are much lower than for other neural networks 

6. As CasCor is a constructive type of neural network, we are never faced 

with the problem of having to determine the correct topology (number of 

neurons) a priori. This potentially solves the bias problem of neural 

networks. 

7. Several well known variance reduction techniques (2.6.1) are available to 

reduce errors, and therefore improve the fit, of neural networks 

One weakness of CasCor is that this neural network can only train off-line 

(batch learning). However, it is a neural network that trains significantly quicker 

that most, and the desirable feature of on-line learning could conceivably be 

instigated by complete re-trainings as new learning samples arrive.  

2.6 Improving the fit of a Cascade Correlation surrogate 

The error present after a neural network has trained on a set of data is 

composed of three terms: 

Error=Variance + Bias + Noise  
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Contrasting with physical experiments, results derived from deterministic 

computer experiments (i.e. fluids and solids solvers) are not subject to random 

errors [6]. Hence, when we chose to build a surrogate for such a computer 

model we need not address the problem of reducing noise.  

The remaining variance and bias are the two error terms to be minimised. If we 

can minimise both variance and bias then we have maximised the accuracy of 

the fit of our surrogate model to the response surface of the problem. Variance 

and bias are equivalently known as over fitting and under fitting as shown in the 

simplified illustrations Figure 2-2 and Figure 2-3.  

 

Figure 2-5 Illustration of Over fitting 

 

Figure 2-6 Illustration of Under fitting 

2.6.1 Variance reduction methods 

Several methods exist in the literature for the treatment of variance. 

 Early stopping 

As neural networks train, their error begins to fall as they fit to the 

underlying function. However, overfitting can occur with too many training 

epochs. By querying the (still training) neural network with a smaller, 

unseen set of data, this overtraining can be halted before it has a 

detrimental effect on the error. Halting the training in this way is known 

as early stopping. This technique also has the advantage of reducing 

training times. In determining an early stopping point, the criteria used for 

this work is presented in section 3.2.4. 

High variance (over fitting)
Ideal fit

High bias (under fitting)

Ideal fit
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 Jitter 

Jitter is the process of deliberately adding artificial noise to the input 

training data; the output responses are left unchanged. This has the 

effect of adding new training examples to the training dataset, and acts to 

improve generalisation for smooth functions when one only has access 

to a small training set. The noise distribution is assumed to have zero 

mean and finite variance. Unfortunately, adding jitter significantly 

increases the training time, which can be impractical for large 

dimensional training problems [32]. 

 Weight decay 

A weight decay mechanism assigns larger magnitudes to important 

weights and smaller values to unimportant weights [33]. Overall the 

weights decrease, but weights that contribute greater reductions to the 

training error are reinforced [34]. In [35], this method is described as one 

that can give excellent generalisation results as CasCor networks grow 

during training. Schmitz [30], however, discusses the difficulties with 

implementing weight decay with CasCor networks. The need to tune the 

different decay constants for the input, output, and hidden layers would 

add complexity to, and increase the time of, the training. 

 Ensembling 

Also known as a committee of machines, bootstrap aggregating, or 

bagging, ensembling involves training multiple neural networks on the 

same dataset. In use, the arithmetic mean of their combined response is 

taken as the response of the ensemble. Due to the mean value 

smoothing individual variance errors, the response from the ensemble is 

more accurate than the response of any member of that ensemble. Its 

disadvantage is the increase in training time imposed by the requirement 

to train multiple networks. 

For this work, jitter and weight decay are disregarded for the following reasons: 
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 The number of jittered cases to be added, and the selected variance can 

result in different training outcomes [30] 

 Jitter increases training times 

 The generalisation of the neural network is very sensitive to the decay 

constant (when using weight decay) – and its calculation is known to be 

computationally intensive [24]. 

Early stopping and ensembling are the two methods chosen to reduce variance. 

Experiments with these two techniques are performed in Chapter 3. 

2.7 Research Gaps for the Cascade Correlation neural network 

Based on a rigorous statistical analysis for the optimal size of an early stopping 

dataset, Amari [36] suggests the following size: 

1Samples in Early-stop dataset =
2M  

(2-1) 

where M is the number of samples in the training dataset.  

As the statistical analysis on which this is based considers fixed-topology neural 

network types, a research gap exists to explore how differing sizes of early 

stopping sets influence the reduction in error for the growing topology neural 

network of CasCor. This gap is explored in section 3.2.4. 

Common practice is to ear-mark small validation datasets for the purpose of 

early stopping ([31] [7.5%-30%], [37] [10%-25%], [38] [20%-37%] as 

percentages of the training dataset). This is because the early stopping set 

must be formed from samples wholly independent from the training dataset; the 

larger the early stopping set, the more training samples we will be excluding - to 

the detriment of successful learning. However, if the success of the training is 

then to be measured, a larger testing set (or generalisation set) is typically 

used. In this way, both the bias and the variance remaining in the model can be 

evaluated. An alternative approach is explored as part of Chapter 3 that uses a 
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larger early stopping dataset (>40%) as a proxy for a testing dataset, yet still 

retains a measure for the bias and variance of neural network. 

A further research gap would be to see if the following question can be 

answered: how much training data does the CasCor neural network need to 

perform a successful mapping of an arbitrary function? Furthermore, can the 

demand for training data be expressed in terms of the dimensions of a 

problem? These gaps are investigated in the work of Chapter 3.  

2.8 Design optimisation 

There are many questions to be answered for a researcher, or a research team, 

that wishes to conduct an exploration of the performance of new, or existing 

designs. Workflows often differ depending on the problem at hand, but desirable 

feature are bulleted below. In the late 1980‟s and the early 1990‟s, no software 

suites existed that provided a comprehensive set of features. Those packages 

that did exist were embryonic - characterised by an incomplete suite of tools 

and/or poor integration with other packages. Any missing feature required 

analysis outside of any given software tool; necessitating either the laborious 

hand-coding of that feature, or the use of several, mutually incompatible, pieces 

of software. For example, the first version of the Linux-based optimisation 

toolkit, “Nimrod”, in 1995 allowed for a search of the design space via a 

parameter sweep but it was 2001 before optimisations within the search space 

became possible with the introduction of Nimrod/O. The Nimrod toolkit is a 

software suite developed by academics at the University of Monash in 

Melbourne, but the picture is similar for commercial software. Dassault 

Systèmes has developed the CAD software, CATIA, since 1981 but it was the 

2008 acquisition of Engineous Software that enabled them to incorporate DoE, 

multi-objective optimisation, and the automation of simulations (via “Simulia”) 

into their Product Lifecycle Management software (PLM).  
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2.9 Optimisation toolkits 

As the research field of design optimisation is very mature, many software tools, 

both commercial and open source, now exist in various forms to enhance the 

productivity of the engineer: 

Table 2-3 Optimisation toolkits 

PHX ModelCentre http://www.phoenix-int.com/ 

iSight and Fiper http://www.simulia.com/ 

Nimrod http://messagelab.monash.edu.au/Nimrod/AllOnOnePage 

Geodise http://www.geodise.org/ 

Dakota http://dakota.sandia.gov/ 

Technosoft http://www.technosoft.com/ 

 

Desirable features for any optimisation toolkit include, but are not limited to the 

following: 

1. An ability to parallelise, and thereby accelerate, optimisation jobs (The workload 

is either shared between the cores of multi core CPUs or distributed on a 

local/wide area network for objective function evaluations on multiple machines 

such as a Grid, Cloud, or Cluster of computers) 

2. Job dispatch, control, and error reporting 

3. Tools to assist with sampling of a search space (DoE) 

4. Work flow management 

5. In-built optimisation algorithms 

6. Surrogate modelling 

At the commencement of the current work in 2007, the Nimrod team had not 

released the DoE and workflow-management modules (Nimrod E and K) for 

public download. The difficulties of workflow management highlighted in 
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Chapter 5 and the lack of a DoE module at first pointed to these as two 

research gaps worthy of investigation. At time of writing, those gaps have been 

filled by work of the Monash team. In 2009 two existent research gaps were; the 

lack of a built-in surrogate model and the lack of a multi-objective optimisation 

algorithm in Nimrod/O (points 5 and 6, above). 

2.10  Multi-objective optimisation 

Mathematical optimisation techniques have existed since the 18th century when 

Newton, Euler and Lagrange used the calculus of variation to develop methods 

for evaluating minima and maxima of differentiable functions, however it was 

only when Pareto developed his theory of optimality that a framework existed 

for multi-objective optimisation problems (MOOP) [39]. When two or more 

objectives are to be optimised simultaneously, a true multi-objective 

optimisation process will not reduce to a single ideal solution if any of the 

objectives are in conflict with each other. This is the case with the aerofoil 

optimisation of Chapter 5; high lifting wings tend not to be associated with low 

drag co-efficients. 

The defining characteristic of the Pareto optimal set is that one objective 

function can only be improved if at least one other objective function is 

degraded. A multi-objective optimisation algorithm searches for the Pareto front. 

The minimisation of a general two criteria multi-objective optimisation is 

formulated as follows: 

Minimise 1 2(x) ( (x), (x))f f f such that x X , the feasible region 

subject to 
(x) 0

(x) 0

j

k

g

h





  

1,...,

1,...,

j M

k K




 constraints  

where x is a p-dimensional vector whose components are known as decision 

variables, jg  are equality constraints and kh  are inequality constraints. 
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Definition of dominance: Comparing two solutions, 1x and 2x , we say that 1x  

dominates 2x  if: 

   1 2 1 2 1 2 1 2(x )< (x ) and (x ) (x ) or (x ) (x ) and (x )< (x )1 1 2 2 1 1 2 2f f f f f f f f   (2-2) 

The Pareto set is formed from only those solutions that are not dominated by 

any other (i.e. from non-dominated solutions). The Pareto front is an imaginary 

construct in the objective space, along which candidates from the Pareto set 

would lie. 

Since the 1980‟s, sufficient computing power has existed to approach the 

MOOP via the use of bio-inspired metaheuristics. The focus of optimisation has 

shifted from mathematical programming techniques to the application of 

evolutionary methods, which adapt the genes of a population of candidates with 

the aim of improving their “fitness”. Mathematical programming techniques, in 

general, generate one element of a Pareto set and are susceptible to changes 

in the shape of the Pareto front and may not work when this front is non-convex 

and/or discontinuous [40]. By contrast, population-based evolutionary 

algorithms simultaneously manipulate a set of possible solutions. In addition, 

evolutionary algorithms are more robust to discontinuous or non-convex Pareto 

fronts [40]. For this reason, they are known as “robust” optimisation methods. 

Examples include: Strength Pareto Evolutionary Algorithm (SPEA)[41], Non-

dominated Sorting Genetic Algorithm (NSGA)[42], Multi-Objective Tabu Search 

(MOTS)[43], and Differential Evolution for Multiobjective Optimization (DEMO) 

[44]. The current author contributes by interfacing DEMO to Nimrod/O (Chapter 

6). 
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3 EARLY STOPPING AND ENSEMBLING FOR THE 

VARIANCE PROBLEM OF CASCADE CORRELATION 

NEURAL NETWORKS 

3.1 Introduction 

The aim of the work in this chapter is to investigate the use of early stopping 

and ensembling to reduce variance errors, Figure 3-1 thereby improving the fit 

of the neural network to the underlying functions. 

 

Figure 3-1 High variance 

The objectives of this chapter are to investigate the effects of: the size of the 

early stopping dataset, the size of the training dataset, how the demand for 

training data varies with the dimensions of the problem, whether a testing 

dataset is strictly necessary, and the limitations of early stopping and 

ensembling. 

As the intended use of Cascade Correlation (CasCor) is to create a metamodel 

to assist with design optimisation, multimodal test functions for global 

optimisation [45] (typically employed to test optimisation algorithms) offer 

High variance (over fitting)
Ideal fit
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appropriate surfaces upon which to test the metamodel. These test functions 

are used for the work in this chapter and for the work in Chapter 4, hence they 

are tabulated in the appendix (Table A-1). All the test functions used are smooth 

and continuous and no noise is present in (or added to) any of the datasets. 

Many of the test functions used are multimodal and, prior to the modifications 

made by the Thesis, were chosen because they posed significant mapping 

problems for this neural network. 

3.1.1 Early stopping 

One of the disadvantages of CasCor neural networks is their propensity to 

overfit on the training data, thus decreasing the quality of the approximated fit of 

the underlying function [29]. Inspecting the monotone decrease of the training 

mean squared error (MSE) gives no indication of this. Typically, the error during 

training is seen to reduce, almost uninterrupted, until one of the stopping criteria 

is met and the network is pronounced as “trained”. If, however, a call-back 

function is set, the training progress can briefly be interrupted to test the (still 

evolving) neural network against the validation dataset. A call-back function is 

useful for customising any training procedures and is implemented as part of 

the neural network library used in this work [46]. 
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Figure 3-2 Early stopping with a validation dataset 

The validation dataset is wholly independent from the training set and it allows 

us to determine an early stopping point. The MSE graph on this validation data 

typically takes the approximate form of a hockey stick outline – initially the 

validation MSE falls as the network fits to the underlying function but, at some 

point, too many neurons are added and any gains from a reduction in bias 

become off set by a disproportional increase in variance of the neural network. 

After this point, any more training acts to further increase this variance, resulting 

in a net increase in the overall MSE (Figure 3-2). Early stopping halts the 

training at or around this minimum point thus minimising negative impacts from 

overfitting. In reality, the profile of the validation error is not smooth and some 

form of heuristic needs to be used to halt the training at an appropriate moment; 

the heuristic introduced by this author is described in 3.2.4. 

3.1.2 Ensembling 

Tetko and Villa [29] described ensemble averaging, or a “committee of 

machines”, as acting to reduce the variance error. It is likely that each neural 
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network in that committee will have approximated the response surface of the 

training data differently due to the random initialisation of their initial weight 

values and the non-deterministic nature of neural network training. Ensembling 

smoothes the responses of its members in the following way: multiple neural 

networks are trained on the same dataset, but in use, the arithmetic mean is 

taken across the output responses of the ensemble members. When compared 

to the basic CasCor neural network, the testing error of these ensembles is 

much lower than the average test errors of their constituent parts - the only 

penalty being an increase in required training time. 

3.2 Experimental set up 

The architecture of the CasCor algorithm is well known [25, 47, 48]. The 

CasCor neural networks under consideration are created from the open source 

library created by Nissen [46]. The library contains an implementation of the 

Cascade Correlation II algorithm based on the original Lisp code written by 

Fahlman in 1996 (unpublished).  

Here, the FANN C source code is used with default settings chosen for CasCor 

training. The target MSE for the training is 10−4 when early stopping is not used 

and a nominal setting of 10−5 when early stopping is used. In use, the lower 

target would only be reached for trivial test cases. More likely is that early 

stopping will trigger a halt to the training before the training error reaches 10−5. 

The existing release, 2.1.0-Beta, does not provide a neural network copy utility 

or functions that correctly scale and de-scale datasets, and so these have been 

added to this author‟s implementation. 

3.2.1 Training datasets 

The training datasets consist of repeated runs of  𝑂𝐴. 16.5.4.2 [49]. With 16 

evaluations being made each time, 6 runs of this OA will be required to 

generate a training dataset of 96 points. This OA allows for a design of 

experiments in up to five dimensions. For test functions in less than five 
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dimensions, the OA is trimmed by removing unneeded columns. This does not 

affect the orthogonal properties of the array. The selection of the factors in each 

subsequent OA is known as the infill criteria [50]; when subsequent OAs are 

evaluated, each of its factors is chosen to be numerically furthest from all 

previously tested factors. 

3.2.2 Testing the fit 

One traditional test for the quality of regression fits (such as presented in the 

current work) is to calculate the MSE against a testing set, in which the samples 

differ from those in the training set. Lower is better, and so we can measure the 

success of the techniques herein by how much they reduce the MSE. The 

testing sets are generated from the algorithm in [51]. The size is chosen as 

1000 × 𝑑 where 𝑑 is the number of inputs to the neural network (or dimensions). 

The positioning of so many points is computationally expensive, especially 

when trying to maintain space filling properties. For this reason only one 

template was generated for each of the four different dimensions that were 

tested. 

The range of all inputs and outputs is normalised to the interval [0.1,0.9] with 

the scaling factors saved after processing. These factors are later used to scale 

down the queries and scale up the neural network response.  

Note: Unless otherwise stated, the MSE errors presented in this chapter are 

calculated on scaled data [0.1,0.9], thus making possible fair comparisons 

between otherwise disparate function output ranges. 

3.2.3 Sample size 

When choosing the size of the training datasets, how many samples should be 

used? Too few samples will mean that the training set may not accurately 

represent the underlying pattern. However, in situations where generating 

training data is very time-expensive, it would be useful to know the minimum 

size that can be of practical use when training CasCor neural networks. Another 
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question to be answered is; how the demand for training data varies with the 

dimensions of the problem at hand? To determine the answers to these 

questions CasCor training was performed using 13 test functions (defined in 

Table A-1) in two, three, four and five dimensions with training datasets sizes in 

the range [16 × 𝑑, 384 × 𝑑] (where 𝑑 is the number of dimensions). 

3.2.4 Early stopping 

Several tests were undertaken in order to answer two questions: 1. What is the 

smallest size of validation set that can be used? 2. Does the use of larger size 

validation sets have any beneficial effect on improving the fit of the trained 

networks? The validation sets ranged from a size of 5% of the training set to 

100% of the training set. Code from Beachkofski and Grandhi [51] provides the 

method of distributing the samples in the validation set. This “improved Latin 

hypercube” sampling was chosen because: 

1) Generating validation sets of less than 1000 points is not computationally 

expensive and can be done at run time, 

2) The algorithm in [51] produces points that fill the hypercube uniformly, the 

statistical properties of which are desirable as described in [50], 

3) The technique is fundamentally different from that used to generate the 

training set - ensuring that most, if not all, of the validation data points are 

automatically independent from those in the training set. 

After the validation error is initialised to 1.0, this author‟s heuristic algorithm for 

early stopping is run each time a new hidden neuron is added to the network, 

and is given below: 

 Test the network against the validation set. 

 If this new validation error is less than the old one, update the old validation 

error with this new value and make a copy of this “best network so far”. 

 Do not initiate early stopping until at least five hidden neurons exist in the 
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network. 

 Trigger early stopping on the earliest of: 

o The error on the validation set becoming less than 5 × 10−5 (suitably low 

error) 

o The validation error growing to be 50% larger than the smallest 

experienced validation error (network is diverging) 

o More than 31 hidden neurons existing in the network (likelihood of a 

diverging network) 

 When early stopping occurs, the “best network so far” is recalled from 

memory to replace the active network. The training is halted and the network 

is saved to permanent storage. The saved neural network is therefore that 

which had the smallest validation error.  

3.2.5 Dispensing with the testing set 

Early stopping validation sets share the same property of a testing set in that 

they both contain samples wholly independent from the training dataset. The 

only difference is that testing sets are usually of a large size. Testing sets are 

useful in determining how successful a neural network‟s training has been. 

However, in the case of surrogate modelling, sampling for datasets is likely to 

be very time-expensive. If we want to avoid the cost of generating a large 

testing set, yet still retain a test for the quality of the fit, is there a size of 

validation set that can give us a reasonable approximation to the results we 

would get from a testing set? Experiments were performed that compare the 

MSE calculated from validation sets of sizes [5%,100%] of the training set 

against MSE calculations from much larger testing sets of size 1000 × 𝑑. 

3.2.6 Ensembling 

When preparing an ensemble, we need to answer the question of how many 

neural networks we should include in that ensemble. Others have chosen an 
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arbitrary number [29, 32] for their ensembles, but here the ensemble size is 

investigated with respect to its influence on reducing the MSE. 

Ensembles of CasCor neural networks were trained on the 13 test functions 

(Table A-1); each test was repeated ten times for the larger ensembles and 30 

times for ensembles smaller than ten. 

3.3 Results 

3.3.1 Sample size 

Figure 3-3 shows the results of the sample size test of training on the 13 test 

functions in the appendix, covering two to five dimensions. Each test was 

repeated ten times. After each training, the quality of the fit was evaluated by a 

testing set of size 1000 × 𝑑. The resulting MSEs often differed by one or two 

orders of magnitude, hence a need to normalise the results. In normalising the 

results, the mean squared errors for each function were scaled such that the 

size of the training dataset that yielded the worst error was attributed 1.0; the 

training dataset set size that gave the lowest MSE was attributed a score of 0.0.   

 

Figure 3-3 Change in testing MSE against training set size 
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Figure 3-3 shows the mean of the normalised error per dimension and also the 

mean of all 13 test functions. A contribution of the current work is the 

experimental finding that CasCor‟s demand for training data scales linearly with 

the number of dimensions, and is not correlated with the nature of the surface of 

the test function. Instead, the demand for training data is directly proportional to 

the total number of weights that the training algorithm is required to optimise. 

In all cases, less than 32 samples/dimension are seen to lead to poor mappings 

of the underlying function. This corroborates Schmitz‟s success with her 28 

dimensional CasCor metamodel; her 1000 samples (i.e. 35.7 

samples/dimension) was a sufficient, but not ideal, sized training set [31] .  

For this work, optimal training occurred when the training datasets were 

between the sizes of 48 and 128 samples/dimension. 

3.3.2 Early stopping 

Figure 3-4 shows the results of an experiment to determine how big the 

validation set should be with respect to the training set. For this experiment, 96 

samples /dimension was chosen as the training set size. As before, training was 

conducted on all 13 test functions and each test was repeated ten times; Figure 

3-4 shows the mean average of the results. 

A logarithmic trend line has been fitted to the data points in Figure 3-4 that 

shows the error reducing by 25% as the size of the validation set is increased 

from 5% to 100% of the training set. However, the conclusion drawn here is that 

validation set sizes as small as 5% (or minimum size of 10 samples) could be 

relied on to achieve much of the desired early stopping effect.  
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Figure 3-4 Reductions in the tested MSE with larger early 

stopping/validation set sizes 

 

In Table 3-1, the results of early stopping are displayed. For all the experiments 

in this table, the training datasets were created from 48 samples per dimension 

and the validation sets were set at 20% of the size of the training datasets. The 

mean reductions in the MSE range from 8% to 57% due to early stopping (ES). 

In all test cases, early stopping has reduced the common tendency of the 

CasCor neural network to overfit.  

3.3.3 Dispensing with a testing set 

There was one other early stopping experiment for which we desired an 

answer. If an unseen dataset is used for the early stopping set, then can we 

dispense with a testing set entirely – relying only on the MSE calculated from 

the validation dataset? If this approach is viable then, in circumstances when 

creating datasets is time-expensive, we could dispense with the creation of a 

testing set - relying solely on the validation error as a test for the quality of fit. 

The results in Figure 3-5 were generated from the same experiment performed 

for the results in Figure 3-4. However, for each size of validation set, the MSE 

calculated from the validation set was compared to the MSE calculated from the 
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much larger testing sets (1000 × 𝑑). The validation and testing sets only differ 

in the number of samples; both share the same property of containing samples 

independent from those in the training dataset. The results suggest that 

validation sets of 20% or greater are sufficient to give a close approximation to 

the results from a much larger testing set. Taking a two dimensional test 

function as an example; the training set would have numbered 48 × 2 = 96 

samples, and a 45% validation set would have been of size 96 × 0.45 = 44. The 

total number of samples we would have created = 140. With this validation set, 

Figure 3-5 predicts that the MSE calculated from this, size = 44, validation set 

will be within 7% (σ = 5%) of the MSE calculated from a testing set of size 

= 2000 samples. This represents a significant time saving; if each sample 

costs, for example, 20 minutes to generate, we save 25 days of sampling. 

 

Figure 3-5 How close the validation dataset MSE is to the MSE from the 

testing dataset 

3.3.4 Ensembling with Early Stopping 

For clarity, only three of the thirteen test function errors are shown in Figure 3-6, 

however, the form of the line graphs were similar throughout all 13 functions; 

the MSE reduced rapidly as the ensemble size increased from one to seven. 

Smaller reductions in the MSE occurred until ensembles with a size greater 
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than 25 were seen to deliver little benefit. Early stopping was also applied for 

this experiment and so the MSEs in Figure 3-6 reflect the combination of both 

techniques. 

 

Figure 3-6 Reductions in MSE due to ensembling 

Shown in Table 3-1 are the quantitative results of applying early stopping, and, 

early stopping combined with ensembling. Across all test functions, the mean 

squared error is reduced by a factor of 2.8 by a combination of both techniques.  
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Table 3-1 Benefits of early stopping (ES) and ensembling (Ens) 

 
  MSE

310  

Test function Dims 
Size of train + 
early-stop sets 

Cascade Correlation 
(CasCor) 

CasCor 
+ ES 

CasCor 
with Ens 
+ ES 

Ackley 2 116 
33.79 14.33 3.10 

Reduction in error: 57.59% 90.82% 

DeJongs5th  2 116 
176.33 80.06 58.10 

Reduction in error: 54.60% 67.05% 

Langermann  2 116 
77.33 33.32 22.43 

Reduction in error: 56.91% 70.99% 

Michalewicz  2 116 
22.90 14.38 10.78 

Reduction in error: 37.22% 52.92% 

Schwefel  2 116 
36.73 19.96 4.39 

Reduction in error: 45.67% 88.06% 

Shubert  2 116 
32.08 20.24 4.59 

Reduction in error: 36.89% 85.69% 

Six Hump 2 116 
13.39 6.77 4.26 

Reduction in error: 49.42% 68.15% 

Ackley 3 173 
14.66 6.36 5.64 

Reduction in error: 56.62% 61.56% 

Hartmann 3 173 
12.67 11.60 6.50 

Reduction in error: 8.40% 48.66% 

Rosenbrock 4 231 
18.27 14.41 8.19 

Reduction in error: 21.10% 55.18% 

Schwefel 4 231 
27.47 20.73 13.70 

Reduction in error: 24.51% 50.12% 

Michalewicz 5 288 
10.64 9.52 5.38 

Reduction in error: 10.53% 49.45% 

Schwefel 5 288 
44.77 22.61 22.07 

Reduction in error: 49.50% 50.71% 

Average 
reduction in error 

  
 

39.15% 64.57% 

3.3.5 Discussion 

The curves in Figure 3-6 take the form:    

  (3-1) 

where is the mean MSE of the neural networks that constitute the 

ensemble. Bias2
 is the asymptote to which the curves tend. Effectively, the bias 
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is an MSE boundary that no size of ensemble can reduce because ensembling 

acts only on the part of the error that is due to variance. Likewise, early 

stopping, provided by the validation set, acts only to reduce the variance by 

limiting overfitting.  

A high bias can be thought of as representing a lack of complexity in the 

regression model. For example: if a highly multimodal surface is modelled with 

a low complexity / low modality surface, we would expect to find bias 

dominating the MSE.  

Equation (3-1) can be derived from the equations presented in the seminal 

paper of Geman et al. [52] where they describe the bias/variance dilemma of 

neural network training. The general form of the error is given in their paper as: 

  (3-2) 

and it can be shown that (3-1) and (3-2) are equivalent. Equation (3-1) provides 

a convenient test for the relative contribution of variance and bias to the overall 

error. Evaluating the MSE is a function commonly built into neural network 

libraries and so, using MSE evaluations alone, new formulae are presented 

here for estimating the bias (3-3) and then the variance (3-4) for any ensemble. 

These are, to the author‟s knowledge, new formulations for determining 

variance and bias. In appendix B.1, this new method is compared and 

contrasted to Geman‟s method for finding bias and variance. 

 (3-3) 

 (3-4) 

If variance is found to dominate, then creating a larger size of ensemble will 

reduce the MSE and improve the mapping of the underlying function. If we find 

that the bias is the largest component of our mapping error, we know that the 

information capacity of our CasCor neural network has been exceeded. 
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Installing more neurons will confer additional capacity: in Chapter 4, this author 

introduces „patchworking‟ to achieve an increase in capacity. 

By way of example, Figure 3-7 presents a smaller region of Figure 3-6 and, for 

clarity, only the Michalewicz data is re-plotted. Say that an ensemble of size 10 

has been created. We calculate the MSE of that ensemble and also calculate 

the mean MSE of the 10 members of that ensemble. 

 

Figure 3-7 Reductions in MSE due to ensembling (Michalewicz data 

replotted) 

Now, by using (3-3) and (3-4), we find that our Bias2 = 0.01 and the Variance of 

our ensemble = 0.0004. Ensembling to a size of 15 would reduce our variance 

to 0.00027, but it is clear that the dominant component of our MSE is the bias. A 

CasCor ensemble that possesses a high bias indicates a highly multimodal 

function in the training dataset. When the MSE is undesirably high (and 

dominated by bias), the application of this author‟s patchworking method is 

advocated (Chapter 4). 
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3.3.6 Visualisation of the benefits of early stopping and ensembling 

In Figure 3-8, the Six Hump Camel Back test function is displayed. The result of 

training a single CasCor neural network (Figure 3-9) shows high variance. The 

mapping is improved with the application of early stopping (Figure 3-10) and 

significantly improved by an ensemble of early stopped networks (Figure 3-11). 

 

Figure 3-8 Six hump test function  

 

Figure 3-9 CasCor’s high variance 

 

Figure 3-10 With early stopping 

 

Figure 3-11 With ensembling and 

early stopping  

3.3.7 Qualitative evaluation of CasCor training 

Based on the experiments conducted as part of this thesis, it has been possible 

to create a table (Table 3-2) that qualitatively describes how successful a neural 

network‟s training is likely to have been. 
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Table 3-2 Qualitative evaluation of CasCor training 

Neural network error; 

testing dataset 

Quality of 

mapping 

Comments 

25 10MSE    
No real 

mapping 

No mapping has been found that 

represents the features in the dataset. 

2 25 10 1 10MSE      
Very poor  

Some patterns were found in the 

dataset. The neural network has made 

an approximation to those patterns, 

albeit poorly. 

2 31 10 5 10MSE      Poor 

The underlying function has not been 

mapped in detail. Predictions from this 

neural network should be made with 

caution. 

3 35 10 1 10MSE      Good 

The underlying function has been 

mapped quite well but not precisely. 

Fine details of the response surface will 

not have been captured. 

3 41 10 1 10MSE      Very good 

A successful mapping. Predictions from 

the neural network can be made with 

confidence. 

41 10MSE    Excellent 

An almost perfect mapping; the fine 

details of the features in the training 

dataset have been captured accurately. 

 



 

 

56 

 

3.4 Usage with real world data 

The datasets in this chapter have thus far been generated from mathematical 

test functions. The highly multimodal functions have in some cases caused 

exceptional mapping problems for the CasCor neural network, despite the 

application of early stopping and ensembling methods. However, are problems 

in the real world as complex as some of these mathematical functions? The 

answer to that question is “it depends”.  We have seen that the demand for 

training data varies linearly with the number of dimensions so, in the case 

where we have (or can generate) sufficient samples for our train and test 

datasets, the only factor that will preclude us from accurately modelling a real-

world problem is the modality of the response surface. If our real world training 

data describes a highly multimodal surface then ensembling and early stopping 

will not be sufficient tools for us to map the problem. Conversely, if the modality 

of the response surface is low, we will be able to build a useful CasCor 

metamodel. Two real world examples follow; Concrete Compressive Strength 

(eight dimensional), and Abalone Age Testing (eight dimensional) 

3.4.1 Concrete Compressive Strength 

The owner of this dataset is Prof. I-Cheng Yeh of Chung-Hua University in 

Taiwan. He has donated this dataset for public use and it is available on the 

machine learning repository website [53]. He has published six papers on the 

subject of concrete compressive strength, the first in 1998 [54] and the latest in 

2006 [55]. He describes the compressive strength of concrete as a highly 

nonlinear function of its ingredients and its age. The dataset provided has 1030 

samples generated from laboratory experiments. All the data is quantitative, 

with eight input dimensions and one output; the compressive strength measured 

in MPa. The dataset is provided unscaled, the nine variables are tabulated 

below in Table 3-3. 
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Table 3-3 Concrete compressive strength input and output data 

Component Units 

Cement Kg/m3 in a mixture 

Blast Furnace Slag Kg/m3 in a mixture 

Fly Ash Kg/m3 in a mixture 

Water Kg/m3 in a mixture 

Superplasticizer Kg/m3 in a mixture 

Coarse Aggregate Kg/m3 in a mixture 

Fine Aggregate Kg/m3 in a mixture 

Age Days 

Concrete compressive strength   MPa (Output Variable) 

 

Taking this dataset, an early stopping/validation set of size 309 set was first 

created by separating a randomly chosen 30% from the total of 1030, hence a 

training set of size 721 remained for training a CasCor based metamodel. This 

size of the training set represents 90 samples/dimension which is well above 

the minimum threshold of 32 samples/dimension calculated earlier in this 

chapter. An ensemble size of 15 was chosen to minimise the inevitable 

variance. There were no other choices necessary before commencing CasCor 

neural network training. Training time was approximately 15 minutes on a 

Laptop (CPU=Pentium SU4100 1.3GHz) i.e. ~ 8.5x106 MFLOP. This contrasts 

with Yeh‟s training time of 30 seconds for the neural network he ultimately 

chose to use for this dataset. Yeh‟s neural network comprised one hidden layer 

with four neurons. He did not use the CasCor type of network, and in his paper 

he described that he made this choice only after performing a number of trials to 

choose the optimal topology of his neural network and to tune the training 

parameters. 
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3.4.2 Concrete strength results 

Yeh gives the testing error of his neural network as 4.32 MPa RMS (root mean 

squared on upscaled data). For this author‟s comparative test, the 309 sample 

validation set (as unseen data) was also employed as a testing set for the 

CasCor ensemble. The trained ensemble of the current author had a mean of 

6.27 neurons performing the mapping of this problem. The testing error was 

4.09Mpa RMS ( 32.87 10MSE   on scaled data) which represents a 5% 

improvement over Yeh‟s neural network. This improvement is made more 

significant when we consider that no tuning, setup, or specialist knowledge of 

the problem at-hand was required to achieve this result. For reference, Table 

3-4 reproduces an extract of results generated by querying the CasCor 

ensemble on the validation set. 

Table 3-4 Concrete compressive strength prediction (sample of results) 
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424 22 132 178 8.48 822 750 7 39.0 37.5 -1.6 -4.1 

424 22 132 18 8.92 822 750 7 40.3 39.3 -1.0 -2.5 

202 11 141 206 1.72 942 801 7 15.1 12.4 -2.7 -17.0 

284 15 141 179 5.46 842 801 3 13.4 17.5 4.1 30.6 

359 19 141 154 10.91 942 801 28 62.9 56.8 -6.1 -9.7 

359 19 141 154 10.91 942 801 7 35.8 38.9 3.1 8.7 
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3.4.3 Abalone age prediction 

Abalone are edible marine molluscs.  Conventional age testing can be 

described as a time-consuming and boring process that involves cutting the 

shell, staining the cone, and counting the rings under a microscope; hence the 

benefits of determining age from more readily measured quantities such as 

weights and dimensions. 

The data here are also found on the machine learning website and derive from 

a non-machine learning dataset [56] that is used in the scaled form provided by 

that website. There are 8 input dimensions, of which 7 are numeric and one 

output dimension (age, years). For the current work, categorical data (Gender) 

uses the following substitution; Male=1, Female=0 and Infant=0.5. Numeric data 

that may also be relevant, such as weather and food availability, are not 

available for this dataset. 

The total dataset numbered 4177 samples from which a validation dataset of 

size 1253 was separated. This validation/early stopping dataset, as unseen 

data, was also used for final testing. As for the concrete compressive strength 

training, an ensemble of size 15 was chosen to reduce the inevitable variance. 

Training time was greater than that for the concrete dataset; approximately 

double (on the same computer). 

3.4.4 Abalone age prediction results 

A sample extract of the results is presented in Table 3-5. Comparative 

benchmarks are available in the literature [57]; Neural Network built using „R‟ 

[58] MSE = 4.31.The MSE for the CasCor ensemble of this work was 2.3% 

lower at 4.21, and employed a mean of 6.33 neurons. For an undetermined 

reason the ages of infants was predicted with a greater accuracy than samples 

for which gender was known; MSE infants = 2.57, MSE Male = 4.62, MSE 

female = 5.50. 
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Table 3-5 Abalone age prediction (sample of results) 
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0 0.51 0.40 0.14 0.81 0.46 0.20 0.20 10.0 8.0 -2.0 -20 

1 0.64 0.50 0.19 1.30 0.44 0.26 0.47 16.0 16.1 0.1 0.6 

1 0.50 0.40 0.17 0.83 0.25 0.21 0.29 13.0 14.1 1.1 8.5 

0 0.49 0.40 0.16 0.66 0.25 0.13 0.24 14.0 13.0 -1.0 -7.1 

0.5 0.41 0.30 0.12 0.32 0.13 0.07 0.11 7.0 8.4 1.4 20 

0 0.47 0.35 0.15 0.52 0.19 0.12 0.18 11.0 11.8 0.8 7.3 

0.5 0.43 0.38 0.11 0.33 0.13 0.08 0.10 10.0 8.2 -1.8 -18 

0.5 0.37 0.27 0.09 0.21 0.08 0.05 0.07 7.0 7.0 0.0 0 

1 0.57 0.44 0.18 0.90 0.31 0.19 0.33 14.0 14.5 0.5 3.5 

 

3.4.5 Summary of real world test data 

The purpose of including this test data was primarily to demonstrate examples 

of the successful application of CasCor neural networks on real, as well as 

synthetic problems. The examples were sought from the machine learning 

repository [1]. Of interest is to note that the majority of their test data did not 

conform to the requirements of the CasCor surrogate of the current work, 

namely; many datasets were classification, or mixed (regression/classification), 
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and many examples contained too few samples and so did not conform to the 

minimum-samples/dimension threshold of 32 per dimension.  

Results for the concrete and abalone examples do compare favourably with 

similar tests found in the literature. Although both CasCor ensembles examples 

here did return lower errors (either MSE or RMS) than the errors quoted in the 

literature, it should be stated that the experimental set-ups were not identical. 

Specifically the methods of generating the training/testing/validation datasets 

and the method of testing for the final error differed and so a direct performance 

comparison is not possible.  

When the bias and variance of the concrete and of the abalone ensembles was 

calculated, it was found that bias constituted >97% of the remaining error. To 

reduce this error, we would require our CasCor ensemble to have a greater 

information capacity. 

3.5 Conclusion 

The aim of the work in this chapter was to perform experiments with the known 

techniques of early stopping and ensembling. The initial objectives were to find 

out what were the effects of: the size of the early stopping dataset, the size of 

the training dataset, how the demand for training data varied with the number of 

dimensions, and whether a testing dataset is strictly necessary. These 

objectives have been achieved and constitute contributions of the current work. 

In addressing the variance problem for this neural network type, early stopping 

and ensembling have been shown to be valuable tools. Early stopping sets as 

small as 5% of the training set have been shown to be effective in reducing the 

variance error. The current work also suggests that there may be no need for a 

separate testing set. A validation set of size 45% of the training set can 

substitute for a testing set 45 times larger, returning an MSE calculation within 

7% of the MSE from that testing set . This offers the possibility of ( 5%) 



 

 

62 

 

saving a significant amount of time that would otherwise have been spent 

sampling for a testing set. 

Ensembling has been shown to be more effective than early stopping in 

reducing variance and, in the limit, will reduce the variance to zero. Novel 

equations have been presented in this chapter that will provide approximations 

for the variance and the bias of an ensemble using mean square error 

calculations alone. The determination of bias and variance contributed by the 

current work deviates from the theme of metamodelling, and so a comparison 

with an existent technique fits best in the appendix. 

Using the equations given in this chapter, and assuming that ensembling will be 

applied de-rigueur, if bias is found to be the dominant component of our error 

then we infer that the information capacity of the CasCor network has been 

exceeded because the features in the training dataset lie on a highly multimodal 

response surface. Chapter 4 addresses the bias problem. 
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4 PATCHWORKING AS A TECHNIQUE FOR THE BIAS 

PROBLEM OF CASCADE CORRELATION NEURAL 

NETWORKS  

4.1 Introduction 

The three components of a neural network‟s mapping error are; variance, bias, 

and noise. Chapter 3 has addressed the variance problem using the known 

techniques of early stopping and ensembling. When training on deterministic 

datasets, such as results from CAE solids and fluids solvers, we can expect no 

experimental noise. The remaining problem is therefore bias, which is 

addressed in this chapter.  

 

Figure 4-1 High bias 

Constructive neural networks, such as Cascade Correlation (CasCor) have the 

potential to solve the bias problem (Figure 4-1) of neural networks by adapting 

their size to suit the number of features of the problem at-hand. However, as 

experiments in this chapter will show, the information capacity of the CasCor 

neural network appears to limit its potential. Although not rigorously defined, this 

capacity is a measure of a neural network‟s ability to represent the features 

within the training set and roughly corresponds to its ability to model any given 

High bias (under fitting)

Ideal fit
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function. It is also related to the amount of information that can be stored in the 

neural network and to the notion of complexity. 

In this chapter, a novel technique, named here as “patchworking”, is introduced 

that addresses the bias problem of CasCor networks, by raising their 

information capacity. By using patchworking for domain subdivision the 

information content in the training sets, and hence the error, is much reduced. 

The total information capacity of the patchwork has grown – thus improved 

generalisation on multimodal test functions is obtained. As will be seen, 

patchworking, when used in combination with early stopping and ensembling, 

can achieve an order of magnitude improvement in the error. 

4.1.1 Patchworking - a subdivision method 

This technique is particularly suited to highly multimodal response surfaces. 

Determined empirically, “highly multimodal” is defined as six or more distinct 

extrema over a multi-dimensional surface; the fit deteriorates significantly when 

the extrema exceed nine. Functions such as these are used in this chapter to 

demonstrate CasCor‟s difficulty in fitting the underlying function (functions given 

in the appendix). These poor fits appear as high MSEs on testing sets and are 

also clearly visible in surface plots. Neither early stopping, nor ensembling, are 

sufficient to overcome these poor fits as the source of this problem is the 

inability of a single CasCor neural network to represent the complex features in 

the dataset. 

Some of the greatest strengths attributed to the CasCor type of neural network 

are as a result of it growing its own topology during training. An intrinsic feature 

is that at any point during training, no more than one new neuron will be having 

its weights optimised. It is widely believed that this distinguishing behaviour 

results in rapid training times; however, this is challenged by [59], in which 

Squires et al. conclude that freezing of formerly trained weights can be 

detrimental to effective learning. 
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The universal function approximation abilities of the CasCor neural network, 

mathematically proven by Kwok and Yeung [60], are only applicable if we 

assume that correct choices have been made when each and every neuron was 

inserted. By taking a system view of the training process, it can be argued that 

correct choices are frequently not made when mapping multimodal functions. 

Informally, the training process plays the role of an agent in the system. This 

agent aims to train and fix in the network one neuron at a time that, in isolation, 

reduces the MSE on the training set by the largest possible amount.  Several 

time steps later in the training, more neurons have been added and we see, 

with the benefit of hindsight, that incorrect choices have been made in the early 

stages of training. What were once apparently optimal additions to the network 

are ultimately conspiring to deflect the network from a good mapping of the 

underlying function. The training algorithm dictates that once neurons have 

been placed in the network, they may not be removed or re-trained (weight 

freezing) and so the problem becomes irreconcilable [59]. The problem is one of 

decision theory – specifically evidential decision theory: how can a training 

process place a neuron in the network which, later in time, will combine with 

downstream neurons in only a beneficial way? 

A more formal description can be found in [61] where they consider the 

problems caused when training on the simple “double-tanh” function. The 

problem is seen to be sufficient to preclude, or at least delay, convergence of 

the CasCor network. Variants of the CasCor neural network include one that 

only adds neurons to a single hidden layer (breadth) [47] and one that chooses 

whether to add depth or breadth to the network [62]. Both have mixed success 

against the standard CasCor. 

In this author‟s training experiments with datasets that contain highly multimodal 

functions (Table A-1), the training problem becomes clearer when monitoring 

the validation MSE. As the network is training, the insertion of new neurons 

should be conferring a greater information capacity to the neural network, and 

the validation MSE should decrease. Inserting the first two or three hidden 
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neurons does cause a small decrease in the validation MSE, but soon after, this 

error increases resulting in a very poor generalisation of the underlying function. 

The hypothesis behind patchworking is that by subdividing the input domain, the 

number of extrema that any one neural network must approximate is kept below 

the multimodal threshold. Hence, CasCor networks with a small number of 

neurons can approximate the function over each subdivision with a lower MSE. 

In this way, patchworking overcomes the fundamental weight freezing problem 

of this neural network. Ensembling and early stopping can be used in 

conjunction with patchworking and are, in fact, logical accompaniments. 

4.1.2 Patchworking method 

The algorithm used to construct the patchwork is shown in Figure 4-3. It allows 

for a user defined number of subdivisions known as “depth” and can be applied 

to as many input dimensions as is practical. Note, though, that the number of 

required networks grows exponentially  
2

depth×dimensions
 and so this method may not 

be practical if the dimensions number more than nine or ten. The patchworking 

technique is shown in Figure 4-2 and is applied as follows:  

1. Train at first without subdividing the domain (patchwork depth=0) 

2. Test the MSE after this training. 

3. Subdivide the input domain if the test error is undesirably high (depth = 

depth + 1). 

4. Create more training samples if necessary and re-train on these 

subdivisions (or „patches‟). 

5. Repeat steps 2-4 until the testing MSE is satisfactorily low. 

A relatively simple algorithm can be constructed to query such a patchwork, 

assuming that we have stored on file the minimum and maximum bounds of 

each network‟s domain. 
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Figure 4-2 Patchworking subdivisions for a 2D function 

 

 

Figure 4-3 The patchworking algorithm 

Depth 0 Depth 1 Depth 2

Generate LatinHyperCube template for use in early stopping

Run_LatinHyperCube() //to create Validation set

Increment global count_of_evaluations

Scale the Training set and the Validation set [0.1,0.9]

Train Neural Networks (ensemble_size)

Update the NeuralNetQuery file to reflect the sub-domain of these
new Neural Networks

Iterate “n” times 

sub_domain_k =  list_of_sub_domains(n)

Call RecursiveFunction(sub_domain_k, depth+1)

RETURN (success)

False

True

False

IF (count_of_evaluations > max_permissible_evaluations) 
OR IF

(depth > max_permissible_depth) RETURN (fail)

IF (NNvalidation_error < desired_NNerror) 
RETURN (success)

IF (count_of_evaluations > max_permissible_evaluations) 
RETURN (fail)

while (available_training_data) < 
(user_specified_minimum_train_data_per_NN)

Run_Orthogonal_DoE() //builds Training dataset

Increment global count_of_evaluations

True

//Our problem size grows exponentially
n = 2 ^ (count_of_parameters);

//Generate list of „n‟ sub_domains
BranchAndBoundDescriminator()

False

RecursiveFunction(domain_to_study, depth)

Global count_of_evaluations = 0 
depth = 0
Call RecursiveFunction(whole_domain, depth)
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Note that there may be surfaces for which patchworking is not an optimal 

solution: for example, a two dimensional surface where the majority of the 

features occur in just one quadrant (i.e. one patch). In this example, the 

remaining three patches are not providing any improvements in the mapping of 

the three „easier‟ quadrants, yet they still require more samples upon which to 

train. A more optimal patchworking solution would apply techniques from 

analysis of variance (ANOVA) to determine subdivision based upon an 

evaluation of those sub domains with the highest variance. 

4.2 Experimental setup 

The test functions used are the same thirteen of the previous chapter (Table 

A-1). Sampling the functions for the training set was likewise performed with an 

orthogonal array and early stopping and ensembling are applied as described in 

Chapter 3.  

The amount of training data per patch was calculated from the results in Figure 

3-3 of Chapter 3 and this is tabulated in column 3 of Table 4-1.  
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4.3 Qualitative results of patchworking (visualisation) 

Shown in [Figure 4-4,…,Figure 4-24] 

are surface plots demonstrating how 

CasCor fits to the 2D mathematical 

test functions of Table A-1.  

Each set of results is presented as a 

triplet. The top image is the test 

function. The middle image is the 

surface plot of a size 15 ensemble of 

early stopped CasCor networks. The 

third image shows clearly the 

improvement when the patchworking 

technique has been applied to a 

depth of 1 along with the techniques 

of early stopping and ensembling. 

 

Figure 4-4 Shubert function 

 

Figure 4-5 Shubert Ens+ES 

 

Figure 4-6 Shubert 

patchworking+Ens+ES 
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Figure 4-7 Ackley function 

 

Figure 4-8 De Jong's 5th function 

 

Figure 4-9 Ackley Ens+ES 

 

Figure 4-10 De Jong's 5th Ens+ES 

 

Figure 4-11 Ackley 

patchworking+Ens+ES 

 

Figure 4-12 De Jong's 5th 

patchworking+Ens+ES 
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Figure 4-13 Langermann function 

 

Figure 4-14 Michalewicz function 

 

Figure 4-15 Langermann Ens + ES 

 

Figure 4-16 Michalewicz Ens+ES 

 

Figure 4-17 Langermann 

patchworking+Ens+ES 

 

Figure 4-18 Michalewicz 

patchworking+Ens+ES 
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Figure 4-19 Schwefel function 
 

Figure 4-20 Six Hump Camel Back 
function 

 

Figure 4-21 Schwefel Ens+ES 

 
Figure 4-22 Six Hump Camel Back 
Ens+ES 

 

Figure 4-23 Schwefel 

patchworking+Ens+ES 

 

Figure 4-24 Six Hump Camel Back 
patchworking+Ens+ES 

4.4 Quantitative results of patchworking 

In Table 4-1 Enssize = 15 was used and the basic CasCor results are shown 

alongside the benefits of ensembling (Ens) + early stopping (ES), patchworking, 

and all three combined. Patchworking is applied to a depth of one. The same 
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computer program was used to generate all the neural networks, the only 

changes being flags that turn on/off the features shown. Results shown are 

formed from the arithmetic mean of ten trials. 

When compared to a standalone CasCor neural network, the mean effect of 

patchworking is to reduce the error by a factor of 6.2. Employing ensembling 

and early stopping on these functions reduces the error by a mean factor of 2.8. 

However, the real benefit of patchworking is that it can be combined with the 

techniques of early stopping and ensembling – here delivering a mean 

reduction in neural network testing error of a factor of 11.9 (91.6%). 

4.5 Patchworking for greater depths and dimensions 

From this author‟s experience with the CasCor neural network, no more than 

nine features can be mapped satisfactorily by one network alone. Taking the full 

domain of the two dimensional Schwefel function as an example, Figure 4-25, 

we see significantly more than nine stationary points on this surface. 

Patchworking to a depth of one, Figure 4-27, begins to approximate the 

Schwefel surface but, using the recursive facility of the patchworking algorithm, 

a significant improvement can be seen in Figure 4-28 when patchworking has 

been allowed to continue to a depth of three. 
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Table 4-1 Patchworking results 

 
  

MSE
310  

Test function Dims 

Size of 
train + 
early-stop 
sets. 
Patchwork 
Off/On 

Cascade 
Correlation 
(CasCor) 

CasCor 
with Ens + 
ES 

CasCor with 
Patchworking 

CasCor with 
Patchworking 
+Ens + ES 

Ackley 2 116/461 

33.79 3.10 6.31 1.53 

Reduction 
in error: 

90.82% 81.33% 95.47% 

DeJongs5th  2 116/461 

176.33 58.10 33.20 11.23 

Reduction 
in error: 

67.05% 81.17% 93.63% 

Langermann  2 116/461 
77.33 22.43 3.82 1.48 

Reduction 
in error: 

70.99% 95.06% 98.09% 

Michalewicz  2 116/461 

22.90 10.78 5.23 3.27 

Reduction 
in error: 

52.92% 77.16% 85.72% 

Schwefel  2 116/461 

36.73 4.39 3.77 0.80 

Reduction 
in error: 

88.06% 89.75% 97.81% 

Shubert  2 116/461 

32.08 4.59 3.11 0.27 

Reduction 
in error: 

85.69% 90.31% 99.15% 

Six Hump 2 116/461 

13.39 4.26 1.46 0.36 

Reduction 
in error: 

68.15% 89.09% 97.34% 

Ackley 3 173/1383 

14.66 5.64 4.78 2.37 

Reduction 
in error: 

61.56% 67.38% 83.84% 

Hartmann 3 173/1383 

12.67 6.50 2.44 2.38 

Reduction 
in error: 

48.66% 80.76% 81.18% 

Rosenbrock 4 231/3687 

18.27 8.19 4.88 2.99 

Reduction 
in error: 

55.18% 73.27% 83.61% 

Schwefel 4 231/3687 

27.47 13.70 2.84 2.37 

Reduction 
in error: 

50.12% 89.66% 91.36% 

Michalewicz 5 288/9216 

10.64 5.38 1.74 1.35 

Reduction 
in error: 

49.45% 83.62% 87.35% 

Schwefel 5 288/9216 

44.77 22.07 3.66 1.55 

Reduction 
in error: 

50.71% 91.83% 96.54% 

Average 
reduction in 
error 

  

 
64.57% 83.88% 91.62% 
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Figure 4-25 Schwefel function 

x(i) [-500,500] 

 

Figure 4-26 CasCor mapping of full 
domain of the Schwefel function 
(Ens + ES) 

 

Figure 4-27 CasCor of Schwefel 
(Patchworking depth = 1 + Ens + 
ES) 

 

Figure 4-28 CasCor of Schwefel 
(Patchworking depth = 3 + Ens + 
ES) 

 

 

The required sizes of training datasets per patch remain the same for any given 

problem, but the number of patches grows exponentially  
2

depth×dimensions
  

therefore, so too will the total training data required. Some fields in which 

patchworking may be appropriate are those which already have very large 

datasets e.g. health databases, astronomy data, chemical process data, or any 

other collection of data samples where the data available is exponentially larger 

than the dimensions of that data. The information capacity of patchworked 

CasCor networks also grows exponentially and so it is possible to provide a 
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useful heuristic rule-of-thumb to calculate the number of features that can be 

mapped. In the general case: 

Maximum features mappable  (4-1) 

Therefore, given an eight-dimensional problem, patchworking to a depth of one 

could map as many as 2,304 unique features in a training dataset numbering 

98,304 samples. 

4.6 Summary of patchworking 

The architecture of the Cascade Correlation neural network means that it is 

quick and simple to configure for training. However, its weight freezing 

mechanism can introduce undesirably high bias when mapping multimodal 

functions. Although weight freezing has not been removed by the current 

author, its detrimental effects can be ameliorated by sub dividing a highly 

multimodal surface into small domains - each with fewer features. 

This introduction of this author‟s patchworking technique reduces the bias 

component of error by raising exponentially the information capacity of the 

Cascade Correlation neural network. Although patchworking does require 

exponentially larger training datasets, it overcomes the weight freezing problem 

of this neural network type and leads to significantly improved fits for multimodal 

problems - yielding a reduction in error of over ten in some cases.  

4.7 Usage with real world data 

An example of real world usage is the application of the patchworking technique 

to a dataset that has many thousands of samples; namely census data, 

specifically house prices in California [63], again from the machine learning 

repository [1]. The original dataset has eight input dimensions and one output 

dimension with 20,640 samples in the training dataset. The eight inputs are: 

median house value, median income, housing median age, total rooms, total 

bedrooms, population, households, latitude, and longitude. The dependant 

( )9 2 depthxdimensions 
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variable is the median house value. By applying this author‟s test for the 

minimum training dataset (patchworking depth=1) it is found that a minimum of 

65,536 samples would be needed for eight dimensions, hence there is a 

requirement to reduce the dimensionality of the input dataset. The following 

operations were performed; total bedrooms and population is reformed as a 

ratio; bedrooms/population. Likewise, total rooms and households becomes the 

ratio rooms/household. With six dimensional data, our test for minimum dataset 

yields a minimum of 12,288 samples. As there are 20,640 samples in the 

source data, there now exists sufficient training data to patchwork the census 

dataset. Of those 20,640 samples, 30% is set aside for our validation / early 

stopping dataset, leaving 14,447 for the training dataset. Results from a non-

patchworked CasCor ensemble are to be compared to a patchworked CasCor 

ensemble. In both cases, an ensemble size of 15 is chosen, and early stopping 

is applied using the validation dataset. 

4.7.1 California house price results 

The MSE of the non-patchworked solution was 38.05 10 . For some of the 

patches in the patchworked solution, specifically those representing houses in 

regions where the income is in the top 50% and the age of the houses are 

newer (bottom 50%), the MSEs were similarly high and in all cases represent 

poor mappings of the underlying function of house value. Speculatively, it could 

be concluded that these high errors were the result of the response surface 

being above this author‟s multimodal threshold of nine features per patch. 

However, these high errors could also have arisen due to the training dataset 

having insufficient data to represent all the factors that influence house price. 

For example; the local geography, the proximity of commercial zones, the 

proximity of the houses to industrial parks and the transport infrastructure could 

correlate to house value but are not captured in this census dataset. 

Nevertheless, the application of patchworking resulted in lower MSEs for 

several other patches [
33 10 , 

34.8 10 ]; a reduction of over 50% in the error. 
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For this real-world dataset, patchworking has successfully raised the overall 

information capacity, thereby reducing the bias, hence reducing the error. 

Table 4-2 shows a small extract of the house price prediction for the 

patchworked and non-patchworked solution. The mean error in house price 

prediction of the non-patchworked solution was 20.3%, the patchworked 

solution‟s mean error was 11.6%. This translates as predictions of house value 

(where the mean house price is ~$192,000) having a mean error of $22,350 

(patchworked) versus $38,900 (non-patchworked). 

Table 4-2 House price prediction 
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4.31 34 0.34 5.54 34.19 -118.61 210100 233866 220626 23766 11.3 -10526 -5 

3.73 30 0.34 5.4 35.38 -118.95 83100 231720 148930 148620 178 -65830 -79.2 

4.00 30 0.25 3.69 34.28 -119.16 219200 103647 183066 -115553 -52.7 36134 16.5 

4.19 29 0.29 5.3 34.22 -119.17 197100 222322 212317 25222 12.8 -15217 7.7 

3.86 30 0.31 4.79 34.21 -119.18 234700 242014 207547 7314 3.1 27153 11.6 

3.93 32 0.27 4.94 34.17 -119.18 187600 251222 203118 63622 33.9 -15518 8.3 

4.62 32 0.24 5.03 34.18 -119.19 181100 228883 210826 47783 26.4 -29726 -16.4 

4.69 35 0.32 5.23 34.39 -119.3 199300 236638 235460 37338 18.7 36160 18.1 

 

4.8 Limitations of Patchworking 

The patchworking method, introduced in this chapter, is a subdivision 

mechanism for reducing the number of features that any one Cascade 
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Correlation neural network must map and allows a patchwork of the networks to 

map highly multimodal functions. Clear improvements generated by this 

author‟s patchworking technique have been demonstrated in this chapter; both 

in the table of results and in the surface plots. The effectiveness of 

patchworking vindicates the initial hypothesis that this neural network type has 

an inherent weakness when presented with multimodal functions. Patchworking 

does offer a workable solution that exponentially raises the capacity of a 

patchworked Cascade Correlation ensemble. The compromise that we are 

forced to make, should we need to use patchworking, is the use of training 

datasets exponentially larger than the dimensions of the problem. If using this 

neural network type for machine learning, it is conceivable that we already have 

a plethora of data – the census dataset for example – and we can expect that 

patchworking will deliver a reduction in the mean squared error by reducing the 

bias of our patchwork.  

It is an unfortunate conclusion that this thirst for training data obviates the use of 

patchworking to accelerate design optimisation. Even for a three dimensional 

patchwork, eight patches are required and with 32 3  training samples per 

patch the minimum amount of training data would number 768 samples. With 

reference to the aerofoil optimisation (Chapter 5), a Pareto optimal set of 

aerofoils was found after only 300 function evaluations. Therefore, if a 

patchworked CasCor metamodel was applied to accelerate such an aerofoil 

optimisation, it would in fact more than double the elapsed time compared to not 

using a metamodel at all. 

One further weakness of the patchworking technique is revealed by considering 

training on data that is greater than three dimensions. To describe this 

weakness, first consider a three dimensional case. With no patchworking (or 

patchworking at depth = 0) the CasCor neural network has been found to 

approximate from one to nine features. Patchworking to depth = 1 yields eight 

patches. Each of those patches may represent from one to nine features each 

(8 < total features mappable by the patchwork < 72). Hence, a three 
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dimensional patchwork (depth = 1) continues to map features where a non-

patchworked solution leaves off. Now consider a six dimensional case. With no 

patchworking, once again we can approximate from one to nine features. 

However, patchworking to depth = 1 yields a patchwork of 64 neural networks 

(64 < total features mappable by the patchwork < 576). Were the six 

dimensional problem to contain only 30 features in the training dataset, we 

would have given our patchwork too much capacity to map these 30 features. 

Our bias would be very low, but we would have induced the likelihood of high 

variance. A large size of ensemble would then be necessary to reduce this 

variance, thus increasing the overall training time. 

4.9 Conclusion 

The principal contributions of this chapter derive from the investigation of 

functions that cause exceptional mapping problems for the Cascade Correlation 

neural network. Attempting to train on the full domain of the Schwefel function 

illustrates a complete failure of this neural network (Figure 4-26). The neural 

network ensemble‟s failure is demonstrated by a fall-back to mapping 

Schwefel‟s surface with nothing more than a hyperplane. This hyperplane-

failure is readily repeatable with any sufficiently multimodal function and is in-

no-way unique, conceivably occurring for real world problems as well as for 

mathematical test functions. Testing the modality of a dataset prior to training 

may not be possible. Of little consolation is that a complete failure to train on a 

given dataset is a good indicator of high modality in that dataset i.e. greater 

than nine stationary points.  

The experimental results in this chapter call into question the universal function 

approximation capabilities of the cascade correlation neural network (Kwok and 

Yeung [60]). In theory, the provision of an unlimited amount of training data, and 

no cap on the maximum number of neurons, should mean that this neural 

network type can approximate an arbitrary function. However, this neural 

network‟s maximum capacity has been found to be limited to surfaces of 

minimal complexity; specifically those that can be fully approximated with fewer 
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than 9 or 10 hidden neurons [64]. One beneficial outcome of this limiting 

capacity is that we can now calculate the necessary number of training samples 

prior to training (section 3.3.1). Applying the patchworking technique does 

exponentially increase capacity - only then is a CasCor patchwork (of 

unrestricted depth) capable of universal function approximation. Note also that 

simply removing the weight freezing mechanism is not without complications. 

Doing so would re-introduce the moving target problem of training – a problem 

circumvented by the original Cascade Correlation neural network. 

Only one example was found in the literature of other researchers failing to map 

multimodal functions with CasCor neural networks, this paper being a 

theoretical approach using the double-tanh function [61]. No publications were 

found that highlighted a failure to map real-world datasets. Informally, users of 

the FANN library report mixed success with CasCor on their forum. Those that 

initially fail to train on a dataset using CasCor go on to have success with fixed 

topology neural networks. Are there any approaches other than this author‟s 

patchworking technique that may work for multimodal datasets?  

A neural network type in the literature, inspired by CasCor, is Constructive Back 

Propagation (CBP) of Lehtokangas [65]. The “cascading approach” is kept; 

namely starting with an empty network and letting the topology grow in size, 

however, two neurons are trained at each time step rather than just one. 

Lehtokangas does not explore the results for training three, four, or even ten 

neurons at each time step, although his papers do state that this functionality is 

supported with his training algorithm [65, 66]. Also, he reduces his error not by 

correlation but by the back propagation technique. For all benchmarks given by 

Lehtokangas, CBP is seen to deliver a neural network with lower testing errors 

than CasCor and without an increase in training time.  Unfortunately, further 

experimentation with CBP has been impeded as the original code has not been 

made publicly available. CBP can, in principle, be implemented as part of 

Nissen‟s FANN library. An attempt was made by the current author to realise 

such an implementation but it was not possible due to time constraints.  
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In summary, CBP has the potential to train successfully on the same multimodal 

surfaces used in this work to illustrate CasCor‟s weakness. If the CBP training 

datasets need only grow linearly with the number of dimensions (rather than 

exponentially for patchworked CasCor networks) then CBP offers an attractive 

possibility for building a cascading neural network metamodel to assist 

engineering design optimisation. 
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5 SHAPE OPTIMISATION CASE STUDY 

5.1 Introduction 

This chapter describes the shape optimisations of aerofoils for use with 

unmanned aerial systems (UAS). As aerofoil optimisation is a long running 

theme within the research community, the contribution deriving from this 

chapter‟s optimisations is minor. The underlying motivation, though, was to use 

aerofoil optimisation as a case study of a computer-based real-world shape 

optimisation. The overall aim was to expose the practicalities of such 

optimisations, with the intent of revealing potential research gaps.  

After setting the scene for the UAS scenario (5.1.1), the main body of this 

chapter first presents a flowchart of a generic optimisation process that is typical 

for shape optimisation needs (5.1.2). The objectives for this aerofoil optimisation 

are stated (5.1.3), and a case made for the application of a multi-objective 

optimisation algorithm (5.1.4). Then described are the software components 

that were used to create new aerofoils on-demand. Aerofoils with minimal drag 

and maximal lift were sought; the configuration of the fluid dynamics software 

that was employed to satisfy these requirements is then described (5.2.4). 

Results of the aerofoil optimisations are presented in section 5.3, although the 

discussion that follows in section 5.5 pertains to the overall aim of this chapter. 

Discussed are; the significant proportion of time in preparing the optimisation 

jobs and the problems encountered whilst the optimisations were running. Two 

research gaps are uncovered; since filled by the work of two Cranfield 

Graduates. 

5.1.1 The UAS scenario 

A dimensionless value often associated with the analysis of the flow of fluids 

such as air is the Reynolds number. For the wings of aircraft this value is 

proportional to the magnitude of a wing‟s chord and proportional to its airspeed. 

Aerofoil optimisation has often focused on finding better aerofoils for manned 
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aircraft. Having large airframes, and often high cruising speeds, these aerofoils 

operate at high Reynolds numbers ( 610 ).   

Recent military conflicts have seen a 300% year-on-year surge in the 

deployment of Unmanned Aerial Systems (UAS) [67]. Classified by either range 

or size, the close-range or short-range Mini-UAS operate at Reynolds numbers 

between 75,000 and 150,000. The larger, medium-range, versions typically 

cruise at greater speeds and have larger chord sizes but, nevertheless, operate 

at or below Reynolds numbers of 5x105 [68].  

In Carmichael‟s comprehensive NASA report [69] he named 12 distinct regions 

of interest for Reynolds numbers, ranging from the completely viscous flow at 

fractional Reynolds numbers to Reynolds numbers as high as 109
 in which large 

nuclear submarines operate. The operating Reynolds numbers for close-range 

and medium-range UAS place us in two regions of Carmichael‟s-12; both of 

which he categorises as operating conditions where extensive laminar flow may 

be obtained in the boundary layer over much of the surface of an aerofoil. 

Though he alludes to the desirable effect that this laminar boundary layer can 

have on reducing the drag of an aerofoil, much attention is also devoted to the 

highly undesirable effect of the detachment of this layer (a worse effect, seen 

more frequently for the lower end of the Reynolds numbers under consideration 

here, is the failure of this layer to re-attach). Detachment of the boundary layer, 

or the formation of a boundary layer bubble, significantly increases drag and 

reduces lift and can also initiate a complete stall of an aerofoil at manoeuvring 

angles of attack (as low as 6 degrees) [70] rather than more usual stalling 

angles which are typically in excess of 10 degrees.  

The idiosyncrasies of each of the 12 bands of Reynolds numbers that 

Carmichael describes means that aerofoils designed to perform well for large, 

manned, aircraft cannot be assumed to have optimal performance for the 

smaller airframes and lower airspeeds of the close-range and short-range UAS 

- hence the motivation for UAS aerofoil optimisation. 
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5.1.2 The generic form of optimisation 

The aerofoil optimisation of this chapter can be readily phrased with respect to 

the generic design optimisation flowchart in Figure 5-1[71]. The aerofoil 

template is that of the NACA 4-digit profile, described in section 5.2.2. It has 

three design variables (thickness, camber, position maximum camber). 

Semantically, a cost function pertains to a single objective optimisation such as 

minimising ( 1 )Lift Drag  . For reasons described in section 5.1.4 we pose this 

aerofoil problem as a multi-objective optimisation but this represents broadly the 

same step. Our only constraints here are the domains of our design variables 

that represent the search space.  

 

Figure 5-1 Design optimisation flowchart 

Collecting the data to describe the system is analogous to configuring the shape 

optimisation job, and estimating the initial design marks the first step before the 

Identify:

(1) Design variables

(2) Cost function to be minimised

(3) Constraints that must be satisfied

Collect data to describe the system

Stop

Change the design using an 

optimisation method

Does the design satisfy the convergence 

criteria?

Check the constraints

Analyse the system

Estimate initial design

Yes

No
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optimisation loop commences; we need an initial design as a benchmark for any 

permutations of that design to be meaningful. 

Analysing the system involves the creation of a new aerofoil geometry and the 

determination of the Lift and the Drag co-efficients of that aerofoil. New 

geometries are built on-demand as IGES CAD-files by bespoke C++ code 

written by the current author using the open source CAD Kernel, OpenCascade. 

These CAD-files are meshed and solved with the use of Computational Fluids 

Dynamics (CFD) code – in this case, the commercial software of ANSYS 

(Gambit and Fluent). 

Checking the constraints are satisfied, and whether convergence criteria have 

been met are functions provided by the chosen optimisation algorithm for this 

work (section 5.2.1). The demand for new design vectors (i.e. changes to the 

design) is also a product of the optimisation algorithms usage. However, this 

demand is met by manually coding batch scripts a priori. These scripts link all 

the parts of the optimisation loop together and enable the optimisation to 

progress with no user input.  

5.1.3 Objectives of the UAS aerofoil optimisation 

The performance of an aerofoil is often judged by its Lift/Drag (L/D) ratio. Large 

magnitudes of the L/D ratio, when accompanied by a wide „Lift/Drag bucket‟, 

signify optimal designs; having consistently high performance over a wide range 

of angle of attack (alpha). 

The principal objective of this optimisation is to find aerofoils that have optimal 

values of their Lift/Drag ratio for the Reynolds numbers under consideration.   

This aerofoil optimisation could equivalently be phrased as the solution of a 

single objective (Lift/Drag) or multiple objective (Lift and Drag) problem. A 

problem shared by either approach is the need to specify the bounds of the 

search domain. Too large a domain and the optimisation can become very time-
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expensive; too small a domain and the discovery of optimal solutions may be 

obstructed.  

The general theme of this thesis is to explore, develop, or enhance methods of 

reducing the computational load of optimisation. In keeping with that theme, the 

secondary objective of this chapter is: to reduce the time, and improve the 

probability of finding optimal aerofoils, for other researchers who are performing 

similar aerofoil optimisations by determining appropriate domains in which to 

perform their searches.  

5.1.4 Applying a multi-objective optimisation algorithm 

A hypothesis could be stated that this secondary objective can be found by 

approaching this aerofoil optimisation with a multi-objective optimiser. With the 

application of a multi-objective, rather than a single objective, optimisation 

algorithm we would find multiple optimal aerofoils distributed throughout our 

search domain.  On inspection, the design vectors of these multiple solutions 

may be found to lie in sub-domains smaller than the initial search space. If the 

current work can find compact domains (where optimal UAS aerofoils can be 

expected to be found) then other researchers may benefit by a clear statement 

of those domains. Any NACA 4-digit aerofoil optimisation that they perform can 

progress more rapidly in the absence of uncertainty of an appropriate search 

domain.  

For these aerofoil optimisations the multi-objective optimisation, DEMO, is 

employed. The relevance of DEMO to this thesis is more fully described in 

Chapter 6. It is sufficient at this point to state that DEMO is a state-of-the-art 

multi-objective optimisation algorithm. 
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5.2 Experimental setup 

5.2.1 DEMO 

One of the reasons for the popularity of Differential Evolution based optimisers, 

such as DEMO, is that there are few parameters to tune. The population size is 

typically chosen as 10 candidates per dimension, although as few as 1.5 

candidates per dimension can yield more economic optimisations [72]. The 

weight can be set between 0.0 and 2.0, and the crossover probability ranges 

should fall in the domain [0.0, 1.0]. Lower probabilities such as 0.2 and 0.3 are 

recommended for optimisations with a high number of variables. Higher 

crossover probabilities are advised for optimisations with only two or three 

variables [73].  Table 5-1 shows the parameters of DEMO that were chosen. 

Table 5-1 Parameters of the multi-objective optimiser 

Population size 20 Weight (f) 0.5 

Crossover probability (Cr) 0.8 Type of selection procedure NSGA-II 

 

5.2.2 NACA 4-digit aerofoil type 

The NACA 4-digit specification aerofoil is used, in which there are only three 

optimisation variables; the thickness, the camber, and the position of the 

maximum camber (expressed as a percentage of the chord where the leading 

edge is 0% and trailing edge is 100%). The NACA 4-digit specification uses four 

equations [(5-1),(5-4)] to determine the x and y ordinates for points that would 

lie on the upper and lower surfaces of the aerofoil. After creating a C++ 

program, linked to the open source CAD kernel, OpenCascade [74], these 

points are joined using the GeomAPI_PointsToBSpline method and ultimately 

output as IGES-type CAD-files for meshing in the commercial software, Gambit 

(version 2.4). 
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The NACA 4 digit specification is of the following form (100 )(10 )(100 )m p t    

such that the NACA 4310 aerofoil has a maximum camber, m  of 4%. The 

position, p , of the maximum camber occurs 30% of the chord length from the 

leading edge. The „10‟ specifies that this aerofoil would have a maximum 

thickness of 10% of the chord length. In order to plot an NACA 4-digit aerofoil, 

the following equations are use to calculate the x and y ordinates of the points 

on the upper and lower surface of the aerofoil:  

sin
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U t

U c t

x x y

y y y





 
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(5-2) 
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(5-4) 

There are two equations for cy and   for ordinates fore, and aft, of the position 

of maximum camber: 
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where 

p is the position of the point of maximum camber as tenths of the chord 

m is the camber of the aerofoil as hundredths of the chord 

c  is the length of the chord 
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x  is the position from 0 to c (for this work, x  is incremented from 0  to c in steps 

of 
100

c )  

Lastly, the thickness distribution ty is calculated from the following polynomial: 

2 3 4

5 [0.2969 0.1260 0.3516 0.2843 0.1015 ]t

x x x x x
y tc

c c c c c

         
              

         
 

(5-7)

 

where 

t  is the thickness of the aerofoil as a percentage of the chord. 

5.2.3 Aerofoil objective functions 

The objective functions that are returned to DEMO require some care in their 

formulation. A mistake to be avoided is to fix the angle of attack at an arbitrary 

value, or, to let the angle of attack be an optimisation variable. Undesirably thin 

aerofoils will be obtained from such an optimisation (Figure 5-2). After testing 

the performance of such a thin profile, it was found to have a narrow lift/drag 

bucket. Conceivably, it would also have poor structural rigidity and it is likely 

that it would be subject to the undesirable property of flutter.  

Proposed is the following simple but effective mechanism to preclude the 

discovery of such thin solutions; every newly generated aerofoil will be 

evaluated in Fluent for its co-efficient of lift ( lc ) and its co-efficient of drag ( dc ) at 

two distinct angles of attack. An alpha of one degree and an alpha of four 

degrees is used. The mean of these two lc s and two  dc s are then passed to 

DEMO as the two objective function values. In this way, optimisations will be 

seen to diverge from seeking inappropriately thin aerofoils because solutions 

with lift/drag buckets narrower than three alpha will be penalised.  
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Figure 5-2 Inappropriately phrased optimisations can converge 

to give very thin and highly cambered solutions 

 

 

5.2.4 CFD solver setup and search domain 

The Fluent CFD software from ANSYS is used to calculate co-efficients of lift 

and drag for Re. 75,000 and 250,000. These two Reynolds numbers were 

chosen as they are representative of small and medium sized UAS and also 

because of the availability of wind tunnel tests [70] against which the CFD 

models can be validated.  

In the preliminary stages of modelling the lift and drag co-efficients of these 

aerofoils, several different turbulence models were tested in the CFD software 

and the resulting lift and drag values were compared to available experimental 

data. The objective was to determine the most appropriate turbulence models. 

The Spalart-Allmaras (SA) 1-equation turbulence model [75] (widely used in 

external airflow simulations) was first tested, followed by 2-equation turbulence 

models such as the k-epsilon. Lastly, the 5-equation Reynolds-stress model 

was tested. This latter model was ultimately not selected as it is much more 

computationally (and therefore time) demanding, hence unsuitable for an 

optimisation involving hundreds of CFD evaluations. 

The two-equation turbulence models were found adequate for the present 

study.  The standard k-epsilon is adapted to free-shear layer flows with 

relatively small pressure gradients [76]. It is widely used in turbulent flow 

applications because of its general applicability, robustness and economy [77]. 

However, this model performs poorly when separation occurs: separation is 

often under-predicted and/or is predicted too late. A reduced separation usually 

results in an optimistic prediction of machine performance which could have 
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dangerous consequences - for example an inaccurate evaluation of when an 

aerofoil stalls. Hence the standard k-epsilon model was not selected. To avoid 

further inaccuracies associated with aerofoils operating near the stall, the 

current airfoil optimisation is limited to airflow conditions and incidences that do 

not lead to stall events (i.e. values of alpha less than 6 degrees). Note, 

however, that the two turbulence models found adequate for this work typically 

perform better than the standard k-epsilon model in predicting near stall 

phenomena. 

For the Re=75,000 case, the Renormalization Group two-equation k-epsilon 

turbulence model (RNG k-epsilon) was used. This employs a scheme to 

consider the near-wall flow effects [78]. The enhanced wall-treatment method 

was selected, which allowed a coarser mesh than that of a low Reynolds k-

epsilon model in the viscosity-affected near-wall region with little impact on the 

accuracy of the simulation in that region. This model is robust in situations with 

stagnation and separation. 

For the second optimisation (the Re=250,000 case), shear stress transport SST 

[79] uses the simple and robust near-wall formulation of the k-ω model, and 

switches to the k-epsilon turbulence model in the bulk flow. This model has 

proved to give accurate results for a wide range of grid densities [80] and avoids 

the deficiencies of the k-epsilon model (over-prediction of the turbulence length 

scale – resulting in an over-prediction of the heat transfer at reattachment).  

For the Re=75,000 case, the wall treatment and resolution are as follows: first 

boundary layer row of 0.0002 growing by 20% for each row to a total of 10 rows. 

Settings are the same for the Re=250,000 case except that the first row begins 

at 0.0001. 

Table 5-2 gives the details of the settings used for the Fluent and Gambit jobs. 

In Figure 5-3 and Figure 5-4 screen shots of the mesh are displayed. The larger 

region is a structured mesh; in the proximity of the aerofoil an unstructured 
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mesh was used as this was found to adapt well to a large variety of aerofoil 

geometries.  

Table 5-2 Setting for the shape optimisation 

Mesh ~ 120,000 mesh elements 

Solving algorithm RNG k-epsilon (Re=75,000) 

SST: k-ω near wall, k-epsilon in 

bulk flow (Re=250,000) 

Fluent / Gambit version numbers 6.3 / 2.4 

Steady state solution for Cl and Cd Air considered as incompressible 

Pressure ambient 100.920 kPa 

Gravity 9.81m/s^2 

Density (rho) 1.2041 (kg/m^3) 

Velocity for Re = 75,000 Re = 250,000 2.193 m/s , 7.3 m/s 

Chord 0.5 m 

DEMO Lift and Drag objective functions 

formed from the mean of Cl and the mean 

of Cd at alphas: 

1 degree and 4 degree 

DEMO Search domain (thickness) [3,12] 

DEMO Search domain (camber) [1,9] 

DEMO Search domain (position max 

camber) 

[25,52] 
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Figure 5-3 Gambit mesh 

 

Figure 5-4 Zoom of Fig 3 showing 

the unstructured part of the mesh 

nearest the aerofoil 

 

5.2.5 Validation 

The reference aerofoil that is used to validate the CFD model was the NACA 

4412 (Figure 5-5). This is an aerofoil design that is still in use today and can be 

found on aircraft such as the Barrows Bearhawk, the Aeropro Eurofox and the 

Ayres SR2 [81]. The validation data comes from wind tunnel tests performed by 

Lnenicka & Horeni in 1978. The data from the original hand-drawn graphs have 

been re-plotted in Microsoft Excel for clarity. Shown in Figure 5-6, Figure 5-7, 

Figure 5-8 and Figure 5-9 are the wind tunnel results for Re 75k and 250k 

alongside the CFD results for the same airfoil at these Reynolds numbers. For 

solutions at angles of attack where 5  the results reduced in accuracy when 

compared to the wind tunnel data, and the CFD solutions were unable to 

converge satisfactorily as stall was approached. However, aerofoil optimality is 

rarely based on high values of L/D for a stalled wing. The CFD results for the 

angles of attack under consideration ( 1 and 4 degrees) match closely the 

wind tunnel data for the NACA 4412. 
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Figure 5-5 NACA 4412 

 

 

Figure 5-6 Co-efficient of lift 

validation Re=75k 

 

Figure 5-7 Lift / drag polar 

validation Re=75k 

 

 

Figure 5-8 Co-efficient of lift 

validation Re=250k 

 

Figure 5-9 Lift / drag polar 

validation Re=250k 

5.3 Results 

For both DEMO optimisations, the Pareto set became fully populated with 20 

candidates after four generations. Both optimisations were halted after 15 
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generations. DEMO is designed to maintain a distributed set of Pareto optimal 

solutions hence many of these candidates had very low co-efficients of drag 

(L/D between 5 and 25). However, we are principally concerned with the high 

L/D solutions and the domains in which they were discovered. Shown in Figure 

5-10 and Figure 5-11 are two optimal aerofoils for Re=75,000. They are named 

Candidate A and Candidate B. For Re=250,000, the optimal aerofoils in Figure 

5-14 and Figure 5-15 are named Candidate C and Candidate D. 

5.3.1 Reynolds 75,000 

 

Figure 5-10 Candidate A t=3.06 

c=5.68 p=35.9 

 

Figure 5-11 Candidate B t=5.75 

c=8.78 p=50.1 

 

 

Figure 5-12 Co-efficient lift plot 

Re=75k 

 

Figure 5-13 Lift drag polar Re=75k 

Table 5-3 Lift/Drag for Re=75,000 

Alpha -4 -3 -2 -1 0 1 2 3 4 5 6 
Peak 

L/D 

Alpha for 

peak L/D 

4412 L/D -0.8 3.6 8.1 12.7 16.6 20.1 23.3 25.5 26.9 27.6 27.5 27.6 5 

Cand A L/D 0.9 6.3 13.4 20.3 25.5 29.1 32.2 33.7 34.3 33.6 31.1 33.7 3 

Cand B L/D 15.7 21.3 25.6 29.1 31.2 32.5 33.5 33.6 33.1 32.3 30.9 33.6 3 
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Candidate A is the thinner of the two solutions. Its reduced camber delivers a 

lower lc  than Candidate B, but associated with this is significantly reduced drag 

(Figure 5-13). The reference airfoil, NACA 4412, has a maximum L/D of 27.6 at 

alpha=5. Candidate A exceeds this value for all alpha [1,6]; by 17% on average 

and by 22% at alpha=3 (Table 5-3). Candidate B also exceeds the best L/D of 

the NACA 4412 for all alpha [-1,6] (16% on average, 22% at alpha=3). 

5.3.2 Reynolds 250,000 

 

Figure 5-14 Candidate C t=3.22 

c=5.45 p=42.9 

 

Figure 5-15 Candidate D t=5.21 

c=3.09 p=39.1 

 

Figure 5-16 Co-efficient lift plot 

Re=250k 

 

Figure 5-17 Lift drag polar Re=250k 

 

Table 5-4 Lift/Drag for Re=250,000 

Alpha -4 -3 -2 -1 0 1 2 3 4 5 6 
Peak 

L/D 

Alpha for 

peak L/D 

4412 L/D -0.3 7.4 13.6 22.6 31.6 35.0 38.4 38.9 39.1 39.1 37.6 39.1 5 

Cand C L/D 0.9 8.0 22.1 41.5 49.6 53.0 53.7 50.6 48.7 42.8 32.2 53.7 2 
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Cand D L/D -4.9 -1.0 10.1 24.3 36.3 44.4 47.8 48.5 47.6 44.1 37.5 48.5 3 

 

For the NACA4412 reference aerofoil, the mean L/D for alpha [-4,6] has 

increased from 17.4 at Re=75,000 to 27.5 for Re=250,000. Likewise, the 

optimal aerofoils found by the DEMO optimisation have increased L/D values. 

Candidate C exceeds the peak L/D of this NACA 4412 for all alpha [-1,5] by a 

mean of 24%. Candidate D has a lower camber than both the NACA 4412 and 

candidate C, giving reduced co-efficients of both lift and drag. Nevertheless, for 

alpha [1,5], it has a maximum L/D that is 24% greater than the maximum of the 

NACA 4412 (19% mean improvement). 

5.3.3 Optimal search domains 

Based on this author‟s inspection of the Pareto optimal sets, it is now possible 

to state four appropriate domains where other researchers may discover 

optimal NACA 4-digit aerofoils. The L/D values achievable are similar in each 

domain, however the domains are classified as either “high co-efficient of lift” or 

“low co-efficient of drag” to indicate the dominant feature of that domain. 

Domain contains Thickness Camber Position max 
camber 

Re75k High lift [3,6] [7,9] [38,51] 

Re75k Low drag [3,4] [4,6] [35,45] 

Re250k High lift [3,6] [5.4,8] [40,50] 

Re250k Low drag [4.7,6] [2,4] [39,50] 

 

5.4 Aerofoil optimisation - summary 

Four optimal aerofoils have been found by this optimisation; two for short range 

UAS and two for medium range UAS. For each UAS type, the pair of aerofoils 

found had similar L/D values; both were much improved over the NACA 4412 

reference aerofoil. 
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Each pair of optimal aerofoils found has different properties; one offers a design 

that could mean reduced cruising speeds but shorter take-off runs (the high-lift 

candidate), whereas the lower drag candidate would likely require a longer take-

off run but offers the possibility of realising a UAS that would have a higher 

cruising speed. 

The secondary objective for this UAS aerofoil optimisation was to determine 

more compact search domains for NACA 4-digit aerofoil optimisation at these 

Reynolds numbers. Inspection of the location of the Pareto candidates has 

enabled these smaller domains to be determined and it is hoped that other 

researchers may benefit from this minor contribution. 

5.5 Discussion 

The time taken to generate each objective function consisted of two CFD 

evaluations (at alpha 1 and alpha 4), and was approximately 35 minutes and 70 

minutes for the Reynolds numbers of 75,000 and 250,000 respectively. With 

300 evaluations as the stopping criteria, and discounting the problems 

discussed below, the first optimisation run took one week; the other, two weeks. 

Do these times comprise the greatest cost of this optimisation? The answer is 

no.  

It was decided at the outset of this work to host the meshing of Gambit and the 

CFD evaluations of Fluent on Cranfield‟s supercomputer. The optimisation 

algorithm itself ran on a separate, but networked, Linux PC. As mentioned in 

section 5.1.2, the co-ordination of the optimisation job was controlled by batch 

files - specifically, bash expect scripts. Logging in and out of this author‟s 

supercomputer account, job-submission/control and file transfer were hand 

scripted in this way. Configuring the bash scripts themselves required two 

weeks of work. 

Writing the C++ OpenCascade code that generated the aerofoil geometries was 

also a task needing two weeks of coding. However, this statement of time is 
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misleading; a one month training course on the OpenCascade CAD kernel was 

first necessary to develop familiarity with its library of functions. We can say at 

this point that the three weeks of actual aerofoil optimisation comprised only 

27% of the elapsed time for the work in the chapter.  

Significant problems occurred during the optimisation runs themselves. The 

following list is not complete, but details some of the problems: 

 Cache battery failure on the supercomputer – required a shutdown of the 
supercomputer (optimisation lost; needed restart) 

 Overloaded nodes on the super computer – required a restart of the 
supercomputer (optimisation progress lost; needed restart) 

 No nodes available for use (optimisation paused for up to four hours on each 
instance)  

 Power cuts (optimisation progress lost; needed restart) 

 Lack of Fluent licence files – all licences used by other students/academics 
(optimisation paused for up to four hours on each instance)  

 Meshing failure of Gambit (scripts returned an incorrect objective function, 
corrupting the Pareto set) 

 

These problems shed light on many of the practical problems for any researcher 

wishing to conduct an automated computer-based shape optimisation and 

suggest research gaps worthy of investigation.  

The first research gap derives from the observation that the numbers of licences 

for the use of commercial software is typically a finite number. Optimisation is 

an inherently parallelisable process; for this work the 20 aerofoil candidates of 

each population can, in theory, be evaluated concurrently on a Grid or cluster of 

computers. This could yield up to a 20-fold reduction in optimisation time (three 

weeks becomes 25 hours). However, insufficient availability of commercial 

licences would preclude this concurrency.  

The concurrency limit imposed by employing commercial fluids solvers does not 

exist if we were to approach this aerofoil optimisation with the use of an open 

source fluids solver such as OpenFoam. Using the OpenCascade aerofoil 

generation software of this chapter, Chapman implemented a proof-of-concept 
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aerofoil optimisation using CAE Linux and OpenFoam [82] in 2009. Although 

not parallelised for the work in his thesis, the lack of a licensing constraint 

opens the door to dramatically accelerating shape optimisations when based 

around open source fluids and solids solvers. In addition, Chapman‟s 

experiments with using Python scripts (to automate his aerofoil meshing) 

comprised an essential component of the work of the current author in Chapter 

6. Rather than hand coding the CAD model of Chapter 6‟s wall-bracket in C++, 

python scripting reduced the required model set-up time to just a few days of 

work. 

In 2009, Debreuil [83], approached several of the other problems bulleted 

above. Most of these problems highlighted a need for formalised job 

submission, job control, and error trapping/reporting. Bash scripting has too little 

flexibility for this purpose. The management of a shape optimisation that 

requires access to multiple compute resources is best achieved through 

workflow management software.  

Addendum: Since Debreuil‟s and Chapman‟s work in 2009, the Monash Nimrod 

team have released Nimrod/K (work flow management software) which 

addresses the type of problems discussed above [84]. 
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6 ENABLING MULTI-OBJECTIVE OPTIMISATION IN 

NIMROD/O 

6.1 Introduction 

The Linux-based Nimrod toolkit provides many useful features: design of 

experiments, grid/cloud/cluster interfaces for concurrent design evaluations, and 

an optimisation module, Nimrod/O. Multi-objective optimisations were previously 

possible only by phrasing them as a single objective optimisation with the use of 

a penalty function. The contribution of this chapter concerns the interfacing of a 

truly multi-objective optimisation algorithm. The concurrency possible with 

Nimrod/O is exploited by introducing a BatchSize parameter to the multi-

objective optimiser. This forms a secondary contribution of this chapter. 

The layout of this chapter is as follows: the Nimrod/O optimisation tool and the 

chosen optimisation algorithm, DEMO, are described in more detail in sections 

6.2.1 and 6.2.2. Adaptations to DEMO that enable concurrency, and the role of 

the DEMOinterface are detailed in section 6.2.3 before the two test experiments 

are presented (6.3 and 6.5). The first test is a two-parameter optimisation of a 

mathematical test function. The second test is the shape optimisation of a rib-

reinforced steel bracket using Finite Element evaluations from Code_Aster to 

compute the two objective functions of stress and deflection as well as 

incorporating a third, conflicting objective function, of reducing the mass of the 

part.  

6.2 Software components 

6.2.1 Nimrod/O 

Nimrod/O combines optimisation, distributed computing and rapid prototyping in 

one tool. Various optimisation routines are built into Nimrod/O such as BFGS 

(Broyden–Fletcher–Goldfarb–Shanno), the Downhill Simplex Method, Simulated 

Annealing, and EPSOC (Evolutionary Programming using Self-Organised 
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Criticality) [85]. An optimisation is readily specified by the user by 

parameterising their problem using Nimrod/O‟s declarative “plan file” (Figure 

6-3), after which the tool computes the parameters that minimise or maximise 

the design‟s objective function. Transparent to any of the optimisation 

algorithms is Nimrod/O‟s evaluation of the objective function. Multiple objective 

functions can be concurrently evaluated; on a multi-core CPU on the local 

machine, or by farming out this work to greater compute resources such as a 

cluster (e.g. [86]), or a grid resource such as provided by Nimrod/G [87], as 

shown in Figure 6-1. 

 

 

 

Figure 6-1 Overview of the process 

 

Figure 6-2 Dataflow between the 

software elements 

6.2.2 DEMO 

Differential evolution (DE) by Price [88] was the culmination of work aimed at 

solving the Tchebychev polynomial fitting problem proposed to him by Dr R 

Storn. It is a population-based optimisation algorithm, but unlike classical 

genetic algorithms such as Holland‟s [89], which bit-encodes decision variables, 

DE uses floating point encoding. This, coupled with Price‟s desire to make 

candidate mutation an adaptive procedure, resulted in a rapid and robust 

algorithm that is simple to use. The original version of DE is controlled by just 

three variables: the population size, N, the mutation scaling Factor, F, and the 

crossover constant, CR.  
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In creating DEMO (Differential Evolution for Multi-objective Optimisation), the 

authors, Robič and Filipič , addressed the two goals of multi-objective 

optimisation [44]: 

1. Finding the most diverse range of these solutions across the Pareto set 

2. Discovering solutions as close as possible to the true Pareto front. 

Based on DE, DEMO builds on the success of Price‟s algorithm and adds the 

mechanisms of non-dominated-sorting and crowding-distance-metric as used 

by other state-of-the-art multi-objective evolutionary algorithms. Tight clusters of 

non-dominated solutions limit the diversity of the elements in a Pareto set. 

Penalising this behaviour with DEMO‟s crowding distance metric helps to 

achieve the first goal of finding the most diverse range of solutions. The second 

goal is achieved by an emphasis on elitism: parent individuals are immediately 

replaced by the candidate that dominates them. By entering the population 

immediately, this new candidate can, without waiting for the next generation, 

take part in the creation of further candidates. With these additions, DEMO is 

shown to achieve competitive results on five ZDT [90] test problems. In a follow-

up paper, Robic [91] presents a comparison study in which DEMOS‟s 

performance is found to be comparable to other state-of-the-art multi-objective 

evolutionary algorithms on nine newer test problems created by Huband et al. 

[92]. 

6.2.3 Interfacing DEMO with Nimrod/O 

The original DEMO code was first ported from its Microsoft Windows source 

code so that it could be compiled under the Linux operating system. The 

random number generator, a container declaration and the system-out calls 

comprised the three necessary alterations. Initial testing confirmed that the 

Linux port of DEMO worked equivalently to the Windows version.  

As described in section 6.2.2, one of DEMO‟s key mechanisms is elitism within 

the reproduction process. Before an entire population has been evaluated, 
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superior candidates will already have replaced their parents and taken part in 

the creation of newer candidates. It should be clear that this mechanism 

requires sequential candidate evaluation and presents a conflict of interest. 

Whilst this elitism mechanism should accelerate the discovery of the Pareto 

optimal set, concurrent evaluations of multiple candidates would reduce the 

wall-clock time for optimisation runs. To this end, the current author has 

introduced a BatchSize parameter to DEMO‟s initialisation file. 

BatchSize P N   (6-1) 

where  

N = Population size, and 

P= Number of machines available for concurrent objective function evaluations. 

In the case that the user has access to a large computing resource, the 

BatchSize parameter tunes-down the benefit from elitism in favour of the overall 

speed-up gained by concurrent evaluations of an entire batch of candidates. 

Modifying the DEMO source code to enable concurrent candidate evaluations is 

a contribution of the current work.  

An important problem that should be noted is that, after experimenting with 

enabling or disabling elitism in the Linux version, convergence to the Pareto 

front did not seem to alter. Furthermore, enabling elitism for the original 

Microsoft Executable occasionally caused the DEMO executable to freeze after 

the first population of candidates had been retuned to DEMO. The reason for 

this freeze is unknown, but may relate to the 64-bit Microsoft Windows 

operating system on which DEMO was tested (Robič and Filipič„s executable 

was compiled using Borland C++ for 32-bit Windows systems). Further work is 

planned that will verify the functionality of elitism in the Linux port.  

One minor change to DEMO‟s initialisation file is the inclusion of a Boolean flag 

that indicates to DEMO that it will be working in a mode compatible with 
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Nimrod/O. If this flag is turned off (0), then DEMO will function in stand-alone 

mode and identical to version 1.2. More information on DEMO‟s usage can be 

found in the v.1.2 reference manual [73]. 

A further contribution of the current work is the modifications to the Nimrod/O 

2.9 source code that enable an external, multi-objective optimiser, to 

communicate with Nimrod/O (and also access stdin and stdout)without 

cross-talk. Via a “results” parameter in the plan file (Figure 6-3), Nimrod/O 

prepares to accept multiple objective functions and, during run time, both logs 

and caches these multiple results. As in prior versions of Nimrod, the cache 

mechanism (Figure 6-1) prevents unnecessary repetitions of prior function 

evaluations. The management of Pareto optimal sets, Pareto based ranking and 

sorting is not supported by the current version of Nimrod/O (v2.9), however 

DEMO provides this functionality. 

Nimrod/O can host a concurrent execution thread in which an external optimiser 

runs. This intent is communicated in the plan file by the use of “method 

external “name” ./executable”. For the current work, the pipes method 

was chosen. In building the interface, the necessary include files from 

Nimrod/O‟s package were noclient.c, noclient.h and definitions.h. 

These provide query and communication functionality between external code, 

such as the current interface, and Nimrod/O. Sufficient functions are 

implemented in noclient.c that an external, user-defined, optimisation 

algorithm can operate as if it were part of Nimrod/O.  

The DEMOinterface is simultaneously the child process of Nimrod/O and the 

parent process of DEMO and, in use it translates data formats and requests 

between these two applications (Figure 6-2). The user may alter specifics of the 

DEMO optimisation by editing DEMO‟s initialisation file. For the convenience of 

the user, fields in Nimrod/O‟s plan file that are repeated in DEMO‟s initialisation 

file are automatically inserted into DEMO‟s initialisation file by the interface 

before it spawns DEMO.  
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The stopping criterion for DEMO is specified in its initialisation file as a 

maximum number of candidate evaluations. Once this limit is reached, DEMO 

writes the current Pareto front to a file called fronts.out. Further files such as 

the statistics on the population‟s evolution and a log file are written by DEMO 

before it terminates. The DEMOinterface also detects when the maximum 

number of evaluations has been reached and notifies Nimrod/O which likewise 

finalises its files and terminates. 

In addition to creating the DEMOinterface, contributions of this author are; the 

above alterations to DEMO, and, further developing Nimrod/O for multi-

objective compatibility. The rest of this chapter concerns testing the solution by 

minimising a two-objective mathematical function, and the three-objective shape 

optimisation of an engineering part using the Finite Element package, 

Code_Aster. 

6.3 Experimental set up - Poloni test function 

Poloni‟s function [93] offers a convenient way to test the DEMO algorithm. It is a 

two parameter, two response, mathematical function (6-2). 
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(6-2) 

 

Price [88] provides a guide to choosing the population size as 10 d where d  is 

the number of dimensions of the problem, therefore in this test d = 20. The 

weight of the mutation scaling factor can be any value in the interval [0,2] and 

was chosen as F 0.5 . The crossover probability must lie in the interval [0,1] 

and CR 0.3  was chosen. These F  and CR  values were used for both of the 

optimisations presented in this chapter. Price and Storn [94] describe the 

settings for these parameters in more detail. A concurrency setting of 4 directed 
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Nimrod/O to perform one function evaluation on each of the four cores of the 

quad-core host machine at any one time. 

parameter p float range from -3.1415926 to 3.1415926 

parameter q float range from -3.1415926 to 3.1415926 

results 2 

 

task main 

   copy  poloni node:poloni 

   node:execute  ./poloni $p $q 

   copy  node:exp_result output.$jobname 

endtask 

 

method external "DEMO" ./DEMOinterface 

  starts 1  

  endstarts 

endmethod 

Figure 6-3 Nimrod/O plan file: poloni.shd 

6.4 Result of the Poloni optimisation 

Figure 6-4 shows a scatter plot of the Poloni function. 600 function evaluations 

were performed by Nimrod/O and the final Pareto set of 20 candidates found by 

DEMO is shown with superimposed square diamond markers. An interpolated 

line has been added to aid clarity. Visual inspection of this Pareto set indicates 

that DEMO has been successful in attaining the two aims of; finding a diverse 

range of solutions, and, finding solutions that are as close as possible to the 

ideal Pareto front. Arguably, this front is superior to that obtained by Poloni et al. 

[93] with their MOGA (Multi-Objective Genetic Algorithm) optimiser which 

involved 50 candidates and 2500 evaluations. 



 

 

110 

 

 

Figure 6-4 Poloni function, Pareto set superimposed 

 

6.5 Experimental setup – the shape optimisation of a rib-

reinforced wall bracket 

The shape under consideration is a rib-reinforced wall bracket. The back face of 

the bracket is constrained and a distributed loading is applied to the protruding 

face, simulating the bracket supporting a weight of approximately 200kg. 

Technical drawings (Figure 6-6 and Figure 6-7) show the dimensions of the part 

(mm) as well as the five decision variables  A,...,E . These variables will be 

optimised to minimise the three objective functions of: mass, maximum 

deflection, and, maximum VonMises stress. Minimising the mass conflicts with 

minimising the stress and the deflection and so the problem will not reduce to 

one optimal solution – instead a Pareto set of solutions will be found. 
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Table 6-1 Wall bracket decision variables 

A = Thickness of bracket plate (mm)  [1,10] 
 

B = Thickness of ribs (mm) [1,10] 
 

C = Placement of ribs (%). When: 

C = 0, Rib distribution is widest 

C = 100 Rib‟s Inner faces are 10mm from mounting holes 

 

  _1
C_ _ 119 29 B

100RibAbsolute Offest OuterFace      

 

(6-3) 

 

 

  _ 2
C_ _ 1 29 B

100RibAbsolute Offest OuterFace      

 

(6-4) 

 

 

D = x  displacement of curve control point [30,70] 
 

E = y displacement of curve control point [30,70] 
 

 

 

Figure 6-5 Rib-

reinforced wall 

bracket 

 

A stand alone computer was used for the results in this chapter with a Quad 

Core AMD Phenom 2.5GHz processor, 4MB cache with 4GB of RAM installed. 

The operating system was CAELinux2008 [95] which includes the open-source 

CAE software: Salomé, Code_Aster, Code_Saturne and OpenFOAM. For this 

work, only Salomé and the Finite Element software of Code_Aster were used. 

Onto the base installation of the operating system, the source codes for 

Nimrod/O 2.9, DEMOinterface and DEMO were compiled and installed. 

Loaded Face (evenly 

distributed pressure)

Rear Face

(constrained)
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The five decision variables in Table 6-1 comprise the thickness of the bracket, 

A, and the thickness of the ribs, B, a distribution of the ribs, C, and co-ordinates 

for a curve control point D and E. The distribution of the ribs is presented to the 

optimiser as a floating point variable in the range [0,100], however this variable 

needs to be translated into physical dimensions on the bracket itself. The 

equations used to translate the variable C are equations (6-3) and (6-4). These 

equations are necessary to accommodate changes to the rib thickness, B, and 

guarantee that when C=100 the inner faces of both ribs will be exactly 10mm 

from the centre of the mounting holes irrespective of the value B (Figure 6-6). 

Likewise, when C=0, the outer faces of the ribs will be located at their widest 

distribution: 1mm from the outer edges of the bracket itself. Both ribs are 

symmetrically distributed. D and E are 𝑥 and 𝑦 co-ordinates of a point through 

which the profile of the ribs is interpolated. D and E are in the interval [30, 70], 

the 30 being the displacement in mm from the inner face of the bracket 

therefore keeping the rib profile point independent of A (Figure 6-7). 

 

Figure 6-6 Plan view of the wall 

bracket 

 

 

Figure 6-7 Side elevation of the 

wall bracket 
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6.5.1 The shape optimisation job.  

The flow chart, Figure 6-8, shows the steps involved for shape optimisation 

using Code_Aster, Nimrod/O and DEMO. The first two steps involved setting up 

the shape and the optimisation, but the main work was conducted in an 

automated loop governed by Python scripts and simple shell scripting.  

 

Figure 6-8 Flowchart of the shape 

optimisation process 

From the Graphical User Interface (GUI) of Salomé, arbitrary settings for the 

decision variables (A,… , E) were chosen in building the body of the first shape. 

The geometry was auto meshed with the in-built algorithms shown in Table 6-3 

The volume contained ~ 11,000 tetrahedrons after meshing. The Code_Aster 

Linear Elastic job was set up with a distributed pressure loading of 0.16667 

MPa that represents ~200kg mass on to the upper surface of the bracket. The 

degrees of freedom for the rear face and interior of the rear bolt holes is given 

by (DX,DY,DZ) = (0,0,0). The relevant physical properties of the chosen 

material, Plain Carbon Steel, are given in Table 6-2. After verifying a successful 

In Salome GUI:

Create Geometry

Mesh Geometry

Set up Code Aster Job

Run Job

Dump study as Python scripts

Set up Nimrod/O plan file

Set up DEMO initialization file

Call Nimrod/O plan file

Nimrod/O DEMOinterface DEMO

Service DEMO 

optimization
Candidate 

vector

./Inject_vector_into_python_scripts

Call Python scripts:

New shape is constructed, meshed, and, solved

./Extract_Objective_Functions
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run of the Code_Aster solver, the above three steps were “dumped as Python 

study”. In this way templates were created that could later be called from the 

command line. 

Table 6-2 Material properties of the 

wall bracket 

Plain Carbon Steel 

Young's modulus, E (Gpa) 200 

Poisson's ratio,   0.3 

Density  3

g
cm

 7.86 

Yield Stress, 
y  (MPa) 280 

Table 6-3 Auto-meshing settings 

Meshing 
Applied 
Algorithms 

Applied 
hypotheses 

1D 
Average length 
(6) 

Wire 
discretisation 

Added: 
Quadratic Mesh 

2D MEFISTO_2D 
Length from 
edges 

3D 
Tetrahedron 
(Netgen) 

 

 

 

Figure 6-9 The auto-meshed wall 

bracket 

 

Two edits were then necessary in the text files name.comm and nameGEMO.py. 

In the name.comm text file, maximum deflections and principal stresses were 

requested to be included in the plain text name.resu results file of Code_Aster.  

In the Python geometry script, nameGEMO.py, the following lines were added 

adjacent to the last line: 

myTuple = geompy.BasicProperties(finished_body) 

myMass = (myTuple[2]/1000) x 7.86 

This calculates the volume of the shape and multiplies by the density. Further 

Python commands save this mass to file. Two simple C++ programs were also 
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written. Inject_vector_into_python_scripts takes the decision 

variables (A,… , E) as arguments, parses the template of nameGEMO.py, and 

inserts changes to the geometry script at runtime. 

Extract_Objective_Functions is called after Code_Aster, extracting the 

calculated values for maximum deflection and the maximum VonMises stress 

from name.resu. The mass is also read-in from file, and the three objective 

functions are then formatted for Nimrod/O by 

Extract_Objective_Functions and saved to file. After setting up 

Nimrod/O‟s plan file and DEMO‟s initialisation file, a small number of shell 

scripts were created to implement automation. The memory requirement for an 

individual job was ~1.3GB. With the installed 4GB of RAM, and with the 

operating system overhead, a concurrency setting of 2 was the maximum level 

of parallelism attainable without paging to the hard disk. 6GB or more of RAM 

would have permitted four concurrent shape evaluations. 

6.6 Results of the shape optimisation of the rib-reinforced wall 

bracket 

800 candidate evaluations were performed by Nimrod/O, each involving the 

creation of new geometries and a linear elastic simulation by Code_Aster. The 

population size was N=50 and four results from the final Pareto set are given in 

Table 6-4. Across the final, 50 candidate Pareto set, the decision variables fell 

in the intervals: A[1.0,10.0] B[1.0,5.58] C[86.6,97.7] D[30.0,67.0] E[30.0,57.1] 

The full Pareto set is plotted in the 3D scatter graph, Figure 6-10, showing 

mass, maximum VonMises stress and maximum deflection on each axis. In 

Table 6-4, displayed are the two heaviest candidates among the Pareto set for 

which calculations of maximum VonMises stress and maximum displacement 

were least. The lightest candidate was found to have a maximum VonMises 

stress of only 3% below the y  of 280MPa. A typical safety-factor setting of 3.0 

would exclude this bracket from use, and likewise the next 16 light-weight 

solutions due to high imposed stresses. By inspection of the scatter graph in 
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Figure 6-10, there is a region containing a small number of candidates (lying 

near the point where the mass begins to increase significantly) that substantially 

reduce the stress and deflection when compared to the lightest candidates. One 

of these is labelled the “compromise solution” (Table 6-4). For this candidate, 

the maximum calculated VonMises stress is 15.2% of the 
y  and the Mass is 

only 28.3% of the two heaviest solutions. The deflections of this compromise 

solution are represented visually in Figure 6-11. The greatest deflections of this 

solution are located in the 50% of the loaded face that is furthest from the back 

plate, at the extreme left and right edges. 

Table 6-4 Results of the multi-objective wall bracket optimisation 

Decision variables Objective functions 

 

A B C D E 

Max  Deflection 

(µm) 

Max 

VonMises 

(MPa) 

Mass 

(kg) 

 1.00 1.00 91.1 30.0 33.0           739         271 0.22 Least Mass 

10.0 4.94 97.7 40.1 30.0           0.90         3.82 1.99 Least Stress  

10.0 5.44 91.7 33.8 30.0           0.81         3.90 1.98 Least Deflection 

2.71 1.00 90.4 40.1 41.4           29.4         42.5 0.56 
Compromise 

solution 
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Figure 6-10 3D scatter plot of the Pareto set in the objective space 

 

 

 

Figure 6-11 Deflections of the compromise solution (key in mm) 
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6.7 Conclusion 

This chapter has described the successful implementation of the DEMO - 

Nimrod/O interface and illustrated its usage with two, truly multi-objective, 

optimisations. A parameter that enables concurrent candidate evaluations has 

been implemented which can reduce the wall-clock time for optimisations when 

multiple processors are available, or, be tuned-out by the user - potentially 

accelerating the convergence to the Pareto front. 

Addendum: An early intent was to have a fifth main chapter of work. In this, the 

Cascade Correlation metamodel would have been applied to accelerate the wall 

bracket optimisation of this chapter, and the aerofoil optimisations of Chapter 5. 

In this way, any enhancement offered by the metamodel could be evaluated 

objectively. For both case studies, the training of the surrogate resulted in such 

high errors that it was of no real use in the shape optimisations. Arguably, this 

was an artifact of the high modality of the response surfaces of these two 

problems.  
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7 CONCLUSION 

The central theme of this thesis was to explore, develop, or enhance methods 

of reducing the computational load of optimisation with a particular focus on 

multimodal functions. Reducing the computational load of optimisation was first 

approached by building a neural network based surrogate model. In order to 

validate the performance of such a surrogate, multimodal mathematical test 

functions were used (Chapters 3 and 4). As these test functions are those 

normally applied to test optimisation algorithms, they formed an appropriate 

choice for a surrogate model that would ultimately be used to assist design 

optimisation. Each test function produced a response surface that a capable 

surrogate model should have been able to mimic accurately. 

When using neural networks to map the response surface of any given function, 

we need to minimise the error constituents of bias and variance. The first step is 

to find the “Goldilocks” topology; namely a neural network that does not have 

too few or too many neurons, but just the right number. Too few neurons and 

the neural network will not possess enough complexity to map the features in 

our training dataset leading to underfitting, i.e. high bias. Too many neurons and 

we will have too much complexity; we will have endowed the neural network 

with an ability to fit to noise and we will lose generalisation of the underlying 

function. High variance (overfitting) will result. Finding the Goldilocks number of 

neurons becomes a necessity for achieving a good fit when using any type of 

neural network, and yet there is no pragmatic approach for determining this 

number a priori. 

Ostensibly, the Cascade Correlation neural network forms the ideal basis for 

universal function approximation. There is no requirement to tune any training 

parameters unlike, say, backpropagation training where choices of momentum 

factor or learning rate impact the quality of the learning. The Cascade 

Correlation neural network begins training with no hidden neurons (i.e. empty). 

We will have very high bias and no ability to overfit – low variance. The network 
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grows in size by adding and training single neurons with each training step. Our 

bias falls as the neural network attains more ability to fit to the underlying 

function. Given that we will have ensured that our training will halt automatically 

(by using an implementation of early stopping) the optimal number of neurons 

should have been found in all cases. Without an early stopping mechanism, too 

many neurons will be added and the error will increase due to overfitting. As 

seen in Chapter 3, the use of early stopping is essential and it also delivers the 

benefit of a reduction in training time. Variance can be further minimised by 

ensembling, as variance is inversely proportional to the number of neural 

networks in an ensemble. Combining the techniques of early stopping and 

ensembling was found to reduce the error of Cascade Correlation neural 

networks by a factor of 2.8. There is, however, a training penalty with 

ensembling as training times are directly proportional to the size of the 

ensemble. 

Chapter 3 has contributed to the knowledge-base of Cascade Correlation users 

in a variety of ways. Firstly, by determining the benefits offered by different 

sizes of early stopping sets and, secondly, by offering an alternative to 

employing a testing dataset; namely the use of a sufficiently large early stopping 

set as a proxy for a testing dataset. Determining the optimal amount of samples 

needed to train efficiently with this neural network was a third contribution. This 

was found to be proportional to the dimensions of the problem; the optimal 

amount being around 100 samples per dimension, the minimum 32. However, 

the fact that such a value could even be determined is the first sign of this 

neural network‟s weakness. Why should we be able to find such a relationship? 

It should be the complexity of the problem at hand that governs how many 

samples are required to describe its features.  

Chapter 4 uncovered the limiting feature of Cascade Correlation; the bias 

problem of Cascade Correlation neural networks was postulated to be due to 

the weight freezing mechanism inherent in the algorithm. The standard version 

of Cascade Correlation has been used throughout this work, and so no changes 
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were made to remove weight freezing. This neural network‟s weight freezing 

problem was overcome by subdividing highly multimodal datasets into patches 

with one neural network ensemble trained per-patch. The patchworking 

algorithm represents another contribution of this work. Seen in Chapter 4‟s table 

of results and clearly visible in the surface plots, patchworking significantly 

improved the performance of Cascade Correlation on multimodal functions. 

Surrogate (or meta) modelling is a widely published method for accelerating 

optimisations; especially those for which the evaluations of objective functions 

are very computationally expensive. Over 12 months of C++ code development, 

and the 15,000 lines of code that this represents, did result in a functioning 

Cascade Correlation-based metamodel. This is a metamodel that can be, and in 

testing has been, integrated with the optimisation toolkit of Nimrod/O. The 

latency of querying this metamodel is wholly independent from the time taken to 

first generate the objective functions upon which it was trained. In all cases, a 

query for the evaluation of an objective function is returned in less than 10ms. 

Hence, after training this metamodel (and validating that training as successful) 

120,000 different designs can be evaluated by an optimiser in less than 20 

minutes – a significant speedup. 

The aerofoil case study of Chapter 5 determined an appropriately small search 

domain for NACA 4-digit aerofoil optimisation such that other researchers may 

reduce the computational load of similar, low Reynolds number, optimisations. 

Although, the contribution of Chapter 5 is only minor, there are directly 

measurable outcomes; namely the two MSc Theses that further explored the 

research gaps revealed by this case study. 

Chapter 6 consisted of a significant contribution to the optimisation community. 

Although the two software packages, Nimrod/O and DEMO, were already in 

existence, they were combined together for the first time. Nimrod/O was already 

part of a suite of tools that could distribute problems over a Grid, or cluster, of 

computers and thereby share the computational load of optimisations. The 

contributions lie in enabling true multi-objective optimisations for the first time, 
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and enabling parallelism in DEMO. Again, there are outcomes to-date. In 

collaboration with Dr. Timos Kipourous another multi-objective optimiser 

(NSGA) has been integrated with the latest version of Nimrod/O and, in a 

private communication, it is believed that he also plans to integrate MOTS 

(Multi-objective Tabu Search) in the near future. 

7.1 Final words 

Whilst a cascading topology neural network remains a very workable solution to 

the “Goldilocks” problem of neural networks, Cascade Correlation is 

encumbered with a weakness at mapping multimodal functions that was found 

only in the later stages of this author‟s research. The patchworking solution, 

contributed here, has been shown to overcome this weakness but only by 

increasing exponentially the demand for training samples. Such is this 

exponential increase that any speedup attained from metamodelling is 

ameliorated by the slowdown caused by first having to gather such vast 

numbers of training samples. Hence, we would prefer not to have to use 

patchworking. This author‟s evaluation of the Cascade Correlation neural 

network leads to the ultimate conclusion of this thesis: 

Only if expert knowledge can give the assurance that the training data is of low 

modality can we have confidence in applying Cascade Correlation neural 

networks for surrogate modelling. Hence, in the general case, this neural 

network type should not be relied upon for surrogate modelling roles. 
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8 FURTHER WORK 

This chapter should first begin with the future planned work of the current 

author. That work pertains to the interfacing of DEMO with Nimrod/O. As stated 

in Chapter 6, the functionality of the elitism mechanism in DEMO is uncertain. 

To be assured that it is enabled correctly requires re-visiting the C++ code. 

When this work is undertaken, an additional feature will be implemented; 

namely a re-start mechanism. Whilst both Nimrod/O and DEMO have a caching 

mechanism, DEMO has to be started afresh after an optimisation has halted 

unexpectedly. Given that DEMO can already write to a log-file the candidates of 

the Pareto front for every generation, it should be a relatively simple coding task 

to enable the parsing of old log files - thereby instantiating a new optimisation 

from the last known good-population prior to a crash. 

With respect to future work that may interest other readers, the topics of 

research pertain to the neural network studies of Chapters 3 and 4. An 

implementation of Constructive Back Propagation (CBP) would form the basis 

for useful research. According to the literature, this neural network trains just as 

rapidly as Cascade Correlation but, due to CBP‟s inherent ability to train 

multiple neurons at each time step, CBP may well learn to approximate highly 

multimodal surfaces that presently lead to failures for Cascade Correlation 

neural networks. The CBP literature only considers training two neurons at a 

time; hence there is a research gap to examine the effects of training more than 

two neurons. It could be speculated that an adaptive mechanism could be 

implemented; one that scales up and down the number of neurons added at 

each training step. We recall that too many, or two few, neurons form the basis 

for a neural network with poor predictive qualities. Such an adaptive mechanism 

would scale up and down the count of neurons that it trains for each layer by 

tracking the progression of the neural network‟s error against a validation 

dataset. 
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APPENDICES 

Appendix A Mathematical test functions 

Table A-1 Mathematical test functions 

Function 
Name 

 Range  

Ackley 

 

= −20 ∙ exp −
1

5
∙  

1

𝑛
 𝑥𝑗

2

𝑛

𝑗=1

  − exp 
1

𝑛
∙ 𝑐𝑜𝑠 2𝜋𝑥𝑗  

𝑛

𝑗=1

 + 20 + exp(1)  

 

−30 ≤  𝑥𝑗 ≤ 30 

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

(A-1) 

 

De Jong‟s 5
th
 

 

=   0.002 +   𝑖 +  𝑥1 − 𝑎1𝑖 
6 +  𝑥2 − 𝑎2𝑖 

6 −1

25

𝑖=1

 

−1

 

where 

 
𝑎1𝑖

𝑎2𝑖
 =  

−32 − 16    0    16    32  − 32 …  0  16   32

−32 − 32 − 32 − 32 − 32 − 16…32 32 32
  

 

−20 ≤  𝑥𝑗 ≤ 20 

𝑗 = 1,2 

(A-2) 

 

-30

0

29

0

5

10

15

20

25

-30

0

29

X1

X2

-20

0

20

-200

0

200

400

600

-20

0

20

X1

X2
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Langermann 

 

=  𝑐𝑖exp −
1

𝜋
  𝑥𝑗 − 𝑎𝑖𝑗  

2
2

𝑗=1

 

5

𝑖=1

cos 𝜋  𝑥𝑗 − 𝑎𝑖𝑗  
2

2

𝑗=1

  

where 

 𝑎𝑖𝑗  =  
3   5   2   1   7

5   2   1   4   9
 
𝐓

 𝑐𝑖 =  1   2   5   2   3 𝐓 

 

0 ≤  𝑥𝑗 ≤ 2 

𝑗 = 1,2 
 

(A-3) 

 

Michalewicz 

 

= − sin 𝑥𝑗  ∙  sin  
𝑗 ∙ 𝑥𝑗

2

𝜋
  

20𝑛

𝑗=1

 

 

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  
 

When 𝑗 = 2, 0 ≤  𝑥𝑗 ≤ 𝜋 

When 𝑗 = 5, 1.0 ≤  𝑥𝑗 ≤ 1.5 

(A-4) 

 

  

0

1

2

-1

-0.5

0

0.5

1

0

1

2

X1

X2

0

2

3

-2

-1.5

-1

-0.5

0

0.5

0

2

3

X1

X2
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Schwefel 

= 418.9829𝑛 −  𝑥𝑗 sin  𝑥𝑗   

𝑛

𝑗=1

 

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  
 

When 𝑗 = 2, 0 ≤  𝑥𝑗 ≤ 500 

When 𝑗 = 4, 100 ≤  𝑥𝑗 ≤ 300 

When 𝑗 = 5, 100 ≤  𝑥𝑗 ≤ 300 

(A-5) 

 

Shubert 

 

=   𝑖 cos  𝑖 + 1 𝑥1 + 𝑖 

5

𝑖=1

 ∙   𝑖 cos  𝑖 + 1 𝑥2 + 𝑖 

5

𝑖=1

  

 

−8 ≤  𝑥𝑗 ≤ −6.2 

𝑗 = 1,2 

(A-6) 

 

  

0

247

495

0

200

400

600

800

1000

1200

1400

1600

0

247

495

X1

X2

-8

-7

-6

-200

-100

0

100

200

300

-8

-7

-6

X1

X2
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Six Hump 
Camel Back 

 

=  4 − 2.1𝑥1
2 +

𝑥1
4

3
  ∙ 𝑥1

2 + 𝑥1𝑥2 +   −4 + 4𝑥2
2 ∙ 𝑥2

2 

 

−1.9 ≤  𝑥1 ≤ 1.9 

−1 ≤ 𝑥2 ≤ 1 

(A-7) 

 

Hartmann, 

 

 

where 

    

1 
2 

3 

4 

3.0 
0.1 

3.0 

0.1 

10 
10 

10 

10 

30 
35 

30 

35 

1.0 
1.2 

3.0 

3.2 

0.6890 
0.4699 

0.1091 

0.0381 

0.1170 
0.4387 

0.8732 

0.5743 

0.2673 
0.7470 

0.5547 

0.8828 
 

0 ≤  𝑥𝑗 ≤ 1 

𝒋 = 𝟑 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

(A-8) 

 

 

 

=   100 𝑥𝑗
2 − 𝑥𝑗+1 

2
+  𝑥𝑗 − 1 

2
 

𝑛−1

𝑗=1

 

 
 

−10 ≤  𝑥𝑗 ≤ 10 

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

(A-9) 

Rosenbrock 
 

 

 

 

  

-2

-1

-1

-2

-1

0

1

2

3

4

5

2

1

1

X1

X2
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1 1

expi ij j ij

i j

c a x p
 

 
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 
 
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Appendix B General approach to building a CasCor 

metamodel  

The following steps describe, in order, the approach for building a CasCor 

metamodel: 

 Gather, or generate, sufficient numeric data to train the neural network; the 

training dataset should number at least 32 samples per dimension, the 

validation dataset should number at least 5% of this training dataset (or 10 

samples whichever the greater) to achieve satisfactory early stopping. Early 

stopping both increases the quality of the mapping, and reduces the training 

time and so it should always be used. 

 If the user wishes to dispense with a testing set entirely, then consider using 

a validation dataset of size 30% or more of the training dataset. The MSE 

calculated on this validation set, can approximate closely the MSE that 

would be found from using a much larger testing set but without the 

associated cost of having to generate a large testing set. 

 Train one CasCor neural network on this dataset. Inspect Table 3-2 and at 

this point stop if the MSE is satisfactorily low. Use this CasCor network for 

metamodelling. 

 If the error is unacceptably high; apply ensembling. Arbitrarily choose the 

size of the ensemble as [7,25] networks. Inspect Table 3-2 again and stop if 

the MSE of this ensemble is satisfactorily low. Use this CasCor ensemble for 

metamodelling. 

 If the error is still unacceptably high; use the two equations given, (3-3) and 

(3-4), to determine approximately the contribution of variance and the 

contribution of bias to this error. If variance is found to dominate: create a 

larger ensemble. Train larger ensembles until the testing MSE has either 

reached a suitably low value, or until no further improvement is possible. 
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If at this point the error is still unacceptably high, bias will be the dominant 

problem to address. Ensembling and early stopping do not act to reduce bias, 

however patchworking does. Note that this technique requires training datasets 

that are exponentially larger than the dimensions of the training dataset.  

B.1 Determining bias and variance by ensembling 

An unexpected discovery of the early stopping and ensemble experiments was 

that the behaviour of a neural network‟s error can be expressed as a function of 

the ensemble size. Motivated to determine more precisely the constituents of 

that error, two equations have been found with which to determine the bias and 

variance of an ensembled neural network. To the author‟s knowledge, this 

particular formulation of bias and variance has not previously been published 

and could constitute a further contribution of this work. 

The accuracy of the calculations of the bias and the variance, when applied as 

described by the current work, is taken to be of less importance than their 

approximate ratio as, when 2bias variance , the use of the patchworking 

technique of Chapter 4 is advocated. Other methods do exist in the literature for 

the determination of bias and variance. Geman‟s method [52] proceeds as 

follows:  

 Randomly generate ten training datasets from the whole training data set; 

each of size N/2 where N is the count of training samples. Call these training 

datasets 1 10,...,D D . After training, we have ten neural networks: 

* *

1 10(x),..., (x)D Df f
 (B-1) 

 The ensembled response of these ten networks on the i-th example vector  

x i will be: 
10 *

1

1
(x ) (x )

10
Ens i Dj ij

f f


   
(B-2) 

 The statistical bias is estimated using unseen data of size, S  
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2 2

1

1
Bias ( (x ) (x ))

S

Ens i ii
f f

S 
   (B-3) 

 The statistical variance of the j-th neural network is found from: 

* 2

1

1
Variance ( (x ) (x ))

S

Dj i ii
f f

S 
   (B-4) 

where (x )if is assumed to be the true value of the function that has been 

approximated. 

B.1.1 STRENGTHS of the current method vs. cross fold 

 As can be seen, Geman‟s cross-fold validation requires a more complex 

partitioning of any given dataset into different training datasets. The method 

of the current author is simpler; requiring the use of identical training and 

validation sets throughout.  Also, in the current method, the validation 

dataset remains unseen throughout and so can be reused to again test the 

finished ensemble. The same is not true for the cross validation method 

because such an ensemble of neural networks has seen all the elements of 

the training and the validation samples, hence no unseen data remains. For 

this reason, cross-validation necessitates a further dataset if the finished 

ensemble requires testing. Finally, the cross validation‟s method of 

calculating the bias is itself biased and gives slightly higher estimates than 

the equations presented in this chapter (Geman‟s assumption is discussed 

below). 

B.1.2 WEAKNESSES of the current method vs. cross fold 

 As stated, the current method requires the validation dataset to remain 

unseen throughout. As such, the neural networks that constitute any 

ensemble see a reduced number of unique training samples compared to an 

ensemble derived from a cross-validation training procedure (which 

unlimitedly sees all elements of the training and validation samples). 

Intuitively, this suggests that the current method may produce poorer quality 



 

 

138 

 

ensembles than those derived from cross-fold ensembling. Experiments 

have, however, not been conducted to test for this deterioration. 

Geman is careful to state that, for his method, the bias and variance found will 

only be approximations. Geman‟s concept of bias could be stated as: “the error 

of an ensemble of infinite size”, or, equivalently “the error in the absence of 

variance”. However, his approximation in calculating bias stems from the 

assumption that; (100) ( )EnsSize EnsSize   and (10) ( )EnsSize EnsSize  . 

Equations (3-3) and (3-4) do not make the same assumption; instead the use of 

the (EnsSize) and (EnsSize-1) terms are correction factors that acknowledge 

that bias exists alone only in the limit. Compared to German‟s method, the 

correction provided by the current work will give reduced estimates of bias and 

increased estimates of variance that are closer to their true values. 

  



 

 

139 

 

B.2 Statistical treatment of the Bias and Variance 

equations 

If a comparison between the current method and alternative methods of finding 

bias and variance was envisaged, there are some relevant issues to be 

highlighted. What follows is not intended to be a thorough statistical treatment 

but has been included for the sake of completeness, should further work be 

conducted by other researchers. Data from the abalone and concrete test cases 

process will be used as illustrative examples (Table B-1). For convenience, the 

two equations to be considered are inserted again. 

 

(3-3) 

 

 

(3-4) 

By inspection, we can see that the calculation of bias explicitly uses 1EnsSizeMSE   

and EnsembleMSE . The calculation of variance explicitly uses 1EnsSizeMSE   and, by 

including the bias term, implicitly uses the EnsembleMSE . There are at two principal 

ways in which errors in the calculations of bias and variance can propagate. 

The first is an error in the calculations of the MSEs themselves. Regardless of 

nomenclature (testing datasets vs. validation datasets), let us re-state that we 

must test using unseen samples. The evaluation of the MSE is itself an 

approximation to the integrated MSE over the whole of the neural network(s) 

response surface(s) and the accuracy of this approximation is inversely 

proportional to UNSEENCount (testing is performed with these unseen samples). 

The inaccuracy in the calculation of any MSE is also proportional to the 

standard deviation ( ) of each of the errors for every data point in that testing 

dataset (standard error, SE n  where n = number of samples in the testing 

dataset). The sizes of the testing datasets in Table B-1 are 1253 and 309 which 

12 ( )

( 1)

EnsSizeEnsembleEnsSize MSE MSE
Bias

EnsSize

 




  2
1EnsSizeMSE Bias

Variance
EnsSize

 

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represent 42% of the size of the training datasets. However, the standard error 

in the calculations of all the MSEs could be reduced by a factor of 2.4 for the 

Abalone and by a factor of 4.8 for the concrete were a larger testing dataset 

used of size = 38 10 . 

Table B-1 Error treatment for the Abalone and Concrete metamodels 

 

 Abalone Concrete 

Dimensions of each problem 8 8 

Training set size 2924 721 

Validation (and test) set size, 42% of the training set 1253 309 

Ensemble size  EnsSize  15 15 

Mean MSE of the ensemble members  1EnsSizeMSE   
3.61E-03 3.92E-03 

MSE of the ensemble  EnsembleMSE  3.44E-03 2.87E-03 

Standard deviation ( )  of the MSEs of the ensemble 

members 

1.21E-04 4.34E-04 

Standard error SE n  of the sample mean MSE of 

the ensemble members, where n = ensemble size 

3.114E-05 1.120E-04 

Upper 95% confidence limit of the mean MSE of the 

ensemble members (assumes normal distribution) 

3.67E-03 4.14E-03 

Lower 95% confidence limit of the mean MSE of the 

ensemble members (assumes normal distribution) 

3.55E-03 3.70E-03 
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The second principal way in which errors in the calculation of bias and variance 

can arise is due to the use of 1EnsSizeMSE  . This is the mean testing MSE of the 

neural networks that constitute the ensemble. For the concrete compressive 

strength and the abalone examples, an ensemble size of 15 was used. The 

standard deviations of 1EnsSizeMSE   is also given Table B-1 and it can be seen 

that the standard error in 1EnsSizeMSE   is 3.6 times greater for the concrete data 

than it is for the abalone. Hence, to reduce the standard error in the calculation 

of 1EnsSizeMSE   for the concrete data to that of the abalone data (at an ensemble 

size of 15), an ensemble of the concrete neural networks would have to number 

195! 

B.2.1 Summary of statistical treatment 

If generating training/testing datasets is not expensive, and the primary aim is to 

evaluate accurately the bias and the variance on particular test functions (for 

example a comparative study of the performance of different neural network 

designs) then two new equations have been contributed by the author. A short 

analysis has shown the necessary care that should be taken when using these 

equations to best reduce any experimental error. Though building a useful 

CasCor metamodel would rarely necessitate the use of an ensemble size > 25, 

ensembles of size > 50 and testing datasets of size > 
310d  may be necessary 

to reduce the standard error. In reducing the standard error, the errors in 

precisely determining both the variance and bias will also reduce. 

 

 

 
 

 


