

CRANFIELD UNIVERSITY

MIKE J. W. RILEY

EVALUATING CASCADE CORRELATION NEURAL NETWORKS FOR
SURROGATE MODELLING NEEDS AND ENHANCING THE

NIMROD/O TOOLKIT FOR MULTI-OBJECTIVE OPTIMISATION

SCHOOL OF ENGINEERING

PhD Thesis
Academic Year: 2010 - 2011

Supervisor: Dr. Karl Jenkins
March 2011

CRANFIELD UNIVERSITY

SCHOOL OF ENGINEERING

PhD Thesis

Academic Year 2010 - 2011

MIKE J. W. RILEY

Evaluating Cascade Correlation neural networks for surrogate
modelling needs and enhancing the Nimrod/O toolkit for multi-

objective optimisation

Supervisor: Dr. Karl Jenkins

March 2011

© Cranfield University 2011. All rights reserved. No part of this
publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

Engineering design often requires the optimisation of multiple objectives, and

becomes significantly more difficult and time consuming when the response

surfaces are multimodal, rather than unimodal. A surrogate model, also known

as a metamodel, can be used to replace expensive computer simulations,

accelerating single and multi-objective optimisation and the exploration of new

design concepts. The main research focus of this work is to investigate the use

of a neural network surrogate model to improve optimisation of multimodal

surfaces.

Several significant contributions derive from evaluating the Cascade Correlation

neural network as the basis of a surrogate model. The contributions to the

neural network community ultimately outnumber those to the optimisation

community.

The effects of training this surrogate on multimodal test functions are explored.

The Cascade Correlation neural network is shown to map poorly such response

surfaces. A hypothesis for this weakness is formulated and tested. A new

subdivision technique is created that addresses this problem; however, this new

technique requires excessively large datasets upon which to train.

The primary conclusion of this work is that Cascade Correlation neural networks

form an unreliable basis for a surrogate model, despite successes reported in

the literature.

A further contribution of this work is the enhancement of an open source

optimisation toolkit, achieved by the first integration of a truly multi-objective

optimisation algorithm.

Keywords: early stopping, ensembling, multimodal functions, variance, bias,

subdivision technique, shape optimisation

iii

ACKNOWLEDGEMENTS

Working as a research student for the last three-plus years has been a largely

pleasurable and enlightening experience. I must first thank my tutor, Dr. Karl

Jenkins. Without him making me aware of this EPSRC funded PhD in 2007, I

would never even have started this journey.

I want to acknowledge Monash University for the use of their Nimrod software

(Chapter 6). The Nimrod project has been funded by the Australian Research

Council and a number of Australian Government agencies, and was initially

developed by the Distributed Systems Technology CRC.

I want to thank the many academics and students who have given sometimes

minutes, sometimes many hours of their help and advice to me – you know who

you are! A special mention goes to a good friend, Dr. Rick Drury, whose mental

rigour and a devotion to all things academic has been inspirational. I am very

grateful to Dr. Patrick Verdin who created the CFD meshing and solving files

that enabled the aerofoil optimisation studies of Chapter 5. I also want to say a

big “thank you” to Lia Hedley and to my parents, MaryRose and Bill Riley, who

have kept me sane despite being driven to distraction by my endless ramblings

on technologies that are of no real interest to them. Lastly, for the small group of

people who will actually read this entire thesis, I hope that I can succeed in

making some of it interesting, informative or useful for you.

v

TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS... iii
LIST OF FIGURES ... viii
LIST OF TABLES ... ix

LIST OF EQUATIONS .. x
1 INTRODUCTION ... 11
2 BACKGROUND .. 17

2.1 Meta/surrogate modelling .. 17
2.2 Design of experiments ... 18

2.2.1 Random sampling ... 18
2.2.2 Latin hypercube sampling ... 19

2.2.3 Orthogonal Sampling .. 20
2.2.4 Summary of design of experiments .. 21

2.3 Popular metamodel types .. 22
2.3.1 Response surface methodology (RSM) .. 22

2.3.2 Kriging .. 22
2.3.3 Neural networks .. 23

2.3.4 Radial Basis Functions ... 23
2.3.5 Support Vector and Relevance Vector machines for regression
(SVR & RVM) .. 24

2.4 Local minima problem ... 25
2.5 Cascade correlation neural network .. 25

2.6 Improving the fit of a Cascade Correlation surrogate 31
2.6.1 Variance reduction methods ... 32

2.7 Research Gaps for the Cascade Correlation neural network 34
2.8 Design optimisation ... 35
2.9 Optimisation toolkits .. 36

2.10 Multi-objective optimisation .. 37
3 EARLY STOPPING AND ENSEMBLING FOR THE VARIANCE PROBLEM
OF CASCADE CORRELATION NEURAL NETWORKS 39

3.1 Introduction ... 39
3.1.1 Early stopping ... 40

3.1.2 Ensembling ... 41
3.2 Experimental set up... 42

3.2.1 Training datasets .. 42
3.2.2 Testing the fit .. 43

3.2.3 Sample size .. 43
3.2.4 Early stopping ... 44
3.2.5 Dispensing with the testing set ... 45
3.2.6 Ensembling ... 45

3.3 Results .. 46

3.3.1 Sample size .. 46
3.3.2 Early stopping ... 47
3.3.3 Dispensing with a testing set .. 48
3.3.4 Ensembling with Early Stopping ... 49

vi

3.3.5 Discussion .. 51

3.3.6 Visualisation of the benefits of early stopping and ensembling 54
3.3.7 Qualitative evaluation of CasCor training 54

3.4 Usage with real world data .. 56
3.4.1 Concrete Compressive Strength ... 56
3.4.2 Concrete strength results .. 58

3.4.3 Abalone age prediction ... 59
3.4.4 Abalone age prediction results.. 59
3.4.5 Summary of real world test data ... 60

3.5 Conclusion .. 61
4 PATCHWORKING AS A TECHNIQUE FOR THE BIAS PROBLEM OF
CASCADE CORRELATION NEURAL NETWORKS .. 63

4.1 Introduction ... 63

4.1.1 Patchworking - a subdivision method ... 64
4.1.2 Patchworking method ... 66

4.2 Experimental setup.. 68
4.3 Qualitative results of patchworking (visualisation) 69

4.4 Quantitative results of patchworking.. 72
4.5 Patchworking for greater depths and dimensions 73

4.6 Summary of patchworking ... 76
4.7 Usage with real world data .. 76

4.7.1 California house price results ... 77

4.8 Limitations of Patchworking ... 78
4.9 Conclusion .. 80

5 SHAPE OPTIMISATION CASE STUDY .. 83

5.1 Introduction ... 83
5.1.1 The UAS scenario ... 83
5.1.2 The generic form of optimisation ... 85
5.1.3 Objectives of the UAS aerofoil optimisation 86

5.1.4 Applying a multi-objective optimisation algorithm 87
5.2 Experimental setup.. 88

5.2.1 DEMO ... 88
5.2.2 NACA 4-digit aerofoil type .. 88
5.2.3 Aerofoil objective functions ... 90

5.2.4 CFD solver setup and search domain ... 91
5.2.5 Validation .. 94

5.3 Results .. 95

5.3.1 Reynolds 75,000 ... 96

5.3.2 Reynolds 250,000 ... 97
5.3.3 Optimal search domains ... 98

5.4 Aerofoil optimisation - summary .. 98
5.5 Discussion ... 99

6 ENABLING MULTI-OBJECTIVE OPTIMISATION IN NIMROD/O 103

6.1 Introduction ... 103
6.2 Software components .. 103

6.2.1 Nimrod/O .. 103
6.2.2 DEMO ... 104
6.2.3 Interfacing DEMO with Nimrod/O .. 105

vii

6.3 Experimental set up - Poloni test function ... 108

6.4 Result of the Poloni optimisation ... 109
6.5 Experimental setup – the shape optimisation of a rib-reinforced wall
bracket .. 110

6.5.1 The shape optimisation job. .. 113
6.6 Results of the shape optimisation of the rib-reinforced wall bracket .. 115

6.7 Conclusion .. 118
7 CONCLUSION .. 119

7.1 Final words .. 122
8 FURTHER WORK ... 123
REFERENCES ... 125

APPENDICES .. 131

viii

LIST OF FIGURES

Figure 1-1 Publications relating to the Nimrod toolkit 14
Figure 2-1 Monte Carlo Sampling showing clustering (circled)......................... 19
Figure 2-2 Space-filling Latin hypercube .. 20
Figure 2-3 Cascade Correlation training ... 27

Figure 2-4 Cascade Correlation neural networks in the literature 30
Figure 2-5 Illustration of Over fitting ... 32
Figure 2-6 Illustration of Under fitting ... 32
Figure 3-1 High variance .. 39
Figure 3-2 Early stopping with a validation dataset .. 41

Figure 3-3 Change in testing MSE against training set size 46
Figure 3-4 Reductions in the tested MSE with larger early stopping/validation

set sizes .. 48
Figure 3-5 How close the validation dataset MSE is to the MSE from the testing

dataset .. 49
Figure 3-6 Reductions in MSE due to ensembling ... 50

Figure 3-7 Reductions in MSE due to ensembling (Michalewicz data replotted)
 .. 53

Figure 3-8 Six hump test function ... 54
Figure 3-9 CasCor‟s high variance ... 54
Figure 3-10 With early stopping .. 54

Figure 3-11 With ensembling and early stopping ... 54
Figure 4-1 High bias ... 63

Figure 4-2 Patchworking subdivisions for a 2D function 67
Figure 4-3 The patchworking algorithm .. 67
Figure 4-4 Shubert function .. 69
Figure 4-5 Shubert Ens+ES ... 69
Figure 4-6 Shubert patchworking+Ens+ES .. 69

Figure 4-7 Ackley function .. 70
Figure 4-8 De Jong's 5th function ... 70

Figure 4-9 Ackley Ens+ES ... 70
Figure 4-10 De Jong's 5th Ens+ES .. 70
Figure 4-11 Ackley patchworking+Ens+ES .. 70

Figure 4-12 De Jong's 5th patchworking+Ens+ES ... 70
Figure 4-13 Langermann function .. 71

Figure 4-14 Michalewicz function ... 71
Figure 4-15 Langermann Ens + ES .. 71

Figure 4-16 Michalewicz Ens+ES ... 71
Figure 4-17 Langermann patchworking+Ens+ES ... 71
Figure 4-18 Michalewicz patchworking+Ens+ES .. 71
Figure 4-19 Schwefel function .. 72
Figure 4-20 Six Hump Camel Back function ... 72

Figure 4-21 Schwefel Ens+ES ... 72
Figure 4-22 Six Hump Camel Back Ens+ES .. 72
Figure 4-23 Schwefel patchworking+Ens+ES .. 72
Figure 4-24 Six Hump Camel Back patchworking+Ens+ES 72

ix

Figure 4-25 Schwefel function .. 75

Figure 4-26 CasCor mapping of full domain of the Schwefel function (Ens + ES)
 .. 75

Figure 4-27 CasCor of Schwefel (Patchworking depth = 1 + Ens + ES)........... 75
Figure 4-28 CasCor of Schwefel (Patchworking depth = 3 + Ens + ES)........... 75
Figure 5-1 Design optimisation flowchart ... 85

Figure 5-2 Inappropriately phrased optimisations can converge to give very thin
and highly cambered solutions .. 91

Figure 5-3 Gambit mesh ... 94
Figure 5-4 Zoom of Fig 3 showing the unstructured part of the mesh nearest the

aerofoil .. 94

Figure 5-5 NACA 4412 ... 95

Figure 5-6 Co-efficient of lift validation Re=75k .. 95

Figure 5-7 Lift / drag polar validation Re=75k ... 95
Figure 5-8 Co-efficient of lift validation Re=250k .. 95
Figure 5-9 Lift / drag polar validation Re=250k ... 95
Figure 5-10 Candidate A t=3.06 c=5.68 p=35.9 ... 96

Figure 5-11 Candidate B t=5.75 c=8.78 p=50.1 ... 96
Figure 5-12 Co-efficient lift plot Re=75k ... 96

Figure 5-13 Lift drag polar Re=75k ... 96
Figure 5-14 Candidate C t=3.22 c=5.45 p=42.9 ... 97
Figure 5-15 Candidate D t=5.21 c=3.09 p=39.1 ... 97

Figure 5-16 Co-efficient lift plot Re=250k ... 97
Figure 5-17 Lift drag polar Re=250k ... 97

Figure 6-1 Overview of the process .. 104

Figure 6-2 Dataflow between the software elements 104
Figure 6-3 Nimrod/O plan file: poloni.shd ... 109
Figure 6-4 Poloni function, Pareto set superimposed 110
Figure 6-5 Rib-reinforced wall bracket .. 111

Figure 6-6 Plan view of the wall bracket ... 112
Figure 6-7 Side elevation of the wall bracket .. 112

Figure 6-8 Flowchart of the shape optimisation process 113
Figure 6-9 The auto-meshed wall bracket .. 114
Figure 6-10 3D scatter plot of the Pareto set in the objective space 117

Figure 6-11 Deflections of the compromise solution (key in mm) 117

LIST OF TABLES

Table 2-1 The uses of metamodels .. 17
Table 2-2 The orthogonal array used for this work (OA.25.6.5.2) 21
Table 2-3 Optimisation toolkits ... 36
Table 3-1 Benefits of early stopping (ES) and ensembling (Ens) 51
Table 3-2 Qualitative evaluation of CasCor training ... 55
Table 3-3 Concrete compressive strength input and output data 57
Table 3-4 Concrete compressive strength prediction (sample of results) 58
Table 3-5 Abalone age prediction (sample of results) 60
Table 4-1 Patchworking results .. 74

x

Table 4-2 House price prediction .. 78
Table 5-1 Parameters of the multi-objective optimiser 88
Table 5-2 Setting for the shape optimisation .. 93
Table 5-3 Lift/Drag for Re=75,000 .. 96
Table 5-4 Lift/Drag for Re=250,000 .. 97
Table 6-1 Wall bracket decision variables .. 111
Table 6-2 Material properties of the wall bracket .. 114
Table 6-3 Auto-meshing settings .. 114
Table 6-4 Results of the multi-objective wall bracket optimisation 116
Table A-1 Mathematical test functions ... 131
Table B-1 Error treatment for the Abalone and Concrete metamodels 140

LIST OF EQUATIONS

(2-1) .. 34

(2-2) .. 38

(3-1) .. 51
(3-2) .. 52
(3-3) .. 52

(3-4) .. 52
(4-1) .. 76

(5-1) .. 89
(5-2) .. 89

(5-3) .. 89
(5-4) .. 89
(5-5) .. 89

(5-6) .. 89
(5-7) .. 90

(6-1) .. 106
(6-2) .. 108
(6-3) .. 111
(6-4) .. 111

(A-1) ... 131
(A-2) ... 131
(A-3) ... 132

(A-4) ... 132
(A-5) ... 133
(A-6) ... 133
(A-7) ... 134

(A-8) ... 134
(A-9) ... 134
(B-1) ... 136
(B-2) ... 136
(B-3) ... 137

(B-4) ... 137

11

1 INTRODUCTION

The central theme of this thesis is to explore, develop, or enhance methods of

reducing the computational load of optimisation with a particular focus on

multimodal functions. Chapters 3 and 4 evaluate Cascade Correlation neural

networks as surrogates for accelerating optimisations. Chapter 5 reduces the

load of aerofoil optimisation by determining appropriate search domains for low

Reynolds numbers cases. Chapter 6 enhances an existing optimisation toolkit

by interfacing a multi-objective optimisation algorithm along with enabling

parallelism in that algorithm.

A properly trained surrogate model delivers a good approximation of the

objective function that would be returned by a high-fidelity model but much

faster. This speed-up is the advantage of surrogate modelling: the surrogate

model described in this work returns evaluations of objective functions in less

than 10ms (200 MFLOP) irrespective of the problem dimensions. Machine

learning algorithms are often used for model-approximation and the surrogate of

this work is based on the Cascade Correlation neural network.

The principal challenge when training a neural network is to reduce both its bias

(under fitting) and its variance (over fitting). Reducing the variance of the

Cascade Correlation neural network forms the theme of Chapter 3, whilst bias is

treated in Chapter 4. The absolute values of variance errors are problem

dependent, however, Chapter 3 contains a detailed study of two existing

techniques that, for the test functions used, are found to reduce variance by a

factor of three. The work in this chapter produced the following contributions:

 Determining an appropriate number of training samples per dimension
(3.3.1)

 The postulate that we may dispense with creating testing datasets, and
thereby save a significant amount of time (3.3.3)

 A novel technique for determining the variance and bias of a neural
network ensemble (3.3.4)

12

The novel method for determining bias and variance prompts further analysis

and a statistical treatment is given in the appendix.

As the focus of this thesis is multimodal problems, and the motivation is to

develop a CasCor metamodel for integration with Nimrod/O, Chapter 4

describes research on the performance of Cascade Correlation when mapping

multimodal response surfaces. To the author‟s knowledge, there are no

examples in the literature that explicitly evaluate the performance of CasCor on

low dimensional (2-5), highly multimodal, surfaces.

This neural network type is found to exhibit a particular weakness on these

surfaces. Despite the reductions in mean squared error from the variance-

reducing methods in Chapter 3, undesirably high testing errors remain. It is

shown that this neural network exhibits the problem of possessing a high bias

(severe under-fitting). A new subdivision technique named „patchworking‟ is

introduced to address the - not previously published - bias problem of this

neural network type; patchworking delivers significantly improved fits to

multimodal surfaces. The contributions of this chapter are the identification of

the bias problem of Cascade Correlation neural networks and the introduction of

the patchworking technique to overcome this problem.

In addition to training Cascade Correlation neural networks on mathematical

test functions, real world case studies were sought from the publicly-available

machine learning repository [1]. Whilst not representative of optimisation

problems, the concrete compressive strength and the abalone age-predictions

are examples (Chapter 3) that do illustrate successful applications of this

surrogate. In Chapter 4, a very large census dataset is used to illustrate the

benefits of the patchworking algorithm on real-world data.

The competitive manufacturing climate in the last two decades has highlighted

inadequacies in the serial practice of design. This competitive environment

requires organisations to design high-quality products faster, better, and

cheaper than their competitors [2]. In civil, mechanical, aerospace, and

13

electronic engineering, computer aided engineering (CAE) software has

assisted the designer in achieving these goals.

The uses of CAE can encompass simulation, validation, and the optimisation of

designs. A designer starts with the idea of a new product and uses computer

aided design (CAD) software to create a preliminary design. With the use of

computer based modelling tools, the preliminary design can be analysed for

functionality as the design is being created. By manipulating the geometry of a

design, its performance can be improved. “Performance” in this case is the

improvement of some metric(s) determined by the engineer a priori. These

metrics are better known as objective functions.

In shape optimisation, the optimisation algorithms manipulate the parameters

that specify the geometry of a design, and complex models, typically

incorporating solids and fluids solvers, return the objective functions. However,

the computational load of evaluating these time-expensive objective functions

can inhibit, or even prohibit, optimisation.

Chapter 5 applies the multi-objective optimisation algorithm (detailed in Chapter

6) to reduce the search space, and therefore the computational load, of aerofoil

shape optimisation. The reverse chronology of these chapters acknowledges

the minor contribution of this case study. Chapter 5 also sets the scene for the

generic process of shape optimisation; the overall aim being to expose the

practicalities of such work, with the intent of revealing potential research gaps.

One of the driving motivations for the current work was that the outcomes

should aim to be of practical, as well as theoretical (3.3.3 , 3.3.4), use to the

research community. For this reason an early decision was made to enhance

an existent software toolkit rather than attempt to build another stand-alone

package. The maturity of the Nimrod toolkit (Figure 1-1), its ease of use, a good

working relationship with the developers, and access to its source code

motivated the choice of this toolkit for this work.

14

Figure 1-1 Publications relating to the Nimrod toolkit

Chapter 6 contains a significant contribution of this thesis. The Nimrod/O [3]

optimisation package is part of a suite of problem solving tools developed since

1995 at Monash University, Melbourne, Australia. To date, this toolkit contains

software packages for; Design of Experiments (Nimrod/E), Workflow

management (Nimrod K), Grid Computing (Nimrod G), a web portal for job

management (Nimrod/P), and an optimisation package, Nimrod/O. The work

described in Chapter 6 details how a truly multi-objective optimisation algorithm

was interfaced to Nimrod/O for the first time. Another contribution is the

introduction of a parameter that will reduce dramatically the wall-clock time for

these optimisations by enabling concurrent function evaluations. The successful

implementation is illustrated with another shape optimisation; that of a rib-

reinforced wall bracket.

0

2

4

6

8

10

12

14

16

18

Nimrod/G Nimrod/O Nimrod/K Nimrod/E

Book chapters International Conferences Journal articles

15

The following papers have been published as a result of the research described

in this thesis:

Journal paper

M. J. W. Riley, C. P. Thompson, and K. W. Jenkins, “A Study of Early Stopping,

Ensembling, and Patchworking for Cascade Correlation Neural Networks”,

IAENG International Journal of Applied Mathematics 40:4, 2010, pp. 307-316.

Conference papers

Riley, M. J. W., Peachey, T., Abramson D., and Jenkins, K. W., 2010, "Multi-

objective engineering shape optimization using differential evolution interfaced

to the Nimrod/O tool", IOP Conference Series: Materials Science and

Engineering, Volume 10, Article Number 012189.

M. J. W. Riley, K. W. Jenkins, and C. P. Thompson, “Improving the

Performance of Cascade Correlation Neural Networks on Multimodal

Functions,” Lecture Notes in Engineering and Computer Science: Proceedings

of The World Congress on Engineering 2010, WCE 2010, 30 June - 2 July,

2010, London, U.K., pp. 1980-1986. (Best paper award 2010 ICCSDE)

17

2 BACKGROUND

2.1 Meta/surrogate modelling

Metamodels, previously known as surrogate evaluation models (or just

evaluation models) are currently active research areas in the optimisation of

complex designs. Complex in this sense would mean those designs for which a

single objective function evaluation is very (time) costly and, in many cases,

these are designs that involve a high number of parameters (10+).

Metamodelling can play several different roles for the engineer [4] (Table 2-1).

Table 2-1 The uses of metamodels

Model

approximation

Approximation of computation-intensive processes across the entire

design space, or global approximation, is used to reduce

computational costs.

Design space

exploration

The design space is explored to enhance the engineers‟ understanding

of the design problem by working on a cheap-to-run metamodel.

Problem

formulation

Based on an enhanced understanding of a design optimisation

problem, the number and search range of design variables may be

reduced; certain ineffective constraints may be removed; a single

objective optimisation problem may be changed to a multi-objective

optimisation problem or vice versa. Metamodelling can assist the

formulation of an optimisation problem that is easier to solve or more

accurate than otherwise.

Optimisation

support

Industry has various optimisation needs, e.g., global optimisation,

multi-objective optimisation, multidisciplinary design optimisation,

probabilistic optimisation, and so on. Each type of optimisation has its

own challenges. Metamodelling can be applied and integrated to solve

various types of optimisation problems that involve computation-

intensive functions.

Once trained, surrogate models can replace expensive fluids or solids

evaluation codes and facilitate multi-objective optimisation and the exploration

18

of new design concepts; returning objective function evaluations in fractions of a

second.

Metamodelling involves:

1. Choosing an experimental design for generating the data (2.2)

2. Choosing a model to represent the data (2.3)

3. Fitting the model to the observed data from the experiments (2.6).

The metamodel of this work uses a neural network to represent the data. The

data itself comes from sets of objective function evaluations, or „experiments‟.

The design of these experiments conforms to orthogonal sampling. The benefits

of orthogonal sampling are discussed in section 2.2.3

2.2 Design of experiments

With the exclusion of trivial problems, for which full parameter sweeps can be

performed, techniques from Design of Experiments (DoE) are typically applied

for sampling a problem‟s response surface. Three sampling techniques are

outlined below; random sampling, Latin hypercube sampling and orthogonal

array sampling.

2.2.1 Random sampling

The Direct Monte Carlo Sampling method, which is a random sampling method,

is still popular in industry, regardless of its inefficiency. This popularity probably

derives from the fact that the adequate and yet efficient sample size at the

outset of metamodelling is unknown for any black box function. Therefore it

holds an advantage over orthogonal and Latin hypercube sampling in that no

decision as to the size of the sample is necessary at the outset [4]. The

inefficiency of the technique derives from the fact that Direct Monte Carlo

sampling has no „memory‟ of previous samples.

For example, if we have a two dimensional problem to sample (variables X1

and X2) in the domain [0.0,1.0], and we generate 15 samples, it is possible to

19

find clustering of some of those samples in the input space (Figure 2-1) [5].

Clustered samples do not provide new information or insight into the overall

behaviour of the response surface – moreover, the corollary is that clustering in

one region leads to an undesirable sparseness of sampling in other regions of

the domain.

Figure 2-1 Monte Carlo Sampling showing clustering (circled)

2.2.2 Latin hypercube sampling

If we consider the sampling of a two dimensional function in the form of a grid of

points, Latin hypercube sampling would consist of samples within that grid with

each sample point existing at a unique x and a unique y co-ordinate. If the

leading diagonal was populated with sampling points then we would have a

Latin hypercube Design of Experiment – however, such a DoE would be

undesirable as it would not be classed as space-filling. Figure 2-2 [5] shows an

example of a space-filling Latin hypercube. Unlike Monte Carlo sampling,

space-filling Latin hypercubes can be thought of as having a „sample memory‟,

meaning that it avoids repeating samples that have been evaluated before (i.e.

avoiding clustering). Although dependent on the problem at hand, a space-filling

Latin hypercube DoE could require 20% to 40% fewer samples than a Monte

Carlo DoE to deliver the same results with the same accuracy [5].

20

Figure 2-2 Space-filling Latin hypercube

2.2.3 Orthogonal Sampling

Orthogonal array testing is a systematic, statistical way of testing. The

permutations of factor levels comprising a single treatment are chosen such that

their responses are uncorrelated, each treatment thereby giving a unique piece

of information. By creating a design of experiments based on an orthogonal

array, that same piece of information is gathered in the minimum number of

experiments.

Each orthogonal vector conveys different information from any other vector in

the DoE, hence avoiding redundancy. Additionally, each of the vectors is

statistically independent of the others, i.e. the correlation between them is nil.

Sampling with orthogonal arrays (OAs) can be described as a generalisation of

Latin hypercube sampling whose one dimensional projection is uniformly

spaced [6]. Wang [4] highlights the two most important properties of the

sampling distribution of a DoE. Those are its orthogonality, and its space-filling

properties. OAs enhance the ability to analyse and estimate as many effects

and interactions as possible. Research into orthogonal array generation is an

21

ongoing subject in mathematics, though recent progress has yielded powerful

algorithms [7].

An OA is defined in the form 𝑂𝐴. 𝑁. 𝑘. 𝑠. 𝑡 indicating an orthogonal array with 𝑁

runs, 𝑘 factors, 𝑠 levels, and strength 𝑡. This is an array of size 𝑁 by 𝑘, with

entries from 0 to 𝑠 − 1 with the property that in any of the 𝑘 columns each of the

𝑠 possibilities occurs equally often [8].

Table 2-2 The orthogonal array used for this work (OA.25.6.5.2)

 5 levels can be tested in up to 6 dimensions

Experiment 1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 1 1 2 3 4

3 0 2 2 3 4 1

4 0 3 3 4 1 2

5 0 4 4 1 2 3

6 1 0 1 1 1 1

7 1 1 2 4 0 3

8 1 2 4 0 3 2

9 1 3 0 3 2 4

10 1 4 3 2 4 0

11 2 0 2 2 2 2

12 2 1 4 3 1 0

13 2 2 3 1 0 4

14 2 3 1 0 4 3

15 2 4 0 4 3 1

16 3 0 3 3 3 3

17 3 1 0 1 4 2

18 3 2 1 4 2 0

19 3 3 4 2 0 1

20 3 4 2 0 1 4

21 4 0 4 4 4 4

22 4 1 3 0 2 1

23 4 2 0 2 1 3

24 4 3 2 1 3 0

25 4 4 1 3 0 2

2.2.4 Summary of design of experiments

For the sampling of the test functions in Chapters 3 and 4, orthogonal arrays

were chosen to generate the training datasets. This method of sampling was

22

chosen as OAs can provide the convenient benefit of screening the number of

dimensions of a problem (if necessary) with the use of ANOVA (ANalysis Of

Variance).

2.3 Popular metamodel types

2.3.1 Response surface methodology (RSM)

RSM fits a response surface with some form of least squares linear regression

(typically a low order polynomial is used although recent advances have seen

Padé–Legendre approximations used successfully for discontinuous response

surfaces [9]). RSM is a popular technique; partly due to the simplicity of its

implementation, and partly because many examples exist in the literature.

There are three main problems with RSM. Firstly, polynomial models cannot

capture highly non-linear response variations; the accuracy of quadratic RSM

being questionable for multimodal problems [10]. Secondly, if higher order

polynomials are used, the large number of co-efficients to be determined results

in large training times [11]. Thirdly, the amount of training data required to build

a second order surface grows quadratically with the input dimensions of the

problem. Hence, increasing the input parameters results in a rapid non-linear

increase in the necessary training data [12].

2.3.2 Kriging

Kriging is also known as a Gaussian process or a Gaussian random function

method [13]. Unlike the linear regression of RSM, it uses Bayesian regression.

It has two significant advantages over RSM: 1. It can be applied for mapping

surfaces for which there are a significant number of input parameters e.g. 20-

30, and, 2. It can honour the training data; fitting it precisely by interpolation, or,

smooth over the data, thus approximating the surface [14]. A weakness of the

Kriging method is the general need to tune multiple hyperparameters that

control curvature and the degree of regression; this can be very time consuming

on large data sets in many dimensions [6].

23

2.3.3 Neural networks

Originally inspired by the multilayered information processing structures of

biological brains, neural networks typically consist of a large number of simple,

but interconnected, processing units. The processing units, called neurons, are

multiple linear regression models with non-linear transformations applied to their

inputs. The architecture of the network is formed by connecting many neurons

with weights (the regression co-efficients). Hence, there are two main issues: 1.

Specifying this architecture, and, 2. Training the neural network to perform well

with respect to the training dataset [11].

The advantage of using neural networks is that they are universal functions

approximators [15] i.e. the family of functions that the network can implement is

broad enough to contain f or a good approximation of f . For the training of a

neural network to converge it must, in the limit, approach the target function as

closely as desired. A sequence { }nf strongly converges to f if

lim 0n nf f   , where  is the norm for the function space being

considered [16].

Two criticisms often levelled are; that the training usually takes a significant

amount of time, and, they are „black-box‟ approximators; once trained, it is

difficult to trace the behaviour, relationships and dynamics of the network back

to the reference model [17].

2.3.4 Radial Basis Functions

Radial Basis Functions are closely related to both Kriging and neural networks.

They approximate surfaces by using a linear combination of radially symmetric

functions [18]. Like the Kriging method, they can exactly interpolate a surface

from the training data. However, as all RBFs employ a measure of distance

between data points, attempting to learn in a high dimensional space means

that almost every sample is closer to the boundary of the domain than to

another point. This makes Radial Basis Functions less suited to learning with a

24

very high number of input parameters [19]. As an example, take a 15

dimensional problem. The hypercube of the input space would have
152 vertices

(32,768) and  15 1
2 15


 = 245,760 edges. A typical training dataset for such a

problem would likely contain fewer than 245,760 samples; hence there would

be many more edges of the domain than samples.

2.3.5 Support Vector and Relevance Vector machines for regression

(SVR & RVM)

Both of these techniques are closely related and known as sparse kernel

methods. They centre basis functions on subsets of the training data and then

train on these subsets. A major advantage of these learning methods is that

their mathematical formulation is dimension-independent. This makes them an

attractive solution for learning in very high dimensional cases [17].

The advantage of SVR over RVM is that the training consists of the solution of a

convex (i.e. simpler) optimisation problem [20]. Though SVR has been used

successfully for surrogate modelling [18], it is disadvantaged by the necessity to

determine two parameters after training. This post-training-optimisation is

performed by a cross-validation method and is typically time consuming. A

disadvantage of both types is that they map multivariate inputs to only a

univariate output variable; hence further models must be trained if several

objective functions are to be surrogated [21].

RVM has an identical functional form to SVR but, by reforming the support

vector solution with „expectation maximisation learning‟, the relevance vector

machine is created. A Bayesian framework is used in the case of RVM, thus

providing posterior probabilistic outputs, and typically much sparser solutions

than for SVR; both of which are desirable as described in [20]. The advantage

of the relevance vector method over the support vector is that there is no

requirement to determine any parameters after training. However, this benefit is

associated with a penalty – namely, that the training procedure now involves the

solution of non-convex optimisation problem. When training an RVM (and

neural networks), we face the „local minima problem‟.

25

2.4 Local minima problem

The local minima problem [22] arises when attempting an optimisation on a

function whose response surface is multimodal. There will be one or more local

minima and there could be several global minima. The challenge posed to any

optimisation algorithm is to find the location within the search space of a global

minimum. This is a pertinent problem for the training algorithm of some

surrogates and also for the optimisation of engineering designs. For example,

radial basis functions and support vector regression are insensitive to the local

minima problem [23]. However, relevance vector machines and neural networks

are subject to this problem.

Distinct from the nature of the objective function to be mapped, it is the error

surface of a neural network that will typically have multiple local minima. The

total number of local minima is compounded by symmetries in the network. For

example, taking the case of a network with two layers of weights, M hidden

units, and a sigmoid activation function, there will be a family of !2MM

equivalent minima belonging to each distinct local minima [24].

In the training of a neural network, the difference between a neural network‟s

output and the desired output is the error that should be minimised. It is by

altering the weights of a neural network that this is achieved. For example, the

backpropagation training algorithm approaches this problem by means of a

gradient descent method but, as such, the training is subject to convergence to

a local minimum – rather than the desired global minimum.

2.5 Cascade correlation neural network

The Cascade Correlation neural network (also referred to as CasCor in this

work) is a constructive neural network. Growing on-demand, it only adds hidden

neurons as and when they are needed. The standard CasCor network adds

each new neuron to a new layer, creating deep neural networks. Neurons

themselves can be thought of as feature detectors; the more features that exist

in the response surface of a target function, the more neurons will be necessary

26

to map that surface. With insufficient numbers of neurons, too few features can

be represented and the network will possess an undesirably high bias (Figure

2-3). Hand-crafting the topology of a neural network is a very time consuming

process, and so constructive neural networks that solve this problem

automatically have become very popular.

27

Figure 2-3 Cascade Correlation training

28

In Figure 2-3 [25] the Cascading architecture is displayed for a neural network

with three input and two output dimensions. The diagrams show the initial state,

and then the addition of two hidden units. The vertical lines sum all incoming

activations. Boxed connections are frozen, X connections are trained

repeatedly. The “+1” input is known as the “bias neuron”. During training, each

neuron begins as a candidate neuron. It is not yet connected to the network. For

the current work a pool of candidates is used, with each unit having a different

activation function and different random initial weights. All receive the same

input signals during training, but do not interact with each other. When the

optimal candidate is inserted as the next hidden unit the other candidate

neurons for that layer are discarded. The activation functions used in this work

are as follows: Sigmoid, Sigmoid Symmetric, Gaussian, Gaussian Symmetric,

Elliot, Elliot Symmetric. They share the necessary property of being

differentiable.

Fahlman and Lebiere [25] describe this neural network as follows: training

progresses by running a number of passes over the data in the training set.

Each candidate input weights are adjusted after each pass to maximise S , the

sum over the output units (o) of the magnitude of the correlation betweenV ,the

candidate unit‟s value and oE , the residual output error observed at unit o . S

is defined as:

  ,p p o o

o p

S V V E E  

Where o is the network output at which the error is measured and p is the

training pattern. The quantities V and oE are the values of V and oE averaged

over all patterns. In maximising S , iS w  must be computed i.e. the partial

derivative of S with respect to each of the candidate unit‟s weights (iw).

Expanding and differentiating the formula for S gives:

29

  '

, ,

,

i o p o o p i p

p o

S w E E f I    where o is the sign of the correlation between

the candidate‟s value and output o , '

pf is the derivative for pattern p of the

candidate unit‟s activation function with respect to the sum of its inputs, and,

,i pI is the input the candidate unit receives from unit i for pattern p . After

iS w  has been computed for each incoming connection, a gradient ascent is

performed to maximise S . When S stops improving, the best candidate is

installed to the network and its input weights are frozen (weight freezing). More

hidden neurons as installed with the above cycle above until one of the used-

defined stopping criteria are met and the network is pronounced as “trained”.

Drago and Ridella [26] also investigated the convergence properties of the

Cascade Correlation neural network and proved a speed of the order O(1/nh)

where nh is the number of hidden neurons.

One cannot traverse far through the Cascade Correlation literature without

meeting a reference to its notable performance on the “two-spirals problem”:

397 articles are returned by a Google scholar search for „"cascade correlation"

+spirals‟. This is a problem that is said to pose a very difficult learning

benchmark for backpropagation neural networks, but one for which Cascade

Correlation performs very well [27]. Arguably, this notable performance has

singularly popularised this neural network type more than any other benchmark.

Seen in Figure 2-1 are the results of a count of the literary references to this

neural network since 1990. In red are the number of articles published annually

that have „Cascade Correlation‟ in their title. The blue columns show that, each

year since 1993, this neural network has been referred to over 100 times in the

body of papers indexed on Google scholar, showing that this neural network is

still active in the research community.

30

Figure 2-4 Cascade Correlation neural networks in the literature

Some articles do exist that illustrate poor performances of Cascade Correlation

on benchmark problems such as Banks et al. [28]. However, on further

inspection, Banks‟s trainings have been conducted in the absence of early

stopping, ensembling, or any other variance reducing technique (2.6.1) –

despite the well known propensity of Cascade Correlation neural networks to

lose generalisation due to overfitting [29].

With her implementation of the Cascade Correlation, Schmitz [30] gives a

thorough treatment of surrogate modelling with this neural network. In addition,

she modifies its training mechanism such that it trains more rapidly as well as

integrating the BFGS optimisation algorithm for more optimal selection of

weights; potentially improving training outcomes. Particular emphasis is given to

validating the performance of Cascade Correlation-based metamodels in

approximating high dimensional surfaces. In the automated hydrodynamic

shape optimisation of a ship‟s hull [31], her CasCor surrogate assisted

optimisation returned a 34% improvement in the objective function (Lift/Drag

1

10

100

1000
1

9
9

0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

Year

'Cascade Correlation' in the title of the publication

Publications with 'Cascade Correlation' in the body of the text

31

ratio) for the 28 dimensional problem. The success of applying her CasCor-

based surrogate is underlined by noting that the comparative „classical‟

approach yielded only a 26% improvement and required more than five times

the CPU time.

There are many reasons why CasCor might be chosen as the basis for a potent

surrogate model:

1. Verifiably successful trainings on high dimensional surfaces

2. No need to train n-neural networks to surrogate for n-responses (unlike

relevance vector machines)

3. No parameters to be tuned post-training (unlike for support vector

machines)

4. No tuning of multiple hyperparameters, unlike the Kriging method

5. Training times are much lower than for other neural networks

6. As CasCor is a constructive type of neural network, we are never faced

with the problem of having to determine the correct topology (number of

neurons) a priori. This potentially solves the bias problem of neural

networks.

7. Several well known variance reduction techniques (2.6.1) are available to

reduce errors, and therefore improve the fit, of neural networks

One weakness of CasCor is that this neural network can only train off-line

(batch learning). However, it is a neural network that trains significantly quicker

that most, and the desirable feature of on-line learning could conceivably be

instigated by complete re-trainings as new learning samples arrive.

2.6 Improving the fit of a Cascade Correlation surrogate

The error present after a neural network has trained on a set of data is

composed of three terms:

Error=Variance + Bias + Noise

32

Contrasting with physical experiments, results derived from deterministic

computer experiments (i.e. fluids and solids solvers) are not subject to random

errors [6]. Hence, when we chose to build a surrogate for such a computer

model we need not address the problem of reducing noise.

The remaining variance and bias are the two error terms to be minimised. If we

can minimise both variance and bias then we have maximised the accuracy of

the fit of our surrogate model to the response surface of the problem. Variance

and bias are equivalently known as over fitting and under fitting as shown in the

simplified illustrations Figure 2-2 and Figure 2-3.

Figure 2-5 Illustration of Over fitting

Figure 2-6 Illustration of Under fitting

2.6.1 Variance reduction methods

Several methods exist in the literature for the treatment of variance.

 Early stopping

As neural networks train, their error begins to fall as they fit to the

underlying function. However, overfitting can occur with too many training

epochs. By querying the (still training) neural network with a smaller,

unseen set of data, this overtraining can be halted before it has a

detrimental effect on the error. Halting the training in this way is known

as early stopping. This technique also has the advantage of reducing

training times. In determining an early stopping point, the criteria used for

this work is presented in section 3.2.4.

High variance (over fitting)
Ideal fit

High bias (under fitting)

Ideal fit

33

 Jitter

Jitter is the process of deliberately adding artificial noise to the input

training data; the output responses are left unchanged. This has the

effect of adding new training examples to the training dataset, and acts to

improve generalisation for smooth functions when one only has access

to a small training set. The noise distribution is assumed to have zero

mean and finite variance. Unfortunately, adding jitter significantly

increases the training time, which can be impractical for large

dimensional training problems [32].

 Weight decay

A weight decay mechanism assigns larger magnitudes to important

weights and smaller values to unimportant weights [33]. Overall the

weights decrease, but weights that contribute greater reductions to the

training error are reinforced [34]. In [35], this method is described as one

that can give excellent generalisation results as CasCor networks grow

during training. Schmitz [30], however, discusses the difficulties with

implementing weight decay with CasCor networks. The need to tune the

different decay constants for the input, output, and hidden layers would

add complexity to, and increase the time of, the training.

 Ensembling

Also known as a committee of machines, bootstrap aggregating, or

bagging, ensembling involves training multiple neural networks on the

same dataset. In use, the arithmetic mean of their combined response is

taken as the response of the ensemble. Due to the mean value

smoothing individual variance errors, the response from the ensemble is

more accurate than the response of any member of that ensemble. Its

disadvantage is the increase in training time imposed by the requirement

to train multiple networks.

For this work, jitter and weight decay are disregarded for the following reasons:

34

 The number of jittered cases to be added, and the selected variance can

result in different training outcomes [30]

 Jitter increases training times

 The generalisation of the neural network is very sensitive to the decay

constant (when using weight decay) – and its calculation is known to be

computationally intensive [24].

Early stopping and ensembling are the two methods chosen to reduce variance.

Experiments with these two techniques are performed in Chapter 3.

2.7 Research Gaps for the Cascade Correlation neural network

Based on a rigorous statistical analysis for the optimal size of an early stopping

dataset, Amari [36] suggests the following size:

1Samples in Early-stop dataset =
2M

(2-1)

where M is the number of samples in the training dataset.

As the statistical analysis on which this is based considers fixed-topology neural

network types, a research gap exists to explore how differing sizes of early

stopping sets influence the reduction in error for the growing topology neural

network of CasCor. This gap is explored in section 3.2.4.

Common practice is to ear-mark small validation datasets for the purpose of

early stopping ([31] [7.5%-30%], [37] [10%-25%], [38] [20%-37%] as

percentages of the training dataset). This is because the early stopping set

must be formed from samples wholly independent from the training dataset; the

larger the early stopping set, the more training samples we will be excluding - to

the detriment of successful learning. However, if the success of the training is

then to be measured, a larger testing set (or generalisation set) is typically

used. In this way, both the bias and the variance remaining in the model can be

evaluated. An alternative approach is explored as part of Chapter 3 that uses a

35

larger early stopping dataset (>40%) as a proxy for a testing dataset, yet still

retains a measure for the bias and variance of neural network.

A further research gap would be to see if the following question can be

answered: how much training data does the CasCor neural network need to

perform a successful mapping of an arbitrary function? Furthermore, can the

demand for training data be expressed in terms of the dimensions of a

problem? These gaps are investigated in the work of Chapter 3.

2.8 Design optimisation

There are many questions to be answered for a researcher, or a research team,

that wishes to conduct an exploration of the performance of new, or existing

designs. Workflows often differ depending on the problem at hand, but desirable

feature are bulleted below. In the late 1980‟s and the early 1990‟s, no software

suites existed that provided a comprehensive set of features. Those packages

that did exist were embryonic - characterised by an incomplete suite of tools

and/or poor integration with other packages. Any missing feature required

analysis outside of any given software tool; necessitating either the laborious

hand-coding of that feature, or the use of several, mutually incompatible, pieces

of software. For example, the first version of the Linux-based optimisation

toolkit, “Nimrod”, in 1995 allowed for a search of the design space via a

parameter sweep but it was 2001 before optimisations within the search space

became possible with the introduction of Nimrod/O. The Nimrod toolkit is a

software suite developed by academics at the University of Monash in

Melbourne, but the picture is similar for commercial software. Dassault

Systèmes has developed the CAD software, CATIA, since 1981 but it was the

2008 acquisition of Engineous Software that enabled them to incorporate DoE,

multi-objective optimisation, and the automation of simulations (via “Simulia”)

into their Product Lifecycle Management software (PLM).

36

2.9 Optimisation toolkits

As the research field of design optimisation is very mature, many software tools,

both commercial and open source, now exist in various forms to enhance the

productivity of the engineer:

Table 2-3 Optimisation toolkits

PHX ModelCentre http://www.phoenix-int.com/

iSight and Fiper http://www.simulia.com/

Nimrod http://messagelab.monash.edu.au/Nimrod/AllOnOnePage

Geodise http://www.geodise.org/

Dakota http://dakota.sandia.gov/

Technosoft http://www.technosoft.com/

Desirable features for any optimisation toolkit include, but are not limited to the

following:

1. An ability to parallelise, and thereby accelerate, optimisation jobs (The workload

is either shared between the cores of multi core CPUs or distributed on a

local/wide area network for objective function evaluations on multiple machines

such as a Grid, Cloud, or Cluster of computers)

2. Job dispatch, control, and error reporting

3. Tools to assist with sampling of a search space (DoE)

4. Work flow management

5. In-built optimisation algorithms

6. Surrogate modelling

At the commencement of the current work in 2007, the Nimrod team had not

released the DoE and workflow-management modules (Nimrod E and K) for

public download. The difficulties of workflow management highlighted in

37

Chapter 5 and the lack of a DoE module at first pointed to these as two

research gaps worthy of investigation. At time of writing, those gaps have been

filled by work of the Monash team. In 2009 two existent research gaps were; the

lack of a built-in surrogate model and the lack of a multi-objective optimisation

algorithm in Nimrod/O (points 5 and 6, above).

2.10 Multi-objective optimisation

Mathematical optimisation techniques have existed since the 18th century when

Newton, Euler and Lagrange used the calculus of variation to develop methods

for evaluating minima and maxima of differentiable functions, however it was

only when Pareto developed his theory of optimality that a framework existed

for multi-objective optimisation problems (MOOP) [39]. When two or more

objectives are to be optimised simultaneously, a true multi-objective

optimisation process will not reduce to a single ideal solution if any of the

objectives are in conflict with each other. This is the case with the aerofoil

optimisation of Chapter 5; high lifting wings tend not to be associated with low

drag co-efficients.

The defining characteristic of the Pareto optimal set is that one objective

function can only be improved if at least one other objective function is

degraded. A multi-objective optimisation algorithm searches for the Pareto front.

The minimisation of a general two criteria multi-objective optimisation is

formulated as follows:

Minimise 1 2(x) ((x), (x))f f f such that x X , the feasible region

subject to
(x) 0

(x) 0

j

k

g

h






1,...,

1,...,

j M

k K




 constraints

where x is a p-dimensional vector whose components are known as decision

variables, jg are equality constraints and kh are inequality constraints.

38

Definition of dominance: Comparing two solutions, 1x and 2x , we say that 1x

dominates 2x if:

   1 2 1 2 1 2 1 2(x)< (x) and (x) (x) or (x) (x) and (x)< (x)1 1 2 2 1 1 2 2f f f f f f f f  (2-2)

The Pareto set is formed from only those solutions that are not dominated by

any other (i.e. from non-dominated solutions). The Pareto front is an imaginary

construct in the objective space, along which candidates from the Pareto set

would lie.

Since the 1980‟s, sufficient computing power has existed to approach the

MOOP via the use of bio-inspired metaheuristics. The focus of optimisation has

shifted from mathematical programming techniques to the application of

evolutionary methods, which adapt the genes of a population of candidates with

the aim of improving their “fitness”. Mathematical programming techniques, in

general, generate one element of a Pareto set and are susceptible to changes

in the shape of the Pareto front and may not work when this front is non-convex

and/or discontinuous [40]. By contrast, population-based evolutionary

algorithms simultaneously manipulate a set of possible solutions. In addition,

evolutionary algorithms are more robust to discontinuous or non-convex Pareto

fronts [40]. For this reason, they are known as “robust” optimisation methods.

Examples include: Strength Pareto Evolutionary Algorithm (SPEA)[41], Non-

dominated Sorting Genetic Algorithm (NSGA)[42], Multi-Objective Tabu Search

(MOTS)[43], and Differential Evolution for Multiobjective Optimization (DEMO)

[44]. The current author contributes by interfacing DEMO to Nimrod/O (Chapter

6).

39

3 EARLY STOPPING AND ENSEMBLING FOR THE

VARIANCE PROBLEM OF CASCADE CORRELATION

NEURAL NETWORKS

3.1 Introduction

The aim of the work in this chapter is to investigate the use of early stopping

and ensembling to reduce variance errors, Figure 3-1 thereby improving the fit

of the neural network to the underlying functions.

Figure 3-1 High variance

The objectives of this chapter are to investigate the effects of: the size of the

early stopping dataset, the size of the training dataset, how the demand for

training data varies with the dimensions of the problem, whether a testing

dataset is strictly necessary, and the limitations of early stopping and

ensembling.

As the intended use of Cascade Correlation (CasCor) is to create a metamodel

to assist with design optimisation, multimodal test functions for global

optimisation [45] (typically employed to test optimisation algorithms) offer

High variance (over fitting)
Ideal fit

40

appropriate surfaces upon which to test the metamodel. These test functions

are used for the work in this chapter and for the work in Chapter 4, hence they

are tabulated in the appendix (Table A-1). All the test functions used are smooth

and continuous and no noise is present in (or added to) any of the datasets.

Many of the test functions used are multimodal and, prior to the modifications

made by the Thesis, were chosen because they posed significant mapping

problems for this neural network.

3.1.1 Early stopping

One of the disadvantages of CasCor neural networks is their propensity to

overfit on the training data, thus decreasing the quality of the approximated fit of

the underlying function [29]. Inspecting the monotone decrease of the training

mean squared error (MSE) gives no indication of this. Typically, the error during

training is seen to reduce, almost uninterrupted, until one of the stopping criteria

is met and the network is pronounced as “trained”. If, however, a call-back

function is set, the training progress can briefly be interrupted to test the (still

evolving) neural network against the validation dataset. A call-back function is

useful for customising any training procedures and is implemented as part of

the neural network library used in this work [46].

41

Figure 3-2 Early stopping with a validation dataset

The validation dataset is wholly independent from the training set and it allows

us to determine an early stopping point. The MSE graph on this validation data

typically takes the approximate form of a hockey stick outline – initially the

validation MSE falls as the network fits to the underlying function but, at some

point, too many neurons are added and any gains from a reduction in bias

become off set by a disproportional increase in variance of the neural network.

After this point, any more training acts to further increase this variance, resulting

in a net increase in the overall MSE (Figure 3-2). Early stopping halts the

training at or around this minimum point thus minimising negative impacts from

overfitting. In reality, the profile of the validation error is not smooth and some

form of heuristic needs to be used to halt the training at an appropriate moment;

the heuristic introduced by this author is described in 3.2.4.

3.1.2 Ensembling

Tetko and Villa [29] described ensemble averaging, or a “committee of

machines”, as acting to reduce the variance error. It is likely that each neural

E

r

r

o

r

Time

Validation error

Training error

Early
stopping

point

42

network in that committee will have approximated the response surface of the

training data differently due to the random initialisation of their initial weight

values and the non-deterministic nature of neural network training. Ensembling

smoothes the responses of its members in the following way: multiple neural

networks are trained on the same dataset, but in use, the arithmetic mean is

taken across the output responses of the ensemble members. When compared

to the basic CasCor neural network, the testing error of these ensembles is

much lower than the average test errors of their constituent parts - the only

penalty being an increase in required training time.

3.2 Experimental set up

The architecture of the CasCor algorithm is well known [25, 47, 48]. The

CasCor neural networks under consideration are created from the open source

library created by Nissen [46]. The library contains an implementation of the

Cascade Correlation II algorithm based on the original Lisp code written by

Fahlman in 1996 (unpublished).

Here, the FANN C source code is used with default settings chosen for CasCor

training. The target MSE for the training is 10−4 when early stopping is not used

and a nominal setting of 10−5 when early stopping is used. In use, the lower

target would only be reached for trivial test cases. More likely is that early

stopping will trigger a halt to the training before the training error reaches 10−5.

The existing release, 2.1.0-Beta, does not provide a neural network copy utility

or functions that correctly scale and de-scale datasets, and so these have been

added to this author‟s implementation.

3.2.1 Training datasets

The training datasets consist of repeated runs of 𝑂𝐴. 16.5.4.2 [49]. With 16

evaluations being made each time, 6 runs of this OA will be required to

generate a training dataset of 96 points. This OA allows for a design of

experiments in up to five dimensions. For test functions in less than five

43

dimensions, the OA is trimmed by removing unneeded columns. This does not

affect the orthogonal properties of the array. The selection of the factors in each

subsequent OA is known as the infill criteria [50]; when subsequent OAs are

evaluated, each of its factors is chosen to be numerically furthest from all

previously tested factors.

3.2.2 Testing the fit

One traditional test for the quality of regression fits (such as presented in the

current work) is to calculate the MSE against a testing set, in which the samples

differ from those in the training set. Lower is better, and so we can measure the

success of the techniques herein by how much they reduce the MSE. The

testing sets are generated from the algorithm in [51]. The size is chosen as

1000 × 𝑑 where 𝑑 is the number of inputs to the neural network (or dimensions).

The positioning of so many points is computationally expensive, especially

when trying to maintain space filling properties. For this reason only one

template was generated for each of the four different dimensions that were

tested.

The range of all inputs and outputs is normalised to the interval [0.1,0.9] with

the scaling factors saved after processing. These factors are later used to scale

down the queries and scale up the neural network response.

Note: Unless otherwise stated, the MSE errors presented in this chapter are

calculated on scaled data [0.1,0.9], thus making possible fair comparisons

between otherwise disparate function output ranges.

3.2.3 Sample size

When choosing the size of the training datasets, how many samples should be

used? Too few samples will mean that the training set may not accurately

represent the underlying pattern. However, in situations where generating

training data is very time-expensive, it would be useful to know the minimum

size that can be of practical use when training CasCor neural networks. Another

44

question to be answered is; how the demand for training data varies with the

dimensions of the problem at hand? To determine the answers to these

questions CasCor training was performed using 13 test functions (defined in

Table A-1) in two, three, four and five dimensions with training datasets sizes in

the range [16 × 𝑑, 384 × 𝑑] (where 𝑑 is the number of dimensions).

3.2.4 Early stopping

Several tests were undertaken in order to answer two questions: 1. What is the

smallest size of validation set that can be used? 2. Does the use of larger size

validation sets have any beneficial effect on improving the fit of the trained

networks? The validation sets ranged from a size of 5% of the training set to

100% of the training set. Code from Beachkofski and Grandhi [51] provides the

method of distributing the samples in the validation set. This “improved Latin

hypercube” sampling was chosen because:

1) Generating validation sets of less than 1000 points is not computationally

expensive and can be done at run time,

2) The algorithm in [51] produces points that fill the hypercube uniformly, the

statistical properties of which are desirable as described in [50],

3) The technique is fundamentally different from that used to generate the

training set - ensuring that most, if not all, of the validation data points are

automatically independent from those in the training set.

After the validation error is initialised to 1.0, this author‟s heuristic algorithm for

early stopping is run each time a new hidden neuron is added to the network,

and is given below:

 Test the network against the validation set.

 If this new validation error is less than the old one, update the old validation

error with this new value and make a copy of this “best network so far”.

 Do not initiate early stopping until at least five hidden neurons exist in the

45

network.

 Trigger early stopping on the earliest of:

o The error on the validation set becoming less than 5 × 10−5 (suitably low

error)

o The validation error growing to be 50% larger than the smallest

experienced validation error (network is diverging)

o More than 31 hidden neurons existing in the network (likelihood of a

diverging network)

 When early stopping occurs, the “best network so far” is recalled from

memory to replace the active network. The training is halted and the network

is saved to permanent storage. The saved neural network is therefore that

which had the smallest validation error.

3.2.5 Dispensing with the testing set

Early stopping validation sets share the same property of a testing set in that

they both contain samples wholly independent from the training dataset. The

only difference is that testing sets are usually of a large size. Testing sets are

useful in determining how successful a neural network‟s training has been.

However, in the case of surrogate modelling, sampling for datasets is likely to

be very time-expensive. If we want to avoid the cost of generating a large

testing set, yet still retain a test for the quality of the fit, is there a size of

validation set that can give us a reasonable approximation to the results we

would get from a testing set? Experiments were performed that compare the

MSE calculated from validation sets of sizes [5%,100%] of the training set

against MSE calculations from much larger testing sets of size 1000 × 𝑑.

3.2.6 Ensembling

When preparing an ensemble, we need to answer the question of how many

neural networks we should include in that ensemble. Others have chosen an

46

arbitrary number [29, 32] for their ensembles, but here the ensemble size is

investigated with respect to its influence on reducing the MSE.

Ensembles of CasCor neural networks were trained on the 13 test functions

(Table A-1); each test was repeated ten times for the larger ensembles and 30

times for ensembles smaller than ten.

3.3 Results

3.3.1 Sample size

Figure 3-3 shows the results of the sample size test of training on the 13 test

functions in the appendix, covering two to five dimensions. Each test was

repeated ten times. After each training, the quality of the fit was evaluated by a

testing set of size 1000 × 𝑑. The resulting MSEs often differed by one or two

orders of magnitude, hence a need to normalise the results. In normalising the

results, the mean squared errors for each function were scaled such that the

size of the training dataset that yielded the worst error was attributed 1.0; the

training dataset set size that gave the lowest MSE was attributed a score of 0.0.

Figure 3-3 Change in testing MSE against training set size

47

Figure 3-3 shows the mean of the normalised error per dimension and also the

mean of all 13 test functions. A contribution of the current work is the

experimental finding that CasCor‟s demand for training data scales linearly with

the number of dimensions, and is not correlated with the nature of the surface of

the test function. Instead, the demand for training data is directly proportional to

the total number of weights that the training algorithm is required to optimise.

In all cases, less than 32 samples/dimension are seen to lead to poor mappings

of the underlying function. This corroborates Schmitz‟s success with her 28

dimensional CasCor metamodel; her 1000 samples (i.e. 35.7

samples/dimension) was a sufficient, but not ideal, sized training set [31] .

For this work, optimal training occurred when the training datasets were

between the sizes of 48 and 128 samples/dimension.

3.3.2 Early stopping

Figure 3-4 shows the results of an experiment to determine how big the

validation set should be with respect to the training set. For this experiment, 96

samples /dimension was chosen as the training set size. As before, training was

conducted on all 13 test functions and each test was repeated ten times; Figure

3-4 shows the mean average of the results.

A logarithmic trend line has been fitted to the data points in Figure 3-4 that

shows the error reducing by 25% as the size of the validation set is increased

from 5% to 100% of the training set. However, the conclusion drawn here is that

validation set sizes as small as 5% (or minimum size of 10 samples) could be

relied on to achieve much of the desired early stopping effect.

48

Figure 3-4 Reductions in the tested MSE with larger early

stopping/validation set sizes

In Table 3-1, the results of early stopping are displayed. For all the experiments

in this table, the training datasets were created from 48 samples per dimension

and the validation sets were set at 20% of the size of the training datasets. The

mean reductions in the MSE range from 8% to 57% due to early stopping (ES).

In all test cases, early stopping has reduced the common tendency of the

CasCor neural network to overfit.

3.3.3 Dispensing with a testing set

There was one other early stopping experiment for which we desired an

answer. If an unseen dataset is used for the early stopping set, then can we

dispense with a testing set entirely – relying only on the MSE calculated from

the validation dataset? If this approach is viable then, in circumstances when

creating datasets is time-expensive, we could dispense with the creation of a

testing set - relying solely on the validation error as a test for the quality of fit.

The results in Figure 3-5 were generated from the same experiment performed

for the results in Figure 3-4. However, for each size of validation set, the MSE

calculated from the validation set was compared to the MSE calculated from the

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0% 20% 40% 60% 80% 100%

M

S

E

Validation set size as % of Training set size

Mean MSE of 13
test functions

49

much larger testing sets (1000 × 𝑑). The validation and testing sets only differ

in the number of samples; both share the same property of containing samples

independent from those in the training dataset. The results suggest that

validation sets of 20% or greater are sufficient to give a close approximation to

the results from a much larger testing set. Taking a two dimensional test

function as an example; the training set would have numbered 48 × 2 = 96

samples, and a 45% validation set would have been of size 96 × 0.45 = 44. The

total number of samples we would have created = 140. With this validation set,

Figure 3-5 predicts that the MSE calculated from this, size = 44, validation set

will be within 7% (σ = 5%) of the MSE calculated from a testing set of size

= 2000 samples. This represents a significant time saving; if each sample

costs, for example, 20 minutes to generate, we save 25 days of sampling.

Figure 3-5 How close the validation dataset MSE is to the MSE from the

testing dataset

3.3.4 Ensembling with Early Stopping

For clarity, only three of the thirteen test function errors are shown in Figure 3-6,

however, the form of the line graphs were similar throughout all 13 functions;

the MSE reduced rapidly as the ensemble size increased from one to seven.

Smaller reductions in the MSE occurred until ensembles with a size greater

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%
Validation set size as % of Training set size

Mean inaccuracy of
validation MSE
compared to testing
MSE. Vertical bars show
standard deviation (σ).

50

than 25 were seen to deliver little benefit. Early stopping was also applied for

this experiment and so the MSEs in Figure 3-6 reflect the combination of both

techniques.

Figure 3-6 Reductions in MSE due to ensembling

Shown in Table 3-1 are the quantitative results of applying early stopping, and,

early stopping combined with ensembling. Across all test functions, the mean

squared error is reduced by a factor of 2.8 by a combination of both techniques.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 10 20 30 40 50 60 70 80 90 100

M

S

E

Ensemble Size

2D Michalewicz

Hartmann

Six Hump

51

Table 3-1 Benefits of early stopping (ES) and ensembling (Ens)

 MSE

310

Test function Dims
Size of train +
early-stop sets

Cascade Correlation
(CasCor)

CasCor
+ ES

CasCor
with Ens
+ ES

Ackley 2 116
33.79 14.33 3.10

Reduction in error: 57.59% 90.82%

DeJongs5th 2 116
176.33 80.06 58.10

Reduction in error: 54.60% 67.05%

Langermann 2 116
77.33 33.32 22.43

Reduction in error: 56.91% 70.99%

Michalewicz 2 116
22.90 14.38 10.78

Reduction in error: 37.22% 52.92%

Schwefel 2 116
36.73 19.96 4.39

Reduction in error: 45.67% 88.06%

Shubert 2 116
32.08 20.24 4.59

Reduction in error: 36.89% 85.69%

Six Hump 2 116
13.39 6.77 4.26

Reduction in error: 49.42% 68.15%

Ackley 3 173
14.66 6.36 5.64

Reduction in error: 56.62% 61.56%

Hartmann 3 173
12.67 11.60 6.50

Reduction in error: 8.40% 48.66%

Rosenbrock 4 231
18.27 14.41 8.19

Reduction in error: 21.10% 55.18%

Schwefel 4 231
27.47 20.73 13.70

Reduction in error: 24.51% 50.12%

Michalewicz 5 288
10.64 9.52 5.38

Reduction in error: 10.53% 49.45%

Schwefel 5 288
44.77 22.61 22.07

Reduction in error: 49.50% 50.71%

Average
reduction in error

39.15% 64.57%

3.3.5 Discussion

The curves in Figure 3-6 take the form:

 (3-1)

where is the mean MSE of the neural networks that constitute the

ensemble. Bias2
 is the asymptote to which the curves tend. Effectively, the bias

  2
1

2
EnsSize

Ensemble

MSE Bias
MSE Bias

EnsSize

 
 

1EnsSizeMSE 

52

is an MSE boundary that no size of ensemble can reduce because ensembling

acts only on the part of the error that is due to variance. Likewise, early

stopping, provided by the validation set, acts only to reduce the variance by

limiting overfitting.

A high bias can be thought of as representing a lack of complexity in the

regression model. For example: if a highly multimodal surface is modelled with

a low complexity / low modality surface, we would expect to find bias

dominating the MSE.

Equation (3-1) can be derived from the equations presented in the seminal

paper of Geman et al. [52] where they describe the bias/variance dilemma of

neural network training. The general form of the error is given in their paper as:

 (3-2)

and it can be shown that (3-1) and (3-2) are equivalent. Equation (3-1) provides

a convenient test for the relative contribution of variance and bias to the overall

error. Evaluating the MSE is a function commonly built into neural network

libraries and so, using MSE evaluations alone, new formulae are presented

here for estimating the bias (3-3) and then the variance (3-4) for any ensemble.

These are, to the author‟s knowledge, new formulations for determining

variance and bias. In appendix B.1, this new method is compared and

contrasted to Geman‟s method for finding bias and variance.

 (3-3)

 (3-4)

If variance is found to dominate, then creating a larger size of ensemble will

reduce the MSE and improve the mapping of the underlying function. If we find

that the bias is the largest component of our mapping error, we know that the

information capacity of our CasCor neural network has been exceeded.

2Error Variance Bias 

12 ()

(1)

EnsSizeEnsembleEnsSize MSE MSE
Bias

EnsSize

 




  2
1EnsSizeMSE Bias

Variance
EnsSize

 


53

Installing more neurons will confer additional capacity: in Chapter 4, this author

introduces „patchworking‟ to achieve an increase in capacity.

By way of example, Figure 3-7 presents a smaller region of Figure 3-6 and, for

clarity, only the Michalewicz data is re-plotted. Say that an ensemble of size 10

has been created. We calculate the MSE of that ensemble and also calculate

the mean MSE of the 10 members of that ensemble.

Figure 3-7 Reductions in MSE due to ensembling (Michalewicz data

replotted)

Now, by using (3-3) and (3-4), we find that our Bias2 = 0.01 and the Variance of

our ensemble = 0.0004. Ensembling to a size of 15 would reduce our variance

to 0.00027, but it is clear that the dominant component of our MSE is the bias. A

CasCor ensemble that possesses a high bias indicates a highly multimodal

function in the training dataset. When the MSE is undesirably high (and

dominated by bias), the application of this author‟s patchworking method is

advocated (Chapter 4).

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 5 10 15 20 25

M

S

E

Ensemble Size

2D Michalewicz

54

3.3.6 Visualisation of the benefits of early stopping and ensembling

In Figure 3-8, the Six Hump Camel Back test function is displayed. The result of

training a single CasCor neural network (Figure 3-9) shows high variance. The

mapping is improved with the application of early stopping (Figure 3-10) and

significantly improved by an ensemble of early stopped networks (Figure 3-11).

Figure 3-8 Six hump test function

Figure 3-9 CasCor’s high variance

Figure 3-10 With early stopping

Figure 3-11 With ensembling and

early stopping

3.3.7 Qualitative evaluation of CasCor training

Based on the experiments conducted as part of this thesis, it has been possible

to create a table (Table 3-2) that qualitatively describes how successful a neural

network‟s training is likely to have been.

-2

-1

-1

-2
-1
0
1
2
3
4
5

2

1

1

X1

X2

-2

-1

-1

-2
-1
0
1
2
3
4
5

2

1

1

X1

X2

-2

-1

-1

-2
-1
0
1
2
3
4
5

2

1

1

X1

X2

-2

-1

-1

-2
-1
0
1
2
3
4
5

2

1

1

X1

X2

55

Table 3-2 Qualitative evaluation of CasCor training

Neural network error;

testing dataset

Quality of

mapping

Comments

25 10MSE  
No real

mapping

No mapping has been found that

represents the features in the dataset.

2 25 10 1 10MSE    
Very poor

Some patterns were found in the

dataset. The neural network has made

an approximation to those patterns,

albeit poorly.

2 31 10 5 10MSE     Poor

The underlying function has not been

mapped in detail. Predictions from this

neural network should be made with

caution.

3 35 10 1 10MSE     Good

The underlying function has been

mapped quite well but not precisely.

Fine details of the response surface will

not have been captured.

3 41 10 1 10MSE     Very good

A successful mapping. Predictions from

the neural network can be made with

confidence.

41 10MSE   Excellent

An almost perfect mapping; the fine

details of the features in the training

dataset have been captured accurately.

56

3.4 Usage with real world data

The datasets in this chapter have thus far been generated from mathematical

test functions. The highly multimodal functions have in some cases caused

exceptional mapping problems for the CasCor neural network, despite the

application of early stopping and ensembling methods. However, are problems

in the real world as complex as some of these mathematical functions? The

answer to that question is “it depends”. We have seen that the demand for

training data varies linearly with the number of dimensions so, in the case

where we have (or can generate) sufficient samples for our train and test

datasets, the only factor that will preclude us from accurately modelling a real-

world problem is the modality of the response surface. If our real world training

data describes a highly multimodal surface then ensembling and early stopping

will not be sufficient tools for us to map the problem. Conversely, if the modality

of the response surface is low, we will be able to build a useful CasCor

metamodel. Two real world examples follow; Concrete Compressive Strength

(eight dimensional), and Abalone Age Testing (eight dimensional)

3.4.1 Concrete Compressive Strength

The owner of this dataset is Prof. I-Cheng Yeh of Chung-Hua University in

Taiwan. He has donated this dataset for public use and it is available on the

machine learning repository website [53]. He has published six papers on the

subject of concrete compressive strength, the first in 1998 [54] and the latest in

2006 [55]. He describes the compressive strength of concrete as a highly

nonlinear function of its ingredients and its age. The dataset provided has 1030

samples generated from laboratory experiments. All the data is quantitative,

with eight input dimensions and one output; the compressive strength measured

in MPa. The dataset is provided unscaled, the nine variables are tabulated

below in Table 3-3.

57

Table 3-3 Concrete compressive strength input and output data

Component Units

Cement Kg/m3 in a mixture

Blast Furnace Slag Kg/m3 in a mixture

Fly Ash Kg/m3 in a mixture

Water Kg/m3 in a mixture

Superplasticizer Kg/m3 in a mixture

Coarse Aggregate Kg/m3 in a mixture

Fine Aggregate Kg/m3 in a mixture

Age Days

Concrete compressive strength MPa (Output Variable)

Taking this dataset, an early stopping/validation set of size 309 set was first

created by separating a randomly chosen 30% from the total of 1030, hence a

training set of size 721 remained for training a CasCor based metamodel. This

size of the training set represents 90 samples/dimension which is well above

the minimum threshold of 32 samples/dimension calculated earlier in this

chapter. An ensemble size of 15 was chosen to minimise the inevitable

variance. There were no other choices necessary before commencing CasCor

neural network training. Training time was approximately 15 minutes on a

Laptop (CPU=Pentium SU4100 1.3GHz) i.e. ~ 8.5x106 MFLOP. This contrasts

with Yeh‟s training time of 30 seconds for the neural network he ultimately

chose to use for this dataset. Yeh‟s neural network comprised one hidden layer

with four neurons. He did not use the CasCor type of network, and in his paper

he described that he made this choice only after performing a number of trials to

choose the optimal topology of his neural network and to tune the training

parameters.

58

3.4.2 Concrete strength results

Yeh gives the testing error of his neural network as 4.32 MPa RMS (root mean

squared on upscaled data). For this author‟s comparative test, the 309 sample

validation set (as unseen data) was also employed as a testing set for the

CasCor ensemble. The trained ensemble of the current author had a mean of

6.27 neurons performing the mapping of this problem. The testing error was

4.09Mpa RMS (32.87 10MSE   on scaled data) which represents a 5%

improvement over Yeh‟s neural network. This improvement is made more

significant when we consider that no tuning, setup, or specialist knowledge of

the problem at-hand was required to achieve this result. For reference, Table

3-4 reproduces an extract of results generated by querying the CasCor

ensemble on the validation set.

Table 3-4 Concrete compressive strength prediction (sample of results)

C
e
m

e
n

t

B
la

s
t

F
u

rn
a

c
e

 S
la

g

F
ly

 A
s

h

W
a

te
r

S
u

p
e
rp

la
s

ti
c

iz
e

r

C
o

a
rs

e
 A

g
g

re
g

a
te

F
in

e
 A

g
g

re
g

a
te

A
g

e

C
o

m
p

re
s

s
iv

e
 S

tr
e

n
g

th
,

E
x

p
e
c

te
d

 O
u

tp
u

t
(M

p
a

)

C
a
s

C
o

r
 e

n
s
e

m
b

le

O
u

tp
u

t
 (

M
p

a
)

D
if

fe
re

n
c
e

 (
M

p
a
)

D
if

fe
re

n
c
e

 (
%

)

424 22 132 178 8.48 822 750 7 39.0 37.5 -1.6 -4.1

424 22 132 18 8.92 822 750 7 40.3 39.3 -1.0 -2.5

202 11 141 206 1.72 942 801 7 15.1 12.4 -2.7 -17.0

284 15 141 179 5.46 842 801 3 13.4 17.5 4.1 30.6

359 19 141 154 10.91 942 801 28 62.9 56.8 -6.1 -9.7

359 19 141 154 10.91 942 801 7 35.8 38.9 3.1 8.7

59

3.4.3 Abalone age prediction

Abalone are edible marine molluscs. Conventional age testing can be

described as a time-consuming and boring process that involves cutting the

shell, staining the cone, and counting the rings under a microscope; hence the

benefits of determining age from more readily measured quantities such as

weights and dimensions.

The data here are also found on the machine learning website and derive from

a non-machine learning dataset [56] that is used in the scaled form provided by

that website. There are 8 input dimensions, of which 7 are numeric and one

output dimension (age, years). For the current work, categorical data (Gender)

uses the following substitution; Male=1, Female=0 and Infant=0.5. Numeric data

that may also be relevant, such as weather and food availability, are not

available for this dataset.

The total dataset numbered 4177 samples from which a validation dataset of

size 1253 was separated. This validation/early stopping dataset, as unseen

data, was also used for final testing. As for the concrete compressive strength

training, an ensemble of size 15 was chosen to reduce the inevitable variance.

Training time was greater than that for the concrete dataset; approximately

double (on the same computer).

3.4.4 Abalone age prediction results

A sample extract of the results is presented in Table 3-5. Comparative

benchmarks are available in the literature [57]; Neural Network built using „R‟

[58] MSE = 4.31.The MSE for the CasCor ensemble of this work was 2.3%

lower at 4.21, and employed a mean of 6.33 neurons. For an undetermined

reason the ages of infants was predicted with a greater accuracy than samples

for which gender was known; MSE infants = 2.57, MSE Male = 4.62, MSE

female = 5.50.

60

Table 3-5 Abalone age prediction (sample of results)
G

e
n

d
e
r

L
e
n

g
th

D
ia

m
e

te
r

H
e
ig

h
t

W
h

o
le

 W
e
ig

h
t

S
h

u
c
k

e
d

 W
e
ig

h
t

V
is

c
e

ra
l
W

e
ig

h
t

S
h

e
ll

 W
e

ig
h

t

A
c
tu

a
l

A
g

e
,

E
x

p
e
c

te
d

O
u

tp
u

t
(Y

e
a

rs
)

C
a
s

C
o

r

e
n

s
e

m
b

le

o
u

tp
u

t
(y

e
a

rs
)

D
if

fe
re

n
c
e

(Y
e

a
rs

)

D
if

fe
re

n
c
e

 (
%

)

0 0.51 0.40 0.14 0.81 0.46 0.20 0.20 10.0 8.0 -2.0 -20

1 0.64 0.50 0.19 1.30 0.44 0.26 0.47 16.0 16.1 0.1 0.6

1 0.50 0.40 0.17 0.83 0.25 0.21 0.29 13.0 14.1 1.1 8.5

0 0.49 0.40 0.16 0.66 0.25 0.13 0.24 14.0 13.0 -1.0 -7.1

0.5 0.41 0.30 0.12 0.32 0.13 0.07 0.11 7.0 8.4 1.4 20

0 0.47 0.35 0.15 0.52 0.19 0.12 0.18 11.0 11.8 0.8 7.3

0.5 0.43 0.38 0.11 0.33 0.13 0.08 0.10 10.0 8.2 -1.8 -18

0.5 0.37 0.27 0.09 0.21 0.08 0.05 0.07 7.0 7.0 0.0 0

1 0.57 0.44 0.18 0.90 0.31 0.19 0.33 14.0 14.5 0.5 3.5

3.4.5 Summary of real world test data

The purpose of including this test data was primarily to demonstrate examples

of the successful application of CasCor neural networks on real, as well as

synthetic problems. The examples were sought from the machine learning

repository [1]. Of interest is to note that the majority of their test data did not

conform to the requirements of the CasCor surrogate of the current work,

namely; many datasets were classification, or mixed (regression/classification),

61

and many examples contained too few samples and so did not conform to the

minimum-samples/dimension threshold of 32 per dimension.

Results for the concrete and abalone examples do compare favourably with

similar tests found in the literature. Although both CasCor ensembles examples

here did return lower errors (either MSE or RMS) than the errors quoted in the

literature, it should be stated that the experimental set-ups were not identical.

Specifically the methods of generating the training/testing/validation datasets

and the method of testing for the final error differed and so a direct performance

comparison is not possible.

When the bias and variance of the concrete and of the abalone ensembles was

calculated, it was found that bias constituted >97% of the remaining error. To

reduce this error, we would require our CasCor ensemble to have a greater

information capacity.

3.5 Conclusion

The aim of the work in this chapter was to perform experiments with the known

techniques of early stopping and ensembling. The initial objectives were to find

out what were the effects of: the size of the early stopping dataset, the size of

the training dataset, how the demand for training data varied with the number of

dimensions, and whether a testing dataset is strictly necessary. These

objectives have been achieved and constitute contributions of the current work.

In addressing the variance problem for this neural network type, early stopping

and ensembling have been shown to be valuable tools. Early stopping sets as

small as 5% of the training set have been shown to be effective in reducing the

variance error. The current work also suggests that there may be no need for a

separate testing set. A validation set of size 45% of the training set can

substitute for a testing set 45 times larger, returning an MSE calculation within

7% of the MSE from that testing set . This offers the possibility of (5%) 

62

saving a significant amount of time that would otherwise have been spent

sampling for a testing set.

Ensembling has been shown to be more effective than early stopping in

reducing variance and, in the limit, will reduce the variance to zero. Novel

equations have been presented in this chapter that will provide approximations

for the variance and the bias of an ensemble using mean square error

calculations alone. The determination of bias and variance contributed by the

current work deviates from the theme of metamodelling, and so a comparison

with an existent technique fits best in the appendix.

Using the equations given in this chapter, and assuming that ensembling will be

applied de-rigueur, if bias is found to be the dominant component of our error

then we infer that the information capacity of the CasCor network has been

exceeded because the features in the training dataset lie on a highly multimodal

response surface. Chapter 4 addresses the bias problem.

63

4 PATCHWORKING AS A TECHNIQUE FOR THE BIAS

PROBLEM OF CASCADE CORRELATION NEURAL

NETWORKS

4.1 Introduction

The three components of a neural network‟s mapping error are; variance, bias,

and noise. Chapter 3 has addressed the variance problem using the known

techniques of early stopping and ensembling. When training on deterministic

datasets, such as results from CAE solids and fluids solvers, we can expect no

experimental noise. The remaining problem is therefore bias, which is

addressed in this chapter.

Figure 4-1 High bias

Constructive neural networks, such as Cascade Correlation (CasCor) have the

potential to solve the bias problem (Figure 4-1) of neural networks by adapting

their size to suit the number of features of the problem at-hand. However, as

experiments in this chapter will show, the information capacity of the CasCor

neural network appears to limit its potential. Although not rigorously defined, this

capacity is a measure of a neural network‟s ability to represent the features

within the training set and roughly corresponds to its ability to model any given

High bias (under fitting)

Ideal fit

64

function. It is also related to the amount of information that can be stored in the

neural network and to the notion of complexity.

In this chapter, a novel technique, named here as “patchworking”, is introduced

that addresses the bias problem of CasCor networks, by raising their

information capacity. By using patchworking for domain subdivision the

information content in the training sets, and hence the error, is much reduced.

The total information capacity of the patchwork has grown – thus improved

generalisation on multimodal test functions is obtained. As will be seen,

patchworking, when used in combination with early stopping and ensembling,

can achieve an order of magnitude improvement in the error.

4.1.1 Patchworking - a subdivision method

This technique is particularly suited to highly multimodal response surfaces.

Determined empirically, “highly multimodal” is defined as six or more distinct

extrema over a multi-dimensional surface; the fit deteriorates significantly when

the extrema exceed nine. Functions such as these are used in this chapter to

demonstrate CasCor‟s difficulty in fitting the underlying function (functions given

in the appendix). These poor fits appear as high MSEs on testing sets and are

also clearly visible in surface plots. Neither early stopping, nor ensembling, are

sufficient to overcome these poor fits as the source of this problem is the

inability of a single CasCor neural network to represent the complex features in

the dataset.

Some of the greatest strengths attributed to the CasCor type of neural network

are as a result of it growing its own topology during training. An intrinsic feature

is that at any point during training, no more than one new neuron will be having

its weights optimised. It is widely believed that this distinguishing behaviour

results in rapid training times; however, this is challenged by [59], in which

Squires et al. conclude that freezing of formerly trained weights can be

detrimental to effective learning.

65

The universal function approximation abilities of the CasCor neural network,

mathematically proven by Kwok and Yeung [60], are only applicable if we

assume that correct choices have been made when each and every neuron was

inserted. By taking a system view of the training process, it can be argued that

correct choices are frequently not made when mapping multimodal functions.

Informally, the training process plays the role of an agent in the system. This

agent aims to train and fix in the network one neuron at a time that, in isolation,

reduces the MSE on the training set by the largest possible amount. Several

time steps later in the training, more neurons have been added and we see,

with the benefit of hindsight, that incorrect choices have been made in the early

stages of training. What were once apparently optimal additions to the network

are ultimately conspiring to deflect the network from a good mapping of the

underlying function. The training algorithm dictates that once neurons have

been placed in the network, they may not be removed or re-trained (weight

freezing) and so the problem becomes irreconcilable [59]. The problem is one of

decision theory – specifically evidential decision theory: how can a training

process place a neuron in the network which, later in time, will combine with

downstream neurons in only a beneficial way?

A more formal description can be found in [61] where they consider the

problems caused when training on the simple “double-tanh” function. The

problem is seen to be sufficient to preclude, or at least delay, convergence of

the CasCor network. Variants of the CasCor neural network include one that

only adds neurons to a single hidden layer (breadth) [47] and one that chooses

whether to add depth or breadth to the network [62]. Both have mixed success

against the standard CasCor.

In this author‟s training experiments with datasets that contain highly multimodal

functions (Table A-1), the training problem becomes clearer when monitoring

the validation MSE. As the network is training, the insertion of new neurons

should be conferring a greater information capacity to the neural network, and

the validation MSE should decrease. Inserting the first two or three hidden

66

neurons does cause a small decrease in the validation MSE, but soon after, this

error increases resulting in a very poor generalisation of the underlying function.

The hypothesis behind patchworking is that by subdividing the input domain, the

number of extrema that any one neural network must approximate is kept below

the multimodal threshold. Hence, CasCor networks with a small number of

neurons can approximate the function over each subdivision with a lower MSE.

In this way, patchworking overcomes the fundamental weight freezing problem

of this neural network. Ensembling and early stopping can be used in

conjunction with patchworking and are, in fact, logical accompaniments.

4.1.2 Patchworking method

The algorithm used to construct the patchwork is shown in Figure 4-3. It allows

for a user defined number of subdivisions known as “depth” and can be applied

to as many input dimensions as is practical. Note, though, that the number of

required networks grows exponentially  
2

depth×dimensions
 and so this method may not

be practical if the dimensions number more than nine or ten. The patchworking

technique is shown in Figure 4-2 and is applied as follows:

1. Train at first without subdividing the domain (patchwork depth=0)

2. Test the MSE after this training.

3. Subdivide the input domain if the test error is undesirably high (depth =

depth + 1).

4. Create more training samples if necessary and re-train on these

subdivisions (or „patches‟).

5. Repeat steps 2-4 until the testing MSE is satisfactorily low.

A relatively simple algorithm can be constructed to query such a patchwork,

assuming that we have stored on file the minimum and maximum bounds of

each network‟s domain.

67

Figure 4-2 Patchworking subdivisions for a 2D function

Figure 4-3 The patchworking algorithm

Depth 0 Depth 1 Depth 2

Generate LatinHyperCube template for use in early stopping

Run_LatinHyperCube() //to create Validation set

Increment global count_of_evaluations

Scale the Training set and the Validation set [0.1,0.9]

Train Neural Networks (ensemble_size)

Update the NeuralNetQuery file to reflect the sub-domain of these
new Neural Networks

Iterate “n” times

sub_domain_k = list_of_sub_domains(n)

Call RecursiveFunction(sub_domain_k, depth+1)

RETURN (success)

False

True

False

IF (count_of_evaluations > max_permissible_evaluations)
OR IF

(depth > max_permissible_depth) RETURN (fail)

IF (NNvalidation_error < desired_NNerror)
RETURN (success)

IF (count_of_evaluations > max_permissible_evaluations)
RETURN (fail)

while (available_training_data) <
(user_specified_minimum_train_data_per_NN)

Run_Orthogonal_DoE() //builds Training dataset

Increment global count_of_evaluations

True

//Our problem size grows exponentially
n = 2 ^ (count_of_parameters);

//Generate list of „n‟ sub_domains
BranchAndBoundDescriminator()

False

RecursiveFunction(domain_to_study, depth)

Global count_of_evaluations = 0
depth = 0
Call RecursiveFunction(whole_domain, depth)

68

Note that there may be surfaces for which patchworking is not an optimal

solution: for example, a two dimensional surface where the majority of the

features occur in just one quadrant (i.e. one patch). In this example, the

remaining three patches are not providing any improvements in the mapping of

the three „easier‟ quadrants, yet they still require more samples upon which to

train. A more optimal patchworking solution would apply techniques from

analysis of variance (ANOVA) to determine subdivision based upon an

evaluation of those sub domains with the highest variance.

4.2 Experimental setup

The test functions used are the same thirteen of the previous chapter (Table

A-1). Sampling the functions for the training set was likewise performed with an

orthogonal array and early stopping and ensembling are applied as described in

Chapter 3.

The amount of training data per patch was calculated from the results in Figure

3-3 of Chapter 3 and this is tabulated in column 3 of Table 4-1.

69

4.3 Qualitative results of patchworking (visualisation)

Shown in [Figure 4-4,…,Figure 4-24]

are surface plots demonstrating how

CasCor fits to the 2D mathematical

test functions of Table A-1.

Each set of results is presented as a

triplet. The top image is the test

function. The middle image is the

surface plot of a size 15 ensemble of

early stopped CasCor networks. The

third image shows clearly the

improvement when the patchworking

technique has been applied to a

depth of 1 along with the techniques

of early stopping and ensembling.

Figure 4-4 Shubert function

Figure 4-5 Shubert Ens+ES

Figure 4-6 Shubert

patchworking+Ens+ES

-8

-7

-6

-200

-100

0

100

200

300

-8

-7

-6

X1

X2

-8

-7

-6

-200

-100

0

100

200

300

-8

-7

-6

X1

X2

-8

-7

-6

-200

-100

0

100

200

300

-8

-7

-6

X1

X2

70

Figure 4-7 Ackley function

Figure 4-8 De Jong's 5th function

Figure 4-9 Ackley Ens+ES

Figure 4-10 De Jong's 5th Ens+ES

Figure 4-11 Ackley

patchworking+Ens+ES

Figure 4-12 De Jong's 5th

patchworking+Ens+ES

-30

0

29

0

5

10

15

20

25

-30

0

29

X1

X2
-20

0

20

-200

0

200

400

600

-20

0

20

X1

X2

-30

0

29

0

5

10

15

20

25

-30

0

29

X1

X2
-20

0

20

-200

0

200

400

600

-20

0

20

X1

X2

-30

0

29

0

5

10

15

20

25

-30

0

29

X1

X2
-20

0

20

-200

0

200

400

600

-20

0

20

X1

X2

71

Figure 4-13 Langermann function

Figure 4-14 Michalewicz function

Figure 4-15 Langermann Ens + ES

Figure 4-16 Michalewicz Ens+ES

Figure 4-17 Langermann

patchworking+Ens+ES

Figure 4-18 Michalewicz

patchworking+Ens+ES

0

1

2

-1

-0.5

0

0.5

1

0

1

2

X1

X2

0

2

3

-2

-1.5

-1

-0.5

0

0.5

0

2

3

X1

X2

0

1

2

-1

-0.5

0

0.5

1

0

1

2

X1

X2

0

2

3

-2

-1.5

-1

-0.5

0

0.5

0

2

3

X1

X2

0

1

2

-1

-0.5

0

0.5

1

0

1

2

X1

X2

0

2

3

-2

-1.5

-1

-0.5

0

0.5

0

2

3

X1

X2

72

Figure 4-19 Schwefel function

Figure 4-20 Six Hump Camel Back
function

Figure 4-21 Schwefel Ens+ES

Figure 4-22 Six Hump Camel Back
Ens+ES

Figure 4-23 Schwefel

patchworking+Ens+ES

Figure 4-24 Six Hump Camel Back
patchworking+Ens+ES

4.4 Quantitative results of patchworking

In Table 4-1 Enssize = 15 was used and the basic CasCor results are shown

alongside the benefits of ensembling (Ens) + early stopping (ES), patchworking,

and all three combined. Patchworking is applied to a depth of one. The same

0

247

495

0

400

800

1200

1600

0

247

495

X1

X2

-2

-1

-1

-2

-1

0

1

2

3

4

5

2

1

1

X1

X2

0

247

495

0

400

800

1200

1600

0

247

495

X1

X2

-2

-1

-1

-2
-1
0
1
2
3
4
5

2

1

1

X1

X2

0

247

495

0

400

800

1200

1600

0

247

495

X1

X2

-2

0

2

-2

-1

0

1

2

3

4

5

-1

0

1

X1

X2

73

computer program was used to generate all the neural networks, the only

changes being flags that turn on/off the features shown. Results shown are

formed from the arithmetic mean of ten trials.

When compared to a standalone CasCor neural network, the mean effect of

patchworking is to reduce the error by a factor of 6.2. Employing ensembling

and early stopping on these functions reduces the error by a mean factor of 2.8.

However, the real benefit of patchworking is that it can be combined with the

techniques of early stopping and ensembling – here delivering a mean

reduction in neural network testing error of a factor of 11.9 (91.6%).

4.5 Patchworking for greater depths and dimensions

From this author‟s experience with the CasCor neural network, no more than

nine features can be mapped satisfactorily by one network alone. Taking the full

domain of the two dimensional Schwefel function as an example, Figure 4-25,

we see significantly more than nine stationary points on this surface.

Patchworking to a depth of one, Figure 4-27, begins to approximate the

Schwefel surface but, using the recursive facility of the patchworking algorithm,

a significant improvement can be seen in Figure 4-28 when patchworking has

been allowed to continue to a depth of three.

74

Table 4-1 Patchworking results

MSE
310

Test function Dims

Size of
train +
early-stop
sets.
Patchwork
Off/On

Cascade
Correlation
(CasCor)

CasCor
with Ens +
ES

CasCor with
Patchworking

CasCor with
Patchworking
+Ens + ES

Ackley 2 116/461

33.79 3.10 6.31 1.53

Reduction
in error:

90.82% 81.33% 95.47%

DeJongs5th 2 116/461

176.33 58.10 33.20 11.23

Reduction
in error:

67.05% 81.17% 93.63%

Langermann 2 116/461
77.33 22.43 3.82 1.48

Reduction
in error:

70.99% 95.06% 98.09%

Michalewicz 2 116/461

22.90 10.78 5.23 3.27

Reduction
in error:

52.92% 77.16% 85.72%

Schwefel 2 116/461

36.73 4.39 3.77 0.80

Reduction
in error:

88.06% 89.75% 97.81%

Shubert 2 116/461

32.08 4.59 3.11 0.27

Reduction
in error:

85.69% 90.31% 99.15%

Six Hump 2 116/461

13.39 4.26 1.46 0.36

Reduction
in error:

68.15% 89.09% 97.34%

Ackley 3 173/1383

14.66 5.64 4.78 2.37

Reduction
in error:

61.56% 67.38% 83.84%

Hartmann 3 173/1383

12.67 6.50 2.44 2.38

Reduction
in error:

48.66% 80.76% 81.18%

Rosenbrock 4 231/3687

18.27 8.19 4.88 2.99

Reduction
in error:

55.18% 73.27% 83.61%

Schwefel 4 231/3687

27.47 13.70 2.84 2.37

Reduction
in error:

50.12% 89.66% 91.36%

Michalewicz 5 288/9216

10.64 5.38 1.74 1.35

Reduction
in error:

49.45% 83.62% 87.35%

Schwefel 5 288/9216

44.77 22.07 3.66 1.55

Reduction
in error:

50.71% 91.83% 96.54%

Average
reduction in
error

64.57% 83.88% 91.62%

75

Figure 4-25 Schwefel function

x(i) [-500,500]

Figure 4-26 CasCor mapping of full
domain of the Schwefel function
(Ens + ES)

Figure 4-27 CasCor of Schwefel
(Patchworking depth = 1 + Ens +
ES)

Figure 4-28 CasCor of Schwefel
(Patchworking depth = 3 + Ens +
ES)

The required sizes of training datasets per patch remain the same for any given

problem, but the number of patches grows exponentially  
2

depth×dimensions


therefore, so too will the total training data required. Some fields in which

patchworking may be appropriate are those which already have very large

datasets e.g. health databases, astronomy data, chemical process data, or any

other collection of data samples where the data available is exponentially larger

than the dimensions of that data. The information capacity of patchworked

CasCor networks also grows exponentially and so it is possible to provide a

-500

-5

490

0

400

800

1200

1600

2000

-500

-5

490

X1

X2

-500

-5

490

0

400

800

1200

1600

2000

-500

-5

490

X1

X2

-500

-5

490

0

400

800

1200

1600

2000

-500

-5

490

X1

X2

-500

-5

490

0

400

800

1200

1600

2000

-500

-5

490

X1

X2

76

useful heuristic rule-of-thumb to calculate the number of features that can be

mapped. In the general case:

Maximum features mappable (4-1)

Therefore, given an eight-dimensional problem, patchworking to a depth of one

could map as many as 2,304 unique features in a training dataset numbering

98,304 samples.

4.6 Summary of patchworking

The architecture of the Cascade Correlation neural network means that it is

quick and simple to configure for training. However, its weight freezing

mechanism can introduce undesirably high bias when mapping multimodal

functions. Although weight freezing has not been removed by the current

author, its detrimental effects can be ameliorated by sub dividing a highly

multimodal surface into small domains - each with fewer features.

This introduction of this author‟s patchworking technique reduces the bias

component of error by raising exponentially the information capacity of the

Cascade Correlation neural network. Although patchworking does require

exponentially larger training datasets, it overcomes the weight freezing problem

of this neural network type and leads to significantly improved fits for multimodal

problems - yielding a reduction in error of over ten in some cases.

4.7 Usage with real world data

An example of real world usage is the application of the patchworking technique

to a dataset that has many thousands of samples; namely census data,

specifically house prices in California [63], again from the machine learning

repository [1]. The original dataset has eight input dimensions and one output

dimension with 20,640 samples in the training dataset. The eight inputs are:

median house value, median income, housing median age, total rooms, total

bedrooms, population, households, latitude, and longitude. The dependant

()9 2 depthxdimensions 

77

variable is the median house value. By applying this author‟s test for the

minimum training dataset (patchworking depth=1) it is found that a minimum of

65,536 samples would be needed for eight dimensions, hence there is a

requirement to reduce the dimensionality of the input dataset. The following

operations were performed; total bedrooms and population is reformed as a

ratio; bedrooms/population. Likewise, total rooms and households becomes the

ratio rooms/household. With six dimensional data, our test for minimum dataset

yields a minimum of 12,288 samples. As there are 20,640 samples in the

source data, there now exists sufficient training data to patchwork the census

dataset. Of those 20,640 samples, 30% is set aside for our validation / early

stopping dataset, leaving 14,447 for the training dataset. Results from a non-

patchworked CasCor ensemble are to be compared to a patchworked CasCor

ensemble. In both cases, an ensemble size of 15 is chosen, and early stopping

is applied using the validation dataset.

4.7.1 California house price results

The MSE of the non-patchworked solution was 38.05 10 . For some of the

patches in the patchworked solution, specifically those representing houses in

regions where the income is in the top 50% and the age of the houses are

newer (bottom 50%), the MSEs were similarly high and in all cases represent

poor mappings of the underlying function of house value. Speculatively, it could

be concluded that these high errors were the result of the response surface

being above this author‟s multimodal threshold of nine features per patch.

However, these high errors could also have arisen due to the training dataset

having insufficient data to represent all the factors that influence house price.

For example; the local geography, the proximity of commercial zones, the

proximity of the houses to industrial parks and the transport infrastructure could

correlate to house value but are not captured in this census dataset.

Nevertheless, the application of patchworking resulted in lower MSEs for

several other patches [
33 10 ,

34.8 10]; a reduction of over 50% in the error.

78

For this real-world dataset, patchworking has successfully raised the overall

information capacity, thereby reducing the bias, hence reducing the error.

Table 4-2 shows a small extract of the house price prediction for the

patchworked and non-patchworked solution. The mean error in house price

prediction of the non-patchworked solution was 20.3%, the patchworked

solution‟s mean error was 11.6%. This translates as predictions of house value

(where the mean house price is ~$192,000) having a mean error of $22,350

(patchworked) versus $38,900 (non-patchworked).

Table 4-2 House price prediction

M
e
d

ia
n
 i
n
c
o

m
e

H
o
u
s
in

g
 m

e
d

ia
n
 a

g
e

B
e
d
ro

o
m

s
/p

o
p

R
o
o
m

s
/h

o
u
s
e

h
o
ld

L
a
ti
tu

d
e

L
o
n
g

it
u

d
e

R
e
a
l
h
o

u
s
e
 v

a
lu

e

(E
x
p

e
c
te

d
 P

re
d

ic
ti

o
n

)

M
e
d

ia
n
 h

o
u
s
e
 v

a
lu

e

(n
o
n
-p

a
tc

h
)

M
e
d

ia
n
 h

o
u
s
e
 v

a
lu

e

(P
A

T
C

H
)

D
if
fe

re
n
c
e

(n
o
n
-p

a
tc

h
)

D
if
fe

re
n
c
e
 (

n
o

n
-p

a
tc

h
 %

)

D
if
fe

re
n
c
e

(P
A

T
C

H
)

D
if
fe

re
n
c
e
 (

P
A

T
C

H
 %

)

4.31 34 0.34 5.54 34.19 -118.61 210100 233866 220626 23766 11.3 -10526 -5

3.73 30 0.34 5.4 35.38 -118.95 83100 231720 148930 148620 178 -65830 -79.2

4.00 30 0.25 3.69 34.28 -119.16 219200 103647 183066 -115553 -52.7 36134 16.5

4.19 29 0.29 5.3 34.22 -119.17 197100 222322 212317 25222 12.8 -15217 7.7

3.86 30 0.31 4.79 34.21 -119.18 234700 242014 207547 7314 3.1 27153 11.6

3.93 32 0.27 4.94 34.17 -119.18 187600 251222 203118 63622 33.9 -15518 8.3

4.62 32 0.24 5.03 34.18 -119.19 181100 228883 210826 47783 26.4 -29726 -16.4

4.69 35 0.32 5.23 34.39 -119.3 199300 236638 235460 37338 18.7 36160 18.1

4.8 Limitations of Patchworking

The patchworking method, introduced in this chapter, is a subdivision

mechanism for reducing the number of features that any one Cascade

79

Correlation neural network must map and allows a patchwork of the networks to

map highly multimodal functions. Clear improvements generated by this

author‟s patchworking technique have been demonstrated in this chapter; both

in the table of results and in the surface plots. The effectiveness of

patchworking vindicates the initial hypothesis that this neural network type has

an inherent weakness when presented with multimodal functions. Patchworking

does offer a workable solution that exponentially raises the capacity of a

patchworked Cascade Correlation ensemble. The compromise that we are

forced to make, should we need to use patchworking, is the use of training

datasets exponentially larger than the dimensions of the problem. If using this

neural network type for machine learning, it is conceivable that we already have

a plethora of data – the census dataset for example – and we can expect that

patchworking will deliver a reduction in the mean squared error by reducing the

bias of our patchwork.

It is an unfortunate conclusion that this thirst for training data obviates the use of

patchworking to accelerate design optimisation. Even for a three dimensional

patchwork, eight patches are required and with 32 3 training samples per

patch the minimum amount of training data would number 768 samples. With

reference to the aerofoil optimisation (Chapter 5), a Pareto optimal set of

aerofoils was found after only 300 function evaluations. Therefore, if a

patchworked CasCor metamodel was applied to accelerate such an aerofoil

optimisation, it would in fact more than double the elapsed time compared to not

using a metamodel at all.

One further weakness of the patchworking technique is revealed by considering

training on data that is greater than three dimensions. To describe this

weakness, first consider a three dimensional case. With no patchworking (or

patchworking at depth = 0) the CasCor neural network has been found to

approximate from one to nine features. Patchworking to depth = 1 yields eight

patches. Each of those patches may represent from one to nine features each

(8 < total features mappable by the patchwork < 72). Hence, a three

80

dimensional patchwork (depth = 1) continues to map features where a non-

patchworked solution leaves off. Now consider a six dimensional case. With no

patchworking, once again we can approximate from one to nine features.

However, patchworking to depth = 1 yields a patchwork of 64 neural networks

(64 < total features mappable by the patchwork < 576). Were the six

dimensional problem to contain only 30 features in the training dataset, we

would have given our patchwork too much capacity to map these 30 features.

Our bias would be very low, but we would have induced the likelihood of high

variance. A large size of ensemble would then be necessary to reduce this

variance, thus increasing the overall training time.

4.9 Conclusion

The principal contributions of this chapter derive from the investigation of

functions that cause exceptional mapping problems for the Cascade Correlation

neural network. Attempting to train on the full domain of the Schwefel function

illustrates a complete failure of this neural network (Figure 4-26). The neural

network ensemble‟s failure is demonstrated by a fall-back to mapping

Schwefel‟s surface with nothing more than a hyperplane. This hyperplane-

failure is readily repeatable with any sufficiently multimodal function and is in-

no-way unique, conceivably occurring for real world problems as well as for

mathematical test functions. Testing the modality of a dataset prior to training

may not be possible. Of little consolation is that a complete failure to train on a

given dataset is a good indicator of high modality in that dataset i.e. greater

than nine stationary points.

The experimental results in this chapter call into question the universal function

approximation capabilities of the cascade correlation neural network (Kwok and

Yeung [60]). In theory, the provision of an unlimited amount of training data, and

no cap on the maximum number of neurons, should mean that this neural

network type can approximate an arbitrary function. However, this neural

network‟s maximum capacity has been found to be limited to surfaces of

minimal complexity; specifically those that can be fully approximated with fewer

81

than 9 or 10 hidden neurons [64]. One beneficial outcome of this limiting

capacity is that we can now calculate the necessary number of training samples

prior to training (section 3.3.1). Applying the patchworking technique does

exponentially increase capacity - only then is a CasCor patchwork (of

unrestricted depth) capable of universal function approximation. Note also that

simply removing the weight freezing mechanism is not without complications.

Doing so would re-introduce the moving target problem of training – a problem

circumvented by the original Cascade Correlation neural network.

Only one example was found in the literature of other researchers failing to map

multimodal functions with CasCor neural networks, this paper being a

theoretical approach using the double-tanh function [61]. No publications were

found that highlighted a failure to map real-world datasets. Informally, users of

the FANN library report mixed success with CasCor on their forum. Those that

initially fail to train on a dataset using CasCor go on to have success with fixed

topology neural networks. Are there any approaches other than this author‟s

patchworking technique that may work for multimodal datasets?

A neural network type in the literature, inspired by CasCor, is Constructive Back

Propagation (CBP) of Lehtokangas [65]. The “cascading approach” is kept;

namely starting with an empty network and letting the topology grow in size,

however, two neurons are trained at each time step rather than just one.

Lehtokangas does not explore the results for training three, four, or even ten

neurons at each time step, although his papers do state that this functionality is

supported with his training algorithm [65, 66]. Also, he reduces his error not by

correlation but by the back propagation technique. For all benchmarks given by

Lehtokangas, CBP is seen to deliver a neural network with lower testing errors

than CasCor and without an increase in training time. Unfortunately, further

experimentation with CBP has been impeded as the original code has not been

made publicly available. CBP can, in principle, be implemented as part of

Nissen‟s FANN library. An attempt was made by the current author to realise

such an implementation but it was not possible due to time constraints.

82

In summary, CBP has the potential to train successfully on the same multimodal

surfaces used in this work to illustrate CasCor‟s weakness. If the CBP training

datasets need only grow linearly with the number of dimensions (rather than

exponentially for patchworked CasCor networks) then CBP offers an attractive

possibility for building a cascading neural network metamodel to assist

engineering design optimisation.

83

5 SHAPE OPTIMISATION CASE STUDY

5.1 Introduction

This chapter describes the shape optimisations of aerofoils for use with

unmanned aerial systems (UAS). As aerofoil optimisation is a long running

theme within the research community, the contribution deriving from this

chapter‟s optimisations is minor. The underlying motivation, though, was to use

aerofoil optimisation as a case study of a computer-based real-world shape

optimisation. The overall aim was to expose the practicalities of such

optimisations, with the intent of revealing potential research gaps.

After setting the scene for the UAS scenario (5.1.1), the main body of this

chapter first presents a flowchart of a generic optimisation process that is typical

for shape optimisation needs (5.1.2). The objectives for this aerofoil optimisation

are stated (5.1.3), and a case made for the application of a multi-objective

optimisation algorithm (5.1.4). Then described are the software components

that were used to create new aerofoils on-demand. Aerofoils with minimal drag

and maximal lift were sought; the configuration of the fluid dynamics software

that was employed to satisfy these requirements is then described (5.2.4).

Results of the aerofoil optimisations are presented in section 5.3, although the

discussion that follows in section 5.5 pertains to the overall aim of this chapter.

Discussed are; the significant proportion of time in preparing the optimisation

jobs and the problems encountered whilst the optimisations were running. Two

research gaps are uncovered; since filled by the work of two Cranfield

Graduates.

5.1.1 The UAS scenario

A dimensionless value often associated with the analysis of the flow of fluids

such as air is the Reynolds number. For the wings of aircraft this value is

proportional to the magnitude of a wing‟s chord and proportional to its airspeed.

Aerofoil optimisation has often focused on finding better aerofoils for manned

84

aircraft. Having large airframes, and often high cruising speeds, these aerofoils

operate at high Reynolds numbers (610).

Recent military conflicts have seen a 300% year-on-year surge in the

deployment of Unmanned Aerial Systems (UAS) [67]. Classified by either range

or size, the close-range or short-range Mini-UAS operate at Reynolds numbers

between 75,000 and 150,000. The larger, medium-range, versions typically

cruise at greater speeds and have larger chord sizes but, nevertheless, operate

at or below Reynolds numbers of 5x105 [68].

In Carmichael‟s comprehensive NASA report [69] he named 12 distinct regions

of interest for Reynolds numbers, ranging from the completely viscous flow at

fractional Reynolds numbers to Reynolds numbers as high as 109
 in which large

nuclear submarines operate. The operating Reynolds numbers for close-range

and medium-range UAS place us in two regions of Carmichael‟s-12; both of

which he categorises as operating conditions where extensive laminar flow may

be obtained in the boundary layer over much of the surface of an aerofoil.

Though he alludes to the desirable effect that this laminar boundary layer can

have on reducing the drag of an aerofoil, much attention is also devoted to the

highly undesirable effect of the detachment of this layer (a worse effect, seen

more frequently for the lower end of the Reynolds numbers under consideration

here, is the failure of this layer to re-attach). Detachment of the boundary layer,

or the formation of a boundary layer bubble, significantly increases drag and

reduces lift and can also initiate a complete stall of an aerofoil at manoeuvring

angles of attack (as low as 6 degrees) [70] rather than more usual stalling

angles which are typically in excess of 10 degrees.

The idiosyncrasies of each of the 12 bands of Reynolds numbers that

Carmichael describes means that aerofoils designed to perform well for large,

manned, aircraft cannot be assumed to have optimal performance for the

smaller airframes and lower airspeeds of the close-range and short-range UAS

- hence the motivation for UAS aerofoil optimisation.

85

5.1.2 The generic form of optimisation

The aerofoil optimisation of this chapter can be readily phrased with respect to

the generic design optimisation flowchart in Figure 5-1[71]. The aerofoil

template is that of the NACA 4-digit profile, described in section 5.2.2. It has

three design variables (thickness, camber, position maximum camber).

Semantically, a cost function pertains to a single objective optimisation such as

minimising (1)Lift Drag  . For reasons described in section 5.1.4 we pose this

aerofoil problem as a multi-objective optimisation but this represents broadly the

same step. Our only constraints here are the domains of our design variables

that represent the search space.

Figure 5-1 Design optimisation flowchart

Collecting the data to describe the system is analogous to configuring the shape

optimisation job, and estimating the initial design marks the first step before the

Identify:

(1) Design variables

(2) Cost function to be minimised

(3) Constraints that must be satisfied

Collect data to describe the system

Stop

Change the design using an

optimisation method

Does the design satisfy the convergence

criteria?

Check the constraints

Analyse the system

Estimate initial design

Yes

No

86

optimisation loop commences; we need an initial design as a benchmark for any

permutations of that design to be meaningful.

Analysing the system involves the creation of a new aerofoil geometry and the

determination of the Lift and the Drag co-efficients of that aerofoil. New

geometries are built on-demand as IGES CAD-files by bespoke C++ code

written by the current author using the open source CAD Kernel, OpenCascade.

These CAD-files are meshed and solved with the use of Computational Fluids

Dynamics (CFD) code – in this case, the commercial software of ANSYS

(Gambit and Fluent).

Checking the constraints are satisfied, and whether convergence criteria have

been met are functions provided by the chosen optimisation algorithm for this

work (section 5.2.1). The demand for new design vectors (i.e. changes to the

design) is also a product of the optimisation algorithms usage. However, this

demand is met by manually coding batch scripts a priori. These scripts link all

the parts of the optimisation loop together and enable the optimisation to

progress with no user input.

5.1.3 Objectives of the UAS aerofoil optimisation

The performance of an aerofoil is often judged by its Lift/Drag (L/D) ratio. Large

magnitudes of the L/D ratio, when accompanied by a wide „Lift/Drag bucket‟,

signify optimal designs; having consistently high performance over a wide range

of angle of attack (alpha).

The principal objective of this optimisation is to find aerofoils that have optimal

values of their Lift/Drag ratio for the Reynolds numbers under consideration.

This aerofoil optimisation could equivalently be phrased as the solution of a

single objective (Lift/Drag) or multiple objective (Lift and Drag) problem. A

problem shared by either approach is the need to specify the bounds of the

search domain. Too large a domain and the optimisation can become very time-

87

expensive; too small a domain and the discovery of optimal solutions may be

obstructed.

The general theme of this thesis is to explore, develop, or enhance methods of

reducing the computational load of optimisation. In keeping with that theme, the

secondary objective of this chapter is: to reduce the time, and improve the

probability of finding optimal aerofoils, for other researchers who are performing

similar aerofoil optimisations by determining appropriate domains in which to

perform their searches.

5.1.4 Applying a multi-objective optimisation algorithm

A hypothesis could be stated that this secondary objective can be found by

approaching this aerofoil optimisation with a multi-objective optimiser. With the

application of a multi-objective, rather than a single objective, optimisation

algorithm we would find multiple optimal aerofoils distributed throughout our

search domain. On inspection, the design vectors of these multiple solutions

may be found to lie in sub-domains smaller than the initial search space. If the

current work can find compact domains (where optimal UAS aerofoils can be

expected to be found) then other researchers may benefit by a clear statement

of those domains. Any NACA 4-digit aerofoil optimisation that they perform can

progress more rapidly in the absence of uncertainty of an appropriate search

domain.

For these aerofoil optimisations the multi-objective optimisation, DEMO, is

employed. The relevance of DEMO to this thesis is more fully described in

Chapter 6. It is sufficient at this point to state that DEMO is a state-of-the-art

multi-objective optimisation algorithm.

88

5.2 Experimental setup

5.2.1 DEMO

One of the reasons for the popularity of Differential Evolution based optimisers,

such as DEMO, is that there are few parameters to tune. The population size is

typically chosen as 10 candidates per dimension, although as few as 1.5

candidates per dimension can yield more economic optimisations [72]. The

weight can be set between 0.0 and 2.0, and the crossover probability ranges

should fall in the domain [0.0, 1.0]. Lower probabilities such as 0.2 and 0.3 are

recommended for optimisations with a high number of variables. Higher

crossover probabilities are advised for optimisations with only two or three

variables [73]. Table 5-1 shows the parameters of DEMO that were chosen.

Table 5-1 Parameters of the multi-objective optimiser

Population size 20 Weight (f) 0.5

Crossover probability (Cr) 0.8 Type of selection procedure NSGA-II

5.2.2 NACA 4-digit aerofoil type

The NACA 4-digit specification aerofoil is used, in which there are only three

optimisation variables; the thickness, the camber, and the position of the

maximum camber (expressed as a percentage of the chord where the leading

edge is 0% and trailing edge is 100%). The NACA 4-digit specification uses four

equations [(5-1),(5-4)] to determine the x and y ordinates for points that would

lie on the upper and lower surfaces of the aerofoil. After creating a C++

program, linked to the open source CAD kernel, OpenCascade [74], these

points are joined using the GeomAPI_PointsToBSpline method and ultimately

output as IGES-type CAD-files for meshing in the commercial software, Gambit

(version 2.4).

89

The NACA 4 digit specification is of the following form (100)(10)(100)m p t  

such that the NACA 4310 aerofoil has a maximum camber, m of 4%. The

position, p , of the maximum camber occurs 30% of the chord length from the

leading edge. The „10‟ specifies that this aerofoil would have a maximum

thickness of 10% of the chord length. In order to plot an NACA 4-digit aerofoil,

the following equations are use to calculate the x and y ordinates of the points

on the upper and lower surface of the aerofoil:

sin

cos

U t

U c t

x x y

y y y





 

 

(5-1)

(5-2)

And

sin

cos

L t

L c t

x x y

y y y





 

 

(5-3)

(5-4)

There are two equations for cy and  for ordinates fore, and aft, of the position

of maximum camber:

when 0 x pc 

2
(2)c

mx x
y p

p c
  and

2

2
arctan[()]

m x
p

p c
  

(5-5)

when pc x c 

2
(1 2)

(1)
c

c x x
y m p

p c


  


and

2

2
arctan[(2 1)]

(1)

m c x
p

p c



  



(5-6)

where

p is the position of the point of maximum camber as tenths of the chord

m is the camber of the aerofoil as hundredths of the chord

c is the length of the chord

90

x is the position from 0 to c (for this work, x is incremented from 0 to c in steps

of
100

c)

Lastly, the thickness distribution ty is calculated from the following polynomial:

2 3 4

5 [0.2969 0.1260 0.3516 0.2843 0.1015]t

x x x x x
y tc

c c c c c

         
              

         

(5-7)

where

t is the thickness of the aerofoil as a percentage of the chord.

5.2.3 Aerofoil objective functions

The objective functions that are returned to DEMO require some care in their

formulation. A mistake to be avoided is to fix the angle of attack at an arbitrary

value, or, to let the angle of attack be an optimisation variable. Undesirably thin

aerofoils will be obtained from such an optimisation (Figure 5-2). After testing

the performance of such a thin profile, it was found to have a narrow lift/drag

bucket. Conceivably, it would also have poor structural rigidity and it is likely

that it would be subject to the undesirable property of flutter.

Proposed is the following simple but effective mechanism to preclude the

discovery of such thin solutions; every newly generated aerofoil will be

evaluated in Fluent for its co-efficient of lift (lc) and its co-efficient of drag (dc) at

two distinct angles of attack. An alpha of one degree and an alpha of four

degrees is used. The mean of these two lc s and two dc s are then passed to

DEMO as the two objective function values. In this way, optimisations will be

seen to diverge from seeking inappropriately thin aerofoils because solutions

with lift/drag buckets narrower than three alpha will be penalised.

91

Figure 5-2 Inappropriately phrased optimisations can converge

to give very thin and highly cambered solutions

5.2.4 CFD solver setup and search domain

The Fluent CFD software from ANSYS is used to calculate co-efficients of lift

and drag for Re. 75,000 and 250,000. These two Reynolds numbers were

chosen as they are representative of small and medium sized UAS and also

because of the availability of wind tunnel tests [70] against which the CFD

models can be validated.

In the preliminary stages of modelling the lift and drag co-efficients of these

aerofoils, several different turbulence models were tested in the CFD software

and the resulting lift and drag values were compared to available experimental

data. The objective was to determine the most appropriate turbulence models.

The Spalart-Allmaras (SA) 1-equation turbulence model [75] (widely used in

external airflow simulations) was first tested, followed by 2-equation turbulence

models such as the k-epsilon. Lastly, the 5-equation Reynolds-stress model

was tested. This latter model was ultimately not selected as it is much more

computationally (and therefore time) demanding, hence unsuitable for an

optimisation involving hundreds of CFD evaluations.

The two-equation turbulence models were found adequate for the present

study. The standard k-epsilon is adapted to free-shear layer flows with

relatively small pressure gradients [76]. It is widely used in turbulent flow

applications because of its general applicability, robustness and economy [77].

However, this model performs poorly when separation occurs: separation is

often under-predicted and/or is predicted too late. A reduced separation usually

results in an optimistic prediction of machine performance which could have

92

dangerous consequences - for example an inaccurate evaluation of when an

aerofoil stalls. Hence the standard k-epsilon model was not selected. To avoid

further inaccuracies associated with aerofoils operating near the stall, the

current airfoil optimisation is limited to airflow conditions and incidences that do

not lead to stall events (i.e. values of alpha less than 6 degrees). Note,

however, that the two turbulence models found adequate for this work typically

perform better than the standard k-epsilon model in predicting near stall

phenomena.

For the Re=75,000 case, the Renormalization Group two-equation k-epsilon

turbulence model (RNG k-epsilon) was used. This employs a scheme to

consider the near-wall flow effects [78]. The enhanced wall-treatment method

was selected, which allowed a coarser mesh than that of a low Reynolds k-

epsilon model in the viscosity-affected near-wall region with little impact on the

accuracy of the simulation in that region. This model is robust in situations with

stagnation and separation.

For the second optimisation (the Re=250,000 case), shear stress transport SST

[79] uses the simple and robust near-wall formulation of the k-ω model, and

switches to the k-epsilon turbulence model in the bulk flow. This model has

proved to give accurate results for a wide range of grid densities [80] and avoids

the deficiencies of the k-epsilon model (over-prediction of the turbulence length

scale – resulting in an over-prediction of the heat transfer at reattachment).

For the Re=75,000 case, the wall treatment and resolution are as follows: first

boundary layer row of 0.0002 growing by 20% for each row to a total of 10 rows.

Settings are the same for the Re=250,000 case except that the first row begins

at 0.0001.

Table 5-2 gives the details of the settings used for the Fluent and Gambit jobs.

In Figure 5-3 and Figure 5-4 screen shots of the mesh are displayed. The larger

region is a structured mesh; in the proximity of the aerofoil an unstructured

93

mesh was used as this was found to adapt well to a large variety of aerofoil

geometries.

Table 5-2 Setting for the shape optimisation

Mesh ~ 120,000 mesh elements

Solving algorithm RNG k-epsilon (Re=75,000)

SST: k-ω near wall, k-epsilon in

bulk flow (Re=250,000)

Fluent / Gambit version numbers 6.3 / 2.4

Steady state solution for Cl and Cd Air considered as incompressible

Pressure ambient 100.920 kPa

Gravity 9.81m/s^2

Density (rho) 1.2041 (kg/m^3)

Velocity for Re = 75,000 Re = 250,000 2.193 m/s , 7.3 m/s

Chord 0.5 m

DEMO Lift and Drag objective functions

formed from the mean of Cl and the mean

of Cd at alphas:

1 degree and 4 degree

DEMO Search domain (thickness) [3,12]

DEMO Search domain (camber) [1,9]

DEMO Search domain (position max

camber)

[25,52]

94

Figure 5-3 Gambit mesh

Figure 5-4 Zoom of Fig 3 showing

the unstructured part of the mesh

nearest the aerofoil

5.2.5 Validation

The reference aerofoil that is used to validate the CFD model was the NACA

4412 (Figure 5-5). This is an aerofoil design that is still in use today and can be

found on aircraft such as the Barrows Bearhawk, the Aeropro Eurofox and the

Ayres SR2 [81]. The validation data comes from wind tunnel tests performed by

Lnenicka & Horeni in 1978. The data from the original hand-drawn graphs have

been re-plotted in Microsoft Excel for clarity. Shown in Figure 5-6, Figure 5-7,

Figure 5-8 and Figure 5-9 are the wind tunnel results for Re 75k and 250k

alongside the CFD results for the same airfoil at these Reynolds numbers. For

solutions at angles of attack where 5  the results reduced in accuracy when

compared to the wind tunnel data, and the CFD solutions were unable to

converge satisfactorily as stall was approached. However, aerofoil optimality is

rarely based on high values of L/D for a stalled wing. The CFD results for the

angles of attack under consideration ( 1 and 4 degrees) match closely the

wind tunnel data for the NACA 4412.

95

Figure 5-5 NACA 4412

Figure 5-6 Co-efficient of lift

validation Re=75k

Figure 5-7 Lift / drag polar

validation Re=75k

Figure 5-8 Co-efficient of lift

validation Re=250k

Figure 5-9 Lift / drag polar

validation Re=250k

5.3 Results

For both DEMO optimisations, the Pareto set became fully populated with 20

candidates after four generations. Both optimisations were halted after 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-4 -3 -2 -1 0 1 2 3 4 5 6

Cl

Alpha

WindTunnel Re75k 4412 Fluent Re75k 4412

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.01 0.02 0.03 0.04 0.05 0.06

Cl

Cd

WindTunnel Re75k 4412 Fluent Re75k 4412

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-4 -3 -2 -1 0 1 2 3 4 5 6

Cl

Alpha

WindTunnel Re250k 4412 Fluent Re75k 4412

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.01 0.02 0.03 0.04 0.05 0.06

Cl

Cd

WindTunnel Re250k 4412 Fluent Re250k 4412

96

generations. DEMO is designed to maintain a distributed set of Pareto optimal

solutions hence many of these candidates had very low co-efficients of drag

(L/D between 5 and 25). However, we are principally concerned with the high

L/D solutions and the domains in which they were discovered. Shown in Figure

5-10 and Figure 5-11 are two optimal aerofoils for Re=75,000. They are named

Candidate A and Candidate B. For Re=250,000, the optimal aerofoils in Figure

5-14 and Figure 5-15 are named Candidate C and Candidate D.

5.3.1 Reynolds 75,000

Figure 5-10 Candidate A t=3.06

c=5.68 p=35.9

Figure 5-11 Candidate B t=5.75

c=8.78 p=50.1

Figure 5-12 Co-efficient lift plot

Re=75k

Figure 5-13 Lift drag polar Re=75k

Table 5-3 Lift/Drag for Re=75,000

Alpha -4 -3 -2 -1 0 1 2 3 4 5 6
Peak

L/D

Alpha for

peak L/D

4412 L/D -0.8 3.6 8.1 12.7 16.6 20.1 23.3 25.5 26.9 27.6 27.5 27.6 5

Cand A L/D 0.9 6.3 13.4 20.3 25.5 29.1 32.2 33.7 34.3 33.6 31.1 33.7 3

Cand B L/D 15.7 21.3 25.6 29.1 31.2 32.5 33.5 33.6 33.1 32.3 30.9 33.6 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-4 -3 -2 -1 0 1 2 3 4 5 6

Cl

Alpha
Fluent Re75k 4412 Candidate A Candidate B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.01 0.02 0.03 0.04 0.05 0.06

Cl

Cd

Fluent Re75k 4412 CandidateA Candidate B

97

Candidate A is the thinner of the two solutions. Its reduced camber delivers a

lower lc than Candidate B, but associated with this is significantly reduced drag

(Figure 5-13). The reference airfoil, NACA 4412, has a maximum L/D of 27.6 at

alpha=5. Candidate A exceeds this value for all alpha [1,6]; by 17% on average

and by 22% at alpha=3 (Table 5-3). Candidate B also exceeds the best L/D of

the NACA 4412 for all alpha [-1,6] (16% on average, 22% at alpha=3).

5.3.2 Reynolds 250,000

Figure 5-14 Candidate C t=3.22

c=5.45 p=42.9

Figure 5-15 Candidate D t=5.21

c=3.09 p=39.1

Figure 5-16 Co-efficient lift plot

Re=250k

Figure 5-17 Lift drag polar Re=250k

Table 5-4 Lift/Drag for Re=250,000

Alpha -4 -3 -2 -1 0 1 2 3 4 5 6
Peak

L/D

Alpha for

peak L/D

4412 L/D -0.3 7.4 13.6 22.6 31.6 35.0 38.4 38.9 39.1 39.1 37.6 39.1 5

Cand C L/D 0.9 8.0 22.1 41.5 49.6 53.0 53.7 50.6 48.7 42.8 32.2 53.7 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-4 -3 -2 -1 0 1 2 3 4 5 6

Cl

Alpha

Fluent Re75k 4412 Candidate C Candidate D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.01 0.02 0.03 0.04 0.05 0.06

Cl

Cd

Fluent Re250k 4412 Candidate C Candidate D

98

Cand D L/D -4.9 -1.0 10.1 24.3 36.3 44.4 47.8 48.5 47.6 44.1 37.5 48.5 3

For the NACA4412 reference aerofoil, the mean L/D for alpha [-4,6] has

increased from 17.4 at Re=75,000 to 27.5 for Re=250,000. Likewise, the

optimal aerofoils found by the DEMO optimisation have increased L/D values.

Candidate C exceeds the peak L/D of this NACA 4412 for all alpha [-1,5] by a

mean of 24%. Candidate D has a lower camber than both the NACA 4412 and

candidate C, giving reduced co-efficients of both lift and drag. Nevertheless, for

alpha [1,5], it has a maximum L/D that is 24% greater than the maximum of the

NACA 4412 (19% mean improvement).

5.3.3 Optimal search domains

Based on this author‟s inspection of the Pareto optimal sets, it is now possible

to state four appropriate domains where other researchers may discover

optimal NACA 4-digit aerofoils. The L/D values achievable are similar in each

domain, however the domains are classified as either “high co-efficient of lift” or

“low co-efficient of drag” to indicate the dominant feature of that domain.

Domain contains Thickness Camber Position max
camber

Re75k High lift [3,6] [7,9] [38,51]

Re75k Low drag [3,4] [4,6] [35,45]

Re250k High lift [3,6] [5.4,8] [40,50]

Re250k Low drag [4.7,6] [2,4] [39,50]

5.4 Aerofoil optimisation - summary

Four optimal aerofoils have been found by this optimisation; two for short range

UAS and two for medium range UAS. For each UAS type, the pair of aerofoils

found had similar L/D values; both were much improved over the NACA 4412

reference aerofoil.

99

Each pair of optimal aerofoils found has different properties; one offers a design

that could mean reduced cruising speeds but shorter take-off runs (the high-lift

candidate), whereas the lower drag candidate would likely require a longer take-

off run but offers the possibility of realising a UAS that would have a higher

cruising speed.

The secondary objective for this UAS aerofoil optimisation was to determine

more compact search domains for NACA 4-digit aerofoil optimisation at these

Reynolds numbers. Inspection of the location of the Pareto candidates has

enabled these smaller domains to be determined and it is hoped that other

researchers may benefit from this minor contribution.

5.5 Discussion

The time taken to generate each objective function consisted of two CFD

evaluations (at alpha 1 and alpha 4), and was approximately 35 minutes and 70

minutes for the Reynolds numbers of 75,000 and 250,000 respectively. With

300 evaluations as the stopping criteria, and discounting the problems

discussed below, the first optimisation run took one week; the other, two weeks.

Do these times comprise the greatest cost of this optimisation? The answer is

no.

It was decided at the outset of this work to host the meshing of Gambit and the

CFD evaluations of Fluent on Cranfield‟s supercomputer. The optimisation

algorithm itself ran on a separate, but networked, Linux PC. As mentioned in

section 5.1.2, the co-ordination of the optimisation job was controlled by batch

files - specifically, bash expect scripts. Logging in and out of this author‟s

supercomputer account, job-submission/control and file transfer were hand

scripted in this way. Configuring the bash scripts themselves required two

weeks of work.

Writing the C++ OpenCascade code that generated the aerofoil geometries was

also a task needing two weeks of coding. However, this statement of time is

100

misleading; a one month training course on the OpenCascade CAD kernel was

first necessary to develop familiarity with its library of functions. We can say at

this point that the three weeks of actual aerofoil optimisation comprised only

27% of the elapsed time for the work in the chapter.

Significant problems occurred during the optimisation runs themselves. The

following list is not complete, but details some of the problems:

 Cache battery failure on the supercomputer – required a shutdown of the
supercomputer (optimisation lost; needed restart)

 Overloaded nodes on the super computer – required a restart of the
supercomputer (optimisation progress lost; needed restart)

 No nodes available for use (optimisation paused for up to four hours on each
instance)

 Power cuts (optimisation progress lost; needed restart)

 Lack of Fluent licence files – all licences used by other students/academics
(optimisation paused for up to four hours on each instance)

 Meshing failure of Gambit (scripts returned an incorrect objective function,
corrupting the Pareto set)

These problems shed light on many of the practical problems for any researcher

wishing to conduct an automated computer-based shape optimisation and

suggest research gaps worthy of investigation.

The first research gap derives from the observation that the numbers of licences

for the use of commercial software is typically a finite number. Optimisation is

an inherently parallelisable process; for this work the 20 aerofoil candidates of

each population can, in theory, be evaluated concurrently on a Grid or cluster of

computers. This could yield up to a 20-fold reduction in optimisation time (three

weeks becomes 25 hours). However, insufficient availability of commercial

licences would preclude this concurrency.

The concurrency limit imposed by employing commercial fluids solvers does not

exist if we were to approach this aerofoil optimisation with the use of an open

source fluids solver such as OpenFoam. Using the OpenCascade aerofoil

generation software of this chapter, Chapman implemented a proof-of-concept

101

aerofoil optimisation using CAE Linux and OpenFoam [82] in 2009. Although

not parallelised for the work in his thesis, the lack of a licensing constraint

opens the door to dramatically accelerating shape optimisations when based

around open source fluids and solids solvers. In addition, Chapman‟s

experiments with using Python scripts (to automate his aerofoil meshing)

comprised an essential component of the work of the current author in Chapter

6. Rather than hand coding the CAD model of Chapter 6‟s wall-bracket in C++,

python scripting reduced the required model set-up time to just a few days of

work.

In 2009, Debreuil [83], approached several of the other problems bulleted

above. Most of these problems highlighted a need for formalised job

submission, job control, and error trapping/reporting. Bash scripting has too little

flexibility for this purpose. The management of a shape optimisation that

requires access to multiple compute resources is best achieved through

workflow management software.

Addendum: Since Debreuil‟s and Chapman‟s work in 2009, the Monash Nimrod

team have released Nimrod/K (work flow management software) which

addresses the type of problems discussed above [84].

103

6 ENABLING MULTI-OBJECTIVE OPTIMISATION IN

NIMROD/O

6.1 Introduction

The Linux-based Nimrod toolkit provides many useful features: design of

experiments, grid/cloud/cluster interfaces for concurrent design evaluations, and

an optimisation module, Nimrod/O. Multi-objective optimisations were previously

possible only by phrasing them as a single objective optimisation with the use of

a penalty function. The contribution of this chapter concerns the interfacing of a

truly multi-objective optimisation algorithm. The concurrency possible with

Nimrod/O is exploited by introducing a BatchSize parameter to the multi-

objective optimiser. This forms a secondary contribution of this chapter.

The layout of this chapter is as follows: the Nimrod/O optimisation tool and the

chosen optimisation algorithm, DEMO, are described in more detail in sections

6.2.1 and 6.2.2. Adaptations to DEMO that enable concurrency, and the role of

the DEMOinterface are detailed in section 6.2.3 before the two test experiments

are presented (6.3 and 6.5). The first test is a two-parameter optimisation of a

mathematical test function. The second test is the shape optimisation of a rib-

reinforced steel bracket using Finite Element evaluations from Code_Aster to

compute the two objective functions of stress and deflection as well as

incorporating a third, conflicting objective function, of reducing the mass of the

part.

6.2 Software components

6.2.1 Nimrod/O

Nimrod/O combines optimisation, distributed computing and rapid prototyping in

one tool. Various optimisation routines are built into Nimrod/O such as BFGS

(Broyden–Fletcher–Goldfarb–Shanno), the Downhill Simplex Method, Simulated

Annealing, and EPSOC (Evolutionary Programming using Self-Organised

104

Criticality) [85]. An optimisation is readily specified by the user by

parameterising their problem using Nimrod/O‟s declarative “plan file” (Figure

6-3), after which the tool computes the parameters that minimise or maximise

the design‟s objective function. Transparent to any of the optimisation

algorithms is Nimrod/O‟s evaluation of the objective function. Multiple objective

functions can be concurrently evaluated; on a multi-core CPU on the local

machine, or by farming out this work to greater compute resources such as a

cluster (e.g. [86]), or a grid resource such as provided by Nimrod/G [87], as

shown in Figure 6-1.

Figure 6-1 Overview of the process

Figure 6-2 Dataflow between the

software elements

6.2.2 DEMO

Differential evolution (DE) by Price [88] was the culmination of work aimed at

solving the Tchebychev polynomial fitting problem proposed to him by Dr R

Storn. It is a population-based optimisation algorithm, but unlike classical

genetic algorithms such as Holland‟s [89], which bit-encodes decision variables,

DE uses floating point encoding. This, coupled with Price‟s desire to make

candidate mutation an adaptive procedure, resulted in a rapid and robust

algorithm that is simple to use. The original version of DE is controlled by just

three variables: the population size, N, the mutation scaling Factor, F, and the

crossover constant, CR.

Nimrod/O

Nimcache

(History of

evaluations)

DEMOInterface

EnFuzion

(Cluster Computing)

Local evaluation

DEMO

Communication

by pipes

Communication

by files

Nimrod/G

(Grid evalution)

Nimrod/O

DEMOInterface DEMO

Communication

by pipes

Communication

by files

Optimization

plan file

DEMO

(initialization file)

 1. Pareto fronts

 2. Statistics

 3. Log

105

In creating DEMO (Differential Evolution for Multi-objective Optimisation), the

authors, Robič and Filipič , addressed the two goals of multi-objective

optimisation [44]:

1. Finding the most diverse range of these solutions across the Pareto set

2. Discovering solutions as close as possible to the true Pareto front.

Based on DE, DEMO builds on the success of Price‟s algorithm and adds the

mechanisms of non-dominated-sorting and crowding-distance-metric as used

by other state-of-the-art multi-objective evolutionary algorithms. Tight clusters of

non-dominated solutions limit the diversity of the elements in a Pareto set.

Penalising this behaviour with DEMO‟s crowding distance metric helps to

achieve the first goal of finding the most diverse range of solutions. The second

goal is achieved by an emphasis on elitism: parent individuals are immediately

replaced by the candidate that dominates them. By entering the population

immediately, this new candidate can, without waiting for the next generation,

take part in the creation of further candidates. With these additions, DEMO is

shown to achieve competitive results on five ZDT [90] test problems. In a follow-

up paper, Robic [91] presents a comparison study in which DEMOS‟s

performance is found to be comparable to other state-of-the-art multi-objective

evolutionary algorithms on nine newer test problems created by Huband et al.

[92].

6.2.3 Interfacing DEMO with Nimrod/O

The original DEMO code was first ported from its Microsoft Windows source

code so that it could be compiled under the Linux operating system. The

random number generator, a container declaration and the system-out calls

comprised the three necessary alterations. Initial testing confirmed that the

Linux port of DEMO worked equivalently to the Windows version.

As described in section 6.2.2, one of DEMO‟s key mechanisms is elitism within

the reproduction process. Before an entire population has been evaluated,

106

superior candidates will already have replaced their parents and taken part in

the creation of newer candidates. It should be clear that this mechanism

requires sequential candidate evaluation and presents a conflict of interest.

Whilst this elitism mechanism should accelerate the discovery of the Pareto

optimal set, concurrent evaluations of multiple candidates would reduce the

wall-clock time for optimisation runs. To this end, the current author has

introduced a BatchSize parameter to DEMO‟s initialisation file.

BatchSize P N  (6-1)

where

N = Population size, and

P= Number of machines available for concurrent objective function evaluations.

In the case that the user has access to a large computing resource, the

BatchSize parameter tunes-down the benefit from elitism in favour of the overall

speed-up gained by concurrent evaluations of an entire batch of candidates.

Modifying the DEMO source code to enable concurrent candidate evaluations is

a contribution of the current work.

An important problem that should be noted is that, after experimenting with

enabling or disabling elitism in the Linux version, convergence to the Pareto

front did not seem to alter. Furthermore, enabling elitism for the original

Microsoft Executable occasionally caused the DEMO executable to freeze after

the first population of candidates had been retuned to DEMO. The reason for

this freeze is unknown, but may relate to the 64-bit Microsoft Windows

operating system on which DEMO was tested (Robič and Filipič„s executable

was compiled using Borland C++ for 32-bit Windows systems). Further work is

planned that will verify the functionality of elitism in the Linux port.

One minor change to DEMO‟s initialisation file is the inclusion of a Boolean flag

that indicates to DEMO that it will be working in a mode compatible with

107

Nimrod/O. If this flag is turned off (0), then DEMO will function in stand-alone

mode and identical to version 1.2. More information on DEMO‟s usage can be

found in the v.1.2 reference manual [73].

A further contribution of the current work is the modifications to the Nimrod/O

2.9 source code that enable an external, multi-objective optimiser, to

communicate with Nimrod/O (and also access stdin and stdout)without

cross-talk. Via a “results” parameter in the plan file (Figure 6-3), Nimrod/O

prepares to accept multiple objective functions and, during run time, both logs

and caches these multiple results. As in prior versions of Nimrod, the cache

mechanism (Figure 6-1) prevents unnecessary repetitions of prior function

evaluations. The management of Pareto optimal sets, Pareto based ranking and

sorting is not supported by the current version of Nimrod/O (v2.9), however

DEMO provides this functionality.

Nimrod/O can host a concurrent execution thread in which an external optimiser

runs. This intent is communicated in the plan file by the use of “method

external “name” ./executable”. For the current work, the pipes method

was chosen. In building the interface, the necessary include files from

Nimrod/O‟s package were noclient.c, noclient.h and definitions.h.

These provide query and communication functionality between external code,

such as the current interface, and Nimrod/O. Sufficient functions are

implemented in noclient.c that an external, user-defined, optimisation

algorithm can operate as if it were part of Nimrod/O.

The DEMOinterface is simultaneously the child process of Nimrod/O and the

parent process of DEMO and, in use it translates data formats and requests

between these two applications (Figure 6-2). The user may alter specifics of the

DEMO optimisation by editing DEMO‟s initialisation file. For the convenience of

the user, fields in Nimrod/O‟s plan file that are repeated in DEMO‟s initialisation

file are automatically inserted into DEMO‟s initialisation file by the interface

before it spawns DEMO.

108

The stopping criterion for DEMO is specified in its initialisation file as a

maximum number of candidate evaluations. Once this limit is reached, DEMO

writes the current Pareto front to a file called fronts.out. Further files such as

the statistics on the population‟s evolution and a log file are written by DEMO

before it terminates. The DEMOinterface also detects when the maximum

number of evaluations has been reached and notifies Nimrod/O which likewise

finalises its files and terminates.

In addition to creating the DEMOinterface, contributions of this author are; the

above alterations to DEMO, and, further developing Nimrod/O for multi-

objective compatibility. The rest of this chapter concerns testing the solution by

minimising a two-objective mathematical function, and the three-objective shape

optimisation of an engineering part using the Finite Element package,

Code_Aster.

6.3 Experimental set up - Poloni test function

Poloni‟s function [93] offers a convenient way to test the DEMO algorithm. It is a

two parameter, two response, mathematical function (6-2).

 , ,x y   

2 2

1 1 1 2 2

2 2

2

(,) 1 () ()

(,) (3) (1)

f x y A B A B

f x y x y

       

      

Where,

1

2

1

2

0.5sin1 2.0cos1 sin 2 1.5cos 2

1.5sin1 cos1 2sin 2 0.5cos 2

0.5sin 2cos sin 1.5cos

1.5sin cos 2sin 0.5cos

A

A

B x x y y

B x x y y

   

   

   

   

(6-2)

Price [88] provides a guide to choosing the population size as 10 d where d is

the number of dimensions of the problem, therefore in this test d = 20. The

weight of the mutation scaling factor can be any value in the interval [0,2] and

was chosen as F 0.5 . The crossover probability must lie in the interval [0,1]

and CR 0.3 was chosen. These F and CR values were used for both of the

optimisations presented in this chapter. Price and Storn [94] describe the

settings for these parameters in more detail. A concurrency setting of 4 directed

109

Nimrod/O to perform one function evaluation on each of the four cores of the

quad-core host machine at any one time.

parameter p float range from -3.1415926 to 3.1415926

parameter q float range from -3.1415926 to 3.1415926

results 2

task main

 copy poloni node:poloni

 node:execute ./poloni $p $q

 copy node:exp_result output.$jobname

endtask

method external "DEMO" ./DEMOinterface

 starts 1

 endstarts

endmethod

Figure 6-3 Nimrod/O plan file: poloni.shd

6.4 Result of the Poloni optimisation

Figure 6-4 shows a scatter plot of the Poloni function. 600 function evaluations

were performed by Nimrod/O and the final Pareto set of 20 candidates found by

DEMO is shown with superimposed square diamond markers. An interpolated

line has been added to aid clarity. Visual inspection of this Pareto set indicates

that DEMO has been successful in attaining the two aims of; finding a diverse

range of solutions, and, finding solutions that are as close as possible to the

ideal Pareto front. Arguably, this front is superior to that obtained by Poloni et al.

[93] with their MOGA (Multi-Objective Genetic Algorithm) optimiser which

involved 50 candidates and 2500 evaluations.

110

Figure 6-4 Poloni function, Pareto set superimposed

6.5 Experimental setup – the shape optimisation of a rib-

reinforced wall bracket

The shape under consideration is a rib-reinforced wall bracket. The back face of

the bracket is constrained and a distributed loading is applied to the protruding

face, simulating the bracket supporting a weight of approximately 200kg.

Technical drawings (Figure 6-6 and Figure 6-7) show the dimensions of the part

(mm) as well as the five decision variables  A,...,E . These variables will be

optimised to minimise the three objective functions of: mass, maximum

deflection, and, maximum VonMises stress. Minimising the mass conflicts with

minimising the stress and the deflection and so the problem will not reduce to

one optimal solution – instead a Pareto set of solutions will be found.

111

Table 6-1 Wall bracket decision variables

A = Thickness of bracket plate (mm) [1,10]

B = Thickness of ribs (mm) [1,10]

C = Placement of ribs (%). When:

C = 0, Rib distribution is widest

C = 100 Rib‟s Inner faces are 10mm from mounting holes

  _1
C_ _ 119 29 B

100RibAbsolute Offest OuterFace    

(6-3)

  _ 2
C_ _ 1 29 B

100RibAbsolute Offest OuterFace    

(6-4)

D = x displacement of curve control point [30,70]

E = y displacement of curve control point [30,70]

Figure 6-5 Rib-

reinforced wall

bracket

A stand alone computer was used for the results in this chapter with a Quad

Core AMD Phenom 2.5GHz processor, 4MB cache with 4GB of RAM installed.

The operating system was CAELinux2008 [95] which includes the open-source

CAE software: Salomé, Code_Aster, Code_Saturne and OpenFOAM. For this

work, only Salomé and the Finite Element software of Code_Aster were used.

Onto the base installation of the operating system, the source codes for

Nimrod/O 2.9, DEMOinterface and DEMO were compiled and installed.

Loaded Face (evenly

distributed pressure)

Rear Face

(constrained)

112

The five decision variables in Table 6-1 comprise the thickness of the bracket,

A, and the thickness of the ribs, B, a distribution of the ribs, C, and co-ordinates

for a curve control point D and E. The distribution of the ribs is presented to the

optimiser as a floating point variable in the range [0,100], however this variable

needs to be translated into physical dimensions on the bracket itself. The

equations used to translate the variable C are equations (6-3) and (6-4). These

equations are necessary to accommodate changes to the rib thickness, B, and

guarantee that when C=100 the inner faces of both ribs will be exactly 10mm

from the centre of the mounting holes irrespective of the value B (Figure 6-6).

Likewise, when C=0, the outer faces of the ribs will be located at their widest

distribution: 1mm from the outer edges of the bracket itself. Both ribs are

symmetrically distributed. D and E are 𝑥 and 𝑦 co-ordinates of a point through

which the profile of the ribs is interpolated. D and E are in the interval [30, 70],

the 30 being the displacement in mm from the inner face of the bracket

therefore keeping the rib profile point independent of A (Figure 6-7).

Figure 6-6 Plan view of the wall

bracket

Figure 6-7 Side elevation of the

wall bracket

R 51
2

0

100

B

A

C
1

0

50

4
0

4
0 Room :

40 X 40

1

D & E

30

3
0

113

6.5.1 The shape optimisation job.

The flow chart, Figure 6-8, shows the steps involved for shape optimisation

using Code_Aster, Nimrod/O and DEMO. The first two steps involved setting up

the shape and the optimisation, but the main work was conducted in an

automated loop governed by Python scripts and simple shell scripting.

Figure 6-8 Flowchart of the shape

optimisation process

From the Graphical User Interface (GUI) of Salomé, arbitrary settings for the

decision variables (A,… , E) were chosen in building the body of the first shape.

The geometry was auto meshed with the in-built algorithms shown in Table 6-3

The volume contained ~ 11,000 tetrahedrons after meshing. The Code_Aster

Linear Elastic job was set up with a distributed pressure loading of 0.16667

MPa that represents ~200kg mass on to the upper surface of the bracket. The

degrees of freedom for the rear face and interior of the rear bolt holes is given

by (DX,DY,DZ) = (0,0,0). The relevant physical properties of the chosen

material, Plain Carbon Steel, are given in Table 6-2. After verifying a successful

In Salome GUI:

Create Geometry

Mesh Geometry

Set up Code Aster Job

Run Job

Dump study as Python scripts

Set up Nimrod/O plan file

Set up DEMO initialization file

Call Nimrod/O plan file

Nimrod/O DEMOinterface DEMO

Service DEMO

optimization
Candidate

vector

./Inject_vector_into_python_scripts

Call Python scripts:

New shape is constructed, meshed, and, solved

./Extract_Objective_Functions

114

run of the Code_Aster solver, the above three steps were “dumped as Python

study”. In this way templates were created that could later be called from the

command line.

Table 6-2 Material properties of the

wall bracket

Plain Carbon Steel

Young's modulus, E (Gpa) 200

Poisson's ratio,  0.3

Density  3

g
cm

 7.86

Yield Stress,
y (MPa) 280

Table 6-3 Auto-meshing settings

Meshing
Applied
Algorithms

Applied
hypotheses

1D
Average length
(6)

Wire
discretisation

Added:
Quadratic Mesh

2D MEFISTO_2D
Length from
edges

3D
Tetrahedron
(Netgen)

Figure 6-9 The auto-meshed wall

bracket

Two edits were then necessary in the text files name.comm and nameGEMO.py.

In the name.comm text file, maximum deflections and principal stresses were

requested to be included in the plain text name.resu results file of Code_Aster.

In the Python geometry script, nameGEMO.py, the following lines were added

adjacent to the last line:

myTuple = geompy.BasicProperties(finished_body)

myMass = (myTuple[2]/1000) x 7.86

This calculates the volume of the shape and multiplies by the density. Further

Python commands save this mass to file. Two simple C++ programs were also

115

written. Inject_vector_into_python_scripts takes the decision

variables (A,… , E) as arguments, parses the template of nameGEMO.py, and

inserts changes to the geometry script at runtime.

Extract_Objective_Functions is called after Code_Aster, extracting the

calculated values for maximum deflection and the maximum VonMises stress

from name.resu. The mass is also read-in from file, and the three objective

functions are then formatted for Nimrod/O by

Extract_Objective_Functions and saved to file. After setting up

Nimrod/O‟s plan file and DEMO‟s initialisation file, a small number of shell

scripts were created to implement automation. The memory requirement for an

individual job was ~1.3GB. With the installed 4GB of RAM, and with the

operating system overhead, a concurrency setting of 2 was the maximum level

of parallelism attainable without paging to the hard disk. 6GB or more of RAM

would have permitted four concurrent shape evaluations.

6.6 Results of the shape optimisation of the rib-reinforced wall

bracket

800 candidate evaluations were performed by Nimrod/O, each involving the

creation of new geometries and a linear elastic simulation by Code_Aster. The

population size was N=50 and four results from the final Pareto set are given in

Table 6-4. Across the final, 50 candidate Pareto set, the decision variables fell

in the intervals: A[1.0,10.0] B[1.0,5.58] C[86.6,97.7] D[30.0,67.0] E[30.0,57.1]

The full Pareto set is plotted in the 3D scatter graph, Figure 6-10, showing

mass, maximum VonMises stress and maximum deflection on each axis. In

Table 6-4, displayed are the two heaviest candidates among the Pareto set for

which calculations of maximum VonMises stress and maximum displacement

were least. The lightest candidate was found to have a maximum VonMises

stress of only 3% below the y of 280MPa. A typical safety-factor setting of 3.0

would exclude this bracket from use, and likewise the next 16 light-weight

solutions due to high imposed stresses. By inspection of the scatter graph in

116

Figure 6-10, there is a region containing a small number of candidates (lying

near the point where the mass begins to increase significantly) that substantially

reduce the stress and deflection when compared to the lightest candidates. One

of these is labelled the “compromise solution” (Table 6-4). For this candidate,

the maximum calculated VonMises stress is 15.2% of the
y and the Mass is

only 28.3% of the two heaviest solutions. The deflections of this compromise

solution are represented visually in Figure 6-11. The greatest deflections of this

solution are located in the 50% of the loaded face that is furthest from the back

plate, at the extreme left and right edges.

Table 6-4 Results of the multi-objective wall bracket optimisation

Decision variables Objective functions

A B C D E

Max Deflection

(µm)

Max

VonMises

(MPa)

Mass

(kg)

 1.00 1.00 91.1 30.0 33.0 739 271 0.22 Least Mass

10.0 4.94 97.7 40.1 30.0 0.90 3.82 1.99 Least Stress

10.0 5.44 91.7 33.8 30.0 0.81 3.90 1.98 Least Deflection

2.71 1.00 90.4 40.1 41.4 29.4 42.5 0.56
Compromise

solution

117

Figure 6-10 3D scatter plot of the Pareto set in the objective space

Figure 6-11 Deflections of the compromise solution (key in mm)

118

6.7 Conclusion

This chapter has described the successful implementation of the DEMO -

Nimrod/O interface and illustrated its usage with two, truly multi-objective,

optimisations. A parameter that enables concurrent candidate evaluations has

been implemented which can reduce the wall-clock time for optimisations when

multiple processors are available, or, be tuned-out by the user - potentially

accelerating the convergence to the Pareto front.

Addendum: An early intent was to have a fifth main chapter of work. In this, the

Cascade Correlation metamodel would have been applied to accelerate the wall

bracket optimisation of this chapter, and the aerofoil optimisations of Chapter 5.

In this way, any enhancement offered by the metamodel could be evaluated

objectively. For both case studies, the training of the surrogate resulted in such

high errors that it was of no real use in the shape optimisations. Arguably, this

was an artifact of the high modality of the response surfaces of these two

problems.

119

7 CONCLUSION

The central theme of this thesis was to explore, develop, or enhance methods

of reducing the computational load of optimisation with a particular focus on

multimodal functions. Reducing the computational load of optimisation was first

approached by building a neural network based surrogate model. In order to

validate the performance of such a surrogate, multimodal mathematical test

functions were used (Chapters 3 and 4). As these test functions are those

normally applied to test optimisation algorithms, they formed an appropriate

choice for a surrogate model that would ultimately be used to assist design

optimisation. Each test function produced a response surface that a capable

surrogate model should have been able to mimic accurately.

When using neural networks to map the response surface of any given function,

we need to minimise the error constituents of bias and variance. The first step is

to find the “Goldilocks” topology; namely a neural network that does not have

too few or too many neurons, but just the right number. Too few neurons and

the neural network will not possess enough complexity to map the features in

our training dataset leading to underfitting, i.e. high bias. Too many neurons and

we will have too much complexity; we will have endowed the neural network

with an ability to fit to noise and we will lose generalisation of the underlying

function. High variance (overfitting) will result. Finding the Goldilocks number of

neurons becomes a necessity for achieving a good fit when using any type of

neural network, and yet there is no pragmatic approach for determining this

number a priori.

Ostensibly, the Cascade Correlation neural network forms the ideal basis for

universal function approximation. There is no requirement to tune any training

parameters unlike, say, backpropagation training where choices of momentum

factor or learning rate impact the quality of the learning. The Cascade

Correlation neural network begins training with no hidden neurons (i.e. empty).

We will have very high bias and no ability to overfit – low variance. The network

120

grows in size by adding and training single neurons with each training step. Our

bias falls as the neural network attains more ability to fit to the underlying

function. Given that we will have ensured that our training will halt automatically

(by using an implementation of early stopping) the optimal number of neurons

should have been found in all cases. Without an early stopping mechanism, too

many neurons will be added and the error will increase due to overfitting. As

seen in Chapter 3, the use of early stopping is essential and it also delivers the

benefit of a reduction in training time. Variance can be further minimised by

ensembling, as variance is inversely proportional to the number of neural

networks in an ensemble. Combining the techniques of early stopping and

ensembling was found to reduce the error of Cascade Correlation neural

networks by a factor of 2.8. There is, however, a training penalty with

ensembling as training times are directly proportional to the size of the

ensemble.

Chapter 3 has contributed to the knowledge-base of Cascade Correlation users

in a variety of ways. Firstly, by determining the benefits offered by different

sizes of early stopping sets and, secondly, by offering an alternative to

employing a testing dataset; namely the use of a sufficiently large early stopping

set as a proxy for a testing dataset. Determining the optimal amount of samples

needed to train efficiently with this neural network was a third contribution. This

was found to be proportional to the dimensions of the problem; the optimal

amount being around 100 samples per dimension, the minimum 32. However,

the fact that such a value could even be determined is the first sign of this

neural network‟s weakness. Why should we be able to find such a relationship?

It should be the complexity of the problem at hand that governs how many

samples are required to describe its features.

Chapter 4 uncovered the limiting feature of Cascade Correlation; the bias

problem of Cascade Correlation neural networks was postulated to be due to

the weight freezing mechanism inherent in the algorithm. The standard version

of Cascade Correlation has been used throughout this work, and so no changes

121

were made to remove weight freezing. This neural network‟s weight freezing

problem was overcome by subdividing highly multimodal datasets into patches

with one neural network ensemble trained per-patch. The patchworking

algorithm represents another contribution of this work. Seen in Chapter 4‟s table

of results and clearly visible in the surface plots, patchworking significantly

improved the performance of Cascade Correlation on multimodal functions.

Surrogate (or meta) modelling is a widely published method for accelerating

optimisations; especially those for which the evaluations of objective functions

are very computationally expensive. Over 12 months of C++ code development,

and the 15,000 lines of code that this represents, did result in a functioning

Cascade Correlation-based metamodel. This is a metamodel that can be, and in

testing has been, integrated with the optimisation toolkit of Nimrod/O. The

latency of querying this metamodel is wholly independent from the time taken to

first generate the objective functions upon which it was trained. In all cases, a

query for the evaluation of an objective function is returned in less than 10ms.

Hence, after training this metamodel (and validating that training as successful)

120,000 different designs can be evaluated by an optimiser in less than 20

minutes – a significant speedup.

The aerofoil case study of Chapter 5 determined an appropriately small search

domain for NACA 4-digit aerofoil optimisation such that other researchers may

reduce the computational load of similar, low Reynolds number, optimisations.

Although, the contribution of Chapter 5 is only minor, there are directly

measurable outcomes; namely the two MSc Theses that further explored the

research gaps revealed by this case study.

Chapter 6 consisted of a significant contribution to the optimisation community.

Although the two software packages, Nimrod/O and DEMO, were already in

existence, they were combined together for the first time. Nimrod/O was already

part of a suite of tools that could distribute problems over a Grid, or cluster, of

computers and thereby share the computational load of optimisations. The

contributions lie in enabling true multi-objective optimisations for the first time,

122

and enabling parallelism in DEMO. Again, there are outcomes to-date. In

collaboration with Dr. Timos Kipourous another multi-objective optimiser

(NSGA) has been integrated with the latest version of Nimrod/O and, in a

private communication, it is believed that he also plans to integrate MOTS

(Multi-objective Tabu Search) in the near future.

7.1 Final words

Whilst a cascading topology neural network remains a very workable solution to

the “Goldilocks” problem of neural networks, Cascade Correlation is

encumbered with a weakness at mapping multimodal functions that was found

only in the later stages of this author‟s research. The patchworking solution,

contributed here, has been shown to overcome this weakness but only by

increasing exponentially the demand for training samples. Such is this

exponential increase that any speedup attained from metamodelling is

ameliorated by the slowdown caused by first having to gather such vast

numbers of training samples. Hence, we would prefer not to have to use

patchworking. This author‟s evaluation of the Cascade Correlation neural

network leads to the ultimate conclusion of this thesis:

Only if expert knowledge can give the assurance that the training data is of low

modality can we have confidence in applying Cascade Correlation neural

networks for surrogate modelling. Hence, in the general case, this neural

network type should not be relied upon for surrogate modelling roles.

123

8 FURTHER WORK

This chapter should first begin with the future planned work of the current

author. That work pertains to the interfacing of DEMO with Nimrod/O. As stated

in Chapter 6, the functionality of the elitism mechanism in DEMO is uncertain.

To be assured that it is enabled correctly requires re-visiting the C++ code.

When this work is undertaken, an additional feature will be implemented;

namely a re-start mechanism. Whilst both Nimrod/O and DEMO have a caching

mechanism, DEMO has to be started afresh after an optimisation has halted

unexpectedly. Given that DEMO can already write to a log-file the candidates of

the Pareto front for every generation, it should be a relatively simple coding task

to enable the parsing of old log files - thereby instantiating a new optimisation

from the last known good-population prior to a crash.

With respect to future work that may interest other readers, the topics of

research pertain to the neural network studies of Chapters 3 and 4. An

implementation of Constructive Back Propagation (CBP) would form the basis

for useful research. According to the literature, this neural network trains just as

rapidly as Cascade Correlation but, due to CBP‟s inherent ability to train

multiple neurons at each time step, CBP may well learn to approximate highly

multimodal surfaces that presently lead to failures for Cascade Correlation

neural networks. The CBP literature only considers training two neurons at a

time; hence there is a research gap to examine the effects of training more than

two neurons. It could be speculated that an adaptive mechanism could be

implemented; one that scales up and down the number of neurons added at

each training step. We recall that too many, or two few, neurons form the basis

for a neural network with poor predictive qualities. Such an adaptive mechanism

would scale up and down the count of neurons that it trains for each layer by

tracking the progression of the neural network‟s error against a validation

dataset.

125

REFERENCES

1. Machine Learning Repository. [Available from:
http://archive.ics.uci.edu/ml/].

2. Khandani, S., Engineering design process - Education transfer plan.
2005: Valley College, Pleasant Hill California.

3. Abramson, D. et al. An Automatic Design Optimization Tool and its
Application to Computational Fluid Dynamics. in Proceedings of the
Super Computing 2001 Conference, Denver, USA.

4. Wang, G.G. and Shan, S., Review of Metamodeling Techniques in
Support of Engineering Design Optimization. ASME Transactions,
Journal of Mechanical design, 2007, 129(4): p. 370-380.

5. Release 11.0 Documentation for ANSYS Chapter 3.5: Probabilistic
Design Techniques. [Available from:
http://www.kxcad.net/ansys/ANSYS/ansyshelp/Hlp_G_ADVPDS5.html].

6. Keane, A.J. and Prasanth B., Computational Approaches for Aerospace
Design. 2005: John Wiley & Sons, Ltd.

7. Xu, H., An Algorithm for Constructing Orthogonal and Nearly-Orthogonal
Arrays With Mixed Levels and Small Runs. Technometrics, 2002. (44): p.
356-368.

8. Sloane, N.J.A., A Library of Orthogonal Arrays [Available from
http://www2.research.att.com/~njas/oadir].

9. Chantrasmi, T., A. Doostan, and G. Iaccarino, Padé–Legendre
approximants for uncertainty analysis with discontinuous response
surfaces. Journal of Computational Physics, 2009. (228): p. 7159-7180.

10. Dubois, D. and Prade, H., Fuzzy sets and systems: Theory and
applications. 1980: Academic press inc.

11. Simpson, T.W. et al., Metamodels for computer-based engineering
design: Survey and recommendations. Computers, 2001. (17): p. 129-
150.

12. Zentner, J.M., A Design Space Exploration Process for Large Scale,
Multi-objective Computer Simulations. 2006, Georgia Institute of
Technology.

13. Emmerich, M.T.M. et al., Single- and Multi-objective Evolutionary
Optimization Assisted by Gaussian Random Field Metamodels. IEEE
Transactions on Evolutionary Computation, 2006. 10(4): p. 421-439.

14. Koch P.N. et al., Statistical Approximations for Multidisciplinary Design
Optimization: The Problem of Size. Journal of aircraft, 1999. 36(1).

15. Balazs, G., Cascade-Correlation Neural Networks: A Survey. 2009,
Department of Computing Science, University of Alberta.

16. Kwok, T.Y. and Yeung, D.T., Constructive Feedforward Neural Networks
for Regression Problems: A Survey. 1995, Hong Kong University of
Science and Technology: Hong Kong.

17. Gorissen, D., Heterogeneous Evolution of Surrogate Models. MSc Thesis
2007, Katholieke Universiteit Leuven.

126

18. Clarke, S.M., Griebsch, H.H. and Simpson, T.W., Analysis of Support
Vector Regression for Approximation of Complex Engineering Analyses.
Journal of Mechanical Design, 2005. 127(6): p. 1077-1088.

19. Grudic, G., Nonparametric Learning from Examples in Very High
Dimensional Spaces. PhD Thesis 1997, The University of British
Columbia.

20. Bishop, C.M., Pattern Recognition and Machine Learning. 2006:
Springer.

21. Thayananthan A. et al., Multivariate Relevance Vector Machines for
Tracking. In 9th European Conference on Computer Vision. 2005.
Austria: Springer-Verlag.

22. Nissen, S., Large Scale Reinforcement Learning using Q-SARSA and
Cascading Neural Networks. MSc Thesis 2007, Department of computer
science, University of Copenhagen, Denmark.

23. Kasabov, N.K., Foundations of neural networks, fuzzy systems, and
knowledge engineering. 1996: The MIT Press.

24. Bishop, C.M., Neural Networks for Pattern Recognition. 1995: Clarendon
Press.

25. Fahlman, S.E. and Lebiere C., The Cascade-Correlation Learning
Architecture. National Science Foundation under Contract Number EET-
8716324 and Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 4976 under Contract F33615-87-C-1499., 1991.

26. Drago, G.P. and Ridella, S., Convergence properties of cascade
correlation in function approximation. Neural Computing & Applications,
1994. 2(3): p. 142-147.

27. Hoehfeld, M. and Fahlman, S.E., Learning with Limited Numerical
Precision Using the Cascade-Correlation Algorithm. 1991, Carnegie
Mellon University.

28. Banks, L. et al., Comparing Methods for Multivariate Nonparametric
Regression. 1999, Carnegie Mellon University: Pittsburgh.

29. Tetko, I.V. and Villa, A.E.P., An enhancement of generalization ability in
cascade correlation algorithm by avoidance of overfitting/overtraining
problem. Neural Processing Letters, 1997(6): p. 43-50.

30. Schmitz, A., Constructive Neural Networks for Functions Approximation
and their Application to CFD Shape Optimisation. PhD Thesis 2007,
Faculty of Claremont Graduate University and California State University.

31. Schmitz, A., Besnard, E. and Hefazi, H., Automated Hydrodynamic
Shape Optimization Using Neural Networks. Paper presented to Society
of Naval Architects and Marine Engineers (SNAME) Annual Meeting,
2004.

32. Schmitz, A. and Hefazi, H., Constructive Neural Network Ensemble for
Regression Tasks in High Dimensional Spaces. Sixth International
Conference on Machine Learning and Applications, 2007: p. 266-273.

33. Maimon, et al., Data mining and knowledge discovery handbook. 2005:
Springer.

34. Pandya, A.S. and Macy, R.B., Pattern Recognition with Neural Networks
in C++. 1995: CRC Press.

127

35. Matignon, R., Neural Network Modeling using SAS Enterprise Miner.
2005: AuthorHouse. P. 146-152.

36. Amari, S. et al., Asymptotic Statistical Theory of Overtraining and Cross-
Validation. IEEE Transactions on neural networks, 1997. 8(5): p. 985-
996.

37. Wichard, J.D., Model Selection in an Ensemble Framework, in WCCI
2006: The IEEE World Congress on Computational Intelligence. 2006:
Singapore.

38. Granitto, P.M. et al., Neural network ensembles: evaluation of
aggregation algorithms. Artificial Intelligence, 2004. 163: p. 139 - 162.

39. Maalawi, K.Y. and Badr, M.A., Design Optimization of Mechanical
Elements and Structures: a Review with Application. Journal of Applied
Sciences Research, 2009. 5(2): p. 221-231.

40. Coello, C.A., Twenty years of evolutionary multi-objective optimization: A
historical view of the field. IEEE Computational Intelligence Magazine,
2006. 1: p. 28-36.

41. Zitzler, E. and Thiele, L., Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, 1999. 3 (4): p. 292-301.

42. Srinivas, N. and Deb, K., Multiobjective Optimization Using
Nondominated Sorting in Genetic Algorithms. Evolutionary Computation,
1994. 2(3): p. 221-248.

43. Jaeggi, D.M., et al., The development of a multi-objective tabu search
algorithm for continuous optimisation problems. in EJOR feature issue on
Adaptation of Discrete Metaheuristics for Continuous Optimization, 2008.
185: p. 1192-1212.

44. Robic, T. and B. Filipic, DEMO: Differential Evolution for Multiobjective
Optimization. Third International Conference on Evolutionary Multi-
Criterion Optimization, 2005. 3410: p. 520-533.

45. Molga, M. and Smutnicki, C. Test functions for optimization needs
[Available from: http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf].
2005.

46. FANN, Fast Artificial Neural Network Library. [Available from
http://leenissen.dk/fann].

47. Prechelt, L., Investigation of the CasCor Family of Learning Algorithms.
Neural Networks, 1996. 10: p. 885-896.

48. Mehrotra, K. and Ranka, S., Elements of artificial neural networks. 1996:
The MIT Press. p. 130-132.

49. Kuhfeld, W.F., Orthogonal Arrays Provided as a Service of SAS
[Available from : http://support.sas.com/techsup/technote/ts723.html].

50. Forrester, A., Sobester, A. and Keane A., Engineering Design Via
Surrogate Modelling: A Practical Guide. 2008: Wiley Blackwell.

51. Beachkofski, B. and Grandhi, R., Improved Distributed Hypercube
Sampling. in 43rd Structures, Structural Dynamics, and Materials
Conference.

52. Geman, S., Bienenstock, E. and Doursat, R., Neural Networks and the
Bias/Variance Dilemma. Neural Computation, 1992. 4: p. 1-58.

128

53. Machine learning database (concrete compressive strength). [Available
from: http://archive.ics.uci.edu/ml/machine-learning-
databases/concrete/compressive/]

54. Yeh, I.-C., Modeling of strength of high performance concrete using
artificial neural networks. Cement and Concrete Research, 1998. 28(12):
p. 1797-1808.

55. Yeh, I.-C., Analysis of strength of concrete using design of experiments
and neural networks. Journal of Materials in Civil Engineering, 2006.
18(4): p. 597-604.

56. Nash, W.J et al., The Population Biology of Abalone (Haliotis species) in
Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast and
Islands of Bass Strait. 1994, Sea Fisheries Division.

57. Meyer, D., Leisch, F. and Hornik, K., Benchmarking Support Vector
Machines. 2002, Vienna University of Economics and Business
Administration.

58. The R Project for Statistical Computing. [Available from: http://www.r-
project.org/].

59. Squires, C.S., Shavlik, J.W., Experimental Analysis of Aspects of the
Cascade-Correlation Learning Architecture. Machine Learning Research
Group Working Paper 91-1, 1991.

60. Kwok, T.-Y. and D.-Y. Yeung, Objective functions for training new hidden
units in constructive neural networks. IEEE Transactions on neural
networks, 1997. 8(5): p. 1131-1148.

61. Drago, G.P. and S. Ridella, On the convergence of a growing topology
neural algorithm. Neurocomputing, 1996. 12(2-3): p. 171-185.

62. Baluja, S. and Fahlman, S.E., Reducing Network Depth in the Cascade-
Correlation Learning Architecture. Technical Report, School of Computer
Science, Carnegie Mellon University. 1994.

63. Pace, R.K.and Barry, R., Sparse Spatial Autoregressions. Statistics and
Probability Letters, 1997. 33: p. 291-297.

64. Riley, M.J.W., K.W. Jenkins, and C.P. Thompson. Improving the
Performance of Cascade Correlation Neural Networks on Multimodal
Functions in Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering 2010. 2010.
London, U.K.

65. Lehtokangas, M., Modifed constructive backpropagation for regression.
Neurocomputing, 2000. 35: p. 113-122.

66. Lehtokangas, M., Modelling with constructive backpropagation. Neural
Networks, 1999. 12: p. 707-716.

67. Singer, P.W., Wired for War. 2010: Penguin Books.
68. Unmanned Aircraft Systems: The Global Perspective 2009/2010:

Blyenburgh & Co.
69. Carmichael, B.H., Low Reynolds Number Airfoil Survey. 1982, NASA

Contractor Report.
70. Simons, M., Model Aircraft Aerodynamics. 3rd ed. 1994: Argus Books.
71. Arora, J.S., Introduction to Optimum Design, Second Edition. 2004:

Elsevier Academic Press.

129

72. Drury, R., Trajectory Generation for Autonomous Unmanned Aircraft
Using Inverse Dynamics. PhD Thesis, Cranfield University. 2010.

73. Tusar, T., DEMO Documentation version 1.2. 2008.
74. OpenCascade, OpenCASCADE Technology 3D modelling and numerical

simulation. [Available from: http://www.opencascade.org]
75. Spalart, P.R. and Allmaras, S.R., A One-Equation Turbulence Model for

Aerodynamic Flows. 1992, AIAA Paper 92-0439.
76. Bardina, J.E., Huang, P.G. and Coakley T.J., Turbulence Modeling

Validation, Testing, and Development. 1997, NASA Technical
Memorandum 110446.

77. Launder, B.E. and Sharma, B.I. Application of the Energy Dissipation
Model of Turbulence to the Calculation of Flow Near a Spinning Disc.
Letters in Heat and Mass Transfer, 1974. 1(2): p. 131-138.

78. Yakhot, V et al., Development of turbulence models for shear flows by a
double expansion technique. Physics of Fluids A, 1992. 4(7): p. 1510-
1520.

79. Menter, F.R., Zonal Two Equation k-ω Turbulence Models for
Aerodynamic Flows. 1993, AIAA Paper 93-2906.

80. Baughn, J.W.et al., Local Heat Transfer Downstream of an Abrupt
Expansion in a circular Channel with Constant Wall heat Flux. Journal of
Heat Transfer, 1984. 106: p. 789-796.

81. Lednicer, D. The incomplete guide to airfoil usage. [Available from:
http://www.public.iastate.edu/~akmitra/aero361/design_web/airfoil_usage
.htm].

82. Chapman, N., Grid-Based CFD Optimization. MSc Thesis, Cranfield
University. 2009.

83. Debreuil, P.-E., Automated Design Optimisation. MSc Thesis, Cranfield
University. 2009.

84. Enticott, C. et al., Electrochemical Parameter Optimization Using
Scientific Workflows, in IEEE Sixth International Conference on
eScience. 2010: Brisbane, Queensland Australia.

85. Peachey, T.C., Nimrod/O User Manual.
86. EnFuzion by axceleon, [Available from : http://www.axceleon.com/]
87. Abramson, D., Giddy, J. and Kotler, L., High Performance Parametric

Modeling with Nimrod/G: Killer Application for the Global Grid?
International Parallel and Distributed Processing Symposium (IPDPS),
2000: p. 520-528.

88. Price, K.V., Differential evolution vs. functions of the 2nd ICEO. IEEE
Conference on Evolutionary Computation, 1997: p. 153-157.

89. Holland, J.H., Adaptation in Natural and Artificial Systems. 1975: The
University of Michigan Press.

90. Zitzler, E., Deb, K. and Thiele, L., Comparison of multiobjective
evolutionary algorithms: Empirical results. Evolutionary Computation,
2000. 8: p. 173-195.

91. Robic, T., Performance of DEMO on new test problems: A comparison
study. In Proceedings of the Fourteenth International Eletrotechnical and
Computer Science Conference, 2005: p. 121-124.

130

92. Huband, S., et al., A scalable multi-objective test problem toolkit. In
Evolutionary Multi-Criterion Optimization (EMO 2005), 2005: p. 280-295.

93. Poloni, C. et al., Hybridization of a multi-objective genetic algorithm, a
neural network and a classical optimizer for a complex design problem in
fluid dynamics. Computational Methods in Applied Mechanical
Engineering, 2000. 186: p. 403-420.

94. Price K., Storn R. and Lampinen, J., Differential Evolution: A Practical
Approach to Global Optimization. 2005: Springer-Verlag New York.

95. CAELinux, [Available from :http://www.caelinux.com/CMS].

131

APPENDICES

Appendix A Mathematical test functions

Table A-1 Mathematical test functions

Function
Name

 Range

Ackley

= −20 ∙ exp −
1

5
∙

1

𝑛
 𝑥𝑗

2

𝑛

𝑗=1

 − exp
1

𝑛
∙ 𝑐𝑜𝑠 2𝜋𝑥𝑗

𝑛

𝑗=1

 + 20 + exp(1)

−30 ≤ 𝑥𝑗 ≤ 30

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

(A-1)

De Jong‟s 5
th

= 0.002 + 𝑖 + 𝑥1 − 𝑎1𝑖
6 + 𝑥2 − 𝑎2𝑖

6 −1

25

𝑖=1

−1

where

𝑎1𝑖

𝑎2𝑖
 =

−32 − 16 0 16 32 − 32 … 0 16 32

−32 − 32 − 32 − 32 − 32 − 16…32 32 32

−20 ≤ 𝑥𝑗 ≤ 20

𝑗 = 1,2

(A-2)

-30

0

29

0

5

10

15

20

25

-30

0

29

X1

X2

-20

0

20

-200

0

200

400

600

-20

0

20

X1

X2

132

Langermann

= 𝑐𝑖exp −
1

𝜋
 𝑥𝑗 − 𝑎𝑖𝑗

2
2

𝑗=1

5

𝑖=1

cos 𝜋 𝑥𝑗 − 𝑎𝑖𝑗
2

2

𝑗=1

where

 𝑎𝑖𝑗 =
3 5 2 1 7

5 2 1 4 9

𝐓

 𝑐𝑖 = 1 2 5 2 3 𝐓

0 ≤ 𝑥𝑗 ≤ 2

𝑗 = 1,2

(A-3)

Michalewicz

= − sin 𝑥𝑗 ∙ sin
𝑗 ∙ 𝑥𝑗

2

𝜋

20𝑛

𝑗=1

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

When 𝑗 = 2, 0 ≤ 𝑥𝑗 ≤ 𝜋

When 𝑗 = 5, 1.0 ≤ 𝑥𝑗 ≤ 1.5

(A-4)

0

1

2

-1

-0.5

0

0.5

1

0

1

2

X1

X2

0

2

3

-2

-1.5

-1

-0.5

0

0.5

0

2

3

X1

X2

133

Schwefel

= 418.9829𝑛 − 𝑥𝑗 sin 𝑥𝑗

𝑛

𝑗=1

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

When 𝑗 = 2, 0 ≤ 𝑥𝑗 ≤ 500

When 𝑗 = 4, 100 ≤ 𝑥𝑗 ≤ 300

When 𝑗 = 5, 100 ≤ 𝑥𝑗 ≤ 300

(A-5)

Shubert

= 𝑖 cos 𝑖 + 1 𝑥1 + 𝑖

5

𝑖=1

 ∙ 𝑖 cos 𝑖 + 1 𝑥2 + 𝑖

5

𝑖=1

−8 ≤ 𝑥𝑗 ≤ −6.2

𝑗 = 1,2

(A-6)

0

247

495

0

200

400

600

800

1000

1200

1400

1600

0

247

495

X1

X2

-8

-7

-6

-200

-100

0

100

200

300

-8

-7

-6

X1

X2

134

Six Hump
Camel Back

= 4 − 2.1𝑥1
2 +

𝑥1
4

3
 ∙ 𝑥1

2 + 𝑥1𝑥2 + −4 + 4𝑥2
2 ∙ 𝑥2

2

−1.9 ≤ 𝑥1 ≤ 1.9

−1 ≤ 𝑥2 ≤ 1

(A-7)

Hartmann,

where

1
2

3

4

3.0
0.1

3.0

0.1

10
10

10

10

30
35

30

35

1.0
1.2

3.0

3.2

0.6890
0.4699

0.1091

0.0381

0.1170
0.4387

0.8732

0.5743

0.2673
0.7470

0.5547

0.8828

0 ≤ 𝑥𝑗 ≤ 1

𝒋 = 𝟑 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔

(A-8)

= 100 𝑥𝑗
2 − 𝑥𝑗+1

2
+ 𝑥𝑗 − 1

2

𝑛−1

𝑗=1

−10 ≤ 𝑥𝑗 ≤ 10

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

(A-9)

Rosenbrock

-2

-1

-1

-2

-1

0

1

2

3

4

5

2

1

1

X1

X2

3,4H

 
4 3

2

1 1

expi ij j ij

i j

c a x p
 

 
    

 
 

i ija
ic ijp

-1
0

.0 -7
.6 -5

.2 -2
.7 -0

.3 2.
1 4

.5 7.
0 9

.4

-249500

500

250500

500500

750500

1000500

1250500

-1
0.

0

-7
.0

-3
.9

-0
.9

2.
1

5
.2

8
.2

X1X2

135

Appendix B General approach to building a CasCor

metamodel

The following steps describe, in order, the approach for building a CasCor

metamodel:

 Gather, or generate, sufficient numeric data to train the neural network; the

training dataset should number at least 32 samples per dimension, the

validation dataset should number at least 5% of this training dataset (or 10

samples whichever the greater) to achieve satisfactory early stopping. Early

stopping both increases the quality of the mapping, and reduces the training

time and so it should always be used.

 If the user wishes to dispense with a testing set entirely, then consider using

a validation dataset of size 30% or more of the training dataset. The MSE

calculated on this validation set, can approximate closely the MSE that

would be found from using a much larger testing set but without the

associated cost of having to generate a large testing set.

 Train one CasCor neural network on this dataset. Inspect Table 3-2 and at

this point stop if the MSE is satisfactorily low. Use this CasCor network for

metamodelling.

 If the error is unacceptably high; apply ensembling. Arbitrarily choose the

size of the ensemble as [7,25] networks. Inspect Table 3-2 again and stop if

the MSE of this ensemble is satisfactorily low. Use this CasCor ensemble for

metamodelling.

 If the error is still unacceptably high; use the two equations given, (3-3) and

(3-4), to determine approximately the contribution of variance and the

contribution of bias to this error. If variance is found to dominate: create a

larger ensemble. Train larger ensembles until the testing MSE has either

reached a suitably low value, or until no further improvement is possible.

136

If at this point the error is still unacceptably high, bias will be the dominant

problem to address. Ensembling and early stopping do not act to reduce bias,

however patchworking does. Note that this technique requires training datasets

that are exponentially larger than the dimensions of the training dataset.

B.1 Determining bias and variance by ensembling

An unexpected discovery of the early stopping and ensemble experiments was

that the behaviour of a neural network‟s error can be expressed as a function of

the ensemble size. Motivated to determine more precisely the constituents of

that error, two equations have been found with which to determine the bias and

variance of an ensembled neural network. To the author‟s knowledge, this

particular formulation of bias and variance has not previously been published

and could constitute a further contribution of this work.

The accuracy of the calculations of the bias and the variance, when applied as

described by the current work, is taken to be of less importance than their

approximate ratio as, when 2bias variance , the use of the patchworking

technique of Chapter 4 is advocated. Other methods do exist in the literature for

the determination of bias and variance. Geman‟s method [52] proceeds as

follows:

 Randomly generate ten training datasets from the whole training data set;

each of size N/2 where N is the count of training samples. Call these training

datasets 1 10,...,D D . After training, we have ten neural networks:

* *

1 10(x),..., (x)D Df f
 (B-1)

 The ensembled response of these ten networks on the i-th example vector

x i will be:
10 *

1

1
(x) (x)

10
Ens i Dj ij

f f


 
(B-2)

 The statistical bias is estimated using unseen data of size, S

137

2 2

1

1
Bias ((x) (x))

S

Ens i ii
f f

S 
  (B-3)

 The statistical variance of the j-th neural network is found from:

* 2

1

1
Variance ((x) (x))

S

Dj i ii
f f

S 
  (B-4)

where (x)if is assumed to be the true value of the function that has been

approximated.

B.1.1 STRENGTHS of the current method vs. cross fold

 As can be seen, Geman‟s cross-fold validation requires a more complex

partitioning of any given dataset into different training datasets. The method

of the current author is simpler; requiring the use of identical training and

validation sets throughout. Also, in the current method, the validation

dataset remains unseen throughout and so can be reused to again test the

finished ensemble. The same is not true for the cross validation method

because such an ensemble of neural networks has seen all the elements of

the training and the validation samples, hence no unseen data remains. For

this reason, cross-validation necessitates a further dataset if the finished

ensemble requires testing. Finally, the cross validation‟s method of

calculating the bias is itself biased and gives slightly higher estimates than

the equations presented in this chapter (Geman‟s assumption is discussed

below).

B.1.2 WEAKNESSES of the current method vs. cross fold

 As stated, the current method requires the validation dataset to remain

unseen throughout. As such, the neural networks that constitute any

ensemble see a reduced number of unique training samples compared to an

ensemble derived from a cross-validation training procedure (which

unlimitedly sees all elements of the training and validation samples).

Intuitively, this suggests that the current method may produce poorer quality

138

ensembles than those derived from cross-fold ensembling. Experiments

have, however, not been conducted to test for this deterioration.

Geman is careful to state that, for his method, the bias and variance found will

only be approximations. Geman‟s concept of bias could be stated as: “the error

of an ensemble of infinite size”, or, equivalently “the error in the absence of

variance”. However, his approximation in calculating bias stems from the

assumption that; (100) ()EnsSize EnsSize  and (10) ()EnsSize EnsSize  .

Equations (3-3) and (3-4) do not make the same assumption; instead the use of

the (EnsSize) and (EnsSize-1) terms are correction factors that acknowledge

that bias exists alone only in the limit. Compared to German‟s method, the

correction provided by the current work will give reduced estimates of bias and

increased estimates of variance that are closer to their true values.

139

B.2 Statistical treatment of the Bias and Variance

equations

If a comparison between the current method and alternative methods of finding

bias and variance was envisaged, there are some relevant issues to be

highlighted. What follows is not intended to be a thorough statistical treatment

but has been included for the sake of completeness, should further work be

conducted by other researchers. Data from the abalone and concrete test cases

process will be used as illustrative examples (Table B-1). For convenience, the

two equations to be considered are inserted again.

(3-3)

(3-4)

By inspection, we can see that the calculation of bias explicitly uses 1EnsSizeMSE 

and EnsembleMSE . The calculation of variance explicitly uses 1EnsSizeMSE  and, by

including the bias term, implicitly uses the EnsembleMSE . There are at two principal

ways in which errors in the calculations of bias and variance can propagate.

The first is an error in the calculations of the MSEs themselves. Regardless of

nomenclature (testing datasets vs. validation datasets), let us re-state that we

must test using unseen samples. The evaluation of the MSE is itself an

approximation to the integrated MSE over the whole of the neural network(s)

response surface(s) and the accuracy of this approximation is inversely

proportional to UNSEENCount (testing is performed with these unseen samples).

The inaccuracy in the calculation of any MSE is also proportional to the

standard deviation () of each of the errors for every data point in that testing

dataset (standard error, SE n where n = number of samples in the testing

dataset). The sizes of the testing datasets in Table B-1 are 1253 and 309 which

12 ()

(1)

EnsSizeEnsembleEnsSize MSE MSE
Bias

EnsSize

 




  2
1EnsSizeMSE Bias

Variance
EnsSize

 


140

represent 42% of the size of the training datasets. However, the standard error

in the calculations of all the MSEs could be reduced by a factor of 2.4 for the

Abalone and by a factor of 4.8 for the concrete were a larger testing dataset

used of size = 38 10 .

Table B-1 Error treatment for the Abalone and Concrete metamodels

 Abalone Concrete

Dimensions of each problem 8 8

Training set size 2924 721

Validation (and test) set size, 42% of the training set 1253 309

Ensemble size  EnsSize 15 15

Mean MSE of the ensemble members  1EnsSizeMSE 
3.61E-03 3.92E-03

MSE of the ensemble  EnsembleMSE 3.44E-03 2.87E-03

Standard deviation () of the MSEs of the ensemble

members

1.21E-04 4.34E-04

Standard error SE n of the sample mean MSE of

the ensemble members, where n = ensemble size

3.114E-05 1.120E-04

Upper 95% confidence limit of the mean MSE of the

ensemble members (assumes normal distribution)

3.67E-03 4.14E-03

Lower 95% confidence limit of the mean MSE of the

ensemble members (assumes normal distribution)

3.55E-03 3.70E-03

141

The second principal way in which errors in the calculation of bias and variance

can arise is due to the use of 1EnsSizeMSE  . This is the mean testing MSE of the

neural networks that constitute the ensemble. For the concrete compressive

strength and the abalone examples, an ensemble size of 15 was used. The

standard deviations of 1EnsSizeMSE  is also given Table B-1 and it can be seen

that the standard error in 1EnsSizeMSE  is 3.6 times greater for the concrete data

than it is for the abalone. Hence, to reduce the standard error in the calculation

of 1EnsSizeMSE  for the concrete data to that of the abalone data (at an ensemble

size of 15), an ensemble of the concrete neural networks would have to number

195!

B.2.1 Summary of statistical treatment

If generating training/testing datasets is not expensive, and the primary aim is to

evaluate accurately the bias and the variance on particular test functions (for

example a comparative study of the performance of different neural network

designs) then two new equations have been contributed by the author. A short

analysis has shown the necessary care that should be taken when using these

equations to best reduce any experimental error. Though building a useful

CasCor metamodel would rarely necessitate the use of an ensemble size > 25,

ensembles of size > 50 and testing datasets of size >
310d  may be necessary

to reduce the standard error. In reducing the standard error, the errors in

precisely determining both the variance and bias will also reduce.

