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Abstract

This thesis considers the problem of the design of robust gain-scheduled flight con-
trollers for conventional fixed-wing unmanned aerial vehicles (UAVs). The design ap-
proaches employ a linear parameter-varying (LPV) control technique, that is based
on the principle of the gain-scheduled output feedback H∞ control, because a con-
ventional gain-scheduling technique is both expensive and time-consuming for many
UAV applications. In addition, importantly, an LPV controller can guarantee the
stability, robustness and performance properties of the closed-loop system across
the full or defined flight envelope. A flight control application problem for con-
ventional fixed-wing UAVs is considered in this thesis. This is an autopilot design
(i.e. speed-hold, altitude-hold, and heading-hold) that is used to demonstrate the
impacts of the proposed scheme in robustness and performance improvement of the
flight controller design over a fuller range of flight conditions.

The LPV flight controllers are synthesized using single quadratic (SQLF) or parameter-
dependent (PDLF) Lyapunov functions where the synthesis problems involve solving
the linear matrix inequality (LMI) constraints that can be efficiently solved using
standard software. To synthesize an LPV autopilot of a Jindivik UAV, the lon-
gitudinal and lateral LPV models are required in which they are derived from a
six degree-of-fredoom (6-DOF) nonlinear model of the vehicle using Jacobian lin-
earization. However, the derived LPV models are nonlinearly dependent on the
time-varying parameters, i.e. speed and altitude. To obtain a finite number of LMIs
and avoid the gridding parameter technique, the Tensor-Product (TP) model trans-
formation is applied to transform the nonlinearly parameter-dependent LPV model
into a TP-type convex polytopic model form. Hence, the gain-scheduled output
feedback H∞ control technique can be applied to the resulting TP convex polytopic
model using the single quadratic Lyapunov functions.

The parameter-dependent Lyapunov functions is also used to synthesize another
LPV controller that is less conservative than the SQLF-based LPV controller. How-
ever, using the parameter-dependent Lyapunov functions involves solving an infinite
number of LMIs for which a number of convexifying techniques exist, based on an
affine LPV model, for obtaining a finite number of LMIs. In this thesis, an affine LPV
model is converted from the nonlinearly parameter-dependent LPV model using a
minimum least-squares method. In addition, an alternative approach for obtaining
a finite number of LMIs is proposed, by simple manipulations on the bounded real
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lemma inequality, a symmetric matrix polytope inequality form is obtained. Hence,
the LMIs need only be evaluated at all vertices. A technique to construct the in-
termediate controller variables as an affine matrix-valued function in the polytopic
coordinates of the scheduled parameter is also proposed.

The time-varying real parametric uncertainties are included in the system state-
space model matrices of an affine LPV model as a linear fractional transformation
(LFT) form in order to improve robustness of the designed LPV controllers in the
presence of mismatch uncertainties between the nonlinearly parameter-dependent
LPV model and the affine LPV model. Hence, a new class of LPV models is ob-
tained called an uncertain affine LPV model which is less conservative than the
existing parameter-dependent linear fractional transformation model (LPV/LFT).
New algorithms of robust stability analysis and gain-scheduled controller synthesis
for this uncertain affine LPV model using single quadratic and parameter-dependent
Lyapunov functions are proposed. The analysis and synthesis conditions are repre-
sented in the form of a finite number of LMIs. Moreover, the proposed method is
applied to synthesize a lateral autopilot, i.e. heading-hold, for a bounded flight enve-
lope of the Jindivik UAV. The simulation results on a full 6-DOF Jindivik nonlinear
model are presented to show the effectiveness of the approach.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) could be defined as power-driven aircraft, other
than model aircraft, that are designed to fly without a human operator on board.
Typically, UAVs are used primarily to avoid putting persons at risk, or for mis-
sions where the task is better suited to a machine, e.g. D3 missions -“Dirty, Dull,
Dangerous”. To date, UAVs have been used in both military and civilian appli-
cations. Some military type applications include reconnaissance, surveillance (air,
land, maritime), border patrol, and drug interdiction. In addition, some civilian
type applications include surveillance, hydro-line inspections, water resources man-
agement, flood damage, and city mapping. UAVs have shown potential as being
strong effective platforms for supporting both military and civilian applications.

The increasing requirements on the capabilities of UAVs means that there is consid-
erable ongoing research. Advanced control methodologies, such as optimal control,
robust control, nonlinear control, intelligent control, etc., that guarantee the stabil-
ity, robustness and performance properties of the closed-loop system are some of the
very interesting active research areas for UAVs. Traditionally, automatic flight con-
trol systems can be categorised according to their function as; (i) Stability Augmen-
tation System (SAS) is designed in order to improve flying characteristics (damping
ratio and natural frequencies) of an aircraft to achieve an acceptable requirement
level of flying qualities standards, e.g. MIL-F-8785C, (ii) Control Augmentation
System (CAS) is additionally designed to provide a specific type of response to the
pilot’s input, e.g. pitch rate commands, (iii) Autopilot system is a pilot relief task
that is fully automatic control systems, e.g. airspeed hold, altitude hold, heading
hold, and turn coordination.

Since the 1950’s, classical controller design techniques such as root-locus, Bode and
Nyquist plots, and frequency response analysis have been successfully and popu-
larly implemented in the automatic flight control systems for the aerospace indus-
try. These design techniques are well understood, clearly visible, highly structured
system, and highly amenable to implementation. However, classical control tech-
niques are limited when the controllers for multivariable systems with high internal
coupling are to be designed [21]. More detail of the limitations of classical control
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techniques are described in the next section, where common control design consid-
erations of flight control systems are also outlined. Sections 1.2 and 1.3 give the
motivations and aim & objectives, respectively. The publications and thesis outline
are briefly summarized in sections 1.4 and 1.5, respectively.

1.1 Control Design Considerations

1.1.1 Aircraft Mathematical Nonlinear Model

Before a flight controller can be designed, an aircraft mathematical nonlinear model
has to be determined. Traditionally, the model parameters are determined using
wind tunnel tests by measuring the aerodynamic forces and moments introduced
on an aircraft. Recently, computational fluid dynamics (CFD) methods are becom-
ing important. Furthermore, the aircraft moments of inertia are calculated and the
aircraft engine model is determined from experimental data. However, these stan-
dard processes are both expensive and time-consuming and may not be affordable
or practicable for many UAV applications [31, 32, 36].

1.1.2 Model Uncertainties, Disturbances, and Sensor Noises

In practice, most flight control design techniques require a linearized model of an
aircraft’s dynamics about some trim condition. An aircraft linear model is typi-
cally either derived from a six degree-of-freedom (6-DOF) nonlinear model [33, 68]
or determined from experimental measurement by parameter identification meth-
ods [28, 36, 53, 57, 78]. Having an accurate linear model, a flight controller can be
successfully designed. However, the linear model will never be an entirely accurate
representation of aircraft flight because the true aircraft dynamic model parame-
ters are not exactly known and the aircraft dynamics are non-linear. Often this is
primarily because there are characteristics which cannot easily be modelled; this is
especially the case under extremely aggressive manoeuvring of aircraft where highly
nonlinear flight regimes yield unsteady and nonlinear aerodynamic effects which are
hard and complicated to model [52]. In addition, there are unmodelled dynamics
and/or inaccuracies in the model parameters hence there will always be modelling
inaccuracies in aircraft dynamic models [52]. Moreover, there will always be (usually
uncertain) external disturbance and sensor noises influencing the dynamic behavior
of the aircraft. The model uncertainties, disturbances, and sensor noises are another
practical problem for flight control design.
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1.1.3 Model Nonlinearities

In general, most real plants are nonlinear; this is especially the case for aircraft
where their dynamic characteristics vary, following some time-varying parameters.
Chumalee and Whidborne [33] showed that, when an aircraft is about a wings level
and constant altitude and airspeed flight condition, its dynamic characteristics are
nonlinearly dependent on attitude and velocity. In addition, for some UAV missions
such as targeting, deception, electronic warfare and offensive operations, UAVs are
often required to operate over a full flight envelope at various attitudes and velocities
in which the model nonlinearities are another common problem for flight control
design.

1.1.4 Sensor Limitations

An automatic flight control system requires some data feedbacks in order to sta-
bilize the aircraft and achieve asymptotic tracking of a known reference trajectory.
Practically, these data feedbacks are passed to the automatic flight controller via
flight sensors. Therefore, the sensor limitations, e.g. maximum measurement value
or maximum update rate, are another actual problem for flight control design. For
example, suppose the Crossbow VG400CD is assumed to be used in a flight control
system for measuring attitude roll and pitch angles, roll, pitch, and yaw rates, and
X, Y, and Z body axis accelerations. In addition, the pitch and roll rates are as-
sumed to be data feedbacks for closed-loop control. Since the maximum roll, pitch,
and yaw rates of the Crossbow VG400CD are 100 ◦/s, the automatic flight controller
has to be designed not to manoeuvre the aircraft with pitch and roll rates that are
greater than 100 ◦/s.

1.1.5 Actuator Limitations

An automatic flight control system controls an aircraft via actuators, hence actuator
saturation (position and rate) and actuator time lag present another common prob-
lem for flight control design. For example, suppose the Futaba S9206 (high-torque
airplane servo) is assumed to be used as the actuators in a flight control system.
Since the time lag of Futaba S9206 is 0.02 s, the automatic flight controller has to
be designed not to control the aircraft with a frequency that is greater than 8 Hz
(-3 dB bandwidth). In addition, the ratio of elevator deflection to Futaba S9206
deflection is assumed to be one to three (1:3). Since the speed of Futaba S9206 is
315 ◦/s, the automatic flight controller has to be also designed not to control the
aircraft with an excessive gain that make elevator deflection’s speed greater than
105 ◦/s.
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1.2 Conventional Gain Scheduling

A common approach in industry to handle the nonlinear property of the aircraft is
by means of gain-scheduling. The conventional approach is to design a local linear
time invariant (LTI) controller for each member of a set of operating conditions that
cover the whole of the flight envelope. As the operating conditions change, a global
controller of the closed-loop system is determined on-line and in flight by interpolat-
ing the gain values of each local LTI controller (that are within the varied operating
conditions) according to the current value of the scheduling parameters. Experi-
mentally, this design approach has been successfully and popularly implemented in
many engineering applications (e.g. submarines, engines, aircraft, etc.) in order to
cover the entire operating range of system plants but, theoretically, it comes with no
guarantees on the robustness, performance, or even nominal stability of the overall
gain scheduled design [90].

The cost-effective development of many UAV applications is very significant but the
conventional gain-scheduling technique is both expensive and time-consuming. In
addition it cannot guarantee the stability, robustness and performance properties
of the closed-loop system [90]. Hence this design approach is less suitable for a
UAV application. Based on these shortcomings of the conventional gain-scheduling
technique, two challenging motivation problems of this thesis are how to design a
single robust gain-scheduled flight controller for conventional fixed-wing UAVs for
which (i) the designed controller can operate in a fuller range of flight conditions and
(ii) the designed controller can guarantee the stability and robustness properties of
the closed-loop system.

1.3 Aims & Objectives

An advanced robust gain-scheduling technique, namely linear parameter-varying
(LPV) control [91] that is based on the principle of the H∞ control [47, 104], can
be used to handle uncertainties and nonlinearities of a nonlinear plant model. Im-
portantly, an LPV controller theoretically guarantees stability, robustness, and per-
formance properties of the closed-loop system [8, 23, 97]. Therefore, the motivation
problems listed in the previous section can be solved using an LPV control technique
with the mixed-sensitivity criterion [20, 33, 47]. This will provide a controller with
good command following (i.e. small tracking error), good disturbance attenuation,
low sensitivity to measurement noise, reasonably small control efforts, and that is
robustly stable to additive plant perturbations. To design a single robust gain-
scheduled flight controller using an LPV control technique for which the designed
controller satisfies the two motivation problems is the main aim of this thesis.

Moreover, an interesting flight control application problem for conventional fixed-
wing UAVs is considered in this thesis. This is an autopilot design (i.e. speed-hold,
altitude-hold, and heading-hold) and is also a main objective of this thesis in order
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to demonstrate the impacts of the proposed scheme in robustness and performance
improvement of the flight controller design over a fuller range of flight conditions.
The effectiveness of the proposed methods in designing an LPV autopilot is verified
and validated through a 6-DOF nonlinear model of the Jindivik UAV, shown in
Figure 1.1, that has been developed by Fitzgerald [41] in the MATLAB Simulink
environment.

1.4 Publications

The publications of this thesis are the following:

Conference papers

• S. Chumalee and J. F. Whidborne. Pole Placement Controller Design for
Linear Parameter Varying Plants. Proceedings of the UKACC International
Conference on Control 2008, Manchester, UK, September 2008.

• S. Chumalee and J. F. Whidborne. Experimental Development of an UAV
Nonlinear Dynamic Model. Proceedings of the 24th Bristol International Un-
manned Air Vehicle Systems (UAVS) Conference, Bristol, UK, March 2009.

• S. Chumalee and J. F. Whidborne. LPV Autopilot Design of a Jindivik UAV.
AIAA Guidance, Navigation, and Control Conference and Exhibit, Chicago,
Illinois, Aug. 2009.

• S. Chumalee and J. F. Whidborne. Identification and Control of RTAF Aerial
Target. Proceedings of European Control Conference 2009, Budapest, Hun-
gary, Aug. 2009.

Journal articles

• S. Chumalee and J. F. Whidborne. UAV Aerodynamic Model Identification
from a Racetrack Manoeuvre. J. Aerospace Engineering, Proc.IMechE Vol.
224 Part G, pages 831–842, 2010.

• S. Chumalee and J. F. Whidborne. Gain-scheduled H∞ Autopilot Design via
Parameter-Dependent Lyapunov Functions. Journal of Guidance, Control,
and Dynamics, 2010. (submitted).

• S. Chumalee and J. F. Whidborne. Robust Flight Control for Uncertain Affine
Linear Parameter-Varying Models. International Journal of Control, 2010.
(submitted).
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1.5 Thesis Outline

This thesis is organized as follows:

Chapter 2 provides a brief overview of research in LPV control techniques. The
relevant mathematical background is also briefly summarized.

Chapter 3 outlines theory involved in LPV systems is which includes (i) methods for
deriving LPV models, i.e. Jacobian linearization, state transformation and function
substitution, (ii) LPV models, i.e. grid LPV model, affine LPV model and TP convex
polytopic model, (iii) parameter-dependent linear fractional transformation models
(LPV/LFT), (iv) stability analysis of LPV systems, i.e. Lyapunov-based stability
analysis and small gain theorem, and (v) controller synthesis for LPV Systems, i.e.
bounded real lemma, gain-scheduled H∞ control and gain scheduling via LFT.

Chapter 4 illustrates the implementation of LPV systems theory for the nonlin-
ear control problem via a simple numerical example [61] that is known to cause
difficulties for LPV controllers. The parameters variation of the example [61] is
cancelled using the gain-scheduled pole placement state feedback. For the example,
the approach yields reliable closed-loop stability and good closed-loop transient per-
formance of the system because it makes the nonlinear plant appear to be an LTI
plant, hence well-developed LTI tools can be applied.

In chapter 5, a longitudinal nonlinearly parameter-dependent LPV model is derived
from a 6-DOF nonlinear dynamic model using Jacobian linearization. To synthesize
an LPV controller with a finite number of LMIs and avoid the gridding technique,
the TP model transformation is employed in order to transform a given nonlinearly
parameter-dependent LPV model into a TP convex polytopic model form. Having
determined the longitudinal TP polytopic model, the H∞ gain-scheduling control
that is proposed by Apkarian et al. [10] can immediately be applied to the resulting
TP polytopic model to yield an LPV autopilot that guarantees the stability and
robustness properties of the closed-loop system.

In chapter 6, the longitudinal nonlinearly parameter-dependent LPV model is con-
verted into an affine LPV model using the minimum least-squares method [58].
Based on this longitudinal affine LPV model, another LPV controller is synthesized
with a finite number of LMIs using a new parameter-dependent Lyapunov func-
tions approach. An existing PDFL approach, that is based on a multi-convexity
method [11], is given in Appendix C for which an improvement of the parameter-
dependent Lyapunov-based stability and performance analysis from the proposed
method can be compared with those from a multi-convexity approach [11].

In chapter 7, a lateral nonlinearly parameter-dependent LPV model is derived from
a 6-DOF nonlinear dynamic model using Jacobian Linearization. A lateral affine
LPV model is obtained using the minimum least-squares method [58] in a similar
approach to Chapter 6. The time-varying real parametric uncertainties are included
in the system state-space model matrices in an LFT form in order to guarantee
closed-loop stability and improve transient performance in presence of the mismatch

6



1.5 Thesis Outline

Figure 1.1: The Jindivik UAV

uncertainties between the lateral nonlinearly parameter-dependent LPV model and
the affine LPV model. Based on the proposed uncertain affine LPV model, a robust
lateral LPV controller is synthesized with a finite number of LMIs using parameter-
dependent Lyapunov functions.

Chapter 8 summarizes the discussions and main contributions of the thesis, and
suggestions for future work directions are given.

Appendix A briefly summarizes an aircraft mathematical model; this is especially
applicable for the Jindivik nonlinear model [41] from which the mathematical mod-
elling of aerodynamic forces and moments, thrust, sensors, and actuators are pre-
sented. In addition, two major lateral and longitudinal modes of the vehicle about
wings level and constant altitude 10,000 ft and airspeed 506.3 ft/s straight flight
condition are also presented.

In appendix B, an ordinary piloted manoeuvre and off-trim condition flight data
(racetrack manoeuvre) of a Royal Thai Air Force (RTAF) aerial target was studied
and identiflied in order to estimate the aerodynamic coefficients of the vehicle. Only
two flight tests had to be undertaken. The first flight test was done to record flight
data by controlling the aerial target manually. The second flight test was done to
validate the proportional, integral and derivative (PID) autopilot. As shown by the
flight test results of the PID autopilot, the identified 6-DOF non-linear model was
sufficiently reliable and accurate for the design of a satisfactory control system. This
appendix demonstrates the usefulness of system identification techniques for UAV
control system design and development in a cost-effective manner.

Appendix C briefly summarizes an existing parameter-dependent Lyapunov func-
tions approach for synthesizing a PDLF-based LPV controller using a multi-convexity
method [11]. In addition, the controller is constructed using an explicit controller
formulas [43].
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Chapter 2

Preliminaries

2.1 Introduction

Advanced control methodologies can be roughly classified according to their objec-
tive nature as: (i) optimal control is developed to achieve certain optimal perfor-
mance (i.e. minimizing a quadratic cost function), (ii) robust control is developed to
handle system plants subject to uncertainties, disturbances, and noise measurements
with high performances, (iii) nonlinear control is developed to handle nonlinear sys-
tems with high performances, and (iv) intelligent control is developed to handle sys-
tems with unknown dynamic models of system plants. Although advanced control
methodologies have shown potential in the field of improving robustness, better per-
formance, de-coupling control and simplifying the design process, some of them do
not yet have the maturity required for industrial application [67]. From an industrial
point of view, the desirable features of a very good flight controller are simplicity,
transparency, quality, accuracy, reliability, generality and implementability [67].

The optimal and robust control methods are fairly well-studied, however, their per-
formances would be conservative when UAVs have to operate in a nonlinear flight
regimes with a wide range of attitudes and velocities. Nonlinear control methods
may be suitable for designing a flight controller in this thesis but they are generally
very complex. The intelligent control would not be also suitable because it is hard
to guarantee the robustness and performance properties of the closed-loop system
in presence of model uncertainties and nonlinearities, disturbances, and noises. In
addition, intelligent control typically requires a lot of training data and it is ac-
tually not very transparent. Moreover, an intelligent control can be quite hard to
implement due to its complexity of the developed control algorithm.

In this thesis, an LPV control approach [91] is selected for designing a flight controller
becase it can handle uncertainties and nonlinearities of a nonlinear plant model.
Importantly, an LPV controller can guarantees stability and robustness properties
of the closed-loop system [8, 23, 97].
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2.2 Mathematical Preliminaries

This section briefly summarizes useful mathematical background that will be used
throughout this thesis.

2.2.1 Vector, Matrix, Signal, and System Norms

The material in this sub-section is essentially taken from Zhou et at. [104] and Gu
et at. [47]. Let a vector x = [x1, . . . , xn]T ∈ Cn, then a real valued function ‖x‖p is
the vector p-norm of x defined as

‖x‖p :=

(
n∑
i=1

|xi|p
)1/p

, for 1 ≤ p ≤ ∞ (2.1)

‖x‖1 :=
n∑
i=1

|xi|, for p = 1 (2.2)

‖x‖2 :=

√√√√ n∑
i=1

|xi|2, for p = 2 (2.3)

‖x‖∞ := max
1≤i≤n

|xi|, for p =∞ (2.4)

A norm of a vector is a measure of the vector length. When p = 2, ‖x‖2 is the
Euclidean norm of a vector x (or the Euclidean distance of a vector x from the
origin). It shall be denoted by ‖x‖ := ‖x‖2.

Let a matrix A = [aij] ∈ Cm×n and a vector x ∈ Cn, the matrix norm induced by a
vector p-norm is defined by

‖A‖p := sup
x 6=0

‖Ax‖p
‖x‖p

, for 1 ≤ p ≤ ∞ (2.5)

‖A‖1 := max
1≤j≤n

m∑
i=1

|aij|, for p = 1, column sum (2.6)

‖A‖2 :=
√
λmax(A∗A), for p = 2 (2.7)

‖A‖∞ := max
1≤i≤m

n∑
j=1

|aij|, for p =∞, row sum (2.8)

When p = 2, ‖A‖2 is the spectral norm (i.e. largest singular value) of a matrix A.
It shall be denoted by ‖A‖ := ‖A‖2.
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The p-norm of a vector signal x(t) = [x1(t), . . . , xn(t)]T , t ∈ R, is defined by

‖x‖p :=

(∫ ∞
−∞

n∑
i=1

|x(t)|pdt

)1/p

, for 1 ≤ p ≤ ∞ (2.9)

‖x‖1 :=

∫ ∞
−∞

n∑
i=1

|x(t)|dt, for p = 1 (2.10)

‖x‖2 :=

√√√√∫ ∞
−∞

n∑
i=1

x2(t)dt, for p = 2 (2.11)

‖x‖∞ := sup
t∈R
‖x(t)‖∞, for p =∞ (2.12)

Note that, given a set of real numbers F, sup(F) is the supremum or least upper
bound of a set F is defined to be the smallest real number that is greater than or
equal to every number in F while inf(F) is the infimum or greatest lower bound of
a subset F is defined to be the biggest real number that is smaller than or equal to
every number in F.

Let x̂(jω) be the Fourier transform of x(t) where ω is the real frequency variable in
radians per unit time, the frequency domain 2-norm is defined by

‖x̂‖2 :=

√
1

2π

∫ ∞
−∞

x̂∗(jω)x̂(jω)dω (2.13)

Note that, by Parseval’s identity, ‖x‖2 = ‖x̂‖2. That is√∫ ∞
−∞

x2(t)dt =

√
1

2π

∫ ∞
−∞

x̂∗(jω)x̂(jω)dω (2.14)

The normed spaces, consisting of a vector signal x(t) = [x1(t), . . . , xn(t)]T , t ∈ R
with finite norm, is defined by

Lnp (R) :=

x(t) : ‖x‖p =

(∫ ∞
−∞

n∑
i=1

|x(t)|pdt

)1/p

<∞

 , for 1 ≤ p ≤ ∞ (2.15)

Ln2 (R) :=

x(t) : ‖x‖2 =

√√√√∫ ∞
−∞

n∑
i=1

|x(t)|2dt <∞

 , for p = 2 (2.16)

For a stable LTI system G : Lm2 (R)→ Ln2 (R), the H∞ norm of G(s) is given by

‖G‖∞ = sup
ω∈R

σ{G(jω)} (2.17)

where G(s) or G(jω) ∈ Cn×m is the transfer function matrix of G and σ(·) is defined
in the next sub-section. In addition, let u(t) ∈ Lm2 and y(t) ∈ Ln2 be the input
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and output vectors of system G respectively, the induced L2-norm or L2-gain of the
system G is given by

‖G‖i2 = sup
u∈Lm2

‖G ∗ u‖2

‖u‖2

= sup
u∈Lm2

‖y‖2

‖u‖2

(2.18)

where G(t) ∗ u(t) denotes the convolution integral of G(t) and u(t). That is

y(t) = G(t) ∗ u(t) =

∫ t

0

g(t− τ)u(τ)dτ (2.19)

Note that, for LTI systems, the H∞ norm is equal to the induced L2-norm or L2-gain
(i.e. the maximal gain of the system) [37, page 75]. That is

‖G‖∞ = sup
w∈R

σ{G(jω)} = sup
u∈Lm2

‖y‖2

‖u‖2

(2.20)

2.2.2 Singular Value Decomposition

A singular value decomposition (SVD) is a very useful tool to measure the size
of a matrix for which the corresponding singular vectors are good indications of
strong/weak input/output directions.

Lemma 2.2.1. (Singular Values and Eigenvalues [37]) Given a complex matrix
A ∈ Cm×n, the set of singular values of A is denoted by {σi(A)} which equals the k
largest square roots of the eigenvalues λ of A∗A where k = min{m,n}. That is

σi(A) =
√
λ(A∗A), i = 1, 2, . . . , k (2.21)

Normally, the singular values are ordered as σi ≥ σi+1

Hence:

σ(A) = σ1(A) = sup
x∈Cn

‖Ax‖2

‖x‖2

= ‖A‖ (2.22)

σ(A) = σk(A) = inf
x∈Cn

‖Ax‖2

‖x‖2

(2.23)

Theorem 2.2.2. (Singular Value Decomposition [104, Theorem 2.11]) Given a com-
plex matrix A ∈ Cm×n, there exist two unitary matrices

U =
[
u1 u2 . . . um

]
∈ Cm×m

V =
[
v1 v2 . . . vm

]
∈ Cm×m

such that

A = UΣV ∗ (2.24)

12
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l

11

11

(a) Lower LFT structure

u

22

22

(b) Upper LFT structure

Figure 2.1: Block diagrams structures of linear fractional transformation

where

Σ =

[
Σ1 0
0 0

]
∈ Rm×n

Σ1 =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σk

 ∈ Rk×k

and σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, k = min{m,n}.

2.2.3 Linear Fractional Transformation

Linear Fractional Transformations (LFTs) are a powerful and flexible approach to
represent uncertainty in matrices and systems.

Definition 2.2.3. [104] Let M be a complex matrix partitioned as

M =

[
M11 M12

M21 M22

]
∈ C(p1+p2)×(q1+q2)

A lower LFT with respect to ∆l ∈ Cq2×p2, shown in Figure 2.1–a, that a mapping
Fl(M,∆l) : Cq2×p2 → Cp1×q1 is defined by

Fl(M,∆l) := M11 +M12∆l(I −M22∆l)
−1M21 (2.25)

where the inverse (I −M22∆l)
−1 exists. An upper LFT with respect to ∆u ∈ Cq1×p1,

shown in Figure 2.1–b, that a mapping Fu(M,∆u) : Cq1×p1 → Cp2×q2 is defined by

Fu(M,∆u) := M22 +M21∆u(I −M11∆u)
−1M12 (2.26)

where the inverse (I −M11∆u)
−1 exists.

13
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2.2.4 Linear Matrix Inequalities

The following definitions are required.

Definition 2.2.4. (Convex sets [89]) A set s in a linear vector space is said to be
convex if x1, x2 ∈ s then {x := αx1 + (1− α)x2} ∈ s for all α ∈ (0, 1)

Definition 2.2.5. (Convex combinations [89]) Let s be a subset of a vector space.
The point

x := α1x1 + α2x2 + · · ·+ αnxn =
n∑
i=1

αixi (2.27)

is called a convex combination of x1, . . . , xn ∈ s if αi ≥ 0 for i = 1, . . . , n and∑n
i=1 αi = 1

Definition 2.2.6. (Convex hull [89]) The convex hull Co{s} of any subset s ⊂ X

is the intersection of all convex sets containing s. If s consists of a finite number of
elements, then these elements are referred to as the vertices of Co{s}.

Definition 2.2.7. (Affine functions [89]) A function f : s→ T is affine if

f(αx1 + (1− α)x2) = αf(x1) + (1− α)f(x2) (2.28)

for all x1, x2 ∈ s and α ∈ R

Definition 2.2.8. [10] A matrix polytope is defined as the convex hull of a finite
number of matrix vertices Ni with the same dimensions.

Co {N1, N2, . . . , Nr} :=

{
r∑
i=1

αiNi : αi ≥ 0,
r∑
i=1

αi = 1

}
(2.29)

Definition 2.2.9. [34] Given a matrix M ∈ Rp×p, (i) M is a negative definite
symmetric matrix, i.e. M = MT < 0, if XTMX < 0 for all nonzero vector X ∈ Rp.
(ii) M is a positive definite symmetric matrix, i.e. M = MT > 0, if XTMX > 0
for all nonzero vector X ∈ Rp.

A linear matrix inequality is an affine function [89] mapping F : Rn → Rm×m that
is expressed of the form

F (x) = F0 + x1F1 + x2F2 + . . .+ xnFn

= F0 +
n∑
i=1

xiFi < 0 (2.30)

where x = [x1, . . . , xn]T ∈ Rn is a vector of n real numbers called the decision
variables. F0, . . . , Fn ∈ Rm×m are real symmetric matrices, i.e. Fj = F T

j , for
j = 0, . . . , n. F (x) is a negative definite symmetric matrix hence, by Definition 2.2.9,
uTF (x)u < 0 for all nonzero vector u ∈ Rm. This is equivalent to the condition
that all eigenvalues λ(F (x)) are negative or equivalently, the maximal eigenvalue
λmax(F (x)) < 0.

14
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Normally the variable x in (2.30), which we are interested in, is composed of one or
more matrices whose columns have been stacked as a vector [49]. That is, F (x) =
F (X1, X2, . . . , Xp) where Xi ∈ Rqi×ri is a matrix,

∑p
i=1 qi× ri = n, and the columns

of all the matrix variables are stacked up to form a single vector variable. Hence,
(2.30) can be modified further as [49]:

F (X1, X2, . . . , Xp) = F0 +G1X1H1 +G2X2H2 . . .+GpXpHp (2.31)

= F0 +

p∑
i=1

GiXiHi < 0 (2.32)

where F0, Gi ∈ Rm×qi , Hi ∈ Rri×m are given matrices and the Xi are the matrix
variables which we seek.

Corollary 2.2.10. Let s := {x|F (x) < 0} be the set of feasible solutions to the LMI
F (x) < 0 then s is convex.

Proof. We show that if x1, x2 ∈ s then {x := αx1 + (1−α)x2} ∈ s for all α ∈ (0, 1).
By Definition 2.2.7, F (x) = F (αx1 + (1 − α)x2) = αF (x1) + (1 − α)F (x2). In
addition, α > 0, (1−α) > 0, F (x1) < 0, and F (x2) < 0, it is obvious that αF (x1) +
(1 − α)F (x2) < 0 for all α ∈ (0, 1), therefore we have {x := αx1 + (1 − α)x2} ∈ s

for all α ∈ (0, 1)

2.2.5 The S-Procedure

The LPV control constraint often come with some quadratic inequalities (or quadratic
function) being negative whenever some other quadratic inequalities are all nega-
tive. The several quadratic inequalities can be combined into one single inequality
(generally with some conservatism) using the S-procedure [25]. Let F0, . . . , Fp be
quadratic functions of the variable x ∈ Rn:

Fi(x) := xTTix+ 2uTi x+ v, i = 0, . . . , p,

where Ti = T Ti . Consider

F0(x) ≥ 0 for all x such that Fj(x) ≥ 0, j = 1, , . . . , p. (2.33)

It is obvious that if there exist τ1 ≥ 0, . . . , τp ≥ 0 such that for all x,

F0(x)−
p∑
i=1

τiFi(x) ≥ 0 (2.34)

then (2.33) is satisfied.
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2.2.6 Useful Tools

Lemma 2.2.11. (Congruence Transformation [51, page 399]) Given a negative def-
inite symmetric matrix M = MT ∈ Rp×p, M < 0 then for another real matrix
T ∈ Rp×q such that rank(T TMT ) = rank(T ) = q, the following inequality holds:

T TMT < 0 (2.35)

Note that, based on rank(T ) = q, we have q ∈ [1, p] ⊂ N.

Lemma 2.2.12. (Schur complement [44]) Let a partitioned symetric matrix

N =

[
P M
MT Q

]
∈ Rp×p,

N is a negative definite symmetric matrix if and only if

Q < 0

P −MQ−1MT < 0 (2.36)

where P −MQ−1MT is the Schur complement of Q.

Proof. [89] Let a non-singular matrix T ∈ Rp×p and u = Tv where

T =

[
I 0

−Q−1MT I

]
, (2.37)

We have uTNu < 0 for all nonzero vector u ∈ Rp for which this is equivalent to
vTT TNTv < 0 for all nonzero vector v ∈ Rp. Computing T TNT :

T TNT =

[
P −MQ−1MT 0

0 Q

]
(2.38)

Obviously, vTT TNTv < 0 if and only if (2.36) is satisfied.

Lemma 2.2.13. [82] Given a pair of positive definite symmetric matrices (X, Y ) ∈
Rp×p. Then there exists matrices X2, Y2 ∈ Rp×m and X3, Y3 ∈ Rm×m, where m is a
positive integer, such that X3 = XT

3 ,[
X X2

XT
2 X3

]
> 0, and

[
X X2

XT
2 X3

]−1

=

[
Y Y2

Y T
2 Y3

]
(2.39)

if and only if X − Y −1 ≥ 0, and rank(X − Y −1) ≤ m.

Lemma 2.2.14. (Projection lemma [44]) Given an inequality problem of the form

Ψ +QTKTP + P TKQ < 0 (2.40)

where Ψ ∈ Rm×m is a symmetric matrix, Q and P are matrices with column dimen-
sion m. Let Q⊥ and P⊥ be any matrices whose columns form bases of the null spaces
of Q and P respectively; the above problem is solvable for a matrix K of compatible
dimensions if and only if

QT
⊥ΨQ⊥ < 0, P T

⊥ΨP⊥ < 0 (2.41)
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Lemma 2.2.15. (Finsler’s Lemma [49]) For some real number σ ∈ R, (2.40) is
equivalent to two inequalities

Ψ + σQTQ < 0 (2.42)

Ψ + σP TP < 0 (2.43)

2.3 Basic LPV Models

In nature, most real plants are nonlinear. A general nonlinear model can be written
in the form.

ẋ (t) = f(x (t) , u (t))

y (t) = g(x (t) , u (t)) (2.44)

where t ∈ R is the time, x(t) = [x1(t), . . . , xp(t)]
T ∈ Rp is the state vector, u(t) =

[u1(t), . . . , um(t)]T ∈ Rm is the control input vector, y(t) = [y1(t), . . . , yq(t)]
T ∈ Rq

is the measurement output vector, f(·) and g(·) are continuous mapping functions:
Rp × Rm → Rp, and Rp × Rm → Rq, respectively. Having linearized (2.44) using
Jacobian method about one equilibrium point, an LTI model is obtained in which
it can be written as a state-space system of the form (see sub-section 3.1.1):

ẋ (t) = Ax(t) +Bu(t)

y (t) = Cx(t) +Du(t) (2.45)

where A ∈ Rp×p, B ∈ Rp×m, C ∈ Rq×p, and D ∈ Rq×m.

In general, most real plants have more than one equilibrium point. At each equilib-
rium point, some operating parameters could be selected as time-varying parameters.
When the time-varying parameters vary slowly, (2.45) become an LPV model for
which it can be written in the form (see sub-section 3.1.1):

ẋ(t) = A
(
θ(t)

)
x(t) +B

(
θ(t)

)
u(t)

y(t) = C
(
θ(t)

)
x(t) +D

(
θ(t)

)
u(t) (2.46)

where A(·), B(·), C(·), and D(·) are known functions of time-varying parameters,
θ(t) = [θ1(t), . . . , θn(t)]T ∈ Rn, and are continuous mapping matrix functions: Rn →
Rp×p, Rn → Rp×m, Rn → Rq×p, and Rn → Rq×m, respectively. The time variation
of each of the parameters θ(t) is not known in advance, but can be measured in
real-time and lies in some set bounded by known minimum and maximum possible
values, i.e. θ1(t) ∈ [θ1, θ1], θ2(t) ∈ [θ2, θ2], . . ., θn(t) ∈ [θn, θn].

It can be seen that two interesting features of an LPV model are (i) an LPV model
can represent nonlinear dynamic characteristics of an original nonlinear model better
than an LTI model because it uses the time-varying parameters θ(t) to capture the
dynamic characteristics of the original nonlinear model and (ii) an LPV model is still
a linear system, whose state-space descriptions are functions of time-varying param-
eters θ(t). Hence the single quadratic or parameter-dependent Lyapunov functions
can be used to prove the stability of LPV models.
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2.4 Literature Review

Comprehensive overviews of research in gain-scheduled control techniques can be
found in [87] and [62]. Although most real plants are nonlinear, they can often
be modelled as an LPV plant model [13, 39, 80] or characterized as a linear frac-
tional transformation (LFT) [9, 29, 81, 98] or as a linear fractional representation
(LFR) [86, 96] for gain-scheduled control synthesis and analysis purpose.

An LFT (or LFR) gain-scheduled controller is often synthesized via the scaled small-
gain theorem [81] or scaled bounded real lemma [9, 96]. Two advantages of the
parameter-dependent plant having LFT (or LFR) parameter dependency are (i) the
existence of an LFT (or LFR) gain-scheduled controller that is fully characterized
by a finite number of LMIs [96, 98], and (ii) its favourable LFT (or LFR) structure
offers obvious advantages in reducing computational burden and ease of controller
implementation [9, 83]. However, in the LFT (or LFR) formulation, the variations
of parameters are allowed to be complex, thus conservatism is introduced when the
scheduled parameters are real [10, 60, 83].

An LPV plant model was first introduced by Shamma and Athans [91] whereby
its dynamic characteristics vary, following some time-varying parameters whose
values are unknown a priori but can be measured in real-time and lie in some
set bounded by known minimum and maximum possible values. An algebraic
manipulation method, e.g. Jacobian linearization [39, 66, 80], state transforma-
tion [13, 92], or function substitution [94], etc., is normally used to derive an LPV
model from the original nonlinear model. Moreover, in the literature, there are sev-
eral different varieties of LPV models, e.g. the grid LPV model [39, 66, 100, 101],
the affine LPV model [8, 7, 10] (or polytopic LPV model), the tensor-product
(TP) convex polytopic model [15, 16, 18], etc., these have been introduced for
the analysis and gain-scheduled control synthesis which is usually based on sin-
gle quadratic Lyapunov function [10, 23] or parameter-dependent Lyapunov func-
tions (e.g. parameter-dependent [8, 39, 100, 101], affine parameter-dependent [45],
piecewise-affine parameter-dependent [63, 64], blending parameter-dependent [94],
multiple parameter-dependent Lyapunov functions [65, 66], etc.).

A grid LPV model was introduced by Becker and Packard [23], whereby system
state-space model matrices are functions of the scheduled parameters at all grid
points over the entire parameter spaces and an affine LPV model, introduced by
Apkarian et al. [10], the system matrices are known functions and depend affinely
on the parameters that vary in a polytope of vertices. The TP convex polytopic
model has been recently proposed by Baranyi [15] for transforming a given LPV
model, whose system matrices are nonlinearly dependent on the parameters, into
a convex polytopic model. It uses a higher order singular value decomposition in
order to decompose a given N -dimensional tensor into a full orthonormal system in a
special ordering of higher order singular values which express the rank properties of
the given LPV model for each element of the parameter vector in the L2-norm [15, 16,
18]. Hence, the TP-type convex polytopic model is obtained, where the parameter-
dependent weighting functions of the LTI vertice components of the polytopic model
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are one-dimensional functions of the elements of the parameter vector [15, 16, 18].

Using single quadratic Lyapunov functions, for both the affine LPV models [10] and
the TP convex polytopic models [33] cases, a finite number of LMIs need only be
evaluated at all vertices while, for the grid LPV models [99] case, an infinite number
of LMIs have to be evaluated at all points over the entire parameter space in order
to determine a pair of positive definite symmetric matrices (X, Y ). However, in
practice, the symmetric matrices (X, Y ) can be determined from a finite number of
LMIs by gridding the entire parameter space with a non-dense set of grid points.
Having determined the symmetric matrices (X, Y ), a more dense grid points set
can be tested with these determined symmetric matrices (X, Y ) to check whether
the LMIs are satisfied [100, 101]. If not, this process is repeated with a denser grid
until the symmetric matrices (X, Y ), that satisfy the LMIs for all points over the
entire parameters space, are obtained [64, 100, 101]. Hence, the result of heuristic
gridding technique is unreliable and the analysis result is dependent on choosing
the gridding points [96]. In addition, for a grid LPV model case, the resulting
gain-scheduled controller has high computational on-line complexity at the gain-
scheduling level [99] while, for the other two cases, the gain-scheduled controller is
constructed as an affine matrix-valued function in the polytopic coordinates of the
scheduled parameter [10, 33].

In general, the single quadratic Lyapunov function is more conservative than the
parameter-dependent Lyapunov function when the parameters are time-invariant
or slowly varying [45]. Moreover, when the parameters have a large variation, the
piecewise-affine parameter-dependent [63, 64], blending parameter-dependent [94],
and multiple parameter-dependent Lyapunov functions [65, 66] are less conservative
than the parameter-dependent Lyapunov function. This is because an LPV model
with a large parameter variation can be modeled as a switching linear parameter-
varying (SLPV) system that can be discontinuous along the switching surface by
dividing the entire parameters spaces into parameters subsets that are small vari-
ation regions. Hence, solving LMIs with the parameters subsets, the performance
measure (γ) can be improved. Moreover, the sufficient conditions to guarantee the
stability of the SLPV systems in terms of the dwell time and the average dwell time
have been provided in [102]. However, using parameter-dependent [8, 39, 100, 101],
blending parameter-dependent [94], and multiple parameter-dependent Lyapunov
functions [65, 66], an infinite number of LMIs have to be evaluated at all points
over the entire parameters space. Moreover, the resulting gain-scheduled controller
requires more complex on-line computations at the gain-scheduling level.
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Chapter 3

LPV Systems Theory

An LPV control technique is motivated by the shortcomings of the conventional
gain-scheduling technique. Since Shamma and Athans [91] introduced LPV plant
models, the LPV control approach has developed quite rapidly. There are three
common approaches that are normally used to derive an LPV model from an orig-
inal nonlinear model. These are (i) Jacobian linearization [39, 66, 80], (ii) state
transformation [13, 92], and (iii) function substitution [94]. Section 3.1 gives a brief
overview of these three approaches. Details of three types of LPV models and de-
tails of parameter-dependent linear fractional transformation models (LPV/LFT)
are also provided in sections 3.2. In addition, the theory involved in stability anal-
ysis (i.e. Lyapunov-based stability analysis and small gain theorem) and controller
synthesis for LPV Systems (i.e. bounded real lemma, gain-scheduled H∞ control
and gain scheduling via LFT) are presented in sections 3.3 and 3.4, respectively.

3.1 Methods for Deriving LPV models

An LPV model is of great importance for synthesizing an LPV controller. The
following sub-sections summarize the common methods for deriving a reliable LPV
model from an original nonlinear model.

3.1.1 Jacobian Linearization

Jacobian linearization is a well known method which is usually used to linearize an
nonlinear ordinary differential equation about a specific operating condition, called
an equilibrium point (or trim point).

Consider an equilibrium point at ti in the time space of a general nonlinear model
of the form (2.44), the equilibrium state vector xtrim, equilibrium input vector utrim,
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and equilibrium output vector ytrim can be defined as shown below,

xtrim = x (ti)

utrim = u (ti)

ytrim = g(xtrim, utrim) (3.1)

where f(xtrim, utrim) = 0. Consider a small perturbation about (xtrim, utrim, and
ytrim). The deviation variables can be defined as shown below, in order to measure
the difference.

δx (t) = x (t)− xtrim

δu (t) = u (t)− utrim (3.2)

Substitute x (t) = xtrim + δx (t) and u (t) = utrim + δu (t) into (2.44), we get

ẋ (t) = f(xtrim + δx (t) , utrim + δu (t))

y (t) = g(xtrim + δx (t) , utrim + δu (t)) (3.3)

Appling the Taylor expansion to (3.3) gives

f(xtrim + δx (t) , utrim + δu (t)) = f(xtrim, utrim) + δx (t)
∂f(x (t) , u (t))

∂x (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+ δu (t)
∂f(x (t) , u (t))

∂u (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+
1

2!

{
δx2 (t)

∂2f(x (t) , u (t))

∂x (t)2

+ 2δx (t)
∂f(x (t) , u (t))

∂x (t)
δu (t)

∂f(x (t) , u (t))

∂u (t)

+ δu2 (t)
∂2f(x (t) , u (t))

∂u (t)2

}∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+ · · ·

g(xtrim + δx (t) , utrim + δu (t)) = g(xtrim, utrim) + δx (t)
∂g(x (t) , u (t))

∂x (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+ δu (t)
∂g(x (t) , u (t))

∂u (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+
1

2!

{
δx2 (t)

∂2g(x (t) , u (t))

∂x (t)2

+ 2δx (t)
∂g(x (t) , u (t))

∂x (t)
δu (t)

∂g(x (t) , u (t))

∂u (t)

+ δu2 (t)
∂2g(x (t) , u (t))

∂u (t)2

}∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+ · · · (3.4)
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By neglecting second and higher order terms, approximations of (3.4) are

f(xtrim + δx (t) , utrim + δu (t)) =f(xtrim, utrim) + δx (t)
∂f(x (t) , u (t))

∂x (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+ δu (t)
∂f(x (t) , u (t))

∂u (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

g(xtrim + δx (t) , utrim + δu (t)) =g(xtrim, utrim) + δx (t)
∂g(x (t) , u (t))

∂x (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+ δu (t)
∂g(x (t) , u (t))

∂u (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

(3.5)

Equation (3.5) can be rewritten as

ẋ (t) = δx (t)
∂f(x (t) , u (t))

∂x (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+ δu (t)
∂f(x (t) , u (t))

∂u (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

y (t)− ytrim = δx (t)
∂g(x (t) , u (t))

∂x (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

+ δu (t)
∂g(x (t) , u (t))

∂u (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

(3.6)

Finally, (3.6) can be rewritten in a standard state-space of the form (LTI model).

δẋ (t) = Aδx (t) +Bδu (t)

δy (t) = Cδx (t) +Dδu (t) (3.7)

where δẋ (t) = ẋ (t), δx (t) = x (t)−xtrim, δu (t) = u (t)−utrim, δy (t) = y (t)− ytrim,
(xtrim, utrim, ytrim) are at an equilibrium point, and

A =
∂f(x (t) , u (t))

∂x (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

B =
∂f(x (t) , u (t))

∂u (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

C =
∂g(x (t) , u (t))

∂x (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

D =
∂g(x (t) , u (t))

∂u (t)

∣∣∣∣∣x(t)=xtrim

u(t)=utrim

It is noted that Jacobian linearization gives a single LTI model about a given trim
point (a small perturbation condition). However, most actual plants have more
than one trim point. The set of trim points typically varies, following the operating
condition. At each trim point, some operating paramters could be selected as time-
varying parameters, e.g. Mach number, altitude, dynamic pressure, or angle of
attack in case of aircraft. When the time-varying parameters are fixed, (3.7) is an
LTI model. However, when the time-varying parameters vary slowly over the entire
parameters space, (3.7) becomes an LPV model.
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3.1 Methods for Deriving LPV models

3.1.2 State Transformation

Shamma and Cloutier [92] proposed the state transformation method to derive a
quasilinear parameter varying (quasi-LPV) of a missile nonlinear model. An LPV
model is said to be a quasi-LPV model if its state vector can be partitioned into a
scheduling state vector and a non-scheduling state vector.

In many applications (e.g. turbofan engine [13], missile [92], etc.), the nonlinear
model of (2.44) can be rewritten as:[
ẋ1(t)
ẋ2(t)

]
=

[
A11(x1(t)) A12(x1(t))
A21(x1(t)) A22(x1(t))

] [
x1(t)
x2(t)

]
+

[
B1(x1(t))
B2(x1(t))

]
u(t) +

[
K1(x1(t))
K2(x1(t))

]
(3.8)

where x1(t) = [x11(t), . . . , x1p1
(t)]T ∈ Rp1 is the scheduling state vector and is also

the the time-varying parameters, x2(t) = [x21(t), . . . , x2p2
(t)]T ∈ Rp2 is the non-

scheduling state vector where p = p1 +p2. A11(·), A12(·), A21(·), A22(·), B1(·), B2(·),
K1(·), and K2(·) are continuous mapping functions: Rp1 → Rp1×p1 , Rp1 → Rp1×p2 ,
Rp1 → Rp2×p1 , Rp1 → Rp2×p2 , Rp1 → Rp1×m, Rp1 → Rp2×m, Rp1 → Rp1 , and
Rp1 → Rp2 , respectively.

Suppose there exist continuously differentiable functions x2eq(x1(t)) and ueq(x1(t))
that are continuous mapping functions: Rp1 → Rp2 and Rp1 → Rm, respectively,
such that for every x1(t),[
0
0

]
=

[
A11(x1(t)) A12(x1(t))
A21(x1(t)) A22(x1(t))

] [
x1(t)

x2eq(x1(t))

]
+

[
B1(x1(t))
B2(x1(t))

]
ueq(x1(t)) +

[
K1(x1(t))
K2(x1(t))

]
(3.9)

Subtracting (3.9) from (3.8) obtains

ẋ1(t) = A12(x1(t))[x2(t)− x2eq(x1(t))] +B1(x1(t))[u(t)− ueq(x1(t))]

ẋ2(t) = A22(x1(t))[x2(t)− x2eq(x1(t))] +B2(x1(t))[u(t)− ueq(x1(t))] (3.10)

Differentiating x2eq(x1(t)) with respect to time t gives

d

dt
x2eq(x1(t)) = ẋ2eq(x1(t)) =

∂x2eq(x1(t))

∂x1(t)
ẋ1(t)

=
∂x2eq(x1(t))

∂x1(t)
{A12(x1(t))[x2(t)− x2eq(x1(t))] +B1(x1(t))[u(t)− ueq(x1(t))]}

(3.11)

Subtracting (3.11) from (3.10) obtains

ẋ2(t)− ẋ2eq(x1(t)) =[A22(x1(t))− ∂x2eq(x1(t))

∂x1(t)
A12(x1(t))][x2(t)− x2eq(x1(t))]

+ [B2(x1(t))− ∂x2eq(x1(t))

∂x1(t)
B1(x1(t))][u(t)− ueq(x1(t))]

(3.12)
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3.1 Methods for Deriving LPV models

Hence, (3.10) can be rewritten as a quasi-LPV model in a state-space equation of
the form [

ξ̇1(t)

ξ̇2(t)

]
=

[
0 A12(ξ1(t))

0 Ã22(ξ1(t))

] [
ξ1(t)
ξ2(t)

]
+

[
B1(ξ1(t))

B̃2(ξ1(t))

]
v(t) (3.13)

where ξ1(t) = x1(t), ξ2(t) = x2(t)− x2eq(x1(t)), v(t) = u(t)− ueq(x1(t)) and

Ã22(ξ1(t)) = A22(ξ1(t))− ∂x2eq(ξ1(t))

∂ξ1(t)
A12(ξ1(t))

B̃2(ξ1(t)) = B2(ξ1(t))− ∂x2eq(ξ1(t))

∂ξ1(t)
B1(ξ1(t))

3.1.3 Function Substitution

Tan et al. [95] have introduced this method to linearize a missile nonlinear model
around a single equilibrium point. Unlike Jacobian linearization, the principle of
this method is to select a suitable single equilibrium point such that the original
nonlinear model can be rewritten in a quasi-LPV model form.

Suppose a nonlinear model in (2.44) can be rewritten as (3.8). Let x1r = [x1r1 , . . . , x1rp1
]T

∈ Rp1 , x2r = [x2r1 , . . . , x2rp2
]T ∈ Rp2 , and ur = [ur1 , . . . , urm ]T ∈ Rm be a selected

equilibrium point. Define x1(t) = x̃1(t)+x1r, x2(t) = x̃2(t)+x2r, and u(t) = ũ(t)+ur.
Substituting into (3.8), we have[

˙̃x1(t)
˙̃x2(t)

]
=

[
A11(x1(t)) A12(x1(t))
A21(x1(t)) A22(x1(t))

] [
x̃1(t)
x̃2(t)

]
+

[
B1(x1(t))
B2(x1(t))

]
ũ(t)+

[
F1(x1(t), x1r, x2r, ur)
F2(x1(t), x1r, x2r, ur)

]
(3.14)

where F1(·) and F2(·) are continuous mapping functions: Rp1×Rp1×Rp2×Rm → Rp1

and Rp1 × Rp1 × Rp2 × Rm → Rp2 , respectively, and[
F1(x1(t), x1r, x2r, ur)
F2(x1(t), x1r, x2r, ur)

]
=

[
A11(x1(t)) A12(x1(t))
A21(x1(t)) A22(x1(t))

] [
x1r

x2r

]
+

[
B1(x1(t))
B2(x1(t))

]
ur+

[
K1(x1(t))
K2(x1(t))

]
(3.15)

Given a suitable single equilibrium point (x1r, x2r, ur), the goal of this method is to
decompose functions F1(·) and F2(·) into functions E1(·) and E2(·) that are linear in
x̃1(t) and are continuous mapping functions: Rp1 → Rp1×p1 and Rp1 → Rp2×p1 such
that for all x1(t),[

E1(x1(t)) 0
E2(x1(t)) 0

] [
x̃1(t)
x̃2(t)

]
≈
[
F1(x1(t), x1r, x2r, ur)
F2(x1(t), x1r, x2r, ur)

]
(3.16)

The decomposition of functions E1(·) and E2(·) can be posed as an optimization
problem, for example, as a minimum least-squares problem [58] that minimizes
the sum of squared differences between the true functions (F1(·), F2(·)) and the
approximate functions (E1(·), E2(·)). That is to minimize εT ε/2 where

ε =

[
F1(x1(t), x1r, x2r, ur)− E1(x1(t))x̃1(t)
F2(x1(t), x1r, x2r, ur)− E2(x1(t))x̃1(t)

]
(3.17)
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Table 3.1: Comparison between three methods for deriving LPV models

Method Jacobian linearization
Advantages (i) Applicable to a general class of nonlinear models.

(ii) Simple structure model.
Disadvantages (i) Only accurately represent the original nonlinear dynamics

about the neighborhood of a set of equilibrium points.
(ii) The time-varying parameters must vary slowly.

Method State Transformation
Advantages (i) Exactly represent the original nonlinear dynamics.
Disadvantages (i) Applicable to the only special form of nonlinear models

(ii) Complex structure model.
Method Function Substitution
Advantages (i) Can represent the original nonlinear dynamics over a non-trim region.
Disadvantages (i) Applicable to the only special form of nonlinear models

(ii) How to find a suitable equilibrium point is still not established.
(iii) Complex structure model.

For example, Shin et al. [94] proposed the function substitution method to derive a
quasi-LPV model of the F-16 aircraft that can cover the aircraft non-trim region.

Having determined functions E1(·) and E2(·) and substituted them back into (3.14),
we have a quasi-LPV model as

[
˙̃x1(t)
˙̃x2(t)

]
=

[
A11(x1(t)) + E1(x1(t)) A12(x1(t))
A21(x1(t)) + E2(x1(t)) A22(x1(t))

] [
x̃1(t)
x̃2(t)

]
+

[
B1(x1(t))
B2(x1(t))

]
ũ(t) (3.18)

3.1.4 Summary of Three Derivation Methods

A summary of the advantage and disadvantage of these three methods, i.e. Jaco-
bian linearization, state transformation, and function substitution, is presented in
Table 3.1. It can be seen from Table 3.1 that both state transformation-based and
function substitution-based LPV models can represent nonlinear dynamic charac-
teristics of the original nonlinear model better than Jacobian linearization-based
LPV model. However, the state transformation approach assumes that there exist
equilibrium function for the non-scheduling states, x2eq(x1(t)), and the control in-
put, ueq(x1(t)). Unfortunately, this is not always the case. In addition, the function
substitution approach lacks a theoretical method of obtaining a suitable equilibrium
point.
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3.2 LPV Models for Controller Synthesis

Having derived a parameter-dependent model from an original nonlinear model, the
resulting model can often be grouped into three LPV model types for gain-scheduled
control analysis and synthesis purposes. The following subsections outline these
three model types that include the grid LPV model [39, 66, 100, 101], the affine
LPV model [7, 8, 10] (or polytopic LPV model), and the tensor-product (TP) convex
polytopic model [15, 16, 18].

3.2.1 Grid LPV Model

A resulting model, that is derived from an original nonlinear model using an al-
gebraic manipulation method, is often nonlinearly dependent on the time-varying
parameters in which an infinite number of LMIs is obtained when an LPV controller
is synthesized based on this nonlinearly parameter-dependent LPV model. To ob-
tain a finite number of LMIs, Becker and Packard [23] have introduced a grid LPV
model which can be written as a state-space system of the form (2.46) where the
system matrix, S : Rn → R(p+q)×(p+m), is a function of the scheduled parameters at
all grid points over the entire parameter spaces and can be writen as

S
(
θ(t)

)
=

[
A
(
θ(t)

)
B
(
θ(t)

)
C
(
θ(t)

)
D
(
θ(t)

)] (3.19)

3.2.2 Affine LPV Model

An alternative LPV model that yields a finite number of LMIs when synthesizing
an LPV controller is an affine LPV model that has been introduced by Apkarian et
al. [10]. The affine LPV model can also be written as a state-space system of the
form (2.46), but where the system matrix, S

(
θ(t)

)
, is assumed to depend affinely

on the time-varying parameters. That is

S
(
θ(t)

)
= S0 + θ1(t)S1 + · · ·+ θn(t)Sn (3.20)

where θ(t) lies in a polytope Θ, θ(t) ∈ Θ, Θ = [θ1, θ1]× [θ2, θ2]× . . .× [θn, θn], n is
the total number of θ(t), and

Si =

[
Ai Bi

Ci Di

]
, i = 0, . . . , n (3.21)

and S0, S1, . . . , Sn are known fixed matrices. The system matrix, S
(
θ(t)

)
, can also

be written as a convex combination of the matrix vertices (see definition 2.2.8) as

S
(
θ(t)

)
= Co

{
Ŝ1, Ŝ2, . . . , Ŝr

}
= α1Ŝ1 + α2Ŝ2 + · · ·+ αrŜr

=
r∑
j=1

αjŜj, Ŝj =

[
Âj B̂j

Ĉj D̂j

]
(3.22)
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where r = 2n is the total number of vertices, Ŝj are the LTI system matrices at each

vertex, αj ∈ [0, 1], and
∑r

j=1 αj = 1. Si, i = 0, . . . , n map to Ŝj, j = 1, . . . , r as
Ŝ1

Ŝ2

Ŝ3
...

Ŝr

 =


1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
...

1 θ1 θ2 . . . θn−1 θn



S0

S1
...
Sn

 (3.23)

Following Pellanda et al. [83, Algorithm 3.1], in order to compute αi, we first com-
pute the normalized co-ordinates

αθi =
θi − θi(t)
θi − θi

, i = 1, . . . , n (3.24)

Then, for each vertex Θj, j = 1, . . . , r, the corresponding polytopic co-ordinates are
calculated by

αj =
n∏
i=1

α̃θi , α̃θi =

{
αθi , if θi is a co-ordinate of Θj;

1− αθi , if θi is a co-ordinate of Θj.
(3.25)

3.2.3 TP Convex Polytopic Model

Baranyi [15] has introduced a TP model transformation to transform a given parameter-
dependent model to a convex polytopic model. The resulting model is called a TP
polytopic model that also yields a finite number of LMIs when synthesizing an LPV
controller. The TP model transformation is an automatically executable numerical
method and has three key steps. The first step is the discretization of the given
system matrix over a huge number of points. The discretized points are defined
by a dense hyper-rectangular grid of the parameters. The second step extracts the
LTI vertex systems from the discretized systems using a higher order singular value
decomposition (HOSVD) to decompose a given n-dimensional tensor into a full or-
thonormal system in a special ordering of higher order singular values which express
the rank properties of the given parameter-dependent model for each element of the
parameter vector in the L2-norm. The third step defines the continuous weighting
functions to the LTI vertex systems.

This sub-section only outlines a brief overview of the TP polytopic model; for further
details refer to [15, 16, 18]. Although the TP polytopic model cannot be written in an
affine combination because it is not a type of affine LPV model, following [15, 16, 18],
the TP polytopic model can also be written in a convex combination of the matrix
vertices as (

ẋ(t)
y(t)

)
=

R∑
a=1

wa(θ(t))Sa

(
x(t)
u(t)

)
(3.26)

where R = I1 × I2 × · · · × In =
∏

n In is the total number of vertices, n is the total
number of the parameters vector, Ii, i = 1, . . . , n, is the index upper bounds of the
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weighting functions used in the i-th dimension of the parameter vector, θ(t) ∈ Θ,
and

wa(θ(t)) = w1,j1(θ1(t))× w2,j2(θ2(t))× · · · × wn,jn(θn(t))

=
∏
n

wi,j(θi(t)), j = 1, . . . , Ii, i = 1, . . . , n (3.27)

Sa = Si1i2···in =

(
Aa Ba

Ca Da

)
∈ R(p+q)×(p+m) (3.28)

wa : Rn → R is a continuous weighting function, wi,j(θi(t)) is the j-th one variable
weighting function defined on the i-th dimension of Θ, and θi(t) is the i-th element
of the parameter vector θ(t), Sa is an LTI vertex systems, a = ordering (i1i2 · · · in).

The goal of the TP model transformation is to determine the LTI vertex systems,
Sa, and the weighting functions, wi,j(θi(t)), such that the system matrix, S

(
θ(t)

)
,

in (3.19) is given for any grid points over the entire parameter spaces and can be
expressed as the combination of the vertex system matrices, Sa, and the weighting
functions, wa

(
θ(t)

)
, which are nonlinearly dependent on the scheduled parameters,

S
(
θ(t)

)
≈

R∑
a=1

wa
(
θ(t)

)
Sa, ∀θ(t) ∈ Θ (3.29)∥∥∥∥∥S(θ(t))−

R∑
a=1

wa
(
θ(t)

)
Sa

∥∥∥∥∥ ≤ ε (3.30)

Here, ε symbolizes the approximation error. Furthermore, the convex combination
of the LTI vertex systems is ensured by the condition,

∀i ∈ [1, n], j ∈ [1, Ii], θi(t) : wi,j
(
θi(t)

)
∈ [0, 1] (3.31)

∀i ∈ [1, n], θi(t) :

Ii∑
j=1

wi,j
(
θi(t)

)
= 1 (3.32)

∀a ∈ [1, R], θ(t) : wa
(
θ(t)

)
∈ [0, 1] (3.33)

∀θ(t) :
R∑
a=1

wa
(
θ(t)

)
= 1 (3.34)

Hence, S
(
θ(t)

)
is within the convex hull of the LTI vertex systems Sa for ∀θ(t) ∈ Θ.

For convenience, in the following sections, we will henceforth often drop the depen-
dence on t.

3.2.4 LPV/LFT Models

An alternative approach for gain-scheduled control analysis and synthesis is to char-
acterize a nonlinear model as a parameter-dependent linear fractional transformation
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model (LPV/LFT) from which the LFT gain-scheduled controller is often synthe-
sized via the scaled small-gain theorem [81] or scaled bounded real lemma [9, 96].

Assume the system (2.46) depends affinely on the scheduled parameters θ (see [81]
for other cases). We have

A(θ) = A0 + θ1A1 + θ2A2 + · · ·+ θnAn

B(θ) = B0 + θ1B1 + θ2B2 + · · ·+ θnBn

C(θ) = C0 + θ1C1 + θ2C2 + · · ·+ θnCn

D(θ) = D0 + θ1D1 + θ2D2 + · · ·+ θnDn (3.35)

Define normalized time-varying parameters θ̃i ∈ [−1, 1], i = 1, . . . , n as [83]

θ̃i =
θi − Ti
Si

(3.36)

where

Ti =
θi + θi

2
(3.37)

Si =
θi − θi

2
(3.38)

Substitute (3.36) into (3.35), we get

A(θ) = [A0 + T1A1 + · · ·+ TnAn] + θ̃1(S1A1) + · · ·+ θ̃n(SnAn)

B(θ) = [B0 + T1B1 + · · ·+ TnBn] + θ̃1(S1B1) + · · ·+ θ̃n(SnBn)

C(θ) = [C0 + T1C1 + · · ·+ TnCn] + θ̃1(S1C1) + · · ·+ θ̃n(SnCn)

D(θ) = [D0 + T1D1 + · · ·+ TnDn] + θ̃1(S1D1) + · · ·+ θ̃n(SnDn) (3.39)

Based on the LFT technique [104], the scheduled parameters θ in (2.46) can be
separated from the system state-space model matrices (3.39) as

ẋ
zθ1
zθ2
...
zθn
y


=



A Bθ1 Bθ2 . . . Bθn B
Cθ1 Dθθ11 Dθθ12 . . . Dθθ1n Dθ11

Cθ2 Dθθ21 Dθθ22 . . . Dθθ2n Dθ12

...
Cθn Dθθn1 Dθθn2 . . . Dθθnn Dθ1n

C D1θ1 D1θ2 . . . D1θn D





x
wθ1
wθ2

...
wθn
u



wθ1
wθ2

...
wθn

 =


θ̃1Is1 0 · · · 0

0 θ̃2Is2 · · · 0
...

0 0 · · · θ̃nIsn



zθ1
zθ2
...
zθn

 (3.40)
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where wθi , zθi ∈ Rsi and

A = A0 +
n∑
i=1

TiAi

B = B0 +
n∑
i=1

TiBi

C = C0 +
n∑
i=1

TiCi

D = C0 +
n∑
i=1

TiDi[
SiAi SiBi

SiCi SiDi

]
=

[
Bθi

D1θi

] [
Cθi Dθ1i

]
(3.41)

Note that, Dθθii is introduced in order that (3.40) is in a general state-space equation
form. With notation

wθ =
[
wTθ1 wTθ2 · · · wTθn

]T
zθ =

[
zTθ1 zTθ2 · · · zTθn

]T
Bθ =

[
Bθ1 Bθ2 · · · Bθn

]
Cθ =

[
CT
θ1

CT
θ2
· · · CT

θn

]T
Dθθ =


Dθθ11 Dθθ12 . . . Dθθ1n

Dθθ21 Dθθ22 . . . Dθθ2n

...
Dθθn1 Dθθn2 . . . Dθθnn


Dθ1 =

[
DT
θ11

DT
θ12

. . . DT
θ1n

]T
D1θ =

[
D1θ1 D1θ2 . . . D1θn

]
(3.42)

Equation (3.40) can be rewritten as

ẋ = Ax+Bθwθ +Bu

zθ = Cθx+Dθθwθ +Dθ1u

y = Cx+D1θwθ +Du

wθ = θ̂zθ (3.43)

where wθ, zθ ∈ Rs, s = s1+s2+· · ·+sn, θ̂ = diag(θ̃1Is1 , θ̃2Is2 , . . . , θ̃nIsn), and ‖θ̂‖ ≤ 1.
The system (3.43) is called a parameter-dependent linear fractional transformation
model (LPV/LFT).

3.3 Stability Analysis of LPV Systems

Robust stability analysis is one of the most important issues in control-systems
design because it is a useful tool for control engineers to validate and guarantee the
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stability property of the closed-loop system in the presence of perturbations and
uncertainty in the parameters of the system plant. The following lemma is required.

Lemma 3.3.1. [34] Given a symmetric matrix polytope, M(θ(t)) ∈ Rp×p, for which
M(θ(t)) =

∑m
i=1 αiMi, where αi is determined using (3.24) and (3.25), is a negative

definite symmetric matrix for all possible parameter trajectories, M(θ(t)) < 0, ∀θ ∈
Θ, if and only if Mi < 0, i = 1, . . . ,m.

Proof. Sufficiency: Since αi ∈ [0, 1] for i = 1, . . .m and
∑m

i=1 αi = 1 then there
is always at least one i such that αi > 0. Thus Mi < 0 for all i implies∑m

i=1 αiMi < 0 and hence M(θ) < 0 for all θ ∈ Θ.

Necessity: From (3.24) and (3.25), for all j there exists a θ ∈ Θ such that there
is an αj = 1 and αi = 0 for i = 1, . . .m, i 6= j. Hence for all j there exists a
θ ∈ Θ such that M(θ) = Mj and so it is necessary that Mj < 0 for all j.

3.3.1 Robustness Analysis using SQLF

Consider the state-trajectories of system (2.46) with the control input vector u
identically zero.

ẋ = A(θ)x (3.44)

Definition 3.3.2. (Quadratic Stability [5, 19, 23, 26, 96]) The system (3.44) is said
to be quadratically stable if there exists a quadratic Lyapunov function V (x) = xTPx
whose derivative is negative, d/dt

(
V (x)

)
< 0, along all state trajectories.

Note that, d/dt
(
V (x)

)
= xT [AT (θ)P + PA(θ)]x. The above definition is equivalent

to the following proposition.

Proposition 3.3.3. The system (3.44) is quadratically stable whenever there exists a
positive definite symmetric matrix P ∈ Rp×p such that the following LMI conditions
hold

P > 0 (3.45)

A(θ)TP + PA(θ) < 0, ∀θ ∈ Θ (3.46)

Obviously, an inequality (3.46) yields an infinite number of LMIs. However, in prac-
tice, a finite number of LMIs can be obtained by gridding the entire parameter space
with non-dense set of grid points (a grid LPV model approach) [39, 66, 100, 101].
An alternative approach [33] is to transform the system (3.44), that is nonlinearly
dependent on θ, into a TP convex polytopic model using the TP model transforma-
tion [15, 16, 18]. Hence, A(θ) can be written as a convex combination of the matrix
vertices in a similar manner to S(θ) in (3.29) as

A(θ) = w1(θ)A1 + w2(θ)A2 + · · ·+ wR(θ)AR (3.47)
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where wi(θ) ∈ [0, 1] and
∑R

i=1 wi(θ) = 1. Substituting (3.47) into (3.46), we get

w1(θ)[AT1 P + PA1] + w2(θ)[AT2 P + PA2] + · · ·+ wR(θ)[ATRP + PAR] < 0, ∀θ ∈ Θ
(3.48)

By Lemma 3.3.1, solving the above inequality for a positive definite symmetric
matrix P need only be done at all vertices. Hence, we get the following proposition.

Proposition 3.3.4. Assume the system (3.44) is a TP convex polytopic system,
then the system (3.44) is quadratically stable whenever there exists a positive definite
symmetric matrix P such that the following LMI conditions hold

P > 0 (3.49)

ATaP + PAa < 0, a = 1, 2, . . . , R (3.50)

In addition, suppose the system (3.44) depends affinely on the scheduled parameters
θ, A(θ) can be written as a convex combination of the matrix vertices in a similar
manner to S(θ) in (3.22) as

A(θ) = α1Â1 + α2Â2 + · · ·+ αrÂr (3.51)

Then, Proposition 3.3.4 is also applicable to the affine LPV systems by replacing
Aa, a = 1, 2, . . . , R with Âj, j = 1, 2, . . . , r in (3.50).

3.3.2 Robustness Analysis using Small Gain Theorem

Assume the system (3.44) depends affinely on θ. Moreover, having separated θ from
A(θ), the system (3.44) can be written in a similar manner to (3.43) as

ẋ = Ax+Bθwθ

zθ = Cθx+Dθwθ

wθ = θ̂zθ (3.52)

where wθ, zθ ∈ Rs, s = s1 + s2 + · · · + sn, θ̂ = diag(θ̃1Is1 , θ̃2Is2 , . . . , θ̃nIsn), and
‖θ̂‖ ≤ 1.

Consider the system (3.52), define a transfer function matrix M(s) = Dθ +Cθ
(
sI −

A
)−1

Bθ ∈ Cs×s, by the Nyquist and small-gain theorem [104], the system (3.52) is

quadratically stable if and only if I −M(s)θ̂(s) and I − θ̂(s)M(s) are nonsingular.
This is equivalent to the following theorem.

Theorem 3.3.5. (Small Gain Theorem, [104, Theorem 9.1]) Suppose θ̂(s) and M(s)
are stable and let γ > 0. Then the interconnected system (3.52) shown in Figure 3.1
is well-posed and internally stable for all θ̂(s) ∈ Cs×s with

‖θ̂‖∞ ≤ 1/γ if and only if ‖M‖∞ < γ
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θθ

Figure 3.1: Block diagrams structure of an LPV/LFT model (3.52)

Note that θ̂ is a structured uncertainty. By Theorem 3.3.5, the necessary condition
to make the system (3.52) quadratically stable is ‖M‖∞ ≤ γ that is equivalent to
the induced L2-norm (or L2-gain) of the operator mapping the disturbance signal
wθ into the error signal zθ of the system (3.52) is bounded by γ (i.e. ‖zθ‖2 ≤ ‖wθ‖2

where, for this case, γ must be < 1). Based on single quadratic Lyapunov functions,
‖M‖∞ ≤ γ if and only if there exists P = P T such that

P > 0,
d

dt

(
xTPx

)
+ zTθ zθ − γ2wTθ wθ < 0, ∀θ ∈ Θ (3.53)

Inequality (3.53) leads to the well-known bounded real lemma[10] inequality ATP + PA PBθ CT
θ

BT
θ P −γI DT

θ

Cθ Dθ −γI

 < 0 (3.54)

The robust stability requirement is that γ < 1. However there generally exist
an infinite number of the factor matrices pairs (Bθ, Cθ) in which only some factor
matrices pair give γ < 1. Instead of searching for such a factor matrix pair manually,
by introducing a scaling matrix L1/2, we can select any factor matrix pair for which
γ will alway be < 1 if the system (3.52) is quadratically stable and the factor matrix
pair can be determined using singular value decomposition, see sub-section 2.2.2.
L1/2 denotes the unique positive definite square root of L ∈ Lθ. The set of Lθ is
defined as

Lθ =
{
L > 0 : Lθ̂ = θ̂L, ∀θ ∈ Θ

}
⊂ Rs×s (3.55)

Therefore, (3.52) can be modified further to

ẋ = Ax+BθL
− 1

2 ẃθ

źθ = L
1
2Cθx+ L

1
2DθL

− 1
2 ẃθ

ẃθ = θ̂źθ (3.56)

where źθ = L1/2zθ and wθ = L−1/2ẃθ. With parameters in (3.56), (3.54) becomes a
scaled bounded real lemma [9], ‖L1/2M(s)L−1/2‖∞ < γ. ATP + PA PBθ CT

θ

BT
θ P −γL DT

θ

Cθ Dθ −γL−1

 < 0 (3.57)
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Rearranging (3.57) using the Schur complement (Lemma 2.2.12), we get the follow-
ing proposition.

Proposition 3.3.6. The system (3.52) with ‖θ̂‖ < 1/γ is quadratically stable along
all possible parameter trajectories, ∀θ ∈ Θ, if and only if the following LMI condition
hold for some positive definite symmetric and scaling matrices (P,L):(

ATP + PA+ CT
θ LCθ PBθ + CT

θ LDθ

BT
θ P +DT

θ LCθ −γ2L+DT
θ LDθ

)
< 0 (3.58)

Note that the minimization of γ can be achieved heuristically or by a simple grid
search.

3.4 Controller Synthesis for LPV Systems

In the previous section, a sufficient condition to guarantee the stability property of
the LPV closed-loop system has been presented in which the analysis conditions can
be represented in the form of a finite number of LMIs. Next, we consider the problem
of designing a gain-scheduled output feedback H∞ control with guaranteed L2-gain
performance for a class of affine LPV systems for which the proposed techniques in
the previous section can be directly extended to synthesizing a gain-scheduled H∞
controller. In addition, the proposed techniques in this section are also applicable to
the TP Convex Polytopic LPV model and can be further modified for the grid LPV
models. The material in this section is derived directly from [10, 8, 44] and [43].

Consider a given affine LPV plant model with state-space realization

ẋ = A(θ)x+B1(θ)w +B2u

z = C1(θ)x+D11(θ)w +D12u

y = C2x+D21w (3.59)

where x ∈ Rp is the state vector, w ∈ Rm1 is the generalized disturbance vector,
u ∈ Rm2 is the control input vector, z ∈ Rq1 is the controlled variable or error vector,
y ∈ Rq2 is the measurement output vector, θ ∈ Θ, and continuous mapping matrix
functions A : Rn → Rp×p, B1 : Rn → Rp×m1 , C1 : Rn → Rq1×p and D11 : Rn →
Rq1×m1 .

The assumptions on the plant are as follows [10]: (i) D22 = 0, (ii) (B2, C2, D12, D21)
are parameter-independent (constant) matrices, and (iii) the pairs (A(θ), B2) and
(A(θ), C2, ) are quadratically stabilizable and quadratically detectable over Θ respec-
tively. If assumption (ii) is not satisfied, the computation for a problem solution
requires solving an infinite number of LMI constraints, and is therefore not eas-
ily tractable [23]. However, the constant matrices restrictions can be overcome by
pre-filtering of the control inputs u and/or post-filtering the measured outputs y;
for further details refer to [10]. A loop-shifting argument suffices to overcome the
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D22 = 0 restriction, see [47, pages 44-45]. In addition, the quadratic stabilizability
of (A(θ), B2) over Θ in the assumption (iii) means the existence of a matrix X > 0
such that

N T [AT (θ)X +XA(θ)]N < 0, ∀θ ∈ Θ (3.60)

where N denote the null space of BT
2 [10]. Note that the A(·), B1(·), C1(·) and

D11(·) matrices can also be written as a convex combination of the matrix vertices
in a similar manner to (3.51): A(θ) B1(θ) B2

C1(θ) D11(θ) D12

C2 D21 0

 =
r∑
i=1

αi

 Âi B̂1i B2

Ĉ1i D̂11i D12

C2 D21 0

 (3.61)

Theorem 3.4.1. (Bounded real lemma [10, 44, 88]) Given an LTI system G(s) and

a state-space realization G(s) = D + C
(
sI − A

)−1
B. The following statements are

equivalent:
(i) A is stable and ‖G(s)‖∞ < γ
(ii) The existence of a positive definite symmetric matrix P such that ATP + PA PB CT

BTP −γI DT

C D −γI

 < 0

The bounded real lemma can be extended to LPV systems in conjunction with the
notion of quadratic H∞ performance [10].

Definition 3.4.2. (Quadratic H∞ performance [10, 23]) An LPV system of the
form (2.46) has quadratic H∞ performance γ if and only if the existence of a positive
definite symmetric matrix P such that A(θ)TP + PA(θ) PB(θ) CT (θ)

BT (θ)P −γI DT (θ)
C(θ) D(θ) −γI

 < 0

for all admissible parameter trajectories. Then, the system (2.46) is quadratically
stable and ensures the induced L2-norm of the operator mapping the disturbance
signal w into the controlled signal z is bounded by γ

3.4.1 Gain-Scheduled Controller Design using SQLF

The gain-scheduled output feedback H∞ control problem using single quadratic
Lyapunov functions is to compute a dynamic affine LPV controller, K(θ), with
state-space equations

ẋk = Ak(θ)xk +Bk(θ)y

u = Ck(θ)xk +Dk(θ)y (3.62)
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which stabilizes the closed-loop system, (3.59) and (3.62), and minimizes the closed-
loop quadratic H∞ performance (Definition 3.4.2)∫ t1

0

zT zdt ≤ γ2

∫ t1

0

wTwdt, ∀t1 ≥ 0 (3.63)

along all possible parameter trajectories, ∀θ ∈ Θ. Note that A and Ak have the same
dimensions, since we restrict ourselves to the full-order case. With the notation

K(θ) =

(
Ak(θ) Bk(θ)
Ck(θ) Dk(θ)

)
=

r∑
i=1

αiKi (3.64)

Ki =

(
Aki Bki

Cki Dki

)
, i = 1, 2, . . . , r (3.65)

where r is the total number of vertices and αi is determined using (3.24) and (3.25).
The closed-loop system, (3.59) and (3.62), is described by the state-space equations[

ẋ
ẋk

]
= Acl(θ)

[
x
xk

]
+Bcl(θ)w

z = Ccl(θ)

[
x
xk

]
+Dcl(θ)w (3.66)

where

Acl(θ) =

[
A(θ) 0

0 0p×p

]
+ BK(θ)C =

r∑
i=1

αiÂcli

Âcli =

[
Âi 0
0 0p×p

]
+ BKiC

Bcl(θ) =

[
B1(θ)

0

]
+ BK(θ)D21 =

r∑
i=1

αiB̂cli

B̂cli =

[
B̂1i

0

]
+ BKiD21

Ccl(θ) =
[
C1(θ) 0

]
+D12K(θ)C =

r∑
i=1

αiĈcli

Ĉcli =
[
Ĉ1i 0

]
+D12KiC

Dcl(θ) = D11(θ) +D12K(θ)D21 =
r∑
i=1

αiD̂cli

D̂cli = D̂11i +D12KiD21 (3.67)

and

B =

[
0 B2

Ip 0

]
, C =

[
0 Ip
C2 0

]
D12 =

[
0 D12

]
, D21 =

[
0
D21

]
(3.68)
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Based on the single quadratic Lyapunov functions V (x) = xTPx, there is an LPV
controllerK(θ) of the form of (3.62) that stabilizes the closed-loop system, (3.59) and
(3.62), and ensures the induced L2-norm of the operator mapping the disturbance
signal w into the controlled signal z is bounded by γ along all possible parameter
trajectories if and only if there exists P = P T such that [45]

P > 0,
d

dt

(
xTPx

)
+ zT z − γ2wTw < 0, ∀θ ∈ Θ (3.69)

Inequality (3.69) leads to the well-known bounded real lemma [10] inequality ATcl(θ)P + PAcl(θ) PBcl(θ) CT
cl(θ)

BT
cl(θ)P −γI DT

cl(θ)
Ccl(θ) Dcl(θ) −γI

 < 0 (3.70)

Substituting (3.67) in (3.70), we get

r∑
i=1

αi

 ÂTcliP + PÂcli PB̂cli ĈT
cli

B̂T
cli
P −γI D̂T

cli

Ĉcli D̂cli −γI

 < 0 (3.71)

Inequality (3.71) can be also rewritten as (see [44])

r∑
i=1

αi

(
Ψcli +QTKT

i Pcl + PTclKiQ
)
< 0 (3.72)

where

Ψcli =


[
Âi 0
0 0p×p

]T
P + P

[
Âi 0
0 0p×p

]
P

[
B̂1i

0

] [
Ĉ1i 0

]T
[
B̂1i

0

]T
P −γI D̂T

11i[
Ĉ1i 0

]
D̂11i −γI

 (3.73)

Q =
[
C, D21, 0(p+q2)×q1

]
(3.74)

Pcl =
[
BTP, 0(p+m2)×m1 , DT12

]
(3.75)

Having determined the quadratic Lyapunov variable P ∈ R2p×2p, the system matrix
vertices Ki of the LPV controller K(θ) for each vertex Θi, i = 1, . . . , r, can be
determined from (3.72) that is an LMI in Ki. By Lemma 3.3.1, the LMIs (3.72)
need only be evaluated at all vertices. Alternatively, a more efficient explicit scheme
for determining Ki is given in [43]. Knowing Ki, the controller system matrices
Ak(θ), . . . , Dk(θ) can be computed on-line in real-time using (3.64) with an instan-
taneous measurement value of θ.

To determine the quadratic Lyapunov variable P , we have to define a structure of
P . Although the exact structure of P is still not certain, a typical structure of P is
suggested in [10, 23, 43, 66, 96] and [101] for which, in this thesis, the structure of
P is taken from [66, 96] and [101] as

P =

[
X −

(
X − Y −1

)
−
(
X − Y −1

)
X − Y −1

]
, P−1 =

[
Y Y

Y
(
X − Y −1

)−1
XY

]
(3.76)
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where a pair of positive definite symmetric matrices (X, Y ) ∈ Rp×p, X − Y −1 ≥ 0,
and rank(X − Y −1) ≤ p [82]. By Lemma 2.2.14, LMIs (3.72) are solvable for Ki if
and only if there exist a pair of positive definite symmetric matrices (X, Y ) satisfying
the following LMIs:

r∑
i=1

αi

( NX 0
0 I

)T  ÂTi X +XÂi XB̂1i ĈT
1i

B̂T
1i
X −γI D̂T

11i

Ĉ1i D̂11i −γI

( NX 0
0 I

) < 0 (3.77)

r∑
i=1

αi

( NY 0
0 I

)T  ÂiY + Y ÂTi Y ĈT
1i

B̂1i

Ĉ1iY −γI D̂11i

B̂T
1i

D̂T
11i

−γI

( NY 0
0 I

) < 0 (3.78)

(
X I
I Y

)
> 0 (3.79)

where NX and NY denote bases of the null spaces of [C2, D21] and [BT
2 , D

T
12], respec-

tively. Note that, (3.79) ensures X, Y > 0 and X − Y −1 ≥ 0. By Lemma 3.3.1,
(3.77)–(3.79) need only be evaluated at all vertices. Hence we get the following
theorem.

Theorem 3.4.3. (Convex solvability conditions [10]) There exists an LPV con-
troller K(θ) guaranteeing the closed-loop system, (3.59) and (3.62), quadratic H∞
performance γ along all possible parameter trajectories, ∀θ ∈ Θ, if and only if the
following LMI conditions hold for some positive definite symmetric matrices (X, Y ),
which further satisfy Rank(X − Y −1) ≤ p:

(
NX 0
0 I

)T  ÂTi X +XÂi XB̂1i ĈT
1i

B̂T
1i
X −γI D̂T

11i

Ĉ1i D̂11i −γI

( NX 0
0 I

)
< 0 (3.80)

(
NY 0
0 I

)T  ÂiY + Y ÂTi Y ĈT
1i

B̂1i

Ĉ1iY −γI D̂11i

B̂T
1i

D̂T
11i

−γI

( NY 0
0 I

)
< 0 (3.81)

(
X I
I Y

)
> 0 (3.82)

where i = 1, 2, . . . , r

Note that, when the parameters θ are time-invariant or slowly varying, the conser-
vatism of the above theorem can be reduced using parameter dependent Lyapunov
functions in which the improved theorem is presented in section 6.2.

3.4.2 Gain-Scheduled Controller Design via LFT

Consider a given affine LPV plant model of the form (3.59) for which, based on the
LFT technique [104], the scheduled parameters θ can be separated from the system
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matrices in a similar manner to (3.43) as

ẋ = Ax+Bθwθ +B1w +B2u

zθ = Cθx+Dθθwθ +Dθ1w +Dθ2u

z = C1x+D1θwθ +D11w +D12u

y = C2x+D2θwθ +D21w

wθ = θ̂zθ (3.83)

where wθ, zθ ∈ Rs, s = s1 + s2 + · · · + sn, θ̂ = diag(θ̃1Is1 , θ̃2Is2 , . . . , θ̃nIsn), and
‖θ̂‖ ≤ 1. Note that, unlike the gain-scheduled controller design using SQLF case,
the method in this sub-section is not applicable to a problem where the vectors w
and z are not the same dimension, i.e. m1 6= q1 [9, 24].

Consistently with (3.83), we seek an LPV controller such that (i) the closed-loop
system is internally stable for all parameter trajectories, ∀θ ∈ Θ, and γ2θ̂T θ̂ ≤ 1
and (ii) the induced L2-norm of the operator mapping the disturbance signal into
the controlled signal is bounded by γ [9]. Note that, the controller is defined to have
the same dependency on θ as the plant because it can use the available information
of θ to adjust its dynamic to the current plant dynamic on-line in real-time. This
LPV controller can be written as a state-space system of the form: ẋk[

u
ũ

]  =

 Ak
[
Bk1 Bkθ

][
Ck1

Ckθ

] [
Dk11 Dk1θ

Dkθ1 Dkθθ

]  xk[
y
ỹ

] 
ỹ = θ̂ũ (3.84)

Note that A and Ak have the same dimensions. Actually, the above controller is given
in a lower LFT with respect to θ̂, Fl(K, θ̂), in which θ plays the role of scheduling
variable and gives the rule for updating the controller state space matrices based on
the measurements of θ. Equivalently, (3.84) can be further written as [9]

ẋk = Ak(θ)xk +Bk(θ)y

u = Ck(θ)xk +Dk(θ) (3.85)

where

Ak(θ) = Ak +BkθΛθCkθ
Bk(θ) = Bk1 +BkθΛθDkθ1

Ck(θ) = Ck1 +Dk1θ
ΛθCkθ

Dk(θ) = Dk11 +Dk1θ
ΛθDkθ1

Λθ = θ̂(I −Dkθθ θ̂)
−1

and assume the inverse (I − Dkθθ θ̂)
−1 exists ∀θ ∈ Θ with ‖θ̂‖ ≤ 1/γ; for further

details refer to [9]. To apply the small gain theorem for this problem, all parameter-
dependent components θ̂, that enter both the plant (3.83) and the controller (3.84),
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have to transfer into a single uncertainty block, shown in Figure 3.2. Introducing
the augmented plant

ẋz̃θzθ
z

[
y
ỹ

]

 =


A

[
0 Bθ B1

] [
B2 0

] 0
Cθ
C1

 0 0 0
0 Dθθ Dθ1

0 D1θ D11

  0 I
Dθ2 0
D12 0

[
C2

0

] [
0 D2θ D21

I 0 0

] [
0 0
0 0

]




xw̃θwθ
w

[
u
ũ

]


[
w̃θ
wθ

]
=

[
θ̂ 0

0 θ̂

] [
z̃θ
zθ

]
(3.86)

The closed-loop system, (3.86) and (3.84) shown in Figure 3.2, is described by the
state-space equationsẋclzΘ

z

 =

 Acl BθclL
− 1

2 B1cl

L
1
2Cθcl L

1
2DθθclL

− 1
2 L

1
2Dθ1cl

C1cl D1θclL
− 1

2 D11cl

xclwΘ

w


wθ = Θ̂zθ (3.87)

where

xcl =

[
x
xk

]
, zΘ =

[
z̃θ
zθ

]
, wΘ =

[
w̃θ
wθ

]
, Θ̂ =

[
θ̂ 0

0 θ̂

]
, L ∈ LΘ

L is a scaling matrix. The set of LΘ is defined as

LΘ =

{
L =

[
L1 L2

LT2 L3

]
> 0 : LΘ̂ = Θ̂L, ∀θ ∈ Θ

}
⊂ R2s×2s (3.88)

and

Acl =

[
A 0
0 0p×p

]
+ BKC, K =

 Ak
[
Bk1 Bkθ

][
Ck1

Ckθ

] [
Dk11 Dk1θ

Dkθ1 Dkθθ

] 
Bθcl =

[
0 Bθ

0 0

]
+ BKDθ21 , B1cl =

[
B1

0

]
+ BKD121

Cθcl =

[
0 0
Cθ 0

]
+Dθ12KC, C1cl =

[
C1 0

]
+D112KC

Dθθcl =

[
0 0
0 Dθθ

]
+Dθ12KDθ21 , Dθ1cl =

[
0
Dθ1

]
+Dθ12KD121

D1θcl =
[
0 D1θ

]
+D112KDθ21 , D11cl = D11 +D112KD121 (3.89)

with

C =

 0 Ip
C2 0
0 0

 , Dθ21 =

0 0
0 D2θ

I 0

 , D121 =

 0
D21

0

 ,
B =

[
0 B2 0
Ip 0 0

]
, Dθ12 =

[
0 0 I
0 Dθ2 0

]
, D112 =

[
0 D12 0

]
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3.4 Controller Synthesis for LPV Systems

Based on the single quadratic Lyapunov functions V (x) = xTPx, there is a controller
K, (3.84), that stabilizes the closed-loop system, (3.86) and (3.84), and ensures the
induced L2-norm of the operator mapping the disturbance signal into the controlled
signal is bounded by γ along all possible parameter trajectories if and only if there
exists P = P T such that [45]

P > 0,
d

dt

(
xTPx

)
+ (zTΘzΘ + zT z)− γ2(wTΘwΘ + wTw) < 0, ∀θ ∈ Θ (3.90)

Inequality (3.90) leads to the scaled bounded real lemma [9] inequality
ATclP + PAcl PBθcl PB1cl CT

θcl
CT

1cl

BT
θcl
P −γL 0 DT

θθcl
DT

1θcl

BT
1cl
P 0 −γI DT

θ1cl
DT

11cl

Cθcl Dθθcl Dθ1cl −γL−1 0
C1cl D1θcl D11cl 0 −γI

 < 0 (3.91)

Inequality (3.91) can be also rewritten as (see [44])

Ψcl +QTKTPcl + PTclKQ < 0 (3.92)

where

Ψcl =



[
A 0
0 0p×p

]T
P + P

[
A 0
0 0p×p

]
P

[
0 Bθ

0 0

]
P

[
B1

0

] [
0 0
Cθ 0

]T [
C1 0

]T[
0 Bθ

0 0

]T
P −γL 0

[
0 0
0 Dθθ

]T [
0 D1θ

]T[
B1

0

]T
P 0 −γI

[
0
Dθ1

]T
DT

11[
0 0
Cθ 0

] [
0 0
0 Dθθ

] [
0
Dθ1

]
−γL−1 0[

C1 0
] [

0 D1θ

]
D11 0 −γI


(3.93)

Q =
[
C, Dδ21 , D121 , 0(p+q2)×(q1+s)

]
(3.94)

Pcl =
[
BTP, 0(p+m2)×(m1+s), DTδ12

, DT112

]
(3.95)

Having determined the quadratic Lyapunov variable P ∈ R2p×2p and the scaling
matrix L ∈ LΘ, the LPV controller K can be determined from (3.92) that is an LMI
in K. Knowing Ak, Bk1 , . . . , Dkθθ , the controller system matrix Ak(θ), . . . , Dk(θ) can
be computed on-line in real-time using (3.85) with an instantaneous measurement
value of θ. To determine the quadratic Lyapunov variable P and the scaling matrix
L, we have to define a structure of P and L. The structure of P is defined as (3.76).
Although the exact structure of L is still not certain, a typical structure of L is
suggested in [9, 24] and [81] for which, in this thesis, the structure of L follows the
structure of P which is taken from [66, 96] and [101] as

L =

[
L3 − J−1

3 −
(
L3 − J−1

3

)
−
(
L3 − J−1

3

)
L3

]
, L−1 =

[(
L3 − J−1

3

)−1
L3J3 J3

J3 J3

]
(3.96)
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3.4 Controller Synthesis for LPV Systems

 

(a) LPV/LFT control structure
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(b) Augmented structure

Figure 3.2: Block diagrams structures of LPV/LFT closed-loop systems
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3.4 Controller Synthesis for LPV Systems

Obviously, based on (3.96), L3, J3 ∈ Lθ is a necessary condition to make L ∈ LΘ.
In addition, L3 − J−1

3 ≥ 0, and Rank(L3 − J−1
3 ) ≤ s [82]. By Lemma 2.2.14, the

following theorem is obtained.

Theorem 3.4.4. There exists an LPV controller K guaranteeing the closed-loop
system, (3.86) and (3.84), quadratic H∞ performance γ along all possible parameter
trajectories, ∀θ ∈ Θ with ‖θ̂‖ ≤ 1/γ, if and only if the following LMI conditions
hold for some positive definite symmetric matrices (X, Y ) ∈ Rp×p and (L̃3, J̃3) ∈ Lθ,
which further satisfy Rank(X − Y −1) ≤ p and Rank(L̃3 − J̃−1

3 ) ≤ s.

(
NX 0
0 I

)T


ATX +XA XBθ XB1 CT
θ CT

1

BT
θ X −L̃3 0 DT

θθ DT
1θ

BT
1 X 0 −γI DT

θ1 DT
11

Cθ Dθθ Dθ1 −J̃3 0
C1 D1θ D11 0 −γI


(
NX 0
0 I

)
< 0 (3.97)

(
NY 0
0 I

)T


AY + Y AT Y CT
θ Y CT

1 Bθ B1

CθY −J̃3 0 Dθθ Dθ1

C1Y 0 −γI D1θ D11

BT
θ DT

θθ DT
1θ −L̃3 0

BT
1 DT

θ1 DT
11 0 −γI


(
NY 0
0 I

)
< 0 (3.98)

(
X I
I Y

)
> 0 (3.99)(

L̃3 γ

γ J̃3

)
> 0 (3.100)

where L̃3 and J̃3 are equal to γL3 and γJ3 respectively, NX and NY denote bases
of the null spaces of [C2, D2θ, D21, 0] and [BT

2 , D
T
θ2, D

T
12, 0] respectively. Note that,

(3.99) and (3.100) ensure X, Y > 0, X − Y −1 ≥ 0 and L3, J3 > 0, L3 − J−1
3 ≥ 0,

respectively.
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Chapter 4

Numerical Example

This chapter aims to illustrate the implementation of LPV systems theory for the
nonlinear control problem which include methods for deriving an LPV model from
a nonlinear model, analysis and synthesis probelms of gain-scheduled output feed-
back H∞ controller design. To demonstrate the method, we explicitly consider the
example of Leith and Leithead [61]. In this example it was shown that for an LPV
model derived from the Jacobians, a common approach, with an LPV controller
synthesized using the method of Apkarian et al. [10], is unstable when applied to
the original nonlinear plant [30, 61].

Consider the nonlinear plant example taken from [61]

ẋ1(t) = −x1(t) + r(t)

ẋ2(t) = x1(t)− |x2(t)|x2(t)− 10

y(t) = x2(t) (4.1)

where t ∈ R is time, both x1(t), x2(t) ∈ R are the state, r(t), y(t) ∈ R are the
control input and the measurement output, respectively. The control requirement is
to design an output-feedback controller which ensures a step response settling time
of less than 2 seconds with zero steady-state error [61]. Step inputs with different
amplitudes are applied to the system (4.1), at t=0 where an initial condition of
the system is x1(0) = 0 and x2(0) = −3.16, in order to investigate the open-loop
dynamic step response, shown in Figure 4.1. It can be seen that the system (4.1) is
an open-loop stable system and its step response is similar to a first-order transfer
function with a varying time constant (time lag) and a varying low frequency gain,
following its output y(t). Moreover, a set of equilibrium points of the system can be
calculated by setting ẋ1 = ẋ2 = 0 in (4.1). Then, the results are

x1trim
= rtrim =

{
x2

2trim
+ 10, if x2trim

≥ 0;

10− x2
2trim

, if x2trim
< 0.

ytrim = x2trim
(4.2)
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4.1 Jacobian Approach

4.1 Jacobian Approach

Applying the Jacobian linearization method to (4.1) by using (3.7), we get

A =

[
∂(−x1(t)+r(t))

∂x1(t)
∂(−x1(t)+r(t))

∂x2(t)
∂(x1(t)−|x2(t)|x2(t)−10)

∂x1(t)
∂(x1(t)−|x2(t)|x2(t)−10)

∂x2(t)

]
x1(t)=x1trim
x2(t)=x2trim
r(t)=rtrim

=

[
−1 0
1 −2|x2trim

|

]
B =

[
∂(−x1(t)+r(t))

∂r(t)
∂(x1(t)−|x2(t)|x2(t)−10)

∂r(t)

]
x1(t)=x1trim
x2(t)=x2trim
r(t)=rtrim

=

[
1
0

]
C =

[
∂x2(t)
∂x1(t)

∂x2(t)
∂x2(t)

]
x1(t)=x1trim
x2(t)=x2trim
r(t)=rtrim

=
[
0 1

]
D =

[
∂x2(t)
∂r(t)

]
x1(t)=x1trim
x2(t)=x2trim
r(t)=rtrim

=
[
0
]

(4.3)

where (x1trim
, x2trim

, rtrim, and ytrim) is one point in a set of equilibrium points (4.2),
therefore a Jacobian-based LTI model can be written[

δẋ1(t)
δẋ2(t)

]
=

[
−1 0
1 −2|x2trim

|

] [
δx1(t)
δx2(t)

]
+

[
1
0

]
δr(t)

δy(t) =
[
0 1

] [δx1(t)
δx2(t)

]
(4.4)

where δx1(t) = x1(t) − x1trim
, δx2(t) = x2(t) − x2trim

, δr(t) = r(t) − rtrim, and
δy(t) = y(t)− ytrim. Note that (4.2) shows that x1trim

, x2trim
and rtrim are dependent

on ytrim. With x2trim
fixed, (4.4) is an LTI model. However, as x2trim

varies slowly
over the defined parameter space, (4.4) becomes an LPV model. That is[

ṅ1

ṅ2

]
=

[
−1 0
1 −2θ

] [
n1

n2

]
+

[
1
0

]
r

y =
[
0 1

] [n1

n2

]
(4.5)

where n1(t) = x1(t) − x1trim
, n2(t) = x2(t) − x2trim

, and θ = |x2trim
| = |y(t)| is

arbitrarily defined from 0 to 10. As a result of the Jacobian linearization method, the
dynamic characteristics of the system (4.5) vary, following its output, x2trim

= ytrim

shown in (4.2), if the original plant (4.1) is operating about the neighborhood of a
set of equilibrium points (4.2). However, x2trim

is not equal to ytrim whenever the
original plant is operating in a region faraway from its equilibrium points.
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4.1 Jacobian Approach
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Figure 4.1: Open-loop dynamic step response of the system (4.1) at t=0

Remark 4.1.1. An LPV controller, that is synthesized based on the Jacobian-based
LPV model (4.5), adjusts its dynamics to the current plant dynamics using instanta-
neous measurement values of y(t). But, whenever the original plant is not about an
equilibrium condition, the true current dynamic of the original plant does not follow
the value of y(t). This means that the LPV controller will adjust its dynamic to the
wrong plant dynamic. This is a usual problem for Jacobian linearization method.

Having determined a Jacobian-based LPV model, a Jacobian-based LPV controller
can be synthesized using the method of Apkarian et al. [10] with the criterion

∥∥∥∥ W1S
W2KS

∥∥∥∥
∞
< 1 (4.6)

as shown in Figure 4.2, where the performance weighting functions W1 and robust-
ness weighting functions W2 taken from [61] are

W1(s) =
0.5

s+ 0.002

W2(s) =
0.02s

s+ 1000
(4.7)

Using MATLAB routines ltisys, we get W1 and W2 in the state-space equation of
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4.1 Jacobian Approach
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Figure 4.2: LPV system: H∞ mixed S/KS synthesis problem

the form

ẋw1(t) = −0.002xw1(t) + 0.5e(t)

z1(t) = xw1(t)

ẋw2(t) = −1000xw2(t) + 4r(t)

z2(t) = −5xw2(t) + 0.02r(t) (4.8)

From (4.5) and (4.8), in addition, e(t) = w(t)− y(t) but y(t) = n2(t), hence e(t) =
w(t) − n2(t). Finally, we get the minimal realization of the augmented plant P (θ)
as

ṅ1(t) = −n1(t) + r(t)

ṅ2(t) = n1(t)− 2θn2(t)

ẋw1(t) = −0.002xw1(t) + 0.5w(t)− 0.5n2(t)

ẋw2(t) = −1000xw2(t) + 4r(t)

z1(t) = xw1(t)

z2(t) = −5xw2(t) + 0.02r(t)

e(t) = w(t)− n2(t) (4.9)

Equation (4.9) can be rewritten further as
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4.1 Jacobian Approach


ṅ1

ṅ2

ẋw1

ẋw2

[
z1

z2

]
[
e
]


=




−1 0 0 0
1 −2θ 0 0
0 −0.5 −0.002 0
0 0 0 −1000




0
0

0.5
0




1
0
0
4

[
0 0 1 0
0 0 0 −5

] [
0
0

] [
0

0.02

]
[
0 −1 0 0

]
1 0






n1

n2

xw1

xw2

[
w
][
r
]


(4.10)

Note that, the augmented plant P (θ) (4.10) can also be determined using MATLAB
routines sysic, iconnect or sconnect. Solving LMIs in Theorem 3.4.3 by using a
MATLAB Robust Control Toolbox function [12], mincx, we get an LPV controller
with a quadratic H∞ performance γ = 0.1211 as shown below:

ẋk = (α1Ak1 + α2Ak2)xk +Bk(w − y)

r = Ckxk (4.11)

where

α1 =
10− |y|

10
, α2 =

|y|
10

Ak1 =


11.4933e+ 000 220.5506e+ 000 93.1838e+ 000 15.6255e+ 003
−4.1441e+ 000 −34.9702e+ 000 −26.0301e+ 000 46.2968e+ 003
−578.7503e− 003 −12.5446e+ 000 −10.2185e+ 000 20.4856e+ 003

1.0769e+ 000 2.1290e+ 000 16.1633e+ 000 −66.1258e+ 003



Ak2 =


11.4904e+ 000 220.4540e+ 000 93.4033e+ 000 15.6255e+ 003
−4.2406e+ 000 −38.2060e+ 000 −18.6740e+ 000 46.2966e+ 003
−359.2582e− 003 −5.1885e+ 000 −26.9418e+ 000 20.4861e+ 003
684.0884e− 003 −11.0360e+ 000 46.0926e+ 000 −66.1267e+ 003



Bk =


−2.4197e− 003
−6.4566e− 003
−26.6143e− 003
−18.6908e+ 000


Ck =

[
−12.7061e+ 000 −222.1982e+ 000 −94.5584e+ 000 −12.8570e+ 003

]
The matrices are different from those presented in [61]. Also note that the LPV
controller presented in [61] is actually open-loop unstable. The controller presented
above is open-loop stable for all |y| ∈ [0, 10]. In addition, the synthesizing scheme
from Theorem 3.4.3 has been implemented in a MATLAB Robust Control Toolbox
function as hinfgs [12].

To confirm that the mixed-sensitivity criterion (4.6) is achieved, the singular values
of the transfer matrices S and KS are computed over ∀θ ∈ Θ (with frozen θ),
and are shown in Figure 4.3. Obviously, the singular values of S and KS are
shaped and bound by W1 and W2 respectively. In addition, Figure 4.4 shows that∥∥[W1S, W2KS]T

∥∥
∞ < γ. Hence, the mixed-sensitivity criterion (4.6) is satisfied.

But, the simulation results that are presented in Figure 4.5 still show the closed-loop
instability problem described in [61]. It can be seen that the closed-loop system is
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4.2 State Transformation Approach

stable when the LPV controller is applied to the LPV model for a step response
that is a change in demand from -3 units to 0 units. However, when the same LPV
controller is applied to the original nonlinear plant, the nonlinear closed-loop system
appears to be unstable.

In order to investigate this closed-loop instability with more information, different
LPV controller synthesis methods or different deriving LPV model techniques should
be also employed. Unfortunately, the Theorem 3.4.4 can not be applied because
of q1 6= m1. Moreover, in order to derive a TP convex polytopic model of the
system (4.1), the TP model transformation toolbox [17] has been used to apply a
TP transformation to (4.4) by selecting |x2trim

| as a scheduling parameter. It turns
out that the resulting TP polytopic model is identical to the Jacobian-based LPV
model in (4.5).

4.2 State Transformation Approach

According to (4.2), we can define req(x2) = x1eq(x2) = |x2|x2 + 10. The equation
(4.1) can be rewritten in the form of equation (3.8) as[

ẋ1

ẋ2

]
=

[
−1 0
1 −|x2|

] [
x1

x2

]
+

[
1
0

]
r +

[
0
−10

]
y =

[
0 1

] [x1

x2

]
(4.12)

Since req(x2) and x1eq(x2) is a continuously differentiable function, such that for
every x2, (4.12) is in equilibrium points ẋ = 0. We get[

0
0

]
=

[
−1 0
1 −|x2|

] [
x1eq(x2)
x2

]
+

[
1
0

]
req(x2) +

[
0
−10

]
yeq(x2) =

[
0 1

] [x1eq(x2)
x2

]
(4.13)

Subtracting (4.13) from (4.12) obtains

ẋ1 = −x1 + x1eq(x2) + r − req(x2)

ẋ2 = x1 − x1eq(x2)

y − yeq(x2) = 0 (4.14)

Then, y = yeq(x2) = x2. Moreover, differentiating x1eq(x2) = |x2|x2+10 with respect
to t gives

d

dt
x1eq(x2) = ẋ1eq(x2) =

∂(|x2|x2 + 10)

∂x2

d

dt
x2 = 2|x2|[x1 − x1eq(x2)] (4.15)

Subtracting (4.15) from (4.14) obtains

ẋ1 − ẋ1eq(x2) = [−1− 2|x2|][x1 − x1eq(x2)] + [r − req(x2)] (4.16)
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Figure 4.3: Singular value of S and KS over ∀θ ∈ Θ (with frozen θ)
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4.2 State Transformation Approach
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Figure 4.5: Nonlinear step response from -3 to 0 of the Jacobian-based LPV con-
troller (4.11)

Hence, (4.14) can be rewritten as a state-space equation of the form

[
ẋ1 − ẋ1eq(x2)

ẋ2

]
=

[
−1− 2|x2| 0

1 0

] [
x1 − x1eq(x2)

x2

]
+

[
1
0

]
(r − req(x2))

y =
[
0 1

] [x1 − x1eq(x2)
x2

]
(4.17)

Subsequently, (4.17) can be rewritten as an LPV model of the form

[
ṅ1

ṅ2

]
=

[
−1− 2|n2| 0

1 0

] [
n1

n2

]
+

[
1
0

]
u

y =
[
0 1

] [n1

n2

]
(4.18)

where n1 = x1 − x1eq(x2) = x1 − |x2|x2 − 10, n2 = x2, and u = r − req(x2) = r −
|x2|x2− 10. The state transformation-based LPV plant presented above is identical
to that presented in [93]. Applying hinfgs with the same weighting function, the
state transformation-based LPV controller for this LPV model is obtained with
γ = 0.08863. Figure 4.6 shows the simulation results of the state transformation-
based LPV controller. The closed-loop instability does not occur.
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Figure 4.6: Nonlinear step response from -3.16 to 0 of function substitution-based
and state transformation-based LPV controllers

4.3 Function Substitution Approach

Substitute x1 = δx1 + x1r, x2 = δx2 + x2r, r = δr + rr, and y = δy + yr in equation
(4.1), we get

ẋ1 =
d

dt
δx1 +

d

dt
x1r = ˙δx1 + 0

= −δx1 + δr + [−x1r + rr]

ẋ2 =
d

dt
δx2 +

d

dt
x2r = ˙δx2 + 0

= δx1 + [x1r − |δx2 + x2r|(δx2 + x2r)− 10]

y = δy + yr = δx2 + x2r (4.19)

where (x1r, x2r, rr, and yr) is one trim point in a set of the equilibrium points.
Selecting a trim point as (x1r = 10, x2r = 0, rr = 10, and yr = 0), equation (4.19)
can be rearranged as an state-space equation of the form

[
δẋ1

δẋ2

]
=

[
−1 0
1 −|δx2|

] [
δx1

δx2

]
+

[
1
0

]
δr

δy =
[
0 1

] [δx1

δx2

]
(4.20)
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4.3 Function Substitution Approach

Furthermore, (4.20) can be rewritten in an LPV model of the form[
ṅ1

ṅ2

]
=

[
−1 0
1 −|n2|

] [
n1

n2

]
+

[
1
0

]
u

y =
[
0 1

] [n1

n2

]
(4.21)

where n1 = δx1, n2 = δx2, and u = r − 10. The function substitution-based LPV
plant presented above is identical to that presented in [93]. Using hinfgs with the
same weighting function, the function substitution-based LPV controller for this
LPV model is obtained with γ = 0.09469. Figure 4.6 shows the simulation results
of the state transformation-based LPV controller. The closed-loop instability does
not occur.

According to Figures 4.5 and 4.6, in this particular example, we make two assump-
tions that (i) function substitution and state transformation methods give an LPV
plant model that more accurately represents the nonlinear plant than the Jaco-
bian linearization method, and (ii) there is a mismatch uncertainty between the
Jacobian-based LPV model and the original nonlinear model. However, both state
transformation-based and function substitution-based LPV models are identical to
the original nonlinear model as shown below.

First, we show that the state transformation-based LPV model is identical to the
original nonlinear model. By substituting

r(t) = u(t) + |x2(t)|x2(t) + 10

x1(t) = n1(t) + |x2(t)|x2(t) + 10

x2(t) = n2(t) (4.22)

in (4.1). A new nonlinear equation can be obtained in the form.

ṅ1(t) = −(1 + 2|n2(t)|)n1(t) + u(t)

ṅ2(t) = n1(t)

y(t) = n2(t) (4.23)

which can be rearranged as an LPV equation of the form (4.18). Next, we show
that the function substitution-based LPV model is identical to the original nonlinear
model. By substituting

r(t) = u(t) + 10

x1(t) = n1(t) + 10

x2(t) = n2(t) (4.24)

in (4.1). Another nonlinear equation can be obtained in the form.

ṅ1(t) = −n1(t) + u(t)

ṅ2(t) = n1(t)− |n2(t)|n2(t)

y(t) = n2(t) (4.25)

which can be rearranged as an LPV equation of the form (4.21).
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4.4 Mismatch Uncertainty

4.4 Mismatch Uncertainty

Consider the transfer function of LPV plant models (2.46) over ∀θ ∈ Θ (with frozen
θ) that is given by [10]

G(s, θ) = D(θ) + C(θ)[sI − A(θ)]−1B(θ) (4.26)

Substituting the matrices A(·), . . . , D(·) of the Jacobian-based LPV model (4.5) into
(4.26), the transfer function can be determined as

G(s, θ) =
1

(s+ 1)(s+ 2θ)
(4.27)

where, according to (4.5), θ = |n2| varying from 0 to 10. This transfer function has
two poles; one pole fixes at -1, the other pole varies from -20 to 0. The location
of the varying pole of the Jacobian-based LPV model is equal to −2θ, but the
true location of the varying pole of the original nonlinear plant is not equal to −2θ
whenever this nonlinear plant is not in an equilibrium condition. As y(t) = n2(t)
moves closer to 0, the mismatch uncertainty between the Jacobian-based LPV model
and the original nonlinear model becomes more significant and makes the nonlinear
closed-loop system unstable as shown below.

Consider the state-trajectories of the closed-loop system of the Jacobian-based LPV
controller and LPV model, taken from [30] with disturbance w identically zero, is

ẋ =
(
α1Â1 + α2Â2

)
x (4.28)

where α1 = 10−θ
10

, α2 = θ
10

and

Â1 =



−1 0 0 0 0.3681 −210.94 −118.22 7255
1 0 0 0 0 0 0 0
0 −0.5 −0.002 0 0 0 0 0
0 0 0 −1000 1.4724 −843.75 −472.88 29020
0 −0.0019163 0 0 −0.63435 −210.86 −118.14 7353.2
0 0.027254 0 0 0.086568 −12.33 −13.428 −14430
0 −10.534 0 0 0.47837 −0.18076 −9.3407 −21057



Â2 =



−1 0 0 0 0.3681 −210.94 −118.22 7255
1 −20 0 0 0 0 0 0
0 −0.5 −0.002 0 0 0 0 0
0 0 0 −1000 1.4724 −843.75 −472.88 29020
0 −0.0019163 0 0 −0.63435 −210.86 −118.14 7353.2
0 0.027254 0 0 0.086568 −12.33 −13.428 −14430
0 −10.534 0 0 0.47837 −0.18076 −9.3407 −21057


As a result of Proposition 3.3.4, this closed-loop system is quadratically stable. Note
that, the MATLAB Robust Control Toolbox [12] also provides a function quadstab
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4.5 Pole Placement Approach

to test the quadratic stability for a class of affine LPV systems. However, when
including the time-varying real parametric uncertianty to both Â1 and Â2 of (4.28)
in a region close to the right-half s-plane

G(s, θ) =
1

(s+ 1)(s+ 2θ + 0.4δ)
, δ ∈ [−1, 1] (4.29)

Equation (4.28) becomes

ẋ =
(
α1(Â1 + δAδ) + α2(Â2 + δAδ)

)
x (4.30)

where

Aδ =



0 0 0 0 0 0 0 0
0 0.4 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(4.31)

As a result of quadstab, the closed-loop system (4.30) is quadratically unstable.

Having determined the reasons of the closed-loop instability for the LPV controller
with the original nonlinear plant, the problem can be solved by simply increasing
the conservativeness of the LPV plant model. That is, by setting a new range of the
time-varying parameter to cover the uncertainty in the region close to the right-half
s-plane. For example, setting θ = |n2| to vary from -1 to 10, indicates that the
varying pole can vary from -20 to 2 even though, in fact, it can only vary from
-20 to 0. Using hinfgs with the same weighting function as previously but with
the new range of θ, the new LPV controller is obtained with γ = 0.1463. The
simulation results of the nonlinear closed-loop system with the new Jacobian-based
LPV controller are presented in Figure 4.7. The closed-loop instability disappears
but the transient performance is degraded because of setting a more conservative
range of θ.

4.5 Pole Placement Approach

Pole placement with state feedback can be used to overcome the closed-loop insta-
bility problem without degrading the transient performance. In this approach, we
restrict ourselves to special LPV plants of the form

ẋ = A(θ)x+Bu

A(θ) = A0 + θ1A1 + · · ·+ θnAn

y = Cx (4.32)

where A(θ) is known functions and depends affinely on time-varying parameters,
θ. Furthermore, in order to apply state feedback and state observer, this LPV
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Figure 4.7: Nonlinear step response from -3.16 to 0 of new Jacobian-based LPV
controller with the original nonlinear plant

plant is assumed to be state controllable and observable for all possible parameters
trajectories θ. Figure 4.8 shows a block diagram structure of the gain-scheduled
pole placement controller.

We apply state feedback u = −K(θ)x + n. The state feedback gain, K(θ), is
parameter-dependent and can be a nonlinear function of θ. Substituting u in (4.32),
the state feedback closed-loop system becomes

ẋ = Ã(θ)x+Bn

Ã(θ) = [A(θ)−BK(θ)]

y = Cx (4.33)

where n is the new input of the state feedback closed-loop system. By determining
the state feedback gain, it is possible to achieve any closed-loop eigenvalue assign-
ment. However for the example, the states cannot be measured. Hence, a state
observer is used to estimate state values. A general state observer can be con-
structed using observer feedback gain Ke(θ) which is parameter-dependent and can
be a nonlinear function of θ. The state observer closed-loop system is given by

ẋe = [A(θ)−Ke(θ)C]xe +Bn+Ke(θ)Cx (4.34)

Subtracting (4.34) from (4.32), we obtain

ẋ− ẋe = [A(θ)−Ke(θ)C](x− xe) (4.35)

To demonstrate the method, we consider the Jacobian-based LPV model (4.5) taken
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4.5 Pole Placement Approach

ee

e

e

Figure 4.8: Block diagram structure of the gain-scheduled pole placement controller

from Leith and Leithead [61]. We also select the state feedback closed-loop system
to have a realistic closed loop characteristic, i.e. natural frequency, ωn = 10 rad/s
and damping ratio, ξ = 0.707, in order to prevent actuator saturation. Hence, the
desired characteristic equation can be written as

λ2 + (2× 0.707× 10)λ+ 102 = 0 (4.36)

The state feedback gain K(θ) can be determined by solving∣∣∣∣[λ 0
0 λ

]
−
{[
−1 0
1 −2θ

]
−
[
1
0

] [
k1 k2

]}∣∣∣∣ = 0

λ2 + (2θ + k1 + 1)λ+ (2θ[1 + k1] + k2) = 0 (4.37)

Equating coefficients of the polynomial yields the state feedback gain as

k1 = 13.14− 2θ, k2 = 4θ2 − 28.28θ + 100 (4.38)

Having determined the state feedback gain K(θ), the observer feedback gain Ke(θ)
can be determined by solving∣∣∣∣[λ 0

0 λ

]
−
{[
−1 0
1 −2θ

]
−
[
ke1
ke2

] [
0 1

]}∣∣∣∣ = 0

λ2 + (2θ + ke2 + 1)λ+ (2θ + ke1 + ke2) = 0 (4.39)

The dynamics of the state observer must be faster than the system being controlled.
Therefore we select the state observer to have a suitable characteristic, i.e. ωn = 40
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rad/s and ξ = 0.707, in order to avoid amplifying the noise of the controlled output.
Then, the desired characteristic equation can be written as

λ2 + (2× 0.707× 40)λ+ 402 = 0 (4.40)

Equating the coefficients of the polynomial yields the observer feedback gain as

ke1 = 1543.44, ke2 = 55.56− 2θ (4.41)

Substituting the matrices A(·), C(·) and Ke(θ) of the state observer in (4.35) yields
a state-space form as[

ṅ1 − ṅe1
ṅ2 − ṅe2

]
=

[
−1 −1543.44
1 −55.56

] [
n1 − ne1
n2 − ne2

]
(4.42)

The state observer has two poles at −28.3 ± 28.3i. Since both poles are in the
left-half s-plane, the state observer is stable. Having applied the state observer and
the state feedback to the Jacobian-based LPV model, the state feedback closed-loop
system can be determined by substituting the matrices A(·), . . . , C(·) and K(θ) in
(4.33) yielding the state-space form as[

ṅ1

ṅ2

]
=

[
2θ − 14.14 −4θ2 + 28.28θ − 100

1 −2θ

] [
n1

n2

]
+

[
1
0

]
n

y =
[
0 1

] [n1

n2

]
(4.43)

where n is the new input of state feedback closed-loop system. Substituting the
matrices A(·), . . . , C(·) of the state feedback closed-loop system into (4.26) gives the
transfer function

G(s) =
1

s2 + 14.14s+ 100
(4.44)

The state feedback closed-loop system has two constant poles at −7.07±7.07i. Both
poles are in the left-half s-plane therefore the state feedback closed-loop system is
stable.

According to the state feedback closed-loop transfer function, this approach shows
that the parameters variation of the special LPV plants can be cancelled. In order
to obtain performance from the system, an additional linear time invariant (LTI)
controller can be applied as an outer loop as shown in Figure 4.9. For this partic-
ular example, an H∞-mixed-sensitivity controller is used. Using MATLAB Robust
Control Toolbox function [12], mixsyn, with the same weighting function as previ-
ously, the following H∞ controller is obtained with γ = 0.0761 for the state feedback
closed-loop system as

ẋk = Akxk +Bk(yref − y)

n = Ckxk (4.45)
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Figure 4.9: Pole placement controller design in MATLAB Simulink environment

where

Ak =


−0.002 0 0 0
1355.3 −61.186 −14.911 −38.782
84.705 58.676 −15.072 −14.924

0 0 8 −2.662e− 016



Bk =


0.079057

0
−1.296e− 016
−8.4181e− 017

 , Ck =
[
2142.9 1484.4 −23.577 −61.319

]

The simulation results of the nonlinear closed-loop system are presented in Fig-
ures 4.10 and 4.11. The closed-loop instability problem is solved with good transient
performance of the system.

4.6 Conclusion

The example from Leith and Leithead [61] is very interesting. The closed-loop
instability of the LPV controller with the original nonlinear model occurs because
the mismatch uncertainty between the Jacobian-based LPV model and the original
nonlinear model is in a region close to the right-half s-plane. In addition, for this
particular example, both function substitution and state transformation methods
give an LPV plant model that more accurately represents the nonlinear plant than
the Jacobian linearization method. In this chapter, a design method for cancelling
the parameters variation of the example of Leith and Leithead [61] by pole-placement
state feedback is proposed. For the example, the approach yields reliable closed-loop
stability and good closed-loop transient performance of the system because it makes
the nonlinear plant appear to be an LTI plant, hence well-developed LTI tools can
be applied.
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Figure 4.10: Nonlinear step response from -3.16 to 0 with the original nonlinear
plant
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Figure 4.11: Control input to the original nonlinear plant
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Chapter 5

Longitudinal LPV Autopilot
Design: A TP Approach

This chapter describes a design of a longitudinal autopilot, i.e. speed-hold and
altitude-hold, for the entire flight envelope of a Jindivik UAV using a linear parameter-
varying (LPV) technique that is based on a gain-scheduled output feedback H∞
control [10] for which an LPV model is required for control synthesis and analysis.
Typically, LPV models are derived from original nonlinear equation models using an
algebraic manipulation method (see section 3.1). However, the derived LPV models
from those methods are often nonlinearly dependent on the time-varying parame-
ters; this is especially the case for a longitudinal Jacobian-based LPV model that is
nonlinearly dependent on speed and altitude.

A grid LPV model is usually used to synthesize a controller in the case of nonlinear
parameter dependence, however, the result of heuristic gridding technique is un-
reliable and the analysis result is dependent on choosing the gridding points [96].
To synthesize an LPV autopilot with a finite number of LMIs and avoid the grid-
ding technique, the TP model transformation is employed in order to transform a
longitudinal nonlinearly parameter-dependent LPV model into a TP convex poly-
topic model form. Therefore, based on single quadratic Lyapunov functions (Theo-
rem 3.4.3), the LMIs need only be evaluated at all vertices as shown in (3.80)–(3.82).

5.1 Jacobian-Based Longitudinal LPV Model

An LPV model is required for gain-scheduled H∞ performance analysis and synthe-
sis. Chapters 3 and 4 show that the state transformation-based LPV model is more
accurately represents the original nonlinear dynamics than the Jacobian-based LPV
model that only accurately represents the nonlinear dynamics about the neighbou-
hood of a set of equilibrium points. However, the state transformation approach
requires sufficient date in order to derive a transformation-based LPV model from
a nonlinear model. In addition, the transformation-based LPV model is a complex
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5.1 Jacobian-Based Longitudinal LPV Model

structure model. Therefore, in this work, the Jacobian method is employed to derive
a longitudinal LPV model from the standard 6-DOF equations of motion because it
is applicable to a general class of nonlinear models and has simple structure model.

Consider the standard 6-DOF equations of motion for a conventional fixed wing
aircraft, (A.10) and (A.11), where detail of the aircraft equations of motion is briefly
summarized in section A.2. Although the exact form of aerodynamic coefficients
structures for a general fixed wing aircraft are not certain, typical linear model
structures are suggested in [55, 58] and [77]. The linear model structures, that are
used in this thesis, from [55] are

CX = CX0 + CXαα + CXq

( qc̄
2V

)
+ CXδeδe (5.1)

CY = CY0 + CYββ + CYp

( pb
2V

)
+ CYr

( rb
2V

)
+ CYδaδa + CYδr δr (5.2)

CZ = CZ0 + CZαα + CZq

( qc̄
2V

)
+ CZδeδe (5.3)

Cl = Cl0 + Clββ + Clp

( pb
2V

)
+ Clr

( rb
2V

)
+ Clδaδa + Clδr δr (5.4)

Cm = Cm0 + Cmαα + Cmq

( qc̄
2V

)
+ Cmδeδe (5.5)

Cn = Cn0 + Cnββ + Cnp

( pb
2V

)
+ Cnr

( rb
2V

)
+ Cnδaδa + Cnδr δr (5.6)

Equations (A.10)–(A.11) are 6-DOF dynamics in three-dimensional space, i.e. North-
East-Down axis, which can often be simplified into two motions of 3-DOF dynamics
in two-dimensional space, i.e. longitudinal and lateral motions. In this chapter, we
only consider the longitudinal motion. In addition, we assume an aircraft is about
a wings level and constant altitude and airspeed flight condition, and, assume it
can manoeuvre only in North-Down plane, hence, all of the lateral states in (A.10)–
(A.11) frozen and equal to zero, i.e. v = p = r = β = φ = ψ = yE = 0. Moreover,
after substituting α = tan−1

(
w
u

)
, V =

√
u2 + w2, and q̄ = 1

2
ρV 2, we get equations

of longitudinal motion as

u̇ =
ρS

2m

[
CX0 + CXα tan−1

(w
u

)]
u2 +

ρS

2m

[
CX0 + CXα tan−1

(w
u

)]
w2

+
[(ρSc̄

4m
CXq
√
u2 + w2

)
− w

]
q − g sin θ +

ρS

2m

(
u2 + w2

)
CXδeδe +

T

m
(5.7)

ẇ =
ρS

2m

[
CZ0 + CZα tan−1

(w
u

)]
u2 +

ρS

2m

[
CZ0 + CZα tan−1

(w
u

)]
w2

+
[(ρSc̄

4m
CZq
√
u2 + w2

)
+ u
]
q + g cos θ +

ρS

2m

(
u2 + w2

)
CZδeδe (5.8)

q̇ =
ρSc̄

2Iy

[
Cm0 + Cmα tan−1

(w
u

)]
u2 +

ρSc̄

2Iy

[
Cm0 + Cmα tan−1

(w
u

)]
w2

+
ρSc̄

4Iy

(√
u2 + w2

)
Cmqq +

ρSc̄

2Iy

(
u2 + w2

)
Cmδeδe (5.9)

θ̇ = q (5.10)

ḣ = (sin θ)u− (cos θ)w (5.11)
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5.1 Jacobian-Based Longitudinal LPV Model

In practice, the inertias Ix, Iy, and Iz of an UAV can be determined using a torsional
pendulum experiment that is presented in [6, 36, 54] and [103] where the inertia Ixz
is often neglected. In addition, the engine thrust T can be modelled and estimated
using the technique that is presented in [54] and [55]. However, in this work, the
thrust is modelled from data in Table 5.1, where the data are obtained by using
MATLAB function, trim, to trim the Jindivik nonlinear model [41] about a wings
level and constant altitude and airspeed flight condition. Based on ad hoc methods,
a simple model of thrust, that fits the data in Table 5.1, is

T = CT0+CTuu+CTuhu×h+CTrpmrpm+CTurpmu×rpm+CThrpm
h×rpm+CTuhrpm

u×h×rpm
(5.12)

where all thrust coefficients in the above equation are given in Table 5.2. Figure 5.1
shows a comparison of the simulated thrust, from Table 5.1, and the estimated
thrust, from (5.12). Note that, the mathematical modelling of aerodynamic forces
and moments, thrust, sensors, and actuators of the Jindivik nonlinear model [41] are
given in section A.3. After (A.10)–(A.11) were linearized about a wings level and
constant altitude and airspeed flight condition using Jacobian linearization method,
we get a longitudinal LTI model as a state-space system of the form,

u̇
ẇ
q̇

θ̇

ḣ

 =


Xu Xw Xq Xθ 0
Zu Zw Zq Zθ 0
Mu Mw Mq 0 0
0 0 1 0 0
hu hw 0 hθ 0



ũ
w̃
q̃

θ̃

h̃

+


Xδe Xδrpm

Zδe 0
Mδe 0

0 0
0 0


[
δ̃e
δ̃rpm

]
(5.13)

where ũ = u−utrim, w̃ = w−wtrim, q̃ = q, θ̃ = θ−θtrim, h̃ = h−htrim, δ̃e = δe−δetrim ,
δ̃rpm = rpm− rpmtrim, and

Xu =
ρS

m

(
CX0 + CXααtrim + CXδeδetrim

)
utrim −

ρS

2m
CXαwtrim

+
1

m

(
CTu + CTuhhtrim + CTurpmrpmtrim + CTuhrpm

htrimrpmtrim

)
(5.14)

Xw =
ρS

m

(
CX0 + CXααtrim + CXδeδetrim

)
wtrim +

ρS

2m
CXαutrim (5.15)

Xq = −wtrim +
ρSc̄

4m
CXq

√
u2

trim + w2
trim (5.16)

Xθ = −g cos θtrim (5.17)

Xδe =
ρS

2m
CXδe

(
u2

trim + w2
trim

)
(5.18)

Xδrpm =
1

m

(
CTrpm + CTurpmutrim + CThrpm

htrim + CTuhrpm
utrimhtrim

)
(5.19)

Zu =
ρS

m

(
CZ0 + CZααtrim + CZδeδetrim

)
utrim −

ρS

2m
CZαwtrim (5.20)

Zw =
ρS

m

(
CZ0 + CZααtrim + CZδeδetrim

)
wtrim +

ρS

2m
CZαutrim (5.21)

Zq = utrim +
ρSc̄

4m
CZq

√
u2

trim + w2
trim (5.22)

Zθ = −g sin θtrim (5.23)
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5.1 Jacobian-Based Longitudinal LPV Model

Table 5.1: Simulation data of Jindivik’s engine*

Altitude (ft) Speed (ft/s) RPM Thrust (lbf)
2, 000 337 8,543 294
2, 000 443 9,140 378
2, 000 548 9,992 533
2, 000 654 10,814 717
2, 000 759 11,500 927
6, 000 337 8,675 290
6, 000 432 9,126 342
6, 000 527 9,828 453
6, 000 622 10,556 597
6, 000 717 11,214 759

10, 000 337 8,900 293
10, 000 421 9,130 311
10, 000 506 9,672 386
10, 000 590 10,296 495
10, 000 675 10,894 618
14, 000 337 9,255 303
14, 000 411 9,294 298
14, 000 485 9,579 340
14, 000 559 10,038 408
14, 000 632 10,571 500
18, 000 337 9,602 331
18, 000 400 9,408 293
18, 000 464 9,532 306
18, 000 542 9,853 348
18, 000 590 10,247 403

* about wings level and constant altitude and air-
speed flight condition

Zδe =
ρS

2m
CZδe

(
u2

trim + w2
trim

)
(5.24)

Mu =
ρSc̄

Iy

(
Cm0 + Cmααtrim + Cmδeδetrim

)
utrim −

ρSc̄

2Iy
Cmαwtrim (5.25)

Mw =
ρSc̄

Iy

(
Cm0 + Cmααtrim + Cmδeδetrim

)
wtrim +

ρSc̄

2Iy
Cmαutrim (5.26)

Mq =
ρSc̄2

4Iy
Cmq

√
u2

trim + w2
trim (5.27)

Mδe =
ρSc̄

2Iy
Cmδe

(
u2

trim + w2
trim

)
(5.28)

hu = sin θtrim (5.29)

hw = − cos θtrim (5.30)

hθ = utrim cos θtrim + wtrim sin θtrim (5.31)

Equations (5.14)–(5.31) are the stability and control derivatives (longitudinal

66



5.1 Jacobian-Based Longitudinal LPV Model

0 5 10 15 20 25
200

300

400

500

600

700

800

900

1000
Simulated Thrust
Estimated Thrust

Figure 5.1: A comparison between the simulated thrust and the estimated thrust

Table 5.2: Jindivik’s engine thrust coefficients

Coefficient CT0 CTu CTrpm

Value -278.86 -4.2915 0.12773
Coefficient CTuh CTurpm CThrpm

CTuhrpm

Value 1.2676× 10−4 3.4457× 10−4 −3.6870× 10−6 −7.6625× 10−9

mode). The trim values in the above equations can be calculated by setting u̇ =

ẇ = q̇ = θ̇ = ḣ = 0 and ρ = ρ0

[
1− (6.876× 10−6)h

]4.256
in (5.7)–(5.11). Moreover,

since α is actually small for this flight condition, we assume tanα ≈ α and V ≈ u.
Then, the results are

αtrim =

S
2
u2
(
CZδeCm0 − CZ0Cmδe

)(
ρ0

[
1− (6.876× 10−6)h

]4.256
)
−mgCmδe

S
2
u2
(
CZαCmδe − CZδeCmα

)(
ρ0

[
1− (6.876× 10−6)h

]4.256
)

(5.32)

wtrim = u tanαtrim (5.33)

θtrim = αtrim (5.34)

δetrim =
−
(
Cm0 + Cmααtrim

)
Cmδe

(5.35)

rpmtrim =
mgαtrim − S

2
u2
(
CX0 + CXααtrim + CXδeδetrim

)(
ρ0

[
1− (6.876× 10−6)h

]4.256
)

(
CTrpm + CTurpmu+ CThrpm

h+ CTuhrpm
uh
)

−

(
CT0 + CTuu+ CTuhuh

)
(
CTrpm + CTurpmu+ CThrpm

h+ CTuhrpm
uh
) (5.36)

From (5.14)–(5.36), it can be seen that, the stability and control derivatives are
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5.1 Jacobian-Based Longitudinal LPV Model

Table 5.3: Stability and control derivative data (longitudinal mode) of Jindivik nonlin-

ear model*

u (ft/s) 464 464 464 497 497 497 531 531 531
h (ft) 9,900 10,500 11,100 9,900 10,500 11,100 9,900 10,500 11,100
αtrim (rad) 0.00655 0.00756 0.00860 0.00034 0.00124 0.00216 -0.00472 -0.00392 -0.00309
δetrim (rad) 0.0838 0.0832 0.0826 0.0872 0.0867 0.0861 0.0901 0.0896 0.0891
rpmtrim 9,445 9,460 9,467 9,630 9,631 9,632 9,818 9,813 9,808
Xu -0.0127 -0.0125 -0.0128 -0.0141 -0.0138 -0.0135 -0.0146 -0.0143 -0.0139
Xw 0.0302 0.0323 0.0343 0.0142 0.0165 0.0187 0.0301 0.0319 0.0336
Xq -3.1210 -3.5911 -4.0719 -0.2628 -0.7086 -1.1647 2.4346 2.0089 1.5736
Xθ -32.1735 -32.1732 -32.1730 -32.1742 -32.1741 -32.1741 -32.1738 -32.1739 -32.1740
Xδe -2.9187 -2.8380 -2.7585 -3.5278 -3.4351 -3.3438 -3.1418 -3.0558 -2.9710
Xδrpm 0.00118 0.00116 0.00194 0.00207 0.00202 0.00198 0.00215 0.00211 0.00206

Zu -0.1191 -0.1178 -0.1166 -0.1175 -0.1161 -0.1148 -0.1163 -0.1149 -0.1134
Zw -1.4009 -1.3738 -1.3472 -1.4856 -1.4567 -1.4284 -1.5672 -1.5366 -1.5065
Zq 462.88 462.90 462.92 496.56 496.59 496.61 530.23 530.26 530.29
Zθ -0.2107 -0.2435 -0.2770 -0.0110 -0.0399 -0.0696 0.1520 0.1261 0.0996
Zδe -40.7848 -40.0205 -39.2672 -46.7547 -45.8777 -45.0133 -53.1034 -52.1055 -51.1220
Mu 0.00017 0.00018 0.00020 0.00003 0.00005 0.00006 -0.00011 -0.00008 -0.00006
Mw -0.0274 -0.0267 -0.0261 -0.0307 -0.0301 -0.0294 -0.0341 -0.0334 -0.0327
Mq -0.7324 -0.7186 -0.7050 -0.7811 -0.7664 -0.7519 -0.8289 -0.8133 -0.7979
Mδe -23.8180 -23.3709 -22.9303 -27.3123 -26.7993 -26.2936 -31.0254 -30.4422 -29.8674
hu 0.0065 0.0075 0.0086 0.00034 0.0012 0.0021 -0.0047 -0.0039 -0.0030
hw -1 -1 -1 -1 -1 -1 -1 -1 -1
hθ 464 464 464 497 497 497 531 531 531

* about wings level and constant altitude and airspeed flight condition

Table 5.4: Jindivik’s longitudinal aerodynamic coefficients

Coefficient CX0 CXα CXq CXδe
Value -0.0213 0.0898 -0.1355 -0.0202
Coefficient CZ0 CZα CZq CZδe
Value -0.1824 -4.8202 -2.1895 -0.3064
Coefficient Cm0 Cmα Cmq Cmδe
Value 0.0643 -0.4157 -5.2417 -0.7363

nonlinearly dependent on only speed and altitude. With the speed and altitude
are fixed, (5.13) is a longitudinal LTI model. However, as the speed and altitude
vary slowly over the entire flight envelope, (5.13) becomes a longitudinal nonlinearly
parameter-dependent LPV model.

Moreover, these equations show that the accuracy of this LPV model depends on the
accuracy of the information that provides the aerodynamic and thrust coefficients.
Traditionally, the aerodynamic coefficients are often determined using wind tunnel
tests by measuring the aerodynamic forces and moments introduced on the aircraft.
However, the wind tunnel tests are expensive in terms of schedule and budget for
UAV applications. System identification techniques are an alternative approach that
can be used to estimate stability and control derivatives or aerodynamic coefficients
from flight data, where the details of the method are presented in [28, 36, 53, 54,
57, 58, 74, 75] and [78].
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5.2 Longitudinal TP Convex Polytopic Model

In this chapter, we use the MATLAB function, linmod, to emulate aircraft param-
eter identification techniques. Note that Appendix B presents the details of UAV
aerodynamic model identification from a racetrack manoeuvre. Using functions
trim and linmod, the stability and control derivative values, shown in Table 5.3,
are obtained about one flight condition (speed = 497 ft/s and altitude = 10,500
ft). After substituting the data from Table 5.3 in (5.14)–(5.36), we can determine
approximate aerodynamic coefficients of the Jindivik UAV as shown in Table 5.4
where the exact aerodynamic coefficients of the Jindivik nonlinear model [41] are
given in sub-section A.3.1.

Knowing the aerodynamic coefficients, the system matrices of the longitudinal non-
linearly parameter-dependent LPV model (5.13) at all points over the entire param-
eter spaces can be determined using (5.14)–(5.36). Figure 5.2 shows the determined
value of Xq and αtrim for a calculation example. In addition, Figure 5.3 shows the
variation of open-loop characteristic of this nonlinearly parameter-dependent LPV
model, i.e. u(s)/rpm(s), over an entire flight envelope. According to Figure 5.3, two
poles of short period mode are open-loop stable with variation of the damping ratio
(ξ) and natural frequency (ωn) from 0.256 to 0.319 and 2.42 rad/s to 7.19 rad/s
respectively, where the other two poles of Phugoid mode are open-loop unstable
with variation of the damping ratio and natural frequency from -0.109 to -0.288 and
0.0449 rad/s to 0.129 rad/s respectively. Moreover, the system of (5.13) also has
non-minimum phase zeros as shown in Figure 5.3.

5.2 Longitudinal TP Convex Polytopic Model

Based on the system of (5.13), the speed and altitude are the only time-varying
parameters. The entire flight envelope of the Jindivik UAV, taken from [41], is that
the speed and altitude vary from 337.6 ft/s to 759.5 ft/s and 1,000 ft to 18,000 ft
respectively. To synthesize an LPV controller for the system of (5.13) with a finite
number of LMIs, the gridding technique that is presented in [39, 66, 99, 100] and [101]
can be used. However, the result of heuristic gridding technique is unreliable and
the analysis result is dependent on choosing the gridding points [96].

A TP model transformation is an alternative approach that can be used to ob-
tain a finite number of LMIs for which the method transforms a given nonlinearly
parameter-dependent LPV model (5.13) into a TP convex polytopic model. We ap-
plied the MATLAB Tensor Product Model Transformation Toolbox from [17] to de-
termine the LTI vertex systems, Sa, and the weighting functions, wa

(
p(t)

)
, as shown

in (3.26). The transformation space is defined as Ω = [337.6, 759.5] × [1000, 18000]
and let the density of the sampling grid be 500 × 100. In addition, the weighting
type of cno convex hull is used during the transformation in order to have a tight
hull representation. A tensor of size 8 × 6 × 10 × 7 was received with the singu-
lar values in speed dimension as: 39198, 2554.5, 697.63, 49.012, 1.0486, 0.032623,
0.00050345, and 4.2483e-005. and in altitude dimension as: 39191, 2754.9, 103.23,
0.40544, 0.0018278, and 1.4039e-005.
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Figure 5.2: Xq and αtrim are nonlinearly dependent on speed and altitude
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5.3 Gain-Scheduled H∞ Autopilot Design

This means that the longitudinal nonlinearly parameter-dependent LPV model of
the Jindivik UAV can exactly be given as a convex combination of 8 × 6 = 48 LTI
vertex systems. However, in practice, a small number of controllers is preferred
for implementation in real applications, therefore, we kept only the four and three
largest singular values in speed and altitude dimension respectively. The number
of LTI vertex systems was reduced to 5 × 4 = 20. Theoretically, the maximum
error in L2 matrix norm approximation is the sum of the discarded small singular
values, thus, 1.0486+0.032623+0.00050345+4.2483e−005+0.40544+0.0018278+
1.4039e− 005 = 1.4891.

However, we have compared the decomposed TP polytopic model with the original
nonlinearly parameter-dependent LPV model, (5.13), over 2,000 test points of ran-
domly selected parameter values, i.e. speed and altitude, in the ranges given by Ω.
The maximum and mean error in the L2 matrix norm, ε, was received as 0.0035904
and 0.0025777 respectively. Thus, the decomposed TP polytopic model can be re-
duced to a system of half the complexity while it is still accurate enough for real
world experiments. Hence, the longitudinal TP polytopic model can be written as

ẋ(t) =
5∑
i=1

4∑
j=1

w1,i

(
u(t)

)
w2,j

(
h(t)

)(
Ai,jx(t) +Bi,ju(t)

)
(5.37)

where the weighting functions wn,j
(
pn(t)

)
are presented in Figure 5.4. Moreover,

Figure 5.5 shows w1

(
p(t)

)
and w2

(
p(t)

)
as an example for determining wa

(
p(t)

)
.

Some of the LTI system matrices, Sa, of this TP polytopic model are shown below

A1,1 =


−0.0249 0.0226 −9.9344 −32.1718 0
−0.1472 −1.2368 336.4799 −0.9429 0
0.0009 −0.0258 −0.6508 0 0

0 0 1 0 0
0.0293 −0.9999 0 337.6224 0

 B1,1 =


−1.7419 0.0021
−26.4220 0
−15.4316 0

0 0
0 0

 (5.38)

A2,1 =


−0.0279 0.0272 −0.0268 −32.1833 0
−0.1322 −1.4657 401.2744 0.3468 0
0.0001 −0.0308 −0.7761 0 0

0 0 1 0 0
−0.0108 −1.0003 0 402.4091 0

 B2,1 =


−1.7733 0.0023
−26.8975 0
−15.7093 0

0 0
0 0

 (5.39)

A3,1 =


−0.0389 0.0526 23.0197 −32.1598 0
−0.1656 −2.7741 758.8454 0.9822 0
−0.0017 −0.0582 −1.4677 0 0

0 0 1 0 0
−0.0305 −0.9996 0 761.7082 0

 B3,1 =


−8.8508 0.0034
−134.2520 0
−78.4090 0

0 0
0 0

 (5.40)

...

A5,4 =


−0.0086 0.0134 −26.0233 −32.1294 0
−0.1251 −0.7550 307.4327 −2.1679 0
0.0014 −0.0156 −0.3932 0 0

0 0 1 0 0
0.0674 −0.9986 0 308.6531 0

 B5,4 =


−0.7557 0.0013
−11.4620 0
−6.6943 0

0 0
0 0

 (5.41)

5.3 Gain-Scheduled H∞ Autopilot Design

In practice, the plant model is normally augmented with some weighting functions
before we can apply the H∞ control synthesis to compute an LPV controller. In
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73



5.3 Gain-Scheduled H∞ Autopilot Design

this chapter, we used the mixed-sensitivity criterion [20, 33, 47]∥∥∥∥ W1S
W2KS

∥∥∥∥
∞
< 1 (5.42)

The objective of this mixed-sensitivity function is to shape the sensitivity function
S and control sensitivity function KS with performance weighting functions W1 and
robustness weighting functions W2 respectively. Hence, we should get a controller
that is good at command following (i.e. small tracking error), good at disturbance
attenuation (i.e. attenuation of the effect of disturbance on output), low sensitivity
to measurement noise, with reasonably small control efforts, and that is robustly
stable to additive plant perturbations. Figure 5.6 shows the weighted open-loop
interconnection for synthesis where

W1(s) =

(
0.5s+0.0664
s+6.64×10−5 0

0 0.5s+0.0664
s+6.64×10−5

)
(5.43)

W2(s) =

( 100s+3.32
0.001s+0.0664

0

0 0.01s+3.32×10−4

0.001s+0.0664×10−5

)
(5.44)

Wpre-filter(s) =

(
500
s+500

0

0 1000
s+1000

)
(5.45)

The purpose of Wpre-filter is to make matrices B2 and D12 of the plant model to
be parameter-independent [10], hence, the gain-scheduled output feedback H∞ con-
troller design method of [10] can be used. In addition, the values of weighting
functions W1 and W2 are hand-tuned until the desired objectives of performance
and robustness of the closed-loop system are achieved.

Having augmented the longitudinal TP convex polytopic model, taken from (5.38)–
(5.41), with weighting functions W1 and W2, an LPV controller can be synthesized
using the routine hinfgs. As a result of hinfgs, the LPV controller with γ = 3.0395
was obtained. Once the twenty LTI system matrix vertices of the LPV controller
are obtained from the routine hinfgs, this LPV controller can be constructed by
the combination of the system matrix vertices and weighting functions, wa

(
p(t)

)
, in

the same fashion as the TP convex polytopic model, hence,

ẋk(t) =
5∑
i=1

4∑
j=1

w1,i

(
u(t)

)
w2,j

(
h(t)

)
Aki,jxk(t) +Bki,j


uref − u(t)
w(t)
q(t)
θ(t)

href − h(t)




[
δe(t)

rpm(t)

]
=

5∑
i=1

4∑
j=1

w1,i

(
u(t)

)
w2,j

(
h(t)

)
Cki,jxk(t) +Dki,j


uref − u(t)
w(t)
q(t)
θ(t)

href − h(t)


 (5.46)

To confirm that the mixed-sensitivity criterion (5.42) is achieved, the singular values
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Figure 5.6: The weighted open-loop interconnection for the longitudinal TP convex
polytopic plant model

of the transfer matrices S and KS are computed over all θ ∈ Θ (with frozen values
of θ), and are shown in Figure 5.7. Obviously, the singular values of S and KS are
shaped and bound by W1 and W2 respectively. In addition, Figure 5.8 shows that∥∥[W1S, W2KS]T

∥∥
∞ < γ. Hence, the mixed-sensitivity criterion (5.42) is satisfied.

5.4 Nonlinear Simulation Results

The designed H∞ gain-scheduling autopilot is validated with the Jindivik nonlinear
model [41] in a MATLAB Simulink simulation. Note that all twenty weighting
functions, wa

(
p(t)

)
, used in the simulation were constructed using two-dimensional

look-up tables. In Figure 5.9, the transient response of the simulated vehicle for
small demanded changes in speed and altitude are shown for one particalar point
in the flight envelope. Similar responses for other points in the flight envelope were
obtained. Figure 5.10 shows a simulated flight that cover a wide range of the flight
envelope. It demonstrates that the stability and robustness properties of the closed-
loop system were achieved over the defined flight envelope.

Note that, there is an effect on regulating an altitude when the autopilot is tracking a
speed demand as well as there is an effect on regulating a speed when the autopilot is
tracking an altitude demand. This is because the longitudinal TP polytopic model
is a quasi-LPV model where the scheduling parameters, speed and altitude, are
also states of the system. This is a common problem for quasi-LPV models when
synthesizing an LPV controller using single quadratic Lyapunov function since the
parameter variation rate is as fast as the system states.
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(a) ‖W1S‖∞

(b) ‖W2KS‖∞

Figure 5.8: H∞ norm of W1S and W2KS over ∀θ ∈ Θ (with frozen θ)
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5.4 Nonlinear Simulation Results
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Figure 5.9: The transient performance of H∞ gain-scheduling autopilot is validated
with the Jindivik nonlinear dynamic model about one condition inside the flight
envelope, i.e. speed = 506 ft/s and altitude = 10,000 ft
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5.5 Conclusion
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Figure 5.10: The stability and robustness properties of the closed-loop system were
achieved over the defined flight envelope

5.5 Conclusion

A recently proposed technique, the tensor-product (TP) model transformation [18],
is applied to generate a convex polytopic representation of a longitudinal nonlinearly
parameter-dependent LPV model of the Jindivik UAV. The gain-scheduled output
feedback H∞ controller design method [10] was applied to the resulting TP convex
polytopic model to yield a controller that guarantees the stability, robustness and
performance properties of the closed-loop system over the whole grid. The method
is relatively easy to apply owing to the availabilty of good computational tools [17]
and [46]. The controller was tested with a full 6-DOF simulation of the vehicle.
These results show that the stability and robustness properties of the closed-loop
system were achieved over the defined flight envelope.
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Chapter 6

Longitudinal LPV Autopilot
Design: A PDLF Approach

In general, a single quadratic Lyapunov function is more conservative than a parameter-
dependent Lyapunov function when the parameters are time-invariant or slowly
varying [45]. Hence, using the parameter-dependent Lyapunov function can re-
duced the conservatism of the designed LPV controller in the previous chapter and
can also solve a problem of a quasi-LPV model (that the scheduling parameter is
dependent on the system state) where both scheduling parameter and system state
variations are at the same speed. However, to synthesize a gain-scheduled output
feedback H∞ controller for a class of affine (or polytopic) LPV plant model using the
parameter-dependent Lyapunov function involves solving an infinite number of LMIs
for which a number of convexifying techniques exist for obtaining a finite number
of LMIs. In this chapter, an alternative approach for obtaining a finite number of
LMIs is proposed, by simple manipulations on the bounded real lemma inequality, a
symmetric matrix polytope inequality form is obtained. Hence, the LMIs need only
be evaluated at all vertices.

A technique to construct the intermediate controller variables as an affine matrix-
valued function in the polytopic coordinates of the scheduled parameter is also
proposed. Computational results on a numerical example [61] using the proposed
approach are compared with those from a multi-convexity approach [11] in order
to demonstrate the impacts of the proposed method in the parameter-dependent
Lyapunov-based stability and performance analysis. The proposed method is ap-
plied to synthesize a longitudinal autopilot for a full flight envelope of the Jindivik
UAV. The resulting autopilot is tested for a bounded flight envelope with a full
6-DOF Jindivik nonlinear model and the simulation results are presented to show
the effectiveness of the approach.
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6.1 Stability Analysis using PDLF

6.1 Stability Analysis using PDLF

The system of (3.44) is said to be parameter-dependent stable if there exists a con-
tinuously differentiable parameter-dependent Lyapunov function V (x, θ) = xTP (θ)x
whose derivative is negative along all state trajectories. This is equivalent to the
existence of a P (θ) = P (θ)T such that

P (θ) > 0, A(θ)TP (θ) + P (θ)A(θ) + Ṗ (θ) < 0, ∀(θ, θ̇) ∈ Θ× Φ (6.1)

where the rate of variation θ̇ is well defined at all times and satisfies θ̇i ∈
[
vi, vi

]
and θ̇ lies in a polytope Φ, θ̇ ∈ Φ, Φ = [v1, v1]× [v2, v2]× . . .× [vn, vn], n is the total
number of θ(t). Although an exact parameter-dependent function for a continuously
differentiable parameter-dependent Lyapunov variable P (θ) is still not established, a
basis parameter-dependent function for the parameter-dependent Lyapunov variable
is suggested in [8, 100] and [101] and is to copy the plant’s parameter-dependent
function. Therefore, we can constrain the basis parameter-dependent function for
the parameter-dependent Lyapunov variable to vary in an affine fashion.

P (θ) = P0 + θ1P1 + · · ·+ θnPn = α1P̂1 + α2P̂2 + · · ·+ αrP̂r (6.2)

where r = 2n, αi is determined using (3.24) and (3.25) and


P̂1

P̂2

P̂3
...

P̂r

 =


1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
...

1 θ1 θ2 . . . θn−1 θn



P0

P1
...
Pn

 (6.3)

Although the set of feasible solutions of inequality (6.1) is reduced by defining the
parameter-dependent Lyapunov function, P (θ), as affine (as in (6.2)), this is a prac-
tical approach and makes inequality (6.1) is tractable. This is a common. Differen-
tiating (6.2) with respect to time gives

Ṗ (θ) = θ̇1P1 + · · ·+ θ̇nPn = β1P̃1 + β2P̃2 + · · ·+ βrP̃r (6.4)

where βi can be determined in a similar manner to αi using (3.24) and (3.25) and


P̃1

P̃2

P̃3
...

P̃r

 =


0 v1 v2 . . . vn−1 vn
0 v1 v2 . . . vn−1 vn
0 v1 v2 . . . vn−1 vn
...
0 v1 v2 . . . vn−1 vn



P0

P1
...
Pn

 (6.5)
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6.1 Stability Analysis using PDLF

Substituting (3.51), (6.2) and (6.4) into (6.1), and recalling that
∑r

i=1 αi = 1 and∑r
i=1 βi = 1, we get

P (θ) > 0,
r∑
i=1

r∑
k=1

α2
iβk

(
ÂTi P̂i + P̂iÂi + P̃k

)
+2

r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk

(
1

2

(
ÂTi P̂j + P̂jÂi + ÂTj P̂i + P̂iÂj + 2P̃k

))
< 0, ∀(θ, θ̇) ∈ Θ× Φ

(6.6)

As α2
iβk ∈ [0, 1], i, k = 1, . . . , r, 2αiαjβk ∈ [0, 0.5], i = 1, . . . , r − 1, j = i +

1, . . . , r, k = 1, . . . , r, and
∑r

i=1

∑r
k=1 α

2
iβk + 2

∑r−1
i=1

∑r
j=i+1

∑r
k=1 αiαjβk = 1, by

Lemma 3.3.1 solving the above inequality for positive definite symmetric matrices
Pi need only be done at all vertices. Hence we get the following proposition.

Proposition 6.1.1. The system of (3.44) is parameter-dependent stable whenever
there exist a positive definite symmetric matrix Pi, i = 1, 2, . . . , r, such that the
following LMI conditions hold

P̂i > 0 (6.7)

ÂTi P̂i + P̂iÂi + P̃k < 0 (6.8)

ÂTi P̂j + P̂jÂi + ÂTj P̂i + P̂iÂj + 2P̃k < 0 (6.9)

for i, k = 1, . . . , r and 1 ≤ i < j ≤ r

Note that the numbers of LMIs for (6.7)–(6.9) are r, r2 and r2(r−1)/2, respectively.
Therefore, the total number of LMIs to be solved is r(r2 + r + 2)/2. Note also that
there are other approaches that could be used to obtain a finite number of LMIs,
e.g. multi-convexity [11, 45], S-procedure [40], gridding parameter space [39, 66,
100, 101], etc.

Proposition 6.1.2. (Multi-convexity approach, [11, Proposition 5.1]) Assume θ̇ =
0, The system of (3.44) is parameter-dependent stable whenever there exist a positive
definite symmetric matrix Pi, i = 1, 2, . . . , r, and scalars λi, i = 1, 2, . . . , r, such
that the following LMI conditions hold

P̂k > 0 (6.10)

λk ≥ 0 (6.11)

ÂTk P̂k + P̂kÂk < −λkI (6.12)

ÂTi P̂i + P̂iÂi + ÂTj P̂j + P̂jÂj − (ÂTi P̂j + P̂jÂi + ÂTj P̂i + P̂iÂj) ≥ −(λi + λj)I

(6.13)

for k = 1, . . . , r and 1 ≤ i < j ≤ r

Corollary 6.1.3. Assume that θ̇ = 0. If Proposition 6.1.2 is satisfied then Propo-
sition 6.1.1 is satisfied.
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6.2 Controller Synthesis using PDLF

Proof. First, we show that if (6.12) is satisfied then (6.8) is satisfied. Let ÂTk P̂k +
P̂kÂk = Mk and Mk + λkI < 0 hence, for all nonzero vector X ∈ Rp, XTMkX +
λkX

TX < 0 if and only if XTMkX < −λkXTX ≤ 0 since λk ≥ 0 and XTX > 0.
This yields XTMkX < 0 or ÂTk P̂k + P̂kÂk < 0.

Next, we show that if (6.13) is satisfied then (6.9) is satisfied. Let ÂTi P̂i + P̂iÂi +
ÂTj P̂j + P̂jÂj = M and ÂTi P̂j + P̂jÂi + ÂTj P̂i + P̂iÂj = Mij. We have XTMX −
XTMijX+(λi+λj)X

TX ≥ 0, for all nonzero vectors X ∈ Rp. From (6.12), we have
XTMX + (λi + λj)X

TX < 0, therefore 0 > XTMX + (λi + λj)X
TX ≥ XTMijX.

This yields XTMijX < 0 or ÂTi P̂j + P̂jÂi + ÂTj P̂i + P̂iÂj < 0

The corollary above shows that Proposition 6.1.2 is a subset of Proposition 6.1.1
which is more general since ÂTk P̂k + P̂kÂk and ÂTi P̂j + P̂jÂi + ÂTj P̂i + P̂iÂj can be
less than a negative definite symmetric matrix rather than they are just less than a
diagonal negative definite matrix −λkI and −(λi + λj)I, respectively. In addition,
Proposition 6.1.1 shows that the determination of a negative definite symmetric
matrix is not necessary, hence, comparing with Proposition 6.1.2, the number of
LMIs, decision variables and the computational time are reduced while the achieved
performance γ level is improved.

6.2 Controller Synthesis using PDLF

In the previous section, a sufficient condition to guarantee the stability property
of the closed-loop system using the parameter-dependent Lyapunov function has
been presented, where it is sufficient to evaluate the LMIs at all vertices. Next,
we consider the problem of designing a gain-scheduled output feedback H∞ control
with guaranteed L2-gain performance for affine LPV systems using the parameter-
dependent Lyapunov function for which the proposed technique in the previous
section can be directly extended to synthesizing a gain-scheduled H∞ controller.
The material in this section is draws from [8, 10, 43] and [44].

Consider a given affine LPV plant model with state-space realization of the form
(3.59). The gain-scheduled output feedbackH∞ control problem using the parameter-
dependent Lyapunov function is to compute a dynamic LPV controller, K(θ), with
state-space equations

ẋk = Ak(θ, θ̇)xk +Bk(θ)y

u = Ck(θ)xk +Dk(θ)y (6.14)

which stabilizes the closed-loop system, (3.59) and (6.14), and minimizes the closed-
loop quadratic H∞ performance, γ, ensures the induced L2-norm of the operator
mapping the disturbance signal w into the controlled signal z is bounded by γ∫ t1

0

zT zdt ≤ γ2

∫ t1

0

wTwdt, ∀t1 ≥ 0 (6.15)
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6.2 Controller Synthesis using PDLF

along all possible parameter trajectories, ∀(θ, θ̇) ∈ Θ × Φ. Note that A and Ak
have the same dimensions, since we restrict ourselves to the full-order case. The
closed-loop system, (3.59) and (6.14), is described by the state-space equations[

ẋ
ẋk

]
= Acl(θ)

[
x
xk

]
+Bcl(θ)w

z = Ccl(θ)

[
x
xk

]
+Dcl(θ)w (6.16)

where

Acl(θ, θ̇) =

[
A(θ) +B2Dk(θ)C2 B2Ck(θ)

Bk(θ)C2 Ak(θ, θ̇)

]
, Bcl(θ) =

[
B1(θ) +B2Dk(θ)D21

Bk(θ)D21

]
Ccl(θ) =

[
C1(θ) +D12Dk(θ)C2 D12Ck(θ)

]
, Dcl(θ) = D11(θ) +D12Dk(θ)D21

(6.17)

Based on the parameter-dependent Lyapunov function, V (x, θ) = xTP (θ)x, there is
an LPV controller K(θ) of the form of (6.14) that stabilizes the closed-loop system,
(3.59) and (6.14), and ensures the induced L2-norm of the operator mapping the
disturbance signal w into the controlled signal z is bounded by γ along all possible
parameter trajectories if and only if there exists P (θ) = P T (θ) such that [45]

P (θ) > 0,
d

dt

(
xTP (θ)x

)
+ zT z − γ2wTw < 0, ∀(θ, θ̇) ∈ Θ× Φ (6.18)

Note that, unlike the single quadratic Lyapunov function case (sub-section 3.4.1),
P (θ), Ak(θ, θ̇), Bk(θ), . . . , Dk(θ) andAcl(θ, θ̇), Bcl(θ), . . . , Dcl(θ) do not depend affinely
on the scheduled parameters θ. Inequality (6.18) leads to [45] ATcl(θ, θ̇)P (θ) + P (θ)Acl(θ, θ̇) + Ṗ (θ) P (θ)Bcl(θ) CT

cl(θ)
BT
cl(θ)P (θ) −γI DT

cl(θ)
Ccl(θ) Dcl(θ) −γI

 < 0 (6.19)

Introducing intermediate controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ), as [8, 43]

Ak(θ, θ̇) = N−1(θ)
(
X(θ)Ẏ (θ) +N(θ)ṀT (θ) + Âk(θ)−X(θ)

(
A(θ)−

B2Dk(θ)C2

)
Y (θ)− B̂k(θ)C2Y (θ)−X(θ)B2Ĉk(θ)

)
M−T (θ) (6.20)

Bk(θ) = N−1(θ)
(
B̂k(θ)−X(θ)B2Dk(θ)

)
(6.21)

Ck(θ) =
(
Ĉk(θ)−Dk(θ)C2Y (θ)

)
M−T (θ) (6.22)

where N(θ) = −X(θ) + Y −1(θ), Ṅ(θ) = −Ẋ(θ)− Y −1(θ)Ẏ (θ)Y −1(θ), M(θ) = Y (θ)
and Ṁ(θ) = Ẏ (θ). A pair of positive definite symmetric matrices

(
X(θ), Y (θ)

)
is taken from the structure of the parameter-dependent Lyapunov variable, P (θ),
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6.2 Controller Synthesis using PDLF

which is defined as

P (θ) =

 X(θ) −
(
X(θ)− Y −1(θ)

)
−
(
X(θ)− Y −1(θ)

)
X(θ)− Y −1(θ)


=

[
Ip X(θ)

0p×p −
(
X(θ)− Y −1(θ)

)][Y (θ) Ip
Y (θ) 0p×p

]−1

(6.23)

Ṗ (θ) =

[
Ẋ(θ) −Ẋ(θ)− Y −1(θ)Ẏ (θ)Y −1(θ)

−Ẋ(θ)− Y −1(θ)Ẏ (θ)Y −1(θ) Ẋ(θ) + Y −1(θ)Ẏ (θ)Y −1(θ)

]
(6.24)

P (θ)−1 =

[
Y (θ) Y (θ)

Y (θ)
(
X(θ)− Y −1(θ)

)−1

X(θ)Y (θ)

]

=

[
Y (θ) Ip
Y (θ) 0p×p

][
Ip X(θ)

0p×p −
(
X(θ)− Y −1(θ)

)]−1

(6.25)

where the positive definite symmetric matrices
(
X(θ), Y (θ)

)
∈ Rp×p, X(θ) −

Y −1(θ) ≥ 0, and rank(X(θ) − Y −1(θ)) ≤ p [82]. Note that, (6.20)–(6.22) show
that Ak(θ, θ̇), Bk(θ) and Ck(θ) can not depend affinely on the scheduled parameters
θ when the symmetric matrix X or Y is parameter-dependent. In this thesis, we
propose the intermediate controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ),
and

(
X(θ), Y (θ)

)
to depend affinely on the parameters θ as

Âk(θ) = Âk0 + θ1Âk1 + · · ·+ θnÂkn = α1Ãk1 + α2Ãk2 + · · ·+ αrÃkr (6.26)

B̂k(θ) = B̂k0 + θ1B̂k1 + · · ·+ θnB̂kn = α1B̃k1 + α2B̃k2 + · · ·+ αrB̃kr (6.27)

Ĉk(θ) = Ĉk0 + θ1Ĉk1 + · · ·+ θnĈkn = α1C̃k1 + α2C̃k2 + · · ·+ αrC̃kr (6.28)

Dk(θ) = Dk0 + θ1Dk1 + · · ·+ θnDkn = α1D̃k1 + α2D̃k2 + · · ·+ αrD̃kr (6.29)

X(θ) = X0 + θ1X1 + · · ·+ θnXn = α1X̂1 + α2X̂2 + · · ·+ αrX̂r (6.30)

Y (θ) = Y0 + θ1Y1 + · · ·+ θnYn = α1Ŷ1 + α2Ŷ2 + · · ·+ αrŶr (6.31)

Ẋ(θ) = θ̇1X1 + θ̇2X2 + · · ·+ θ̇nXn = β1X̃1 + β2X̃2 + · · ·+ βrX̃r (6.32)

Ẏ (θ) = θ̇1Y1 + θ̇2Y2 + · · ·+ θ̇nYn = β1Ỹ1 + β2Ỹ2 + · · ·+ βrỸr (6.33)

Note that X̃j and Ỹj, j = 1, . . . , r, map to Xi and Yi, i = 1, . . . , n, respectively
in a similar manner to (6.5). This proposed technique offers obvious advantages
in reducing computational burden and ease of controller implementation because
the intermediate controller variables can be constructed as an affine matrix-valued
function in the polytopic coordinates of the scheduled parameter. In addition, an
existing method for computing the intermediate controller variables, that is based
on explicit controller formulas [43], is given in Algorithm C.0.2.

Define

P1(θ) =

[
Y (θ) Ip
Y (θ) 0p×p

]
(6.34)

By premultiplying the first row and postmultiplying the first column of (6.19) by
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6.2 Controller Synthesis using PDLF

P T
1 (θ) and P1(θ) respectively and substituting (6.17)–(6.24) in (6.19), we get [8]
Ẋ(θ) +

(
X(θ)A(θ) + B̂k(θ)C2 + (?)

)
?

ÂTk (θ) + A(θ) +B2Dk(θ)C2 −Ẏ (θ) +
(
A(θ)Y (θ) +B2Ĉk(θ) + (?)

)
BT

1 (θ)X(θ) +DT
21B̂

T
k (θ) BT

1 (θ) +DT
21D

T
k (θ)BT

2

C1(θ) +D12Dk(θ)C2 C1(θ)Y (θ) +D12Ĉk(θ)

? ?
? ?
−γI ?

D11(θ) +D12Dk(θ)D21 −γI

 < 0 (6.35)

where the notation ? represents a symmetric matrix block. Substituting (3.61) and
(6.26)–(6.33) in (6.35), we have

r∑
i=1

r∑
k=1

α2
iβk


X̃k +

(
X̂iÂi + B̃kiC2 + (?)

)
?

ÃTki + Âi +B2D̃kiC2 −Ỹk +
(
ÂiŶi +B2C̃ki + (?)

)
B̂T

1i
X̂i +DT

21B̃
T
ki

B̂T
1i

+DT
21D̃

T
ki
BT

2

Ĉ1i +D12D̃kiC2 Ĉ1iŶi +D12C̃ki

? ?
? ?
−γI ?

D̂11i +D12D̃kiD21 −γI



+2
r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk


X̃k + 1

2

(
X̂jÂi + B̃kjC2 + X̂iÂj + B̃kiC2 + (?)

)
1
2

(
ÃTkj + Âi +B2D̃kjC2 + ÃTki + Âj +B2D̃kiC2

)
1
2

(
B̂T

1i
X̂j +DT

21B̃
T
kj

+ B̂T
1j
X̂i +DT

21B̃
T
ki

)
1
2

(
Ĉ1i +D12D̃kjC2 + Ĉ1j +D12D̃kiC2

)
?

−Ỹk + 1
2

(
ÂiŶj +B2C̃kj + ÂjŶi +B2C̃ki + (?)

)
1
2

(
B̂T

1i
+DT

21D̃
T
kj
BT

2 + B̂T
1j

+DT
21D̃

T
ki
BT

2

)
1
2

(
Ĉ1iŶj +D12C̃kj + Ĉ1j Ŷi +D12C̃ki

)
? ?
? ?
−γI ?

1
2

(
D̂11i +D12D̃kjD21 + D̂11j +D12D̃kiD21

)
−γI

 < 0

(6.36)

Inequality (6.36) can be also rewritten as

r∑
i=1

r∑
k=1

α2
iβk

(
Ψclii +QT K̂T

i P + PT K̂iQ
)

+ 2
r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk

(
1

2

(
Ψclij

93



6.2 Controller Synthesis using PDLF

+QT K̂T
i P + PT K̂iQ+ Ψclji +QT K̂T

j P + PT K̂jQ
))

< 0 (6.37)

where

Ψcl♣♠ =


X̃k + X̂♠Â♣ + (?) ? ? ?

Â♣ −Ỹk + Â♣Ŷ♠ + (?) ? ?

B̂T
1♣
X̂♠ B̂T

1♣
−γI ?

Ĉ1♣ Ĉ1♣Ŷ♠ D̂11♣ −γI

 (6.38)

Q =
[
C, D21, 0(p+q2)×q1

]
, B̃ =

[
Ip 0
0 B2

]
(6.39)

P =
[
B̃T , 0(p+m2)×m1 , DT12

]
, K̂i =

(
Ãki B̃ki

C̃ki D̃ki

)
(6.40)

with the subscript ♣♠ denote (ii, ij, or ji). By Lemma 3.3.1 and knowing the
matrix vertices (X̂i, Ŷi), i = 1, 2, . . . , r, the system matrix vertices K̂i can be deter-
mined from (6.37), that is an LMI in K̂i, at all vertices for which (K̂1, K̂2, . . . , K̂r)
have to satisfy all of r2(r + 1)/2 LMIs. Furthermore, knowing Ãki , . . . , D̃ki , the
controller system matrices Ak(θ, θ̇), . . . , Dk(θ) can be computed on-line in real-time
using (6.20)–(6.22) with instantaneous measurement values of θ and θ̇.

However, usually, the parameter derivatives either are not available or are difficult
to estimate during system operation [8]. To avoid using the measured value of θ̇, we
can constrain either X(θ) or Y (θ) to depend affinely on θ. This yields Ẋ(θ)Y (θ) +
Ṅ(θ)MT (θ) = −(X(θ)Ẏ (θ) +N(θ)ṙT (θ)) = 0 [8], hence, (6.20) becomes

Ak(θ) = N−1(θ)
(
Âk(θ)−X(θ)

(
A(θ)−B2Dk(θ)C2

)
Y (θ)−B̂k(θ)C2Y (θ)−X(θ)B2Ĉk(θ)

)
M−T (θ)

(6.41)
By Lemma 2.2.14, the LMIs of (6.37) are solvable for K̂i if and only if there exist a

pair of positive definite symmetric matrices
(
X(θ), Y (θ)

)
that satisfy the following

LMIs:

r∑
i=1

r∑
k=1

α2
iβk

( NX 0
0 I

)T  ÂTi X̂i + X̂iÂi + X̃k X̂iB̂1i ĈT
1i

B̂T
1i
X̂i −γI D̂T

11i

Ĉ1i D̂11i −γI

( NX 0
0 I

)

+ 2
r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk


(
NX 0
0 I

)T 
1
2

(
ÂTi X̂j + ÂTj X̂i + (?)

)
+ X̃k

1
2

(
B̂T

1i
X̂j + B̂T

1j
X̂i

)
1
2

(
Ĉ1i + Ĉ1j

)
? ?
−γI ?

1
2

(
D̂11i + D̂11j

)
−γI

( NX 0
0 I

) < 0 (6.42)

r∑
i=1

r∑
k=1

α2
iβk

( NY 0
0 I

)T  ÂiŶi + ŶiÂ
T
i − Ỹk ŶiĈ

T
1i

B̂1i

Ĉ1iŶi −γI D̂11i

B̂T
1i

D̂T
11i

−γI

( NY 0
0 I

)
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+ 2
r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk


(
NY 0
0 I

)T 
1
2

(
ÂiŶj + ÂjŶi + (?)

)
− Ỹk

1
2

(
Ĉ1iŶj + Ĉ1j Ŷi

)
1
2

(
B̂T

1i
+ B̂T

1j

)
? ?
−γI ?

1
2

(
D̂T

11i
+ D̂T

11j

)
−γI

( NY 0
0 I

) < 0 (6.43)

r∑
i=1

αi

(
X̂i I

I Ŷi

)
> 0 (6.44)

where NX and NY denote bases of the null spaces of [C2, D21] and [BT
2 , D

T
12], re-

spectively. Note that, (6.44) ensures X(θ), Y (θ) > 0 and X(θ) − Y (θ)−1 ≥ 0. By
Lemma 3.3.1, (6.42)–(6.44) need only be evaluated at all vertices. Note that, (6.42)–
(6.44) will become (3.77)–(3.79) when both X and Y are constant. Moreover, the
quadratic H∞ performance γ is determined from both

(
X(θ), Y

)
and

(
X, Y (θ)

)
cases and the case that gives lowest γ is selected.

Theorem 6.2.1. There exists an LPV controller K(θ) guaranteeing the closed-loop
system, (3.59) and (6.14), quadratic H∞ performance γ along all possible parame-
ter trajectories, ∀(θ, θ̇) ∈ Θ × Φ, if and only if the following LMI conditions hold
for some positive definite symmetric matrices (X(θ), Y (θ)), which further satisfy
Rank(X(θ)− Y −1(θ)) ≤ p:

(
NX 0
0 I

)T  ÂTi X̂i + X̂iÂi + X̃k X̂iB̂1i ĈT
1i

B̂T
1i
X̂i −γI D̂T

11i

Ĉ1i D̂11i −γI

( NX 0
0 I

)
< 0 (6.45)

(
NY 0
0 I

)T  ÂiŶi + ŶiÂ
T
i − Ỹk ŶiĈ

T
1i

B̂1i

Ĉ1iŶi −γI D̂11i

B̂T
1i

D̂T
11i

−γI

( NY 0
0 I

)
< 0 (6.46)

(
NX 0
0 I

)T  ÂTi X̂j + X̂jÂi + ÂTj X̂i + X̂iÂj + 2X̃k

B̂T
1i
X̂j + B̂T

1j
X̂i

Ĉ1i + Ĉ1j

X̂iB̂1j + X̂jB̂1i ĈT
1i

+ ĈT
1j

−2γI D̂T
11i

+ D̂T
11j

D̂11i + D̂11j −2γI

( NX 0
0 I

)
< 0 (6.47)

(
NY 0
0 I

)T  ÂiŶj + ŶjÂ
T
i + ÂjŶi + ŶiÂ

T
j − 2Ỹk

Ĉ1iŶj + Ĉ1j Ŷi
B̂T

1i
+ B̂T

1j

ŶiĈ
T
1j

+ ŶjĈ
T
1i

B̂1i + B̂1j

−2γI D̂11i + D̂11j

D̂T
11i

+ D̂T
11j

−2γI

( NY 0
0 I

)
< 0 (6.48)
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6.3 Numerical Example (
Xi I
I Yi

)
> 0 (6.49)

for i, k = 1, . . . , r and 1 ≤ i < j ≤ r

Note that, Theorem 6.2.1 provides a new approach and an alternative to the multi-
convexity approach [11] that is given in theorem C.0.1.

6.3 Numerical Example

We demonstrate the effectiveness of the approach through a simple numerical ex-
ample taken from [61], described in Chapter 4, and where the Jacobian-based
LPV model is given as (4.5). An LPV controller is synthesized with the criterion∥∥[W1S, W2KS]T

∥∥ < 1. The performance weighting, W1, and robustness weight-
ing, W2, taken from [61] are given as (4.7). The results and numerical features of
the LPV synthesis technique for the case where the pair (X(θ), Y (θ)) are affine is
presented in Table 6.1. It shows that, for this example, the number of LMIs and de-
cision variables and the computational time are reduced. Furthermore, the achieved
performance γ level is less conservative when using Theorem 6.2.1 compared with
the multi-convexity technique [11]. The LMIs are solved using the MATLAB Robust
Control Toolbox function [12], mincx, on a desktop PC (Intel Core(TM)2 CPU 2.13
GHz with 2 GB of RAM).

6.4 Longitudinal Affine LPV Model

In this thesis, a minimum least-squares method [58] is used to convert a nonlinearly
parameter-dependent LPV model, shown in (5.13), into an affine LPV model. The
method minimizes the sum of squared differences between a nonlinearly parameter-
dependent LPV model and an affine LPV model. For example, consider Xu(u, h)
shown in (5.14), define X̃u(u, h) to be depended affinely on u and h as

X̃u

(
u, h
)

= Xu0 + uXuu + hXuh (6.50)

Then, the least-squares problem forXu(u, h) is to determine the best [Xu0 Xuu Xuh ]T

that minimizes the sum of squared differences betweenXu(u, h) and X̃u(u, h). Hence,
the least-squares problem for Xu(u, h) can be formulated as

Z = Xθ + v (6.51)

where Z is an N × 1 vector of values computed from (5.14), θ is a 3 × 1 vector of
unknown parameters, X is an N × 3 matrix of known data vectors or regressors,
and v is an N × 1 vector of equation errors as shown below
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6.4 Longitudinal Affine LPV Model

Z =
[
Xu(u1, h1) Xu(u1, h2) · · · Xu(ui, hj−1) Xu(ui, hj)

]T

X =


1 u1 h1

1 u1 h2
...
1 ui hj−1

1 ui hj


θ =

[
Xu0 Xuu Xuh

]T
, v =

[
v1 v2 · · · vN−1 vN

]T
where N = i× j. The best estimator of θ minimizes the sum of squared differences;
the cost function, J , is given by

J(θ) =
1

2
(Z −Xθ)T (Z −Xθ) (6.52)

Differentiating (6.52) with respect to θ gives [58],

∂J(θ)

∂θ
= −ZTX + θTXTX (6.53)

The necessary condition for minimizing the cost is given by ∂J(θ)/∂θ = 0 giving
the least-squares solution for the unknown parameter vector θ as

θ̂ =
(
XTX

)−1
XTZ (6.54)

Having converted all of the stability and control derivatives, shown in (5.14)–(5.31),
to be depended affinely on u and h as in a similar manner to (6.50), a nonlinearly
parameter-dependent LPV model, shown in (5.13), can be converted into an affine
LPV model as

ẋ =
(
A0 + uAu + hAh

)
x +

(
B0 + uBu + hBh

)
u (6.55)

where x= [u w q θ h]T , u= [δe δrpm]T , (u, h) ∈ [337.6, 759.5]× [1000, 18000], and

A0 =


−0.019657 0.0077042 −37.858 −32.174 0
−0.14414 −0.48037 −0.42767 −2.4081 0
0.0023323 −0.0098674 −0.24883 0 0

0 0 1 0 0
0.074845 −0.99998 0 −0.002407 0

 (6.56)

Au =


−1.6403× 10−5 5.7706× 10−5 0.089211 −3.4314× 10−7 0
−1.1703× 10−5 −0.0029387 0.99731 0.005674 0
−5.5391× 10−6 −6.2069× 10−5 −0.0015653 0 0

0 0 0 0 0
−0.00017635 −1.0665× 10−8 0 1 0

 (6.57)

Ah =


9.7563× 10−7 −8.9741× 10−7 −0.00070117 1.0864× 10−8 0
2.1189× 10−6 4.6897× 10−5 4.2769× 10−5 −4.5033× 10−5 0
4.4412× 10−8 9.8674× 10−7 2.4885× 10−5 0 0

0 0 0 0 0
1.3997× 10−6 3.3767× 10−10 0 −5.0696× 10−8 0

 (6.58)
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6.5 Gain-Scheduled H∞ Autopilot Design

B0 =


2.1684 0.001532
32.892 0
19.21 0

0 0
0 0

 Bu =


−0.012568 2.465× 10−6

−0.19064 0
−0.11134 0

0 0
0 0

 (6.59)

Bh =


0.00010025 −6.9612× 10−8

0.0015206 0
0.00088809 0

0 0
0 0

 (6.60)

6.5 Gain-Scheduled H∞ Autopilot Design

In this approach, the mixed-sensitivity criterion (5.42) is also employed in a sim-
ilar manner to section 5.3 where the performance weighting, W1, and robustness
weighting, W2, are

W1(s) =

(
0.5s+1.333
s+0.001333

0

0 0.5s+0.4443
s+4.443×10−4

)
W2(s) =

( 100s+3.32
0.001s+0.0664

0

0 0.01s+6.663×10−3

0.001s+1.333

)
Wpre-filter(s) =

(
500
s+500

0

0 1000
s+1000

)
(6.61)

Note that the values of weighting functions W1 and W2 are hand-tuned until the
desired objectives of performance and robustness of the closed-loop system are
achieved. After the longitudinal affine LPV model, shown in (6.55), is augmented
with the weighting functions, shown in (6.61), a pair of positive definite symmet-
ric matrices

(
X(θ), Y (θ)

)
can be determined in four cases, i.e.

(
X, Y

)
,
(
X(θ), Y

)
,(

X, Y (θ)
)
, and

(
X(θ), Y (θ)

)
, using parameter-dependent Lyapunov function, The-

orem 6.2.1, for which the performance measure (γ), shown in Table 6.2, can be
compared. The LMIs are solved using the MATLAB Robust Control Toolbox func-
tion [12], mincx.

6.6 Nonlinear Simulation Results

For an entire flight envelope of the vehicle, the mismatch uncertainties between the
affine LPV model, shown in (6.55), and the nonlinearly parameter-dependent LPV
model, shown in (5.13), become more significant and degrade the transient perfor-
mance. Leith and Leithead [61] and Chumalee and Whidborne [30] have shown that
an affine LPV model can not always accurately represent the original nonlinear plant
model. In severe cases, the mismatch uncertainties can cause closed-loop instability
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6.6 Nonlinear Simulation Results

Table 6.2: Performance γ comparison for different cases of (X(u, h), Y (u, h))

Flight condition (X(u, h), Y (u, h)) (X(u, h), Y ) (X,Y (u, h)) (X,Y )*

(u, h) ∈ [464.1, 548.5]× [7500, 12500]
(u̇, ḣ) ∈ [−1.26, 1.26]× [−20, 50]

Performance γ 2.8785 2.9079 2.8537 2.8830

Flight condition (X(u, h), Y (u, h)) (X(u, h), Y ) (X,Y (u, h)) (X,Y )*

(u, h) ∈ [337.6, 759.5]× [1000, 18000]
(u̇, ḣ) ∈ [−1.26, 1.26]× [−20, 50]

Performance γ 4.2583 9.1201 4.1252 994.9747

Flight condition (X(u, h), Y (u, h)) (X(u, h), Y ) (X,Y (u, h)) (X,Y )*

(u, h) ∈ [464.1, 548.5]× [7500, 12500]
(u̇, ḣ) ∈ [−106, 106]× [−106, 106]

Performance γ 2.9183 2.8979 2.8890 2.8830

* SQLF, [10, Theorem 5.2]

for the designed controller with the original nonlinear plant model. However, Lim
and How [64] have shown that the mismatch uncertainties can be reduced until they
are less significant when the scheduled parameters have a small variation. Extend-
ing the proposed method to be applicable to a general class of LPV system (whose
system matrices can be nonlinearly dependent on the scheduled parameters θ) with
a fuller range of operating condition requires further work which is discussed in the
Conclusion.

Hence, the designed H∞ gain-scheduling autopilot is validated for a bounded flight
envelope, i.e. (u, h) ∈ [464.1, 548.5] × [7500, 12500], (u̇, ḣ) ∈ [−1.26, 1.26] ×
[−20, 50], with the Jindivik nonlinear model [41] in a MATLAB Simulink simu-
lation. In Figure 6.1, the transient responses of the simulated vehicle for small
demanded changes in speed and altitude are shown for one particalar point in the
flight envelope. In addition, it also shows transient response of two LPV controllers,
i.e. the first LPV controller (explicit formulas) where the intermediate controller
variables (Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ)) are computed using Algorithm 3.1 [43]
and the second LPV controller (proposed method) where the matrix vertices of
intermediate controller variables are determined from (6.37).

The first LPV controller’s response is non-smooth because D21 matrix is not full-row
rank, hence, cause a D21 singular problem. According to [43, Algorithm 3.1], the
intermediate controller variables will be varied smoothly following the parameter
θ, if the D12 and D21 matrices are full-column and full-row rank [8] respectively,
shown in Algorithm C.0.2. In addition, Table 6.3 shows computational time of the
intermediate controller variables using Algorithm 3.1 [43] and the proposed method
using (6.26)–(6.29). One can see from Table 6.3 that our proposed method has a
lower computational time. Finally, Figure 6.2 shows a simulated flight that cover a
wide range of the flight envelope. It demonstrates that performance robustness was
achieved over the defined flight envelope.
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Table 6.3: Computational time of

Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ)

Method CPU time (us)
Explicit formulas† 20830
Proposed method* 42

† [43, Algorithm 3.1]
* (6.26)–(6.29)

6.7 Conclusion

In this chapter, new sufficient conditions for gain-scheduled H∞ performance analy-
sis and synthesis for a class of affine LPV systems using parameter-dependent Lya-
punov function are proposed, in Theorem 6.2.1. Compared with the multi-convexity
technique [11] (Theorem C.0.1) fewer LMIs and decision variables are required and
the computational time is lower while the achieved performance level is improved.
The analysis and synthesis conditions are represented in the form of a finite number
of LMIs. A numerical example is compared with the multi-convexity technique [11]
results. In addition, the intermediate controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ)
and Dk(θ), can be constructed as an affine matrix-valued function in the polytopic
coordinates of the scheduled parameter without the need for constraints on the D12

and D21 matrices. The proposed method was applied to synthesize a longitudi-
nal LPV autopilot of the Jindivik UAV. The designed controller was tested with
a full 6-DOF simulation of the vehicle and nonlinear simulation results show the
effectiveness of the proposed method.

The main limitation is that the proposed method is not applicable to a general class
of LPV systems which can be nonlinearly dependent on the time-varying parameters
θ. However, the mismatch uncertainty between affine LPV model and nonlinearly
parameter-dependent LPV model can be modelled as time-varying real paramet-
ric uncertianties and can be also included in an affine LPV model using a linear
fractional transformation (LFT) for gain-scheduled control synthesis and analysis
purpose. This approach will be presented in the next chapter.
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4

(a) Altitude (ft)

(b) Speed (ft/s)

102



6.7 Conclusion

(c) Pitch angle (deg)

(d) Pitch rate (deg/s)
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6.7 Conclusion

(e) Angle of Attack (deg)

(f) Elevator deflection (deg)
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6.7 Conclusion

4

(g) Engine speed (RPM)

Figure 6.1: The transient performance of H∞ gain-scheduling autopilot is validated
with the Jindivik nonlinear dynamic model about one condition inside the flight
envelope, i.e. speed = 506 ft/s and altitude = 10,000 ft
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4

(a) Altitude (ft)

(b) Speed (ft/s)
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(c) Pitch angle (deg)

(d) Pitch rate (deg/s)
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6.7 Conclusion

(e) Angle of Attack (deg)

(f) Elevator deflection (deg)
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6.7 Conclusion

4

(g) Engine speed (RPM)

Figure 6.2: The desired performance and robustness objectives are achieved across
the defined flight envelope
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Chapter 7

Robust Lateral LPV Autopilot
Design

A major advantage of a class of affine LPV models is that sufficient conditions for
gain-scheduled output feedback H∞ control synthesis problem can be obtained in
the form of a finite number of LMIs for both the single quadratic and parameter-
dependent Lyapunov function cases. However, an affine LPV model can rarely
accurately represent the original nonlinear model. There are always mismatch un-
certainties between these two models. In this chapter, time-varying real parametric
uncertainties are included in the system state-space model matrices as a linear frac-
tional transformation (LFT) form in order to guarantee closed-loop stability and
improve transient performance in presence of these mismatch uncertainties. Hence,
a new class of LPV models is obtained called an uncertain affine LPV model which
is less conservative than the existing parameter-dependent linear fractional trans-
formation model (LPV/LFT).

New algorithms of robust stability analysis and gain-scheduled controller synthesis
for this uncertain affine LPV model using single quadratic and parameter-dependent
Lyapunov functions are proposed. The analysis and synthesis conditions are repre-
sented in the form of a finite number of LMIs. Moreover, a technique to construct
the intermediate controller variables as an affine matrix-valued function in the poly-
topic coordinates of the scheduled parameter is also proposed. To demonstrate the
impacts of the proposed scheme in robustness improvement of uncertain affine LPV
systems, we compare our approach with the existing uncertain LPV/LFT approach
on a numerical example. Furthermore, the proposed method is applied to synthesize
a lateral autopilot, i.e. heading-hold, for a bounded flight envelope of the Jindivik
UAV. The simulation results on a six degree-of-freedom Jindivik nonlinear model
are presented to show the effectiveness of the approach.
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7.1 Jacobian-Based Lateral LPV Model

7.1 Jacobian-Based Lateral LPV Model

Suppose an aircraft is assumed to be about a wings level and constant altitude
and airspeed flight condition. In addition, assume it can manoeuvre only in the
North-East plane, hence, all of the longitudinal states in (A.10) and (A.11) are
frozen and equal to the trim values, i.e. u = utrim, w = wtrim, q = qtrim = 0,
α = αtrim = θ = θtrim, and h = htrim. Moreover, after substituting β = sin−1(v/V ),
V =

√
u2
trim + v2 + w2

trim, and q̄ = 1
2
ρV 2 into (A.10) and (A.11), we get equations

of lateral motion as

v̇ =
ρS

2m

[
CY0 + CYβ sin−1

( v√
u2

trim + v2 + w2
trim

)](
u2

trim + v2 + w2
trim

)
+

[(ρSb
4m

CYp

√
u2

trim + v2 + w2
trim

)
+ wtrim

]
p

+

[(ρSb
4m

CYr

√
u2

trim + v2 + w2
trim

)
− utrim

]
r

+
(
g cos θtrim

)
sinφ+

ρS

2m

(
u2

trim + v2 + w2
trim

)
CYδaδa

+
ρS

2m

(
u2

trim + v2 + w2
trim

)
CYδr δr (7.1)

ṗ =
ρSb

2Ix

[
Cl0 + Clβ sin−1

( v√
u2

trim + v2 + w2
trim

)](
u2

trim + v2 + w2
trim

)
+
ρSb2

4Ix

(√
u2

trim + v2 + w2
trim

)
Clpp+

ρSb2

4Ix

(√
u2

trim + v2 + w2
trim

)
Clrr

+
ρSb

2Ix

(
u2

trim + v2 + w2
trim

)
Clδaδa +

ρSb

2Ix

(
u2

trim + v2 + w2
trim

)
Clδr δr (7.2)

ṙ =
ρSb

2Iz

[
Cn0 + Cnβ sin−1

( v√
u2

trim + v2 + w2
trim

)](
u2

trim + v2 + w2
trim

)
+
ρSb2

4Iz

(√
u2

trim + v2 + w2
trim

)
Cnpp+

ρSb2

4Iz

(√
u2

trim + v2 + w2
trim

)
Cnrr

+
ρSb

2Iz

(
u2

trim + v2 + w2
trim

)
Cnδaδa +

ρSb

2Iz

(
u2

trim + v2 + w2
trim

)
Cnδr δr (7.3)

φ̇ = p+
[(

tan θtrim

)
cosφ

]
r (7.4)

ψ̇ =
[ cosφ

cos θtrim

]
r (7.5)

After (7.1)–(7.5) are linearized using the Jacobian linearization method about a
wings level and constant altitude and airspeed flight condition, we get a lateral LTI
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7.1 Jacobian-Based Lateral LPV Model

model as a state-space system of the form,
v̇
ṗ
ṙ

φ̇

ψ̇

 =


Yv Yp Yr Yφ 0
Lv Lp Lr 0 0
Nv Np Nr 0 0
0 1 φr 0 0
0 0 ψr 0 0



v
p
r
φ
ψ

+


Yδa Yδr
Lδa Lδr
Nδa Nδr

0 0
0 0


[
δa
δr

]
(7.6)

Note that, vtrim = ptrim = rtrim = βtrim = φtrim = ψtrim = δatrim
= δrtrim = 0, where,

Yv =
ρS

2m

(√
u2

trim + w2
trim

)
CYβ (7.7)

Yp =

[
ρSb

4m

(√
u2

trim + w2
trim

)
CYp

]
+ wtrim (7.8)

Yr =

[
ρSb

4m

(√
u2

trim + w2
trim

)
CYr

]
− utrim (7.9)

Yφ = g cos θtrim (7.10)

Yδa =
ρS

2m

(
u2

trim + w2
trim

)
CYδa (7.11)

Yδr =
ρS

2m

(
u2

trim + w2
trim

)
CYδr (7.12)

Lv =
ρSb

2Ix

(√
u2

trim + w2
trim

)
Clβ (7.13)

Lp =
ρSb2

4Ix

(√
u2

trim + w2
trim

)
Clp (7.14)

Lr =
ρSb2

4Ix

(√
u2

trim + w2
trim

)
Clr (7.15)

Lδa =
ρSb

2Ix

(
u2

trim + w2
trim

)
Clδa (7.16)

Lδr =
ρSb

2Ix

(
u2

trim + w2
trim

)
Clδr (7.17)

Nv =
ρSb

2Iz

(√
u2

trim + w2
trim

)
Cnβ (7.18)

Np =
ρSb2

4Iz

(√
u2

trim + w2
trim

)
Cnp (7.19)

Nr =
ρSb2

4Iz

(√
u2

trim + w2
trim

)
Cnr (7.20)

Nδa =
ρSb

2Iz

(
u2

trim + w2
trim

)
Cnδa (7.21)

Nδr =
ρSb

2Iz

(
u2

trim + w2
trim

)
Cnδr (7.22)

φr = tan θtrim (7.23)

ψr = sec θtrim (7.24)
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7.1 Jacobian-Based Lateral LPV Model

Table 7.1: Stability and control derivative data (lateral mode) of Jindivik nonlinear model*

u (ft/s) 464 464 464 497 497 497 531 531 531
h (ft) 9,900 10,500 11,100 9,900 10,500 11,100 9,900 10,500 11,100

wtrim
† 3.0392 3.5079 3.9905 0.1690 0.6163 1.0735 -2.5063 -2.0815 -1.6408

θtrim
‡ 0.00655 0.00756 0.00860 0.00034 0.00124 0.00216 -0.00472 -0.00392 -0.00309

Yv -0.1087 -0.1066 -0.1046 -0.1166 -0.1144 -0.1122 -0.1245 -0.1221 -0.1199
Yp 2.9247 3.3996 3.8851 0.0455 0.4965 0.9576 -2.6444 -2.2138 -1.7736
Yr -464.1378 -464.1345 -464.1305 -497.9039 -497.9036 -497.9028 -531.6542 -531.6561 -531.6576
Yφ 32.1735 32.1732 32.1730 32.1742 32.1741 32.1741 32.1738 32.1739 32.1740
Yδa 0 0 0 0 0 0 0 0 0
Yδr 15.6427 15.3502 15.0620 18.0007 17.6642 17.3325 20.5242 20.1405 19.7623
Lv -0.0163 -0.0161 -0.0160 -0.0163 -0.0162 -0.0160 -0.0165 -0.0163 -0.0161
Lp -1.4050 -1.3787 -1.3529 -1.5072 -1.4790 -1.4512 -1.6094 -1.5793 -1.5496
Lr 1.0956 1.0744 1.0536 1.1803 1.1576 1.1352 1.2647 1.2404 1.2166
Lδa -23.4904 -23.0512 -22.6183 -27.0314 -26.5260 -26.0279 -30.8210 -30.2447 -29.6768
Lδr -7.5644 -7.4230 -7.2836 -8.7047 -8.5419 -8.3815 -9.9250 -9.7394 -9.5565
Nv 0.0119 0.0116 0.0114 0.0129 0.0127 0.0124 0.0139 0.0137 0.0134
Np -0.0131 -0.0136 -0.0142 -0.0081 -0.0087 -0.0093 -0.0035 -0.0041 -0.0048
Nr -0.2156 -0.2116 -0.2076 -0.2313 -0.2270 -0.2227 -0.2470 -0.2424 -0.2378
Nδa -0.1990 -0.1798 -0.1608 -0.3544 -0.3322 -0.3104 -0.5206 -0.4954 -0.4705
Nδr 0.8753 0.8589 0.8428 1.0072 0.9884 0.9698 1.1484 1.1270 1.1058
φr 0.0066 0.0076 0.0086 0.0003 0.0012 0.0022 -0.0047 -0.0039 -0.0031
ψr 1 1 1 1 1 1 1 1 1

* about wings level and constant altitude and airspeed flight condition
† ft/s
‡ rad

Table 7.2: Jindivik’s lateral aerodynamic coefficients

Coefficient CY0 CYβ CYp CYr CYδa CYδr
Value 0 -0.3804 -0.0428 0.0022 0 0.1180
Coefficient Cl0 Clβ Clp Clr Clδa Clδr
Value 0 -0.0589 -0.5704 0.4463 -0.1931 -0.0622
Coefficient Cn0 Cnβ Cnp Cnr Cnδa Cnδr
Value 0 0.0810 -0.0062 -0.1546 -0.0042 0.0127

Equations (7.7)–(7.24) are the stability and control derivatives (lateral mode), where
values of wtrim and θtrim can be calculated using (5.33) and (5.34) respectively. Fur-
thermore, the stability and control derivatives in the above equations are nonlinearly
dependent on only speed and altitude. With the speed and altitude frozen, (7.6) is
a lateral LTI model. However, as the speed and altitude vary over the entire flight
envelope, (7.6) becomes a lateral nonlinearly parameter-dependent LPV model.

Moreover, these equations show that the accuracy of this LPV model depends on
the accuracy of the information that provides the aerodynamic coefficients. Using
functions trim and linmod, the stability and control derivative values, shown in
Table 7.1, are obtained about one flight condition (speed = 497 ft/s and altitude
= 10,500 ft). After substituting the data from Table 7.1 into (7.7)–(7.24), we can
determine approximate aerodynamic coefficients of the UAV as shown in Table 7.2.
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Knowing the aerodynamic coefficients, the system matrices of the lateral nonlinearly
parameter-dependent LPV model (7.6) at all points over the entire parameter spaces
can be determined using (7.7)–(7.24). In addition, Figure 7.1 shows the variation of
open-loop characteristic of the lateral nonlinearly parameter-dependent LPV model,
i.e. v(s)/δr(s), over an entire flight envelope. According to Figure 7.1, one pole of
spiral mode is open-loop unstable with constant damping ratio (ξ) of -1 and variation
of the natural frequency (ωn) from 0.0222 rad/s to 0.0535 rad/s, one pole of roll mode
is open-loop stable with constant ξ of 1 and variation of ωn from 0.831 rad/s to 3.21
rad/s, and the other two poles of Dutch roll mode are open-loop stable with variation
of ξ and ωn from 0.0449 to 0.0705 and 1.6 rad/s to 4.41 rad/s respectively. Moreover,
the system of (7.6) also has non-minimum phase zeros as shown in figure 7.1.

7.2 Stability Analysis of Uncertain Affine LPV

Systems

An uncertain affine LPV system that is extended from an affine LPV system [45] is
given by

ẋ = A
(
θ, δ
)
x, x(0) = x0 (7.25)

where δ =
[
δ1, . . . , δm

]T ∈ Rm is a vector of time-varying real parametric uncertainty
which cannot be measured. The plant state matrix A

(
θ, δ
)

is assumed to depend
affinely on both the scheduled parameters θ and parametric uncertainties δ. That
is

A
(
θ, δ
)

= A
(
θ
)

+ δ1Aδ1
(
θ
)

+ δ2Aδ2
(
θ
)

+ · · ·+ δmAδm
(
θ
)

(7.26)

where

A
(
θ
)

= A0 + θ1A1 + · · ·+ θnAn
Aδi
(
θ
)

= Aδi0 + θ1Aδi1 + · · ·+ θnAδin , i = 1, . . . ,m (7.27)

with A0,A1, . . . ,An are known fixed matrices. Aδi0 ,Aδi1 , . . . ,Aδin , i = 1, . . . ,m,
are also known fixed matrices. We assume that each uncertainty δi is assumed to
lie between known bound values δi and δi, δi ∈

[
δi, δi

]
, and δ lies in a polytope ∆,

δ ∈ ∆.

Define the normalized parametric uncertainties δ̃i ∈ [−1, 1], i = 1, . . . ,m as [83]

δ̃i =
δi − Ti
Si

, Ti =
δi + δi

2
, Si =

δi − δi
2

(7.28)

Substitute (7.28) into (7.26), we get

A(θ, δ) = A(θ, δ̃) = A(θ) + δ̃1Aδ1(θ) + δ̃2Aδ2(θ) + · · ·+ δ̃mAδm(θ) (7.29)
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Figure 7.1: The open-loop characteristic of transfer function v(s)
δr(s)

of the Jindivik
lateral LPV model

116



7.2 Stability Analysis of Uncertain Affine LPV Systems

where

A(θ) =

(
A0 +

m∑
i=1

TiAδi0

)
+ θ1

(
A1 +

m∑
i=1

TiAδi1

)
+ · · ·+ θn

(
An +

m∑
i=1

TiAδin

)
= Ã0 + θ1Ã1 + · · ·+ θnÃn

Aδi(θ) = SiAδi0 + θ1SiAδi1 + · · ·+ θnSiAδin , i = 1, . . . ,m (7.30)

and

Ãj = Ai +
m∑
i=1

TiAδij , j = 0, 1, . . . , n

Based on the LFT technique [104], the parametric uncertainties δ̃ in (7.29) (which
are unknown but bounded) can be separated from the system state-space model
matrices (which are known) as

ẋ
zδ1
zδ2
...
zδm

 =


A(θ) Bδ1(θ) Bδ2(θ) . . . Bδm(θ)
Cδ1(θ) Dδ11(θ) Dδ12(θ) . . . Dδ1m(θ)
Cδ2(θ) Dδ21(θ) Dδ22(θ) . . . Dδ2m(θ)

...
Cδm(θ) Dδm1(θ) Dδm2(θ) . . . Dδmm(θ)




x
wδ1
wδ2

...
wδm



wδ1
wδ2

...
wδm

 =


δ̃1Is1 0 · · · 0

0 δ̃2Is2 · · · 0
...

0 0 · · · δ̃mIsm



zδ1
zδ2
...
zδm

 (7.31)

where wδi , zδi ∈ Rsi and

Bδi(θ) = Bδi0
+ θ1Bδi1

+ θ2Bδi2
+ · · ·+ θnBδin

Cδi(θ) = Cδi0 + θ1Cδi1 + θ2Cδi2 + · · ·+ θnCδin
Dδii(θ) = Dδii0

+ θ1Dδii1
+ θ2Dδii2

+ · · ·+ θnDδiin
(7.32)

Note that Bδi(θ), Cδi(θ), i = 1, . . . ,m, in (7.31) are the factors of Aδi(θ) in (7.29)
whereby either Bδi(θ) or Cδi(θ) depends affinely on the scheduled parameters θ.
Moreover, Dδii(θ) is introduced in order that (7.31) is in a general state-space equa-
tion form. With notation

wδ =
[
wTδ1 wTδ2 · · · wTδm

]T
zδ =

[
zTδ1 zTδ2 · · · zTδm

]T
Bδ(θ) =

[
Bδ1(θ) Bδ2(θ) · · · Bδm(θ)

]
Cδ(θ) =

[
CT
δ1

(θ) CT
δ2

(θ) · · · CT
δm

(θ)
]T

Dδ(θ) =


Dδ11(θ) Dδ12(θ) · · · Dδ1m(θ)
Dδ21(θ) Dδ22(θ) · · · Dδ2m(θ)

...
Dδm1(θ) Dδm2(θ) · · · Dδmm(θ)

 (7.33)
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Equation (7.31) can be rewritten as

ẋ = A(θ)x+Bδ(θ)wδ

zδ = Cδ(θ)x+Dδ(θ)wδ

wδ = ∆̂zδ (7.34)

where wδ, zδ ∈ Rs, s = s1 + s2 + · · · + sm, ∆̂ = diag(δ̃1Is1 , δ̃2Is2 , . . . , δ̃mIsm), and
‖∆̂‖ ≤ 1. Figure 7.2 shows the structures of both uncertain affine LPV and uncertain
LPV/LFT [9] models where θ̃i ∈ [−1, 1], i = 1, . . . , n, is the normalized time-
varying parameters and can be computed using (3.36). In general, the uncertain
LPV/LFT [9] model is more conservative than the proposed uncertain affine LPV
model since the scheduled parameters θ of an LPV/LFT model are in the uncertainty
block in which the variations of parameters are allowed to be complex, thus it
introduces conservatism when the scheduled parameters are real [10, 60, 83].

The plant state matrix A(θ) in (7.34) can also be written as a convex combination
of the matrix vertices as

A(θ) = Co
{
Â1, Â2, . . . , Âr

}
= α1Â1 + α2Â2 + · · ·+ αrÂr (7.35)

where r = 2n, αi is determined using (3.24) and (3.25) and
Â1

Â2

Â3
...

Âr

 =


1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
...

1 θ1 θ2 . . . θn−1 θn



Ã0

Ã1
...

Ãn

 (7.36)

Note that Bδ(θ), Cδ(θ) and Dδ(θ) in (7.34) can also be written as a convex combi-
nation of the matrix vertices in a similar manner to (7.35).

7.2.1 Robustness Analysis using SQLF

The system of (7.34) is said to be quadratically stable if there exists a quadratic
Lyapunov function V (x) = xTPx whose derivative is negative, d/dt

(
V (x)

)
< 0,

along all possible parameter trajectories, ∀θ ∈ Θ, for all ∆̂ with ‖∆̂‖ ≤ 1 < 1/γ.
This is equivalent to the existence of a P = P T such that

P > 0,

[
x
wδ

]T [
AT (θ)P + PA(θ) PBδ(θ)

BT
δ (θ)P 0

] [
x
wδ

]
< 0 (7.37)

for all nonzero x satisfying [25]

wTδ wδ = (Cδ(θ)x+Dδ(θ)wδ)
T ∆̂T ∆̂ (Cδ(θ)x+Dδ(θ)wδ)

<
1

γ2
(Cδ(θ)x+Dδ(θ)wδ)

T (Cδ(θ)x+Dδ(θ)wδ) (7.38)

118



7.2 Stability Analysis of Uncertain Affine LPV Systems





wDxCz

wBxAx
 




















m
w

w

w

w









2

1





















m
z

z

z

z









2

1





















msm

s

s

I

I

I







~
00

0
~

0

00
~

2

1

2

1

θ(t)

(a) Uncertain affine LPV structure





































m

n

z

z

z

z

z

z

z















2

1

2

1

































m

n

sm

s

s

sn

s

s

I

I

I

I

I

I

























~
000000

0
~

00000

00
~

0000

000
~

000

00000
~

0

000000
~

2

1

2

1

2

1

2

1

































m

n

w

w

w

w

w

w

w















2

1

2

1

(b) Uncertain LPV/LFT structure

Figure 7.2: Structure comparisons of uncertain affine LPV and uncertain
LPV/LFT [9] models.

119



7.2 Stability Analysis of Uncertain Affine LPV Systems

where (7.38) can be written further as[
x
wδ

]T [−Cδ(θ)TCδ(θ) −Cδ(θ)TDδ(θ)
−DT

δ (θ)Cδ(θ) γ2I −DT
δ (θ)Dδ(θ)

] [
x
wδ

]
< 0 (7.39)

Following [25, pp.62-63], by applying the S-procedure, the quadratic stability of
(7.34) is equivalent to the existence of P and λ satisfying

P > 0, λ ≥ 0,

[
AT (θ)P + PA(θ) + λCδ(θ)

TCδ(θ) PBδ(θ) + λCδ(θ)
TDδ(θ)

BT
δ (θ)P + λDT

δ (θ)Cδ(θ) −λγ2I + λDT
δ (θ)Dδ(θ)

]
< 0

(7.40)
Having rearranged (7.40) by using the Schur complement [44, Lemma 3.2], (7.40)
becomes the well-known bounded real lemma [10] inequality AT (θ)P + PA(θ) PBδ(θ) CT

δ (θ)
BT
δ (θ)P −γI DT

δ (θ)
Cδ(θ) Dδ(θ) −γI

 < 0 (7.41)

Note that P in (7.41) has been scaled by 1/λ. The robust stability requirement is
that γ < 1. However there generally exist an infinite number of the factor matrices
pairs (Bδ(θ), Cδ(θ)) in which only some factor matrices pair give γ < 1. Instead of
searching for such factor matrices pair manually, by introducing a scaling matrix
L1/2, we can select any factor matrices pair for which γ will always be less than
unity if the system (7.34) is quadratically stable and the factor matrices pair can
be determined using a singular value decomposition where L1/2 denotes the unique
positive definite square root of L ∈ L∆. The set L∆ is defined as

L∆ =
{
L > 0 : L∆̂ = ∆̂L, ∀δ ∈ ∆

}
⊂ Rs×s (7.42)

Therefore, (7.34) can be modified further as

ẋ = A(θ)x+Bδ(θ)L
− 1

2 ẃδ

źδ = L
1
2Cδ(θ)x+ L

1
2Dδ(θ)L

− 1
2 ẃδ

ẃδ = ∆̂źδ (7.43)

where źδ = L
1
2 zδ and wδ = L−

1
2 ẃδ. With parameters from (7.43), (7.41) becomes a

scaled bounded real lemma [8, 9] inequality AT (θ)P + PA(θ) PBδ(θ) CT
δ (θ)

BT
δ (θ)P −γL DT

δ (θ)
Cδ(θ) Dδ(θ) −γL−1

 < 0 (7.44)

Substituting (7.35) into (7.44) and rearranging using the Schur complement [44,
Lemma 3.2], we get

r∑
i=1

αi

(
ÂTi P + PÂi + ĈT

δi
LĈδi PB̂δi + ĈT

δi
LD̂δi

B̂T
δi
P + D̂T

δi
LĈδi −γ2L+ D̂T

δi
LD̂δi

)
< 0 (7.45)

By Lemma 3.3.1, solving the above inequality for some positive definite symmetric
Lyapunov and scaling matrices (P,L) need only be done at all vertices. Hence we
get the following proposition.
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7.2 Stability Analysis of Uncertain Affine LPV Systems

Proposition 7.2.1. The system of (7.34) is quadratically stable along all possible
parameter trajectories, ∀θ ∈ Θ, for all ∆̂ with ‖∆̂‖ < 1/γ if and only if the follow-
ing LMI conditions hold for some positive definite symmetric Lyapunov and scaling
matrices (P,L) (

ÂTi P + PÂi + ĈT
δi
LĈδi PB̂δi + ĈT

δi
LD̂δi

B̂T
δi
P + D̂T

δi
LĈδi −γ2L+ D̂T

δi
LD̂δi

)
< 0 (7.46)

where i = 1, . . . , r

Note that, the minimization of γ is achieved heuristically or by a simple grid search.

7.2.2 Robustness Analysis using PDLF

With parameter-dependent Lyapunov functions, V (x, θ) = xTP (θ)x, (7.44) becomes AT (θ)P (θ) + P (θ)A(θ) + Ṗ (θ) P (θ)Bδ(θ) CT
δ (θ)

BT
δ (θ)P (θ) −γL DT

δ (θ)
Cδ(θ) Dδ(θ) −γL−1

 < 0 (7.47)

Substituting (7.35), (6.2) and (6.4) into (7.47), rearranging using the Schur com-
plement [44, Lemma 3.2], and recalling that

∑r
i=1 αi = 1 and

∑r
i=1 βi = 1, we

get
r∑
i=1

r∑
k=1

α2
iβk

(
ÂTi P̂i + P̂iÂi + P̃k + ĈT

δi
LĈδi P̂ir̂δi + ĈT

δi
LD̂δi

r̂TδiP̂i + D̂T
δi
LĈδi −γ2L+ D̂T

δi
LD̂δi

)

+
r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk

(
ÂTi P̂j + P̂jÂi + ÂTj P̂i + P̂iÂj + 2P̃k + ĈT

δi
LĈδi + ĈT

δj
LĈδj

r̂TδiP̂j + r̂Tδj P̂i + D̂T
δi
LĈδi + D̂T

δj
LĈδj

P̂ir̂δj + P̂j r̂δi + ĈT
δi
LD̂δi + ĈT

δj
LD̂δj

−2γ2L+ D̂T
δi
LD̂δi + D̂T

δj
LD̂δj

)
< 0 (7.48)

By Lemma 3.3.1, the above inequalities are sufficiently evaluated at all vertices for
which the total number of LMIs to be solved is r2(r + 3)/2. Hence we get the
following proposition.

Proposition 7.2.2. The system of (7.34) is parameter-dependent stable along all
possible parameter trajectories, ∀(θ, θ̇) ∈ Θ×Φ, for all ∆̂ with ‖∆̂‖ < 1/γ if and only
if the following LMI conditions hold for some positive definite symmetric Lyapunov
and scaling matrices (P,L)(

ÂTi P̂i + P̂iÂi + P̃k + ĈT
δi
LĈδi P̂ir̂δi + ĈT

δi
LD̂δi

r̂TδiP̂i + D̂T
δi
LĈδi −γ2L+ D̂T

δi
LD̂δi

)
< 0 (7.49)(

ÂTi P̂j + P̂jÂi + ÂTj P̂i + P̂iÂj + 2P̃k + ĈT
δi
LĈδi + ĈT

δj
LĈδj

r̂TδiP̂j + r̂Tδj P̂i + D̂T
δi
LĈδi + D̂T

δj
LĈδj

P̂ir̂δj + P̂j r̂δi + ĈT
δi
LD̂δi + ĈT

δj
LD̂δj

−2γ2L+ D̂T
δi
LD̂δi + D̂T

δj
LD̂δj

)
< 0 (7.50)
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where i, k = 1, . . . , r and 1 ≤ i < j ≤ r

Note that, the minimization of γ is achieved heuristically or by a simple grid search.

7.3 Controller Synthesis for Uncertain Affine LPV

Systems

In the previous section, a sufficient condition for robust stability that can guarantee
the closed-loop system property has been presented. This is especially relevant for
robustness analysis using parameter-dependent Lyapunov functions, where a finite
number of LMIs need only be evaluated at all vertices. By including time-varying
real parametric uncertainties δ in an affine LPV model as shown in (7.34), our
stability analysis can guarantee a larger stability margin over conventional stability
analysis technique. Next, we consider the problem of designing a gain-scheduled
output feedback H∞ control with guaranteed L2-gain performance for uncertain
affine LPV systems for which the proposed technique in the previous section can be
directly extended to designing a gain-scheduled H∞ controller. The material in this
section is draws from [8, 10, 43] and [44].

Consider an uncertain affine LPV model that is extended from an affine LPV model
(3.59) is given by

ẋ = A(θ, δ)x+ B1(θ, δ)w +B2u

z = C1(θ, δ)x+D11(θ, δ)w +D12u

y = C2x+D21w (7.51)

where B1(θ, δ), C1(θ, δ), and D11(θ, δ) can be written in a similar manner to (7.26).
Based on the LFT technique [104], the uncertainty δ in (7.51) can be separated from
the system matrices in a similar manner to (7.31) and (7.43), giving

ẋ
zδ1
...
zδm
z
y


=



A(θ) Bδ1(θ)L−
1
2 . . . Bδm(θ)L−

1
2 B1(θ) B2

L
1
2Cδ1(θ) L

1
2Dδδ11(θ)L−

1
2 . . . L

1
2Dδδ1m(θ)L−

1
2 L

1
2Dδ11(θ) L

1
2Dδ2

...

L
1
2Cδm(θ) L

1
2Dδδ1m(θ)L−

1
2 . . . L

1
2Dδδmm(θ)L−

1
2 L

1
2Dδ1m(θ) L

1
2Dδ2

C1(θ) D1δ1(θ)L−
1
2 . . . D1δm(θ)L−

1
2 D11(θ) D12

C2 D2δL
− 1

2 . . . D2δL
− 1

2 D21 0





x
wδ1

...
wδm
w
u



wδ1
wδ2

...
wδm

 =


δ̃1Is1 0 · · · 0

0 δ̃2Is2 · · · 0
...

0 0 · · · δ̃mIsm



zδ1
zδ2
...
zδm

 (7.52)

where L ∈ L∆ is a scaling matrix that has to be determined, wδi , zδi ∈ Rsi ,
δ̃i ∈ [−1, 1], i = 1, . . . ,m, the normalized parametric uncertainties which can be
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determined using (7.28), and[
Aδi(θ) B1δi

(θ)

C1δi
(θ) D11δi

(θ)

]
=

[
Bδi(θ)
D1δi(θ)

] [
Cδi(θ) Dδ1i(θ)

]
(7.53)

Note that either [BT
δi

(θ), DT
1δi

(θ)]T or [Cδi(θ), Dδ1i(θ)] depends affinely on θ. More-
over, Dδδii(θ), Dδ2, and D2δ are introduced in order that (7.52) is in a general
state-space equation form. With the notation of (7.33), we can rewrite (7.52) as

ẋ
zδ
z
y

 =


A(θ) Bδ(θ)L

− 1
2 B1(θ) B2

L
1
2Cδ(θ) L

1
2Dδδ(θ)L

− 1
2 L

1
2Dδ1(θ) L

1
2Dδ2

C1(θ) D1δ(θ)L
− 1

2 D11(θ) D12

C2 D2δL
− 1

2 D21 0



x
wδ
w
u


wδ = ∆̂zδ (7.54)

where wδ, zδ ∈ Rs, s = s1 + s2 + · · · + sm, ∆̂ = diag(δ̃1Is1 , δ̃2Is2 , . . . , δ̃mIsm), and
‖∆̂‖ ≤ 1. Note that matrices Bδ(θ), B1(θ), Cδ(θ), C1(θ), Dδδ(θ), Dδ1(θ), D1δ(θ),
and D11(θ) can also be written as a convex combination of the matrix vertices in a
similar manner to (7.35) as

A(θ) Bδ(θ) B1(θ) B2

Cδ(θ) Dδδ(θ) Dδ1(θ) Dδ2

C1(θ) D1δ(θ) D11(θ) D12

C2 D2δ D21 0

 =
r∑
i=1

αi


Âi B̂δi B̂1i B2

Ĉδi D̂δδi D̂δ1i Dδ2

Ĉ1i D̂1δi D̂11i D12

C2 D2δ D21 0

 (7.55)

7.3.1 Gain-Scheduled Controller Design using SQLF

The gain-scheduled output feedback H∞ control problem using single quadratic
Lyapunov functions is to compute a dynamic LPV controller, K(θ), with state-space
equations

ẋk = Ak(θ)xk +Bk(θ)y

u = Ck(θ)xk +Dk(θ)y (7.56)

which stabilizes the closed-loop system, (7.54) and (7.56), and minimizes the closed-
loop quadratic H∞ performance, γ, so ensuring that the induced L2-norm of the
operator mapping the disturbance signal into the controlled signal is bounded by γ∫ t1

0

(zTδ zδ + zT z)dt ≤ γ2

∫ t1

0

(wTδ wδ + wTw)dt, ∀t1 ≥ 0 (7.57)

along all possible parameter trajectories, ∀θ ∈ Θ. Note that A and Ak have the same
dimensions, since we restrict ourselves to the full-order case. With the notation

K(θ) =

(
Ak(θ) Bk(θ)
Ck(θ) Dk(θ)

)
=

r∑
i=1

αiKi (7.58)

Ki =

(
Aki Bki

Cki Dki

)
, i = 1, 2, . . . , r (7.59)
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where r is the total number of vertices and αi is determined using (3.24) and (3.25).
the closed-loop system, (7.54) and (7.56), is described by the state-space equationsẋclzδ

z

 =

 Acl(θ) Bδcl(θ)L
− 1

2 B1cl(θ)

L
1
2Cδcl(θ) L

1
2Dδδcl(θ)L

− 1
2 L

1
2Dδ1cl(θ)

C1cl(θ) D1δcl(θ)L
− 1

2 D11cl(θ)

xclwδ
w


wδ = ∆̂zδ (7.60)

where xcl =
[
xT xTk

]T
and

Acl(θ) =

[
A(θ) 0

0 0p×p

]
+ BK(θ)C =

r∑
i=1

αiÂcli , Âcli =

[
Âi 0
0 0p×p

]
+ BKiC

Bδcl(θ) =

[
Bδ(θ)

0

]
+ BK(θ)Dδ21 =

r∑
i=1

αiB̂δcli
, B̂δcli

=

[
B̂δi

0

]
+ BKiDδ21

B1cl(θ) =

[
B1(θ)

0

]
+ BK(θ)D121 =

r∑
i=1

αiB̂1cli
, B̂1cli

=

[
B̂1i

0

]
+ BKiD121

Cδcl(θ) =
[
Cδ(θ) 0

]
+Dδ12K(θ)C =

r∑
i=1

αiĈδcli , Ĉδcli =
[
Ĉδi 0

]
+Dδ12KiC

C1cl(θ) =
[
C1(θ) 0

]
+D112K(θ)C =

r∑
i=1

αiĈcli , Ĉcli =
[
Ĉ1i 0

]
+D112KiC

Dδδcl(θ) = Dδδ(θ) +Dδ12K(θ)Dδ21 =
r∑
i=1

αiD̂δδcli
, D̂δδcli

= D̂δδi +Dδ12KiDδ21

Dδ1cl(θ) = Dδ1(θ) +Dδ12K(θ)D121 =
r∑
i=1

αiD̂δ1cli
, D̂δ1cli

= D̂δ1i +Dδ12KiD121

D1δcl(θ) = D1δ(θ) +D112K(θ)Dδ21 =
r∑
i=1

αiD̂1δcli
, D̂1δcli

= D̂1δi +D112KiDδ21

D11cl(θ) = D11(θ) +D112K(θ)D121 =
r∑
i=1

αiD̂11cli
, D̂11cli

= D̂11i +D112KiD121

(7.61)

with

B =

[
0 B2

Ip 0

]
, C =

[
0 Ip
C2 0

]
, Dδ21 =

[
0
D2δ

]
, D121 =

[
0
D21

]
Dδ12 =

[
0 Dδ2

]
, D112 =

[
0 D12

]
, (7.62)

Based on the single quadratic Lyapunov functions V (x) = xTPx, there is an LPV
controller K(θ) that stabilizes the closed-loop system, (7.54) and (7.56), and ensures
the L2-induced norm of the operator mapping the disturbance signal into the con-
trolled signal is bounded by γ along all possible parameter trajectories if and only
if there exists P = P T such that [45]

P > 0,
d

dt

(
xTPx

)
+ (zTδ zδ + zT z)− γ2(wTδ wδ + wTw) < 0, ∀θ ∈ Θ (7.63)
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Inequality (7.63) leads to the scaled bounded real lemma [8, 9] inequality
ATcl(θ)P + PAcl(θ) PBδcl(θ) PB1cl(θ) CT

δcl
(θ)L CT

1cl
(θ)

BT
δcl

(θ)P −γL 0 DT
δδcl

(θ)L DT
1δcl

(θ)
BT

1cl
(θ)P 0 −γI DT

δ1cl
(θ)L DT

11cl
(θ)

LCδcl(θ) LDδδcl(θ) LDδ1cl(θ) −γL 0
C1cl(θ) D1δcl(θ) D11cl(θ) 0 −γI

 < 0 (7.64)

Substituting (7.61) into (7.64), we get

r∑
i=1

αi


ÂTcliP + PÂcli PB̂δcli

PB̂1cli
ĈT
δcli
L ĈT

1cli

B̂T
δcli
P −γL 0 D̂T

δδcli
L D̂T

1δcli

B̂T
1cli
P 0 −γI D̂T

δ1cli
L D̂T

11cli

LĈδcli LD̂δδcli
LD̂δ1cli

−γL 0

Ĉ1cli
D̂1δcli

D̂11cli
0 −γI

 < 0 (7.65)

Inequality (7.65) can be also rewritten as [44]

r∑
i=1

αi

(
Ψcli +QTKT

i Pcl + PTclKiQ
)
< 0 (7.66)

where

Ψcli =



[
Âi 0
0 0p×p

]T
P + P

[
Âi 0
0 0p×p

]
P

[
B̂δi

0

]
P

[
B̂1i

0

] [
Ĉδi 0

]T
L
[
Ĉ1i 0

]T
[
B̂δi

0

]T
P −γL 0 D̂T

δδi
L D̂T

1δi[
B̂1i

0

]T
P 0 −γI D̂T

δ1i
L D̂T

11i

L
[
Ĉδi 0

]
LD̂δδi LD̂δ1i −γL 0[

Ĉ1i 0
]

D̂1δi D̂11i 0 −γI


(7.67)

Q =
[
C, Dδ21 , D121 , 0(p+q2)×(q1+s)

]
(7.68)

Pcl =
[
BTP, 0(p+m2)×(m1+s), DTδ12

, DT112

]
(7.69)

Having determined the quadratic Lyapunov variable P ∈ R2p×2p and the scaling
matrix L ∈ L∆, the system matrix vertices Ki of the LPV controller K(θ) for each
vertex Θi, i = 1, . . . , r, can be determined from (7.66) that is an LMI in Ki. By
Lemma 3.3.1, the LMIs (7.66) are sufficiently evaluated at all vertices. Knowing Ki,
the controller system matrices Ak(θ), . . . , Dk(θ) can be computed on-line in real-time
using (7.58) and an instantaneous measurement value of θ.

By Lemma 2.2.14 with a known scaling matrix L, LMIs (7.66) are solvable for Ki if
and only if there exist a pair of positive definite symmetric matrices (X, Y ) satisfying
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the following LMIs:

r∑
i=1

αi


(
NX 0
0 I

)T


ÂTi X +XÂi XB̂δi XB̂1i ĈT
δi

ĈT
1i

B̂T
δi
X −γL 0 D̂T

δδi
D̂T

1δi

B̂T
1i
X 0 −γI D̂T

δ1i
D̂T

11i

Ĉδi D̂δδi D̂δ1i −γL−1 0

Ĉ1i D̂1δi D̂11i 0 −γI


(
NX 0
0 I

)
 < 0

(7.70)

r∑
i=1

αi


(
NY 0
0 I

)T


ÂiY + Y ÂTi Y ĈT
δi

Y ĈT
1i

B̂δi B̂1i

ĈδiY −γL−1 0 D̂δδi D̂δ1i

Ĉ1iY 0 −γI D̂1δi D̂11i

B̂T
δi

D̂T
δδi

D̂T
1δi
−γL 0

B̂T
1i

D̂T
δ1i

D̂T
11i

0 −γI


(
NY 0
0 I

)
 < 0

(7.71)(
X I
I Y

)
> 0

(7.72)

where NX and NY denote bases of the null spaces of [C2, D2δ, D21] and [BT
2 , D

T
δ2, D

T
12],

respectively. Note that (7.72) ensures X, Y > 0 and X−Y −1 ≥ 0. By Lemma 3.3.1,
(7.70)–(7.72) are sufficiently evaluated at all vertices. Although (7.70)–(7.72) are not
standard LMI problems, they can be solved by an iterative approach, referred to as
D-K iteration [14]. Like the µ-synthesis algorithms, such a scheme is not guaranteed
to converge to a global minimum [14], but may find a local minimum [9]. In spite
of this drawback, the D-K iteration control design technique appears to work well
on many engineering problems [14].

Theorem 7.3.1. Given a scaling matrix L, there exists an LPV controller K(θ) that
guarantees the closed-loop system, (7.54) and (7.56), quadratic H∞ performance γ
along all possible parameter trajectories, ∀θ ∈ Θ, if and only if the following LMI
conditions hold for some positive definite symmetric matrices (X, Y ), which further
satisfy rank(X − Y −1) ≤ p.

(
NX 0
0 I

)T


ÂTi X +XÂi XB̂δi XB̂1i ĈT
δi

ĈT
1i

B̂T
δi
X −γL 0 D̂T

δδi
D̂T

1δi

B̂T
1i
X 0 −γI D̂T

δ1i
D̂T

11i

Ĉδi D̂δδi D̂δ1i −γL−1 0

Ĉ1i D̂1δi D̂11i 0 −γI


(
NX 0
0 I

)
< 0

(7.73)

(
NY 0
0 I

)T


ÂiY + Y ÂTi Y ĈT
δi

Y ĈT
1i

B̂δi B̂1i

ĈδiY −γL−1 0 D̂δδi D̂δ1i

Ĉ1iY 0 −γI D̂1δi D̂11i

B̂T
δi

D̂T
δδi

D̂T
1δi
−γL 0

B̂T
1i

D̂T
δ1i

D̂T
11i

0 −γI


(
NY 0
0 I

)
< 0

(7.74)
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X I
I Y

)
> 0 (7.75)

for i = 1, . . . , r.

Algorithm 7.3.2. Computation of X,Y and L
Step 1: Setting L = I, solve (7.73)–(7.75) for X, Y by minimizing γ.
Step 2: Knowing X,Y , and L, solve (7.66) for Ki.
Step 3: With Ki fixed, solve (7.65) for L by minimizing γ (heuristical).
Step 4: With L fixed, solve (7.73)–(7.75) for new X,Y by minimizing γ.
Step 5: Iterate over Steps 2 to 4 until γ is converged to some minimum value.

Note that, by Lemma 3.3.1, (7.65) and (7.66) are sufficiently solved at all vertices.

7.3.2 Gain-Scheduled Controller Design using PDLF

With parameter-dependent Lyapunov functions, V (x, θ) = xTP (θ)x, (7.63) becomes

P (θ) > 0,
d

dt

(
xTP (θ)x

)
+ (zTδ zδ + zT z)− γ2(wTδ wδ + wTw) < 0, ∀(θ, θ̇) ∈ Θ× Φ

(7.76)
A state-space equations of a dynamic LPV controller, K(θ) in (7.56), becomes

ẋk = Ak(θ, θ̇)xk +Bk(θ)y

u = Ck(θ)xk +Dk(θ)y (7.77)

Note that, unlike the single quadratic Lyapunov functions case, P (θ), Ak(θ, θ̇), Bk(θ),
. . . , Dk(θ) and Acl(θ, θ̇), Bδcl(θ), . . . , D11cl do not depend affinely on the scheduled
parameters θ. Inequality (7.76) becomes

ATcl(θ, θ̇)P (θ) + P (θ)Acl(θ, θ̇) + Ṗ (θ) P (θ)Bδcl(θ) P (θ)B1cl(θ) CT
δcl

(θ)L CT
1cl

(θ)
BT
δcl

(θ)P (θ) −γL 0 DT
δδcl

(θ)L DT
1δcl

(θ)
BT

1cl
(θ)P (θ) 0 −γI DT

δ1cl
(θ)L DT

11cl
(θ)

LCδcl(θ) LDδδcl(θ) LDδ1cl(θ) −γL 0
C1cl(θ) D1δcl(θ) D11cl(θ) 0 −γI

 < 0

(7.78)
where

Acl(θ, θ̇) =

[
A(θ) +B2Dk(θ)C2 B2Ck(θ)

Bk(θ)C2 Ak(θ, θ̇)

]
Bδcl(θ) =

[
Bδ(θ) +B2Dk(θ)D2δ

Bk(θ)D2δ

]
, B1cl(θ) =

[
B1(θ) +B2Dk(θ)D21

Bk(θ)D21

]
Cδcl(θ) =

[
Cδ(θ) +Dδ2Dk(θ)C2 Dδ2Ck(θ)

]
C1cl(θ) =

[
C1(θ) +D12Dk(θ)C2 D12Ck(θ)

]
Dδδcl(θ) = Dδδ(θ) +Dδ2Dk(θ)D2δ, Dδ1cl(θ) = Dδ1(θ) +Dδ2Dk(θ)D21

D1δcl(θ) = D1δ(θ) +D12Dk(θ)D2δ, D11cl(θ) = D11(θ) +D12Dk(θ)D21 (7.79)
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Following section 6.2, inequality (7.78) leads to



Ẋ(θ) +X(θ)A(θ) + B̂k(θ)C2 + (?) ?

ÂTk (θ) + A(θ) +B2Dk(θ)C2 −Ẏ (θ) + A(θ)Y (θ) +B2Ĉk(θ) + (?)

BT
δ (θ)X(θ) +DT

2δB̂
T
k (θ) BT

δ (θ) +DT
2δD

T
k (θ)BT

2

BT
1 (θ)X(θ) +DT

21B̂
T
k (θ) BT

1 (θ) +DT
21D

T
k (θ)BT

2

LCδ(θ) + LDδ2Dk(θ)C2 LCδ(θ)Y (θ) + LDδ2Ĉk(θ)

C1(θ) +D12Dk(θ)C2 C1(θ)Y (θ) +D12Ĉk(θ)

? ? ? ?
? ? ? ?
−γL 0 ? ?

0 −γI ? ?
LDδδ(θ) + LDδ2Dk(θ)D2δ LDδ1(θ) + LDδ2Dk(θ)D21 −γL ?
D1δ(θ) +D12Dk(θ)D2δ D11(θ) +D12Dk(θ)D21 0 −γI

 < 0

(7.80)

where the notation ? represents a symmetric matrix block. Substituting (7.55) and
(6.26)–(6.33) in (7.80), we have

r∑
i=1

r∑
k=1

α2
iβk



X̃k + X̂iÂi + B̃kiC2 + (?) ?

ÃTki + Âi +B2D̃kiC2 −Ỹk + ÂiŶi +B2C̃ki + (?)

B̂T
δi
X̂i +DT

2δB̃
T
ki

B̂T
δi

+DT
2δD̃

T
ki
BT

2

B̂T
1i
X̂i +DT

21B̃
T
ki

B̂T
1i

+DT
21D̃

T
ki
BT

2

LĈδi + LDδ2D̃kiC2 LĈδiŶi + LDδ2C̃ki
Ĉ1i +D12D̃kiC2 Ĉ1iŶi +D12C̃ki

? ? ? ?
? ? ? ?
−γL 0 ? ?

0 −γI ? ?

LD̂δδi + LDδ2D̃kiD2δ LD̂δ1i + LDδ2D̃kiD21 −γL ?

D̂1δi +D12D̃kiD2δ D̂11i +D12D̃kiD21 0 −γI



+2
r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk



X̃k + 1
2

(
X̂jÂi + B̃kjC2 + X̂iÂj + B̃kiC2 + (?)

)
1
2

(
ÃTkj + Âi +B2D̃kjC2 + ÃTki + Âj +B2D̃kiC2

)
1
2

(
B̂T
δi
X̂j +DT

2δB̃
T
kj

+ B̂T
δj
X̂i +DT

2δB̃
T
ki

)
1
2

(
B̂T

1i
X̂j +DT

21B̃
T
kj

+ B̂T
1j
X̂i +DT

21B̃
T
ki

)
L
2

(
Ĉδi +Dδ2D̃kjC2 + Ĉδj +Dδ2D̃kiC2

)
1
2

(
Ĉ1i +D12D̃kjC2 + Ĉ1j +D12D̃kiC2

)
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? ?

−Ỹk + 1
2

(
ÂiŶj +B2C̃kj + ÂjŶi +B2C̃ki + (?)

)
?

1
2

(
B̂T
δi

+DT
2δD̃

T
kj
BT

2 + B̂T
δj

+DT
2δD̃

T
ki
BT

2

)
−γL

1
2

(
B̂T

1i
+DT

21D̃
T
kj
BT

2 + B̂T
1j

+DT
21D̃

T
ki
BT

2

)
0

L
2

(
ĈδiŶj +Dδ2C̃kj + Ĉδj Ŷi +Dδ2C̃ki

)
L
2

(
D̂δδi +Dδ2D̃kjD2δ + D̂δδj +Dδ2D̃kiD2δ

)
1
2

(
Ĉ1iŶj +D12C̃kj + Ĉ1j Ŷi +D12C̃ki

)
1
2

(
D̂1δi +D12D̃kjD2δ + D̂1δj +D12D̃kiD2δ

)
? ? ?
? ? ?
0 ? ?
−γI ? ?

L
2

(
D̂δ1i +Dδ2D̃kjD21 + D̂δ1j +Dδ2D̃kiD21

)
−γL ?

1
2

(
D̂11i +D12D̃kjD21 + D̂11j +D12D̃kiD21

)
0 −γI


< 0 (7.81)

Inequality (7.81) can be also rewritten as

r∑
i=1

r∑
k=1

α2
iβk

(
Ψclii +QT K̂T

i P + PT K̂iQ
)

+ 2
r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk

(
1

2

(
Ψclij

+QT K̂T
i P + PT K̂iQ+ Ψclji +QT K̂T

j P + PT K̂jQ
))

< 0 (7.82)

where

Ψcl♣♠ =



X̃k + X̂♠Â♣ + (?) ? ? ? ? ?

Â♣ −Ỹk + Â♣Ŷ♠ + (?) ? ? ? ?

B̂T
δ♣
X̂♠ B̂T

δ♣
−γL 0 ? ?

B̂T
1♣
X̂♠ B̂T

1♣
0 −γI ? ?

LĈδ♣ LĈδ♣Ŷ♠ LD̂δδ♣ LD̂δ1♣ −γL ?

Ĉ1♣ Ĉ1♣Ŷ♠ D̂1δ♣ D̂11♣ 0 −γI


(7.83)

Q =
[
C, Dδ21 , D121 , 0(p+q2)×(q1+s)

]
, B̃ =

[
Ip 0
0 B2

]
(7.84)

P =
[
B̃T , 0(p+m2)×(m1+s), DTδ12

, DT112

]
, K̂i =

(
Ãki B̃ki

C̃ki D̃ki

)
(7.85)

with the subscript ♣♠ denote (ii, ij, or ji). By Lemma 3.3.1 with a known scaling
matrix L and matrix vertices (X̂i, Ŷi), i = 1, 2, . . . , r, the system matrix vertices
K̂i can be determined from (7.82), that is an LMI in K̂i, at all vertices for which
(K̂1, K̂2, . . . , K̂r) have to satisfy all of r2(r + 1)/2 LMIs. Furthermore, knowing
Ãki , . . . , D̃ki , the controller system matrices Ak(θ, θ̇), . . . , Dk(θ) can be computed
on-line in real-time using (6.20)–(6.22) with an instantaneous measurement value of
θ and θ̇.
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However, the parameter derivatives either are not available or are difficult to estimate
during system operation [8]. We have (6.41) as a result to avoid using the measured

value of θ̇. By Lemma 2.2.14 with a known scaling matrix L, the LMIs of (7.82)

are solvable for K̂i if and only if there exist a pair of positive definite symmetric
matrices

(
X(θ), Y (θ)

)
that satisfy the following LMIs:

r∑
i=1

r∑
k=1

α2
i βk


(
NX 0
0 I

)T


ÂTi Xi +XiÂi + X̃k XiB̂δi XiB̂1i ĈTδi
B̂T
δi
Xi −γL 0 D̂T

δδi

B̂T
1i
Xi 0 −γI D̂T

δ1i

Ĉδi D̂δδi D̂δ1i −γL−1

Ĉ1i D̂1δi D̂11i 0

ĈT1i
D̂T

1δi

D̂T
11i
0
−γI


(
NX 0
0 I

)
+ 2

r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk


(
NX 0
0 I

)T


1
2

(
ÂTi X̂j + ÂTj X̂i + (?)

)
+ X̃k

1
2

(
B̂T
δi
X̂j + B̂T

δj
X̂i

)
1
2

(
B̂T

1i
X̂j + B̂T

1j
X̂i

)
1
2

(
Ĉδi + Ĉδj

)
1
2

(
Ĉ1i + Ĉ1j

)
? ? ? ?

−γL−1 ? ? ?
0 −γI ? ?

1
2

(
D̂δδi + D̂δδj

)
1
2

(
D̂δ1i + D̂δ1j

)
−γL−1 ?

1
2

(
D̂1δi + D̂1δj

)
1
2

(
D̂11i + D̂11j

)
0 −γI


(
NX 0
0 I

)
 < 0 (7.86)

r∑
i=1

r∑
k=1

α2
i βk


(
NY 0
0 I

)T


ÂiYi + YiÂ
T
i − Ỹk YiĈ

T
δi

YiĈ
T
1i

B̂δi
ĈδiYi −γL−1 0 D̂δδi

Ĉ1iYi 0 −γI D̂1δi

B̂T
δi

D̂T
δδi

D̂T
1δi

−γL
B̂T

1i
D̂T
δ1i

D̂T
11i

0

B̂1i

D̂δ1i

D̂11i

0
−γI


(
NY 0
0 I

)+ 2
r−1∑
i=1

r∑
j=i+1

r∑
k=1

αiαjβk


(
NY 0
0 I

)T


1
2

(
ÂiŶj + Âj Ŷi + (?)

)
− Ỹk

1
2

(
Ĉδi Ŷj + Ĉδj Ŷi

)
1
2

(
Ĉ1i Ŷj + Ĉ1j Ŷi

)
1
2

(
B̂T
δi

+ B̂T
δj

)
1
2

(
B̂T

1i
+ B̂T

1j

)
? ? ? ?

−γL−1 ? ? ?
0 −γI ? ?

1
2

(
D̂T
δδi

+ D̂T
δδj

)
1
2

(
D̂T

1δi
+ D̂T

1δj

)
−γL ?

1
2

(
D̂T
δ1i

+ D̂T
δ1j

)
1
2

(
D̂T

11i
+ D̂T

11j

)
0 −γI


(
NY 0
0 I

)
 < 0 (7.87)

r∑
i=1

αi

(
X̂i I

I Ŷi

)
> 0 (7.88)

whereNX andNY denote bases of the null spaces of [C2, D2δ, D21] and [BT
2 , D

T
δ2, D

T
12],

respectively. Note that (7.88) ensures X(θ), Y (θ) > 0 and X(θ) − Y (θ)−1 ≥ 0. By
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Lemma 3.3.1, (7.86)–(7.88) are sufficiently evaluated at all vertices. Also note that
(7.86)–(7.88) will become (7.70)–(7.72) when both X and Y are constant. More-
over, the quadratic H∞ performance γ is determined for both the

(
X(θ), Y

)
and(

X, Y (θ)
)

cases and the case that gives lowest γ is selected.

Theorem 7.3.3. Given a scaling matrix L, there exists an LPV controller K(θ)
guaranteeing the closed-loop system, (7.54) and (7.56), quadratic H∞ performance γ

along all possible parameter trajectories, ∀(θ, θ̇) ∈ Θ×Φ, if and only if the following
LMI conditions hold for some positive definite symmetric matrices (X(θ), Y (θ)),
which further satisfy rank(X(θ)− Y −1(θ)) ≤ p:

(
NX 0
0 I

)T


ÂTi Xi +XiÂi + X̃k XiB̂δi XiB̂1i ĈTδi ĈT1i
B̂T
δi
Xi −γL 0 D̂T

δδi
D̂T

1δi

B̂T
1i
Xi 0 −γI D̂T

δ1i
D̂T

11i

Ĉδi D̂δδi D̂δ1i −γL−1 0
Ĉ1i D̂1δi D̂11i 0 −γI


(
NX 0
0 I

)
< 0

(7.89)

(
NY 0
0 I

)T


ÂiYi + YiÂ
T
i − Ỹk YiĈ

T
δi

YiĈ
T
1i

B̂δi B̂1i

ĈδiYi −γL−1 0 D̂δδi D̂δ1i

Ĉ1iYi 0 −γI D̂1δi D̂11i

B̂T
δi

D̂T
δδi

D̂T
1δi

−γL 0
B̂T

1i
D̂T
δ1i

D̂T
11i

0 −γI


(
NY 0
0 I

)
< 0

(7.90)

(
NX 0
0 I

)T


(
ÂTi X̂j + ÂTj X̂i + (?)

)
+ 2X̃k ?

B̂T
δi
X̂j + B̂T

δj
X̂i −2γL

B̂T
1i
X̂j + B̂T

1j
X̂i 0

Ĉδi + Ĉδj D̂δδi + D̂δδj

Ĉ1i + Ĉ1j D̂1δi + D̂1δj

? ? ?
? ? ?
−2γI ? ?

D̂δ1i + D̂δ1j −2γL−1 ?

D̂11i + D̂11j 0 −2γI


(
NX 0
0 I

)
< 0 (7.91)

(
NY 0
0 I

)T


(
ÂiŶj + Âj Ŷi + (?)

)
− 2Ỹk ?

Ĉδi Ŷj + Ĉδj Ŷi −2γL−1

Ĉ1i Ŷj + Ĉ1j Ŷi 0
B̂T
δi

+ B̂T
δj

D̂T
δδi

+ D̂T
δδj

B̂T
1i

+ B̂T
1j

D̂T
δ1i

+ D̂T
δ1j

? ? ?
? ? ?
−2γI ? ?

D̂T
1δi

+ D̂T
1δj

−2γL ?

D̂T
11i

+ D̂T
11j

0 −2γI


(
NY 0
0 I

)
< 0 (7.92)
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X̂i I

I Ŷi

)
> 0 (7.93)

for i, k = 1, . . . , r and 1 ≤ i < j ≤ r.

Algorithm 7.3.4. Computation of Xi, Yi, i = 1, . . . , b and L
Step 1: Setting L = I, solve (7.89)–(7.93) for Xi, Yi by minimizing γ.
Step 2: Knowing Xi, Yi, and L, solve (7.82) for K̂i.
Step 3: With K̂i fixed, solve (7.81) for L by minimizing γ (heuristical).
Step 4: With L fixed, solve (7.89)–(7.93) for new Xi, Yi by minimizing γ.
Step 5: Iterate over Steps 2 to 4 until γ is converged to some minimum value.

Note that, by Lemma 3.3.1, (7.81) and (7.82) are sufficiently solved at all vertices.

7.4 Numerical Example

We demonstrate the robustness improvement through the numerical example of [61],
described in Chapter 4. Consider the transfer function of the Jacobian-based LPV
model taken from [30]

P (s, θ) =
1

(s+ 1)(s+ 2θ)
, θ ∈ [0, 10] (7.94)

Having added a time-varying real parametric uncertainty δ, (7.94) becomes

Pδ(s, θ, δ) =
1

(s+ 1)(s+ 2θ + δ)
, (θ, δ) ∈ [0, 10]× [−1, 1] (7.95)

To demonstrate the impacts of the proposed scheme in robustness improvement of
uncertain affine LPV systems, we compare our approach with the existing uncer-
tain LPV/LFT approach [9, 24]. Figure 7.3 shows both uncertain affine LPV and
LPV/LFT closed-loop systems.

First, consider uncertain LPV/LFT approach [9, 24], we have θ̃ = (θ−5)/5 ∈ [−1, 1],
using (3.36), and δ̃ = δ ∈ [−1, 1]. Having augmented P (s) with two weighting
function presented in [61], we get Pa(s) with state-space realization
ẋ1

ẋ2

ẋ3

ẋ4

 =


−1 0 0 0
1 −10 0 0
0 −0.5 −0.002 0
0 0 0 −1000



x1

x2

x3

x4

+


0 0 0
0 1 1
0 0 0
0 0 0

L− 1
2

w̃θwθ
wδ

+


0
0

0.5
0

w +


1 0
0 0
0 0
4 0

[uũ
]

z̃θzθ
zδ

 = L
1
2

0 0 0 0
0 −10 0 0
0 1 0 0



x1

x2

x3

x4

+ L
1
2

0 0 0
0 0 0
0 0 0

L− 1
2

w̃θwθ
wδ

+ L
1
2

0
0
0

w + L
1
2

0 1
0 0
0 0

[u
ũ

]
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[
z1

z2

]
=

[
0 0 1 0
0 0 0 −5

]
x1

x2

x3

x4

+

[
0 0 0
0 0 0

]
L−

1
2

w̃θwθ
wδ

+

[
0
0

]
w +

[
0 0

0.02 0

] [
u
ũ

]

[
y
ỹ

]
=

[
0 −1 0 0
0 0 0 0

]
x1

x2

x3

x4

+

[
0 0 0
1 0 0

]
L−

1
2

w̃θwθ
wδ

+

[
1
0

]
w +

[
0 0
0 0

] [
u
ũ

]
w̃θwθ
wδ

 =

θ̃ 0 0

0 θ̃ 0

0 0 δ̃

z̃θzθ
zδ

 (7.96)

where

L =

L1θ L2θ 0
LT2θ L3θ 0
0 0 Lδ


An LPV controller can be computed using Theorem 5.1 [9]. Unfortunately, the
convexity of Theorem 5.1 is destroyed by the extra uncertainty block δ̃, and D-
K iterations are needed to compute adequate LPV controllers. Solving LMIs in
Theorem 5.1 by using a MATLAB Robust Control Toolbox function [12], mincx, we
got γ = 0.5524, a scaling matrix, and an LPV controller as shown below

L =

 0.0007654 −0.00099889 0
−0.00099889 0.0028127 0

0 0 0.020756



ẋk1

ẋk2

ẋk3

ẋk4

 =


−3.9848 −63.001 307.21 228.16
−1079.3 −53336 1.8482× 105 −5520.4

0.0062935 0.31046 −1.0783 0.032158
−11.939 −252 1228.8 −87.362



xk1

xk2

xk3

xk4

+


−15.149
−29207
0.66995
−60.592

 y

+


0.24715
467.41

−0.0027188
0.98854

 ỹ

u =
[
−2.9847 −62.996 307.2 228.16

] 
xk1

xk2

xk3

xk4

− 15.146y + 0.24711ỹ

ũ =
[
−0.21422 −23.467 36.325 −1.0938

] 
xk1

xk2

xk3

xk4

− 5.6313y + 0.093067ỹ

ỹ = δ̃ũ (7.97)

Next, consider our approach, having augmented P (s, θ) with two weighting function
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Figure 7.3: Structure comparisons of uncertain affine LPV and LPV/LFT [9] closed-
loop systems.
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presented in [61], we get Pa(s, θ) with state-space realization
ẋ1

ẋ2

ẋ3

ẋ4

 =


−1 0 0 0
1 −2θ 0 0
0 −0.5 −0.002 0
0 0 0 −1000



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x4

+


0
1
0
0

L− 1
2

δ wδ +


0
0

0.5
0

w +


1
0
0
4

u

zδ = L
1
2
δ

[
0 1 0 0

] 
x1

x2

x3

x4

+ L
1
2
δ

[
0
]
L
− 1

2
δ wδ + L

1
2
δ

[
0
]
w + L

1
2
δ

[
0
]
u

[
z1

z2

]
=

[
0 0 1 0
0 0 0 −5

]
x1

x2

x3

x4

+

[
0
0

]
L
− 1

2
δ wδ +

[
0
0

]
w +

[
0

0.02

]
u

y =
[
0 −1 0 0

] 
x1

x2

x3

x4

+
[
0
]
L
− 1

2
δ wδ +

[
1
]
w +

[
0
]
u

wδ = δ̃zδ (7.98)

Solving Algorithm 7.3.2 with the same scaling matrix of δ, i.e. Lδ = 0.020756, and
the LMIs are solved using a MATLAB Robust Control Toolbox function [12], mincx,
we got γ = 0.2435 and an LPV controller as shown below

ẋk =
(
α1Ak1 + α2Ak2

)
xk +

(
α1Bk1 + α2Bk2

)
y

u =
(
α1Ck1 + α2Ck2

)
xk +

(
α1Dk1 + α2Dk2

)
y (7.99)

where α1 = (10− θ)/10, α2 = θ/10 and

Ak1 =


−2.3776 −11.695 201.38 235.44
−821.01 −16266 2.1605× 105 −5851.3
0.018827 0.37233 −4.9492 0.13401
−5.5097 −46.773 805.36 −58.236



Ak2 =


−2.4698 −12.45 249.52 234.91
−1129.4 −29334 2.9× 105 −7638.8
0.02588 0.67111 −6.6415 0.17489
−5.8785 −49.788 997.94 −60.343



Bk1 =


5.7865
−5096.1
0.61651
23.146

 , Bk2 =


0.87696
−5852.3

0.634
3.5067


Ck1 =

[
−1.3774 −11.691 201.32 235.44

]
Ck2 =

[
−1.4695 −12.442 249.44 234.92

]
Dk1 = 5.7879, Dk2 = 0.87854
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Figure 7.4: Nonlinear step response from -3 to 0 of the LPV ctroller with the original
nonlinear plant.

Without including the uncertainty δ and using the MATLAB Robust Control Tool-
box function [12], hinfgs, an LPV controller was obtained with γ = 0.1211 [30].
However, the closed-loop system of the LPV controller with the original nonlinear
model is unstable [30, 61].

Including the uncertainty δ, shown in (7.96) and (7.98), using Theorem 5.1 [9] and
Theorem 7.3.1, two LPV controllers were obtained with γ = 0.5524 and 0.2435,
respectively. As an effect of including the uncertainty δ, we get more conservatism
on γ but the stability property of the closed-loop system is guaranteed with a larger
stability margin. Hence, the closed-loop instability for the controller with the non-
linear plant disappears without degrading the transient performance as shown in
Figure 7.4. Moreover, this numerical example shows that our approach is less con-
servative than the uncertain LPV/LFT approach.

7.5 Lateral Uncertain Affine LPV Model

Following section 6.4, the lateral nonlinearly parameter-dependent LPV model,
shown in (7.6), can be converted into an affine LPV model using a minimum
least-squares method [58]. Moreover, the maximum and minimum of the least-
squares conversion errors can be determined for all possible parameter trajectories,
i.e. ∀(u, h) ∈ [464.1, 548.5] × [7500, 12500], by subtracting the converted (affine)
stability and control derivatives from the stability and control derivatives in (7.7)–
(7.24). For example, consider Yδr shown in (7.6), define YδrAffine

to be depended
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7.5 Lateral Uncertain Affine LPV Model

affinely on u and h, in a similar manner to (6.50), as

YδrAffine
= Yδr0 + uYδru + hYδrh (7.100)

Then, Yδr0 , Yδru , and Yδrh can be determined using a minimum least-squares method [58]
as presented in section 6.4. Figure 7.5–a and–b shows a nonlinear Yδr and an affine
Yδr that are determined using (7.12) and (7.100), respectively. The error (mismatch
uncertainty) between a nonlinear Yδr and an affine Yδr can be computed as

δYδr = Yδr − YδrAffine
(7.101)

The calculations of δYδr and δ̃Yδr (normalize), that is computed using (7.28), are
shown in Figure 7.6–a and–b, respectively. Therefore, an uncertain affine Yδr can be
written as

Yδr(u, h, δ̃) =
(
Yδr0 + TYδr

)
+ uYδru + hYδrh + SYδr δ̃Yδr (7.102)

where

TYδr =
δYδr + δYδr

2
(7.103)

SYδr =
δYδr − δYδr

2
(7.104)

Figure 7.6–a also shows a maximun δYδr and minimum δYδr errors of Yδr that are
equal to 0.3696 and -0.1323, respectively. Having normalized all of the mismatch
uncertainties δYv , δYp , . . . , δNδr using (7.28), and included the normalized mismatch
uncertainties in the system state-space model matrices of the converted affine LPV
model, we can compute the lateral uncertain affine LPV model, in a similar manner
to (7.102), as

ẋ = A(u, h, δ̃)x +B(u, h, δ̃)u (7.105)

where x= [v p r φ ψ]T , u= [δa δr]
T , (u, h) ∈ [464.1, 548.5] × [7500, 12500], i.e.

bounded flight envelope, and

A(u, h, δ̃) =


−0.037327 37.833 0.0020293 32.174 0
−0.0053012 −0.48258 0.37758 0 0
0.0041288 −0.0029707 −0.074076 0 0

0 1 0 0 0
0 0 1 0 0



+u


−0.00023363 −0.089521 −0.99999 −1.4653× 10−6 0
−3.3179× 10−5 −0.0030204 0.0023632 0 0
2.5841× 10−5 −1.8593× 10−5 −0.00046363 0 0

0 0 0 0 0
0 0 0 0 0



+h


3.7146× 10−6 0.00070669 −2.0194× 10−7 6.0454× 10−9 0
5.2754× 10−7 4.8023× 10−5 −3.7575× 10−5 0 0
−4.1087× 10−7 2.9563× 10−7 7.3716× 10−6 0 0

0 0 0 0 0
0 0 0 0 0


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+


0.00079214(δ̃Yv) 0.20339(δ̃Yp) 4.3064× 10−5(δ̃Yr) 0.001143(δ̃Yφ) 0
0.0001125(δ̃Lv) 0.010241(δ̃Lp) 0.0080129(δ̃Lr) 0 0

8.7619× 10−5(δ̃Nv) 6.3043× 10−5(δ̃Np) 0.001572(δ̃Nr) 0 0
0 0 0 0 0
0 0 0 0 0



B(u, h, δ̃) =


0 −12.567

18.862 6.0757
0.23235 −0.70258

0 0
0 0

+ u


0 0.073385

−0.11015 −0.03548
−0.0013568 0.0041028

0 0
0 0



+h


0 −0.00058483

0.00087781 0.00028275
1.0813× 10−5 −3.2697× 10−5

0 0
0 0

+


0 0.25095(δ̃Yδr )

0.37667(δ̃Lδa ) 0.12133(δ̃Lδr )
0.0046399(δ̃Nδa ) 0.01403(δ̃Nδr )

0 0
0 0


Note that δ̃Yv , δ̃Yp , . . . , δ̃Nδr ∈ [−1, 1] and the uncertainty δ̃ in (7.105) can be sepa-

rated from the system matrices in a similar manner to (7.54).

7.6 Robust Gain-Scheduled H∞ Autopilot Design

The mixed-sensitivity criterion (5.42) is also employed in a similar manner to sec-
tion 5.3. Figure 7.7 shows the weighted open-loop interconnection for synthesis
where

zδ =
[
zδYv , zδYp , · · · , zδNδr

]T
, z =

[
zv, zψ, zδa , zδa

]T
wδ =

[
wδYv , wδYp , · · · , wδNδr

,
]T
, w =

[
vref , ψref

]T
y =

[
vref − v, p, r, φ, ψref − ψ,

]T
, u =

[
δa, δr

]T
δ̃ = diag(δ̃Yv , δ̃Yp , . . . , δ̃Nδr )

W1(s) =

(
0.6667s+0.221
s+0.00221

0

0 s+1.105
s+1.105×10−3

)
W2(s) =

(
0.6s+0.442

0.001s+1.105
0

0 0.6s+0.442
0.001s+1.105

)
Wpre-filter(s) =

(
500
s+500

0

0 500
s+500

)
(7.106)

Note that the values of weighting functions W1 and W2 are hand-tuned until the
desired objectives of performance and robustness of the closed-loop system are
achieved. After the lateral uncertain affine LPV model, shown in (7.105), is aug-
mented with the weighting functions, shown in (7.106), a pair of positive definite
symmetric matrices

(
X(θ), Y (θ)

)
can be determined in four cases, i.e.

(
X, Y

)
,(

X(θ), Y
)
,
(
X, Y (θ)

)
, and

(
X(θ), Y (θ)

)
, using Theorem 7.3.3 with the same scaling
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(a) Nonlinear Yδr

(b) Affine Yδr

Figure 7.5: The variation of a nonlinear Yδr and an affine Yδr with speed and altitude
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(a) δYδr

(b) δ̃Yδr (Normalize)

Figure 7.6: The variation of δYδr and δ̃Yδr (normalize) with speed and altitude
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7.7 Nonlinear Simulation Results

Table 7.3: Performance γ comparison for different cases of (X(u, h), Y (u, h))

Flight condition (X(u, h), Y (u, h))† (X(u, h), Y )† (X,Y (u, h))† (X,Y )*

(u, h) ∈ [464.1, 548.5]× [7500, 12500]
(u̇, ḣ) ∈ [−1.26, 1.26]× [−20, 50]

Performance γ 3.0399 3.8646 3.0706 4.0679

† Parameter-dependent Lyapunov functions, Theorem 7.3.3
* Single quadratic Lyapunov function, Theorem 7.3.1

Pre-filter
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W2

-

-

G(θ)

2

1


2

1
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









 

P(θ)

Figure 7.7: The weighted open-loop interconnection for the lateral uncertain affine
LPV plant model.

matrix L = diag(79.126, 0.43552, 91.049, 44.6, 70.304, 3.9041, 54.392, 1050, 1050.7,
1044.9, 3.5861, 1.1111, 3.0808, 1029.2, 816) for all cases, for which the performance
measure (γ), shown in Table 7.3, can be compared. The LMIs are solved using the
MATLAB Robust Control Toolbox function [12], mincx.

7.7 Nonlinear Simulation Results

Since, for an LPV plant model with a large parameter variation region, it is often
conservative to design a single LPV controller over the entire parameter space [64, 65,
66], the designed H∞ gain-scheduling autopilot is validated for a bounded flight en-
velope, i.e. (u, h) ∈ [464.1, 548.5]×[7500, 12500], (u̇, ḣ) ∈ [−1.26, 1.26]×[−20, 50],
with the Jindivik nonlinear model [41] in a MATLAB Simulink simulation. In Fig-
ure 7.8, the transient responses of the simulated vehicle for small demanded changes
in yaw angle are shown for one particular point in the bounded flight envelope. Sim-
ilar responses for other points in the flight envelope were obtained. Figure 7.9 shows
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7.8 Conclusion

a rate one turn simulated flight, i.e. 3◦ per second turn, which completes a 360◦ turn
in 2 minutes, for one particular point in the bounded flight envelope. Again, similar
responses for other points in the flight envelope were obtained. These simulation
results show that desired performance and robustness objectives are achieved over
the defined flight envelope.

7.8 Conclusion

In this chapter, the mismatch uncertainties between a nonlinear model and an affine
LPV model are handled by a new class of affine LPV systems which is called an
uncertain affine LPV model. New sufficient conditions of gain-scheduled H∞ per-
formance analysis and synthesis, for this uncertain affine LPV model, using sin-
gle quadratic or parameter dependent Lyapunov function are proposed for which
the proposed scheme can guarantee robust stability and robust performance for all
time-varying real parametric uncertainties which are ‖δ̃‖ < 1/γ. The analysis and
synthesis conditions are represented in the form of a finite number of LMIs. A nu-
merical example was compared with uncertain LPV/LFT approach [9] results. In
addition, the intermediate controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ),
can be constructed as an affine matrix-valued function in the polytopic coordinates
of the scheduled parameter without the need for constraints on the D12 and D21

matrices. The proposed scheme was applied to synthesized a lateral LPV autopilot
of the Jindivik UAV. The designed controller was tested with a full 6-DOF simu-
lation of the vehicle and nonlinear simulation results show the effectiveness of the
proposed method.
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Figure 7.8: The transient performance of H∞ gain-scheduling autopilot is validated
with the Jindivik nonlinear dynamic model about one condition inside the flight
envelope, i.e. speed = 464 ft/s and altitude = 7,5000 ft.
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(g) δr

(h) δa

Figure 7.9: The rate one turn of H∞ gain-scheduling autopilot is validated with the
Jindivik nonlinear dynamic model about one condition inside the flight envelope,
i.e. speed = 506 ft/s and altitude = 10,000 ft.

150



Chapter 8

Conclusions

In this thesis, an LPV control approach has been employed to design a robust gain-
scheduled flight controller for a conventional fixed-wing UAV. The work presented
in this thesis was motivated by the shortcomings of the conventional gain-scheduling
techniques that are both expensive and time-consuming for many UAV applications.
The effectiveness of the proposed methods for designing flight controllers is verified
and validated through the 6-DOF nonlinear model [41] in MATLAB Simulink envi-
ronment of the Jindivik UAV.

However, the proposed methods are also applicable to a general class of conventional
fixed-wing aircrafts. This chapter discusses some aspects of the work, lists the main
contributions and provides suggestions for future work.

8.1 Conclusions & Discussions

• The dynamic characteristics of both lateral and longitudinal modes of an air-
craft are represented by the stability and control derivatives, shown in (A.103)
and (A.104), that vary following speed and altitude, shown in (5.14)–(5.36)
and (7.7)–(7.24). With the speed and altitude fixed, both (A.103) and (A.104)
are longitudinal and lateral LTI models, respectively. Suppose an aircraft is
assumed about a wings level, constant altitude and airspeed flight condition,
both nonlinearly parameter-dependent longitudinal and lateral LPV models,
shown in (5.13) and (7.6) respectively, can be derived from a 6-DOF nonlinear
model using Jacobian linearization.

Two interesting features of the derived LPV models are (i) they can accurately
represent nonlinear dynamic characteristics of the 6-DOF nonlinear model bet-
ter than the longitudinal and lateral LTI models, shown in (A.103)–(A.104)
respectively, because they use the time-varying parameters θ (i.e. speed and
altitude) to capture the nonlinear dynamic characteristics of the original non-
linear model and (ii) they are still a linear system where the system matrices
are functions of speed and altitude. Note that, the speed and altitude are
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8.1 Conclusions & Discussions

also the state variables of the system. Comparison with the 6-DOF nonlinear
models, the longitudinal and lateral LPV models are easier to prove stability
using the single quadratic (Theorem 3.4.3) or parameter-dependent Lyapunov
functions (Theorem 6.2.1).

• Equations (5.14)–(5.36) and (7.7)–(7.24) also show that the accuracy of both
longitudinal and lateral LPV models, shown in (5.13) and (7.6) respectively,
depend on the accuracy of the information that provides the aerodynamic
and thrust coefficients. To estimate stability and control derivatives or aero-
dynamic coefficients of a conventional fixed-wing UAV, system identification
techniques are preferred to the wind tunnel tests. However, a number of diffi-
culties arise when system identification techniques are applied to certain UAVs,
described in Appendix B. In addition, Appendix B shows that, when an UAV
is flown as a racetrack manoeuvre pattern, those difficulties can be overcome.

• To synthesize an LPV controller based on Theorem 3.4.3 (SQLF) with a finite
number of LMIs and avoiding the gridding parameter technique, the Tensor-
Product (TP) model transformation can be applied to transform a nonlinearly
parameter-dependent LPV model, shown in (5.13), into a TP-type convex
polytopic model form, shown in (5.37). The TP-based LPV controller, shown
in (5.46), can be constructed as a convex combination of the vertex coordi-
nates of the scheduled parameter. Hence there is less computational on-line
complexity at the gain-scheduling level than the grid-based LPV controller but
its structure is still more complex than the affine-based LPV controller.

• An affine LPV model, shown in (6.55), is converted from a nonlinearly parameter-
dependent LPV model, shown in (5.13), using the minimum least-squares
method [58]. Based on an affine LPV model, an LPV controller can be syn-
thesized with a finite number of LMIs using Theorem 3.4.3 (SQLF). However,
the affine LPV model can rarely accurately represent the original nonlinear
model and, in addition, the SQLF-based LPV controller is conservative when
the parameters are time-invariant or slowly varying [45].

• The example from Leith and Leithead [61] is very interesting. The closed-loop
instability of the LPV controller, shown in (4.11), with the original nonlin-
ear model, shown in (4.1), occurs because the mismatch uncertainty between
the Jacobian-based LPV model, shown in (4.5), and the original nonlinear
model is in a region close to the right-half s-plane, described in Chapter 4.
The mismatch uncertainties between a nonlinear model and an affine LPV
model can be handled by a new class of affine LPV systems which is called
an uncertain affine LPV model, described in Chapter 7. Synthesizing an LPV
controller based on this uncertain affine LPV model, shown in (7.98), the sta-
bility property of the Leith and Leithead’s example closed-loop system can be
guaranteed with a larger stability margin. Hence, the closed-loop instability
for the LPV controller, shown in (7.99), with the nonlinear plant disappears
without degrading the transient performance as shown in Figure 7.4.

• Based on the lateral uncertain affine LPV model, shown in (7.105), an LPV
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autopilot can be synthesized with a finite number of LMIs using Theorem
7.3.1 (SQLF) or 7.3.3 (PDLF) for which the resulting controller can guarantee
the closed-loop system with a larger stability margin over conventional affine-
based LPV controller. As shown by the simulation results of both longitudinal
and lateral LPV autopilots in Chapters 5–7, the desired performance and
robustness objectives are achieved across the defined flight envelope.

• Both aims and objectives of this thesis are achieved since the proposed schemes
yield an LPV controller that can handle both uncertainties and nonlinearities
of a 6-DOF nonlinear model with good command following, good disturbance
attenuation, low sensitivity to measurement noise, reasonably small control
efforts, and that is robustly stable to additive plant perturbations. We em-
phasize that the proposed schemes in this thesis can be a strong and very
likely candidate for the next generation of flight control systems design for a
conventional fixed-wing UAV.

8.2 Main Contributions

The main contributions of this thesis are the following:

• The determination of aircraft aerodynamic coefficient from wind-tunnel or
computational fluid dynamics data can be an expensive and time-consuming
procedure. A system identification techniques, i.e. equation-error method [58],
is used to obtain this information from a racetrack manoeuvre with sufficient
accuracy to design a satisfactory flight control system for an UAV [36].

• Knowing the aerodynamic coefficients, aircraft moments of inertias, and thrust
coefficients, an LPV aircraft model can be derived from a 6-DOF nonlinear
model using Jacobian linearization method. A tensor-product (TP) model
transformation [15] is applied to transform a longitudinal nonlinearly parame-
ter depedent LPV model to a TP-type convex polytopic model form. A gain-
scheduled output feedback H∞ controller [10] that is based on single quadratic
Lyapunov functions is applied to the resulting TP convex polytopic model to
yield a longitudinal LPV autopilot that guarantees the stability, robustness
and performance properties of the closed-loop system [33].

• New sufficient conditions for gain-scheduled H∞ performance analysis and syn-
thesis for a class of affine LPV systems using parameter-dependent Lyapunov
function are proposed, in Theorem 6.2.1. Compared with the multi-convexity
technique [11], fewer linear matrix inequalities (LMIs) and decision variables
are required and the computational time is lower while the achieved perfor-
mance level is improved. The analysis and synthesis conditions are represented
in the form of a finite number of LMIs. In addition, the intermediate controller
variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ), can be constructed as an affine
matrix-valued function in the polytopic coordinates of the scheduled parameter
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without the need for constraints on the D12 and D21 matrices. The proposed
method is applied to synthesize a longitudinal LPV autopilot for a bounded
flight envelope of a Jindivik UAV [34].

• The mismatch uncertainties between a nonlinear model and an affine LPV
model are handled by a new class of affine LPV systems which is called an
uncertain affine LPV model. New sufficient conditions for gain-scheduled H∞
performance analysis and synthesis for this uncertain affine LPV model, using
single quadratic or parameter-dependent Lyapunov functions are proposed.
These are shown in Theorems 7.3.1 and 7.3.3 respectively, for which the pro-
posed scheme can guarantee robust stability and robust performance for all
possible time-varying real parametric uncertainties that are ‖δ̃‖ < 1/γ. The
analysis and synthesis conditions are represented in the form of a finite num-
ber of LMIs. A numerical example [61] is compared with uncertain LPV/LFT
approach [9] results. The proposed scheme is applied to synthesize a lateral
LPV autopilot for a bounded flight envelope of a Jindivik UAV [35].

8.3 Further Work

This thesis shows that an LPV controller can be synthesized as a single controller
that will operate over the whole range of operating condition without having to
create a scheduling scheme. Having assumed the complete measurement of the
time-varying parameters θ is available for the controller to incorporate in the same
LPV fashion as the plant model, the resulting LPV controller exploits all available
information of θ to adjust its dynamic to the current plant dynamic on-line in real-
time over the defined operating conditions. This provides smooth and automatic
gain-scheduling with respect to θ.

However, there are still several directions that should be further researched and
developed as outlined below.

• In this thesis, both longitudinal and lateral LPV models are derived from
the 6-DOF nonlinear model of the Jindivik UAV using Jacobian linearization.
However, the Jacobian-based LPV models only accurately represent the origi-
nal nonlinear dynamics about the neighborhood of a set of equilibrium points
and the time-varying parameters must vary slowly. Hence, the Jacobian lin-
earization method is not suitable to derive an LPV aircraft model under the
case of high angle of attack and extremely aggressive manoeuvring flight con-
ditions. It is very interesting to apply the state transformation or function
substitution methods to derived an LPV aircraft model under such highly
nonlinear flight conditions. An initial research using the function substitution
method to derive a quasi-LPV model of the F-16 aircraft that can cover the
aircraft non-trim region has been proposed by Shin et al. [94].

• In this thesis, a small angle of attack flight condition is considered therefore
there are only two scheduling parameters that are speed and altitude. However,
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under the case of high angle of attack region, the angle of attack have a
large variation hence it has to be included in the scheduling parameters where
we believe that further improvements in the transient performance of both
longitudinal and lateral LPV autopilots can be achieved if the autopilot is
gain-scheduled with speed and altitude as well as the angle of attack. Then,
it is also very interesting to design an LPV controller having speed, altitude
and angle of attack as the scheduling parameters.

• Commonly, a feedforward controller is used to improve the transient perfor-
mance of the closed-loop system. Hence, it is also very interesting to integrate
the feedforward LPV controller into the gain-scheduled output feedback H∞
control design framework where an initial research of this approach has been
proposed by Prempain and Postlethwaite [85].

• Compared with an affine LPV model, a TP convex polytopic model more accu-
rately represents the original nonlinear model. But, the TP polytopic model
can not be written as an affine combination form. Therefore, to synthesize
an LPV controller based on a TP polytopic model, a finite number of LMIs
can be obtained only when using the single quadratic Lyapunov function. It
is also very interesting (i) to extend the existing TP model transformation
method [15] so that the resulting LPV model can be written in both convex
and affine combination forms or (ii) to research a new convexifying techniques
so that a finite number of LMIs can be obtained when synthesizing an LPV
controller based on the existing TP convex polytopic model and using the
parameter-dependent Lyapunov function.

• The TP-based LPV controller has a very high complexity. Hence controller
complexity reduction is an important issue for the practical implementaion of
the method, and this aspect is also very interesting for further work.

• In this thesis, the effectiveness of the designed LPV autopilots, described in
Chapters 5–7, is verified and validated only through the nonlinear simulation
in MATLAB Simulink environment. It is also very interesting to test those
designed LPV autopilots in the hardware-in-the-loop simulation.
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Appendix A

Aircraft Nonlinear Model

The full details of equations of motion for a conventional fixed-wing aircraft are well
known and can be found in many textbooks, e.g. Cook [38], Klein and Morelli [58],
Nelson [79], etc. The following sections give an overview of the equations of motion
which is formulated as ordinary differential equations for the aircraft states with
algebraic equations for the measured outputs. Before the equations of motion can
be developed, it is necessary to define a suitable coordinate system and sign con-
ventions (of the aircraft states, the control surfaces, and the measured outputs) for
the formulation of the equations of motion.

A.1 Reference Frames & Sign Conventions

There are a variety of reference frames that would be used to describe aircraft move-
ment and orientation for different purposes such as earth axes would be considered
for a navigation control, and body axes would be considered for a stability control.
The relevant frames are described in the following list [58]:

Earth axes: XE, YE, ZE. This reference frame is also called the topodetic axes. Its
origin is at an arbitrary point on the earth surface, with positive XE axis pointing
toward north, positive YE axis pointing east, and positive ZE axis pointing to the
center of the earth as shown in Figure A.1. Earth axes are fixed with respect to the
earth.

Vehicle-carried earth axes: XV , YV , ZV . Origin is at the centre of gravity of the
aircraft (c.g.), orientation of the axes is parallel to earth axes (see Figure A.1). The
centre of gravity is the point about which the aircraft would balance if suspended
by a cable. This reference frame is used to show the rotational orientation of the
aircraft relative to earth axes.

Body axes: XB, YB, ZB. Origin is at the aircraft c.g., with positive XB axis pointing
forward through the nose of the aircraft, positive YB axis out the right wing, and
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Figure A.1: Reference axes & sign conventions [58]

positive ZB axis is directed through the underside. Body axes are fixed with respect
to the aircraft body as shown in Figure A.1. The XZ plane is commonly a plane of
symetry for the aircraft.

Stability axes: XS, YS, ZS. This reference frame is a type of body axes, used in
the study of small deviations from a nominal flight condition. The orientation of
stability axes is related to a reference flight condition, usually defined at the start
of a manoeuvre. Its origin is at the aircraft c.g., with positive XS axis forward and
aligned with the projection of the velocity vector of the aircraft c.g. through the air
(also called the air-relative velocity) onto the XZ plane in body axes. The positive
YS axis out the right wing, and positive ZS axis is directed through the underside
(see Figure A.1).

Wind axes: XW , YW , ZW . This reference frame, also called the flight-path axes,
has its origin at the aircraft c.g., with positive XW axis forward and aligned with
the air-relative velocity vector, positive YW axis out the right wing, and positive ZW
axis through the underside in the XZ plane in body axes (see Figure A.1). The XW

axis is always tangent to the air-relative trajectory, hence wind axes are not fixed
with respect to the aircraft body.

Sign conventions: For translational velocities at the aircraft c.g. along body axes,
e.g. axial (u), lateral (v), and normal velocities (w) or applied forces at the aircraft
c.g. along body axes, e.g. axial force (X), side force (Y ), normal force (Z), the
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A.1 Reference Frames & Sign Conventions

positive sign convention follows the positive direction of a body axis (see Figure A.1).
In addition, angular velocities about the aircraft c.g. along body axes, e.g. pitch rate
(p), roll rate (q), and yaw rate (r) or applied moments about the aircraft c.g. along
body axes, e.g. rolling moment (L), pitching moment (M), and yawing moment
(N), the sign convention follows the right-hand rule. If the right-hand thumb is
pointed in the positive direction of a body axis, the fingers curl in the direction of
positive rotation (see Figure A.1).

Control surfaces are hinged surfaces that can be rotated about a hinge line to change
the applied aredynamic forces and moments on an aircraft. For control surfaces of a
conventional aircraft, e.g. elevator δe, aileron δa, and rudder δr, the sign convention
also follow the right-hand rule. For example, the positive sign of elevator control
surfaces, If the right-hand thumb is pointed in the positive direction of a YB axis, the
fingers curl in the direction of positive deflection (see Figure A.1). However, some
control surfaces, i.e. the ailerons, are deflected simultaneously in an asymmetric
manner, which means that the individual aileron control surfaces on each wing move
in opposite directions. Following Klein and Morelli [58], a positive aileron deflection
is defined as one-half the right aileron deflection minus the left aileron deflection,

δa =
1

2
(δaR − δaL) (A.1)

In addition, the angle of attack (α) and sideslip angle (β) can be defined in terms
of the velocity components of air-relative velocity (V ) as shown in Figure A.1. The
positive sign convention of α and β follow the positive sign of w and v respectively.

α = arctan
w

u

β = arcsin
v

V

V =
√
u2 + v2 + w2uv

w

 = V

cosα cos β
sin β

sinα cos β

 (A.2)

Moreover, the relative orientation of the body axes to earth axes or to vehicle-carried
earth axes are the same angles, known as Euler angles, e.g. pitch angle (θ), roll angle
(φ), and yaw angle (ψ) as shown in Figure A.1. The positive sign convention of θ,
φ, and ψ are defined by the rotation direction of the vehicle-carried earth axes to
body axes, which follows the right-hand rule. If the right-hand thumb is pointed
in the positive direction of a rotating axis, the fingers curl in the positive rotation
direction about the rotating axis.

The sequence for rotating vehicle-carried earth axes into alignment with body axes
starts with a yaw angle rotation ψ about the ZV axis. In Figure A.1, it is a positive
rotation direction according to right-hand rule stated above. This followed by a pitch
angle rotation θ (a negative rotation direction) about the YV axis, completed by a roll
angle rotation φ (also a negative rotation direction) about the XV axis. Therefore,
an arbitrary three dimensional vector at earth axes or vehicle-carried earth axes,
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A.2 Aircraft Equation of Motion

e.g. gravity force (FG), can be transformed to body axes using a transformation
matrix LBV , known as Direction Cosine Matrix (DCM), as shown below,

LBV =

 cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ


(A.3)

FG =

mgxmgy
mgz


B

= LBV

 0
0
mg


V

=

 −mg sin θ
mg sinφ cos θ
mg cosφ cos θ

 (A.4)

A.2 Aircraft Equation of Motion

The general motion of an aircraft, that is assumed a rigid body with fixed mass
distribution and constant mass, can then be derived from Newton’s second law of
motion in translational and rotationnal forms, It is noted that all the given equations
in this section are taken from Klein and Morelli [58],

F = mV̇ + ω ×mV
M = Iω̇ + ω × Iω

I =

 Ix −Ixy −Ixz
Iyx Iy −Iyz
−Izx Izy Iz

 (A.5)

where F is the applied forces at the aircraft c.g. along body axes (i.e. X, Y , and
Z), m is the mass of the aircraft, V is the translational velocities at the aircraft c.g.
along body axes (i.e. u, v, and w), ω is the angular velocities about the aircraft c.g.
along body axes (i.e. p, q, and r), M is the applied moments about the aircraft c.g.
along body axes (i.e. L, M , and N), and I is the moment of inertia matrix of the
aircraft. For a rigid body with symmetry relative to the XZ plane in body axes,
the moment of inertia matrix I is symmetric and Ixy = Iyx = Iyz = Izy = 0. The
moment of inertia matrix I then reduces to,

I =

 Ix 0 −Ixz
0 Iy 0
−Ixz 0 Iz

 (A.6)

where

Ix =

∫
V olume

x2dm Iy =

∫
V olume

y2dm

Iz =

∫
V olume

z2dm Ixz =

∫
V olume

xzdm
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A.2 Aircraft Equation of Motion

Thus, writing (A.5) in terms of the variables defined in this section gives the force
equations:

X = m (u̇+ qw − rv)

Y = m (v̇ + ru− pw)

Z = m (ẇ + pv − qu) (A.7)

and moment equations:

L = ṗIx − ṙIxz + qr (Iz − Iy)− qpIxz
M = q̇Iy + pr (Ix − Iz) +

(
p2 − r2

)
Ixz

N = ṙIz − ṗIxz + pq (Iy − Ix) + qrIxz (A.8)

Reasonably, the forces acting on an aircraft in flight consist of aerodynamic (i.e.
Xaero, Yaero, and Zaero), thrust (i.e. Tx, Ty, and Tz), and gravitational forces (i.e.
mgx, mgy, andmgz). Since gravity acts through the aircraft c.g., and the gravity field
is assumed uniform, there is no gravity moment acting on the aircraft. Furthermore,
to simplify the equation (A.7) and (A.8), the thrust from the propulsion system is
assumed to act along the XB body axis and through the c.g., thus give Ty = Tz = 0.
The angular momentum due to the propulsion system is also neglected therefore
there is only aerodynamic (i.e. Laero, Maero, and Naero) moment acting on an aircraft.
The aerodynamic forces and moments acting on the aircraft can be expressed in
terms of nondimensional coefficients:

Xaero

Yaero

Zaero

 = q̄S

CXCY
CZ


Laero

Maero

Naero

 = q̄S

 bClc̄Cm
bCn


q̄ =

1

2
ρV 2 (A.9)

where CX , CY , CZ , Cl, Cm, and Cn are the aerodynamic coefficients that primarily
are a function of the Mach number, Reynolds number, angle of attack, and sideslip
angle; They are secondary functions of the time rate of change of angle of attack and
sideslip, and the angular velocity of the aircraft. q̄ is the dynamic pressure, V is the
magnitude of the air-relative velocity (also called the airspeed), ρ is the air density,
S is the wing reference area, b is the wing span, and c̄ is the mean aerodynamic
chord of the wing.

Substituting the preceding expressions, including (A.4), into the dynamic equation
(A.7) and (A.8) gives,
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A.2 Aircraft Equation of Motion

Force equations:

u̇ = rv − qw +
q̄S

m
CX − g sin θ +

T

m

v̇ = pw − ru+
q̄S

m
CY + g cos θ sinφ

ẇ = qu− pv +
q̄S

m
CZ + g cos θ cosφ (A.10)

Moment equations:

ṗ− Ixz
Ix
ṙ =

q̄Sb

Ix
Cl −

(Iz − Iy)
Ix

qr +
Ixz
Ix
qp

q̇ =
q̄Sc̄

Iy
Cm −

(Ix − Iz)
Iy

pr +
Ixz
Iy

(
p2 − r2

)
ṙ − Ixz

Iz
ṗ =

q̄Sb

Iz
Cn −

(Iy − Ix)
Iz

pq − Ixz
Iz
qr (A.11)

where T = Tx. However, there are a lot more variety of equations that are interesting
and often used in flight simulation application such as by differentiating (A.2) with
respect to time gives,

V̇ =
1

V
(uu̇+ vv̇ + wẇ)

α̇ =

(
uẇ − wu̇
u2 + w2

)
β̇ =

(u2 + w2) v̇ − v (uu̇+ wẇ)

V 2
√
u2 + w2

(A.12)

Substituting in (A.12) for u̇, v̇, and ẇ form (A.10), and for u, v, and w from (A.2),
gives the wind axes force equations as,

V̇ =− q̄S

m
CDW +

T

m
cosα cos β + g (cosφ cos θ sinα cos β)

+ g (sinφ cos θ sin β − sin θ cosα cos β)

α̇ =− q̄S

mV cos β
CL + q − tan β (p cosα + r sinα)− T sinα

mV cos β

+
g

V cos β
(cosφ cos θ cosα + sin θ sinα)

β̇ =
q̄S

mV
CYW + p sinα− r cosα +

g

V
cos β sinφ cos θ

+
sin β

V

(
g cosα sin θ − g sinα cosφ cos θ +

T cosα

m

)
(A.13)

where

CL = −CZ cosα + CX sinα

CD = −CX cosα− CZ sinα

CDW = CD cos β − CY sin β

CYW = CY cos β + CD sin β (A.14)
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A.2 Aircraft Equation of Motion

CL and CD are lift coefficient and drag coefficient in stability axes respectively,
whereas they are obtained from body axes components by rotation through α and
β. The positive sign convention of CL and CD are directed along the −ZS and −XS

stability axes, respectively. Similarly, CDW and CYW are lift coefficient and side force
coefficient in wind axes respectively. The positive sign convention of CDW and CYW
are directed along the −XW and +YW stability axes, respectively.

Furthermore, the Rotational kinematic equations relate the rate of change of the
Euler angles to the body axis components of angular velocity.

p = φ̇− ψ̇ sin θ

q = θ̇ cosφ+ ψ̇ sinφ cos θ

r = ψ̇ cosφ cos θ − θ̇ sinφ (A.15)

or

φ̇ = p+ tan θ (q sinφ+ r cosφ)

θ̇ = q cosφ− r sinφ

ψ̇ =
q sinφ+ r cosφ

cos θ
(A.16)

Navigation equations are most often used to calculate the position of the aircraft. Its
dynamics can be determined using a transformation matrix LV B, that transforms
an arbitrary three dimensional vector at body axes to earth axes or vehicle-carried
earth axes:

LV B = LBV
−1

=

cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ


(A.17)

ẋE = u cosψ cos θ + v (cosψ sin θ sinφ− sinψ cosφ)

+ w (cosψ sin θ cosφ+ sinψ sinφ)

ẏE = u sinψ cos θ + v (sinψ sin θ sinφ+ cosψ cosφ)

+ w (sinψ sin θ cosφ− cosψ sinφ)

ḣ = u sin θ − v cos θ sinφ− w cos θ cosφ (A.18)

where h is altitude (height above the ground), = −ZE. Other commonly used
variables, i.e. azimuth or heading angle (χ), and the flight path angle (γ), which
can be computed directly from the aircraft’s state. These are defined as,

χ = β + ψ

γ = arcsin
ḣ

V
= θ − α (A.19)
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A.3 Jindivik Nonlinear Mathematical Model

A.3 Jindivik Nonlinear Mathematical Model

The Jindivik UAV, shown in Figure 1.1, is a remotely piloted fixed wing aircraft,
which has been used as an aerial target drone in Australia and the UK for 50 years.
Its specifications are given in Table A.1. Based on manufacturer’s (Australian Gov-
ernment Aircraft Factory) wind tunnel data and subsequent flight trial validation, a
6-DOF nonlinear mathematical model of the UAV has been developed in the MAT-
LAB Simulink environment by Fitzgerald [41], shown in Figure A.2. This section
only gives a brief overview of the Jindivik nonlinear model; for further details refer
to [41] and [42].

The aerodynamic model of the Jindivik nonlinear model is only valid within the
following flight condition:

• Altitude between sea level and 20,000 ft.

• True airspeed between 180 knots and 530 knots.

• Bank angles up to 80◦.

• Normal acceleration in the range -2g to +8g.

• Maximum Mach number 0.86.

A.3.1 Aerodynamic Force and Moment Models

The aerodynamic forces (i.e. Xaero, Yaero, and Zaero) and moments (i.e. Laero, Maero,
and Naero) acting on the vehicle are computed using (A.9). Following [42], (A.9) can
be written further as

• Axial drag force due to aerodynamics, Xaero,

Xaero =
1

2
ρV 2S[CLwb

sin(α)−CD cos(α)]+
1

2
ρV 2ST [CLT sin(αT −αR)] (A.20)

where CD is the drag coefficient, CLT is the tailplane lift coefficient, CLwb
is

the wing-body lift coefficient, S = 76 ft2 is the wing area, ST = 14 ft2 is the
tailplane area, αR = −0.5 deg is the tailplane rigging angle, and αT is the
tailplane angle of attack. αT is defined as

αT = α + αR − ε+ q
lT
V

+ lagT (A.21)

where lT = 9.49 ft is the tail moment arm that is measured from wing quarter
chord to tailplane quarter chord, ε is the downwash angle, and lagT is the
tailplane angle of attack lag angle due to downwash. ε is defined as

ε = ε0 +
∂ε

∂α
(α− α0) (A.22)
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Table A.1: The Jindivik UAV specifications

Description Details
fuselage length 28 ft 8.75 in
wing span 18 ft 9.6 in
wing area 76 ft2

wing chord 4 ft
maximum height 6 ft 9.85 in
weight 108.7 slug*

inertia Ix 2,228 slug-ft2*

inertia Iy 1,789 slug-ft2*

inertia Iz 3,934 slug-ft2*

speed range 200 - 450 knot
service ceiling 18000 ft
range 820 miles
propulsion Bristol Siddeley Viper

Mk.201 turbojet; 1800 lbf

* with fuel of 100 gallon

where α0 is the zero lift angle of attack, ε0 is the downwash angle at zero angle
of attack, and ∂ε/∂α is the rate of change of downwash angle with respect to
angle of attack of the flexible aircraft. ε0 is defined as

ε0 = ε0δf=1
+

(ε0δf=20
− ε0δf=1

19

)
(δf − 1) (A.23)

where ε0δf=1
and ε0δf=20

are the downwash angles at zero angle of attack with

flaps deflection δf = 1 and δf = 20 respectively from which they are defined
as

ε0δf=1
= 0.0323− 0.00611

β2
pg

+
3.5× 10−5

β8
pg

rad (A.24)

ε0δf=20
= −0.0909 rad (A.25)

where the Prandtl-Glauert factor, βpg, is defined as

βpg =
√

1 +M2, M =
V

a
(A.26)

where M and a are the Mach number and the speed of sound, respectively.
∂ε/∂α is defined as

∂ε

∂α
= Kff2

∂ε

∂α

∣∣∣∣
R

(A.27)

165



A.3 Jindivik Nonlinear Mathematical Model

E
a

rt
h

P
o

si
tio

n
s

In
te

rn
a

tio
n

a
l
S

ta
n

d
a

rd
A

tm
o

sp
h

e
re

S
u

m
o

f
M

o
m

e
n

ts

S
u

m
o

f
F

o
rc

e
s

R
o

lls
-R

o
yc

e
V

ip
e

r

M
k

2
0

1
T

u
rb

o
je

t

N
e

w
Ji

n
d

iv
ik

M
k

4
A

A
e

ro
d

yn
a

m
ic

s

M
o

d
e

lI
n

fo

M
o

n
O

c
t

2
8

1
7

:3
8

:4
9

2
0

0
2

P
io

F
itz

g
e

ra
ld

(b
.f

it
z
g

e
ra

ld
.2

0
0

1
@

cr
a

n
fie

ld
.a

c
.u

k)

1
.1

5
5

8

Ji
n

d
iv

ik
M

k
4

A
w

it
h

R
u

d
d

e
r

a
n

d
T

h
ru

st
V

e
c
t

T
h

u
M

a
y

0
6

1
1

:0
9

:1
4

2
0

1
0

t
=

0

G
ra

vi
ty

F
lig

h
t

C
o

n
tr

o
l

S
ys

te
m

E
u

le
r

P
a

ra
m

e
te

rs

E
u

le
r

A
n

g
le

s

E
a

rt
h

V
e

lo
ci

tie
s

N E

D

D
y
n

a
m

ic
s

(l
a

rg
e

p
e

rt
u

b
a

ti
o

n
)

D
a

ta
S

to
re

D
C

M
E

a
rt

h
F

ro
m

B
o

d
y

A
xe

s

A
u

to
p

ilo
t

C
o

n
tr

o
l

P
a

n
e

l

ra
te

s

D
C

M
E

B

D
C

M
E

B

c
g

m
a

s
s

m
a

s
s

In
e

rt
ia

E
u

le
r

A
n

g
le

s

q
d

y
n

M
a

c
h

F
ig

u
re

A
.2

:
T

h
e

J
in

d
iv

ik
n
on

li
n
ea

r
m

o
d
el

w
it

h
it

s
au

to
p
il
ot

in
M

A
T

L
A

B
S
im

u
li
n
k

en
v
ir

on
m

en
t

[4
1]

166



A.3 Jindivik Nonlinear Mathematical Model

where Kff2 is the flexible factor applied to the rigid body rate of change of
downwash with respect to angle of attack and it is a function of Mach number
and altitude as presented in Fitzgerald [42, Figure 3-6]. The rate of change of

downwash angle with respect to angle of attack of the rigid aircraft, ∂ε
∂α

∣∣∣
R

, is

defined as

∂ε

∂α

∣∣∣∣
R

=
∂ε

∂αδf=1

+

 ∂ε
∂αδf=20

− ∂ε
∂αδf=1

19

 (δf − 1) (A.28)

where ∂ε
∂αδf=1

and ∂ε
∂αδf=20

are the rate of change of downwash angle with respect

to angle of attack with flaps deflection δf = 1 and δf = 20 respectively in which
they are defined as

∂ε

∂αδf=1

= a1wb

∂ε

∂CL
(A.29)

∂ε

∂αδf=20

= 0.412 (A.30)

where a1wb
is the wing-body combination lift curve slope of the flexible aircraft

and ∂ε/∂CL is the rate of change of downwash angle with lift coefficient. a1wb

is defined as
a1wb

= Kff1a1wbR
(A.31)

where Kff1 is the flexibility factor applied to the rigid wing-body combination
lift curve slope and it is a function of Mach number and altitude as presented
in Fitzgerald [42, Figure 3-5]. The wing-body combination lift curve slope of
the rigid aircraft, a1wbR

, is defined as

a1wbR
= a1wbRδf=1

+

(
a1wbRδf=20

− a1wbRδf=1

19

)
(δf − 1) (A.32)

a1wbRδf=1
= 5.05 rad-1, a1wbRδf=20

= 4.9 + 4.4(1− βpg) rad-1 (A.33)

∂ε/∂CL is defined as

∂ε

∂CL
= 0.0815− 4× 10−5

β8
pg

(A.34)

lagT is defined as

lagT = α̇
∂ε

∂α

lT
V

(A.35)

In addition, the lift and drag coefficients are defined as

CL = CLwb
+
ST
S
CLT + CLs (A.36)

CD = CDi + CDZ0
+ CDRe

+ CDM + CDCL>CLcrit
+ CDs + CDuc (A.37)

where CLs is the lift coefficient increment due to the deflection of spoilers [42,
pages 26-29], CDs is the drag coefficient increment due to symmetric spoiler
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deflection [42, pages 30-31], CDuc is the drag coefficient increment due to the
extension of undercarriage [42, pages 31-32], CDi is the induced drag coefficient,
CDZ0

is the constant Reynolds number profile drag coefficient, CDRe
is the

Reynolds number dependent profile drag coefficient, CDM is the drag coefficient
due to Mach number, CDCL>CLcrit

is the increment of drag coefficient due to

the lift coefficient, CL, being greater than the critical lift coefficient, CLcrit
.

CLwb
is defined as

CLwb
= a1wb

(αwb − α0) (A.38)

αwb = α + αw (A.39)

where αwb is the wing-body combination angle of attack and αw = 1◦ is the
wing setting angle. CLT is defined as

CLT = a1TαT + a2T δe (A.40)

a1T = 2.4869 + 1.0314(1− βpg) rad-1 (A.41)

a2T = 1.6331 + 0.4298(1− βpg) rad-1 (A.42)

where a1T is the tailplane lift curve slope and a2T is the elevator effectiveness.
CDi + CDZ0

is defined as

CDi+CDZ0
= [CDi+CDZ0

]δf=1+

(
[CDi + CDZ0

]δf=20 − [CDi + CDZ0
]δf=1

19

)
(δf−1)

(A.43)
where [CDi +CDZ0

]δf=20 and [CDi +CDZ0
]δf=1 are a function of CL as presented

in [42, Figure 3-7]. CDRe
is defined as

CDRe
= 0.133− 0.03134 log(Re) + 0.001762 log(Re)2 (A.44)

where the Reynolds number, Re, is defined as

Re =
ρV c

η
(A.45)

where c = 4 ft is the wing chord and the dynamic viscosity, η, is defined as

η = 3.045× 10−8 T 1.5

T + 110.4
(A.46)

where T is the outside air temperature (at altitude) in kelvin. CDM is defined
as

CDM = k3

(
1

βpg − 1

)
+ k4

(
1

βpg

− 1

βpg1

)
(A.47)

where k3 = 0.004, k4 = 0 if M < Mcrit else k4 = 0.065, Mcrit is the aircraft
Mach number in which the airflow first reaches the speed of sound, and the
Prandtl-Glauert factor at the critical mach number, βpg1, is defined as

βpg1 =
√

1−Mcrit (A.48)

Mcrit = 0.86− 0.2CL + 0.024C2
L (A.49)
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CDCL>CLcrit
is defined as

CDCL>CLcrit
= k2

(
C2
L − C2

Lcrit

)
if CL > CLcrit

else CDCL>CLcrit
= 0 (A.50)

where k2 = 0.1 and CLcrit
= 0.6

• Sideforce due to aerodynamics, Yaero,

Yaero = ρV SCY (A.51)

where the sideforce coefficient, CY , is defined as

CY = CYpp
b

2
+ CYvv + CYδr

1

2
V δr (A.52)

where b = 18.8 ft is the wingspan, CYp = −0.0215 is the sideforce coefficient
due to roll rate, CYv = −0.38 is the sideforce coefficient due to lateral velocity,
and CYδr = 0.1176 is the sideforce coefficient due to rudder deflection.

• Normal lift force due to aerodynamics, Zaero,

Zaero = −1

2
ρV 2S[CLwb cos(α) + CD cos(α)]− 1

2
ρV 2ST [CLT sin(αT − αR)]

(A.53)

• Rolling moment due to aerodynamics, Laero,

Laero = ρV SCl
b

2
(A.54)

where the rolling moment coefficient, Cl, is defined as

Cl =
(
Clrr + Clpp

) b
2

+ ClδaV δa + ClvV β + ClδrV δr (A.55)

where Clr , Clp = −0.57, Clδa , Clv , and Clδr = −0.06215 are the rolling moment
coefficients due to yaw rate, roll rate, aileron deflection, lateral velocity, and
rudder deflection respectively, and

Clr = 0.459− 0.06CL (A.56)

Clδa = −0.193

(
1− V 2

V 2
δaR

)
(A.57)

Clv = −0.032− 0.124CL (A.58)

where VδaR = 630 kts is the aileron reversal speed.

• Pitching moment due to aerodynamics, Maero,

Maero =
1

2
ρV 2SCm +

1

2
ρV 2ST [−(lT + (0.25− h0)c̄)(CLT cos(αT − αR))

− (Twl − hwl)CLT sin(αT − αR)] (A.59)
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where c̄ = 4 ft is the mean aerodynamic chord, Twl = 1.4362 ft is the height of
the tailplane from the waterline, hwl = 0 is the height of the centre of gravity
from the waterline, h0 is the aerodynamic centre position as a percentage of the
mean aerodynamic chord, and the pitching moment coefficient, Cm, is defined
as

Cm = Cm1/4
+ CZwb

(0.25− hcg) + CXwb

(
hwl − c1/4wl

c̄

)
(A.60)

where c1/4wl
= 0 is the height of the quarter chord from the waterline, hcg

is the centre of gravity position as a percentage of the mean aerodynamic
chord [42, Figure 3-20], CXwb

is the wing-body combination coefficient of axial
force, CZwb

is the wing-body combination coefficient of normal force, and Cm1/4

is the quarter chord pitching moment coefficient, and

CXwb
= CLwb

sinα− CD cosα (A.61)

CZwb
= −CLwb

cosα− CD sinα (A.62)

Cm1/4
= CLwb

(0.25− h0) + Cm0 (A.63)

where Cm0 is the zero lift pitching moment. h0 and Cm0 are defined as

h0 = h0δf=1
+

(
h0δf=20

− h0δf=1

19

)
(δf − 1) (A.64)

Cm0 = Cm0δf=1
+

(
Cm0δf=20

− Cm0δf=1

19

)
(δf − 1) (A.65)

where h0δf=1
and h0δf=20

= 0.12 are the aerodynamic centre position as a per-

centage of mean aerodynamic chord with flaps deflection δf = 1 (as presented
in [42, Figure 3-8]) and δf = 20 respectively, and Cm0δf=1

and Cm0δf=20
=

−0.174 are the zero lift pitching moment with flaps deflection δf = 1 and
δf = 20 respectively. Cm0δf=1

is defined as

Cm0δf=1
= 0.009− 0.024

βpg

(A.66)

• Yawing moment due to aerodynamics, Naero,

Naero = ρV SCn
b

2
(A.67)

where the yawing moment coefficient, Cn, is defined as

Cn =
(
Cnrr + Cnpp

) b
2

+ CnδaV δa + CnvV β + CnδrV δr (A.68)

where Cnr = −0.1545, Cnp , Cnδa , Cnv , and Cnδr = 0.0127 are the yawing mo-
ment coefficients due to yaw rate, roll rate, aileron deflection, lateral velocity,
and rudder deflection respectively, and

Cnp = 0.0209− 0.125CL (A.69)

Cnδa = −0.015 + 0.05CL (A.70)

Cnv = Cnvδf=1
+

(
Cnvδf=20

− Cnvδf=1

19

)
(δf − 1) (A.71)
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where Cnvδf=1
and Cnvδf=20

are the coefficient of yawing moment due to lateral

velocity with flaps deflection δf = 1 and δf = 20 respectively, and

Cnvδf=1
= 0.0855− 0.0725C3

L

|CL|
(A.72)

Cnvδf=20
= 0.105− 0.032C3

L

|CL|
(A.73)

A.3.2 Thrust Model

The Bristol Siddeley Viper Mk.201 turbojet engine has been used by the Jindivik
Mk 4A UAV as a propulsion system. Fitzgerald [41, 42] presented a mathematical
model of this turbojet engine as shown below; thrust, T , is defined as

T = TG −Dint (A.74)

TG = kTGP

(
TGnd

− Pintratio

Pintratio

)(
1

144

)
(A.75)

Dint =
ṁV

g
(A.76)

where TG is the gross thrust, kTG = 146.3 is the gross thrust factor, P is the
atmospheric pressure, TGnd

is the non dimensional gross thrust as a function of
intake pressure ratio, Pintratio

, and non dimensional engine speed, Nnd, as presented
in [42, Figure 3-18], Dint is the engine intake drag, and ṁ is the engine mass flow.
Pintratio

is defined as

Pintratio
=

1

PrecPratio

(A.77)

Pratio =
(
1 + 0.2M2

)3.5
(A.78)

if M > 0.5, Prec = 0.9433− 0.007(M − 0.5)

else, Prec = kPrec(0.825 + 0.00047V ) (A.79)

where Prec is the engine pressure recovery, Pratio is the pressure ratio, and kPrec = 0.98
is the intake pressure recovery factor. Nnd is defined as

Nnd =
N1

N1max

√
288.2

Tintake

(A.80)

where N1 is the engine speed, N1max = 13, 800 is the engine maximum speed, and
the engine intake temperature, Tintake, is defined as

Tintake = T (1 + 0.2M2) (A.81)

ṁ is defined as

ṁ = kṁkh
Pintake√
Tintake

(A.82)
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where kṁ is the mass flow coefficient, kh is the altitude correction factor as a function
of engine intake pressure, Pintake, as presented in [42, Figure 3-17]. Pintake is defined
as

Pintake =
P

144

(
1 + 0.2M2

)3.5
(A.83)

kṁ is defined as

if
N1

14000

√
288.2

Tintake

> 1.03, kṁ = 52

else, kṁ = 61.9

(
N1

14000

√
288.2

Tintake

)
− 11.76 (A.84)

In addition, the engine idle speed, N1idle, is defined as

N1idle =

[
0.418 + 0.34M + (0.178− 0.15M)

h

20000

]
N1max (A.85)

A.3.3 Sensor Model

The sensors model implemented in the Jindivik Simulink model [41] includes angle
of attack probe, sideslip vane, accelerometers, rate gyros, attitude gyros, static and
dynamic pressure sensors, Mach meter, altimeter and velocity meters.

• An angle of attack probe is used to measure an angle of attack of the vehicle
and is modelled as

αprobe(s)

αadj(s)
=

1

0.073s+ 1
(A.86)

αadj = αcg −
lpq

V
(A.87)

where αcg is the angle of attack at the centre of gravity that is computed using
(A.2), αadj is the adjusted angle of attack due to the upwash induced by pitch
rate, αprobe is the angle of attack output from the probe, and the distance from
the centre of gravity to the probe, lp, is defined as

lp = 7.43− hcgc (A.88)

The probe output, αprobe, is limited in the range of +57.3◦ to −14.3◦.

• An sideslip vane is used to measure a sideslip angle of the vehicle and is
modelled as

βvane(s)

βcg(s)
=

1

0.073s+ 1
(A.89)

where βcg is the angle of sideslip at the centre of gravity that is computed
using (A.2). Note that, the factors such as offset from the centre of gravity
and local aerodynamic influences are not modelled. The output of the sideslip
vane is limited to ±30◦.
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• Accelerometers are used to measure translational accelerations of the vehicle
and are modelled as

axacc(s)

axadj
(s)

=
ayacc(s)

ayadj
(s)

=
azacc(s)

azadj
(s)

=
34.5572

s2 + 2(0.707)(34.557)s+ 34.5572
(A.90)axadj

ayadj

azadj

 =

axcg

aycg

azcg

+

−(q2 + r2) (pq − ṙ) (pr + q̇)
(pq + ṙ) −(p2 + r2) (qr − ṗ)
(pr − q̇) (qr + ṗ) −(p2 + q2)

xacc

yacc

zacc

 (A.91)

axcg

aycg

azcg

 =

u̇+ qw − rv
v̇ + ru− pw
ẇ + pv − qu

 (A.92)

where axcg , aycg , and azcg are the X, Y, and Z-body axis translational accel-
erations at the centre of gravity respectively that are computed using (A.92).
axadj

, ayadj
, and azadj

are the adjusted X, Y, and Z-body axis translational ac-
celerations respectively due to the accelerometers are offset from the centre
of gravity. axacc , ayacc , and azacc are the X, Y, and Z-body axis translational
accelerations output from the accelerometers respectively which axacc and ayacc

are limited to ±4 g and azacc is limited to ±10 g. xacc, yacc and zacc are the X,
Y, and Z-body axis distance from the centre of gravity to the accelerometers.

• Rate gyros are used to measure body axis roll, pitch, and yaw angular rates
of the vehicle and are modelled as

pgyro(s)

p(s)
=

902

s2 + 2(0.8)(90)s+ 902
(A.93)

qgyro(s)

q(s)
=
rgyro(s)

r(s)
=

2002

s2 + 2(0.89)(200)s+ 2002
(A.94)

where p, q, and r are the body axis roll, pitch, and yaw angular rates respec-
tively that are computed using (A.11). pgyro, qgyro, and rgyro are the body axis
roll, pitch, and yaw angular rate outputs from the rate gyros which pgyro is
limited to ±300◦ while qgyro and rgyro are limited to ±100◦.

• Attitude Gyros are used to measure roll, pitch, and yaw angles of the vehicle
and are modelled as

φgyro(s)

φ(s)
=
θgyro(s)

θ(s)
=
ψgyro(s)

ψ(s)
=

1

0.025s+ 1
(A.95)

where φ, θ, and ψ are the roll, pitch, and yaw angles respectively that are
computed using (A.16). φgyro, θgyro, and ψgyro are the roll, pitch, and yaw
angle outputs from the attitude gyros which φgyro and ψgyro are limited to
±180◦ and θgyro is limited to ±90◦.

• Static and dynamic pressure sensors are used to measure static pressure of the
atmosphere and dynamic pressures of the air flow respectively. The pressure
sensors are modelled as

Ppress(s)

P (s)
=
q̄press(s)

q̄(s)
=

1

0.025s+ 1
(A.96)
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where P and q̄ are the static and dynamic pressures respectively that are com-
puted following the International Standard Atmosphere [42, page 47]. Ppress

and q̄press are the static and dynamic pressure output from the static and
dynamic pressure sensors respectively.

• Mach meter is used to measure Mach number of the air speed and is modelled
as

Mmeter(s)

M(s)
=

1

0.025s+ 1
(A.97)

where M is the Mach number which is computed following the International
Standard Atmosphere [42, page 47]. Mmeter is the Mach number output from
the Mach meter.

• Altimeter is used to measure altitude of the vehicle and is modelled as

hmeter(s)

h(s)
=

1

0.025s+ 1
(A.98)

where h is the altitude which is computed using (A.18). hmeter is the altitude
output from the altimeter.

• Velocity meter is used to measure true air speed of the vehicle and is modelled
as

Vmeter(s)

V (s)
=

1

0.03s+ 1
(A.99)

where V is the true air speed which is computed using (A.12). Vmeter is the
true air speed output from the velocity meter.

A.3.4 Actuator Model

Actuator models of elevator, aileron, rudder, trailing edge flap, thrust vectoring pad-
dles, and undercarriage have been implemented in the Jindivik Simulink model [41].
However, in this thesis, the trailing edge flap, thrust vectoring paddles, and under-
carriage are not used in which the flap angle is seted to 0◦ and the undercarriage is
in the retracted position.

• Elevator actuator dynamics are modelled as

δeres(s)

δecmd
(s)

=
30.742

s2 + 2(0.509)(30.74)s+ 30.742
(A.100)

where δeres and δecmd
are the elevator angle command and response respectively.

The rate limit is ±40◦/sec and the position limit is 15◦ to −25◦.

• Aileron actuator dynamics are modelled as

δares(s)

δacmd
(s)

=
752

s2 + 2(0.59)(75)s+ 752
(A.101)

where δares and δacmd
are the aileron angle command and response respectively.

The rate limit is ±100◦/sec and the position limit is ±40◦.
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• Rudder actuator dynamics are modelled as

δrres(s)

δrcmd
(s)

=
72.12

s2 + 2(0.69)(72.1)s+ 72.12
(A.102)

where δrres and δrcmd
are the rudder angle command and response respectively.

The rate limit is ±82◦/sec and the position limit is ±35◦.

A.4 Open-Loop Characteristics of the Jindivik Non-

linear Model

To investigate open-loop dynamic characteristics of the Jindivik nonlinear model [41]
about one particular flight condition, two major lateral and longitudinal modes of
the vehicle can be determined using MATLAB functions, trim and linmod. In this
section, we consider the following flight configuration: (i) fuel 100 gallons, (ii) flap
angle 0◦, (iii) the undercarriage in the retracted position, and (iv) wings level and
constant altitude 10,000 ft and airspeed 506.3 ft/s straight flight condition. As a
result of trim and linmod, the state-space system forms of these two modes are,

(i) a longitudinal LTI model:
u̇
ẇ
q̇

θ̇

 =


0.0028 0.0138 1.8610 −32.1739
−0.1353 −1.5112 504.9849 0.1204
−0.0079 −0.0307 −0.7974 0

0 0 1.0000 0



u
w
q
θ

+


−3.4470 0.00369
−48.1562 0
−28.1521 0

0 0

[ δeδrpm

]
(A.103)

(ii) a lateral LTI model:
v̇
ṗ
ṙ

φ̇

 =


−0.1182 −2.0208 −506.3395 32.1739
−0.0171 −1.5279 1.1940 0
0.0132 −0.0113 −0.2345 0

0 1.0000 −0.0037 0



v
p
r
φ

+


0 18.5577

−27.8679 −8.9740
−0.3003 1.0384

0 0

[δaδr
]

(A.104)
In addition, Table A.2 presents the mode characteristics of the determined longitu-
dinal and lateral Dynamics. It can be seen that the Phugoid and spiral modes are an
open-loop unstable. Moreover, Figures A.3-A.6 show open-loop dynamic responses
of the vehicle due to the step inputs of elevator, engine speed, aileron, and rudder.
Obviously, the determination of natural frequency ωn of the short period mode from
Figures A.3–b and A.3–c, that is 3.83 (rad/s), agrees quite well with the presented
data in Table A.2. Figures A.5–a, A.6–c, and A.6–e also show that the open-loop
transfer functions of v(s)/δa(s), r(s)/δr(s), and ψ(s)/δr(s) are non-minimum phase
zero. Furthermore, the ωn = 2.60 (rad/s) of the Dutch roll mode that is determined
from Figures A.5–a, A.6–a, and A.6–c, agrees quite well with the presented data in
Table A.2.
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Figure A.3: Aircraft open-loop dynamic responses to 0.1 degree elevator step
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178



A.4 Open-Loop Characteristics of the Jindivik Nonlinear Model

0 1 2 3 4 5 6
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) v(ft/s)

0 1 2 3 4 5 6
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) p(deg/s)

0 1 2 3 4 5 6
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Non-Minimum Phase Zero
2.412 s

(c) r(deg/s)

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

2

2.5

(d) φ(deg)

0 1 2 3 4 5 6
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(e) ψ(deg)

0 1 2 3 4 5 6
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

(f) δr(deg)

Figure A.6: Aircraft open-loop dynamic responses to 0.1 degree rudder step
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Table A.2: Mode characteristics of the determined longitudinal and

lateral dynamics*

Mode Pole Damping (ξ) Frequency (rad/s)
Phugoid Mode −0.117, 0.129 1, −1 0.117, 0.129
Short Period Mode −1.16± 3.93i 0.283 4.09
Spiral Mode 0.0336 −1 0.0336
Roll Mode −1.63 1 1.63
Dutch Roll Mode −0.140± 2.61i 0.0534 2.62

* about wings level and constant altitude and airspeed flight condi-
tion
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Appendix B

UAV aerodynamic model
identification from
a racetrack manoeuvre

The determination of aircraft stability and control derivatives from wind-tunnel
and computational fluid dynamics data can be an expensive and time-consuming
procedure. This appendix shows how linear system identification techniques can
be used to obtain this information with sufficient accuracy to design a satisfactory
flight control system for an aerial target of the Royal Thai Air Force. Just one flight
was undertaken, using a racetrack manoeuvre, to provide the data for identification
and validation. The system parameters were identified and a flight control system
was designed. Hardware-in-the-loop simulation was used to perform initial tests on
the controller and to test the control system hardware and software. A second flight
was performed to test the resulting controller, and a satisfactory performance was
obtained without the need to adjust the controller gains.

B.1 Introduction

Flight control systems are typically designed and validated using six-degree-of-
freedom (6-DOF) dynamic models of the aircraft. Traditionally, the model pa-
rameters are determined using wind tunnel tests by measuring aerodynamic forces
and moments introduced on an aircraft. Furthermore, aircraft moments of inertia
are calculated and the aircraft engine model determined from experimental data.
However these standard processes are both expensive and time-consuming, and may
not be affordable or practicable for many UAV applications.

System identification techniques provide an alternative approach that can be used to
estimate stability and control derivatives or aerodynamic coefficients of both manned
and unmanned aircrafts from flight data [48, 53, 57, 78]. Typical tasks of comprising
the system identification process are experiment design, data compatibility analysis,
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B.1 Introduction

model structure determination, parameter estimation, and model validation [58, 69,
78]. An important part of the experiment design is to select input waveforms that are
used in the excitation of maneuver suitable for model structure determination and
parameter estimation because the shape of an input signal has a major impact on
the accuracy of estimated parameters from dynamic flight measurements [69, 74, 78].

A data compatibility analysis is usually applied to the measured aircraft responses in
order to remove bias and scale factor errors and reconstruct the measured response
data [28, 58, 78]. Having checked the data compatibility, the model structure deter-
mination [22, 76, 71] and parameter estimation [28, 53, 57, 72] can be executed in
order to determine the most appropriate form of the equations to describe the mea-
sured responses and to estimate the numerical values of the coefficients appearing
in the equations, respectively.

The model validation is the last step in the identification process. The identified
model should have parameters that are physically reasonable values with acceptable
accuracy and it should have good prediction capabilities. For these reasons, the pre-
dicted responses are usually compared with a separate set of the measured responses
that is not used in the identification process. If the validation process is successful
then the analysis is stopped. Otherwise, the identification process is repeated using
a different equation structure or parameter estimation technique. In severe cases,
the whole process may have to be performed again with a different shape of the
input waveform [58, 69, 75, 78].

In practice, to obtain accurate and reliable results from system identification tech-
niques, an aircraft is typically required to fly about a trim condition and to manoeu-
vre by deflecting each control surfaces deflections at a time with a suitable input
waveform of appropriate amplitude [58] in order to to excite certain dynamic modes.
A steady wings-level flight condition is generally most suitable. The inputs can be
optimal input waveforms [69, 70, 74], 3-2-1-1 input waveform [28, 73, 84], etc. Klein
[58] suggests that manoeuvres about trim should not exceed angles of attack and
sideslip of ±5◦, angular rates of ±20◦/s, and translational accelerations of ±0.3 g.

A number of difficulties arise when system identification techniques are applied to
certain UAVs. Before the automatic control system is designed, the UAV must
be flown as a remotely piloted vehicle. Without pilot-eye-view video images and
telemetered data, these requirements can be difficult and time-consuming to perform
by a remote ground pilot using only radio control; this is especially the case for fast,
large and heavy UAVs, because the remote pilot does not receive the same motion
cues that they would if onboard the aircraft. Furthermore extensive test ranges
must be used which is very costly.

In this thesis, the aerodynamic and propulsion coefficients of a RTAF aerial target
were identified from a racetrack manoeuvre. Thus the aircraft is always in visual
contact with the remote pilot, and this reduces the range requirements. In addition,
ground pilots are generally familiar with the racetrack pattern which is easy to
perform. However, the aircraft is not always flying straight and level which is the
normal condition for aircraft parameter identification methods. Moreover, due to the
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B.2 Flight System Configuration

Figure B.1: RTAF aerial target

schedule and limited budget of this work, only one flight test for identification was
undertaken. The study shows that, for this vehicle, the necessary parameters can
be identified with sufficient accuracy to design a satisfactory flight control system.

B.2 Flight System Configuration

The RTAF aerial target is a conventional fixed wing aircraft, shown in Figure B.1.
It is powered by an AR731 rotary engine from UAV Engines Ltd. The elevator and
aileron deflections and throttle setting are effected by Futaba S9206 servo motors.
Note that the aerial target does not have a rudder. Its specifications are given in
Table B.1.

B.2.1 Flight Control Computer

The flight computer board was developed especially for this work by the Science
and Weapon System Development Center (SWSDC), RTAF, shown in Figure B.2.
This board is an embedded flight computer which does not have any operating
system. It is equipped with only three main chips: an Intel 80C196MH with a 16
MHz clock speed as a processor, a STMicroelectronics PSD4235G2 as a flash in-
system programmable (ISP) peripheral, and a Texas Instruments TL16C554 as an
asynchronous communication element (ACE) peripheral. The number of chips has
been kept as low as possible so that the board is simple and reliable.

B.2.2 Avionic Instrumentation

High quality instrumentation was implemented for measuring the flight data. The
sampling rate of measurement and the type of sensor output signal were the main
criteria for selecting the vehicle instrumentations. As suggested by [58], the mea-
surement sampling rate was selected as 25fmax where fmax represents the maximum
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B.2 Flight System Configuration

Figure B.2: SWSDC flight controller

Table B.1: RTAF aerial target specifications

Description Details

Wing span (b) 3.21 m
Wing area (S) 1.57 m2

Wing chord (c̄) 0.547 m
Stabiliser span 1.25 m
Fuselage length 2.67 m

Maximum height 0.82 m
Weight (m) 65 kg
Speed range 40 - 150 knot
Endurance 45 minute

frequency of the rigid body modes. In general, the frequencies of the rigid-body
dynamic modes are below 2 Hz, which means that the sampling rate should be at
least 50 Hz.

The chosen instrumentation packages are listed in Table B.6. Digital output devices
were preferred because digital signals are less prone to electromagnetic interference
or radio frequency interference (RFI) than the analogue. In addition, the anti-
aliasing filters did not have to be designed and ADCs implemented. However the
mini air-data boom provides an analogue output. A second-order low-pass Butter-
worth filter [56] was used to for its anti-aliasing filters. The break frequency was
chosen as 5fmax as suggested in [58].

B.2.3 Radio Telemetry

High quality radio frequency telemetries (RF Modem) were also required in this
work. The RFM96W from Pacific Crest Corporation was used for the manual pi-
loted command uplink and was configured as 412.025 MHz, 9,600 baud for RS-232
interface, and 9,600 baud for the link rate. The data packages of the piloted com-
mand were transmitted (uplink) every 80 ms. The RFM96WSS (frequency hopping

184



B.2 Flight System Configuration

spread spectrum) from the same company was used for the flight data downlink and
was configured as 902-928 MHz, 19,200 baud for RS-232 interface and 37.5 kbps
raw data for the link rate. The flight data downlink packages were transmitted,
displayed and recorded every 40 msec on the ground station computer, shown in
Figure B.3 which also shows an overview of the flight system configuration of the
RTAF aerial target.

B.2.4 Racetrack manoeuvre

The flight data (racetrack manoeuvre) that was used for the identification are shown
in Figure B.4. Additional results can be seen in [31, 32]. Control surface deflec-
tion sensors were not used, however the control surface defections are generated by
simulation from a linear model of the servo dynamics and the known pulse-width
modulation (PWM) signals. A technique to identify a servo linear dynamic model
is presented in [54]. The Futaba S9206 linear dynamic model was assumed as a
first-order transfer function, 1/(τas + 1), where the time constant (actuator lag),
τa, was 20 ms. The measured maximum and minimum deflections of the elevator,
aileron, and throttle setting were equal to ±32.4◦, ±19.96◦ and 51◦ and 0◦ respec-
tively. The maximum angle rate magnitude of the Futaba S9206 servo is 315◦/s,
so the maximum rate magnitudes of the elevator, aileron, and throttle control were
determined as 126◦/s, 78.75◦/s, and 105◦/s repectively because the ratio of elevator,
aileron, and throttle deflections to servo output deflections were 1:2.5, 1:4, and 1:3
respectively.

The altitude and velocity along the body x-axis are calculated as [1]

h = 145442.2

[
1−

( SP

29.92126

)0.190261
]

(B.1)

u =
[
38.967854

√
T + 273.15

]√
5
(DP
SP

+ 1
)2/7

− 1 (B.2)

where h is the altitude in feet, SP is the static pressure in inches of mercury (inHg),
u is the velocity along the x-body axis in knots, T is the outside air temperature
(at altitude) in degrees Celsius, and DP is the dynamic pressure in inHg. To sim-
plify (B.2), T is assumed to be constant and equal to a measurement temperature
on the ground that was 27.6◦C.

Although the static pressure was not calibrated to perform altitude error corrections,
the calculated altitude using the static pressure data in (B.1) agreed quite well with
the global positioning system (GPS) altitude as shown in Figure B.4. In addition,
because of installation constraints, the mini air-data boom was installed on the wing
tip of the vehicle as shown in Figure B.3. Due to upwash, such a location can affect
the accuracy of the altitude and u-velocity measurements. It is a general issue for
small UAVs that the air-data probes can not always be placed in aerodynamically
optimal locations.
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Figure B.3: Flight system configuration
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Figure B.4: Flight data (racetrack pattern) for identification
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B.3 Aircraft Parameter Estimation

B.3.1 Model Postulation

Based on a priori knowledge about the standard 6-DOF equations of motion, the
aerodynamic force and moment coefficients can be calculated from flight data as
shown below [77]

CX =
max − T

q̄S
(B.3)

CY =
may
q̄S

(B.4)

CZ =
maz
q̄S

(B.5)

CL = CX sinα− CZ cosα (B.6)

CD = −CX cosα− CZ sinα (B.7)

Cl =
Ix
q̄Sb

[
ṗ− Ixz

Ix
(pq + ṙ) +

(Iz − Iy)
Ix

qr
]

(B.8)

Cm =
Iy
q̄Sc̄

[
q̇ +

(Ix − Iz)
Iy

pr +
Ixz
Iy

(p2 − r2)
]

(B.9)

Cn =
Iz
q̄Sb

[
ṙ − Ixz

Iz
(ṗ− qr) +

(Iy − Ix)
Iz

pq
]

(B.10)

Variables ax, ay, az, p, q, r, α, and q̄ are measured by the instrumentation shown in
Table B.6. Parameters m, S, b, and c̄ are given in Table B.1.

The inertias Ix, Iy, and Iz are measured by a torsional pendulum experiment, i.e.
the bifilar pendulum [103] and trifilar pendulum [6], using the relation

I =
mgT 2R2

4π2L
(B.11)

where I (kg-m2) is the measured moment of inertia, T (s) is the period of oscillation,
R (m) is the distance between cables and the distance from a cable to the center
of three cables in the case of bifilar and trifilar pendulums respectively, and L (m)
is the cable length. In this work, the trifilar pendulum was used to measure the
inertias of the aerial target and the measured values of Ix, Iy, and Iz, were equal to
16.79 kg-m2, 39.44 kg-m2, and 51.67 kg-m2 respectively. Ixz was assumed zero.

The engine thrust, T (N), as a function of engine rotational speed was measured at
steady engine rotational speed using a force gauge by letting the aerial target pull
the force gauge only in the x-axis direction. The results of the measurement are
shown in Figure B.5. A simple linear thrust model that fits the shown data was
determined as

T =
(
0.0716×RPM

)
− 188.6 (B.12)

where RPM is the measurement of engine rotational speed in revolutions per minute
and lies in the range 3500-7000.
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B.3.2 Flight Data Post-Processing

All of the measured aircraft response data have to be synchronized. However, as
shown in Table B.6, the sampling rates for each avionic instrumentation package
are different. Hence linear interpolation was used to re-sample the data at the same
frequency.

To remove the noise, e.g. process noise (atmospheric disturbance), engine vibration,
and sensor noise, that lie outside the bandwidth of the data of interest, the received
data were filtered using the standard MATLAB Filter Design Toolbox function [4],
butter (i.e. Butterworth infinite impulse response digital filter), since Butterworth
filters give a magnitude response that is maximally flat in the passband and is
monotonic overall. In addition, they sacrifice rolloff steepness for monotonicity in
the passband and stopband. In this work, the filters for V , u, φ, and θ were order
3 with a cutoff frequency of 2.35 Hz; the filters for ax, ay, az, p, q, r, α, and β were
order 3 with a cutoff frequency of 6.35 Hz, and the filters for δa, δe, and δth were
order 2 with a cutoff frequency of 4.75 Hz. A power spectral density of the filtered
flight data shown in Figure B.6.

The angle of attack, sideslip angle, and translational accelerations were corrected to
the center of gravity using [27, 58]

α = αE +
qxα
V
− pyα

V
(B.13)

β = βE +
rxβ
V
− pzβ

V
(B.14)

g

axay
az

 = g

axEayE
azE

+

 (q2 + r2) −(pq − ṙ) −(pr + q̇)
−(pq + ṙ) (p2 + r2) −(qr − ṗ)
−(pr − q̇) −(qr + ṗ) (p2 + q2)

xaya
za

 (B.15)

uv
w

 =

uEvE
wE

+

 0 r −q
−r 0 p
q −p 0

xair

yair

zair

 (B.16)
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where the subscript E denotes the measured value from the experiment. [xα yα zα]T ,
[xβ yβ zβ]T , [xa ya za]

T , and [xair yair zair]
T denote the position vectors of the an-

gles of attack and sideslip, accelerometer, and air-data probes relative to the centre
of gravity in the body axes respectively.

A data compatibility analysis should be applied to the measured aircraft responses
in order to verify the data accuracy because the measured response data contains
bias and scale factor errors. The purpose of data compatibility analysis is to remove
the bias and scale factor errors and reconstruct the measured responses [58, 78].
The measurement equation model for aircraft sensors with typical instrumentation
errors is defined as [28]

ym = (1 + λy)y + by (B.17)

where ym denotes the measurement of the true value of variable y, λy is the scale
factor error, and by is the bias error. Following [58], the state-space form of the trans-
lational and rotational kinematics differential equations and the measured output
equations used for data compatibility analysis is
u̇
v̇
ẇ

ḣ

 =


0 rE − br −(qE − bq) 0

−(rE − br) 0 pE − bp 0
qE − bq −(pE − bp) 0 0

sin θ − cos θ sinφ − cos θ cosφ 0



u
v
w
h

+


−g sin θ + gaxE − bax

g cos θ sinφ+ gayE − byx
g cos θ cosφ+ gazE − bzx

0


(B.18)φ̇θ̇

ψ̇

 =

1 tan θ sinφ tan θ cosφ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

pE − bpqE − bq
rE − br

 (B.19)

VE(i) = (1 + λV )
√
u2(i) + v2(i) + w2(i) + bV (B.20)

βE(i) = (1 + λβ) tan−1
[v(i)

u(i)

]
+ bβ (B.21)

αE(i) = (1 + λα) tan−1
[w(i)

u(i)

]
+ bα (B.22)

φE(i) = (1 + λφ)φ(i) + bφ (B.23)

θE(i) = (1 + λθ)θ(i) + bθ (B.24)

ψE(i) = (1 + λψ)ψ(i) + bψ (B.25)

hE(i) = (1 + λh)h(i) + bh (B.26)

where the subscript E again indicates measured values from the experiment, λ(·) is
the unknown scale factor error, and b(·) is the unknown bias error. The constant
unknown instrumentation error parameters in (B.18)–(B.26) were estimated using
a function, dcmp, of the MATLAB software package SIDPAC, which is documented
in and included with [58]. The function dcmp is an output-error parameter identifi-
cation technique that is based on the principle of maximum likelihood method, for
further details refer to [58]. The results are shown in Table B.2.

Klein [58] discusses the expected errors of a typical instrumentation package, and this
was used to determine which bias and scale factor terms should be estimated. The
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Figure B.6: Power spectral densities
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Table B.2: Estimated instrumentation error parameters

bax (m/s2) -0.8264 ± 0.0135
bay (m/s2) -2.3694 ± 0.0129
baz (m/s2) -0.5380 ± 0.0059
bp (rad/s) -0.0008 ± 0.0000
bq (rad/s) -0.0012 ± 0.0000
br (rad/s) -0.0138 ± 0.0001
bβ (rad) 0.0193 ± 0.0034
bα (rad) 0.0145 ± 0.0050
λφ 0.0071 ± 0.0003
λθ 0.0894 ± 0.0025

bφ (rad) -0.0309 ± 0.0003
bθ (rad) -0.0067 ± 0.0004

bias and scale factor of yaw angle were not estimated since there was no measurement
data of the yaw angle. The selection of bias and scale factor terms in function dcmp

were hand-tuned until the reasonable parameters, shown in Table B.2, were obtained
with the best match between the measured and reconstructed responses, shown in
Figure B.7. The match between the measured and reconstructed responses for V , α,
and β, shown in Figure B.7–a, were not as good as the match between the measured
and reconstructed responses for φ and θ, shown in Figure B.7–b. This is because
the random measurement errors of the translational accelerations and angular rates
were neglected in (B.18). Moreover, Figure B.4 also shows that all of the measured
responses have a significant noise; this is especially the case for the translational
accelerations. Although all of the measured responses were filtered, the process
noise (i.e. atmospheric turbulence) typically resides in the same frequency band as
the aircraft dynamics making it difficult to filter out post-flight without also filtering
out the data of interest. Furthermore, the upwash also induced some errors on the
u-velocity.

B.3.3 Equation-error Method

Although the exact forms of aerodynamic coefficients structures are not certain,
typical linear model structures are suggested in [50, 58, 77]. The linear model
structures that were used in this work, from [50], are

CD = CD0 + CDαα + CDδeδe (B.27)

CY = CY0 + CYββ + CYp

( pb
2V

)
+ CYr

( rb
2V

)
+ CYδaδa (B.28)

CL = CL0 + CLαα + CLα̇

( α̇c̄
2V

)
+ CLq

( qc̄
2V

)
+ CLδeδe (B.29)

Cl = Cl0 + Clββ + Clp

( pb
2V

)
+ Clr

( rb
2V

)
+ Clδaδa (B.30)
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Cm = Cm0 + Cmαα + Cmα̇

( α̇c̄
2V

)
+ Cmq

( qc̄
2V

)
+ Cmδeδe (B.31)

Cn = Cn0 + Cnββ + Cnp

( pb
2V

)
+ Cnr

( rb
2V

)
+ Cnδaδa (B.32)

RPM = C0 + Cαα + CV V + Cδthδth (B.33)

After substituting the aerodynamic coefficients that were calculated using (B.3)–
(B.10) and the measured state and control variables in (B.27)–(B.33), we obtain
a set of equations of the unknown aerodynamic parameters for which are solved
using an equation-error method (least-squares method). For example, following
[58], the least-squares problem for the lift coefficient CL is formulated using the
model structure in (B.29) as

Z = Xθ + v (B.34)

where Z is an N × 1 vector of values computed from (B.6), θ is a 5 × 1 vector
of unknown parameters, X is an N × 5 matrix of measurement data vectors or
regressors, and v is an N × 1 vector of equation errors as shown below

Z =
[
CL(1) CL(2) · · · CL(N)

]T
θ =

[
CL0 CLα CLα̇ CLq CLδe

]T
X =


1 α(1) c̄α̇(1)

2V
c̄q(1)
2V

δe(1)

1 α(2) c̄α̇(2)
2V

c̄q(2)
2V

δe(2)
...

1 α(N) c̄α̇(N)
2V

c̄q(N)
2V

δe(N)


v =

[
v(1) v(2) · · · v(N)

]T
The best estimator of θ minimizes the sum of squared differences between the de-
pendent variable measurements Z and the model; the cost function, J , is given by

J(θ) =
1

2
(Z−Xθ)T (Z−Xθ) (B.35)

Differentiating (B.35) with respect to θ gives [27],

∂J(θ)

∂θ
= −ZTX + θTXTX (B.36)

The necessary condition for minimizing the cost is given by ∂J(θ)/∂θ = 0 giving
the least-squares solution for the unknown parameter vector θ as

θ̂ =
(
XTX

)−1
XTZ (B.37)

The estimated parameter covariance matrix from [58] is[
Cij

]
= σ̂2(XTX)−1, i, j = 1, 2, . . . , nP (B.38)

where nP is the dimension of the unknown parameter vector and

σ̂2 =
(Z−Xθ̂)T (Z−Xθ̂)

N − nP
(B.39)
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Table B.3: Parameter correlation coefficient matrix (coefficients of drag, lift, and
pitching moment)

C(D,L,m)0
C(D,L,m)α

C(L,m)α̇
C(L,m)q

C(D,L,m)δe

C(D,L,m)0
1 0.3355 0.1262 -0.4696 -0.2884

C(D,L,m)α
- 1 0.0614 -0.1809 0.4946

C(L,m)α̇
- - 1 -0.2966 -0.1702

C(L,m)q
- - - 1 0.6297

C(D,L,m)δe
- - - - 1

The standard error of the estimated parameters is [77]

s
(
θ̂j
)

=
√

Cjj, j = 1, 2, . . . , nP (B.40)

The correlation coefficient between two estimated parameters is [27]

ρij =
Cij√
CiiCjj

(B.41)

The correlation coefficient is a measure of the pair-wise correlation between the two
parameters. A value of ρij ≥ 0.9 means that the two regressors, Xi and Xj, are
linearly dependent and are in some way related to each other. In that case, some
additional action must be taken [58].

B.3.4 Results

A single flight was undertaken lasting 1,038 sec. The flight data of the period
from 522-657 sec was used for identification. Some of the measurements are shown
in Figure B.4. The identification results are presented in Table B.7. Figure B.8
show how well of the match between the estimated and calculated aerodynamic
coefficients using the flight data of period 560-620 sec. The correlation coefficients
of these results are presented in Tables B.3 to B.5. The results were also validated
by comparing the estimated aerodynamic coefficients with the values calculated by
(B.3)–(B.10) using the flight data of period 860-870 sec. Some results are shown
in Figure B.9. Additional results can be seen in [31, 32]. The offset in the RPM
plot occurs because engine nonlinear effects are likely to be significant at low engine
speeds (below 4,500 RPM), the engine speed for the identification period ranged
between 5,200 RPM to 6,800 RPM, but was below 4,400 RPM for the validation
period. Moreover, the regressor showing the correlation between V and δth, shown
in Table B.5, shows these are linearly dependent. This could cause an inaccurate
estimated parameter. Although we can not suppose the identified results are the
exact aerodynamic coefficient parameters of the vehicle, these results should be
reliable and accurate enough for control synthesis and analysis.
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Table B.4: Parameter correlation coefficient matrix (coefficients of sideforce, rolling,
and yawing moments)

C(Y,l,n)0
C(Y,l,n)β

C(Y,l,n)p
C(Y,l,n)r

C(Y,l,n)δa

C(Y,l,n)0
1 0.0872 0.3235 -0.0151 -0.3727

C(Y,l,n)β
- 1 -0.3362 -0.2669 0.0268

C(Y,l,n)p
- - 1 0.2240 -0.8636

C(Y,l,n)r
- - - 1 -0.0492

C(Y,l,n)δa
- - - - 1

Table B.5: Parameter correlation coefficient matrix (engine speed coefficient)

C0 Cα CV Cδth
C0 1 0.0035 0.0206 -0.2157
Cα - 1 0.3702 0.2067
CV - - 1 0.9272
Cδth - - - 1
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B.4 Design, HIL simulation and flight test

B.4.1 PID Autopilot Design

Three autopilot functions, altitude-hold, speed-hold, and GPS waypoint navigation,
were designed using a proportional, integral and derivative (PID) control method-
ology drawn from [59]. The PID autopilot were implemented as a discrete-time
controller with antiwindup. The details of its structure are shown in Figure B.10.
All gain values in each loop were tuned manually, based on the identified 6-DOF
nonlinear model, until the autopilot’s functions performances are satisfied. The an-
gle calculation box in Figure B.10–b calculates an angle υ from a current position
(Latitude, Longitude) of the vehicle to the command position (destination). The
purpose of pitch and roll limiters in Figures B.10–a and B.10–b is to ensure that
the aerial target will manoeuvre with small amplitude of controls, i.e. elevator,
aileron, and throttle. Hence, its dynamic will not be faraway from trim condition
(or small-disturbance condition).

B.4.2 Hardware-In-the-Loop (HIL) Simulation

In practice, before a real flight test, HIL simulation is often used to validate the
reliability of the hardware and software of the flight control system as well as the
effectiveness of the designed flight control law. The details of the HIL simulation
are shown in Figure B.11. Based on the identified aerodynamic coefficients, the 6-
DOF nonlinear model of the vehicle was written in MATLAB/Simulink Real-Time
Workshop [2] environment with a 32-bit xPC Target system being an Intel Pentium
III computer.

Two PCI-CTR05 counter/timer boards from Measurement Computing Corporation
were installed inside the xPC target computer and used to capture the elevator,
aileron, and throttle PWM signals that were generated from the flight control com-
puter. Five RS-232 serial port signals were required (see Figure B.11), so a PCI-
ESC-100 serial board from Quatech Inc. were also installed to provide these. For the
6-DOF nonlinear Simulink model, the xPC Target Toolbox blocks PCI-CTR05 PWM

and ESC-100 Quatech [3] were used to program the PCI-CTR05 boards and PCI-
ESC-100 board respectively. The 6-DOF nonlinear Simulink model was automati-
cally compiled by VisualC and downloaded to the xPC target using the MATLAB
function, xpcexplr [3].

The designed PID autopilot was programmed manually using the Phyton 80C196
C language development kit. The sensor interface modules of the flight computer
board were programmed using assembly language. The Intel Hex-file format was
the result of compiling both assembly and C program modules. This Intel Hex-file
was burned to the flash in-system programmable peripheral (PSD4235G2) on the
flight computer board.
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The ground station application programs, i.e. instrumentation monitoring and mov-
ing map displays, were programmed using Visual Basic 6.0. Furthermore, this HIL
simulation actually can simulate flying in both manual and automatic modes. Mode
selection is controlled by three switches, i.e. altitude-hold on-off, speed-hold on-off,
and GPS waypoint navigation on-off, on the joystick control unit. Microsoft Flight
Simulator was used for visualisation. An experienced ground pilot used the man-
ual mode to simulate flying with the flight dynamic visualization display, shown in
Figure B.11, in order to validate the identified 6-DOF nonlinear model.

B.4.3 Flight Test

After the HIL simulation results were deemed successful and satisfactory, a real flight
test was performed. The altitude command was set to 2,000 ft, the speed command
to 105 knot, and three GPS waypoint navigation settings of (lat: N14◦52.2240

′
, long:

E100◦40.5360
′
), (lat: N14◦52.5120

′
, long: E100◦40.0080

′
), and (lat: N14◦51.7860

′
,

long: E100◦39.5760
′
). Some of the flight test data are presented in Figure B.12. It

can be seen that the PID autopilot successfully performed its functions without any
need to adjust the controller gains. Additional results can be seen in [31, 32].

B.5 Conclusions

This appendix demonstrates how system identification techniques can be used for
UAV control system design and development in a cost-effective manner. An ordinary
piloted manoeuvre and off-trim condition flight data (racetrack manoeuvre) was
studied and identified in order to estimate the aerodynamic coefficients of the RTAF
aerial target. As shown by the flight test results of the PID autopilot, the identified
6-DOF non-linear model was sufficiently reliable and accurate for the design of a
satisfactory control system. In this work, only two flight tests had to be undertaken.
The first flight test was done to record flight data by controlling the aerial target
manually for a flight duration of 12 min. The second flight test was done to validate
the PID autopilot for a flight duration of 26 min. However, both flight tests were
performed in one flight condition; it is envisaged that gain-scheduling will be required
to cover a fuller range of flight conditions. An advanced robust gain-scheduling
technique, namely linear parameter-varying control, should be employed where the
details of LPV control approach are already presented in the main chapters of this
thesis.
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Figure B.10: Structure design of the autopilot

200



B.5 Conclusions

xPC Target,
6-DOF nonlinear dynamic model

(1,000 Hz)

PCI-ESC-100

Elevator Servo

Aileron Servo

Throttle Servo

Flight Control Computer
Discrete-time autopilot

(50Hz)

Ground station
Instrumentation monitoring display
Flight path & moving map display

RS-232
19,200 bps

(25 Hz)

RS-232
115,200 bps (50 Hz)

Microsoft Flight Simulator
(Flight Dynamic Visualization)

RFM96WSS
Joystick Controller

RFM96WSSRFM96W
Up Link, RS-232

9,600 bps (12.5 Hz)

GPS, RS-232
4,800 bps (1 Hz)

SP, RS-232
19,200 bps (60 Hz)

Vertical gyro, RS-232
38,400 bps (75 Hz)

DP, RS-232
19,200 bps (60 Hz)

Down Link, RS-232
19,200 bps (25 Hz)

RPM

Elevator PWM

Throttle PWM

Aileron PWM

PCI-CTR05

RFM96W

(a) Block diagram

xPC Target,
Real-Time HIL Simulation at 1,000 Hz,

6-DOF nonlinear dynamic model

PCI-CTR05 from Measurement
Computing, PWM capture

PCI-ESC-100 from Quatech,
8 channel RS-232 serial port

PCI bus PCI bus

Elevator Servo

Aileron Servo

Throttle Servo
Discrete-time autopilot (50Hz)

PWM (ch1)

PWM (ch2)

PWM (ch3)

Ground station
Instrumentation monitoring display
Flight path & moving map display

RS-232
19,200 b/s

(25 Hz)

RS-232
115,200 b/s

(50 Hz)

GPS

SP

DP

Gyro

Down Link

Up Link

Flight Dynamic
Visualization

RFM96WSS

RFM96WSS

RFM96W

RPM

(b) Image diagram

Figure B.11: Real-time hardware-in-the-loop simulation environment
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Figure B.12: Validation of the PID autopilot through flight test
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Appendix C

Explicit Controller Formulas for
PDLF-based Gain-Scheduled H∞
Synthesis

This appendix aims to provide a brief overview of a multi-convexity method [11] and
an explicit controller formulas [43] that are used for synthesizing and constructing
a PDLF-based LPV controller, respectively. The material in this appendix is taken
from [8, 11] and [43].

Consider a given affine LPV plant model with state-space realization of the form
(3.59). A(·), B1(·), C1(·) and D11(·) matrices in (3.59) can be written as an affine
and convex combinations in a similar manner to (3.20) and (3.22), respectively:

A(θ) = A0 +
n∑
i=1

θiAi =
r∑
j=1

αjÂj

B1(θ) = B10 +
n∑
i=1

θiB1i =
r∑
j=1

αjB̂1j

C1(θ) = C10 +
n∑
i=1

θiC1i =
r∑
j=1

αjĈ1j

D11(θ) = D110 +
n∑
i=1

θiD11i =
r∑
j=1

αjD̂11j (C.1)

where n is the total number of the time-varying parameters, θ, r = 2n is the total
number of vertices, and αj is determined using (3.24) and (3.25).

The gain-scheduled output feedbackH∞ control problem using the parameter-dependent
Lyapunov function is to compute a dynamic LPV controller, K(θ), with state-space
equations of the form (6.14). Ak(θ, θ̇), Bk(θ), and Ck(θ) in (6.14) are determined
using (6.20)–(6.22) respectively. X(θ) and Y (θ) in (6.20)–(6.22) can also be written
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as

X(θ) = X0 +
n∑
i=1

θiXi =
r∑
j=1

αjX̂j

Y (θ) = Y0 +
n∑
i=1

θiYi =
r∑
j=1

αjŶj

Ẋ(θ) =
n∑
i=1

θ̇iXi =
r∑

k=1

βkX̃k

Ẏ (θ) =
n∑
i=1

θ̇iYi =
r∑

k=1

βkỸk (C.2)

where βk can be determined in a similar manner to αj using (3.24) and (3.25).
Note that X̃k and Ỹk, k = 1, . . . , r, map to Xi and Yi, i = 1, . . . , n, respectively in a
similar manner to (6.5) and X̂j and Ŷj, j = 1, . . . , r, map to Xi and Yi, i = 0, . . . , n,
respectively in a similar manner to (6.3)

Moreover, X(θ), Y (θ), N(θ), M(θ), Âk(θ), B̂k(θ), Ĉk(θ, and Dk(θ) in (6.20)–(6.22)
are determined as shown below:

Theorem C.0.1. (Multi-convexity, [11, Theorem 5.3]) There exists an LPV con-
troller (6.14) solution to the LPV control problem with quaranteed L2-gain perfor-
mance with level γ along all possible parameter trajectories, ∀(θ, θ̇) ∈ Θ× Φ, when-
ever there exist symmetric matrices X0, X1, . . ., Xn and Y0, Y1, . . ., Yn and scalars
λ0, λ1, . . ., λn, µ0, µ1, . . ., µn and σ such thatX̃k + X̂jÂj + ÂTj X̂j X̂jB̂1j ĈT

1j

B̂T
1j
X̂j −γI D̂T

11j

Ĉ1j D̂11j −γI

− σ
CT

2

DT
21

0

 [C2 D21 0
]
< −

(
λ0 +

n∑
i=1

θ2
i λi

)
I

(C.3)−Ỹk + ŶjÂ
T
j + ÂjŶj ŶjĈ

T
1j

B̂1j

Ĉ1j Ŷj −γI D̂11j

B̂T
1j

D̂T
11j

−γI

− σ
B2

D12

0

 [BT
2 DT

12 0
]
< −

(
µ0 +

n∑
i=1

θ2
i µi

)
I

(C.4)[
X̂j I

I Ŷj

]
> 0 (C.5)[

XiAi + ATi Xi XiB1i

BT
1i
Xi 0

]
− σ

[
CT

2 C2 CT
2 D21

DT
21C2 DT

21D21

]
≥ −λiI (C.6)[

YiA
T
i + AiYi YiC

T
1i

C1iYi 0

]
− σ

[
B2B

T
2 B2D

T
12

D12B
T
2 D12D

T
12

]
≥ −µiI (C.7)

λ0 ≥ 0, λi ≥ 0, µ0 ≥ 0, µi ≥ 0 (C.8)

for j,k=1,2,. . .,r and i=1,2,. . .,n
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Having determined X(θ) and Y (θ) using Theorem C.0.1, N(θ) and M(θ) can be
determined from the factorization problem:

I −X(θ)Y (θ) = N(θ)MT (θ) (C.9)

Algorithm C.0.2. (Explicit Controller Formulas, [8, 43]) Computation of Âk(θ),
B̂k(θ), Ĉk(θ, and Dk(θ).
Step 1: Set Dk(θ) =

(
D+

12D12

)
D0(θ)

(
D21D

+
21

)
, where D0(θ) is any matrix such that

σmax

(
D11(θ) +D12D0(θ)D21

)
< γ. This amounts to solving a Parrott problem.

Step 2: Compute the least-squares solutions of 0
[
D21 0

][
DT

21

0

] [
−γI DT

cl(θ)
Dcl(θ) −γI

] ( ΘB1(θ)[
∗
] )

= −

 C2[
BT

1 (θ)X(θ)
C1(θ) +D12Dk(θ)C2

] 
(C.10) 0

[
0 DT

12

][
0
D12

] [
−γI DT

cl(θ)
Dcl(θ) −γI

] ( ΘC1(θ)[
∗
] )

= −

 BT
2[(

B1(θ) +B2Dk(θ)D21

)T
C1(θ)Y (θ)

] 
(C.11)

where Dcl(θ) = D11(θ) +D12Dk(θ)D12 and ∗ denotes matrices without interest here.
Step 3: If π21C2 = 0, set ΘB2(θ) = 0. Otherwise, compute ΘB2(θ) such that

ψ + CT
2 π21ΘB2(θ) + ΘT

B2(θ)π21C2 < 0 (C.12)

where π21 = I −D21D
+
21 and

ψ = AT (θ)X(θ) +X(θ)A(θ) + Ẋ(θ) + ΘT
B1(θ)C2 + CT

2 ΘB1(θ)

+

[
BT

1 (θ)X(θ) +DT
21ΘB1(θ)

C1(θ) +D12Dk(θ)C2

]T [
γI −DT

cl(θ)
−Dcl(θ) γI

]−1 [
BT

1 (θ)X(θ) +DT
21ΘB1(θ)

C1(θ) +D12Dk(θ)C2

]
(C.13)

Similarly, set ΘC2(θ) = 0 if π12B
T
2 = 0. Otherwise, compute ΘC2(θ) such that

Π +B2π12ΘC2(θ) + ΘT
C2(θ)π12B

T
2 < 0 (C.14)

where π12 = I −D+
12D12 and

Π = A(θ)Y (θ) + Y (θ)AT (θ)− Ẏ (θ) +B2ΘT
C1(θ) + ΘT

C1(θ)BT
2

+

[(
B1(θ) +B2Dk(θ)D21

)T
C1(θ)Y (θ) +D12ΘC1(θ)

]T [
γI −DT

cl(θ)
−Dcl(θ) γI

]−1 [(
B1(θ) +B2Dk(θ)D21

)T
C1(θ)Y (θ) +D12ΘC1(θ)

]
(C.15)

Step 4: Compute Âk(θ), B̂k(θ), and Ĉk(θ) as

Ĉk(θ) = ΘC1(θ) + π12ΘC2(θ) (C.16)

B̂k(θ) =
(
ΘB1(θ) + π21ΘB2(θ)

)T
(C.17)

Âk(θ) = −
(
A(θ) +B2Dk(θ)C2

)T
+
[(
X(θ)B1(θ) + B̂k(θ)D21

) (
C1(θ) +D12Dk(θ)C2

)T]
×
[
−γI DT

cl(θ)
Dcl(θ) −γI

]−1
[(
B1(θ) +B2Dk(θ)D21

)T
C1(θ)Y (θ) +D12Ĉk(θ)

]
(C.18)
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