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Abstract 

The application of floc fractal dimension has been investigated in this work to 

determine if this parameter can have operational significance in water treatment. Natural 

organic matter suspensions were coagulated with aluminium sulphate and varying 

concentrations of a non-ionic polymer. The fractal dimensions of the flocs formed were 

measured using light scattering and settling combined with image analysis. By using the 

correct methodology, optimum floc properties could be determined using the floc fractal 

dimension combined with the floc size and strength data. 
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1. Introduction 

The use of fractal dimension (Df) is widespread in science and many structures have 

been described as fractal objects. This includes a diverse range of objects including gas 

clouds in space (De Vega et al., 1996), the mammalian lung (Maroy et al., 2004) and 

cancerous tumours (Kikuchi et al., 2006). Fractal structures can be defined as those that: 

i) Show self similarity regardless of the scale of investigation. 

ii) Show a power law relationship between two variables. This may be the 

relationship between the structure perimeter (P) and length (L); the area (A) 

and L; or the volume (V) or mass (M) and L (1-3). 

PDfLP ∝    DfP is the perimeter fractal dimension   (1) 
ADfLA∝    DfA is the area fractal dimension   (2) 

VDfLMorV ∝   DfV is the volumetric fractal dimension   (3) 
 
Note that Df will take a different value dependent on the relationship investigated. 
 

iii) May be characterised by a non-integer fractal dimension.   

Floc aggregates formed in water treatment have recently been studied as fractal objects 

and are examples of mass fractals because both the internal and surface structure exhibit 

fractal properties (Jefferson and Jarvis, 2006). The application of Df in water treatment 

has focused on understanding structural changes to flocs during coagulation and 

flocculation and in understanding the properties of floc formed from different 

coagulation mechanisms. Much of the work to date has looked into idealised or 

synthetic systems involving model particles (such as kaolin, latex, haematite or humic 

acid suspensions) because more is known about the properties of the particles 

investigated (Tang, 1999; Lee et al., 2006). More recently work has looked at real 

systems looking at the floc fractal dimension of flocs formed from real river, reservoir 
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and lake systems (Ho and Newcombe, 2005; Jarvis et al., 2005a; Chakraborti et al., 

2007). 

There is still a paucity of information on how fractal dimension can be related to 

operational performance in water treatment. The aim of this work was to measure the 

structural properties of flocs, with particular emphasis on the fractal dimension, for 

flocs formed from a real raw water dominated by natural organic matter (NOM) using 

two separate techniques (settling and light scattering). This was to enable an 

understanding of the structural implications of dosing polymer at increasing 

concentrations to the system in order to act as a floc aid. Other than changing the 

polymer dose, the coagulation conditions investigated matched the conditions used at 

the water treatment works from where the water had been collected. The values of Df 

obtained were compared for each of the techniques and compared with existing data to 

further understand how the use of floc fractal dimension may be used from a practical 

viewpoint. 

2. Materials and methods 

2.1 Coagulation tests 

Experiments were carried out on raw water from a moorland WTWs in the north of the 

UK. The water was composed of a blend consisting of 70 % highly coloured moorland 

water and 30 % river water. The water had a dissolved organic carbon (DOC) content of 

9.8 mg/L, ultra-violet light absorbance at 254 nm (UV254) of 32.5 1/m, a zeta potential 

of -12.7 mV and a turbidity of 2.0 NTU. The raw water was coagulated using 

aluminium sulphate at a concentration of 5.25 mg/L as Al (the dose as used by the 

WTWs at the time of water abstraction) from an Al stock solution of 4.25% w/w. The 
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polymer used was a high molecular weight non-ionic polyacrylamide (Flowpam 

AH912). Polymer was added at concentrations between 0 and 0.25 mg/L (at the time of 

abstraction a dose of 0.175 mg/L was being added to the water at the WTWs in 

question). The coagulation pH was controlled at pH 6.0 using 0.1 M NaOH (the pH as 

used at the WTWs). 

Coagulation and floc formation experiments were carried out on a PB-900 variable 

speed jar tester (Phipps and Bird) with 76 x 25 mm flat paddle impellers using 

cylindrical jars containing 1 L samples of water. An initial rapid mix was carried out at 

200 rpm for 1.5 minutes. At the beginning of this period, coagulant was added into the 

water. For the systems where polymer was dosed, this was added after 1.25 minutes of 

the rapid mix to allow dispersion of the polymer. A slow stir period then followed at 30 

rpm for 15 minutes to enable floc growth. NOM removal was assessed by measuring 

DOC using a Shimadzu TOC-500A analyzer and UV254 removal using a Jenway 6505 

UV/Vis spectrophotometer. The charge of the colloids and particles in the raw water 

and coagulated systems were measured using a Malvern Zetasizer 2000 HAS. 

2.2 Floc size and fractal dimension 

Floc size and growth was measured using a previously described technique (Jarvis et 

al., 2005b). Briefly, a laser diffraction instrument (Malvern Mastersizer 2000) was used 

to measure the dynamic size of flocs with time. The suspension was measured by 

drawing water through the optical unit of the Mastersizer and back in to the jar using a 

peristaltic pump. The suspension particle size was monitored every minute following 

the addition of the coagulant. Measurements were logged on to a computer for further 

analysis. During this phase of work the impact of increased shear rate on floc properties 

were measured. This was carried out by increasing the rpm on the jar tester to 200 for 1 
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minute after the 15 minutes slow stir period. Following the high shear rate, the rpm 

were reduced to 30 for a further 15 minutes in order to monitor floc re-growth potential.  

Floc fractal dimension was measured using two separate methods. Firstly, small angle 

light scattering (SALLS) was used (subsequently referred to as Df(LS)). The 

determination of floc fractal dimension using SALLS has been well covered elsewhere 

(Waite et al., 2001; Wu et al., 2002), so only a brief description is provided here. The 

Mastersizer has a ring of photo-detectors at angles between 0.01 – 40.6º which detect 

light scattered by the sample. The scattered light intensity I(Q) is a function of the wave 

number Q, where Q (m-1) is the difference in magnitude of the incident and scattered 

laser, given by: 

   
λ
θπ )2/sin(4 nQ =  (4) 

Where n is the refractive index of the suspending medium, θ is the scattered angle, λ is 

the wavelength of the radiation in a vacuum. For independently scattering aggregates, 

I(Q) is related to Q and Df(LS) : 

   )()( LSfDQQI −∝   (5) 

A confirmation of the power relationship in (5) is to plot I against Q on a log-log scale. 

A power law relationship exists if this yields a straight line, the slope of which is used 

to give Df(LS). The relationship only holds when the length of investigation is much 

larger than the primary particles and much smaller than the floc aggregates: 

   
partagg R

Q
R

11
<<<<  (6) 

Ragg is the radius of the aggregate and Rpart is the radius of the primary particle. 
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Floc structural information was obtained from the Mastersizer during floc growth and 

floc breakage for all of the different polymer doses in the form of raw intensity output 

data which could then be converted to provide the angle of each detector and the 

intensity of light at each detector using a spreadsheet provided by Malvern Instruments 

(Malvern, UK). 

The second method used to determine floc fractal dimension was established from floc 

sedimentation (subsequently referred to as Df(S)). A more detailed description of the floc 

settling apparatus is given in Jarvis et al. (2005a). Briefly, flocs were grown on a jar 

tester as before and after 15 minutes of slow stir flocs were carefully extracted from the 

jar and introduced in to a temperature controlled settling column under quiescent 

conditions. As flocs settled in the column, they were photographed using a CV M90 

charge-coupled device camera (JAI UK). The image grabber was manually triggered to 

take a series of 5 images with an interval of 1 second between each frame. The 

projected area of the floc and the distance travelled by the floc was measured using 

image analysis software (Image Pro Plus from Media Cybernetics). For each polymer 

dose investigated, the settling rate of between 56-100 flocs were measured. 

Floc Df(S) was measured from the settling rate based on the relationship between the 

diameter of a floc (d) and its terminal settling velocity (Vt) (7). A log-log plot of settling 

velocity against floc diameter yields a straight line with a slope of Df(S)-1. 

1)( −∝ SfD
t dv   (7) 

For both methods of measuring floc fractal dimension, a mass fractal is given where Df 

can take values between 1 and 3. A higher value of Df indicates a more compact 

structure, whilst lower values indicate a more open and stringy structure. 
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3. Results 

3.1 Coagulation tests  

The removal of NOM with increasing polymer dose for this raw water was seen to 

increase with increasing polymer dose (Table 1). The percentage removal of DOC (46-

58%) was much lower than for removal of UV254 absorbing compounds (84-88 %). This 

reflects that UV254 absorbing NOM can be more easily removed by coagulation due to 

the increased charge and higher MW (molecular weight) of this type of NOM when 

compared to the non-UV254 absorbing NOM which is normally composed of smaller 

MW and un-charged compounds. These compounds are usually recalcitrant to removal 

by coagulation. The reduction of the magnitude of the negative charge of the zeta 

potential from -12.7 mV to +1.3 mV with increasing polymer dose was interesting given 

that the polymer used was non-ionic. However given that the floc properties were 

significantly different with an increase in polymer dose, the increase in the zeta 

potential was likely to be a reflection of the improved NOM removal seen at higher 

polymer doses through better adsorption/exchange of NOM on to the larger flocs 

formed at higher polymer dose (Figure 1). 

 

3.2 Floc size and fractal dimension 

The floc size was seen to increase with increasing polymer dose (Figure 1). When no 

polymer was dosed, the median floc size at the end of the slow stir period was 358 µm, 

this increased to 849 µm for the highest polymer dose of 0.25 mg/L. The biggest change 

in floc size was observed when the polymer dose was increased from 0.10 mg/L to 0.15 

mg/L which resulted in an increase in median floc size of 230 µm. When the floc 
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suspensions were exposed to an increase in shear rate of 200 rpm, the flocs broke, but 

the response was dependent on polymer dose. The systems dosed with 0.10 mg/L 

polymer and below broke to a similar size (160-190 µm). At polymer doses of 0.15-0.20 

mg/L the flocs broke to 260 µm whilst the highest polymer dose only broke to a size of 

320 µm. There was little difference in the floc re-growth potential of each of the 

systems. Although the higher polymer doses re-grew to larger floc sizes, all of the flocs 

reached between 55-65 % of the previous size reached after the initial 15 minutes slow 

stir. The incapacity of the floc system to re-grow to the size seen previously is an 

observation seen before and is thought to result as flocs re-structure during breakage, 

resulting in fewer active bonding sites being available for re-attachment (Yeung et al., 

1997, Spicer et al., 1998). 

Table 1. Removal performance of the different treatment systems 
with increasing polymer. 

Floc system – 
polymer dose 
added mg/L 

DOC        
mg/L 

(% removal 
in brackets)   

UV254         
1/m 

(% removal in 
brackets)     

Zeta potential     
mV 

Raw water 9.8  32.5 -12.7 

0  5.4 (46 %) 5.6 (84 %) -9.6 

0.05  5.6 (43 %) 5.1 (84 %) -7.1 

0.10  5.5 (44 %) 4.3 (87 %) -4.7 

0.15  5.3 (46 %) 3.5 (89 %) 0.5 

0.20  4.1 (58 %) 4.0 (88 %) -0.5 

0.25 3.6 (64 %) 4.1 (87 %) 1.3 
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Figure 1. Floc growth, breakage and re-growth with time for increasing polymer doses. 

Examples of the derivation of floc fractal dimension from the log-log plot of scattered 

light intensity (Q(I)) against wave number (Q) are shown in Figure 2 for the systems 

containing no polymer and the highest polymer dose (0.25 mg/L). For all calculations of 

Df(LS), the correlation co-efficient of the regression line was high (R2 >0.99) indicating 

highly significant relationships between the two parameters. The fractal dimensions 

obtained using SALLS for each of the polymer doses are shown in Table 2.  
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Figure 2. The relationship between the scattered light intensity (I) and the wave number 
(Q) on a log-log scale and the determination of the fractal dimension for different flocs 
during the initial growth phase (A) and breakage phase (B) for i) flocs formed with no 

polymer added and ii) the highest polymer dose added.  

 

The Df(LS) value was seen to increase with increasing polymer dose during the growth 

phase (measurement taken from minute 4 in Figure 1) from 2.19 to 2.33 with increasing 

polymer dose. The biggest increase in Df(LS) was from an increase in polymer dose from 

0.10 to 0.15 mg/L. It was interesting to note that for all systems the fractal value 

increased as the flocs grew to their maximum size (measurement taken after 15 minutes 

of growth). However, the order of Df(LS) reversed after 15 minutes of floc growth (i.e. 

the maximum floc size for each system) with the no polymer and lowest polymer doses 

having the biggest increase and highest value of Df(LS). When the flocs where broken the 

Df(LS) value decreased for most of the polymer systems, however this was dependent on 

the polymer dose. For example, when no polymer was added, Df(LS) decreased from 2.45 
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to 2.28, however the extent of this change was reduced with increasing polymer dose 

such that the Df(LS) value did not significantly change at doses of 0.15 and 0.20 mg/L. 

The highest polymer dose showed an increase in Df(LS) during the breakage phase from 

2.34 to 2.50. After the floc re-growth period, the floc fractal dimension returned to 

values previously seen for the maximum floc size.  

The floc settling distribution with increasing floc size for each polymer dose is shown in 

Figure 3. The fractal values obtained for flocs from settling were those for fully grown 

flocs formed after 15 minutes on a jar tester (Table 2). The trend in Df(S) generally 

showed an increase in floc fractal dimension with increasing polymer dose; the reverse 

of that seen using SALLS. When no polymer was dosed, the Df(S) was 1.70, however 

there was a high degree of uncertainty on this value (analysis of the 95% confidence 

interval (CI) on the slope of this line indicated that the fractal dimension could have 

taken a value between 1.56-1.86). At a polymer dose of 0.05 mg/L the Df(S) was 1.55 

(95% CI, 1.45-1.67). At higher polymer doses between 0.10 and 0.15 mg/L, the Df(S) 

increased to 1.87 (95 % CI, 1.72-2.04) and 1.74 (95 % CI, 1.64-1.87) respectively, 

indicating a trend of more compaction with increasing polymer dose. At 0.20 mg/L the 

Df(S) value was significantly higher at 1.96 (95 % CI, 1.86-2.04). Interrogation of the 

95% CI of the slope indicated that the highest polymer dose had a significantly larger 

Df(S) than the no polymer system and the lowest dose of 0.05 mg/L. 
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Table 2. Fractal dimension values as calculated using SALLS during 
floc growth, breakage and re-growth and the fractal value 
obtained from floc settling. 

 FRACTAL DIMENSION 

 SALLS Settlement 

Floc system- 
Polymer dose 

added 

Growth  

(95% CI on 
slope) 

Max floc size 

(95% CI on 
slope) 

Breakage  

(95% CI on 
slope) 

Re-growth 

(95% CI on 
slope) 

Max floc size 

(95% CI on 
slope) 

0 mg/L 2.19 

(2.15-2.23) 

2.45 

(2.37-2.52) 

2.28 

(2.25-2.32) 

2.46 

(2.35-2.57) 

1.70  

(1.56-1.86) 

0.05 mg/L 2.18 

(2.14-2.22) 

2.40 

(2.35-2.45) 

2.27 

(2.23-2.31) 

2.42 

(2.31-2.53) 

1.56 

(1.45-1.67)  

0.10 mg/L 2.20 

(2.16-2.24) 

2.41 

(2.39-2.44) 

2.31 

(2.26-2.36) 

2.39 

(2.39-2.47) 

1.87 

(1.72-2.04) 

0.15 mg/L 2.32 

(2.35-2.30) 

2.40 

(2.36-2.44) 

2.37 

(2.30-2.44) 

2.38 

(2.31-2.47) 

1.74 

(1.64-1.87) 

0.20 mg/L 2.26 

(2.23-2.29) 

2.37 

(2.33-2.41) 

2.36 

(2.29-2.44) 

2.36 

(2.30-2.42) 

1.95 

(1.86-2.04) 

0.25 mg/L 2.33 

(2.29-2.37) 

2.34 

(2.32-2.37) 

2.50 

(2.42-2.58) 

2.38 

(2.31-2.45) 

- 
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Figure 3. The relationship between settling rate and floc size for systems with 
increasing polymer dose.   
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4. Discussion 

Polymer dosing into pre-clarified water is a widely used tool in drinking water treatment 

to aid floc formation and improve the removal of these aggregates during the 

clarification processes.  Therefore, as may be expected, the WTWs investigated in this 

work sees better clarification performance when polymer is dosed compared to when it 

is not dosed (Nixson, 2007). The particle sizing results clearly showed an increase in 

floc size and improved resistance to increased shear rate with increasing polymer dose. 

Improved resistance to increased shear rate was apparent because polymer dosed 

systems were able to maintain a larger average size after exposure to a high shear rate 

(200 rpm). The impact of larger floc size and improved resistance to shear rate with 

increasing polymer dose can be seen to have a clear link with plant operational 

performance. For example, a greater number of larger flocs will clarify better, 

particularly in sedimentation clarification systems (Aguillar et al., 2003). However, the 

operational significance of Df was less clear. 

A highly heterogeneous system has been analysed in this work (with NOM of different 

MW, coagulant-NOM precipitates and turbidity components contributing to the overall 

floc structure), it is likely that the primary particles that make up the floc are of a similar 

structure (relatively homo-dispersed primary particles composed of a heterogeneous 

mixture of components). 

The Df(S) values reported were significantly lower than those obtained using SALLS 

which is a result consistent with other studies (Wu et al., 2002). The difference is due to 

the fact that fractal dimension is an operationally defined value based on the method 

used to generate the value. The Df(LS) generated from SALLS refers to the structure of 
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the floc aggregates over a small length scale whilst that determined by settling refers to 

the global structure of the overall floc.  

The two different techniques for measuring floc fractal dimension gave contrasting 

trends in that the Df(LS) decreased with increasing polymer dose whilst there were 

indications that Df(S) increased with increasing polymer concentration. As seen in 

previous studies, the spread of the data for determination of fractal dimension was much 

greater for settlement when compared to SALLS as reflected by low correlation co-

efficients for the regression line through the data (Figure 3) (Liao et al., 2005). This is 

as a result of a number of factors influencing floc settlement behaviour such as floc 

orientation and advection effects. For the lowest polymer dose, which resulted in the 

smallest floc, there was the most scatter (R2 = 0.18). This was because when no polymer 

was dosed there was a more inconsistent floc structure and a weaker overall aggregrate. 

The floc were therefore more susceptible to changes in environmental conditions during 

the measurement procedure (Liao et al., 2005). For this type of scattered system, the 

fractal dimension number is probably an average of a range of values taken by the floc 

in the system. When polymer was added the relationship became stronger with R2 co-

efficients of >0.30 and this increased to a highly significant relationship at 0.20 mg/L 

polymer (R2 = 0.82) as a result of a more consistent floc structure as polymer was 

dosed. 

The difference in the Df measured from the two different techniques was a reflection 

that the fractal dimension of different sized aggregates was being measured in the 

(Jefferson and Jarvis, 2006). The resolution of the image analysis system used with the 

floc settling apparatus was only able to measure the properties of floc >100 µm. For 

SALLS the Df(LS) of the microflocs in the system were measured (from Equation 6), 
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typically of flocs that were <10 µm (Wu et al., 2002; Jarvis et al., 2005a). The results 

therefore show that the small microflocs within the whole floc became more open as the 

polymer dose was increased, whilst the overall floc becomes more compact as polymer 

dose was increased. As was indicated here, previous work has shown that an increase in 

polymer dose usually results in an increase in overall floc fractal dimension (Glover et 

al., 2000; Zhao, 2004). However, most work has shown an increase in microfloc fractal 

dimension with increasing polymer dose when SALLS has been used (Waite, 1999; 

Glover et al., 2000; Wu et al., 2002). This difference was likely to be explained because 

these previous workers used the polymers as the principal coagulant or because of 

charge differences in the properties of the polymers used. Polymer bridging was the 

most likely mechanism for bonding by the non-ionic polymer used in this work due to 

the increased probability of attachment in these polymers (Besra et al., 2004). In this 

case, increased polymer dosing appeared to give a more open structure for the 

microflocs formed after 15 minutes growth as a result of polymer bridging giving more 

tenuous bonding (Wu et al., 2002). The fractal dimension of microflocs during breakage 

stayed the same at low polymer dose or increased for systems of high polymer dose 

where the overall floc size was very large (polymer doses of ≥0.15 mg/L). It was 

hypothesised that increased polymer bridging within the microfloc at high polymer dose 

held the aggregates together under the high breakage shear rate due to the strong 

bonding of the polymer. For the microfloc in the systems with low or no polymer dose 

an opening up of these structures was seen at higher shear rates due to the weaker 

bonding in the floc when little or no polymer was present. 

The increase in the overall Df(S)  of the whole floc as found from settling with increasing 

polymer dose indicated that the polymer bridging within the overall floc produced more 
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compact aggregates. The exception here was for the no polymer dosed system, that 

appeared to have a high fractal dimension but the high scatter and low correlation co-

efficient make this value very questionable. This indicated that in the small floc systems 

with low concentrations, the more compact microflocs have weaker inter-bonding 

forces between the microfloc giving rise to a smaller, inconsistent and more loosely 

connected overall aggregate. At higher concentrations of polymer, the increased 

magnitude and strength of bridging bonds was likely to give a stronger and overall more 

compact structure. 

From a practical perspective, polymer is frequently used in order to increase floc size 

and result in a distribution of fewer smaller particles in order to increase floc strength 

and settlement (Besra et al., 2004). The fractal dimension analysis used in this work 

suggested that SALLS analysis should be restricted to the small microflocs in the 

system. Settling gives a better understanding of the properties of the whole floc in the 

system and is therefore of more operational use because it is the removal of the bulk of 

the flocs that is important during clarification. Importantly, care must be taken with 

settling data to understand if there is a significant relationship between settling rate and 

floc size and an understanding of the range of values that the fractal dimension may take 

to determine if there are significant differences between Df from different systems. In 

this work, the fractal dimension analysis identified an increase in the compaction of the 

whole floc with increasing polymer dose, however there was only a statistically 

significant increase between the low and high polymer doses. The fractal value must 

also be used in combination with floc size, strength and settling rate data in order to 

give a complete understanding of how floc operational properties change with different 

variables.  
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