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Abstract This paper presents the expected long-run cost per unit time for a system6

monitored by an adaptive control chart with variable sample sizes (VSS): if the control7

chart signals that the system is out-of-control, the followed sampling will be conducted8

with a larger sample size. The system is supposed to have three states: in-control, out-9

of-control, and failed. Two levels of repair are applied to maintain the system. A minor10

repair will be conducted if an assignable cause is confirmed by an inspection and a11

major repair will be performed if the system fails. Both the minor and major repairs12

are assumed to be perfect. We derive the expected long-run cost per unit time, which13

can be used to obtain the optimal inspection policy. Numerical examples are conducted14

to validate the derived cost.15

Keywords Quality control · maintenance policy · control chart · repairable system ·16

multi-state system · adaptive control chart17

1 Introduction18

Condition-based maintenance has nowadays been widely applied to monitoring the19

performance of important systems for improving their availabilities. Control charts are20

one of the monitoring tools employed in manufacture for the purpose of removal of21

assignable causes every time when the process parameter has shifted. As control charts22

– similar to other monitoring tools – may produce false signals that incorrectly indicate23

the state of the system, optimally designing the parameters of control charts to mini-24

mize the cost incurred by the false signals is a vitally important topic in the research25

community of statistical process control. Various control charts have been considered26

by researchers. Some examples are as follows. [1] and [2] separated the X̄-chart into27

several zones and optimized the chart for monitoring a process whose deterioration can28

be classified into two states, in which one state requires minor repair and the other29

requires major repair. [3] used the p-chart to derive thresholds for aviation inspection.30

[4] derived the expected long-run costs per unit time for a system monitored by the31

cumulative count of conforming chart (CCC chart) where the system is maintained32
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with different levels of inspection and maintenance. [5] considered economic design of33

control charts for optimization of preventive maintenance policies for systems. Other34

examples of research in this area can also be seen in [6] and [7].35

When control charts are used, a general assumption is that the system being moni-36

tored has three states: in-control, out-of-control, and failure. the in-control state is the37

state that the system functions without any problem, the out-of-control state means38

that the system has been disrupted by the occurrence of events called assignable causes39

but it still functions, and a failure state is the state that the system stops function-40

ing. The decision variables in designing a control chart can be the sampling interval41

between consecutive sampling points, the sample size, or the control limits. Typical ap-42

plication areas can be found in continuous manufacturing processes such as electronic43

item assembly lines.44

The parameters in a control chart can be variable, based on which we have two45

different kinds of control charts: static and adaptive. A static control chart has fixed46

parameters such as sample size n, sampling interval h, lower control limit (LCL), and47

upper control limit (UCL). On the other hand, an adaptive control chart has at least48

one of its parameters (n, h, LCL and UCL) that is allowed to be changed based on the49

values of the sample statistics, which provides information about the current state of50

the process. An introduction to control charts can be found in [8].51

An adaptive control chart can utilise the inspection capacity more effectively for52

better process control ([9–14,4]). There has been little work in investigating the poten-53

tial of an adaptive control chart to monitor a system that has different repair levels.54

However, it is vitally important for industrial practitioners to have tools or formulas55

that can help them to design maintenance regimes or/and parameters of in-control56

charts, especially for adaptive controls charts (as a static control chart can be seen as57

a special case of an adaptive control).58

This paper presents the formulas of the expected long-run cost per unit time for a59

system monitored by an adaptive control chart with variable sample sizes (VSS), which60

can ultimately be used to optimize the parameters in the control chart. The system is61

assumed to have three states, in-control, out-of-control, and failed. The adaptive chart62

has three zones: central, warning, and action zones. If the quality characteristic (for63

example, the number of the non-defectives in the np control chart or the average of the64

observations in a subgroup for the X̄ control chart) falls in the central zone, no action65

will be taken and the next sampling interval remains the same as its previous one. If66

the quality characteristic falls in the warning zones, more products will immediately67

be sampled. If the quality characteristic in the new sample falls in the central zone,68

then no action will be taken, otherwise, an inspection will be performed. If the quality69

characteristic falls in the action zone, then an inspection will immediately be carried70

out to check the existence of a possible assignable cause. If the assignable cause is71

confirmed, a minor repair will be conducted to remove the assignable cause. If the72

system fails, then a major repair will be performed. Both the minor and major repairs73

are perfect, that is, they can bring the system back to a good-as-new state.74

In this paper, we only consider a 3-state situation, which forms a multistate relia-75

bility system. Research in multistate systems is another interesting topic in reliability76

theory and engineering, the reader is referred to [15,16], and [17] for more information.77

This paper does not specify a typical type of control charts. The result can be78

applied to either attribute control charts (e.g, X̄ control charts) or variable control79

charts (e.g., np control charts). But the numerical example uses an np control chart as80

an example.81



3

This paper is structured as follows. The next section briefly introduces the VSS82

control chart. Section 3 presents assumptions and notation used in the paper. Section83

4 formulates the expected long-run cost per unit time for systems monitored by the84

VSS control chart. Section 5 offers numerical examples to perform sensitivity analysis85

for various parameter settings. Section 6 concludes the findings of this paper.86

2 VSS control chart87

A static control chart has two zones (see Figure 2(a)): central zone Zf0 and action88

zones Zf1, whereas an adaptive control chart has three zones (see Figure 2(b)): central89

zone Za0, warning zones Za1, and action zones Za2. From a comprehensive survey in90

the developments and the designs of adaptive control charts, the reader is referred to91

[18].92

A VSS control chart uses two different sample sizes alternatively, depending on the93

quality characteristic of the process. If the quality characteristic is in the central state,94

then a normal sample size n0 is employed. Conversely, if the quality characteristic falls95

in the warning zones (see Figure 2(b)), then a larger number n1(> n0) is used as the96

next sample size to confirm the existence of the possible assignable cause.97

3 Assumptions and notation98

Consider a system with three states: in-control, out-of-control, and failed, we make the99

following assumptions.100

The first sampling interval is h unit times immediately after the start of the system101

and n0 samples are then collected. After that, there are following four situations.102

A1. If the quality characteristic of the n0 samples falls in Za0 (see Figure 2(b)), then103

the next sample size will remain the same (ie., n0), and no further action will be104

taken.105

A2. If the quality characteristic of the n0 samples falls in Za1, then the next sample106

size will be n1 with zero time interval, and an inspection will be carried out to107

check whether the system is in-control or out-of-control. If the system is confirmed108

to be out-of-control, then a minor repair is performed, otherwise, no further action109

will be taken and the next sampling interval will be h and the sample size will be110

n0.111

A3. If the quality characteristic of the n0 samples falls in Za2, then an inspection will112

be carried out to check the existence of the assignable cause. If the occurrence is113

confirmed by the inspection, then a minor repair is performed; otherwise, no further114

action will be taken and the next sampling interval will be h and the sample size115

will be n0.116

A4. If the system fails, then a major repair will be conducted immediately.117

The following assumptions are also held.118

– Suppose that the system can shift from the in-control state to the out-of-control119

state and then to the failure state; but it cannot shift directly from the in-control120

state to the failure state without going through the out-of-control state, see Figure121

1. Neither the failure state nor the out-of-control state can be restored back to the122

in-control state without any intervention.123



4

– An inspection is assumed to be perfect in that it can reveal whether the system124

is in-control or out-of-control. During an inspection, the system does not stop and125

carries on running. Once the system has been confirmed to be in the out-of-control126

state by the inspection, repairmen will carry out a minor repair which can bring the127

system back to a good-as-new state. Once the system fails, repairmen will conduct128

a major repair. The major repair can bring the system back to a good-as-new state.129

– For simplicity, times spent on an inspection, a minor or a major repair are so130

short compared to the sampling interval that can be neglected. But their costs are131

considered.132

We also denote133

– X1, random time from the beginning of the in-control state to the occurrence of134

an assignable cause;135

– f1(x1), pdf. of X1, and F1(x1) = Pr(X1 < x1), cdf. of X1;136

– X2, random time from the beginning of the out-of-control state to failure;137

– f2(x2), pdf. of X2, and F2(x2) = Pr(X2 < x2), cdf. of X2;138

– n0, normal sample size;139

– n1, larger sample size;140

– h, sampling interval;141

– cs, sampling cost per sample;142

– ci, inspection cost for a possible assignable cause;143

– cr1, cost for a minor repair;144

– cr2, cost for a major repair;145

– αij , probability that the quality characteristic falls in Zaj (j = 0, 1, 2) when the146

system is in the in-control state for i = 0, or in the out-of-control state for i = 1.147

It is for the situation when a sample size n0 is applied;148

– βij , the probability that the quality characteristic falls in Zaj (j = 0, 1, 2) when the149

system is in the in-control state for i = 0, or in the out-of-control state for i = 1.150

It is for the situation when a sample size n1 is applied;151

– Ta, renewal cycle length;152

– Ta1, time to the first minor repair with an assignable cause detected by the control153

chart in a sampling interval where a longer sample size is used;154

– Ta2, time to the first minor repair with an assignable cause detected by the out-of-155

control signal by the control chart when a normal sample size is used;156

– Ta3, time to failure; and157

– Ca1, Ca2, Ca3, costs incurred within times Ta1, Ta2 and Ta3, respectively.158

In the following, we use the renewal reward theorem, which simply states that the159

expected long run cost per unit time is the ratio between the expected renewal cycle160

cost and expected renewal cycle length [19].161

4 Expected long-run cost per unit time162

From the above assumptions, the system can be renewed by either a minor repair or163

a major repair, which are listed in Assumptions A2, A3, and A4. As such, these three164

cases are listed in the following.165

Case 1: From Assumption A2, a minor repair is conducted due to an assignable cause166

that is confirmed by a warning appeared in Za1. Namely, the system is in the out-167

of-control state and the quality characteristic falls in Za1. In this case, the warning168
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is signaled when the sample size n1 is applied. There might be the following three169

cases.170

– When the system is in the out-of-control state, a warning is signaled during a171

sampling with the normal sample size n0. Then an additional sampling with172

the larger sample size n1 is immediately conducted, and then an inspection is173

taken. A minor repair is then conducted. See Figure 3(a).174

– The system transits to the out-of-control state when a sampling with the normal175

sample size n0 is being conducted. In this case, the signal from this sampling176

is false and an additional sampling is conducted. See Figure 3(b).177

– The system transits to the out-of-control state when a sampling with the normal178

sample size n1 is being conducted. See Figure 3(c).179

Case 2: Based on Assumption A3, a minor repair is conducted due to an assignable180

cause that is confirmed by a warning appeared in Za2. In this case, the warning is181

signaled when the sample size n0 is applied.182

Case 3: Based on Assumption A4, the system fails, but before the failure, no warning183

has been signaled.184

Below, the expected renewal cycle length of the above three cases are denoted by185

E(Ta1), E(Ta2), and E(Ta3), respectively.186

4.1 Expected renewal cycle length187

The expected renewal cycle length is E(Ta) = E(Ta1) + E(Ta2) + E(Ta3), which is188

explained as follows.189

The expected time between the start and a minor repair triggered by an inspection190

due to a signal in zone Za1 is given by191

E(Ta1) =

∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
αk1−k2−k310 (α11β10)k3α11(1− β10)H0

∫ H1−h

H1−2h
f1(x1)(1− F2(H0 − x1))dx1

+ α01α
k1−k2−k3
10 (α11β10)k3+1(1− β10)(H0 + 2h)

∫ H1

H1−h
f1(x1)(1− F2(H0 + 2h− x1))dx1

}

+

∞∑
k2=0

{
α01(1− β10)H2

∫ H2

H2−h
f1(x1)(1− F2(H2 − x1))dx1

}
, (1)

where H0 = k1h + (α01(k2 − 1) + k3 + 1)h, H1 = k2h + α01(k2 − 1)h + h, and192

H2 = k2h+ α01k2h+ 2h.193

Proof The description of three terms in equation (1) is given below.194

Denote k1 as the total number of sampling intervals in both the in-control and195

out-of-control states, k2 as the total number of sampling intervals in an in-control196

state, and k3 as the number of false signals followed by true ones in the out-of-control197

state. The number k2 includes two scenarios: (1) the quality characteristics with the198

normal sample size n0 signal warnings that correctly indicate the system in the in-199

control state; and (2) the quality characteristics with the normal sample size n0 signal200

warnings that wrongly indicate that the system is in the out-of-control state, and then201

further samplings with the larger sample size n1 are conducted.202
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There are three scenarios for the system transiting from the in-control state to the203

out-of-control state. These three states correspond to the following the three terms in204

equation(1).205

Term 1. The system transits from the in-control state to the out-of-control state with206

a normal sample size n0. See Figure 3(a). When the system is in the out-of-control207

state, there might be false signals (with a probability of αk1−k2−k310 ) with a normal208

sample size n0 and the false signals wrongly indicate that the system is in the209

in-control state, or true signals with a larger sample size n1 but followed by false210

signals (with a probability of (α11β10)k3): the true signals correctly indicate that211

the system is in the out-of-control state but its following sampling wrongly indicates212

that the system is in the in-control state. These two scenarios make up an event213

with a probability of (α10)k1−k2−k3(α11β10)k3 , and take time (k1 − k2 + k3)h.214

Eventually, a correct signal with a normal sample size is followed by another correct215

signal with a larger sample size, which has a probability of α11(1−β10) and a time216

length of 2h.217

Before the system has transited from the in-control state to the out-of-control state,218

the time length is (k2−1)h+α01(k2−1)h. Hence, the total length is k1h+(α01(k2−219

1)+k3 +1)h = H0. The transition occurs in the time interval ((k2−1)h+α01(k2−220

1)h, k2h+ α01(k2 − 1)h), or (H1 − 2h,H1 − h).221

Term 2. See Figure 3(b). The system might also transit from the in-control state to222

the out-of-control state within a normal sample size after a false signal appears in223

the in-control state, but a correct signal follows. This event has a probability of224

α01(1− β10) and a time length of h+ h. The time length of the system in the in-225

control state is (k2−1)h+α01(k2−1)h, then the transition from the in-control state226

to the out-of-control state occurs in (H1 − h,H1). After the system has transited227

to the out-of-control state, the probability of the appearance of a correct signal is228

given by αk1−k2−k310 (α11β10)k3+1α01(1− β10) and has a time length of H0 + 2h.229

Term 3. When the system is in the in-control state, a false signal appears with a230

normal sample size. See Figure 3(c). Then a larger sample size is used and the231

system transits to the out-of-control state in this sampling interval, and then a232

true signal appears. This event has a probability of α01(1− β10).233

The expected time between the start and a minor repair triggered by an inspection234

due to a signal in zone Za2 is given by235

E(Ta2) =

∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
αk1−k2−k310 (α11β10)k3α12(H0 − h)

∫ H1−h

H1−2h
f1(x1)(1− F2(H0 − h− x1))dx1

}
.

(2)

Proof The proof is similar to that of E(Ta1), apart from the appearance of the out-of-236

control signals in a longer interval h in this case.237

The expected time between the start and a major repair is given by238

E(Ta3) =

∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

αk1−k2−k310 αk311β
k3
10

{∫ H0−h

H0−2h

∫ τk1k2k3

H1−2h
xf1(x1)f2(x− x1)dx1dx
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+ α11

∫ H0

H0−h

∫ τk1k2k3

H1−2h
xf1(x1)f2(x− x1)dx1dx

+

∫ H0−h

H0−2h

∫ τ
′
k1k2k3

H1−h
xf1(x1)f2(x− x1)dx1dx

+ α11

∫ H0

H0−h

∫ τ
′
k1k2k3

H1−h
xf1(x1)f2(x− x1)dx1dx

}
, (3)

where τk1k2k3 =

{
H1 − h if k1 − k2 6= 0

x if k1 − k2 = 0,
and τ

′

k1k2k3
=

{
H1 if k1 − k2 6= 0

x if k1 − k2 = 0.
239

Proof The system might transit from the in-control state to the out-of-control state240

either in a sampling interval using a normal sample size or in a sampling interval using241

a larger sample size, and the system can then fail in both sampling intervals, which242

creates four scenarios. The first two terms in equation (3) correspond to the scenarios243

when the transition from the in-control state to the out-of-control state occurs in a244

sampling interval when a normal sample size n0 is conducted, and they correspond to245

the scenarios when the transition from the in-control state to the out-of-control state246

occurs in a sampling interval when a larger sample size n1 is conducted.247

The first term in equation (3) is the scenario when the two transitions (i.e., from248

the in-control state to the out-of-control state and then fail) occur in longer sampling249

intervals. The second term means that a correct signal appears in a longer sampling250

interval h (with a probability β11) followed by a shorter sampling interval h for confir-251

mation, but the system fails within this h. The third term means that the transition252

from the in-control state to the out-of-control state occurs (with a probability β01253

followed by a shorter sampling interval). The last term means that the two scenarios254

occur in short sampling intervals.255

4.2 Expected renewal cycle cost256

The costs incurred during periods E(Tf1), E(Tf2), and E(Tf3) are derived in the257

following.258

E(Ca1) =

∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
αk1−k2−k310 (α11β10)k3α11(1− β10)

∫ H1−h

H1−2h
C0f1(x1)(1− F2(H0 − x1))dx1

+ α01α
k1−k2−k3
10 αk3+1

11 βk3+1
10 (1− β10)

∫ H1

H1−h
C1f1(x1)(1− F2(H0 + 2h− x1))dx1

}

+

∞∑
k2=0

{
α01(1− β10)

∫ H2

H2−h
C2f1(x1)(1− F2(H2 − x1))dx1

}
, (4)

where C0 = k1n0cs+(α01(k2−1)+k3+1)n1cs+((α02+α01(1−β00))(k2−1)+1)ci+cr1,259

C1 = C0 + (n0 + n1)cs, and C2 = k2n0cs +α01k2n1cs + (n0 + n1)cs + (α02 +α01(1−260

β00))k2ci + ci + cr1.261
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Proof After the system transited from the in-control state to the out-of-control state in262

a sampling interval when a normal sample size n0 is conducted, there will be two possi-263

ble scenarios before two warning signals appear consecutively in two sampling intervals264

with a normal sample size n0 and a larger sample size n1, respectively. The first scenario265

is that incorrect signals (with a probability of β10) appears, the second scenario is that266

a correct signal followed by an incorrect signal (with a probability of β11β10). These two267

scenarios make up an event with a probability of (β10)k1−k2−k3(β11β10)k3β11(1−β10),268

and the event incurs sampling cost (k1 − k2 + 1)ncs + (k3 + 1)ncs. Before the system269

has transited from the in-control state to the out-of-control state, the sampling cost is270

k2ncs + β01k2ncs, inspection cost (β02 + β01(1− β00)k2 + 1)ci, and cost cr1 on minor271

repair. Hence, the sub-total cost is C0.272

The system might also transit from the in-control state to the out-of-control state273

within a interval when a larger sample n1 is conducted after a false signal appear in274

the in-control state. This event incurs cost ncs + ci + cr1. The cost incurred before the275

transition is k2ncs + β01k2ncs + β01β01k2ci. The sub-total cost is C1.276

A similar explanation to the third term in equation (4) can be given.277

Similarly,278

E(Ca2) =

∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
αk1−k2−k310 (α11β10)k3α12

∫ H1−h

H1−2h
C3f1(x1)(1− F2(H0 − h− x1))dx1

}
,

(5)

where C3 = C0 − n1cs.279

And finally, we have280

E(Ca3) =

∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

αk1−k2−k310 αk311β
k3
10

{∫ H0−h

H0−2h

∫ τk1k2k3

H1−2h
C4f1(x1)f2(x− x1)dx1dx

+ α11

∫ H0

H0−h

∫ τk1k2k3

H1−2h
C5f1(x1)f2(x− x1)dx1dx

+

∫ H0−h

H0−2h

∫ τ
′
k1k2k3

H1−h
C6f1(x1)f2(x− x1)dx1dx

+ α11

∫ H0

H0−h

∫ τ
′
k1k2k3

H1−h
C7f1(x1)f2(x− x1)dx1dx

}
, (6)

where C4 = k1n0cs+(α01(k2−1)+k3)n1cs−n0cs+((α02+α01(1−β00))(k2−1))ci+cr2,281

C5 = C4 + n0cs + ci, C6 = C4, and C7 = C5.282

Hence, the expected long-run cost per unit time is given by283

Ea(T,C) =
E(Ca1) + E(Ca2) + E(Ca3)

E(Ta1) + E(Ta2) + E(Ta3)
. (7)

Ea(T,C) in equation (7) can be minimized to obtain the optimal parameters such284

as αij and βij , which is equivalent to optimize inspection policy for 3-state systems285

monitored by the adaptive control charts.286
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5 A data example287

In this section, we conduct use one numerical data example to investigate th impacts288

of the cost parameters, assuming F1(x1) = 1 − exp(−( x1
300 )2.5), and F2(x2) = 1 −289

exp(−( x2
200 )4).290

We also assume the parameter values in Table 1 for the numerical example where291

an np chart is used.292

Table 2 indicates the results of the minimum expected long-run cost per unit time.293

For example, the optimum n1 is 144 when n0 = 80. This ensures the expected long-294

run cost per unit time to be minimal, or Ea(T,C) = 5.87. Comparing all of the costs295

Ea(T,C), it can be found that the expected long-run cost per unit time reaches the296

minimal Ea(T,C) = 2.276 when n0 = 130 and n1 = 131. We also notice that the ratio297

n1
n0

becomes smaller when n0 increases.298

5.1 Sampling cost cs299

If cs changes from 0.1 to 9.1 with step 1, the optimal n0 and n1 will change from 125300

and 137 to 95 and 104 as shown in Table 3. It can be seen that Ea(T,C) changes from301

2.285 to 11.761 when cs changes from 0.1 to 9.1.302

5.2 Inspection cost ci303

If ci changes from 10 to 460, the optimal n0 and n1 will change from 140 and 154 to304

120 and 132 as shown in Table 4. It is noticed that the sample sizes n0 and n1 remain305

unchanged when ci changes in intervals (40,90), (100,110), or (160,460).306

5.3 Minor repair cost cr1307

If cr1 changes from 50 to 4500, the optimal n0 and n1 changes as shown in Table 5.308

It is noticed that the optimum samples n0 and n1 do not change dramatically when309

cr1 changes from 50 to 4500: the optimum n0 and n1 change from 130 and 143 to 110310

and 121, respectively. This suggests that parameter cr1 is not sensitive to Ea(T,C)311

when cr1 is in intervals (50,1500) or (2000,4000). We also notice that Ea(T,C) has a312

large change, from 0.867 to 14.862 when cr1 changes from 50 to 4500.313

It is noticed that in the above three situations, optimum sample sizes are moving314

in an opposite direction to that of the changes of costs, cs, ci, and cr1: the optimum315

sample sizes become smaller when those costs become larger.316

5.4 Major repair cost cr2317

If cr2 changes from 500 to 10000, the optimal n0 and n1 change as shown in Table 6.318

When the major repair cr2 increases, the optimum sample sizes increase. It is319

noticed that the optimum sample sizes n0 and n1 remain their respective values, 130320

and 143, unchanged, when cr2 changes from 4000 to 10000. The optimum sample sizes321

n0 and n1 change when cr2 changes from 500 to 1000. This suggests that the parameter322
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cr2 is not sensitive to the cost Ea(T,C) when cr2 is in the interval (4000,1000), but it323

is sensitive to the cost Ea(T,C) when cr2 changes from 500 to 1000. In other words,324

parameter cr2 is not sensitive to cost Ea(T,C) when cr2 is bigger, whereas cr2 is325

sensitive to the cost Ea(T,C) when it is smaller. It is also noticed that Ea(T,C) has326

only a slight change, from 1.986 to 2.516, when cr2 conducts a big change, from 500 to327

10000.328

5.5 Discussion329

From the above analysis, one can see that in some cases, the optimum sample sizes n0330

and n1 remain unchanged although cost may change.331

It is also noticed that the sampling cost is the most sensitive one impacting Ea(T,C).332

For cost cr2, it is interesting to notice that the cost Ea(T,C) changes in different di-333

rections from the above three costs: ci, cs and cr1: the optimum sample sizes increases334

when cost cr2 on major repair increases, and the optimum sample sizes decreases when335

cost cr2 on major repair increases.336

6 Concluding remarks337

In this paper, the expected long-run cost per unit time is derived for the situation338

where adaptive control charts with variable sample size are applied to monitor a system339

with three states: in-control, out-of-control and failure states. We have also conducted340

sensitivity analysis to investigate the impact of each cost to the expected long-run341

cost per unit time. It is found that the sample sizes become smaller when any of342

the individual cost (including sampling cost, inspection cost, and cost on minor repair)343

increases. However, the sample sizes become larger when cost on major repair increases.344

Among the four costs, sampling cost is the most sensitive one impacting the expected345

long-run cost per unit time.346

In practice, it is often found that estimating real costs incurred by sampling, in-347

spection or repair is not easy. The sensitivity analysis on the parameters suggests that348

practitioners can obtain optimum solutions although costs estimated may fall in inter-349

vals, instead of precise values.350

Our further work will be focused on investigating the scenario when different types351

of maintenance models (see [20], for example) are considered.352
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In − control state //
mm

major repair

ss minor repair

Out − of − control state // Failed state

Fig. 1 Transitions between the states of the system (where the dash line represents repair
type and the solid line represents transition).
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(a) Static control chart (b) Adaptive control chart

Fig. 2 Control zones in the control charts.

(a) Scenario of Item 1 in Ta1 (b) Scenario of Item 2 in Ta1.

(c) Scenario of Item 3 in Ta1.

Fig. 3 Three scenarios in E(Ta1) (where the zigzag lines represent a sampling with the normal
sample size n0 and the wave lines represent a sampling with the larger sample size n1)

Table 1 Parameters used in the numerical example.

α0 α1 β00 β01 β02 β10 β11 β12 cs ci cr1 cr2 n
0.98 0.1 0.833 0.147 0.02 0.02 0.08 0.9 1 100 500 5000 100
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Table 2 Ea(T,C) with values of n0 and n1.

n0 n1 Ea(T,C) n0 n1 Ea(T,C)
80 144 5.870 120 121 2.293
85 140 4.592 125 126 2.278
90 139 3.679 130 131 2.276
95 133 3.088 135 136 2.283
100 130 2.731 140 141 2.295
105 121 2.521 145 146 2.314
110 119 2.399 145 147 2.315
115 116 2.329 150 151 2.337

Table 3 The expected long-run cost per unit time with cs, n0 and n1.

cs n0 n1 Ea(T,C) cs n0 n1 Ea(T,C)
0.1 125 137 2.285 5.1 100 110 7.818
1.1 115 126 3.497 6.1 100 110 8.832
2.1 110 121 4.635 7.1 100 110 9.846
3.1 105 115 5.720 8.1 95 104 10.805
4.1 105 115 6.786 9.1 95 104 11.761

Table 4 The expected long-run cost per unit time with ci, n0 and n1.

ci n0 n1 Ea(T,C) ci n0 n1 Ea(T,C)
10 140 154 1.964 100 125 137 2.286
20 135 148 2.002 110 125 137 2.319
30 135 148 2.039 160 120 132 2.495
40 135 148 2.075 210 120 132 2.658
50 130 143 2.111 260 120 132 2.822
60 130 143 2.146 310 120 132 2.985
70 130 143 2.181 360 120 132 3.149
80 130 143 2.216 410 120 132 3.312
90 130 143 2.251 460 120 132 3.476

Table 5 The expected long-run cost per unit time with cr1, n0 and n1.

cr1 n0 n1 Ea(T,C) cr1 n0 n1 Ea(T,C)
50 130 143 0.867 900 130 143 3.547
100 130 143 1.025 1000 130 143 3.862
200 130 143 1.340 1500 130 143 5.438
300 130 143 1.656 2000 120 132 7.014
400 130 143 1.971 2500 120 132 8.585
500 130 143 2.286 3000 120 132 10.157
600 130 143 2.601 3500 120 132 11.729
700 130 143 2.916 4000 120 132 13.301
800 130 143 3.232 4500 110 121 14.862
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Table 6 The expected long-run cost per unit time with cr2, n0 and n1.

cr2 n0 n1 Ea(T,C) cr2 n0 n1 Ea(T,C)
500 90 125 1.986 5500 130 143 2.309
1000 110 121 2.064 6000 130 143 2.332
1500 120 132 2.104 6500 130 143 2.355
2000 120 132 2.132 7000 130 143 2.378
2500 120 132 2.160 7500 130 143 2.401
3000 120 132 2.187 8000 130 143 2.424
3500 120 132 2.215 8500 130 143 2.447
4000 130 143 2.241 9000 130 143 2.470
4500 130 143 2.264 9500 130 143 2.493
5000 130 143 2.286 10000 130 143 2.516


