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Assessment of robustness and transferability
of classification models built for cancer
diagnostics using Raman spectroscopy

Martina Sattlecker,? Nick Stone,? Jennifer Smith? and Conrad Bessant®*

Over recent years, Raman spectroscopy has been demonstrated as a prospective tool for application in cancer diagnostics. The
use of Raman spectroscopy for this purpose relies on pattern recognition methods that have been developed to perform well on
data achieved under laboratory conditions. However, the application of Raman spectroscopy as a routine clinical tool is likely to
result in imperfect data due to instrument-to-instrument variation. Such corruption to the pure tissue spectral data is expected
to negatively impact the classification performance of the diagnostic model. In this paper, we present a thorough assessment
of the robustness of the Raman approach. This was achieved by perturbing a set of spectra in different ways, including various
linear shifts, nonlinear shifts and random noise and using previously optimised classification models to predict the class
membership of each spectrum in a testing set. The loss of predictive power with increased corruption was used to calculate
a score, which allows an easy comparison of the model robustness. For this approach, three different types of classification
models, including linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA) and support vector
machine (SVM), built for lymph node diagnostics were the subject of the robustness testing. The results showed that a linear
perturbation had the highest impact on the performance of all classification models. Among all linear corruption methods, a
gradient y-shift resulted in the highest performance loss. Thus, the factor most likely to affect the predictive outcome of models

when using different systems is a gradient y-shift. Copyright (€ 2010 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.
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Introduction

Cancer can be considered an epidemic since the number of
incidences is rising rapidly. In the United Kingdom alone, one in
four deaths is due to cancer.[! The highest impact on the mortality
rate is the stage of the cancer at the point of detection. Since
an early detection improves the survival rate, it is desirable to
detect the development of malignant abnormal cell growth as
soon as possible, preferably when the first biochemical changes
occur. Current methods, including white light spectroscopy, often
can detect a tumour only when invasion has already taken place.
Hence there is a need for diagnostic methods that can detect
cancer development at a pre-malignant level.

Currently, histopathology is the gold standard technique for
cancer diagnosis and staging. Typically, tissue samples are taken
and examined by pathologists using various staining techniques.
This procedure not only delays diagnostic results but it also relies
upon a subjective method, which can result in inter-observer
disagreement.!*3! Furthermore, excisional biopsy of vulnerable
organs, including the central nervous system and vascular system,
can be of increased hazard. In light of these limitations, an ideal
diagnostic test would be rapid, non-invasive and high-throughput,
and would not require any tissue processing before analysis.

Vibrational spectroscopic methods, such as Raman and in-
frared spectroscopy have shown promise as techniques to aid
histopathologists in the procedure of cancer detection and stag-
ing. These methods are capable of measuring subtle biochemical
changes in tissue within malignant disease development. This
feature makes these techniques highly suitable for early cancer

detection, especially because the detection can take place as soon
as the first chemical changes occur, which would not be detectable
by traditional methods. Additionally, these methods are fast, high
throughput, objective and non-destructive.

The future application of vibrational spectroscopy as a routine
technique for cancer diagnosis strongly depends on chemometric
pattern recognition techniques. For this purpose, various methods,
including linear discriminant analysis (LDA),>~7! artificial neural
networks (ANNSs),8% random forests'” and support vector
machines (SVM),"12 were investigated to build classification
models for cancer diagnostics. Forinstance Teh et al.l” applied LDA
for diagnosing gastric cancer and achieved a sensitivity of 95.2%
and a specificity of 90.9%. ANNs were applied for the diagnoses
of melanoma and achieved 85% sensitivity and 99% specificity.®!
Similarly, SVMs were investigated for the classification of colonic
tissue, where normal tissue, polyps and adenocarcinomatous
colonic tissue were classified with a diagnostic accuracy of
99.9%.11

If pattern recognition based on Raman spectroscopy is to be
translated from the research laboratory to the clinic, its real world
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performance and limitations need to be fully understood. This
necessitates rigorous model testing, which goes further than
testing a classification model with an unseen testing set. To date,
no studies into the robustness of these models and how their
performance is impacted by different error sources have been
published. This is of special interest since error can be introduced
by system-to-system variation, working conditions and by the
operator. In order to fully assess the performance of a diagnostic
model, it is important to take account of the fact that acquired
data might be subject to error from a range of sources.

In this work, we present a series of methods to simulate the effect
of error sources on the data set. This includes various impacts, such
as linear spectral shifts — which either shift the whole spectra by
a wavenumber at a time or modify the intensity of each spectral
point linearly; nonlinear spectral shifts — which either result in a
stretching or a bending of a spectrum; and random noise — which
decreases the signal-to-noise ratio. These are all potential errors
that are suspected to occur to differing extents when moving
between instruments, modifying the design and changing working
conditions or sampling methodologies. In order to assess the
robustness of classification models for such errors, classifiers
were used to predict the class membership of the corrupted
data. For this approach, three different types of classifiers — LDA,
partial least square discriminant analysis (PLS-DA) and SVM — were
investigated. In previous work,!"¥) these classification techniques
were used to build models for lymph node diagnostics based on
Raman spectroscopy. All of these models when independently
tested achieved a classification accuracy, specificity and sensitivity
beyond 90%. The SVM model even classified 100% of the testing
set correctly.

Materials and Methods

Tissue samples and measurement

A total of 43 lymph nodes were collected during sentinel lymph
node dissection of breast cancer patients. All samples were
approved by the Gloucestershire Research Ethics Committee and
used with the consent of fully informed patients. After collection,
tissue was snap frozen on acetate paper in order to maintain
orientation and sample freshness. Each sample was cut in half,
where one half was used for comparative histology [haematoxylin
and eosin (H&E) staining], a 7-um section from the remaining half
was cut and mounted on a CaF; slide for Raman mapping.

For all Raman measurements a Renishaw System 1000° Raman
microspectrometer coupled to a diode laser, a Leica® microscope,
a Prior® electronic stage, a video viewer and a desktop computer
with customized Grams® software was used. The output of the
laser was set to 350 mW and the wavelength to 830 nm in order to
minimise the autofluorescence from tissue. Raman mapping was
executed in steps of 100 um in the x- and y-directions, where, at
each point, the spectrum was integrated for a total of 30 s.

Data processing

All data analysis was executed using Matlab (Mathworks, USA)
and additional toolboxes, including PLS Toolbox 3.5 (Eigenvector
Research) and LIBSVM 2.88.1.1'* The generated Raman maps were
firstimported into Matlab and converted into false colour images
by using the first three principal components (PCs). Using the
false colour images and the related H&E staining, homogenous
positive or homogenous negative regions were identified for

subsequentextraction of spectra. The histopathology classification
was confirmed by routine H&E staining and the expert opinion of
a consultant histopathologist. In this manner, for each individual
sample, multiple spectra were extracted. The resulting data was
pre-processed by applying a filtering method that removed
outliers and bad-quality spectra for each lymph node sample
independently.l'3! For this investigation, the removal of bad-
quality spectra was of specific importance in order to ensure that
the classifiers were not trained to handle bad-quality data. Thus,
this allows an accurate assessment of the impact of corruption
on the model performance. Finally, the data set was split into a
testing and a training set. The training set consisted of 31 samples
(9 positive and 22 negative) and the testing set of 12 samples (8
negative and 4 positive).

Diagnostic models

LDA is a frequently applied classification method owing to its
simplicity. This classifier produces a linear boundary between
classes. For the calculation of the LDA distance to each class,
centroid Mahalanobis distance is commonly applied:

dig = (% — Xg)S; ' (X; — Xg)' M
Quite often, principal component analysis (PCA) is executed prior
to building an LDA model. The resulting PC scores are then used
to generate the LDA model. Using PCs allows simplification of the
data by maintaining the overall information content despite using
fewer variables. Using a reduced data set is of special importance
if the observed data has a higher number of variables than the
number of samples because of the fact that Mahalanobis distance
fails under these circumstances. In this manner, the optimisation
of the LDA model includes the estimation of the ideal number of
PCs fed into the LDA. This is commonly done by leave one sample
out cross validation (LOOCV), where one sample is left out and the
remaining data is used to build a model, which is then used to
predict the class membership of the left out sample.

Partial least squares (PLSs) have a long tradition in chemomet-
rics. Similar to PCA, PLS is a data reduction method. The main
difference between these two methods is that PLS tries to relate
the two types of variables, in this case, the spectral data and the
pathology class. Thus, PLS attempts to maximise the covariance
between these two building blocks. In order to optimise a PLS-
DA model, the number of components (latent variables) must be
optimised.

Compared to the two methods presented earlier, SVMs!'®! are
a relatively new classification method. The basis of SVMs is to
separate classes with a hyperplane by maximising the margin
between them. For this reason, the measured data is plotted into
an N-dimensional space (input space), which is, in the simplest
approach, equivalent to the measured points in the spectrum.
Frequently, classes are not separable in the input space. In order
to overcome this problem, data can be plotted into a higher
dimensional space (feature space) by a kernel function. There
are different types of kernel function used for this purpose;
nevertheless, the most frequently applied one is the radial basis
function:

—lIxi = xlI?
202

In previous work,!'3! the classification algorithms described above
were used to build diagnostic models for lymph node classification.
For the optimisation of these models, the data set was split

()

K(xi, x;) = exp
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Table 1. Summary of all simulated spectral artefacts and potential
experimental sources

Spectral artefact Possible sources

X-shift Ambient temperature change
- Calibration error

Constant y-shift Laser intensity variation

Gradient y-shift Stray off-axis light entering the system
- Ambient light

- New signals from specimens
(fluorescence)

Collected light not fully focussed onto
charge-coupled device (CCD)
detector

Optical artefacts caused by vignetting
in the spectrometer

Random Noise Reduced exposure time
- Low laser power

Sine perturbation

Cosine perturbation

randomly into training and testing sets. The training set, consisting
of 31 samples (1550 spectra), was used to optimise and build the
models. The predictive power of each generated model was
finally assessed with an independent testing set, consisting of 12
samples (355 spectra). Among the optimised models, the radial
basis function SVM (applied parameters: ¢ = 21325, ¢ = 210)
performed best by classifying 100% of the testing set correctly.
The LDA model (number of PCs = 13) predicted 93.8% (sensitivity:
100%, specificity: 91.9%) of the test data accurately and the
PLS-DA model (number of latent variables = 8) predicted 95.2%
(sensitivity: 100%, specificity: 93.8%) of the test data correctly.
These diagnostic models were the subject of all subsequent
investigation of robustness testing.

Simulation of spectral artefacts

In order to assess the model robustness, different types of
perturbations were simulated on all spectra of the testing set.
The training set was left unmodified - this reflects the possible
deploymentofamethodtrainedinacontrol laboratory setting into
a clinical setting where sources of error are harder to control. The
original models were then used to predict the class membership
of the corrupted testing set. For this approach, three general types
of perturbation were investigated: linear shifts, nonlinear shifts
and random noise. A list of the applied spectral artefacts and their
causes is shown in Table 1. For each approach, the perturbation
level was increased systematically. It is expected that increased
corruption levels result in a loss of predictive power, allowing
the assessment of robustness as a function of spectral quality.
This allows the comparison of the different types of classifiers,
which helps to decide on the type of classifier that would be more
sensitive to a specific spectral artefact for a particular spectral data.

Linear shifts

For the investigation of the linear shift, three independent
simulations were executed: a constant x-shift, a constant y-shift
and a gradient y-shift.

X-shift: Raman shifts can be a result of changes in ambient
temperature and poor calibration procedures. In order to evaluate
the impact of a varying x-shift on the model performance, the
first and the last 15 wavenumbers of the training data set were

eliminated. The removal of these wavenumbers was necessary in
order to gain room for shifting the data set. Thus, the original
spectral range of the training set was reduced from 350-1850
to 365-1835cm~'. The reduced data set was finally used to
generate the different types of classification models. The x-shift
was simulated on the testing data by extracting an alternating
spectral range of the data. For instance, an x-shift of —15 cm~" was
introduced by extracting the spectral range from 350-1820 cm™".
The resulting testing set was then classified by the model.

Constant y-shift: A constant y-shift was introduced by adding
0.01 arbitrary intensity units at a time to the original measured
intensity of all testing spectra. Thus, for each wavenumber, the
intensity was consequently increased for 0.01 arbitrary units. This
was executed 50 times up to an intensity increase of all spectra to
a maximum of 0.5 arbitrary units.

Gradient y-shift: In order to simulate a linear gradient, a linear
function wasaddedtoall spectra of the testing data. The gradient of
this function was then increased by 0.0001 ranging from negative
to positive gradients of 0.0013. The impact of a gradient of 0.0001
on a sample spectrum is illustrated in Fig. 1.

Nonlinear shift

Nonlinear shifts were simulated in two ways. The first was
sine based and the second, cosine based. Accordingly, the two
functions were used to manipulate all spectra of the testing set:

Function1: f(x) =a x 0.5(1 + cos (x)) (3)

Function2: f(x) =a x 0.5(1 +sin(x — 7 /2)) (4)
The impact of the perturbation function is regulated by the
amplitude g, and for this reason, the amplitude was increased in
steps of 0.1 starting from 0.1 up to 30 for both functions. In order to
corrupt the data set, the resulting base function was interpolated
on the testing data. As Fig. 1 illustrates, a cosine perturbation
has a strong impact on the peripheral zones of the spectra. In
comparison, a sine perturbation has a higherimpact on the centre
of a spectrum. However, for Raman measurements, a spectral
stretching, as simulated by cosine perturbation, is more likely to
occur than a bending, which is simulated by a sine perturbation.

Random noise

Random noise n was computed independently for every individual
spectral point s in the testing set x(;. The noise n can take any
value between —1 and 1. In order to introduce a gradient, only a
percentage p of the generated noise n was added to the original
measured intensity:

XGj) = SGj) + Sij) x N xXp

In Fig. 1, the impact of the addition of 10% noise on the Raman
spectra is illustrated. For each percentage level, 100 models were
generated where, every time, a new noise simulation was made
for the testing set. The repetitions were executed because a single
repetition would not be representative owing to the random
nature of the perturbation.

Robustness score

In order to provide a summary of the overall robustness of each
classification model, a score was calculated. For this purpose, each
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Figure 1. lllustration of the impact that different sources of perturbation have on a sample spectrum. A positive linear gradient, in this illustration, a
gradient of 1074, results in increased intensities towards higher wavenumbers. The random noise plot shows the impact of the addition of 10% noise to
the original spectrum. A cosine perturbation impacts the peripheral areas of the spectrum. The sine perturbation affects the centre of the spectrum. Both

nonlinear perturbations were generated using the maximum amplitude.

corruption approach was assigned a total of 100 points. In the
case that there was a two-way perturbation, for example, the
x-shift could be either positive or negative, each was assigned 50
points, independently. In this manner, a total of 600 points was
theoretically achievable. In addition, an assessment level was set
on which the robustness was to be tested. For this approach, the
level was initially set for maintenance of 90% accuracy. In this
manner, it was possible to investigate how much the data could
be corrupted by maintaining a minimum of 90% performance. For
instance, in the case of an x-shift this was the maximum shift in n
wavenumbers, which allowed a classification performance of 90%.
In order to calculate the score, the proportion of the estimated
perturbation limit to the applied maximum perturbation was
estimated. This procedure was carried out for each corruption
approach and all individual scores were summed. The higher
the estimated score, the higher was the robustness of a model.
Thus, the score facilitated a numerical comparison of the overall
robustness of classification models at a predefined performance
level.

Results and Discussion
Linear shift
X-shift

As illustrated in Fig. 2, a negative spectral wavenumber shift has
a significantly higher impact on the classification performance
than a shift in the positive direction. Among all classification

models, the PLS-DA model was most badly affected. A shift of 15
wavenumbers in the negative direction resulted in a reduction
to around 45% of prediction accuracy. In comparison, the SVM
and the LDA model did not lose more than 20% in prediction
accuracy at the maximum negative x-shift. Although all models
declined in overall accuracy, the sensitivity, as illustrated in Fig.
S3 (Supporting Information), was not impacted by a negative x-
shift. An x-shift in the positive direction had a strong impact on
the diagnostic sensitivity of the PLS-DA and SVM model. A shift
of 12 wavenumbers resulted in a complete loss of sensitivity for
the PLS-DA model and a shift of 15 wavenumbers resulted in a
diagnostic sensitivity as low as 1.2% for the SVM model. Overall,
the LDA model demonstrated to be the most robust model in the
presence of an x-shift. Further investigations showed that this is
due to the fact that only a minimum number of PCs were fed into
the LDA. Increasing the number of PCs resulted in a total loss of
sensitivity and thus a similar performance loss as for the other
classification models. Thus, the previous application of PCA for
data reduction and the optimisation of the number of PCs fed into
the LDA has a beneficial effect on this model and its robustness.
The PLS-DA, which faced the highest performance loss caused by
an x-shift, must be considered the least robust model for this type
of perturbation.

Constant y-shift

As expected, this modification had a severe impact on the model
performance, shown in Fig. 2, which mainly resulted in a loss
of specificity. This source of perturbation did not impact the
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Figure 2. Robustness testing results for all perturbations. The largest loss in predictive accuracy can be seen for the three linear perturbations: x-shift,
constant y-shift and gradient y-shift. Additionally, the cosine perturbation demonstrated having a fairly high impact on the classification performance.
The sine perturbation and random noise only had a minimum impact on the classification result.

sensitivity of any of these models and therefore, any performance
loss was caused by a reduced specificity. The PLS-DA model
achieved a classification accuracy of 39.7%, which is equivalent
to a specificity of 21.6%, after increasing the intensity of all test
spectra by 0.5 arbitrary units. The SVM model performed similarly
by achieving a specificity of 22.7% and classifying 40.6% of the
testing set correctly. The decline in specificity is illustrated in Fig. S4
(Supporting Information). The major difference in the robustness
of these models is that the SVM model loses performance abruptly,
whereas the PLS-DA model loses performance more gradually. In
comparison, the LDA model only achieved an accuracy of 23.4%
and a total loss of specificity. For this reason, it must be considered
that the LDA model is most affected by a constant y-shift.

Gradient y-shift

A positive gradient drastically impacts the performance of
all models as illustrated in Fig.2. The major reason for the
performance decrease is the loss in diagnostic specificity. Thus, all
normal lymph nodes were predicted as cancerous lymph nodes.
For all models, as shown in Fig. S3 (Supporting Information), a
sensitivity of 100% can be maintained up to a y-gradient of 0.0013.
The most disturbed models were the LDA and the PLS-DA model,

both of which only classified 23.1% of all testing spectra correctly
with an applied gradient of 0.0013. The relatively low accuracy in
comparison to 100% sensitivity can be explained by the fact that
there are more negative than positive samples in the testing set.
Nevertheless, the SYM model achieved a classification accuracy
of 30.7% at the same gradient level. In comparison, a negative
gradientresults in a total loss of sensitivity for the LDA and the SYM
model. The PLS-DA modelis notimpacted at all and thus maintains
the original model performance up to the maximum gradient of
—0.0013. Therefore, the PLS-DA can be considered to be the most
stable classification model for this type of perturbation.

Nonlinear shift

A cosine perturbation, which has a corrupting effect on the
peripheral regions of a spectrum, has a major impact on the
model performance as illustrated in Fig. 2. For this perturbation
source, it was observed that the sensitivity of all classification
models was affected severely, as can be seen in Fig. S3 (Supporting
Information). This source of perturbation can be compensated
for by each of the classifiers up to a specific level, beyond which
the sensitivity drops suddenly from 100% to lower than 40%. The
PLS-DA model is the first to lose sensitivity at a cosine amplitude
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of 16.8. The SVM model is capable of maintaining sensitivity
up to an amplitude of 20.7, and the LDA classifier proved to
be the most robust model by maintaining sensitivity up to a
cosine amplitude of 30. In comparison, the sine perturbation,
which impacts the centre of a spectrum, proved to have a minor
impact on the performance of all classifiers. It showed that an
applied sine amplitude of 30 does not result in a loss of sensitivity;
finally, a sensitivity of 100% is maintained, as is shown in Fig.
S3 (Supporting Information). The loss of specificity, illustrated in
Fig. S4 (Supporting Information), is marginal for all classification
models. The SVM model is the least impacted model for the reason
that it maintains a specificity of 90.6%, which is equivalent to an
accuracy of 92.7%, at the maximum level of sine perturbation. The
LDA and the PLS-DA model perform equally and thus the LDA
achieves 85.4% accuracy (81.0% specificity) and the PLS-DA 85.1%
accuracy (80.6% specificity) at the maximum sine disruption level.
On the basis of these results, the SVM model can be considered as
the most robust one for sine perturbation.

Random noise

For each percentage level, noise was randomly added individually
to every spectrum of the testing set. This procedure was repeated
100 times and the class membership was then predicted by the
classifier. The average result was calculated for each noise level.
The addition of random noise proved to have only a minor impact
on the performance of all classification models, as illustrated in
Fig. 2.

Although, the impact of the noise on to the spectra is high no
major loss in classification performance could be observed. For all
models, the sensitivity was not affected at all, and thus only a loss
of specificity was observed.

Overall robustness

In order to assess the overall robustness for each classification
model, a score was calculated, representing how much pertur-
bation each model can compensate until the predictive accuracy
drops below 90%. In Table 2, all scores for each individual per-
turbation source are summarised. The SYM model achieved the
highest total score of all models. Nevertheless, it did not demon-
strate the highest robustness for each individual perturbation
source. The LDA model showed to be more robust towards a
positive x-shift and cosine perturbation than the other classifiers.

The PLS-DA demonstrated superiority in tolerating an increasing
negative y-gradient. All three models showed almost no tolerance
for a positive y-gradient. Summarising, the SYM model can be
considered as the most robust model since it can cope with a
high level of perturbation before dropping below 90% predictive
accuracy.

Conclusion

In this paper, we have shown the extent to which various
perturbations to Raman spectra would compromise diagnostic
systems built around multivariate classification models. Linear
perturbations were found to be the most disruptive. Among this
group, it was found that a positive linear y-gradient had the
strongest impact on the model performance. It was observed
that even an extremely low positive linear gradient causes a
drastic performance loss. Therefore, unexpected spectral features,
such as stray light, fluorescence signals in new samples and
ambient light signals might have the highest impact on the
performance of classification models and, in conclusion, must
be considered to be the most disrupting error source when
applying Raman spectroscopy for routine diagnostics. Conversely,
nonlinear perturbations were found to have negligible impact on
the performance of the models. The same was observed forrandom
noise. Since the major cause of random noise is reduced exposure
times, these results demonstrate that a reduced exposure time
would not impact on the model performance when constructed
with high-quality data. This demonstrates that faster spectral
measurements are feasible, which is of specific importance for
in vivo measurements where the minimisation of acquisition times
is desirable.

The overall robustness does not vary drastically between the
different types of classification methods. Nevertheless, it was
shown that each classification method had specific strengths. In
relation to the other methods, LDA is less impacted by a positive
x-shift or cosine perturbation. In comparison, PLS-DA copes better
with a linear negative y-gradient and SVM with a sine perturbation
and random noise. In real clinical use, the most likely differences
between newly collected data and data used for training models
would be small linear x-shifts and cosine shifts. The intensity-
related changes can be corrected for by using normalisation
methods and/or baseline subtraction. For this purpose, the most
robust method would be LDA. However, since these types of

Table 2. Robustness scores for all classification models. Each single score was calculated on the basis of the maximum perturbation that can be
tolerated by maintaining 90% of predictive accuracy
LDA PLS-DA SVM

Max Tolerance Score Tolerance Score Tolerance Score
Pos. X-shift 15 15 50 6 20 8 27
Neg. X-shift —15 —1 3 -2 7 —6 20
Const. Y-shift 0.5 0.05 10 0.11 22 0.14 28
Pos. Y-gradient 0.0013 1.2x 107 0 3.8x 107 2 3.5x107° 1
Neg. Y-gradient —0.0013 —2.34 x 1074 9 —0.0013 50 —2.09 x 107* 8
Cosine perturbation 30 233 78 10.7 36 14.1 47
Sine perturbation 30 7.0 23 4.7 16 30.0 100
Noise 25 25 100 25 100 25 100
Total score 273 253 331
Pos., positive; Neg., negative; Const., constant
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corruption are expected to be small in real applications, the most
suitable classification method is SVM. This is due to the fact that
it not only achieved the best classification performance on the
original data set but it was also not impacted by small x-shifts
and cosine perturbation. SVM loses predictive power only at very
high x-shifts and under substantive cosine perturbation. In order
to further increase the robustness of the SVM model, it would be
required to incorporate imperfect spectra (ideally, from different
instruments) into the training data, such that the expected variance
is captured in the model. Finally, before attempting to classify
spectra, it would be advisable to apply noise reduction methods
that, for example, remove fluorescence background.
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